
School of Society and Culture Theses

Faculty of Arts, Humanities and Business Theses

2022

Deep Learning for Audio Segmentation and Intelligent Remixing Deep Learning for Audio Segmentation and Intelligent Remixing

Satvik Venkatesh

Let us know how access to this document benefits you

This work is licensed under a Creative Commons Attribution 4.0 International License.
General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/sc-theses

Recommended Citation Recommended Citation
Venkatesh, S. (2022) Deep Learning for Audio Segmentation and Intelligent Remixing. Thesis. University
of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/sc-theses/42
This Thesis is brought to you for free and open access by the Faculty of Arts, Humanities and Business Theses at
PEARL. It has been accepted for inclusion in School of Society and Culture Theses by an authorized administrator of
PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/sc-theses
https://pearl.plymouth.ac.uk/foahb-theses
https://forms.office.com/e/bejMzMGapB
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/sc-theses?utm_source=pearl.plymouth.ac.uk%2Fsc-theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/sc-theses/42?utm_source=pearl.plymouth.ac.uk%2Fsc-theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

PEARL

PHD

Deep Learning for Audio Segmentation and Intelligent Remixing

Venkatesh, Satvik

Award date:
2022

Awarding institution:
University of Plymouth

Link to publication in PEARL

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise*.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

 That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

 That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

 * Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.

https://researchportal.plymouth.ac.uk/en/studentTheses/b7349797-5679-4a01-bfff-3d75532dae7d

Download date: 28. Oct. 2024

Copyright ©2022 Satvik Venkatesh

This copy of the thesis has been supplied on the condition that anyone who

consults it is understood to recognise that its copyright rests with its author and

that no quotation from the thesis and no information derived from it may be

published without the author’s prior consent.

DEEP LEARNING FOR AUDIO SEGMENTATION AND INTELLIGENT
REMIXING

by

SATVIK VENKATESH

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Society and Culture

December 2022

I dedicate this thesis to my grandmother, Devika Rajendran, who sadly passed

during my time as a PhD student.

Acknowledgements

This PhD project has been a long and beautiful journey. Walking this road would

have been impossible without the constant motivation of people around me. It

has taught me the importance of gratitude and humility

I would not have had the opportunity to work on this project without my Director

of Studies, Prof. Eduardo Reck Miranda. Working with you has helped me

build a strong foundation for my career as a researcher. Your supervision has

been invaluable to me during my undergraduate, master’s and PhD degrees. I

express my sincere gratitude to my second supervisor, Dr. David Moffat, who has

taught me a great deal about artificial intelligence, machine learning, and signal

processing. Our weekly meetings (in most cases twice a week) on machine learning

and the development of the project made my PhD research more enjoyable. It is

remarkable how I learned so much more from regular discussions and feedback,

instead of being locked with ideas in my own mind. I also thank Dr. David Jenkins

who agreed to be my second supervisor in the last year of my PhD, during the

crucial phase of writing-up. Also, thank you for initially liaising with SASTRA

University for me to pursue a semester exchange programme at the University of

Plymouth.

I also had the opportunity to pursue a research internship at Mitsubishi Electric

Research Laboratories (MERL) during my degree. I sincerely thank Dr. Gordon

Wichern, Dr. Jonathan Le Roux, and Dr. Aswin Subramanian to work with me

during my tenure. It was an amazing experience and a learning curve to work on

their cutting-edge technology.

i

I thank Dr. Edward Braund and Dr. Nuria Bonet for their advice during my time as

an associate lecturer for the BSc programme in Computing and Music Technology.

Dr. Edward Braund’s supervision during my master’s degree has greatly helped

me develop research and writing skills. I thank the amazing friends I have made

at ICCMR — Ben, Rachel, Jared, Sam, Clive, and Omar. Clive was kind enough to

verify the annotations of audio files used for my research.

I sincerely thank my parents and family back in India, who have showered me

continuous love and support during my degree. It was helpful to pursue some part

of my degree remotely from India and survive the hardships caused by COVID.

They patiently listened to and motivated me while I kept complaining about my

experiments not working. I am grateful to my fiancé Aishwarya for being such

a great team player in the process of me being a PhD student. Thank you for

patiently listening to and helping me deal with my research problems, and for

tolerating my project-obsession. I also sincerely thank all my friends and relatives

back in India for their continuous love and support.

This project was supported by the EPSRC grant EP/S026991/1. I also thank

Sanmat and Adar poonawalla for their scholarship grant in September 2021 to

fund my quarantine and COVID-related costs.

ii

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of

the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not

formed part of any other degree either at the University of Plymouth or at another

establishment.

Relevant scientific seminars and conferences were regularly attended at which

work was often presented. A list of publications can be found in section 1.6.

Word count for the main body of this thesis: 44,470

Signed:

16-12-2022Date:

iii

Abstract

Name: Satvik Venkatesh

Title: Deep Learning for Audio Segmentation and Intelligent Remixing

Audio segmentation divides an audio signal into homogenous sections such

as music and speech. It is useful as a preprocessing step to index, store, and

modify audio recordings, radio broadcasts and TV programmes. Machine learning

models for audio segmentation are generally trained on copyrighted material,

which cannot be shared across research groups. Furthermore, annotating these

datasets is a time-consuming and expensive task. In this thesis, we present a

novel approach that artificially synthesises data that resembles radio signals. We

replicate the workflow of a radio DJ in mixing audio and investigate parameters

like fade curves and audio ducking. Using this approach, we obtained state-of-

the-art performance for music-speech detection on in-house and public datasets.

After demonstrating the efficacy of training set synthesis, we investigate how

audio ducking of background music impacts the precision and recall of the ma-

chine learning algorithm. Interestingly, we observed that the minimum level of

audio ducking preferred by the machine learning algorithm was similar to that of

human listeners. Furthermore, we observe that our proposed synthesis technique

outperforms real-world data in some cases and serves as a promising alternative.

This project also proposes a novel deep learning system called You Only Hear

Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in

Computer Vision. We convert the detection of acoustic boundaries into a regres-

iv

sion problem instead of frame-based classification. The relative improvement for

F-measure of YOHO, compared to the state-of-the-art Convolutional Recurrent

Neural Network, ranged from 1% to 6% across multiple datasets. As YOHO pre-

dicts acoustic boundaries directly, the speed of inference and post-processing steps

are 6 times faster than frame-based classification. Furthermore, we investigate

domain generalisation methods such as transfer learning and adversarial training.

We demonstrated that these methods helped our algorithm perform better in

unseen domains.

In addition to audio segmentation, another objective of this project is to explore

real-time radio remixing. This is a step towards building a customised radio

and consequently, integrating it with the schedule of the listener. The system

would remix music from the user’s personal playlist and play snippets of diary

reminders at appropriate transition points. The intelligent remixing is governed

by the underlying audio segmentation and other deep learning methods. We

also explore how individuals can communicate with intelligent mixing systems

through non-technical language. We demonstrated that word embeddings help in

understanding representations of semantic descriptors.

v

Contents

Acknowledgements i

Author’s declaration iii

Abstract iii

Table of Contents v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Project Aims . 2

1.3 Research Questions . 3

1.4 Methods . 3

1.4.1 Python . 3

1.4.2 Deep Learning . 4

1.4.3 Literature Sources . 5

1.5 Contributions . 6

1.6 List of Publications . 7

1.7 Structure . 9

2 Background: Deep Learning for Audio Segmentation 11

2.1 Audio Segmentation Pipeline . 12

2.2 Audio Features . 13

2.3 Types of Segmentation Algorithms 16

2.3.1 Distance-based Segmentation 16

2.3.2 Segmentation-by-classification 17

2.4 Machine Learning Algorithms . 18

vi

2.4.1 Convolutional Neural Network 19

2.4.2 Recurrent Neural Network 21

2.4.3 Temporal Convolutional Network 22

2.4.4 Convolutional Recurrent Neural Network 22

2.5 Post-processing / Smoothing . 23

2.6 Comparison . 24

2.7 Factors Specific to Machine Learning 28

2.7.1 Datasets . 28

2.7.2 Dataset Splits . 29

2.7.3 Data Augmentation . 31

2.7.4 Regularisation . 32

2.7.5 Transfer Learning . 33

2.7.6 Problem Formulation . 34

2.7.7 Loss Functions and Optimisers 35

2.7.8 Training Strategies . 36

2.7.9 Semi-supervised and Weakly-supervised Learning 37

2.8 Metrics . 38

2.8.1 Segment-based and Event-based Metrics 40

2.8.2 Micro and Macro F-measure 41

2.9 Discussion and Contributions . 41

3 Artificially Synthesising Training Sets 44

3.1 Data Synthesis Procedure . 45

3.1.1 Audio Transitions . 46

3.1.2 Time-related Variables . 48

3.1.3 Fade Curves . 50

3.1.4 Sampling Audio Files . 51

3.1.5 Audio Ducking . 51

3.1.6 Overview . 53

3.2 Datasets . 54

3.2.1 Data Repository for Data Synthesis 54

3.2.2 Real-world Radio Data . 55

3.3 Evaluate the Robustness of Data Synthesis 56

3.3.1 Methods . 57

3.3.2 Results . 61

3.3.3 Discussion . 63

vii

3.4 Loudness Difference Selection . 64

3.4.1 Neural Network Architecture 64

3.4.2 Experimental Set-Up . 65

3.4.3 Results and Discussion . 67

3.5 Impact of Dataset Size . 73

3.5.1 Experimental Set-Up . 73

3.5.2 Results . 73

3.6 Comparison of Real-World and Artificial Data 74

3.6.1 Experimental Set-Up . 74

3.6.2 Results . 75

3.7 Discussion . 77

3.8 Publications, Code, and Contributions 79

4 Neural Network Architectures for Audio Segmentation 81

4.1 Comparison of Deep Learning Architectures 82

4.1.1 Experimental Set-up . 82

4.1.2 Results and Discussion . 85

4.2 Experiments with Raw Audio . 87

4.2.1 Experimental Set-Up . 89

4.2.2 Results . 91

4.3 You Only Hear Once (YOHO) Algorithm 92

4.3.1 Motivation . 94

4.3.2 Network Architecture . 95

4.3.3 Loss Function . 97

4.3.4 Example of Labels . 98

4.3.5 Other Details . 98

4.3.6 Post-Processing . 99

4.4 Models for Comparison . 100

4.5 Datasets . 101

4.5.1 Music-Speech Detection . 102

4.5.2 TUT Sound Event Detection 103

4.5.3 Urban-SED . 104

4.6 Results . 105

4.6.1 Music-Speech Detection . 105

4.6.2 TUT Sound Event Detection 106

4.6.3 Urban-SED . 108

viii

4.6.4 Speed of Prediction . 109

4.7 Discussion . 110

4.8 Publications, Code, and Contributions 112

5 Towards Domain Generalisation 113

5.1 Introduction . 114

5.2 Methods to Address Domain Shifts 115

5.3 Domain-Adversarial Training . 116

5.4 Experimental Setup . 118

5.4.1 Domain Adversarial Neural Network 118

5.4.2 Audio Features and Training Strategy 119

5.4.3 Datasets . 120

5.5 Results . 121

5.5.1 In-house Test Set . 121

5.5.2 MIREX Music-Speech Detection 121

5.6 Discussion . 122

5.7 Publications and Contributions . 123

6 Intelligent Mixing 125

6.1 Introduction to Intelligent Mixing . 126

6.2 RadioMe Audio Engine . 127

6.2.1 Streaming Radio . 128

6.2.2 Remix Diary Reminders . 128

6.2.3 Remix Playlist . 130

6.2.4 Discussion . 131

6.3 Word Embeddings for EQ . 132

6.4 Experimental Setup . 134

6.4.1 Dataset . 134

6.4.2 Train-Test Split . 135

6.4.3 Word Embeddings . 137

6.4.4 Machine Learning Architecture 138

6.5 Results . 141

6.5.1 Error . 141

6.5.2 Partial Curve Mapping . 142

6.5.3 Plots of EQ Parameters . 144

6.6 Discussion . 149

ix

6.7 Publications, Code, and Contributions 151

7 Conclusion 153

7.1 Research Conclusions . 154

RQ 1 . 154

RQ 2 . 156

RQ 3 . 158

7.2 Future Work . 159

Acronyms 164

Bibliography 167

x

List of Figures

2.1 An illustration of the audio segmentation pipeline. 13

2.2 A plot of the distance against time steps. The peaks are associ-
ated with regions of high acoustic change. Figure adapted from
Theodorou et al. (2014). 17

2.3 An illustration of segmentation-by-classification. Each frame of
audio is classified to detect the presence of Music and Speech. . . . 18

2.4 This figure plots the output of convolutional layers at different
depths of the network. It illustrates how convolutions help in
capturing high-level features in the spectrogram. 20

2.5 An illustration of the Recurrent Neural Network (RNN). 21

2.6 Spurious audio events in predictions of the neural network. 24

2.7 An illustration of transfer learning. The neurons in blue denote that
the weights of the original network are left unchanged. The weights
of neurons in green are calculated when training the new network. 34

2.8 A comparison of multi-class and multi-output systems. 35

3.1 Two types of audio transitions in multi-class examples. 47

3.2 The different permutations of audio classes when there are either
no transitions or one transition. 48

3.3 An illustration of audio ducking while synthesising multi-label
examples. 49

3.4 The different permutations of audio classes for multi-label examples. 49

3.5 The four different fade curves present in audio transitions. 50

3.6 A diagram depicting the Loudness Difference between speech and
background music. 52

3.7 An overview of how loudness is measured in the ITU-R BS.1770
system. 53

3.8 A flow diagram depicting an overview of the data synthesis proce-
dure. 54

3.9 The Convolutional Recurrent Neural Network used for music-
speech detection. Each audio example is 8 s long. 59

xi

3.10 Experiments conducted to find an optimal maximum and minimum
value of LD. 66

3.11 F-measure for different values of maximum loudness difference
(LD). The minimum LD was fixed at 7 LU. 68

3.12 F-measure for different values of minimum LD. The maximum LD
was fixed at 21 LU. 69

3.13 Evaluation of different values for maximum LD. The minimum LD
was fixed at 7 LU. 70

3.14 Evaluation of different values for minimum LD. The maximum LD
was fixed at 21 LU. 72

3.15 The overall F-measure for different training set sizes. 74

4.1 The wave-u-net architecture proposed by Stoller et al. (2018) 89

4.2 A comparison of segmentation-by-classification and YOHO. 94

4.3 An illustration of the output layer of the YOHO algorithm. This
network is for music-speech detection. To increase the number of
audio classes, we add neurons along the horizontal axis. 97

4.4 Segment-based F-measures for each class on the Urban-SED dataset
calculated using segment-size of 1 s. 109

4.5 Average time taken to make predictions on 1 h of audio for music-
speech detection. 110

5.1 The domain adversarial neural network used for music-speech
detection. 118

6.1 An illustration of how diary reminders are remixed in the radio
programme when music is detected by the audio segmentation
algorithm. 130

6.2 A schematic diagram of how the network learns a translation from
semantic descriptors to EQ parameters. 139

6.3 Distances obtained by different models calculated by using Partial
Curve Mapping (PCM). An ideal algorithm would have a distance
of zero. 143

6.4 Plots of human labels alongside EQ parameters predicted by GloVe-
840, Tok2Vec, and no embedding. These are for words in test folds
1 and 2. 144

6.5 Plots of human labels alongside EQ parameters predicted by GloVe-
840, Tok2Vec, and no embedding. These are for words in test folds
3 and 4. 145

6.6 Plots of EQ parameters for highly-rated (HR) words as explained
in section 6.4.2. These are non-technical words that may be highly
subjective to a user. 146

xii

List of Tables

2.1 A summary of various studies for audio segmentation and sound
event detection. 27

2.2 Two examples of predictions made by the machine learning model.
The segment-based and event-based metrics were calculated us-
ing the sed_eval toolbox. You can observe that the event-based
F-measure drops to 40% in the second example because it compares
acoustic events as a whole. 41

3.1 The F-measure of our CRNN model trained on different datasets.
The bold values indicate the largest number in each column. 62

3.2 F-measure, precision, and recall of our CRNN model trained on ‘d-
DS’ and other algorithms evaluated on dataset number 1 of MIREX
2018 speech and music detection competition. 63

3.3 Contents of validation and test datasets for music-speech detection.
Real-world radio data was collected from BBC Radio Devon. 64

3.4 The neural network architecture used for this experiment. More
details are given in chapter 4. 65

3.5 This evaluation of precision, recall, and F-measure for speech and
music was conducted on our in-house test set. It compares our
model trained on different training sets. The bold values indicate
the largest number in each column. 76

3.6 This evaluation was conducted on the MIREX competition dataset.
The upper half compares our model trained on different training
sets. The bottom half shows the previously submitted algorithms
(Algo.) to the competition. 77

4.1 The list of hyperparameters explored for each neural network archi-
tecture. 85

4.2 The list of hyperparameters chosen by Hyperband each neural
network architecture. 86

4.3 The evaluation of different neural network architectures on the val-
idation and test set. CRNN-small is the simplified version of the
CRNN model, which has less number of filters for each convolu-
tional layer. 87

xiii

4.4 A comparison of CRNN trained on mel spectrograms and Wave-
U-Net trained on raw audio. This results are on the validation
set. Wave-U-Net-8k was trained on audio with a sampling rate of
8 kHz and Wave-U-Net-22k was trained audio with sampling rate
of 22.05 kHz. 91

4.5 The neural network architecture for YOHO. The upper half of the
table comprises the original layers of MobileNet. The bottom half
contains the layers that we have added. 96

4.6 An example of labels for the YOHO algorithm. Music occurs from
0.2 to 4.3 s and Speech occurs from 3.6 to 6.0 s. Note that start and
stop values are considered only when the respective audio class is
present. 99

4.7 Models for comparison on the in-house test set for music-speech
detection. 101

4.8 Contents of train, validation, and test datasets for music-speech
detection. Real-world radio data was collected from BBC Radio
Devon. 102

4.9 Results on our in-house test set for music-speech detection. The
F-measures for overall, music, and speech are presented as percent-
ages. The values in bold indicate the largest number in each column.

. 106

4.10 Evaluation on the MIREX music-speech detection dataset 2018. The
results of other studies were obtained from the MIREX website
(Schlüter et al., 2018). 106

4.11 Results on the TUT sound event detection dataset. The value in
bold indicates the algorithm with the lowest error rate. 108

4.12 Segment-based overall F-measure on the Urban-SED dataset. The
value in bold indicates the algorithm with the highest F-measure. . 108

5.1 The neural network architecture for domain-adversarial training.
The architecture has three parts — (1) Feature extractor (2) Music-
Speech detector and (3) Domain classifier. 119

5.2 Results on our in-house test set for music-speech detection. It
compares performances of YOHO, YOHO pre-trained with YamNet
weights, and YOHO combined with adversarial training and with
pre-trained weights. 121

5.3 Evaluation on the MIREX music-speech detection dataset 2018. It
compares performances of YOHO, YOHO pre-trained with YamNet
weights, and YOHO combined with adversarial training and with
pre-trained weights. 122

6.1 Schedule of the 90-minute CD recording demo. 131

6.2 Four cross-validation folds from the dataset. The test words from
each fold are presented in the table. For each fold, the training set
consists of words that are not in the test set. 136

xiv

6.3 The neural network architecture . 139

6.4 The error calculated across four folds. The smallest error in the
column is indicated in bold. 141

xv

Chapter 1

Introduction

1.1 Motivation

Audio Segmentation is a field of study, in where the aim is to find changing points

in the content of an audio stream (Theodorou et al., 2014). It divides the audio

into segments such that each segment belongs to a specific acoustic class. It is

useful for indexing audio archives and target-based distribution of media. It also

serves as a pre-processing step for tasks such as speech recognition, where regions

of speech activity are detected before converting the audio to text. This project

investigates audio segmentation for the novel task of intelligently remixing radio

signals.

This thesis is a part of a bigger project called RadioMe1. RadioMe is an EPSRC-

funded project, which aims to performs real-time radio remixing for people with

dementia to reduce agitation and provide them with personalised diary reminders.

In order to remix radio signals in real-time, the content of radio needs to be

understood. In other words, audio segmentation needs to be performed to identify

optimal points for remixing. Therefore, this thesis investigates algorithms to detect

regions of Speech and Music in an audio stream.

1RadioMe is an EPSRC-funded project (grant EP/S026991/1) involving academic partners:
University of Plymouth, University of Glasgow, University of Sussex, industrial partners: Bauer
Media, BBC, and CereProc Limited and charities: Alzheimer’s Society, MHA Care Group, Sussex
Partnership, and NHS Foundation Trust.

1

There is a growing interest to use machine learning and deep learning for audio

content-retrieval tasks such as audio segmentation. Over the years, the accuracy

of segmentation algorithms have increased due to the improvement of machine

learning architectures and the availability of more training data. This opens up op-

portunities to improve state-of-the-art algorithms by developing novel approaches.

Often, an improvement in accuracy comes with an increase in computational cost.

As this thesis remixes live radio streams, it is also interesting to develop algorithms

that are faster and require less computational resources.

1.2 Project Aims

Machine Learning models for audio segmentation are generally trained using

proprietary audio such as television and radio broadcast. This imposes a serious

hindrance in the reproducibility of research because this audio cannot be shared

across different research groups. Moreover, annotating these datasets is a time-

consuming and expensive task. In this project, we explore the novel idea of

artificially synthesising audio that resembles a radio broadcast. By doing so, we

can synthesise large training sets for deep neural networks.

This project investigates how state-of-the-art algorithms for audio segmentation

can be advanced. First, we compare the existing neural network architectures in

the literature to find out which ones perform best. Second, we propose novel ar-

chitectures to improve the accuracy and speed of machine learning models. Third,

we investigate how the model can perform on multiple and unseen domains.

Moreover, in this project, we explore how audio segmentation can improve existing

real-time remixing approaches. We try to integrate functions such as playing diary

reminders and music from the listener’s playlist seamlessly into the live radio

stream. Lastly, we investigate how individuals can communicate with intelligent

mixing systems with non-technical language.

The project aims are summarised as follows:

2

1. Improve the reproducibility of audio segmentation research through artificial

data synthesis and data augmentation techniques.

2. Advance the state-of-the-art algorithms for audio segmentation and classifi-

cation by designing and optimising neural network architectures.

3. Develop a system for real-time remixing of radio by detecting appropriate

transition points.

1.3 Research Questions

1. What would be an effective way to train machine learning models for audio

segmentation with limited access to domain data?

2. How can we advance state-of-the-art algorithms by investigating novel

pattern recognition problems?

3. To what extent can deep learning be used to improve intelligent mixing

approaches?

1.4 Methods

Below is an overview of the methods adopted to render research in audio seg-

mentation and intelligent remixing. More details on specific methods are detailed

where appropriate in the text.

1.4.1 Python

Python 3 was used for all experiments in this thesis. Over the years, it has gained

tremendous popularity within the community for Music Information Retrieval

(MIR), speech recognition, and sound event detection. Sometimes researchers

make their source code openly available along with their article, which assists

reproducibility and speeds up implementation. Audio transformations such as

3

shortening silences in audio were performed with the help of Sound eXchange

(SoX)2. The Librosa package (McFee et al., 2015) was used to extract audio features

such as short-time Fourier transform (STFT), power spectrum, mel spectrograms,

and so on. Librosa was also adopted for operations like adjusting the sampling

rate of audio. The SoundFile3 package was used to load audio files in the program.

To visualise experimental results, graphs were plotted with the help of Matplotlib4.

As this project also addresses intelligent remixing of live radio, a multi-threaded

audio application was developed with the help of Pyaudio5. Internet radio stream

was accessed by the Python application through FFmpeg6.

1.4.2 Deep Learning

Deep learning architectures in this thesis were implemented by using Tensor-

Flow 2 / Keras. Keras is a higher-level application programming interface (API)

to easily build large neural networks. It provides a framework that enables re-

searchers to iterate their ideas quickly. It provides support to create fully connected,

convolutional, softmax, and long short-term memory (LSTM) layers, to name a

few. It also has integrated support to perform backpropagation for training neural

networks.

Deep learning research requires extensive resources due to large datasets and

networks. Therefore, training of neural networks is performed with the help of

Graphical Processing Units (GPUs) to parallelise and speed up the process. Re-

search groups often use High-Performance Computing (HPC) clusters to facilitate

deep learning research. GPUs are installed within these clusters which are used

for computation. As we did not have access to such computing resources at the

time of my PhD, I used Google Colab7, which is a free service provided by Google.

It allows individuals to use GPUs like K80, T4, and P100 on Virtual Machines. The
2SoX: http://sox.sourceforge.net/
3SoundFile: https://pypi.org/project/SoundFile/
4Matplotlib: https://matplotlib.org/
5Pyaudio: https://pypi.org/project/PyAudio/
6FFmpeg: https://ffmpeg.org/
7Google Colab: https://colab.research.google.com/

4

http://sox.sourceforge.net/
https://pypi.org/project/SoundFile/
https://matplotlib.org/
https://pypi.org/project/PyAudio/
https://ffmpeg.org/
https://colab.research.google.com/

datasets for training networks and experimental data were transferred between

the Colab Virtual Machine and Google Drive. I wrote a blog post that explains

the various optimisations I developed to easily transfer data between Colab and

Google Drive with minimal latency (Venkatesh, 2021).

1.4.3 Literature Sources

In this section, I outline the important competitions, conferences, and journals

that are relevant to my PhD project. However, please note that this list is not

exhaustive. The Music Information Retrieval Evaluation eXchange (MIREX) in

2018, hosted a competition for music-speech detection in broadcast audio. The

task had two test sets — (1) 27 hours of audio from 8 different TV program types

from different countries and (2) 10 hours of audio corresponding to French TV and

radio programs. The annual MIREX competition is coupled with the International

Society for Music Information Retrieval (ISMIR) conference, whose proceedings

comprise key papers cited by this thesis (Schlüter & Grill, 2015; Stoller et al., 2018;

Lemaire & Holzapfel, 2019).

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

is an annual conference that focuses on many audio and acoustic signal processing

applications. Within the conference, there is also a sub-category titled ‘Detection

and Classification of Acoustic Scenes and Events’, which is relevant to this thesis.

There is also an annual challenge hosted by IEEE AASP called the Detection and

Classification of Acoustic Scenes and Events (popularly known as DCASE). Some

important tasks within the challenge include sound event detection in domestic

environments, acoustic scene classification, and unsupervised anomaly detection.

Journals relevant to audio segmentation include IEEE/ACM Transactions on Au-

dio, Speech, and Language Processing, EURASIP Journal on Audio, Speech, and

Music Processing, and Applied Sciences. As this thesis also focuses on intelligent

remixing of radio, useful sources were found in the Journal of the Audio Engineer-

ing Society and the Digital Audio Effects (DAFx) conference. As a part of training,

5

I completed two online courses offered by Coursera, titled Machine Learning8 and

Deep Learning9.

1.5 Contributions

Below is a brief summary of contributions from this thesis:

• In chapter 3, we answer the first research question — "What would be an

effective way to train machine learning models for audio segmentation with limited

access to domain data?". We proposed a novel data synthesis procedure to

generate large-scale training sets for audio segmentation. We replicate the

workflow of an audio mixing engineer to automatically create radio-like

material. Using this technique, we obtained state-of-the-art performance on

music-speech detection on in-house and public datasets. We also investigate

the effects of training set synthesis and compare real-world and synthetic

training sets.

• The findings in chapter 4 addressed the second research question — "How can

we advance state-of-the-art algorithms by investigating novel pattern recognition

problems?". Here, we proposed a novel algorithm called You Only Hear

Once (YOHO) that converts sound event detection from a classification to

a regression problem. It is inspired by the famous You Only Look Once

(YOLO) algorithm in Computer Vision. The relative improvement for F-

measure of YOHO, compared to the state-of-the-art Convolutional Recurrent

Neural Network, ranged from 1% to 6% across multiple datasets for audio

segmentation and sound event detection. As the output of YOHO is more

end-to-end and has fewer neurons to predict, the speed of inference is at

least 6 times faster than segmentation-by-classification. In addition, as this

approach predicts acoustic boundaries directly, the post-processing and

smoothing are about 7 times faster.

8Machine Learning: https://www.coursera.org/learn/machine-learning
9Deep Learning: https://www.coursera.org/specializations/deep-learning

6

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/specializations/deep-learning

• In chapter 5, we investigated how machine learning models would gener-

alise to unseen domains. We demonstrated how techniques like transfer

learning and domain-adversarial training can be applied to achieve domain

generalisation in audio segmentation systems. We obtained state-of-the-art

performance with an improvement from 90.2% to 92.05% on the MIREX com-

petition dataset. The conclusions in this chapter also contributed towards

answering the second research question — "How can we advance state-of-the-art

algorithms by investigating novel pattern recognition problems?".

• In chapter 6, we explored the third research question — "To what extent

can deep learning be used to improve intelligent mixing approaches?". Here,

we presented a real-time radio remixing system that incorporates diary

reminders and songs from the listener’s playlist. The remixing is governed

by an audio segmentation algorithm running in real-time. Furthermore, we

also demonstrated that word embeddings can be used to represent semantic

descriptors for automatic EQ mixing. Using this technique, the machine

learning model can generate EQ settings for words that it has not seen before.

This way, people can communicate with intelligent mixing systems with

non-technical language.

1.6 List of Publications

Below is a list of publications during my time as a PhD student. In cases where I

am not the primary author, my contributions are detailed.

Chapter 3

• Venkatesh, S., Moffat, D., Kirke, A., Shakeri, G., Brewster, S., Fachner, J.,

Odell-Miller, H., Street, A., Farina, N., Banerjee, S., et al. (2021a). Artifi-

cially synthesising data for audio classification and segmentation to improve

speech and music detection in radio broadcast. In IEEE International Con-

7

ference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario,

Canada, (pp. 636–640). doi: 10.1109/ICASSP39728.2021.9413597.

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2021b). Investigating the effects of

training set synthesis for audio segmentation of radio broadcast. Electronics,

10(7), 827. doi: 10.3390/electronics10070827.

Chapter 4

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2022b). You only hear once: a

YOLO-like algorithm for audio segmentation and sound event detection.

Applied Sciences, 12(7), 3293. doi: 10.3390/app12073293.

Chapter 5

• Venkatesh, S., Wichern, G., Subramanian, A., & Le Roux, J. (2022c). Dis-

entangled surrogate task learning for improved domain generalization in

unsupervised anomalous sound detection. Tech. rep., Detection and Classifi-

cation of Acoustic Scenes and Events (DCASE) Challenge

Chapter 6

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2022a). Word embeddings for

automatic equalization in audio mixing. Journal of the Audio Engineering

Society, 70(9), 753–763. doi: 10.17743/jaes.2022.0047

• Di Campli San Vito, P., Brewster, S., Venkatesh, S., Miranda, E., Kirke, A., Mof-

fat, D., Banerjee, S., Street, A., Fachner, J., & Odell-Miller, H. (2022). Radiome:

Supporting individuals with dementia in their own home... and beyond? In

CHI Conference on Human Factors in Computing Systems (CHI ’22) Workshop 32,

New Orleans, Louisiana, USA, 30 Apr 2022. doi: 10.36399/gla.pubs.267520

– I was involved in developing machine learning for audio segmentation and

intelligent remixing in the RadioMe system.

8

https://doi.org/10.1109/ICASSP39728.2021.9413597
https://doi.org/10.3390/electronics10070827
https://doi.org/10.3390/app12073293
https://doi.org/10.17743/jaes.2022.0047
https://doi.org/10.36399/gla.pubs.267520

• Shakeri, G., Brewster, S., Venkatesh, S., Moffat, D., Kirke, A., Miranda, E.,

Banerjee, S., Street, A., Fachner, J., & Odell-Miller, H. (2021). Radiome:

challenges during the development of a real time tool to support people with

dementia. In CHI Conference on Human Factors in Computing Systems (CHI

’21), May 08–13, 2021, Yokohama, Japan. doi: 10026.1/17584

– I was involved in developing machine learning for audio segmentation and

intelligent remixing in the RadioMe system.

• Venkatesh, S., Moffat, D., & Miranda, E. (2019). Radiome: Artificially intel-

ligent radio for people with dementia. In Proceedings of DMRN+14: Digital

Music Research Network One-Day Workshop, London, UK

1.7 Structure

Chapter 2: I present a survey of the audio segmentation literature. The chapter

comprises relevant background information, explains the audio segmentation

pipeline, types of segmentation algorithms, factors specific to machine learning,

and metrics.

Chapter 3: We develop a method to synthesise large-scale training sets for audio

segmentation. After demonstrating the robustness of the synthesis technique, we

investigate how audio ducking of background music impacts the precision and

recall of the machine learning algorithm. Lastly, we evaluate the effectiveness

of synthesised, real-world, and combined approaches for training models, to

understand if the synthetic data presents any additional value.

Chapter 4: First, we compare state-of-the-art neural network architectures to pick

the best model for the task. Second, we investigate if training machine learning

models directly on raw audio provides any benefit. Third, we propose a novel

method called YOHO for sound event detection.

Chapter 5: We investigate principles such as domain adaptation and generalisation

9

https://doi.org/10026.1/17584

for audio segmentation to explore how algorithms can generalise better to unseen

domains. We demonstrated the effectiveness of two methods — transfer learning

and adversarial training.

Chapter 6: In this chapter, we explore real-time radio remixing which is governed

by underlying audio segmentation. We also investigate how individuals can

communicate with intelligent mixing systems through non-technical language.

Chapter 7: This is the concluding chapter which comprises a reflection on all the

research questions and potential avenues for future work.

10

Chapter 2

Background: Deep Learning for Audio

Segmentation

In this chapter, we present an overview of the practices adopted in the audio seg-

mentation literature, varying from the pipeline to the different machine learning

algorithms adopted for the task. In recent years, many studies have demonstrated

the effectiveness of deep learning for audio information retrieval tasks and there-

fore, we give special attention to these state-of-the-art practices. Many changes

in approaches have occurred during the paradigm shift from traditional machine

learning to deep learning. These changes include the feature extraction process,

amount of training data, data augmentation, and other methods to minimise

overfitting.

Audio segmentation is the process of dividing audio into homogeneous

sections, such as music and speech. It identifies the presence of audio classes

and their respective acoustic boundaries. Hence, it enables us to automatically

extract metadata regarding an audio signal. Applications of segmentation include

content-based audio retrieval, indexing audio archives, target-based distribution

of media, and as a pre-processing step for speech recognition (Dhanalakshmi et al.,

11

2009; Gimeno et al., 2020).

The acoustic classes present in audio depend on the nature of the content.

For example, in a radio programme, the important classes include Music, Speech,

Silence, and Sound Effects, to name but a few (Theodorou et al., 2014; Chourdakis

et al., 2019). This survey primarily focuses on segmentation of broadcast signals

like radio and television. The structure of this chapter is as follows.

2.1. Audio Segmentation Pipeline

2.2. Audio Features

2.3. Types of Segmentation Algorithms

2.4. Machine Learning Algorithms

2.5. Post-processing / Smoothing

2.6. Comparison

2.7. Factors Specific to Machine Learning

2.8. Metrics

2.9. Discussion

2.1 Audio Segmentation Pipeline

Figure 2.1 illustrates an overview of the audio segmentation pipeline. The first

step is to extract features from the audio signal. Some commonly adopted fea-

tures are the mel spectrogram (Lemaire & Holzapfel, 2019) and Mel Frequency

Cepstral Coefficients (MFCC) (Meléndez-Catalán et al., 2018). After extracting

audio features, it goes through an algorithm that extracts segments of audio. This

stage also detects the underlying audio classes within the segments. Subsequently,

the post-processing stage carries out two important functions — (1) smoothe the

output of the algorithm by eliminating spurious audio events, and (2) convert

12

the output into human-readable labels. The output labels would contain each

audio class, with its respective temporal start and end time in the audio signal. An

example of output labels is shown in Figure 2.1.

Audio Signal

Feature extraction

Music Speech Silence Music and Speech

Obtain segments

Post-processing / Smoothing

0.0 s to 4.3 s --- Music
2.5 s to 6.0 s --- Speech

Output audio labels

Figure 2.1: An illustration of the audio segmentation pipeline.

2.2 Audio Features

Historically, features for audio segmentation have generally been inspired by

research in Speech Recognition (Butko & Nadeu, 2011). In most cases, audio is

converted into a frequency-based representation through a Fourier transform. In

addition to mel spectrogram and MFCC, some studies have also used perceptual

linear prediction (PLP), chroma features (Gimeno et al., 2020), and frequency-

filtered filter-bank energies (Butko & Nadeu, 2011). In recent years, there is also a

growing interest in end-to-end deep learning, which directly processes raw audio

(Lee et al., 2017). Amongst the choice of features, mel spectrogram and MFCC

have been the most popularly adopted ones by studies (Butko & Nadeu, 2011;

13

Meléndez-Catalán et al., 2018; Lemaire & Holzapfel, 2019). A mel spectrogram

is a 2D representation of audio that is optimised for human hearing (Choi et al.,

2017a). In recent years, most deep learning studies for audio segmentation use

mel spectrograms (Lemaire & Holzapfel, 2019; Gimeno et al., 2020). They have

also been adopted for related tasks such as singing voice detection (Schlüter &

Grill, 2015), speech recognition (Sainath et al., 2015a), and environmental sound

detection (Salamon et al., 2017).

MFCC converts the mel spectrogram to a more compressed format by reduc-

ing it to a matrix of coefficients. Prior to the onset of deep learning, MFCCs were

more commonly used with traditional machine learning algorithms. The reduced

dimensionality of audio features helped the algorithms generalise better. However,

deep learning models are trained on larger training sets and hence, benefit from

using mel spectrograms directly.

Before extracting the mel spectrogram from an audio signal, we need to

compute the Short-time Fourier transform (STFT). The hop size of the STFT defines

the size of each time step in the spectrogram. A smaller hop size provides greater

time-resolution for the STFT and vice-versa. In the audio segmentation literature,

the hop size has ranged from 10 ms (Gimeno et al., 2020), 15 ms (Hussain et al.,

2018) to 23 ms (Lemaire & Holzapfel, 2019). Many audio segmentation studies

evaluate their algorithms on 10 ms segments. In other words, for every 10 ms of

audio, it is checked whether the algorithm output the correct labels. For instance, to

evaluate the music-speech detection algorithms at the Music Information Retrieval

Evaluation eXchange (MIREX) 2015 and 2018, the organisers used a segment size

of 10 ms. Therefore, in this thesis we adopted a hop size of 10 ms to ensure that

the time-resolution of the audio segmentation algorithm is 10 ms.

The lowest detectable frequency in an audio signal depends on the window

size of the STFT. A larger window size provides a greater context of audio at each

time step. Therefore, a larger window size leads to better frequency resolution,

but poorer time resolution (Cheuk et al., 2020; Wright, 1999). The window size in

14

audio segmentation studies has varied from 25 ms (Gimeno et al., 2020; Hussain

et al., 2018) to 46 ms (Lemaire & Holzapfel, 2019). Studies on Music Information

Retrieval (MIR) tasks such as chord recognition and genre classification have also

used larger window sizes such as 93 ms and 185 ms (Jiang et al., 2011; Ravelli et al.,

2010). For this thesis, to select an optimal window size, we performed informal

tests with sizes of 23, 46, and 93 ms. We selected 46 ms as the window size as it

performed slightly better than the other sizes.

Another specification of the mel spectrogram is the number of mel bands. The

number of mel bands has generally been choices between 64, 80, and 96 (Lemaire

& Holzapfel, 2019; Gimeno et al., 2020). Gimeno et al. (2020) found that using 80

mel bands was better than 64 and 96. In addition, they also showed that using

chroma features along with the first and second-order derivatives improved the

accuracy of the system, especially when Music belonged to the set of audio classes.

Chroma features are optimised for music where the spectrum is projected into 12

bins, representing the semitones of the chromatic scale (Gimeno et al., 2020). For

example, they are used for chord recognition (Jiang et al., 2011; Papadopoulos &

Peeters, 2007) and identifying the chorus in songs (Bartsch & Wakefield, 2001).

Audio features such as mel spectrograms and MFCC discard the phase of

audio signals and only consider the magnitude spectrum. As segmentation aims

to detect acoustic boundaries, phase can contain important information. However,

there has been less attention given to using phase for audio segmentation. This is

due to the circular nature of phase, which is often challenging to use as an audio

feature. Some recent studies have explored phase unwrapping through deep

learning (Masuyama et al., 2020; Thieling et al., 2021), which maybe promising

avenues to adopt phase.

Studies that explore music-speech detection in broadcast signals have gen-

erally downsampled the audio to 8 kHz (Meléndez-Catalán et al., 2018), 16 kHz

(Gimeno et al., 2020), or 22.05 kHz (Lemaire & Holzapfel, 2019). This is probably

due to the advantages of dimensionality reduction and saving disk space. Further-

15

more, studies have downmixed broadcast programmes to mono instead of using

stereo. This makes the system more flexible for radio and television streams that

transmit only one channel. However, studies that explore environmental sound

event detection have adopted higher sampling rates such as 44.1 kHz due to a

greater number of acoustic classes (Mesaros et al., 2017; Salamon et al., 2017).

2.3 Types of Segmentation Algorithms

Primarily, there are two types of algorithms for audio segmentation — (1) distance-

based segmentation and (2) segmentation-by-classification.

2.3.1 Distance-based Segmentation

In this style of segmentation, a distance metric such as Euclidean distance (Xue

et al., 2010), Bayesian information criterion (BIC) (Huang & Hansen, 2006), or

generalized likelihood ratio (GLR) (Wang et al., 2008) is calculated. For a given

audio, a distance curve is plotted against a graph as shown in Figure 2.2. The

peaks in the graph are associated with regions of high acoustic change. Thus,

the audio is split into segments at these peaks. Subsequently, the audio classes

within these segments is detected through a separate classification algorithm. The

advantage of this method is that it is generally unsupervised and prior knowledge

of the audio classes is not necessary. However, the disadvantage is that it is more

sensitive to dissimilarities within the same acoustic class.

In the literature, audio features used for distance-based segmentation include

MFCC and zero crossing rate (Huang & Hansen, 2006). Furthermore, when

musical information is present in the audio, additional features such as linear

prediction coefficients and linear spectral pairs have been adopted (Huang et al.,

2009; Theodorou et al., 2014). BIC has been widely adopted in speaker diarisation

16

Time steps

Di
st

an
ce

 c
ur

ve

Peak
Peak

Figure 2.2: A plot of the distance against time steps. The peaks are associated with
regions of high acoustic change. Figure adapted from Theodorou et al. (2014).

to generate break-points for changes in speaker (Chen et al., 1998; Kotti et al., 2008),

language (Wu et al., 2005), and environment (Chen et al., 1998).

2.3.2 Segmentation-by-classification

In segmentation-by-classification, as the name suggests, each audio frame is indi-

vidually classified. In the pre-processing stage, when extracting mel spectrograms,

the audio is divided into small sections called frames. After classifying each frame,

we effectively obtain the start and end points of each acoustic class. An illustration

of this process can be found in Figure 2.3. In recent years, especially after the ad-

vances in deep learning, this technique has gained popularity and is more widely

used than distance-based segmentation (Lemaire & Holzapfel, 2019; Gimeno et al.,

2020). In addition, the pipeline of performing frame-based classification and ob-

taining acoustic boundaries is relatively simpler. It is also commonly adopted for

other sound event detection tasks such as environmental sounds (Cakır et al., 2017;

Salamon et al., 2017) and singing voice detection (Schlüter & Grill, 2015; Kum &

Nam, 2019). More examples of studies using segmentation-by-classification can

be found in sections 2.4 and 2.6.

17

Figure 2.3: An illustration of segmentation-by-classification. Each frame of audio
is classified to detect the presence of Music and Speech.

2.4 Machine Learning Algorithms

Traditionally, machine learning algorithms such as the Gaussian mixture model

(GMM) (Kos et al., 2009), Hidden Markov Model (HMM) (Butko & Nadeu, 2011),

Support Vector Machine (SVM) (Lo et al., 2010), and factor analysis (Castán et al.,

2014) have been adopted for audio segmentation. In the Albayzin-2010 competi-

tion for Audio segmentation of broadcast news, the best performing model was

the HMM. Subsequently, Castán et al. (2014) showed that factor analysis was more

effective for segmentation. However, in recent years, deep neural networks sur-

pass the performance of traditional machine learning algorithms. Recurrent neural

network architectures such as bidirectional long short-term memory (B-LSTM) and

bidirectional gated recurrent unit (B-GRU) are known to be effective for temporal

data such as audio (Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Addition-

ally, Convolutional Neural Networks (CNNs) have been effective in interpreting

patterns in mel spectrograms and are used for audio classification (Hershey et al.,

2017) and segmentation (Meléndez-Catalán et al., 2018). Gimeno et al. (2020)

used a B-LSTM to obtain state-of-the-art results on the Albayzin-2010 competition

dataset. Lemaire & Holzapfel (2019) demonstrated that Temporal Convolutional

Network (TCN) performed better than the B-LSTM for Music-Speech detection in

radio broadcast.

18

Another state-of-the-art architecture popularly used in the sound event de-

tection literature is the convolutional recurrent neural network (CRNN) (Sainath

et al., 2015a; Choi et al., 2017b; Cakır et al., 2017). This network has the advantage

of combining convolutions and recurrent units into one structure. The CRNN

model has obtained state-of-the-art results on multiple datasets for environmental

sound detection. For example, the top-performing model in the third task of the

DCASE challenge 2017 for sound event detection was a CRNN (Adavanne &

Virtanen, 2017). Furthermore, CRNNs have obtained state-of-the-art performance

on the Urban-SED dataset (Salamon et al., 2017; Martín-Morató et al., 2019; Dinkel

et al., 2021).

2.4.1 Convolutional Neural Network

A Convolutional Neural Network can be defined as a network that uses a con-

volution operation instead of general matrix multiplication in at least one layer

(Goodfellow et al., 2016). CNNs grew extremely popular in the Computer Vision lit-

erature because of their ability to generalise better. They capture location-invariant

spatial features, rather than treating each pixel independently. CNNs carry an ad-

vantage of parameter sharing, which is, when the machine learning model develops

an ability to detect a particular feature, the same ability can be reused in multiple

locations. Another advantage of CNNs is the sparsity of connections, that is, the

output value of a neuron depends only on a few input values in the previous layer,

thus reducing the number of parameters to train. Convolutional layers are often

followed by a pooling layer such as max pooling (Zhou & Chellappa, 1988) to

reduce the size of the representation. This improves generalisation and speeds up

computation.

Zeiler & Fergus (2014) presented a method to visualise feature maps of convo-

lutional layers for Computer Vision tasks, where the initial layers identify small

local patterns, such as edges or circles. The subsequent layers progressively com-

19

Input spectrogram

1st layer, 1st filter 1st layer, 2nd filter 1st layer, 3rd filter

6th layer, 1st filter 6th layer, 2nd filter 6th layer, 3rd filter

17th layer, 1st filter 17th layer, 2nd filter 17th layer, 3rd filter

Speech

Music

Output

Figure 2.4: This figure plots the output of convolutional layers at different depths of
the network. It illustrates how convolutions help in capturing high-level features
in the spectrogram. The input spectrogram is an 8 s audio file that contains Music
from 0 s to 8 s and Speech from 3 s to 8 s. These values were calculated from the
CNN presented in section 4.3.2.

bine them into more meaningful structures, such as textures and mesh patterns; to

later on identifying class-specific aspects like dog’s face and bird’s leg (Zeiler &

Fergus, 2014; Yamashita et al., 2018). In addition to Computer Vision, CNNs were

shown to be highly effective for audio classification (Hershey et al., 2017) because

mel spectrograms can be treated as images. Papakostas & Giannakopoulos (2018)

investigated the benefits of using deep visual features for music-speech detection.

Convolutions on sound signals can be performed using 1D or 2D kernels. 1D

kernels perform convolutions only along the time domain. 2D kernels perform

convolutions along the time as well as frequency domain. Performing convolu-

tions on both dimensions is known to have advantages over just one dimension

20

(Choi et al., 2017b). Figure 2.4 shows how an audio spectrogram is processed by a

CNN at different depths of the network.

2.4.2 Recurrent Neural Network

Recurrent Neural Networks were designed to process sequential data such as

text and audio. As shown in figure 2.5, RNNs are called recurrent because they

perform the same task for every element of a sequence, with the output depending

on the previous computations (Graves et al., 2013; Coşkun et al., 2017). In addition,

the memory component of RNNs could store information about the past (Liu et al.,

2017). The advantage of RNNs over fully connected layers is that it is capable of

sharing features across different positions in a sequence. This enables it to capture

dependencies between words within a sentence or samples within an audio signal.

a<0>

x<0>

y<0>

x<1>

y<1>

x<t>

y<t>

x<t+1>

y<t+1>

a<t-1>a<1> a<t> a<t+1>

Figure 2.5: An illustration of the Recurrent Neural Network (RNN). x, y, a, and t
stand for input, output, activation, and time respectively.

The LSTM network (Hochreiter & Schmidhuber, 1997) is a commonly adopted

RNN for speech recognition and audio classification. An LSTM cell has three gates

— update, forget, and output. These three gates help the LSTM network memorise

data over time steps. Another type of RNN is the Gated Recurrent Unit (GRU)

(Cho et al., 2014). It contains two gates instead of three — update and reset gate. It

has fewer parameters than the LSTM cell and is less prone to over-fitting. GRUs

have been effectively used for sound event detection (Lu & Duan, 2017) and

speech recognition (Ravanelli et al., 2018). Bidirectional variants of LSTMs and

GRUs are known to improve the performance for audio information retrieval. In

such a network, the audio signal is passed forward and backward to learn both

21

dependencies.

2.4.3 Temporal Convolutional Network

The Temporal Convolutional Network is a family of networks that perform causal

convolutions and are designed to handle sequential data (Bai et al., 2018). TCNs

also adopt other bespoke techniques such as dilated convolutions to inflate the

size of the kernel and effectively, increase the receptive field (Yu & Koltun, 2015).

Additionally, skip-connections of layers through residual blocks (He et al., 2016),

which are popular in CNNs have also been used by TCNs.

Bai et al. (2018) presented a theoretical and empirical study regarding the

advantages of TCNs over RNN architectures. Firstly, TCNs can be parallelised dur-

ing inference because prediction at a time step does not depend on the prediction

at an earlier time step. Therefore, the input sequence can be processed as a whole

instead of sequentially. Secondly, a common problem with RNN architectures is

exploding and vanishing gradients because they attempt in learning long-term

dependencies (Bengio et al., 1994). As backpropagation in TCNs does not follow the

time dimension, this problem is avoided.

Lemaire & Holzapfel (2019) proposed a non-causal Temporal Convolutional

Network (ncTCN), which learns forward and backward dependencies in audio

signals. It performed better than the traditional TCN for Music-Speech detection.

Furthermore, Meléndez-Catalán et al. (2020) adopted this architecture for a task

called Music Loudness Estimation, which divides an audio signal into three classes

— Foreground Music, Background Music, and No Music.

2.4.4 Convolutional Recurrent Neural Network

As mentioned earlier, the Convolutional Recurrent Neural Network combines

convolutional and recurrent layers into one structure. The initial layers of such a

22

network are convolutional layers followed by recurrent layers. The convolutions

can be performed with either 1D or 2D kernels, with the latter performing better

for audio classification (Choi et al., 2017b). Some studies have used LSTMs to

build the recurrent blocks (Sainath et al., 2015a; Lemaire & Holzapfel, 2019) and

others have used GRUs instead (Cakır et al., 2017; Choi et al., 2017b). After the

recurrent layers, some studies have also included fully connected layers and

termed it Convolutional Long Short-Term Memory Fully Connected Deep Neural

Network (CLDNN) (Sainath et al., 2015a; Lemaire & Holzapfel, 2019). Sainath et al.

(2015a) developed the CLDNN architecture for speech recognition, which does not

perform segmentation-by-classification. Moreover, Lemaire & Holzapfel (2019)

explored CLDNN for segmentation-by-classification. However, CRNN without

fully connected layers has been more popular for sound event detection (Cakır

et al., 2017; Adavanne & Virtanen, 2017).

2.5 Post-processing / Smoothing

The predictions made by the neural network may contain spurious audio events.

Suppose the duration of an audio event is very short, it might be a false positive.

As you can see in Figure 2.6, there are short pauses in the detection of speech.

These predictions can be smoothed to obtain a more reliable prediction from the

network. Median filtering is one technique used in the literature (Schlüter &

Sonnleitner, 2012). Another approach uses threshold-dependent values (Lemaire

& Holzapfel, 2019). For example, if the duration of speech is less than 1.3 s, the

prediction can be discarded. In addition, if the silence between consecutive speech

events is less than 0.8 s, the gap can be smoothed. The literature has also adopted

machine learning models such as the HMM for smoothing. For instance, Gimeno

et al. (2020) passed the predictions of a B-LSTM network into an HMM module for

smoothing.

23

2 4 6
Time (s)

Sp
ee

ch

Spurious audio events

Figure 2.6: Spurious audio events in predictions of the neural network.

2.6 Comparison

In this section, we compare the various algorithms in the literature for Music-

Speech detection. Traditional machine learning methods such as HMM, SVM,

and BIC were widely adopted at the Albayzin-2010 competition, which seg-

mented audio into five classes — Speech, Music, Speech+Noise, Speech+Music,

and Other (Butko & Nadeu, 2011). The top rank (Gallardo Antolín & San Se-

gundo Hernández, 2010) at the competition obtained an error rate of 0.30. They

used the segmentation-by-classification approach with MFCCs, chroma and spec-

tral entropy as features (Gimeno et al., 2020). They adopted an hierarchical HMM,

where audio is first segmented into Music / non-Music. Subsequently, the non-

Music is segmented into Speech+Music / non-Speech+Music. Finally, the non-

Speech+Music is segmented into Speech / Speech+Noise (Gallardo Antolín &

San Segundo Hernández, 2010; Butko & Nadeu, 2011). The second place at the

competition adopted distance-based segmentation and obtained an error rate of

0.33. BIC was used to detect the segment boundaries and SVM was used to classify

the segments (Docio-Fernandez et al., 2010; Butko & Nadeu, 2011).

Castán et al. (2014) improved the segmentation-by-classification approach

through factor analysis. Instead of adopting a hierarchical structure, this technique

compensates the within-class variability by using class-dependent factor loading

matrices to reduce the mismatch between the training and test set. This study

obtained an error rate of 0.23 on the Albayzin-2010 competition dataset, surpassing

24

the top rank. Gimeno et al. (2020) adopted a deep learning architecture, which

is the B-LSTM to obtain an error rate of 0.19 on the Albayzin-2010 competition

dataset. Again, they used segmentation-by-classification and explored temporal

pooling techniques within the neural network to improve the performance of

audio segmentation.

At the MIREX Music-Speech Detection competition 2015, the top rank was

secured by Marolt (2015) with an overall F-measure of 89.41%. They trained a

logistic regression classifier on 3 s chunks of audio. During testing, a weighted

average of individual predictions is calculated by running the classifier on the

entire audio file. The second rank at the competition was obtained by Lidy (2015)

with an overall F-measure of 88.49%. They used a CNN with one convolutional

layer, one fully connected hidden layer, and one softmax layer for the output.

At the MIREX music-speech detection competition 2018, all the submissions

were evaluated on two different test sets:

Dataset 1: 27 hours of audio from 8 different TV program types from France,

Germany, Spain and the United Kingdom.

Dataset 2: 10 hours of audio corresponding to French TV and radio programs,

provided by INA (French National Institute of Audiovisual).

The top rank was again secured by Marolt (2018). They had submitted two types

of models to the competition — (1) the same logistic regression classifier submitted

by them in 2015 and (2) deep residual neural network (ResNet). Looking at an

averaged performance over both test sets, the ResNet performed better than the

logistic regression classifier for music detection. However, the logistic regression

classifier surpassed the performance of the ResNet for speech detection. The

reader is referred to the MIREX website for more details on the results (Schlüter

et al., 2018).

Lemaire & Holzapfel (2019) explored a deep learning architecture called

the ncTCN for Music-Speech detection. The study aggregated a large dataset

(approx. 172 h) by combining in-house datasets (which cannot be shared as it is

25

proprietary audio) and openly available datasets. The openly available datasets

included MUSAN (Snyder et al., 2015), GTZAN music-speech (Tzanetakis & Cook,

2000), Scheirer & Slaney (1997), and ESC-50: Dataset for Environmental Sound

Classification (Piczak, 2015). On the in-house test set, Lemaire & Holzapfel (2019)

obtained an overall F-measure of 96.8%. They also tested their model on the

MIREX competition dataset 2. For Speech F-measure, the ncTCN obtained state-

of-the-art performance of 94.6%, surpassing the previous highest of 93.3% by

the Logistic Regression model of Marolt (2018). However, for Music F-measure,

the ncTCN obtained 87.9%, which is lower than 92.3% obtained by the logistic

regression model of Marolt (2018).

It can be observed in the above paragraphs that the number of studies us-

ing distance-based segmentation has reduced over the years. The top tank at

the Albayzin-2010 competition and the following studies that improved state-

of-the-art performance adopted segmentation-by-classification (Butko & Nadeu,

2011; Castán et al., 2014; Gimeno et al., 2020). Even at the MIREX competitions

2015 and 2018, the submissions have predominantly adopted segmentation-by-

classification (Marolt, 2015, 2018; Lidy, 2015; Choi et al., 2018). Another important

trend is the use of deep learning models in recent studies. For instance, Gimeno

et al. (2020) obtained state-of-the-art performance on the Albayzin-2010 dataset

using a B-LSTM. Lemaire & Holzapfel (2019) obtained state-of-the-art perfor-

mance for speech detection on the MIREX 2018 competition dataset. However, a

simple logistic regression system proposed by Marolt (2018) still surpassed the

performance of the ncTCN for music-detection. This conveys that although deep

learning models have great potential to improve detection accuracy, they are also

prone to overfitting if the training set is not large and diverse enough. More details

on overfitting is given in section 2.7.4. Moreover, deep learning models such as the

CRNN and CNN have obtained state-of-the-art performance on multiple datasets

for sound event detection (Adavanne & Virtanen, 2017; Martín-Morató et al., 2019;

Salamon et al., 2017). Table 2.1 summarises various algorithms in the literature for

audio segmentation and sound event detection.

26

Table 2.1: A summary of various studies for audio segmentation and sound event
detection.

Study Audio Classes Algorithm Evaluation

Lemaire &

Holzapfel

(2019)

Music, Speech ncTCN Foverall = 96.8% on in-house test

set;

Fmusic = 87.9%, Fspeech = 94.6%

on MIREX (2018) dataset 2

Marolt (2018) Music, Speech Logistic Regression Fmusic = 39.0%, Fspeech = 91.2%

on MIREX (2018) dataset 1;

Fmusic = 92.3%, Fspeech = 93.3%

on MIREX (2018) dataset 2

Marolt (2018) Music, Speech ResNet Fmusic = 54.8%, Fspeech = 90.9%

on MIREX (2018) dataset 1;

Fmusic = 91.6%, Fspeech = 91.4%

on MIREX (2018) dataset 2

Choi et al.

(2018)

Music, Speech MLP Fmusic = 49.4%, Fspeech = 77.2%

on MIREX (2018) dataset 1;

Fmusic = 79.7%, Fspeech = 84.6%

on MIREX (2018) dataset 2

Marolt (2015) Music, Speech Logistic Regression Foverall = 89.41% on MIREX

(2015) dataset

Lidy (2015) Music, Speech CNN Foverall = 88.49% on MIREX

(2015) dataset

Meléndez-

Catalán et al.

(2018)

Music, No Music CNN Fmusic = 90.0%, Fno_music = 90.1%

on MIREX (2018) dataset 1;

Fmusic = 95.7%, Fno_music = 93.6%

on MIREX (2018) dataset 2

Gimeno et al.

(2020)

Speech, Music,

Speech+Noise,

Speech+Music,

Other

B-LSTM with HMM

resegmentation and

temporal pooling

Error rate= 0.19 on the

Albayzin-2010 evaluation

Castán et al.

(2014)

Speech, Music,

Speech+Noise,

Speech+Music,

Other

Factor Analysis Error rate= 0.23 on the

Albayzin-2010 evaluation

Gallardo An-

tolín & San

Se-

gundo Hernán-

dez (2010)

Speech, Music,

Speech+Noise,

Speech+Music,

Other

HMM Error rate= 0.30 on the

Albayzin-2010 evaluation

27

Study Audio Classes Algorithm Evaluation of best algo.

Docio-

Fernandez

et al. (2010)

Speech, Music,

Speech+Noise,

Speech+Music,

Other

BIC for

segmentation and

SVM for

classification;

Error rate= 0.33 on the

Albayzin-2010 evaluation

Adavanne &

Virtanen

(2017)

Environmental

sound detection for

six acoustic classes.

CRNN Error rate= 0.79 in DCASE

challenge 2017, task 3

Jeong et al.

(2017)

Environmental

sound detection for

six acoustic classes.

CNN; Error rate= 0.81 in DCASE

challenge 2017, task 3

Lu & Duan

(2017)

Environmental

sound detection for

six acoustic classes.

B-GRU; Error rate= 0.83 in DCASE

challenge 2017, task 3

Martín-

Morató et al.

(2019)

Environmental

sound detection for

ten acoustic classes.

CRNN with

envelope

estimation;

Foverall = 64.7% on the

Urban-SED dataset

Salamon et al.

(2017)

Environmental

sound detection for

ten acoustic classes.

CNN; Foverall = 56.9% on the

Urban-SED dataset

Salamon et al.

(2017)

Environmental

sound detection for

ten acoustic classes.

CRNN; Foverall = 56.0% on the

Urban-SED dataset

2.7 Factors Specific to Machine Learning

2.7.1 Datasets

In order to train machine learning models for audio segmentation, we require

audio signals to be labelled. The labels need to contain the composite audio classes

along with their respective acoustic boundaries. Note that the literature comprises

many datasets labelled at the file level. That is, there are separate audio files of

28

music and speech. For example, genre-recognition datasets contain many music

examples (Tzanetakis & Cook, 2002) and speech recognition datasets contain many

speech examples (Panayotov et al., 2015). However, the problem is that these files

are not mixed like a radio or TV programme. In broadcast audio, the content is

well-mixed, with speech and music seamlessly transitioning between each other,

and often overlapping.

Generally, studies have trained machine learning algorithms on proprietary

audio (Schlüter & Sonnleitner, 2012; Lemaire & Holzapfel, 2019; Gimeno et al.,

2020). Audio is obtained directly from the broadcasters and labelled either by

the authors or by external annotators. The process of annotating data is a time-

consuming and expensive process. It takes four to five hours to annotate an

hour of audio (Meléndez-Catalán et al., 2019). Furthermore, the labelled data

cannot be shared because broadcast audio is proprietary material. This hinders

the reproducibility of audio segmentation research.

Amongst the openly available datasets, the MuSpeak Team (2015) presented

an example dataset for the Music Information Retrieval Evaluation eXchange

(MIREX) 2018 music and speech detection competition. Moreover, Open Broadcast

Media Audio from TV (OpenBMAT) is another openly available dataset concen-

trating on the estimation of relative loudness of music, but not Music-Speech

detection. As mentioned earlier, there are many openly available datasets con-

taining separate files of music and speech. Some include the MUSAN corpus

(Snyder et al., 2015), GTZAN music and speech detection dataset (Tzanetakis &

Cook, 2000), the dataset by Scheirer & Slaney (1997), and the LibriSpeech corpus

(Panayotov et al., 2015).

2.7.2 Dataset Splits

The dataset available to train machine learning models is generally divided into

three parts — train, validation, and test sets. A large and diverse training set

29

helps the algorithm learn various patterns and thus, making it robust. However,

it is important to prevent overfitting. Overfitting occurs when the algorithm

performs well on the training data, but does poorly on unseen data. Hence, a cross-

validation set (or simply called validation set) is used when training the model.

In recent practices, the evaluation on the validation set is often done at the end

of each epoch. An epoch is defined as a run through the entire training set. After

achieving a satisfactory performance on the validation set, the model is finally

evaluated on the test set. This ensures that we have not overfit the validation set.

The amount of data for training, validation, and testing depends on the

context. Traditionally, many have recommended a 70-20-10% split, but this has

changed because of more data being available in recent years. For validation and

testing, sufficient data should be kept aside to obtain a reliable evaluation of the

algorithm. Adding too much data into these splits is basically wasting training

data, and adding less into these splits leads to erroneous evaluations. Some

examples of splitting the dataset in the literature include — Salamon et al. (2017)

set aside 16.6 h for training and 5.5 h each for validation and testing. Lemaire &

Holzapfel (2019) set aside 33 h, 9.5 h, and 4.7 h for training, validation, and testing

respectively.

When splitting the dataset into parts, it is important to ensure that the audio

files are different from each other. For example, it is a bad idea to include the

first 10 s of a song for training and the next 10 s of the same song for validation.

Instead, it is common practice to use separate audio files for training, validation,

and testing (Lemaire & Holzapfel, 2019; Gimeno et al., 2020).

Studies have also adopted other methods such as k-fold cross-validation to

split the datasets. In such a method, the dataset is split into k-folds. For example,

the TUT Sound Events 2017 dataset split the data into four folds. Initially, one of

the folds can be set aside for validation and the others for training. This process

can be performed across all folds and thus, using up the entire data for training.

Some studies have suggested methods to prevent overfitting the validation set in

30

such a setup (Ng et al., 1997; Forman & Scholz, 2010).

2.7.3 Data Augmentation

Data augmentation performs transformations on data to artificially enhance the

size of training sets and effectively improve the model’s performance. In Com-

puter Vision, common image transformations include rotation, horizontal and

vertical flipping, and colour modification, to name but a few (Shorten & Khosh-

goftaar, 2019). Studies have shown data augmentation to be effective for sound

event detection tasks (Schlüter & Grill, 2015; Salamon & Bello, 2017). Some com-

mon audio augmentations include pitch shifting, time stretching, dynamic range

compression, and random frequency filtering. An important factor to consider

when augmenting audio is to preserve the meaning of labels for the original audio.

For instance, Salamon & Bello (2017) observed that the confusion between air

conditioner and engine idling classes increased due to augmentation.

Schlüter & Grill (2015) investigated various data augmentation techniques

for singing voice detection. They found that pitch shifting and random frequency

filtering improved the model’s performance. The impact of time-stretching and

randomly varying loudness was negligible. In addition, corrupting the audio with

Gaussian noise and random dropout worsened the performance of the model.

Lemaire & Holzapfel (2019) incorporated time stretching, pitch shifting, Gaussian

filtering, loudness manipulation, and block mixing for Music-Speech detection in

radio broadcast.

Lemaire & Holzapfel (2019) randomly mixed audio files that were labelled at

the file level. This way, the neural network is trained to simultaneously identify

the presence of speech and music in the audio. Gimeno et al. (2020) adopted

another technique called mixup for audio segmentation. Mixup is an augmentation

technique that creates convex combinations of pairs of examples and their labels

(Zhang et al., 2018). Two examples are combined into one and the labels are no

31

longer one-hot encoded. Instead, the labels are multiplied by a factor of how much

each acoustic class is present in the mixed example.

A problem associated with audio augmentations is the computational cost.

Unlike augmenting images, processes such as pitch shifting and frequency filtering

are computationally expensive. Therefore, applying augmentations in real-time

when training deep neural networks slows down the training process. Addition-

ally, the augmented audio examples need to be converted to mel spectrograms and

thus, increasing the bottleneck. Therefore, a common practice is to perform the

STFT on audio and store them locally (Schlüter & Grill, 2015; Lemaire & Holzapfel,

2019). The audio augmentations are applied directly to spectrograms. Subse-

quently, the spectrograms are converted to the mel scale during training. However,

despite these optimizations, audio augmentations considerably hinder the speed

of training deep neural networks.

Park et al. (2019) proposed a technique called SpecAugment for speech recog-

nition that performs augmentations directly on mel spectrograms. In this case, the

mel spectrogram is treated like an image. SpecAugment has three components

— (1) time warping, (2) randomly masking a series of frequency bins, and (3) ran-

domly masking a series of time steps. Although, SpecAugment was effective and

straightforward for speech recognition, it is more complicated when adopting it for

sound event detection. For example, time warping and randomly masking a series

of time steps would require the reconstruction of labels for acoustic boundaries.

However, this is not the case with speech recognition.

2.7.4 Regularisation

Regularisation is a way of reducing overfitting in neural networks. There are mul-

tiple regularisation methods adopted by researchers in the literature. A commonly

used approach is dropout (Srivastava et al., 2014), where random neurons from

the network are dropped before each epoch. This minimises the possibility for a

32

single neuron to have a very high influence on the output and effectively, reducing

overfitting. Some other techniques include L1 and L2 normalisation, which adds

a penalty to the cost function and thus, creating a regularising effect (Kukačka

et al., 2017). Researchers have also investigated how to optimise regularisation

techniques for RNNs and sequential data. For example, Gal & Ghahramani (2016)

presented a technique called recurrent dropout, which drops the same network

units at each time step.

Another commonly used technique for regularisation is early stopping (Yao

et al., 2007). It works on the following principle. When training a neural network,

the error on the validation set begins to reduce. After a point, when the network

begins to overfit, the error starts increasing. Early stopping stops the training

before the error starts increasing and therefore, producing a regularising effect.

Another advantage of early stopping is that it saves computational power by not

training the network for unnecessary epochs.

2.7.5 Transfer Learning

Knowledge learned for one task can be applied to a different task. This process

is known as transfer learning. For example, VGGish is a neural network that

distinguishes 632 audio classes in the AudioSet database (Gemmeke et al., 2017;

Hershey et al., 2017). Chourdakis et al. (2019) adapted the VGGish network to

distinguish between only three audio classes — Music, Speech and Sound Effects.

Transfer learning can be used as a method to manage data scarcity. Instead of

training a model from the start, it is often simpler to adapt a pre-trained network

for the required task. Figure 2.7 shows an example of transfer learning.

As spectrograms are popularly adopted as features for audio classification,

these can also be considered to be images. Therefore, Papakostas & Giannakopou-

los (2018) used CNNs trained for Computer Vision and applied transfer learning to

perform music-speech detection. Generally, in transfer learning, the initial layers

33

Input

632 Audio
Classes

Input

3 Audio
Classes

Figure 2.7: An illustration of transfer learning. The neurons in blue denote that
the weights of the original network are left unchanged. The weights of neurons in
green are calculated when training the new network.

of the pre-trained network are kept frozen. A small number of layers are added to

the end of the network and only these layers are trained for the new task. These

are coloured green in Figure 2.7. After the final layers are trained for the new

task, many studies perform an additional fine-tuning step over the entire network

(Diment & Virtanen, 2017). This is done with a very small learning rate to only

make small changes to the weights of the network.

2.7.6 Problem Formulation

In broadcast signals, audio classes occur independently of each other. In other

words, speech and music can occur either separately or simultaneously. Studies

have addressed this problem as a multi-class (Gimeno et al., 2020) or multi-label

task (Lemaire & Holzapfel, 2019). Gimeno et al. (2020) detected five different

34

classes — Speech, Music, Speech+Noise, Speech+Music, and Other. In such a

multi-class setting as shown in Figure 2.8, the output layer of the network is a

softmax unit, which chooses between the different audio classes. Note that the

combination of Speech and Music is considered to be a separate class. However,

Lemaire & Holzapfel (2019) presented Music-Speech detection as a multi-label

problem by performing binary classification on each acoustic class as shown in

Figure 2.8.

Softmax

Music

Speech
Speech+Noise

Speech+Music

Other

Multi-class Multi-label

Music Speech

Yes / No Yes / No

Figure 2.8: A comparison of multi-class and multi-output systems.

For sound event detection problems such as environmental audio, the multi-

label system is more popular where each audio class is represented as a binary

classification (Cakır et al., 2017). Cakir et al. (2015) compared multi-label and multi-

class systems for environmental audio and showed that multi-label generalises

better. An advantage of the multi-label approach is that the dependencies across

acoustic classes are captured. For instance, Speech+Music is considered to be a

combination of two acoustic classes instead of a completely different class. Multi-

class detection does not acknowledge this dependency.

2.7.7 Loss Functions and Optimisers

As mentioned earlier, sound event detection has mostly been designed as a classi-

fication task in the literature and has therefore adopted loss functions specifically

designed for classification. On one hand, multi-label systems generally use binary

cross-entropy, which is a commonly used loss function for binary classification. On

the other hand, multi-class systems use categorical cross-entropy. When training

35

a machine learning model, the loss function is minimised by using an optimiser.

Common ones in the literature include Adam (Choi et al., 2017b; Cakır et al., 2017),

Stochastic Gradient Descent (SGD) (Schlüter & Grill, 2015; Lemaire & Holzapfel,

2019), and RMSProp (Parascandolo et al., 2016). Adam (Kingma & Ba, 2015) has

been the most popular choice among studies and generally converges faster than

the other approaches. However, there is no consensus to pick the best optimizer

for sound event detection.

2.7.8 Training Strategies

It is a common practice in the literature to normalise mel spectrograms before train-

ing (Schlüter & Grill, 2015; Meléndez-Catalán et al., 2018; Lemaire & Holzapfel,

2019). Normalisation ensures that the values in all features are within similar

ranges and thus, speeding up training. Moreover, for Deep Learning, the training

data is fed to the neural network in mini-batches. This way, the neural network

does not need to parse the entire training set to perform one round of backpropa-

gation. Instead, backpropagation is performed after each batch. Common batch

sizes in the literature include 32 (Schlüter & Grill, 2015; Lemaire & Holzapfel,

2019), 64 (Chen et al., 2020), and 128 (Adavanne & Virtanen, 2017; Miyazaki et al.,

2020a).

Batch Normalisation (BN) (Ioffe & Szegedy, 2015) is a popular method to

speed up training. BN minimises internal covariance shift by normalising layer

inputs. Using BN, a model’s training curve converges in fewer epochs. An

added advantage of using BN is that it produces a regularisation effect and thus,

improving the generalisation of a model. Convolutional blocks are often fitted

with BN in networks such as CNN, TCN, and CRNN (Cakır et al., 2017; Lemaire &

Holzapfel, 2019). Ba et al. (2016) proposed a technique called Layer Normalisation

and showed that it is more effective than BN for recurrent architectures like LSTM

and GRU.

36

Training deep learning models requires high computational power, especially

Graphical Processing Units (GPUs). GPUs are capable of parallelising training

pipelines and therefore, obtaining high speed-ups. The NVIDIA CUDA Deep

Neural Network library (cuDNN) supports primitives for GPU-accelerated Deep

Learning. Libraries such as TensorFlow, Torch, Theano, Caffe, and Deeplearning4j

rely on such GPU-acceleration (Parvat et al., 2017). As GPU resources may not be

accessible to many, cloud-based platforms such as Google Colab and Kaggle have

gained popularity for Deep Learning in recent years.

2.7.9 Semi-supervised and Weakly-supervised Learning

To address data scarcity, studies have adopted weakly-supervised learning for

sound event detection (Kumar & Raj, 2016; Kong et al., 2019). Weak labels contain

information about the classes present in an audio sequence, but not their acoustic

boundaries. This is different from strongly labelled data, which contains information

about the acoustic boundaries as well. Fewer resources are required to annotate

weakly labelled datasets (Adavanne et al., 2019). As labels are available only at the

sequence level, the loss is calculated between the sequence-level prediction and

the weak label when training the neural network (Miyazaki et al., 2020b). Datasets

aggregated for Audio Classification can be employed for Audio Segmentation

through weakly-supervised learning. For example, Adavanne et al. (2019) adopted

AudioSet (Gemmeke et al., 2017) for Sound Event Detection.

Semi-supervised learning is an approach to combine unlabelled data with

labelled data for training neural networks (Van Engelen & Hoos, 2020). After

training the machine learning model on labelled data, Zhang & Schuller (2012)

showed that the performance of Sound Event Classification can be further im-

proved by using unlabelled data. Traditionally, self-training and co-supervised

learning were well-known approaches to semi-supervised learning (de Sa, 1994;

Blum & Mitchell, 1998). Many studies have explored semi-supervised learning for

37

deep neural networks using the cluster assumption paradigm (Sajjadi et al., 2016).

Doukhan & Carrive (2017) adopted semi-supervised learning for Music-Speech

detection. Tarvainen & Valpola (2017) proposed a mean-teacher approach that

has gained popularity within the Sound Event Detection community (Yan et al.,

2020; Lin et al., 2020). In such a setup, there exists a teacher model and a student

model that train on large-scale unlabelled data. The difference in predictions of

both models on unlabelled data is exploited to improve regularisation.

2.8 Metrics

Accuracy can be used to evaluate the performance of a machine learning model,

but the problem arises when the amount of data for each audio class is differ-

ent. For example, if 95% of the test set contains silence and only 5% has brakes-

squeaking sounds, then the algorithm can afford to predict silence all the time with

an accuracy of 95%. This way we would never be able to detect the presence of

brakes-squeaking. Hence, accuracy is not a good metric in this scenario. Mesaros

et al. (2016) presented a comprehensive survey discussing the various metrics

proposed for sound event detection. They also created an open-source Python

toolbox called sed_eval to conveniently calculate metrics for sound event detection.

Precision or positive prediction value can be defined as the following. Among all

the values that were detected as positive by the classifier, how many of them are

actually correct. Conversely, recall or sensitivity can be defined as the following.

Among all the examples that were true in the ground truth, how many were

successfully detected by the classifier. Equation 2.1 and 2.2 formulates precision

and recall respectively.

Precision=
True Positives

True Positives+ False Positives
(2.1)

38

Recall=
True Positives

True Positives+ False Negatives
(2.2)

There needs to be a trade-off between precision and recall because an increase

in one is often accompanied by a decrease in the other. Hence, F-measure or

F1 score combines precision and recall into a single metric by calculating their

harmonic mean as shown in equation 2.3.

F1 =
2 · Precision · Recall
Precision+ Recall

(2.3)

In some cases, precision and recall may have different degrees of importance.

For a probability p output by the machine learning algorithm and a decision

threshold θ, the audio class is present if p⩾ θ and the audio class is absent if p < θ.

This decision threshold is generally set to 0.5. In other words, the audio class is

present if the algorithm is at least 50% confident. However, in some cases we

might want this to be different. For example, in an audio surveillance system that

detects suspicious activity, we want to ensure that no events of suspicious activity

are missed, but it is acceptable to have some false alarms. In other words, we

want the algorithm to have a high sensitivity to minimise the chance of missing a

suspicious action. Therefore, we can set the decision threshold to 0.3, which would

improve the recall of the algorithm, but compromise its precision.

F-measure is a widely adopted metric for studies and competitions in audio

segmentation (Schlüter et al., 2018; Lemaire & Holzapfel, 2019) and sound event

detection (Salamon et al., 2017; Mesaros et al., 2017). In these studies, precision

and recall are given equal importance and a decision threshold of 0.5 is normally

used. Studies have also adopted error rate to evaluate models for segmentation

(Butko & Nadeu, 2011; Gimeno et al., 2020; Mesaros et al., 2017). It is inspired by

the Word Error Rate in speech recognition. Error rate aggregates errors in terms of

insertions (I), deletions (D) and substitutions (S). It can be formulated by equation 2.4

39

(Mesaros et al., 2016).

Error Rate=

∑K
k=1S(k) +

∑K
k=1D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
(2.4)

with N(k) being the number of active sound events.

2.8.1 Segment-based and Event-based Metrics

The predictions made by the machine learning algorithm need to be compared

with the ground truth. This can be done by breaking the reference labels into short

segments, such as 10 ms. Hence, for every 10 ms in the ground truth, we check if

the machine learning algorithm has made the correct prediction. This is known as

segment-based metrics. Depending on the task, larger segments maybe used for

evaluation. For example, the TUT sound event detection dataset (Mesaros et al.,

2017) and Urban-SED (Salamon et al., 2017), which focus on environmental sound

detection, used 1 s-segments for evaluation.

Event-based metrics, as the name suggests compare each acoustic event as

a whole. The audio class predicted by the machine learning needs to be the

same as the one in the ground truth. Subsequently, the onset and offset times

of each event need to fall within a threshold, such as 500 ms. A problem with

event-based metrics is that small differences in the practices of annotators can

lead to significantly different results (Lemaire & Holzapfel, 2019). For example,

if there is a pause of 0.9 s in Speech, one annotator may consider this to be two

separate Speech events and the other may consider it to be a single event. Table 2.2

contains two examples of calculating segment-based and event-based metrics. In

the second example, the machine learning detects a pause of 0.9 s, but gets highly

penalised by the event-based metrics.

40

Ground truth Predictions
Segment-based
F-measure (%)

Event-based
F-measure (%)

0.0, 4.4, Music
2.6, 5.9, Speech

0.0, 4.3, Music
2.5, 6.0, Speech 98.06 100

0.0, 4.4, Music
2.6, 5.9, Speech

0.0, 4.3, Music
2.5, 4.0, Speech
4.9, 5.9, Speech

92.41 40

Table 2.2: Two examples of predictions made by the machine learning model.
The segment-based and event-based metrics were calculated using the sed_eval
toolbox. You can observe that the event-based F-measure drops to 40% in the
second example because it compares acoustic events as a whole.

2.8.2 Micro and Macro F-measure

When there are more than two acoustic classes, the overall F-measure of the system

can be calculated in two ways — micro-averaging and macro-averaging. Micro-

averaging gives equal weight to every instance in the test set. The true positives,

false positives, and false negatives are aggregated over the entire set to calculate

the metrics (Mesaros et al., 2016). Contrarily, in macro-averaging, each acoustic

class is given equal importance. The metrics are separately calculated for each class

and averaged in the end. Generally, micro-averaging has been more commonly

adopted by studies to present the overall F-measure (Mesaros et al., 2017; Salamon

et al., 2017; Lemaire & Holzapfel, 2019).

2.9 Discussion and Contributions

This chapter surveyed the literature on adopting Machine Learning for Audio

Segmentation. Deep Neural Networks are effective for content-based retrieval

in broadcast audio. Both, Sound Event Detection and Audio Segmentation have

similar goals — to detect acoustic classes and their respective boundaries within an

audio stream. Although Audio Segmentation aims to divide audio into homoge-

nous sections, it is often modelled as a Sound Event Detection task. Therefore,

41

there is considerable overlap between practices in both domains.

Research into Artificial Intelligence (AI) can be broadly divided into data-

centric and model-centric approaches (DeepLearning.AI, 2021). Data centric AI

focuses on the data itself, which essentially acts as the fuel for the machine learning

algorithm. This includes collecting larger training sets, improving the quality of

training examples, optimising the pre-processing and feature extraction process,

and data augmentation. Model-centric AI focuses on developing novel neural

network architectures and improving current ones. In a talk by Andrew Ng, he

interestingly points out that 80% of the time spent by an AI engineer is data

cleaning and aggregation. However, 80% of the research published in AI is model-

centric and only 20% is data-centric. Therefore, he stresses the importance of

data-centric approaches to address real-world problems (DeepLearning.AI, 2021).

A crucial problem in the Audio Segmentation literature is the lack of openly

available datasets because of copyright issues. This is a major hurdle for a re-

searcher to freshly explore audio segmentation. Therefore, this thesis investigates

training set synthesis in chapter 3. We replicate the workflow of an audio mixing

engineer to generate large-scale training sets.

The audio community for information retrieval has often been inspired by

developments in Computer Vision. For instance, harnessing the generalising

capabilities of CNNs and treating spectrograms as images. Sometimes, important

information such as phase is discarded in the process. Thus, there is growing

attention towards end-to-end Deep Learning that trains models directly on raw

audio. Interestingly, less attention has been devoted to the output of Deep Neural

Networks. Most models perform frame-based classification, where acoustic classes

are detected within each frame. However, human annotations contain time-stamps

of acoustic boundaries, which are different from frame-based classification. There-

fore, in chapter 4, we investigate ways to directly output human-readable labels

and minimise the computational overload for post-processing.

42

In section 2.6, we observed that performance of different machine learning

models varies between datasets. For instance, Lemaire & Holzapfel (2019) ob-

tained a Music F-measure of 97.1% on the in-house test set. However, the same

algorithm obtained a Music F-measure of 87.9% on the MIREX music-speech de-

tection dataset 2. This shows that shifts in data distribution can lead to a drop in

performance of the audio segmentation algorithm. In chapter 5, we investigate

how the machine learning model can be made robust to shifts in data distributions.

This thesis also aims to remix broadcast audio in real-time. Hence, the compu-

tational load for Music-Speech detection should be minimal, especially if we plan

to deploy the remixing engine in frameworks that have less computation power.

For flexibility, it would be advantageous to bypass the GPU during inference

because it is not present on all machines. In chapter 6, we demonstrate how audio

segmentation can be performed on live radio broadcast.

43

Chapter 3

Artificially Synthesising Training Sets

In this chapter, we answer the first research question — "What would be an effective

way to train machine learning models for audio segmentation with limited access to domain

data?". The previous chapter recognised the scarcity of data to train machine

learning models for audio segmentation. This is primarily due to copyright

concerns associated with broadcast material. Moreover, the literature comprises

many openly available databases with separate examples of music and speech.

These range from genre-recognition datasets for music to speech-recognition

datasets for speech examples. However, these datasets contain separate files

of music and speech and are not mixed like radio programmes. In broadcast

audio, speech and music seamlessly transition between each other and can also

occur simultaneously. In this chapter, we present a novel approach to artificially

synthesise large-scale training sets for deep learning models. We adopt datasets

with separate files of music and speech and automatically mix them in the style of

radio DJ by incorporating various fade curves and audio ducking principles. We

show that the data synthesis procedure is a highly effective technique to synthesise

training sets for audio segmentation. These results were published as a conference

paper in IEEE ICASSP (Venkatesh et al., 2021a).

In the second half of this chapter, in sections 3.4, 3.5, and 3.6, we investigate

44

the effects of training set synthesis. These experiments were published as a

journal paper in Electronics (Venkatesh et al., 2021b). Firstly, we explore how audio

ducking of background music impacts the precision and recall of the machine

learning algorithm. Secondly, we examine how the quantity of synthetic training

data impacts the results. Finally, we evaluate the effectiveness of synthesised,

real-world, and combined approaches for training models, to understand if the

synthetic data presents any additional value. Results also show that the minimum

level of audio ducking preferred by the machine learning algorithm was similar to

that of human listeners. After testing our model on in-house and public datasets,

we observe that our proposed synthesis technique outperforms real-world data in

some cases and serves as a promising alternative.

3.1 Data Synthesis Procedure

Each audio example synthesised by this technique was 8 s long. We felt that 8 s

was long enough to clearly identify an audio class and capture transitions that

might occur between one audio class to another. This is similar to the length of

audio examples used in the literature. For instance, Gimeno et al. (2020) used 3 s

examples and Lemaire & Holzapfel (2019) used 6.3 s examples for Music-Speech

detection. Salamon et al. (2017) adopted 10 s examples for environmental sound

detection. Please note that in this project, artificial training set synthesis is referred

to mixing speech and music files that already exist. We are not generating the

sound signal itself. We randomise various parameters within appropriate ranges to

replicate the process of a mixing engineer and create a variety of training examples

for the neural network.

We considered four combinations of audio classes — speech, music, speech

over music, or other. Speech includes the radio DJ speaking about a particular

topic, interviews with other individuals, and news, to name a few. Note that music

genres such as a cappella do not fall under the speech category. It is common for

45

the radio DJ to speak over music for commercials, to introduce a song, or even

announce travel news over background music. There are also cases where songs

are played back to back without any speech between them. The "other" class in

the literature refers to miscellaneous sounds that do not fall under the speech or

music categories. This is more common in television broadcast as opposed to

radio. It can include special sound effects like clapping, foley, and environmental

sounds. In radio signals, the "other" class can occur in the form of background

noise such as wind when interviewing someone located in a field. Note that a

period of silence in the radio also falls within the "other" category.

The examples were categorised into two types — (1) Multi-class examples

and (2) Multi-label examples. The former focuses on audio where either music,

speech, or noise can occur. There is no simultaneous occurrence of two acoustic

classes. Whereas, in multi-label examples, we specifically focus on audio with

speech over background music.

3.1.1 Audio Transitions

Two types of transitions were observed in radio programmes, termed as — (1)

normal fade transition and (2) cross-fade transition. In the normal fade, an audio

class fades out, followed by a period of silence, and then a new audio class fades

in. For example, a Radio DJ introduces a song, followed by a short gap, and then

the song starts playing. Moreover, during interviews, the DJ could ask a question,

followed by a short period of silence, and then the interviewee answers. In a cross-

fade transition, there is a slight overlap between the two classes. As one audio class

is fading out, a new class fades in. For instance, one song smoothly cross-fading

into another song. Figure 3.1 illustrates the two types of audio transitions.

For multi-class examples, the number of transitions in each synthetic example

can either be zero or one. Zero means that there are no transitions at all. This

would be a random 8 s segment of purely music, speech, or noise. If there is one

46

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0

0.5

1.0

Ga
in

Music Silence Speech

Fade out Fa
de

 in

(a) Normal fade

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

0.0

0.5

1.0

Ga
in

Music Speech

Fade outFad
e in

(b) Cross-fade

Figure 3.1: Two types of audio transitions in multi-class examples.

transition, nine permutations can possibly arise as shown in Figure 3.2.

For initial tests, we investigated the possibility of increasing the number

of transitions to greater than one, but the program flow became unnecessarily

complicated. Furthermore, there is a very minimal chance to have more than one

transition within an 8 s window in radio programmes. There is a 50-50% chance

for the number of transitions to be zero or one. Noise is less likely to occur in radio

programmes. Therefore, we set the probability of speech, music, and noise to be

0.4, 0.4, and 0.2 respectively.

For multi-label examples, as shown in Figure 3.3, we performed audio duck-

ing of background music. Audio ducking is the process of reducing one signal

with respect to another, in this case, reducing background music with respect

to speech. Again, we can either have no transitions at all or one transition. For

simplicity, we did not consider noise for multi-label examples. Therefore, if there

are no transitions, there is only one possible combination of audio classes — mu-

sic+speech. If there is one transition, there are four possible permutations. Please

47

Music Speech

Music Noise

Speech Music

Speech Noise

Noise Music

Music Music

Speech Speech

Noise Noise

Noise Speech

Music

Speech

Noise

Figure 3.2: The different permutations of audio classes when there are either no
transitions or one transition.

refer to Figure 3.4 for an illustration of the different permutations in multi-label

examples. There are five different cases:

1. Music+Speech: The entire example contains speech and music occurring

simultaneously without any transitions.

2. Music+Speech to Music: Initially, audio ducking is performed on the music

and the volume is increased after the speech stops.

3. Music+Speech to Speech: The background music fades out at the transition

point. The volume of speech is constant throughout the audio.

4. Music to Music+Speech: Initially, music is being played and ducking is

performed when the speech starts.

5. Speech to Music+Speech: Music fades in at the transition point. The volume

of speech is constant throughout the audio.

3.1.2 Time-related Variables

There are many time-related parameters involved in the audio mixing pipeline.

For example, the duration of a fade curve or the exact time at which a transition

48

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

0.0

0.5

1.0

Ga
in

Music Speech

Background music

Figure 3.3: An illustration of audio ducking while synthesising multi-label exam-
ples.

Music+Speech Speech

Music Music+Speech

Music+Speech Music

Speech Music+Speech

Music+Speech

Figure 3.4: The different permutations of audio classes for multi-label examples.

occurs. As our objective is to artificially synthesise a diverse training set, we

randomised these parameters. All the random sampling was done using uniform

distributions within specified ranges.

Within the duration of an 8 s example, the time-stamp of an audio transition

is randomised within the range of 1.5 s to 6.5 s. Subsequently, a fade duration is

randomised within a range that is feasible, as explained in the following example.

If the time-stamp of transition is at 5 s, the minimum fade-out duration could be

0 s (which is no fade-out) and a maximum of 3 s. This technique helps us render

very quick as well as gradual audio transitions.

49

3.1.3 Fade Curves

Fades are a crucial component in audio mixing. A fade-in gradually increases

the volume to the desired level and a fade-out gradually decreases the volume to

0. A fade curve is a mathematical function that defines how the fade is carried

out. We considered four popularly used fade curves in the literature (Tarr, 2018) —

linear, exponential convex, exponential concave, and s-curve. Figure 3.5 shows

the different fade curves.

0.0 0.2 0.4 0.6
Time (s)

0.0

0.5

1.0

Ga
in

S-curve

0.0 0.2 0.4 0.6
Time (s)

0.0

0.5

1.0

Ga
in

Exponential Convex

0.0 0.2 0.4 0.6
Time (s)

0.0

0.5

1.0

Ga
in

Exponential Concave

0.0 0.2 0.4 0.6
Time (s)

0.0

0.5

1.0

Ga
in

Linear

Figure 3.5: The four different fade curves present in audio transitions.

If there is one transition in the synthetic example, there is a fade-out curve

as well as a fade-in curve associated with it. To choose a fade-out curve, we

randomly select one of the four fade curves, with all of them being equally likely.

The fade-in curve is selected the same way. However, the selection of fade-in and

fade-out curves is independent of each other. In other words, if the fade-out curve

is linear, the fade-in curve could be any of the curves with equal probability. For

the exponential convex, exponential concave, and s-curve, there is an additional

exponent value that needs to be defined. This value was randomly chosen between

1.5 to 3.0.

50

3.1.4 Sampling Audio Files

Audio files were arranged in directories such that each audio class has a separate

directory. There were three directories — music, speech, and noise. After selecting

a permutation of audio classes, we pick a random file from the directory. Subse-

quently, a random segment from the audio file is extracted. The duration of the

segment depends on the position at which the transition occurs. For example,

if the transition occurs at 4.6 s and the permutation of audio classes is music to

speech, then the duration of the music segment is 4.6 s and the duration of the

speech segment is 3.4 s (the duration of each synthetic example is 8 s).

3.1.5 Audio Ducking

Audio ducking is the process of reducing one signal with respect to another. In this

context, we reduce the volume of background music with respect to speech. Audio

ducking is a common practice in broadcast programmes because it makes speech

intelligible. Different radio stations have varying guidelines for mixing engineers

to perform audio ducking. Torcoli et al. (2019) conducted a comprehensive analysis

of the Loudness Difference (LD) between speech and background music, where

LD was measured in Loudness Units (LU). An increase in level by 1 LU leads

to an increase of 1 decibel (dB) (Torcoli et al., 2019). Listeners from different

backgrounds had varying preferences. On average, LDs preferred by experts were

4 LU less than those preferred by non-experts. In addition, individuals belonging

to older age groups preferred greater LDs to clearly understand speech. Figure

3.3 illustrates audio ducking with a defined LD between speech and background

music.

The literature does not provide us with an ideal value for LD. It depends on

the mixing engineer, target audience, and nature of audio content. Many broad-

casters recommend a minimum of 7 to 10 LU for speech over music (Torcoli et al.,

51

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

0.0

0.5

1.0

Ga
in

Music Speech

Background music

Loudness Difference

Figure 3.6: A diagram depicting the Loudness Difference between speech and
background music.

2019). Others, for instance, the UK Digital Production Partnership, recommends a

minimum LD of 4 LU (UK Digital Production Partnership (DPP), 2017).

Higher LDs cause the background music to become quieter. This leads to

clearer speech, but the music becomes less impactful. Again, this depends on the

nature of audio content. Depending on the programme, the LD could be as high

as 23 LU (Torcoli et al., 2019). Moreover, OpenBMAT, a music-detection, contains

audio files as low as −51 Loudness Units relative to Full Scale (LUFS).

There are two ways to perform audio ducking—volume automation and

side-chain compression. We have adopted the former technique because it is

relatively easier to calculate LD values. The loudness of audio was calculated

using the integrated loudness metric by ITU-R (2017) BS.1770-4. We adopted the

pyloudnorm1 Python package presented by Steinmetz & Reiss (2021). Note that

we had to normalise only one channel because audio files in the data repository

were mixed down to mono. Figure 3.7 presents an overview of how the loudness is

calculated. The audio is first passed through a K-filter that comprises a high-shelf

filter of 1681 Hz and a highpass filter of 38 Hz. Subsequently, the audio is divided

in blocks of 400 ms with 75% overlap. The mean square is calculated to obtain the

energy of each block. The loudness l of each block j is calculated by equation 3.1.

lj =−0.691 + 10log10zj (3.1)

1pyloudnorm: https://github.com/csteinmetz1/pyloudnorm

52

https://github.com/csteinmetz1/pyloudnorm

The audio blocks are then gated to discard those with very low loudness. The

integrated loudness of the entire audio is calculated by averaging the energies of

the audio blocks above the threshold. Please refer to ITU-R (2017); Steinmetz &

Reiss (2021) for more details of the algorithm.

High-shelf
fc = 1681 Hz

Highpass
fc = 38 Hz

400 ms
blocks Gate

Energy

K-filtering

Figure 3.7: An overview of how loudness is measured in the ITU-R BS.1770 system.

During data synthesis, we calculate the loudness of the speech segment.

Subsequently, we adjust the gain of background music to the required LD. In this

chapter, we evaluate how the machine learning model trains over different ranges

of LDs. Section 3.4 presents the methodology for these experiments.

We also surveyed the literature to consider other methods to measure loud-

ness. Wichern et al. (2015) compared different loudness measurement methods for

automatic mixing. The study found that a simple energy-based loudness model,

which is the ITU-R BS.1770, performed significantly better than sophisticated

psychoacoustic models that also included masking effects. The ITU-R BS.1770 has

also been adopted by multiple automatic mixing studies (Pestana & Barbosa, 2012;

Fenton, 2018) and therefore, we selected this approach for loudness normalisation.

3.1.6 Overview

Figure 3.8 depicts an overview of the data synthesis procedure. Note that in cases

where audio ducking is performed, the network needs to predict the presence of

53

both music and speech. In addition, when an audio class is fading in or out, the

entire fade curve is labelled as 1. We do not consider the power of the audio with

respect to the mixture gain.

Choose
type of

example

Multi-class

Multi-
label Define LD

No. of
transitions and

time stamp

Permutation
of audio
classes

Define fade
curves

Pick random
audio files

and segments

Synthesise
example

Start

End

Figure 3.8: A flow diagram depicting an overview of the data synthesis procedure.

Unless mentioned otherwise, the probabilities for all events were equally

weighted. For example, the chance of occurrences for multi-label and multi-class

examples is 50% each. Four fade curves were considered in the chapter and thus,

each fade curve has a probability of 25%. Similarly, the probabilities for other

events were calculated based on the total possible number of occurrences.

3.2 Datasets

3.2.1 Data Repository for Data Synthesis

To generate audio that resembles a radio broadcast, we aggregated a data repos-

itory that contains audio files labelled as either music or speech. Please note

that these files are not mixed and contain only one acoustic class. Among the

datasets popularly used for music-speech detection, we included the MUSAN cor-

pus (Snyder et al., 2015), GTZAN music and speech detection dataset (Tzanetakis

& Cook, 2000), and the Scheirer and Slaney dataset (Scheirer & Slaney, 1997). After

54

analysing errors in early informal experiments, without having access to the test

set, we observed that speech was confused with wind instruments like the flute.

Hence, we included the Instrument Recognition in Musical Audio Signals (IRMAS)

dataset (Bosch et al., 2012) which includes many examples of wind instruments

and GTZAN genre recognition (Tzanetakis & Cook, 2002) for additional music

examples.

It was also challenging for the network to differentiate between singing voice

and spoken voice. Therefore, we included a part of the LibriSpeech corpus (Panay-

otov et al., 2015), which serves as a good collection of speech examples. In addition,

vocal sections without musical accompaniment are harder to identify. Thus, we

included the Singing Voice Audio Dataset (Black et al., 2014) which contains

unaccompanied vocals.

To enable the network to identify task-irrelevant data, we included audio

files from the "noise" category in the MUSAN corpus. These noise files were

environmental sounds, unintelligible speech, and sound effects, to name but a

few. The total number of unique audio files for music, speech, and noise was 6876,

6885, and 665 respectively.

3.2.2 Real-world Radio Data

In this chapter, we aim to use synthetic data for training the neural network. How-

ever, this cannot be used for validation and testing because it is not real-world

data. We collected 18 h of radio broadcast from BBC Radio Devon, who is our

collaborator on the project. For convenience, I split the audio into 1 h files. I

manually annotated the audio files for the presence of music and speech. As

Meléndez-Catalán et al. (2019) pointed out, annotating an hour of audio takes

approximately four to five hours. I took a similar duration to annotate the BBC

recordings. I annotated a maximum of one hour of radio recordings per day to

minimise fatigue. The annotations were saved as text files. The literature com-

55

prises other approaches for annotation — (1) JSON Annotated Music Specification

(JAMS) proposed by Humphrey et al. (2014) and (2) BMAT Annotation Tool (BAT)

developed by Meléndez-Catalán et al. (2017). However, as we are focusing only

on two audio classes, I directly used text files for convenience and simplicity.

Three hours of our annotations on the BBC data were verified by an external

audio mixing engineer. He was paid for his time and was not involved in the

research. Additionally, a random section of 15 min was blind-annotated by him

independently. We found an agreement of 99.49% with our annotations by using

10ms segment verifications. This was done to ensure that audio events were

similarly perceived by different people.

As we are working with radio data, there are occasional repetitions of audio

segments such as jingles. Hence, whenever we split the data for training, valida-

tion, and testing, extra care was taken to minimise repetition across the different

dataset splits. The exact ratio of splits is explained in the methods section of the

respective experiments.

Another dataset that contains real-world data is the MuSpeak dataset (MuS-

peak Team, 2015). It contains seven audio files and has a total length of approxi-

mately 5 h. Whenever we split the data for training, validation, and testing, we

did not split the audio files to prevent the risk of having similar content across

different dataset splits.

3.3 Evaluate the Robustness of Data Synthesis

In this section, we investigate if the data synthesis procedure is an effective way

to synthesise training sets for audio segmentation. We adopt only synthetic data

for training the neural network and real-world data for evaluation. The results

presented in this section were published in the proceedings of IEEE ICASSP 2021

(Venkatesh et al., 2021a).

56

3.3.1 Methods

Pre-processing and Feature Extraction

All the sound files in the data repository and real-world radio recordings were

resampled to 22.05 kHz. Stereo signals were converted to mono by averaging

the channels. In the data repository, there were many occurrences of unlabelled

silence. For example, in speech recordings, long pauses between speech were not

labelled. Therefore, we removed/shortened silences in the audio files by using

Sound eXchange (SoX)2.

For our data synthesis to work smoothly, it is convenient to have audio files

with a minimum duration of 8 s. Music files in the IRMAS dataset are only 3 s long.

In addition, some speech examples in LibriSpeech and noise examples in MUSAN

are shorter than 8 s. Therefore, we looped these audio files multiple times to reach

the required duration.

We extracted 80 log-scale-mel bands in the range of 64 Hz to 8 kHz from the

audio files. The hop size and fast Fourier transform (FFT) size were set to 220 (10

ms) to 1024 (46 ms) respectively. Features were extracted using Librosa (McFee

et al., 2015). Audio segments were peak-normalised before passing them through

the pipeline for data synthesis. Finally, the whole audio file was peak-normalised

after synthesis.

Validation and Test Sets

As mentioned earlier, we cannot use synthetic data for validation and testing. At

this juncture of my PhD project, I had finished annotating 9 h of radio data from

BBC Radio Devon. The methods adopted for annotation are explained in section

3.2.2. The files were split into files of 1 h duration. Additionally, we included

2SoX: http://sox.sourceforge.net/

57

http://sox.sourceforge.net/

the MuSpeak dataset (MuSpeak Team, 2015), which approximately contains 5 h

of audio. The audio files in both datasets were randomly shuffled and split as

approximately 50-50% for validation and test set. Note that we incorporated each

audio file as a whole for shuffling and did not split the file.

The above paragraph explained the in-house validation and test set adopted

for this experiment. In order to investigate our model’s performance on exter-

nal test sets, we also evaluated it on dataset number 1 of the Music Information

Retrieval Evaluation eXchange (MIREX) 2018 music and speech detection com-

petition3. This dataset contains 27 hours of audio from various TV programmes.

Although our data synthesis was designed for radio programmes, this dataset

would provide us with a good evaluation of our model and compare it with

state-of-the-art architectures.

Network Architecture

For this study, we adopted a CRNN, which is a state-of-the-art architecture for

audio classification and segmentation tasks (Choi et al., 2017b; Cakır et al., 2017).

Figure 3.9 shows the network architecture. The input shape of the network was

802 × 80 × 1, equivalent to 802 time-steps and 80 mel bins. The output of the

network comprised 802 × 2 neurons with sigmoid activations, where two neurons

perform a binary classification for music and speech at every time step. The

network performs multi-output detection, independently detecting the regions of

music and speech. This is important for models working with radio data because

music and speech can occur simultaneously. Binary cross-entropy was used as the

loss function.

We used the Adam optimizer (Kingma & Ba, 2015) with a constant learning

rate of 0.001 and batch size of 128. The first two layers of the network were 2D

convolutional layers with a kernel size of 7 and a stride of 1. The input was

3https://music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection

58

https://music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection

80

802

7

7

B-GRU (80 hidden units)

1

Output shape = (802, 2)

Conv2D layer with 7x7 kernels
followed by batch normalisation,
max pooling of (1, 2), and dropout
of 0.2.

x2 layers

x2 layers

Figure 3.9: The Convolutional Recurrent Neural Network used for music-speech
detection. Each audio example is 8 s long. The audio is converted to a mel
spectrogram with shape 802 × 80, with 802 corresponding to the number of time
stamps and 80 corresponding to the number of mel bins. The output is 802 × 2,
with one neuron making predictions for speech and the other for music.

padded with zeros such that ‘same’ convolutions were performed to ensure that

the time resolution remains the same. The next two layers were bidirectional gated

recurrent units (B-GRU) with 80 units each.

In this study, we evaluated the model using different training sets, which

would be explained in section 3.3.1. Hence, a model architecture was finalised by

optimising the performance across different training datasets. For regularisation,

we implemented early stopping (Yao et al., 2007) and used batch normalisation

after all the layers. Max pooling along the dimension of Mel bins was performed

59

after the convolutional layers. A dropout of 0.2 was added only after the con-

volutional layers because we observed that it was not effective for the B-GRU

layers.

Training Datasets

In order to evaluate the effectiveness of our data synthesis algorithm, we con-

structed four training datasets. All datasets contain 40960 examples of 8 s audio

(which is approximately 91 h of audio). Initial tests conveyed this was an adequate

number of examples to train the network.

1. Dataset-only files (d-OF): This dataset contains audio segments of only

speech, music, or noise. There was no mixing of audio events within each

example. 40960 examples were randomly sampled from our data repository.

We did not include the whole corpus because of computational limitations

and to manage redundancy.

2. Dataset-only files and background music (d-OFB): In addition to d-OF, this

dataset contains examples of speech over background music. The volume

of background music was normalised according to the method explained in

section 3.1.5. However, this dataset did not contain any audio transitions.

3. Dataset-no normalisation (d-NN): In this dataset, the data synthesis was

performed as explained in section 3.1, except for the loudness normalisation

of background music according to the loudness of foreground speech. How-

ever, all examples of speech, music, and noise were peak-normalised before

synthesis.

4. Dataset-data synthesis (d-DS): In this dataset, the data synthesis was per-

formed exactly as explained in section 3.1.

60

Post-processing and Evaluation

The neural network was designed to make predictions over 8 s audio. During

testing, for files that were longer than 8 s, we traversed the audio with a window

size of 8 s and a hop size of 6 s. Within each 8 s-window, we discarded the

predictions for the first and last second of audio, because the border-predictions

might be unreliable. This method was adopted from the paper by Gimeno et al.

(2020). Suppose the audio was less than 8 s long; the signal was right padded with

zeros to obtain the required duration.

To eliminate spurious transitions, we set thresholds for minimum durations

of audio events (Lemaire & Holzapfel, 2019). The minimum durations for speech

and music were 1.3 s and 3.4 s respectively. The maximum silence between speech

events was 0.4 s. The maximum silence between music events was 0.6 s. These

values were adapted from the study by Lemaire & Holzapfel (2019) and were

manually adjusted to suit our in-house dataset.

We evaluated our machine learning models using the sed_eval toolbox (Mesaros

et al., 2016), which has been popularly adopted by the literature (Lemaire &

Holzapfel, 2019; Cakır et al., 2017; Mesaros et al., 2017). Segment-level evaluation

was performed with a segment size of 10 ms. All experimental results in this paper

were presented after smoothing the predictions made by the machine learning

models.

3.3.2 Results

Table 3.1 presents the model’s performance on different datasets. The highest over-

all F-measure was obtained by d-DS, which implemented the entire data synthesis

procedure. The F-measures of d-OF and d-OFB were at least 3% lower than d-DS

because their datasets did not contain audio transitions. This demonstrates that

modelling radio DJ-like transitions is an effective technique. Additionally, there

61

is a marginal difference between d-OF and d-OFB, which explains that adding

background music to speech in the training examples is not sufficient, but there

need to be audio transitions.

The dataset d-NN contained background music that was peak-normalised,

but not normalised with respect to the loudness of foreground speech. Therefore,

the music F-measure of d-DS surpasses the value of d-NN by more than 2%. This

illustrates that randomising the loudness of background music with respect to

foreground speech within an LD of 7 to 18 was an effective method. Speech

F-measure for d-NN was slightly greater than d-DS. However, this might be

because the background music in d-NN was at a relatively constant volume,

which improves speech detection but compromises music detection.

Table 3.1: The F-measure of our CRNN model trained on different datasets. The
bold values indicate the largest number in each column.

Dataset Foverall Fs Fm

d-OF 93.54 94.58 92.99
d-OFB 93.68 94.95 92.99
d-NN 95.33 96.44 94.73
d-DS 96.69 96.17 96.97

Table 3.2 shows the segment-level evaluation of our d-DS model on the MIREX

speech and music detection dataset. The evaluations of other submissions were

obtained from the MIREX website. Our model significantly outperforms the

other models for F-measures of music. This is attributed to the presence of audio

transitions and loudness normalisation of background music in the synthesised

dataset. Our model also obtains the highest F-measure for speech detection.

All the other submissions in the competition used real-world data (Choi et al.,

2018; Marolt, 2018). Therefore, these results demonstrate that our data synthesis is

a highly effective approach for audio segmentation. Moreover, there was another

task in MIREX 2018 that was solely for music detection. Our model places second

in this task, preceded by the submission by Meléndez-Catalán et al. (2018). Their

model was trained on 30 hours of TV programmes, which comes from the same

62

data distribution. It is important to note that the MIREX evaluation dataset

can contain background music over foreground speech, audience noises, sound

effects, everyday-life sounds, sounds of the city, and so on. As our data synthesis

procedure only considered foreground speech, it explains the poor precision for

music in table 3.2. Our model predicted many of the sound effects as music. The

performance of our model over TV programmes can be improved by considering

these factors in the data synthesis.

Table 3.2: F-measure, precision, and recall of our CRNN model trained on ‘d-DS’
and other algorithms evaluated on dataset number 1 of MIREX 2018 speech and
music detection competition.

Algo. Fm Pm Rm Fs Ps Rs

Choi et al. (2018) 49.36 62.4 40.82 77.18 96.83 64.15
Marolt (2018) 38.99 80.72 25.7 91.15 87.95 94.6
Marolt (2018) 54.78 85.7 40.26 90.9 89.45 92.41
Marolt (2018) 31.24 98.73 18.56 90.86 83.83 99.17

d-DS 85.76 79.37 93.27 92.21 89.71 94.85

3.3.3 Discussion

The results in section 3.3.2 demonstrated the effectiveness of the data synthesis

procedure. Only artificially synthesised data was used to train a model for audio

segmentation and classification. We adopted a training dataset belonging to a

different distribution from the validation and test sets. Despite this, we obtained

a high F-measure on our local test set. Furthermore, we obtained state-of-the-art

performance for speech and music detection on the MIREX 2018 competition

dataset.

As labelling large amounts of data is an expensive and time-consuming task,

our data synthesis procedure serves as a potential solution to generate large

amounts of training data. In the next section, we investigate the effect of audio

ducking for training set synthesis. We randomised the LD between 7 and 18 by

conducting surveying the literature and informal tests. Next, we evaluate how

different ranges of audio ducking impact the performance of the machine learning

63

model.

3.4 Loudness Difference Selection

The results presented in this section were published in Electronics, as a journal

paper in a special issue on Machine Learning Applied to Music/Audio Signal

Processing (Venkatesh et al., 2021b). For further experiments in this chapter, the

training, validation and test sets were re-organised because an additional 9 h of

radio recordings were labelled and used for the study. This was done to compare

real-world training sets and artificial training sets, which is explained in section 3.6.

The data was reorganised to minimise potential repetitions in radio programmes

across dataset splits. An overview of the contents of the validation and test splits

in the dataset can be found in table 3.3. The training sets differ for each experiment

and are detailed in the relevant sections.

Table 3.3: Contents of validation, and test datasets for music-speech detection.
Real-world radio data was collected from BBC Radio Devon. MuSpeak (MuSpeak
Team, 2015) is an openly available dataset containing annotations for music and
speech.

Dataset Division Contents

Validation 5 h from BBC Radio Devon + 2 h from MuSpeak

Test 4 h from BBC Radio Devon + 1 h 42 min
from MuSpeak

3.4.1 Neural Network Architecture

The neural network architecture used for this experiment was different from the

one used in the previous section. This is because we had conducted a different set

of experiments before arriving at the architecture. We compared state-of-the-art

architectures and performed hyperparameter-tuning using an automatic tuning

technique called Hyperband (Li et al., 2017). The details of these experiments are

64

presented in chapter 4 in section 4.1. We would not go into the details here because

this chapter focuses on training set synthesis. The architecture is briefly explained

in table 3.4.

Table 3.4: The neural network architecture used for this experiment. More details
are given in chapter 4.

Parameter Value

No. of Conv. layers 3
Kernel size {3, 11, 11}

No. of filters {128, 128, 6}
No. of B-GRU layers 2
No. of B-GRU Units {80, 40}

The network adopted the Adam optimiser (Kingma & Ba, 2015) with an initial

learning rate of 0.001. Early stopping (Yao et al., 2007) with a patience of 20 epochs

was implemented during training. In addition, we decayed the learning rate

by a factor of 0.84 after 10,000 weight updates. The batch size was set to 128.

Furthermore, in this network, we adopted Layer Normalisation (Ba et al., 2016)

instead of Batch Normalisation (Ioffe & Szegedy, 2015). The motivation behind

doing so is explained in chapter 4.

3.4.2 Experimental Set-Up

In this experiment, we used only synthetic data to train the neural network. For

each audio example with speech over background music, we need to select an LD

between the audio classes. This LD cannot be constant because the neural network

will become biased towards learning a specific LD. Therefore, we chose random

LD values from a uniform distribution. However, the literature does not provide

us with a clear-cut range of LDs. For our data synthesis procedure, we need to

select an optimal maximum and minimum value of LD.

First, we set the minimum value at 7 LU. The maximum value was varied

from 18 to 54 LU with steps of 3 LU, as shown in Figure 3.10a. We synthesised 5120

examples and trained the network over these examples for each configuration. The

65

choice of maximum LD is expected to only influence the performance on music.

The greater the LD, the lower the volume of background music and vice versa. If

the background music is sufficiently loud, we can precisely detect the presence

of music. However, if the background music becomes too low, it becomes harder

for the listener to precisely detect the presence of music. Hence, we analysed

the precision, recall, and F-measure of music. We repeated the experiment five

times using different random seeds. Regression analysis was performed on the

observations using SPSS (IBM Corporation, 2017). Analysis of variance (ANOVA)

was conducted to evaluate the level of significance.

7 LU

18 LU

54 LU

Minimum LD is
constant at 7 LU

Maximum LD is
varied from18 to
54 LU

Lo
ud

ne
ss

 D
iff

er
en

ce
 (L

U
)

(a) The minimum LD is fixed at 7 LU. The maximum LD is varied from 18 to 54 LU.

21 LU

-8 LU

19 LU

Maximum LD is
constant at 21 LU

Mimimum LD is
varied from19 to
-8 LU

Lo
ud

ne
ss

 D
iff

er
en

ce
 (L

U
)

(b) The maximum LD is fixed at 21 LU. The minimum LD is varied from 19 to -8 LU. Note
that negative values of LD indicate that the background music is louder than speech.

Figure 3.10: Experiments conducted to find an optimal maximum and minimum
value of LD.

66

Similarly, we set the maximum value at 21 LU and the minimum value was

varied from 19 to −8 LU with a step of −3 LU, as shown in Figure 3.10b. The

smaller the LD, the louder the background music is. Negative LDs stand for cases

when the background music is louder than the speech. Therefore, if the LD is

too low or negative, we expect the precision of speech to be hindered. This often

occurs in advertisements and radio jingles, which have smaller LDs. Again, for

each configuration, we synthesised 5120 examples and trained the network over

these examples. The minimum LD is expected to only influence the intelligibility

of speech. Hence, we analysed the precision, recall, and F-measure of speech.

We repeated the experiment five times. Regression analysis and ANOVA were

performed on the observations.

3.4.3 Results and Discussion

F-measure

F-measure is a metric that combines precision and recall by calculating their

harmonic mean (Sokolova & Lapalme, 2009). Figure 3.11 presents a quadratic

regression of how the F-measure of music changes with maximum LD. The maxima

for validation, test, and combined curves lie at 23, 27, and 24 LU respectively. The

validation and test curves were significant (p < 0.001). However, the combined

curve that jointly plots validation and test observations was not significant (p >

0.05). Therefore, our results suggest that the optimal value of maximum LD lies

somewhere between 23 and 27 LU.

Torcoli et al. (2019) suggested that depending on the nature of broadcast

content, the LD can be as high as 23 LU, which has a reasonable overlap with our

findings. However, we did not find a single optimal value for maximum LD based

on F-measure but a range of values from 23 to 27 LU.

Figure 3.12 shows a regression analysis of how the F-measure of speech varies

67

20 30 40 50 60
Maximum LD (LU)

88

90

92

94

96

98

M
us

ic
F-

m
ea

su
re

 (%
)

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

Figure 3.11: F-measure for different values of maximum loudness difference (LD).
The minimum LD was fixed at 7 LU. Validation observations (Val. obs.) and test
obs. are the actual values obtained in experiments. The val. and test curves were
generated through quadratic curve fitting. The combined curve aggregates the
observations on val. and test set for quadratic curve fitting. The vertical dotted
lines in red indicate the maxima of the curves. ANOVA was performed on the
observations and the asterisks indicate the level of significance (*: p < 0.05, **: p <
0.01, ***: p < 0.001, ****: p < 0.0001).

with minimum LD. The maxima for validation, test, and combined curves lie

at 8, 2, and 5 LU respectively. The validation and test curves were significant

(p < 0.0001). However, the combined curve that jointly plots validation and test

observations was not significant (p > 0.05). Therefore, our results suggest that the

optimal value of minimum LD lies somewhere between 2 and 8 LU.

As explained in Section 3.1.5, many broadcasters recommend a minimum

of 7 to 10 LU for speech over music and some recommend a minimum LD of

4 LU (Torcoli et al., 2019; UK Digital Production Partnership (DPP), 2017). Note

that these are only recommendations to make speech intelligible. However, there

are cases where mixing engineers choose LDs close to zero or even negative

LDs (Torcoli et al., 2019). Therefore, in order to maximise F-measure, our results

suggest that the minimum LD should lie between 2 and 8 LU.

68

1510505101520
Minimum LD (LU)

88

90

92

94

96

98

Sp
ee

ch
 F

-m
ea

su
re

 (%
)

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

Figure 3.12: F-measure for different values of minimum LD. The maximum LD
was fixed at 21 LU. Validation observations (Val. obs.) and test obs. are the actual
values obtained in experiments. The val. and test curves were generated through
quadratic curve fitting. The combined curve aggregates the observations on val.
and test set for quadratic curve fitting. The vertical dotted lines in red indicate
the maxima of the curves. ANOVA was performed on the observations and the
asterisks indicate the level of significance (*: p < 0.05, **: p < 0.01, ***: p < 0.001,
****: p < 0.0001).

As the F-measures of combined curves were statistically insignificant, it may

benefit from further analysis. Are we overfitting the validation set? Or is there an

optimal LD for different datasets? To address the questions, we analysed precision

and recall in the following subsection.

Precision and Recall

Figure 3.13a presents a regression analysis of how the precision of music varies

with maximum LD. A quadratic curve was fitted to the observations. All curves

evidently demonstrate that precision decreases as the maximum LD increases (p <

0.0001). Therefore, if the neural network was trained on examples that have very

low volumes of background music, the precision is hindered.

69

20 30 40 50 60
Maximum LD (LU)

88

90

92

94

96

98

M
us

ic
Pr

ec
isi

on
 (%

)

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

(a) Precision of music.

20 30 40 50 60
Maximum LD (LU)

88

90

92

94

96

98

M
us

ic
Re

ca
ll

(%
)

*

*

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

(b) Recall of music. The vertical dotted lines in red indicate the maxima of the curves.

Figure 3.13: Evaluation of different values for maximum LD. The minimum LD was
fixed at 7 LU. Validation observations (Val. obs.) and test obs. are the actual values
obtained in experiments. The val. and test curves were generated through quadratic
curve fitting. The combined curve aggregates the observations on val. and test set
for quadratic curve fitting. ANOVA was performed on the observations and the
asterisks indicate the level of significance (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****:
p < 0.0001).

On the other hand, Figure 3.13b shows the relationship between recall of

music and maximum LD. Initially, recall increases as the LD increases. However,

70

the maxima for the validation, test, and combined curves lie approximately at

40 LU. This shows that the recall does not increase beyond an LD of 40 LU. In

other words, the background music becomes too low to be perceived. Hence, we

recommend that the maximum LD should never be greater than 40 LU, even if the

researcher desires a high recall.

Figure 3.14a shows a regression analysis of speech precision with regards

to minimum LD. Initially, as the minimum LD decreases, there is an increase in

precision. The maxima for all the curves lie at approximately 10 LU. Below 10 LU,

there is a decrease in precision. This is an interesting observation because the

same LD is preferred by human listeners (Torcoli et al., 2019). Torcoli et al. (2019)

conducted a study on the LDs preferred by human listeners. Based on the test

results, they recommended a minimum of 10 LU between speech and background

music. Contrarily, many broadcasters use LDs less than 10 LU, which makes

speech intelligible (Torcoli et al., 2019). It is noteworthy that machine learning

models in this study also preferred a minimum LD of 10 LU to maximise the

precision of speech.

Figure 3.14b shows that recall continuously improves with a decrease in

minimum LD. This is because the machine learning model learns more examples

where speech and background music have a small LD. This also shows that the

real-world radio examples collected from BBC Radio Devon contain cases where

speech and background music have small LDs. However, as shown in Figure 3.14a,

the precision of speech is affected in these cases.

The results in this subsection and Section 3.4.3 clearly demonstrate that there is

a trade-off between precision and recall when selecting a maximum and minimum

LD. A researcher may adjust these settings according to their objectives. Moreover,

F-measure assigns an equal weightage to precision and recall, which might not be

desirable. For further experiments in our study, we did not make any decisions

based on the regression analysis because it includes the test set. Instead, we chose

values that obtained the highest mean for F-measure on our validation set. The

71

1510505101520
Minimum LD (LU)

88

90

92

94

96

98

Sp
ee

ch
 P

re
cis

io
n

(%
)

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

(a) Precision of Speech. The vertical dotted lines in red indicate the maxima of the curves.

1510505101520
Minimum LD (LU)

88

90

92

94

96

98

Sp
ee

ch
 R

ec
al

l (
%

)

*

Val. curve
Test curve
Combined curve
Val. obs.
Test obs.

(b) Recall of Speech.

Figure 3.14: Evaluation of different values for minimum LD. The maximum LD
was fixed at 21 LU. Validation observations (Val. obs.) and test obs. are the
actual values obtained in experiments. The val. and test curves were generated
through quadratic curve fitting. The combined curve aggregates the observations
on val. and test set for quadratic curve fitting. ANOVA was performed on the
observations and the asterisks indicate the level of significance (*: p < 0.05, **: p <
0.01, ***: p < 0.001, ****: p < 0.0001).

minimum and maximum LD were set to 4 and 33 LU respectively.

72

3.5 Impact of Dataset Size

3.5.1 Experimental Set-Up

As we are artificially synthesising training data, we have the flexibility to create

large training sets. To develop an understanding of how the neural network’s per-

formance improves with the size of the training set, we evaluated the performance

over 5120, 10,240, 20,480, and 40,960 examples. To evaluate the significance level,

a two-way ANOVA was performed with dataset size and dataset type (valida-

tion and test) as factors. A posthoc Tukey test was performed to make pairwise

comparisons.

The number of unique speech and music files in the data repository is only

6885 and 6876 respectively. In order to manage redundant examples, we adopted

a new training strategy. For every training cycle, we randomly select 40 mini-

batches and calculate the error on the validation set. This way, we prevent the risk

of overfitting within epochs. This training strategy was adapted from the study

by Schlüter & Grill (2015). However, we used the Adam optimiser with the same

learning rate schedule explained in Section 3.4.1.

3.5.2 Results

Figure 3.15 plots the overall F-measure against different training set sizes. We

did not observe any patterns in precision and recall because in this section, the

minimum and maximum LD values were constant at 4 and 33 LU. As we increased

the size of the training set, we observed a slight increase in F-measure on the

validation set. However, on the test set, an increase was found from 5120 to 10,240

examples but not in subsequent intervals. ANOVA showed that the dataset size

had a significant effect on the F-measure (p< 0.05). Posthoc tests showed that there

73

were significant differences for two pairs—(5120 & 10,240) and (5120 & 40,960).

All the other pairs were statistically insignificant. Therefore, we can conclude that

the performance does not significantly improve beyond 10,240 training examples.

This might be due to our data repository comprising approximately 6800 unique

examples for each audio class.

5120 10,240 20,480 40,960
No. of examples

88

90

92

94

96

98

F-
m

ea
su

re
 (%

) 95.23 95.64 95.69 95.79

Validation

5120 10,240 20,480 40,960
No. of examples

88

90

92

94

96

98

F-
m

ea
su

re
 (%

)

96.41 96.64 96.44 96.52

Test

Figure 3.15: The overall F-measure for different training set sizes. These results
were calculated on the validation set and test set. The bar chart shows the mean
and standard deviation for five iterations of data synthesis and training using
different random seeds.

For the next experiment in our paper, we used 40,960 training examples

instead of 10,240 examples. This is because 40,960 examples obtained the highest

F-measure on our validation set and we did not make any decisions based on the

test set.

3.6 Comparison of Real-World and Artificial Data

3.6.1 Experimental Set-Up

To evaluate the effectiveness of our data synthesis algorithm, it is important for

us to compare the performance with real-world data. Therefore, we trained the

model on four different training sets as shown below. Each of them comprised

40,960 8 s-long audio examples.

74

1. SSE: Sound segment examples (SSE) consisted of audio directly sampled

from the data repository. This does not contain mixed audio.

2. SSE+RRE: This is the combination of SSE and Real-world radio examples

(RRE). This is the type of training set used by most audio segmentation

studies.

3. ARE+RRE: In this set, we used a combination of Artificial Radio Examples

(ARE), which are synthesised using our data synthesis procedure and RRE.

4. ARE: Here, we used only ARE for training the model.

During training, to manage redundant examples, we adopted the same train-

ing strategy as explained in Section 3.5.1. All four models were tested on our

in-house dataset and the MIREX competition dataset. Similar to earlier exper-

iments, we trained models for five iterations of data synthesis using different

random seeds. However, we created an ensemble of the five models. A simple

average (Breiman, 1996; Goodfellow et al., 2016) over the sigmoid outputs of

the five networks was calculated to obtain the final prediction. By creating an

ensemble, we would obtain a single number evaluation on our test set instead

of means and standard deviations. Therefore, we can compare our models with

state-of-the-art algorithms submitted to the MIREX competition, which adopt the

same testing paradigm. Moreover, a group of networks reduces generalisation

error by combining predictions (Breiman, 1996; Goodfellow et al., 2016).

3.6.2 Results

The models were trained using four different training sets — SSE, SSE+RRE, ARE,

and ARE+RRE. Table 3.5 shows the evaluation on our in-house dataset. SSE and

ARE comprise examples from the same data repository. However, ARE increases

the overall F-measure by 4.5%. This demonstrates the effectiveness of the data

synthesis algorithm.

75

SSE+RRE is the type of training set generally used by audio segmentation

studies (Lemaire & Holzapfel, 2019). Interestingly, the overall F-measure of ARE

also surpasses SSE+RRE. Considering the fact that RRE belongs to the same data

distribution as the test set, this is a significant development. ARE+RRE evidently

outperforms the other models. It harnesses the advantage of both synthetic radio

examples and real-world data.

Table 3.5: This evaluation of precision, recall, and F-measure for speech and music
was conducted on our in-house test set. It compares our model trained on different
training sets. The bold values indicate the largest number in each column.

Training Set Foverall Fs Ps Rs Fm Pm Rm

SSE 92.23 88.21 97.34 80.64 93.84 98.06 89.97
SSE+RRE 96.64 93.78 95.11 92.49 97.81 97.3 98.33

ARE 96.89 94.73 96.64 92.9 97.77 97.72 97.82
ARE+RRE 97.35 95.05 96.21 93.92 98.3 97.73 98.87

The upper half of Table 3.6 presents the results of our models on the MIREX

competition dataset. We observe similar trends as the results in Table 3.5—ARE

outperforms SSE and SSE+RRE. Interestingly, ARE has a higher F-measure for

music than ARE+RRE but obtains a lower speech F-measure. It is important to

note that in this case, the training and test datasets were annotated by different

research groups. Therefore, there would be disagreements in annotations for low

volumes of background music. This trend was also observed in the OpenBMAT

dataset (Meléndez-Catalán et al., 2019), which had low agreement percentages

across annotators for background music in very low volumes. The advantage

of artificially synthesising data is that it is independent of this human error in

labelling. Contrarily, in speech annotations, there is less scope for disagreements.

Therefore, ARE+RRE has a higher Speech F-measure than ARE.

The lower half in Table 3.6 shows the previously published results obtained

from the MIREX website. The music F-measure of all our models surpassed the

performance of earlier submissions. This can be attributed to the variety of datasets

in our data repository. The submissions by Marolt et al. Marolt (2018) surpassed

three of our models in the speech F-measure. However, ARE+RRE obtained a

76

Table 3.6: This evaluation was conducted on the MIREX competition dataset. The
upper half compares our model trained on different training sets. The bottom
half shows the previously submitted algorithms (Algo.) to the competition. The
results were obtained from the MIREX website. Venkatesh et al. (2021a) was the
earlier study that adopts our data synthesis procedure, as explained in section
3.3.2. ‘-’ indicates that Foverall was not calculated for the submission. The bold
values indicate the largest number in each column.

Training Set/Algo. Foverall Fs Ps Rs Fm Pm Rm

SSE 79.61 81.79 89.16 75.54 76.27 86.62 68.12
SSE+RRE 86.57 88.15 92.48 84.2 84.3 85.33 83.3

ARE 88.52 90.73 91.96 89.53 85.51 79.55 92.43
ARE+RRE 89.09 92.16 92.64 91.69 85.01 77.22 94.55

Choi et al. (2018) - 77.18 96.83 64.15 49.36 62.4 40.82
Marolt (2018) - 91.15 87.95 94.6 38.99 80.72 25.7
Marolt (2018) - 90.9 89.45 92.41 54.78 85.7 40.26
Marolt (2018) - 90.86 83.83 99.17 31.24 98.73 18.56

Venkatesh et al. (2021a) 89.53 92.21 89.71 94.85 85.76 79.37 93.27

higher speech F-measure.

The ARE model in Table 3.6 obtained slightly poorer results than the one

presented in our previous study (Venkatesh et al., 2021a), as explained in section

3.3.2. This is because we used a different neural network. In the current section,

hyperparameter tuning was performed on ARE+RRE by using Hyperband (more

details are available in chapter 4). However, in the previous study (Venkatesh

et al., 2021a), we manually optimised the network for only ARE. Additionally, we

had included dropout for regularisation and used Batch Normalisation instead of

Layer Normalisation. This suggests that it might be good to include some form of

regularisation such as dropout so that the neural network performs better on data

distributions it has not seen before.

3.7 Discussion

In this chapter, we demonstrated the efficacy of our data synthesis procedure. In

section 3.3, only artificially synthesised data was used to train the model. We

adopted a training dataset belonging to a different distribution from the validation

77

and test sets. Despite this, we obtained a high F-measure on our local test set.

Furthermore, we obtained state-of-the-art performance for speech and music

detection on the MIREX 2018 competition dataset.

In sections 3.4, 3.5, and 3.6, we investigated the effects of using synthetic data.

Section 3.4 investigated the impact of LD between speech and background music

while training neural networks. There was a trade-off between precision and

recall when selecting maximum and minimum LDs. Moreover, if the LD was less

than 10 LU, the precision of the network gets affected. This choice of minimum

LD for the machine learning model was similar to that of human listeners in the

literature (Torcoli et al., 2019). This paper also recommended that the LD between

speech and background music should not be greater than 40 LU because the music

becomes too quiet to be detected. This emphasises that the task of background

music-detection needs to be defined in greater detail by using threshold-related

variables.

In section 3.6, we compared the effectiveness of real-world and synthetic

training sets. Interestingly, artificial data surpasses the performance of real-world

data in some scenarios. It generalises better to other data distributions because it

is less prone to human error and subjective disagreements between annotators.

There are noticeable differences between the BBC Radio Devon recordings

and the data repository we have used for data synthesis. The BBC recordings

have greater dynamic range compression, cleaner speech, and generally use side-

chain compression for audio ducking. Therefore, including a small number of

radio recordings in the training dataset might improve the model’s performance.

Additionally, incorporating audio effects like dynamic range compression in the

data synthesis pipeline might improve the model’s performance.

As this chapter has significantly reduced the time and resources required to

label datasets, it opens up many possibilities for future work. Audio features like

Mel spectrograms and MFCCs discard the phase of the audio and only consider its

78

magnitude. This might hinder the algorithm’s ability to capture audio transitions.

End-to-end deep learning, as suggested by some researchers Lemaire & Holzapfel

(2019); Lee et al. (2017), seems like a promising approach to audio segmentation.

The results in Section 3.5.2 showed that the performance did not significantly

improve beyond 10,240 examples. This suggests that other methods such as

Generative Adversarial Networks (GANs) Goodfellow et al. (2014); Yang et al.

(2018) might improve the quality of synthetic training sets.

3.8 Publications, Code, and Contributions

• Venkatesh, S., Moffat, D., Kirke, A., Shakeri, G., Brewster, S., Fachner, J.,

Odell-Miller, H., Street, A., Farina, N., Banerjee, S., et al. (2021a). Artifi-

cially synthesising data for audio classification and segmentation to improve

speech and music detection in radio broadcast. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario,

Canada, (pp. 636–640). doi: 10.1109/ICASSP39728.2021.9413597.

– In this conference paper, we presented the novel data synthesis procedure

for audio segmentation of radio broadcast. We show that the use of fade

curves and audio ducking improves the performance of the algorithm. We

obtained state-of-the-art performance for music-speech detection on in-house

and public datasets. All the code associated with this study is available at

this GitHub repository (https://github.com/satvik-venkatesh/audio-seg-

data-synth/). During peer review, one of the reviewers suggested the idea

of investigating the parameters of data synthesis itself. This motivated us to

extend the study to a journal paper (Venkatesh et al., 2021b), which would

comprehensively evaluate the parameters of data synthesis.

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2021b). Investigating the effects of

training set synthesis for audio segmentation of radio broadcast. Electronics,

10(7), 827. doi: 10.3390/electronics10070827.

79

https://doi.org/10.1109/ICASSP39728.2021.9413597
https://github.com/satvik-venkatesh/audio-seg-data-synth/
https://github.com/satvik-venkatesh/audio-seg-data-synth/
https://doi.org/10.3390/electronics10070827

– This journal paper was published in a special issue for Machine Learning

Applied to Music/Audio Signal Processing. In this paper, we investigated

the various effects of data synthesis, such as audio ducking and dataset

size. One of the most interesting findings was that minimum level of au-

dio ducking preferred by the machine learning algorithm was similar to

that of human listeners. In addition, we compare real-word training sets

and artificial training sets and understand the advantages of the latter. All

the code associated with this study is available at this GitHub repository

(https://github.com/satvik-venkatesh/train-synth-audio-seg/). There were

many helpful comments received during the peer review process, such as

evaluating the statistical significance of experiments in sections 3.4 and 3.5.

Only in the second revision of the paper, we explored the idea of performing

quadratic regression analysis for the experiments on the loudness difference

between speech and music. To summarise, the novel contributions of this

study were: (1) compare state-of-the-art neural network architectures for

audio segmentation, (2) investigate how the loudness difference between

speech and background music influences the performance of segmentation,

(3) examine how the size of the training set improves performance (4) com-

pare real-world training sets and synthetic training sets.

80

https://github.com/satvik-venkatesh/train-synth-audio-seg/

Chapter 4

Neural Network Architectures for

Audio Segmentation

In this chapter, we explore model-centric approaches to improve music-speech

detection, which addresses the second research question — "How can we advance

state-of-the-art algorithms by investigating novel pattern recognition problems?". First,

we systematically compare deep learning architectures commonly adopted for

this task in the literature — CNN, GRU, LSTM, TCN, and CRNN. Results showed

that CRNN is the best performing model. Subsequently, we explored the benefits

of using raw audio for audio segmentation. As training on raw is different from

mel spectrograms, we evaluated different architectures such as CRNN and Wave-

U-Net (Stoller et al., 2018). However, the performance of the machine learning

model did not match the performance on mel spectrograms and conveyed that the

benefits are limited for audio segmentation.

Lastly, we propose a novel algorithm called the You Only Hear Once (YOHO),

which is inspired by the You Only Look Once algorithm in Computer Vision. We

convert audio segmentation from a classification problem to a regression problem,

making the pipeline more end-to-end. We evaluate YOHO on multiple datasets

81

for sound event detection and found that it generalises better than the CRNN.

As it predicts acoustic boundaries directly through regression, it is about seven

times faster faster than segmentation-by-classification. The work on YOHO was

published as a journal paper in Applied Sciences (Venkatesh et al., 2022b).

4.1 Comparison of Deep Learning Architectures

Recently, many studies have adopted deep learning for audio segmentation and

classification. State-of-the-art architectures include the Convolutional Neural

Network (CNN) (Meléndez-Catalán et al., 2018; Kwon et al., 2020; Lee et al.,

2021), Bidirectional Long Short-Term Memory (B-LSTM) (Gimeno et al., 2020),

Bidirectional Gated Recurrent Unit (B-GRU) (Phan et al., 2017), Convolutional

Recurrent Neural Network (CRNN) (Choi et al., 2017b; Cakır et al., 2017; Zhang

et al., 2020), and Temporal Convolutional Network (TCN) (Lemaire & Holzapfel,

2019). CRNN and TCN generally outperform the other architectures because they

take advantage of both convolutional and recurrent layers (Lemaire & Holzapfel,

2019). In this section, we compare state-of-the-art architectures to choose the best

one for our task. The results presented in this section were published in Electronics,

as a journal paper in a special issue on Machine Learning Applied to Music/Audio

Signal Processing (Venkatesh et al., 2021b).

4.1.1 Experimental Set-up

The training set used for hyperparameter tuning was a combination of real-world

data and artificially synthesised data, which was approximately 10 hours and

23 hours respectively. The input layer for each neural network was 802 × 80 × 1,

corresponding to 802 times steps and 80 Mel bins. The output of each network

had 802 × 2 neurons with sigmoid activations. Two neurons performed a binary

classification for speech and music separately at each time step. Please note that

82

the model performed multi-output detection, where the occurrences of music and

speech are mutually exclusive. All neural networks were trained using the Adam

optimiser (Kingma & Ba, 2015) with a learning rate of 0.001. The loss function was

binary cross-entropy.

Techniques like Batch Normalisation (BN) (Ioffe & Szegedy, 2015) and Layer

Normalisation (LN) (Ba et al., 2016) are adopted to speed up the training process

in neural networks. These methods also provide the benefit of producing a regu-

larization effect. Ba et al. (2016) showed that LN was more effective than BN for

recurrent architectures like LSTM and GRU. However, BN is more effective for

CNNs.

Convolutional Neural Network

For the CNN, we passed the input through a set of 2D convolution layers. After

each convolution layer, we performed batch normalization, ReLU activation, and

Max pooling. Max pooling was performed only on the frequency axis in order to

maintain the time resolution of the network. After the convolution blocks, we had

a set of fully connected (FC) layers. Each FC layer was followed by dropout.

Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Unit

We passed the input through a series of B-LSTM or B-GRU layers. All layers

used tanh activation functions. Initial tests showed that LN was considerably

more effective than BN for B-GRU and B-LSTM networks. Also, we observed

that a combination of dropout and LN adversely impacted the performance of the

network. Hence, each recurrent layer was followed by only LN and no dropout.

83

Non-causal Temporal Convolutional Network

TCN is a family of architectures that perform 1D convolutions on sequential data.

They are known to perform better than B-LSTM and B-GRU architectures on a

vast range of tasks (Bai et al., 2018). Lemaire & Holzapfel (2019) proposed the

non-causal Temporal Convolutional Network (ncTCN) for audio segmentation,

which passes the sequence forward and backward, similar to B-LSTM. The study

also showed that ncTCN was more effective than TCN for segmentation.

For our study, ncTCN was implemented by using this GitHub repository1.

The input was passed through a series of ncTCN layers. We did not observe a

difference in performance between LN and BN. Hence, LN was applied after each

layer to maintain uniformity with B-LSTM and B-GRU.

Convolutional Recurrent Neural Network

CRNN, as the name suggests, comprises a series of convolution layers followed

by recurrent layers. Similar to TCN, we did not observe a noticeable difference

between LN and BN and thus, used LN for the network. The input was passed

through a set of 2D convolutions. Each convolution was followed by ReLU

activation, Max pooling and LN. After the convolution blocks, we had a series of

B-GRU layers, each of them followed by LN.

Hyperparameter Tuning

For each network, hyperparameter tuning needs to be performed separately.

To present an unbiased comparison, we adopted an automatic hyperparameter

method called Hyperband (Li et al., 2017). The list of hyperparameters explored

for each architecture can be found in table 4.1. For tuning, we set the maximum

number of epochs to 10 and the Hyperband factor to 3.
1https://github.com/philipperemy/keras-tcn

84

https://github.com/philipperemy/keras-tcn

Table 4.1: The list of hyperparameters explored for each neural network architec-
ture.

Architecture Parameter Range Step size

CNN

No. of Conv. layers 1 to 4 1
Kernel size 3 to 15 2

No. of filters {16, 32, 64, 128} -
No. of FC layers 1 to 4 1
No. of FC units 128 to 1024 128

Dropout 0.0 to 0.5 0.05

B-LSTM &
B-GRU

No. of layers 1 to 4 1
No. of hidden units 20 to 260 20

TCN

No. of layers 1 to 4 1
Kernel size 3 to 19 2

No. of filters {16, 32} -
No. of stacks 1 to 10 1

No. of dilations {20, 21, ..., 2N}
N = 1 to 8 1

Use skip connections {True, False} -

CRNN

No. of Conv. layers 1 to 4 1
Kernel size 3 to 15 2

No. of filters {16, 32, 64, 128} -
No. of GRU layers 1 to 4 1
No. of GRU Units 20 to 160 20

During hyperparameter tuning, we set the batch size to 32 to fit large models

in the RAM. For each of the architectures, after an optimal network was chosen by

Hyperband, we trained the networks for an extended number of epochs. Early-

stopping (Yao et al., 2007) with a patience of 20 epochs was implemented during

training and the model obtaining the lowest validation error was selected. Also,

we decayed the learning rate by a factor of 0.84 after 10000 weight updates.

4.1.2 Results and Discussion

The parameters chosen by Hyperband can be found in table 4.2. Table 4.3 presents

the results of different architectures on the validation and test set. For the overall

F-measure, the CRNN network evidently outperformed other models. It also

obtained the highest speech F-measure in both datasets. CNN obtained a high

music F-measure on the validation set and interestingly the highest F-measure on

85

the test set. However, its speech F-measure was poorer. Studies have explained

that music tends to have more stationary parts than speech (Seyerlehner et al.,

2007). Moreover, Jang et al. (2019) adopted a CNN for music detection in radio

broadcasts. Our results show that CNNs are excellent for music detection, but not

for speech detection.

Table 4.2: The list of hyperparameters chosen by Hyperband each neural network
architecture.

Architecture Parameter Chosen Value

CNN

No. of Conv. layers 3
Kernel size {9, 11, 11}

No. of filters {32, 128, 32}
No. of FC layers 4
No. of FC units {256, 384, 896, 384}

Dropout 0.45

B-LSTM No. of layers 3
No. of hidden units {140, 160, 80}

B-GRU No. of layers 3
No. of hidden units {60, 140, 100}

TCN

No. of layers 3
Kernel size {7, 13, 17}

No. of filters {32, 16, 32}
No. of stacks {9, 5, 2}

No. of dilations N = {3, 7, 2}
Use skip connections {False, True, True}

CRNN

No. of Conv. layers 3
Kernel size {3, 11, 11}

No. of filters {128, 128, 16}
No. of GRU layers 2
No. of GRU Units {80, 40}

There was not much difference between the B-LSTM and ncTCN architectures.

Bai et al. (2018) stated that TCNs perform better than recurrent architectures

because they exhibit longer effective memory. However, the examples in our

training set have a fixed duration of 8s. Probably, the longer memory of TCN was

not advantageous for our task.

Unlike TCN, the CRNN model also performs convolutions on the frequency

axis, which contributes to its better performance. During initial experiments, we

86

Table 4.3: The evaluation of different neural network architectures on the valida-
tion and test set. CRNN-small is the simplified version of the CRNN model, which
has less number of filters for each convolutional layer.

Validation Test

Architecture Foverall Fs Fm Foverall Fs Fm

CNN 95.87 94.75 96.78 95.23 89.62 97.72
B-LSTM 96.55 97.02 96.19 95.85 92.41 97.3
B-GRU 96.24 96.86 95.75 96.11 93.16 97.37
ncTCN 96.56 97.18 96.09 95.9 91.99 97.55
CRNN 97.39 97.75 97.12 96.37 94 97.37

CRNN-small 97.21 97.39 97.07 96.46 93.64 97.65

also observed that 2D convolutions were more effective than 1D convolutions.

The CRNN model that was selected by Hyperband had 2.4 million parameters.

For further experiments in this chapter, the chosen model was unnecessarily large

and was beyond our computational budget. We reduced the number of filters from

128 to 64 in the first two convolution layers. This reduced number of parameters

to approximately 700 thousand and had a negligible impact on performance.

Moreover, we increased the batch size from 32 to 128 to speed up training. Also,

we updated the learning rate schedule to decay by a factor of 0.84 after 2500

weight updates. The smaller model is labelled as ‘CRNN-small’ and the results

are presented in table 4.3. Furthermore, the smaller model obtained the highest

overall F-measure on the test set. However, our decision was informed only by

the validation set. We adopted this ‘CRNN-small’ as the network for experiments

in sections 3.4, 3.5, and 3.6 within chapter 3.

4.2 Experiments with Raw Audio

After comparing state-of-the-architectures in the literature, I was interested in

developing novel architectures for audio segmentation. Recently, end-to-end deep

learning is gaining a lot of attention in the audio community. This includes training

directly on raw audio without features such as MFCC or mel spectrograms. Studies

87

have explored training directly on raw audio for speech recognition (Hoshen et al.,

2015), audio classification (Lee et al., 2017), and source separation (Stoller et al.,

2018). This seemed like a promising research avenue to investigate because the

literature has not yet explored raw audio for audio segmentation.

The CLDNN architecture was adopted by Sainath et al. (2015b) for speech

recognition. In this neural network, the raw audio waveform is processed by

temporal or 1-D convolutions. Subsequently, it is fed into LSTM layers. The study

showed that the machine learning model using raw audio matched the perfor-

mance of the previous models using mel spectrograms. The Convolutional Long

Short-Term Memory Fully Connected Deep Neural Network (CLDNN) architec-

ture for speech recognition outputs words. However, for audio segmentation, we

need to perform segmentation-by-classification, which is classifying each audio

sample in the time domain as music or speech.

Audio was downsampled to 8 kHz to manage computational cost. We did

not expect the downsampling to lead to any significant data loss because similar

sampling rates have been adopted in the literature. For instance, 8 kHz has been

used by Meléndez-Catalán et al. (2017) for audio segmentation and Stoller et al.

(2018) for source separation. Therefore, if we are adopting audio examples of 8 s,

the input size would be 64000 × 1.

For the initial informal experiments, I developed a CRNN model that accepts

raw audio. When tuning the network for hyperparameters, I experimented with

filter maps of 32, 64, and 128 and kernel sizes of 7 to 15. After spending a few days

exploring various hyperparameters, I was only able to obtain an overall F-measure

of 85% on the validation set. This suggested that I need to explore a different

network architecture. The CRNN architecture may have worked well for speech

recognition because the output layer only produces words. However, in our case,

we are performing segmentation-by-classification. Therefore, in the remainder of

this section, I investigated the Wave-U-Net architecture for audio segmentation.

88

4.2.1 Experimental Set-Up

The Wave-U-Net architecture was developed by Stoller et al. (2018) for audio

source separation. The structure of the network can be found in Figure 4.1. In this

task of source separation, musical audio was separated into stems of vocals, drums,

bass, and other. The code that accompanied the paper was originally implemented

in Tensorflow version 1. Currently, Tensorflow has upgraded to version 2 and

there are considerable differences between the two frameworks. Furthermore,

the Wave-U-Net has many custom layers such as interpolation, difference output,

cropping, and so on. Therefore, I re-implemented the network architecture in

Tensorflow 2 and the code is openly available in this GitHub repository2.

Upsampling block 1Downsampling block 1

Source 1 output

Crop and concat

Mixture audio

Crop and concat
Downsampling block 2

Crop and concat
Downsampling block L

...

Upsampling block 2

Upsampling block L

...

1D Convolution, Size 15

Downsampling

1D Convolution, Size 5

Upsampling

1D Convolution, Size 15

1D Convolution, Size 1

Source K-1 output

...

Crop and concat

Figure 4.1: The wave-u-net architecture proposed by Stoller et al. (2018). The
copyright of the figure belongs to Stoller et al. (2018) and was published under the
creative commons attribution license.

The convolutional layers of Wave-U-Net architecture use a kernel size of
2https://github.com/satvik-venkatesh/Wave-U-net-TF2

89

https://github.com/satvik-venkatesh/Wave-U-net-TF2

15 (Stoller et al., 2018). As we are working directly with raw audio and not

mel spectrograms, higher kernel sizes are expected to work better than smaller

kernel sizes. Each convolutional layer is followed by a downsampling block,

which reduces the sampling rate of the audio by half. Downsampling is done

by parsing the array with a stride of 2. After multiple downsampling blocks, the

audio is encoded into a low-dimensional vector space, such as 16. Subsequently,

through learned upsampling blocks, the audio features are increased to the original

resolution.

The audio was downsampled to 8kHz. Hence, for 8 s audio, the number of

samples is 64000. The input size of the Wave-U-Net architecture needs to be a

power of 2. Hence, the input size was 65,536. The audio was placed in the centre

with zero padding on the left and right. The original output layer of the Wave-U-

Net was a differential output layer, which was optimal for audio source separation.

We replaced this layer with sigmoidal outputs for music-speech detection. The

shape of the output layer was 65536 × 2, with one neuron for music and one

neuron for speech at each audio sample.

For regularising the Wave-U-Net, Stoller et al. (2018) multiplied the audio

signal by a random value between 0.7 and 1.0. This data augmentation technique

randomly adjusts the gain of the audio, which improves the generalisation of the

neural network. We adopted the same approach in our training pipeline.

In order to ensure that the performance of the model is not hindered by the

reduced sampling rate, we trained another model on a sampling rate of 22050 kHz.

However, due to the higher sampling rate, the duration of each audio example

was reduced to 5.94 s to fit the input within the RAM. The new input size was

131,072.

90

4.2.2 Results

Table 4.4 compares the performance of the Wave-U-Net and the CRNN trained

on mel spectrograms. First, we analysed the results on the validation set and

observed that the CRNN trained on mel spectrograms significantly surpassed

the Wave-U-Net trained on raw audio. The overall precision of the CRNN is

97.35%, compared to 95.92% and 95.15% for Wave-U-Net-8k and Wave-U-Net-22k

respectively. The overall recall of the CRNN was 97.43%, compared to 93.71%

and 94.1% for Wave-U-Net-8k and Wave-U-Net-22k respectively. Due to the

unsatisfactory performance on the validation set, we did not evaluate the model

on the test set.

Algo. Foverall Fm Pm Rm Fs Ps Rs

CRNN 97.39 97.1 97.4 96.8 97.7 97.2 98.3
Wave-U-Net-8k 94.81 93.6 96.3 91.1 96.3 95.5 97.1
Wave-U-Net-22k 94.62 93.9 96.5 91.4 95.5 93.5 97.6

Table 4.4: A comparison of CRNN trained on mel spectrograms and Wave-U-Net
trained on raw audio. This results are on the validation set. Wave-U-Net-8k was
trained on audio with a sampling rate of 8 kHz and Wave-U-Net-22k was trained
audio with sampling rate of 22.05 kHz.

It is understood that training on raw audio requires more training data be-

cause there is no extraction of audio features. This makes the network more prone

to overfitting. Although, training on raw audio has demonstrated advantages in

audio classification (Lee et al., 2017) and speech recognition (Sainath et al., 2015b),

it does not seem beneficial for music-speech detection in radio broadcast.

The performance for raw audio can be improved by training the neural net-

work on a larger dataset. However, in this thesis, we have already explored

artificially synthesising training sets and annotating real-world radio data pro-

vided by BBC Radio Devon. Annotating more audio examples is an expensive and

time-consuming task. Therefore, this thesis concludes that the benefits of training

on raw audio are limited for music-speech detection. However, techniques like

transfer learning can be adopted, where the network is trained on larger datasets

91

for similar tasks such as speech recognition and audio classification. Subsequently,

the network can be fine-tuned for music-speech detection.

4.3 You Only Hear Once (YOHO) Algorithm

There are many studies focusing on end-to-end deep learning. However, in the

audio community, end-to-end deep learning is generally referred to the input

audio. In other words, features like mel spectrograms are replaced with raw audio

waveforms. There has been less attention given to the output of such networks.

Traditionally, in segmentation-by-classification, the neural network classifies each

audio frame. Subsequently, a post-processing step converts the neural network’s

output into human-readable labels. The disadvantage is that this post-processing

is slow because each audio frame has to be serially processed. Therefore, in this

section, I explore the idea of transforming audio segmentation from a classification

problem to a regression one. This way, the neural network would output human-

readable labels by directly predicting the boundaries of acoustic classes.

Phan et al. (2014) proposed random regression forests for sound event detec-

tion and classification. Xu et al. (2014) adopted a regression approach for speech

enhancement. However, most studies in the literature adopt frame-based classifi-

cation, where the neural network classifies each frame separately. In this section,

we present a novel neural network architecture inspired by the You Only Look

Once (YOLO) algorithm (Redmon et al., 2016). YOLO gained attention in the

Computer Vision community for object detection. It transformed bounding box

prediction from a classification problem to a regression one. Using this approach,

it obtained speedups of around 3× without compromising accuracy. We present

a system called You Only Hear Once (YOHO) that predicts the boundaries of

acoustic classes through regression.

YOLO has been adopted in the audio domain by visualising spectrograms

92

as images. Zsebők et al. (2019) adopted YOLO for automatic bird song and

syllable segmentation. Segal et al. (2019) presented a system called SpeechYOLO

which treated audio fragments as objects. They adopted YOLO for keyword

spotting tasks. Algabri et al. (2020) investigated object detection techniques such

as YOLO and CenterNet (Zhou et al., 2019) for phoneme recognition. However,

the novelty of the YOHO paradigm is that it converts frame-based classification

into a regression problem by gradually reducing the temporal dimension through

many convolutional layers. This makes the output of the network closer to human-

readable labels, therefore reducing the need for post-processing. Separate neurons

were used to detect the onset and offset of audio classes. We apply our system

to audio segmentation and sound event detection tasks, where the literature

has predominantly used frame-based classification. Furthermore, we present a

multi-output system, which detects acoustic classes that can overlap with each

other.

Until now, in this thesis, we have used datasets only for music-speech detec-

tion. As we are proposing a novel algorithm, it would be interesting to evaluate

YOHO on multiple audio event detection tasks. First, we explore music-speech

detection in broadcast signals. We also compare our results with state-of-the-art

algorithms on the Music Information Retrieval Evaluation eXchange (MIREX) com-

petition dataset 2018 (Schlüter et al., 2018). Second, we test our model on the TUT

sound event detection dataset, which represents common sounds related to human

presence and traffic. It was the dataset used in the Detection and Classification

of Acoustic Scenes and Events (DCASE) competition 2017 (Mesaros et al., 2017).

Third, we evaluate our model on the Urban-SED dataset (Salamon et al., 2017),

which is a synthetic dataset for environmental audio. In all three cases, the YOHO

algorithm performed better and faster than the CRNN. All the code associated

with this project is available in this GitHub repository (https://github.com/satvik-

venkatesh/you-only-hear-once, accessed on 2 March 2022).

93

https://github.com/satvik-venkatesh/you-only-hear-once
https://github.com/satvik-venkatesh/you-only-hear-once

4.3.1 Motivation

In the YOHO system, we intend to make the neural network output labels closer to

human-readable labels. This way we make the pipeline more end-to-end. Figure

4.2 illustrates a comparison between segmentation-by-classification and the YOHO

paradigm. For both paradigms, a mel spectrogram of shape 801 × 64 is fed as

input. In segmentation-by-classification, each time step is classified as music,

speech, both, or none. Subsequently, these classifications are converted to human

readable labels. However, in YOHO, each block of 0.307 s is processed through

regression. One neuron detects the presence of an acoustic class. If the class is

present, one neuron predicts the start point of the class and one neuron detects

the end point of the class. Subsequently, during post-processing, these blocks of

0.307 s are merged to form a final prediction. Using this technique, the number of

time steps is reduced from 801 to 26, which makes the network significantly faster,

generalise better, and more end-to-end. More details on the implementation are

given in the below subsections.

Segmentation-by-Classification YOHO

801 x 2

0.2, 4.3, Music
3.6, 6.0, Speech

0.2, 0.307, Music 0.307, 0.614, Music 3.684, 3.991, Music
3.684, 3.991, Speech

0.2, 4.3, Music
3.6, 6.0, Speech

26 x 6

Figure 4.2: A comparison of segmentation-by-classification and YOHO.

94

4.3.2 Network Architecture

The network architectures used by different versions of YOLO (Redmon et al.,

2016; Redmon & Farhadi, 2017) were large and not suitable for our smaller train-

ing datasets. Therefore, we adapted the MobileNet architecture (Howard et al.,

2017) for our task. We modified the final layers of MobileNet to realize the

YOHO algorithm. MobileNet has also been employed for audio classification

by YamNet (Plakal & Ellis, 2020), which only detects audio classes, but not their

segmentation boundaries.

As shown in Table 4.5, YOHO is purely a convolutional neural network

(CNN). We divide the table into two parts — the upper half comprising the

original layers of the MobileNet architecture and the bottom half containing the

layers that we have added. We use log-mel spectrograms as input features. The

input dimension depends on the duration of the audio example and specifications

of the mel spectrogram. Here, we explain the network for music-speech detection,

whose input contains 801 times steps and 64 frequency bins. After reshaping the

mel spectrogram to 801 × 64 × 1, we perform a 2D convolution with a stride

of 2. Hence, the time dimension and frequency dimension are reduced by half.

The MobileNet architecture uses many depthwise-separable convolutions (Sifre,

2014) with 3 × 3 filters followed by pointwise convolutions with 1 × 1 filters. All

convolutions except the final layer were fitted with ReLu activations and batch

normalization (Ioffe & Szegedy, 2015). Each time we adopt a stride of 2, there is a

reduction in the time and frequency dimensions. As shown in the lower half of

Table 4.5, we gradually reduce the number of filters from 1024 to 256.

Subsequently, we flatten the last two dimensions. The final layer is a 1D

convolution with six filters. The output shape is 26 × 6, where 26 stands for the

number of time steps. This layer is similar to a convolutional implementation of

sliding windows (Sermanet et al., 2014) along the time dimension. At each time

step, the first neuron performs a binary classification that detects the presence of

95

Table 4.5: The neural network architecture for YOHO. The upper half of the table
comprises the original layers of MobileNet. The bottom half contains the layers
that we have added. Conv2D and Conv1D stand for 2D and 1D convolutions,
respectively. The convolutions use a stride of 1 unless mentioned otherwise and
‘dw’ stands for depthwise convolution.

Layer type Filters Shape / Stride Output shape

Reshape - - 801 x 64 x 1
Conv2D 32 3 x 3 / 2 401 x 32 x 32

Conv2D-dw - 3 x 3 401 x 32 x 32
Conv2D 64 1 x 1 401 x 32 x 64

Conv2D-dw - 3 x 3 / 2 201 x 16 x 64
Conv2D 128 1 x 1 201 x 16 x 128

Conv2D-dw - 3 x 3 201 x 16 x 128
Conv2D 128 1 x 1 201 x 16 x 128

Conv2D-dw - 3 x 3 / 2 101 x 8 x 128
Conv2D 256 1 x 1 101 x 8 x 256

Conv2D-dw - 3 x 3 101 x 8 x 256
Conv2D 256 1 x 1 101 x 8 x 256

Conv2D-dw - 3 x 3 / 2 51 x 4 x 256
Conv2D 512 1 x 1 51 x 4 x 256

5x
Conv2D-dw
Conv2D

-
512

3 x 3
1 x 1

51 x 4 x 256
51 x 4 x 256

Conv2D-dw - 3 x 3 / 2 26 x 2 x 512
Conv2D 1024 1 x 1 26 x 2 x 1024

Conv2D-dw - 3 x 3 26 x 2 x 1024
Conv2D 1024 1 x 1 26 x 2 x 1024

Conv2D-dw - 3 x 3 26 x 2 x 1024
Conv2D 512 1 x 1 26 x 2 x 512

Conv2D-dw - 3 x 3 26 x 2 x 512
Conv2D 256 1 x 1 26 x 2 x 256

Conv2D-dw - 3 x 3 26 x 2 x 256
Conv2D 128 1 x 1 26 x 2 x 128
Reshape - - 26 x 256
Conv1D 6 1 26 x 6

an acoustic class. The second and third neurons perform regression for the start

and endpoints for the respective acoustic class. Figure 4.3 illustrates the output

layer of the YOHO algorithm.

In this context, we are dealing with two acoustic classes — music and speech.

Therefore, the output has six neurons at each time step. For example, if the length

of an audio example is 8 s, each time step in the output corresponds to 0.307 s

96

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Ti
m

e
st

ep
s

Audio classes

Figure 4.3: An illustration of the output layer of the YOHO algorithm. This
network is for music-speech detection. To increase the number of audio classes,
we add neurons along the horizontal axis.

because there are 26 divisions. We applied sigmoid activations for all neurons

in the output layer. Hence, we normalized the regression outputs between 0

and 1. Moreover, even if the input shape of the neural network is different, for

example, 257 × 40, the neural network and the parameters of convolutional layers

still remain exactly the same. The only difference would be the output shape of

the neural network, which depends on the number of time steps in the input and

the number of unique audio classes in the output.

4.3.3 Loss Function

Generally, neural networks such as the CRNN that use segmentation-by-classification

adopt binary cross-entropy as the loss function. As we modelled the problem as

a regression one, we used the sum squared error. Equation 4.1 shows the loss

function for each acoustic class c.

Lc(ŷ,y) =

(ŷ1 − y1)

2+

(ŷ2 − y2)
2 + (ŷ3 − y3)

2, if y1 = 1

(ŷ1 − y1)
2, if y1 = 0

(4.1)

97

where y and ŷ are the ground-truth and predictions respectively. y1 = 1 if the

acoustic class is present and y1 = 0 if the class is absent. y2 and y3, which are the

start and endpoints for each acoustic class are considered only if y1 = 1. In other

words, (ŷ1 − y1)
2 corresponds to the classification loss and (ŷ2 − y2)

2 + (ŷ3 − y3)
2

corresponds to the regression loss. The total loss L is summed across all acoustic

classes.

4.3.4 Example of Labels

Table 4.6 shows an example of the output for the YOHO algorithm. The total

length of the audio is 8 s. Within the example, Music occurs from 0.2 to 4.3 s and

Speech occurs from 3.6 to 6.0 s. Note that each row in Table 4.6 corresponds to

one time step, which is equal to 0.307 s. In addition, the regression values are

normalized from 0 to 1. For example, if music starts at 0.2 s, the value is divided

by 0.307 to get 0.65 as shown in the first row of Table 4.6.

4.3.5 Other Details

We trained the network with the Adam optimiser, a learning rate of 0.001, a

batch size of 32, and early stopping (Yao et al., 2007). In some cases, we used

L2 normalization, spatial dropout, and SpecAugment (Park et al., 2019). We

used log-mel spectrograms as features for the neural network. The parameters of

spectrograms were unique for each dataset. Section 4.5 contains the details for

each case.

To evaluate the systems, we adopted the sed_eval toolbox (Mesaros et al.,

2016), which is common in the literature for audio segmentation and sound event

detection. The python toolbox is openly available (https://tut-arg.github.io/

sed_eval/, accessed on 17 March 2022) and presents a convenient interface to

calculate metrics such as overall F-measure, error rate, class-based F-measures, and

98

https://tut-arg.github.io/sed_eval/
https://tut-arg.github.io/sed_eval/

Table 4.6: An example of labels for the YOHO algorithm. Music occurs from 0.2
to 4.3 s and Speech occurs from 3.6 to 6.0 s. Note that start and stop values are
considered only when the respective audio class is present. The dimensions of the
output are 26 × 6. Note that each time step/row in the table corresponds to 0.307 s.
The start and stop values are normalised on the range of 0 to 1. For instance, in
the first time step, music’s start point would be rescaled from 0.2 to 0.65.

Speech
(Yes / No)

Speech
start

Speech
stop

Music
(Yes / No)

Music
start

Music
stop

0 - - 1 0.65 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
1 0.7 1.0 1 0.0 1.0
1 0.0 1.0 1 0.0 1.0
1 0.0 1.0 1 0.0 0.975
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 0.5 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -

so on. The specifications of segment-based metrics for experiments are mentioned

along with the relevant results in Section 4.6.

4.3.6 Post-Processing

For music-speech detection, the output of the CRNN would be 801 × 2, corre-

sponding to 801 times steps and two acoustic classes. On the other hand, the

output for the YOHO network is 26 × 6. A post-processing step parses the output

99

of the neural network to create human-readable labels. Subsequently, smoothing

is performed over the output to eliminate the occurrence of spurious audio events.

Two smoothing approaches are common in the literature — median filtering (Gi-

meno et al., 2020) and threshold-dependent smoothing (Lemaire & Holzapfel,

2019). We adopted the latter approach. In this technique, if the duration of the

audio event is too short or if the silence between consecutive events of the same

acoustic class is too short, we remove the occurrence.

For music-speech detection, the minimum silence between consecutive music

events or consecutive speech events was set to 0.8 s. The minimum duration for a

music event was set to 3.4 s and for a speech event was 0.8 s. For environmental

sound event detection, if the silence between consecutive audio events of the same

acoustic class was less than 1.0 s, it was smoothed. We did not set any threshold

for the minimum duration of an audio event for this task.

4.4 Models for Comparison

In this sub-section, we present two additional models, which are slight deviations

from the YOHO architecture — CNN and CRNN. The motivation behind these

models is to investigate which aspects of YOHO are actually advantageous. The

feature-extraction for all these models is the same, which makes them directly

comparable. The CNN model aims to create a segmentation-by-classification

version of the YOHO architecture. As you can see in Table 4.5, some Conv2D-dw

layers adopt a stride of [2, 2]. These strides were set to [1, 1] instead of [2, 2] and

max-pooling was adopted to reduce the frequency dimension by half. This way,

the time resolution of the network does not reduce through its depth. Note that

using a stride of [1, 2] would have produced a similar effect of maintaining the

time resolution and reducing the frequency resolution. However, TensorFlow

currently does not support rectangular strides for depthwise convolutions and

hence, we adopted max-pooling. The number of parameters in the CNN was 3.9

100

million, which is the same as the network for YOHO.

In the CRNN model, the first 13 layers were identical to the YOHO network.

We skipped the convolutional layers where the number of filters became larger

than 256 because the network became too large to fit into the RAM. Following the

convolutional layers, we had two B-GRU layers with 80 units each. The number of

parameters for the CRNN was 1.3 million, which is less than the YOHO network.

Increasing the number of convolutional layers only worsened the performance of

the CRNN. Therefore, it was optimal to have a CRNN with fewer parameters.

The output shape for the CNN and CRNN was 801 × 2, performing binary

classification for music and speech at each time step. We compared the perfor-

mance of YOHO with these two additional models on the in-house test set for

music-speech detection. We also compared the inference times of these models. A

summary of the architectures for comparison can be found in Table 4.7.

Table 4.7: Models for comparison on the in-house test set for music-speech detec-
tion.

Model Remarks

YOHO The architecture is explained in Section 4.3.2.

CNN [2, 2] strides in convolutions are replaced by
[1, 1] strides, followed by max-pooling of [1, 2] to

maintain the time resolution.

CRNN Only Conv2D and Conv2D-dw layers until
256 filters are included from Table 4.5. After this,
two B-GRU layers with 80 units each are added.

4.5 Datasets

We evaluate the robustness of the YOHO algorithm on multiple datasets. This

section explains the different datasets and how we adapt the YOHO algorithm for

each of them.

101

4.5.1 Music-Speech Detection

Music-speech detection aims to detect the boundaries of music and speech in

audio signals such as radio and TV programs. The neural network performs

multi-output detection to allow the simultaneous occurrence of music and speech.

The number of output neurons at each time step is six because we are detecting

two acoustic classes. The dataset comprised 18 h of audio from BBC Radio Devon

and 5 h from the MuSpeak dataset (MuSpeak Team, 2015). As done in chapter 3,

both datasets were roughly split into 50% for training, 30% for validation, and 20%

for testing. We artificially synthesised training data using the method explained in

section 3.1. We included 46 h of synthetic examples in the training set. Table 4.8

shows a brief overview of the contents of each split in the dataset.

Table 4.8: Contents of train, validation, and test datasets for music-speech detection.
Real-world radio data was collected from BBC Radio Devon. MuSpeak (MuSpeak
Team, 2015) is an openly available dataset containing annotations for music and
speech. 46 h of artificial radio-like examples were synthesised by the method
presented in section 3.2.

Dataset
Division

Contents

Train 46 h of synthetic radio data + 9 h from BBC
Radio Devon + 1 h 30 min from MuSpeak

Validation 5 h from BBC Radio Devon + 2 h from MuSpeak

Test 4 h from BBC Radio Devon + 1 h 42 min
from MuSpeak

All the audio files were resampled to 16 kHz. They were converted to mono

by averaging the channels before pre-processing. Subsequently, we extracted 64

log-mel bins with a hop size of 10 ms and a window size of 25 ms. The frequencies

for the mel spectrogram ranged from 125 Hz to 7.5 kHz. Note that the audio

features used in the section are different from earlier experiments in this thesis.

This was done to adopt audio features similar to those used by YamNet (Plakal &

Ellis, 2020), which uses MobileNet as the basic framework. Note that we did not

use any regularization such as L2 normalization, spatial dropout, or SpecAugment

for this dataset because the training set is large.

102

We evaluate the model on two different test sets. The first one being our

in-house test set, which contains approximately 4.5 h of audio from BBC Radio

Devon and MuSpeak (MuSpeak Team, 2015). The second one was the MIREX

music-speech detection dataset, which contains 27 h of audio from various TV

programs.

4.5.2 TUT Sound Event Detection

The TUT Sound Event Detection dataset focuses on environmental sound detec-

tion (Mesaros et al., 2017). It was adopted for the third task of the DCASE challenge

2017. It primarily consists of street recordings with traffic and other activity. Each

audio example is 2.56 s. There were six unique audio classes — Brakes Squeaking,

Car, Children, Large Vehicle, People Speaking, and People Walking. Thus, to

predict the existence of the six classes, plus start and end times, we required 18

output neurons. The more recent DCASE challenges use additional techniques

such as semi-supervised learning and source separation, which is not the focus

of this study. Hence, we used the dataset from 2017 that contains only strongly

labelled data.

The total size of the dataset is approximately 1.5 h. The dataset comes with a

four-fold cross-validation setup. The size of this dataset is significantly smaller

than the one used for music-speech detection and may not be large enough for our

deep learning architecture. Therefore, we applied L2 normalization of 0.001 on the

first Conv2D layer. In addition, we included L2 normalization of 0.01 and spatial

dropout of 0.1 on all the subsequent Conv2D layers. For data augmentation, we

incorporated SpecAugment (Park et al., 2019), which randomly drops a sequence of

frequency bins or time steps from the input. Note that there were slight differences

in our implementation of SpecAugment. We did not use any time warping because

it becomes complicated to redefine labels for audio events. In addition, we applied

SpecAugment on batches instead of individual examples to save computational

103

time.

The database contained stereo audio files with a sampling rate of 44.1 kHz.

These were downmixed to mono before pre-processing. Subsequently, we ex-

tracted 40 log-mel bands in the range of 0 to 22,050 Hz. The hop size was 10 ms

and the window size was 40 ms. We adopted audio features similar to the baseline

system (Mesaros et al., 2017) for the task, except that we used a smaller hop size.

As the input of the network contains 2.56 s of audio, the input shape is 257 × 40

corresponding to 257 times steps and 40 mel bins. The output shape of the network

is 9 × 18, corresponding to 9 times steps and 6 acoustic classes. Note that each

time step, in this case, is 0.284 s, which is different from 0.307 s for music-speech

detection. In both cases, we used the same network and the same sequence of

convolutional layers. The convolutions with a stride of 2 reduce the temporal

dimension by half. Hence, due to different input sizes, the number of time steps is

9 in one case and 26 in the other case. There were no special measures taken to

estimate the duration of each time step beforehand. However, in most cases, it was

somewhere around 0.3 s, due to the hop and window sizes selected for feature

extraction.

4.5.3 Urban-SED

The Urban Sound Event Detection dataset is a purely synthetic dataset generated

by using scaper (Salamon et al., 2017). Each audio example was 10 s. There were

ten unique audio classes — Air Conditioner, Car Horn, Children Playing, Dog

Bark, Drilling, Engine Idling, Gun Shot, Jackhammer, Siren, and Street Music. The

total size of the dataset is about 30 h and contains pre-defined splits for training,

validation, and testing. As there were ten audio classes, the number of output

neurons in YOHO was 30.

We used the same audio features as explained in Section 4.5.2. For this dataset,

we did not use any SpecAugment because the training set was larger. The L2

104

normalization and spatial dropout were identical to those used in Section 4.5.2.

As the input of the network contains 10 s of audio, the input shape is 1001 ×

40 corresponding to 1001 times steps and 40 mel bins. The output shape of the

network is 32 × 30, corresponding to 32 times steps and ten acoustic classes.

4.6 Results

4.6.1 Music-Speech Detection

In-House Test Set

Table 4.9 shows the results on our in-house test set. F-measure was calculated

using the sed_eval (Mesaros et al., 2016) module with a segment size of 10 ms.

We compare the results of YOHO with the CNN and CRNN models explained

in Section 4.4. In addition, we compare the performance with CNN and CRNN

architectures published in previous research (Venkatesh et al., 2021a,b). All the

deep learning models were trained using the same training set. YOHO obtains

the highest F-measure for overall, music, and speech. YOHO significantly outper-

forms the CNN, which is the segmentation-by-classification version of the model.

It is important to note that both models follow the same process for feature extrac-

tion and have the same number of parameters. This shows that our regression

approach of predicting the acoustic boundaries directly is effective. The other

CNN (Venkatesh et al., 2021b) used larger kernel sizes such as 9 and 11, which

may have improved the F-measure of Speech.

YOHO also outperforms the three CRNN architectures. CRNN (Venkatesh

et al., 2021a) used a kernel size of 7 and CRNN (Venkatesh et al., 2021b) used kernel

sizes of 3, 11, and 11. In addition, CRNN (Venkatesh et al., 2021b) used layer nor-

malisation (Ba et al., 2016) instead of batch normalisation (Ioffe & Szegedy, 2015).

Therefore, we show that YOHO outperforms a variety of CRNN architectures in

105

the literature.

Table 4.9: Results on our in-house test set for music-speech detection. The F-
measures for overall, music, and speech are presented as percentages. The values
in bold indicate the largest number in each column.

Algorithm Foverall Fmusic Fspeech

YOHO 97.22 98.20 94.89
CRNN 96.79 97.84 94.26
CNN 93.89 97.96 85.13

CRNN (Venkatesh et al., 2021b) 96.37 97.37 94.00
CRNN (Venkatesh et al., 2021a) 96.24 97.30 93.80
CNN (Venkatesh et al., 2021b) 95.23 97.72 89.62

MIREX Music-Speech Detection

Table 4.10 shows the results on the MIREX music-speech detection dataset. YOHO

obtains the highest overall F-measure, which makes it state-of-the-art for music-

speech detection. The music F-measure for a CRNN (Venkatesh et al., 2021a)

slightly surpassed the YOHO algorithm by 0.1%. However, YOHO obtained the

highest F-measure for speech.

Table 4.10: Evaluation on the MIREX music-speech detection dataset 2018. The
results of other studies were obtained from the MIREX website (Schlüter et al.,
2018). The F-measures are presented as percentages. The values in bold indicate
the largest number in each column.

Algorithm Foverall Fmusic Fspeech

YOHO 90.20 85.66 93.18
CRNN (Venkatesh et al., 2021a) 89.53 85.76 92.21
CRNN (Venkatesh et al., 2021b) 89.09 85.01 92.16

CNN (Marolt, 2018) - 54.78 90.9
Logistic Regression (Marolt, 2018) - 38.99 91.15

ResNet (Marolt, 2018) - 31.24 90.86
MLP (Choi et al., 2018) - 49.36 77.18

4.6.2 TUT Sound Event Detection

Table 4.11 shows the results on the TUT sound event detection dataset. It also

contains the results of the top three performers in the competition. For this com-

petition, they adopted error rate (Mesaros et al., 2016) as the main metric. Note

106

that a lower error rate indicates better performance of the algorithm. Further-

more, a segment size of 1 s was adopted to calculate segment-based metrics. The

first place in the competition was the CRNN architecture (Adavanne & Virtanen,

2017). They used 3 × 3 kernels followed by B-GRU layers with 32 units. Their

model was optimised by a random hyper-parameter search (Bergstra & Bengio,

2012) for the number of layers and units. The second place in the competition

adopted a multi-input CNN with 3 × 3 kernels and a bespoke feature extraction

process. The third place adopted a B-GRU model. Note that all three models

adopt segmentation-by-classification. YOHO obtained a better error rate than the

CRNN (Adavanne & Virtanen, 2017), CNN (Jeong et al., 2017), and B-GRU (Lu

& Duan, 2017) models. To ensure that the improvement in performance was not

attributed to data augmentation, we re-trained the best CRNN network (Adavanne

& Virtanen, 2017) with SpecAugment. However, it worsened the performance of

the algorithm. This may be because the CRNN uses segmentation-by-classification.

Therefore, masking series of time steps leads to noise in the labels. However, the

YOHO algorithm is relatively robust to this issue as it directly predicts boundaries

through regression.

Our results are not state-of-the-art on this dataset. Vesperini et al. (2019)

adopted a Capsule Neural Network (CapsNet) and binaural short-time Fourier

transform (STFT) for feature extraction and obtained an error rate of 0.58. Luo et al.

(2021) presented a Capsule Neural Network Recurrent Neural Network (CapsNet-

RNN) that obtained an error rate of 0.57. However, these optimisations were

beyond the scope of this study. It is important to note that YOHO is a paradigm

and not an architecture. We show that regression outperforms segmentation-by-

classification for multiple models. Future research can explore how YOHO can be

optimised by adopting a CapsNet-style architecture.

107

Table 4.11: Results on the TUT sound event detection dataset. The value in bold
indicates the algorithm with the lowest error rate.

Algorithm Error Rate

CapsNet-RNN (Luo et al., 2021) 0.57
CapsNet (Vesperini et al., 2019) 0.59

YOHO 0.75
CRNN (Adavanne & Virtanen, 2017) 0.79

CNN (Jeong et al., 2017) 0.81
B-GRU (Lu & Duan, 2017) 0.83

4.6.3 Urban-SED

Table 4.12 shows the results on the Urban-SED dataset for overall F-measure. A

comparison of class-wise performance is also presented in Figure 4.4. The YOHO

algorithm is compared with the CRNN and CNN model presented by Salamon

et al. (2017). YOHO obtains the highest overall F-measure. Among class-wise

F-measures, YOHO obtains the highest for Children Playing, Dog Bark, Drilling,

Gun Shot, Siren, and Street Music. CRNN obtains the highest for Air Conditioner

and Engine Idling. CNN obtains the highest for Car Horn and Jackhammer.

Table 4.12: Segment-based overall F-measure on the Urban-SED dataset. The value
in bold indicates the algorithm with the highest F-measure.

Algorithm Foverall

CRNN with envelope estimation (Martín-Morató et al., 2019) 64.70
YOHO 59.50

CNN (Salamon et al., 2017) 56.88
CRNN (Salamon et al., 2017) 55.96

As you can see in Table 4.12, Martín-Morató et al. (2019) adopted sound event

envelope estimation on a CRNN model to improve the overall F-measure to 64.7%,

compared to 59.5% obtained by YOHO. In future research, YOHO’s performance

can be improved by incorporating techniques like envelope estimation. In addition,

weakly supervised sound event detection with envelope estimation has further

improved the performance of the CRNN on this dataset (Dinkel et al., 2021).

108

4.6.4 Speed of Prediction

In this section, we compare the inference times of YOHO, CNN and CRNN models

for music-speech detection. This experiment was performed on the in-house test

set explained in Section 4.5.1. To calculate the inference time, the prediction was

made over the entire test set. Later, the inference time was divided by the number

of hours of audio to obtain the average time taken per hour of audio. As we are

adopting Google Colab for experiments, we ensured that all models were tested

within the same runtime session. This way, we ensure that the same computing

resources were given to YOHO, CNN, and CRNN. While training the models

in earlier runtime sessions, we stored their weights on Google Drive. When

running the experiment to calculate inference times, these weights were loaded

from Google Drive. Note that separate runtime sessions were used to calculate

inference times over CPU and GPU as shown in Figure 4.5, however, the same

session was used for inter-model comparison. Some important aspects of the

system configuration were — Intel Xeon CPU processor, 12 GB RAM, and Tesla

P100 GPU (only when GPU was used).

air
_co

nd
itio

ne
r

car
_ho

rn

chi
ldr

en
_pl

ay
ing

do
g_b

ark
dri

llin
g

en
gin

e_i
dlin

g

gu
n_s

ho
t

jac
kh

am
mer

sir
en

str
ee

t_m
usi

c

OVER
ALL

0

10

20

30

40

50

60

70

80

90

F-
m

ea
su

re
 (%

)

CRNN CNN YOHO

Figure 4.4: Segment-based F-measures for each class on the Urban-SED dataset
calculated using segment-size of 1 s.

Figure 4.5 compares the inference times of YOHO, CNN and CRNN models

109

for music-speech detection on the in-house test set. The CNN and CRNN models

were explained in Section 4.4. YOHO and the CNN had exactly the same number

of parameters, which is 3.9 million. The only difference is that the CNN adopts

frame-based classification instead of regression. The CRNN model had 1.3 million

parameters, which was less than the CNN and YOHO. On the CPU, the prediction

time of YOHO was 14 times faster than the CNN and 5 times faster than the

CRNN. On the Graphical Processing Unit (GPU), the prediction time of YOHO

was 6 times faster than the CNN and 4 times faster than the CRNN. The increase

in prediction speed is because YOHO has to predict only 26 × 6 neurons, whereas

the CNN and CRNN have to predict 801 × 2 neurons. Despite the CRNN having

fewer parameters, YOHO is significantly faster.

As YOHO outputs acoustic boundaries directly, the post-processing and

smoothing for YOHO was 7 times faster than the CNN and CRNN. Note that the

smoothing is performed only on the CPU.

YOHO CNN CRNN
0

1

2

3

4

5

6

Ti
m

e
(s

)

Inference on GPU

YOHO CNN CRNN
0

50

100

150

200

250

Inference on CPU
Prediction
Smoothing

Figure 4.5: Average time taken to make predictions on 1 h of audio for music-
speech detection. ‘Prediction’ refers to the time taken by the network to make
predictions. ‘Smoothing’ is the post-processing step to parse the output of the
network. The GPU used for inference was the Tesla P100.

4.7 Discussion

The results in Section 4.6 show that YOHO has multiple advantages over the state-

of-the-art CRNN architecture. We examined the model for two different tasks —

110

music-speech detection and environmental sound event detection. Music-speech

detection is relatively a simpler task because of a larger and diverse training set.

Additionally, there are only two acoustic classes to predict. On the other hand,

environmental sound event detection was harder because of smaller and lower

quality training sets. In addition, the number of acoustic classes was greater. How-

ever, in both scenarios, YOHO generalised better than CRNN and CNN. YOHO

obtained state-of-the-art performance for music-speech detection on the MIREX

2018 competition dataset. We understand that YOHO has not obtained state-of-

the-art performance on TUT Sound Events and Urban-SED datasets. However, it

is important to note that the purpose of this study is to shift the paradigm from

frame-based classification to regression for audio segmentation and sound event

detection. There is a vast body of research involving CNN and CRNN architectures.

It is not within the capacity of this study to incorporate all these optimisations

for YOHO. As this is the first study that explores this paradigm, we believe that

optimisations such as weak label learning (Miyazaki et al., 2020b) and envelope

estimation (Martín-Morató et al., 2019) will improve YOHO’s performance.

We also explored the idea of creating a regression-based CRNN that adopts the

YOHO paradigm. We replaced the Conv1D layer with a B-GRU block. However,

this slightly worsened the performance of the algorithm. This is because the YOHO

network has many convolutional layers that reduce the temporal resolution from

801 to 26. Hence, the B-GRU blocks may not be effective on such a small number

of time steps. However, alternative structures such as CNN-transformers (Kong

et al., 2020b) may be a promising avenue to explore.

YOHO was significantly quicker than the CNN and CRNN models because it

had to predict fewer outputs and computationally cheaper post-processing. As

explained earlier, the output produced by YOHO is more end-to-end. For example,

the output dimensions in music-speech detection are 26 × 6 for YOHO versus 801

× 2 for the CRNN. This corresponds to 156 output neurons for YOHO and 1602 for

the CRNN. Furthermore, the CRNN needs to convert frame-based classifications

111

to time boundaries. However, YOHO directly outputs the time boundaries. Due

to the above reasons, YOHO is significantly quicker. Due to faster inference,

YOHO is more suitable for real-time applications such as surveillance, self-driving

automobiles, bioacoustic monitoring, and real-time remixing.

4.8 Publications, Code, and Contributions

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2022b). You only hear once: a

YOLO-like algorithm for audio segmentation and sound event detection.

Applied Sciences, 12(7), 3293. doi: 10.3390/app12073293.

– In this journal paper, we presented the You Only Hear Once (YOHO)

algorithm. The code associated with this study is open available at this

GitHub repository (https://github.com/satvik-venkatesh/you-only-hear-

once/). Shortly after we put out a pre-print on ArXiv, Tiwari et al. (2021)

evaluated the YOHO algorithm on the VOICe dataset (Gharib et al., 2019),

which contains audio files with noise at different sound-to-noise ratios. The

study found that YOHO outperformed or at least matched the best perform-

ing CRNN architecture in multiple scenarios. As YOHO shifts the paradigm

from a classification problem to a regression problem, it would be interesting

to see how it performs in other audio tasks.

112

https://doi.org/10.3390/app12073293
https://github.com/satvik-venkatesh/you-only-hear-once/
https://github.com/satvik-venkatesh/you-only-hear-once/

Chapter 5

Towards Domain Generalisation

Over the years, supervised learning algorithms have achieved remarkable success

in multiple disciplines. However, it is often assumed that the training and tests

come from the same data distributions. A domain distribution gap (Quinonero-

Candela et al., 2008) between the training and test set makes it more challenging

for the model to do well on unseen domains. In this chapter, we investigate do-

main generalisation to improve the robustness of audio segmentation algorithms.

During my time as a PhD student, I pursued a five-month research internship at

Mitsubishi Electric Research Laboratories (MERL). At MERL, we explored domain

generalisation for anomalous sound detection. We developed some methods for

domain generalisation, which can be applied to information retrieval in radio

programmes. For instance, across different broadcasters, there is variation in audio

quality, dynamic range compression, loudness difference between speech and back-

ground music, and so on. Therefore, in this chapter, we primarily investigate two

methods for domain generalisation — transfer learning and domain-adversarial

training.

113

5.1 Introduction

In chapter 3, we presented a method to artificially synthesise training examples

that resemble radio broadcast. For the experiment in chapter 3, section 3.3, we

adopted only synthetic examples for training and collected real-world data from

BBC Radio Devon and MuSpeak (MuSpeak Team, 2015) for validation and testing.

Note that in this case, the training set belongs to a different data distribution

compared to the validation and test sets. In other words, there is a domain shift

from synthetic data to real-world data. Another related example in Computer

Vision is a domain shift from cartoons to real images. For example, if an animal-

classifier only learns from drawings of lions, it may be unable to identify a real

lion. Nevertheless, our music-speech detection algorithm obtained an overall F-

measure of greater than 96% on our in-house test set by training only on synthetic

data. This indicates that the data repository that we used for training set synthesis

was diverse and comprised a variety of domains. For instance, under music, we

included instrumental music, music with singing voice, a capella, different solo

instruments, etc. This made the algorithm robust to domain shifts.

As mentioned earlier, there are broadly two ways to approach a machine

learning problem — (1) data-centric and (2) model-centric. The above paragraph

explained our data-centric approach by including various datasets in our data

repository. However, the list of all possible domains is infinite. In section 3.6, we

included an additional 9 h of real-world radio data from BBC Radio Devon to

train the machine learning model. This improved the overall F-measure of the

system by 0.5%, but it was a time-consuming process due to the time taken for

annotating data. Incorporating more data from a different radio station may show

further improvement in performance, but this makes the process more expensive.

Therefore, researchers have also explored model-centric approaches that aim to

address the limitations of the training set.

114

5.2 Methods to Address Domain Shifts

• Multi-task learning aims at optimising the same machine learning model

for more than one task. As the same model is simultaneously optimising

the loss for different sub-problems, it creates a shared representation of do-

mains in the training set, which effectively improves domain generalisation.

Bhattacharjee et al. (2022) developed a study on music-speech detection that

adopts multi-task learning. It trains the music-speech detection model on

auxiliary tasks such as harmonic-percussive source separation features to

improve its generalisation.

• Domain adaptation refers to the scenario where there is a source domain

and target domain. The source domain comprises the training set that is gen-

erally fully labelled. Subsequently, the model is tested on the target domain,

which belongs to a different distribution. The literature has investigated

numerous ways to perform domain adaptation. A couple of approaches

include learning a mapping from the source domain to the target domain

(Saenko et al., 2010; Kulis et al., 2011) or creating a shared latent space that

is domain-invariant (Long et al., 2013; Baktashmotlagh et al., 2013). Many

studies have explored the scenario where unlabelled data from the target

domain is available (Ganin et al., 2016). This is referred to as unsupervised

domain adaptation. The model is optimised to learn a domain-invariant

representation using these unlabelled examples. Some studies have also

approached domain adaptation as a few-shot learning problem, where there

are only few labelled examples from the target domain (Motiian et al., 2017b).

Note that few-shot domain adaptation is also commonly used in the context

of learning novel classes in new domains. For instance, the training set does

not contain certain acoustic classes, but needs to learn from few examples

(Wang et al., 2020).

• Transfer learning adopts a pre-trained model on the source domain and

115

fine-tunes it to a new but related task on the target domain. An explanation is

already detailed in section 2.7.5. This technique is also applicable for domain

adaptation, where there is limited availability of target domain data. As the

source domain enables the model to learn higher-level features, it improves

the model’s generalisation.

• Meta-learning is popularly referred to as learning-to-learn. It explores how

systems can learn from experiences by performing suitable tasks (Vilalta

& Drissi, 2002). Li et al. (2018) proposed a meta-learning framework that

simulated train/test domain shift during training by synthesising virtual

testing domains within each mini-batch. This made the model robust to

domain shifts and thus, improving domain generalisation. Meta-learning

has also been investigated in the audio field for sound event detection (Shi

et al., 2020), source separation (Samuel et al., 2020) and anomaly detection

(Wichern et al., 2021).

5.3 Domain-Adversarial Training

Ganin et al. (2016) proposed the idea of using a Gradient Reversal Layer (GRL) to

perform domain-adversarial training of neural networks. The GRL negates the

gradient by multiplying it with a negative number −λ, where λ is the domain

adaptation parameter. The first few layers of such a network comprise the feature

extractor. Subsequently, the network splits into two branches — a forward branch

and the reverse branch, as shown in Figure 5.1. The forward branch is a normal

label classifier, but the reverse branch is a domain classifier. The feature extractor is

connected to the reverse branch through a GRL. This process of domain-adversarial

training fools the network into developing a domain-invariant feature extractor.

Note that domain-adversarial training can be used in two scenarios — un-

supervised domain adaptation and semi-supervised domain adaptation. In the

former case, there are no labels for examples in the target domain. Therefore, the

116

label classifier is trained only on source domain examples and the domain classifier

is trained on both source and target domain examples. In the semi-supervised

scenario, some target domain examples are labelled and the other examples are

unlabelled. Domain-adversarial approaches can be also used in this case, where

the network is trained on all the known examples.

While the majority of the research into domain adversarial neural networks

has been performed on images (Ganin et al., 2016; Matsuura & Harada, 2020; Sicilia

et al., 2021), some studies have also explored it for sound event detection (Yang

et al., 2020; Cornell et al., 2020) and sound localisation (He et al., 2019). For sound

event detection, researchers have used a combination of strong and weak labels

for adversarial training (Yang et al., 2020; Cornell et al., 2020). Strong labels mean

that the audio file contains information about the audio class and its temporal

information (onset and offset times). Weak labels contain information only on

the audio class. For example, the training set may contain synthetic data that is

strongly labelled and real-world data that is weakly labelled.

In this chapter, we investigate if domain-adversarial training is advantageous

in a fully supervised learning setting. This scenario occurs in many studies where

a combination of real-world and artificial examples is used for training. While

studies have addressed the case where real-world data is weakly-labelled, less

attention has been given to the case where the real-world data is also strongly

labelled. In section 3.6, we showed that training the neural network on real-world

and artificial radio examples obtained the best performance. However, no domain-

information was exploited while training. Therefore, in this chapter, we train the

neural network with domain-adversarial information to explore its advantages.

In addition to domain-adversarial training, we also investigate if transfer

learning helps in domain generalisation. In section 4.3, our You Only Hear Once

(YOHO) algorithm had adapted the MobileNet architecture. Another pre-trained

model that adopts the MobileNet architecture is YamNet (Plakal & Ellis, 2020).

YamNet is trained on AudioSet (Hershey et al., 2017; Gemmeke et al., 2017), which

117

has over 632 audio classes such as music, speech, vehicle, splinter, toothbrush, and

so on. Hence, in this chapter, we initialise the YOHO model with YamNet weights

and explore fine-tuning strategies to improve domain generalisation.

5.4 Experimental Setup

5.4.1 Domain Adversarial Neural Network

Feature Extractor

Music-Speech
Detector

Domain Classifier

GRL

Real / synthetic

Output labels for music-
speech detection

Figure 5.1: The domain adversarial neural network used for music-speech detec-
tion. GRL stands for the Gradient Reversal Layer. The music-speech detector and
domain classifier are optimised during training. During inference, only the output
of the music-speech detector is considered.

Figure 5.1 shows how we adapt our neural network architecture for domain-

adversarial training. The structures of the feature extractor, music-speech detector,

and domain classifier are clearly shown in table 5.1. We had adapted the MobileNet

architecture to realise the YOHO algorithm in section 4.3. Table 5.1 adopts an

identical structure for the feature extractor and the music-speech detector. The

feature extractor is connected to the domain classifier through a GRL. The domain

classifier has a series of convolutional layers followed by global average pooling.

The output of the domain classifier uses a sigmoidal activation to detect whether

the domain is real or synthetic.

118

Table 5.1: The neural network architecture for domain-adversarial training. The
architecture has three parts — (1) Feature extractor (2) Music-Speech detector and
(3) Domain classifier. The feature extractor and the music-speech detector are the
same as the YOHO architecture explained in section 4.3.2. The domain classifier
performs a binary classification with a sigmoid activation.

Branch Layer type Filters Shape / Stride Output shape

Feature Extractor

Reshape - - 801 x 64 x 1
Conv2D 32 3 x 3 / 2 401 x 32 x 1

Conv2D-dw - 3 x 3 401 x 32 x 1
Conv2D 64 1 x 1 401 x 32 x 1

...
...

...
...

Conv2D-dw - 3 x 3 26 x 2 x 1024
Conv2D 1024 1 x 1 26 x 2 x 1024

Music-Speech
Detector

Conv2D-dw - 3 x 3 26 x 2 x 1024
Conv2D 512 1 x 1 26 x 2 x 512

Conv2D-dw - 3 x 3 26 x 2 x 512
Conv2D 256 1 x 1 26 x 2 x 256

Conv2D-dw - 3 x 3 26 x 2 x 256
Conv2D 128 1 x 1 26 x 2 x 128
Reshape - 26 x 256
Conv1D 6 1 26 x 6

Domain
Classifier

GRL - - -
Conv2D-dw - 3 x 3 26 x 2 x 1024

Conv2D 512 1 x 1 26 x 2 x 512
Conv2D-dw - 3 x 3 26 x 2 x 512

Conv2D 256 1 x 1 26 x 2 x 256
Conv2D-dw - 3 x 3 26 x 2 x 256

Conv2D 128 1 x 1 26 x 2 x 128
GlobalAvgPool2D - - 128

Dense 1 1 1

5.4.2 Audio Features and Training Strategy

As we are exploring transfer learning using YamNet, we need to use the same con-

figuration for computing mel spectrograms. This was already done in section 4.5.1

— audio was resampled to 16 kHz, 64 log-mel bins between 125 Hz to 7.5 kHz with

a hop size of 10 ms and a window size of 25 ms.

As mentioned earlier, all layers in the feature extractor are also present in

YamNet. Hence, we initialise the feature extractor’s weights to those of YamNet.

The music-speech detector and domain classifier are randomly initialised from

119

a uniform distribution (Glorot & Bengio, 2010). We used the Adam optimiser to

train the neural network. In the first phase of training the network, we freeze the

weights of the feature extractor and only train the music-speech detector and the

domain classifier with a learning rate of 10−3. After this phase of training, we

perform fine-tuning. Here, we unfreeze the weights of the entire neural network

and train it with a learning rate of 10−4. During the first phase of training, the

domain adaptation parameter λ was set to 0 to independently train the music-

speech detector and the label classifier without adversarial training. During the

second phase of training, which is fine-tuning, λ was set to 0.31. Both phases of

training were performed with early stopping and a patience of 15.

5.4.3 Datasets

The validation and test sets adopted for this experiment were similar to the setup

in section 4.5.1. There was an in-house test set, which contains data from BBC

Radio Devon and MuSpeak (MuSpeak Team, 2015). There was a second test set,

which is the MIREX music-speech detection dataset, containing 27 h of audio from

various TV programs. Note that the in-house test set is a seen domain because

the training set also contains other data from BBC Radio Devon and MuSpeak.

However, the second test set would provide us with valuable insights into how the

model generalises to unseen domains because the network has never encountered

this data distribution.

120

5.5 Results

5.5.1 In-house Test Set

Table 5.2 shows the results on the in-house test set. The table compares three

models — YOHO, YOHO pre-trained with YamNet weights, and YOHO combined

with adversarial training and with pre-trained weights. The results show that

transfer learning and domain-adversarial training do not significantly improve the

performance of the algorithm. YOHO with pre-trained weights obtained a slightly

lower overall F-measure of 97.19%, compared to 97.22%. However, there is a

slight improvement in speech F-measure from 94.89% to 95.10%. YOHO with pre-

trained weights and adversarial training obtained the highest overall F-measure

of 97.27%. However, such a slight improvement does convey any real benefit of

domain-adversarial training. A potential reason for such a marginal improvement

is that the test set is a seen domain. The training set contains examples from BBC

Radio Devon and MuSpeak. Hence, the below sub-section evaluates the model on

an unseen domain.

Table 5.2: Results on our in-house test set for music-speech detection. It compares
performances of YOHO, YOHO pre-trained with YamNet weights, and YOHO
combined with adversarial training and with pre-trained weights. The F-measures
for overall, music, and speech are presented as percentages. The values in bold
indicate the largest number in each column.

Algorithm Foverall Fmusic Fspeech

Pre-train with YamNet + Domain-adversarial training 97.27 98.07 95.35
Pre-train with YamNet 97.19 98.06 95.10

YOHO 97.22 98.20 94.89

5.5.2 MIREX Music-Speech Detection

Table 5.3 presents the results of three models on the MIREX music-speech de-

tection competition dataset 2018. In this case, the differences in performance

121

are more noticeable. YOHO pre-trained with YamNet weights surpasses the

YOHO model by more than 1% for the overall F-measure. Furthermore, includ-

ing domain-adversarial training obtains an overall F-measure of 92.05%, which

is an improvement of almost 2%. Considering class-wise metrics, the music F-

measure improves from 85.66% to 88.77%. Furthermore, the speech F-measure

improves from 93.18% to 94.13%. Therefore, we obtain the state-of-the-art per-

formance on the MIREX competition dataset by combining transfer learning and

domain-adversarial training. This demonstrates that both these techniques assist

in generalising to unseen domains.

Table 5.3: Evaluation on the MIREX music-speech detection dataset 2018. It
compares performances of YOHO, YOHO pre-trained with YamNet weights, and
YOHO combined with adversarial training and with pre-trained weights. The
F-measures for overall, music, and speech are presented as percentages. The
values in bold indicate the largest number in each column.

Algorithm Foverall Fmusic Fspeech

Pre-train with YamNet + Domain-adversarial training 92.05 88.77 94.13
Pre-train with YamNet 91.34 87.48 93.18

YOHO 90.20 85.66 93.18

5.6 Discussion

In this chapter, we investigated two methods for domain generalisation — transfer

learning and domain-adversarial training. We observed that both methods did not

show improvement in the in-house test set because of similar data distributions in

the training and test sets. However, we observed a 2% improvement in the overall

F-measure on the MIREX competition dataset, which belongs to a different data

distribution. Note that YamNet was originally trained for only audio classification.

Yet, we found advantages in using it for audio segmentation. These findings

contribute to answering the second research question — "How can we advance

state-of-the-art algorithms by investigating novel pattern recognition problems?".

We explored domain-adversarial training in a slightly different context com-

122

pared to most studies in the literature. We considered the case where synthetic and

real-world data are fully labelled for training. There are multiple studies in the lit-

erature that adopt a training set with a combination of strongly labelled real-world

data and synthetic data (Bhattacharjee et al., 2022; Lemaire & Holzapfel, 2019;

Venkatesh et al., 2021b). Hence, the models in such scenarios can be improved by

domain-adversarial training.

In addition to domain-adversarial training, I had also investigated other tech-

niques in the literature. For instance, Motiian et al. (2017a) presented a novel loss

function called Classification and Contrastive Semantic Alignment (CCSA), which

is a unified framework for domain adaptation and generalisation. CCSA exploits

the Siamese architecture (Koch et al., 2015) to learn an embedding subspace that

combines the advantages of semantic alignment and separation between domains.

In initial experiments, this technique was challenging to adapt for audio seg-

mentation because of the temporal context. To perform semantic alignment, we

need to find multiple examples with the same audio classes and transition points.

However, this may be more suitable for simple audio classification, which does

not require temporal context.

For future research, interesting techniques such as lifelong learning (Biesialska

et al., 2020) may be relevant for radio signals. As the target domain can be accessed

at each time step, it may improve the model’s generalisation over time. However,

we need to consider computational load if this model is being deployed for real-

time applications.

5.7 Publications and Contributions

• Venkatesh, S., Wichern, G., Subramanian, A., & Le Roux, J. (2022c). Dis-

entangled surrogate task learning for improved domain generalization in

unsupervised anomalous sound detection. Tech. rep., Detection and Classifi-

123

cation of Acoustic Scenes and Events (DCASE) Challenge

– This is the technical report for our submission to the Detection and Classifi-

cation of Acoustic Scenes and Events (DCASE) challenge Task 2. We ranked

5th amongst 33 teams that participated in the challenge. The title of the

task was ‘Unsupervised Anomalous Sound Detection for Machine Condition

Monitoring Applying Domain Generalisation Techniques’. We proposed

a novel multi-task learning framework that disentangles domain-shared

features and domain-specific features. Disentanglement leads to better latent

features and also increases flexibility in post-processing due to the avail-

ability of multiple embedding spaces. In addition to disentanglement, we

also investigated machine-specific domain generalisation methods. This

included adversarial training (Ganin et al., 2016), simple multi-task learning,

and additive angular margin loss (Deng et al., 2019).

124

Chapter 6

Intelligent Mixing

In this chapter, we address the third research question — "To what extent can deep

learning be used to improve intelligent mixing approaches?". The first part of this

chapter fulfils the requirements of RadioMe to perform real-time remixing of radio

programmes. This is achieved through mainly two features — (1) remix diary

reminders in the radio stream to help them remember daily tasks and (2) in case

they are undergoing an episode of agitation, play calming music to ease their

symptoms.

The second part of this chapter investigates how individuals can communi-

cate with intelligent mixing tools through spoken language or non-technical terms.

Therefore, we explore a novel idea of using word embeddings to represent seman-

tic descriptors. Using this technique, the machine learning model can also generate

EQ settings for semantic descriptors that it has not seen before. We compare the

parameters selected by humans with the predictions of the neural network to

evaluate the quality of predictions. The results showed that the embedding layer

enables the neural network to understand semantic descriptors. This study on

using word embeddings for automatic EQ mixing was published in the Journal of

the Audio Engineering Society.

125

6.1 Introduction to Intelligent Mixing

The process of audio mixing involves multiple tasks such as balancing sound levels

and applying audio effects. It is applicable to making albums, radio programmes,

TV shows, film-making, and many more tasks. Audio mixing can be performed in

real-time for live shows and radio programmes where levels are adjusted by the

DJ, or in a studio setting to create well-produced albums and films. A vast body

of research has been exploring how this process can be automated through the

use of intelligent tools (De Man et al., 2019; Moffat et al., 2018; Perez-Gonzalez &

Reiss, 2009). Traditional AI approaches such as expert systems have been adopted

to create autonomous mixing tools (De Man & Reiss, 2013). These systems are

knowledge-engineered and adopt a set of rules for mixing depending on the

scenario. However, recent research has grown towards using Machine Learning

and Deep Learning for automatic mixing. On one hand, some studies have focused

on specific areas, such as gain balancing (Perez-Gonzalez & Reiss, 2009; Moffat

& Sandler, 2019a) and reverberation (Chourdakis & Reiss, 2017). On the other

hand, some have explored building autonomous systems where the entire mixing

process is carried out without human intervention (Ramirez et al., 2021; Moffat &

Sandler, 2019b).

Researchers have developed tools to automate the role of a DJ. Thalmann et al.

(2018) adopted the Web Audio API to develop an in-browser-based automatic DJ.

It extracted structural representations such as harmonic similarity, tempo, and

loudness to create mixes of songs with appropriate transitions. Bittner et al. (2017)

emphasised the lack of time and expertise of users to curate thoughtful and well-

sequenced playlists. Hence, they presented a method by combining graph models

and optimisation to automatically sequence existing playlists and add DJ-style

cross-fade transitions. Studies have also explored remixing from the perspective

of audio enhancement, where gain levels of individual sources are re-adjusted

after source separation (Torcoli et al., 2021). However, we are not aware of a study

126

that has adopted audio segmentation to improve intelligent mixing. Instead, most

studies have used MIR tasks that analyse musical information such as tempo,

pitch, etc (Thalmann et al., 2018). Therefore, in this chapter, we explore if audio

segmentation can improve real-time remixing approaches.

6.2 RadioMe Audio Engine

There are two objectives behind the remixing — (1) play diary reminders to assist

individuals in remembering their daily tasks and (2) play music from their personal

playlist if they are undergoing an episode of agitation in order to calm them down.

This remixing needs to be integrated with the live stream of radio broadcasts like

BBC Radio Devon, Jazz FM, Kerrang! Radio, and so on. The focus of this thesis is to

only build the audio technology and not directly work with people with dementia.

The audio system is submitted to researchers at the Cambridge Institute for Music

Therapy Research, Anglia Ruskin University, UK, for them to conduct tests with

people. The purpose of this system is to demonstrate how intelligent remixing can

be performed with underlying audio segmentation in real-time. Therefore, this

technology is generic and can be applied to areas beyond people with dementia.

After a few meetings with broadcasters and understanding their thoughts,

we learned that it would be difficult to utilise metadata from broadcasters. Most of

them do not broadcast metadata along with the audio and even if they do, it may

not be in sync with the live radio programme. This is because, there are always

some minor deviations from the schedule, which makes it difficult to develop a

straightforward temporal mapping between the metadata and the audio stream.

Some researchers have also explored Object-based broadcasting (Armstrong et al.,

2014), where media is represented by a set of individual assets. These individual

assets are assembled at the user’s device to create an improved user-experience.

After discussions with broadcasters regarding using object-based media for the

RadioMe system, we realised that this is still a developing concept and still not

127

adopted widely in practice. Furthermore, object-based media would be specific to

radio stations, which would make it harder to develop a generic system applicable

to multiple radio streams.

6.2.1 Streaming Radio

The RadioMe audio engine streams live internet radio through FFmpeg1. It stores

data in chunks of 8 s, which was the duration of audio examples for experiments

in earlier chapters. As we are using FFmpeg, we only require the target URL of the

radio station to stream it. It can be any radio broadcaster. The audio engine also has

a music-speech detector running in real-time, which analyses these chunks of 8 s.

We have already demonstrated the speed and robustness of the YOHO algorithm

in section 4.6.4, which made it suitable for real-time music-speech detection. In

the main program, it took approximately 0.12 s to perform music-speech detection

on 8 s of audio.

6.2.2 Remix Diary Reminders

The diary system was developed by our collaborators at the University of Glasgow.

It was integrated with Google calendar, where the events of the day could be

updated in the user’s Google account. This way, the individual’s family members

or the carer can easily add and modify events in the calendar. There was a

programme that fetches information from the calendar every minute. When the

reminder for an event is due, it is flagged in the remixing programme.

These diary reminders require corresponding audio files that can be played

by the audio engine. Initially, we adopted one of the state-of-the-art models for

speech synthesis through TensorFlowTTS2. However, the general feedback from

our collaborators was that the speech sounded artificial and may not be suitable

1FFmpeg: https://ffmpeg.org/
2https://github.com/TensorSpeech/TensorFlowTTS

128

https://ffmpeg.org/
https://github.com/TensorSpeech/TensorFlowTTS

for people with dementia. Therefore, it was appropriate to use the recording of a

person speaking the diary reminder. This task is slightly harder because we need

to manually record diary reminders for corresponding events. However, this was

the preferred choice amongst the researchers because it made the radio sound

more natural. Moreover, we included a bell sound that indicates a reminder is

starting and announce — "Hi! This is Jared.. I have a reminder for you.. Check the

calendar.". After the reminder, the bell sound is played again.

There are four possible cases that can be detected by the music-speech detector

— music, speech, speech+music, and none. Below are the remixing rules adopted

by the audio engine for each of the scenarios.

1. Music: If the radio stream has solely music going on, it is ducked such that

there is a loudness difference of 15 dB between the diary reminder and music.

The diary reminder is played over the ducked music. Figure 6.1 illustrates

how diary reminders are inserted over music.

2. Speech: If the radio stream has someone speaking, we cannot adopt the

same mixing procedure. A radio DJ speaking behind the diary reminder

would be confusing. Therefore, we wait for a point until the music-speech

detector finds a pause of greater than 0.4 s. Remixing at pauses of speech

ensures that we do not cut-off a speaker in the middle of a sentence. After

finding a pause, the radio stream is interrupted, the diary reminder is played,

and the radio is resumed from where it was interrupted. Note that there

is a slight delay (a few seconds) in the live radio stream after this occurs.

However, we found this delay to be negligible and it would be reset each

time the RadioMe system is switched off and switched on again.

3. Speech+Music: This scenario generally occurs in advertisements and radio

jingles, where the radio DJ speaks over music. As these scenarios generally

last for short durations, we decided it is best to not perform any remixing

and wait until the radio plays only speech or music. Furthermore, it is tricky

to remix diary reminders over the radio signal where there is music and

129

speech simultaneously playing.

4. None: The music-speech detector can output none if there is a period of

silence or noise/sounds effects are being played. However, we found this

scenario to be extremely rare. We followed the same mixing rules for music,

where the radio signal is ducked and the diary reminder is played over it.

0 1 2 3 4 5 6 7 8
Time (s)

0.0

0.5

1.0

Ga
in

Reminder: "Hi! This is Jared. I have a reminder
for you.. Check the calendar."

Insert diary reminder Music in radio
Diary reminder

Figure 6.1: An illustration of how diary reminders are remixed in the radio pro-
gramme when music is detected by the audio segmentation algorithm.

6.2.3 Remix Playlist

The second aspect of real-time radio remixing is to play calming music if the

person is undergoing an episode of agitation. The agitation detection system was

also developed by our collaborators at the University of Glasgow. They monitor

heart rate through a smartwatch sensor to detect if a person is agitated. If agitation

is detected, it is flagged to the RadioMe audio engine. As agitation needs to

be addressed immediately, we did not analyse the output of the music-speech

detector. Instead, the live stream of the radio is gradually faded out and music

from the individual’s personal playlist is played. Songs from the playlist are stored

locally on the computer. This playlist is unique to each individual.

130

6.2.4 Discussion

The RadioMe project had planned a series of initial experiments to demonstrate

the proof-of-concept. This was an offline version of RadioMe and the experiment

was titled Wizard of Oz. For this, a 90-minute CD recording of RadioMe was

to be deployed in the home of a person with dementia. In this setting, there

were three diary reminders and two interruptions from the playlist as shown

in table 6.1. The radio station was BBC Radio Cambridge, which was selected

by the person with dementia. This experiment with the person with dementia

was carried out by our collaborators at Anglia Ruskin University. The feedback

from the individual mentioned that the diary reminders played during the radio

were not obvious enough for them to pay sufficient attention. Although we had

included a bell sound to alert the individual, this may not be sufficient when the

person is performing their daily tasks while listening to the radio. Therefore, for

future experiments it would be interesting to play a RadioMe jingle that captures

the listener’s attention to a greater extent, to make it obvious that a reminder is

approaching.

Table 6.1: Schedule of the 90-minute CD recording demo.

Time Event

10:40 am Recording starts
10:44 am Reminder: check the calendar
11:07 am Song from playlist: Lady in Red (Chris De Burgh)
11:19 am Reminder: Water the flowerpots
11:33 am Song from playlist: Take the A train (Ted Heath)
11:55 am Reminder: Make a cup of tea
12:10 pm Recording ends

These initial experiments with RadioMe conveyed that people with dementia

have their own preferences for intelligent remixing. Although the explanation of

their preferences maybe non-technical, they were still able to make us understand

in their own words. This motivated us to investigate how individuals can directly

communicate with intelligent mixing tools with non-technical language. For

example, a person may say — "I cannot hear the diary reminder". However, if this is

131

put in technical terms, the loudness difference between the diary reminder and

the background is not sufficient to facilitate clear speech.

Currently, in the RadioMe audio engine, we are mainly performing two audio

effects — gain-balancing of audio tracks and applying audio fades. It would be

interesting to go beyond these effects to develop AI tools for equalisation (EQ)

and reverberation (Chourdakis & Reiss, 2017). For example, Torcoli et al. (2019)

demonstrated that the elderly population preferred lower background music

compared to a younger population. These preferences can be further addressed

by incorporating bespoke EQ settings.

The use of words or semantic descriptors to describe audio effects is more

common for EQ, dynamic range compression, and reverberation, compared to

gain-balancing. Therefore, to study how non-technical descriptors can be used for

automatic mixing, we mainly explore EQ because the literature has datasets for

this task.

6.3 Word Embeddings for EQ

An equalizer (EQ) is an audio effect created by cascading multiple filters in se-

ries (Tarr, 2018). Timbral adjectives often have a correlation with the parameter

setting for the equalizer. Some examples include, add air, make it warmer, and

make it less muddy (Spyridon, 2019). Kulka (1972) associated adjectives such as

warmth, honk, crunch, and sibilance with frequencies of 125, 500, 2000, and 8000 Hz

respectively. For example, according to the Kulka rule, if the mix sounds honky,

cut the region around 500 Hz.

When clients such as instrumentalists and musical directors work with mix-

ing engineers, they often use semantic descriptors to describe their goals. For

example, “make the violin sound warmer” (Cartwright & Pardo, 2013). It is the role

of the mixing engineer to understand these descriptors mentioned by the client.

132

Popular semantic descriptors such as warm and bright are easily understood by the

mixing engineer (Bromham et al., 2019). To expand the vocabulary of such descrip-

tors, studies have also tried to create a thesaurus with synonyms and antonyms.

For example, significant synonyms of boom are boxy, dull, and fat and significant

antonyms of boom are air, bright, and crisp (Spyridon, 2019). However, the prob-

lem arises when individuals without training in audio production describe their

creative goals (Zheng et al., 2016). They may have ideas that cannot be directly

translated into a studio engineer’s vocabulary.

To address this issue of non-technical descriptors, Cartwright & Pardo (2013)

presented a dataset called SocialEQ, which is a web-based project that adopts

crowd-sourcing to learn a vocabulary of audio descriptors. As it is crowd-sourced,

the study focuses on aggregating a vocabulary to enable non-technical individuals

to describe their sonic goals. Crowd-sourcing was also adopted to build the

datasets for other effects like reverberation (Seetharaman & Pardo, 2014) and

dynamic range compression (Zheng et al., 2016).

There is a growing interest in adopting natural language processing (NLP)

methodologies to develop semantically-controlled audio effects (Zacharakis et al.,

2012; Williams & Brookes, 2007, 2009; Antoine et al., 2016; Miranda, 1995). Stables

et al. (2014) presented a system called Semantic Audio Feature Extraction (SAFE),

which focused on extracting semantic descriptions for equalization from a digital

audio workstation (DAW). Stasis et al. (2016) investigated the idea of mapping

the descriptors to a reduced dimensionality space, to enable users to interact

with the system in a more intuitive way. Chourdakis & Reiss (2019) explored

tagging and retrieval of room impulse responses for reverberation. They adopted

word embeddings to assign impulse responses to tags that match their short

descriptions.

In this chapter, we explore the novel idea of adopting word embeddings

to automatically predict EQ settings. We present a methodology to translate

words from a semantic vector space to a vector space representing the parameters

133

of an equalizer. Word embeddings are representations of words that capture

lexical semantics in language (Bakarov, 2018). An embedding layer is often used

as the first layer in a neural network that performs NLP tasks such as machine

translation, caption generation, and automatic speech recognition (Goldberg, 2017).

Although word embeddings are commonly used to understand natural language,

we investigate if they would be of any benefit to descriptors for EQ settings. We

adopt this approach to translate words to predict values of a parametric equalizer.

This way, the neural network has the ability to understand non-technical words

and even descriptors that it has not seen before. This finding is significant because

artists without training in audio production can express their creative goals directly

to the AI-powered mixing engine. To our knowledge, this is the first study that

investigates how EQ settings can be predicted for unseen semantic descriptors. We

demonstrate that the neural network is capable of learning a direct translation

from the text domain to the EQ domain.

6.4 Experimental Setup

6.4.1 Dataset

We adopted the SocialEQ dataset (Cartwright & Pardo, 2013), which crowd-sources

semantic descriptors for EQ settings. In the raw format, each sample in the

dataset contains a semantic descriptor, language of the descriptor, audio id, a

consistency rating, and 40 values for EQ parameters. During the data collection,

each participant was asked to enter a word in their preferred language. For

example, warm in English, claro in Spanish, or grave in Italian. Subsequently, they

pick a sound file which will be modified by the EQ plugin. There were three sound

files — electric guitar, piano, and drums. Each sound file had a unique audio id.

After selecting a descriptive term and audio file, the participant was presented

134

with 40 different modifications of the sound file made by different EQ settings.

Suppose the user has selected warm, they are asked to rate how warm that sound

is. Out of the 40 modifications, there are 15 repetitions to test for consistency.

Consistency score was calculated using Pearson correlation between the ratings of

the test and repeated examples. The system processes the ratings of the user and

develops a relative boost/cut for 40 different frequency bands. Refer to the study

by Cartwright & Pardo (2013) for more details on the dataset.

The dataset has 1595 samples in it. For simplicity, we considered only descrip-

tors in English. The number of examples in English was 918. It is important to

note that the dataset contained examples with different EQ parameter settings for

the same word. Thus, the number of unique descriptors in English was 388.

6.4.2 Train-Test Split

An important hypothesis we wanted to test in this chapter is that a word embed-

ding layer helps a model predict EQ parameter settings for semantic descriptors

it has not seen before. Therefore, words in the test set should not appear in the

training set. We adopted a four-fold cross-validation setup (Forman & Scholz,

2010) and the strategy is explained below.

We aggregated a list of semantic descriptors that are common in the audio

mixing literature. We labelled these as High Quality (HQ) words. In order to avoid

bias and objectively choose these words, we selected those that were already listed

in table 4.8 in the study by Spyridon (2019). Additionally, we included semantic

descriptors that fell under the hierarchical ontology presented by Pearce et al.

(2016). The list of HQ words is presented in bold in table 6.2. There are 32 HQ

words present in the SocialEQ dataset.

We also aggregated a list of words that were Highly-Rated (HR). HR words

need be not semantically meaningful, but have a high consistency score in the

135

Table 6.2: Four cross-validation folds from the dataset. The test words from each
fold are presented in the table. For each fold, the training set consists of words that
are not in the test set. High Quality (HQ) words are indicated in bold, as explained
in section 6.4.2.

Fold 1 Fold 2 Fold 3 Fold 4

smooth, muffled,
crisp, punch, clean,
brittle, muddy,
soothing, clear,
brassy, caring,
mellow, throbbing,
cooing, fluffy, good,
excited, squeaking,
punchy, funky,
whispered,
disgusting,
beautiful, reserved,
serene, thumpy,
pleasurable,
whispering, gentle,
energetic, peace

crunchy, woody,
flat, metallic, dull,
tinny, cold,
booming, deep,
energizing,
heart-warming,
edgy, heavy, edge,
strong, enchanting,
cheerful, plodding,
quiet, radiant,
biting, brass,
pleasing, light, taco,
gruff, exciting, love,
heat, techno,
solemn

sweet, warm, airy,
full, boxy, bright,
boom, fat, shrill,
calm, velvety, hard,
rich, noisy, down,
rumble, sloppy,
relaxing, peaceful,
romantic, low, hot,
thunderous, frigid,
happy, poor, cool,
tense, jagged,
forceful, aggressive

sharp, big, dark,
hollow, harsh,
smooth, muffled,
crisp, punch,
mournful, clarity,
genius, bold,
twangy, soft, splash,
slow, wistful, brash,
fancy, cute, rousing,
loud, breezy, large,
passionate, baseball,
huge, icy, brassy,
caring

dataset. Words that have a consistency score greater than 0.7 were selected as HR

words. As these words have a high consistency score, the user strongly associated

the semantic word with a particular EQ setting. Words in table 6.2 that are not

formatted as bold text are HR words. Totally, 86 HR words were present in the

SocialEQ dataset.

Each test fold contained 9 HQ words and 22 HR words. We ensured that every

HQ and HR word was tested at least once. In the last test fold, there may be a few

repetitions of words from the first test fold. There was no overlap between the

training set and test set. The test set only contained words that were not present

in the training set. Note that the network for each fold is trained as a separate

experiment. In other words, the network is totally trained four times and tested

four times on different folds and we report the average performance.

As mentioned earlier, each word can have multiple EQ settings. Each setting

is a separate example and can have different consistency scores. In the test set, we

only included examples that had a consistency score of greater than 0.7. In the

training set, we did not exclude any words based on the consistency score.

136

6.4.3 Word Embeddings

A vocabulary consists of all the possible words that the neural network can un-

derstand. Generally, a word is converted into a one-hot encoded vector before

passing into the neural network. For instance, in the SocialEQ dataset, there are

388 unique words, which means that the size of the vocabulary is 388. Therefore,

the dimensions of the one-hot encoded vector are 1 × 388. Each position within

the vector is assigned to a unique word. Thus, the respective position of the word

is labelled as 1 and the remaining elements are 0. However, it is important to note

that the Euclidean distance between any pair of words is equal. As each word is

equidistant from each other, the neural network would not develop the capability

of handling words that is not present in the training set. For example, let us

consider the semantic descriptor bright and assume that it is present in the training

set. Let us also assume that clear and boom are words in the test set. According

to Spyridon (2019), clear is a synonym of bright and boom is an antonym of bright.

Thus, we expect similar EQ settings for clear and bright, but considerably different

EQ settings boom and bright. However, the neural network cannot perceive this

understanding unless it has seen all three words because each word is equidistant

from each other. Furthermore, this issue becomes exaggerated if a non-technical

user is utilising a semantic descriptor that is not common in the audio mixing

literature.

The purpose of a word embedding layer is to convert a one-hot encoded

representation into a vector space of reduced dimensionality. They are useful for

NLP tasks such as machine translation. Large vocabularies with millions of words

can be reduced to a 300-dimensional vector representation (Pennington et al., 2014).

The distances between words in the embedding space are governed by some form

of semantic correlation. Examples include synonyms or two words frequently oc-

curring together. There are different algorithms to train word embedding models.

Some of them include Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al.,

2014), ConceptNet (Speer & Lowry-Duda, 2017), and Dict2Vec (Tissier et al., 2017).

137

Each of these algorithms presents unique methods to train on large corpora of text

such as Wikipedia. Effectively, they try to learn semantic relationships between

words and represent them through an embedding vector.

For this study, we investigated four different embedding models — GloVe-6B,

GloVe-840B, Tok2Vec, and Dict2Vec. GloVe is an unsupervised learning algorithm

developed to obtain vector representations for words (Pennington et al., 2014).

GloVe-6B refers to the model that was trained on Wikipedia 2014 and Gigaword 5.

It includes 6B tokens and a vocabulary size of 400k (B, M, k stand for Billion,

Million, and thousand respectively). On the other hand, GloVe-840B uses 840B

tokens and a vocabulary size of 2.2M. It trains on the World Wide Web using

Common Crawl, which is a larger corpus of text. Tok2Vec is a word embedding

model provided by a company called spaCy (Honnibal et al., 2020). We did not

find the entire details regarding its implementation, but the model is publicly

available and free to use. It is important to note that word embeddings are used

for NLP tasks, which are designed to accept sentences. In our application, we

are considering only one word, which is the semantic descriptor. As GloVe and

Tok2Vec also focus on the ordering of words in sentences, we thought it is a good

idea to consider another embedding model called Dict2Vec (Tissier et al., 2017).

Dict2Vec is an embedding model that uses lexical dictionaries. It builds new word

pairs from dictionary entries so that semantically-related words are closer to each

other in the embedding space (Tissier et al., 2017). Similar to GloVe-6B, it was

trained on the Wikipedia corpus.

6.4.4 Machine Learning Architecture

Word Embedding Layer

We evaluated four different pre-trained word embedding models in the study —

GloVe-6B, GloVe-840B, Tok2Vec, and Dict2Vec. All the models represent words

138

Crisp

0.23
0.65
-0.09
0.39

...

...
-0.43
0.67

300-D
embedding

vector

Hidden
layers

Prediction of 40-D
EQ parameters

Semantic
descriptor

Figure 6.2: A schematic diagram of how the network learns a translation from
semantic descriptors to EQ parameters.

Table 6.3: The neural network architecture

Layer type Units Activation Output shape

Embedding - - 300
Dense 300 ReLu 300
Dense 200 ReLu 200
Dense 100 ReLu 100
Dense 80 ReLu 80
Dense 60 ReLu 60
Dense 40 Sigmoid 40

with 300-D semantic vectors. This is convenient because we can adopt the same

neural network architecture to compare different embeddings. Initially, a word is

converted into a one-hot encoded representation. Subsequently, an embedding

matrix converts this one-hot encoded representation into a 300-D semantic vector.

Then, this vector is connected to hidden layers in the network. Note that the

weights of the embedding matrix are frozen and the layer is not trainable. We did

not consider setting this to trainable because of the limited data we have.

Hidden Layers

The neural network aims to translate a representation of word embeddings to

a prediction of equalizer parameters. Therefore, our network needs to be deep

enough to learn the translation between two domains. Deeper networks apply the

non-linear activation more number of times on the input and therefore have the

139

advantage of learning more complex translations. However, it is important to note

that our dataset is relatively small for our task.

All the layers in the neural network were fully connected layers. Table 6.3

shows an overview of the architecture. After the embedding layer, we had a series

of fully connected layers. The number of hidden units in these layers were 300,

200, 100, 80, and 60 respectively. Finally, it was connected to an output layer with

40 units. Excluding the final layer, all the hidden layers were fitted with ReLu

activations and a dropout of 0.1. The output layer is explained in section 6.4.4. The

code and trained models associated with this study can be found in this GitHub

repository3.

Normalisation

Traditional min-max normalisation by calculating the maximum and minimum in

the training set was not appropriate for our dataset. This is because if there exist

any outliers amongst the values in the test set, specific features may get magnified

or diminished. Furthermore, as we are predicting values for 40 EQ bands, this

issue becomes more crucial. Therefore, we fixed the minimum and maximum

value for each EQ parameter to -4 dB and +4 dB respectively. In other words,

the highest cut/boost within each EQ band was 4 dB. The values were linearly

normalised to the range of 0 to 1. Hence, -4 dB would correspond to 0 and +4 dB

would correspond to 1 in the output layer.

Note that normalisation is performed only on the output of the neural net-

work, which is EQ predictions. The input of the neural network is only semantic

descriptors, which is directly connected to the word embedding layer.

3https://github.com/satvik-venkatesh/word-eq

140

https://github.com/satvik-venkatesh/word-eq

Table 6.4: The error calculated across four folds. The smallest error in the column
is indicated in bold.

Word Embedding Error

Tok2Vec 0.760 ± 0.055
Glove-840 0.770 ± 0.032
Dict2Vec 0.792 ± 0.058
Glove-6B 0.798 ± 0.046
No Embedding 0.836 ± 0.016

Output Layer and Loss Function

The output layer of the network contained 40 neurons, with each of them pre-

dicting a value for one EQ band. As we normalised the data within the range

of 0 to 1, we used sigmoid activation functions for the output neurons. As we

are working with a regression problem, we adopted the mean absolute error loss

function. All EQ bands were given equal importance when averaging the error for

the loss function. In future work, it would be interesting to weigh the EQ bands

based on perceptual frequency band weights. However, that is beyond the scope

of this study.

The network was trained using Stochastic Gradient Descent (SGD) with an

initial learning rate of 0.1. The learning rate was scaled by 0.96 after every 10,000

weight updates.

6.5 Results

6.5.1 Error

Table 6.4 shows the mean absolute error for different embedding models calculated

across four test folds. As we can see, Tok2Vec obtains the lowest error rate of

0.76, followed by GloVe-840 with an error rate of 0.77. GloVe-840 obtains an error

lower than GloVe-6B, which conveys that it benefited from training on a larger

141

corpus. Dict2Vec and GloVe-6B were trained on similar dataset sizes and the

former obtained a better error rate. This suggests that the performance of Dict2Vec

can be improved with training on a larger corpus of text.

The ‘No Embedding’ model in table 6.4 means that no word embedding layer

was used in the neural network. This can be considered to be the baseline system.

As this is the first study that investigates a translation from unseen semantic de-

scriptors to EQ settings, there are no state-of-the-art approaches for comparison.

The input of the network was a direct one-hot encoded representation. All the

neural networks with word embeddings performed better than the model without

word embeddings. However, the difference was not huge. The best model was

Tok2Vec with an error rate of 0.76 vs ‘No Embedding’ with an error rate of 0.836.

This is possibly due to two reasons. Firstly, error may not be the best metric for

our task. For example, the semantic word warm may have a boost of 1.2 dB at

260 Hz. But, the neural network may predict a boost at the adjacent EQ band, such

as 317 Hz. Although, the error rate in this case is high, the EQ effect applied to the

audio may still be semantically meaningful. Secondly, the test set contains many

semantic descriptors that occur only once. These examples may be highly subjec-

tive to one individual, despite having a high consistency score. Therefore, in the

next subsection, we evaluate the top two performing models using Partial Curve

Mapping (PCM) (Witowski & Stander, 2012), which is a method to quantify the

similarity between two curves. For instance, this technique is generally adopted

to analyse similarities between hysteresis curves pertaining to a magnetic field.

Although this technique may not be ideal for our task, it would give us a better

understanding of our model’s performance compared to mean absolute error.

6.5.2 Partial Curve Mapping

In this section, we evaluate the models using PCM. PCM was implemented using

this Python package developed by Jekel et al. (2019). We also compare our model

142

Hum
an

To
k2

Vec

GloV
e-8

40

No E
mbe

dd
ing

0

20

40

60

Di
st

an
ce

Figure 6.3: Distances obtained by different models calculated by using Partial
Curve Mapping (PCM). An ideal algorithm would have a distance of zero.

to human labels. As mentioned earlier, each semantic descriptor had multiple EQ

settings in the dataset. To calculate the error in human labels, we considered the

mean of the different EQ settings as the ground truth. However, words that occur

only once in the dataset would not have an error associated with them. These

words would artificially reduce the average error. Hence, we only included words

that occur at least twice in the dataset. Figure 6.3 shows the distances for different

models. An ideal algorithm would obtain a distance of zero. Human labels obtain

the smallest distance of 2.9, which is an expected observation. GloVe and Tok2Vec

obtain similar distances with the former performing slightly better. The distances

were 9.3 and 10.5 respectively. Note that for this experiment, we only considered

words that occur at least twice, which is different from the results presented in

section 6.5.1. The mean distance of the model with no embeddings was 35.4, which

was considerably higher. In addition, there was a much larger standard deviation

for this model, which suggests that it was randomly guessing.

143

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Muffled

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Crisp

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Muddy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Brittle

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Punchy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Gentle

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Crunchy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2
Ga

in
 (d

B)

Metallic

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Tinny

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Enchanting

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Cold

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Deep

Human
Tok2Vec
GloVe
No embedding

Figure 6.4: Plots of human labels alongside EQ parameters predicted by GloVe-840, Tok2Vec,
and no embedding. These are for words in test folds 1 and 2. Note that that each word in the test
set does not occur in the training set. The first two rows occur in fold 1 and the last two rows
occur in fold 2. The human label plotted for a semantic word was the EQ settings with the highest
consistency score in the dataset.

6.5.3 Plots of EQ Parameters

In this section, we perform an error analysis of predictions made by the machine

learning models. We look at individual test words to investigate if the neural

network is actually learning semantic meanings of EQ settings. We predominantly

look at HQ words as they are common in the audio mixing literature and would be

more intuitive to evaluate. In figures 6.4 and 6.5, we plot the EQ settings of human

labels alongside the predictions of Tok2Vec, Glove-840B, and ‘no embedding’. As

144

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Sweet

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Warm

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Airy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Full

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Boxy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Bright

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Sharp

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2
Ga

in
 (d

B)

Dark

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Hollow

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Breezy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Harsh

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Smooth

Human
Tok2Vec
GloVe
No embedding

Figure 6.5: Plots of human labels alongside EQ parameters predicted by GloVe-840, Tok2Vec,
and no embedding. These are for words in test folds 3 and 4. Note that that each word in the test
set does not occur in the training set. The first two rows occur in fold 3 and the last two rows
occur in fold 4. The human label plotted for a semantic word was the EQ settings with the highest
consistency score in the dataset.

the literature does not comprise an ‘ideal’ metric for our task of predicting EQ

parameters, we thought it is a good idea to plot graphs and actually visualise the

predictions of the algorithms. Figure 6.4 plots the graphs for words selected from

the test folds 1 and 2. Figure 6.5 plots the graphs for words selected from the test

folds 3 and 4. Note that for each word in the test folds, the neural network has

not encountered the word in the training set. The human label chosen for each

semantic word in the plots was the EQ setting with the highest consistency score

in the dataset.

145

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Funky

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Gentle

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Mellow

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Enchanting

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Brass

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Heat

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Rich

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2
Ga

in
 (d

B)

Romantic

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Calm

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Twangy

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Mournful

20 380 1.3k 3.5k 9k 22k
Frequency (Hz)

2

0

2

Ga
in

 (d
B)

Breezy

Human
Tok2Vec
GloVe
No embedding

Figure 6.6: Plots of EQ parameters for highly-rated (HR) words as explained in section 6.4.2.
These are non-technical words that may be highly subjective to a user.

In Figure 6.4, human labels for muffled had boosts at 20 Hz and 3.5 kHz.

For Tok2Vec and GloVe, we saw slight boosts in the mid-range and high-range

respectively, which may convey that the neural networks did not interpret this

word correctly. We also observed that the predictions made by Tok2Vec and

GloVe are considerably different from each other. This can be due to two reasons

— (1) Tok2Vec and GloVe are different algorithms and therefore, learn different

semantic meanings from text (2) there may be a higher degree of randomness in

their predictions because the embeddings are trained only on natural text from

the Word Wide Web, which is different from EQ descriptors. Hence, the neural

network would require more training examples containing EQ descriptors. The

146

network with ‘no embedding’ was basically a flat curve for all the words in the

first fold. For crisp, interestingly, the predictions of Tok2Vec and GloVe did follow

a similar pattern as the human labels. In the human labels, we saw boosts at

2.1k and 9k. For GloVe and Tok2Vec, we saw a gradual boost at 3k, which lifts

the high-range of the frequency spectrum. Some semantic synonyms of crisp

present in the training set for this respective fold include bright, harsh, hollow, and

sharp. This means that the word embedding has delineated a relationship between

the semantic word and EQ predictions. Again, as mentioned earlier, we did not

observe a meaningful pattern in the neural network with ‘no embedding’ because

the curves were flat.

Muddy had a gradual boost from 200 to 380 Hz in the human labels. Tok2Vec

follows a very similar pattern in its prediction by boosting the lows and cutting

the highs. GloVe’s prediction has slightly boosted lows and highs, which is not

convincing for the semantic word muddy. Some semantic synonyms in the training

set include boom, muddled, dark, dull, and fat. The next test word, brittle was well-

understood by both Tok2Vec and GloVe. There was considerable overlap with

the human labels. The synonyms for brittle in the training set would be similar to

those listed for crisp. Punchy was understood by GloVe, but not by Tok2Vec. Gentle

was not understood by both embedding models4.

Crunchy had boosts in the low and high-frequency range in the human labels.

We observe a boost for GloVe and Tok2Vec in the high range. The ‘no embedding’

model has a boost in the low range. However, if you observe, it has made the same

prediction for all the test words in the second fold. GloVe and Tok2Vec correctly

understood the semantic descriptor metallic and have significant overlap with

human labels. For tinny, human labels have boosts at 1.3k and 9k. Whereas, the

neural networks with embeddings have a gradual boost around 3k. We are not

certain if these predictions would have a tinny effect. For test words enchanting

and deep, we observed a noticeable overlap with human labels. However, for cold,

4If the reader is interested in more semantic synonyms present in the training set, please refer
to table 6.2. If fold 1 is selected as the test set, folds 2, 3, and 4 are included in the training set.

147

it seems as though GloVe and Tok2Vec predicted the antonym.

In test fold 3, sweet was not understood by the networks at all. For warm,

Tok2Vec has a noticeable overlap with the human labels because both have a boost

of approximately 2 dB in the low-frequency range. Airy was partially convincing

because GloVe recognised a boost at 9 kHz. Although, the networks have boosted

the lows for full, it seems like a random guess as the prediction significantly

overlaps with the one made by ‘no embedding’. The predictions made by the

networks for boxy were not convincing. Bright seemed plausible with Tok2Vec and

GloVe boosting the high-frequency range.

In test fold 4, we saw reasonable overlap for sharp, dark, hollow, and harsh.

We did not observe a reasonable pattern for breezy and smooth. Interestingly, the

network with ‘no embedding’ predicted the EQ settings for harsh correctly. This

is a chance occurrence because the ‘no embedding’ model predicted a standard

template of settings for all the other words.

In Figure 6.6, we analyse the predictions on non-technical words. These non-

technical words are the same as the HR words explained in section 6.2. Although

these words may have a high consistency score in the SocialFX dataset, they

may be highly subjective to the user. However, we compared the predictions

of GloVe and Tok2Vec to the human labels. There was considerable overlap for

mellow, enchanting, rich, and romantic. For mournful and calm, there were similar

patterns between the predictions of the word embedding models and human

labels. However, for heat and brass, the word embedding models did not predict a

relevant pattern. Although the training set contained semantically similar words

like warm and brassy, the embeddings did not perceive these similarities. This

conveys that the algorithms to learn word embeddings can be further optimised

for EQ mixing.

148

6.6 Discussion

The results presented in the previous section show that a word embedding layer

is helpful for automatic mixing. We analysed the error of models in section 6.5.1.

All the models with an embedding layer obtained lower errors than the one

without an embedding layer. We further analysed the performance of GloVe-840B

and Tok2Vec by using partial curve mapping. The mean distances obtained by

human labels, Tok2Vec, GloVe, and ‘no embedding’ were 2.9, 10.5, 9.3, and 35.4

respectively. This objectively demonstrates that the embedding models perform

better than models without an embedding layer, but definitely not as good as

human labels.

In section 6.5.3, we conducted an error analysis of predictions made by GloVe

and Tok2Vec. We observed that the machine learning model was able to under-

stand semantic descriptors that it had not encountered before. This is a promising

step towards understanding semantic descriptors from non-technical users. It is

important to note the word embedding layers used in the networks were trained

on corpora of written text. This concludes that there exists some common ground

for semantic relationships between words in written text and for those adopted in

EQ mixing.

Considering the fact that we have adopted such a small training dataset, this

performance is reasonable. The SocialFX dataset comprises only 388 unique En-

glish words. Additionally, many of the high-quality and highly rated words were

used for testing in each fold. As our study has demonstrated that word embed-

dings are helpful for automatic EQ mixing, we hope to encourage researchers the

build larger datasets with semantic descriptors. In the literature, another dataset

called SAFE (Stables et al., 2014) focused on extracting semantic descriptions for

equalization from a DAW. We were unable to include the dataset within this study

for two reasons. Firstly, as these are extracted directly from the DAW without

post-processing, some labels can be noisy. Although the dataset contains many

149

examples with meaningful descriptors, some words are randomly typed letters

such as ‘xy’, which have no semantic meaning. Perhaps, this noise may not mat-

ter when training the network with large-scale data. The second reason is that

both datasets use different EQ plugins. The SocialFX dataset uses a 40-band EQ,

whereas the SAFE dataset uses a five-band EQ. We are not certain if additional

noise would be induced in mapping one EQ format to the other.

In this study, we analysed the performance of the machine learning model

using objective metrics. However, it is important to perform listening tests with

human participants to obtain subjective evaluations of the system. We need

to investigate if users are satisfied with the way the machine learning model

understands their semantic descriptors. After aggregating a larger dataset for this

task, this could be a potential future pathway.

In this chapter, we demonstrated the feasibility of adopting word embeddings

for automatic EQ mixing. We showed that the word embedding layer is capable of

providing relationships between semantic descriptors, which assists in predicting

EQ parameters. Using this technique, the machine learning model can predict

EQ settings for words it has not seen before. This is a step towards bridging

the gap between artists explaining their creative goals and mixing engineers

understanding them.

In this study, we looked at EQ parameters as a separate entity. This may not

be ideal in some scenarios. For example, the EQ settings for a drum track may

differ from a vocal track. In other words, the EQ settings for “make the vocals sound

brighter” maybe different from “make the drums sound brighter”. Moreover, the

number of EQ bands predicted was 40. This number is pretty large for a network

that performs regression. Future research could explore how the neural network

architecture can be optimised and regularised better. Furthermore, it may be

interesting to augment the size of training sets by adopting well-known synonyms

and antonyms in the mixing engineer’s vocabulary.

150

For some words, Tok2Vec captured relationships, but GloVe did not and vice

versa. For example, GloVe captured the meaning of punchy as shown in figure 6.4

and Tok2Vec captured the meaning of warm as shown in figure 6.5. This may be

simply because of limited data in the training set. Otherwise, different embedding

models may capture different aspects of semantic relationships. Therefore, an

ensemble of different embedding models will improve performance in this case.

Furthermore, in our study, we discarded non-English words for simplicity. Word

embedding models such as ConceptNet (Speer & Lowry-Duda, 2017) use a knowl-

edge graph to connect words from different languages. This may be an interesting

avenue to explore.

6.7 Publications, Code, and Contributions

• Venkatesh, S., Moffat, D., & Miranda, E. R. (2022a). Word embeddings for

automatic equalization in audio mixing. Journal of the Audio Engineering

Society, 70(9), 753–763. doi: 10.17743/jaes.2022.0047

– This journal paper presents our approach on using word embeddings to

represent semantic descriptors for automatic EQ mixing. It has been submit-

ted to a journal and is under peer review. The code associated with this study

is openly available on GitHub (https://github.com/satvik-venkatesh/word-

eq/).

• Venkatesh, S., Moffat, D., & Miranda, E. (2019). Radiome: Artificially intel-

ligent radio for people with dementia. In Proceedings of DMRN+14: Digital

Music Research Network One-Day Workshop, London, UK

– We attended the DMRN one-day workshop to present a poster on RadioMe.

As the project was just at the initial stage, we presented an overview of the

overarching aims of the project, envisioning how intelligent remixing would

be performed. At this point we had developed a basic music-speech detector,

explored source separation of speech and music, and implemented some

151

https://doi.org/10.17743/jaes.2022.0047
https://github.com/satvik-venkatesh/word-eq/
https://github.com/satvik-venkatesh/word-eq/

remixing approaches.

• Di Campli San Vito, P., Brewster, S., Venkatesh, S., Miranda, E., Kirke, A., Mof-

fat, D., Banerjee, S., Street, A., Fachner, J., & Odell-Miller, H. (2022). Radiome:

Supporting individuals with dementia in their own home... and beyond? In

CHI Conference on Human Factors in Computing Systems (CHI ’22) Workshop 32,

New Orleans, Louisiana, USA, 30 Apr 2022. doi: 10.36399/gla.pubs.267520

– This was a paper presented by Di Campli San Vito et al. (2022) at the CHI

’22 workshop on Designing Ecosystems for Complex Health Needs. I was in-

volved through the RadioMe project in developing machine learning for

audio segmentation and intelligent remixing in the RadioMe system.

• Shakeri, G., Brewster, S., Venkatesh, S., Moffat, D., Kirke, A., Miranda, E.,

Banerjee, S., Street, A., Fachner, J., & Odell-Miller, H. (2021). Radiome:

challenges during the development of a real time tool to support people with

dementia. In CHI Conference on Human Factors in Computing Systems (CHI

’21), May 08–13, 2021, Yokohama, Japan. doi: 10026.1/17584

– This paper was presented by Shakeri et al. (2021) at the CHI ’22 workshop on

Designing Interactions for the Ageing Populations – Addressing Global Challenges.

I was involved thorugh the RadioMe project in developing machine learning

for audio segmentation and intelligent remixing in the RadioMe system.

152

https://doi.org/10.36399/gla.pubs.267520
https://doi.org/10026.1/17584

Chapter 7

Conclusion

In this thesis, we developed data-centric and model-centric approaches to improve

state-of-the-art algorithms for audio segmentation. In chapter 3, we presented

a method to synthesise large scale training sets to train deep learning models.

Using this method, we obtained high accuracies on in-house and external test sets.

On the MIREX dataset, there was a relative improvement of 56.55% and 1.15%

for Music and Speech F-measures respectively. In chapter 4, this thesis proposed

a novel algorithm called the You Only Hear Once (YOHO). It converted audio

segmentation into a regression problem and generalised better than the CRNN

across multiple datasets for audio segmentation and sound event detection. In

addition, the speed of inference and post-processing were significantly faster. In

chapter 5, we explored how the machine learning algorithm can be more robust

shifts in data distributions. Using domain generalisation techniques, we improved

the performance of the algorithm from 90.20% to 92.05% on the MIREX competition

dataset.

In chapter 6, we demonstrated how audio segmentation can be performed

on a live radio broadcast to intelligently remix the stream. Furthermore, we

presented an approach for individuals to communicate with intelligent mixing

systems through non-technical language. The following section summarises the

153

conclusions associated with each research question.

7.1 Research Conclusions

RQ1: What would be an effective way to train machine learning models for audio segmen-

tation with limited access to domain data?

In chapter 3, we proposed a novel method to artificially synthesise training sets

for music-speech detection. We replicated the pipeline of a mixing engineer by

incorporating principles like audio ducking and fade curves. As broadcast audio

is copyrighted material and cannot be shared, this method presented a promising

alternative to spending resources on annotating real-world training sets.

Contribution 1.1 — Artificially synthesising training sets is highly effective to generate

large datasets to train deep neural networks for audio segmentation.

In section 3.3, we investigated the robustness of the data synthesis procedure.

After training a CRNN model on synthetic data, we tested it on two test sets —

the in-house test set and the MIREX music-speech detection dataset. Although

the training set and the test tests belong to different data distributions, it obtained

high F-measures on both test sets. On the in-house test set, it obtained an overall F-

measure of 96.69%. On the MIREX competition dataset, it obtained state-of-the-art

performance for music and speech F-measure of 85.76% and 92.21% respectively.

Contribution 1.2 — Synthetic training sets perform as good or better than real-world

data for music-speech detection.

In section 3.6, we compared the performance of artificial training sets and real-

world training sets. In table 3.5, we observed that the model trained on artificial

data obtained an overall F-measure of 96.89% on the in-house test set. Whereas,

the model trained on real-world data obtained an overall F-measure of 96.64%.

154

Considering that the real-world training set and the in-house test set come from the

same data distribution, artificial data is interestingly more effective. This difference

is further exaggerated when we test the model on a different data distribution,

which is the MIREX dataset. However, combining artificial and real-world data

obtained the best performance.

Contribution 1.3 — The optimal parameters for audio ducking selected by the machine

learning algorithm were similar to the preferences of human listeners.

In section 3.4, we investigated how different levels of audio ducking impact the

performance of the machine learning algorithm. We found that the maximum

Loudness Difference (LD) should lie between 23 and 27 LU for optimal perfor-

mance in F-measure. We also observed that it is meaningless to have an LD greater

than 40 LU because the recall stopped improving beyond this point. Furthermore,

the precision of music kept decreasing as the LD kept increasing. This is because

it becomes harder to precisely detect music at quieter volumes.

The minimum LD should lie between 2 and 8 LU for optimal F-measure

performance for speech. Interestingly, we found that a minimum LD of 10 LU is

necessary to maximise the precision of speech. In the study by Torcoli et al. (2019),

human listeners also preferred a minimum LD of 10 LU. This similarity between

the preferences of machines and humans is an interesting phenomenon.

Contribution 1.4 — Synthetic data is more robust to disagreements between annotators

of different datasets.

On the in-house test set, the model trained on real-world data obtained a music F-

measure of 97.81%. Whereas, the model trained on artificial data obtained a music

F-measure of 97.77%. Furthermore, the model trained on both real and artificial

data obtained a music F-measure of 98.3%. However, we did not observe the same

pattern on the MIREX dataset. The models trained on real, artificial, and combined

obtained 84.3%, 85.51%, and 85.01% respectively. In other words, artificial data

155

obtained the highest music F-measure on external data distributions. Moreover,

real-world data actually hindered the F-measure of music, indicating that synthetic

data is more robust to human-error and bias induced by the annotators.

RQ2: How can we advance state-of-the-art algorithms by investigating novel pattern

recognition problems?

This research question was investigated in chapters 4 and 5, where we presented

model-centric approaches to improve the performance of audio segmentation

algorithms. First, we compared state-of-the-art architectures in the literature, then

proposed a novel algorithm called YOHO, and later made it generalise better to

unseen domains.

Contribution 2.1 — Amongst the neural network architectures in the literature for audio

segmentation, CRNN was the best performing network.

In section 4.1, we compared CNN, GRU, LSTM, LSTM, TCN, and CRNN architec-

tures for audio segmentation. We adopted an automatic hyperparameter tuning

method called Hyperband (Li et al., 2017) to present an unbiased comparison of

the architectures. We found that CRNN was the best performing model for music-

speech detection. As CRNN combines the advantages of both convolutional and

recurrent layers, it is well-suited for this task. Furthermore, the CRNN performs

2D convolutions, which is on the temporal and frequency dimensions, which

makes it learn better high-level features.

Contribution 2.2 — Machine learning models trained directly on raw audio did not

perform as well as those using mel spectrograms.

In section 4.2, we explored how end-to-end deep learning can be adopted for

raw audio. First, we investigated a CRNN model for the task, which performed

considerably poorer than using mel spectrograms. Later, we adopted the Wave-U-

net architecture, which showed improvements from the CRNN model. However,

156

the best performing Wave-U-net model obtained 94.81%, which was lower than the

CRNN model obtaining 97.39% on the validation set. These conclusions showed

that using raw audio actually hindered the performance of audio segmentation.

In future research, collecting more training data may be a potential pathway to

reduce overfitting. However, as our training set was already diverse and large

(46 h of synthetic data and 10.5 h of real-world data), we did not see the benefits

of collecting more data.

Contribution 2.3 — Proposed a novel algorithm called YOHO that generalises better

than the CRNN architecture and is significantly faster than frame-based classification

In section 4.3, we proposed a novel paradigm called You Only Hear Once (YOHO)

for audio segmentation and sound event detection. YOHO presents sound event

detection differently from the traditional segmentation-by-classification approach.

It converted sound event detection from a frame-based classification problem to

a regression problem. It obtained state-of-the-art performance for music-speech

detection and surpassed the CRNN and CNN’s performance for environmental

audio. As this approach is more end-to-end and predicts acoustic boundaries

directly, it is significantly quicker during post-processing and smoothing, which

makes it more suitable for real-time applications.

Contribution 2.4 — Demonstrated the benefits of transfer learning and domain-adversarial

training for improved domain generalisation

In chapter 5, we investigated how our model can generalise better to unseen do-

mains. It is desirable that the music-speech detector performs well in audio from

different broadcasters, languages, countries, and so on. Therefore, we demon-

strated how transfer learning can be applied on YamNet (Plakal & Ellis, 2020) to

improve domain generalisation. Furthermore, we investigate domain-adversarial

training where a domain classifier predicts if the audio is real or synthetic. Using

this approach, we obtained state-of-the-art performance on the MIREX music-

157

speech detection dataset, which is an unseen domain. YOHO with pre-training and

domain-adversarial training obtained an overall F-measure of 92.05%, compared

to simply YOHO which obtained 90.20%. Furthermore, we observed that domain-

adversarial training did not help much in the in-house test set because it is a seen

domain.

RQ3: To what extent can deep learning be used to improve intelligent mixing approaches?

This research question was addressed in chapter 6. Within this research question,

we primarily investigated two aspects — (1) To what extent can audio segmenta-

tion improve existing real-time radio remixing approaches? (2) How can non-experts

communicate with intelligent mixing systems?

Contribution 3.1 — Demonstrated how radio remixing can be performed with underlying

segmentation

In section 6.2, we presented a real-time radio remixing framework that assists

people with dementia. There were two features for the remixing — (1) diary

reminders and (2) music from the playlist. The remixing was governed by the

music-speech detector, which was running in real-time in the background. This

remixing aims to be seamlessly integrated with the radio stream. If music is

detected in the stream, the background music is ducked and a diary reminder is

played over it. Moreover, if speech is detected, we wait for a pause to occur in the

speech, so that the diary reminder can be inserted. Initial tests have been conducted

in homes of people with dementia through the RadioMe project. However, in the

future, minor adjustments to the system can be easily incorporated based on their

feedback.

Contribution 3.2 — Demonstrated the benefits of using word embeddings to represent

semantic descriptors in automatic mixing systems

In sections 6.3 to 6.6, we investigated how individuals can communicate with

158

automatic mixing systems with non-technical language. We demonstrated that

a word embedding layer enables the mixing system to understand high-level

representations of semantic descriptors. It was also shown the machine learning

model was able to predict mixing settings for words that it has not seen before.

We presented this system to translate words to EQ parameters. This is a proof-of-

concept to perform other mixing operations such as audio ducking and dynamic

range compression.

7.2 Future Work

The conclusions in the previous section indicate many avenues that can be explored

through future research. Below are some potential pathways.

Pathway 1: Novel methods to generate artificial training data and data augmentation

techniques

There is a growing interest in adopting GANs for generating artificial training

data (Goodfellow et al., 2014; Kong et al., 2020a). It would be interesting to

explore how GANs can generate artificial training sets for audio segmentation.

However, is important to generate label-preserving examples. As the temporal

context is crucial for audio segmentation, the labels should not lose relevant

information while generating new examples. Furthermore, there is a considerable

difference in audio quality between different radio stations. For example, the audio

signals in some stations have higher dynamic range compression or there are some

frequency bands that are filtered. Data augmentation techniques that address these

differences could improve the performance of music-speech detection algorithms.

In this thesis, we observed that it becomes increasingly harder to detect

music at very low volumes. Furthermore, the OpenBMAT dataset found lower

agreement scores between different annotators for very low volumes of back-

159

ground music (Meléndez-Catalán et al., 2019). This emphasises that the task

of background music-detection needs to be defined in greater detail by using

threshold-related variables. It would be interesting to explore the similarities

between the OpenBMAT ontology for relative music loudness estimation and

artificially synthesised data.

Pathway 2: Improvements to audio segmentation as a regression problem

For the YOHO algorithm in section 4.3, we primarily adapted the MobileNet ar-

chitecture (Howard et al., 2017). Future developments in the network architecture

for YOHO would lead to improvements in performance. For instance, adding skip

connections through ResNets (He et al., 2016) or by including Inception blocks

(Szegedy et al., 2015). Furthermore, there is scope to create hybrid architectures

such as CNN-transformers (Kong et al., 2020b) by adopting the YOHO paradigm.

Although YOHO’s output is more end-to-end by predicting acoustic bound-

aries directly, it is limited by the time-resolution of the input, which is the mel

spectrogram. It would be interesting to explore YOHO with raw audio, which

would make the sound event detection pipeline completely end-to-end. Moreover,

the YOHO approach is relevant to related tasks such as singing voice detection.

Furthermore, recent studies have successfully combined sound event detection

with source separation and semi-supervised learning (Turpault et al., 2019, 2021).

Future work could explore how YOHO would perform in these scenarios.

Pathway 3: Investigate semi-supervised and unsupervised learning for audio segmenta-

tion

Most of this thesis formulated audio segmentation as a supervised learning prob-

lem. When we explored concepts like domain generalisation, we still adopted la-

belled examples of real-world and synthetic examples. However, semi-supervised

learning is gaining attention in the audio community. For instance, the mean-

teacher approach (Tarvainen & Valpola, 2017) has been explored by researchers

160

for sound event detection (Yan et al., 2020; Lin et al., 2020). Furthermore, unsuper-

vised domain adaptation (Ganin et al., 2016) can also be investigated where we

have a lot of unlabelled real-world data.

Another interesting problem that can be investigated on radio signals is

increasing the number of audio classes from just music and speech to higher-level

structures like travel news, weather report, interviews, musical structures (chorus,

verse, etc), genre recognition, and so on. This can be performed by clustering

approaches like k-nearest neighbours. For example, we can use the embeddings

from the music-speech detector to cluster radio signals and evaluate patterns.

Pathway 4: Explore other domain generalisation techniques

In chapter 5, we explored transfer learning and domain-adversarial training to

improve music-speech detection. Although there are many well-established do-

main adaptation techniques for Computer Vision, they do not seem to work as

well for audio (Lopez et al., 2021). This emphasises that there need to be more

audio-specific methods developed for domain adaptation and generalisation.

Some potential avenues include meta-learning, few-shot domain adaptation, and

auxiliary task learning.

Pathway 5: Curate datasets to facilitate research in using semantic descriptors for

automatic mixing systems

In chapter 6, we showed that a word embedding layer helps a machine learning

model understand the representation of semantic descriptors. However, this word

embedding layer was trained purely on natural language. Subsequently, the total

number of unique descriptors in the Social EQ dataset was only 388 (only English

was considered in this study). Hence, the performance of the machine learning

model could be significantly improved if we adopt a large enough dataset for this

task.

161

162

163

Acronyms

AI Artificial Intelligence. 42, 126

ANOVA Analysis of variance. 66–70, 72, 73

B-GRU Bidirectional Gated Recurrent Unit. 28, 82–87, 101, 107, 108, 111

B-LSTM Bidirectional Long Short-Term Memory. 25–27, 82–87

BIC Bayesian information criterion. 16, 24, 28

BN Batch Normalisation. 36, 65, 77, 83

CCSA Classification and Contrastive Semantic Alignment. 123

CLDNN Convolutional Long Short-Term Memory Fully Connected Deep Neural

Network. 23, 88

CNN Convolutional Neural Network. 18–22, 25–28, 36, 42, 81–83, 85–87, 95, 100,

101, 105–111, 156

CRNN Convolutional Recurrent Neural Network. xi, xiii, xiv, 22, 23, 26, 28, 36,

58, 59, 81, 82, 84–88, 91, 93, 97, 99–101, 105–112, 153, 154, 156, 157

DCASE Detection and Classification of Acoustic Scenes and Events. 5, 19, 28, 93,

103, 124

EPSRC Engineering and Physical Sciences Research Council. iv

GANs Generative Adversarial Networks. 79, 159

164

GPU Graphical Processing Unit. 37

GRL Gradient Reversal Layer. 116, 118

GRU Gated Recurrent Unit. 21, 36, 81, 83, 85, 86, 156

HMM Hidden Markov Model. 18, 24, 27

ICCMR Interdisciplinary Centre for Computer Music Research. iv

LD Loudness Difference. xi, xii, 51–53, 62, 63, 65–73, 78, 155

LN Layer Normalisation. 65, 77, 83

LSTM Long Short-Term Memory. 23, 36, 81, 83, 88, 156

LU Loudness Units. xii, 51, 52, 65–73, 78, 155

LUFS Loudness Units relative to Full Scale. 52

MERL Mitsubishi Electric Research Laboratories. iii, 113

MFCC Mel Frequency Cepstral Coefficients. 12, 24, 87

MIR Music Information Retrieval. 3, 15, 127

MIREX Music Information Retrieval Evaluation eXchange. xiv, 5, 7, 14, 25, 26, 63,

93, 103, 106, 111, 120–122, 153

MLP Multilayer Perceptrons. 27

ncTCN non-causal Temporal Convolutional Network. 22, 25–27, 84, 86, 87

ResNet Residual Networks. 25, 27

RNN Recurrent Neural Network. xi, 21, 22, 33

SGD Stochastic Gradient Descent. 36, 141

STFT Short-time Fourier transform. 14

165

SVM Support Vector Machine. 18, 24, 28

TCN Temporal Convolutional Network. 18, 22, 36, 81, 82, 84–86, 156

YOHO You Only Hear Once. i, xii, xiv, 6, 9, 81, 82, 92–101, 104–112, 117–119, 153,

156–158

YOLO You Only Look Once. i, 6, 92, 93, 95

166

Bibliography

Adavanne, S., Fayek, H., & Tourbabin, V. (2019). Sound event classification
and detection with weakly labeled data. In Proceedings of the Detection and
Classification of Acoustic Scenes and Events Workshop (DCASE), New York, NY, USA.

Adavanne, S., & Virtanen, T. (2017). A report on sound event detection with
different binaural features. Tech. rep., Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge.

Algabri, M., Mathkour, H., Bencherif, M. A., Alsulaiman, M., & Mekhtiche, M. A.
(2020). Towards deep object detection techniques for phoneme recognition. IEEE
Access, 8, 54663–54680.

Antoine, A., Williams, D., & Miranda, E. R. (2016). Towards a timbral classification
system for musical excerpts. In Proceedings of the 2nd AES Workshop on Intelligent
Music Production, London, UK, vol. 13.

Armstrong, M., Brooks, M., Churnside, A., Evans, M., Melchior, F., & Shotton, M.
(2014). Object-based broadcasting-curation, responsiveness and user experience.
In International Broadcasting Convention, Amsterdam, Netherlands. IET.

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv
preprint arXiv:1801.09536.

Baktashmotlagh, M., Harandi, M. T., Lovell, B. C., & Salzmann, M. (2013). Unsu-
pervised domain adaptation by domain invariant projection. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, (pp. 769–776).

Bartsch, M. A., & Wakefield, G. H. (2001). To catch a chorus: Using chroma-based
representations for audio thumbnailing. In IEEE Workshop on the Applications of
Signal Processing to Audio and Acoustics (WASPAA), NY, USA, (pp. 15–18).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(2).

167

Bhattacharjee, M., Prasanna, S. M., & Guha, P. (2022). Clean vs. overlapped
speech-music detection using harmonic-percussive features and multi-task
learning. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
doi: 10.1109/TASLP.2022.3164199.

Biesialska, M., Biesialska, K., & Costa-jussà, M. R. (2020). Continual lifelong
learning in natural language processing: A survey. In Proceedings of the 28th
International Conference on Computational Linguistics, Barcelona, Spain, (pp. 6523–
6541).

Bittner, R. M., Gu, M., Hernandez, G., Humphrey, E. J., Jehan, T., McCurry, H., &
Montecchio, N. (2017). Automatic playlist sequencing and transitions. In 18th
International Society for Music Information Retrieval Conference (ISMIR), Suzhou,
China, (pp. 442–448).

Black, D. A. A., Li, M., & Tian, M. (2014). Automatic identification of emotional
cues in chinese opera singing. In 13th International Conference on Music Perception
and Cognition and the 5th Conference for the Asian-Pacific Society for Cognitive
Sciences of Music, Seoul, South Korea.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with
co-training. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, New York, NY, USA, (pp. 92–100).

Bosch, J. J., Janer, J., Fuhrmann, F., & Herrera, P. (2012). A comparison of sound
segregation techniques for predominant instrument recognition in musical audio
signals. In 13th International Society for Music Information Retrieval Conference
(ISMIR), Porto, Portugal, (pp. 559–564).

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Bromham, G., Moffat, D., Barthet, M., Danielsen, A., & Fazekas, G. (2019). The
impact of audio effects processing on the perception of brightness and warmth.
In ACM Audio Mostly Conference, Nottingham, UK.

Butko, T., & Nadeu, C. (2011). Audio segmentation of broadcast news in the
albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal
on Audio, Speech, and Music Processing, 2011(1), 1.

Cakir, E., Heittola, T., Huttunen, H., & Virtanen, T. (2015). Multi-label vs. combined
single-label sound event detection with deep neural networks. In 23rd European
Signal Processing Conference (EUSIPCO), Nice, France, (pp. 2551–2555). IEEE.

Cakır, E., Parascandolo, G., Heittola, T., Huttunen, H., & Virtanen, T. (2017).
Convolutional recurrent neural networks for polyphonic sound event detection.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(6), 1291–
1303.

Cartwright, M. B., & Pardo, B. (2013). Social-EQ: Crowdsourcing an equaliza-
tion descriptor map. In 14th International Society for Music Information Retrieval
Conference (ISMIR), Curitiba, Brazil, (pp. 395–400).

Castán, D., Ortega, A., Miguel, A., & Lleida, E. (2014). Audio segmentation-
by-classification approach based on factor analysis in broadcast news domain.
EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 34.

168

https://doi.org/10.1109/TASLP.2022.3164199

Chen, S., Gopalakrishnan, P., et al. (1998). Speaker, environment and channel
change detection and clustering via the bayesian information criterion. In Pro-
ceedings of the DARPA Broadcast News Transcription and Understanding Workshop,
Lansdowne, Virginia, vol. 8, (pp. 127–132). Citeseer.

Chen, Y., Dinkel, H., Wu, M., & Yu, K. (2020). Voice activity detection in the wild
via weakly supervised sound event detection. In Interspeech, Shanghai, China,
(pp. 3665–3669).

Cheuk, K. W., Agres, K., & Herremans, D. (2020). The impact of audio input repre-
sentations on neural network based music transcription. In 2020 International
Joint Conference on Neural Networks (IJCNN), Glasgow, UK, (pp. 1–6). IEEE.

Cho, K., van Merriënboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar.

Choi, K., Fazekas, G., Cho, K., & Sandler, M. (2017a). A tutorial on deep learning
for music information retrieval. arXiv preprint arXiv:1709.04396.

Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017b). Convolutional recurrent
neural networks for music classification. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, Louisiana, USA,
(pp. 2392–2396).

Choi, M., Lee, J., & Nam, J. (2018). Hybrid features for music and speech detec-
tion. Tech. rep., Music Information Retrieval Evaluation eXchange (MIREX)
Challenge.

Chourdakis, E., Ward, L., Paradis, M., & Reiss, J. D. (2019). Modelling experts’
decisions on assigning narrative importances of objects in a radio drama mix.
In Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx),
Birmingham, UK, September 2–6, 2019.

Chourdakis, E. T., & Reiss, J. D. (2017). A machine-learning approach to application
of intelligent artificial reverberation. Journal of the Audio Engineering Society,
65(1/2), 56–65.

Chourdakis, E. T., & Reiss, J. D. (2019). Tagging and retrieval of room impulse re-
sponses using semantic word vectors and perceptual measures of reverberation.
In 146th Convention of the Audio Engineering Society, Dublin, Ireland.

Cornell, S., Olvera, M., Pariente, M., Pepe, G., Principi, E., Gabrielli, L., & Squartini,
S. (2020). Domain-adversarial training and trainable parallel front-end for the
dcase 2020 task 4 sound event detection challenge. In Proceedings of the Detection
and Classification of Acoustic Scenes and Events Workshop (DCASE), Tokyo, Japan.

Coşkun, M., YILDIRIM, Ö., Ayşegül, U., & Demir, Y. (2017). An overview of
popular deep learning methods. European Journal of Technique (EJT), 7(2), 165–
176.

De Man, B., & Reiss, J. D. (2013). A knowledge-engineered autonomous mixing
system. In 135th Convention of the Audio Engineering Society, New York, NY, USA.

169

De Man, B., Stables, R., & Reiss, J. D. (2019). Intelligent Music Production. Focal
Press.

de Sa, V. R. (1994). Learning classification with unlabeled data. In Advances in
Neural Information Processing Systems, (pp. 112–119). Citeseer.

DeepLearning.AI (2021). A chat with Andrew on MLOps: From model-centric to
data-centric AI. https://youtu.be/06-AZXmwHjo [Last accessed on 02-11-2021].

Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, (pp. 4690–4699).

Dhanalakshmi, P., Palanivel, S., & Ramalingam, V. (2009). Classification of audio
signals using SVM and RBFNN. Expert Systems with Applications, 36(3), 6069–
6075.

Di Campli San Vito, P., Brewster, S., Venkatesh, S., Miranda, E., Kirke, A., Moffat,
D., Banerjee, S., Street, A., Fachner, J., & Odell-Miller, H. (2022). Radiome:
Supporting individuals with dementia in their own home... and beyond? In
CHI Conference on Human Factors in Computing Systems (CHI ’22) Workshop 32,
New Orleans, Louisiana, USA, 30 Apr 2022. doi: 10.36399/gla.pubs.267520.

Diment, A., & Virtanen, T. (2017). Transfer learning of weakly labelled audio.
In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, (pp. 6–10).

Dinkel, H., Wu, M., & Yu, K. (2021). Towards duration robust weakly supervised
sound event detection. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29, 887–900.

Docio-Fernandez, L., Lopez-Otero, P., & Garcia-Mateo, C. (2010). The UVigo-GTM
speaker diarization system for the albayzin’10 evaluation. In Proceedings of FALA
2010: VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop, Vigo, Spain.

Doukhan, D., & Carrive, J. (2017). Investigating the use of semi-supervised convo-
lutional neural network models for speech/music classification and segmenta-
tion. In The Ninth International Conferences on Advances in Multimedia (MMEDIA),
Venice, Italy.

Fenton, S. (2018). Automatic mixing of multitrack material using modified loud-
ness models. In 145th Convention of the Audio Engineering Society, New York, NY,
USA. Audio Engineering Society.

Forman, G., & Scholz, M. (2010). Apples-to-apples in cross-validation studies:
pitfalls in classifier performance measurement. ACM SIGKKD Explorations
Newsletter, 12(1), 49–57.

Gal, Y., & Ghahramani, Z. (2016). A theoretically grounded application of dropout
in recurrent neural networks. Advances in Neural Information Processing Systems,
29, 1019–1027.

Gallardo Antolín, A., & San Segundo Hernández, R. (2010). UPM-UC3M system
for music and speech segmentation. In Proceedings of FALA 2010: VI Jornadas en
Tecnología del Habla and II Iberian SLTech Workshop, Vigo, Spain.

170

https://youtu.be/06-AZXmwHjo
https://doi.org/10.36399/gla.pubs.267520

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1), 2096–2030.

Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C.,
Plakal, M., & Ritter, M. (2017). Audio set: An ontology and human-labeled
dataset for audio events. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, Louisiana, USA, (pp. 776–780).

Gharib, S., Drossos, K., Fagerlund, E., & Virtanen, T. (2019). Voice: A sound
event detection dataset for generalizable domain adaptation. arXiv preprint
arXiv:1911.07098.

Gimeno, P., Viñals, I., Ortega, A., Miguel, A., & Lleida, E. (2020). Multiclass audio
segmentation based on recurrent neural networks for broadcast domain data.
EURASIP Journal on Audio, Speech, and Music Processing, 2020(1), 1–19.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, Sardinia, Italy, (pp. 249–256). PMLR.

Goldberg, Y. (2017). Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1), 1–309.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems (NeurIPS), vol. 27, (pp. 2672–2680).

Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Vancouver, Canada, (pp. 6645–6649).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, Nevada, USA, (pp. 770–778).

He, W., Motlicek, P., & Odobez, J.-M. (2019). Adaptation of multiple sound source
localization neural networks with weak supervision and domain-adversarial
training. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, (pp. 770–774).

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C.,
Plakal, M., Platt, D., Saurous, R. A., Seybold, B., et al. (2017). CNN architectures
for large-scale audio classification. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, Louisiana, USA, (pp. 131–135).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9(8), 1735–1780.

Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A. (2020). spaCy:
Industrial-strength natural language processing in python. doi: 10.5281/zen-
odo.1212303.

171

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

Hoshen, Y., Weiss, R. J., & Wilson, K. W. (2015). Speech acoustic modeling from raw
multichannel waveforms. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), South Brisbane, QLD, Australia, (pp. 4624–4628).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Huang, J., Dong, Y., Liu, J., Dong, C., & Wang, H. (2009). Sports audio segmentation
and classification. In IEEE International Conference on Network Infrastructure and
Digital Content, (pp. 379–383).

Huang, R., & Hansen, J. H. (2006). Advances in unsupervised audio classification
and segmentation for the broadcast news and NGSW corpora. IEEE Transactions
on Audio, Speech, and Language Processing, 14(3), 907–919.

Humphrey, E. J., Salamon, J., Nieto, O., Forsyth, J., Bittner, R. M., & Bello, J. P.
(2014). JAMS: A JSON annotated music specification for reproducible MIR
research. In 15th International Society for Music Information Retrieval Conference
(ISMIR), Taipei, Taiwan, (pp. 591–596).

Hussain, M., Haque, M. A., et al. (2018). Swishnet: a fast convolutional neural
network for speech, music and noise classification and segmentation. arXiv
preprint arXiv:1812.00149.

IBM Corporation (2017). SPSS statistics for windows. Version 25.0.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on
Machine Learning (ICLR), San Diego, CA, USA, (pp. 448–456).

ITU-R (2017). ITU-R Rec. BS.1770-4: Algorithms to measure audio programme
loudness and true-peak audio level. BS Series.

Jang, B.-Y., Heo, W.-H., Kim, J.-H., & Kwon, O.-W. (2019). Music detection from
broadcast contents using convolutional neural networks with a mel-scale kernel.
EURASIP Journal on Audio, Speech, and Music Processing, 2019(1), 11.

Jekel, C. F., Venter, G., Venter, M. P., Stander, N., & Haftka, R. T. (2019). Similar-
ity measures for identifying material parameters from hysteresis loops using
inverse analysis. International Journal of Material Forming.

Jeong, I.-Y., Lee, S., Han, Y., & Lee, K. (2017). Audio event detection using multiple-
input convolutional neural network. Tech. rep., Detection and Classification of
Acoustic Scenes and Events (DCASE) Challenge.

Jiang, N., Grosche, P., Konz, V., & Müller, M. (2011). Analyzing chroma feature
types for automated chord recognition. In Audio Engineering Society Conference:
42nd International Conference: Semantic Audio, Ilmenau, Germany.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR), San Diego, CA, USA.

Koch, G., Zemel, R., Salakhutdinov, R., et al. (2015). Siamese neural networks for
one-shot image recognition. In ICML Deep Learning Workshop, vol. 2, (p. 0). Lille.

172

Kong, J., Kim, J., & Bae, J. (2020a). Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. Advances in Neural Information
Processing Systems, 33, 17022–17033.

Kong, Q., Xu, Y., Sobieraj, I., Wang, W., & Plumbley, M. D. (2019). Sound event de-
tection and time–frequency segmentation from weakly labelled data. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 27(4), 777–787.

Kong, Q., Xu, Y., Wang, W., & Plumbley, M. D. (2020b). Sound event detection
of weakly labelled data with CNN-transformer and automatic threshold opti-
mization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28,
2450–2460.

Kos, M., Grasic, M., Vlaj, D., & Kacic, Z. (2009). On-line speech/music segmen-
tation for broadcast news domain. In 16th International Conference on Systems,
Signals and Image Processing, Chalkida, Greece, (pp. 1–4). IEEE.

Kotti, M., Benetos, E., & Kotropoulos, C. (2008). Computationally efficient and
robust bic-based speaker segmentation. IEEE Transactions on Audio, Speech, and
Language Processing, 16(5), 920–933.

Kukačka, J., Golkov, V., & Cremers, D. (2017). Regularization for deep learning: A
taxonomy. arXiv preprint arXiv:1710.10686.

Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get:
Domain adaptation using asymmetric kernel transforms. In IEEE Conference on
Computer Vision and Pattern Recognition, (pp. 1785–1792).

Kulka, L. d. G. (1972). Equalization-the highest, most sustained expression of the
recordist’s heart. Recording Engineer/Producer, 3(6), 17–24.

Kum, S., & Nam, J. (2019). Joint detection and classification of singing voice
melody using convolutional recurrent neural networks. Applied Sciences, 9(7),
1324.

Kumar, A., & Raj, B. (2016). Audio event detection using weakly labeled data. In
Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam,
Netherlands, (pp. 1038–1047).

Kwon, S., et al. (2020). A CNN-assisted enhanced audio signal processing for
speech emotion recognition. Sensors, 20(1), 183.

Lee, J., Park, J., Kim, T., & Nam, J. (2017). Raw waveform-based audio classification
using sample-level CNN architectures. In Machine Learning for Audio Signal
Processing Workshop, Neural Information Processing Systems (NeurIPS).

Lee, Y., Lim, S., & Kwak, I.-Y. (2021). CNN-based acoustic scene classification
system. Electronics, 10(4), 371.

Lemaire, Q., & Holzapfel, A. (2019). Temporal convolutional networks for speech
and music detection in radio broadcast. In 20th International Society for Music
Information Retrieval Conference (ISMIR).

Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. (2018). Learning to generalize:
Meta-learning for domain generalization. In Proceedings of the AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA, vol. 32.

173

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hy-
perband: A novel bandit-based approach to hyperparameter optimization. The
Journal of Machine Learning Research, 18(1), 6765–6816.

Lidy, T. (2015). Spectral convolutional neural network for music classification. Tech.
rep., Music Information Retrieval Evaluation eXchange (MIREX) Challenge.

Lin, L., Wang, X., Liu, H., & Qian, Y. (2020). Guided learning for weakly-labeled
semi-supervised sound event detection. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, (pp. 626–630).

Liu, C., Jin, Z., Gu, J., & Qiu, C. (2017). Short-term load forecasting using a long
short-term memory network. In IEEE PES innovative smart grid technologies
conference Europe (ISGT-Europe), (pp. 1–6).

Lo, H.-Y., Wang, J.-C., & Wang, H.-M. (2010). Homogeneous segmentation and
classifier ensemble for audio tag annotation and retrieval. In IEEE International
Conference on Multimedia and Expo, Singapore, (pp. 304–309).

Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., & Yu, P. S. (2013). Transfer sparse
coding for robust image representation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, (pp. 407–414).

Lopez, J. A., Stemmer, G., Lopez Meyer, P., Singh, P., Del Hoyo Ontiveros, J., &
Cordourier, H. (2021). Ensemble of complementary anomaly detectors under
domain shifted conditions. In Proceedings of the Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE), Barcelona, Spain, (pp. 11–15).

Lu, R., & Duan, Z. (2017). Bidirectional GRU for sound event detection. Tech. rep.,
Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge.

Luo, L., Zhang, L., Wang, M., Liu, Z., Liu, X., He, R., & Jin, Y. (2021). A system for
the detection of polyphonic sound on a university campus based on CapsNet-
RNN. IEEE Access, 9, 147900–147913.

Marolt, M. (2015). Music/speech classification and detection submission for mirex
2015. Tech. rep., Music Information Retrieval Evaluation eXchange (MIREX)
Challenge.

Marolt, M. (2018). Music/speech classification and detection submission for
MIREX 2018. Tech. rep., Music Information Retrieval Evaluation eXchange
(MIREX) Challenge.

Martín-Morató, I., Mesaros, A., Heittola, T., Virtanen, T., Cobos, M., & Ferri,
F. J. (2019). Sound event envelope estimation in polyphonic mixtures. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, (pp. 935–939).

Masuyama, Y., Yatabe, K., Koizumi, Y., Oikawa, Y., & Harada, N. (2020). Phase
reconstruction based on recurrent phase unwrapping with deep neural net-
works. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, (pp. 826–830).

174

Matsuura, T., & Harada, T. (2020). Domain generalization using a mixture of
multiple latent domains. In Proceedings of the AAAI Conference on Artificial
Intelligence, New York, NY, USA, vol. 34, (pp. 11749–11756).

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O.
(2015). librosa: Audio and music signal analysis in python. In Proceedings of the
14th Python in Science Conference, Austin, Texas, USA, vol. 8, (pp. 18–25). Citeseer.

Meléndez-Catalán, B., Molina, E., & Gomez, E. (2018). Music and/or speech
detection MIREX 2018 submission. Tech. rep., Music Information Retrieval
Evaluation eXchange (MIREX) Challenge.

Meléndez-Catalán, B., Molina, E., & Gómez, E. (2019). Open broadcast media
audio from TV: A dataset of TV broadcast audio with relative music loudness
annotations. Transactions of the International Society for Music Information Retrieval,
2(1).

Meléndez-Catalán, B., Molina, E., & Gómez Gutiérrez, E. (2017). BAT: An open-
source, web-based audio events annotation tool. In Web Audio Conference, London,
UK.

Meléndez-Catalán, B., SL, B. L., Molina, E., & Gómez, E. (2020). Relative music
loudness estimation using temporal convolutional networks and a CNN feature
extraction front-end. In Proceedings of the 23rd International Conference on Digital
Audio Effects (DAFx), Vienna, Austria, vol. 5, (pp. 273–280).

Mesaros, A., Heittola, T., Diment, A., Elizalde, B., Shah, A., Vincent, E., Raj, B., &
Virtanen, T. (2017). DCASE 2017 challenge setup: Tasks, datasets and baseline
system. In Proceedings of the Detection and Classification of Acoustic Scenes and
Events Workshop (DCASE), Munich, Germany.

Mesaros, A., Heittola, T., & Virtanen, T. (2016). Metrics for polyphonic sound event
detection. Applied Sciences, 6(6), 162.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Miranda, E. R. (1995). An artificial intelligence approach to sound design. Computer
Music Journal, 19(2), 59–75.

Miyazaki, K., Komatsu, T., Hayashi, T., Watanabe, S., Toda, T., & Takeda, K.
(2020a). Convolution-augmented transformer for semisupervised sound event
detection. In Proceedings of the Detection and Classification of Acoustic Scenes and
Events Workshop (DCASE), Tokyo, Japan, (pp. 100–104).

Miyazaki, K., Komatsu, T., Hayashi, T., Watanabe, S., Toda, T., & Takeda, K. (2020b).
Weakly-supervised sound event detection with self-attention. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,
Spain, (pp. 66–70).

Moffat, D., & Sandler, M. (2019a). Machine learning multitrack gain mixing of
drums. In 147th Convention of the Audio Engineering Society, New York, NY, USA.

Moffat, D., & Sandler, M. B. (2019b). Approaches in intelligent music production.
In Arts, vol. 8, (p. 125). Multidisciplinary Digital Publishing Institute.

175

Moffat, D., Thalmann, F., & Sandler, M. B. (2018). Towards a semantic web
representation and application of audio mixing rules. In Proceedings of the 4th
Workshop on Intelligent Music Production, Huddersfield, UK.

Motiian, S., Jones, Q., Iranmanesh, S., & Doretto, G. (2017a). Few-shot adversarial
domain adaptation. Advances in Neural Information Processing Systems, 30.

Motiian, S., Piccirilli, M., Adjeroh, D. A., & Doretto, G. (2017b). Unified deep su-
pervised domain adaptation and generalization. In IEEE International Conference
on Computer Vision, Venice, Italy, (pp. 5715–5725).

MuSpeak Team (2015). MIREX muspeak sample dataset. http://mirg.city.ac.
uk/datasets/muspeak/ [Last accessed on 26-02-2021].

Ng, A. Y., et al. (1997). Preventing "overfitting" of cross-validation data. In
International Conference on Machine Learning (ICML), vol. 97, (pp. 245–253).

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). LibriSpeech: an ASR
corpus based on public domain audio books. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia,
(pp. 5206–5210).

Papadopoulos, H., & Peeters, G. (2007). Large-scale study of chord estimation
algorithms based on chroma representation and hmm. In International Workshop
on Content-Based Multimedia Indexing, Bordeaux, France, (pp. 53–60). IEEE.

Papakostas, M., & Giannakopoulos, T. (2018). Speech-music discrimination using
deep visual feature extractors. Expert Systems with Applications, 114, 334–344.

Parascandolo, G., Huttunen, H., & Virtanen, T. (2016). Recurrent neural networks
for polyphonic sound event detection in real life recordings. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
(pp. 6440–6444).

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V.
(2019). Specaugment: A simple data augmentation method for automatic speech
recognition. In Interspeech, Graz, Austria, (pp. 2613–2617).

Parvat, A., Chavan, J., Kadam, S., Dev, S., & Pathak, V. (2017). A survey of deep-
learning frameworks. In International Conference on Inventive Systems and Control
(ICISC), Coimbatore, Tamil Nadu, India, (pp. 1–7). IEEE.

Pearce, A., Brookes, T., & Mason, R. (2016). Audio Commons: Hierarchical on-
tology of timbral semantic descriptors. Tech. rep. https://www.audiocommons.
org/assets/files/AC-WP5-Surrey-D5.1%20Hierarchical%20ontology%20of%

20timbral%20semantic%20descriptors.pdf Accessed on 26-11-21.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word
representation. In Conference on Empirical Methods in Natural Language Processing,
Doha, Qatar, (pp. 1532–1543).

Perez-Gonzalez, E., & Reiss, J. (2009). Automatic gain and fader control for
live mixing. In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), New Paltz, NY, USA, (pp. 1–4).

176

http://mirg.city.ac.uk/datasets/muspeak/
http://mirg.city.ac.uk/datasets/muspeak/
https://www.audiocommons.org/assets/files/AC-WP5-Surrey-D5.1%20Hierarchical%20ontology%20of%20timbral%20semantic%20descriptors.pdf
https://www.audiocommons.org/assets/files/AC-WP5-Surrey-D5.1%20Hierarchical%20ontology%20of%20timbral%20semantic%20descriptors.pdf
https://www.audiocommons.org/assets/files/AC-WP5-Surrey-D5.1%20Hierarchical%20ontology%20of%20timbral%20semantic%20descriptors.pdf

Pestana, P. D., & Barbosa, A. (2012). Accuracy of itu-r bs. 1770 algorithm in
evaluating multitrack material. In 133rd Convention of the Audio Engineering
Society, San Francisco, CA, USA. Audio Engineering Society.

Phan, H., Koch, P., Katzberg, F., Maass, M., Mazur, R., & Mertins, A. (2017). Au-
dio scene classification with deep recurrent neural networks. In Interspeech,
Stockholm, Sweden, (pp. 3043–3047). International Speech Communication Asso-
ciation.

Phan, H., Maaß, M., Mazur, R., & Mertins, A. (2014). Random regression forests
for acoustic event detection and classification. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(1), 20–31.

Piczak, K. J. (2015). ESC: Dataset for environmental sound classification. In Pro-
ceedings of the 23rd ACM International Conference on Multimedia, Brisbane Australia,
(pp. 1015–1018).

Plakal, M., & Ellis, D. (2020). Yamnet. https://github.com/tensorflow/models/
tree/master/research/audioset/yamnet/ [Last accessed on 08-10-2021].

Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2008).
Dataset shift in machine learning. MIT Press.

Ramirez, M. M., Stoller, D., & Moffat, D. (2021). A deep learning approach to
intelligent drum mixing with the wave-u-net. Journal of the Audio Engineering
Society, 69(3), 142–151.

Ravanelli, M., Brakel, P., Omologo, M., & Bengio, Y. (2018). Light gated recurrent
units for speech recognition. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 2(2), 92–102.

Ravelli, E., Richard, G., & Daudet, L. (2010). Audio signal representations for
indexing in the transform domain. IEEE Transactions on Audio, Speech, and
Language Processing, 18(3), 434–446.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, (pp. 779–788).

Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 7263–7271).

Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category
models to new domains. In European Conference on Computer Vision, Heraklion,
Crete, Greece, (pp. 213–226). Springer.

Sainath, T. N., Vinyals, O., Senior, A., & Sak, H. (2015a). Convolutional, long
short-term memory, fully connected deep neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, (pp. 4580–4584).

Sainath, T. N., Weiss, R. J., Senior, A. W., Wilson, K. W., & Vinyals, O. (2015b).
Learning the speech front-end with raw waveform CLDNNs. In Interspeech,
Dresden, Germany.

177

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet/
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet/

Sajjadi, M., Javanmardi, M., & Tasdizen, T. (2016). Regularization with stochastic
transformations and perturbations for deep semi-supervised learning. Advances
in Neural Information Processing Systems, 29, 1163–1171.

Salamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data
augmentation for environmental sound classification. IEEE Signal Processing
Letters, 24(3), 279–283.

Salamon, J., MacConnell, D., Cartwright, M., Li, P., & Bello, J. P. (2017). Scaper:
A library for soundscape synthesis and augmentation. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY,
USA, (pp. 344–348).

Samuel, D., Ganeshan, A., & Naradowsky, J. (2020). Meta-learning extractors for
music source separation. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain, (pp. 816–820).

Scheirer, E., & Slaney, M. (1997). Construction and evaluation of a robust multifea-
ture speech/music discriminator. In IEEE International Conference on Acoustics,
Speech, and Signal processing (ICASSP), NW Washington, DC, United States, vol. 2,
(pp. 1331–1334).

Schlüter, J., Doukhan, D., & Meléndez-Catalán, B. (2018). MIREX challenge: Mu-
sic and/or speech detection. https://www.music-ir.org/mirex/wiki/2018:

Music_and/or_Speech_Detection [Last accessed on 14-08-2021].

Schlüter, J., & Grill, T. (2015). Exploring data augmentation for improved singing
voice detection with neural networks. In 16th International Society for Music
Information Retrieval Conference (ISMIR), Málaga, Spain, (pp. 121–126).

Schlüter, J., & Sonnleitner, R. (2012). Unsupervised feature learning for speech
and music detection in radio broadcasts. In Proceedings of the 15th International
Conference on Digital Audio Effects (DAFx), Trondheim, Norway.

Seetharaman, P., & Pardo, B. (2014). Crowdsourcing a reverberation descriptor
map. In Proceedings of the 22nd ACM international conference on Multimedia, New
York, NY, United States, (pp. 587–596).

Segal, Y., Fuchs, T. S., & Keshet, J. (2019). SpeechYOLO: Detection and localization
of speech objects. In Interspeech, Graz, Austria, (pp. 4210–4214).

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014).
Overfeat: Integrated recognition, localization and detection using convolutional
networks. In 2nd International Conference on Learning Representations (ICLR), Banff,
Alberta, Canada.

Seyerlehner, K., Pohle, T., Schedl, M., & Widmer, G. (2007). Automatic music detec-
tion in television productions. In Proceedings of the 10th International Conference
on Digital Audio Effects (DAFx), Bordeaux, France.

Shakeri, G., Brewster, S., Venkatesh, S., Moffat, D., Kirke, A., Miranda, E., Banerjee,
S., Street, A., Fachner, J., & Odell-Miller, H. (2021). Radiome: challenges during
the development of a real time tool to support people with dementia. In CHI
Conference on Human Factors in Computing Systems (CHI ’21), May 08–13, 2021,
Yokohama, Japan. doi: 10026.1/17584.

178

https://www.music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection
https://www.music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection
https://doi.org/10026.1/17584

Shi, B., Sun, M., Puvvada, K. C., Kao, C.-C., Matsoukas, S., & Wang, C. (2020). Few-
shot acoustic event detection via meta learning. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, (pp. 76–80).

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1), 1–48.

Sicilia, A., Zhao, X., & Hwang, S. J. (2021). Domain adversarial neural networks
for domain generalization: When it works and how to improve. arXiv preprint
arXiv:2102.03924.

Sifre, L. (2014). Rigid-motion scattering for image classification. PhD thesis, Ecole
Normale Superieure.

Snyder, D., Chen, G., & Povey, D. (2015). Musan: A music, speech, and noise
corpus. arXiv preprint arXiv:1510.08484.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance mea-
sures for classification tasks. Information processing & management, 45(4), 427–437.

Speer, R., & Lowry-Duda, J. (2017). Conceptnet at semeval-2017 task 2: Extending
word embeddings with multilingual relational knowledge. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver,
Canada, (pp. 85–89).

Spyridon, S. (2019). Audio equalisation using natural language. Ph.D. thesis, Birming-
ham City University.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1), 1929–1958.

Stables, R., Enderby, S., De Man, B., Fazekas, G., & Reiss, J. D. (2014). SAFE:
A system for extraction and retrieval of semantic audio descriptors. In 15th
International Society for Music Information Retrieval (ISMIR) Conference, Taipei,
Taiwan.

Stasis, S., Stables, R., & Hockman, J. (2016). Semantically controlled adaptive
equalisation in reduced dimensionality parameter space. Applied Sciences, 6(4),
116.

Steinmetz, C. J., & Reiss, J. D. (2021). pyloudnorm: A simple yet flexible loudness
meter in python. In 150th Convention of the Audio Engineering Society.

Stoller, D., Ewert, S., & Dixon, S. (2018). Wave-U-Net: A multi-scale neural network
for end-to-end audio source separation. In 19th International Society for Music
Information Retrieval Conference (ISMIR), Paris, France.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, (pp. 1–9).

Tarr, E. (2018). Hack Audio: An Introduction to Computer Programming and Digital
Signal Processing in MATLAB. Routledge.

179

Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NeurIPS), Long Beach, CA, USA, (pp. 1195–1204).

Thalmann, F., Thompson, L., & Sandler, M. (2018). A user-adaptive automated
dj web app with object-based audio and crowd-sourced decision trees. In Web
Audio Conference, Berlin, Germany.

Theodorou, T., Mporas, I., & Fakotakis, N. (2014). An overview of automatic audio
segmentation. International Journal of Information Technology and Computer Science
(IJITCS), 6(11), 1.

Thieling, L., Wilhelm, D., & Jax, P. (2021). Recurrent phase reconstruction using
estimated phase derivatives from deep neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario,
Canada, (pp. 7088–7092).

Tissier, J., Gravier, C., & Habrard, A. (2017). Dict2vec : Learning word embeddings
using lexical dictionaries. In Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, (pp. 254–263). Association for Computational
Linguistics.

Tiwari, S., Lakhotia, K., & Mulimani, M. (2021). Evaluating robustness of you only
hear once (YOHO) algorithm on noisy audios in the voice dataset. arXiv preprint
arXiv:2111.01205.

Torcoli, M., Freke-Morin, A., Paulus, J., Simon, C., & Shirley, B. (2019). Background
ducking to produce esthetically pleasing audio for TV with clear speech. In
146th Convention of the Audio Engineering Society, Dublin, Ireland.

Torcoli, M., Paulus, J., Kastner, T., & Uhle, C. (2021). Controlling the remixing of
separated dialogue with a non-intrusive quality estimate. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY,
USA, (pp. 91–95).

Turpault, N., Serizel, R., Shah, A., & Salamon, J. (2019). Sound event detection in
domestic environments with weakly labeled data and soundscape synthesis. In
Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), New York, NY, USA, (pp. 253–257).

Turpault, N., Serizel, R., Wisdom, S., Erdogan, H., Hershey, J. R., Fonseca, E.,
Seetharaman, P., & Salamon, J. (2021). Sound event detection and separation:
a benchmark on desed synthetic soundscapes. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario, Canada, (pp.
840–844).

Tzanetakis, G., & Cook, P. (2000). Marsyas: A framework for audio analysis.
Organised sound, 4(3), 169–175.

Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals.
IEEE Transactions on Speech and Audio processing, 10(5), 293–302.

UK Digital Production Partnership (DPP) (2017). Technical specification for the
delivery of television programmesas as-11 files v5.0. Sec. 2.2.1. Loudness Terms.

180

Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning.
Machine Learning, 109(2), 373–440.

Venkatesh, S. (2021). Data generators with keras and tensor-
flow on google colab. https://satvikvenkatesh.medium.com/

data-generators-with-keras-and-tensorflow-on-google-colab-65fbd60a941a

[Last accessed on 09-03-2022].

Venkatesh, S., Moffat, D., Kirke, A., Shakeri, G., Brewster, S., Fachner, J., Odell-
Miller, H., Street, A., Farina, N., Banerjee, S., et al. (2021a). Artificially synthe-
sising data for audio classification and segmentation to improve speech and
music detection in radio broadcast. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Toronto, Ontario, Canada, (pp. 636–640).
doi: 10.1109/ICASSP39728.2021.9413597.

Venkatesh, S., Moffat, D., & Miranda, E. (2019). Radiome: Artificially intelligent
radio for people with dementia. In Proceedings of DMRN+14: Digital Music
Research Network One-Day Workshop, London, UK.

Venkatesh, S., Moffat, D., & Miranda, E. R. (2021b). Investigating the effects of
training set synthesis for audio segmentation of radio broadcast. Electronics,
10(7), 827. doi: 10.3390/electronics10070827.

Venkatesh, S., Moffat, D., & Miranda, E. R. (2022a). Word embeddings for auto-
matic equalization in audio mixing. Journal of the Audio Engineering Society, 70(9),
753–763. doi: 10.17743/jaes.2022.0047.

Venkatesh, S., Moffat, D., & Miranda, E. R. (2022b). You only hear once: a YOLO-
like algorithm for audio segmentation and sound event detection. Applied
Sciences, 12(7), 3293. doi: 10.3390/app12073293.

Venkatesh, S., Wichern, G., Subramanian, A., & Le Roux, J. (2022c). Disentangled
surrogate task learning for improved domain generalization in unsupervised
anomalous sound detection. Tech. rep., Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge.

Vesperini, F., Gabrielli, L., Principi, E., & Squartini, S. (2019). Polyphonic sound
event detection by using capsule neural networks. IEEE Journal of Selected Topics
in Signal Processing, 13(2), 310–322.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning.
Artificial intelligence review, 18(2), 77–95.

Wang, D., Vogt, R., Mason, M., & Sridharan, S. (2008). Automatic audio segmen-
tation using the generalized likelihood ratio. In 2nd International Conference
on Signal Processing and Communication Systems, Gold Coast, Australia, (pp. 1–5).
IEEE.

Wang, Y., Salamon, J., Bryan, N. J., & Bello, J. P. (2020). Few-shot sound event de-
tection. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, (pp. 81–85).

181

https://satvikvenkatesh.medium.com/data-generators-with-keras-and-tensorflow-on-google-colab-65fbd60a941a
https://satvikvenkatesh.medium.com/data-generators-with-keras-and-tensorflow-on-google-colab-65fbd60a941a
https://doi.org/10.1109/ICASSP39728.2021.9413597
https://doi.org/10.3390/electronics10070827
https://doi.org/10.17743/jaes.2022.0047
https://doi.org/10.3390/app12073293

Wichern, G., Chakrabarty, A., Wang, Z.-Q., & Le Roux, J. (2021). Anomalous sound
detection using attentive neural processes. In IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, (pp.
186–190).

Wichern, G., Wishnick, A., Lukin, A., & Robertson, H. (2015). Comparison of
loudness features for automatic level adjustment in mixing. In 139th Convention
of the Audio Engineering Society, New York, NY, USA. Audio Engineering Society.

Williams, D., & Brookes, T. (2007). Perceptually-motivated audio morphing:
Brightness. In 122nd Convention of the Audio Engineering Society, Vienna, Austria.

Williams, D., & Brookes, T. (2009). Perceptually-motivated audio morphing:
softness. In 126th Convention of the Audio Engineering Society, Munich, Germany.

Witowski, K., & Stander, N. (2012). Parameter identification of hysteretic models
using partial curve mapping. In 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Indianapolis, Indiana, (p. 5580).

Wright, P. S. (1999). Short-time fourier transforms and wigner-ville distributions
applied to the calibration of power frequency harmonic analyzers. IEEE Transac-
tions on Instrumentation and Measurement, 48(2), 475–478.

Wu, C.-H., Chiu, Y.-H., Shia, C.-J., & Lin, C.-Y. (2005). Automatic segmentation and
identification of mixed-language speech using delta-BIC and LSA-based GMMs.
IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 266–276.

Xu, Y., Du, J., Dai, L.-R., & Lee, C.-H. (2014). A regression approach to speech
enhancement based on deep neural networks. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(1), 7–19.

Xue, H., Li, H., Gao, C., & Shi, Z. (2010). Computationally efficient audio segmen-
tation through a multi-stage BIC approach. In 3rd International Congress on Image
and Signal Processing, Yantai, China, vol. 8, (pp. 3774–3777). IEEE.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights into imaging, 9(4),
611–629.

Yan, J., Song, Y., Dai, L.-R., & McLoughlin, I. (2020). Task-aware mean teacher
method for large scale weakly labeled semi-supervised sound event detection. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, (pp. 326–330).

Yang, J. H., Kim, N. K., & Kim, H. K. (2018). SE-ResNet with GAN-based data
augmentation applied to acoustic scene classification. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events Workshop (DCASE), Surrey,
UK.

Yang, L., Hao, J., Hou, Z., & Peng, W. (2020). Two-stage domain adaptation for
sound event detection. In Proceedings of the Detection and Classification of Acoustic
Scenes and Events Workshop (DCASE), Tokyo, Japan, (pp. 230–234).

182

Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in gradient
descent learning. Constructive Approximation, 26(2), 289–315.

Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions.
In International Conference on Learning Representations (ICLR), San Diego, CA, USA.

Zacharakis, A., Pastiadis, K., Reiss, J. D., & Papadelis, G. (2012). Analysis of musi-
cal timbre semantics through metric and non-metric data reduction techniques.
In Proceedings of the 12th International Conference on Music Perception and Cognition
(ICMPC12) and the 8th Triennial Conference of the European Society for the Cognitive
Sciences of Music (ESCOM 08), Thessaloniki, Greece, (pp. 1177–1182).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, Zurich, Switzerland, (pp.
818–833). Springer.

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond em-
pirical risk minimization. In International Conference on Learning Representations
(ICLR), Vancouver, Canada.

Zhang, X., Yu, Y., Gao, Y., Chen, X., & Li, W. (2020). Research on singing voice
detection based on a long-term recurrent convolutional network with vocal
separation and temporal smoothing. Electronics, 9(9), 1458.

Zhang, Z., & Schuller, B. (2012). Semi-supervised learning helps in sound event
classification. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, (pp. 333–336).

Zheng, T., Seetharaman, P., & Pardo, B. (2016). Socialfx: Studying a crowdsourced
folksonomy of audio effects terms. In Proceedings of the 24th ACM international
conference on Multimedia, (pp. 182–186).

Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint
arXiv:1904.07850.

Zhou, Y.-T., & Chellappa, R. (1988). Computation of optical flow using a neural
network. In IEEE International Conference on Neural Networks, San Diego, CA,
USA, (pp. 71–78).

Zsebők, S., Nagy-Egri, M. F., Barnaföldi, G. G., Laczi, M., Nagy, G., Vaskuti, É.,
& Garamszegi, L. Z. (2019). Automatic bird song and syllable segmentation
with an open-source deep-learning object detection method–a case study in the
collared flycatcher. Ornis Hungarica, 27(2), 59–66.

183

184

	Deep Learning for Audio Segmentation and Intelligent Remixing
	Recommended Citation

	tmp.1730150077.pdf.YZQIS

