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Abstract 40 

 41 

This study investigates the relationship between fine resolution, local-scale biophysical and 42 

socioeconomic contexts within which land degradation occurs, and the human responses to it. 43 

The research draws on experimental data collected under different territorial and socioeconomic 44 

conditions at 586 field sites in 5 Mediterranean countries (Spain, Greece, Turkey, Tunisia and 45 

Morocco). We assess the level of desertification risk under various land management practices 46 

(terracing, grazing control, prevention of wildland fires, soil erosion control, soil water 47 

conservation, sustainable farming, protected areas and financial subsidies to farms) taken as 48 

possible responses to land degradation. A data mining approach incorporating principal 49 

component analysis, non-parametric correlations, multiple regression and canonical analysis, 50 

was developed to identify spatial relationships between land management conditions, local 51 

background (assessed using 40 biophysical and socioeconomic indicators) and desertification 52 

risk. Our analysis identified distinct relationships between the level of desertification 53 

experienced and the underlying socioeconomic context, suggesting that the effectiveness of 54 

responses to land degradation is strictly dependent on the local biophysical and socioeconomic 55 

context. Assessing the latent relationship between land management practices and the 56 

biophysical/socioeconomic attributes characterizing areas exposed to different levels of 57 

desertification risk proved to be an indirect measure of the effectiveness of field actions 58 

contrasting land degradation. 59 

 60 

Key words: Multivariate statistics, Human pressure, Indicators, Response assemblage, 61 

Mediterranean region. 62 

63 



1. Introduction 64 

 65 

Land Degradation is a complex phenomenon occurring when specific biophysical, economic, 66 

social, cultural and institutional factors act synergistically to produce and entrench 67 

desertification over the long term (Reynolds et al., 2011). Unsustainable use of natural 68 

resources, weak economic development and policy inaction are relevant drivers of land 69 

degradation and reflect the complex relationship between local ecological conditions, 70 

socioeconomic dynamics and policy action (Bisaro et al., 2013). Desertification results in a 71 

progressive decline of land productivity and ecosystem functions, and is a key issue on the 72 

global policy agenda (Stringer and Harris, 2014). Desertification has negative impacts on food 73 

security, biodiversity and quality of life (Glenn et al., 1998). Abuse or misuse of land, drives to 74 

regional disparities in the availability of natural resources and results in a spatially unbalanced 75 

development (Johnson and Lewis, 2007).  76 

In the last decades, desertification risk has increased in many parts of the world, with land 77 

degradation now becoming severe in both emerging and developed countries (Thomas et al., 78 

2012; Izzo et al., 2013; Yang et al., 2013). In the Mediterranean basin, Land Degradation (LD) 79 

is the result of the interplay between natural and socioeconomic systems (Wilson and Juntti, 80 

2005). This process involves a number of biophysical attributes of the landscape (topography, 81 

climate, soil, vegetation) and conditions deriving from human activity (e.g. land-use 82 

transformations, agricultural intensification, land abandonment, population density, settlement 83 

distribution, industry and tourism development).  84 

A large part of the Mediterranean region is vulnerable to LD (Hill et al., 2008). While desert 85 

land is relatively scarce, areas with semi-arid climate and socioeconomic conditions which 86 

negatively impact soil fertility, biodiversity and ecosystem services are rather common. In such 87 

contexts, landscapes have lost part of their ecological and economic potential (Basso et al., 88 

2010). LD processes in the Mediterranean basin are highly variable in time and space, closely 89 

influenced by the different speeds of change in environmental and socioeconomic conditions 90 

(Ibanez et al., 2008). 91 

Studies that have addressed the most important causes and consequences of LD from a socio-92 

environmental perspective have identified some of the core proximate drivers and underlying 93 

factors of change which lead to desertification risk (Zdruli, 2013). Salvati et al. (2015) have 94 

proposed an approach to assess the multiple relationships between biophysical factors and 95 

socioeconomic attributes in a representative sample of Mediterranean sites, identifying 96 

diverging spatial patterns for biophysical and human drivers of LD, with higher variability 97 



observed for economic and social indicators. Gaps in knowledge on the role of system 98 

complexity in shaping land vulnerability to desertification, however, have often been 99 

underestimated (Briassoulis, 2015). Research often focused on single - albeit important - factors 100 

such as soil degradation, whilst diachronic approaches which draw on data at a national or 101 

regional scale with an adequate spatial resolution are relatively scarce (Kosmas et al., 2015). 102 

Indicator-based approaches have been developed mainly for permanent monitoring of 103 

biophysical conditions characterizing LD processes (Ferrara et al., 2012). Whilst development 104 

of proper indicators and decision support systems to inform mitigation policies is a research 105 

priority (Glenn et al., 1998), further investigation is required to identify a comparative 106 

framework for assessing the impact of regional-scale drivers, and enable the importance of 107 

biophysical and socioeconomic factors to be ranked (Salvati et al., 2015). 108 

Based on the issues discussed above, rethinking a non-reductionist approach to LD in relation 109 

to the characteristic territorial dimensions and the most suitable policy responses is imperative 110 

(Sabbi and Salvati, 2014). Emphasis should be given to the social, demographic, economic, 111 

political and cultural processes that shape LD in any given area, and to the responses that 112 

society, in that specific local context, is able to implement (Iosifides and Politidis, 2005). 113 

According to Briassoulis (2015), "human response to land degradation can be considered any 114 

planned (formal) or unplanned (informal) actions that purport to directly and explicitly tackle 115 

it and/or address other individual and collective socioeconomic goals in affected socio-116 

ecological systems". Depending on the prevailing socioeconomic conditions, stakeholders and 117 

other actors may have no option but to continue with business as usual (no remedial action), or 118 

to engage in resource-intensive activities (negative responses). Conversely, in some local 119 

contexts, stakeholders may be able to undertake actions to mitigate soil and land degradation 120 

(positive responses). Positive responses contribute to sustainable development of the local 121 

system preserving critical ecological functions and relevant socioeconomic attributes (Kelly et 122 

al., 2015). 123 

Three key issues should be considered when effective responses to LD are proposed. First, a 124 

policy response or the implementation of a policy instrument does not always result in the 125 

intended impact in every context. Second, responses may have multiple impacts on the target 126 

environment and third, a holistic approach (as opposed to a target-specific or process-specific 127 

approach) is required in order to cope with a complex and multifaceted phenomenon such as 128 

LD (Salvati et al., 2015). The non-linear, highly-diversified nature of LD processes justifies the 129 

implementation of responsive and locally-adaptable policy instruments that are suitable to 130 

address place-specific environmental patterns (Wilson and Juntti, 2005). Previous studies have 131 



also suggested that the lack of relevant policy, due to lassez-faire practices or weak decision-132 

making processes can be considered as tangible policy implementation, although inaction costs 133 

have been insufficiently acknowledged and investigated (Ferrara et al., 2012). As a 134 

consequence, policy implementation is a relatively fuzzy decision-making spectrum of (more 135 

or less) integrated measures, instead of a clear process of well-informed and locally-specific 136 

decision-making (Briassoulis, 2005).  137 

In fact, to be effective on the ground, responses have take account of diverse components which 138 

are operating at various spatial scales and temporal speeds, and their effectiveness will therefore 139 

depend on their ability to respond to the relationships amongst these components. An integrative 140 

approach based on the concept of ‘response assemblage’ was recently proposed with the aim of 141 

identifying various types of interventions to combat LD (Briassoulis, 2015). Response 142 

assemblages reflect the need for humans to use natural resources sustainably to satisfy societal 143 

needs and are intended as "geographically and historically unique, provisional, open, territorial 144 

wholes, complex compositions emerging from processes of assembling biophysical and human 145 

components" (Briassoulis, 2015). A response assemblage operates at multiple spatial scales and 146 

is characterized by specific environmental attributes, land-use regimes and socioeconomic 147 

profiles. 148 

Apart from the contribution mentioned above, frameworks identifying responses to LD are still 149 

relatively scarce (Thomas et al., 2012; Zdruli, 2013). Understanding place-specific LD 150 

processes, and identifying the spatial relationship between drivers of LD at different 151 

geographical scales, have allowed designing more effective mitigation strategies (MacDonald 152 

et al., 2000; Gellrich et al., 2007; Koulouri and Giourga, 2007; Corbelle Rico et al., 2012). 153 

Since place-specific factors and socioeconomic changes at multiple spatial and temporal scales 154 

have major impacts on LD responses (Sluiter and De Jong, 2007; Weissteiner et al., 2011; Kairis 155 

et al., 2014), stakeholder participation in the design of mitigation responses is crucial in the 156 

fight against desertification (Briassoulis, 2005). Iosifides and Politidis (2005) investigated the 157 

local context and its impact on individual stakeholder decision-making, and highlighted the 158 

importance of an integrated analysis of biophysical and socioeconomic drivers of change in 159 

order to identify and understand responses to LD. An in-depth knowledge of the latent 160 

relationship between LD drivers and components of the specific local human-biophysical 161 

system is an essential baseline when implementing Sustainable Land Management (SLM) 162 

strategies (Zdruli, 2013). Salvati et al. (2015) introduced a comprehensive approach to the 163 

analysis of the spatial relationship between biophysical and socioeconomic components of a 164 

socio-ecological system based on data mining techniques. This framework was applied to a 165 



number of rural districts in southern Europe exposed to different levels of desertification risk 166 

and allows us to quantify the main environmental and socioeconomic impacts on land. Based 167 

on this information, mitigation policies and adaptation strategies for locally-based LD processes 168 

have been proposed (Kosmas et al., 2015). 169 

The study reported in this paper contributes to this research frame by illustrating an exploratory 170 

framework based on data mining techniques applied to a number of indicators that assesses 171 

biophysical and socioeconomic conditions at 586 Mediterranean field sites exposed to variable 172 

levels of desertification risk, and where different responses to LD have been implemented. 173 

Responses to LD form a set of actions targeting specific environmental problems or coping with 174 

undesirable conditions (Bakker et al., 2005; Strijker, 2005; Sluiter and De Jong, 2007). 175 

Environmental legislation, economic incentives, customary rules and SLM practices were 176 

frequently considered as candidate responses to LD (Thomas et al., 2012; Zdruli, 2013; Kelly 177 

et al., 2015). In this study, 8 practical actions covering the abovementioned issues (terracing, 178 

grazing control, wildland fire prevention, soil erosion control, soil water conservation, 179 

sustainable farming, protected areas, financial subsidies to farms) were selected as relevant 180 

examples of candidate responses to LD in the studied areas (Kosmas et al., 2015) and were 181 

correlated with the local context profiled using 40 biophysical and socioeconomic indicators 182 

(Salvati et al., 2015). 183 

The aims of this study were (i) to investigate spatial occurrence and intensity of candidate 184 

responses to LD identifying possible 'response assemblages' at the field scale, (ii) to correlate 185 

the occurrence and intensity of candidate responses to LD with the level of desertification risk 186 

and (iii) to identify spatial relationships between candidate responses to LD and 187 

biophysical/socioeconomic contexts at each field site. The study contributes to the 188 

identification of practical actions and policy measures against LD using a statistical procedure 189 

which is robust, simple and adaptable to different environmental and socioeconomic conditions. 190 

The proposed approach is flexible to changes in background and response indicators. An 191 

enriched set of indicators can be used covering relevant candidate responses to LD under 192 

different territorial contexts. Data mining is a promising tool for ascertaining the spatial 193 

configuration of factors shaping desertification risk (Ferrara et al., 2016) and allows for an 194 

indirect evaluation of the effectiveness of land management actions in LD mitigation. 195 

 196 

2. Materials and methods 197 

 198 

2.1. Study area 199 



 200 

A total of 586 field sites were selected in 5 Mediterranean regions. Two areas are situated in 201 

European Union (EU) member states (Greece and Spain) and the remaining three areas are in 202 

countries which are not part of the EU (Turkey, Tunisia, Morocco). Specifically, the study sites 203 

are: (i) Crete island, southern Greece, (ii) Guadalentin basin, south-eastern Spain, (iii) Eskisehir 204 

plain, Turkey, (iv) Zeuss Koutine, Tunisia and (v) Mamora Sehoul, Morocco. Each study site 205 

covers a surface area ranging between 100 km2 and 150 km2 and includes a number of 206 

individual field sites. 207 

Field sites were representative of a variety of biophysical and socioeconomic conditions typical 208 

of Mediterranean rural landscapes. Data were collected as a part of the extensive fieldwork 209 

carried out through the DESIRE research project, financed by European Commission (see 210 

Kosmas et al., 2015 and references therein). The field sites are located in areas affected by 211 

variable degrees of land degradation, due to their differing levels of soil erosion, salinization, 212 

compaction, sealing, contamination, water stress, overgrazing, wildfires and anthropogenic 213 

pressures (population growth, tourism development, industrialization, depopulation, land 214 

abandonment). In 80% of the study sites, climatic conditions are semi-arid or dry with rainfall 215 

ranging between 200 and 600 mm. Reference evapotranspiration > 800 mm (sensu Penman) 216 

was observed in the majority of field sites. Soils are formed mainly on sedimentary and 217 

unconsolidated parent materials. Soil organic matter content in the soil surface has been 218 

identified as low to moderate (0.5%-1.5%) in most of the study sites. Dominant vegetation 219 

cover types include cereals, olives, vineyards, garden crops and cotton. The agricultural 220 

holdings are characterized as owner-farmed in 58% of the sites with farm size ranging from 221 

less than 2 hectares to more than 100 ha, and there is a high degree of land fragmentation 222 

(Salvati et al., 2015). 223 

 224 

2.2. Data collection 225 

 226 

Data were collected at the scale of field sites, extending 0.5 to 20 ha and having homogeneous 227 

soil, topography and land management (Kairis et al., 2014). Field sites were identified from 228 

topographic maps and/or ortho-photographs in 400 m grids by applying a systematic sampling 229 

design, with precise location being pin-pointed using a GPS (Ferrara et al., 2016). Most 230 

information were collected directly from land owners (Kosmas et al., 2015). A digital 231 

questionnaire and guidance notes were compiled defining each elementary variable and 232 

assessment methodology with the aim of harmonizing data collection across field sites (see 233 



Salvati et al., 2015 and references therein for technical details). A total of 49 variables with no 234 

missing values were derived from information collected on the field. 235 

Values for each variable collected were transformed into a scale indicator (with scores ranging 236 

between 1 and 2) describing the (positive or negative) relationship with LD. Increasing scores 237 

indicate a higher contribution to land degradation (Kosmas et al., 2015). Existing classification 238 

systems (Rubio and Bochet, 1998), reference research frameworks (Lavado Contador et al., 239 

2009) and expert opinion were used to set up the scoring system. Scores are suitable to scale 240 

and homogenize the values of the studied variables to a comparable range allowing comparison 241 

across space or between different research dimensions (Ferrara et al., 2012). 242 

 243 

2.3. Indicators 244 

 245 

A comprehensive set of 40 'state' and 'pressure' indicators assessing LD factors and describing 246 

biophysical and socioeconomic conditions where remedial interventions are required to prevent 247 

desertification risk were prepared according to Kosmas et al. (2015) and Salvati et al. (2015). 248 

Candidate indicators were selected by (i) reviewing the existing literature (Rubio and Bochet, 249 

1998; Wilson and Juntti, 2005; Basso et al., 2010; Kairis et al., 2014; Kosmas et al., 2015), (ii) 250 

consulting with stakeholders (land users/managers, politicians and research groups working on 251 

LD issues at both national and study site level) and (iii) using scientific, technical or planning 252 

reports, including National or Regional Action Plans to Combat Desertification. Indicators (list 253 

in Table 1, Supplementary materials, and technical details in Table 2, Supplementary materials) 254 

were classified into 9 dimensions (4 dimensions assessing biophysical aspects and the 255 

remaining 5 dimensions quantifying socioeconomic factors): (a) climate (4 indicators), (b) soil 256 

(10), (c) vegetation (3), (d) water runoff and fires (3), (e) agriculture (5), (f) cultivation practices 257 

and husbandry (6), (g) land management (10), (h) water use (2) and (i) demography and tourism 258 

(4). The overall level of desertification risk in each site was derived according to the 259 

Environmentally Sensitive Area (ESA) approach (Lavado Contador et al., 2009), originally 260 

produced by EU-funded Mediterranean Desertification and Land Use (MEDALUS) project 261 

(Ferrara et al., 2012). 262 

Eight indicators (protected areas, terracing, grazing control, fire prevention, economic subsidies 263 

to farms, sustainable farming, soil erosion control and soil water conservation) were used to 264 

assess land management practices or policy actions with a (supposed) positive impact on LD 265 

(Sabbi and Salvati, 2014). These practices were regarded as important interventions against 266 

desertification in the study areas and were classified as candidate responses to LD (Salvati et 267 



al., 2015). In this sense, response indicators considered in this study cover a representative set 268 

of actions undertaken for sustainable land management, landscape conservation or 269 

environmental quality protection (Kosmas et al., 2015). However, the selected response 270 

indicators are possibly not exhaustive of the entire set of candidate responses to LD since other 271 

practices/actions can be important in different territorial contexts. 272 

 273 

2.4. Statistical analysis 274 

 275 

A data mining strategy incorporating Principal Component Analysis, Spearman correlations, 276 

step-wise multiple regression, non-parametric Mann-Whitney inference and Canonical 277 

Correlation Analysis was run on the full sample (n = 586 observations). The multivariate 278 

techniques considered here were aimed at (i) assessing variety of local socio-ecological 279 

systems, (ii) identifying indicators associated with the level of desertification risk, and (iii) 280 

evaluating spatial relationships between candidate responses to LD and the related 281 

biophysical/socioeconomic background. The indicators considered in each statistical analysis 282 

are listed in Table 1. 283 

To explore multiple spatial relationships between response indicators, a Principal Component 284 

Analysis (PCA) was run on a data matrix including values of all response indicators at each of 285 

the 586 field sites. Relevant components with eigenvalue > 1 were analyzed. Non-parametric 286 

Spearman rank tests were run with the aim of correlating pair-wise response indicators and 287 

biophysical/socioeconomic indicators profiling field sites. Significance was set up at p < 0.05 288 

after Bonferroni's correction for multiple comparisons. 289 

A multiple linear regression model was run to identify response indicators most associated with 290 

the level of desertification risk in each field site. The model was developed using a forward 291 

stepwise approach with response indicators as predictors and the level of desertification risk as 292 

the dependent variable. Predictors were included in the model when the p-level associated to 293 

the respective Fisher-Snedecor test was below 0.01. Results of the regression model were 294 

illustrated using standardized coefficients and tests of significance for each indicator (an overall 295 

Fisher-Snedecor's F-statistic testing for the null-hypothesis of non significant model and a 296 

Student’s t-statistic testing for the null hypothesis of non significant regression coefficient). A 297 

Durbin-Watson statistic testing for the null hypothesis of serially uncorrelated errors was 298 

applied separately to regression residuals. 299 

Response indicators were analyzed separately using non-parametric Mann-Whitney U statistics 300 

testing for significant differences (p < 0.05) in the two EU countries (Greece and Spain) 301 



compared with the three Mediterranean countries outside of the EU (Morocco, Tunisia, 302 

Turkey). This statistic analyzes the occurrence and intensity of different land management 303 

actions/practices within and outside the European Union, providing an indirect evaluation of 304 

the effectiveness of some EU policies relevant to LD (e.g. farm subsidies). A Canonical 305 

Correlation Analysis (CCA) was finally run to investigate the spatial relationship between the 306 

20 biophysical indicators (or the 20 socioeconomic indicators) and the 8 response indicators at 307 

the spatial scale of field site. The general objective of the CCA is to combine two sets of 308 

indicators (e.g. biophysical indicators vs land management actions; socioeconomic indicators 309 

vs land management actions) into a common structure formed by few factors (roots) that explain 310 

a high proportion of the matrices' variance. The roots' structure was analyzed on the basis of 311 

the correlation coefficients with input indicators. The final aim of the CCA was to summarize 312 

the results derived from previous analysis' steps providing a comprehensive overview of the 313 

complex spatial patterns within the studied indicators, and the spatial relationship between 314 

desertification risk, local context and candidate responses to LD. 315 

 316 

3. Results 317 

 318 

3.1. Principal Component Analysis 319 

 320 

The PCA run on the 8 response indicators at the spatial scale of field site extracted 3 relevant 321 

components explaining together more than 65% of the total variance (Table 1). Component 1 322 

accounts for 28.5% of the total variance and was correlated positively with soil erosion control 323 

measures, soil water conservation measures and the extent of protected areas. Component 2 324 

accounts for 19.5% of the total variance with positive loadings assigned to terracing and farm 325 

subsidies and a negative loading assigned to fire prevention. Component 3 accounts for 17% of 326 

the total variance and outlines the counter-correlation between sustainable farming and grazing 327 

control. Figure 1 illustrates the position of each field site over the factorial plane based on 328 

components 1 and 2. Component 1 discriminates field sites mainly within non-EU countries 329 

(Tunisia, associated with negative or slightly positive scores; Morocco and Turkey associated 330 

exclusively with highly positive scores); component 2 discriminates field sites in EU countries 331 

(Greece and Spain, receiving positive scores on average) from sites situated in non-EU 332 

countries (receiving negative scores on average).  333 

 334 

3.2. Non-parametric correlations 335 



 336 

A non-parametric correlation analysis investigating pair-wise relationships between the spatial 337 

distribution of response indicators and biophysical or socioeconomic attributes was illustrated 338 

in Table 3(Supplementary materials). The level of desertification risk in each field site was 339 

correlated positively with the extent of protected areas, fire prevention and grazing control. The 340 

remaining 5 response indicators were not associated with desertification risk. Fire prevention 341 

was the response indicator with the largest number of significant correlations with biophysical 342 

and socioeconomic indicators at the field site scale (78%) preceding sustainable farming (68%) 343 

and protected areas (58%). Responses totaling an intermediate number of significant 344 

correlations with context indicators were grazing control (54%) and farm subsidies (49%). Soil 345 

water conservation measures (46%), terracing (44%) and soil erosion control measures (42%) 346 

showed a lower percentage of significant correlations in respect to the other response indicators. 347 

Level of fire prevention was found relatively high in field sites with medium-high population 348 

density and positive demographic growth rate, tourism intensity and net farm income. By 349 

contrast, level of fire prevention was low in areas characterized by semi-arid climate, poor soils, 350 

moderate-low plant cover, land fragmentation and small farm size. Based on these evidences, 351 

level of fire prevention seems to increase in wealthier rural contexts with suitable conditions 352 

for cropping. Similar results were found for sustainable farming, a practice frequently observed 353 

in contexts with good climate conditions and farms with young owners and high returns. 354 

Protected areas were associated to contexts with good soil and climate quality, being the highest 355 

in sites with considerable soil depth and water storage capacity and medium-high plant cover. 356 

Protected areas were preferentially observed in areas with stable or moderately increasing 357 

population growth, sustainable farming (depending on tillage depth, intensity and direction) 358 

and moderate-low rate of land abandonment.  359 

Grazing control was a practice more frequently observed in semi-arid and arid land with low-360 

quality soils and in local contexts with high grazing intensity, land abandonment and 361 

fragmentation. Farm subsidies were associated with biophysical and socioeconomic indicators 362 

reflecting place-specific factors more evidently than regional environmental conditions. Soil 363 

water conservation measures were especially observed in rural sites with a young population 364 

structure and where sustainable farm practices are routinely applied. Terracing was mainly 365 

observed under semi-arid and arid climate regimes and in socioeconomic contexts with intense 366 

grazing, high land ownership rate, low tourism intensity and high land abandonment rates. 367 

Finally, soil erosion control measures were preferentially observed in areas with high risk of 368 



soil erosion, low plant cover, high grazing intensity, parallel employment of farmers in non-369 

agricultural sectors, depopulation and land abandonment. 370 

 371 

3.3. Multiple regression model 372 

 373 

Results of a step-wise multiple regression with level of desertification risk as the dependent 374 

variable and response indicators as predictors are illustrated in Table 2. The best regression 375 

model incorporates four predictors with adjusted R2 = 0.25 and a significant Fisher-Snedecor F 376 

test. Model's outcomes are in partial agreement with the findings collected from the non-377 

parametric Spearman analysis (section 3.2). Protected areas and grazing control were the 378 

predictors with the highest regression coefficient, preceding terracing and farm subsidies. 379 

Desertification risk was higher in field sites with extensive terraces and economic subsidies, 380 

decreasing in sites with protected areas and high grazing control. 381 

 382 

3.4. Non-parametric inference 383 

 384 

Results of the pair-wise non-parametric Mann-Whitney U test comparing the spatial 385 

distribution and intensity of response indicators in EU (n = 276 sites) and non-EU countries (n 386 

= 310 sites) indicate that 4 indicators out of 8 were highly different (p < 0.0001) in the two 387 

groups of countries (grazing control: adj-Z = 11.5; fire prevention: adj-Z = 21.5; farm subsidies: 388 

adj-Z = -14.1; protected areas: adj-Z = 7.1). Frequency of sustainable farming (adj-Z = -3.3) 389 

and terracing (adj-Z = 3.9) was different (0.001 < p < 0.05) between EU and non-EU countries. 390 

Two indicators (soil erosion control measures: adj-Z = 0.2; soil water conservation measures: 391 

adj-Z = -1.7) show a homogeneous distribution (p > 0.05) in both EU and non-EU countries. 392 

 393 

3.5. Canonical correlation analysis 394 

 395 

A separate Canonical Correlation Analysis (CCA) was run on the standardized data matrices 396 

respectively composed of 20 biophysical indicators (Table 3) and 20 socioeconomic indicators 397 

(Table 4), each contrasted with the 8 response indicators observed at the spatial scale of field 398 

site. The CCA assessing biophysical indicators extracted 7 roots respectively with 59.6% (left 399 

set of input variables) and 94.2% (right set of input variables) in total variance. Each root 400 

identified specific response indicators associated with a restricted number of context indicators. 401 

Root 1 (respectively 12% and 21% in total variance) was correlated positively with fire 402 



prevention and negatively with farm subsidies. The biophysical indicators correlated with Root 403 

1 were soil texture and soil water storage capacity (positive coefficients), potential 404 

evapotranspiration and rainfall erosivity (negative coefficients). Root 2 (13% and 16% in total 405 

variance) was correlated positively with terracing, grazing control, soil drainage and 4 climate 406 

indicators (rainfall, aridity index, potential evapotranspiration and rainfall seasonality). The 407 

loading's structure of this root suggests that grazing control and terracing are actions strictly 408 

dependent on the biophysical context. Root 3 (12% and 19% in total variance) was correlated 409 

positively with soil erosion control measures and sustainable farming, in turn associated with 410 

the overall degree of soil erosion and runoff water storage (positive coefficients), rainfall and 411 

aridity index (negative coefficients). The structure of root 3 indicates that application of soil 412 

erosion control measures is dependent on the overall degree of soil erosion. Root 4 (6% and 413 

12% in total variance) was correlated positively with farm subsidies, grazing control and rainfall 414 

erosivity. Negative coefficients to root 5 (8% and 13% in total variance) were assigned to soil 415 

water conservation measures and vegetation cover. Root 6 (5% and 6% in total variance) 416 

outlines the association between extent of protected areas and dominant use of land at each site: 417 

protected areas were typically associated with priority habitats including forests, high-418 

biodiversity pastures and crop mosaics. Finally, root 7 (5% and 7% in total variance) identified 419 

a negative relationship between soil erosion and terracing, confirming that this traditional land 420 

management option is an indirect response to biophysical factors triggering erosion risk. 421 

The CCA assessing socioeconomic indicators extracted 8 roots respectively with 64.6% (left 422 

set of input variables) and 100% (right set of input variables) in total variance. Each root 423 

identified one-to-three response indicators in turn associated with a restricted number of 424 

contextual indicators. Root 1 (15% and 22% in total variance) was correlated negatively with 425 

farm subsidies and positively with fire prevention and grazing control. Three socioeconomic 426 

indicators correlated negatively with root 1 (impervious surface area, population growth, aging 427 

index). Farm subsidies and sustainable farming were negatively correlated with Root 2 (14% 428 

and 15% in total variance), together with 3 socioeconomic indicators (land fragmentation, aging 429 

index and land abandonment). Root 3 (14% and 15% in total variance) was associated with 430 

grazing control and grazing intensity (negative coefficients) and land abandonment (positive 431 

coefficient). Root 4 (6% and 15% in total variance) indicated that impact of farm subsidies 432 

(negative coefficient) and sustainable farming (positive coefficient) is counter-correlated in the 433 

sample, with population density and net farm income associated with Root 4 with positive and 434 

negative sign, respectively. A negative coefficient to root 5 (10% and 10% in total variance) 435 

was assigned to both soil water conservation measures and percentage of irrigated arable land. 436 



Protected areas (root 6), soil erosion control measures (root 7) and terracing (root 8) were not 437 

correlated with any socioeconomic indicator. 438 

 439 

4. Discussion 440 

 441 

Research, participatory processes, tools for policy makers and local-scale responses are seen as 442 

key components of an integrated strategy to fight desertification in the Mediterranean basin 443 

(Reynolds et al., 2011). The positive (research) and normative (policy) interest in human 444 

responses to LD usually focuses on sectoral policies and single-target measures that are 445 

designed to mitigate environmental degradation in affected or vulnerable areas (Omuto et al., 446 

2013). Conversely, actions targeting either the resources impacted and/or the drivers and 447 

proximate causes of degradation are considered 'best practices' in strategies designed to mitigate 448 

LD. Policy implementation in different socioeconomic and biophysical contexts necessitates 449 

responses which support adaptive management and effective local governance (Thomas et al., 450 

2012), because human responses to LD are inevitably context-specific and contingent (Wilson 451 

and Juntti, 2005). 452 

The study reported in this paper contributes to the debate on the characterization of candidate 453 

responses to LD, trying to identify specific 'response assemblages' based on spatial convergence 454 

of different land management practices across a range of local contexts. The approach proposed 455 

here contributes to a decision support system that can be used by various stakeholders for joint 456 

monitoring drivers and candidate responses of land degradation in local contexts characterized 457 

by different environmental and socioeconomic conditions. The approach is distinctively based 458 

on the exploratory analysis of a comprehensive set of indicators collected in 586 field sites 459 

identifying (apparent or latent) relationships between LD drivers and candidate responses, 460 

depending on the intimate characteristics of each local context. In this sense, our results outline 461 

the role of 'state' and 'pressure' variables of a local system (e.g. climate dryness, soil quality, 462 

vegetation cover, land abandonment), confirming the results of earlier studies (Basso et al., 463 

2010; Kosmas et al., 2015; Salvati et al., 2015). The evident complexity in the system of 464 

relationships between drivers and candidate responses to LD allows distinguishing biophysical 465 

factors (often characterized by one-to-one relationships between drivers and responses) from 466 

socioeconomic factors (more frequently characterized by relationships among multiple drivers 467 

and one response), corroborating the interpretative framework provided in Salvati et al. (2015). 468 

Evidences of this study may encourage more refined research applied to the comprehensive 469 

analysis of a local system (Stavi et al., 2015) and its evolution in terms of ecological aspects 470 



(e.g. soil quality, geo-diversity and vegetation) or socioeconomic conditions (e.g. changes in 471 

the social and economic base with impact on the produced value added).  472 

Candidate responses to LD can be classified as 'broad' or 'narrow' spectrum based on the 473 

observed correlation with the local background and the overall level of desertification risk (e.g. 474 

Salvati and Zitti, 2009). Fire prevention, sustainable farming and protected areas were identified 475 

as broad-spectrum actions (Kosmas et al., 2015). Grazing control and farm subsidies were 476 

classified as medium-spectrum actions since they operate at the farm scale with indirect impact 477 

on LD in terms of economic and environmental sustainability. By contrast, soil conservation 478 

measures and terracing practices are intended to cope specifically with soil degradation 479 

processes and are correlated primarily with soil indicators. Results of non-parametric inference 480 

confirm the local-scale target of soil conservation measures - possibly less relevant in EU policy 481 

in respect with actions classified as 'broad-spectrum', such as farm subsidies or land protection, 482 

or in national/regional strategies in respect with sectoral measures such as fire prevention, 483 

grazing control, sustainable farming or terracing. 484 

Moreover, the candidate responses investigated in this study show distinct spatial relationships 485 

depending on the level of desertification risk and the underlying territorial context (Salvati et 486 

al., 2015). These evidences may outline divergent responses of the socio-environmental local 487 

systems to ecological disturbances, highlighting possible mismatches between single-action 488 

responses and the related biophysical conditions prevailing at the time (Garcia-Orenes et al., 489 

2010) For example, our data indicate that measures for soil conservation were more frequently 490 

adopted in regions with high soil quality. Whilst most sites experienced a single-action response 491 

in our sample, the analysis of the spatial relationship between responses indicates a diversified 492 

set of candidate 'response assemblages' based on the co-existence of different actions with 493 

positive (or negative) feedbacks within the local context. Although practices considered in this 494 

study are seen as particularly important in the field sites investigated, different practices/actions 495 

can be relevant in other socioeconomic contexts or better suited to mitigate LD in other 496 

environmental conditions. An improved knowledge of latent relationships between local 497 

contexts and a comprehensive set of actions/practices seen as candidate responses to LD is 498 

therefore a key issue to inform policy strategies which target desertification (Bisaro et al., 499 

2013). 500 

In this sense, the approach illustrated in this paper may inform the development of practical 501 

tools for (i) analysis of response indicators derived from a comprehensive set of LD indicators, 502 

(ii) assessment of spatial relationships between context and response indicators and, based on 503 

this background, (iii) characterization of 'response assemblages' to LD at both local and regional 504 



scales. Data mining is a promising tool to classify field sites and candidate responses into 505 

homogeneous groups according to specific territorial conditions. 506 

PCA results indicate both convergent and divergent patterns characterizing the spatial 507 

distribution of response indicators, identifying three homogeneous sets of actions/practices 508 

respectively coping with (i) soil conservation, (ii) sustainable farm management and (iii) natural 509 

vegetation protection. Measures impacting soil degradation (containing soil erosion or 510 

improving soil water conservation) were more frequently observed in sites where a considerable 511 

proportion of land is protected, indicating a high level of environmental policy enforcement 512 

(Kosmas et al., 2015). While suggesting that measures of soil conservation are more frequently 513 

applied in protected areas compared with other measures protecting natural habitats, such as 514 

fire prevention, our evidences contribute to shed light on the multiple spatial relationships 515 

between candidate LD responses. However, these results need further empirical verification 516 

against a larger sample of sites representative for vastly different land-use, socioeconomic and 517 

environmental conditions. 518 

Measures contributing to farm sustainability (sustainable farming, grazing control) were found 519 

uncorrelated with soil conservation and fire prevention actions in the studied sites. This 520 

evidence suggests how candidate responses are critically influenced by short- and long-term 521 

land-use decisions, acting with a variable intensity on a (more or less) wide spectrum of land 522 

cover types and landscapes (Salvati et al., 2015). In this sense, measures specifically designed 523 

to protect natural vegetation (e.g. fire prevention) were demonstrated to be spatially associated 524 

with specific measures dealing with sustainable management of farmland (i.e. terracing and 525 

farm subsidies). These evidences are in agreement with earlier studies (Weissteiner et al., 2011; 526 

Kelly et al., 2015; Kosmas et al., 2015). Economically-disadvantaged rural districts preserving 527 

high-diversity crop mosaics may benefit from a set of actions against LD that include protection 528 

of natural vegetation, economic subsidies and interventions for land consolidation supporting 529 

traditional cropping systems (Ferrara et al., 2016). Such correlation patterns may indicate a 530 

process of spatial divergence in the studied actions/practices, shaping the effectiveness of 531 

candidate 'response assemblages' at the local scale. Spatial convergence of different 532 

environmental measures is an interesting issue in the analysis of responses to LD requiring 533 

further investigation on theoretical frameworks and empirical evidences from representative 534 

environments (Salvati and Zitti, 2009). 535 

Although data mining techniques provide useful information to improve our knowledge on the 536 

multiple relationships characterizing complex socio-environmental systems, there are 537 

limitations to this approach because correlation and similarity patterns do not necessarily imply 538 



causation processes (Kosmas et al., 2015). As many other quantitative exercises based on a 539 

large number of input variables, our approach proposes a standardized selection and 540 

classification of biophysical and socioeconomic indicators in fixed groups based on objective - 541 

but possibly questionable - criteria and value's thresholds (Salvati et al., 2015). In this sense, a 542 

mixed framework integrating exploratory quantitative approaches with a qualitative and 543 

descriptive analysis based on a deep knowledge of test areas through bibliographic analysis, 544 

interviews with local stakeholders and field observation is adequate to improve knowledge of 545 

complex socio-environmental systems (Kelly et al., 2015). 546 

 547 

5. Conclusions 548 

 549 

Our study suggests how land management actions/practices, intended as candidate responses to 550 

LD, are largely dependent on the local context. Mitigation plans and SLM strategies are 551 

increasingly committed to promote a policy shift from single-driver and process-specific targets 552 

to a more comprehensive set of practical actions integrating responses adapted to local contexts. 553 

In this way, research is required to indicate mechanisms involving stakeholders in problem 554 

analysis and solution-finding for application of adaptable and context-specific responses to LD. 555 

Since stakeholders have different perceptions of desertification risk, establishing (or 556 

intensifying) dialogue between stakeholders, policy-makers and the general public will 557 

contribute to increase effectiveness of land management actions in LD containment. An 558 

improved analysis of environmental indicators assessing practical actions combating or 559 

reversing LD and investigation on the effectiveness of joint responses to LD at various spatial 560 

scales is hence essential to design mitigation strategies based on the identification of appropriate 561 

response assemblages. 562 

 563 
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Table 1. Principal Component Analysis loadings (> |0.5|). 707 

Variable PC 1 PC 2 PC 3 

Farm subsidies  0.50  

Protected areas 0.69   

Fire prevention  -0.65  

Sustainable farming   0.67 

Soil erosion control 0.71   

Soil water conservation 0.50   

Terracing  0.60  

Grazing control   -0.52 

Explained variance (%) 28.6 19.5 17.0 

708 



Figure 1. Principal Component score plot of the 586 field sites investigated in the present study by country (PC 1: x-axis vs PC 2: 709 
y-axis). 710 

 711 

712 
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Table 2. Results of the step-wise multiple linear regression with desertification risk as the dependent variable and the 8 response 713 
indicators to land degradation (predictors) observed at each of the 586 plots investigated in the present study (adjusted R2 = 714 
0.248, F(4,581) = 49.3, p < 0.001). 715 

Variable Beta Std.Err. t(581) p-level 

Intercept 0.000 0.030 1.342 0.180 

Protected areas 0.442 0.038 11.624 0.000 

Grazing control 0.277 0.039 7.030 0.000 

Terracing -0.186 0.039 -4.790 0.000 

Farm subsidies 0.128 0.039 3.321 0.001 

716 



Table 3. Canonical analysis run between biophysical indicators and response indicators in the 586 plots investigated in the 717 
present study (bold indicates significant correlations with coefficient > |0.5|). 718 

Variable Root 1 Root 2 Root 3 Root 4 Root 5 Root 6 Root 7 

Biophysical indicators 

% variance 0.12 0.13 0.12 0.06 0.08 0.05 0.05 

Degree of erosion -0.07 -0.06 0.52 0.21 -0.42 0.13 -0.50 

Major land use 0.08 0.01 -0.17 0.41 0.05 0.66 0.23 

Vegetation cover type 0.41 0.29 0.47 0.30 -0.11 0.05 -0.14 

Rainfall 0.37 -0.51 -0.56 0.24 -0.14 -0.07 -0.08 

Aridity index 0.21 -0.50 -0.54 -0.21 -0.39 -0.24 0.05 

Potential evapotranspiration -0.66 -0.51 -0.22 0.13 -0.25 0.00 -0.12 

Rainfall seasonality -0.11 0.78 -0.40 -0.15 0.05 0.14 0.21 

Rainfall erosivity -0.51 0.30 -0.01 0.52 0.25 0.27 0.00 

Parent material -0.19 -0.26 -0.05 0.18 -0.08 0.09 -0.12 

Rock fragments 0.12 -0.06 -0.16 -0.14 0.11 -0.16 0.11 

Slope aspect -0.09 -0.06 0.23 0.06 0.16 0.13 -0.42 

Slope gradient -0.43 0.26 -0.06 -0.01 -0.04 0.37 -0.29 

Soil depth 0.14 0.04 0.03 0.27 -0.47 -0.02 -0.15 

Soil texture 0.56 0.16 -0.22 0.21 0.03 0.04 -0.24 

Soil water storage capacity 0.50 0.25 -0.17 0.00 -0.49 0.33 -0.08 

Exposure of rock outcrops 0.30 -0.09 0.12 0.48 -0.10 -0.20 -0.14 

Organic matter surface horizon 0.49 -0.29 -0.30 -0.05 -0.20 0.25 -0.04 

Plant cover 0.18 -0.36 0.06 -0.05 -0.53 0.17 -0.23 

Drainage density 0.09 -0.70 0.47 -0.03 0.22 -0.01 -0.26 

Runoff water storage 0.33 -0.10 0.71 0.03 -0.44 0.16 0.24 

Response indicators 

% variance 0.21 0.16 0.19 0.12 0.13 0.06 0.07 

Farm subsidies -0.59 -0.43 0.40 0.54 0.10 -0.02 0.03 

Protected areas 0.48 0.03 0.47 -0.35 -0.16 0.62 -0.04 

Fire prevention 0.94 -0.30 -0.02 0.07 -0.12 0.00 -0.03 

Sustainable farming 0.10 0.11 0.80 -0.43 0.10 -0.31 0.09 

Soil erosion control 0.16 0.29 0.67 0.02 -0.47 -0.14 -0.25 

Soil water conservation -0.05 0.40 0.04 0.07 -0.79 -0.06 -0.02 

Terracing 0.09 0.54 0.11 0.33 -0.22 -0.02 0.68 

Grazing control 0.42 0.66 0.13 0.51 0.27 -0.03 -0.17 

719 



Table 4. Canonical analysis run between socioeconomic indicators and response indicators in the 586 plots investigated in the 720 
present study (bold indicates significant correlations with coefficient > |0.5|). 721 

Variable Root 1 Root 2 Root 3 Root 4 Root 5 Root 6 Root 7 Root 8 

Socioeconomic indicators 

% variance 0.15 0.14 0.10 0.06 0.10 0.05 0.02 0.02 

Impervious surface area -0.69 -0.32 -0.18 -0.01 0.34 -0.02 -0.08 -0.14 

Burned area -0.27 0.22 -0.27 -0.16 -0.15 0.35 0.29 0.03 

Farm ownership -0.07 0.38 -0.57 -0.08 -0.25 -0.16 -0.01 0.09 

Farm size -0.40 0.30 0.15 -0.30 0.34 0.41 -0.05 0.00 

Land fragmentation -0.44 -0.67 0.11 0.14 -0.24 -0.11 -0.21 0.01 

Net farm income -0.01 0.22 0.33 -0.54 -0.29 0.08 -0.17 -0.26 

Parallel employment 0.40 -0.33 0.41 0.05 -0.28 -0.38 0.02 0.21 

Tillage operations 0.20 -0.31 0.34 0.12 0.42 0.28 0.04 0.04 

Tillage depth 0.28 -0.38 0.21 0.16 0.25 0.29 -0.26 -0.03 

Tillage direction 0.07 -0.45 0.22 -0.05 0.44 0.20 0.22 0.01 

Grazing intensity 0.46 0.16 -0.72 0.05 -0.19 0.18 -0.02 0.14 

Land use intensity -0.16 -0.49 -0.03 0.04 0.14 0.44 0.04 -0.06 

Period of existing land use 0.34 -0.44 0.00 -0.30 0.28 0.02 0.03 -0.31 

Irrigation percentage of arable land 0.21 0.39 0.23 0.33 -0.69 -0.04 0.02 0.23 

Tourism intensity 0.12 0.19 0.23 -0.20 0.17 0.12 -0.13 0.20 

Aging index -0.64 -0.64 -0.06 -0.31 -0.13 -0.02 0.01 -0.06 

Population density -0.02 0.30 -0.33 0.61 0.46 0.11 -0.12 -0.19 

Population growth -0.93 0.07 -0.20 -0.13 0.00 0.10 0.01 0.04 

Frequency of tillage 0.09 0.12 0.25 0.05 0.07 0.22 -0.38 0.04 

Land abandonment -0.11 -0.52 0.52 -0.01 -0.34 -0.08 0.11 -0.25 

Response indicators 

% variance 0.22 0.15 0.15 0.15 0.10 0.06 0.06 0.11 

Farm subsidies -0.57 -0.53 -0.03 -0.57 -0.23 -0.04 0.01 -0.10 

Protected areas 0.46 -0.26 0.31 0.41 -0.25 0.53 -0.33 -0.06 

Fire prevention 0.89 0.10 0.36 -0.18 -0.18 -0.08 -0.02 -0.05 

Sustainable farming 0.16 -0.75 0.09 0.58 0.00 -0.20 0.14 -0.04 

Soil erosion control 0.24 -0.41 -0.32 0.28 -0.37 -0.31 -0.58 -0.14 

Soil water conservation -0.07 0.32 -0.24 0.49 -0.71 -0.11 0.08 -0.27 

Terracing 0.12 0.03 -0.48 0.06 0.11 0.03 -0.04 -0.86 

Grazing control 0.55 -0.09 -0.77 -0.09 -0.07 0.19 0.19 0.05 
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SUPPLEMENTARY MATERIALS 736 

 737 

Table 1. List of the indicators used in the data mining approach presented in this study (see Table 738 
2(Supplementary materials), for a complete description of variables including technical details). 739 
 740 

Variable Class PCA SRC MLR MWU CA 

Desertification risk D  ● ●   

Degree of erosion B  ●   ● 
Major land-use/cover B  ●   ● 
Vegetation cover type B  ●   ● 
Rainfall B  ●   ● 
Aridity index B  ●   ● 
Potential evapotranspiration B  ●   ● 
Rainfall seasonality B  ●   ● 
Rainfall erosivity B  ●   ● 
Parent material B  ●   ● 
Rock fragments B  ●   ● 
Slope aspect B  ●   ● 
Slope gradient B  ●   ● 
Soil depth B  ●   ● 
Soil texture B  ●   ● 
Soil water storage capacity B  ●   ● 
Exposure of rock outcrops B  ●   ● 
Organic matter surface horizon B  ●   ● 
Plant cover B  ●   ● 
Drainage density B  ●   ● 
Runoff water storage B  ●   ● 
Impervious surface area S  ●   ● 
Burned area S  ●   ● 
Farm ownership S  ●   ● 
Farm size S  ●   ● 
Land fragmentation S  ●   ● 
Net farm income S  ●   ● 
Parallel employment S  ●   ● 
Tillage operations S  ●   ● 
Tillage depth S  ●   ● 
Tillage direction S  ●   ● 
Grazing intensity S  ●   ● 
Land use intensity S  ●   ● 
Period of existing land use S  ●   ● 
Irrigation percentage of arable land S  ●   ● 
Tourism intensity S  ●   ● 
Population aging index S  ●   ● 
Population density S  ●   ● 
Population growth S  ●   ● 
Frequency of tillage S  ●   ● 
Land abandonment S  ●   ● 
Farm subsidies P ● ● ● ● ● 
Protected areas (policy enforcement) P ● ● ● ● ● 
Terracing P ● ● ● ● ● 
Grazing control P ● ● ● ● ● 
Fire prevention P ● ● ● ● ● 
Sustainable farming P ● ● ● ● ● 
Soil erosion control P ● ● ● ● ● 
Soil water conservation P ● ● ● ● ● 

D = dependent variable; B = biophysical context variables; S = socioeconomic context variables; P = policy-relevant indicators 741 
assessing the intensity of land management actions. PCA = Principal Component Analysis (results in Table 1, Figure 1), SRC: 742 
Spearman Rank Correlation analysis (results in Table 3, Supplementary materials); MLR: Multiple Linear Regression (results in 743 
Table 2); MWU = Mann-Whitney U-test (results in main text, section 3.4); CA = Canonical Analysis (results in Tables 3 and 4). 744 

745 



Table 2. List of indicators with class ranking and the related score. 746 

CLIMATE 

Annual rainfall (mm) <280 280-650 650 -1000 >1000  

2 1.6 1.3 1.0 

Aridity 

index 

<50 50-75 75-100 100-125 125-150 >150  

1.0 1.2 1.4 1.6 1.8 2.0 

Annual potential 

evapotranspiration 

(mm) 

<500 500-800 800-1200 1200-1500 >1500  

1.0 1.2 1.5 1.8 2.0 

Rainfall seasonality <0.19 0.20-0.39 0.40-0.59 0.60-0.79 0.80-0.99 1.00-1.19 >1.20  

1.0 1.2 1.4 1.6 1.8 1.9 2.0 

Rainfall erosivity 

(mm/h) 

<60 60 - 90 91-120 121-160 >160  

1.0 1.2 1.5 1.8 2.0 

SOIL 

Parent material Limestone-

marble 

Acid 

Igneous 

Sandstone, 

flysh 

Marl, clay, 

conglomerates 

Basic 

Igneous 

Shale Schist Alluvium, 

colluvium 

 

2.0 1.8 1.6 1.3 1.4 1.2 1.0 

Rock fragments on soil 

surface (%) 

<15 15-40 40-80 >80  

2.0 1.0 1.6 1.8 

Slope aspect N, NW, NE S, SW, SE Plain  

1.0 2.0 1.0 

Slope gradient (%) <2 2 - 6 6-12 12-18 18-25 25-35 35-60 >60 

1.0 1.2 1.4 1.6 1.7 1.8 1.9 2.0 

Soil depth (cm) <15 15-30 30-60 60-100 100-1500 >150  

2.0 1.8 1.6 1.4 1.2 1.0 

Soil textural class Very coarse Coarse Medium Moderate fine Fine Very fine  

2.0 1.8 1.6 1.2  1.3 1.4 

Soil water storage 

capacity (mm) 

<50 50-100 100-200 200-300 >300  

2.0 1.8 1.5 1.3 1.0 

Exposure of rock 

outcrops (%) 

None 2-10 10 -30 30-60 >60  

1.0 1.3 1.5 1.8 2.0 

Organic matter of 

surface horizon(%) 

High >6.0 Medium 2.1-6.0   Low 2.0-1.1 Very  low <1.0  

1.0 1.3 1.6 2.0 

Degree of soil erosion None Slight Moderate Severe Very severe  

1.0 1.2 1.5 1.8 2.0 

VEGETATION 

Major land-use Agriculture Pasture Shrubland Forest Mining Recreation  

1.5 1.6 1.4   1.0 2.0 1.2 

Agricultural cover 

type 

Cereals Olives Vines Almonds Oranges Vegetables               Cotton 

2.0 1.0 1.4 1.3 1.6 1.8                             1.5 

Plant cover (%) <10 10-25 25-50 50-75 >75  

2.0 1.8 1.5 1.3 1.0 



WATER RUNOFF 

Drainage density (km 

of channels per km2 ) 

Coarse <5 km Medium 5-10 

km 

Fine 10-20 km Very fine >20 km  

1.0 1.3 1.7 2.0 

Impervious surface 

area (ha/10 km2 of 

territory / 10 years) 

Low <10 ha Moderate 10-25 

ha 

High 26-50 ha Very high >50 ha  

1.0 1.3 1.7 2.0 

Burnt area (ha burnt 

land over 

10years/10km2 of 

territory) 

Low (<10 ha) Moderate (10 -

25 ha) 

High (26 - 50 

ha) 

Very high (>50 

ha) 

    

1.0 1.3 1.7 2.0     

AGRICULTURE 

Farm ownership Owner – 

farmed 

Tenant – farmed Shared – 

farmed 

State – farmed  

1.0 2.0 1.5 1.7 

Farm size (ha) <2 2 – 5 5 – 10 10 – 30 30 - 50 50 – 100 >100  

2.0 1.8 1.6 1.5 1.3 1..1 1.0 

Land fragmentation 

(Number of parcels) 

1-3 4-6 7-9 10-12 13-15 16-19 >19  

1.0 1.2 1.4 1.6 1.8 1.9 2.0 

Net farm income 

 

Low (<Local 

mean - St. 

Dev.) 

Moderate 

(>Local mean - 

St. Dev. < local 

mean) 

High (> Local 

Mean < Local 

Mean + St. 

Dev.) 

Very high (> 

Local Mean + St. 

Dev.) 

 

2.0 1.7 1.3 1.0 

Parallel employment NO Industry Tourism State Municipality  

1.0 2.0 1.4 1.7 1.5 

CULTIVATION PRACTICES AND HUSBANDRY 

Tillage operations 

 

NO Plowing Disking, 

harrowing 

Cultivator  

1.0 2.0 1.7 1.4 

Frequency of tillage 

(number) 

NO 1 2 3 4  

1.0 1.2 1.4 1.7 2.0 

Tillage depth (cm) 

 

NO <20 20-30 30-40 >40  

1.0 1.1 1.3 1.7 2.0 

Tillage direction Down-slope Up-slope Parallel to 

Contour up- 

slope furrow 

Parallel to 

Contour down-

slope furrow 

Down-slope 

Oblique 

Up-slope 

Oblique 

Other 

(No tillage) 

 

2.0 1.4 1.2 1.5 1.8 1.3 1.0 

Grazing intensity 

(livestock density, SR, 

vs. grazing capacity, 

GC, in each site) 

Low (SR<GC) Moderate 

SR=GC to 

1.5GC) 

High 

(SR>1.5GC) 

 

1.0 1.5 2.0 

LAND-USE 

Land-use intensity (% 

class area of intense 

use of land) 

Low (< 

25%) 

Medium (25-

75%) 

High (> 75%)  

1.0 1.5 2.0 

(Period) of existing 

land use 

< 1 year 1-5 years 5-10 years 10-20 years 30-50 years > 50 years  

2.0 1.8 1.6 1.4 1.2 1.0 

Land abandonment 

(10ha/years/10km2) 

Very high 

(> 50) 

High (26-50) Moderate (10-

25) 

Low (< 10)    

2.0 1.6 1.3 1.0    

WATER USE 

Irrigation percentage 

of arable land 

< 5 5-10 10-25 25-50 > 50  

2.0 1.8 1.6 1.3 1.0 

Runoff water storage No Low moderate adequate  

2.0 1.8 1.4 1.0 



DEMOGRAPHY AND TOURISM 

Population aging 

index 

(population >65 / total 

population = R, %) 

Low R<5 Moderate R=5-

10 

High R=10-20 Very high R>20  

1.0 1.3 1.7 2.0  

Population density 

(inhabitants / km2) 

Low <50 Moderate 50-

100 

High 100-300 Very high >300  

1.0 1.3 1.7 2.0  

Population growth 

rate (% per year) 

Low <0.2 Moderate 0.2-

0.4 

High 0.4-0.6 Very high >0.6  

1.0 1.3 1.7 2.0  

Tourism intensity 

(number of overnight 

stays /10 km2 =R) 

Low R<0.01 Moderate 

R=0.01-0.04 

High R=0.04-

0.08 

Very high 

R>0.08 

 

1.0 1.3 1.7 2.0  

RESPONSE INDICATORS 

Fire prevention (land 

protected from fires in 

total area) 

NO Low < 25% Moderate 25-

50% 

High 50-75% Very high > 

75% 

 

2.0 1.8 1.6 1.3 1.0 

Grazing control NO Sustainable 

number of 

animal 

Fencing Avoidance of soil 

compaction (wet soil) 

Fire 

Protection 

 

2.0 1.0 1.2 1.4 1.3  

Sustainable farming 

 

No 

sustainable 

farming 

No tillage Minimum 

tillage 

Inducing plant cover Up-slope 

tillage 

Minimum 

ploughing 

depth 

 

2.0 1.0 1.3 1.1 1.4 1.5 

Soil erosion control (% 

area protected in total 

area, %, excluding 

terracing) 

NO Low, <25% 

protected 

Moderate, 25-

75% protected 

Adequate, >75% 

protected 

 

2.0 1.7 1.4 1.0 

Soil water conservation Weed control Mulching temporary 

storage 

of water runoff 

inducing vapor 

adsorption 

Νο  

1.0 1.0 1.0 1.2 2.0 

Terracing (% area 

under terracing) 

No area Low, <25% Moderate, 25-

50% 

High, 50-75% Very high, >75%  

2.0 1.7 1.5 1.2 1.0 

Farm subsidies (by 

motivation) 

NO Environmental 

protection 

subsidies 

Per-area 

subsidies 

Per-animal subsidies Per-

product 

subsidies 

 

1.2 1.0 2.0 2.0 2.0  

Protected areas (policy 

enforcement) 

Adequate 

> 75% of the 

area 

Moderate 

(25-75% of the 

area) 

Low 

(< 25% of the 

area) 

No   

1.0 1.4 1.7 2.0   

747 



Table 3. Non-parametric Spearman pair-wise rank correlation analysis between biophysical (or socioeconomic) indicators and 748 
response indicators to land degradation in the 586 plots investigated in the present study (bold indicates significant correlations 749 
tested at p < 0.05 after Bonferroni's correction for multiple comparisons). 750 

Variable 

Grazin

g 

control 

Fire 

preventio

n 

Sustainable 

farming 

Soil erosion control 

measures 

Soil water 

conservation measures 

Terrac

ing 

Farm 

subsidies 

Protected 

areas 

Desertif risk 0.21 0.26 0.06 0.07 -0.06 -0.07 -0.08 0.30 

Degree of erosion 0.01 -0.05 0.21 0.40 0.18 -0.06 0.29 0.16 

Major land use 0.40 0.14 -0.41 0.03 0.16 0.22 -0.01 -0.01 

Veget. cover type 0.50 0.31 0.28 0.38 0.23 0.23 -0.05 0.34 

Rainfall -0.15 0.59 -0.31 -0.19 -0.13 -0.19 -0.17 -0.03 

Aridity index -0.46 0.22 -0.41 -0.24 -0.07 -0.20 -0.16 -0.19 

Pot. evapotransp. -0.55 -0.38 -0.30 -0.20 0.00 -0.28 0.48 -0.45 

Rain seasonality 0.36 -0.21 -0.22 -0.11 0.18 0.44 -0.41 -0.09 

Rainfall erosivity 0.22 -0.54 -0.06 -0.03 -0.14 0.28 0.48 -0.36 

Parent material -0.22 -0.21 -0.12 -0.11 0.00 -0.18 0.34 -0.22 

Rock fragments -0.09 0.14 0.00 -0.09 -0.12 -0.06 -0.13 -0.05 

Slope aspect 0.02 -0.10 0.08 0.12 -0.11 -0.12 0.18 0.05 

Slope gradient -0.01 -0.46 -0.09 -0.05 0.12 0.03 0.11 -0.06 

Soil depth 0.13 0.13 0.02 0.18 0.33 0.01 -0.10 0.14 

Soil texture 0.40 0.48 -0.12 0.08 -0.03 0.08 -0.35 0.18 

Soil water storage 0.27 0.42 -0.01 0.21 0.36 0.06 -0.44 0.45 

Expos. rock 

outcrops 
0.22 0.35 0.07 0.17 0.00 0.06 0.14 0.04 

Org. matt. surf. 

horiz. 
-0.07 0.58 -0.26 -0.12 -0.06 -0.10 -0.32 0.22 

Plant cover -0.23 0.27 -0.07 0.15 0.09 -0.24 -0.02 0.21 

Drainage density -0.32 0.18 0.27 0.04 -0.30 -0.47 0.37 0.14 

Impervious surf 

area 
-0.30 -0.64 0.30 0.07 -0.22 0.00 0.62 -0.26 

Burned area 0.12 -0.29 -0.29 -0.16 0.14 0.05 0.14 -0.21 

Farm ownership 0.37 -0.17 -0.34 0.11 0.33 0.22 -0.05 -0.29 

Farm size -0.26 -0.21 -0.44 -0.41 -0.23 -0.03 0.10 -0.29 

Land fragmentation -0.28 -0.53 0.47 0.24 -0.04 -0.15 0.57 0.01 

Net farm income -0.16 0.36 -0.44 -0.16 -0.02 -0.10 0.06 -0.04 

Parallel 

employment 
-0.09 0.34 0.45 0.26 -0.04 -0.26 -0.01 0.37 

Tillage operations -0.04 0.23 0.26 -0.09 -0.36 -0.11 -0.10 0.23 

Tillage depth -0.04 0.21 0.35 0.00 -0.32 -0.15 -0.08 0.35 

Tillage direction -0.06 0.12 0.32 -0.12 -0.40 -0.13 0.06 0.13 

Grazing intensity 0.76 0.22 -0.07 0.27 0.21 0.36 -0.28 0.11 

Land use intensity 0.01 -0.22 0.29 0.03 -0.19 0.00 0.28 0.07 

Period exist. land 

use 
0.05 0.11 0.09 0.00 -0.41 0.06 0.16 0.00 

Irr. % arable land -0.01 0.28 -0.07 0.09 0.49 -0.22 -0.37 0.32 

Runoff water 

storage 
0.09 0.40 0.41 0.41 0.15 0.08 0.04 0.53 

Tourism intensity -0.11 0.21 -0.21 -0.19 -0.19 -0.23 -0.10 0.05 

Pop. aging index -0.26 -0.63 0.25 0.10 -0.18 -0.08 0.81 -0.30 

Pop. density 0.16 -0.19 0.02 -0.04 0.18 0.32 -0.47 0.05 

Pop. growth rate -0.41 -0.82 -0.24 -0.21 0.08 -0.06 0.56 -0.56 

Freq. tillage -0.30 0.13 -0.04 -0.25 -0.15 -0.32 -0.27 0.27 

Land abandonment -0.34 0.00 0.46 0.18 -0.15 -0.27 0.39 0.23 

 751 

 752 


	A Multidimensional statistical framework to explore seasonal profile, severity and land-use preferences of wildfires in a Mediterranean country
	Recommended Citation
	Authors

	tmp.1718991722.pdf.3IJmN

