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Abstract 

I Application of Image Analysis Techniques to Satellite Cloud Motion Tracking 

Author: King Shing Albert Lau 

Cloud motion wind ( C M W ) determination requires tracking of individual cloud targets. 

This is achieved by first clustering and then tracking each cloud cluster. Ideally, differ

ent cloud clusters correspond to diiferent pressure levels. Two new clustering techniques 

have been developed for the identification of cloud types in multi-spectral satellite im

agery. 

The first technique is the Global-Local clustering algorithm. It is a cascade of a 

histogram clustering algorithm and a dynamic clustering algorithm. The histogram 

clustering algorithm divides the multi-spectral histogram into'non-overlapped regions, 

and these regions are used to initialise the dynamic clustering algorithm. The dynamic 

clustering algorithm assumes clusters have a Gaussian distributed probability density 

function with diiferent population size and variance. 

The second technique uses graph theory to exploit the spatial information which is 

often ignored in per-pixel clustering. The algorithm is in two stages: spatial clustering 

and spectral clustering. The first stage extracts homogeneous objects in the image 

using a family of algorithms based on stepwise optimization. This family of algorithms 

can be further divided into two approaches: Top-down and Bottom-up. The second 

stage groups similar segments into clusters using a statistical hypothesis test on their 

similarities. The clusters generated are less noisy along class boundaries and are in 

hierarchical order. A criterion based on mutual information is derived to monitor the 

spatial clustering process and to suggest an optimal number of segments. 

A n automated cloud motion tracking program has been developed. Three images 

(each separated by 30 minutes) are used to track cloud motion and the middle image 

is clustered using Global-Local clustering prior to tracking. Compared with traditional 

methods based on raw images, it is found that separation of cloud types before cloud 

tracking can reduce the ambiguity due to multi-layers of cloud moving at different 

speeds and direction. Three matching techniques are used and their reliability compared. 

Target sizes ranging from 4 x 4 to 32 x 32 are tested and their errors compared. The 

optimum target size for first generation M E T E O S A T images has also been found. 
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Chapter 1 

Introduction 

Meteorological satellites provide a continuous observation of the globe. The i m 

agery plays a v i t a l part i n modern forecasting practice, allovs^ing the forecaster to 

observe directly both the movement and development of the individual weather 

systems. Its role may be regarded as complementary to that of the numerical 

models, providing the basis for more accurate analyses as well as more effective 

use of the numerical output (Woodroffe 1987). M a n y meteorological parameters 

can be extracted from satellite images, such as wind direction and speed from 

clouds, ice movement, atmospheric stability, relative humidi ty and precipitation 

from clouds, and turbulence from clouds etc. 

1.1 Objective 

W i n d speed and direction are important parameters i n the study of weather sys

tems, and previous studies show that wind can be inferred from cloud motion. 

C loud tracking requires identification of cloud type and cloud altitude. The a im 

of this study is to investigate and develop pattern recognition techniques to i m 

prove cloud motion wind ( C M W ) derivation. Clustering has been chosen for cloud 

separation since i t requires min imum a priori information. Two clustering tech

niques are developed: the first algorithm partitions only the measurement space, 

whilst the second algorithm first part i t ion the spatial space and then the measure-
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ment space, thereby exploiting contextual information. The concispt of tracking 

clouds of the same height is tested by applying the first algorithm i n an automated 

wind tracking system and encouraging results are obtained. 

1.2 Atmospheric Motion 

The atmosphere is a gigantic heat engine in which the constantly maintained dif

ference i n temperature existing between the poles and the equator provides the 

energy supply necessary to drive the planetary atmospheric circulation. The con

version of the heat energy into kinetic energy to produce motion must involve 

rising and descending air, but vertical movements are generally much less i n evi

dence than horizontal ones, which may cover vast areas and persist for periods of 

a few days to several months. 

Atmospheric motion, either vertical or horizontal is caused by an imbalance of 

forces due to pressure difference. Vert ical air niotion while exceedingly significant 

for atmospheric processes is greatly l imited by the shallow depth of the atmo

sphere, and the balance of the downward acting gravitational force of the earth 

and the vertical pressure gradient. Whi l e the horizontal motion wi th much less 

constraint of the gravitational force usually happens i n large scale and this motion 

is termed wind . 

W i n d speed is generally lowest on the earth surface and gradually increases 

wi th altitude. This effect is due to surface friction reducing the rate of flow in the 

lowest layers of the atmosphere. A t increasing heights above the surface, frictional 

effects become smaller, and the wind speeds generally increeise i n magnitude. A 

zone of maximum wind speed is frequently found near the tropopause ( « 1 0 k m 

height). 

O n the hemispheric scale, horizontal variations i n pressure brought about by 

temperature differences sets air i n motion. The rotation of the earth signifi

cantly modifies the direction of large-scale flow, but superimposed on the major 

wind patterns are smaller secondary disturbances induced by local variations i n 
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temperature-pressure patterns. Mot ion plays a fundamental role i n the transport 

of heat, moisture and mechanical energy from one part of the earth's surface to 

another. 

In total there are four forces which determine the horizontal motion. 

They are (Par ikh 1976): 

1. Pressure gradient; The pressure gradient is defined as the pressure difference 

between two isobars divided by the distance. The forces caused by a pressure 

gradient acts from high pressure to low pressure. 

2. Coriolis acceleration; If the ear th 'did not rotate warm air would rise near 

the equator and flow at a high altitude towards the pole where i t would 

cool, sink and flow back towards the equator near the surface. However, the 

rotation of the Ear th prevents winds from blowing directly northwards and 

southwards from the equator, instead they tend to be deflected sideways by 

the coriolis effect, so that most poleward flowing air is deflected towards the 

east whereas equator flowing air is directed towards the west. 

3. Centrifugal acceleration; the centrifugal effect arises i n conjunction wi th the 

Coriolis effect. It is an apparent restoring force opposing motion i n a curved 

path by attempting to establish straight line flow. It is directed radial ly 

outward from the centre of curvature. 

4. Fr ict ion forces; Th is forces always oppose the motion. It arises from contact 

resistance to relative motion between systems. 

The resultant of these four forces determine the.speed and direction of the 

horizontal motion. W h e n friction is small , the motion is determine by pressure 

gradient, Coriolis force and centrifugal force. In areas where the motion is not 

turning, the effect of centrifugal force can be ignored. The resulting motion is 

termed geostrophic wind. The geostrophic wind balance is obtained when the wind 

is blowing parallel to the isobars. In the Northern Hemisphere the Coriolis force 

has an effect of turning a northward motion eastward. If the motion is turning 
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then the wind is non-geostrophic and is ca;lled gradient wind. The resultant wind 

blows i n a counter-clockwise direction parallel to the curved isobars wi th in a low 

pressure system. In the Northern Hemisphere this circulation is called cyclonic. 

Frict ion always exists at the earth's surface^ here the wind w i l l no longer flow 

parallel to the isobars, but slightly across the isobars. This creates convergence 

i n a low pressure system. 

Clouds axe abundant i n the atmosphere and useful wind vectors can be gen

erated by tracking cloud targets whose motion seems i n approximate agreement 

wi th the synoptic situation. 

1.3 Cloud Identification and Characterisation 

from SateUite 

Clouds are usually wet atmospheric aerosols composed of t iny spheres of l iquid 

water ranging i n radius from 2 to 200/zm. Clouds form when air becomes super

saturated wi th respect to l iquid water or ice; the most common means by which 

supersaturation occurs i n the atmosphere is through the ascent of air parcels, 

which results i n the expansion of the air and adiabatic cooling. Under these con

ditions, water vapour condenses onto some of the aerosol i n the air to form a cloud 

of small water droplets. 

The principle types of ascent, each of which produces distinctive cloud forms, 

are (Henderson-Sellers Ch.2 1984): 

1. Loca l ascent of warni , buoyant air parcels i n a conditionally unstable en

vironment which produces convective clouds. These clouds have diameters 

ranging from about 0.1 to 10km. The lifetimes of convective clouds range 

from minutes to hours (cumulus, cumulonimbus). 

2. Forced lifting of stable air which produces layer clouds. These clouds can 

occur at altitudes from ground level up to the tropopause and extend over 

areas of hundreds of thousands of square kilometres. Layer clouds gener-
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ally exists over periods of tens of hours (stratus, cirrocumulus, altocumulus 

altostratus and stratocumulus). These two ascents account for most cloud 

types that are visible i n satellite imagery and which are suitable for wind 

motion determination. 

3. Lee wave, standing wave, not real motion. 

Water by evaporation from the surface stays i n the atmosphere as clouds, then 

followed by precipitation falls back to the surface, this endless cycle is responsible 

for the transportation of water around the Ear th . Since clouds are usually ad-

vected by surrounding winds, tracking the cloud movement allows us to deduce 

the pattern of atmospheric motion. 

Cir r i form clouds are composed of ice crystals, altiform are supercooled water 

droplets existing at temperatures below 273K, while stratiform clouds are gener

ally layered. Cumuliform clouds occur i n unstable conditions. Nimbus clouds are 

rain or snow-producing. The Wor ld Meteorological Organisation ( W M O ) classify 

cloud into 10 types (Table l . l a n d 1.2, International C loud Al tas 1957). 

Level Cloud Appearance 

High Cirrus Detached, fibres 

High Cirrostratus Transparent sheet 

High Cirrocumulus Smal l regular elements, no shading 

Midd l e Altostratus Grey/b lu ish sheet, slightly transparent 

Midd l e Altocumulus Layer wi th structure and shading 

Low Nimbostratus Grey layer, precipitation 

Low Stfatocumulus Layer wi th structure and shading 

Low Stratus Grey layer, uniform base 

Cloud wi th vertical 

Development 

Ctunulus Detached, fluffy Cloud wi th vertical 

Development Cumulonimbus Heavy, dense, very ta l l 

Table 1.1: Tradit ional cloud classes. 
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The height levels of these cloud genera are determined by their cloud base. 

The separation these cloud types are crucial to success of cloud wind generation 

(Par ikh 1976). 

Lati tude Cloud type 

Polar Temperate Tropical 

Cloud type 

3-8 5-18 6-18 C i r r b — H i g h 

2-4 2-7 2-8 A l t o — M i d d l e 

0-2 0-2 0-2 Strato—Low 

Table 1.2: Cloud type and typical cloud base height (km) as a function of latitude. 
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1.3,1 Optical Properties of Clouds 

Opt ica l properties of clouds are reflectivity (visible band) and emissivity (infrared 

band), these depend on the physical properties of clouds. C loud can exists as ice 

or supercooled water droplets. Water clouds have many small particles while ice 

clouds have relatively few but larger particles. 

B o t h water and ice clouds have high reflectivities due to low emission/absorption 

at 0.5—1.3fJ.m (visible band), and are good emitters; therefore the radiance emit

ted by them can be used to estimate the temperature of themselves by means of 

the Planck function (Henderson-Sellers Ch.2 1984). However,, most cirrus type 

clouds are semi-transparent, therefore the energy sensed'by a satellite is not a 

reliable indicator of the cirrus cloud top temperature, but i t is the sum of the 

cloud and background radiance underneath i t . 

Property Wavelength Water cloud Ice cloud 

Reflectivity of 

sunlight when 

the Sun is 

overhead 

0.7//m 0.8 0.8 

Emissivi ty for 

thermal 

radiation 

ll.bfjim 0.95 0.95 

Table 1.3: Representative cloud response i n atmospheric window. These number 

vary wi th cloud depth, width and particle size. Only typical values are given here 

(After Bunt ing and Hardy i n Ch.6 i n Henderson-Sellers 1984). 
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1.3.2 Interpretation of Cloudy Images 

Cloud observations at high lat i tude from the satellite are degraded due to the 

Earth 's curvature. Firs t ly , the degradation of the horizontal resolution of the 

imagery as a result of changing the nadir angle is accentuated. Secondly, the 

data requires corrections at oblique vievi^ing angles for changing viewing geometry 

between the Sun, the cloud and the sateUite. Thi rd ly , the satellite tends to see 

more cloud at dbhque viewing angles since i t looks through more atmosphere 

and therefore has a higher probabiHty of encountering a cloud. Moreover, i t may 

confuse the sides of a cloud wi th the top and also simultaneously see several types 

of cloud. Final ly , most Ea r th location procedures assign .ta^ pixel to a location 

at the Earth 's surface based on spherical trigonometry. A high cloud may be 

mislocated horizontally by twice its altitude i f i t is viewed at an angle of 60° oif 

local vertical (Anderson and Veltishchev ed. C h a p . l 1973). 

The Meteorological satellite usually makes multi-spectral observations i n order 

to distinguish different cloud types. The most effective wavebands are the visible 

(0.4—1.1/fm) and infrared (10.5—12.5/im) channels. Due to different cloud thick

ness, background such as snow, ice, land surface, sea surface, which have different 

reflectivities at visible wavelengths and often have different temperature at ther

m a l wavelengths; when using computer analysis, these varying backgrounds may 

be confused wi th clouds. 

Meteorological phenomena can be roughly observed i n two scales. The first 

scale is called mesoscale i t refers to phenomena i n small scale (usually an area less 

than 100 x lOOkm^ but greater than 10 x lOkm^), for example a thunder storm. 

The second is called synoptic scale i t refers to phenomena'fofge^j'l^j'lan large area, 

such as a weather front. One objective of this work is to derive mesoscale cloud 

motion wind. 

Some useful features for interpreting weather images are size, shape, tone, and 

texture of individual clouds or cloudy regions. Image sequences also help to locate 

clouds i n relation to other weather or geographical information. Deta i l analysis 

of satellite imagery can be found in Anderson and Veltishchev ed. (1973). 
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Cloud size varies considerably and gives important information to the im

age analyst. Individual cumulus clouds are normally too smaU to be resolved 

i n the visible image. W h e n the Cumulus clouds develop to large Cumulonim

bus i n thunderstorms, the contrast between the background and cloud increases 

and are evident i n the visible and infrared images. Mid- la t i tude low pressure 

areas or cyclonic storms and the fronts extending from them often have cloudy 

areas exceeding 1000km. Meteorologists use these sizes to identify isolated clouds, 

niesoscale cloud Hues, larger-scale fronts and storms. 

Shape is used along wi th size as a means to characterise clouds. It is partic

ularly useful for identifying layer cloud such as Stratus since its boundaries are 

sharply defined and the shape of a low Stratus area often outlines topography, 

such as coastlines, mountains and valleys. Co ld air blowing over warm water of

ten produces long Unes of clouds known as cloud streets. Cirrostratus is normally 

smooth and uniform i n appearance, thus may appear i n the form of long bands 

extending for hundreds of kilometres, or as an extensive sheet. Jet stream Cirrus 

forms at high altitudes and has a characteristic shape on the poleward edge; this 

shape usually consists of a long smooth curve close to the max imum winds of the 

jet. Mature tropical storms called hurricanes or typhoons may appear nearly cir

cular wi th a smaller circle or eye, lacking high clouds, i n the centre. H igh clouds 

associated wi th cyclogenesis or storm formation at mid-latitudes may look first 

like an elongated leaf, smooth on the poleward size and ragged on the opposite, 

and later l ike a larger comma, the t a i l of the comma corresponding to clouds on a 

cold front. Frontal zones appear as long, multi-layered cloud bands extending for 

several thousand kilometres and range from one to several hundred kilometres i n 

width . 

T h e cloud tone represents how bright the cloud appears on the image. In vis

ible channels, i t relates to cloud reflectivity, brighter clouds being more reflective 

and thicker. In thermal channels, the grey level for cloud pictures are usually 

reversed so that bright tones represent low thermal energy of cold clouds and 

dark tones represent high thermal energy of warmer clouds or clear areas. F i g -
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texture is useful for distinguishing cumuhform clouds from stratiform clouds, in 

frared images show fewer areas of rough texture even when the resolution is the 

same as a coincident visible image. The fields of thermal radiation emitted by 

clouds or the Earth 's surface are smoother than the scattered sunlight at shorter 

wavelengths. Patchy cirrus clouds are an exception and often show rougher texture 

on infrared images. 

1.4 Cloud and Wind Relationship 

W i n d can be derived from geostationary satellite images by measuring the dis

placements of cloud fields as displayed by a sequence of images (Izawa and Fuj i ta 

1969). Th i s measurement is based on the assumption that the clouds move wi th 

the surrounding air parcel. In order to justify this assumption, we have to consider 

the following factors (Hubert 1979): 

1. The nature of the cloud targets to be tracked i n relation to the image reso

lut ion and to cloud target persistence as compared to image frequency. 

2. The relation between cloud motion and wind. 

C loud targets which are tracked i n the low troposphere are different from those 

of the upper troposphere because the mesoscale circulation systems that persists 

at low levels are not apparent in the upper troposphere. Therefore satellite wind 

is usually derived for low and high levels. Midd l e level clouds are usually difficult 

to track and are not good wind tracers (Parikh 1974). 

Convective clouds provide most of the low tropospheric wind tracers because 

they are abundant and well suited to tracking. A s w i th other cloud types con

vective clouds are not inert bodies, individual clouds form and disappear while 

the air parcels are carried along by wind. However, animated sequences taken 

at different t ime intervals reveal that mesoscale patterns of cloud such as trade 

cumulis, cumulus congestus, and even strato cumulus, have life times i n the order 

of hours. 
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M a n y empirical studies have shown that the motion of the lower mesoscale pat

terns correlate well w i th air motion. A n analysis by Hubert and Whi tney (1971) 

showed that low level cloud vectors represented the 850mb flow wi th approxi

mately the same degree of accuracy as rawinsonde data. Hasler et a l . (1976,1977) 

conducted a multi-aircraft experiment to measure simultaneous cloud motions and 

winds at various levels and found that ctimuH motions were correlated best wi th 

cloud-base winds, while cirrus appears to represent a layer mean. Similar studies 

w i th altocumulus have not been made, mostly because of the great difllculty i n 

obtaining the necessary data. 

In contrast, many upper clouds that are suitable for tracking appear to be 

layer clouds. A t upper levels patches of layer cloud often change slowly—they 

may last many hours. 

Comparisons of cloud motions i n persistent features wi th nearby rawinsonde 

observations indicate that many of these persistent cloud patterns are embedded 

i n layers wi th small vertical shear and they are advected wi th the layer wind. 

For cloud wind to be useful i t must be assigned to a level which best repre

sents the wind, and vectors should be derived from targets which move wi th the 

environment wind. The first generation of meteorological satellites (early 1960's) 

only carried visible sensors, so no information about temperature was provided. 

If the cloud top temperature can be inferred then the vector can be assigned to 

a level which best represents the wind. Shenk and Kerins (1970) were among the 

first to investigate the use of an infrared channel for cloud top height estimation 

applied to cloud track wind. 

Hubert and Whi tney (1971) investigated the usability of cloud winds. They 

found that low and high cloud motions correspond best to winds at 3000 ft and 

30000 ft respectively. The median vector deviation of the cloud velocities are 

9 knots and 17 knots for low and high cloud winds. The deviations are due to 

1. uncertainty of cloud height 

2. non-advective cloud motion 
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3. photograph measurement errors (mapping error) 

4. tracking errors 

5. unrepresentative rawinsonde observations 

The relationship between observed cloud motion and wind is strongly influ

enced by the type of cloud. Fuj i ta and Pearl (1975) tracked single turret cumulus 

target and found that the best target size was 0;3 to 2 k m , and their movement 

may not correspond to the environmental wind as a consequence of the compli

cated nature of clouds including the vertical wind shear, updrafts and downdrafts. 

The quality of cloud wind was studied by Bauer (1976). He made a comparison 

of cloud motion winds wi th coninciding radiosonde winds which showed that both 

have a similetr capability to represent atmospheric motions; the study showed 

that the differences between cloud motion winds and radiosonde winds fall wi th in 

the l imits determined by computational techniques, observational methods and 

atmospheric variability. Maddox and Vonder Haar (1979) developed a quantitative 

estimate of the random error inherent in satellite derived winds. They concluded 

that random error i n vector winds derived from cumulus cloud tracking using 

high-frequency satellite data is less than 1.75 ms~'^. 

Hasler et a l . (1979) have presented high resolution aerial photography taken as 

frequently as one every 7 minutes which show that the lifetimes of individual cells 

are short, but that cumulus ensembles can maintain a recognisable pattern for 

well over an hour. Cirrus cloud lifetimes can often be resolved by the 30 minutes 

satellite observations. Orographic clouds tend to be stationary and clouds caused 

by gravity waves tend to move wi th the wave phase velocity and neither would be 

good estimators of the ambient wind. 

The data used throughout this work was generated from M E T E O S A T . The 

M E T E O S A T images have resolution, of 5km i n the infrared channel and 2.5km or 

5km in the visible channel at the sub satellite point and an image frequency of 

two per hour. TheM«x\,a)\ier^^h^ single pixel can be inuch larger than some cloud 

types, therefore the identification of < fea ture^ould require at least a few pixels. 
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It is clear that satellite images do not display individual clouds, but rather patches 

of cloud. Furthermore, the target usually contains a much larger area than a few 

pixels, and so cloud motion is tracked by means of patterns rather than individual 

patches. 

It is apparent that, at this resolution and frequency of present geostation

ary satellite imagery, large classes of cloud fields provide trackable targets whose 

motion are closely related to the winds. 

1.5 Cloud Classification 

One of the ei^ac^ves of this study is to develop cloud classification algorithms for 

cloud motion wind generation, these algorithms belong to a field of study called 

statistical pattern recognition. 

Pat tern Recognition has been used to classify cloud images wi th variable de-

greesof success. Two approaches can be used (Duda and Har t 1973). The first 

approach is called supervised classification, i t is based on Bayes decision theory. 

Th i s approach is based on the assumption that the decision problem is posed i n 

probabilistic terms, and that a l l of the relevant probabili ty values are know. This 

implies that the class conditional probabili ty density function (pdf) p(x|u;,-) de

scribing each class is known exactly. Here x is a pixel vector and w,- denotes class 

i. Usual ly these pdfs are estimated from a set of t raining samples from known 

classes. The classification of a new pattern is achieved by a set of decision rules 

such that the error probabili ty of classification is minimised. 

A prior i knowledge is difficult to obtain i n some practical uses such as cloud 

classification. The cloud classes i n visible and infrared imagery vary substantially 

during different times of day and season, i f a supervised method is used a database 

of cloud signatures i n different conditions must be bu i ld . The second approach 

called unsupervised classification requires a min imum of a priori knowledge and 

therefore was chosen for this study. Clustering is the most commonly used unsu

pervised method and i f used correctly i t can seek out the natural structure of the 
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data, and therefore the boundaries which separate the different classes. Par t i t ionl i 

of even a small set of data requires that an enormous nu-mfe^r .of combinations 

be tested, therefore a suboptimal method; such as clustering must be employed. 

Clustering w i l l be discussed i n detail throughout the rest of this thesis. 

1.6 M E T E O S A T images 

M E T E O S A T images are used in this study for cloud motion wind generation. 

M E T E O S A T is a geostationary satellite wi th a nominal position on the Greenwich 

Mer id ian over the equator at an altitude of about 36000 k m . The raw data 

obtained from the three-channel radiometer are visible and infrared radiances of 

the full Ea r th disk i n the following bands (F ig . 1.2): 

1. visible (0.4—1.1 fim) (VIS) 

2. thermal infrared (10.5—12.5 (im) (IR) 

3. infrared water vapour absorption (5.7—7.1 /zm) ( W V ) 

The visible band measures the reflected radiance of the electro-magnetic spec

t rum. The brightness of visible imagery is a measure of the Earth 's albedo, gen

erally displayed i n picture form where white represents areas of high albedo and 

black represents areas of lowest reflectivity. (Reflectivity of an object is measured 

i n albedo, which is defined as the ratio of the amount of electromagnetic radi

ation reflected by a body to the amount incident upon i t , commonly expressed 

as a percent). The brightness of a cloud as seen from space depends upon the 

i l luminat ion of the cloud (sun angle), the angular position of the cloud i n relation 

to the sensor and the sun, and the reflectivity of the cloud i t se l f Reflectivity, i n 

turn, is related to cloud thickness, particle size distribution, particle composition 

(ice or water), and to the character of the upper cloud surface. 

The thermal infrared band measures the long-wave radiation emitted by cloud, 

land and water surfaces. These measurements may be converted to temperature 

representative of the surfaces viewed. Radiat ion from these surfaces is transferred 
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to space through complex radiative transfer processes w^hich involve absorption 

and re-emission by several atmospheric components. In infrared imagery darkest 

areas represent the warmest surfaces, while the brightest represent the coldest 

surfaces. They also shows relative cloud height. 

The water vapour band measures radiation that is not controlled by absorption 

i n the atmosphere, but by the temperature near the boundary between moist and 

dry air. The moister the air, the higher and colder this boundary, so the less 

ra:diatibn i t is. O n the image dark areas correspond to relatively large amounts 

of radiation (originating at low, warm altitudes) a,nd brighter areas correspond to 

relatively small amounts of radiation (originating at high, cold altitudes). 
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Visible channel 

Infrared channel 

Water vapour channel 

Figure 1.2: M E T E O S A T visible, infrared, and water vapour images. 
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The field of view of the visible detector is 2.5 k m , at the subsatellite point 

(the point which has the shortest distance between the satellite and Ear th) , while 

for the other two infrared band detectors it is 5 k m . The radiometer generates 

a new Ear th image every half hour. The image is created i n the direction from 

south to north and east to west by making use of the spin motion of the satellite 

and stepping the radiometer. A n I R or W V image consists of 2500 lines by 2500 

pixels, whilst each visible image consists of 2500 Hnes x 5000 pixels. There are two 

visible detectors which are offset by one pixel i n the north-south direction, so i f 

both visible channels are active the full visible image consists of 5000 Hnes x 5000 

pixels. Normal ly the radiometer operates as (i) I R plus one V I S and (ii) I R plus 

one V I S plus W V . The V I S images transmitted are usually w i th half resolution, 

i.e. i t is also 2500 lines x 2500 pixels the same as I R and W V images. In the 

operational timetable W V is only available every 60 minutes, instead of 30 minutes 

as for V I S and IR . V I S is only available when the sun i l luminat ion is reasonable, 

however I R & W V can be generated even at night-time. Figure 1.3 shows the 

relationship of resolution wi th earth surface. Due to the surface curvature the 

resolution decreases rapidly away from the subsatellite point (ssp). 

There are i n to ta l five geostationary weather satellites covering the majority 

of the earth surface. Table 1.4 shown a comparison of these satellites. Figure 1.3 

shows the distribution of the satellites. 
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Figure 1.3: Fields of view of five geostationary satellites 

(Hubert 1979). 

Satellite Spectral Resolution Imaging period 

bands (at ssp) period 

G O E S visible 1 x 1 k m 

( U S A ) infrared 8 x 4 k m 1/2 h 

M E T E O S A T visible 2.5 k m 

( E S A ) infrared 5.0 k m 1/2 h 

water vapour 5.0 k m 

G M S visible 1.25 k m 

( J A P A N ) infrared 5.0 k m 1/2 h 

G O M S visible 1.5 k m 

(USSR) infrared 12 k m 1/2 h 

Table 1.4: Comparative features of images from four types of geostationary 

weather satellites. 
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It is noted that Second Generation Meteosat Operational Programme ( M O P ) 

satellite i n the late 1998 wi l l provide image data i n al l spectral channels simultane

ously (VIS , I R and W V ) , the high resolution visible (HRVIS) w i l l have a sampling 

distance of 1km at nadir and image repeat t ime w i l l be 15 minutes. 

1.7 Chapter OutHnes 

The ma in objective of this study is to develop cloud classification algorithms and 

investigate^'^'^application to cloud tracking. The next chapter reviews different 

cloud identification algorithms and their applications. The problems associated 

w i th each algorithm are highlighted and their application discussed. C loud wind 

systems w i l l also be reviewed, some of them are for research purposes whilst others 

are operational. 

Chapter 3 is an overview of various techniques related to clustering. Clustering 

is usually referred to as unsupervised learning i n statistical pattern recognition 

hterature. It is closely related to supervised learning i n which many techniques 

can be extended and applied to clustering. Techniques related to the algorithms 

developed i n this study w i l l be introduced and some problems are highlighted. A 

breakdown of fields of study i n pattern recognition is shown i n F i g . 1.4. 
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Classifications 
(Pattern Recognition) 

Non-Exclusive 
(overlapping subsets) 

e.g.. fuzzy clustering 

parametric 

Exclusive 
(non-overlapping subsets) 

supervised' 
learning 

unsupervised 
learning 

non-parametric 
categories unknown 

use clustering 
categories known 
mixture resolving 

Hierarchical 
e.g. graph theorectic 

clustering 

Parti tional 
e.g. dynamic 

clustering 

Figure 1.4: Break down of statistical pattern recognition. 

A major problem i n iterative clustering is the need for a set of starting centres, 

and these are usually selected from the image manually. This procedure is thought 

to be subjective and can have a profound effect on the results as shown i n this 

work. Chapter 4 describes a Global-Local clustering scheme which part ial ly 

solves this problem. The first stage of the clustering scheme consists of a non-

parametric clustering algorithm which is used to obtained an in i t ia l parti t ion of 

the data without any a priori knowledge of the data, however due to the nature 

of M E T E O S A T data this in i t ia l parti t ion is usually unacceptable and therefore 

a second stage consists of a dynamic clustering algorithm is used to refine the 

part i t ion. Several distance measures derived from a general Gaussian model are 

also presented. T h e effectiveness of the Global-Local algorithm is demonstrated 

using several sets of M E T E O S A T images. 

Clustering of image data is computation intensive, the Global -Local clustering 

algori thm exploits the multiple occurrence of patterns, and hence^ery efficient. 
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Spatial information is usually ignored by clustering algorithms. In Chapter 5 

a Spatial-Spectral clustering algorithm is introduced. The first stage consists 

of a segmentation technique called Graph Theoretic Hierarchical Segmentation 

method which exploits the contextual information of image data. The second 

stage is the clustering of segments generated i n the first stage. Segmentation is 

regarded as spatial clustering, based on this concept two stepwise opt imal segmen

tation approaches are presented, they are the top-down and bottom-up approaches 

respectively. A cost function is evaluated i n each step such that a criterion func

t ion is min imized , and cost functions are classified into global and local types, 

and i t is shown that performance of global type cost functions are superior to lo

cal type functions. Segmentation results are always justified subjectively, i n this 

study the performance of a segmentation process is monitored using the mutual 

information measure. Segmentation is modelled as a communication channel and 

the entropy loss of the system reflects how well the segments approximate the 

original image. The opt imum number of segments are then clustered using an 

agglomerative method, this uses a statistical hypothesis testing as a similarity 

measure of segments, and the most similar pair of segments are merged in each 

step. The complete process integrates both contextual and spectral information 

and therefore generates "clean" clusters. The Spatial-Spectral clustering algo

r i thm is compared wi th the Global-Local algorithms (per-pixel), and problems of 

this algorithm are also discussed. 

Procedures to compute cloud winds is discussed in Chapter 6. They included 

geometric rectification of images, choice of tracking algorithms, target size, height 

assignrnent of wind vectors and target selection. The Global -Local clustering algo

r i thm is included i n an automated cloud wind generation scheme which compares 

tradit ional methods of cloud tracking using raw images and the clustering ap

proach employed i n this study. Six sets of M E T E O S A T images w i l l be used and 

the result compared wi th numerical model data supplied by Meteorological Ofiice 

Bracknel l . A n encouraging improvement using a clustering approach has been 

achieved. The opt imal target size which yields min imum low level wind speed 
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error has been found to be 24 x 24 pixel at mid-lati tude for M E T E O S A T imagery. 

F ina l ly , Chapter 7 summaries the results and highlights the advantages and 

disadvantages of the different techniques. 
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Chapter 2 

Review of Cloud Analysis and 

Cloud Wind Systems 

This chapter reviews various methods for cloud identification and cloud motion 

wind ( C M W ) systems. Satellite wind generation has been studied since the m i d 

1960's, and many wind systems have been developed. However, major problems 

s t i l l exist. M a n y cloud algorithms have been developed but most of them are 

designed for purposes other than cloud wind tracking. In general, a l l cloud iden

tification algorithms are concerned wi th the classification of pixels i n an image. 

Different algorithms w i l l be discussed and we shall explain why clustering is chosen 

for cloud tracking in this study. 

2.1 Cloud Identification Algorithms 

Most of the Earth 's surface is constantly covered by clouds, ice and isnow, these 

substances dominate the reflectivity of the planet. The height and amount of cloud 

is an important mechanism i n the control of infrared radiation emitted to space. 

It is clear that clouds play an important role i n the mechanism that conirdU'the 

planet's climate. The International Satellite Cloud Climatology Project ( I S C C P ) 

was set up i n 1981 as pa,rt of the world climate research program (Rossow et 

a l . 1985). The objectives of this project a.re to generate a representative data 
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base of satellite data and extract from this the cloud information- appropriate for 

atmospheric modeUing and chmate studies. The huge number of images received 

from current satellite systems demand an automated technique for evaluating the 

cloud parameter. The objective of cloud analysis is to deduce properties such 

as cloud height, description, amount and type. A good cloud algori thm should 

be able to deduce a l l these features of the image. However, since many different 

forms of cloud exist, and because, the background can confuse observation of some 

cloud types (cirriform), this task can be extremely difficult. M a n y algorithms are 

heuristic and usually designed specifically for a single cloud property. 

M a n y cloud analysis algorithms havubeen developed specifically for cloud cover 

estimation, since cloud cover is the most important parameter affecting the en

ergy budget of the earth-atmosphere system. A small consistent perturbation i n 

cloud cover may cause a significant change i n chmate. O n the other hand, cloud 

signatures reflect the nature of atmosphere circulation and is important for the 

study of climate variations. 

C loud identification algorithms are used to estimate cloud cover. Satellite-

based cloud identification algorithms can be grouped into three classes. 1) Thresh

old methods, 2) statistical procedures^and 3) radiative transfer techniques (Good-

mane and Henderson-Sellers 1988). 

Threshold techniques can use only a single visible channel, an infrared chan

nel or both (Rossow et al . 1985). They assign to each pixe l (or field of view) a 

completely clear or cloudy label according to the magnitude of the observed radi

ance or albedo relative to the predetermined threshold level. V I S thresholds are 

intended to represent the apparent temperature. The areas i n the infrjired images 

which are colder than the threshold are assumed to be clouds. There are four 
a. 

main methods for choosing^hreshold. Firs t ly , the threshold for both V I S and I R 

are constant. Secondly, they can be derived from other weather or geographical 

data bases: infrared thresholds can be derived from surface reports of temperature 

and visible thresholds can be derived from the type of surface which is viewed. 

Thi rd ly , thresholds can be derived from the image itself i f the area includes clear 
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areas. Clustering or Spatial Coherence methods(to be described later) can help to 

establish the threshold. Final ly , to ensure that an area is part ly clear so that the 

threshold represents 'c lear/cloud' boundaries and not 'c loud layer' boundaries, 

the threshold can be determined from a series of images at different times and 

the extreme radiance (dark visible or warm infra-red) can be used as the thresh

old. Unfortunately, these techniques perform badly when pixels are part ial ly or 

semi-transparent clouded. It is also difficult to define the clear sky radiance value. 

In contrast, statistical techniques part i t ion the multi-dimensional histogram 

into representative classes. They assume that every class has a distinct mode 

i n the multiT|p«jctvfi,l histogram (usually visible and infra-red). These classes 

are associated wi th relatively homogeneous emitting and reflecting surfaces, cloud 

types, oceans and land. There are three type of approaches based on the concept 

of multi-dimensional histograms, they are: 

1. Gaussian histogram analysis (Piatt 1983, Phu lp in et a l . 1983). 

2. Dynamic Clustering (Desbois et al . 1982). 

3. Spatial Coherence method (Coakley and Bretherton 1982). 

The first method fits a Gaussian (normal) distribution function to one and 

two dimensional frequency histograms i n order to isolate distinct clusters (see 

F i g . 2.1). The success of this technique depends on the decision criterion and 

the resulting effectiveness of the cluster definition. The European Space Agency 

( E S A ) uses a histogram analysis of this type and applies i t to 32 x 32 pixel visible 

and infrared window. A cluster is then identified in the histogram and classified 

(Bowen et a l . 1979). 
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assumed Gaussian 

radiance temperature 

Figure 2.1: F i t t i n g of one-dimensional Gaussian model 

onto a histogram. 

The second method uses a clustering algorithm to indirectly part i t ion the his

togram. The maximum number of clusters to be found may be l imited but the 

algorithms are otherwise free to jfind as many clusters as the image suggests. This 

is important because i t distinguishes the clustering algorithms from classification 

aJgorithms, which use a previously determined set of clear and cloudy categories 

as a fixed set of choices. Clustering algorithms are known as unsupervised pro

cedures that produce unldbelled categories. They are very flexible and useful for 

coping wi th a great variety of cloud types and backgrounds found i n meteorologi

cal images. A drawback of clustering algorithms for cloud cover estimation is the 

i i iabi l i ty to treat partially cloudy pixels correctly. Other limitations such as bad 

performance when clusters are not well defined in the histogram space. The ini t ia l 

centres also have a profound effect upon the number of resulting classes. 

The last method called Spatial Coherence algorithms. This method studies 

the local spatial variance of a 3 x 3 pixel array and it relies on the assumption 

that over small horizontal distances the sea surface emitted radiance values from 

each pixel wi l l be vir tual ly constant (see F ig . 2.2). The emitted radiance values 
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of cloud tops are assumed to be variable from pixel to pixel . Over cloud-free sea 

surface the local standard deviation i n infrared is found to be small , whereas 

for cloud contaminated pixels it. Is normally much higher. A l l local arrays wi th 

standard deviation higher than a predefined threshold value are assigned as cloud 

contaminated. The local standard deviation of 11 fim brightness temperature is 

plotted as a function of local mean radiating temperature. Funct ion values wi th 

high standard variation and medium mean temperature represent overlap area in 

the histogram and hence partially cloud covered class. Th i s spatial properties 

can be considered as a feature and be included i n clustering to improve cloud 

boundary classification (Seze and Desbois 1987). 
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Figure 2.2: Typica l plot obtain using spatial coherence 

method. Cluster of points at T\ represents cloud-free 

scan spots, the cluster near represents cloud-covered 

scan spots. The points between these cluster represents 

partially covered field of view. 

The last type of algorithm is called the radiative transfer type. This algorithm 

usiss a cloud radiative model to simulate what the satellite would sense and what 

cloud properties could be retrieved if the data in different atmospheric windows 
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were available. The calculated radiances and corresponding cloud properties can 

be used i n a look-up table so that measured radiances can be related to cloud 

properties. 

The above techniques can be combined to complement each other advantages 

and disadvantages. Saunders and Kr iebe l (1988) used five tests to detect clear 

sky and cloudy radiances on A V H R R data. The first test applied to both daytime 

and night-time data is an infrared (12//m) threshold test as a check on cloud 

contamination. The second test is a local uniformity or spatial coherence test 

applied on a 3 x 3 pixel array of l l / z m brightness temperatures. This test is 

applied over the sea during the day, as the horizontal temperature variations over 

cloud-free land can be significant, so this test is only suitable for smal l temperature 

variation surfaces. The th i rd test applied during the day is a dynaimic reflectance 

threshold test, the threshold is determined by examining a histogram of a 50 x 50 

pixel window of the visible and infrared images. The fourth test used during the 

day, uses the ratio of near infrared reflectances to visible reflectances, this ratio is 

close to uni ty over clouds. The final test applied to both day and night t ime data 

examines the difference between 11/im and 12fim brightness temperatures. This 

cloud detection scheme was compared wi th Pairman's (1986) clustering algorithm, 

although no solid conclusion can be drawn due to difficulties i n comparison, both 

schemes are useful for detection of clear sky radiance. 

2.2 Supervised Cloud Classification 

The main application of a cloud identification algorithm is to provide a cloud cover 

estimation, and so i t is not directly related to the recognition of cloud types. B u t 

cloud identification algorithms such as those using clustering or histogram fitting 

produce unlabelled cloud types as a by product. There are many algorithms de

signed specifically for cloud classification, and these can have other meteorological 

applications, such as cloud cover estimation. Another possible application is the 

identification of cloud targets for cloud tracking, as suggested by Pa r ikh (1977). 
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Most cloud classifications algorithms are statistical pattern recognition techniques 

and fall under the heading of supervised, classification. -Basically, the supervised 

technique uses a set of labelled samples to represent the typical pattern classes, 

then model parameters (usually Gaussian probabili ty distribution function) are 

derived from these samples and hence the decision boundaries for different classes. 

Therefore classes have to be provided to the algorithm init ial ly, and this is very 

difficult because images taken at different times of day and seasons can vary 

greatly due to different sun-satellite angles (although a data base can be buil t to 

compensate for these). 

To avoid the problem of bui lding a data base, an unsupervised classification 

approach seems highly desirable. One class of unsupervised classification is called 

clustering. Basically, clustering tries to part i t ion the data set into its natural 

pattern, wi th l i t t le or no a priori knowledge of the data. A disadvantage of 

clustering is that spatial information is difficult to apply and therefore is often 

ignored. However, i n Chapter 5 we w i l l describe a new clustering algorithm which 

incorporates the use of spatial information. 

A common type of cloud classification breaks the satellite image into small 

regions and classifies the cloud class of each region as a whole. The method 

may use many statistical and textural features to help classify each region more 

accurately. Due to the coarse resolution i t is suitable for classifying large areas. 

A study using the region approach was done by Pa r ikh (1977), which compared 

the value of different features i n classifying clouds. Cloud was classified into 

four types, low, mix , cirrus and cumulonimbus. The original application of this 

study is cloud motion wind determination. It was found that the visible and 

infrared images are good features for cloud classification. Pa r ikh and Rqsenfeld 

(1978) use a mixture of segmentation, thresholding and classification techniques 

to classify cloud types. The infrared image is first thresholded to separate cloud 

and background, and then the cloudy pixels are segmented using a clustering 

technique. F ina l ly the clusters are classified using decision tree classifier based on 

the statistical features derived from each cluster. 
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A region approach was adopted by Garand (1988), Ebert (1987, 1989). Ebert 

nsed a max imum likehhood technique to classify four channels of Advance Very 

High Resolution Radiometer ( A V H R R ) data into eighteen cloud classes. Spec

tral and textural features characterizing each class is extracted from each 32 x 32 

pixel cell. Eight features were chosen out of a total of sixty six features. A m o n g 

them three are spectral features and the others are textural features. A n itera

tive training procedure is used to reduce subjectiveness of in i t i a l t raining set. A 

classification accuracy of 85% on 25 classes was reported on a data set taken over 

the polar region. 

Garand also used a maximum likelihood technique to classify bispectral G O E S 

data into twenty cloud classes. The features used were slightly different from the 

usual spectral and textural features. Features such as cloud fraction at low, middle 

and high altitude, cloud top height and mean cloud albedo, multi-layer index, a 

streakiness factor connectivity indices and power spectrum were used. The use of 

two dimensional features can detect cloud stre«tks and ro l l . A n accuracy of 79% 

was reported. 

Despite a l l the difficulties of coping wi th the great variation of the data, an 

operational cloud classification model has been implemented i n Sweden (Karlsson 

1989). A data base of Sun elevations and air mass temperatures was buil t to allow 

diurnal and seasonal variations of radiances. The variation of data is mainly due 

to the following factors: 

1. sun elevation at the object, 

2. sun-sateUite azimuth angle (i.e. the azimuth angle between the satellite 

viewing point and the sun measured at the object), 

3. the shape of the object (e.g. i f the object produces shadows, i f i t is trans

parent or i f i t is only partly filling the pixel), 

4. differences i n radiometer performance between different satellite and con

secutive orbits. 
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5. variable radiance contributions from intercepting atmospheric water vapour 

and aerosols, 

6. temperature variations of the object. 

Karlsson's classification model included 828 class categories wi th 3 levels: 

1. three season classes (summer, spring/autumn and winter), 

2. twelve sun elevation classes, 

3. twenty three object classes. 

The classifier was based on max imum likehhood classification. 

Another approach to classification is to segment the image based on the fea

tures being used, and then to label each of the regions or segments afterwards. 

M a n y more measurements are then derived to make a decision when labelling 

each of the resulting segments. Measurements such as the object shape can also 

be used. These axe not available when individual pixels or arbitrary defined re

gions are being labelled. Studies by Seddon (1983) use cluster analysis to part i t ion 

multi-spectral images. It should be noticed that the clustering technique assigns 

pixels to a cluster on an individual basis, so like the per-pixel classification, noise 

problems w i l l be encountered at the boundaries between classes. Seddon used a 

heuristic post processing algorithm to clean up the regions before making shape 

measurements. Many spectral, textural and shape features were derived and the 

clusters were classified using decision tree classifier. 

Algori thms which assign pixels individually tend to produce a rather noisy 

boundary between areas belonging to different classes. Studies by K i t t l e r and 

Pai rman (1985b) consider the use of contextual information i n per-pixel classifi

cation. They argued that i f the classification is a preprocessing step for a pattern 

recognition process, then the effect of noisy edges is undesirable for subsequent 

shape analysis of the classes. For instance, the result of the classification may 

be interpreted by a syntactic method to identify entities such as fronts, cyclones 

or jet streams. To do this the shapes of the objects would be examined. The 
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existence of many extraneous incorrectly classified pixels w i l l make, the task much 

more difficult. Their iterative contextual algorithm considered the classification 

of the neighbouring pixel , the classification rule was based on modified version of 

the Bayes' decision rule. 

2.3 Unsupervised Cloud Classification 

A n area w i th a more direct relevance to the work described i n the next three 

chapters is that of unsupervised classification or cluster analysis. Th i s approach 

has been used i n deriving cloud properties as well as cloud classification. Desbois 

et ,al.(1982) used dynamic clustering to cluster three channels Meteosat images 

(visible, infrared and water vapour). Dynamic clustering is a type of iterative 

process which tries to optimise an objective function representing the part i t ion. 

The most common type of objective function is the mean square error wi th in each 

cluster. W e l l defined types of cloud can be associated w i th a specified spectral 

signature i n the multi-spectral histogram, therefore assuming every k ind of cloud 

is represented i n the spectral space by a compact cluster, decision boundaries can 

be drawn between different cloud types. Desbois find 5—7 clusters i n a 200 x 200 

pixel window. The clustering result was applied to determine the top temperature 

of semi-transparent cloud. 

Seddon and Hunt (1985) and Pai rman and Ki t t l e r (1986) also applied clus-

tering to cloud images, and they usedy^similar clustering algorithm^of Desbois. 

Seddon and Hunt included split and merge functions to allow clusters wi th too 

large a standard deviation to split , or clusters which are very similar to metge 

as i n the classical I S O D A T A algorithm (Ba l l and H a l l 1967). Seddon also used 

a linear transform (principle component analysis) to preprocess the image, and 

obtained better partit ioning. Pai rman used a modified distance metric derived 

from a normal distribution model. The metric allowed generalised Gaussian clus

ters and also account for different cluster population. The i r algorithms required 

an in i t ia l part i t ion to start. This in i t ia l parti t ion can be generated randomly, but 
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random starting points can have a profound effect on the final result and therefore 

is not recommended (Seddon 1985, K i t t l e r and Pa i rman 1985b). A n algorithm to 

obtain good starting points w i l l be discussed i n Chapter 4. 

Clustering produces decision boundaries that are fixed i n spectral space, i.e. 

every pixel can only belong to one cluster. K e y et a l . (1989) u.̂ e4 a new clustering 

approach called fuzzy clustering applied to cloud images. The fuzzy clustering 

algorithm assigns each observation to a l l clusters, w i th membership values as a 

function of distance to the cluster centre. The fuzzy set provides information 

on which spectral channels are best suited to the classification of particular fea

tures and can help determine likely areas (cloud boundaries) of misclassification. 

The abihty to assign a pixel to more than one class may help to identify cloud 

contaminated pixels. 

A supervised approach requires many resources to collect and verify a cloud 

data base which is not always a feasible approach. A quick start can be ac-

comphshed by using clustering, which requires l i t t le or no prior information and 

should perform weU for a l l situations. Desbois (1982) found that clustering can 

compensate for images taken wi th different sun angle. 

2.4 Operational and Research Wind Systems 

A l l satellite cloud motion wind systems consist of the following process: image ref

erencing, segment processing (target selection), w ind vector determination, height 

attr ibution, manual editing, final processing (Hubert 1979). 

Most early operational wind systems only generated low level winds. Green et 

al . (1975) described an operational model for SMS-1 low level winds. Since cross 

correlation is computationally expensive, they used a first guess/fast displacement 

algorithm to reduce the search area. They also used temperature slicing of infrared 

images to compute wind vectors, and then the output from the automatic proce

dure was presented to meteorologists for manual editing. A significant proportion 

of the automatic wind vectors which are rejected during manual editing represent 
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multi-layered or upper-level clouds. 

Novak and Young (1977,1978) gave a review of operating cloud motion system. 

A n automatic method was used to produce only low level wind , and a manual 

method was used for both low and high level wind . After 1974 meteorological 

satellites carried infrared detectors, and this allowed cloud height to be estimated; 

however only low level (700~900mb) winds were computed operationally. They 

used temperature slicing for cross correlation. Manua l analysis techniques provide 

the final quali ty control of the wind estimates produced by the automated and 

manual procedures. 

A n interesting wind system was presented Endhch et a l . (1971). Here a 

clustering algorithm called I S O D A T A was used to separate cloud clusters in visible 

images and each cluster was represented by the centre of gravity. These centres 

were tracked i n the image and the displacement of the centre represented the cloud 

motion. This clustering algorithm was found to be too t ime consuming and was 

modified by Wol f et al . (1977). The modified automatic system for cloud wind 

used 4 k m x 4km S M S - G O E S images. They used a 21 x 21 pixels window and only 

retain pixels which are above the mean gray level of the window. These pixels are 

supposed to be a l l cloudy pixels, which are then grouped together as i f they are 

spatially connected. Very large groups were reduced and very small groups were 

dropped. Two consecutive images were processed as mention above, then group 

centres are matched wi th heuristic procedures, these matches similarities produce 

the displacement of cloud targets. The process uses both V I S and I R information, 

but not simultaneously. 

The operational wind system (Fig . 2.3) of the E S O C was describe by Bowen et 

a l . (1979). This system is designed for extraction of meteorological information 

from M E T E O S A T images. The system is highly automatic and required Uttle 

human intervention, although manual editing of the final result was necessary. 

This system also allowed manual tracking using a technique similar to a movie 

loop, but using cross correlation for interactive tracking. The whole image is 

divided into 32 x 32 p i x e l segments, and a cloud analysis using VIS4-IR, and/or 
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I R - f W V bi-dimensional histogram is applied to each segment. The Gaussian 

model is being fitted onto the I R histogram and then each fitting is regarded as a 

cluster. The mean radiance of each cluster in the histogram is compared wi th the 

predicted radiaince and classified. I f a suitable target is identified, i t was tracked i n 

the previous and next infrared image using cross correlation, therefore two vectors 

were obtained. If the two vectors diifef by more than a threshold, then the target 

was assumed to produce spurious wind and be rejected. If a vector passed the test, 

another test was used to determined which cloud type i n the segment i t belongs 

to. This test performs cross correlation of every cloud type found i n the previous 

histogram analysis, and the cloud type having max immn correlation was assigned 

to the wind vector. 
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Input three METEOSAT images 
VIS+IR+WV or IR+WV 

i 
image registration 

Divide images into 32 x 32 
pixel segments 

I 
Performs histogram analysis 

on all segments 

target tracking using 
cross correlation 

i 
track each cloud type found in 

the histogram analysis and 
determine the cloud type which 

has the highest correlation coefficient, 
•find the- cloud height of this cloud type, 

and assign the vector in previous step 
to this icloud height. 

no 

m a n u a l (editing a n d output 
wind vectors 

Figure 2.3: Operational cloud motion vectors system op-: 

erated by Meteorological Informa,tion Extract ion Center 

in European Space Operations Center: 
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Wilson (1984) described a new multi-spectral image processing system for 

extracting mesoscale wind fields automatically from sequences of G O E S imagery. 

The system include a preprocessing stage, which performs the following image 

processing functions 

1. clean up image to reduce random missing elements and hnes, using nearest 

neighbour averaging. 

2. contrast stretch to expand the image count value to the full 0-255 dynamic 

pixe l resolution. 

3. alignment of the visible/infrared scenes to account for element shift offset. 

4. resample the infrared imagery to an equivalent resolution of the visible scene. 

5. edge preserving filtering of the visible image. 

The targets are selected by examining the visible and infrared greyscales, i f the 

visible variance is less than a threshold Tvis and infra-red variance is greater than 

TiR then the window is assumed to contain a suitable cloud target. Wi l son applied 

a tracking techniques called Sequential Similari ty Detection Algor i thm ( S S D A ) 

which was proposed by Barnea and Silverman (1972). A performance index was 

computed for every correlation surface and wind vectors wi th performance index 

lower than a threshold were rejected. He claimed less than 1% of wind vectors 

require meteorological editing. 

Turner and Warren (1989) described two schemes for obtaining cloud motion 

vectors i n the polar region using A V H R R data. The manual scheme used a movie 

loop to assist target selection and used cross correlation for tracking. The auto

mat ic scheme use three consecutive polar stereographic projected infrared images 

wi th a target window of 7 x 7, very flat featureless area were not selected because 

of difficulty i n separating cloud and ice. The target and search area must have a 
VaifioitToK 

mean temp eratur^less than b°K. Cross correlation was used and several threshold 

methods were used to speed up the computation. Two vectors were computed for 

each window and i f either the speed or direction differ by more than a threshold 
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of 50% or 30° they are rejected. The height assignment use infra-fed brightness 

temperatufe, no atmospheric correction or semi-transparency correction was ap-

phed. A s i n this thesis, their results were compared wi th numerical model results 

from the Meteorological Office. 

Lunnon and Lowe (.1990) investigated the relationship between template geom

etry and rms vector error using template size ranging from 4 x 4 to 32 x 32 pixels 

( M E T E O S A T infrared images) and found a m i n i m u m low level vector difference 

wi th a teinplate size of 16 x 16 pixels. They followed the operational cloud wind 

extraction procedure of the European Space Operation Centre ( E S O C ) . 

Schmetz and Holmlund (1990) described the up to date version the of opera

t ional cloud motion wind scheme operated by E S O C . The wind extraction works 

fully automatically and is following by a manual quality control. The main fea

tures of the system remain unchanged as described by Bowen et a l . (1979). The 

changes were 

1. a radiance sHcing technique for high level clouds was introduced alleviating 

the problem of tracking a mixture of clouds at various levels. 

2. a new calibration of the M E T E O S A T water vapour channel based on ra

diative transfer calculations gave considerably higher calibration coefficient, 

which has lead to a better height assignment of semi-transparent clouds 

forming the major share of high level cloud tracers. 

3. use a wind forecast to guide the cross correlation search. 

4. the radiance slicing was replaced by a preprocessing and image transforma

t ion which extracts pixels belonging to the highest cloud layer i n a segment 

area and smooths contaminated pixel values and the background. 

In spite of these improvements, high level wind speed is s t i l l systematically 

underestimated. Bowen (1979) also suggests that satellite wind extraction using 

cirrus as tracer should be regarded as the mean wind of a deep layer instead of a 

specific level. 

39 





2.4.1 Other Cloud Wind Applications 

Satellite cloud images can also be used to obtain mesoscale wind vectors. Wi l son 

and Houghton (1979) computed 3 dimensional wind fields for a severe storm situ

ation determined from S M S cloud images. He used the leading edge of large trade 

wind cumulus as tracers, and assign a l l winds to cloud top level. Thei r results 

show that satellite cloud wind data provided reasonable and useful information 

for mesoscale wind fields. 

Al though the infrared image is used for tracking low and high level wind , mid

dle level w ind can be obtained by tracking features i n the W V channel. End l ich 

et a l . (1981) tracked M E T E O S A T W V images using the wind system described 

by Wol f et al . (1977). However due to the flatness of the W V image, high vector 

density can only be obtained in and around regions of active weather phenom

ena. Eigenwil l ing and Fischer (1982) used cross correlation on M E T E O S A T water 

vapour image. The W V image was preprocessed by high pass filtering using a gra

dient filter. They obtained results applicable to mid-troposphere level (500 mb) , 

and also found that W V features always can last as long as 10 hours. 

2.5 Summary 

There are several basic difficulties that have been encountered i n automatic cloud 

mot ion tracking. The most important problems are 

1. Height assignment of wind vector. 

2. Target selection. 

3. Mult i - layer cloud confuse cross correlation tracking. 

Each of the above problems can be treated as a separate research topic. In 

this study the primary objective is to improve the abil i ty of cloud tracking in 

multi-layered regions. The necessity to separate cloud types before tracking is 

well recognised and has been done using simple temperature slicing (Green et a l . . 
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1975) and by more sophisticated techniques such as histogram analysis (Bowen et 

a l . , 1979). The temperature slicing techniques does not use the visible information. 

W h i l e the histogram technique only uses histogram analysis for tairget detection, 

no attempt was make to track individual cloud type. Al though clustering was 

tried by End l i ch et a l . (1971), i t d id not use both the V I S and I R information and 

their concept of tracking cluster centre is different from our concept of tracking the 

cluster pattern. In Chapter 1 i t was mentioned that effective cloud analysis can 

only be made i f both V I S and I R images are analysed simultaneously, therefore 

V I S + I R images are used in this study. 

Based on the forgoing literature reviews, i t is believe that cloud separation 

using multi-spectral clustering can improve cloud tracking and at least provide 

another approach for cloud motion tracking. 
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Chapter 3 

Statistical Pattern Recognition 

and Clustering 

Cloud recognition requires a,^ott'it<>n<hii^ of the feature space, this is obtained by 

pattern recognition methods. Pat tern recognition can be divided into two main 

areas: supervised and unsupervised approach (Duda and Har t 1973). The only 

difference i n these two approaches is whether samples w i th known labels are given. 

If samples are labelled, a supervised approach is employed, otherwise unsupervised 

learning is applied. The main area of study in this work is unsupervised learning 

(clustering), but, due to the similarity of the two approaches, many techniques are 

equally applicable. This chapter discuss clustering techniques which are relevant 

to the project. 

An application of pattern recognition in image analysis is to classify or 

label ind iv idua l pixels (Ki t t ler and Pairman 1985a, Swain et a l . 1981). Other 

approaches (Seddon 1983, Ebert 1987, 1989, Garand 1988) classify groupjof pixels 

(region). Every p ixe l is a pattern vector i n the case of a multi-spectral image. 

The dimension of the pattern vector is equal to the number of spectral bands only 

i f direct observed features are used (F ig . 3.1). 
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Figure 3-1: A multi-spectral image. 

Each band i n a multi-spectral image responds to a different window in the elec

tromagnetic spectrum. M a n y more sophisticated features can be derived such as 

hnear or non-linear combinations of bands, or different local texture measurement 

(Seddon 1983, Eber t 1987, 1989, Garand 1988). It is assumed that patterns that 

belong to the same class have similar feature values and clusters in the feature 

space. 

The main objective of this work is the separation of cloud types before track

ing cloud motion and this is to be achieved using pattern recognition techniques. 

M E T E O S A T images have three spectral bands; visible (VIS) , infrared (IR), and 

water-vapour ( W V ) . Most cloud types can be distinguish using V I S and I R bands 

(Par ikh 1978). and since these bands are transmitted every 30 minutes most of 

the processing wi l l use only V I S and I R images. However the algorithms derived 

could work with more spectral bands. 

In this application the emphasis of classification is not on the accuracy of 

labelling patterns but rather on the homogeneity of the clusters, especially in 

the infrared band, because the cloud level can be inferred from infrared radiance, 
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and cloud at the same level should have a small temperature different. One could 

argue that thresholding on the I R image wi l l have the same result as multi-spectral 

clustering. However, this is not the case because some cloud types may have a 

similar temperature but their reflectance is very difference (e.g. cumulus and 

stratus). Therefore a multi-spectral method is more effective than a single band 

method. A n image pattern recognition system (F ig . 3.2) has been developed to 

first cluster V I S and I R images and then track clusters to ascertain cloud motion 

winds. 

input three sets of image 
VIS+IR or VIS+IR+WV 

cluster the second 
set of images 

match each cloud cluster 
in the previous and 

next image 

compute velocity 
and check quality 

edit vectors and, output 

Figure 3.2: A n Image pattern recognition system for 

cloud motion tracking. 

Many wind systems reviewed in Chapter 2 do not take advantage of the full 

multi-spectral information; i.e. they do not separate cloud types using mul t i 

spectral information before tracking. However, it is intui t ively attractive to sep

arate cloud types before tracking as suggested by Hubert and Whi tney (1971), 

Par ikh (1977), Par ikh and Rosenfeld (1978). 
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A clustering approach (unsupervised learning) has been chosen i n this work for 

cloud classification since it was not possible to bu i ld up a data base to account for 

cloud classes at different times of day and season (Karlsson 1989). Clustering is 

often refer t o as "learning without a teacher", its purpose is to learn the underlying 

distribution of the patterns and parti t ion the data into unimodal clusters (Devijver 

and Ki t t l e r 1982). 

Almost a l l common clustering approaches have been used i n this study, and 

so i t is useful to give an overview of clustering and some pdf estimators before 

introducing the clustering algorithms i n Chapter 4 and 5. 

3.1 What is Pattern Recognition? 

For our work a pattern w i l l be defined as a vector x = [xi,X2,...,xj]-^ i n mul t i 

spectral space. The concept behind statistical pattern recognition is that i f rep

resentative features can be extracted from the object to be classified, and i f those 

features have well separated probabili ty density functions (pdfs) i n the feature 

space, then objects can be classified by forming decision boundaries between these 

densities. New objects can then be classified using the decision functions. 

In case of a multi-spectral image, a 

pattern is usually the pixel wi th or without additionally derived features. Patterns 

that belong to a particular class are not unique, due to noise i n generating the 

patterns, and variations among objects. The variabili ty of patterns imphes that 

the problem of pattern recognition is the discrimination of input data, not between 

ind iv idua l patterns but between populations. 

Figure. 3.3 shows two typical classes usually found i n weather satellite images. 

Notice the variation i n the pattern clciss. The land and high cloud class are disjoint 

clusters i n the measurement space, but i n fact land often overlaps w i th low cloud 

and sea, while high cloud overlaps wi th middle cloud. Also , most cloud classes 

are usually not unimodal. 
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Figure 3.3: Two disjoint pattern classes. 

3.1.1 Feature Selection 

In most pattern recognition systems a major concern is the dimension of the 

measurement space. In some cases dimensions up to a hundred are not unusual. 

One might think that the more features the better the abi l i ty to discriminate 

classes, but i n fact this is not true. A basic pattern recognition system is shown i n 

F i g . 3.4. Usual ly certain features are common to some classes but not others, i t is 

useful to extract or select those features which axe discriminatory for each pattern 

class wi th m i n i m u m loss of information. This preprocessing of measurements is 

necessary not only for the reason just mention but also to reduce computational 

cost (Mausel et a l . 1990, Sheffield 1985). When the most effective features have 

been selected, i t is required to derive a set of classification rules from samples of 

classified patterns. This process is called discrimination, while new patterns are 

classified using the classification rules. 

In this application the nmvifeo- of features is no more than three and 

it is. found that feature selection is unnecessary. 
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Figure 3.4: A basic pattern recognition system. 

3.1.2 Decision Rules 

Supervised classifiers use decision rules to classify new patterns, these rules assign ft, 

class label to a pattern based on their estimated class conditional probability. In 

contrast to this, decision rules based on distance measure (or dissimilarity) are 

used extensively i n unsupervised methods. 

Classification of new patterns using decision rules is based on the classical 

Bayesian approach. The basic concept of this approach is to minimise a decision 

loss function and hence the average risk. A pattern x is represented by a vector 

x = [ s i , . . . where d is the dimension of the feature space and coi i = 

1, . . . , C represent possible classes. The a im of statistical pattern recognition is 

to be able to determine the class membership of a giveii pattern wi th minimum 

probabil i ty of error by means of decision rules or discriminant functions. 
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Let P(a;,) = the a priori probabili ty i&f dUss XO^ : 

p{x.) = the probability that a pattern is x 

p (x I u>,-) = the class conditional probabili ty that the pattern is x , 

given that i t belongs to class u;,-

P{u>i I x ) = the a posteriori conditional probabili ty that the pattern 

belongs to class w,-, given that the pattern is x 

P(a;,-,x) = the joint probabili ty that the pattern is x 

and that its class membership is a?,-

where VP(W,-) = 1, / p{x.)dx=l 

We have, P (x , a ; i ) = p (x | a;;)P(wi) (3.1) 

and P(x ,a ; . ) = pC*^.-| x ) P ( x ) (3.2) 

Combine 3.1 and 3.2 we have 

P ( a , H x ) = ^ ^ " ' 7 \ ^ ( " - - ) (3.3) 
p(x) 

Ideally, a pattern x is assigned to class w,- i f p(w,-|x) > p(u;j|x) V j 7^ i . However, 

p(a;,|x) is usually very difficult to estimate. Bayes' relation (eqn. 3.3) provides a 

practical means for cleissification, because the class conditional probabihty can be 

estimated from a set of s.imples wi th known categories. 

The Bayes ' classification rule becomes: assign x to class w,- i f 

p[A^i)P{^i) > K x k ) P ( a ; i ) V j ^ i (3.4) 

If i t is further assumed that al l classes have equal probabili ty the rule becomes, 

decide x € w,- i f ;j(x | w,) > p (x | Wj) V i , j a n d i ^ j; ij = 1 , . . . , C. Rules 3.4 is 

also known as^maximum likelihood decision rule, because they use the hkehhood 

function 
lunct ion p(x|wj)P(a;j) • 

The class conditional probability density function p (x | w,) is not normally 

known. It can be estimated from a training set of correctly classified data. A l 

though a non-parametric pdf seems appropriate, i n practice a multi-variate normal 
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distributed pdf is usually assumed. Despite ." its use without any proof, this as

sumption performs reasonably well provided the distribution is unimodal . 

The use of normal distribution is justified by the following reasons. (Hand 

1981): 

1. The normal distribution is a good model of many naturally occurring phe

nomena. A possible reason for this is due to the central hmi t theorem. 

2. T h e multi-variate normal distribution can be defined uniquely by its mean 

vector n and a covariance mat r ix S . This property of normal distribution 

allows very simple and efficient computation. 

3. After any non-singular linear transformation of the axes a normal distribu

t ion is s t i l l normal but wi th different parameters. 

4. The principle of maximum entropy states that, i f the probabil i ty density 

function characterizing a random variable is not known, the probabili ty den

sity function which niaxiniizes the entropy of the random variable subject 

to any known constraints, and i t can be shown that normal distribution is 

a satisfactory choice. 

The class conditional pdf using a Gaussian distribution is 

- i ( x - / z , ) ^ i 7 r ^ ( x - / . , ) (3.5) K x | a ; . - ) = (27r)-''/2|i7.-|-^/2exp 

where d is the dimension of x , /z,- is the mean vector, Si is the covariance matr ix 

for class u;,-, and is the determinant of the covafiance matr ix . 

Substi tuting 3.5 into 3.4 and taking the logari thm, the max imum likelihood 

rule becomes 

assign x € w,- i f 

log + (x - liifsfi?^ - y^i) - < 

\og\E^\ + {x-ti^i^Efi^-li.)-\ogP{u:i) Mji^i (3.6) 

The second stage of the Global-Local clustering algorithm i n Chapter 4 clusters 

patterns based on eqn. 3.6. 
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A simple decision function for two pattern classes is shown i n Figure 3.5,. where 

Ci and ii is the class error probabilities J (x ) = 0 is the decision boundary. 

ei = / p(x I a;i)c?x (3.7) 

(3.8) 

p(x|W.) 

/ P(x|CO) 

Figure 3.5: A simple decision function for two pattern 

classes. 

Notice that in Figure 3.5 the maximum likelihood decision surface is chosen to 

minimize the sum of error. A full treatment of error rate can be found in Devijver 

and Ki t t l e r (1982). 

A criterion function based on min imum error probabili ty is used i n the second 

stage of the Global-Local clustering algorithm presented i n Chapter 4. 
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3.1.3 Distances 

The maximum Hkelihood decision rule (eq. 3.4) classifies patterns based on the 

ratio of two probabilities. A n alternative way to classify patterns, is to use a 

distance based discrmination. Consider two sample sets i n d dimensional space, 

the greater the difference between the two populations wi and U2, the greater w i l l 

be the separation between the two groups. A pattern x would be allocated to the 

population to whose training set i t is "nearer". 

It is natural to assign x to class w,- i f the distance of x i n the feature space is 

such that 

5(x,a;,)<<^(x,u;i) V i ^ ^ j (3.9) 

where (5(x,a;,-) is a distance function of pattern x and class u;,-. The distance 

function provides a measure of dissimilarity (or similarity) between patterns. This 

concept of classification is illustrated i n Figure 3.6. 
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Figure 3.6: Pattern classification using distance. 

The most familiar distance measure is probably the Euclidean metric. How

ever, there are many other measures which are more suitable in certain situations, 
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e.g. when the knowledge about the cluster structures is known beforehand. We 

shall discuss problems of using distance measures i n clustering, and suggest an 

approach to derive a distance measure suitable for M E T E O S A T images which is 

being used i n the Global-Local clustering algorithm presented i n Chapter 4. 

3.1.4 Pattern Classifier 

There are many methods to derive decision rules. So far we have assumed that 

p(x I Ui) came from a known faniily of distributions, leaving only the parameters 

to be estimated. Other methods are non-parametric, this applies when we can 

not make simplifying assumptions about the pdfs or decision surfaces. 

Besides the division of parametric and non-parametric methods, pattern recog

ni t ion can further divided into two main areas, namely supervised classifica

t ion and unsupervised classification. Suppose we are given a set of samples 

X = { x i , . . . , x „ } i n which the samples are independent and identically dis

tr ibuted random variables wi th continuous pdf p(x). This sample set is labelled 

i f the classification is supervised, while i f the classification is unsupervised the 

sample set is unlabelled. 

B o t h supervised and unsupervised learning may be formulated as a classical 

estimation problem. Unsupervised learning however, causes the problem solu

t ion to generally be much more complex than when there is supervised learning. 

To simpHfy the unsupervised problem it is often necessary to apply engineering 

intui t ion. In weather images most pattern classes are t ime varying, so the un

supervised approach seems appropriate because supervised learning usually can 

not detect mult i-modal classes and requires training samples which are difficult 

to obtain. 

Clustering is a common approach for unsupervised classification and i t is very 

often used to generate training samples for supervised classification. Figure 3.7 

shows that clustering makes sense only i n terms of a priori knowledge used, and 

this is part ly due to the inabil i ty to define the term cluster. The uncertainty i n 

the number of clusters i n the weather images are further confused by high overlap 
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of cloud classes. Very often using visible and infrared features can not identify 

semi-transparent cloud, because the background radiance always interferes wi th 

the cloud radiance (Desbois et a l . 1982). 

x l x l r l 

(a) (b) (c) 

Figure 3.7: a) Samples i n measurement space, b) Possible 

part i t ion with two classes, c)Possible part i t ion w i th five 

classes. 

We shall introduce two density estimation methods which; are used i n the 

clustering algorithms in Chapter 4 and 5. The first is parametric and the second 

is non-parametric, both methods are very popular in supervised and unsupervised 

classification. The first method is called max imum likelihood estimator and the 

second is the histogram estimator. 
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3.2 Parametric Density Estimator 

The major goal of supervised learning is to estimate P(wt) and p(x | w,) and use 

Bayes decision rule to classify input patterns. Usual ly estimation of P(a;,-) present.? 

no problem, but not the conditional densities. The general problem i n estimating 

the conditional density is the small number of samples and large dimension of 

feature vectors. If a parametric model of a pdf can be assumed (usually Gaussian), 

then the problem can be simplified to estimation of mean vector n and Sj of 

p(x I ujj). We w i l l assume patterns are normally distributed throughout this 

section. 

3.2.1 Maximum Likelihood Estimator 

The M a x i m u m likehhood estimator is probably the most popular method for 

parameter estimation due to its simphcity. Less common methods such as dis

tance minimisat ion, Bayes method, and sequential methods can be found i n Hand 

(1981), D u d a and Hart (1973) and Ton and Gonzalez (1974). 

M a x i m u m likelihood estimation of parameters requires construction of a cr i

terion function which is a function of the unknown parameters and the siamples. 

Those parameter values are then found by optimizing this function. The max

i m u m likelihood estimator treats the parameters as quantities whose values are 

fixed but unknown. The estimator selects the parameter vector which has largest 

a posteriori probabili ty (Wilks 1962). 

Suppose there are G sets of samples X i , . . . , X c r w i th the sample i n X j hav

ing been drawn independently and randomly according to the probabil i ty law 

p(x I wj), assume that p(x | Wj) has a known parametric form, and is therefore 

determined uniquely by the value of a parameter vector Oj. The M a x i m u m like

hhood estimaitor uses the information provided by the samples to obtain a good 

estimator for the unknown parameter vectors 6i,... ,6c,iov which the probabil i ty 

of obtaining the observed samples is a m a x i m u m . To simplify the problem, i t is 

assumed that the class conditional densities are independent; This assumption 
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allows one to work wi th each class separately. The traditional way of using the 

informaJtion in the sample set X , is to use an estimate 6i in p(x |, (Aitchison 

et a l . 1977). 

Suppose the set X contains n samples, { x i , . . . , x „ } . - Then since the samples 

were drawn independently, 

p{x\e) = f[p{Kk\e) (3.10) 
jt=i 

p ( X I 6) is called the likehhood function of 9 wi th respect to the set of samples. 

T h e max imum likehhood estimator of 6 is, by definition, the value 6 that maxi 

mizes p ( X j 6) (Figure 3.8). The classical approach is to differentiate p (x | 6) w i th 

respect to 6, equate 5 p ( X | 0) fdO = 0, and solve for 6. 

p(x |e) 

Figure 3.8: The maximum likelihood estimate for a pa

rameter 0. 

Suppose the sample set X is from a normal distribution with parameter 0 = 

(n, E), the maximum likelihood estimate of the mean p. and covariance matrix E 

is obtained by substituting 

p(x I 0) = {27r)-<^/'\Sr/'exp [-\{x-. f,fE-'{x-fi) 
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into eqn. 3.10, then gives the hkehhood function 

p{X I 6) = (27r)-'^"/2|.^|-n/2exp 

1=1 

(3.11) 

It is more convenient to work wi th the logarithm of the likehhood function 

than wi th the likehhood function itself. 

L' = \ogp{X\0) 

= | l o g | i 7 n - i t r i : - V V 

- | t r i : - ^ ( m „ - A*)(m„ - p^f + y log27r (3.12) 

Setting 1̂  and | ^ to zero (see Appendix A for proof) 

P- = \JZ^i (3.13) 

^ = ^ E ( ^ i - A ) ( x i - A f (3-14) 

The M a x i m u m likehhood estimator is used to estimate parameters of cluster 

models i n the second stage of the Global-Local algorithm described i n Chapter 4, 

i t is also used to obtain parameters of mutual information model described i n 

Chapter 5. 

3.3 Non-Parametric Density Estimator 

In some cases i f the probabili ty densities can not be approximated by a general 

parametric form pdf, we have to use the sample points to estimate the densities 

w i th non-parametric methods. The assumption that the forms for the underlying 

density function can not be characterised by parametric form is not uncommon. 

For example, when the density function of classes are mult i -modal . 

There are three major type of non-parametric estimators: 1) the histogram 

method, 2) the kernel method, and 3) the k-nearest-neighbour (k-nn) method 
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(Duda and Hart 1973). We shall only look at the histogram estimator, and the 

other two are essentially a generalization of the histogram estimator. 

3.3,1 Histogram Estimator 

Histograms are the conceptually simplest method of estimating a pdf. The gener

alisation of the histogram from one dimension to many is s imply to part i t ion the 

whole space into disjoint cells of equal volume. 

Consider a small region wi th volume V (F ig . 3.9) about the point x where 

the density p(x \ w,-) is to be estimated. Since we are working wi th single class, 

we shall drop the class subscript. Given n independent samples X i , . . . , x „ the 

probabili ty P that ^-of these n samples fall into this region is 

P= [ p{pc')dx' (3.15) 
JR'' 

Frequency 

k . 

Ax=Zh 

\ 

X 

Figure 3.9: The approximation of probability density 

function by histogram, where h determine the volume 

of a cell. 

If the region is sufhciently small , we can write • 
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/ p{x')dx' w p ( x ) y (3.16) 

SO, pix) « ^ (3.17) 

It is required to estimate P from the set of samples X i , . . . , x „ . Since the 

samples are independent, the probabihty of finding any k of these samples i n 

is given by the binomial distribution 

T h e max imum hkelihood estimation of Pk can be found by differentiating Pk 

wi th respect to k and setting dPk/dk to zero (Duda and Hart 1972), 

dk \ ̂  / 
P ^ - ^ ( l - p)"- '=-i [fc(l - P ) - P ( n - k)] (3.19) 

= .0 

Solving for P , the estimate is given by 

P = t 
n 

(3.20) 

The local estimated density of p(x) is given by 

nV 
(3.21) 

If we consider the region P'^ as a cell, then the histogram estimation of p(x) 

is given by 3.21. The histogram estimate for cell hj is 

A M = ^ (3.22) 

where kj is the number of points he i n cell fej and V is same for a l l cells. 

This method has the advantage that the points themselves do not need to 

be stored after the estimate has been made. Only statistics describing the cell 

location, number of points need be retained. The histogram approach is largely 
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l imited by the dimension of the feature space. If the space is divided into N 

intervals then the number of cell is equal to A'^'^. 

In some cases there may be another problem occurring due to discontinuity 

between ceU boundaries. The estimate given by 3.22 is applied to the volume 

occupied by a cell,, so there is an abrupt change of level between two adjacent 

cells. The Spline line function can be used to smooth the boundaries (Ichida and 

Kiyono 1975). 

The first problem, wi th this histogram method is the prohibit ively large number 

of cells needed even i n relatively low dimensional problems, this can be alleviated 

by storing non-empty cells only (Shlien and Smi th 1975). Another method is to 

let the data somehow determine the cell locations, number of points as suggested 

by Sebestyen and Edie (1966). 

Local density estimate are commonly used i n mode seeking clustering algo

r i thm which shall be discussed later. A practical method to construct mul t i 

dimensional liis-tô v«oKs was described by Narendra and Goldberg (1977) and Whar

ton (1983). This method is incorporated in the first stage of the Global -Local 

clustering algorithm which partitions a multi-dimensional histogram (see Chap

ter 4). 

3.4 Unsupervised Learning 

Unsupervised learning is to classify samples without any ftfor kho^M^^j, 

such as sample labels, parameters and forms characterise the underlying 

distribution. ' ' . ' 

If no prior knowledge of the class pdf is given, the problem becomes one of 

decomposing a mixture of distributions into their components. A mixture pdf for 

C classes of samples is given by (Everitt and Hand 1981) 
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Pix\e) = J2p{^\^jA)PM (3-23) 
3=1 

Assume the form of the class condition pdf p (x $j) is known. A l l that is 

unknown is the values for the C parameter vectors di,...,9c. The conditional 

densities p (x | Uj, 6j) are called the component densities, and the a pr ior i probabil

ities P{u}j) are called the mixing parameters. If the parameters can be estimated 

from the samples, we can decompose the mixture into its coinponents. 

3.4.1 Unsupervised Maximum Likelihood Estimation 

We introduce clustering using the max imum likelihood approach for densities de

composition, this approach is very restrictive since a parametric rhodel and number 

of clusters are assumed known. The maximum likehhood method can be used to 

learn the parameters of a mixture density (Wolfe 1970, Hasselblad 1966). 

Assumed the following: 

1. The samples come from a known number C of classes. 

2. T h e mixing parameters P{u}j) for each class are known, j = 1 , . . . , C 

3. The form for the class conditional pdf p(x | ^j) are known, j = 1 , . . . , C . 

4. A l l that is unknown are the values for the C parameter vectors, 9i,...,6c. 

Given a set of unlabelled sample X = { x i , . . . , x „ } drawn independently from 

the mixture density 

p{x\e) = J2p{^\o:jA)Pi^j) 
3=1 

Assume independence of samples, we have 

p ( X I 6) = f[p{xk I 6) (3.24) 
k=i 

It is required to find the estimate 9 that maximise the mixture p ( X | 9). The 

logari thm of the hkehhood function is 
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k=l 
n 

(3.25) 
k=i Li=i 

Wolfe (1970) shown that the estimate which maximizes eqn. 3.25. are given by: 

PM = -P (a ; , |x . - ,^ ) (3.26) 
n 

k = l,...,C-1 

= - 3 ^ E P K | X , , ^ ) X , (3.27) 
nPM ^ 

h = -^—y2^{iVk\xi,d){xi-pk){xi-hf (3.28) 

fc = l , . . . , C 

It is found that the max imum likehhood estimators for the unsupervised case 

(mixture) are analogous to those i n the supervised case (single distribution). 

W h i l e i n the unsupervised case the sample points are weighted by the posteri

ori probability, so a l l samples are contribute to the estimation. 

Equat ion 3.26, 3.27 and 3.28 do not give 6 explicit ly, they must be solved 

using some type of iterative (hi l l climbing) procedure. One iterative technique 

which is commonly used has two stages (Wolfe 1970, Hasselblad 1966). The first 

stage estimates the membership probabili ty for the kth. component 3.26 and the 

second stage uses these membership probabili ty estimates to update the estimates 

of P{u});),p.f.,Ek- These two steps are then repeated iteratively. A U iterative 

techniques are not guarantied to yie ld the global maximum, but the convergences 

can be improved by a set of good in i t ia l values of 6. D u d a and Hart (1973 

Ch.6) use the max imum likelihood estimator on a simple one dimensional, two 

components normal mixture. He demonstrated that the solution depends on the 

in i t ia l estimate, and multiple solutions always exist using a clustering technique. 

Clustering techniques which shall be discussed later are popular and practical 

61 



approach for unsupervised learning. Al though it is suboptimal, the simphcity and 

efficiency always out grows their disadvantages. 

Since unsupervised max imum hkelihood estimation requires many assumption 

and some of them are unrealistic i n many applications, so this is usually replaced 

by other clustering methods. In the rest of this chapter the most commonly 

used clustering techniques and the problem of i n choosing a distance measure 

are discussed. Concepts of these techniques are used i n clustering algorithms 

developed i n Chapter 4 and 5. 

3.5 Clustering 

In the last section clustering wets introduced as a mixture decomposition approach. 

Clustering also finds many applications outside the pattern recognition area. It 

is generally known as a tool for exploratory data analysis (Jain and Dubes 1988). 

Cluster analysis attempts to organise data into their natural structure such that 

patterns i n the same cluster are more similar than patterns i n different clusters. 

Th i s organisation can be a pvtî TonTtwj of the data set into non-overlapping subsets, 

or i t can be a hierarchy of groups (see F i g . 1.2 for various methods). 

The concept of distance was introduced i n section 3.1.3, i t is a measure of 

similari ty of two patterns. The use of similarity i n clustering is analogous to 

human recognition of objects. We tend to group objects based on their similarity, 

so i t is natural to use this concept i n clustering. Similar i ty (dissimilarity) is the 

heart of clustering, but from the first moment when a clustering method is chosen 

a structure is imposed on the data which is somehow conflicting wi th the original 

goal of clustering (Hartigan Ch.2 1975). For example, the hierarchical methods 

"single linkage" is suitable for clustering enlongated clusters, i f this methoS'ls"^ 

applied to normal distributed data, the original structure may not be recovered. 

So i f a priori knowledge about the data is sparse, different clustering methods 

should be tried before any results can be accepted. 

A general problem wi th clustering is to solve the problem of determining the 

62 



number of clusters. Usual ly this problem is scale dependent as shown i n F i g . 3.7. 

This problem is referred as cluster validation (Duda and Har t Ch.6 1973, Dubes 

and Ja in 1979, Ja in and Moreau 1987). If the data can not be projected into 

two or three dimensions such that its structure can be viewed, then i t becomes 

necessary to test the validity as an objective measure of the clustering results. In 

clustering of imagery data, these problem is caused by the uncertainty between 

objects boundaries. In this study cluster validity is not a serious problem since the 

approximate number of clusters can be obtained by inspecting the original image, 

and for most situations (same image size) the number of clusters only differ by 

one or two. 

3.5.1 Dissimilarities 

The dissimilarity between the ith. and kth. patterns is denoted S{i, k) and must 

satisfy the following four properties (Anderberg 1973): 

A distance measure only needs to satisfy 1-3, while for a distance metric i t 

must satisfy 1-4. Assumption 1 implies that an object is zero distance from 

itself and that two points zero distance apart are identical. Assumpt ion 2 implies 

symmetry of distance, assumption 3 prohibits negatives distances, and assumption 

4 is known as the triangle inequahty, this requires that the length of one side of a 

triangle be no longer than the sum of the lengths of the other two sides. 

The Euclidean metric is a special case of the Minowsk i metric 

1. 6{-Xi,Xi ) = 0, 

2. 6{xi,Xk) = 6{xk,Xi), \/i,k 

3. S{xi,xk)>0, V i , k 

4. S{Xi, Xk) < S{Xi, X,n) + ^(Xm, Xfc), V z, k, m 

where r > 1 (3.29) 
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where x,j is the jih variable of the ith. pattern. If r = 2 we have the Euclidisan 

metric. Other special cases of the Minkowski metric are the C i t y block and sup-

norm metric 
d 

(5i(x.-,x,) = J ^ | x o - - x , , | (3.30) 
i=i 

(5OO(XJ,XA) = sup | x y - X f c j | (3.31) 
i<i<d 

Sibson (1972) argues convincingly, order relationships are more important than 

numerical values. A dissimilarity measure need not be a metric, for example the 

squared Euchdean distance is usually used to replace the Eucl idean distance for 

more efficient computation. However the squared Euclidean distance is not a 

metric, because i t does not satisfy the triangle equality. 

3.5.2 Problems of Measuring Dissimilarities in Cluster

ing 

If prior information about the data can be obtained, i t allows us to choose an 

appropriate distance measure ĵ Asedl'On the model of the data structure. For exam

ple, most weather image data can be modelled by multi-variate normal mixture 

(Pairman and K i t t l e r 1986). In this case, a distance function can be derived from 

the normal distributed model which takes into account of the cluster size and 

population. 

W h e n prior information is not available, a common approach is to normalise 

the data such that Euclidean distance can be used to produce better clustering. 

For example i n Figure 3.10, i f Euclidean distance is used the point x w i l l be as-

signed to the wrong cluster coi. This problem may be solved by taking account o f 

the variance of the clusters. Ideally we would like to normalise the data so that 

wi th in clusters variances are approximately equal. This is essentially a normal

izat ion of the features variables i n each cluster. Let the mean of the jth. variable,. 
1 

of cluster Wfc be m,jt = — y^x,- Vx,- € ufk, " ' - an^ -be., the variance of the 

j t h variable of cluster Wjt, 
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s%=--Y,i''ij-mjk? j = h....d (3.32) 
.=1 

Unfortunately, this normalization can not be justified i f the clusters are not known 

a pr ior i . 

Another reason for normalization of data is the scaling effect (Hartigan Ch.2 

1975). If the values of some variables are particularly large, these variablejwill 

dominate the distance measure. To equalise the importance of each feature vari

able, eax:h variable could be scaled by dividing by its sarnple standard deviation 

s'j = -J2{-Kij-mjy i = l , . . . , r f (3.33) 

where m,- = — >^ x,- V x is the mean of the i t h variables, 
n -f—' 

Figure 3.10: A point x in these cases should belong, to 

CJ2, although 5(x ,ma) > 5 ( x , m j ) , where 5 ( x , n i i ) is the 

Euclidean distance between cluster centre m i and point 

X . 
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Equat ion 3.33 rescales a l l the variables to have unit variances wi th respect 

to the whole data set. A problem wi th this normalization method is that after 

normalization those variables wi th relatively large Between Cluster Variances w i l l 

be reducejin importance, as their scaling factors are larger. This means that 

the overall between cluster variance wi l l be reduced relative to the wi th in cluster 

variance and the clusters w i l l become less distinct (Hartigan Ch.2 1975). 

A n alternative to normahzihg the data and using Ei ichdean distance is to use 

some k i n d of normalized distance, such as Mahalanobis distance 

5(x,, i^j) = { (x , -fJij)S-\xi - fijff' (3.34) 

where is the covariance matr ix of cluster Wj. 

Generally, we would prefer to use 3.32 for normalization, because 3.33 reduces 

the distinctness of clusters. So normalization is just one method to deal wi th the 

variation of cluster size and shape. Clearly, the effect of normalization is more 

difficult to access when applied to >wn-:ilr»a\irjy separable clusters. Hart igan (Ch.2 

1975) highlighted the difficulty of normalization as a basic circularity: 

1. In order to cluster patterns, it is necessary to propose a measure of distance 

between patterns. 

2. In order to define distance, i t is necessary to weight the variables. 

3. In order to weight the variables, it is necessary to know the clusters of objects 

so within-cluster variances can be equalised. 

There is no doubt that :»o distance measure is universal and the choice of a 

suitable measure should be obtained from prior information of the data whenever 

possible. 

In spite of a l l the cri t icism about normahzation, Fukunaga and Koontz (1970) 

proposed a normalizing transformation for clustering and showed that the result 

using this transformation for clustering Gaussian data io as improved. Suppose we 

wish to parti t ion a data set { x i , . . . , x „ } of cf-dimensional vectors into C clusters 
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with population ni,...,nc. The scatter v«i=ctnc<s are then defined as 

n 

Total scatter T = E ^ * ^ ? ^^'^^^ 
def T 

Jb=l 

where the data set has zero mean. 

def 
W i t h i n group scatter Wj = ^ (x^ - mj){xk - mjf (3.36) 

Xfcewj 

where m,- = — Xfc 
X ^ j 

c 
Total wi th in group scatter = Y^Wj (3.37) 

i=i 
C 

Between group scatter B = n j m j m j (3.38) 
i=i 

and r = W + B (3.39) 

The eigenvalues of W~^B, A i , . . . , A ja re invariant under non-singular linear trans

formations of the data set. 

Three clustering criteria (discuss later) Kdya been defined in terms of these 

scatter matrices. They are 

c 

Jo = t r T y = E E l l ' ^^ fc -^^ i l l ^ (minimize) (3.40) 

j=l Xk€OJj 

d 
J i = | r | / | i y | = J J ( 1 - | - A ; ) (maximize) (3.41) 

»=i 
d 

J2 = t r l ^ - i 5 = X ) ' ^ ' (maximize) (3.42) 
t=i 

Jo was. proposed by Casey and Nagy (1968) and McQueen(1967), which is 

not invariant under non-singular linear transformations of the data set. A non-

singular linear transformation of a positive definite scatter matr ix T proves that 

a non-singular matr ix A exists such that ATA-^ = J. J\ and J2 was proposed 

by Friednian and R u b i n (1967), these two criteria are invariant to non-singular 

linear transformation. Fukunaga and Koontz (1970) showed that J i and J2 are 

superior to Jo i n the sense of the performance requirement. However only Jo can 

be directly optimized using the K-means type algorithm (MacQueen 1967). Jo is 
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computationally more efficient than J i and J2, so Fukunaga and Koon tz (1970) 

derived a normalizing transformation and applied on Jo to produce 

" 1 
J i = E j ^ (3.43) 

which is invariant under non-singular linear transformation of the xs . Fukunaga 

and Koon tz (1970) showed that for two group Gaussian data, JQ yields the same 

op t imum part i t ion as J i and J2 wi th greater efficiency. 

Lumelsky (1982) argued that the weighting (another form of normalization) 

of variables should be done wi th in the clustering stage and not as a preprocessing 

step. A clustering transformation was incorporated into a K-means type clustering 

algorithm. The criterion to be winrmTzeolsris the average wi th in group square error 

J = E ^ T T ^ ^ ^ " ' ^" ' - ^ - ' ^ ' ^ ' - ' ' ^ 

where Wp is the weight for pth. variables and is 

Wg = d — ^ l ^ , q=l,-.-,d (3.45) 
i ; p = i i / c p 

The clustering results compared favourably wi th algorithm using Mahalanobis 

distance and equal variance normalisation. 

In general normalization is an attempt to equalize the variation of clusters, 

i t should be used carefully to assist clustering, rather than taken for granted. It 

is also beheved that normalization usually improves clustering of hyperspherical 

or hyperellipsoidal clusters, although a different clustering method is suitable to 

identify either linearly or non-linearly separable clusters. 

It was mentioned that most weather image data can be modelled by a normal 

mixture. W i t h this prior information, K i t t l e r and Pai rman (1985b) derived a dis

tance function using Bayes min imum error criterion (section 3.1.2). The distance 

measure is suitable for clustering of normal niixture and produces better results 
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than either the Eucl idean or Mahalanobis distance. In Chapter 4 a Global -Local 

clustering algorithm has been developed based on this distance function. 

3.5.3 Partitional Clustering 

Part i t ional clustering algorithmscan be divided into two categories, they are itera

tive and non-iterative algorithms. Iterative part i t ional clustering algorithms allow 

patterns to be transferred from one cluster to another to optimize some criterion 

function. The choice of a criterion function and a distance measure are most i m 

portant i n iterative clustering algorithm. Jain, and Dubes (Ch.3 1988) suggested 

that criteria can be classified as global or local . A global criterion represents each 

cluster by a prototype (usually the cluster centroid) and assigns patterns to clus

ters according to the most similar prototype. M a n y iterative clustering algorithms 

( I S O D A T A , K-means) use the global criterion. A local criterion forms clusters by 

ut i l iz ing local structure in the data which is most popular i n mode seeking type 

algorithms. For example, clusters can be formed by identifying bigb density re

gions i n the pattern space (Narendra and Goldberg 1977, Torn 1976, Ince 1981, 

Whar ton 1983) or by assigning a pattern and its k-nearest neighbours to the same 

cluster (Gowda and Kr i shna 1978, Urquhart 1982, Jarvis and Patr ick 1973). 

Our objective is to part i t ion n patterns into C groups such that a criterion is 

optimized. The solution to this parti t ional problem is straight forward, this can 

be accomplished by searching for al l possible combination and sdes^jthe best one. 

If iterative clustering algorithms are used, a criterion must be chosen. Cr i te r ia 

are highly dependent on problem parameters (Jain and Dubes Ch.3 1988). Some 

criteria have been mentioned i n section 3.5.2. We repeat those criteria here for 

convenience. 

Jo = txW 

J l = \T\/\W 

Jo = tiW-^B 

(3.46) 

(3.47) 

(3.48) 
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Jz = irW-ixB (3.49) 

T i i e most popular criterion is Jo 

c C nk 

ivW = t^^fc = E E ^ ^ ' ^ - ^kfi^ik - mk) (3.50) 
A:=l k=l «=1 

which is equal to the sum of variance of a l l clusters, and i t is equivalent to the 

sum of square error criterion. The trW criterion is invariant under orthogonal 

transformations, such as rotations, but is not invariant under non-singular hnear 

transformations. That i s , the min imum square error part i t ion may change i f the 

coordinate axes are scaled (Fukunaga and Koontz 1970). However, J i and J2 

(Friedman and R u b i n 1976) are invariant under non-singular linear transforma

tions. Friedman and R u b i n described a two passes algori thm for optimizing J i 

and J2. The first pass is a hi l l -cl imbing pass, i t changes the cluster label of an 

object only to improve the criterion function. K-means (MacQueen 1967) is a 

popular algorithm for performing such task. The K-means algorithm is as follow: 

Step 1. Select C in i t ia l cluster centres. 

Step 2. Assign patterns to the closest centre using a distance measure. 

Step 3. Update the centres using the new parti t ion. 

Step 4. If the centres have not changes then terminate, 

otherwise goto Step 2. 

Usual ly the iterations stop when the number of patterns that changed label are 

insignificant, or simply specify a max imum number of iterations. The second pass 

of Friedman and Rubin 's algorithm is a forcing pass, i t perturbs the part i t ion 

to avoid getting trapped at a local min imum of the criterion function. A l l pat

terns i n a cluster are transferred to other clusters and the criterion function is 

recalculated after each test. The best part i t ion found is retained, and the forcing 

pass is repeated for the next cluster. This process is repeated unt i l convergence 

is obtained. 

Coleman and Andrews (1979) use the criterion J4 = trB • t r W (maximize) 

for image segmentation. It was showed that J4 attains a max imum wi th in the 
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upper and lower bound of number of clusters (F ig . 3.11), and the maximum of J 4 

represent the intrinsic number of clusters. A large number of features were derived 

using the Sobel edge operator with window sizes of 3 x 3, 7 x 7, 15 x 15. Then 

the best features were selected by comparing values of the criterion function, and 

clustering of the best features were accepted as the best results. 

opt imum no. of clusters 

number of clusters 

Figure 3.11: General shape of the criterion function J 4 . 

Koontz and Fukunaga (1972) derived a family of criteria based on minimisation 

of the error committed in estimating distances between pairs of patterns. Koontz 

and Fukunaga then showed that the iterative algorithm to minimize the criterion 

is i n fact an iterative use of a decision rule, and the criterion has. a very important 

property that it is valley seeking, so non-linearly separable clusters can also be 

found. Therefore different criterion functions can produce very different results. 

The second problem of iterative clustering is how to l imi t the search space such 

that a solution can be found. The K-means algorithm forms the basis of many 

variations in iterative clustering. Ba l l and Ha l l (1967) generalize the K-means 

algorithm by adding split and merge capabilities. This algorithm is known as 
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Iterative Self Organizing Da ta Analysis Techniques A ( I S O D A T A ) , Those itera

tive part i t ional clustering techniques can be generalized as (Jain and Dubes Ch,3 

1988): 

Step 1. Select an in i t ia l set of C cluster centres, ' 

Step 2. Generate a new parti t ion by assigning each pattern to its 

closest cluster centre. 

Step 3, Compute new cluster centres as the centroids of the clusters. 

Step 4. Repeat Step 2 and 3 unt i l an opt imum value of the criterion 

function is formed. 

Step 5. Adjust the number of clusters by merging and spli t t ing 

existing clusters or by removing small , or outlier clusters. 

If any split or merge has occurred goto Step 2 otherwise stop. 

The structure of the I S O D A T A algorithm forms the basis of the second stage 

of the Global-Local clustering i n Chapter 4. 

The detailed implementation of these steps involves heuristic procedures (Fromm 

and Northouse 1976, see also section 4.2.4) and the performance of the algorithm 

also depends on the choice of distance measure and input parameters which de

cide the split and merge of clusters. Furthermore, Step 2 and 3 can be changed 

such that the centres are updated after a pattern has been transferred. However 

this procedure is susceptible to being trapped at a local min imum, and a further 

disadvantage of making the results depend on the order of pattern being clustered 

(Duda and Hart Ch.6 1973). These k ind of h i l l c l imbing procedures i n general 

do not guarantee global optimization. Koontz et al.(1975) proposed a branch and 

bound algorithm to l imi t the search space, by eliminating searches which are un

necessary, this algorithm generates global opt imum result. However for large data 

sets, this approach is s t i l l impractical . 

In Step 1 an in i t ia l set of centres or partitions is need to initialise the iterative 

clustering algorithm, and i t is well know that changing the initiahsation gener-

atesdifferent results (Wolfe 1970). Good results can only be obtained wi th in i t ia l 
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part i t ion close to the global opt imal . The Global -Local clustering algorithm in 

Chapter 4 generates an in i t i a l part i t ion using a very efficient mode seeking clus

tering algori thm. 

Dynamic Clustering 

So far we have only considered using the centre to represent a cluster, and this 

representation allows us to minimise the sum of square error using very efficient 

h i l l c l imbing techniques. However, i t is also possible t o use cluster rep

resentations other than the centre such that appropriate distance measures can 

be derived, for example, using a parametric models of the kernel, Diday (1974) 

generahsed the representation of a cluster LOJ by a kernel Kj — / i r (x, Vj) w i th Vj 

denoting a set of parameters defining / iQ, The kernel can be the centre as before, 

a set of points which are close to the cluster centre (Mi lg ram et al , 1977), or a 

parametric model (Ki t t le r and Pai rman 1985b), The idea of dynamic clustering 

is also based on iterative optimization of a criterion function. Let t ing d{x,Kj) be 

a similari ty measure between the pattern x and kernel Kj, the criterion function 

is given by 

'^ = E E < ^ ' ' ^ ^ i ) (3.51) 
i=l i=l 

The algorithm for dynamic clustering is given as: 

Step 1. Choose an in i t i a l part i t ion of the data set, u}j,j = 1,.-.., C , 

determine kernel Kj,j = l,...,Cioi each cluster. 

Step 2. Assign each point x,- to that cluster Uj 

i f d{xi, Kj) = min(x,-, Kk) 

Step 3. Update the kernel using the new part i t ion, 

i f kernels Kj,Wj remain unchange, terminate 

the algorithm otherwise goto Step 2. 

The kernel function allows a better representation of the cluster. K i t t l e r and 
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Pai rman (1985b) used a multi-variate normal kernel and applied i t to cloud images 

wi tb good results compared wi th algorithms using Eucl idean and Mahalanobis 

distances. This approach allows the use of a Gaussian model to represent^cluster, 

and i t is used i n the Global-Local algorithm i n Chapter 4. 

Clustering by Mode Seeking 

The mixture decomposition method introduced i n section 3.4 which assumed a 

Gaussian model , most mode seeking methods are non-parametric counter part of 

i t . The objective of mode seeking is to identify a unimodal cluster of points i n the 

feature space. Unl ike the iterative clustering algorithm, mode seeking algorithms 

are usually non-iterative and because they are non-parametric only local density 

estimates are used for clustering. 

The simplest way to identify modes i n the data is to construct a histogram by 

part i t ioning the feature space into a number of non-overlapping regions or cells. 

Cells wi th relatively high frequency counts are probably modes and the valleys of 

the histogram represent the boundaries between clusters. Since these methods are 

non-parametric they can identify clusters wi th any shape. Th i s approach is incor

porated i n the iirst stage of the Global-Local clustering algorithm presented i n C h -

pater 4, which identifies unimodal clusters by part i t ioning the multi-dimensional 

histogram to generate an in i t ia l part i t ion for the iterative clustering algorithm i n 

the second stage. 

K i t t l e r (1976) proposed a mode seeking algorithm using a Parzen window 

estimate of the density function wi th a hypercubic kernel function. This algorithm 

essentially tries to map the multi-dimensional histogram into a one dimensional 

sequence of density estimates. A pattern is chosen randomly and corresponds to 

the first point i n the sequence. The second point i n the sequence is that pattern 

which has a max imum density i n a hypercubic window around the first pattern. 

The pattern wi th the max imum density i n the region which is the union of the 

windows around the first two patterns is selected for the th i rd point. This chain 

of hypercubes i n the data set which w i l l eventually reach the local peak of the 
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pdf. W h e n the sequence has reached the first peak, the points selected w i l l be 

wi th lowest probabihty density unt i l the valley x „ is reached. Since a l l points from 

the first peak wi th p (x ) > p ( x „ ) have already been selected, the following point 

X r , w i th p ( X r ) > p ( x „ ) w i l l belong to the second mode of the p d f The process 

continues unt i l a l l modes have been included i n the sequence. 

3.5.4 Hierarchical Clustering 

In contrast to parti t ional clustering, i n hierarchical clustering, patterns are not 

transferred between clusters once they are processed. Hierarchical clustering pro

duces a sequence of partitions i n which each part i t ion is nested into the next 

part i t ion in the sequence. If n patterns are partitioned into C clusters, we shall 

say we are at level k i n the sequence when c = n — k +1. Given any two patterns 

X and x ' i f they are in the same group at level k then they w i l l remain i n the same 

group for al l higher levels (Jain and Dubes 1988). A n agglomerative algori thm for 

hierarchical clustering starts wi th n clusters and each cluster has one pattern. The 

clusters are merged pair by pair using some distance measure unt i l a l l patterns 

are contained i n one cluster. The result of this can be represented using a tree 

structure (Fig . 3.12) which is usually known as a dendrogram. 
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X g X 3 X ^ X 

level 1 Hx,).Cx^).(x3).(x^),(x^){ ^ # # ^ « 

level 2 Kxp,(x^).(x^).(x^,x^)| 

level 3 Kxp,(x^,x^),(x^.Xg)J 

level 4 l{x^),(x2.X3,x^,Xg)} 

level 5 Kx^.x^.Xg.x^.Xg)} 

Figure 3.12: Example of dendrogram. 

Mos t hierarchical clustering starts by constructing the similarity matrix, for 

n patterns there are n (n — l ) / 2 pairs of measure. The size of the similarity 

mat r ix l imits the number of patterns which can be clustered. So hierarchical 

clustering algorithms are only l imited to clustering a relatively smaU number of 

patterns. Anderberg (Ch.6 1973) provided three approaches for implementation 

of hierarchical agglomerative clustering algorithms, they are the stored matrix, 

the stored data, and sorted data approach. These approaches all a im to solve 

the problem of clustering a large data set. Traditionally, hierarchical clustering 

has found l i t t le application on multi-spectral image data, probably because of the 

storage problem and the complexity in comparing large number of pixels. There 

are many hierarchical clustering methods, they can be divided into three categories 

and they are predominantly agglomerative approaches (Anderberg Ch.6 1973): 

1. linkage method. 

2. centroid method. 

3. error sum of square or variance method. 
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Linkage Methods 

The hnkage method is conceptually the simplest of a l l clustering methods. The 

basic agglomerative clustering method is (Duda and Hart 1973): 

Step 1. Let g = n and w,- = {x,-}, i = 1 , . . . , n 

Step 2. li g < C, stop ( C is the number of clusters) 

Step 3. F i n d the nearest pair of distinct clusters, say a;,- and UJJ 

Step 4. Merge Wf and Wj, remove Uj and decrease by one 

Step 5. goto Step 2 

The following are the most popular distance measures for linkage methods: 

^inin('*'.-,'^i) = min <5(x,x') (3.52) 
X6aJ,-,x'€u;j 

Smaxi'iOi^iOj) = max (5(x,x') (3.53) 

S^^,{ui,coj) = E E *^(^'^') (3.54) 

Sme^{(^i,^j) = 5(m,-,mj) (3.55) 

where m,- = — x is the mean of group a;,-

Each of these four distance measures produces a different clustering method. 

Single Linkage Method 

If ^min is used, the method is called single linkage. The patterns are regarded as 

nodes-and edges are used to connected these nodes i n the merging process. W h e n 

^min is used to measure the distance between two groups the edge that satisfies Sjoin 

w i l l connect two nodes which are nearest neighbours. Every t ime an edge is added 

two distinct clusters are connected, i f the process is allowed to continue unt i l there 

is only one cluster the result is a graph which does not contain any closed loops; 

i n graph theory this procedure generates a tree. If a weight is assigned to an edge 

and is equal to the distance between the two nodes to which i t is connected, then 

the sum of weight is min imum and so i t is known as the a M i n i m a l Spanning Tree 
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( M S T ) or Shortest Spanning Tree (SST) . Figure 3.13 gives some example of single 

linkage clustering. 

x l x l x l 
(a) (b) (c) 

Figure 3.13: Single linkage clustering example. 

In F i g . 3.13a there are two compact clusters and the edge e connecting them is 

the longest, so i f the edge is removed we discover the number of clusters exactly, 

however i f these clusters move closer, they can not be discovered by removing 

the longest edge. So single linkage is only suitable for well separated clusters. 

O n the other hand single linkage is capable of detecting enlongated clusters as in 

F i g . 3.13bi Unfortunately this property leads to a problem that two very different 

patterns may be assign to the same group as in F i g 3.13c. This behaviour is often 

called the "chaining effect". 
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C o m p l e t e L i n k a g e M e t h o d 

When 6max is used to measure the distance between clusters, the growth of enlon

gated clusters is discouraged. This method is called complete linkage because a l l 

nodes wi th in a group are l inked to each other at some max imum distance. Such 

a cliister is called a "complete subgraph" in graph theory. Figure 3. r<f-shows an 

example of complete linkage clustering. W h i l e a single linkage method concen

trates on seekirig clusters which are isolated from each other, paying no attention 

to their cohesion; the complete l ink method concentrates on the internal cohesion 

of clusters. 

x 2 

x l 

Figure 3.14: Example of complete linkage clustering. 

A v e r a g e L i n k a g e M e t h o d 

The single linkage and complete linkage methods rely on min imu in and maximum 

distance measure. Because the use of distance can affect the cluster structure 

to be detected, it is natural to use âvg and 5mean in the hope that some of the 

problems such as the chaining effect can be reduced. 
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The Centroid Method 

The Centroid method was proposed by Sokal and Michener (1958). Groups are 

depicted to l ie i n the Euclidean space, and are replaced on formation by the coor

dinates of their centroid. The distance between groups is defined as the distance 

between the group centroids. The algorithm merges groups according to the dis

tance between their centroids, the groups wi th the smaUest distance being fused 

first. 

Error Sum of Square Method (Variance Method) 

Ward (1963) suggested a hierarchical clustering method i n which the merges at 

each stage are chosen so as to maximize an criterion function. The choice of 

a objective function is a specific problem, since i t is well known that there is 

no universal criteria (Fukunaga and Koontz 1970). Ward used the error sum of 

squares criterion function, at each stage those two clusters whose merger gives 

the m i n i m u m increase i n the total W i t h i n Group Error Sum of Squares. Wishar t 

(1969) showed that the Ward algorithm could be implemented by updating a 

stored matr ix of squared Euclidean distances between cluster centroids. 

Graph Theoretic Methods 

So far we consider hierarchical agglomerative clustering as a process to merge 

patterns and transform the similarity matr ix into a dendrogram, then a cluster

ing is obtained by cutting the dendrogram horizontally. A n alternative way for 

clustering can be obtained by graph theory which is based on a visual perceptual 

model of clusters. 

Graph theoretic clustering is very similar to hierarchical agglomerative clus

tering. The major difference between the linkage method and the graph theoretic 

method is how the tree is presented. The dendrogram is presented i n an hierarchi

cal order of the merging of objects or groups, and the tree completely spans the 

data set. In graph theoretic clustering, the tree may or may not span the data set 

completely, and the tree does not necessary contain information on the merging 
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order of objects. However, they share a common characteristic that clusters are 

formed i n an hierarchical order. 

It was mentioned that the single linkage method is equivalent to the generation 

of the m i n i m a l spanning tree ( M S T ) . Efficient algorithms exist for generation of 

the M S T ( P r i m 1957, Kruska l 1956). Given a M S T we can find the clustering 

produced by the single linkage algorithm. Removal of the longest edge forms two 

clusters, removal of the next longest edge produces one more cluster and so on. 

In this way we first merge a l l patterns into one cluster and divide the cluster into 

subclusters, so we can perform a divisive hierarchical procedure. 

Instead of the removal of an edge based solely on its weight, we can select 

an edge to remove by comparing the length of edges i n its neighbourhood. For 

example, i f the length of an edge is much longer than the mean length of its neigh

bour, removal of this inconsistent edge may produce two distinct clusters. Zahn 

(1971) produced an excellent discussion on various method to locate inconsistent 

edges i n spanning tree. Urquhart (1982) used a Gabrie l graph and a relative 

neighbourhood graph as an extension to Zahn's (1971) M S T method. A review 

of applications of graph theory to clustering was given by Hubert (1974). 

The property of the spanning tree abil i ty to identify clusters of arbitrary shape 

has seldom been exploited on image data. If a spanning tree is constructed wi th 

the constraint of a pixels' spatial relationship, the resulting segments are found to 

be superior to other thresholding segmentation techniques i n the sense that the 

segments are less noisy (Morris et al . 1986). This noise insensitive property is 

particularly important for subsequent shape analysis of the segmentation (Ki t t le r 

and Pa i rman 1985a). The new Spatial-Spectral clustering algori thm i n Chapter 5 

follows this principle and is able to produce clusters wi th clean boundaries. 

Most hierarchical agglomerative and graph theoretic clustering methods can 

be regarded as stepwise opt imal procedures. A t every step i n the process the 

two most similar pairs of groups or objects are merged. A criterion function 

can be derived such that the sum of cost is minimized. In clustering, the cost 

of merging a pair of groups is often the distance between them. This stepwise 
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approach form the basis of the Spatial-Spectral clustering algorithm presented i n 

Chapter 5. In the algorithm Graph theoretic clustering has been generalized to 

the clustering of the spatial space (segmentation) and four distances commonly 

used i n hierarchical clustering have been used to demonstrate the idea of spatial 

clustering. The principle of agglomerative clustering (stepwise optimization) is 

also used i n the final stage of the Spatial-Spectral clustering algorithm , which 

clusters segments generated by the Spatial-Spectral clustering. 

3.6 Summary 

This Chapter has reviewed statistical pattern recognition as a problem of class 

conditional probabihty density function estimation. The difference between su

pervised learning and unsupervised learning is only the presence or absence of 

labels of the samples. Non-parametric estimators are also introduced which can 

be used when the pdf to be estimated can not assumed a particular model. 

W h i l e decision rules based on probabihty are used to classify patterns i n super

vised learning applications, the distance function plays'a similar role i n clustering. 

Distance is a measure of dissimilarity between patterns. Euclidean distance is a 

popular distance but i t is not capable of discovering clusters w i th different wi th in 

cluster variances. So the data is usually normalized such that the variance of each 

cluster is approximately equal. Since normalization does not always produce the 

desired effects, the choice of distance would be much easier i f a prior knowledge 

of the structure of the da;ta is available. 

Par t i t ional clustering, especially iterative h i l l c l imbing type techniques which 

minimize sum of square error usually imposed a hyperspherical model on the 

clusters. However, i f a suitable distance function is used, clusters can assume 

different sizes, shapes, covariances and populations. A l l h i l l c l imbing techniques 

do not guarantee a global opt imum and usually only a local op t imum is found. 

Design of h i l l chmbing techniques involves two steps, the first is to define a criterion 

for optimization, the second is the iteration procedure to optimize the criterion 
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function. Different criteria w i l l lead to very different algorithms, The sum of 

square error is the most popular criterion function, but this criterion implies the 

cluster to be recovered are hyperspherical and does not always give good results. 

Another problem of h i l l cl imbing techniques is that i t requires a set of in i t ia l 

starting points or partitions. Since h i l l cl imbing algorithms can be trapped i n a 

local opt imum, a set of in i t i a l starting points or part i t ion close to the true solution 

is essential for quick convergence and opt imum result. 

Clustering by mode seeking is usually non-parametric and therefore suitable 

for detecting clusters which are irregularly shaped. Loca l density estimation is 

generally noisy, so i t is practically impossible to establish whether some of the 

peaks i n the estimates correspond to the actual modes in the data. So for the 

local estimate to be more reliable, a large set of data is required. 

The new Global -Local clustering algorithm presented i n Chapter 4 uses a cas

cade of a mode seeking clustering algorithm and an iterative clustering algori thm 

such that their advantage can be combined. The first algorithm is an efficient 

histogram clustering (mode seeking) algorithm which generates an in i t ia l part i

t ion, and the second algorithm is an iterative clustering algorithm which refines 

the part i t ion using an optimized cluster model . 

Hierarchical clustering is closely related to graph theoretic clustering, some of 

them are capable of detecting non-linearly separable clusters (probably due to the 

chaining effect). Graph theoretic clustering has a valuable property that it can 

exploit spatial information within a data set. This property forms the basis of the 

Spatial-Spectral clustering presented i n Chapter 5. However hierarchical cluster

ing techniques have a general disadvantage: since the clustering is constructed i n 

one pass, they can not recover from a poor in i t i a l clustering. 
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Chapter 4 

A Global-Local Clustering 

Algorithm for M E T E O S A T 

Imagery 

This chapter presents a new and optimised Global -Local clustering algorithm 

which is a cascade of two clustering algorithms. The first stage of the algorithm 

generates an in i t ia l part i t ion by clustering the multi-dimensional histogram into 

unimodal regions and the second stage is the optimizat ion of the in i t i a l part i t ion 

using a dynamic clustering algorithm. The objective of the Global -Local cluster

ing algori thm is to eliminate the manual or random selection of an in i t i a l parti t ion 

which is required for a l l iterative parti t ional clustering algorithms. It is true that 

manual selection of an ini t ia l parti t ion is t ime consuming and subjective, on the 

other hand random selection as shown later i n this chapter, always produces sub-

opt imal results. Therefore i t is desirable to generate in i t i a l partitions which are 

close to the opt imum part i t ion objectively. 

Dynamic clustering is chosen because i t is stable for most data types and 

can be implemented wi th good efficiency for clustering of image data. The large 

data set normally found in remote sensing imagery makes i t natural to think of 

clustering as part i t ion of the multi-spectral histogram into unimodal regions. 

Section 2.3 reviewed that dynamic clustering is an efficient and,reliable method 

. 84 



for unsupervised classification of weather images (Desbois et a l . 1982, Seddon 

and Hunt 1985, K i t t l e r and Pairman 1985b). Among many clustering methods 

part i t ional clustering is found to be the most popula,r i n application to image 

classification (Jain and Dubes 1988). 

A s mentioned previously niany more features (e.g. textural) can be derived 

from the raw image. However, this work concentrates on the separation of homo

geneous cloud clusters which represent layers of cloud corresponding to different 

altitude or pressure. Results i n this work are based on V I S and I R data only, since 

the goal is to identify clusters correspond to a single level of cloudi.., and not "t© tr^ •-

to identify every possible type of cloud. It should be noted that more features 

in addition to the visible and infrared features are necessary for classification of 

all cloud types (Seddon and Hunt 1985). It is therefore possible that a cluster 

represents more than one cloud type. This is not a serious problem when the 

application is mesoscale cloud motion tracking since different cloud types at the 

same level tend to move wi th similar speed and direction. 

However, addit ional features are often necessary, because most low cloud trac

ers are cumulus type and most high cloud tracers are cirrus type (Hubert 1971). 

A n extension of this work can be an investigation of additional features which 

provide better class discrimination between cloud types appearing at the same 

level and hence towards the goal of better satellite wind accuracy and automatic 

target selection. C loud classification using features i n addition to raw data can be 

found i n work done by Par ikh Sz Rosenfeld (1978), Seddon (1983) and Pa i rman 

(1985). 

4.1 Initial Partitions 

A major problem common to a l l iterative clustering algorithms is the requirement 

of an good in i t ia l parti t ion or centres to converge to a local opt imal solution (see 

section .3.5.3), and the final result is highly dependent on the in i t i a l conditions. 

Since dynamic clustering is a generalization of iterative clustering methods, i t 
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therefore requires a set of i n i t i a l points or partitions. 

Iterative clustering can be used as an approximate estimation of the mixture 

components (Wolfe 1970). It is well known that mult iple solutions exist for a l l 

kinds of iterative optimization methods (Ba l l 1967, Friedman and R u b i n 1967). 

These solutions are due to trapping of the criterion function i n a local min imum. 

Wolfe (1970) suggested that the updating of cluster parameter is responsible for 

the cause of multiple solutions. So wi th different in i t ia l conditions the algorithm 

w i l l converge to different local minimum, and one can only t ry different in i t i a l 

conditions and select one which he thinks is the best solution. 

It is interesting to note that the inabi l i ty of hierarchical clustering methods 

to transfer pattern vectors is regarded as an disadvantage, while the abihty of an 

iterative clustering algorithm to transfer pattern vectors leads to the problem of 

multiple solutions. Studies by Desbois et al . (1982), Seddon and Hunt (1985), 

K i t t l e r and Pai rman (1985b) a l l used iterative clustering algorithms to classify 

cloud images. Al though their algorithms perform so.ili-fMA,<>»^lj, the starting par

t i t ion was selected manually from the image. This procedure is thought to be 

tedious and prone to human error, if a^number of images have to be clustered. 

Anderberg (Ch.7 1973) reviewed some methods to eliminate the manual se

lection of in i t ia l centres or parti t ion. The in i t ia l centres are called seed points 

because the subsequent result depends on these starting points. If no prior knowl

edge is given about the data set, the starting points are usually dtfejii<j4 in a random 

manner. Suppose k seed points are to be chosen, i t couy be done in One 6f tKe -(oUotoJ' 

1. Choose the first k patterns i n the data set (MacQueen 1967). 

2. Labe l the patterns from 1 to n and choose the patterns corresponding to k 

different random numbers i n the range 1 to n ( M c R a e 1971). 

3. Take any desired part i t ion of the patterns into k mutual ly exclusive groups 

and compute the group centroids as seed points (Forgy 1965). 

4. Choose seed points which span the data set, that is, most patterns are 

relatively close to a seed point but the seed points are well separated from 
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each other (Astrahan 1970). 

5. Subjectively choose A; subsets of representative patterns from the data set. 

(Desbois et a l . 1982, Seddon and Hunt 1985, K i t t l e r and Pai rman 1985b). 

A n in i t i a l part i t ion can be obtained as follows: 

1. For a given set of seed points, assign each pattern to the cluster buil t around 

the nea;rest seed point. The seed points remain stationary throughout the 

assignment of the full data set (Forgy 1965). 

2. Assign patterns to the nearest seed points, after a pattern is assigned to a 

cluster, update the centroid so that i t is the true mean vector for a l l the 

patterns currently i n that cluster (MacQueen 1967). 

3. Use a hierarchical clustering to produce an in i t ia l part i t ion (Wolfe 1970). 

T h e most promising method to generate in i t ia l part i t ion is to use a clustering 

algorithm. This has the advantage of reducing convergence t ime and generating 

better solutions. A hierarchical clustering method can be used for such purpose, 

but i t is impractical , for example, when the data set is an 256 x 256 pixel mul t i 

spectral image. A n efficient clustering algorithm wi th very few or no control 

parameters is therefore highly desirable. 

The most important factors i n using an iterative clustering algorithm is the 

choice of a criterion function, a distance measure and a set of in i t i a l centres or 

partitions. The Global-Local algorithm uses a cascade of two clustering algorithms 

which combine the advantages of the two algorithms such that the results is better 

than using either of them alone. The first algorithm is mode seeking and avoids the 

subjective manual selection of a set of in i t ia l partitions by clustering the mul t i 

dimensional histogram. The second algorithm is iterative and uses a criterion 

which minimize the average error probability and hence a distance measure is 

derived using a Gaussian model. 

The primary task of the first stage of the Global-Local algori thm is to estimate 

the in i t i a l cluster configuration. Given a d band multi-spectral image 7, the goal 
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of clustering is to organize the data into C non-overlapping subsets a;,- , i = 

1 , . . . , C , such that a clustering criterion J(ft ; X ) evaluated over the part i t ion O 

is optimized. The image / is regarded as a data set X = { x i , . . . , x „ } where 

X j , i = 1 , . . . , n are cZ-dimensional vectors representing the image points (pixel). 

These vectors can include additional features i f better cloud classification is 

required. In this study the dimension d is l imi ted to two since only V I S and I R 

data are used, although the algorithm is applicable for d>2. 

4.2 The Global-Local Clustering Algorithm 

The components i n the Global-Local clustering algorithm o-fe. i n F i g . 4.1. The 

scheme includes a global clustering algorithm which generates an in i t i a l part i t ion 

i n a semi-automatic and objective manner, •follow?!̂  by a local clustering algorithm 

(a classic iterative algorithm) which uses a clustering model tailored to the data 

to be clustered. The in i t ia l parti t ion is then optimized locally i n order to converge 

to a local op t imum of the criterion function. This Global -Local approach was also 

used by Eigen et a l . (1974). 

The in i t ia l part i t ion is generated using a very efficient and simple histogram 

clustering algorithm. The clustering algorithm is non-parametric and does not 

require specification of the number of clusters a priori . It was original designed to 

cluster L A N D S A T images, which are.very different from M E T E O S A T images in 

the area of coverage is much smaller (with a 75m resolution) and therefore class 

boundaries i n the image are rather distinct. W h i l e the M E T E O S A T images Wve. 

fuzzy boundaries along a l l cloud types except land and sea i n general. In other 

words, objects i n L A N D S A T images are represented by pdfs wi th l i t t le overlap 

while i n M E T E O S A T cloud classes are represented by highlyoveWoppfn^ pdfs. Results 

show that this algorithm performs \*n«sf(:7sfet±<'r|j(«j • w i th M E T E O S A T images due 

to the fuzziness of pdfs boundaries. However, some classes (in particular land and 

sea) which have pdfs wi th l i t t le overlap can always be identified successfully. It is 

also found that the clustering although far from opt imum does serve as very good 
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in i t ia l estimates for the iterative clustering algori thm. 

inpu t d-band: 
mul t i spec t ra l images 

Global c lus ter ing 

(histogram clustering) 

i n i t i a l par t i t ions 

Local c lus te r ing 

(Dynamic clustering) 

c lus ter ing results 

Figure 4.1: A two stages Global-Local clustering algo

r i t h m which eliminates manual selection of in i t i a l part i

tions. 
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4.2.1 The First Stage of the Global-Local Clustering A l 

gorithm 

The first stage of the Global-Local clustering algorithm is to generate an in i t ia l 

part i t ion of the multi-dimensional histogram using the histogram clustering al

gori thm o f Narendra and Goldberg (1977). This includes the construction of 

a multi-dimensional histogram and a non-parametric clustering algorithm which 

partitionsthe histogram. 

The histogram clustering scheme is very efficient because i t clusters the mul t i -

spectral histogram which is usually compressed by varying the cell size (to be 

discussed later). For most remotely sensed data the number of distinct vectors 

i n the pattern space is usually much less than the number of possible vectors, 

h i case of M E T E O S A T imagery, the ratio of distinct vector to possible vector is 

lower than L A N D S A T imagery since most cloud clusters W«;e.large variance. For 

example a 256 x 256 two dimensional (VIS & IR) histogram of M E T E O S A T data 

(full resolution) has an average possible vector to distinct vector ratio of 6. 

There are several characteristics of the histogram clustering scheme which 

make i t suitable for either independent use or generating in i t ia l partitions. 

1. The number of computations needed to identify clusters i n the histogram is 

much less than that for clustering individual pixels. 

2. N o parametric assumptions about the underlying probabil i ty density. 

3. The program is more or less automatic, only two parameters are required, 

the smoothing and compression parameter (the compression can be fixed i f 

data sets are from the same batch). 

4. Number of clusters does not need to be specified a priori . 

5. The scheme is very efficient and non-iterative. 

Figure 4.2. is the flowchart of the histogram clustering algori thm used by the 

author. 
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Figure 4.2: Flowchart of the histogram clustering scheme 

for generation of ini t ia l partitions (first stage of the 

Global-Local clustering algorithm). 





Multi-dimensional Histogram 

A histogram is a very good estimate of the mixture density provided that the 

p ixe l to distinct vector ratio is high (see section 3.3). T h e histogram can be used 

directly w i th a non-parametric clustering algorithm that seeks to part i t ion the 

histogram into unimodal regions. 

The first problem is to construct a multi-dimensional histogram. Al though 

only V I S - f l R images are used i n this study, the histogram clustering algorithm 

used is capable of handling more than two bands such that W V band can be 

used when available. The number of possible vectors is equal to g"^ whe re^ is the 

number of quantization levels and d is the dimension of the pattern space. The 

number of grey-levels in M E T E O S A T is 2^ = 256, and the max imum nuraber of 

spectral bands are three, so it requires 256^ cells to store the histogram. This 

amount of memory obviously make the histogram construction impract ical . Since 

the number of distinct vectors is much less than the number of possible vectors, 

a huge saving i n memory can result i f only the distinct vectors are stored. Then 

the problem becomes one of how to store and access the distinct vectors i n an 

efficient way. 

A n efficient way to store a multi-dimensional histogram was suggested by 

Shhen and Smi th (1975). The method is based on a computing technique called 

hashing function k = h{y), where k is the key to the location where vector y is 

stored and hiy) is the function that maps every vectors to a storage location. The 

hashing function can be a simple division of a^rtowtev d<ify.y^i„t,ei by <{rst'Mct v<i<Xor 

CL f)»-Tm-ir\M,i«bey. The prime number is usually equal to the length 

of the scatter table used to stored the distinct vectors. The scatter table there

fore contains al l the distinct vectors of the multi-dimensional histogram such that 

items i n the table representing a distinct vector. The table must be slightly bigger 

that the number of distinct vectors i n order to have efficient access. Figure 4.3 is 

a schematic i l lustration of how the hashing function operates. 
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Figure 4.3: Schematic diagram showing how vectors are 

stored and accessed using a hashing function (Narendra 

k Goldberg 1977). 

In this study the pixel intensity of the three bands (VIS , IR , and W V ) are 

stored i n the first three bytes of an 32-bi t integer. The key is the remainder 

after the division by the length of the scatter table. In order that the key are 

scattered evenly along the table the length of the table is usually chosen to be a 

prime number. 

Whar ton (1983) generalised the hashing function such that an arbitrary num

ber of dimensions is allowed. Wharton's hashing function performs a series of 

remainder operations, one for each feature. The hashing function first completes 

the remainder of the iirst feature. This remainder is concatenaiteA with the second 

feature,. The hashing function then computes the remainder of this result, and 

coricatenates it to the third features. This process continues unti l al l the features 

have been considered. The final remainder is used as the location key 

It is possible that more than two different vectors wi l l be rhapped to the same 

location, in this case a collision occurs. The problem is easily solved by a tr ial and 
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error process which iteratively apphes a different hashing function unt i l either a 

vector match or an empty location is found. A s the scatter table is gradually filled 

the chance of collision increases, so the scatter talble should be bigger than the 

number of distinct vectors (the actual size depends on hashing function efficiency). 

A non-paranietrie Valley Seeking Clustering Algorithm 

The multi-dimensional histogram is clustered using the valley seeking algorithm 

described by Koon tz et al.(1976). This algorithm is non-iterative andnon-parametric, 

i t requires no starting classification, is valley seeking and is capable of detecting 

generally shaped clusters. The algorithm uses both graph theory and.local density 

estimation to cluster the histogram cells. 

The cells w i l l be clustered by constructing directed trees on them. A directed 

graph is a set of nodes {V} and edges (arcs) {E}, each edge connects an in i t ia l 

node V to a final node v'. A directed path is a set of edges e i , . . . , e„ from v to v', 

i f V is the in i t i a l node of C i , v' is the final node of Cn and the final node of ejt is 

the in i t i a l node of Ck+i for ^ = 1 ,2 , . . . , n — 1. 

A directed tree is a directed graph wi th a unique node v, called the root such 

that (F ig . 4.4): 

1. Every node v r is the in i t ia l node of exactly one arc. 

2. r is the in i t ia l node of no arc. 

3. There is no directed path from a node v to itself (i.e. no cycles). 
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Figure 4.4: Example of a directed tree. 

The final node of an edge is called the parent node of the in i t i a l node. Therefore 

the root node has no parent node. 

The pattern set (distinct vectors) X = { x i , . . . , x „ } is regarded as a set of 

nodes, i.e. vi = X i , . . . , t;„ = Xn . The goal is to construct one or more directed 

trees on the set of nodes. The clustering procedure is governed by a set of rules 

for assigning a parent node to each x,-. A n y nodes without a parent node become 

roots. A n d no cycle should exists i n the directed graph. The number of roots w i l l 

determine the number of directed tree's hence the number of clusters. Every x,-

w i l l belong to only one directed tree ((|\oiKr&yp[^^7^^^ 

The nodes are linked by an edge according to the density gradient between 

two nodes. The density gradient between two nodes x,- and Xj is defined as 

= (4.1) 

where p(j) is the local density at Xj and </,_,• denote the distance between x,-

and X j . p(j) can be estimated using any non-parametric methods. In the author's 

algorithni, the local density is given by the histogram estimator. Koontz et a l . 
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used a Parzen estimator wi th a rectangular window, 

Pii)=l^J2K{^u^j) (4.2) 
i=i 

where 

f (2/i)-'^ i f c Z ( x , , x , ) < 5 

I 0 otherwise 

where 2h i s the wid th of the window, n is the total number of patterns. Let 

kj be the number of patterns .% wi th in the window centred d n x j . Since ^ 

is constant, and only relative value is important, we can denote p{j) =^ kj. The 

window wid th is determined by an input parameter 9 such that h = 9. The effect 

of changing the value of 9 is such that the larger the value of 9 the smoother the 

estimates are, and the best value is found by t rying several settings. The relative 

density is then estimated hy counting the number of patterns xjt which satisfy 

dik < 0 and k ^ i. Define a set which represent the neighbourhood of vector x^ , 

i]\ = {xfcjJ.jt <9,k^ i } , and = #{77^} The density gradient is then given by 

9i3 = ^ (4.3) 
dij 

Koontz et al . also used the k-rm estimator for estimation of p{j), and in this 

Ccise the parameter is the number of k nearest neighbour and the density is given 

by the volume enclosing the k nearest neighbours. 

The multi-dimensional histogram is clustered using the following procedure: 
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Step 1. If ki = 0,x,- is a root. 

Step 2. li ki > 0, compute g* where 

g* = max gij 

Step 3. If g* < 0, x,- is a root. 

Step 4. If g* > 0, the parent node of x,- is XAT, 

where 5* = gik,Xk € rjl 

(ties are resolved arbitraryly) 

Step 5. If g* = 0, consider the set 11,- = { x j | x j G i]g,gij = 0}. 

El iminate from E,- any node xj such that there is 

a directed path from X j to x,-. If the resulting 

n," is empty, then x,- is a root. Otherwise, the parent 

node of x,- is xjt such that dik = mm dij. 
ien; 

(ties are resolved arbitrary) 

Th i s procedure of assigning parent nodesensure that i f Xj is uniform within a 

region such that ^* = 0 and H,- has more than one elements, then we have to make 

sure no cycleswill result by making Xj a parent node of x,-. This is achieved by 

eliminating a l l nodes in H,- that have a directed path to x,- to the closest neighbour 

i n n,-. If g* > 0 we are certain that no directed path exists from Xfc to Xj since 

p{k) >p{i). 

The directed trees obtained have a uniquely identified root, and a l l the nodes 

te-i^RlIhl^to a tree can be identified by tracing from the root. Since any node x,- can 

only associate wi th one directed tree, the cluster defined by the directed tree is 

non-overlapping. Consider any two nodes x,- and Xj connected by a directed edge. 

Suppose X,- is the parent node of Xj then p{i) > p{j), i f we delete from the tree 

some node x/ such that p{l) < t for some t > 0. If any nodes remain, they also 

constitute a directed tree whose root is identical to that of the original tree, thus 

these trees are unimodal directed trees. It is also true that every root has the 

highest density in the tree i t belongs to. Thus, each cluster is uniquely associated 

wi th a mode. 
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Koontz et a l . also shown thai the asymptotic properties of the algorithm, i f 

V ^ P ( y ) is bounded and p{y) > 0 for a;ll y such that ||x,- — y | | < ^ then 

where v p ( x t ) is the density gradient at x,-. 

This property means that the ancestors of x,- follow the line of steepest ascent, 

and therefore is a h i l l chmbing property. The other property of the algorithm is 

that the cluster boundaxies pass through the valleys i n p (x) , thus the algorithm 

is also termed a valley seeking algorithm. 

Implementation of the Histogram Clustering Algorithm 

It is now clear that the histogram estimator can be used to substitute the Parzen 

or k-nn estimator i n the valley seeking algorithm. In the case of histograms, 

every distinct vector Xj is represented by a histogram cell and the frequency i n 

the cell is the local density estimates p{xj) of X j . We have already obtained the 

density estimate of every pattern, all we need is to construct a directed tree on the 

histogram cells. The distinct vectors w i l l be denoted as nodes i n the tree. Because 

of the way distinct vectors are arranged i n the histogram, i t is only necessary to 

consider the nearest neighbours when comparing the density gradient. A n example 

using a two dimensional histogram is shown i n Figure 4.5. 

(4.4) 
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Figure 4.5: A two dimensional i l lustration of the his

togram clustering scheme. C e l l A and B are roots. 

T h e original valley seeking algorithm requires a distance threshold parameter 

because the Parzen estimator was used. For histograms this parameter is no 

longer required because the density estimate only depends on the frequency of a 

cell . Thus, theoretically, no clustering pararheter is necessary. 

In F i g . 4.5 every cell has eight nearest neighbours, and for ^^-dimensional his

togram the number of nearest neighbour is equal to 3'' — 1. For J = 3 there are 2̂  

nearest neighbours and an edge can only be constructed after densitj^gradient of 

a l l neighbours have been computed, which require n(n — l ) / 2 operation to search 

for the neighbours. This constitutes the major computational effort involved in 

valley seeking clustering. 

T h e number in the box of F i g . 4.5 represents the frequency of that cell . A 

directed edge is placed between each vector and the immediate neighbour which 

is in the direction of the maximum positive density gradient. The density gradient 

is given by 
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50- = (4-5) 
dij 

d 
dij = J ^ | x , - / t - X j f c l (4.6) 

k=i 

where fj is the frequency of cell j and dij is the C i t y Block distance between cell 

i and j . 

F i g . 4.5 also shows clearly the idea of a unimodal directed tree wi th their 

roots representing the n iax imum local density, and two trees are separated by the 

boundary between the valley of two adjacent densities. F i g . 4.6 shows a case when 

the local density i n a region is uniform. 

7 0 
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100 
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60 4 0 

Figure 4.6: Illustration of how to avoid a directed cycle 

i n a region of uniform density. If A and Biwtl inked then 

a directed cycle results. 

When regions of uniform density o c c u r t h e maximum density gradient wil l 

be zero, and directed cycle can be f b f i ^ therefore i n Step 5 of the algorithm, we 

have to find out a l l nodes that have a directed path connected to the current node 
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Xj and make the neighbour node that has no directed path as the parent node of 

X,-, X,- is a root. Since ties are resolved arbitrary, the directed tree generated is 

not unique and depends on the order of the node begin processed. 

Once the directed trees have been generated the nodes wi th in a tree can be 

traced from the root using computing techniques of graph theory. There are two 

graph traversing algorithms, namely the depth-first search and breath-first search, 

depth-first search is used by the author. After a l l nodes i n a tree are traced they 

are labelled as i n the same cluster. The graph traversing algorithm is very efficient 

and the search depends linearly on the number of nodes. 

Neighbourhood Computation 

Narendra and Goldberg (1977) suggested a scheme for finding the nearest neigh

bours which required p x 2n instead of n (n — l ) / 2 operations, where p is the 

number of nearest neighbours. Their scheme is to first l inearly order the con

catenated values of the vectors (See F i g . 4.3). It is noted that a l l the possible 

neighbours can be represented by an offset vector O wi th respect to the current 

vector. For example (0,0,1,0) denotes the neighbour which differs wi th the one 

vector only i n the thi rd position. Taking advantage that the ordered nature of 

the list , the i t h neighbour of x^+i (i.e. Oi + Xk+i) i f i t exists, must occur lower 

down i n the ordered list than the zth neighbour of Xk (i.e. Oi + Xk). Hence i t is 

only necessary to search the ordered list once to find the zth neighbours of a l l n 

vectors. The hst is stored i n a file on the bulk storage device, i t has been found 

that this does not perform as efficient as i t was supposed, so a different method 

is adopted. 

The scheme used by the author is to generate a list of offset vectors. The zth 

neighbour of x^ (i.e. Oi + Xk) can be found directly using the hashing function, 

this scheme is simpler to implement and requires only n x p operations when 

compared to Narendra's scheme. 

Whar ton (1983) suggested a even more efficient scheme using a i f -dimensional 

binary tree, he showed that the actual number of neighbours A is much less than 
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the number of nearest neighbours per cell p. B y constructing a, K — d tree of the 

distinct vectors the search t ime can be further reduced. However, i t is noted that 

for dimension d < i the number of actual neighbour is about 50% but considering 

the overhead of constructing the tree, a simple scheme such as the one used by 

the author should perform equally well. 

H i s t o g r a m S m o o t h i n g a n d C o m p r e s s i o n 

T h e success of the histogram method for density estimation depends on a large 

p ixe l to vector ratio, and existence of distinct valleys. However, everi wi th a 

large data set, the resulting estimate is locally noisy. Th i s may due to the sensor 

noise, quantization error, atmospheric interference and other problems i n remote 

sensing. If the histogram is clustered without any preprocessing, t r iv ia l clusters 

may be generated. This situation is illustrated i n F i g . 4.7. 

Figure 4.7: The effect of noise i n the unsinoothed his

togram wil l lead to generation of t r iv ia l clusters. 

T w o methods of histogram smoothing is possible. The histogram discussed 

so far is constructed using the highest resolution of the grey level. The first 
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possible smoothing method is to requantizis the grey levels. For example, we can 

compress 256 grey levels to just 128 levels thus achieving a compression of factor 

1^. This compression of grey level has two effects. F i r s t ly the effective p ixe l to 

vector ratio has increased, which improves the smoothness of the local density 

estimates. Secondly, the number of distinct vectors have also been reduced, which 

i n turn allows the histogram to, be clustered w i th less t ime. Unfortunately, a 

problem arises due to requantization. Since volume of the cell increase by 2'^, i f 

we chose to double the compression ratio each time. The higher the compression 

ratio, the more patterns fall wi th in a cell , i f any cell is classified as w,- then a l l 

patterns wi th in i t w i l l have the same label, obviously the total error w i l l increase 

w i th the compression ratio. However, i f the clustering is used to provide in i t ia l 

estimates the error can be corrected in the local clustering stage. 

The second method for histogram smoothing is by replacing a cell estimate 

by the local average. The average window is adjustable, and the possible window 

sizes are 3 x 3, 5 x 5, Therefore every cell estimate is replaced by the average 

of a l l neighbours inside the window. The neighbours are searched using the offset 

vector list . It is noted that the resulting histogram depends on the order of the 

histogram cell being processed. B y choosing different window sizes we can control 

the number of clusters obtained. 

B o t h requantization and averaging methods are employed i n the Global-Local 

clustering scheme. It is found that clusters corresponding to high and middle 

cloud have relatively low pixel to vector ratio and large variance. Those cloud 

clusters are difficult to part i t ion using the valley seeking algori thm, because the 

boundaries are not well defined i n these regions. Regions wi th well defined peaks 

have more reliable estimates, so smoothing should only applied to region w i th low 

density, where the estimates are more prone to noise. 

4.2.2 Starting Partition 

There are two methods to obtain an in i t ia l part i t ion from the histogram clustering. 

Given a part i t ion generated using the histogram clustering algorithm, the first 
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method is to use the mean of each ini t ia l cluster and assigns pixel to the nearest 

centre using squared Euclidean distance, and then parameters of the Gaussian 

models are estimated using these partitions, this is the method employed in this 

study. The second method uses the in i t ia l part i t ion directly to estimated the 

Gaussian model's parameters. It is noted that the histogram may generates some 

t r iv ia l clusters which are ignored. 

The second stage of the Global-Local clustering algori thm can split or merge 

clusters according to some control parameters. If spht or merge occurred, the 

newly formed cluster parameters have to be estimated, they are obtained by re

assigning a l l p ixe l to the nearest cluster mean, alternatively we can only estimate 

parameters of the newly formed clusters by reassigning only pixels previously i n 

the split or merged clusters without changing the other cluster models. 

In this study al l pixels are reassigned after split or merge. This method is 

chosen because i t is found that clustering has better stabil i ty than using the 

second method. This can be explained that some of the clusters generated by the 

histogram clustering algorithm is very different from the Gaussian model used i n 

the second stage, therefore the estimates do not fit the model well and require 

several iterations to recover. Assigning a l l pixels to their nearest centres provide 

a better estimate of the cluster models because i t assumes a l l clusters having a 

Gaussian model wi th unity variance and same a priori probability. However, one 

disadvantage of the first method is that clusters which are adjacent and wi th 

small variance (e.g. different type of land or sea) are assigned to the same cluster. 

Fortunately, this confusion is not a serious problem, because land and sea clusters 

are not used i n tracking of cloud motion. 

4.2.3 The Second Stage of the Global-Local Clustering 

Algorithm 

The second stage of the Global-Local clustering algorithm is to optimize the in i t ia l 

part i t ion generated by the histogram clustering. This is achieved by using a 

dynamic clustering algorithm. The complete Global -Local clustering scheme is 
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shown in Figure 4.8. 

Input mulUspectral 
iinages 

generate iniUal parUtion 
(histogram 
clustering) 

'recompute histogram 
(no compression) 

if after split or merge or 
first iteraUon, assign 
pixels to the nearest 

center 

compute two new cluster 
centers using the old 

centers 
compute new 

center 

compute parameters 
of Gaussian models 

assign pixels to cluster 
using post transfer 

advantage rule 

update n u m b e r of 
clusters 

if any cluster with sd 
greater than threshold 

then split else 
If any clusters closer than 

threshold then merge 

0 

Figure 4.8: The Global-Local Clustering scheme. 
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It was mentioned i n section 3.5.3 that the most important factors i n using an 

iterative clustering algorithm are the choice of a criterion and a distance function. 

A criterion based on minimizing the average error probabili ty and a distance 

function derived from a general Gaussian model described by Ki t t l e r and Pa i rman 

(1985b) have been adopted in the second stage of the Global -Local algorithm. 

Dynamic Clustering 

Dynamic clustering was introduced i n section 3.5.3, which allows clusters to be 

represented using parametric models. In this study a general Gaussian model has 

been chosen and found to perform rehably on M E T E O S A T images. 

Problems on Choosing a Distance Measure for M E T E O S A T Images 

It can be seen i n histogram of M E T E O S A T imagery (F ig . 1.1) the size and vari

ance of each cluster in the feature space is very different. The squared Euclidean 

distance assumes all clusters to have equal covariance and is obviously not satis

fied by the data. A better model is the Gaussian model which allows clusters 

to have different variance. Another important point that can be observed i n the 

histogram is that most clusters have very differeiit size, which is equivalent to 

different a priori probability P(w,-). It is well known that most distance mea

sure onemot able to identify clusters wi th great difference in cluster variance and 

size (Symons 1981). Some of the problem drtiusing distance was discussed i n sec

t ion 3.5.2 where only well separated clusters were considered. It was suggested 

that difference in cluster variance can be compensated by normalising the data 

and then using Euclidean or Mahalanobis distance for clustering. However, al l 

tKe5e=-methods (Ki t t le r and Pairman 1985b) imphci t ly assume-that clusters to have 

the same a priori probability. 

The problem of using squared Euchdean distance is mainly due to the lack of 

a priori knowledge of the underlying data structure. It is then safe to assume all 

clusters have similar population and variance, therefore clusters generated using 

the cluster mean model tends to have equal size and variance. This point was cited 
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by K i t t l e r and Pairman (1985b) i.e. "If a similarity measure becomes the key point 

of a clustering philosophy, then indeed i t is inappropriate to argue that a data 

point has a greater affinity to one cluster than another, just because the former 

one is larger in size." Similar cornment was also given by Symons (1981). This 

idea is illustrated i n Figure 4.9. T w o clusters wi th equal variance but different 

size, the opt imum decision boundary is the one which minimizefthe Bayes error 

probability. 

Figure 4.9: Use of the cluster mean model to cluster data 

wi th equal variance but different population. 

When using the cluster mean model the decision boundary di is well within 

the larger cluster i n order to satisfy the equal variance assumption. This problem 

can be solved by a distance measure which wi l l produce a decision boundary close 

to the optimum. 
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A Model that Allows Different Cluster Size and Variance 

A clustering criterion based on probability of classification error should allow a 

better distance measure to be derived for a specific cluster model . We have already 

seen that the squared Euclidean distance has an underlying pdf model which is 

normally distributed w i th the identity covariance matr ix . The advantage of using 

a clustering criterion based on minimizing classification probabil i ty error allows 

cluster sizes to. be taken into account. 

A criterion based on the concept of minimizing the average error probabil i ty 

is used (Ki t t l e r and Pa i rman 1985b) : 

J = nflKxilc^OPCc^.-) 
Lt=i j=i 

(4.7) 

Similar ly we can define a criterion without population weighting as 

where 6 w,-
.«=i i=i 

Assume the class conditional pdf is modelled by a Gaussian pdf. 

(4.8) 

K x ) = (2x)-^/2|i;,|-V2 exp [- i(x - iiifST\x - ^,)] (4.9) 

w h e r e i s the mean of class a;,-. 

Four clustering criteria can be obtained from eqn. 4.7 and 4.8 assuming that 

p(x I Wj) is a Gaussian pdf wi th a identity or general covariance matr ix . 

Neglecting the constant (27r) 2 and substitute eqn. 4.9 gives 

J = 
C n,-

- i ( x , - / z , ) ^ r r ( x , - / z , ) 
L.-=i i=i 

The first two criterion assume a l l clusters have the same size, i.e. ^ 

^ and y ; ? 1 2 i = 1. We have 

(4.10) 

22. = = 

J' = 
C m 

exp 
L.-=i i=i 

^ Ej\xj - p,) (4.11) 
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taking the minus logarithm we have 

Yi^j - fiifST'i^j - fid + n , log 
.•=1 Li=i 
C n,-

= ^ E E K ^ i - f^d^'^T'i^j - / ^ .o+ i °g i^.-i 
t l i=i 

(4.12) 

J l is called the Gaussian model w i th equal a priori probability. If a l l coVariances 

are equal to the identity matr ix, then J i becomes 

1 ^ 
= - E E ^ ' ^ i - " 

" i=i i=i 
J2 is the well known nearest mean model. 

(4.13) 

For the next two criteria i t is assumed al l classes have unequal a priori proba

bil i ty, and taking the minus logarithm of J gives: 

= X ^ ( x , - A . J ^ i ; r ^ ( x , - - ^ . 0 + ' ^ a o g | i 7 d - 2 n a o g ^ 
.=1 Lj=i J 

= ^ E E h - - ^'•) + - 21og ^ ] (4.14) 
.•=1 i=i 

J3 is using the population weight general Gaussian model. 

If al l covariance matr ix are equal to the identity matr ix / , we have 

C n," 

•̂ ^ = ^ E E [ (^ i - ^ . ^ ^ ( ^ i - ^.o - 2 log ^ 
«=i i=i 

J4 is called the population weighted nearest mean model, 

(4.15) 

B y comparing wi th eqn. 3.51 four distance measures could be derived from the 

min imum error probabili ty concept based on Gaussian model . They are 

dz = {xj-iXifST\xj-pi) + \og\Ei 

Til' 

dA = {xj-fiif{xj-fii)-2\og^ 

^^)k<Lr^ Is <^Wtv\. by ^n, B J ^ 
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(4.16) 

(4.17) 

(4.18) 

(4.19) 



B o t h ( x j — ' ^ ( x j — a n d log |i7,-| terms are used very often i n clustering 

Diday and Simon (1976) and they enforce a min imum variance solution, the term 

—2 log ^ would tends to allocate all. points into one cluster, i t enforces a min imum 

entropy solution. Therefore the population weighted Gaussian model is composed 

of three terms and a solution correspond to a compromise between the three 

terms. It is well known that di and d^ favour equal cluster sizes because they 

neglect cluster size and designed to minimize the total variance. The use of 

alleviate the problem of different cluster size only to an extend that the cluster 

satisfy the identity covariance matr ix exactly. Clustering using ds perform best 

and allows cluster to have different size and variance. 

It is noted that finding a suitable distance measure is a very difficult task. 

This is part ly due to the fact that every distance imposes its own model on the 

data to be clustered, and i f the data does not satisfy the assumption the distance 

measure fails to recover the data structure. To be on the safe side one should 

always uses as much a priori knowledge as possible when selecting the distance 

measure. 

The estimates of the parameters Si&ndP{ui) are obtained by the maximum 

likelihood method, and are the standard ones 

Piui) = ^ (4.20) 
n 

li, = m . = - 5 ^ x (4.21) 

= - E ( ' ' i - m . - f ( x i - m , ) (4.22) 

Tit 
where V x 6 a;,-

So far four distance functions have been derived using a Gaussian model wi th 

different degree of simphfication. The performance of di,d2,d3, and c?4 has been 

studied by Ki t t l e r and Pairman (1985b), and i t was found that 3̂ is the best when 

used to cluster cloud images. Therefore dz (i.e. J3) is used i n the Global-Local 

clustering algorithm. 
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Assignment Rules 

In Figure 4.8 i t is shown that the second stage of the Global -Local algorithm is 

based on a classical I S O D A T A frame work. After a distance function and a cluster 

model have been determined pixels a,re assigned to kernels using an assignment 

rule. 

There are two assignment rules which are used extensively. The first rule (clus

ter affinity rule) is traditionally used i n the I S O D A T A algorithm, the second rule 

(post transfer advantage rule) is used i n the K-means algorithm (see section 3.5.3). 

The major difference between them is the model parameters updating order. The 

first rule updates the model parameters after a l l points have been assigned to 

their nearest cluster, while the second rule update the rnodel as soon as a point 

is transferred. The second difference is that the second rule is a stepwise opti

m a l assignment rule which guarantee the transfer of any points w i l l decrease the 

criterion function's value i f the criterion is to be minimized. 

Specifically, the cluster affinity rule is 

assign x ; G to u>j i f 

d{xi, Kj) = m m d{xu / C ) (4.23) 

the post transfer advantage rule is 

assign x,- € to iOj i f 

-^-d{xi, fi^) = m i n -^-rd{xi, fir) < - ^ d { x i , //,•) (4.24) 

Tlj + i rjSt + t n,- — i 

where Ur is the number of data points currently belongs to cluster Ur. 

Ki t t l e r and Pai rman (1988) argue that using the point to cluster affinity rule 

may not guarantee even reaching a local min imum of the criterion function. So 

they suggest using the post transfer advantage rule (eqn 4.24) as a possible solu

t ion. However, D u d a and Hart (Ch.6 1973) said that the post transfer advantage 111 



rule wi th immediate parameters updating is more susceptible to being trapped 

at a loca l min imum, and i t has the further disadvantage of making the results 

depend on the order i n which the points are selected. 

Regardless of the above statement Ki t t l e r and Pa i rman (1988) proposed a post 

transfer advantage rule for the population weighted Gaussian model . The reassign

ment rule is based on the nearest mean post transfer advantage rule (eqn. 4.24). 

Usual ly patterns i n imagery data w i l l have multiple occurrence, as for mul t i 

spectral image being shown i n previous section. The single point assignment rule 

should be modified to take account of the mult iple occurrence of patterns. A s 

signment rule eqn. 4.24 becomes 

assign x/ € w,- into u>j i f 

_ ^ i ( x „ „ , ) = m m ^ 4 ^ , . < ^ < i ( x „ !'>) (4-25) 

where k is the frequency of x / . 

The post transfer advantage rule is a stepwise opt imal rule such that the 

criterion function is guarantee to reduce by an amount of A J . The assignment 

rule for J 3 (eqn. 4.14) is given by 

n; 

assign x/ 6 IJ^I to u>j only i f 

d{xi,Kj) = mmd(-Ki, Kr) < log \S{ 

n,- — k 
log 1 -

k 

Tii — k 
fit , , ~ k , 71; 

_ 2 b g - I - ( r f + 2 ) — l o g — 

where d(xi,Kr) = log | i7 r | + 
Ur + k 

n 
1 + 

Ur +k 

_ 2 1 o g - + (,i + 2 ) - ^ l o g — 

T r " - l / and A{xi,Ki) = (xi - Sr\xi -

(4.26) 

(4.27) 

(4.28) 

when the cluster size Ur is large eqn. 4.26 can be approximated by 
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assign X/ 6 w,- to ojr if 

l o g | i 7 , | + A ( x , , i r O - 2 1 o g ^ 

= m i n ( l o g + A(x, ,Kj) - 21og ^ } (4.29) 

It is noted that eqn. 4.29 is equivalent to the max imum likelihood decision rule 

(eqn. 3.6) for normally distributed data. 

Therefore the point to cluster affinity rule can be regarded as the approxi

mation of tbe post transfer advantage rule. It is noted that the post transfer 

advantage rule can be used vs^ithout immediate updating as well . The immediate 

updating formulas is given i n Appendix B . 

It is difficult to compare the two rules without resort to a reference cluster map. 

Since the post transfer advantage rule has not been implemented by Ki t t l e r and 

Pai rman, and implementation of this rule requires a multi-dimensional histogram 

to be constructed, i t is therefore used conveniently i n the Global -Local algorithm. 

4,2,4 Other Features of the Global-Local Clustering A l 

gorithm 

Most clustering algorithms do not take advantage of the mult iple occurrence of 

patterns foupd i n images. This property has been exploited i n the Global -Local 

algorithm such that the efficiency is much higher than ordinary algorithms. In 

Figure 4.8, after the histogram clustering has completed, the histogram is recom

puted without compression, so i f a distinct vector are assigned to a cluster the 

other copies w i l l follow. 

It is found that i n multi-spectral image data the p ixe l to vector ratio can be 

very large, i.e. the number of distinct pattern vectors is significantly less than 

the total number of pixels. The clustering efficient can be greatly increased i f the 

multiple occurrence can be exploited. A histogram approach can do just that, 
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once a full resolution histogram of the data is constructed and. the application of 

any assignment rule is straight forward. If accuracy is to be sacrificed for efficiency 

the histogram can be compressed as discussed i n section 4.2.1. 

After the histogram is constructed the distinct vectors are clustered using the 

population weighted Gaussian model (J3) w i th split and merge capabilities. The 

split and merge routine is essential because the number of clusters usually is not 

known a pr ior i and the in i t i a l part i t ion generated by the histogram clustering 

algori thm may not be opt imal i f heavily overlap clusters exist. So a group having 

large variance is probably a group of two or more clusters and should be split , 

and groups which is very close probably belongs to the saine cluster. 

The frame work of the Global-Local clustering algorithm is based on the classi

cal I S O D A T A algorithm and is given i n section 3.5.3. Split and merge capabilities 

are the main features of I S O D A T A , and these features were originally designed to 

tackle the problem of bad in i t ia l centres (randomly chosen centres). 

Parameters which control the histogram clustering are: 

1. I3c = histogram compression ratio. 

2. smoothing threshold, cell wi th frequency higher than this w i l l not be 

smoothed. 

3. Ws = smoothing window size. 

Parameters which control the dynamic clustering are: 

1. K = number of cluster desired. 

2. 9n = m i n i m u m number of vectors i n a cluster, i f a cluster has number of 

vectors less thain this i t is removed and vectors are reassigned to the nearest 

cluster mean. 

3. O3 = max imum standard deviation of a cluster allowed. 

4. 6c = min imum distance allowed between two clusters. 

5. 7 = max imum number of iterations. 
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The basic program flow of the Global-Local clustering algorithm is shown 

F i g . 4.8. The details implementation of the algorithm is: 

Step 1. Input d band images. 

Step 2. Specify the parameters to control the dynamic clustering 

(defined above). 

Step 3. Specify the histogram dimension and compression ratio. 

Step 4. If the histogram does not fit into the scatter table, 

goto Step 3 and double the compression ratio ^c-

Step 5. Specify the smoothing threshold fis and window size Ws. 

Step 6. Smooth the histogram adaptively using moving average method. 

Step 7. If operator does not accept clustering result goto 

Step 5 and adjust the value of the smoothing threshold, 

and window size. 

Step 8. Ignore t r iv ia l clusters generated by histogram clustering 

using a threshold Ut, clusters wi th points less than 

Ut w i l l not be included in the in i t ia l part i t ion. 

Step 9. Recompute histogram without compression. 

Step 10. Set iter = 1. 

Step 11. If iter = 1 compute the mean of each cluster i n the 

in i t ia l parti t ion, assign distinct vectors to the nearest mean, 

else use the mean of current clusters, assign distinct 

vectors to the nearest mean. 

Step 12. Compute model parameters of each cluster 

(covariance matrices, mean vectors and a priori probabil i ty) . 

Step 13. Assign distinct vectors to kernels using the post 

transfer advantage rule (eqn. 4.26). 

Step 14. Test and remove any clusters attract less than 

On points, i f any cluster is removed goto Step 11. 

Step 15. Compute the intra cluster distance (see Appendix C ) of 

each cluster, and then compute the mean intraset distance. 
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Step 16. Compute the inter cluster distance dij between a;,-

niUj {mtk — mjfc)^ 
and (jjj as —• • > -^-^ 

Ui is the number of points i n w,- and cr,j 

is the common variance of a;,- and Uj 

A l l pairwise distance are computed. 

Step 17. If iter = / stop, else continue. 

Step 18. If iter is even or number of clusters greater than 

2 X K, test i f there are any clusters to be merged. 

Merge any pair of clusters i f their inter cluster 

distance is less than 6c. 

Suppose LOi and (JJJ is to be merged, 

the new mean is m / = ^.^^^ [nfm,- - f rijinj]. 

If merge occurred reduced number of cluster by one, 

increment iter by 1 and goto Step 11. 

Step 19. Test the standard variation of each cluster, i f one of its 

varia,ble is greater than 6s and in t ra cluster 

distance is greater than the mean in t ra cluster distance 

or current number of clusters greater then K/2 

split the cluster into two. 

Suppose the kth. variable i n loi exceeds the threshold, 

the two new means m,- and rrij are 

given by m.-jt = mik + 7ni;fc 

and mjk = mik — 7m/fc, where 

0 < 7 < 1 and 7 = 0 for variables do not exceed 

6s. If spht occurred, increment iter by 1 and 

goto Step 11. 

Step 20. If iter < I goto Step 12, else stop. 
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4.3 M E T E O S A T Data Used for Algorithm Eval

uation 

Six sets of M E T E O S A T (VIS+IR) images con^'lir^^of different weather systems 

have been chosen to test the aJgorithms developed. A l l images are a 512 x 512 

pixel subframe (data window) wi th in a B format image. The coordinates of the 

top left corner is (330, 60) (pixel, hne) respectively. The processing window is a 

256 X 256 pixel window locates at (100, 0) i n the data window (see Figure 4.10— 

4.15). The dates on which the data were taken are: 

. N o . Date raw image clustered result 

1. 5th March 1991 F i g . 4.10 F i g . 4.16 

2. 8th March 1991 F i g . 4.11 F i g . 4.17 

3. l l t h M a r c h 1991 F i g . 4.12 F i g . 4.18 

4. 15th March 1991 F i g . 4.13 F i g . 4.19 

5. 18th M a r c h 1991 F i g . 4.14 F i g . 4.20 

6. 20th March 1991 F i g . 4.15 F i g . 4.21 
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Each set of. images contains three pairs of V I S + I R images. The first pair of 

images were received at 11:30 G M T , and the t ime separation of each pair was 30 

minutes. The numerical weather predication of wind fields (850mb, 500mb, 250mb 

wi th temperature) covering the process windows are provided by the Meteorolog

ica l Office Bracknel l . The east-west and north-south resolution of the wi i id fields 

were 0.9375° and 0.75° respectively. 

The longitude and latitude of the process window being (moving from the top 

right hand corner i n a clockwise direction) 61°N 5 .5°£, 40°N SA°E, AO^N 10.7° 

61° A'' 17.1° It covers the whole of the Uni ted K i n g d o m , Ireland, France Nether

lands, Be lg ium and Northern Spain. 

4.3.1 Description of the Imagery 

The surface chart of the above images can be found in Appendix G . The images 

for the 5th M a r c h show frontal cloud associated wi th an occluding depression 

centred to the north of Scotland. The associated cold front stretches from the 

Nor th Sea across southern England, wi th relatively cloud free air behind. The 

deep frontal cloud is embedded i n a predominantly southwesterly flow. 

O n the 8th M a r c h a well-occluded low pressure is centred over Cornwal l and 

the M E T E O S A T images show a classic spira-1 cloud pattern. 

A major low pressure complex is situated i n mid-At lan t ic on the l l t h M a r c h 

and there is a south-westerly turning north westerly flow i n the upper troposphere. 

Ahead of the warm and occluded front i t is possible to identify the south-easterly 

winds associated wi th the polar trough. The clouds here are middle level and 

therefore are moving under the polar front cloud. 

A n occluded cold front is found on 15th March , the system is i n its developing 

stage. The cold air mass can be clearly identified i n the relatively cloud free area 

behind the front. The front stretches from northern Scotland down to southern 

France. 

A developing frontal systems is found on 18th March , a occluded front is 

stretching from north of Ireland down to B a y of Biscay. A relatively cloudless 
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area is found i n the cold air area behind the front. A large area (top right) 

of thick cirrus was driven by the polar front which can be clearly identified i n 

the infrared image. Behind this is a b ig lump of warm frontal cloud including a 

mixture of cumulonimbus and nimbbstratus. 

A warm arid cold front are found on 20th March . The warm front stretches 

from southern Ireland down into the Alan t ic Sea and the cold front stretches from 

southern Ireland across to Germany. 

4.4 Clustering Results 

The six sets of images described above have been used to test the clustering 

approaches. Three clustering algorithms have been compared: 

[Al] Global -Local clustering algorithm ( A cascade of histogram clustering and 

dynamic clustering algorithms (using J3 eqn. 4.14)). 

[A2] Dynamic clustering (using J3 eqn. 4.14 and a randomly selected in i t ia l par

t i t ion). 

A3] Histogram clustering algorithm. 

The author has tried a procedure using Astrahan's (1970) method: k seed 

points are selected such that they are evenly spanned i n the pattern space, but 

without considering the density of the patterns chosen. The random ini t ia l parti

t ion is generated by specifying a distance dt, then the first center Ci is chosen as the 

overall mean of the data, the second center C2 is chosen such that d{Ci, C2) > dt 

and for the zth center d{Ci, Cj) > , j = 1 , . . . , n , z 7̂  j , where n is the required 

number of starting part i t ion. The in i t ia l part i t ion is generated by assigning every 

pixel to the nearest center C,-, i = 1,— , n . 

In order to compare the two comprehensive algorithms ( A l and A 2 ) , the same 

number of clusters (6 to 7) are generated in each case. The clustering statistic 

is shown i n Table 4.1— 4.6. The clustered images and different projections of 

the two dimensional histogram â re shown i n Figure 4.16— 4.21, each colour i n 
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the histogram represents a cluster. Clustering algorithms ( A l , A2) are allowed 

to run for 11 iterations. It is noted that the split and merge capabilities allow a 

bad in i t ia l part i t ion to recover, and this is true for both approaches ( A l and A2) 

because the histogram clustering does not always gives the best in i t i a l part i t ion. 
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Clustered image 
of algorithm A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algorithm A 3 

2d histogram of 
algorithm A l 

2d histogram of 
algorithm A 2 

2d histogram of 
algorithm A S 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d 
histogram of algorithm A 2 

Top view of the 2d 
histogram of algori thm A S 

Figure 4.16: Clustering results of 5th M a r c h images 
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Clustered image 
of algorithm A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algorithm A 3 

2d histogram of 
algorithm A l 

2d histogram of 
algorithm A 2 

2d histogram of 
algorithm A 3 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d 
histogram of algorithm A 2 

Top view of the 2d 
histograni of algorithm A 3 

Figure 4.17: Clustering results of 8th M a r c h images 
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Clustered image 
of algorithm A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algori thm A 3 

2d histogram of 
algorithm A l 

2d histogram of 
algorithm A 2 

2d histogram of 
algorithm A 3 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d 
histogram of algorithm A 2 

Top view of the 2d 
histogram of algori thm A 3 

Figure 4.18: Clustering results of l l t h M a r c h images 
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Clustered, image 
of algorithm A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algorithm A 3 

2d histogram of 
algorithm A l 

2d histogram of 
algorithm A 2 

2d histogram of 
algorithm A S 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d 
histogram of algorithm A 2 

Top view of the 2d 
histogram of algori thm A S 

Figure 4.19: Clustering results of 15th M a r c h images 
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Clustered image 
of algorithm A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algorithm A 3 

2d histogram of 
algorithm A l 

2d histogram of 2d histogram of 
algorithm A 2 algorithm A S 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d Top view of the 2d 
histogram of algorithm A 2 histogram of algorithm A S 

Figure 4.20; Clustering results of 18th M a r c h images 
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Clustered image 
of algorithrn A l 

Clustered image 
of algorithm A 2 

Clustered image 
of algori thm A 3 

2d histogram of 
algorithm A l 

2d histogram of 
algorithm A 2 

2d histogram of 
algorithm A 3 

Top view of the 2d 
histogram of algorithm A l 

Top view of the 2d 
histogram of algorithm A 2 

Top view of the 2d 
histogram of algorithm A 3 

Figure 4.21: Clustering results of 20th M a r c h irnages 
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cluster No. of pixels cluster mean variance ( 7 ^ ) 

A l A2 A3 A l A2 A3 A l A2 A3 

0 6101 6340 1716 

85.7 85.2 77.2 

207.8 205.3 209.0 

9.2 6.9 4.8 

4.8 6.4 3.3 

1 13265 18632 11550 

119.1 116.1 81.4 

206:5 200.7 195.9 

12.7 13.8 12.3 

9.6 13.2 10.2 

2 9196 5029 19938 

77.7 57.5 120.8 

187.2 186.2 195.9 

14.2 9.7 13.7 

7.6 12.2 18.3 

3 6788 7016 21854 

125.2 88.3 71.2 

171.9 170.5 157.9 

13.9 10.1 18.0 

11.6 12.0 10.7 

4 4498 3825 10472 

93.6 130.4 29.8 

160.1 163.6 145.9 

7.5 14.0 6.1 

6.2 7.6 7.9 

5 17663 16289 — 

59.1 62.0 — 

155.3 153.0 — 

13.4 13.5 — 

10.1 8.4 — 

6 8025 8405 — 

27.3 27.5 — 

143.3 144.7 — 

4.3 4.2 — 

5.3 7.1 — 

Table 4.1: Clustering statistics for 5th M a r c h 1991 images. 

cluster No. of pixels cluster mean (-^jp) variance 

A l A2 A3 A i A2 A3 A l A2 A3 

0 28002 20581 29253 

96.5 89.9 96.1 

201.2 204.5 200.4 

16.9 13.6 18.9 

11.0 10.1 11.6 

1 2401 6053 3289 

143.9 117.5 124.2 

167.8 194.7 171.0 

10.7 10.2 15.4 

11.6 6.6 4.5 

2 14963 2403 14919 

100.7 144.1 98.9 

162.2 168.3 159.4 

13.7 10.5 18.0 

9.3 11.9 9.6 

3 8703 16528 9585 

56.7 100.2 46.4 

154.8 164.1 150.8 

12.0 13.8 13.4 

14.1 10.4 10.7 

4 7549 7868 5335 

24.4 57.7 22.3 

138.8 154.8 134.6 

5.6 11.9 4.7 

7.0 13.2 3.4 

5 3918 12103 3141 

46.2 32.6 48.6 

124.8 134.4 121.2 

5.0 12.1 5.2 

9.3 10.4 6.7 

Table 4.2: Clustering statistics for 8th M a r c h 1991 images. 
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cluster No. of.pixels cluster mean variance (^pp) 

A l A2 A3 A l A2 A3 A l A2 A3 

0 5811 21139 32725 

82.8 102.8 100.6 

187.8 185.9 175.8 

7.5 16.9 15.5 

8.9 11.7 17.7 

1 14588 3238 5886 

112.3 60.4 123.4 

185.7 174.6 153.9 

12.5 7.5 8.6 

12.6 9.1 6.0 

2 9363 10792 13286 

66.7 116.6 72.3 

155.1 154.2 151.2 

8.9 9.3 12.2 

16.7 7.1 12.0 

3 18755 10881 2896 

98.5 93.2 28.6 

154.4 153.3 145.1 

9.7 6.7 -4.5 

8.6 7.3 5.6 

4 4198 8976 1573 

125.0 65.9 110.3 

152.2 144.2 143.7 

7.8 12.1 4.1 

5.3 7.2 3.6 

5 3902 4356 8190 

26.3 27.5 48.3 

142.7 143.4 128.2 

6.4 7.3 5.7 

11.7 11.7 14.5 

6 8907 6154 973 

48.8 49.1 18.1 

128.6 121.2 127.3 

5.9 5.8 1.3 

13.1 7.6 1.7 

Table 4.3: Clustering statistics for l l t h M a r c h 1991 images. 

cluster No. of pixels cluster mean (-^^) variance (^^) 

A l A2 A3 A l A2 A3 A l A2 A3 

0 7096 18771 8803 

91.2 99.2 92.7 

208.7 196.0 206.8 

13.1 15.6 13.0 

4.5 12.0 5.8 

1 14217 2567 21922 

101.4 56.7 100.6 

185.8 180.9 175.2 

14.9 10.5 15.2 

9.9 8.0 13.4 

2 5814 7253 5004 

125.8 123.0 127.2 

156.2 157.0 153.6 

8.3 9.0 8.2 

7.5 7.4 6.0 

3 16010 17232 16265 

64.6 97.1 71.0 

151.9 155.6 150.2 

13.7 10.9 15.9 

17.3 11.4 12.9 

4 14434 11038 3993 

102.0 65.6 108.5 

151.9 144.4 144.8 

9.0 12.2 5.7 

8.6 11.1 4.3 

5 2820 3318 3288 

23.8 25.3 25:2 

134.7 136.8 136.0 

3.8 5.2 5.1 

9.1 10.8 9.9 

6 5145 5357 6245 

47.8 48.1 49.3 

112.3 112.5 114.2 

4,4 4.8 6.4 

4.2 4.4 6.1 

Table 4.4: Clustering statistics for 15th M a r c h 1991 images. 
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cluster No. of pixels cluster mean variance 

A l A2 A3 A l A2 A3 A l A2 A3 

0 7222 26229 6863 

114.9 104.5 119.2 

215.8 205.7 214.3 

6.3 13.1 5.8 

2.9 8.7 5.4 

1 27441 2567 28934 

100.9 57.7 98.4 

196.6 194.1 196.8 

15.8 12.7 16.3 

11.5 11.5 12.1 

2 14086 5299 11819 

63.9 115.4 66.0 

155.2 181.8 153.0 

14.3 9.7 13.1 

16.7 8.0 14.1 

3 7647 5659 7623 

106.4 75.6 107.1 

151.4 172.9 152.0 

14.0 13.5 13.4 

6.2 5.1 7.0 

4 3777 10519 4395 

26.1 98.5 28.3 

143.6 149.5 145.6 

3.7 17.4 5.4 

5.9 6.6 • 7.3 

5 1391 5690 1584 

17.4 24.9 17.8 

128.3 141.7 128.7 

1.1 6.0 1.6 

2.6 10.7 2.9 

6 3972 9573 4316 

50.2 55.0 51.0 

115.5 131.7 116.3 

6.9 9.3 7.0 

6.0 16.3 6.5 

Table 4.5: Clustering statistics for ISth M a r c h 1991 images. 

cluster No. of pixels cluster mean (-jfr) variance 

A l A2 A3 A l A2 A3 A l A2 A3 

0 12835 2065 8757 

112.0 70.8 111.9 

195.2 198.4 198.3 

14.4 16.8 11.1 

8.1 9.0 6.1 

1 12330 10611 14324 

103.3 102.5 104.0 

176.7 195.3 177.0 

10.7 10.2 15.4 

7.6 7.2 13.6 

2 10640 17386 11034 

77.8 108.1 74.4 

167.8 174.8 173.3 

10.1 15.1 10.5 

16.7 10.4 14.4 

3 9803 12199 10163 

50.9 62.1 113.3 

150.2 106.5 152.5 

10.4 12.0 11.3 

15.4 15.2 13.0 

4 6883 7530 10596 

116.9 113.2 39.6 

147.2 144.3 151.3 

11.1 15.8 11.8 

9.0 9.4 10.2 

5 6314 8037 2509 

24.2 26.9 20.0 

140.0 143.6 129.0 

4.7 6.9 2.7 

9.7 12.0 4.5 

6 6731 7708 8147 

49.7 50.5 51.3 

105.9 108.2 109.3 

7.1 7.6 8.3 

7.4 9.3 10.1 

Table 4.6: Clustering statistics for 20th M a r c h 1991 images. 
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Since mult iple solution exists for iterative clustering, i t is very difficult i f not 

at a l l possible to compare the statistics of the results, therefore they are compared 

based on the actual classes found i n the original images. The exact number of 

clusters are also difficult to determine, but i t is set such that the feature space 

are wel l partit ioned. Due to the relatively low resolution of M E T E O S A T at high 

lati tude i t is not able to distinguish a l l cloud types, especially i n regions where 

multi-layers of cloud exist. 

The cloud types found i n these images are: 

1. L a n d 

2. Sea 

3. Low cloud 

4. M i d d l e cloud (Altostratus, Stratocumulus etc.) 

5. Cumulus (subpixel) 

6. thick Cirrus 

7. th in Cirrus 

8. Deep convective cloud 

The following paragraphs concentrate on the comparison of results obtained 

using different in i t ia l parti t ion methods,.i.e. the Global-Local algorithm ( A l ) and 

the dynamic algorithm using random ini t ia l part i t ion (A2) , since the results of 

the histogram clustering are less important. 

O n the 5th March , both algorithm separate the low clouds and land well , 

the main difference is the thick Cirrus (middle of the window), i t has been over 

estimated by the A 2 algorithm. Most of the Stratus w i th th in Cirrus above has 

been mixed wi th the thick Cirrus. The Global -Local algorithm separate the stratus 

cloud underneath the thick cirrus well , without overestimating the thick cirrus. 

The main features of the spiral cloud on 8th March has been identified well 

by both algorithm. Areas containing cumulpnimbus (bottom) and thick Cirrus 
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(bottom right) are the main difference. The A 2 algorithm has split the cluster of 

thick cirrus into two clusters, i n this case i t i s better to keep the thick cirrus i n 

one cluster. 

O n the l l t h March , low stratus cloud has been well represented by both algo

ri thms. The main difference is on the top left where a group of thick cirrus has 

been identified by the Global -Local algorithm. The thick cirrus has been assigned 

to the stratus underneath the thick cirrus by the A 2 algorithm. 

O n the 15th March , the anvils of located at the cold front has been separated 

well by the Global -Local algorithm but not by the random algori thm. The amount 

of thick cirrus (top left) has also been overestimated by the A 2 algorithm. 

O n the 18th March , the random algorithm fails to separate the warm frontal 

cloud, this consists of a mixture of nimbostratus, altostratus and cirrus. The 

cirrostratus along the warm front has been separated part icularly well by the 

Global-Local algorithm. The altostratus and stratocumulus behind the warm 

front and the warm frontal cloud has been wrongly assigned to a single cluster by 

the A 2 algorithm. 

O n the 20th March , the frontal baind of thick cirrus has been under estimated 

by the A 2 algori thm as well as an area of cumulonimbus over southern England. 

4.5 Discussion 

In a l l cases, clustering using a random in i t ia l part i t ion closely resembles the 

Global-Local clustering algorithm. However, in general the Global -Local clus

tering approach generates better clusters than using the random in i t ia l parti t ion 

approach, as expected. In a l l six sets of images the thick cirrus and deep con

vective clouds in .particular are better represented by the Global -Local clustering 

approach. Another disadvantage of the random in i t ia l part i t ion approach is that 

the number of clusters is very difficult to control. Very often i t generates kernels 

which does not attract enough points and are discarded, which i n turn increases 

the variation of other kernels. Al though a kernel w i l l be split i f its variation ex-
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ceeds the hmit , this usually results in unsatisfactory clusters or oscillation between 

spht and merge. 

The dynamic algorithms converge as expected and less than 3% of the pixels 

were transferred at the l l t h iteration. 

The histogram clustering (A3) is found to be able to provide very good in i 

t ia l partitions for the dynamic clustering algorithm ( A l ) . The split and merge 

capabilities are also very useful for recovery from bad randorn in i t ia l part i t ion. 

In most cases the classes wi th very small variance and which are close i n the 

feature space (e.g. different type of land or sea) are mixed together. This is not 

a serious problem for cloud classification, however i t can be improved by only 

estimating kernels which exceed the split or merge parameters, because these 

clusters usually can be identified very wel l by the histogram clustering algorithm, 

and i f their kernels are not disturbed they wi l l not affected by split or merge of 

other clusters. For the Global-Local algorithm, i f no split or merge has occurred 

the final part i t ion is very similar to the in i t ia l part i t ion generated by the histogram 

clustering. This implies that the dynamic clustering algorithm is very stable once 

i t locks onto a cluster and wi l l not move very much i n the feature space. 

In this chapter the histogram clustering has been shown to provide good ini t ia l 

partitions for classical iterative parti t ional clustering algorithm. The advantages 

of the Global-Local clustering algorithm are: 

1. H igh efficiency (it exploits mult iple occurrence of a pattern vector). 

2. It obtains an i n i t i a l parti t ion objectively using a very efficient histogram 

clustering algorithm which requires few control parameters. 

3. It uses an opt imum Gaussian kernel as a cluster model , which has found to 

suit cloud imagery well. 
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Chapter 5 

A Spatial-Spectral Clustering 

Algorithm 

T h e Global -Local clustering scheme presented i n Chapter 4 classifies each vec

tor:, using only it^s spectral features. This approach is usually termed per-pixel 

clustering. Per-pixel clustering algorithms are popular i n clustering of remotely 

sensed data, because y^) require J i t t l e / n o data preprocessing and /\, very efficient. 

However,yi^Mo,: not uti l ize the spatial information in^mage. Spatial information 

is important for several reasons, 1) human interpretation of images relies heavily 

on the spatial as well as the spectral relationship of objects, 2) texture, spectral 

and contextual features can be found i n most images, 3) the low resolution of 

most weather image is usually such that a pixel grey level representing a mixed 

measurements of more than one object. 

It is well known that (Ket t ig and Landgrebe 1976, K i t t l e r and Pa i rman 1985a) 

per-pixel classifications of remotely sensed data are "noisy". Th i s result is due to 

uncertainty of boundar^j^': pixels being classified without considering the categories 

of its neighbourhoods. The "classification noise" is particularly undesirable for 

subsequent shape analysis of the object shapes. 

Spatial information can be characterised by textural features or extraction of 

homogeneous regions i n the image. Texture refers to a description of the spatial 

variabili ty of tones found wi th in part of a scene. Various measures of texture have 
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been successfully used to improve classification of remotely sensed data (Haralick 

and Shanmgau 1973). One disadvantage of textural measures is that there is an 

effective reduction i n spatial resolution of the final classified image because for 

the measure to be effective the whole image is divided into small regions and 

these regions are classified using their textural measures. For example Haralick 

and Shanmgau (1973) use 64 x 64 pixels sub-regions and 44 textural features to 

classify L A N D S A T data, they claimed a 10% improved accuracy over per-pixel 

classification. Simi lar ly approaches for cloud images was reviewed i n Chapter 2. 

Whereas textural features contain information about the spatial distribution of 

tonal variations wi th in a band; Contextual features contain information derived 

from blocks of pictorial data surrounding the area being analysed. Since the 

tracking of mesoscale cloud motion require a target window as small as 4 x 4 

pixels, the textural approach is not suitable and we shall concentrate on contextual 

approaches. 

In this chapter a new Spatial-Spectral clustering algorithm is presented. This 

comprises of two stages: firstly the image is segmented into spatially connected ho

mogeneous regions corresponding to objects in the original images using a method 

called Graph Theoretic Hierarchical Segmentation ( G T H S ) . In the second stage, 

objects belonging to the same category are grouped using an approach similar to 

G T H S , but they are grouped based on their spectral similari ty only. 

5i0.1 Review of Contextual Classifiers 

The use of contextual information is based on the assumption that (Harahck and 

K e l l y 1969): 

1. Objects which are very close together are probably the same or similar type 

of object. 

2. A sensor which is sensing the same br^similar typesof object w i l l record the 

same or similar numerical measurements. 
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The above model leads immediately to the idea of i inding homogeneous sub-

regions and then classifying each region as an object. This idea of image par-

t i t ioi i ing is called image segmentation. Segnientation is defined as the part i t ion 

of an image I into m spatial connected subregions P = {R\,— ^Rm} such that 

U f e i ^ — J- Each region is homogeneous such that the variatioii wi th in each 

region is less than a threshold < Of 

The simplest method is to divide the image into successively smaller rectangles 

and produce, a paxtition that tends to minimize a criterion function. Robertson 

(1973) defined ai;Sutr<t3T6rt homogeneous i f the mean M{K) = M{J) for 

some subregion K wi th in image J . The whole image I is parti t ioned recursively 

unt i l al l subregions are homogeneous or equal to the min imum block size allowed; 

The mean test of part i t ion J into J\ and J2 is approximated by a multi-variate 

statistical hypothesis test that assumes the grey-levels i n J i and J2 are normally 

distributed, and tests the hypothesis that M ( J i ) = M ( J 2 ) . The subimages are 

then classified using either supervised or unsupervised methods. This part i t ioning 

of the whole image recursively into smaller regions are referred as disjunctive 

approach or top-down approach. 

Farag (1978) presented a top-down procedure based on an information theo

retic approach. The algorithm started wi th the whole image and split recursively 

into subregions such that the total information is minimised. If a l l regions are 

homogeneous the mutua l information conveyed should be min imum. 

Ke t t i g and Landgrebe (1976) suggested an contextual algorithm for mul t i 

spectral image classification. The algorithm is to merge 2 x 2 pixel cells (or 

larger) un t i l regions meet at their boundaries. The merging of cells are based on a 

multi-variate composite hypothesis test, i.e. i f the test is positive two regions are 

merged, and cells which do not pass the homogeneity test are assumed to l ie on 

boundaries, these pixels are classified using per-pixel methods. The homogeneous 

regions are called fields and can be classified using supervised or unsupervised 

methods. Alternatively we can cluster pixels into regions and grow regions un

t i l their variance exceeds a predefined threshold. This approach is referred as 
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conjunctive or bottom-up approach. 

Other approaches try to identify homogeneous objects by scanning the image 

sequentially i n a line by line sequence. Nagy and Tolaba (1972) proposed a spat ial 

clustering method based on^extraction of homogeneous regions . , by strip forma

t ion. A strip is a segment of a scan line. The strips are allowed to grow unt i l the 

addition point •. raisesthe internal scatter of the strip above a designated strip 

threshold. A t that point, the formed strip was assigned to a cluster (or designated 

to start a new cluster), and the formation of a new strip begins. The assignment 

of a strip to a cluster was done by comparing the strip to the cluster centres. 

The search for a cluster was done i n a decreasing order of cluster population, to 

eliminate small groups of abnormal components. 

Jayroe (1973) introduced a three stage spatial clustering procedure for mul t i -

images. In the first stage, a boundary map is prepared bjHthresholding of gradient 

images. The two gradient images used are obtained by computing the Euclidean 

distance between nearest neighbours i n the horizontal and vertical directions. In 

the second step clusters are formed by scanning the boundary map wi th a fixed 

size window. When the window hits a region i n which there are no boundary cells, 

that region is assigned to cluster 1. The window is then moved further, and i f no 

boundary cells are encountered, the area wi th in the window is assigned to cluster 

1. The scanning continues unt i l a l l possible cells are assigned to that cluster. 

Next , the window is moved unt i l i t hits a new region wi th no boundary cells, and 

the process is repeated. Final ly , clusters are merged according to their spectral 

features. 

Haralick and Dinstein (1975) proposed a spatial clustering procedure based 

on gradient images. The procedure starts wi th computation of a gradient image 

using Robert 's gradient. The gradient image is then thresholded to generate 

homogeneous regions. A clearing procedure is applied to the threshold image to 

eliminate fuzzy boundaries. The image is then scanned line by line to identify 

connected strips, these strips are then merged into spatially connected regions. 

F ina l ly these regions are clustered. 
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K a u t h et a l . (1977) introduced spatial coordinates of each pixel into the vector 

description of the pixel and to use this information along wi th the spectral features 

i n a conventional I S O D A T A clustering algorithm. 

Bryant (1979) proposed a spatial clustering procedure il?ct&5f(;-̂ le-civ/Uy. on heuris

tics. Spatial information is incorporated by identification of pure pixel (fields) and 

a pixel 's label depends on the values of its 4 nearest neighbours. The fields are 

merged spatially and 5 test pixels are selected from each field. Cluster centres are 

then generated using the mean vector from each field, and the test pixels are clas

sified wi th these mean vectors. F ina l ly the means that do not adequately attract 

test pixels are eliminated. F ina l ly the field mean vectors and pixels are classified 

using per-pixel nearest neighbour classifier. 
hx<Je. 

Supervised methods using contextual information,,,(>e«>istudied by Ki t t l e r and 
by 

Pairman (1985a), and^Swain et al . (1981). They proposed contextual classifiers 

based on the max imum hkehhood classifier. These algorithms are to minimise a 

loss function which take into account the dependence of a vector and its neigh

bourhood. The in i t ia l label is obtained by conventional per-pixel classification 

and the label are iteratively change unt i l al l labels are stable. 

For most contextual classification methodij only marginal improvement i n clas

sification accuracy is reportedj but the change i n object shape is obvious and i t 

can affect subsequent machine analysis of objects. 

5.0.2 Summary 

A l l spatial-spectral clustering algorithms start with^identification of homogeneous 

regions or objects(segmentation) and these objects are grouped. ' a later stage 

using a clustering algorithm. Most algorithms require some threshold values for 

testing of a region homogeneity, and spatial information is not fully ut i l ized, i.e. 

the region are constructed using strip growing or merging of small blocks. The 

consequence of not being able to make full use of spatial information creates re

gions wi th jagged edges and blockiness (Morris et a l . 1988).In this chapter an 

unsupervised approach is used such that no threshold values are required. The 
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new Spatial-Spectral clustering algorithm is able to produce clusters wi th accu

rate boundaries and clusters are less "noisy" compared wi th per-pixel clustering 

approaches. These properties are important to machine analysis of the cluster 

shape. 

5.1 Graph Theoretic Hierarchical Segmentation 

(GTHS) 

The first stage of the Spatial-Spectral clustering concerns the generation of spa

t ia l ly connected homogeneous regions. This is achieved by a Graph Theoretic 

Hierarchical Segmentation ( G T H S ) technique which clusters the spatial space us

ing a Graph Theoretic method. 

Image segmentation algorithms based on graph theoretic clustering are devel

oped i n this section. The G T H S algorithms t ry to exploit the spatial information 

which is often ignored i n many image part i t ion algorithms. Segmentation is a 

fundamental problem i n image analysis and understanding. Clustering algorithms 

have been shown to be an effective approach for image segmentation (Fu and M u i 

1981). 

5.1.1 Definition of Spatial Space and Feature Space 

Segmentation can be either ajAvrfoxicMw^of feature space or^the spatial space. For 

classification purposes, as shown later, a part i t ion of the spatial space requires 

further grouping of similar segments i n the feature space to produce unlabelled 

classes. 

We consider the feature (measurement) space first. A c?-dimensional image 

is a two dimensional sequence of c(-tuple vectors and the elements i n each vector 

correspond to the grey-levels L of the sensed image. The feature space is defined as 

the Cartesian product oi G = Lix L^... x Ld. If the size of the image is A'̂  x M 

pixel , then the image / can be regarded as a sequence 7 = {gij\i € Zx,j G Zy} 

where Z^: = { 1 , 2 , . . . , N], Zy = { 1 , 2 , . . . , M } and gij G G, Therefore the 
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spatial space is the Cartesian product oi S = 

Figure 5.1. 

Z3; X Zy. A n example is given i n 

1 : 2 1 6 

1 5 6 6 

1 10 10 5 

9 6 10 9 

(a) 4 x 4 image 

A A A B 

A B B B 

A C C B 

C B C C 

(b) Best partition 
of feature space 

A A A B 

A B B B 

A C C B 

C C C C 

(c) Best partition 
of spatial space 

Figure 5.1: Partitions of a 4 x 4 iinage. 
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5.1.2 Spatial Clustering 

It was shown i n section'3.5.4 that graph theory plays an important role i n cluster

ing. One of the advantages of graph theoretic clustering is the abil i ty to describe 

the clusters i n a hierarchical order, Q-wyî  to different level of interest a data set can 

be partitioned into many possible combinations(Fig, 3.7). This is particularly true 

for image segmentation, where an image is segmented into regions that roughly 

correspond to objects, surfaces or parts of objects of the scene. 

Graph theoretic and hierarchical clustering Koj/g been used extensively in^par-

t̂Twv!x|- of feature space. In this Chapter i t is shown that clustering of .the image 

space (spatial space) is equivalent to parti t ion of a image into spsdtl̂ llij connected 

segments. The basic concept is to cluster the image pixel wi th the constraint 

that they are spatially connected. A t this point it should be stressed that graph 

theoretic and hierarchical clustering fuwcone major difference; i t is the generation 

of clusters. In graph theoretic clustering clusters are formed by Tttyvo în:̂ " of incon

sistent l inks, while i n hierarchical clustering the dendrogram is cut at some level 

to generate clusters (Fig . 3.12). However, both methods generate clusters i n a 

hierarchical fashion. 

A hierarchical structure of a picture is common i n low level image analysis 

(Tanimoto 1978, Tanimoto and Klinger 1980). A hierarchical structure means 

that the image can be divided into components, corresponding to scene objects, 

which can then be divided into subcomponents corresponding to objects. The 

hierarchical level is particularly useful to represent different resolution levels:" a 

region, which is higher i n the hierarchy than its subparts, is also larger than its 

subparts. Hence, higher level regions could be discovered at a coarser resolution 

than their subparts. Spatial clustering using graph theoretic methods automati

cally produce the hierarchical" result as described above. 

In order to obtain segments wi th accurate boundaries, the process must be able 

to take into account of both local and global spatial information. Graph theory 

has been shown to be an effective approach for detecting gestalt clusters (Zahn 

1971). The application of graph theory to image segmentation can be found i n 
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Morris et a l . (1986) and Daskalakis et a l . (1988a). The methods described i n this 

Chapter ^ ' s i m i l a r to the irnage graph presented by Morr is et a l . (1986), although 

the fundamental concept of our segmentation is based on clustering of the image 

coordinate space and is applicable to multi-spectral data. 

The complexity of graph theoretic clustering of the feature space of an image 

wi th n pixels requires n{n — l ) / 2 similarity measures, which is prohibitively large 

even for a 256 x 256 pixel image. In image segmentation, however, only adjacent 

pixels need to be considered, thus rediicing the number of similarity measures to 

m X n . (m = 4 or 8). The neighbourhood of a pixel x is shown i n F i g . 5.2 

X 

"8 ^2 

X 

•̂ 6 "̂ 5 

4 connectedness 8 connectedness 

Figure 5.2: The neighbourhood of a pixel x 
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5.1.3 Basic Graph Theory 

In order to present the G T H S segmentation method i t is necessary to introduce, 

some graph theory terminology. 

1. A graph G = iV^E) consists of a set of nodes or vertices joined by l ink E. 

A hnk can be directed or non-directed: directed l ink is called an arc, and 

a non-directed hnk is called edge. The end node of a directed l ink is the 

parent of the start node. 

2. A completed graph has every node l inked to every other node. 

3. A graph is connected i f there is a path from any node to any other node. 

4. A graph is a directed graph i f the links have direction. 

5. A graph is non-directed graph i f the links have no direction. A . weighted 

graph has a value or weight e,j, associated wi th the edge l inking nodes i and 

j. The nodes may also be assigned weight v,-, Vj. 

6. A path is a sequence of directed links, a chain is a sequence of non-directed 

hnks. 

7. A cycle i n a graph is a path or chain from some node i back to i tse l f 

8. A tree is a connected set of paths or chains such that there are no cycles. 

9. A forest is a graph which is not necessarily connected and i n which there 

are no cycles. 

10. A directed tree is a directed graph wi th a specific node called the root, the 

root has no parent. 

11. A spanning tree is a tree that contains every node i n G. The weight of a tree 

is the sum of l ink weights. The min imal spanning tree ( M S T ) of a weighted 

graph G is the spanning tree of G which has min imal weight. 
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5.1.4 Spatial Clustering: A Stepwise Optimal Approach 

A H agglomerative hierarchical and graph theoretic clustering methods can be re

garded as a procedure to minimise a global cost function step by step. In the 

case of clustering the cost function to be minimized io.*t> each step is usually the 

distance between two groups. Assume the cost of merging two regions Ri and Rj 

is C{Ri,Rj), and that it is required to minimize the total cost of merging m 

segments. The criterion function is 

= Y^{Ri,Rj) V i , i € L (5.1) 

where L = {eki\k, 1 e ZxX Zy] is the set of hnks connecting the regions. 

The identification of the min imum of J (Pm) requires the search of a l l possible 

partitions, and a practical solution is found i n clustering techniques. Graph the

oretic techniques have been used because they can exploit*^ ^spatial information of 

an image. 

A n in i t ia l part i t ion of an image wi th n segments each containing exactly 

one pixe l is P ° = A t the kth. i teration, the two most similar 

regions are merged from the P''~^ part i t ion to produce a new part i t ion = 

{Ri,Rl2,...,Rn-k}- Therefore the number of regions decreases by one at each 

iteration, must contains n — k regions. J{P^) tends to increeise after each 

merging, and can be written as: 

J{P') = J{P') + Y 

It is easy to see that if the increase in J{P) is minimized at each iteration then 

so ; J{P'')- Thus, a suboptimal solution of the global opt imizat ion problem 

is obtained using this stepwise approach. In general the criterion function J{P) 

increases step by step and the stepwise approach produces a sequence of J{P°) 

such that 

J (P° ) < J ( P ^ ) < . . . < JiP") < J{P^) (5.3) 

J{P°) - J ( P ° - ^ ) (5.2) 
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5.1.5 General Form of the Spatial Clustering Algorithm 

A graph-theoretic segmentation based on the clustering concept presented i n pre

vious sections is introduced. 

The general procedure for Graph Theoretic Hierarchical Segmentation ( G T H S ) 

is as follows: 

Step 1. Begin wi th n segments each consisting of exactly one entity. 

Set r = n . 

Step 2. Search for the most similar pair of segments (only spatially 

close neighbours are compared). 

Step 3. Reduce the number of segments r by 1 through l inking of 

segments Ri and Rj. Label the newly formed segment. 

Save the l ink connecting Ri and Rj. Update the 

similarities using the chosen distance measure. 

Step 4. Perform Step 2 and 3 n — 1 times (until a l l entities are i n one 

segment). 

Step 5. A l l entities are connected by a graph which links are those 

saved i n Step 3. 

Step 6. Form segments by removal of the most costly l ink saved i n Step 3. 

Step 2 is crucial to the result of the spatial clustering. The similari ty measure 

of neighbouring segments determines how well the global and local spatial rela

tionships are exploited. This is demonstrated using the distance functions in the 

single linkage and centroid methods. 

The G T H S segmentation may consists of one or two stages: The first stage is 

the construction of^spanning tree, and the process terminates when the required 

number of segments is obtained. This is called the bottom-up approach. In 

the second approach the spanning tree is allowed to span the whole image and 

segments.are generated using a second stage. The second stage is the identification 

of inconsistent edges (e.g. the m — 1 most weighted edges are removal to obtain 

m segments, or the spanning tree is part i t ional such that a criterion function is 
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optimized). This is called the top-down approach. 

The determination of the number of segments present i n an image is as difficult 

as the deterrriination of the number of clusters present i n the feature space, and 

it w i l l be helpful to have some measure of segmentation performance. A segmen

tation model based on mutual information is presented later. This monitors the 

segmentation process and is used to suggest suitable number of segments. 

5.1.6 The Image Graph 

A n efficient algorithm is essential for practical use of the spatial clustering method. 

One way to implement the G T H S segmentation method is to compute al l the 

possible pairwise similariti^sof a pixel and its neighbours. The neighbourhood 

of a pixel can be defined by a window of size p x p p ixel . For computational 

reasons and simphcity only 4 or 8 neighbours are usually used, and i n this study 8 

connectedness are used to demonstrate the abili ty of spatial clustering (F ig . 5.2). 

To implement G T H S segmentation, the image must be mapped onto a graph 

and the simplest mapping is to consider every pixel as a node i n the graph (see 

F i g . 5.3). 
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Figure 5.3: Mapp ing of a 3 x 3 image onto a graph wi th 

8 connectedness. 

Every node represents a vector i n the image. The vector is simply the grey-

level of the pixel . Other features such as texture or grey-level gradient can also be 

used. Therefore every node carries a weight Vk — Zijki and every l ink connecting 

node i and j has weight e,j = \\vi — Vj\^ which is the squared Euclidean distance 

between the two vectors mapped onto u,- and Vj. Every node can be connected to 

more neighbours but considering the complexity only 8 neighbours of a pixel are 

used. It must be noted that the graph generated by^merging of spatially connected 

segments is always a spanning tree of the image graph G. 

It is noted that the merging stage (Step 1 — Step 5) in the G T H S algorithm is 

a variation on constructing a M i n i m a l Spanniiig Tree ( M S T ) . There are two well 

known algorithms to construct a M S T (P r im 1957, Kruskal 1956). The importance 

of choosing a distance function has been stressed previously, and several distance 

functions are chosen to illustrate the principle of spatial clustering. These distance 

functions were presented in section 3.5.4. Traditionally a name is associated with 

each hierarchical clustering method using a particular distance function, the same 
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name w i l l be used here for convenience, but the algorithms presented here should 

not be confused w i th hierarchical clustering (section 3.5.4). . 

5.1.7 Single Linkage Spatial Clustering 

A clustering obtained by single hnkage clustering is equivalent to the construction 

of a min imal spanning tree ( M S T ) on the data set. Efficient algorithms exist 

to construct the M S T and usually either P r im ' s or Kruskal 's M S T algorithm is 

used. It should be noted that P r im ' s algorithm is more efficient than Kruskal 's 

algorithm, bii t as w i l l be shown / 'Kruskal 's algorithm is more suitable for spatial 

clustering because i t allows both top-down and bottom-up approaches. 

P r im ' s M S T algori thm; ' is : 

Begin wi th an arbitrary node of G and add the edge wi th smallest 

weight connected to this node. This l ink wi th its two end nodes con

stitutes fragmented tree Ti. The kth fragmented tree grows by adding 

the shortest l ink from Tk-i to the nodes of G not i n Tk-i. Th i s con

tinues unt i l r„_i is the desired M S T . 

Therefore, i n P r im ' s a,lgorithm the M S T grows from a single node by adding 

the closest node to the current tree at each stage along wi th the l ink corresponding 

to that closest distance. A M S T of a 4 x 4 image is shown i n F i g . 5.4. Removal of 

•0<i^ Ca and 66 w i l l parti t ion the image into 3 homogeneous regions as required. 
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Figure 5.4: M S T of a 4 x 4 image (4 connectedness), 

removal of edge eaandej generate three homogeneous re

gions. 

Since the P r im ' s M S T algorithm only allows the growth of one tree at a l l 

times, i t is not suitable for the bot tom up segmentation approach. Th i s study 

uses the Kruskal 's algorithm : ^ i % ^ i n contrast to the Pr im ' s algorithm, trees grow 

simultaneously, starting from the most homogeneous regions. 

T h e segments similarity measure for single linkage spatial clustering is 

SrniniTi^Tj) = mm 6{v,v') 

5.1,8 Complete Linkage Spatial Clustering 

(5.4) 

The concept of complete linkage is no more complicated than the single linkage 

except the distance between segments becomes 

S^a.m,Tj)= max (t;,t;') 
v&Ti,v'eTj 

(5.5) 
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Figure 5.5 is an example of a spanning tree generated by the complete linkage 

method ( G S T ) . 

1 2 1 6 

1 5 6 6 

1 10 10 5 

9 9 10 9 

4 x 4 image 

1 1 

0 

0 

' e 

/ a 1 0 

0 
1 

1 

0 0 

0 1 

CST 

Figure 5.5: C S T of a 4 x 4 image (4 connectedness), 

removal of edge Caandet generate three homogeneous re

gions. 

The algori thm to construct the C S T is similar to M S T and the weight of the 

edges between segments is determined using eqn. 5.5. 

The algori thm for C S T is: 

Step 1. M a p the image.onto a weighted graph G. Set r = n — 1. 

Step 2. F i n d the least weighted l ink. 

Step 3. Save the least weighted l ink. 

Step 4. Keep links ek{ij) which satisfy 5max{Tk-, T{ U Tj) 

Step 5. Remove duplicated l inks. 

Step 6. r = r — 1 goto Step 2 if r > 0. 

Step 7. Form a spanning tree with the saved links. 
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5.1.9 The Centrpid Method for Spatial Clustering 

The distance measures used i n the M S T and C S T w i l l be shown to belong to 

local type distances. These distances do not incorporate the spatial information 

beyond a pixel 's nearest neighbours and so,, as one could expect, they are sensitive 

to local variations such as noise. A possible way of incorporating spatial infor

mation beyond a pixel 's nearest neighbours is to use the average distance (global 

type) between two spatially connected regions. This section presents methods of 

constructing a spanning tree based on global distances. 

The distance measure used to construct "the spanning tree by the centroid 

method ( C E S T ) is : 

8mean{Tu Tj) = S{miTi), m{Tj)) (5,6) 

where m{Ti) = ^ I^„^.gr, Vj is the mean or centroid of region Ri defined by Ti, Ui = 

€ Ti}. It is noted that the Recursive Spanning Tree ( R S T ) which is 

equivalent to C E S T has been used by Morr is et.al (1986|^for image segmentation. 

The algorithm to generate C E S T is as follows: < ^ tv| Uw^ wvA \^U<i.Cm\) 
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Step 1. M a p the image onto a weighted graph. 

Step 2. r = n - l . 

Step 3. Save the next least weighted edge, say eij between nodes 

i and j (in general node i w i l l represent n ; 

original node weights and node q w i l l represent 

original node weights. The weight of n,-, Uj w i l l be the 

mean of the weights of a l l the nodes i t represents). 

Step 4. Merge the two nodes i and j to make a new node k wi th 

weight equal to the mean of a l l the node weights i n nodes i 

and j, i.e. 

Step 5. F i n d the new edge weights (using eqn. 5.6) for a l l 

edges which are now connected to node k (frequently this 

process leaves redundant edges, which are discarded). 

Step 6. r = r - 1, goto Step 2 i f r > 0 

Step 7. generate a C E S T using the saved links. 

The interpretation of the C E S T is made easy by a recursive form of generating 

the M S T . A t each stage of the iteration the total number of nodes is reduced by 

one through merger of two closest nodes i and j. The merged node w i l l represents 

a number of nodes which have been merged together and the whole process of 

merging is repeated. The node weights of the new node is represented by the mean 

of the merged node, and the l ink weights connecting the new nodes are updated. 

A s the nodes are merged, i t is possible for one node weight to affect another which 

is not necessarily its nearest neighbour. Initially only local information is used 

since each region only consists of one pixel , but as the iteration progresses and 

the regions grow, more global information is used. A n example of C E S T is given 

i n F i g . 5.6). 
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Figure 5.6: C E S T of a 4 x 4 image (4 connectedness), re

moval of edge Caandcfc generates 3 homogeneous regions. 

5.1.10 The Variance Method for Spatial Clustering 

So fax a l l spatial clustering methods only involve minimisation of edge weights i n 

each iteration. The stepwise opt imal approach can be generalised by maximizing 

an objective function instead of a distance function and a popular choice for 

an objective function is to minimize the variance of a segment. This function 

is justified by the assumption that each region should be homogeneous in some 

scene. This method was proposed by Ward (1963) and he illustrated his method 

wi th an error sum of squares objective function. 

The algorithm of the variance method for constructing a spanning tree ( V S T ) 

is similar to other spatial clustering methodsyiand is as follows: 
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Step 1. M a p the image onto a weighted graph. 

Step 2. r = n — 1 

Step 3. F i n d the pair of distinct treesTf and Tj whose merger 

would increase the criterion function as l i t t l e as possible. 

Step 4. Save the edge e,j 

Step 5. r = r - 1, i f r > 0 goto Step 3. 

Step 6. Generate spanning tree using the saved edges. 

The criterion function over a l l part i t ion is 

where Tn{Ti) is the mean of tree Ti 

Suppose segment Ri and Rj are chosen to be merged and the resulting segment 

is denoted as Rk. Then the increase in J ( P ) is 

A W = E i2iv,k-mk{TiUTj)y 
q^TiUTj k=l 

- E E ( ^ ' ^ - ^ * ( ^ ^ ) ) ' 
^.qeTi k=l 

- - -EE("''^-"^'^(^i)) ' 
geTj k=l 

= -^t:{mk{Ti)-mk{Tj)f (5.8) 
rii + rijf^^ 

Note that eqn. 5.8 is the weighted squared distance of the two centroids, while 

the Centroid method the distance is unweighted. Therefore the variance method 

also uses global information. Figure 5.7 shows an example of V S T . 
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Figure 5.7: V S T of a 4 x 4 image (4 connectedness), re

moval of edge Caandefc generates three homogeneous re

gions. 

It is noted that an agglomerative approach similar to the variance method was 

used by BeauHeu and Goldberg (1989) to segment monochrome image. They have 

shown experimentally that the change in criterion A J ( P ) is i n general increasing 

and can be used to guide the selection o^number of segments, but the mutual 

information approach used in this study produces a better indication. 

5.1,11 Summary 

T h e search for the part i t ion Pmin that minimizes a global criterion J requires a 

search over the entire space of al l possible partitions { P } . The implementation 

of a exhaustive scheme is impractical , so a suboptimal solution such as stepwise 

opt imal method has to be used. 

In principle any distance used in a hierarchical clustering scheme e.g. average 

linkage can be used to construct the spanning tree. A n important factor that 

l imits the choice is the computational cost. For example, the M S T is fast but it 
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has some undesirable effects, such as chaining. If a globular distance is used the 

computational cost increases, but wi th better results. There are many ways to 

construct a spanning tree, but only M S T and C E S T w i l l be studied because they 

are representatives of methods using local and global information. In most cases 

the spanning tree is not unique because ties are resolved arbitrary. 

F i g . 5.4—5.7, show that a l l spatial clustering methods produce the same par

t i t ion by removal of the two most weighted edges of these spanning trees (they 

perform very differently when applied to large images). The most weighted l ink 

of the V S T is much higher than the M S T , C S T and C E S T , so V S T is probably 

the best among these four trees for segmentation proposes. The properties of the 

spanning tree also depends heavily on the cost function chosen. There are two 

major type of cost functions: The first uses local distance such as the nearest 

distance, so only local information is used. The second type of cost function uses 

global information by taking account of other nodes in the same region. Global 

type cost functions are superior to local type for bot tom up segmentation, while 

using the top down approach the performance are about the same as shown later. 

A n efficient algorithm (Daskalaskis et a l . 1988a) to implement a spanning tree 

can be found in Appendix C . 

5.2 Bottom-Up Segmentation Approach 

T w o segmentation approaches can be used to generate segments. The first method 

is the bottom-up approach. Since the most similar regions are merged i n each 

iteration, the construction of spanning tree can be stopped when the required 

number of regions is obtained. B u t the success of this method depends on the 

algorithm used to construct the spanning tree. 

It is found that the P r im ' s algorithm does not allow segmentation using the 

bottom-up approach. Assuming a region wi th only one p ixe l is t r iv ia l , then the 

Pr im ' s algorithm startswith one node and that node grows by merging one node at 

a t ime, so at every iteration there is only one tree in the forest representing a non-
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t r iv ia l region. However i f the Kruskal 's algorithm is used (which is computational 

less efficient than Pr im ' s algorithm) the number of trees i n the forest representing 

non-trivial regions is greater than one after two iterations. This point is obvious 

from the Kruskal ' s algorithm: 

Arrange the edges of G in order from smallest to largest weight and 

then select edges i n order making sure to select only edges which do 

not form a cycle wi th those already chosen. Stop when n — 1 edges 

have been selected. The set of edjges is then an M S T for G. 

If we represent each tree as a region i n the image, i t is clear that wi th Kruskal 's 

algorithm regions are allowed to grow as the process continue. A s a result G T H S 

segmentation using Kruskal 's algorithm can generate Segments without the need 

to complete the spanning tree. 

The growth of a spanning tree generally starts wi th the most homogeneous 

regions and these regions act as "seeds". Regions grow around the seeds as the 

process continues. So spatial clustering belongs to the region growing methods 

for segmentation (Zucker 1976). 

To display a segmented image the regions grey-levels are replaced by the mean 

of that region. Let the number of nodes i n tree Ti be € Tf}, the mean of 

region Ri is given by 

m{Ri) = ni^SlT\ #{Vj\Vj € li) 

Although segmentation can be pbMVeii wi th less computational cost by termi

nating the process when the required number of segments is obtained, results may 

depend very much on the spatial clustering method used. The bottom-up ap

proach is used i n this study and i t is found that i t only performs we l l wi th global 

type distances. A more reliable but expensive way is to complete the spanning tree 

and part i t ion the spanning tree subject to a criterion function. A minimax method 

which is a suboptimal method wi l l be presented for the top down approach. 
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5.3 Top-down Segmentation Approach 

A spanning tree connects pixels according to their spatial and spectra-1 relation

ship. This effectively l imi t the parti t ion space by eliminating the solutions which 

clearly do not produce optimal parti t ion. Cut t ing m — 1 edges w i l l produce m 

partitions of the image, generally cutt ing the most costly edges i n a spanning tree 

produce the most prominent segments, but these segments are not necessary the 

best par t i t ion P^- This is part ly due to how much global information is used by 

a spatial clustering algorithm. Other methods may need detail inspection of the 

diameter histogram (Zahn 1971) to locate local m in imum which correspond an 

edge connecting two distinct segments but wi th weight similar to its neighbouring 

edges. These methods is rather difficult to program and because of its ad hoc 

nature the result may be unpredictable. 

A more systematic approach is to optimize a criterion function. A g a i n a global 

opt imizat ion method requires search of the entire part i t ion space { P } which is 

computational prohibitive, therefore a suboptimal method has to be used. A 

spanning tree provides a practical approach for top down segmentation by l imi t ing 

the search space to only n—1 searches. A method is to optimize a criterion function 

step by step to obtain a local opt imum. Let C{Ti) be the cost function of tree T,, 

a criterion function 

J ( P ) = Y ^(Ti) (5.10) 
T,-6P 

is minimized over a l l partitions. One possible cost function is 

^(^^) = E E ( " ' ^ - "^*(^')) ' (5.11) 

which represent the sum of squares error for segment Pi. 

Consider the process using top-down spatial clustering approach, the in i t i a l 

part i t ion consists o f one region P° = { P j } . A t the ^ t h iteration, the algo

r i t hm splits two regions from the P''~^ part i t ion to produce a new part i t ion 

P*^ = { P i , . . . , P ^ ^ i } . The criterion function J ( P ) tends generally to decrease 
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step by step i f we choose the cost function to evaluate the error sum of square or 

other variance measures of {J?*} such that 

k 
J{P^) = J{P°)- 53[J(P"- ' ) - JiP°')] (5.12) 

0=1. 

We want to minimize J{P^) such that the two most distinct regions are split . 

It is noted that the min imum value of J{P) is equal to zero, which is the t r iv ia l 

segmentation of each segment contains one pixel . A step wise optimization is 

therefore to find a region whose spht produces the largest decrease of J{P^). This 

decrease results from the sphtting of a region Rt into Ri and so we want to 

minimize 

A J ' ( P ) = C{Ti) + C{Ti) - C{Ti U Tj) (5.13) 

Since 

J ( P ° ) > J ( P ' ) . . . > J{P'')... > J ( P " ) , A J ' ( P " ) < 0, 

Therefore we can maximize the negative of A J ' ( P ) , which is 

A J ( P ) = C{Ti U Tj) - C{Ti) - C{Tj) (5.14) 

In a bottom-up procedure AJ{P) is being minimized, which imphes that the 

two regions which increase the total cost by the least amount are being merged. 

Following the same argument the change i n A J ( P ) of a top down procedure has 

to be maximized, such that every t ime two most distinct regions are generated. - It 

must be noted that this stepwise approach only produce a local opt imal solution. 

Nevertheless, as w i l l be seen they generally produce good results. 

Suppose we are at the kth. part i t ion P'' = {Ri,.. •,Rk+i}^ the optimization of 

eqn. 5.14 requiresthe search oik+1 trees, and let n be the average number of node 

i n each tree, the search requires 0{n{k 1)) operations. One way to speed up 

the search is to search only the tree Ti wi th C{Ti) = m a x { C ( T i ) , . . . , C{Tk+i)}, 

because Ti is potentially the one comprising more than one distinct region and 

spli t t ing Ti is most l ikely to produce maximum change i n the criterion function. 
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The algorithm for top-down G T H S segmentation is as follow: 

Step 1. r = m — 1, m is the required number of segments. 

Step 2. F i n d the tree Tk which maximize 

A J ( P ) = C{Ti U TJ) - C{Ti) - C{Tj), Tk = Ti U Tj, Tk^G 

Step 3. Remove the l ink connecting Ti and Tj. 

Step 4. r = r — 1, i f r > 0 goto Step 2 else stop. 

The top-down approach is used i n this study, and the best result is obtained 

using top-down approach wi th a globular distance. 

5.3.1 Minimax Segmentation 

The minimax segmentation method is a simplified version of the stepwise optimal 

method just described. The minimax method^minimizesthe cost function C(T i ) = 

m a x { C ( r i ) , . . . , C ( r f c + i ) } at the fcth part i t ion P ^ . This criterion based on the 

assumption that the segment wi th the largest variance potentially consists of more 

than one distinct regions. Once the tree C{Ti) wi th highest cost is identified i t 

is split into two trees C{Ti) and C(72) over a l l possible part i t ion of C{Ti), and 

selects the parti t ion which minimizes 

A J ' ( P ) = C{Ti) -h C{T2) (5.15) 

Since C{Ti U Tj) i n equation 5.14 is fixed therefore i t is equivalent to min imi

sation of equation 5.15. However, i t should be noted that minimax method- is 

suboptimal to the stepwise opt imal method because the optimizat ion of Cmax^i) 

does not necessary produce the largest change i n the criterion function. However 

i t is computation efficient. A n efficient algorithm (Daskalaskis et a l . 1988b) to 

implement .minimax on a spanning tree can be found in Appendix C . 

The algorithm for top-down minimax G T H S segmentation is as follows: 

165 





Step 1. r = m — 1,771 is the required number of segments. 

Step 2. F i n d the tree Tk wi th C{Tk) = max{C(r , ) |2> G G} 

Step 3. Cu t Tk at edge ejj connecting Ti and Tj 

min[max[a(r . ) , CiTj)]] V e.-,- € T , , = Tf U T,-

Step 4. r = ?— l , i f r > 0 goto Step 2 else stop. 

The cost function C{T) used i n this study is the intraset distance (see A p 

pendix D ) , which is essentially the average pairwise distance wi th in a segment, 

and is 

« P I " P ^) ,-=1 j - ^ i 

where rip is the number of nodes in Tp. 

It can be shown that C{Tp) = 2Yfk=i ^Ip where af^ is the unbiased variance 

of the A;th variance i n the p segment. 

^l = Z;^Y.^^ik-^^^Tp)f (5.17) 

5.4 Monitoring Segmentation 

Relatively htt le work has been done on determining the number of segments i n an 

image. This problem is similar to and as difficult as validating clustering studies. 

In this section a criterion function based on mutual information is presented. Due 

to the hierarchical structure of segments, this function only provides guidance for 

determination of number of segments. 

Segmentation can be regarded as the approximation of an image. This is clearly 

the approach presented i n previous sections, where a cost function of each segment... 

Irt minimized. These cost functions are related to the variance of ; segments in 

general, and is most explicit i n the centroid and variance methods. However, it 

is clear that theigVs îcfef tbe number of segments, the better is the approximation. 
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Therefore the goal of segmentation is a compromise of local details and global 

features required by the application. 

Ideally, the segmentation process should automatically terminate once near 

homogeneous regions have been found and one way of doing this is based upon 

entropy measure (Daskalakis et.al 1988b, Farag 1978). This is reasonable since 

the zero-order entropy of a near homogeneous segment, for example, tends to zero. 

The general information measure of a set of segments P = . . . , Rm) can be 

defined as (Farag 1978) 

I{P) = IiRr,R2;...;Rm) 
Rl Ri R: 

.Rl ^̂ 2 Rm 

= E E - E 
P ( x i i , X 2 i , . . . , X ^ f c ) log —. r + log — r- . . . + log —. r - log • 

X x i i ) P ( x 2 i ) * " P(x,nk) K x i i , X 2 i , . . . , X m f c ) . 

= H{Ri) + E{R2)... + H{Rm)-H{Ri,R2,...,Rm) (5.18) 

where Xmk is the A;th vector in segment m. E q n . 5.18 can be interpreted as the 

total information conveyed by the segment P wi th properties 

1. m > 0, 

2. I(P) = 0 i f and only i f the vectors are independent, p (x i , - ,X2j , . . .,Xmk) = 

p{Xii)p{X2j)...,p{Xmk) 

For an ideal segmented image X(P)='0 sinct dl^iribuijpni, ofx ^in practice 

we seek to minimise / ( P ) . It should be noted that H{Ri,R2,..., Rm) is the joint 

entropy of the segments and is independent of the part i t ion (constant), since i t is 

a function of the probabihty distribution of the image itself. Therefore we could 

terminate segmentation when H{P) = YT -^(•^O < ^'J where 6i is a threshold 

and i ? ( P ) is the segment entropy. In practice, due to problems of computing the 

higher order segment entropy, only the zero order approximation would be used. 
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This is reasonable, since, when the segmentation proceeds, interaction between 

segments w i l l decrease and most higher order terms can be neglected (Ryan 1968). 

Daskalakis et.al (1988b) used a similar criterion to monitor the segmentation. 

They assume the segment entropy H{P) is composed of two components by 

H{P) = Hs + J2p{Ri)H{Rj) (5.19) 
i 

where Hs is the entropy due to the existence of segments, p{Rj) is the probability-

of occurrence of a particular segments Rj and H(Rj) is the entropy of segment Rj. 

They assume the existence of segments obeys a Rayleigh pdf and pixels wi thin a 

segment obey a normal pdf. 

In this study, the concept of mutual information is used and the segmentation 

process is modelled as a noisy communication channel (see F i g . 5.8). 

m u l t i s p e c t r a l 
image source 

S 
Segmentat ion 

process 
Segmented 

image P 

m u l t i s p e c t r a l 
image source 

S 
Segmentat ion 

process 
Segmented 

image P 

E n t r o p y loss H(S|P) 

Figure 5.8: Segmentation modelled as an information 

flow process. 

For such a channel, the mutual information common to both ends of the channel 

is given by the well known expression 
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I{S; P) = H{S) - HiS\P) (5.20) ' 

where 5* = { x i , X 2 , . . . , X n } is the input image, P = {Ri,R2,.-.,Rm} is the 

segmented image. 

The source entropy is H{S) = - X)^(^«) (^-2^) 

The information given by a set of segments P is not equal to the sum of 

the information given by each segments taken separately, therefore they are not 

statistically independent. It is noted that the mutual iiiformatiori measure is 

symmetrical i n its two arguments and may also be expressed as 

7(5; P) = H{P)— H(P\S) (5.22) 

E q n . 5.22 indicates that the set of segments P should be statistically indepen

dent to maximize H{P), and at the same t ime to be highly statistically dependent 

on a given image to minimize H{P\S). 

Since H{S) is constant for a given image, the goal is to minimize the quantity 

H(S\P). If H{S\P) = 0, there is no ambiguity i n the channel output, and the set 

of segments is the best representation of the input image. For the segmentation 

problem, H{S\P) denotes an uncertainty i n the segmentation or a "segmentation 

loss". It follows that i f H{S\P) = 0, we could consider the segmentation process 

complete i n the sense that the source image has been segmented into homogeneous 

regions. 

The conditional entropy H{S\P) can be expressed as 

H{S\P) = H{S, P) - H{P) (5.23) 

For simphcity we might assume that the m segments of the processed image are 

approximately statistically independent and write H{P) as the zero-order entropy 

m 

mP) = - E K i ? i ) l o g P ( ^ i ) 
i=i 
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3 x,eR> 
(5.24) 

Here p(x,-, Rj) is the joint probabili ty of pattern x,- and segment Rj. The zero-order 

entropy assumption becomes more realistic as segmentation proceeds and indiv id

ual segments become more homogeneous and statistically independent. The joint 

entropy i n eqn. 5.23 can be writ ten as 

HiS,P) = - Y l E P(xni?i)lPgP(x.-,i2i) 
3 x.eflj 

Substituting eqn. 5.23 gives 

(5.25) 

HiS\P) = -

= - E E Kx.-,i2i)log 
3 XieRj 

B u t piRj) = X ;Kx. ' i t : i ) 

and 

p(x i , i2 j ) = p{Rj)p{xi,Rj) 

= p{xi)p{Rj\xi) (Bayes'rule) 

Therefore 

HiS\P) = -J^5^Ki? i |x . - )Kx. ) log 
»• 3 

Since H{S\P) = H{P\S) 

HiS\P) = - X ; E ^ ( ^ ' ' ^ i M - R i ) l o g 

Note that eqn. 5.28 can be expressed as 

E Ep^'^'"'^i)logp(x.-, Rj) - E E^(^''"^^•)^°gK^i) 

(5.26) 

L » 3 « 3 

[ piRj) J 

p(i?j|x;)p(x,-) 

p(x.-|i?,-)p(ir:,) 

Ex,6fl,P(x.|^i)p(i2i)_ 

(5.27) 

(5.28) 

HiS\P) = - J ^ K i ^ i ) E P(x.|i?i)logp(x , |P,) 
i X,-6Hj 

= J3P(P,)F(P,) (5.29) 

where p(x,-|i2j) is the probabili ty of pattern x,- occurring i n segment Rj and H{Rj) 
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is entropy of segment Rj. If segment Rj is homogeneous, then p(x,-|i?j) = 1 at 

some input pattern x,- and H{Rj) = 0. 

For any real pictorial data the segments always have some residual variance 

and so, i n general, we look for a significant reduction i n H{S\P), rather than 

H{S\P) = 0. Segmentation can then be achieved by terminating segmentation 

when the rate of change falls below a nominal threshold. 

The minimisat ion of H{S\P) can use either eqn. 5.27 or 5.29. In this study 

it is assumed that p(x , | i? j ) are norma;lly distributed (see Append ix E ) , and the 

probabihty of a segment is given by 

5.5 Spatial-spectral Hierarchical Clustering 

The second stage of the Spatial-Spectral algorithm is the clustering of regions 

generated by G T H S . The spatially connected segments {R} are supposed to be 

homogeneous and representing objects in the image. Some of these segments are 

siniilar i n the feature space, even though they may be spatially separated, and 

spectral clustering is required to group these regions into several categories. B y 

doing this we assume each segment represent an object belongs to a given category. 

The grouping of segments is similar to the grouping of pixels except the spatial 

relationship is not considered. The clustering of segments is based on the same 

principle of stepwise optimization. Given a set of segments {Ri} i = 1 , . . . , m , 

these segments are merged based on minimisation of a cost function C{Ri,Rj) 

when segment i?,- and Rj are merged. The objective is to minimize the overall 

cost of merging: 

Jiu) = J2^iRi,Rj) (5.31) 
Ul 

where to is a l l possible partitions. 

The cost function C{Ri, Rj) can be one of the distance functions discussed 
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i n section 3.5.4. However, for the purpose of spectral clustering these distaiice 

functions are found to be inadequate to discriminate classes, mainly because they 

do not convey sufficient information about the segments. For example, if only the 

centroid of two segments are used the variation of the "two segments is ignored. 

Therefore a better similari ty measure is required. The overall Spatial-Spectral 

clustering algori thm can be divided into two stages process: The first stage is 

either the bottom-up or top-down G T H S , and the second stage is the clustering 

of segments (F ig . 5.9). 

use bottom-up or 
top-down GTHS to 

segment multispectral 
images 

cluster segments 
using agglomerative 

clustering 

clustering results 

Figure 5.9: Spatial-spectral clustering approach. 

A better choice of cost function is the intraset distance which is a measure 

of variance. The intraset distance is the average wi th in group distance of the 

iherging Ri and Rj. It is noted that this distance has also been used in top-down 

approach for spatial clustering. The intraset distance is repeated here, 

<5.„,(P,, Rj) = J Y E E ( ^ ' ^ - - - ^ ' ^ i ) ' (5-32) 
"pi"p j^i fc^i 

where Up = ^ { i l i U Rj} and x/.-,-, Xkj € R, U Rj. 
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The algorithm of the second stage of the Spatial-Spectral clustering is similar 

to the first stage and is as foUovys: 

Step 1. Set r == m — 1 

Step 2. Start wi th m segments. P = {Ri,...,Rm}-

Step 3. F i n d R and Rj such that C{Ri, Rj) = min,,tj C{Ri, Rj). 

Step 4. Merge R and Rj, update a l l pairwise similarities. 

Save hnk connecting R and Rj 

Step 5. r = r — 1 

Step 6. If r = 1 or r = required number of cluster stop, else goto Step 3. 

Step 7. Form clusters using the trees generated. 

A g a i n top-down and bottom-up approaches can be implemented using the 

above algorithm. It has been found that the top-down approach does not offer 

much advantage over the bottom-up approach. 

Intraset distance was used i n this study and i t does not produce good results 

because i t tends to underestimate the distance between small segments and large 

segments. 

5.5.1 Statistical Hypothesis as a Distance Mefisure 

A better measure is based on statistical hypothesis, which has been used exten

sively i n image segmentation. A statistical test involve testing of a hypothesis and 

the decision w i l l be simply accept or reject the test. It is noted that for any tests 

to be developed i t is necessary to assume a definite probabil i ty distribution for 

the random variable i n the segments, and i n this study a multi-variate Gaussian 

model is assumed. Suppose there are two sets of sample X i ,X2, a null hypothesis 

Ho] fJ-i = fi2 is to test whether the mean /ii,7/2 are the same. It is assumed that the 

two populations, have a common variance covariance matr ix . T w o types of error 

can result from this decision. They are: 

P ( T y p e I error) = P(rejecting JJol^io true) = o; 
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P ( T y p e II error) = ^(accepting Ho\Hi true) = P 

where Hi is called the alternative hypothesis and is automatically accepted i f the 

nul l hypothesis is rejected, so ^ fi^. 

It is assumed that every points in segments Ri are wi th the normal distribution, 

and the nu l l hypothesis is to test whether the two distr ibution are the same, 

i f the test is rejected it is concluded that the two segments belong to different 

populations. The statistical decision therefore accepts HQ i f the two distribution^ 

have a distance less than a threshold t (confidence level, see F i g . 5.10). -

0 t 

Figure 5.10: Probabilities of error in hypothesis testing. 

For simplici ty we shall use a single variate example to derhonstrate the sta

t ist ical hypothesis test of two populations. Suppose two segments R and Rj 

with common population variance cr̂  and respective mean mi,mj, and a l l points 

i n each segment has distribution 7V(m,-,<T^) and N(mj,a'^), then the distribu

tion of fii = ^X^ar.fc, Xik € R and fij = ^J^Xjk, Xjk € Rj is given by 

fii = N{mi, ^ ) a n d pj = N{mj, ^ ) . Therefore fii — fij is distributed as iV(/x,- — 

fij, o'^C^ + •^))- The null hypothesis for the test wi l l be that there is no difference 

between the two population means, i.e. HQ : fii — fij or HQ : — fij = 0. So that, 
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under HQ, fii—fij is N{0, (^^{•^ + ;^)) . Therefore the difference of two populations' 

mean has a normalized distribution (for unknown common population variance, 

T = = N{0,1) (5.33) 

Therefore the T distribution can be used as the similari ty measure of the two 

populations. If the common population variance is unknown, the unbiased 

estimate of the common population variance cr^ is given by 

. , J . , - l ) 5 ? H - f e - l ) ^ (5.34) 
ni + nj-2 ^ ^ 

where Sj and 5^ are the sample variance of Ri and Rj respectively. If &^ is used 

the distr ibution under HQ becomes r(n,- + Uj — 2) instead of iV(0 ,1) . E q n . 5.33 

can be generalised to multi-variate (Lindeman et al . 1980, pp 183) 

= - J ^ i p , - f^jfSr^ifii - fij) (5.35) 
n,- + Uj 

where 

Sr^ = ini + nj-2){Ai + Aj)-' (5.36) 

Ai = Y{xk-mi)ixk-mi)^ (5.37) 

A:=l 

It is noted that eqn 5.35 is the weighted squared Mahalanobis distance of 

fii and fij w i th Uij being the pooled sample within-groups variance covariance 

matr ix of population i and j respectively, therefore is a similari ty measure of two 

populations. Hence the statistical distance can be incorporated in to the clustering 

algorithm. 

A n assumption i n the test is that the two segments under test are having 

a common covariance matrix. Al though this assumption is very restrictive, i n 

general i t produces good class discrmination. 
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In each iteration the two most similar segments Ri and Rj w i l l be merged, 

therefore type II error /3 is minimized. This is reasonable because i n hierarchical 

segriientation type II error is considered to be the most serious beca;use merging of 

two segments which committed a type II error cannot be recovered i n subsequent 

process. Whereas type I error which keep separating two similar segments can be 

corrected i n a following step. Therefore, i t is advantageous to keep type II error 

as small as possible i n each iteration, which implies that type I error has to be 

maximised. 

Let Dij be the distance between groups of segments, and dij denotes the dis

tance between two segments. 

The Spatial-Spectral Clustering Algor i thm is: 

Step 1. Use either top-down or bottom-up G T H S to generate 

m segments wi th m suggested by the mutual information models. 

Step 2. Store the m{m — l ) / 2 distances (dij) i n a m x m matr ix . 

Step 3. F i n d the smallest distance (ties are resolved arbitrary). 

If this is Dkq, merge groups k and q and call the new group r 

Step 4. Calculate the distance between the new group r and each of 

the existing groups. Replace the kth. and 5th rows and 

columns of the matr ix by the single row/column of new 

distances, thereby reducing the order of the mat r ix by one. 

Step 5. Goto Step 2 i f the number of group is more than one, 

otherwise, stop i f the number of groups equal to the required 

number of clusters. 

Other statistical distance can be substituted for the Mahalanobis distance i n 

eqn. 5.35 such as the Bhattacharyya and Divergence distance, but the statistic 

of the hypothesis w i l l be unknown because they allows segments to have differ

ent covariance matr ix . The Bhat tacharyya distance of two normally distributed 

population is (Hand 1981): 
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SB{Ri,Rj) = kpii - lijfi^i + - txj) + \\og ^§4M (5.39) 

The Divergence distance for two normally distributed population is: 

8a{Ri,Rj) = ^ t r [ (S , - -%)(S7^-Sr i ) ]+ i t r [ (Sr^+S7^) (A/ . - - / / i ) ( / . . - - / . , - )^ ] (5.40) 

The estimates of covaxiance matr ix S and mean /x are given by the max imum 

hkehhood estimator described i n section 3.2. 

B o t h Divergence and Bhattacharyya distance allow the two populations to 

have different covariance matr ix, and degenerates to the Mahalanobis distance i f 

two populations have a common covariance matr ix . 

A l l three weighted distances have been used i n this study and the clustering 

results are very similar and so only results using eqn. 5.35 w i l l be presented. 

The computational cost of hierarchical clustering is high i f the number of 

units to be clustered is large (say > 1000). Note that the clustering stage can be 

implemented using one of the methods (e.g. stored matr ix) described i n Anderbefg 

(1973, Ch.6) . If using the stored matr ix method the complexity is 0(2m^) where 

m is the number of segments. The contextual clustering methods have been 

implemented and results compared wi th those from classic pre-pixel algorithm 

presented i n Chapter 4. It is evident that the contextual clustering produces less 

noisy results. 

5.6 Spatial-Spectral Clustering Results 

T h e Spatial-Spectral clustering algorithms presented i n previous sections are demon

strated using three sets of 128 x 128 pixel V I S + I R images (Figure 5.11). These 

images are subregions of the images taken on 8th, 18th, and 20th M a r c h respec

tively. 
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5.6.1 Segmentation Results 

The-different approaches presented i n previous sections can be summarised as: 

1. Bot tbm-up approach: Construct a spanning tree of the image graph us

ing Kruskal 's algorithm (use either local or global type distance measures), 

and stop construction of the tree when the required number of segments is 

obtained. 

2, Top-down approach: Construct a spanning tree of the image graph unt i l a l l 

pixels are connected (use either local or global type distance measures), cut 

the tree at the edge which satisfies the minimax or other criteria. To obtain 

m segments, m — 1 edges wih be cut. 

The segmentation results are presented using both top-down and bottom-up 

approach as well as global and local type distances. Overal l we have six permu

tations: 

[SI] Top-down approach using the M i n i m a l Spanning Tree ( M S T ) , cut the most 

weighted m — 1 edges to obtain m segments. 

[82] Top-down approach using the M i n i m a l Spanning Tree ( M S T ) , cut the span

ning tree using the minimax criterion. 

[S3] Bottom-up approach using the M i n i m a l Spanning Tree ( M S T ) . 

[S4] Top-down approach using the Centroid Method ( C E S T ) , cut the most weighted 

m — 1 edges to obtain m segments. 

[85] Top-down approach using the Centroid Method ( C E S T ) , cut the spanning 

tree using the minimax criterion. 

[86] Bottom-up approach using the Centroid Method ( C E S T ) . 

In Figures 5.12— 5.14 are the segmentation results using the top-down min

imax wi th C E S T approach. The six images containing different number of seg

ments (grey-level is the mean of a region), 10 segments^ 50 segments, 100 segments, 
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200 segments, 300 segments, and 600 segments. The results show that the main 

features can be obtained wi th 10 segrnents, however a l l the details have been lost. 
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10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.12: Top-Down M i n i m a x C E S T segmentation of 8th M a r c h images. 

10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.13: Top-Down M i n i m a x C E S T segmentation of 18th M a r c h images. 

10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.14: Top-Down M i n i m a x C E S T segmentation of 20th M a r c h images. 
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F i g . 5.15— 5.17 shows the corresponding Entropy Loss H{S\P) for the three 

images. The mutual information model gives the ideal segmentation only when 

the regions having a uniform gray-level or an impulse hke pdf. For real images 

this is not true and the Entropy Loss reduces to zero when al l segments contain 

just one pixel , i.e. a t r iv ia l result. Therefore number of segments is determined 

by a compromise between the generation of fine detail and basic features. Further 

more a good segmentation uses the least number of segments to give a max imum 

amount of information or min imum entropy loss. These Figures also show that for 

the top-down minimax C E S T approach there is the steepest decrease of Entropy 

Loss from 1 segments to say 100 segments then the Entropy Loss starts to decrease 

approximately at a constant rate. Referring to the segmentation result this big 

drop correspond to the generation of the most basic features of the images, when 

the rate of Entropy Loss becomes constant any further segments generated only 

refine local details of the images. These effects can be seen i n Figures 5.12— 

5.14, the 200 segments image is very similar to the 600 segments image. The 

hierarchical characteristic is also demonstrated in these example. A t the highest 

level the whole image belongs to one segments and at every lower levels a segments 

is always smaller than or equal to the same region which contains i t at a higher 

level. This also means that the region which rema;ins unchanged at the i t h and 

jth level w i l l have their region boundary unchanged. 
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Figure 5.15: Entropy Loss of different segmentation approaches for 8th March 

images. 
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Figure 5.16: Entropy Loss of different segmentation approaches for 18th March 

images. 
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Figure 5.17: Entropy Loss of different segmentation approaches for 20th March 

images. 
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The result of the six different segmentation approaches are shown i n F i g 

ures 5.18— 5.20. These images are a l l w i th 300 segments. This number of seg

ments is chosen as the opt imal number as suggested by the mutual information 

model . It is noted that 300 segments is only optimal for top-down approaches and 

approaches using global distance i.e. C E S T . It can be seen that at 300 segments 

the Entropy Loss is decreasing at a constant rate and this compare well wi th the 

segmentation result. The best segmentation, as seen i n Figures 5.18— 5.20, is the 

top-down minimax approach and, this also agrees wi th the Entropy Loss curves. 

The results using other C E S T approaches follow closely. The worst result is being 

the top-down M S T , at 300 segments only t r iv ia l segments are generated. These 

results demonstrate the effect of using different distance functions and, clearly, 

global type distances generate better segments than the local type distances, but 

at higher computation cost. 
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Figure 5.18: Comparison of diiferent segmentation approaches on 8th M a r c h i m 

ages (the number of segments = 300 in each case). 
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Figure 5.19: Comparison of different segmentation approaches on 18th M a r c h 

images (the number of segments = 300 in each case). 
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Figure 5.20: Comparison of different segnientation approaches on 20th M a r c h 

images (the number of segments = 300 in each case). 
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THe mutual information model has found to be a useful tool for quantitative, 

monitoring of segmentation. It provides a useful indication for segmentation com

parison and suggest a suitable number of segments. This has been demonstraited 

i n Figures 5.18— 5.20 where top-down and bottom-up approaches using M S T are 

wi th a much higher Entropy Loss than other approaches. The effectiveness of the 

mutual information model is further illustrated i n Figures 5.21— 5.23. In these 

figures images are having the same Entropy Loss (i.e. different number of seg

ments), i t can be seen that a l l images are very similar (except for top-down M S T 

approach). Hence the mutual information model is rather accurate i n describing 

the information content of the segments. 
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Top-down 
M S T 2500 
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Top-down 
min imax 
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M S T 1000 
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C E S T 300 
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Top-down 
minimax 
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Bottom-up 
C E S T 300 
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Figure 5.21: Different segmentation approaclies wi th same Entropy Loss, 8th 

M a r c h images. 
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Bottom-up 
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Figure 5.22: Different segmentation approaches wi th same Entropy Loss, 18th 

M a r c h images. 
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Figure 5.23: Different segmentation approaches wi th same Entropy Loss, 20th 

M a r c h images. 
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5.6.2 Properties of M S T Segmentation 

Basically, the problem of using M S T for segmentation suffers the same problem 

found in hierarchical clustering. The most obvious effect is the "chaining" effect. 

The cause of this is due to the use of localised distance measure Smin{Ti,Tj) 

(eqn. 5.30). Due to the chaining effect two different region can be connected by 

a series of hnks wi th small weight. Therefore the identification of inconsistent 

edges becomes very difficult i f not impossible. Because only localised distance is 

used, noise i n the image, which may be isolated pixels, are identified as separated 

regions. This means that the M S T is sensitive to noise. 

5.6.3 Properties of C E S T segmentation 

The construction of G E S T uses global information and therefore i t is not sensitive 

to image noise, and better use of spatial information also generates segments which 

represent the most important features first. 

5.6.4 General Properties of GTHS 

1. Spatial information about neighbouring pixels is used, unlike most statis

t ical segmentation e.g. per-pixel clustering. Spatially connected pixels are 

grouped together i f they form a homogeneous segment. 

2. Region boundaries are defined very accurately. Jagged edges are not pro

duced as they are, in rectangular segments (Robertson 1973) or strip forming 

(Nagy and Tolaba 1972). Results i n this chapter have been scaled by two 

so the boundaries may look rather rough. 

3. The spanning tree contains al l the information needed for spli t t ing the image 

into any regions i n a hierarchical way. 

4. Spli t t ing or merging of regions, does not alter the boundaries of other re

gions. 
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5.6.5 Clustering Results 

This section presents the Spatial-Spectral clustering results. In the last section i t 

was found that top-down minimax C E S T approach gives the best segmentation, 

therefore this approach is chosen to demonstrate the Spatial-Spectral clustering. 

Figures 5.24— 5.26 are the results of the Spatial-Spectral clustering using 

different numbers of segments. These results (all wi th 5 clusters) show that the 

choice of number of segments can significantly affect the clustering result. The 

number of segments are (a,) 10 segments, (b) 50 segments, (c) 100 segments, (d) 

200 segments, (e) 300 segments, and (f) 600 segments respectively. Inspection of 

the histogram shows that the images on 20th March (F ig . 5.26) is most difficult 

to cluster because of the fuzziness of pdf boundaries. 
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10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.24: Spatial-Spectral clustering of 8tl i M a r c h images wi th different number 

of segments (the number of clusters = 5 i n each case). 

10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.25: Spatial-Spectral clustering of 18th M a r c h images w i th different num

ber of segments (the number of clusters = 5 i n each case). 

10 segments 50 segments 100 segments 

600 segments 300 segments 200 segments 

Figure 5.26: Spatial-Spectral clustering of 20th M a r c h images w i th different num

ber of segments (the number of clusters = 5 i n each case). 
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For the 8th M a r c h images the results are very similar wi th 200, 300 and 600 

segments. However, wi th 600 segments sma l l fragments begin to appear, this 

implies that the cluster becomes more "noisy". The effect is undesirable because 

the objective of Spatial-Spectral clustering is to reduce boundaries noise. 

The results for 18th M a r c h are also very similar wi th 100, 200, 300 segments. 

The result w i th 600 segments is rather different and the Cirrus at the edge has 

been seriously underestimated, and i n turns overestimated the subpixel cumulus 

underneath i t . 

O n 20th M a r c h the results are different for a l l number of segments! The result 

using 200 segments has assigned a large area of low cloud to sea. The result wi th 

300 segments has estimated the low cloud well and an area of Altostratus has 

also been identified correctly. W i t h 600 segments the subpixel cumulus at the 

top has been separated from the sea and start to look "noisy" and the Cirrus 

i n the middle has been underestimated. Overal l the best clustering is obtained 

using 300 segments which is suggested by the Entropy Loss curve. However, the 

subpixel cumulus at the top has been assigned to cloud free sea, i f the objective 

for classification subpixel cumulus, it w i l l be seriously underestimated. 

These results suggest that the optimal number of segments should be chosen 

as soon as the Entropy Loss starts to decrease at a constant rate. 

Figures 5.27— 5.29 shows the comparison of the Global-Local clustering al

gorithm and the Spatial-Spectral clustering algprithm. These results i n general 

are very similar, but the Spatial-Spectral clustering produces clusters wi th much 

cleaner boundaries, as expected. Due to the lack of ground t ruth observation, i t is 

not possible to quantitatively check the accuracy of the results. Nevertheless these 

results agree well w i th visual inspection of the original imagCj and the objective of 

using spatial information has been achieved i n that the mairi objects i n the image 

are better defined while none of the boundaries sKixvc, been substantially shifted. 
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Figure 5.27: Comparison of Global-Local clustering algorithm and Spatial-

Spectral clustering algorithm on 8th M a r c h images. 
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Figure 5.28: Comparison of Global-Local clustering algori thm and Spatial-

Spectral clustering algorithm on 18th M a r c h images. 

195 







Global-Local 
clustering 

Spatial-Spectral 
clutering 

2d histogram of 
Global-Local 

clustering 

2d histogram of 
Spatial-Spectral 

clustering 

Figure 5.29: Comparison of Global-Local clustering algori thm and Spatial-

Spectral clustering algorithm on 20th M a r c h images. 
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The difference between the two clustering algorithms is largely due to the deci

sion boundaries i n the feature space. It is found that the Global -Local clustering 

algorithm tends to produce very t ight clusters, therefore vectors at the 'base' of a 

cluster wi th small variance are assigned to clusters wi th larger variance. O n the 

other hand, boundaries of a small variance cluster are extended further away from 

the 'base' by the Spatial-Spectral clustering algorithm. These valleys between 

each pdf correspond to pixels which are a mixture of more than one class. 

Since clustering usually is not an end i n itself, clusters wi th clean boundaries 

are important to the success of the subsequent machine processing, i.e. cloud wind 

vector estimation. 
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5.7 Summary 

A Graph Theoretic Hierarchical Segmentation approach is introduced. It gener

ates segments by clustering of the spatial space, and several examples of distance 

measure have been proposed to construct the image spanning, tree. Two segmen

tation approaches (bottom-up and top-down) based on stepwise optimization are 

proposed. Distance functions that use global information are found to produce 

better results that distances using local information. It is also noted that global 

information can be better uti l ized by the minimax approach. 

A mutual information model has been developed and was shown to be valu

able i n monitoring segmentation and determination of the opt imum number of 

segments. 

A Spatial-Spectral clustering algorithm based on G T H S and stepwise opti

mization is also introduced. A statistical hypothesis has. been used as similari ty 

measure of segments. The Spatial-Spectral clustering algorithm is capable of 

generating clusters wi th clean boundaries. The algorithm is unsupervised and 

required only two clustering parameters, 1) the number of segments, and 2) the 

number of clusters. It is noted that these algorithms are computation intensive, 

although their efficiency can be improved by better algorithms and data struc

tures. 
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Chapter 6 

Computation of Cloud Motion 

Wind ( C M W ) Vectors 

The use of geostationary satelhtes as a source of wind observations was suggested 

by Widger and Tourat (1957) before the launch of T I R O S I. Today, the wide 

coverage area of satellites permits wind estimation in remote areas such as polar 

and ocean areas, and this information is essential in understanding the global 

climate. 

This Chapter starts by introducing the essential elements of cloud motion 

determination, i.e.: 1) cloud tracer selection, 2) cloud target tracking, 3) cloud 

height assignment, and 4) cloud motion vector editing. This is followed by detailed 

discussion of image tracking methods, image registration, image rectification and 

calculation of wind speed and direction. A new automated cloud motion scheme 

based on these elements is then presented, and this is used to test the performance 

of clustering applied to cloud wind determination. Results indicate that clustering 

is an eifective approach for tracking cloud motion. 

The Global -Local clustering scheme presented i n Chapter 4 is used i n the cloud 

wind tracking scheme because i t is very efficient. The concept of using clustering 

is to part i t ion the image into a number of regions wi th each region representing a 

distinct class i n the feature space. Some of these classes represent cloud types at 

different height level, and each class is then tracked individually. 
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6.1 Elements of Cloud Motion Wind Determi 

nation 

This section introduces the concepts behind cloud motion wind determination, 

and implementation details are discussed i n next section. Determination of cloud 

mot ion winds require both meteorological and image analysis understanding. 

The basic procedure to compute wind data is (Hubert 1976), 

1. select suitable cloud targets, 

2. track the selected targets, 

3. assign heights to the resulting vectors, 

4. edit the set of vectors. 

In general, the first and last steps are related. For example, cloud motion may 

be measured wi th l i t t le discrimination between suitable and unsuitable tracers. A 

careful editing procedure is then needed to delete erroneous wind vectors. O n the 

other hand, careful selection of ta,rgets (only those advected by the wind) means 

that l i t t le editing of wind vectors is necessary. Usually, automatically derived 

wind vectors require more careful editing than manually derived wind vectors. 

6.1.1 Wind Tracer Selection 

The main objective of this study is to investigate the problems of cloud motion 

tracking i n multi-layer areas; Mult i - layer cloud areas can be found i n most weather 

images and the primary meteorological interest is to derive low and high level 

winds from sequence of images. Reliable cloud motion wind can only be obtained 

by tracking of cloud targets which are advected by air motion i n the atmosphere. 

For automatic cloud motion tracking, identification of the follow cloud types is 

important (Par ikh 1976): 

1. Low level cloud (stratocumulus, stratus, cumulus). 
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2. M i x e d cloud (semi-transparent cirrus on top of lower level cloud). 

3. Cumulonimbus (not suitable for tracking). 

4. H igh level cloud (cirrus, cirrocumulus, eirrostratus). 

The above cloud types are classified by their cloud base height. The division of 

clouds into low, middle, high, and clouds of vertical development (cumulonimbus), 

is the one which is most relevant to the problem of wind velocity estimation. The 

identification of different level of clouds are generally by their spectral and/or 

textural features i n the .visible and infrared bands. 

The determination of height level of semi-transparent cirrus is a widely recog

nised difficult problem. Firs t ly , semi-transparent cirrus cloud is very difficult to 

identify using computer. Secondly, cirrus cloud temperature can only be esti

mated wi th corrected infrared radiance, since the background radiance interferes 

wi th the cloud radiance. A s a result th in cirrus wi th middle clouds beneath w i l l 

appear much hotter than the same cirrus by itself (see F i g . 6.1). The emissivity 

problem for cirrus clouds is discussed i n further detail i n Bowen and Saunders 

(1984). For low level clouds, such as clusters of small cumulus which can not 

be resolved by the satelhte resolution (subpixel cumulus), the grey level i n the 

infrared image w i l l appear darker than the grey level corresponding to height of 

cloud top because radiation from the warm surface is combined wi th cloud top 

radiation i n the sensor's field of view. 
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IR radiation to space 

sea 

Figure 6.1: The semi-transparent problem: th in cloud 

such as cirrus often appears to be of warmer because 

background radiation is confused wi th the actual radia

t ion. 

Avai lab i l i ty of infrared images helps to remove some uncertainties which occur/ 

when only visible images*^available. For example many middle clouds are as 

bright (in the visible) as lower stratocumulus, but because the latter are almost 

always warmer they appear much darker i n infrared images. Another example is 

the identification of th in cirrus, they are very poorly seen i n the visible image but 

are prominent i n the infrared. 

The selection of cloud targets can be Jissisted by analysis of the synoptic sit

uation. Hubert and Whi tney (1971) provided some guidelines for selecting and 

classifying cloud targets. The synoptic situation is first determined. Grouping of 

clouds is then deduced by judging how the cloud behaviour fits the appropriate 

synoptic rnodel, and the target is rejected if its behaviour is not reconciled with 

the synoptic situation. Once the synoptic situation is determined, observations 

of cloud characteristics and cloud motion can aid segregating cloud layers and in 

specifying cloud types. Selection of passive tracers is made concurrently with the 
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classification of clouds. Some guidelines are: 

1. Follow the same point on cloud clusters.and patches rather than 

lines, bands, or areas of equal brightness. 

2. Use only those clouds moving at speeds and i n a manner that is 

consistent wi th the synoptic situation. Beware of motions which 

appear to move through a pattern of cloud, alternately suppress

ing and enhancing brightness. This type of motion often con

flicts wi th motion of the individual cloud elernents i n the same 

layer and is probably due to gravity waves. Upward motion i n 

crests of such waves enhances cloudiness, and downward motion 

in troughs suppresses cloudiness. These motions are frequently 

seen i n inversion-dominated low clouds and at various upper lev

els near cloud fronts. A s expected from theory, the orientation of 

waves and their direction of motion bear no fixed relation to the 

ambient wind. 

3. Use clouds which show the least change during the time-lapse 

sequence. 

4. Take care i n tracking clouds that appear to penetrate vertical 

shear layers. In these cases, try to track the upshear edge rather 

than the centre of mass. For example, i n areas of active convec

t ion the cloud area grows rapidly because of anvil growth. The 

origin of the anvi l (the brightest area at rear of the growth area) 

moves wi th the middle- and low-level wind. The leading edge 

of the anvi l , while advancing wi th the high-level wind , may be 

moving more slowly than the wind because of evaporation. Thus 

the leading edge of growing cirrus plumes should be avoided. 

The manual tracer selection is based on the synoptic situation—location of the 

fronts and cyclones, location of the major troughs and ridges—and the atmosphere 
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processes. The wind tracer should located i n area which air mot ion appears to be 

consistent wi th the situations revealed by animated sequence of images. 

However, even i f the direction of motion of the cloud target is consistent wi th 

the synoptic situation, speed may be affected by non-adyective mechanisms acting 

i n the same direction as expected wind flow. Analysis of cloud type and patterns of 

cloud motions w i l l often reveal non-advective mechanisms such as vertical updrafts 

i n cumulonimbus clouds and gravity waves (Parikh 1976). Therefore accurate 

estimation of a wind vector (including height) from a cloud target whose motion 

is representative of the ambient wind flow can only be achieved by choosing those 

targets whose size, shape, and brightness are persistent and temperature can be 

accurately estimated. 

The lifetimes of high and low level cloud are very different. In the upper 

tropopause cloud usually has a short lifetimes (less than 30 minutes), while low 

level cloud can have longer lifetimes. M E T E O S A T transmits one set of images 

every 30 minutes, and so this t ime resolution only allows cloud tracer wi th a 

lifetime longer than 30 minutes to be tracked. Al though individual cloud elements 

can grow and disappear in a short t ime, mesoscale cloud patterns usually exist 

more than 30 minutes, especially for low level cloud due to the persistent mesoscale 

circulation systems (Hubert 1979). 

Due to evaporation and condensation, cloud is not a pcissive tracer of wind, and 

so i t is important to select a target which is believed to be good tracer. Numerous 

studies have been done on the selection of a wind tracer. Generally, cumuh cloud 

is a good tracer for low level wind , and cirriform cloud a good tracer for high level 

wind (Hubert and Whitney, 1971, Hasler et a l . , 1979). 

The low level cloud targets are predominantly convective clouds over ocean, 

and cloud patterns composed of these cloud types are well suited for lower level 

cloud tracking (850mb). In the upper level, most potential cloud targets are layer 

cloud, and these patches of layer cloud often change slowly and may exist for 

hours. Apparent ly they persist because large scale vertical motion inhibits their 

evaporation (Hubert and Whi tney 1971). 
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Targets whicb are developing or dissipating, as well as cloud types.representing 

lee waves, vertical development, banner clouds, cumulonimbus tops and the edges 

of frontal cloud should not be selected. 

The selection of a cloud targets is therefore a highly complicated decision 

process, and this is usually done by a trained meteorologist. A compromise must 

be made i n order to extract cloud wind fields using computer programmes. For 

example, cloud motion can be tracked wi th l i t t le discrimination between suitable 

and unsuitable tracers. A careful editing procedure is then used to delete erroneous 

wind vectors. This strategy is usuaUy adopted i n automated cloud motion systems, 

whilst manual methods of cloud tracking usually employ careful selection of cloud 

targets. The former strategy is adopted i n this work. 

6.1.2 Tracking the Selected Targets 

After the selection of cloud target for wind determination is completed, its dis

placement between successive images is mccisured. Cloud displacements are mea

sured using image matching techniques. The matching can be carried out using 

the infrared or visible image although usually an infrared image is used to track 

the cloud motion because of its direct relation to cloud top temperature. 

C loud tracking can be done either manually or automatically. Manua l methods 

usually use a movie loop technique which displays a t ime sequence of images and 

then a target is selected manually. The tracking is either done by marking the 

in i t i a l and last positions of the target or matching the target using image matching 

algorithms on a computer interactively. 

C loud tracking are usually computed using image matching techniques. A 

reference template (subimage) is being searched for i n a larger template taken at 

a t ime before or after the reference. The reference template usually contains cloud 

types ifixisi"^ at different height levels, and air motion at different level may differ 

radically, and the different movement of clouds can confuse the matching process 

(Ark ing et.al 1978). So accurate cloud motion can only be obtained by tracking 

clouds (beî njfrfg, to the same height level. 
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Cloud motion tracking was first done manually by viewing a sequence of images 

project on to a screen. Izawa and Fuj i ta (1969) used.visible channel images of 

E S S A and A T S for cloud tracking using manual movie loop techniques. The 

images were converted to a Mercator map projection and displayed i n a movie 

loop and cloud targets were tracked manually by measuring the displacement 

on the screen. They found that velocities of high and low clouds correspond 

approximately to winds at about the 200mb and 800mb levels respectively. 

M a n u a l tracking of cloud motion using a movie loop requires a trained me

teorologist, and is t ime consuming and subjective. Leese et a l . (1970, 1971) 

computed wind vector using cross correlation on raw and binary images. The 

binary image was obtained by an empirical threshold to separate the cloud and 

background. They found that i t is important to ensure no mixed layers of clouds 

are present when using cross correlation, otherwise the correlation surface would 

have several peaks i n addition to the true one. However cross correlation can 

produce a better speed resolution than manual methods while there is only minor 

difference i n direction. In the wind systems described by W i l s o n (1984) a tracking 

technique called Sequential Similari ty Detection A l g o r i t h m ( S S D A ) was used (this 

is computationally faster than cross correlation). 

T y p i c a l automated wind systems use sequence of three images for cloud track

ing. The middle image in the t ime sequence is divided into small segments. Sta

t is t ical analysis is then performed on each segment for presence of cloud targets, 

i f targets are foimd^ tracked by image matching techniques i n the previous 

and next image. Since the target checking is rather crude compared wi th human 

decision, the tracking results need editing before being used for other purposes. 

In this thesis experimental results show that S S D A is i n fact a more rehable 

tracking method than cross correlation. The desire to compute more cloud wind 

vectors requires automatic algorithms to replace the human operator. However, 

cross correlation can be confused by multi-layers of cloud and produce spurious 

winds, and i t was thought that cloud could be tracked better i f different layers 

could be separated prior to cross correlation (Hubert and Whi tney 1971, Pa r ikh 
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1976). 

The author used clustering to classify the middle one of a sequence of V I S and 

I R three multi-spectral images. Ideally these clusters are homogeneous segments 

and each segment represents one class of object. Clouds at different levels have 

different spectral features (Chapter 1), so a cluster should be a cloud class at a 

paxticulax level and confusion due to different direction of movement can be alle

viated as this work has proved. Comparison of the author's and current approach 

is outl ined i n F i g . 6.2. 

207 



input 
three VIS and IR 

images 

input 
three VJS and IR 

images 

divide the middle 
image into smal l 

segments 

(e.g. 32 X 32 pixel) 

1. spatial clustering 

or 
2. per pixel clustering 

use one or bi-dimensional 
histogram analysis 

to determine 
presence 
of targets 

match all segments 
containing suitable 

targets in the 
previous and 

next IR or VIS 
image 

divide image into smal l 
segments and check 
for suitable targets 
i n the IR segments 

divide image into smal l 
segments and check 
for suitable targets 
i n the IR segments 

match a l l segments 
i n previous 
and nex t IR 

image 

assign the vectors 
to a height level 

inferred f r o m the 
m e a n radiance of 

the targets 

assign vectors to 
height level 

inferred form the 
mean of IR radiance 

of the targets 

edit vectors 
using a recent 
weather chart 

YES 

edit vectors using 
a recent weather 

chart 

Figure 6.2: Comparison of a) the author's and b) current 

approach for cloud motion tracking. 
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In fact the tracking of cloud motion has stimulated the study of motion fields 

from a time-varying image sequence. Mot ion fields also find important apphca-

t ion i n 2 or 3 dimensional computer vision. Studies by A b i d i and Gonzalez (1987) 

applied optic flow for tracking cloud motion i n a tornado. Opt ic flow techniques 

concern the determination of the "motion" of the individual pixel locations by 

using intensity data i n a sequence of images. The resultant optic flow field is the 

field of 2-D pixel "velocity" vectors. They used a differential motion measurement 

approach that was capable of determining the global motion and a more accurate 

technique called correspondence-base technique which is based on cross correla

t ion. They find that the classical correspondence-base technique was superior i n 

detecting rotational motion, whereas the differential technique fails to detect the 

detail of any local motion, although it is faster than cross correlation. Opt ica l 

flow is a major research area on its own and wi l l not be pursued here. 

6.1.3 Height Assignment 

Cloud height can be inferred from the infrared band image. M E T E O S A T has 

an on board calibration routine which is carried out regularly to compensate for 

changes i n the respond characteristics of the detectors of the satellite radiometer. 

However, the radiation reaching the sensor does not correspond to the temperature 

of the object being sensed. Therefore accurate cloud top temperature requires a 

correction for atmospheric absorption and re-emission (the absorption is mainly 

caused by the water-vapour exist i n the atmosphere). The actual temperature, of 

a surface observed by the satellite can be retrieved by computing the atmospheric 

absorption. These computations require information on the vertical temperature 

and humidity structure of the atmosphere^ The deterrnination of the atmospheric 

correction at E S O C (Schmetz 1986) is done by radiative transfer calculations for 

110 atmospheric profile models. These atmospheric correction models are stored 

i n look-up tables, and the actual atmospheric profiles are assigned to one of the 

models. 

The most significant error i n cloud wind is the height assignment of the vec-
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tor. C loud height is measured either i n pressure (mb) or distance (m). Satellite 

observation is directly above the cloud, and so i t only provides a brightness tem

perature of the cloud top. However, for many convective cloud, the speed derived 

from cloud mot ion corresponds strongly to the speed near the cloud base. For stra

tus, on the other hand, the speed may be appropriately assigned to the cloud top. 

Low-level clouds over oceans are assumed to be cumulus or stratocumulus. The 

low cloud motion vectors obtained over oceans are assigned to the 900mb pressure 

level (Hasler et a l . 1979), which is statistically near low cloud base. There is no 

reliable way of measuring cloud base height from geosynchronous sateUites, but 

cloud base can be estimated from aircraft reports, or soundings. In frontal region 

cumulus cloud winds may be assigned to the middle of the cloud layer. High-level 

Cirrus cloud winds should be assigned to the mid-cloud level or top level. Satellite 

wind is a good estimator of level wind at most equatorial through m i d latitude 

ocean area. 

Even i f the height of the cloud top is known, this may not be the correct level 

to which the vector should be assigned (Schmetz and Holmlund 1990). C loud 

top temperatures frequently do not provide adequate vector height information, 

because cloud has thickness and different cloud types represents wind best at cloud 

base, middle or top. 

C loud height is inferred from the infrared radiance but semi-transparent cloud 

seen i n the infrared image has emissivity much lower than unity. The radiation 

measured is a conibiha,tion of radiation from cloud-top and from an underlying 

surface or cloud layer (Fig. 6.1). Therefore, the brightness temperature must be 

corrected before i t is used to infer cloud-top height, otherwise the height w i l l be 

considerably lower than the true cloud-top height. 

The infrared radiance observed by the satellite PT from a cirrus cloud is ap

proximately given by (Shenk and Curren 1973) 

pT = eph^{l-e)Pi (6.1) 

where 
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emissivit}' which is estimated on the basis of empirical rules 

high cloud transmittance, 

P lank radiance form high cloud, 

radiance of underlying surface, observed by satellite 

i n neighbourhood of the high cloud, and 

radiance form cloud observed by satellite. 

Solve for Ph using eqn. 6.1 

ft = A - ^ 5 ^ : 1 * (6.2) 

The surface radiance pb may be inferred from the cloud free pixels i n the neigh

bourhood of the high cloud, and PT is estimated form be observed infrared grey 

level, and a value of e is chosen subjectively according to the general appearance 

of the cloiid. Hubert (1979) shows that an error of 0.05 i n £ = 0.7 would pro

duce errors of -50mb or -f40inb, respectively. If e were only 0.25, however, an 

error in emissivity of 0.05 would produce excessive height errors. Therefore this 

simple method is only reliable for cirrus wi th emissivity e > 0.5. Noted that the 

emissivity of cirrus clouds can be as low as 0.1. 

Szejwach (1982) used the I R and W V channel ( M E T E O S A T ) to estimate cirrus 

cloud temperature, they showed that by substituting the I R and W V radiance of 

Ph,Pb and e into eqn. 6.1 a linear relationship between PT{IR) and PT(WV) is 

obtained 

PT{IR) = apTiwv) + b (6.3) 

E q n . 6.3 is independent of the emissivity £(/it) and e ( w ) - Hence, a set of n 

measurements obtained i n both channels over several areas of different optical 

1-e = 

= 

PT = 
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thickness from the same cirrus clouds can be used to solve for the cloud top 

temperature graphically. 

The E S O C uses, similar methods as Szejwach (1982) to estimate high level 

cloud emissivity. A set of functions relating PT{IR) to PT{WV) for different zenith 

angle ranges was cornputed forrn a collection of representative atmospheric sound

ings. The mean function for each zenith-angle is not constant and depends on the 

calibration factor for the two channels. In addition the function has to be com

puted for a complete range of cloud-top heights and model atmospheres. Deta i l 

of the correction method can be found i n Bowen and Saunders (1984). 

W i n d vectors can be assigned to cloud top or cloud base once the cloud tem

perature has been computed. Another method for wind vector height assignment 

is "Level of Best F i t " ( L B F ) (Hubert and Whi tney 1971). W i n d vectors are as

signed to level wi th smallest difference compared with the wind profile of a nearby 

rawinsonde. The L B F method sometimes gives unrealistic result (Lee 1979), but 

compare wi th other methods which requires temperature correction i t is simpler 

to use. One problem i n using the L B F is the recurrence of similar winds at dif

ferent levels. This means cloud motion may resemble an analysis wind at more 

than one level, and so allow the assignment of a level at a much different height 

from the actual cloud. Because of it simplicity the "Level of Best F i t " approach 

is used i n this s tudy 

If no correction is required the cloud top temperature can be estiniated directly 

form the infrared or water vapour grey level assuming the cloud target has a 

emissivity of one. 

h m = PT{WV) = ( C - Co) X CAL (6.4) 
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where: PT^IR) is the l l ^ m I R radiance (Wm~^5r~^ci~^) 

PT(WV) is the W V radiance {Wm~^sr~^ct~^) 

C is the pixel count 

Co is the space count (Co = 5 for images i n this study) 

CAL is the M I E G ( M E T E O S A T Information Extrac t ion Centre) 

cahbration coefficient (CAL « 0.077 for images i n this study). 

The temperature is then obtained using a radiance to temperature look up table. 

6.1.4 Editing Wind Vectors 

The last step i n wind extraction from geostationary satelhte images is quality 

control or editing. This is applied to both manual and automatic methods. Usu

ally editing for manually derived vectors is based on the subjective view of the 

meteorologist, whilst more objective methods are employed for automated scheme. 

The automatically derived vectors are usually selected by applying some inter

nal test or on comparisons made wi th the set of derived wind vectors using other 

methods. Typica l ly this is done by examine the quality of correlation function, 

such as number of peaks (vector ambiguity); value of the peak coefficient (only 

suitable for normalised cross-correlation, low values indicates nonrpersistent cloud 

pattern); a lack of sharpness of the peak. 

Another strategy to improve confidence level is to use an image tr iple to derive 

two vectors. If they are not symmetric to a certain degree, this indicates a possibly 

unsuitable target, and vectors should be rejected. A vector can be compared wi th 

near by vectors i f the vector does not agree wi th the other i t is rejected. 

. Using a hierarchical search technique: a large target window generates a first 

guess to guide the search and then the window size is reduced (Hubert, 1979). 

The vectors may also be compared wi th a set of vectors from a prior wind 

fields. The prior wind field usually obtained from the most recent analyses of 

the appropriate standard levels or wi th satellite winds derived i n the previous 

operation (Bristor 1975). 
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The final cloud wind vectors w i l l be inspected by an editor who w i l l have a 

number of facihties to survey the synoptic situation of the wind field. T h e editor 

can use some image analysis tool to enhance and superimposes wind field onto 

the image, also wind field can be superimposed to certain atmospheric layers over 

conventional analysis (e.g. 850mb, 500mb and 200mb) which give indication of lo

cation of cyclones and frontal zones. W i t h this facility the removal of inconsistent 

erroneous vectors is very easy. 

Severe selection criterion can indeed eliminate many erroneous vectors but 

also eliminate many erroneous vectors but also eliminate valid vectors near dis

turbance. Thus a balance must be drawn between accepting or rejecting a vector, 

usually vectors i n new or rapidly changing circulation systeni are most important, 

and tracking i n these areas also prove to be most troublesome (Hubert 1979). 

In general, manual tracking is s t i l l superior to automated tracking since i n 

complex situations a trained meteorologist can integrate his knowledge and is 

able to select and track cloud tracers which are either too difficult to pick up or 

obscured by surrounding clouds (Hubert 1979). 

6.2 Details of Automated Cloud Wind Deter

mination 

Further details of cloud motion wind determination are discussed i n this section, 

such as implementation of different image matching techniques, image rectifica

t ion, image registration, wind vector selection and computation of wind speed and 

direction. 

6.2.1 Image Registration 

M E T E O S A T images'H<ive.'a spatial resolution of 5km at subsatellite point, for cloud 

tracking using a sequence of images 30 minutes apart each one misaligned pixel 

correspond to a speed error of 2.8ms~^, this error increases wi th the lat i tude due 

to larger zenith angle. Smith and Phi l l ips (1972) point out the importance of 
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picture alignment for accurate cloud motion measurement. H a l l et a l . (1972) 

described the use of landmarks or ground control points for picture registration 

and rectification. 

T w o images of the same region are said to be registered when equivalent geo

graphic points of the scenes i n the two image coincide; For accurate wind vectors 

calculation, images must be registered prior to image matching. Image registra

t ion is necessary because geostationary satellite is not perfectly s t i l l relative to the 

earth when the earth is being scanned. The fluctuation of the satellite generates 

geornetrical distortion i n the iinage and this must be compensated by the data 

processing station. Currently M E T E O S A T images are registered and rectified by 

E S O C i n real t ime before dissemination. The rms error of misalignment is less 

than 0,4 pixel (Bos, et a l , 1990), which correspond to an error of ±0,5ms~-^ and 

is acceptable for cloud motion tracking. 

Registration accuracy is especially cri t ical for cases of low wind speeds when 

the image is separated by 30 minutes or one hour. In order to make useful mea

surements of motion, the displacement must be greater than al l errors of its mea

surements (Hubert 1979). This registration requirement is particularly important 

i n areas near the horizon where resolution is degraded and errors due to distortion 

and registration are more serious. The sources of error in cloud tracking depends 

on the combination of image resolution and errors of registration and measure

ment. O n the other, hand manual tracking of cloud can uti l ize long sequences and 

this makes the registration accuracy less cri t ical . 

6.2.2 Image Matching Methods 

Image matching can be roughly classified into two categories, they are correlation 

and feature matching (Aggarwal et a l . 1981). Feature matching algorithms do 

not ut i l ize intensity of the image but attempt to work wi th algorithms t o locate 

boundaries or edges between regions. Edge or boundary information is extended 

to determine the position at which boundaries or edges intercept. The position 

of this vertex point and the direction and number of line segments emanating 
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from the vertex point form the basis of map comparison wi th the metric being 

some form of a mean square distance measure between locations of vertices i n 

the reference and sensed image. Typ ica l example are given by Goshtashy et al . 

(1986), Stockman et a l . (1982). 

The objective of this study is the extraction of rnesoscale wind vectors, and 

distinct features are difficult to be extracted from cloud images only correlation 

type techniques w i l l be considered. It is noted that the clustering approach i n 

this study extracts the features of each cloud class, and so tracking using a clus

tered image is actually a combination of feature and correlation matching. One 

advantage of these techniques is they are non-sensitive to local noise, because 

they compute the average error between two patterns. Correlation techniques are 

basically a measurement of similari ty between two image patterns. This is usually 

done i n a p ixe l by pixel comparison of two images of the same object field obtained 

from different sensors, or of two images of an object field taken from the same 

sensor at different times. 

In general, the image pattern i n the sensed image to be matched can have 

transitional shifts, scale difference, and rotation shifts, as well as geometrical 

and intensity distortions. Because of computational efficiency, whenever possible, 

only transitional shifts is assumed. In thiis study scale differences, rotation shifts 

and intensity distortions are assumed negligible due to the short t ime difference 

between image, and so only transitional shift is measured. A r k i n g et a l . (1978) 

use cross-correlation to measure cloud displacement i n a sequence of images and 

found that good results can only be obtained when the objects being tracked do 

not change their shape, size and orientation to more than a l imi t ed degree. The 

cross-correlation is less effective when a mixture of motions exists, unless one of 

the motions is strongly dominant. 

This conclusion again supports the methodology i n this study where cloud 

mixtures are separated using clustering before they are .̂ ^ •; ^tracked. 

A r k i n g et a l . also studied the use of Fourier phase difference method but they 

find cross correlation performs better for cloud images. 
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Image Matching Using Mean Absolute Difference 

One of the simplest matching techniques is called 'Sequential Similar i ty Detection 

A l g o r i t h m ' ( S S D A ) (Baruea and Silverman, 1972). Essentially, an array of data 

(the target window) is selected from an image and correlated element by element 

w i t h selected pixels (the search window) of a second image. This techniques does 

not require normalization as in cross-correlation (to be discussed later). It is 

defined as the mean absolute difference (eq. 6.5) of the target and search window 

at every lag position (see F i g . 6.3) 

S{u,v) = ^YIl \9tiJ,k) - 9,{j -u,k-v)\ (6.5) 

The best match is determined by the lag position wi th min imum error. The 

computation method can be further reduced by rejecting match position by ac

cumulating the sum of difference which exceed a threshold. Generally the sum 

of difference increase rapidly on mismatch position and only slowly on possible 

match position so computation saving can be realized by only examine possible 

position i n the highest precision. This technique was apphed to cloud motion 

tracking by Wi l son (1984). 
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Figure 6.3: Definition of target and search window. 

I m a g e M a t c h i n g U s i n g C r o s s C o r r e l a t i o n 

C loud tracking usin'g cross-correlation was suggested by Leese et a l . (1971). The 

displacement is determined by the lag position which produc^the maximum cor

relation. The normalised cross-correlation function is defined as 

R{u, v) = ' .. = (6.6) 
y ' E j E ; t 9t ( i , k) T,k 9s [j -u,k-v) 

where is the target window and is the search window and R(u,v) < 1. The 

lag position is given hy N — K -{- l,M — J + 1, in the horizontal and vertical 

directions, respectively. Computat ion of the numerator in eqn. 6.6 can be reduced 

by using the Fourier transform. 

Efc 9t{j, k) Y,j Ejt9s{j - u , k - v) 

where G't(x,y) is the cortiplex conjugate of Gi{x,y) while Gs{x,y) is the Fourier 

transform oi g^^j, k),G^Gs is called the cross spectral density of gi and gg. How-
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ever, for a small search window size (typically < 64 x 64 pixel) the computational 

saving is l i t t le . There are two basic problems wi th this simple correlation mea

sure. F i rs t , the correlation function may be rather broq.d (no distinct maximum), 

making detection of the peak difficult. This w i l l happen i f the search and target 

images contain large uniform regions wi th very few details. Secondly, systematic 

errors such as differences i n scale size, geometric distortion, rotation, and inten

sity distortion between two images w i l l make matching difficult and effectively 

suppresses the true peak. 

Improved Cross Correlation 

The statistical form of cross-correlation produces a more distinct peak than eqn. 6.6 

because the image is subtracted by its mean and effectively increases the dynamic 

range of p i x e l v grey level. 

The statistical cross-correlation function is defined as 

i e ( u , . ) = i ^ (6.8) 

where (Xt is the standard deviation of the target window, as is the standard de

viat ion of the search window at lag position u,v and cov(u,v) is the covariance 

between the target window and the search window at lag position u^v. Specifically, 

J K 
G = 

I i=i fc=i ) 

(6.9) 

(6.10) 

J K 
cmiu,v) = - ^ | ^ ^ [ 5 , ( y , f c ) - ( 5 , ] [ i r . ( i - t z , A : - t ; ) - a ] (6.11) 

i=i k=l 

where G is the mean grey level of a window. 

Another technique to improve cross-correlation is to replace the target and 

search image wi th their gradient (edge enhanced) images. The gradient operation 
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is equivalent to preprocess both image v i a a two dimensional convolution (Svedlow 

et a l . 1978, Pra t t 1973, Arcese et a l . 1970). 

Speed up the Matching Process 

Beside computation of cross-correlation v i a the Fast Fourier transform, the search 

of correlation peak can be speeded up by hil l-chmbing techniques (Jain and Ja in 

1981), coarse-fine search (Rosenfeld and Vanderbrug 1977), hierarchical search 

(Wong and H a l l 1978) and Sequential Similari ty Detection Algor i thm (Barnea 

and Silverman 1972). These techniques can be roughly divided into sequential 

and hierarchical search methods. 

The brute force methods for computation of cross correlation require the ex

amination of possible lag position i n the highest resolution and is a very expensive 

process. 

The sequential techniques accumulate the sum of error between the target 

image and each position on the search image. Since mismatches of error usually 

grow faster than matches, the poorly matched area can be detected quickly and 

rejected at an early stage of the operation. In this way the total cost of searching 

a match is reduced considerably. 

In the hierarchical approaches, resolution of images and template are reduced 

by averaging or pyramids (reduced sample rate). The matching is performed first 

over the reduced resolution images, and i f a promising area is detected for a given 

threshold, the matching is performed at higher resolution wi th in this region. 

Most of these methods require a threshold to reject a lag position as inismatch. 

A threshold is usually depend on the reference image. For applications required 

to perform a large number of matches the determination of a threshold is t ime 

consuming and may generate excessive false alarms i f the threshold is not set 

correctly. 

A fast matching technique which does not require threshold for cloud motion 

tracking is desirable. One of this methods searches the correction peak using the 

steepest descent method. A 2rdimensional search method following this approach 
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was proposed by Ja in and J a in (1981) for image displacement measures. The 

search is accomplished by successively reducing the area of search. Each step 

consists of searching five lag positions (Figure 6.4), 

sea r ch window 

ta rge t window 

Q ay J 

1 

Figure 6.4: Il lustration of the five locations which w i l l be 

computed at the beginning of the h i l l cl imbing algorithm. 

The area contained by the five locations contract after 

each step unt i l the area reduces to a 3 x 3 p ixe l size. In 

the final step a l l the nine locations are searched and the 

location corresponding to the max imum or min imum is 

the match position. 
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The 2d-logarithm search algorithm is as follow: 

For any integer m > 0, we define, 

A{m) = — m < i,j < m} 

.{(0,0), (m, 0), (0, m) , ( - m , 0), (0, - m ) } 

Step 1. n' = int(log2p) wherep = m a x { M — K + 1,N — J + 1} 

n = max{2 ,2 " ' - i } 

q = I = 0 (start from the centre of search image) 

Step 2. Set B'{n) = B{n) 

Step 3. find G B'{n) such that cross correlation R{i + g,j + /) is 

maximum. If i = 0 and = 0, goto Step 5; 

Otherwise goto Step 4. 

Step 4. q = q + i,l=l + j', 

B'{n) = B'{n) — {—i, —j) (shift target window to new starting point) 

goto Step 3. 

Step 5. n = n/2. If n = 1, goto Step 6, 

otherwise, goto Step 2. 

Step 6. F i n d € A{1) such that R{i + g , i + /) is max imum 

q = q + i,l = l + j 

(g, /) is the match position. 

It is noted that successful ihatch depends on the smoothness of the correlation 

surface R{u,v), and i f many peaks exist around the true peak then very often 

a wrong match is obtained. This is because all h i l l chmbing algorithms only 

guarantee convergence to a local opt imum. However, the 2d-log search is very 

efficient for example wi th 121 lag positions only 13 to 21 locations need to be 

searched to obtain the match position. The 2d-log search is applicable to other 

matching methods which optimize some function, such as the mean absolute error 

method used i n this study. 
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6.2.3 Strategies for Cloud Motion Vector Selection 

The size of the target window and the spacing between them determines the res

olution of the computed wind field. Since a image matching function provides no 

information which feature i n the search window producisd the best match. Thus 

the extracted wind is assigned to the location in the centre of the area. The 

use of a smaller window would increase the resolution, but would degrade the 

computational stabili ty because of less distinct feature wi th in the target window. 

Therefore, there - .rV=, 'exists an opt imal window size for image from a particular 

sateUite. It is found i n this study that the M E T E O S A T data has an opt imal win

dow size of 24 x 24 pixel , whilst Lunnon and Lowe (1990) wi th the Meteordlogical 

Office found an opt imal wind size of 16 x l 6 pixel using M E T E O S A T images. 

The max imum wind speed that can be computed is l imited by the number of 

lag positions i n any direction. The E S O C use a 96 x 96 pixel search window, and 

a 32 x 32 pixel target window therefore the maximum shift i n either horizontal or 

vertical direction is 32 pixels and this corresponding to a distance of 160km at ssp. 

If the two images are taken 30 minutes apart, the maxin ium speed is therefore 

173 knots. The correlation function usually contains more than one maximum 

and the max imum may not represent the true displacement. 

In other cases, a l l peak values may be very close. This may due to target 

window con:t<gm»|( a large uniform overcast wi th no prominent features so that many 

lag positions produce high correlation. Figures 6.5— 6.6 are examples of matching 

surfaces generated using cross-correlation and absolute mean error methods. • 
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Due to the uncertainty normally encountered i n interpreting correlation result, 

the matching is guided by weather forecast. A first guess is obtained from the 

numerical model closest to the time the images were taken, then the matching is 

only done i n a reduced search area suggested by the first guess (Bristor 1975, see 

F i g . 6.7). 

search window 

target window 

A t = - h 

first guess vector 

final vector 

Figure 6.7: Image matching strategy adopted by N E S S . 

E S O C uses three infrared images to compute wind vectors (see F i g . 6.8) and 

this strategy is used in this s tudy The centre image is the reference image, and 

matching is done on the two adjacent images. A steepest ciscent search strategy 

similar to 2d-log search is used to speed up the computation. Only targets which 

can be tracked in both adjacent image wi l l be used to compute wind vectors. 

Th i s implies that cloud targets have to have a lifetimes of at least one hour and is 

more likely a suitable tracer. Cloud targets which produce vectors which are not 

symmetrical within certain thresholds are rejected. 
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Figure 6.8: The image matching strategy adopted by 

E S O C . 
T h e Japanese system uses a similar strategy to E S O C , but they use a coarse-

fine search to reduce computation. Vis ib le as w e l l as infrared images are used for 

t racking (Hubert 1979). 

6•2.4 Spatial Resolution 

M E T E O S A T image usually has a resolution of 5km at the subsatellite point. Due 

to curvature of earth, the resolution gradually decrease virith increase i n latitude. 

For this reason the routine M E T E O S A T wind product is only derived wi th in 55° 

latitude and longitude from subsatellite point at E S O C . To compute cloud motion 

at higher latitudes it is necessary to compute the actual displacement, which is 

usually done by geometric correction of the sensed image. 

The instantaneous field o f view ( I F O V ) (Kashef et al.l982) is the measure of 

the ground cell size from which energy is reflected and emitted before passing 

through the radiometers optical system. The I F O V of each detector (VIS , IR, 

VVV) can be calculated with the aid of Figure 6.9. 
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Figure 6.9: The variation of spatial resolution wi th la t i 

tude. 

The spatial resolution is given by RAO, where R is the earth radius and A O 

is the angle subtended by the ground cell in radian. 

^2 

AQ 

= sin 

;m —~— sm ^ -
I F O V \ 

2 
I F O V 

= Q.2-0,1 

= sin -1 1 + - s i n U + 
f. IFOV \ 

V 2 

. -1 r / , h\ . / IFOV M - s i n ^ [ ( l + - j s i n ( . - — ) _ 

I F O V \ 

)]-

2 
I F O V N 

- I F O V 

(6.12) 

(6.13) 

(6.14) 

R = 6378 k m 
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h = 35900 k m 

I F O V = 7.1819 X 10"^^ ( I R , W V , and half resolution V I S ) 

The vertical spatial resolution of M E T E O S A T at 60° latitude is therefore 

nearly doiible that at subsateUite point and at southern England i t i s approxi

mately 10 X 5km i n the north-south and east-west direction respectively. Therefore 

image matching results have to be corrected to the true distance. 

6.2.5 Image Rectification 

Once the displacement is measured using some image matching techniques. The 

velocity is easily computed by converting the displacement to distance and divided 

by the t ime difference between two images. 

It is noted that al l M E T E O S A T images have geometric distortion, this dis

tort ion increases as the I F O V move away form the subsatellite point. In order to 

compute the true displacement the imag^must be rectified before image matching. 

Th i s approach is computational expensive, in this study the image matching is 

done on raw image and the resulting in i t ia l and final position is mapped to the ac

tual longitude and latitude on the earth surface. In this way only two coordinates 

^-lV\need to be computed. 

Rectification is the process by which the geometry of an image area is made 

planimetric. In the case of M E T E O S A T the image is a two dimensional projection 

of the three dimensional earth surface, the problem of finding the mapping between 

a pixel 's coordinates, and the earth location is often referred as image to map 

rectification. This is not to be confused wi th image-image registration where the 

two images may have similar distortion and one of them is treated as reference. 

Generally only two types of distortion can be removed by rectification, they 

are radiometric distortion and geometric distortion (Kashef and Sawchuk 1982). 

Radiometric distortion is caused by atmospheric and sensor induced filtering, sen

sor imperfections, scanner non-uniform responses, detector gain variations and 

sensor detection gain errors. Geometric distortion is caused by: 
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1. Sensor related: Variations i n the motion of the sensor over 

successive passes introduce distortions. 

For example, irregular angular velocity of 

the spin scan operation. 

2. Alignment Variations: The variation i n alignment of the sensor wi th 

respect to the spacecraft coordinates axis. 

3. At t i tude Variations: Variations i n the spacecraft attitude (yaw, 

ro l l , and pitch) wi th respect to a previous 

pass w i l l cause registra,tion error. 

4. Ephemeral Variations: The results form variations i n the location 

of the platform wi th respect to the ground 

wi th successive passes over a given region. 

There arc mainly two methods to rectify images wi th geometric distortion. 

The first uses direct modelling, the time-dependent deviations of the satellite 

from nominal position, attitude and speed are described by an image geometry 

model . The geometry model provides a deformation vector field which relates the 

ideal reference image to the actual image. This method is used by E S O C to rectify 

M E T E O S A T image operationally (Bos et a l . 1990). The second is an empirical 

rnethod which requires no explicit knowledge of the distortion effects, but uses 

ground control points ( G C F s ) whose position in both image aiid map are utilised 

to derive the mapping or transformation equations. 

G C P s are distinct features i n the image for which the lati tude and longitude 

values are known. A s the model method requires many parameters, the empirical 

method is used. The first step of rectification is to estabhsh a distortion model . 

Let us define the coordinates system of image and map as in Figure 6.10 
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Longitude Pixels 
E , , , 

M a p I i n a g e 

Figure 6.10: Coordinate systeni for image rectification. 

Suppose the distortion relationship between image and map is given by dis

tort ion functions 

E = a{P,L) (6.15) 

N = P{P,L) (6.16) 

Let the map be a function f{E, N), i t can be writ ten in term of E, N: 

f{E, N) = / ( a ( P , i ) , /?(P, L)) = g{P, L) (6.17) 

The distortions given by eqn. 6.15 and 6.16 may be non-linear functions of 

(P , L) but must be a one to one mapping of points form one coordinate system 

to another. Since we are t rying to obtain an estimate of the map from the image, 

the system may be inverted, the inverted distortion functions are: 

P = <f>{E,N) 

L = ^iE,N) 
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found and used to generate the rectified image f{E, N) using intensity interpola

t ion. 

To solve the distortion model of eqn. 6.15 and 6.16, pairs of ground control 

points i n both the map and image must be found. These points are usually small 

islands or distinctive features on the coastline,, such as headlands. 

The empirical method is to approximate the distortion function by polynomials 

of degree n having the form 

m m—i 
E = a ( P , L ) = J353a.yP'i^' (6.21) 

t=o i=o 
m m—t 

N = ^ ( P , L ) = J]J]6oP'i>^' (6.22) 
x=0 j=0 

The value of degree m usually depends on the accuracy required, i f the distor

t ion area is large and severe, then m equal to 2 or 3 should be used. 

T h i r d order polynomials are used in this study because of the large area to 

be converted. The area coverage is (moving form the top right hand corner i n 

a clockwise direction) 61°N5.5°E,A0°mA°E,40°N10.7°W,61°N17.1'>W. Using 

th i rd order polynomials for E and N we have 

E = ao + aiP-{-a2L + a3P^ + a4PL + a5L'^ 

+a6P^ + arP^'L + agPL^ + a^L^ (6.23) 

N = bo + biP + b2L + hP'' + hPL + hL'^ 

+beP^ + b7P''L + bsPL'' + bsL^ ' (6.24) 

where P and L are the row(pixel) and column(line) of a p ixe l coordinate re-

spectively and E and N are' estimates of the Northing (latitude) and East ing 

(longitude) respectively for the corresponding pixel . E q n . 6.23 and 6.24 are of the 

same form and may be generalised: 

7 = Co -h c i P + C2L + czP'' + C4PL + CsL^ + ceP^ + c y P ' L + csPL^ + CQL^ (6.25) 
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The solving of oc{P,L) is the same as for P(P,L) but each has i t own set 

of coefficients. CQ, . . . ,09 and bQ,...,bQ respectively. To solve eqn. 6.25 only 

ten equations are required which implies ten. G C P s is enough and the system of 

equations is said to be exactly determined. However, the solution of these exact 

systems is often ill-conditioned (numerically unstable) and i t is usually solved by 

using more than ten G C P s . One standard method for solving this over-determined 

system (no exact solution) of equations is least-squares analysis. 

Fi rs t the non-linear equation 6.25 has to be transformed into a linear equation 

by change of variables. Let 

So — 1 

Xl = P 

X2 L 

X3 = p2 

XA = PL 

= L^ 

X6 = p3 

X7 PH 

X8 = PL^ 

X9 L^ 

Substitute XO,...,XQ into eqh. 6.25 gives 

7 = CQXQ + CiXi + C2X2 + C3X3 + C4X4 

+C5X5 + ceXe + C7X7 + csxs + C9X9 (6.27) 

Least square method is to fit a model to minimize the sum of square error be

tween the model and the estimate (between E and E, and N and N respectively). 

T w o sets of equations must be determined: one for calculating E and the other 

for calculating N form P and L. 
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The objective function of the least square method is 

n 

(6.28) 
i=l 

when n is the number of G C P s . E q n , 6.28 may be expanded by substituting for 

7,- from eqn. 6.27 and by introducing XQU . • , , ajg,- for the i t h G C P : 

The solution of this criterion can be found by minimizing the sum of square error 

e (see Appendix F ) . 

6.2.6 Calculation of Distance 

The distortion models gives the estimates of longitude and latitude of a pair of 

pixel coordinates i n the image. If the starting point is (PQJ LQ) and the ending point 

is ( P i j L i ) the corresponding longitude and lati tude are {EQ^NQ) and {Ei,Ni) 

respectively. The geometry of Earth's surface is calculated wi th oblique spherical 

trigonometry (Ayres 1954), which approximates the Earth 's surface by a sphere. 

The distance of cloud displacement can be measured assuming that the cloud's 

path is along a great circle. The course (direction) is measured clockwise from 

Nor th . The situation is represented by the spherical triangle i n Figure 6,12, 

n 

(6.29) 
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T 

01 

(3 

A = Ini t ia l posi t ion 
B = F ina l posi t ion 
C = Pole (North or South) 
a = Colatitude of B 
b = Colatitnde of A 
c = Distance expressed as 

an angle 
01 = In i t ia l course 
P= 180 — f ina l course 
y= Difference i n 

longitude between 
A and B 

B 

Figure 6.12: Spherical triangle for calculating the dis

tance between A and B. 

Note that a, b and c are arclengths expressed as angles subtended at the Earth 's 

centre. The lati tude and longitude of A and B are used to find a, 6 and 7 as follows; 

a = 9 0 ° - (latitude of B) 

b = 9 0 ° - (latitude of A) 

7 = I (longitude of A)-(longitude of 

The great circle distance C is given by cosine law 

cos C = cos a cos 6 + sin a sin b cos 7 (6.30) 

The wind direction w i l l be defined as the in i t ia l course a , since the in i t i a l course 

is very close to the final course due to short distance travelled, using sine law 

s i n a s i n 7 
s i n a = . ^ — (6.31) 

sin C 

If the final position is East of the in i t ia l one, the ini t ia l course is a. Otherwise 

the ini t ia l course is 360° — a. The length of arc C is converted to minute, since 
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one minute of arc (1/60°) at the Earth 's surface is a distance of one nautical mile , 

the arc length C is 60C nautical miles. One nautical mile is equivalent to 1.15078 

statute mile or 1.852km. 

The distance dis then used to compute the average speed of the cloud which 

is then the estimate of wind velocity around the tracer. The average wind speed 

is 

_ distance travelled by the cloud tracer , . 
t ime between images used to track the cloud tracer 

For M E T E O S A T 

N . B . 1 knot = 0.5148 m/s 

V = knots/hr. (6.33) 
0.5 

6.3 A n Automated Cloud Motion Determina

tion Scheme 

A n automated scheme wcis developed to compare the "separate then track" ap^ 

proach and the traditional "track without discrimination" approach. Figure 6.13 

shows the automatic scheme used i n this study. 
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Select raw or clustered 
images for tracking 

Select tracking method 
1. cross correlation 

2. SSDA, or 3. 2D search 

Scan next windows in second 
image for suitable target 

no 
temperature variation < 10 C 

no 

if clustered image, check 
filled area > 30% 

no 

compute vectors using first 
and third image 

accept results if two vectors 
are roughly symmetric 

no 
all windows scanned 

no 
if clustered image, check all 

clusters are scanned 

no 

height assignment and 
quality control 

Figure 6.13: The automatic cloud motion wind scheme used in this s tudy 
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The Global-Local clustering algorithm presented i n Chapter 4 - i ^ used to sepa

rated cloud classes j then tracking is done using one cloud class at a t ime. Tracking 

is also done using raw image such that a target window may contain clouds from 

more than one height levels. Results show that the "separate then track" approach 

improves tracking abil i ty significantly. The improvement is part icularly obvious 

i n frontal areas where cloud mixtures are moving i n different direction and these 

are most valuable to modelling of weather systems. 

The scheme is developed based on the elements discussed i n previous sections. 

Some simplification has to be made since the main objective of the scheme is to 

test the performance of the "separate then track" approach and i t is not intended 

for operational use. The height assignment is the most difficult part to be carried 

out among al l others, since the correct cloud top height requires accurate cloud top 

temperature (radiance) estimation. This process is very complicated and requires 

a database of 110 atmospheric models (Bowen and Saunders 1984). We have 

taken a simplified approach namely the "Level of Best F i t " (Hubert and Whi tney 

1971) which assigns vectors to height level which produce the ntiinimum velocity 

difference. The L B F method has been compared wi th cloud top and cloud base 

assignment method by Lee (1979), the L B F method has found to give unrealistic 

results i n some cases, nevertheless L B F is a useful for statistical analysis (Hubert 

1979). 

Different combination of target size and image resolution w i l l give slightly 

different cloud patterns, therefore using different satellite data to track the same 

target should produce difference error. Another objective of the experiment is 

to investigate an opt imum target size for M E T E O S A T images for cloud tracking. 

Three tracking methods namely; 1) normalised cross-correlation, 2) absolute mean 

difference ( S S D A ) and 3) 2d-log search wi th absolute niean difference. Target 

window sizes are 4 x 4, 8 x 8, 16 x 16, 24 x 24, and 32 x 32. 

The scheme uses either raw or clustered images, and any one of the three target 

tracking techniques so giving six experimental approaches. 

The basic approach is to use sequences of three (visible and infrared) images 
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spanning a total of one hour. The second infrared irnage is divided into non-

overlapped areas w^hich define possible target windows, and these are then checked 

for suitable cloud tracers. If the window has an infrared variance < 100 (i.e. black 

body scene temperature variations are usually < 10°C), then i t is tracked i n the 

first and th i rd image of the sequence. 

W h e n using the clustered approach, only the middle pair of images are clus

tered, and only pixels gt{j, k) e oj, w i l l be kept i n the target window when using 

cluster a;,- for tracking. This results in a target window which is. not necessarily 

filled wi th pixels, and so a further check must be made. A t present, a window 

less than 30% fiUed is rejected for a target (the threshold is not cri t ical but i f i t is 

too small spurious winds may be generated). Alternatively, tracking can be done 

using only the cluster which has the most number of pixel i n a window. Clearly, 

target windows containing more than one cluster rnay have more than one wind 

vector, and results show that only a small number of target window generate more 

than one vectors (see Table 6.1— 6.12). 

Since no prior information of wind direction is given, targets windows are 

located i n the centre of search windows, and 15 to 25 lag positions are allowed 

i n the horizontal and vertical direction respectively (dependents on the max imum 

wind speed found i n the reference wind field from the Meteorological Office). This 

provides for a maximum wind speed of at least 75.5 knots (15 lag position) i n the 

southern most of the clustering window. Since the spatial resolution decreases 

wi th increase of latitude, the maximum speed is larger than 75.5 knots i n area of 

higher latitude. Two vectors are obtained by tracking cloud tracers i n the first 

and th i rd images i n the sequence. Vectors corresponding to min imum ( S S D A ) or 

maximum (cross correlation) fall ing on the borders of the search area are rejected. 

Vectors are then checked for symmetry; i f the speed difference is > 50% of the 

sinaller vector, or the direction differs by > 30°, no wind vector is generated for 

that window. 
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6.4 Cloud Motion Wind Results 

The six sets of images described i n chapter 4 oir^used to test the cloud motion 

scheme. Each of these images include either a warm or cold front and is suitoiile.. 

for cloud motion tracking. 

Cloud motion tracking using raw and clustered infrared images has been tried. 

A l l tracking was done on images without geometric rectification, and the dis

placements were then corrected using a least square error rectification model 

(section 6.2.5). The outputs of the cloud tracking scheme were compared wi th 

the Meteorological Office numerical weather niodel results, and only wind vectors 

which are close to the predicted results were selected. The criteria to select a 

'va l id ' vector are: i f i t is wi th in a speed deviation of less than 50% and a direction 

deviation of less than 30°. The wind vectors are assigned to a height level using 

the "Level of Best F i t " method , i.e. to the level wi th n i in imum speed deviation. 

The middle image is divided into an array of target windows and so higher wind 

density can be obtained by overlapping the target windows. 

Tables 6.1— 6.12 gives the detailed cloud motion wind results for the six se

quences (L=iow level (850mb), M = m i d d l e level (500mb), H=high level (250inb)). 

Figures 6.14— 6.19 give the numerical prediction results (provided by Me t . Office) 

interpolated onto a 16 x 16 target size grid, showing the wind field at 850mb (red), 

500mb (green), and 250mb (yellow) levels. These reference wind fields indicate 

that wind at different levels can have very different speed and direction. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target 

size 

i:!racking 

method L M H L M H L M H L M H L M H 

Target 

size 

i:!racking 

method 

18 38 M 8 12 11 41 -0.63 10.07 4.80 4.61 -4.28 -3.28 2.86 13.27 10.19 4x4 x 

36 56 151 22 42 85 0.97 4.18 4.80 2.36 1.36 -2.27 4.15 7.72 9.89 4x4 ssda 

73 93 75 35 65 36 1.26 0.63 3.84 7.51 -2.50 -10.18 4.28 6.03 8.21 4x4 2ds 

27 24 55 24 21 41 1.24 5.92 3.32 3.00 2.66 -1.95 2.83 10.63 7.39 8x8 X 

30 41 71 27 38 57 0.43 2.63 4.00 4.39 -1.38 -5.33 2.84 7.44 • 8.68 8x8 ssda 

29 32 39 20 29 28 0.43 1.37 3.84 6.51 -3.09 -7.17 4.13 6.61 7.96 8x8 2ds 

9 29 26 8 27 26 1.14 3.15 3.41 -0.14 -4.41 -6.23 2.65 7.16 6.92 16x16 X 

13 31 23 12 29 21 -0.39 2.18 1.92 -4.83 -5.28 -5.87 2.32 4.47 7.73 16x16 ssda 

12 23 13 8 22 12 -0.51 1.62 0.38 ,-4.62 -3.02 -7.86 2.79 4.86 8;03 16x16 2ds 

10 7 10 9 6 10 -0.79 4.61 3.22 1.02 -0.71 -2.92 3.63 6.95 6.13 24x24 X 

7 8 9 7 8 9 -0.34 0.44 -0.02 6.69 2.50 • -3.71 3.92 4.52 4.56 24x24 ssda 

7 8 6 7 8 5 -0.34 0.14 -3.79 6.69 3.90 -0.68 3.92 4.78 5.70 24x24 2ds 

6 3 3 5 3 3 0.55 3.20 -3.65 -2.54 4.28 0.82 7.65 3.82 5.32 32x32 X 

5 2 4 5 2 4 0.55 5.57 -2.36 -2.54 3.33 -3.10 7.65 5.58 7.29 32x32 ssda 

5 2 2 4 2 2 -0.21 5.57 -6.46 0.38 3.33 -7.36 6.57 5.58 10.04 32x32 2ds 

Table 6.1: W i n d vectors results by tracking raw images on 5th March . 



Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target 

size 

Tracking 

method L M n L M H L M H L M H L M H 

Multi-vec. 

window 

Target 

size 

Tracking 

method 

22 51 189 7 14 35 0.01 8.94 6.29 11.16 1.01 -0.38 2.21 12.07 11.37 0 4x4 X 

44 78 165 25 44 82 0.35 5.16 5.57 8.35 2.61 -0.55 2.45 9.02 9.67 1 4x4 ssda 

94 113 102 40 70 • 46 1.63 1.03 3.07 6.30 •-4.51 -9.91 4.35 6.03 7.92 3 . 4x4 2ds 

22 29 72 18 19 41 1.18 4.31 3.69 5.01 -0.01 -4.70 3.29 7.61 8.10 1 8x8 X 

29 46 79 23 33 56 0.26 4.53 4.13 3.74 -0.99' -5.04 2.98 8.08 8.53 7 8x8 ssda 

36 41 46 21 33 26 0.30 0.76 4.67 7.89 -3.39 -5.69 3.06 5.07 8.09 0 8x8 2ds 

11 27 37 10 21 32 2.26 2.92 1.86 4.58 -1.48 -4.17 3.77 7.27 5.58 6 16x16 X 

16 28 33 13 23 27 -1.10 2.57 2.91 -2.99 -1.05 -6.02 6.32 4.67 6.76 7 16x16 ssda 

18 20 24 11 19 16 2.95 0.64 2.40 4.94 -0.54 -9.62 3.67 3.57 5.95 4 16x16 2ds 

10 15 18 6 11. 11 -1.13 2.57 2.35 5.59 0.73 -4.56 3.26 5.33 6.49 5 24x24 X 

9 12 18 5 10 13 0.63 0.11 3.73 7.21 -0.08 -10.40 1.65 4.69 6.16 7 24x24 ssda 

9 8 16 5 7 10 1.39 0.86 2.60 12.65 0.77 -9.78 1.81 4.84 6.93 2 24x24 2ds 

8 7 13 6 6 10 1.80 4.38 -1.21 2.82 1.40 -4.98 3.39 6.90 7.16 5 32.X32 X 

8 7 14 7 6 9 0.50 4.42 -0.87 6.23 -0.89 -6.29 3.45 6.66 3.85 7 32x32 ssda 

6 7 10 5 6 9 -1.81 4.42 -0.77 9.74 -0.89 -6.90 6.50 6.66 3.73 3 32x32 2ds 

Table 6.2: W i n d vectors results by tracking clustered images on 5th March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target 

size 

Tracking 

metliod L M H L M H L M H L M H L M H 

Target 

size 

Tracking 

metliod 

55 56 103 23 18 31 4.01 3.86 8.14 5.26 0.50 -1.24 .6.98 6.31 12.86 4x4 X 

51 87 101 26 39 59 2.45 3.21 . 10.20 -1.31 1.50 0.60 4.30 6.55 15.27 4x4 ssda 

91 99 103 35 48 59 1.15 0.22 2.75 -0.59 0.33 0.89 4.43 4.67 6.97 4x4 2ds 

34 31 41 21 22 32 1.44 3.10 4.18 -0.16 2.33 1.85 3.17 5.95 10.34 8x8 X 

38 45 48 26 29 33 1.42 3.25 3.95 6.34 1.37 0.38 4.32 5.83 7.93 8x8 ssda 

32 40 43 21 26 25 1.69 1.34 1.37 -1.56 1.69 0.64 3.35 5.78 5.35 8x8 2ds 

9 19 15 8 12 13 -0.06 3.09 8.00 4.28 5.21 5.65 2.30 5.63 15.68 16x16 X 

12 21 9 11 11 8 0.04 3.22 1.16 6.53 3.41 5.99 2.38 6.22 4.50 16x16 ssda 

11 24 8 10 14 6 0.26 2.36 -0.68 1.46 3.99 9.07 2.24 5.65 2.00 16x16 2ds 

6 4 3 4 2 3 -1.98 -3.83 -4.95 8.70 -6.85 -1.43 2.16 3.84 6.51 24x24 X 

6 5 2 5 2 2 -1.93 -3.83 1.76 5.15 -6.85 -8.42 3.25 3.84 1.81 24x24 ssda 

5 6 3 4 2 3 -2.45 -0.97 -1.75 -1.74 -4.46 -4.30 3.78 2.74 3.55 24x24 2ds 

1 * 4 0 1 2 0 3.91 1.36 27.88 -2.52 — 3.91 2.75 . 32x32 X 

3 3 0 3 1 0 5.01 1.58 — 12.60 10.61 6.36 1.58 — 32x32 ssda 

3 3 0 3 1 0 5.01 1.58 — 12.60 10.61 — 6.36 1.58 — 32x32 : 2ds 

Table 6.3: W i n d vectors results by tracking raw images on 8tK March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target : 

size 

Tracking 

method L . M H L M H L M H L M H L M H 

Multi-vec. 

window 

Target : 

size 

Tracking 

method 

45 63 133 10 16 38 4.97 1.85 9.23 6.22 -1.57 1.44 7.74 6.89 14.00 1 4x'l X 

66 88 123 25 38 50 2.42 2.64 9.45 2.72 3.69 -0.53 4.38 6.80 13.66 4 4x4 ssda 

104 125 116 39 55 60 1.86 -0.58 3.59 -0.85 0.91 3.14 4.36 4:94 7.88 3 4x4 2ds 

35 42 51 17 30 34 1.54 3.36 8.46 0.09 -2.81 -0.96 3.48 5.78 13.48 1 8x8 X 

35 50 70 22 30 41 2.08 2.15 5.56 2.88 1.52 -0.77 3.71 6.40 9.93 6 8x8 ssda 

38 44 54 26 22 37 0.48 2.14 -0.63 0.65 1.26 0.08 3.18 4.94 6.90 6 8x8 2ds 

14 33 22 9 21 17 -0.15 1.45 6.16 1.90 2.30 1.01 3.93 4.83 14.23 3 16x16 X 

IG 32 18 11 20 14 0.23 2.38 0.98 6.27 4.07 -2.63 2.24 5.26 4.73 1 16x16 ssda 

19 37 9 12 26 5 0.52 1.85 0.58 -3.15 1.96 -1.02 2.51 4.61 2.96 3 16x16 2ds 

7 15 19 5 8 ' 14 0.67 0:91 4.07 8.97 -0.89 -0.65 3.66 4.52 7.80 4 24x24 X 

16 13 15 11 8 10 , 0.43 1.97 2.74 2.83 -0.80 4.00 4.01 4.89 5.27 4 24x24 ssda 

11 13 8 8 6 6 • - o . i i 1.12 0.95 2.71 -9.90 -3.24 2.28 2.20 6.79 2 24x24 2ds 

2 14 9 2 8 7 2.90 0.46 3.99 10.90 -1.51 5.94 3.07 3.38 10.43 1 32x32 X 

5 13 8 4 5 7 1.38 1.06 -0.85 8.42 5.91 11.48 1.82 1.97 7.19 3 32x32 ssda 

8 13 5 5 6 4 2.95 -1.47 -3.38 14.23 5.22 17.09 5.29 4.97 8.19 3 32x32 2ds 

Table 6.4: W i n d vectors results by tracking clustered images on 8th March. 
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Computed vectors 'Vaiid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target' 

size 

Trac]<ing 

method , L M H L M H L M H L M H L M H 

Target' 

size 

Trac]<ing 

method 

23 38 178 13 23 65 0.14 2.92 3.33 9.46 6.33 8.29 2.02 4.77 7.42 4x4 X 

34 72 209 22 45 113 -2.70 1.81 3.74 6.24 4.34 4.88 5.46 4.49 7.08 4x4 ssda 

87 78 123 40 47 59 -0.57 0.95 2.99 3.94 -0.27 .5.44 4.00 3.29 5.70 4x4 • 2ds 

24 29 89 15 24 64 . 0.24 3.22 3.27 8.72 5.76 8.72 3.52 6.32 6.61 8x8 X 

31 29 100 25 20 74 -0.34 1.17 2.41 8.73 1.84 5.05 3.41 4.09 6.43 8x8 ssda 

30 32 54 18 23 38 0.25 0.09 2.27 9.09 -0.54 3.84 2.91 2.85 6.84 8x8 2ds 

15 12 19 10 10 16 -0.00 1.22 2.50 7.31 4.79 8.73 2.93 3.67 5.48 16x16 X 

13 12 15 , 9 10 12 -0.08 2.20 1.68 -0.53 5.17 7.36 2.76 4.28 4.83 16x16 ssda 

16 9 14 11 8 11 -0.95 1.38 1.40 2.78 3.00 7.85 2.60 4.57 4.21 16x16 2ds 

3 7 7 2 6 6 -2.80 -1.25 1.23 11.06 2.32 7.88 3.85 4.45 5.68 24x24 X 

7 7 8 5 6 7 -0.91 -1.10 -0.97 7.42 -2.11 4.84 2.75 2.73 3.39 24x24 ssda 

6 6 9 4 5 8 -1.56 -1.96 -1.39 3.05 -3.83 2.36 3.08 2.62 3.52 24x24 2ds 

3 1 3 3 0 3 -2.05 1.01 14.87 — 2.15 3.92 — 2.43 32x32 X 

1 1 2 1 0 2 -4.95 — 0.91 12.30 — 1.81 4.95 3.14 32x32 ssda 

1 1 3 1 0 3 -4.95 — 0.14 12.30 — 0.03 4.95 — 1.60 32x32 2ds 

Table 6.5: W i n d vectors results by tracking raw images on l l t h March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target 

size 

Tracking 

method L M H L M H L M H L M H. L M H 

Multi-vec. 

window 

Target 

size 

Tracking 

method 

15 46 235 7 17 56 -0.24 3.66 3.42 17.95 3.80 5.00 1.17 5.06 7.81 0 4x4 X 

31 59 239 17 35 114 -2.61 1.37 3.34 4.44 6.42 3.42 5.62 3.88 7.37 3 4x4 ssda 

93 97 144 36 50 54 -0.98 0.78 2.03 5.83 1.30 4.13 4.41 3.43 5.26 2 4x4 2ds 

20 25 102 14 21 68 -0.25 1.96 3.68 10.43 6.09 9.01 4.11 4.85 7.20 2 8x8 X 

•21 41 110 14 25 78 -0.14 0.10 2.28 7.91 2.84 6.71 4.03 3.53 5.64 6 8x8 ssda 

35 42 52 26 28 31 -0.69 0.17 1.64 6.97 1.31 4.09 3.19 3.35 6.10 3 8x8 2ds 

. 14 19 49 10 12 36 -0.68 1.05 2.40 9.75 7.71 6.98 2.23 3.67 6.21 7 16x16 X 

21 28 34 12 21 25 -1.29 1.96 2.62 11.93 2.28 5.85 2.93 5.56 6.27 9 16x16 ssda 

20 22 24 11 14 19 -0.12 2.53 1.23 4.69 2.40 7.54 2.21 6.27 3.92 5 16x16 2ds 

9 19 18 8 13 15 -1.44 2.21 3.35 19.73 7.44 6.04 2.86 3.49 5.83 4 24x24 X 

8 21 17 8 13 15 -1.40 0.57 1.59 13.82 3.39 5.31 3.36 2.91 5.11 3 24x24 ssda 

7 17 14 7 12 12 -1.91 -0.11 1.80 13.68 -0.96 3.86 3.60 2.62 5.36 3 • 24x24 2ds 

4 10 13 3 7 12 -5.38 1.01 2.02 16.83 . 11.22 3.83 5.40 4.16 5.27 3 32x32 X 

6 8 13 5 6 11 -1.37 0.74 1.07 14.95 3.22 3.61 5.04 3.68 4.55 3 32x32 ssda 

9 8 14 7 7 12 -2.31 0.40 0.04 13.58 0.60 2.05 5.41 3.02 3.12 4 32x32 2ds 

Table 6.6: W i n d vectors results by tracking clustered images on l l t h March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target 

size 

Tracking 

method L M H L M H L M H L M H L M IT 

Target 

size 

Tracking 

method 

37 38 164 18 28 56 0.24 1.16 3.85 5.62 -4.24 4.17 3.81 4.29 6.58 4x4 X 

79 74 165 50 54 85 -0.05 0.14 4.15 4.22 -3.84 1.64 4.01 3.92 7.73 4x4 ssda 

102 96 155 38 58 69 0.19 0.37 1.90 1.44 -1.70 2.56 4.61 3.89 6.05 4x4 2ds 

57 53 60 40 49 49 0.19 0.02 1.74 • 1.67 -6.60 4.71 3.17 3.55 4.99 8x8 X 

71 70 64 57 62 47 0.95 -0.09 2.83 -0.03 -3.08 2.09 3.65 3.59 5.66 8x8 ssda 

54 56 41 37 50 25 0.40 -0.51 1.57 2.17 -4.18 5.87 . 4.39 3.45 6.48 8x8 2ds 

23 27 17 22 25 12 0.65 -0.97 0.50 0.63 -1.28 1.66 • 3.49 4.06 8.46 16x16 x 

29 22 18 26 20 11 1.90 -0.47 1.87 1.31 -1.73 3.87 3.80 4.18 ,8.77 16x16 ssda 

23 25 14 20 22 8 1.51 -0.43 0.87 3.15 -1.07 7.08 3.51 3.25 6.90 16x16 2ds 

11 •11 5 9 10 4 0.83 0.18 -0.13 2.01 4.43 1.45 4.06 3.93 3.40 24x24 X 

14 12 5 12 11 4 0.71 0.30 1.89 1.62 1.10 2.71 3.28 3.08 5.03 24x24 ssda 

14 12 3 11 11 2 0.83 0.30 4.71 2.75 0.34 12.64 3.42 3.00 7.17 24x24 2ds 

8 4 2 8 4 2 1.41 -1.38 -4.22 -4.78 6.09 -5.39 3.83 3.30 4.54 32x32 X 

11 1 1 10 1 1 0.98 -0.23 -8.47 -1.77 6.81 -4.33 4.06 0.23 8.47 32x32 ssda 

10 1 0 9 1 0 0.21 -0.23 — -0.37 6.81 — 3.37 0.23 — 32x32 2ds 

Table 6.7: W i n d vectors results by tracking raw images on 15th March . 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target 

size 

Tracking 

method L M H L M H L M H L M H L M ; H 

Multi-vec. 

window 

Target 

size 

Tracking 

method 

24 40 203 10 21 48 1.12 0.53 4.73 -1.13 -8.97 2.93 4.35 3.87 8.09 0 4x4 X 

85 77 201 54 55 87 1.21 0.54 4.90 4.58 -3.66 0.70 4.10 4.48 7.85 0 4x4 ssda 

126 114 165 52 61 65 0.37 0.42 2.81 3.06 -3.26 0.22 4.55 3.61 6.36 6 4x4 2ds 

39 50 73 26 45 50 -0.25 -0.46 2.27 2.50 -5.86 4.29 • 3.42 4.21 5.85 6 8x8 X 

60 82 95 46 67 59 , 0.80 0.43 3.43 . 1.23 -4.89 1.03 3.66 4.04, 6.53 13 8x8 ssda 

55 68 60 37 53 33 0.27 -0.01 2.06 6.38 -3.94 2.80 4.75 3.82 7.97 6 8x8 2ds 

36 29 34 28 25 28 0.56 0.39 0.16 -0.46 -1.14 2.43 3.52 3.51 5.47 6 16x16 X 

'12 36 35 29 29 24 2.12 -0.45 0.78 -0.67 -5.23 7.17 3.24 3.28 5.65 18 16x16 ssda 

35 29 27 24 23 17 2.20 0.59 0.23 1.12 -1.55 4.65 3.50 2.97 6.61 10 16x16 2ds 

21 20 11 13 16 10 -0.09 0.46 1.78 8.22 -3.90 3.94 2.45 3.89 5.41 5 24x24 X 

27 25 12 19 21 10 1.78 1.19 2.81 4.18 . -3.31 -1.19 4.06 2.89 7.76 8 24x24 ssda 

26 22 4 21 18 3 1.39 0.91 -0.27 3.79 -4.04 4.92 4.88 2.52 3.35 6 24x24 2ds 

16 14 5 10 12 4 1.49 -0.56 2.41 -3.17 -4.61 0.19 3.56 2.32 3.02 7 32x32 X 

16 11 9 10 10 7 1.84 -1.15 1.29 -2.26 -5.19 -2.76 4.97 2.11 9.56 7 32x32 ssda 

17 10 5 10 10 3 0.85 -1.15 2.03 1.44 -5.19 1.44 4.08 2.11 2.76 6 32x32 2ds 

Table 6.8: W i n d vectors results by tracking clustered images on 15th March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target 

size 

Tracking 

metliod L M H L M H L M H L M H L M H 

Target 

size 

Tracking 

metliod 

0 0 0 0 0 0 4x4 X 

22 27 145 6 11 59 -1.06 14.15 -10.14 2.22 11.88 -5.97 3.11 15.84 15.40 4x4 ssda 

38 61 99 6 17 37 5.94 7.58 -9.04 17.85 • 12.28 5.90 9.45 10,79 16.24 4x4 2ds 

0 0 0 0 0 0 8x8 X 

25 24 63 8 18 52 1.89 15.71 -13.74 2.48 12.16 -5.96 6.61 17.01 16.24 8x8 ssda 

17 10 19 3 5 10 11.79 7.76 -9.63 -2;79 7.21 0.83 13.27 11.74 12.05 8x8 2ds 

IJ 0 0 0 0 0 — — — — - — — — 16x16 X 

9 13 19 2 8 19 -3.74 14.76 -17.75 1.80 12.28 -7.10 3.74 16.53 18.80 16x16 ssda 

9 8 12 2 5 12 -4.92 2.59 -15.75 -6.73 4.84 -6.67 5.13 9.00 16.76 16x16 2ds 

0 0 0 . 0 0 0 24x24 X 

4 7 4 2 4 4 -0.46 14.34 -20.58 10.88 2.56 -6.15 1.47 15.30 21.19 24x24 ssda 

3 3 2 2 2 2 -0.46 3.26 -17.73 10.88 -8.60 -6.88 1.47 5.14 18.06 24x24 2ds 

0 0 0 0 •0 0 — • — — — — — — 32x32 X 

0 2 1 0 2 1 — 13.36 -16.05 — 14.29 3.26 — 15.43 16.05 32x32 ssda 

0 2 1 0 2 1 — 18.05 -16.05 — 22.84 3.26 — 18.30 16.05 32x32 2ds 

Table 6.9: W i n d vectors results by tracking raw images on 18th March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target 

size 

Tracking 

method L M H L M H L M H L M H L M H 

Multi-vec. 

window 

Target 

size 

Tracking 

method 

0 0 0 0 0 0 0 4x4 X 

11 30 175 3 11 62 2.89 • 12.71 -8.24 -7.83 6.95 -3.87 3.30 15.66 15.93 0 4x4 ssda 

35 63 109 7 16 39 4.76 8.58 -10.40 14.31 9.76 5.48 8.71 11.93 15.53 1 4x4 2ds 

0 0 0 0 0 0 0 8x8 X 

17 30 56 0 22 37 — 12.83 -13.46 — 11.14 -4.29 15.42 15.56 0 8x8 ssda 

14 18 25 3 10 10 5.52 4.72 -10.06 11.71 8.61 -0.30 7.09 8.80 11.89 1 8x8 2ds 

0 0 0 0 0 0 0 16x16 X 

12 16 27 3 10 26 5.15 10.02 -16.53 5.33 10.48 -3.78 13.58 13.64 17.88. 1 16x16 • ssda 

8 11 14 1 7 12 -3.48 11.01 -12.49 8.33 4.18 -6.58 3.48 14.77 14.52 1 16x16 2ds 

0 0 0 0 0 0 — — — — — — • — — 0 24x24 X 

1 7 5 0 5 4 — 12.59 -22.14 — 4.54 -6.93 — 15.23 23.18 0 24x24 ssda 

2 5 3 0 3 2 — 14.07 -19.23 — -3.10 -6.71 — 14.15 19.32 0 24x24 2ds 

0 0 0 0 0 0 — — — — — — — — 0 32x32 X 

1 1 1 0 1 1 — 5.65 -14.76 • — 7.11 -12.15 5.65 14.76 0 32x32 ssda 

1 1 0 0 1 0 — 10.97 — — 29.12 — — 10.97 — 0 32x32 2ds 

Table 6.10: W i n d vectors results by tracking clustered images on 18lh March. 
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Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target 

size 

Tracking 

method L M H L M - I-I L M H L M H L M H 

Target 

size 

Tracking 

method 

5 25 146 2 20 42 11.81 5.47 -0.74 7.49 0.24 -0.66 11.97 12.68 9.88 4x'l X 
15 57 127 5 51 76 -3.69 5.82 2.80 7.28 1.27 -1.42 9.29 11.23 16.29 4x4 ssda 

51 52 30 13 20 7 6.12 -2.95 -1.25 3.69 7.10 -0.17 7.67 9.26 5.20 4x4 2ds 

3 22 43 2 22 33 4.81 9.34 -3.33 -3.90 3.73 -2.41 5.24 13.50 13.04 8.x8 X 
7 28 50 5 24 47 5.80 8.19 -0.71 7.41 4.30 -2.72 6.96 11.65 16.25 8x8 ssda 

13 14 13 3 10 7 6.77 -0.28 5.64 -0.35 4.91 -4.44 10.60 7.88 13.25 8x8 2ds 

0 14 8 0 14 8 10.68 -4.74 — 2.87 -1.33 — 13.15 12.43 16x16 X 
2 15 7 1 15 7 8.79 6.56 -2.00 -19.04 2.36 -2.30 8.79 13.28 11.52 16x16 ssda 

3 7 0 1 7 0 8.79 0.31 — -19.04 0.36 8.79 13.66 — 16x16 2ds 

0 7 0 0 • 6 0 —r 8.50 — — 1.56 — — 11.70 — 24x24 X 
0 6 0 0 5 0 9.74 — — -1.56 — — 10.89 — 24x24 •ssda 

0 1 0 0 1 0 2.70 — — -1.84 — 2.70 — 24x24 2ds 

0 2 0 0 • 2 0 6.00 — — 10.63 — — 6.56 — 32x32 X 
0 2 0 0 2 0 4.77 — — 10.20 — 6.15 — 32x32 ssda 

0 1 0 0 1 0 0.89 — — 11.09 • — — 0.89 — 32x32 2ds 

Table 6.11: W i n d vectors results by tracking raw images on 20th March. 
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Computed vectors •Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec. 

window 

Target 

size 

Traclcing 

method L M H L M H L M H L M H L M H 

Multi-vec. 

window 

Target 

size 

Traclcing 

method 

2 26 233 1 19 36 1.79 4.68 -1.79 5.30 1.59 -1.80 1.79 13.52 8.76 0 4x4 X 

11 63 138 3 48 66 -2.78 4.65 5.02 19.30 0.19 -3.17 9.53 11.82 16.90 2 4x4 ssda 

46 74 54 12 31 4 3.80 -3.26 0.27 11.39 9.80 0.50 7.22 8.98 4.74 2 4x4 2ds 

5 18 67 4 17 39 -0.31 11.54 -0.66 -13.48 2.53 -3.13 14.16 13.06 13.17 1 8x8 X 

10 32 55 5 28 40 4.35 8.75 0.99 10.65 1.94 -2.44 7.49 13.48 14.35 1 8x8 ssda 

15 25 19 4 12 7 -3.43 -1.76 4.41 14.60 2.59 -8.13 10.13 10.43 14.71 0 8x8 2ds 

4 14 26 3 13 22 -5.59 10.89 -2.03 5.51 1.57 -1.06 9.24 13.43 11.44 1 16x16 X 

6 14 22 3 14 17 8.36 7.97 -4.14 -11.36 3.15 -2.18 10.31 10.50 11.21 2 16x16 ssda 

5 5 4 2 5 3 -5.13 5.00 -6.70 -2.24 -2.18 -1.68 18.97 5.85 7.20 0 16x16 2ds 

1 10 13 1 10 11 3.47 7.76 -5.39 -10.25 1.65 -1.52 3.47 11.73 13.31 2 24x24 X 

2 12 9 2 10 9. 4.29 7.23 1.81 -12.91 4.41 -3.59 7.26 10.27 6.62 1 24x24 ssda 

4 4 3 2 3 3 8.80 1.80 -1.34 8.37 7.08 -2.65 8.91 6.96 9.73 0 24x24 2ds 

0 2 1 0 2 1 — 13.16 1.56 — 11.59 4.76 13.56 1.56 0 32x32 X 

0 1 1 0 1 1 — 8.65 -0.86 — 9.30 -1.50 8.65 0.86 0 32x32 ssda 

0 0 0 0 0 0 0 32x32 2ds 

Table 6.12: W i n d vectors results by tracking clustered images on 20th March. 
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Low level M i d d l e level H i g h level 

Figure 6.14: Reference wind field of 5th M a r c h interpolated on 16 x 16 target size 

grid. 

Low level Midd l e level H igh level 

Figure 6.15: Reference wind field of 8th M a r c h interpolated on 16 x 16 target size 

grid. 

Low level Midd l e level H igh level 

Figure 6.16: Reference wind field of l l t h M a r c h interpolated on 16 x 16 target 

size grid. 
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Low level Midd l e level H igh level 

Figure 6.17: Reference wind field of 15th M a r c h interpolated on 16 x 16 target 

size grid. 

Low level Midd le level H igh level 

Figure 6.18: Reference wind field of 18th M a r c h interpolated on 16 x 16 target 

size grid. 

Low level Midd l e level H igh level 

Figure 6.19: Reference wind field of 20th M a r c h interpolated on 16 x 16 tai,rget 

size grid. 
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Figures 6.20— 6.23 show the mean rms speed deviation of 'vahd ' vectors ob

tained by tracking using raw iinages. For low level wind vectors a clear min imum 

speed deviation for a l l three tracking methods occurs between 16 x 16 and 24 x 

24 target sizes. However, a min imum can not be found for middle level and high 

level wind . F i g . 6.23 is the overall mean rms speed deviation for the three tracking 

method again a clear min imum for low level wind vector occurs at target size of 

24 x 24. Lunnon and Lowe (1990) use target sizes of 4 x 4, 4 x 8, 8 x 8, 8 x 16, 

16 X 16, 16 x 32 and 32 x 32, and found the opt imum target size for M E T E O S A T 

images to be 16 x 16 for low level vectors. 

256 



4x4 8x8 16x16 24x24 32x32 
Target size 

Figure 6.20: M e a n rms speed deviation for different target sizes and tracking 

methods using raw images (Low level). 
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Figure 6.21: Mean rms speed deviation for different target sizes and tracking 

methods using raw images (Middle level). 
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4x4 8x8 16x16 24x24 32x32 

Target size 
Figure 6.22: M e a n rms speed deviation for different target sizes and tracking 

methods using raw images (High level). 

Target size 
Figure 6.23: Mean rms speed deviation for different target sizes using raw images 

( A l l t racking methods). 
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Figures 6.24— 6.27 show the corresponding mean rms speed deviation for wind 

vectors obtained by tracking clustered irnages. It is noted that for clustered images 

the target window may not be fully filled wi th pixel especially wi th larger target 

window (say 16 x 16 and larger). Therefore the target sizes for clustered windows 

are undefined. N o relationship of target size wi th speed deviation can be observed 

i n these Figures. However, there is a tendency for the speed deviation to decrease 

wi th larger target windows for middle and high level wind vectors. 
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4x4 8x8 16x16 24x24 32x32 
Target size 

Figure 6.24: M e a n rms speed deviation for different target sizes and tracking 

methods using clustered images (Low level). 
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Figure 6.25: Mean rrtis speed deviation for different target sizes and tracking 

methods using clustered images (Middle level)'. 
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Figure 6.26: M e a n rms speed deviation for different target sizes and tracking 

methods using clustered images (High level). 
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Figure 6.27: Mean rms speed deviation for different target sizes using clustered 

images ( A l l tracking methods). 
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Figure 6.28 is the cumulative error for al l 'va l id ' vectors. For low level wind 

93% of vectors have a speed deviation less than 10 knots, and the error is almost 

identical for raw and cluster tracking. For middle level wind 85% of vectors have 

a speed deviation less than 10 knots, and for high level wind 76.5% have a speed 

deviation less than 10 knots. 

The error for middle and high leveil vectors using clustered tracking is slightly 

(~ 1%) less than that using the raw tracking approach. Figure 6.28 also confirms 

the fact that high level winds have much larger error than low level vectors. 
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Figure 6.28: Cumulat ive speed deviation for low, middle, high level wind vectors 

obtained by tracking of raw and clustered images. 
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Figure 6.29— 6.31 shows the nuinber of 'vahd' vectors for different target size, 

and tracking methods. This reveals that, for a target size greater than 8 x 8 , the 

number of 'va l id ' wind vectors computed using clustered iinages are significantly 

more than for raw images. For example, for 24 x 24 and larger targets, clustering 

gives approximately 50% more 'va l id ' vectors using cross correlation or S S D A . The 

diminishing advantage of using clustered image tracking for target sizes below 16 

x 16 may be part ly due to the diminishing chance of selecting a target covering 

more than one type of cloudy,and at the saihe t ime 'holes' are generated into the 

target window after removal of other clusters. The general increase i n the number 

of vectors using clustered image tracking strongly suggests that multi-layers cloud 

motion can be tracked better by first separating different cloud types and tracking 

them individually. 

F i g . 6.31 also reveal that clustering method generates more vectors for a l l tar

get sizes. In order to obtain a correct match point the 2d search requires matching 

surfaces to have a dominant peak or val ley This suggests clustering improves the 

general shape of matching surfaces, such that more consistent matching can be 

achieved. 
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Figure 6,29: Tota l number of 'va l id ' vectors using different target sizes, cross 

correlation tracking wi th raw and clustered images. 
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Figure 6.30: Total number of 'va l id ' vectors using different target sizes, S S D A 

tracking with raw and clustered images. 
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Target size 
Figure 6.31: Total number of ' va l id ' vectors using different target sizes, 2d search 

tracking wi th raw and clustered images. 

The 18th M a r c h image is a very difficult case for cloud tracking, this is shown 

i n Table 6.9 and 6.10 that wind vectors can only be obtained using S S D A , and 

cross correlation has produced none at a l l , this is mainly because the whole image 

is covered by a b ig lump of bright featureless frontal cloud. The tracking abil i ty of 

the three tracking methods can be seen i n F i g . 6.32— 6.33 for raw and clustered 

tracking respectively S S D A has been able to produce more wind vectors that 

cross correlation tracking for a l l target sizes. Therefore i t should be used for cloiid 

motion tracking instead of cross correlaition for its higher efficiency and tracking 

ability. T h e higher tracking abil i ty can be explain by the fact that the matching 

surfaces of S S D A are generally less ' spiky ' than cross correlation (Fig . 6.5 and 

6.6). 
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4x4 8x8 16x16 24x24 32x32 

Target size 
Figure 6.32: Total nuinber of 'va l id ' vectors using different target sizes, tracking 

methods wi th raw images. 
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Figure 6.33: Total number of 'va l id ' vectors using different target sizes, tracking 

methods with clustered images. 
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Figures 6.34— 6-39 show the wind field computed by S S D A tracking of raw 

and clustered images wi th a target size of 24 x 24. 
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Figure 6.34: W i n d field of 5t l i March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 

Figure 6.35: W i n d field of 8th March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 

Figure 6.36: W i n d field of l l t h March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 
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Figure 6.37: W i n d i ie ld of ISth March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 

Figure 6.38: W i n d field of 18th March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 

Figure 6.39: W i n d field of .20th March , a) raw tracking, and b) clustered tracking 

(24 X 24 target size). 
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The 2d search method although produces least number of 'va l id ' vectors, but 

i t is much more efficient that cross correlation and S S D A , i f large wind field is 

required then i t can be used wi th overlap target window to increase the to ta l 

number of wind vectors. 
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6.5 Discussion 

The clustering approach for cloud wind tracking has proved to increased the yield 

of wind vector by as inuch as 50% for target size of 24 x 24. The advantage stems 

from the abil i ty of clustering to select natural data patterns, which i n turn tends 

to correspond to different cloud types and by tracking a single cluster, features 

such as cloud boundaries can improve the matching process. Clustering approach 

is found to neither increase nor decrease the wind vector error. 

It is also found that there is an op t imum target size for a given wind resolution, 

and i t is 24 x 24 for low level wind using raw iinages. However, this criterion does 

not apply to clustered image tracking, since, i n this case, the effective target size 

is variable, also no relationship of target size and speed deviation can be observed 

at a l l . 

The S S D A is found to be more reliable method for target tracking (in this 

study an infinity threshold is used, therefore S S D A degenerate to mean absolute 

error method), than cross correlation; i t is also much faster since i t avoids the need 

for normalisation. The 2d search is -^f/^qs^•^-•e&cient and can be used when a 

large wind field is required. 
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Chapter 7 

Conclusion 

Clustering techniques have proved to be effective for improving cloud motion 

t racking i n multi-layer regions. Two clustering techniques have been developed, 

i ) The Global -Local clustering algorithm and 2) Spatial-Spectral clustering algo

rithms. B o t h of them assumed clusters to have a Gaussian distribution, since this 

assumption is found to be reasonable for M E T E O S A T imagery. 

7.1 Global-Local Clustermg Algorithm 

A l l iterative part i t ional clustering algorithms require an in i t i a l part i t ion or set 

of centres to start and it is well known that different in i t ia l conditions generate 

different clustering. In conventional clustering of image data in i t i a l partitions or 

centres are obtained manually and therefore bias is introduced. The bias can be 

eliminated by cliposm^ some random in i t ia l centres or part i t ion, but i t is also well 

known that clustering can be trapped i n some local op t imum which may not be 

the global opt imum. 

A classical and almost universal solution to this problem is to allow clusters 

which are l ikely to contain points from more than one class to spht, or conversely, 

, to permit clusters which are very similar to merge. In this study i t has been shown 

that split and merge does not solve the problem completely Ideally the in i t ia l 

part i t ion should be as close to the best solution (global optimum) as possible 
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to avoid trapping i n a local opt imum. This is achieved by using a Global -Local 

clustering, approach. Essentially the first stage i s to identify modes i n the feature 

space and then generate an in i t ia l part i t ion which is close to the best solution 

using a histogram clustering algorithm. The second stage is to optimize the in i t ia l 

par t i t ion using an iterative clustering algorithm. The Global -Local clustering 

approach is found to be effective i n improving the clustering. 

The second problem of using clustering techniques is the choice of distance 

function. The cluster mean has been used as a cluster model for a long time, but 

the deficiency of its abil i ty to recover clusters wi th large difference i n variance has 

long been realised. The classical solution to the cluster variation problem is to 

normalise the variables, such that cluster variation can be reduced. The normal

isation can be performed using simple scaling of variables, clustering transform, 

and principle component transform etc. A l l these techniques do not require any 

prior knowledge of the data structure, and therefore i f the data structure does not 

conform to the normalisation model, the discrimination between clusters may be 

decreased. However, i f a parametric model can be assumed, then it is possible 

to derive a distance function which is opt imum wi th respect to certain criteria 

(e.g. M i n i m u m Sum of Error probability) and this implies the data structure are 

known beforehand. 

Dynamic clustering allows the latter approach to be implemented. The com

monly used cluster mean model is replaced by a kernel, and this may take any 

model which represents the clusters best. In this study a Gaussian model is used, 

which allows clusters to have different size and variance. Several distance functions 

can be derived from the Gaussian model wi th different levels of simplification, and 

i n this way the cluster mean model can be related to the Gaussian inodel. 

The number of patterns i n an multi-spectral image is very large, so any clus

tering algorithm should perform efficiently. The Global -Local algori thm achieves 

high efficiency by exploiting the multiple occurrence of distinct vectors. Dist inct 

vectors are clustered using the dynamic algorithm and i f a distinct vector is as

signed to a particular cluster so are the other copies of i t . Since the histogram 
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clustering is also very efficient the combined algorithm remains so., 

7.2 Spatial-Spectral Clustering Algorithm 

Contextual information exists i n al l imagery, although it is usually ignored i n 

image analysis. Classification of a pixel may be ambiguous i f i t is a mixture 

of different objects, usually these pixels lie on the boundaries of images. The 

contextual information can be exploited by considering a p ixe l and i t neighbours. 

The Spatial-Spectral clustering algorithm is based on the assumption that i f a 

pixel has uncertain classification then i t should be assigned to the class wi th the 

majority of its neighbours belongs to. 

The contextual information has been exploited by clustering of the spatial 

space using Graph Theoretic Hierarchical Segmentation ( G T H S ) . This results i n 

a number of homogeneous regions which corresponds to objects i n the image and 

these objects aire then grouped based on their spectral similarity. 

The spatial clustering is a stepwise opt imum approach. It is also a gener

alization of the hierarchical clustering approach which usually clusters patterns 

based on their spectral similarities. The spatial clustering algorithm constructs 

an image graph based on two types of distance function: local and global. Loca l 

type distances only use the information of the nearest neighbours, while global 

type distances use information of other pixels by considering the statistics of a 

neighbouring region. 

Segmentation is usually compared visually but i t is desirable to have a measure 

to indicate the goodness of a segmentation. To this end a mutual information 

model has been developed to monitor the segmentation process and the entropy 

loss is used as an indicator of the generation of the basic features i n an image. A 

good segmentation should use the least number of segments to retain the maximum 

amount of information of the original image, and so the segmentation should stop 

when the basic features have been recovered and the entropy loss starts to decrease 

at a constant rate. Al though this criterion is heuristic, i t has found to provide 
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good segmentation. 

The clustering of segments is also based on the. agglomerative approach: a 

statistical hypothesis is used as a distance measure between two segments and 

every t ime the two most similar segments axe merged. Clustering stops when the 

number of groups equals the number of clusters required. 

The Spatial-Spectral clustering algorithm therefore requires two user param

eters; 1) number of segments, 2) number of clusters. It is found that the first 

parameter is quite independent of the data once the windows size is fixed. Spatial-

Spectral clustering is computation expensive so i t is not used for testing of cloud 

wind tracking. However, i t is able to produce clusters wi th 'clean' boundaries, 

and this abili ty should be valuable i f further machine analysis of cluster shape is 

required. 

Due to the lack of ground truth, i t was not able to access the accuracy of 

the two clustering algorithms quantitatively. However, the clusterings compare 

favourably wi th the original observation. 

7.3 Generation of Cloud Motion Vectors 

Cloud motion wind has been generated by tracking raw and clustered images. 

The separation of cloud type prior to cloud tracking has been proposed a long 

t ime ago (Hubert 1971). However most operational wind systems do not take 

advantage of the multi-spectral information and only used simple I R thresholding 

to segment a target window before tracking cloud targets. The efficient Global -

Loca l clustering algorithm has been designed for operational use, and even a single 

band of infrared can be used at night t ime when other channels are not available. 

It is the author's experience that most of the control parameters can be fixed 

once the first set of images have been processed. Specifically, the next clustering 

process (providing the two sets of images are similar) can use the previous clusters 

as a starting parti t ion. Also other parameters for split or merge can be kept 

unchanged. Therefore the algorithm is only used interactively when necessary to 
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generate in i t ia l part i t ion and specify the clustering parameters. A t present the 

clustering only generates unlabelled classes, but the study by Seddon (1985) for 

example can be used to produces labeUed classes for better use of the wind vectors. 

The clustering approach has been able to increase the wind vector yield by 

as much as 50%, for target sizes of 16 x 16 or larger. The advantage for larger 

targets is mainly due to the fact that mixed cloud types i n a small target are less 

probable. Al so , clustering introduces 'holes' into the target which confuses the 

matching process. 

Al though more vectors can be generated by the clustering approach, i t does 

not seem to improve the speed deviation significantly. It must be noted that only 

a small set of images are used i n this study, and ideally more statistics are required 

to firm the results. 

The effect on varying the target size on the mesoscale wind speed deviation has 

been investigated. There is a tendency for larger target size to produce smaller 

speed deviation, and no obvious min imum for high and middle level wind can be 

found between 4 x 4 and 32 x 32 target size. O n the other hand, an obvious 

min imum for low level wind wi th a target size of 24 x 24 can be found for a l l 

tracking methods, and this result agrees wi th the Meteorological Office findings 

(Lunnon and Lowe 1991). 

Cross correlation has been used for image tracking since the very first applica

t ion, since i t possesses the matched filter characteristic and provides an opt imum 

result when the image is corrupted by white noise. In this study the simple S S D A 

(absolute mean error) is found to be more reliable than the classical cross corre

lat ion and i t is highly reconunended as a substitute for cross correlation tracking. 

If even higher efficiency is required the two-dimensional search method can be 

employed. 

A n y future work should be concentrated on using a more sophisticated clas

sification algorithm to separate cloud types before tracking cloud targets. Large 

high level wind error is a major problem, and i t is hoped that i t can be improved 

by better classification methods. It is noted that tracking abil i ty is not the only 
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factor to affect high level wind error. 
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Appendix A 

Maximum Likelihood Estimator 

Suppose the set X contains n samples, X = { x i , . . . , x „ } . Then since the samples 

were drawn independently, 

p ( x I e) = n p ( x , 16) ( A . l ) 

;:=i 
p ( X I 9) is called the likehhood function of 9 wi th respect to the set of samples. 

The max imum likehhood estimator of 9 is, by definition, the value 9 that maxi 

mizes p ( X I 9). The classical approach is to differentiate p{x \ 9) w i th respect to 

9, equate dp{X \ 9)/89 = 0, and solve for 9. 

We want to find the maximum likehhood estimate of the mean fi and covariance 

matr ix 27 of a sample set X form a multi-variate normal pdf, so 9 = (p, S), we 

have 

p (x 1^) = (27r)- ' ' /2 | i : | - i /2exp [ - | ( x - pfE-''{x - p) 

p{X\9) = (27r)-'^"/2|i;|-"/2exp 

j=i 
= (27r) - '^"/2 |^ | -n /2gj^p[_ l t j .^ - l^j 

where A = ^ ^ ( X j - p)(xj - pf 

Let n in denotes the samples mean vector where n i„ =^ ^ Y^^=i ^« 

( A . 2 ) 

( A . 3 ) 
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B u t A = J^[(xj - m „ ) " + ( m „ - n)][{xj - m „ ) + ( m „ - fi) 

n 
= ^ ( x j - m „ ) ( x j - m „ ) ^ - f n ( m „ - / [ i ) ( m „ - / / ) ^ (A.4) 

i=i 

Since JZ^^i ~ n i „ ) ( m „ - xjf = 5]^(m„ - /z)(xj - m „ ) ^ = 0 
i= i 

Substitute A . 4 into A . 3 and let V = ^ ( x y — m„) (Xj — ninf be tbe sample 
i=i 

covariance matr ix , we have 

p ( X I e) = (27r)-'^"/2|i7|-"/2 e x p { - i t r i ; - M l ^ + n ( m „ - /z)(m„ - fif]} (A.5) 

It is more convenient to work wi th the logari thm of the l ikelihood function, 

than wi th the likehhood function itself. 

L = l o g p ( X l ^ ) 

= | i o g | i ; r - i t r i ; - ^ y 

- | t r i : - ^ ( m „ - / / ) ( m „ - fif + ^ l o g 2 7 r (A.6) 

Differentiating wi th respect to p. gives 

= - | 2 i ; - ^ ( y . - m „ ) (A.7) 

M u l t i p l y by S and rearranging, we obtain 

t=l 

Similarly, using the matr ix identity 

(A.8) 

^ Y\ = \Y\Y-\^tr{B^Y) = B 
dY 
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we have 

^ = i - U (A.9) 
dS-^ 2 2 

Setting the derivative equal to zero and solving gives the estimator 

s=if:{^j-ii)(?^j-iif (A.10) 
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Appendix B 

Formula for Updating Gaussian 

Kernel Parameters for Post 

Transfer Advantage Rule. 

The paxameters which have to be updated after each reallocation of points are /x,-

and Si the mean and covariance matr ix of the i t h cluster respectively. Suppose 

that k copies of pattern X; are transferred form cluster i to j with, parameters fij 

and Sj (Ki t t l e r and Pai rman 1988). 

B y definition 

X/ € cluster u)i 

= f^i + Ani (B.l). 

Similar ly 

(B.2) 

Substitute eqn. B . l into eqn. B . 2 we obtaiin 
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Si = 
n,- — k 

J3(Xr - Pi - Api)(Xr - Pi - Apif 
Lr=l 

-k{xi -Pi - Api){xi - Pi - ApiY 

Since ^ ( X r — /x,) = 0 
r=l 

E q n . B . 3 simplifies to 

(B.3) 

Si = 
n,- — k 

rii — k 

mSi + Api ApJ-^A Pi A pj 

Si-
rii — k 

{Pi-xi){pi-xiy 

The updating formulas for cluster j can be obtained similarly. 

(B.4) 

k 
(B.5) 

S- = 
^ Uj + k 

(B.6) 
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Appendix C 

Efficient Algorithms for 

Constructing a Spanning Tree 

and Minimax Segmentation. 

W h e n graph is implemented on computer, i t is stored using a data structure called 

l inked l ist , and the traversal algorithm can be either Depth Firs t Search or Breath 

Fi rs t Search. These algorithm can be found i n numerous text book (e.g. Gerstl ing 

1982). 

The construction of spanning tree and minimax segmentation i n Chapter 5 

can be constructed using graph theory algorithm proposed by Daskalaskis et al . 

(1988a, 1988b). 

C . l Efficient Implementation of Spanning Tree 

Algorithms 

The complexity of the algorithm to construct the spanning tree is 0{m) and 

therefore perform reasonably well even for large n , where n is the number of 

nodes in the graph. This is based on the Kruskal 's algorithm but using a special 

data structure. 

The spanning tree algorithm starts wi th n components and each components 
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is a binary tree data structure (Daskalakis et a l . 1988a). A binary tree is a special 

k ind of tree i n which every node has at most two children. In a binary tree, each 

child of a node is designated as either the left child or the right chi ld. The left 

child would consists of the nodes i n this component and the right child of the links 

of the original graph incident to these nodes, which do not belong to the forest. 

So in i t ia l ly each left chi ld consists of a single node and each right child of 8 or 4 

edges of i ts nearest neighbours. 

The spanning tree algorithm is: 

Step 1. Initialise the data structures of the image graph 

described above. 

Step 2. Arrange the edges i n each structures i n ascending order 

of weight. 

Step 3. Create a list of pointer p, and point to the first 

edge in each structure. 

Step 4. Save the edge wi th the lightest weight by searching 

al l n pointers. 

Step 5. Merge the binary trees which are joined by this edge and 

rearrange pointers. 

Step 6. Remove edges i n each tree which form cycles. 

Step 7. Recompute the weight of the edges of the newly formed 

binary tree. 

Step 8. F i n d the least weighted edge and label the rest i n this 

tree to prevent them from selected. 

Step 9. Rearrange pointer and point to the least weighted edge. 

Step 10. If the number of saved links is less than n — 1 goto Step 4. 

Step 11. Form the spanning tree from the saved l inks. 
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c.2 Efficient Implementation of Minimax Seg

mentation 

A efficient implementation of minimax segmentation must avoid repeat computa

t ion of the intraset distance of a subtree. This is achieved by transforming the 

spanning tree into its directed counterpart (arborescense) by choosing arbitrary 

a node as its root. A branch 6,- of the arborescense is represented by its parents 

node Vi whilst the root represents the whole arborescence. 

The sum, the sum of squares of each variables and the number of nodes of 

each branch are attribute to its parents node. Therefore the intraset distance of 

a branch can be computed by visit ing node v,-. After this transformation the 

minimax segmentation can be implemented using algorithm described in Chap

ter 5. 
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Appendix D 

Intraset Distance 

In <Z-dimensional Euclidean space, the distance between two points a and b is 

given by (Tou and Gonzalez 1974 pp 248) 

I).(a,b) = | | a - b | | 

= v ' (a-b)^(a-b) 

( D . l ) 

where a and b are d-dimensional vectors wi th the A;th components equal to â  

and hk respectively. The intraset distance for a set of pattern points {a*, i = 

1 , 2 , . . . , i f } is given by 

i?2 ( .{ai} ,{a '}) , i , i = l , 2 , . . . , / i : - l ; i ^ i (D:2) 

define the square distance between â  and a' i j 

D\3J,a.') = (a^'- a')̂ (a^ - a') 

= i:{4-4r (D.3) 
k=i 

For fixed a-' and wi th a' ranging over al l oi K — 1 other points i n the set {a'}, 

the part ial average is 
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K d 
(D.4) 

«=i fc=i 

It is noted that the contribution for i = j is zero and may harmlessly be left 

i n the expression. There are K terms, but only K — 1 non-zero terms. 

Following the same line of reasoning, we then take the average over a l l K 

points i n set {a^} to express the intraset distance as 

K d 

K K d 

-f*̂  V-**- j=i k=i 

The intraset distance may also be expressed i n terms of the variance associated 

w i th the components of the pattern points. Rearranging, we may write 

K 

2K 
k=l L i=l :=1 

^ 2 

K - l l 

-rr2 

( a l P - ( a D (D.6) 

The last step follows since (a{)2 - (4) and ^ J2f=:i W = i^Y and ^ EjLi 

-^2 Since (aj.)^ — ( a ^ = (a^)^ is the biased sample variance of the fcth component 

of the K pattern points in {a*}, the intraset distance is given by 

(D.7) 

Not ing tha;t 

The intraset distance can be writ ten i n terms of the unbiased sample variance 

(D.9) 
k=l 
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Appendix E 

The Entropy of a Gaussian 

Distribution 

The entropy of a pdf f{x) is defined as H{x) = — J^^f{x)\ogf{x), i f f{x) is 

n-dimensional Gaussian distributed, we have (Jones 1979 pp 151) 

(E.1) 

log fix) = log ^ - ^(x - n)^S-\x - fx) log e (E.2) 

respectively, where A is the determinant of the matr ix 

i.e. H{x) = 

Loo (27r) f^°^(27r) t 
exp -^(x-p)^E-\x-p) 

+ 
A a log e 

{x — fi)-^S (̂x —/i)exp 
7-00 (27r)? 2 

- i ( x - / z ) ^ i ; - H x - / z ) dx(E.3) 

Let (x^/x) = u, since S the covariance matr ix is symmetric and positive definite, 

a linear non-singular transform exists such that iFS~^L = A where u = L\. It 

is noted that A is a diagonal matr ix wi th elements A i , , . . , A„. 
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r°° As A i 
H{X) = - . n log . • n -oo 

roo 

exp 

+ r ^ 

J-oo (27r)? 

A i 

loge 
v ^ A v e x p 

- - v ^ A v 

- - v ^ A v 

(2 

exp 

^5 A i f°° r 

- 5 ( A i v ? + A2v2...-FAdv2) dViV2 ...dVn 

log e / / . . . / - ( A i v ^ + A2v l . . . -1- A„v^) 
(27r)2 J-oo J-oo J-oo^ 

exp - ^ ( A i V i + A2V2 . . . - { - A„v^) 

(27re)f 

dVidV2 ... dVn 

= log 
A i 

(E.4) 

The last equation is obtained since the integral can be carried out on each v 

separately. 
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Appendix F 

Least Square Method for 

Geometry Rectification 

Rectification of image require fitting of a model to the ground control points 

( G C P ) that satisfy a least-squares criteria (section 6.2.5). 

Consider a single control point (see eqn. 6.27) and assume we are attempting 

to compute the Ck coefficients: 

7f = CoXoi + CiXii + C2X2i + CsXzi -f 04X41 

(F.l) 

If we use n G C P s in total we shall have n such equations which we may write i n 

matr ix form as: 

71 

72 

7n 

xoi Xn X21 . . . X91 

X02 X\2 ^22 • • • 2:92 

Co ei 

Cl 62 

: + • 
• 

C9 en 

(F.2) 

XOn X2n • • • ^971 

We have to include the errors since there w i l l not be a set of CQ . . . Cg which 

w i l l simultaneously provide us wi th exactly 7 1 . . . 7n i n the overdetermined case. 

Equat ion F .2 can be abbreviated and generalized to m degree polynomial , 
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r = x c + e ( F . 3 ) 

where T can be either the longitude or latitude to be calculated. We want to 

obtain c such that the sum of square error 6*^6 is minimized, 

e = r - x c ( F . 4 ) 

we form the sum of the square of each error by computing e'^e: 

e^e = ( r - x c ) T ( r - x c ) ( F . 5 ) 

Differentiating e-^e wi th respect to T and equating to zero: 

= ( o - x i f ( r - x c ) + ( r - x c ) T ( o - x i ) 

= ( - x i f ( r - x c ) + ( r T _ ( x c ) T ) ( - x i ) 

= - i x T ( r - x c ) + ( r T - c T x T ) ( - x i ) 

= - i x ' ^ r + i x T x c - r T x i + 0 ^ x ^ x 1 

= 2 ( I ) ( x T x c - x T r ) ( F . 6 ) 

Since F - ^ x I = (F'^XI) and c ' ^ x ' ^ x l = (c '^x '^x l ) ' ^ , because both are 1 x 1 matr ix . 

Equat ing eqn. F . 6 to zero thus: 

0 = 2 ( I ) (xTxc - x^r) 

( x T x ) - i x T x c = { A r V r 

c = ( x T x ) - i x ^ r ( F . 7 ) 

The elements i n matr ix x is substitute for variables given by equation 6 .27 . 

The matr ix x for m = 3 is therefore: 

3 0 6 



X = 

1 P i i l P 2 P i i i Ll Pi PiLl PrL\ L \ 

1 P2 Lr Pi P2L2 Ll Pi PiLl P2LI Ll 
(F.8) 

1 P„ Ln PI PnLn Ll P^ PlLn PnLl Ll 

and 

c'̂ r = x T 

71 

72 
(F.9) 

7n 
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Appendix G 

Surface Chart of the Imag 

Used in This Study 
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Figure G . l : Surface chart of 5th March 
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Figure G.2: Surface chart of 8th March . 
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Figure G.3: Surface chart of l l t h March , 
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Figure G.4: Surface chart of 15th March . 
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Figure G.5: Surface chart of 18th March . 
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Figure G.6: Surface chart of 20th March . 
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Appendix H 

Programs of the Global-Local 
Clustering Algorithm 

/***•*•••*••••*•********•*•»*•**••**»****•••****•*••••******•*****•******* 
* loted that this i s a co l lect ion of f i l e s , so soae extern variable * 
« declaration has been deleted, to be conpliable some changes has to * 
» be Made. * 
• The Clobal-Local algorithm includes the following f i l e s : * 
* 1) i sovar l .h • 
« 2) i sodatal .h * 
• 3) graph.h * 
* 4) output.h * 
• S) hicap.h * 
• 6) isoS.c * 
• 7) i sodatal .c * 
• 8) i s o . i o l . c * 
* 9) h icapl . c * 
* iO) smooth2.c * 
* 11) graph2.c • 
• 12) outputl .c • 
***************************************'**********************************/ 

/*******«*******************************************»»******************** 
* You are reading i sovar l .h • 
«********************«***************************************************/ 

extern char *optarg; 
extern int optind, opterr; 

u.char inageCDIHEISIOI][HAX.YSIZE][HAX.XSIZE]j/* store the image data • / 
char label[MAX_YSIZE][MAX_XSIZE];/* l abe l the samples • / 
int dimension,/* number of chemnel used, v i s , i r , nv * / 

hos.center,/* the current number of clusters * / 
nos_discard,/* number of discarded center • / 
init_nuBi_center,/* desired number of centers form histogram clustering * / 
count[HAX.CEITER],/* the number of samples in a cluster • / 
top_x, top_y,/* top l e f t of the image sindos to be clustered * / 
v in .xs ize , v in .y s i ze , / * sindos sizes * / 
gc, e r r f l a g ; / * for getopt • / 

f loat theta . s , /* standard deviation parameter * / 
t h e t a . l , / * lumping parameter * / 
o v e r a l l . i d , / * overal l average intraset distance * / 
intra_d[l!AX_CEITER] , / * intraset distance * / 
center[DIHEISIOI][HAX.CEITER],/• cluster center * / 
sumCDlHEISIOI][HAX.CEITER]./* for standard deviation * / 
sun.sq[DIHEIS10I][HAX_CEITER],/* for standard deviation * / 
deviation[DIHEISIOI][HAX_CEITER];/* standard deviation of c luster • / 

/ • these are for histogram clustering * / 
int num.dist inct , /* number of d is t inct vector * / 

c e l l . s i z e , / * the size of histogram c e l l * / 
succleh, /* to ta l length of hash • / 
•axhash,/*.record of longest hash * / 
•ax^freq;/* record of maximum frequency » / 

HIST.TABLE * * h i s t . p t r , / * for sort ing * / 

table[TABLESIZE];/* histogram table * / 

struct ras ter f i l e header;/* info , of input image, f o r output result * / 

int compare(); 
f loat distance_to_centerC); 
/ * * * * * * * * * * • * * * * • * * • • • • * • * * * * • • * • * • * * * • * • • • • * • • * • * * * * * • * * • * * * • • * * * • * • * * * * 

« You are reading isodatal .h * 
************************************************************************/ 

•include <8tdio.h> 
•include <string.h> 
•include <math-.h> 

315 



finclude <»alloc.h> 
•include <pixrect/pixrect_hs.h> 

•define HAX.XSIZE 512 / » BaxiMum oindoB size » / 
•define HAX.YSIZE 512 
•define UII_XSIZE 256 
•define UII.YSIZE 256 
•define MAX.CEITEE 20 /» estimated max number of center during process 
•define DIMEISIOI 3/* y i s , i r , wv » / 
•define HAX.OREY 258.0/* maximum greyscale • / 
•define HII.GREY 0.0/* minimum greyscale * / 

•define OUT.CHAl 1/* the channel that w i l l be used for output * / 

/ * parameter for isodata * / •define 6ANHA 
•define THETA.I 
•define LUMP 
•define ITERATIOI 
/••define t 

•define TABLESIZE 

0.8/* parameter for newly sp l i t ed center * / 
0.01/* min number of samples • / 
.2/* max number of pairs of center to be lumped • / 
11/* number of i terat ion allowed * / 

9 number of center desired * / 

60013/* 12007 histogram table s ize * / 

•define TRUE 1 
•define FALSE !TRUE 
•define CHAIGE 1 
•define UICHAIGE !CHAIGE 
•define SQUARE(x) « x ) * ( x ) ) 
•define strsave(s) (strcpy(malloc(strleri(s)-)-l), s)) 
•define demand(fact, remark) {\ 

i f (!(fact)) A 
fpr in t f ( s tderr , "demand not met: fac t \n") ; \ 
fpr in t f ( s tderr , "remark\n")A 
exit (DA 

}\ 

typedef struct {/* for function lump cluster » / 
int c l ; 
int c2; 
f loat distance; 
}IITER_CLUST; 

typedef struct {/* for function lump cluster * / 
int c l ; 
int c2; 
}CEITER_PAIR; 

typedef struct {/* struct for histogram table * / 
flo.at prob;/* probablity * / 
int f r e q ; / * frequency count * / 
int fpos; /* index i n neighbor l i s t f i l e * / 
u_char vec[4];/* the vector values * / 
char l a b e l ; / * class labe l * / 
}HIST_TABLE; 

/****************************************************************** 
* You are reading graph.h * 
******************************************************************/ 

•define lOTVISlT 0 
•define VISIT ilOTVISIT 

typedef struct tree { 
int key;/* the key for th is node * / 
struct tree *next; 
char status; 
} TREE; /* memory i s allocated in order of declaration • / 

typedef struct { 
/ • i n t key;*/ 
struct tree *node; 
} TREE_HEAD; 

typedef struct l i s t i 
int key; 
struct l i s t *next; 
} LIST; 

f loat distance() , 
get .gradientO; 

TREE *get_node(), 
*depth_first_next(), 
*find_alone_node(), 
*front_of_tree(); 

TREE_HEAD *depth_first_search(); 
LIST *front_of_l ist ( ) i 

/****»**********»********************«*********************** 
* You are reading output.h * 
************************************************************/ 
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•define OUT.CHAIIEL 0 /» noraally v i s i b l e • / 

•define LIMIT 10/* nuaber of inter c luster distance to be shoon * / 

f loat intfa_distance(); 
/«••**•*****«««*******«*•»••**••••••*•**•*••*••**•••**••****••• 

* You are reading h icapl .h * 
«*************************************************************/ 

• include "ispdatal.h" 

•define lOS.IEIGH 26/* number of neighbors for 3 dimension * / 
•define BUFSIZE ((int)(TABLESIZE/10)) 

•define HAX.ROOT 50/* max number of .root(cluster8) al losed * / 

•define SHALL -1E30/* a very small number * / 

typedef struct {/* to compute the offset table * / 
char yec[4]; 
} VECTOR; 

typedef struct •[/* struct f o r neighbor l i s t buffer • / 
short count;/* number of neighbors * / 
u.char meC4];/* the vector i t s e l f * / 
u.char neigh[IOSiIEIGH][4];/• neighbor of th is vector • / 
}IEIGH; 

typedef struct {/* use for s t a t i s i c * / 
f loa t sumCDIHEISIOI]; 
f loa t ssqCOIHEISIOI]; 
int num; 
> STAT; 

/**************************»********************************************* 
* You are reading isoS.c 
* 
* This i s the main program of the Global-Local clustering algorithm 
* presented i n Chapter 4 of th is thesis . The f i r s t stage of the 
* Global-Local algorithm i s a histogram clustering algorithm, and 
* consists of f i l e s : hicap.c smooth.c graph.c The second stage of the 
* Global-Local algorithm i s a dynamic clustering algorithm based on 
* ISODATA and consists of f i l e s : isoS.c isodatal .c i s b . i o l . c outputl.c 
* 
* hicap.c i s to construct a multidimensional histogram (up to 4 
* variables) . 
* smooth.c i s to smooth the histogram. 
* graph.c i s the val ley seeking algorithm Bhich par t i t i on the histogram 
* isoS.c i s the main program. 
* i sodata l .c , and i s o . i o l . c include a l l main functions of the second 
* stage. 
* outputl .c i s to compute the clustering s t a t i s t i c s . 
* 
* Deta i l implemenation can be found in "Pattern recognition 
* p r i n c i p l e s ' ' , J . T . T o u , R.C.Gonzalez Addision-Uesley Publishing 
* Co. Inc. 1974. 
* 
* This programme i s intended for c lustering of HETEOSAT images 
* up to 3 channels, v i s i b e l , infrared and vater vapour respectively. 
* 
* The dynamic clustering uses J . K i t t l e r ' s population oeighted Gaussian 
* model. The multiple occurrence of pixel i s exploited to increase 
* eff ic iency. The f i r s t stage part i t ion the multidimensional histogram 
* and an i n i t i a l part i t ion i s generated using methods described i n 
* Chapter 4 oif th i s thesis . The second stage use a dynamic clustering 
* algorithm shich use a Gaussian cluster model and post transfer 
* advantage rule (see Chapter 4 for de ta i l s ) . 
* 
* K.S.LAU 1-12-90 
**************************«********************************************* 

•include "iscdatal.h" 
•include "isovarl.h'" 

f loa t w_covar[HAX.CEITER][DIHEISIOIJ[DIHEISIOI]./* n i th in c luster covar * / 
iB.covar[HAX.CEITER][DIHEISIOI][DIHEISIOI],/* inversed covar matrix * / 
C08um[HAX.CEITER][DIHEISIOI][DIHEISIOI],/* for covariance natrix * / 
log.covar[HAX.CEITER]./* log of covariance matrix « / 
mahalanobis_di8timce();/* compute mahalanobis distance * / 

/* 
Main function of the Global-Local c lustering algorithm. 

main(argc, argv) 
int argc; char **argv; 

Bhile ((gc = getopt(argCi argv, " ")) != EOF) 
sBitch (gc) { case ' ? ' : errflag++; break; } 

if. (errflag) quit (argv); 
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get_data(>;/* get the input image filename * / 
mitial.centeraO;/* the first stage of the Global-Local algorithm 

• / 
get.parametorsO;/» specify the parameters for the second stage * / 
i8odata_resolution();/• recompute the histogram nith different 

compression ratio * / 
isodataO;/* the main function for the second stage * / 

map_pixel_to_hi8togram();/• label pixel to clusters » / 
s h o H . r e s u l t O ; / * print statistics • / 
j5et_objective_function_value() ; / * compute objective function • / 

^ output_result();/* vrite output to files * / 

/* 
isodata.resoltttion is to recompute the histogram. 
* / 
i8odata_resolution() 
{ 

char answer [10] ; 
int i ; 
printf("Do you vant to change the histogram cellsize for isodata? "); 
8canf("Xs", answer); 
i f (answer[0] != »n') 
•C I* reconstruct histogram with new resolution * / 

printf("Enter the histogram cellsize, "); 
8canf("Xd", Jkcell.size);/• compression ratio, 1 ,2 ,4 , . . . • / 
clear.tableO;/* reset the hashing table • / 
get_hist_table();/* compute the histogram * / 
free((char *)hist_ptr); 
sort.histogramO; 
/ * reset the label in histogram table » / 
for (i = 0; i < num.distinct; i++) hist_ptr[i]->label = 0; 

/« 
Hain function of the dynamic clustering algorithm. 
• / 

isodataO 
{ 

int i t e r , / * i terat ion counter * / 
status;/* indicate any s p l i t or merge * / 

/ * use nearest mean assignment only after s p l i t or merge * / 

status = CHAIGE; 
for ( i t e r = 1; i t e r <= ITERATIOI; iter++) 

printf("\nIterat ion Xd\n", i t e r ) ; 
do { 

/ * assign p ixe l to -nearest center i f i t er= l , pr after 
s p l i t or merge * / 

i f (status = CHAIGE) neare8t_center_assignment(); 
/ * assign d i s t inc t vector using post transfer advantage rule 

* / 
population.weighted.Gaussiem.reassignment(status); 
/ • remove small c luster * / 
status = discard.clusterO; 

} while (status «= CHAIGE); 
pr int . s tat i s t icO; 

i f ( i t e r == ITERATIOI) break;/* no lump or s p l i t f or las t i t e r . • / 

i f ( i t e r % 2 == 0 II nos.center >= 2*init_num_center) 
{ / * too memy clusters * / 

status = lump.clusterO; 
continue; 

}. 

i f ((status = split .c lusterO) = CHAIGE) ; 
else i f (LUMP > 0) status = lump_cluster();/* no s p l i t , do lump * / 

lump.cluster i s to merge any clusters which are closer than the 
specif ied threshold. 
*/ 

int lump.clusterO 

register int i , j , k, class; 
int. lump.pair = 0, /* check imy cluster to liimp * / 

merged.center = 0 , / * record merged center * / 
• end,/* index of las t center in table « / 

used, /* labe l * / 
status = UICHAIGE,/* any merge? • / 
n o s . p a i r , / * how many pair of center to be test * / 
compare(); 

f loat i n t e r _ d , / * inter cluster di'sttmce * / 
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group8_var[DIMEISI0I],/• within groups sd of kth channel * / 
neB_center[DlMEISIOI];/* new center * / 

IITER_CLUST close_center[HAX_CErrER3,/• record of qual i f ied centers • / 
•ptrCNAX_CEITER];/• f or sort ing • / 

CEITKR_PAIR used_center[LUIlP];/» record of already merged center » / 

f o r ( i » 0; i < nos_center-l; i++) 
f o r (j » i+1; j < nos.center; j++) 
{, I* f o r a l l pairwise of clusters * / 

/ • check how many pa ir i s to merge * / 
i f (lump.pair HAX.CEITER) break;/* cannot save any more • / 
/ * compute the within group variance of two clusters * / 
get_within_groups_var(i, j , groups.var); 
in ter .d = 0.0;/* i n i t i a l i s e intercluster distance * / 
for (k = 0; k < dimension; k++) 

in ter .d += (((float)countCi]*(float)count[i]) 
*3QUARE(center[k][i]-center[k]tj])) 
/((float)(count Ci]+count[j])*groups.var[k]); 

i f ( in ter .d < theta.1)/* check lumping threshold * / 

close_center[lump.pair].cl • i ; 
close.centerClump.pair].c2 * j ; 
close.centerClump.pair].distance » i n t e r . d ; 

^ lump.pair++;/* count how many pa ir to merge * / 

i f (lump.pair = 0) retum(status) ; / * no lumping * / 

f o r (k = 0; k < lunp.pair; k-H-)/* i n i t i a l i s e for sorting * / 
ptrCk] = »close_center[k] ; 

/ * select the closest pairs to merge * / 
qsort((char • ) p t r , lump.pair, sizeof(IITER.CLUST *) , compare); 
end = nos .center- l ; /* end of l i s t posit ion » / 
nos.pair = (lump.pair > LUHP) ? LUHP : lump.pair; 

for (class = 0; class < nos.pair; class++) 

used - FALSE; 
i f (merged.center > 0) 

for ( i = 0; i < merged.center; i++) 
/ * check whether center has been merged * / 
i f (ptr[class]->cl == used.centerCi] .cl 

II ptr[class]->cl == used.center[i].c2 
II ptr[class]->c2 == used.center[ i ] .c l 
II ptr[class]->c2 == used.center[i].c2) 

used = TRUE; 
i f (used) continue;/* do not merge * / 
printf("merge cluster Xd Xd\n", ptr[c lass] ->cl , ptr[class]->c2); 
status = CHAIGE;/* centers has been merged * / 
f o r (k = 0; k < dimension; k++)/* merge * / 
{/* compute new centre * / 

new.center[k] = 
((f16at)count[ptr[class]->cl]*center[k][ptr[class]->cl] 
+(float )count[ptr[class]->c2]*center[k][ptr[class]->c2]) 
/(float)(countlptr[class]->cl]+count[ptrtclass]->c2]); 

used.center[merged.center].cl = ptr[class]->cl; 
used.center[merged.center].c2 = ptr[class]->c2; 
merged.center++; 
f o r (k = 0; k < dimension; k++)/* put into l i s t * / 

centerik] [ptr[class]->cl] = new.center[k] ; 
i f (ptr[class]->c2 < end) 

move.center(end, ptr[class]->c2);/* move upward * / 
end—; 

nos.center -= merged.center;/* update current no. of clusters * / 

retum(status); 

/* 
check i f c luster kernels have to be recomputed. 
* / 

population_weighted.Gaussian.reassignment(status) 
int status;/* any s p l i t or merge in previous i terat ion * / 

int c lass; 

i f (status = CHAIGE) 
{/• compute covariance matrix of every clusters * / 

get_wcovar.raatrix();/* within cluster covariance matrix * / 
f o r (class = 0; class < nos.center; class++) 

log_matrix.determinant(class);/* log covariance matrix * / 
inverse^matrix(class);/* inverse of covariance matrix.*/ 

} 

/ * assign d is t inct vector using ^ost transfer advantage rule * / 
populationiweighted.Gaussian.assignment(); 
/ * get c luster s t a t i s t i c s * / 
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^ get_clu8ter_para»eters(); 

/ • 
assign d i s t i n c t vectors using post transfer advantage r u l e . 
• / 

^opulation_Beighted_Gau8sian_assignnent() 
register int class, i , j ; / * counter •/ 
int s i , Br;/* cluster r and i * / 
f l o a t k , / « number of copies */ 

dr, d i , / * change i n cerition function f o r cluster r and i * / 
• i n _ d r , / * Bin of change f or r , r ! » i • / 
delta_8UM, delta_8unsq,/* change i n stat * / 
t o t a l ; / * t o t a l number of pixel */ 

t o t a l = (f loat)(Bin_xsize*Bin_ysize); 

f o r ( i « 0; i < num .distinct; i++) 

B i « hist_ p t r [ i]->label; 
i f (Bi < 0) continue;/* this i s a outlier */ 
k • ( f loat)hi8t_ytrCi]->freqj 
d i = log.covarlBi] 

-(((float)count[B I ] - k ) / k ) 
*log(1.0-(k*mahalanobi8_distance(i, B D ) 
/((float)count[B I ] - k ) ) 
- ( 2 . O*log( ( float)count[Bi]/total)) 
-(((float)diaension+2 .0 )*(((float)count[BI] -k ) /k ) 
*log( (float) count [Bi] /( (float) count [Bi]-k) ) ) ; 

min .dr - d i ; 
for (class = 0; class < nos.center; dass++) 

i f (class s i ) continue; 
dr = log.covar[class] 

+(((float)count[class]+k)/k) 
*log(l .0+(k*mahalanobis.di8tance(i, class)) 
/((f loat)count[class]+k)) 
- ( 2 . 0*log((float)count[class]/total)) 
+(((float)dimension+2.0)*(((float)count[class]+k)/k) 
• l o g ((float)count[class]/((float)count[class]+ k ) ) ) ; 

i f (dr < min_dr) 

Br = class; 
min .dr = dr ; 

} 
i f (min.dr < di ) 
{/* update s t a t i s t i c of Br and s i and reassign */ 

B i = hist.ptr [ i]->label;/* class i * / 
hi8t . p t r[ij - > l a b e l = Br;/* reassign to class r * / 

update.BCovar.matrix(Br, i , 1.0);/* update the matrix */ 
update_Bcovar_matrix(Bi, i , -1 .0); 
log_matrix.determinant(Br); 
log_matrix_determinant(Bi); 
inverse.matrix(Br); 
inverse.matrix(Bi); 

/* update s t a t i s t i c */ 
count[Bi] -= hist.ptr [ i]->freq;/* update count */ 
count[Br] += hi8t_ptr[ i]->freq;/* update count */ 
for (j = 0 ; j < dimension; j++) 

delta.sum = (float ) h i s t . p t r [ i ] - > f r e q 
*(float ) h i s t _ p t r [ i]->vec[j]; 

delta.8um8q = (float)hi8t . p t r [ i]->freq 
*SQUARE((floatJhist.ptr[i]->vec[j]); 

8um[j][Br] += delta;.sum;/* update sum */ 
sum_8q[j] [Br] += delta.sumsq; 
8um[j][Bi] -= delta:.sum; 
8um .sq[j][Bi] -= delta.sumsq; 
center[j] [sr] = sum[j] [Br]/(float)count[Br] ;/* update mean*/ 
center[j] [Bi] = sum[j] [Bi]/(float)count [Bi ] ; 
deviation [j] [Br] = ((float)count[Br]*sum_sq[j] [sr] 

-SQUARE (sum [j] [Br])) 
/((float )count[Br]*(f loat) (count[Br] -1) ) ; 

deviation[j] [sr]. = sgr t(deviation[j] [sr] ); 
deviation[j] [Bi] = ((float)count[Bi]*sum.sq[j] [si] 

-SQUARE(sum[j] [si] ) ) 
/((float)count [ B i ] *(float)(count[B I ] - 1 ) ) ; 

deviation [j] [BI] = sqrt(deviation[j] [si] ) ; 

/* 
Update a covariance matrix. 
* / 

update.BCOvar.matrix(class, x l , sign) 

320 



in t c la s s , / * the cluster shich para are to be updated • / 
x l ; / * the rector shich i s being reassigned * / 

f l oa t s ign; /* add or subtract * / 

register int i , j ; " 
f l o a t xCDIBEISIOl],/* a buffer matrix • / 

k , / * the number of copy of th i s p ixe l * / 
cO, c l ; / * constant * / 

k =• (f loat)hi8t_ptr[xl3->freq; 

f o r ( i = 0; i < dimension; i++) 
x[ i ] " center[ i ] [c lass]-(f loat)hist_ptr[xl]->vec[ i ] ; 

cO = sign*(k/((float)count[class]+sigh*k)); 
c l = (float)count[class]/((float)count[class]+sign*k); 
f o r ( i « 0; i < dimension; i++) 

f o r (j « 0; j < dimension; 

B.covar [class] Ci][j] += cO*x[i]*x[j]; 
w.covarCclass] [i] [j] *= c l ; 

} 

et_Bcovar_matrix()/* compute within cluster covariance matrix * / 

register int a, j , k, class; 

f o r (class = 0; class < nos.center; class++)/* i n i t i a l i s e * / 
for (j = 0; j < dimension; 

for (k = 0; k < dimension; k++) 
cosum[class][j][k]= 0.0; 

for (a = 0; a < num.distinct; a++)/* compute co product * / 

class = hist_ptr[a]->label; 
i f (class < 0) continue;/* out l i er * / 
f o r (j = 0; j < dimension; j++) 

for (k = j+1; k < dimension; k++) 
cosumtclass][j][k] 
+= ((float)hist_ptr[a]->vec[k]* 

(float)hist_ptr[a]->vec[i]* 
(float)hist_ptr[a]->freq); 

for (class = 0; class < nos.center; class++) 
compute_comatrix(class); 

compute_comatrix(class)/* compute covariance matrix • / 
register int c lass; 

register int j , k; 

for (j = 0; j < dimension; j++) 
for (k = j ; k < dimension; k++) 

i f fk != j ) / * covariance * / 

B_covar [class] [j] [k] 
= ((float)count[class]*cosum[class] [j] [k] 

-sum[j][class]*8um[k][class]) 
/((f loat)count[class]*(float >(count[class]-1)); 

^ w_covar[class][k][j] = B_covar[class] [j] [k] ; 

else/* variance * / 
{ 

B_c6var[cleiss] [j] [k] 
= ((float)count[class]*sum_sq[k] [class] 

-SQUAIlE(8um[k] [class])) 
/ ((f loat)count[class]•(f loat)(count[class]-1)); 

} 
} 

log_matrix_determinant(class)/* log of a matrix's determinant * / 
in t class; 
{ 

int i f l a g , 
ipivot[DIHEISIOI], 
i s t a r , 
i . j . k; 

f loat asikod, 
colmax, 
r a t i o , 
rovmax, 
temp, 
d[DIHEISIOI], 
B[DIHEISIOI][DIHEISIOI]; 

/ * copy covar matrix into B * / 
for ( i = 0; i < dimension; .i++) 

for (j = 0; j < dimension; j++) 
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>[i][j3 " B_covar[clas8] [ i] [j] ; 

iflag»=.l; 
/ • initialise i p i v o t , d • / 
for <i * 0; i < diaension; i++) 
< 

ipivot [i] = i ; 
roraax * 0.0; 
for (j "« 0; j < dimension; 

i f (roBmax < fabsCsti] [j])) roomax = f absCsCi] [ j ] ) ; 
i f (rosmax ==0.0) 
{ 

iflag = 0; 
^ roBmax = 1.0; 

dCi] = rosmax; 
} 
/ * factorisat ion • / 
for <k = 0; k < dimension-l; k++) 

/ • determine pivot row, the roB istar * / 
colmax = fabs(B[kKk])/d[k]; 
i s t a r « k; 
for <i = k+1; i < dimension; i++) 

anikod « fabsCwCi] tk]) /d[i] ; 
i f (asikod > colmax) 
{ 

colmax = asikod; 
istar = i ; 

} 
i f (colmax == 0.0) i f l a g = 0; 
else 
{ 

i f ( i s tar > k) 
< 

/ • make k the pivot roB by intercheuigeing 
i t Bith the chosen roB i s t a r * / 

iflag = -iflag; 
i = i p i v o t [ i s t a r ] ; 
ipivot[istar] = ip ivot [k] ; 
ipivot[k] = i ; 
temp = d [ istar] ; 
d [ istar] = d[k]; 
d[k] = temp; 
for (j = 0; j < dimension; j++) 

temp = B [ i 8 t a r ] [ j ] ; 
B [istar] [j] = B[k][ j ] ; 

^ B[k][j] = temp; 

/ * eliminate x[k] from roBS k + l . . . n * / 
for ( i = k+1; i < dimension; i++) 

B[i][k] /= B[k][k]; 
ra t io = B[i] [k] ; 
for (j = k+1; j < dimension; j++) B[ i ] [ j ] -= ratio*v[k] [ j ] ; 

> 
} 

i f (B[dimension-l][dimension-l] == 0.0) i f l a g = 0; 

log_covar[class] = (float)iflag; 
for ( i = 0; i < dimension; i++) log_covar[class] •= B [ i ] [ i ] ; 

^ log_covar[class] = log(log_covar[class]); 

inverse_matrix(class)/* find the inverse of a matrix * / 
register int class; 

register int i , j , k; 

for ( i = 0; i < dimension; i++) 
for (j = 0; i < dimension; j++) 

iB .covartc lass ] [ i ] [ j ] = B.covar[c lass] [ i ] [ j ] ; 

/ * compute elements of reduced matrix • / 
for (k = 0; k < dimension; k++) 
{ / * neB elements of pivot roB * / 

for (j = 0; j < dimension; j++) 
i f (j != k) iB_covar[class][k][j] /= iB_covar[class] [k] [k] ; 

/ * element replacing pivot element » / 
iB.covar[class][k][k] = 1.0/iB_covar[cla88][k][k]; 
/ • compute neB elements not in pivot roB or pivot column • / 
for ( i = 0; i < dimension; i++) 

i f ( i != k) 
for (j = 0; i < dimension; j++) 

i f (j != k) 
iB.covar [class] [ i ] [ j ] = iw.covar [class] [ i] [j] 
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- iw.covar[class][k][j]»iw_covar[class][ i][k]; 
/ * compute replacement elements for 

pivot column-except pivot element * / 
f o r ( i • 0; i < dimension; i++) 

i f ( i !« k) 
iw_covar[class] [i] [k] -iw.covar[class] [k] [k] ; 

/ * compute mahalanobis distimce of a d is t inct vector and a c luster * / 
f loat nahalanol)is_distance(i, class) 
register int i , c lass; 

register int k, a, b; 
f loat vector[DIHEISI0l3, 

result[DIHEISIOI], 

distance =0 .0 ; 

for (k = 0; k < dimension; k++) result[k] » 0.0; 

for (k » 0; k < dimension; k++) 
vector[k] " (float)hist_ptr[i]->vec[k]-center[k] [class] ; 

f o r (a = 0; a < dimension; a++) 
for (b = 0; b < dimension; b++) 

.result [a] += vector[b]*iw_covar[class] [b] [a] ; 

for (k = 0; k < dimension; k++) 
distance += result[k]»vector[k]; 

return(distance); 

/ * * • * * • * * • • • * * * * * * • * * * * * * * * * * » • • • • • * • * • • * * • * • • • • • • * • • * * * * • * • * * • • • * • * * * • * • * 
» You Jire reading i sodatal .c * 
* Functions for second stage of the Global-Local c lustering algorithm. * 
• * » • • • » • » • * * * • * * • * » * * * » • * * * * • * * * * * * * * * » » • • » * « » * * * * * * » • » • • • • • * * * » • * • * * * * * * / 

• include "isodatal.h" 

f loat distance_to_center(); 

/ * 
print the s t a t i s t i c of clusters after each i t era t ion . 
• / 

p r i n t . s t a t i s t i c O 
int i , j , k, class-, 

sum.change;/* number of p ixe l changed center * / 
f loat i n t e r . d , groups_var[DIHEISIOI]; 
s ta t i c int f i r s t . t i m e = ! , / • counter » / 

last.count[HAX.CEITER];/• number of p ixe l i n previous run • / 

printf("\t»**»» START WITH CEITERS **•**"); 
pr intf ("\n "); 
f o r (class = 0; class < nos.center; class++) 

pr int f (" cX2d " , c lass) ; 
f o r (k = 0; k < dimension; k++) 

p r i n t f ("\n") ; p r i n t f ("iC2d: " , k) ; 
f o r (class = 0; class < nos.center; class++) 

p r i n t f ("XS. I f , " , center [k] [class]); 
}printf("\n"); 

printf("\t**** lUHBER OF OBJECTS PER CLUSTER **»*\n"); 
for (class = 0; class < nos.center; cla8S++) 

pr in t f (" cX2d ", c lass); 
printf("\n"); 
for (class = 0; class <• nos.center; class++) 

printf("X6d " , count[class]); 
printf("\n"); 

printf("\t**»** STAIDARD DEVIATIOI * * * » * " ) ; 
pr int f (" \n "); 
for (class = 0; class < nos^^center; cla8s++) 

pr in t f (" c%2d ", c lass) ; 
for (k = 0; k < dimension; k++) 

printf("\n"); printf("X2d: " . k) ; 
for (class = 0; class < nos.center; class++) 

pr in t f ("XS. I f , " , deviation [k] [class]); 
}printf("\n"); 

printf("\t*»»»« IITER CLUSTER DISTAICE • • • » » \ n " ) ; 
for (class = 1; class < nos.center; class++) 

pr int f (" X2d " , c lass) ; 
printf("\n"); 

f o r ( i = 0; i < nos.center- l ; i++) 

p r i n t f (••X2d " , i ) ; 
for (class = 0; class < i ; class++) pr in t f (" "); 
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for (j = i+1; j < nos.center; j++) 

get-Bithin_groups_var(i, j , groups.var); 
inter.d » 0.0; 
f o r (k » 0; k < diaension; k++) 

ihter.d +« (((float)count[i3*(float)countCj]) 
•SQUARE(centerCk]Ci]-center[k]Lj3)) 
/((float)(count[i]+c6unt[j])•groups,var[k]) 

inter.d « sqrt(ihter.d); 

printf("X5.If, ", inter.d); 

printf("\n"); 

i f (first.tine) 
</* first call of this function • / 
for ( i = 6; i < nos.center; i++) 

last.count[i] = count[i]; 
first.tiae = 0; 
else 
{ 

suB.change * 0; 
for ( i « P; i < nos.center; i++) 

suji.change += abs (last.count [i]-count [i] ) ; 
for ( i = 0; i < nos.center; i++) 

last.count [i] = count [i]-; 
printf("Percentage of pixel transferred is X.2f\n", 

100.0*(float)sUB.change/(float)(win.xsize^Hin_ysize)); 
} 

/ • 
assign vectors to the nearest center 
• / 

nearest.center.assignmentO 

euclidean.assignnentO; 
^et.cluster_paraiiieters(); 

euclidean.assignnent 0 

register int i , class; 
int Bin.class;/* the ninimum distance class * / 
float distance, nin.distance; 

for (class = 0; class < nos.center; class++)/^ initialise * / 
count[class] = 0; 

for (i = 0; i < num.distinct; i++)/* for a l l samples • / 

i f (hist.ptr[i]->label < 0) continue;/* this is a outlier • / 
min.class •= 0;/* initialise • / 
min.distance = distance.to.center(i, 0); 
for (class = 1; class < nos.center; class++) 

distance = distance.to.center(i, class); 
i f (distance < min.distsmce) 
{ 

min.class = class; 
min.distance = distance; 

} 
> 
hist.ptr[i]->label = min.class; 
counttmin.class] += hist.ptr[i]->freq; 

/ • 
remove any cluster smaller them the threshold. 
threshold is defined in header f i l e . 
• / 

int discturd.clusterO 
{/* discarded samples v i l l not be visit any more * / 

register int i , class; 
int end,/* position index of center l i s t end • / 

discard = UICHAIGE,/* set to no discared cluster * / 
curreht.center;/* nuraber of center currently exist * / 

end = nos_center-l;/* last index of array * / 
current.center = lios.center; 
for (class = 0 ; class < current.center; class++)/* for a l l class * / 

i f (count[class] < yin.xsize*Hin.ysize*THETA.I)/* discard * / 

nos.discard++; 
/ • keep visit points 
for (i = 0; i < num.distinct; i++) 

i f (hist_ptr[i]->label = class) 
hist.ptr[i]^>label = -nos.discard;. 

*/ 
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i f (class < end)/* not the last center in l i s t * / 
•ove_center(end, class);/* shuffle center*/ 

current.center—;/* one cluster less * / 
end—; 

> 
i f (nos.center > current.center) 
{ 

discard » CHAIGE; 
printf("Discard Xd centersXn", nos.center-current.center); 

nos.center = current.center;/* update * / 
^ retum(discard); 

fet.cluster.paraaeters() 
/ * conputer center, sd, intraset distance, and overall Intraset distance * / 
/ * counting of number of pixel s i l l be done in the reassignment routine * / 

register int k, i , class; 

for (k « 0; k < dimension; k++) 
for (class = 0; class < nos.center; class++) 

sum[k][class] = sum_sq[k][class] = 0.0;/* initialise * / 

for ( i » 0; i < num.distinct; i++) 

class = hist.ptr[i]->label; 
i f (class < 0) continue;/* outlier • / 
for (k = 0; k < dimension; k++)/* sum a l l clusters * / 

sum[k] [class] += (float)hist_ptr[i]->vec[k]* 
(float)hist_ptr[i]->freq; 

sum.8q[k] [class] += SqUARE((float)hist.ptr[i]->vec[k])* 
^ (float)hist.ptr[i]->freq; 

for (k = 0; k < dimension; k++)/* compute center mean * / 
for (class = 0; class < nos.center; class++) 

center[k] [class] = sura[k][class]/(float)count [class] ; 

for (class = 0; class < nos.center; class++)/* standard deviation * / 
for (k = 0; k < dimension; k++) 

deviation[k][class] = ((float)count[class]*sum_sq[k][class] 
-SQUARE(8um[k][class])) 

/((float)count[class]*(float)(count[class]-1)); 
^ deviation[k] [class] = 8qrt(doviation[k] [class]); 

for (class = 0; class < nos.center; class++)/* intraset distance * / 
< 

intra_d[clas8] = 0.0; 
for (k = 0; k < dimension; k++) 

intra.d[class] += ((float)count[class]*sum.sq[k] [class] 
-SQUARE(sum[k][class])) 

/((float)count[class]*(float)(count[class]-1)); 
intra.d[class] •= 2.0;/* intreiset distance, use unbaised var * / 

^ /*intra.d[class] = sqrt(intra.d[class]);*/ 

overetll.id = 0.0;/* compute overall average vithin cluster distance * / 
for (class = 0; class < nos.center; clas8++) 

overall.id += intra.d[class]; 
overail.id /= (float)nos.center; 

} 

/* 
split any clusters whose variance larger than threshold. 
* / 

int split.clusterO 
register int class, k; 
int end,/* position index of last center element * / 

status = UICHAIGE,/* any split ? * / 
current.center,/* number of center currently exist * / 
max.channel;/* channel which has max deviation * / 

float max.sd;/* max standard deviation * / 

end = nos.center-l; 
current.center = nos.center;/* take a record • / 
for (class = 0; class < tios.center; class++)/* for a l l cluster * / 

max.channel = 0 ; / * initialise * / 
max.sd = deviation[0] [clstss] ; 
for (k = 1; k < dimension; k++)/* find max sd • / 

i f (deviati6n[k][class] > max.sd) 
{ 

max.channel - k; 
max.sd = deviation [k] [class] ; 

> 
i f (max.sd > theta.s) ; / * do nothing, follow on * / 
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else continue;/* not sat isfy for s p l i t t i n g * / 

i f (nos.center <« init_nuH_center/2) 
/ * i f (nos.center <= ini t .nua_center- l )* / 

pr int f ("sp l i t c luster Xd\n", c lass ) ; 
spl i t (end, c lass , aax.channel); 
status * CHAIGE; 
current.center++; 

^ end++; 

/ • s p l i t even near l imi t * / 
else i f (intra.d[cleuis] > o v e r a l l . i d 

« * count[class] > 2*(Bin.xsize*Bin_ysize*THETA.I+l)) 

pr int f ("sp l i t c luster Xd\n", c lass) ; 
spl i t (end, c lass , max.channel); 
status » CHAIGE; 
.current.center++; 
end++; 

} 

nos.center » current.center;/* update * / 

^ retum(statu8); 

sp l i t (end, c lass , channel)/* s p l i t a cluster * / 
in t end, /* posit ion index of last center * / 

c la s s , / * Bhich c luster * / 
^ channel;/* Bhich channel * / 

register int k; 
f loat center.plus[DIHEISIOI], 

center.ninu8[DIHEISIOI] ; 

for (k = 0; k < dimension; k++)/* compute neB centers • / 

/ * i f (k == channel)*//* s p l i t on max sd channel * / 
/*{*/ 
i f (deviation[k][class] > theta.s) 
{/* compute neB cluster centers * / 

center.plus[k] = center[k][class]+deviation[k][class]•GAHHA; 
cehter.minus[k] = center[k][class]-deviation[k][class]*GAHHA; 
i f (center.plus[k] > HAX.GREY) 

center.plus[k] = HAX.GBEY; 
pr int f ("Spl i t center out of range, reducedXn"); 

i f (center.minus[k] < HII.GREY) 

center.minus[k] = HII.GREY; 
^ pr int f ("Spl i t center out of range, increased\n"); 

/*}*/ 
else/* other channels unchange * / 

center.plus[k] = center[k][class]; 
center.minus[k] = center[k][class]; 

> 
/ * move center * / 
for (k = 0; k < dimension; k++) 

center[k][class] = center.plus[k]; /* insert into old posit ion « / 
center[k] [end+1] = cianter_minus[k] ; / * append to end of l i s t * / 

} 

/* 
compute Bi th in group variance. 
* / 

get .Bithin_groups.var(cl , c2, groups.var) 
m t c l , c2;/* Bhich group * / 
f loat *groups_var; 

register int k; 
f loat s s q l , ssq2; 
/ * 

Ref:Pearson, K. 1936 
On the coefficient of r a c i a l l ikeness. 
Biometrika 18, 105. 
*/ 

for (k a 0; k < dimension; k++) 

ssql = ((fl6at)count[cl]*sum.8q[k][cl]-SQUARE(sum[k][cl])) 
/ ( f loat ) (count [cl]r-l); 

ssq2 = ((float)count[c2]*sum.sq[k] [c2]-SQUARE(sum[k] [c2] )) 
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/ ( f lbat)(count[c2]- l ) ; 
group8_Tar[k] " (8sql+B»q2) 

/<(float)count[cl]+(float)count Cc2]-2.0); 

int compare(a, b) 
IITEE.CLUST • * a , **b; 
{/• ascending order of magnitude • / 
i f ((•a)->distance > (»b)->distance) return( l ) ; 
else re turn( - l ) ; 
> 
f loat distance_to_center(i, class) 
register int i , c lass; 

register int k; 
f loat distance = 0 . 0 ; 

for (k = 0; k < dimension; k++) 
distance += SQUAEE((float)hist_ptr[i]->vec[k]-centerW [class]); 

return(distance); /• squared Euclidean distance • / 

move_center(from, to) /* update array centerOD. • / 
register int from, to; 

register int k; 

for (k = 0; k < dimension; k++) 
centerik] [to] = center[k] [f rom] ; 

count[to] = count[from]; 
} 

* You are reading i s o _ i o l . c • 
» Functions to shoo the resul t , store any results generated by second * 
* stage of the GlobeJ.-Local clustering algorithm. * 
* And some auxi l iary functions. * 
* K.S.LAU 13-8-90 * 
• » • • * • • * * * * • * • • « • • * * * * • • • • • • • * * • • * * • • • • • • • * * * * * * * * * * * * * * * * * * • • • * * • • * * * * / 

•include "isodatal.h" 

/ • • 
label p i x e l . 
• * / 

map_pixel_t6^histogram() 
u.char vector[4], r ; 
register int i , j , k, x i ; 

for ( i = 0; i < sin^ysize; i++) 
for (j = 0; j < uin_xsize; j++) 

for (k = 0; k < dimension; k++) 

vector [k] = image [k] [i] [ j ] ; 
r = vector[k]%cell_size; 
vector[k] -= r ; 

for ( ; k < 4; k++) vector[k] = 0; 
x i = search(vector); 
l a b e l [ i ] [ j ] = table [xi] . labe l ; 

} 

output.resultO 

char *outputl = "/home/image/output/hiso.clus", 
*output2 = "/home/image/output/hiso.map"; 

u_char buffer[HAX.YSIZE][HAX.XSIZE]; 
int i , j , a, b; 
FILE • f l , *f2; 

i f ( ( f l « fopen(output1, "B")) == lULL) 
•{ f p r i n t f (stderr, "Cannot open output f i l e \ n " ) ; e x i t ( l ) ; } 
i f ((f2 = fopen(output2, "B")) == lULL) 
{. f p r i n t f (stderr, "Cannot open output f i l e \n") ; e x i t ( l ) ; } 

fBrite((char *)»header, sizeof(struct r a s t e r f i l e ) , 1, f l ) ; 

for ( i = 0; i < header.ras.height; i++)/^ i n i t i a l i s e » / 
for (j = 0; i < header.ras.Bidth; j++) 

buf fer [ i j [ j ] = 0; 

for (a = 0, i = top .y; i < top.y+Bin.ysize; a++, i + + ) / « get value • / 
for (b = 0, i = top_x; j < top.x+Bin.xsize; b++, j++) 

buffer[ i ] [ j ] = center [OUT.CHAI] [label [al [b]] ; 
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for ( i =« 0; i < header.rti8_height; i++) 
fBrite((char *)*bnffer[i][0], s izeof(char), header.ras.oidth, f l ) ; 

printf("The clustered image is stored i n XsXn", outputl); f c lo8e ( f l ) ; 

forite((char *)»no8_center, sizeof(int), 1, f2) ; 
fBrite((char *)»di»en8ion, sizeof(int), 1, f2) ; 
fBrite((char *)ktop_x, s izeof ( int ) , 1, f2 ) ; 
fBrite((char »)*top_y, sizeof(int), 1, f2) ; 
fBrite((char *)tBin_xsize, sizeof(int), 1, f2) ; 
fBrite((char *)tBin_ysize, sizeof(int), 1, f2) ; 
fBrite((char •)count, s i zeof ( int ) , nos.center, f2) ; 
f o r ( i = 0; i < nos.center; i++) 

for (i " 0; j < dimension; j++) 
fBrite((char • ) » c e n t e r m [i] , sizeof (float), 1, f2) ; 

f o r ( i " 0; i < nos.center; i++) 
f o r (j = 0; j < dimension; j++) 

fBrite((char *) tdeviat ion[j ] [ i ] , sizeof(float), 1, f2) ; 
f o r ( i " 0; i < Bin.yaize; i++) 

fBrite((char • ) t l abe l [ i ] [0 ] , s izeof(char), B in .xs ize , f2) ; 

^rintf("The cluster map i s stored in X s W , output2); fc lose(f2); 

8hoB_result() 

int i , j ; 

printf("CLUSTER RESULT\n"); 
for ( i » 0; i < 20; i++) 

printf("\n"); 
for (j = 0; j < 20; j++) 

p r i n t f ("X3d " , label [i] [j] ); 

j r in t f (" \n") ; 

quit(argv) 
char •»argv; 

fpr in t f ( s tderr , "Usage: Is: interact ive , no optionVn", argv[0]); 
e x i t ( l ) ; 

:et_data()/* specify input f i l e names * / 

char filename[DIHEISIOI][50]; 
int i , j ; 
FILE *fIDIHEISIOI]; 
struct ras t er f i l e head[DIHEISIOI]; 

printf("Enter the number of channel to be used < 4, "); 
scanf("Xd", Jtdimension); 

for ( i = 0; i < dimension; i++) 
{ 

printf("Enter the channel filename Xd, " , i ) ; 
s<ianf("Xs", (char » )» f ilename[i] [0] ) ; 
f [ i ] = fopen((char •)»filename[i] [0] , "r"); 
demand(if [i] , Cannot open f i l e ) ; 

/ • store header i n global area, for la ter use • / 
fread((char *)ftheader, sizeof(struct r a s t e r f i l e ) , 1, f [0 ] ) ; 
reBind(f[0]); 
for ( i = 0; i < dimension; i++) 

froad((char • )»head[ i ] , s izeof(struct r a s t e r f i l e ) , 1, f [ i ] ) ; 
demand(header.ras.length = head[i] .ras. length, 

^ Make sure the images has the same s ize and coordinates); 

printf("The images s ize i s Xd\n", header.ras.sidth); 
printf("Enter the Bindow Bidth (xsize), "); 
scanf("Xd", kwin.xsize); 
printf("Enter the BindoB height (ysize) , "); 
8canf("Xd", tBin .ys ize) ; 

printf("Enter the top l e f t BindoB coordinate of 
the image to be processed,\n"); 

pr int f (" \ tx: "); scanf("7:d", t top.x); 
pr int f (" \ ty : "); scanf("Xd", Jttop.y); 

demand(head[0].ras.Bidth >= Bin.xsize+top.x, 
The BindoB i s out of rangeX, please reduce s ize ) ; 

f o r ( i = 0; i < dimension; i++) 
f s eek( f [ i ] , (long)(top_y*head[i].ras.Bidth+top.x), 1); 

f o r ( i = 0; i < dimension; i++) 
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for <j •= 0; j < Bin .ys ize; 

fraad((char *)»i»age[ i ] [j] [0] , s izeof (char), s in .xs i ze , f [ i ] ) ; 
^ f s e e k ( f [ i ] , (long) (head[i] .ras_Bidth-Biii .x8ize), 1);, 

for ( i « 0; i < dimension; i++) f c l o s e ( f [ i ] ) ; 

|et^paraBeters() 

printf("Enter the naxiauM standard deviation of c luster , "); 
8canf("iCf", *theta_s); 
printf("Enter the BininuB inter center distance, "); 
8canf("Xf", »theta_l); t h e t a . l * SQUARE ( thota . l ) ; 
init .t iuo.center = nos,:center;/* set desired nuaber of centers * / 

?et_objective_function_value() 
/ • the value i s only a indicat ion, rather Beaningless * / 

int i , c lass , 
di8Card_count[l!AX_CEITER]; 

f l oa t suB.covar, suiii_'entropy, Beight; 

i f (nos.discafd > 0) 
{ 

printf("Xd CLUSTER HAS BEEI DISCARD.\n", nos.discard); 
f o r (class = 0; class < nos.discard; class++) 

discard.count[class] = 0; 
for ( i = 0; i < nun.dist inct; i++) 

i f (hist_ptr[i]->label < 0) 
discard.count[-hist .ptr[ i ] ->label- l ] += h is t .ptr [ i ] ->freq; 

for (class = 0; class < nos.discard; class++) 
pr in t f (" cX2d ", c lass); 

printf ("\n"); 
for (class =0; class < nos.discard; class++) 

printf("X5d, ", discard.count[class]); 
^ printf ("\n"); 

sun.covar «= sun.entropy = 0.0; 
for ( i = 0; i < nos.center; i++) 

Beight = (f loat)count[i] /(f loat)(Bin_xsize*Bin.ysize); 
8un.covar += log.covar[i]•Beight; 
sum_entropy += -2.0*Beight*log(Beight); 

printf("SUM WEIGHTED iCOVARIAICEl X . l f \ n " , sun.covar); 
printf("SUM EITROPY X . l f \ n " , sum.entropy); 
jrintf("OBJECTIVE FUICTIDI VALUE IS X . l f \ n " , sun_covar+8un.ontropy); 

/**************•*•••*•• •*•• •****•**•******•*****••*****•*•••*••*•«*•***• 
* You are reading h icapl . c 
* The f i r s t stage of Global-Local c lustering algorithm. 
* Contains nachine depend code. 
* To cluster Meteosat images(upto 3 channels)using histogram clustering 
* Ref: A lOI-PARAHETRIC CLUSTERIIG SCHEME FOR LAIDSAT 

P.M.IAREIDRA and H.GOLDBERG 
PATTERI RECOGIITIOI Vol.9 pp. 207-215 1977 

* K.S.LAU 4-9-90 
**********************«************************************************ 

• include "hicap.h" 

•define CEITER.THRES 200/* cluster less than th is B i l l not be selected * / 

int num.clus,/* nunber of clusters found * / 
smoothsize;/* BindoB size for histogram smoothing • / 

f loa t thresh; /* threshold for histogram smoothing * / 

i n i t ia l .cent er8() 
< 
char ansBer[5]; 
int i , k, 

done, 
threshold; 

f loa t mean[DIHEISI0I][HAX.R00t]; 
STAT 8tat[HAX.R00T]; 

printf("Enter the histogram compression r a t i o , "); 
printf("must be 1 or poser of 2, "); 
scanf("Xd", t c e l l . s i z e ) ; 
do 
{ 

clear.tableO;/* initialise hashing table * / 
done = get.hist.tableO;/* compute histogram * / 

i f (done) 
{ 

printf("Compression rat io i s Xd, " , c e l l . s i z e ) ; 
printf("do you Bant to increase further? "); 
scanf("Xs", ansBer); 

329 



i f (ahSBer[0] = »y') done = !done; 

i f Cidohe) c e l l . s i z e »= 2;/* double coapression rat io * / 
} while Odone); /* coapress aore i f table i s f u l l » / 
p r i n t f ("The coapression ra t io i s Sd\n", c e l L s i z e ) ; 
sort_histograa(); 

do 

get.saoothing.paraaeterO;/* specify saoothing threshold * / 
noraal ise . frequoncyOj/* noraalise frequency froa 0 to 1 • / 
saooth.histograaO; 
done « density.graphO ; / • val ley seeking clustering » / 

i f (done) 
< 

get .c lu8ter_stat is t ic (s tat , aean, labe l ) ; 
printf("Do you Bant to run Bi th different parameters? "); 

^ scanf("JU", ansBer); 

else 
{ 

puts("Find too aany c lusters , t ry again!"); 
ansserCO] = >.y>; 

> while (ansBerM •= »n ' ) ; 
/ • 
printf("Please enter a threshold,\n"); 
printf("clusters less than th i s threshold B i l l not be selected, "); 
scanf("Xd", tthreshold); 
• / 
threshold = CEITER.THRES; 
printf("Centers Bith less than Xd points are not selected\n", 

CEITER.THRES); 
for (nos.center = i = 0; i < num_clus; i++) 

{/• take doBn the aean of the clusters selected » / 
i f (stat[i].num < threshold) continue; 
for (k = 0; k < dimension; k++) 

centerCk] [nos.center] = mean[k]Ci]; 
nos.center++; 

for ( i = 0; i < num.distinct; i++) hist_ptr[ i ] ->label =0; 

/ * « * 
Histogram compress use the top l e f t elements as the representive 
elenents of the vectors f a l l in th i s c e l l . 
* • • / 

int g e t . h i s t . t a b l e O 
u.char r , / * remainder * / 

vector[4]; /* must be 4 bytes long • / 
register int i , j , k; 
int count, 

empty, 
done = TRUE, 
key; 

maxhash = succlen - 0; 
for ( i = 0; i < Bin .ys ize; i++) 

for (j = 0; j < Bin.xs ize; j++) 

for (k = 0; k < dimension; k++) 
{/* map vector into histogram c e l l * / 

vector [k] = image [k] [i] [j] ; 
r = vector[k]Xcel l . s ize; 
vector[k] -= r ; 

for ( ; k < 4; k++) vector[k] = 0; 
key> insert (vector); 
i f (key < 0) return(!done); 
f o r (k = 0; k < dimension; k++)/« put data * / 

table [key] .vec[k] = vector[k] ; 
table[key].freq++;/* count frequency • / 

aax.freq = count = empty = 0; 
for ( i = 0; i < TABLESIZE; i++) 
•{/• f ind maximum and capacity » / 

count += table[ i ] . freq; 
i f ( tab le [ i ] . f req = 0) empty++; 
i f (max.freq < table[ i ] . freq) max.freq = tab le [ i ] . f req; 
tab le [ i ] . l abe l = - 1 ; / * i n i t i a l i s e labe l » / 

}printf("\n"); 
hum.distinct = TABLESIZE-enpty; 
printf("The node i s . . " ) ; 
for ( i = 0; i < TABLESIZE; i++) 

i f ( table[i] . freq = nax.freq) 

for (j = 0; j < dimension; j++) 
pr in t f ("Xd " , table[ i ] .vec[j]) ; 

p r i n t f ("frequency Xd\n", meix.f req) ; 
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printf("Hear frequency i s X.2f \n", (float)count/(float)nu«_distinct); 
printf("luBber of d i s t inct vector %d, ", TABLESIZE-eapty); 
printf ("Total Xd\n", count); 
printf("Loading factor X.2f \n", 1.0-(float)eapty/(float)TABLESIZE); 
prihtf("Average probe length X.2f \n", (float)succlen/(float)count); 
printf("Longest hash Xd\n", Haxhash); 

retum(done); 

c l e a r . t a b l e O 

register int i , *to_int; 

for ( i » 0; i < TABLESIZE; i++) 

t o . i n t " ( int *)table[i] .vec; 
to_int[0] = 0; 
tab le [ i ] . f req = 0; 

> 
noraalise.frequencyO 

int i ; 

for ( i = 0; i < TABLESIZE; i++) 
{/• nomalise to become probablity * / 

i f ( t a b l e [ i l . f r e a == 0) continue; 
tableCi].prob = (f loat)table[ i] . freq/(f loat)Bax_freq; 

> 
int inser t (va l ) /* f ind a empty place to put data * / 
u_char val []; 

register int h i , h2, t r y , len; 

try = h i = hash!(val); 
h2 = hash2(val); 
len = 1; 
do 
< 

i f ( table[ try] . freq == 0 I I f ind( try , val)) 

succlen += len; 
break; 

/ * TABLESIZE and rehash value should be re la t ive ly prime * / 
/ * var iat ion of double rehashing, eliminate clustering * / 
try = (try+h2)XTABLESIZE; 
len++; 

} Bhi le (try != h i ) ; 

i f (len > maxhash) maxhash = l en ; /* record the longest hash » / 
i f (len >= TABLESIZE) r e t u m ( - l ) ; 
else return(try); 

int search(val)/* search vector * / 
register u.char v a l Q ; 

register int h i , h2, t r y ; 
int len = 0; 

t r y = h i = hashKval ) ; 
h2 = hash2(val); 
do 
{ 

i f ( f ind(try , val)) break; 
/ * TABLESIZE and rehash value should be re la t ive ly prime * / 
/ • variat ion of double rehashing, eliminate clustering * / 
t r y = (try+h2)XTABLESIZE; 
len++; 
i f (len = maxhash) r e t u r n ( - l ) ; / * does not exist * / 

} Bhile (try != h i ) ; 

re tum(try ) ; 

int f ind ( try, v a l ) / * same vector already, here * / 
register int t r y ; 
register u.char v a l Q ; 

register u . int *a , *b; 
"register int same = TRUE; 

a = (u. int *)val; 
b = (u. int *)table[try] .vec; 
i f (*a != *b) same = FALSE; 
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return(sase); 
> 
int haahKval) 
register u_ch&r v a l D ; 

register u_int *int_ptr; 
register int remainder; 

i n t . p t r = -(u_int * ) v a l ; / * concatenate a l l channels value * / 
remainder " *int_ptr X TABLESIZE; 

return(remainder); 
} 

int hash2(val)/* rehash Bhen c o l l i s i o n occurred * / 
register u.char v a l D ; 

register int i ; 
register u^int • i n t . p t r ; 
u.char carry[43; 

i n t . p t r >= (u_iht • )carry; 
• i n t . p t r = 0; 
for ( i = 0; i < dimension; i++)/* accumulate the remainder » / 

carry [0] = carry [1] = v a l [ i ] ; 
^ • i n t . p t r X= TABLESIZE; 

retum((int)»int_ptr); 

8ort_histogram() 

int i . j ; 
s ta t ic int tablecompO; 

h i s t . p t r = (HIST.TABLE •*)calloc((u_int)num_distinct, 
sizeof(HIST.TABLE)); 

demand(hist.ptr, cal loc fa i l ed ) ; 
for ( i = j = b; i < TABLESIZE; i++) 

i f ( table[ i ] ; freq > 0) hist.ptr[j++] = t t a b l e [ i ] ; 
qsort((char * )h i s t .p tr , num_distinct, sizeof(HIST.TABLE *) , tablecomp); 
for ( i •= 0; i < num.distinct; i++)/* write f i l e index » / 

^ hist .ptr[ i ] ->fpos = i ; 

s ta t ic int tablecomp(i, j ) 
HIST.TABLE • * i , * * j ; 

u_int *a, * b ; / » ascending order • / 

a = (u. int ») (* i ) ->vec; 
b = (u. int *)(*j)->vec; 
i f (•a > •b) re turn( l ) ; 
else return(-1); 

^et.smoothing^parameterO 

char answer [10]; 

thresh = 0.0;/* default no smoothing * / 
smoothsize " 3;'/* minimum smooth size * / 
printf("Do you want to smooth the histogram ? "); 
scanf("Xs", answer); 
i f (answer[0] != 'n') 

printf("Enter the probablity threshold for smoothing, 0 to 1 "); 
scanf("Xf", tthresh); 
printf("Enter the window size for histogram smoothing, 3 , 5 , 7 . . . ") 
scanf("Xd", tsmoothsize); 

> 
/********************************************************************** 

» You are reading smooth2.c • 
• Functions to smooth the histogram generated by h icap l . c • 
• leighborhood s ize are 3 ,5 ,7 . . . e t c . * 
* K.S.LAU 13-9-90 « 
* » » * • • • » » • • • • • • » * • • • • • • * » » » * * * • • • • * • » * * » » » • » * * * • * • * » » « » » » * * * * • » • * • * • • • / 

finclude "hicap.h" 

smooth.hi8togram() 

u.char p lusof f [4] ; /» resultant vector(offseted) * / 
iht i , j , k, 

x i . x j , 
l e v e l i / * l eve l = 0, for smoothsize = 3 * / 
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•axneigh;/* nunber of elenents * / 
f l o a t sun, 

Bsize ; 

VECTOR •offset; 
for (level « 1, i » 3; i < snoothsizo; l+=2) level++; 
ssize ' pos((double}sBoothsize, (double)dinension); 

•axneigh = (int)ssize -1; 
offset F (VECTOR *)calloc((u.int)naJcneigh, (u.int)sizeof (VECTOR)); 
denand(offset, offset calloc fa i l ) ; 

/ • generate offset vector table • / 
offset_table(sBoothsize, l e v e l , naxneigh, offset); 

for (i " 0; i < nun.distinct; i++) 
{. I* conpute nezm for each distinct vector • / 

xi « h i8 t_ptr [ i ] - tab le ; 
/ • snooth only cel l with frequency loser than thresh * / 

i f (tableCxi].prob > thresh) continue; 

SUB = 0.0; 
sun += tableCxi].prob; 
for (j » 0; j < Baxneigh; j++) 
{/* find a l l neighbor • / 

f o r (k = 0; k < 4; k++) 
plnsoffCk] »• hist_ptr[i]->vec[k]+offset[j].vec[k]; 

xj = search(plusoff); 
^ i f (xj >= 0) SUB += table[xj].prob;/• found • / 

table[xi].prob = sun/ssize; 

free((char *)offset); 

offset_table(size, celldist, naxneigh, off) 
int size,/* sindoD size * / 

celldist , /• greatest cel l difference from center • / 
Baxneigh;/• number of neighbor • / VECTOR •off; 

char start, count; 
i n t i , j , cycle, period, channel; 

for (i = 0; i < maxneigh; i++)/* initialise * / 
for (j = 0; j < 4; j++) 

off [ i ] . vec [j] = 0; 

for (channel = 0; channel < dimension; channel++) 
{ / • s tar t n i t h channel 0 * / 

s tar t = celldist*cell_size; 
count = s t a r t ; 
period = (int)poB((double)size, (double)(dinension-channel-D); 
cycle = period; 

for ( i = 0; i < maxneigh/2; i++) 

i f (cycle >= period) 

count += cell.size; 
cycle = 0; 

cycie++; 
i f (count > start) count = -start; 
off[i].vec[channel] = count; 

for ( i = 0; i < maxneigh/2; i++)/^ another half • / 
for (j = 0; j < dimension; j++) 

^ off[Baxneigh-l-i].vec[j] = .-off[i] .vec[j]; 

/ * * • • • • • • • • • • * • • • • • • * • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • * • * • • • • • • • * * • 
* You are reading graph2.c • 
* This f i l e contains functions of the valley seeking • 
* clustering algorithm shich used to cluster the histogram. • 
* Functions to construct directed graph. * 
* graph.c by K.S.LAU 2-10-90 • 
• * • • • • • • • • • • • * • » * • • • • • • » • • • • • • • • • • • • • • • • • • • • • • • • » * • * * • • • • • • • • • • • • • / 

•include "hicap.h" 
•include "graph.h" 

static int »8et,/* vectors in the same cluster • / 
•stack,/• for depth first search * / 
count.node,/• nunber of node used * / 
niuncalloc;/^ hunber of cal l to calloc • / 

static TREE.HEAD •nes, •old;/* for depth f irst search • / 
static TREE •freelist[HAX.ROOT];/* for freeing of node • / 
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/• 
Valley seeking algorithn. 

int dens i ty^gr^hO 

int i , done » TRUE, 
•axneigh,/* aax nuMber oi neigh • / 
huaneigh, 
x i , x j ; 

u . in t neighlist[IOS.IEIGH];/* contain the neighbors * / 
f loa t gradient; 
TREE *teBp; 
TREE.HEAD «vertex; 
LIST 'head " l U L L , / * head of root l i s t • / 

•root; 
VECTOR offset[iaS.IEIGH]; 
s ta t i c LIST rl ist[MAX.ROOT];/• for root head l ink l i s t » / 

nua.clus = count.node « nuacalloc = 0;/* i n i t i a l i s e * / 
yertex = (TREE.HEAD *)cal loc((u. int)nua.di8t inct , sizeof(TBEE.HEAD)); 
deaand(vertex, vertex ca l loc f a i l ) ; 
set » ( int *)cal loc((u_int)nun.dist inct , sizeof(int>); 
deaand(set, set ca l loc f a i l ) ; 
s t a c k " ( int *)calloc((u_int)nuD_distinct, s izeof ( in t ) ) ; 
deaand(stack, stack cal loc f a i l ) ; 

Baxneigh = (int)poB(3.0, (double)diaension)-l; 
offset_table(3, 1, aaxneigh, offset); 

if or ( i = 0; i < nura.distinct; i++) 
•C / * for every d i s t inct vectors * / 

x i = h i s t_ptr [ i ] - table ; 
/ • f ind the aaxiaun density gradient of a neighbourhood * / 

get.numneigh.maxgrad(Baxneigh, hist.ptr[i!l->vec, x i , » x j , 
ne ighl i s t , tnumneigh, tgradient, offset); 

i f (nunneigh = 0) 
{ / * th is i s a root * / 

i f (!(nun.clus < HAX.ROOT)) 
{ f inish(vertex, set, stack); returnCdone); } 

root = trlist[nuB.clus++3; 
root->key = x i ; 

head = f ront_o f . l i s t ( roo t , head); 
continue; 

i f (gradient < 0.0) 
{/• th i s i s a root » / 

i f (!(num.clus < HAX.ROOT)) 
i f inish(vertex, set, stack); return(!done); } 

root = trlist[num_clus++]; 
root->key = x i ; 
head = f r o n t . o f . l i s t ( r o o t , head); 

else i f (gradient > 0.0) 
{ / * l i n k xj to x i * / 

temp = get .nodeO; 
temp->key = x i ; 
vertex[table[xj].fpos].node 
= front.of_tree(temp, vertex[table[xj].fpos].node); 

else / * gradient = 0 * / 

xj = avoid.cycle(vertex, thead, x i , ne ighl i s t , 
numneigh, r l i s t ) ; 

switch (xj) 

case -1 : 
break; 

case -2: 
f inish(vertex, set , stack); 
retuirnddone); 
break; 

default: 
/ » l ink xj to x i * / 
temp = get.nodeO; 
tenp->key = x i ; 
vertex[table[xj] .fpos] .node 
= front.of.tree(temp, vertex[table[xj].fpos].node); 
break; 

} 
> 
get .cluster. label(vertex, head); 

f inish(vertex, set , stack); 
return(done); 

get.numneighjsaxgrad(maxneigh, me, x i , x j , ne ighl i s t , numneigh, gradient, off) 
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u.char *me; 
int x i , *xj, 

•axneigh, 
•nuaneigh; 

n_int neighlist • ; 
float *gradient; 
VECTOR off [] ; 

u.char •to.charl, • ' tcchara; 
u.int plusoff; 
int i . j . 

•ax.neigh; 
float aax.grad; 

•nuroeigh » 0; «ax.grad = SMALL; 
to.charl " (u.char *)tplus6ff; 
for (i = 0; i < aaxneigh; i++) 
</* for a l l possible neighbor * / 

for (j " 0; j < 4; to.charlCj] « meCjl+off [i] .vecCj]; 
i f ((*xj = search(to_charl)) < 0) continue;/* not exist * / 
•gradient «= getjgra:dient(xi, •xj); 

(•ax.grad < •gradient) 

•ax.grad » ^gradient; 
^ aax.neigh « •xj; 

to.char2 " (u.char •)»neighliBt[^nu»meigh];/• get neighbor * / 
for (j = 0; j < 4; j++) to.char2[j] = table[*xj] .vec[j]; 

^ (*nuaneigh)++;. 

*gradient = nax.grad; 
•xj = Kax.neigh; 

finish(vertex, set, stack)/^ free a l l memory when finish * / 
TREE_HEAD •vertex; 
int •set, •stack; 

free((char •)vertex); free((char •)set); 
free((char •)stack); free.nodeO; 
} 

TREE •get.nodeO/^ get some memory • / 

int s ize l ; / • the number of elements get each call • / 
static TREE •head; 

sizel = num.distinct; 
i f (count.node >= sizel) count.node = ©;/• reset • / 
i f (count.node = 0) 

head = (TREE •)calloc((u.int)sizel, sizeof(TREE)); 
demand(head, get.node fa i l ) ; 
demand(numcalloc < MAX.ROOT, freelist overflow); 
freelist[numcalloc++] = head; 

count.node++; 

return(theadCcourit^node-l]); 

free.nodeO 

int i ; 

for (i = 0; i < numcalloc; i++) free((char •)freelist[i]); 

/ • avoid forming directed cycle • / 
int avoid.cycle(vertex, root.head, x i , neighlist, numneigh, r l is t ) 
int x i , 

numneigh; 
u.int neighlist • ; 
LIST ••root.head,/• point to head of root l i s t • / 

r l i s t • ; 
TREE.HEAD •vertex; 
int i , count = 0, 

card, 
xj; 

LIST •pi.head, 
•node, 
l i s t [ lOS.IEIQH]; 

pi.head = lULL; / • initialize * / 
for (i » 0; i < numneigh; i++) 
{/* for a l l neighbor of xi • / 

xj = searchUu.char •)»neighli8t[i]); 
i f (get.gradient(xi, xj) == 0.0) 
•{/• construct set p i * / 

demand(count < IOS_IEldH, avoid cycle fa i l ) ; 
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node = tlis.t [count++] ; 
node->key = xj; 

^ pi.head = front.of.list(node, pi.head); 

/ * eliminate xj that has a path to x i * / 
eliminate(vertex, ftpi.head, xi); 
card « check_cardinality(root.head, pi.head, x i , r l i s t ) ; 
switch (card) 

case - 1 : return(-2); break;/* return and try again * / 
^ case 0: return(-l); break;/* return and do nothing * / 

return(minimum_di8tance.node(pi.head, x i , neighlist, numneigh)); 

/ * eliminate path that already exists * / 
eliminate(vertex, pi.head, xi) 
int . x i ; 
LIST **pi.head; 
TEEE.HEAD •vertex; 

/ • search tree with xi as a node for any path • / 
int stack.pos, num; 
TREE_HEAD *temp; 
TKEE •another; 

/ * delete node in trees • / 
stack.pos = num = 0; 
/ • xi is not a parent node yet * / 
i f ((another = find_alone.node(tvertex[table[xi].fpos])) == lULL) 

return; 
8tart.depth.first(vertex, tstack.pos, tnum, x i , another); 
do 

temp = depth.fir8t.8earch(vertex, tstack.pos, tnum); 
old = new; 
new = temp; 

} while (stack.pos != 1); 

check.cycle(pi.head, num); 
reset_tree(vertex, num); / * reset the tree status * / 

/ • check number of nodes in a tree * / 
int check.cardinality(root.head, pi.head, x i , r l ist) 
int x i ; 
LIST *pi.head, **root.head, r l is t • ; 

int count; 
LIST •node; 

count = 0; 
node = pi.head; 
while (node != lULL) 
i / • count number of elements • / 

++count; 
node = node->next; 

} 
i f (count == 0) 
•C / • made xi a root • / 

i f (!(num.clus < HAX.ROOT)) return(-l); 
node = tr l i s t Cnum.clu8++]; 
node->key = xi ; 
•root.hcad = front.of_list(node,••root.head); 

} 
return(count); 

check_cycle(pi.head, num) 
int num; 
LIST ••pi.head; 

int i ; 
LIST •this, •last, dummy; 

dummy.next = •pi.head; 
for ( i =• 0; i < num; i++) 
{ / • for a l l node in this branch • / 

this = dummy.next; 
last - tdummy; 
while (this != lULL) 
i / • for a l l node in set pi • / 

i f (setCi] == this->key) 
{ / • delete an element • / 

last->next = thi8->next; 
break; 

last = this; 
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th i s = this->next; 
^ } 

*pi_he&d » duaay.next; / * renes the head » / 

/ * f ind the closest node * / 
int •iniaua_distance_node(pi_head, x i , ne ighl i s t , nuiineigh) 
int x i , 

niutneigh; 
n . in t ne ighl i s t • ; 
LIST •pi .head; 
int i , f i r s t = TRUE, 

• in .ne igh , 

f loat «in_dist , d i s t ; 
LIST • t h i s ; 

f o r ( i •= 0; i < nuwieigh; i++) 
{ / • for a l l node in neighborhood l i s t • / 

xj » search«u_char •Xtne ighl i s tCi ] ) ; 
this » pi_head; 
shi le ( this != lULL) 

i f (this->key «> xj) 
{ / • compare distance • / 

i f ( f i r s t ) 
{ / • i n i t i a l i s e • / 

min.dist = distance(xi , x j ) ; 
min.neigh = x j ; 

f i r s t = FALSE; 

else 
{ 

d i s t = distance(xi , x j ) ; 
i f (min_dist > dis t ) 

{ 
min.dist = d i s t ; 
min.neigh = x j ; 

} 
} 
th is = this->next; 

} 

return(min.neigh); 

/ • trace a l l node in a tree * / 
get .c luster. label(vertex, root.head) 
TREE.HEAD •vertex; 
LIST *root^head; 
{ 
int i , 

count,/* check result * / 
stack.pos, 
num, 
labe l ; 

LIST »this; 
TREE.HEAD *temp; 
TREE *another; 

count = labe l =0; /* inva l id label are -1 * / 
th i s = root.head; 
while (this •= TOLL) 
{ / * search a l l trees with known root * / 

stack.pos = num ? 0; 
another = find.alone.node(tvertex[table[thiB->key].fpos]); 
i f (another == lULL) 
{ / * single node • / 

tableCthis->key].label ?= label++; 
th i s = this->next; 

count++; 
continue; 

s tart .depth.f irst (vertex, ftstack.pos, Jtnum, this->key, another); 
do 

temp = depth.first .search(vortex, tstack.pos, tnum); 
old = new; 
new = temp; 

} while (stack.pos != 1); 
this = this->next; 
for ( i = 0; i < num; i++) table [se t [ i ] ] . labe l = labe l ; 
label++; 

^ count += num; 

demand(count ~ num.distinct, graph construction error); 

337 



f loat get_gradient(xi, xj) 
int x i , x j ; 

f loat grad; 

grad ' ( table[xj] .prob-tablo[xi] .prob)/distance(xi , x j ) ; 

ratarn(grad); 

f loat distanceCxi, xj) 
int x i , x j ; 

int i ; 
f loat d i s t ; 

d i s t K 0.0;/* square Euclidean distance * / 
for (1 = 0; i . < dimension; i++) 

dist += SQUARE((float)table[xi] .vec[i]-(f loat)table[xj] .vec[i]) 

re tum(sqrt (d is t ) ) ; 

s ta t ic 
re8et_tr.ee(yertex, nu«) 
int nuji; 
TREE_HEAD •vertex; 

int i ; 
TREE *thi8; 

for ( i = 0; i < nuo; i++) 
< / • reset a l l status • / 

t h i s = vertex[table[set[i]] .fpos] .node; 
ohi le (this != TOLL) 
{ 

this->status = lOTVISIT; 
th is = this->ne'xt; 

} 
> 

/ • i n i t i a l i s e depth f i r s t search • / 
s ta t ic 
s tart .depth . f i rs t (yertex i stack.pos, niim, root, node) 
int •stack.pos, •nuo; 
int root; 
TREE.HEAD •vertex; 
TREE •node; 

stack[(*stack.pos)++] = root; / • put root to stack • / 
set[(•num)++] = root; / • put root to cluster • / 
stack[(^stack.po8)++] = node->key; / • put node to stack * / 
set[(^nun)++] = node->key; / • put node to cluster • / 
node->statU8 = VISIT; / • v i s i t node * / 
new = Jtvertex[table[node->key] .fpos] ; / • for back track • / 
old = tvertex[table[root].fpos]; / • for back track • / 

TREE.HEAD •depth.first .search(vertex, stack.pos, nuo) 
in t •stack.pos, •nuo; 
TREE.HEAD •vertex; 

TREE •node; 

i f ((node = depth.first .next(vertex, stack.pos)) = TOLL) 
retum(TOLL); 

stack[(^stack.pos)++] = node->key; 
set[(•nun)**] = node->key; 
node->status ? VISIT; 

return (tvertex [table [!node->key] .fpos]); 

TREE • depth.first .next(vertex, stack.pos) 
int •stack.pos; 
TREE.HEAD •vertex; 
i / • f o r directed graph • / 
TREE •node; 

if((node = find.alone.node(new)) == TOLL) 

while(node == TOLL) 
{ 

/ • delete stack • / 
•stack.pos -= 2;. 
new = tvertex[table[stack[•stack.pos]].fpos]; 
(•8tack.pos)++; 
node = find.alohe.hode(new); 
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i f (•stack.jpos 1 tk node »= lULL) return (lULL); 

> 

return(node); 

s ta t i c 
TREE * find.alone.node(head) 
TREE.HEAD ihead; 

TREE *this ; 

th i s » head->node; 
sh i l e ( th i s != lULL) 
{ 

i f (this->status »= lOTVISIT) re tum(th is ) ; 
th i s = thi8->next; 

^ return(TOLL); 

s ta t i c 
LIST • front .of . l i s t (new, head) 
LIST •neB, •head; 

neB->next = head; 
head - neB; 

retum(head); 

s ta t i c 
TREE •front_of_tree(neB, l i s t ) 
TREE •neB, • l i s t ; 
neB->next = l i s t ; 
l i s t = neB; 

r e t u m ( l i s t ) ; 

/••••••*«*••••«••••*•**••**••*•••****•**•••*••**••**•••*••*•••••••• 
• You are reading outputl .c • 
• Functions to obtain cluster s ta t i s t i c s generate by graphl.c • 
• K.S.LAU 8-10=90 • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • / 

• include "hicap.h" 
•include "graph.h" 
•include "output.h" 

get_c luster . s tat i s t ic ( s tat , nean, label) 
STAT 8tat[HAX_R00T]; 
f loat Bean n[MAX.ROOT]; 
char labein[MAX.XSIZE]; 

u.char i,/* remainder to Bap vector • / 
• to .char , 
vector[4]; 

register int i , j , k, a, b; 
int x i , 

shoB,/^ number of cluster to be print on screen • / 
c lass , index, 
numcell[MAX.ROOT];/• number of d i s t inct vector in each cluster • / 

f loat i n t r a . d , i n t e r . d , 
intra.sum, inter.sum, 
sd, 
graup.var[DIMEISIOI]; 

printf("class numpix numcell "); 
f o r ( i = 0; i < dimension; i++) pr in t f ("mean[W] ", i ) ; 
pr int f (" intra , d i s t . "); 
f o r ( i = 0; i < dimension; i++) printf("8d[Xd] " , i ) ;pr int f (" \n") ; 

to.char = (u.char • ) s t a t ; A i n i t i t a l i s e • / 
f o r ( i = 0; i < sizeof(STAT)^MAX.EOOT; i++) to .char[ i ] = 0; 
f o r ( i = 0; i < MAX.ROOT; i++) numcell[i] = 0; 

f o r ( i = 0; i < TABLESIZE; i++)/^ count c luster 's d i s t inct vector • / 
i f ( tab le [ i ] . l abe l >= 0) numcell[table[i].label]++; 

for (a = 0, i = top.y; i < top.y+Bin.ysize; a++, i++) 
for (b = 0, j = top_x; j < top.x+Bin.xsize; b++, j++) 
{/• obtain the labe l for each pixel • / 

for (k = 0; k < dimensloh; k++) 
{/• map the pixel into histogram • / 

vector[k] = image[k][a][b]; 
r = vector[k]Xcell_size; 
vector [k] -= r ; 
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} 
for ( ; k < 4; k++) vector[k] = 0; 
x i = 8«arch(vector); 
label[a][b] ' tab le [x i ] . l abe l ; 

} 

f o r ( i » 0; i < Bin.ys ize; i++) 
f o r (j = 0; j < Bin_xsize; 
{/• coapute Stat for each clusters * / 

index » l a b e l [ i ] [ j ] ; 
for (k = 0; k < diaension; k++) 

Stat [index]. suaCk] += <float)iaage[k] [ i] [j] ; 
8tat[index].Bsq[k] += 

^ SQUARE((float)iBage[k][i][j]); 

Stat[index].nuB++; 

for ( i = 0; i < nuB.cltts; i++)/* coapute cluster aean • / 
f o r (j » 0; j < diaension; 

aean[j][ i ] " 8tat[ i ] . sua[j ] / ( f loat)s tat[ i ] .nua; 

intra_sua = 0 . 0 ; 
for ( i = 0; i < nua.clus; i++) 

printf("X3d, X8d, X8d. 3, s tat [ i ] .nua, nuace l l [ i ] ) ; 
f o r (j = 0; j < dimension; j++) 

printf ("X8.If , ", aean[j][ i ] ) ; 
i n t r a . d = intra_distance(stat[ i ]); 
p r i n t f ("%8.If ", sqrt(intra;.d)); 
intra.sum += i n t r a . d ; 
for (k = 0; k < dimension; k++) 

sd = ( ( f loat)stat[ i ] .num*stat[i] .ssq[k] 
-SQUARE(stat[i] .sum[k]))/ 

SQUARE((float)stat[i] .num); 
printf("%6.If ", sqrt(sd)); 

}printf("\n"); 

p r i n t f ("SUM IITRASET DISTAICE 5i5.2f\n\n", intra_8um); 

shoB = (nura.clU8 > LIMIT) ? LIMIT : num.clus; 
i f (shoB != nura.clus) 

printf("Only the f i r s t %d clusters are shown.\n", LIMIT); 
printf("IITER CLUSTER DISTAlCE\n");printf(" "); 
f o r (class = 1; class < shoB; cla8s++) 

printf("X4d " , c lass); 
printf ("\n"); 

inter.sum = 0 . 0 ; 
f o r ( i = 0; i < shoB-1; i++) 

printf("X2d ", i ) ; 
for (class = 0; class < i ; cla8S++) pr int f (" "); 
f o r (j = i+1; j < shoB; j++) 

get.Bithin.gfoups.varieuice(i, j , s ta t , group.var) ; 
i n t e r . d =0 .0 ; 
for (k = 0; k < dimension; k++) 

i n t e r . d += ( ( ( f loat)stat[ i ] .num*(float)stat[j] .num) 
*SQUARE(mean[k] [i]-mean[k] [j] )) 

/((float)(stat[i].num+stat[j].num) 
•group.var[k]); 

i n t e r . d = sqrt ( inter .d) ; 
inter.sum += in ter .d ; 
printf ("X6.If , ", in ter .d ) ; 

printf ("\n"); 

jrintf("S0M IITER CLUSTER DISTAICE XS.2f\n\n", inter.sum); 

get_Bithin_groups_variance(cl, c2, s tat , group.var) 
m t c l , c2; /* Bhich group * / 
STAT »8tat; 
f loa t »group_var; 

register int k; 
f loa t s s q l , ssq2; 
/ * • • • * * * • • • • • • * • • * * * * * * • • * • • • * • * * • * • • • • * • * * • • • • • • * • • « * • • * * • • * 

Ref:Pearson, K. 1936 ' 
On the coefficient of r a c i a l l ikeness. 
Bioraetrika 18, 105. 

************************************************************/ 

for (k = 0; k < dimension; k++) 

ssql = ( ( f loat)stat[c l ] .num*stat[cl] .S8q[k]-SQUARE(stat[cl] .sum[k])) 
/ (f loat)(stat[cl] .num-1); 
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ssq2 •= <(float)stat[c2] .nua*stat[c2] .S8q[k]-S(3UARE(statCc2] .sun 
/ ( f loat ) (stat[c2] .nun-1); 

group.Yar[k] = (8sql+ssq2) 
/((float)stat[cl].num+(float)stat[c2].nuB-2.0); 

f loat intra_di8tance(8ub) 
STAT sub; 
{ 
int i ; 
f loat sun = 0.0; 
i f (sub.nun == 1) return(O.O); 

f o r ( i • 0; i < dinension; i++) 
sun +- ((float)sub.nun • sub.ssqCi] - SQUABE(sub.sun[i])) 

/ ((f loat)8ub.nu» • ((float)8ub.nun-1.0)); 

return(2.0*sun); 
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Appendix I 

Programs of the Spatial-Spectral 
Clustering Algorithm 

/•*••*•**»•••***•»*•••••****»•»»•••»••««««««•»*»»*•••••»»»•*••••••******* 
* The Spatial-Spectral, c lustering algorithm (bottom-up approach) 
* includes: 
* 1) bmirsl .c 
* 2) buseg2.c 
* 3) bhc3.c 
* 4) bu.h 
* bmirsl .c and buseg2.c i s to perform bottom-up segmentation, and 
* segments are store i n a f i l e , th is f i l e i s input to bhc3.c and the 
* segments clustered. 
* 
* The Spatied-Spectral clustering algorithm (top-doon approach) 
* includes: 
* 1) rs t3 .c 
* 2) mffl3.c 
* 3) tdsegS.c 
* 4) bhc3.c 
* The mst algorithm i s not included because i t i s a s impli f icat ion 
» of the r s t3 . c 
* Use r s ta . c to construct a CEST, then store spanning tree in a f i l e . 
* mm3.c read a spanning tree f i l e , and part i t ion i t using minimax method 
* the removed l inks and the spanning tree i s stored in a f i l e . 
* tdseg3.c read i n a f i l e created by either rst3 .c or mm3.c and generate 
* a user specif ied number of segnents then store th is segments in a f i l e 
* bhcS.c read a f i l e generated by tdsegS.c and cluter the segments. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* You are reading c luster .h * 
****************************************************************/ 

tinclude <malloc.h> 
•include <8tdio.h> 
•include <math.h> 
•include <pixrect/pixrect_hs.h> 

•define 
•define 
•define 
•define 

DIHEISIQI 
HAX_XSIZE 
1IAX_YSIZE 
HAX.CLUS 

•define DUPLICATE 
•define UIIQUE 

•define lOTVISIT 
•define VISIT 
•define TMPVISIT 

3 
128 
128 
15 

1 
0 

0 
1 
2 

/ * meucimum image size * / 

/ * f ind single node * / 

/ * depth f i r s t search » / 

•define SQUARE(x) ( (x )»(x) ) / * macro for square * / 
•define demand(fact, remark) {\ 

i f (!(fact)) .{\ 
fpr int f ( s tderr , "demand not met: fac t \n") ; \ 
fpr int f ( s tderr , "remark\n");\ 
e x i t ( l ) ! \ 

}\ 

/•••••••*******»»•»***••**»**»»«»•«»«*•**•»»••**•**•*•*******•*••*** 
• You are reading bu.h • 
* * * * * * * * * • • * * * • • • * * • • * • • * * • • • * • * * • * * * * * * * « * * * * * * * • * * * • • * * « * * • * * • * • * / 

•include '<string.h> 
•include <malloc.h> 
•include <stdio.h> 
•include <math.h> 
•include <pixrect/pixrect_hs.h> 
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•define ROOT l / » labe l for root * / 
•define IRQOT !ROOT 
•define VISIT 1 / * depth f i r s t search » / 
•define lOTVISIT 0 
•define MAX_XSIZE 128 
•define HAX.YSIZE 128 / • Baxinim inage size * / 

/ * * * * • * • • • « « • • • * « * « • • • • * • « • STRUCTURE DEFIIITIOI « • • • • • • » • * • • • • » » » * » » • / 
typedef struct l i n k { 

int nodel,node2; 
f loa t weight; 
struct l i n k 'next; 
struct l i n k ' l a s t ; 
struct l i n k *other; 

}LIII; 

typedef struct tree { 
int node.pos; 
struct tree *next; 
char status; 

}TREE; 

typedef struct { 
int, node.tag; 
TREE •node; 

>LIST_HEAD; 

typedef struct { 
f l oa t sun[DIHEISIOI]; 
int nun.vec; 

>STAT; 

/ • * * * * • * • « • • * • * • * • • * * « « • • • * * STRUCTURES DECLARAIOI * • • * * * • * * • * • * * * * * • * * • / 
typedef struct tree { 
int node.pos; 
struct tree *next; 
char status; 
}TREE; / * nenory i s allocated in order of declaration » / 

typedef struct < 
int node.tag; 
struct tree *node; 
}LIST_HEAD; 

typedef struct { 
int nodel; 
iht node2; 
}UIH1UE_LIIK; 

typedef struct < 
UIiqUE_LIIK node; 
f loa t weight; / * interset distance of segments * / 
>LIIK; 

typedef struct •£ 
int mm_node; 
f loat var; 
char root; 
}HIIIKAX_IODE;/» for minimax only • / 

typedef struct { 
f loa t sumCDIHEISIOI]; 
f loa t ssqCDIMEISIDI]; 
int num_vec; 
int num_seg; 
}IODE_HTREE;/* for minimax only * / 

typedef struct l i s t { 
UIiqUE_LIIK node; 
f loa t weight; 

struct l i s t *next; 
struct l i s t *last; 
H I S T ; 

typedef struct •£ 
f loat sumCDIHEISIOI] ; 
f loat ssqCDIHEISIOI]; 
int num_vec; 
}STAT; 

/ * * * • * * * * * • • * * * * * * * * * * * * * * * * FUICTIOI PROTOTYPES **********************/ 
/ » FOR COISTRUCTIIG RST AID SST • / 
char * get_maBory(); 
f loa t get_intraset_distanca(); 
f loat s i n g l e . s i n g l e O ; 
f loat single_group(); 
f loa t ^rpup.groupO; 
f loa t intra_distance(); 
STAT add_struct(); 
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STAT segment.stat ist icO; 
L I S T * l ightes t_ l ink() ; 
TREE » gat_node(); 
TREE » depth_firBt_next(); 
TREE * find_alona_node(); 
TEEE • front_of_tr9o(); 
LIST_HEAD • depth_fir8t_class( ) ; 

/ • * • * • • * * * * • • * • * • • * • • * • * * * • • FUICTIOI PROTOTYPES * * • • • • * * * * * • * * • * • • • * • * / 
/ • FOR HIIIHAX * / 
STAT got_tree_varianca(); 
TEEE * depth_fir8t_attr ibute() ; 
LIST_HEAD * depthi.f i r a t . r e . a t t r i b u t a O ; 
LIST_HEAD • depth_first_link_8un_8quare(); 
LIST.HEAD » depth_first_l ink(); 

. / ****************************«***«************************************* 
• You are reading prograna rs tS .c 
• THis prograa i8 to construct a CEST shich use global inforaation. 
* laage segaentation. based, on graph theoretic approach. 
* At the beginning only l o c a l mfomations are used, 
• Bhen aore and aore vertices are merged, aore and aore 
• global inforaations B i l l be added. 
• To obtain n segaents the heaviest a-1 l inks s i l l be deleted. 
* To further iaprove the CEST, top-doBn ainimax aethod can be 
• used to select the l inks to be deleted. 
• There are eight neighbours to each p ixe l s . 
* The pattern vectors are tso disensional. 
• * • * * • * OILY CALCULATE THE CEST,DOSE lOT OBTAII THE SEGMEITS * • * » • 
* • * * • • • THE TEEE IS SAVE 01 THE HAED DISK FILE • * * * * » 
* K.S.LAU 20-1-92 
**********«**«*******************«************************************ 

tinclude <string.h> 
•include <nalloc.h> 
tinclude <stdio.h> 
tinclude <pixrect/pixrect_h8.h> 

STRUCTURE DEFIIITIOI * * * • • • • * * * * * * * * • • • * • • / 
typedef struct {/* to store l inks in the spanning tree * / 

int nodel,node2; 
f loat weight; 

}UIIQUE_LIIK; 

typedef struct l i n k {/• to store l inks i n the image graph • / 
int nodel,ndde2; 
f loat weight; 
struct l i n k 'next; 
struct l i n k » las t ; 
struct l i n k tothar; 

}LIIK; 

typedef struct tree { / » structure to store spanning tree, • / 
int node.pos; 
struct tree »next; 

}TREE; 

typedef struct {/* structure for a l i s t of a l l the nodes * / 
int node.tag; 
TREE *node; 

}LIST_HEAD; 

typedef struct {/* store the sum and number of nodes i n a region * / 
f loa t sumCDIHEISIOI] ; 
int nura_vec; 

}STAT; 

/ » • * * • • • • » » * • • • • • * • * « * • » » * • • FUICTIOI DEFITIOIS * « * * • • • » • • * » * » * * * * * • • • * • / 
char * get.memoryO; 
f l oa t l ink .weightO; 
f l oa t new_weight(); 
STAT add_struct(); 
STAT get_pix_value(); 
LIIK * l i g h t e s t O ; 
LIIK * jumpO; 
LIIK * compress(}; 
TREE • ffont_of_tree(); 

/**************************** GLOBAL VARIABLES * * * * * * * * * * * * • * * * * * • * * * * * / 
U.char imageCDIHEISIOI]CMAX.YSIZE]CMAX.XSIZE]; 
int dimension,/* dimension of the input multspectral image * / 

top.x, top .y , /* top l e f t coordinates of the window i n the data f i l e 
• / 

win.xsize, win.ysize;/* the size of the window-to be processed * / 
struct ras ter f i l e header;/* the header of data f i l e , SUI ras ter f i l e * / 
LIIK *edge8, head; / * edges for array, head for l i s t * / 

mainO 
{ 

int 8, 
t o t a l . l i n k , / * number of l inks i n the image graph * / 
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coapO , / • function f o r quick sort conparsion • / 
cpu.tiae; 

LIST.HEAO *vertex;/* l i s t of a l l nodes i n the iaage */ 
UIiqUE.LIlK *unique_link, **heavy;/* to store the l i n k i n spanning 

tree * / 

printf("GEIERATIOI OF RECURSIVE SPAIIIIG TREE AID STORE DATA 01 DISK\n"): 

clockO ; / * count cpu tiae */ 
get_data();/• get input iaages * / 
t o t a l . l i n k = nuaber.linkO ; / • nuaber of l inks i n the iaage graph • / 
/ * al locate array of structure for l inked l i s t of tree * / 
vertex = (LIST.HEAD •)get_aeaory(Bin .xs ize*Bin.y8ize, sizeof(LIST.HEAD)); 
/ * aenory to store a l l l i n k s in the iaage graph * / 
edges = (LIIK *)get.aeaory(4»Bin.xsize*Bin.ysize-4, s izeof(LIIK)); 
/ * al locate array of structure for unique l i n k ( l ink i n spanning 

tree • / 
unique.l ink " (UIIQUE.LIIK *)get^eaory (Bin.xs ize*Bih_ysize- l , 

sizeof(UIIQUE_LIIK)); 

/ * coapute a l l Beight of l inks * / 
printf("Calculat ing the l i n k Beight. \n"); 
get . l inkO; 

printf("Doing the recursive aerging.. . \n">; 
recru.tree(unique. l ink, vertex); /* aain function to do CEST * / 

/ • free the edges aenory */ 
free((char «)edges); 
/ * al locate array of pointer f o r sorting array of structure * / 
/ * sort the l ink in spanning tree in descending.order of Beight */ 
heavy = (UIIQUE.LIIK ••)get_Bemory(Bin.xsize*Bin.y8ize-l, 

sizeof(UIiqUE.LIIK • ) ) ; 
/ * i n i t a l i z e array of pointer point to unique l i n k * / 
for (s = 0; 8 < Bin_X8ize*Bin .ys ize- l ; s++) heavyCs] = tunique. l ink[s]; 
/ * sort the unique l i n k * / 
qsort((char *)heavy, Bin_xs ize*Bin.ys ize- l , sizeof(UIIQUE.LIIK *) , conp); 
cpu.tine = clockO ; / * count cpu time * / 
printf("Run time Bas %.2f sec. \n", cpu.time / l .OeS); 

rs t_f i le (vertex , heavy);/* Bri te the spanning to a f i l e * / 

} 
/ * * * • • * • • * • • • • * * * * * * * * * * * * • • * EID OF HAII *****************************/ 

|et_data()/* get input image. * / 

char filename[DIHEISIOI][bO]; 
int i , j ; 
FILE *f[DIMEISIOI]; 
struct rasteriile head[DIHEISIOI]; 

printf("Enter the number of channel to be used < 4, "); 
scanf("Xd", kdimension);/* specify number of bands in image * / 

for ( i = 0; i < dimension; i++) 
{/* input filename * / 

printf("Enter the channel filename Xd, ", i ) ; 
scanf ("Xs", (char *)Jtfilename[i] [0] ) ; 
f [ i ] = fopen((char • ) « i l e n a n e [ i ] [0] , "r") ; 
demand(f[i], Cannot open f i l e ) ; 

/ • store header in global area, for la ter use * / 
fread((char *)»header, sizeof(struct r a s t e r f i l e ) , 1, f [0 ] ) ; 
reBind(f [0]); 
for ( i « 0; i < dimension; i++) 
{/* read data * / 

froad((char »)*head[i] , sizeof(struct r a s t e r f i l e ) , 1, f [ i ] ) ; 
demand (header. ras;.length == head[i] .ras. length. 

Hake sure the images has the same size and coordinates); 

printf("The images size i s Xd\n", header.ras.Bidth); 
printf("Enter the BindoB Bidth (xsize), " ) ; 
scanf("Xd", tBin.xsize);/* process sindoB xsize */ 
printf ("Enter the sindou height (ysize), " ) ; 
scanf("Xd", tBin.ysize);/* process BindoB ysize * / 

/• i n this study a l l image f i l e are S12 x 512, and top l e f t 
coordinates are (330, 60) of in a B format HETEOSAT image */ 

printf ("Enter the top- left sindoB coordinate 
of the image to be processed, \n"); 

printf ( " \ t x : "); scanf("Xd", t top .x) ; 
printf ("\ty: " ) ; scanf ("Xd", kt.op.y); 

demand(head[0].ras.Bidth >= vin.xsize+top.x. 
The sindoB i s out of range\, please reduce size); 

f o r ( i = 0; i < dimension; i++) 
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fseek ( f[i], (long)(top_y»head[i].ras_Hidth+top_x), 1); 
f o r ( i = 0 ; i < dinension; i++) 

for (j « 0; j < Biri.ysize; j++) 
fread((char *)ki«age[i] [j] [0] . s i z e o f (char) , Bin_xsize, f [ i3) ; 
f s e e k(f[i], (long)(head[i].ras.Bidth-nin.xsize), 1); 

^ for (1 « 0; i < diaonsion; i++) f c l o s e ( f [ i ] ) ; / • close f i l e s •/ 

chttv *get.Meaory(iteBS, s ize) 
unsigned i t e s s , size; 

char *buffer; 

buffer " (char *)calloc(iteBS. size); 
deinand(buffer, no Benory); 

return(buffer); 
> 
int ntuiber.linkO 
{/* conputer t o t a l nunber of links, i n order to allocate nenory */ 

int 8 , to ta l_ l ink; 

t o t a l . l i n k « 0; 
f o r (s >: 1; s < Bin_xsize -1; s++) 

to ta l_ l ink += s; 
t o t a l.link *= 4; 
t o t a l . l i n k += 2*(Bin_xsize«Bin_ysize-l); 
printf ("\nTotal nunber of links i n original graph i s X d . \ n ".total.link) 

return ( t o t a l . l i n k ) ; 
} 

^et . l i n k O / * compute a l l links in the image graph */ 

register int i , node; 
/• the coordinate of tBO dimensional array i s transformed to 
linear coordinate and store in the edges array, so a mapping 
has to be used to relate the tBO coordinate systems '*/ 
head.next = edges; 
edges[0] .last ='thead; 
for ( i = node = 0; node < Bin_xsize»Bin.ysize-l; node++) 
•C / * f o r every vertex, except the last one */ 

i f (node >= Bin_xsize*Bin.ysize-Bin_xsize) /* last roB •/ 

i f (node == Bin_xsize*Bin.ysize-2) 
{ /* la s t vertice •/ 

edges[i].nodel = node; 
edges[i].node2 = node+1; 
edges[i].Beight = link.Beight(node, node+1); 
edgesCi].next = thead; 
head.last = tedges[i]; 

else fill_edges(node, node+1, i , 4); 
edges[++i3.Beight = -1.0; /* f i l l the gap */ 
edgest++i].Beight = -1.0; 
edges[++i3.Boight = -1.0; 
++i; 

} 
else 

i f ((node % Bin.xsize) == 0) / * roB head * / 

fill.edge8(node, node+1, i , 1); 
fill . e d g e s(node, node+Bin_xsize+l, ++i, 1); 
fill_edge's(node, node+Bin.xsize, ++i, 2); 
edges[++i].Beight = -1.0; 

} 
else i f ((node % Bin.xsize) == sin.xsize-l) /* roB t a i l * / 
{ 

fill.edges(node. node+Bin.xsize, i , 1); 
fill.edges(node, node+Bin_xsize-l, ++i. 3); 
edges[++i].Beight = -1.0; 
edges[++i].Beight = -1 .0; 

else 
< 

fill_edge8(node, node+l, i , 1); 
fill_edges(node, node+Bin.xsize+1, ++i, 1); 
flll_edge3 (n6de, node+sin.xsize, ++i, 1); 
fill_edges(node, noda+Bin.xsize-1, ++i, 1); 
++i; 
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fill.edgesdtodel, no~de2, index, offset) 
.register in t nodel, node2, index,, offset; 
{/* store data o f .a l i n k * / 

edges[index].nodel = nodel; 
edges[index].node2 = node2; 
edges[index].Beight = l ink.Beight(nodel, node2); 
edges[index].next * tedges[index + offset]; 
edges[index + offset] . l a s t - tedges[index]; 

fl o a t l ink.Beight(nodel , node2)/* compute l i n k Beight, squared Euclidean 
distance * / 

int hodel, node2; 

Int i l , j l , i 2 , j2 , 
k; 

f l o a t Beight; 

get_coordinates(nodel , ftil, k j l ) ; 
get_coordinates(node2, t i 2 , t j 2 ) ; 
Boight = 0.0; 
f o r (k » 0; k < dimension; k++) 

weight += SqUARE((float)image[k][il][jl]-(float)imBge[k][i2][j2]>; 

^ retum(Beight); 

r s t _ f i l e(vertex, heavy) 
LIST.HEAD *vertex; 
HIIQUE_Lire **heavy; 

char »bufl = "/homa/image/output/rst";/* default output f i l e * / 
FILE *fp; 
int t , numBritten; 
TREE •templ .tree; 

/ • open f i l e in binary mode for read Brite the tree data * / 
fp = fopen(bufl,"B"); 
demand(fp, cannot open f i l e for r s s t ) ; 

fBrite ( ( c h a r •)tdimansion, sizaof ( i n t ) , 1, fp ) ; 
fBrite ( ( c h a r »)Jttop_x, sizeof ( i n t ) , 1, fp ) ; 
fBrite ( ( c h a r •)ktop_y, s i zeof ( int ) , 1, fp) ; 
fBrite ( ( c h a r «)tBin_xsize, sizeof ( i n t ) , 1, fp ) ; 
fBrite ( ( c h a r *)tBin_ysize, sizeof ( i n t ) , 1, fp ) ; 
/* Brite the unique l ink to f i l e * / 
numwritten = 0 ; 
for (t = 0; t < B in_xsize*Bin_ysize - l ; t++) 

numBritten += fBrite ( ( c h a r *)heavy[t] , sizeof ( i n t ) , 2, f p ) ; 
f o r (t = 0; t < Bin_xsize*Bin_ysize; t++) 

templ_tree = vertex[t] .node; 
Bhile (templ_tree != lULL) 
i I* Brite tree to f i l e • / 

numBritten += fBrite ( ( c h a r »)templ_tree, sizeof(TREE), 1, fp ) ; 
templ.tree = teBpl_tree->next; 

> 
demand(numBritten == 4*Bin_xsize*Bin_ysize-4, Write error) ; 
printf("Data ar i te to f i l e Xs . \n" ,buf l ) ; 

^ fclose ( f p ) ; 

TREE • front_of_tree(ne¥, l i s t ) 
TREE •neB, • l i s t ; 
{/• store structure i n the l i n k l i s t • / 

naBr>next = l i s t ; 
l i s t = noB; 

r a t u m ( l i s t ) ; 
} 

/ * main function to do the CEST using Kruskals algorithm •/ 
recru_tree(unique_link, vertex) 
LIST_HEAD "vertex; 
UIIQOE.LIIK •unique^link; 

int count, label, biggest, smallest; 
TREE •node; 
STAT •region_sum; 
LIIK •lightest . p t r ; 

node = (TREE •)get.memory(2 • (Bin.xsize^win.ys izerD, sizeof (TREE)); 
region.sum = (STAT »)get_mamory(Bin_xsize*Bin_ysize, sizeof (STAT)); 
for(count = 0, labe l = 1; label < Bin_xsize*Bin_ysize; label++) 

/ • pick the lightest l i n k • / 
liightest . p t r = lightest ' O • 

347 



unique_link[label-l].nodel = lighte8t_ptr->nodel; 
ttnique_link[label-l].node2 = lightest_ptr->nodo2; 
unique.link[label-1].veight = lighte8t_ptr->Height; 
/ * put link into the tree * / 
node[count].node_po8 = lightest_ptr->node2; 
Yertex[lighte8t_ptr->nodel3.node * 

iront_6f_tree(»nodoCcount++3,vertex[lighte8t_ptr->nodei].node); 
node[count]inode_po8 * lighte8t_ptr->nodel; 
vertex[lighte8t_ptr->node2].node = 

front_of_trae(»node[count++],vertex[lighte8t_ptr->node23.node); 
i f (label < Bin_x8ize»Bin_ysize-l) 

suB^label_node8(region_sua,vertex,lightest.ptr,label, 
tbiggest,ft8mallest); 

/ * delete a l l duplicate link and recalculate link veight * / 
del_duplicate_recal(yert«x,region_su]a,label,biggest,smallest); 

> 
^ free((char *)region_suB); 

L i n » lightestO 
< / * find the lightest link • / 

register LIIK ••in.ptr, •this; 

•in.ptr = head.next; 
this "! •in_ptr->next; 
vhile (this != thead) 
{ 

i f (Bin_ptr->Beight > this->Beight) 
Bin_ptr = this; 

this = this->next; 
} 
/ * delete lightest link • / 
Bin_ptr->last->next = Bin_ptr->next; 
Bin_ptr->next->la8t = Bin_ptr->last; 
Bin_ptr->next = lULL; / • status out • / 

^ return(Bin.ptr); 

/* coBpute sua of a region, update label of nodes • / 
sua_label_nodes(region_sum, vertex, light, tag, biggest, smallest) 
STAT •region.sum; 
LIIK •light; 
int tag; 
register LIST.HEAD •vertex; 
register int •biggest, •smallest; 

register int i , done = 0; 
int old_tag[2]; 

i f (vertex [light->nodel] .node.tag == Oltt 
vertex[light->node2].node.tag == 0) 

{ / • both are neB node, use a neB label • / 
vertex[light->nodel].node.tag = tag; 
vertex[light->node2].node.tag = tag; 
region.8um[tag] = add.8truct(get_pix.value(light->nodel), 

get.pix.value(light->node2)); 
•smallest = light->nodel; 
•biggest = light->node2; 

else i f (vertex[light->nodel].node.tag == 0 tt 
vertex[light->node2].node.tag != 0) 

region.sum[tag] = add.struct(get.pix.value(light->nodel), 
regioh_8um[vertex[light->nodo2].node.tag]) 

vertex[light->nodel].node.tag = tag; 
old_tag[0] = vertex[light->node2].node.tag; 
for ( i = 0; i < Bin.xsize*Bin.ysize; i++) 
{, I* update label and count • / 

i f (vertex[i].node.tag == old.tagCO]) 

vertex[i].node.tag = tag; 
i f (idone) 
{ 

•smallest = i ; 
^ ++done; 

^ •biggest " i ; 

} 
i f (light->nodel < •smallest) •smallest = light->nodel; 

else i f (vertex[light->nodel].node.tag != 0 tt 
vertex[light->node2].node.tag == 0) 

region_sum[tag] = add.struct(get.pix.value(light->node2), 
region.8um[vertex[light->nodel].node.tag]); 

vertex[light->node2].node.tag = tag; 
61d.tag[0j = vartex[light->hodel].node.tag; 
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for ( i = 0; i < oin^xsizo»Bin_ysi2o; i++) 
{ / * update label and count * / 

i f (rortexCi] .node.tag «>• old.tag[0]) 

vertex[i].node.tag-= tag; 
i f (!done) 
< 

•smallest = i ; 
^ ++done; 
•biggest = i ; 

} 
i f (light->node2 > »biggest) "biggest « light->node2; 

else 
•£ / * both node tag != 0 * / 

old.tag[0] » vertexClight->nodel].node.tag; 
old.tagCl] " vertex[light->node2].node.tag; 
region.suaCtag] = 

add.struct(region.sum[vertex[light->nodel].node.tag], 
region.sum[vertex[light->node2].node.tag]); 

for ( i = 0; i < Bin.xoizo^Bin.ysize; i++) 

i f (vertexCi] .node.tag = old.tagCO] 11 
vertex[i] .node.tag » old.tagCl]) 

vertexCi].node.tag = tag; 
i f ("done) 
< 

•smallest = i ; 
++done; 

•biggest = i ; 

} 

/ • delete duplicated links and recalculate sum of a region • / 
del.duplicate.recal(vertex, region.sum, region, biggest, smallest) 
register LIST.HEAD •vertex; 
STAT •region.sura; 
int region, biggest, smallest; 

/ * delete a l l duplicate link connected to external vertices • / 
register LIIK •find,•this,•that; 
LIIK dummy; 
int temp.node, temp.re; 

/ * goto starting point • / 
this = jump(smallest); 
/ • connect the related link in a shorter l i s t • / 
this = compress(this, vertex, region, biggest); 
Bhile (this != lULL) 
{ / • f irst recalculate then delete • / 

temp.re = 0; / • initialize for delete • / 
i f (vertexCthis->nodel].node.tag == region) 
< / • find nodel in region • / 

temp.node = this->node2; 
i f (vertexCtemp.node].node.tag != 0) / • node2 is in a region • / 

this->Beight = neB.Beight(region.sumCregion], 
region.sumLvertexCtemp.node].node.tag]); 

^ temp.re = vertexCtemp.hode].node.tag; 

else / * node2 is a single node * / 
this->Beight '= noB_Beight(region.sumCregion], 

get.pix.value(temp.node)); 

else 
{ / * find node2 in region * / 

temp.node * this->nodel; 
i f (vertexCtemp.node].node.tag != 0) / • nodel is in a region • / 

this->Beight = noB.Beight(region.suraCregion], 
region.sumCvertexCtemp.nodeJ.node.tag]); 

^ temp.re = vertexttemp.node].node.tag; 

else / • nodel is a single.node • / 
this->Beight = neB.Beight(region_suraCregion], 

^ get.pix_value(temp.node)); 

/ * delete duplicate links for a l l nodes, no link in region • / 
that = tdunmy; 
dummy.other = this->other; 
i f (itenp.re) / • temp.riode is single • / 

Bhi le ((find = that->other) != lULL) 
{ / • delete duplicate link, temp.node is single • / 

i f (find->nodel > temp.node) ' break; 
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i f <find->nodel == temp.node 11 find->node2 == temp.node) 

/ * delete link form shole l i s t * / 
find->last->next = find->next; 
findT>noxt->last = find->la8t; 
find->next = TOLL; . 
/ • delete link form compressed l i s t * / 
that->other = find->other; 
break; / * only delete one link * / 

that = that->other; 

> 
else 
•£ / * temp.node is in a region • / 

while ((find » that->other) !» lULL) 
{ / » delete duplicate link • / 

/ * only one duplicate between two regions * / 
i f (vertex[find->nodel]'.node_tag = temp.re 11 
^ ¥ertex[find->node2].hode.tag = temp.re) 

find->last->next = find->next; 
find->next->iaBt » find->last; 
find->next « lULL; 
that->other « find->other; 
break; 

} 
that = that->other; 

} / * end while * / 
} / * end else • / 
this = dummy.other; / * reconnect and point to next * / 

} / * end while * / 
> 
/ » this function is to compress the l i s t of a l l links to increase 
efficiecy * / 
LIIK * compress(this, vertex, region, biggest) 
register LIIK 'this; 
register LIST.HEAD "vertex; 
register int region, biggest; 

LIIK "find, "start; 

while (1) 
< / " find the f irst link to start "/ 

i f (vertex[this->nodelD.node.tag == region 11 
vertex[this->node2].node.tag == region) 
break; 

this = this->next; 

start « find » this; 
this = this->next; 
while (this != Jthead) 
< / " connect a l l relate link in a l i s t "/ 

i f (thi8->nodel > biggest) break; 
i f (vertex[this->nodel].node.tag == region 11 

vertex[this->node2].node.tag == region) 

find->other = this; 
find = this; 

> 
this = this->next; 

} 

find->other = lULL; / " terminate "/ 

^ retum(start); 

/ " skip unnecessary position "/ 
LIIK " jump(smallest) 
int smallest; 

register int index; 

i f (smallest < win.xsize+1) index = 0; 
else index = 4"(smallest-win.x8ize-l); 
/"at least one undeleted link within range * / 
while (edges[index].next = lULL) ++index; 

/ " return the f irst element in the l i s t "/ 
^ retum(ftedges[index]); 

float new_weight(new, old) 
STAT new, old; 

int k; 
float weight, 

new_mean[DINEISIOI], 
old.mean[DIHEISIOI]; 
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for (k « 0; k < d i a o n s i o n ; k++) 

nev. i iean[k] » neu . s tu i [k ] / ( f loa t)neH .nuB_vec; 
o l d j i o a n [ k ] " old.«u«[k3/(f loat)old.nua_vec; 

> 
B e i g h t " 0 . 0 ; 
for (k " 0; k < d i a e n s i o n ; k++) 

B e i g h t +" S m J A R E(neBjiean [ k ] - o l d _ » i e a n [ k ] ) ; 

^ retumCBeight); 

STAT add.struct(a, b ) / » add t B O structures * / 
STAT a, b; 

Int k; 

a . n u M _ v e c +" b.nun.vec; 

for (k = 0; k < di«ension; k++) a . s u m W +" b . 8 U B [ k ] ; 

^ retum(a); 

STAT get.pix.value(node) 
register int node; 

int i . j , k; 
STAT a ; 

g e t . c o o r d i n a t e s ( n p d e , t i , t j ) ; 
a.nun.vec " 1; 

for (k = 0; k < dimension; k++) 
a . s u n M = (float) image [k ] [ i ] [ j ] ; 

^ return(a); 

int comp(a, b ) /* compare function for qsor tO * / 
UIiqUE.LIIK ""a, **b; 
•C / * i n descending order of magnitude * / 

i f ( ( * a ) - > B e i g h t > ( * b ) - > B e i g h t ) r e t u m ( - l ) ; 
else i f ( ( • a ) - > B e i g h t < ( » b ) - > B e i g h t ) re turn( l ) ; 
else r e t u m ( O ) ; 

} 

get.coordinates(node.pos, a, b ) /* transform mapping » / 
register int node.pos; 
register int "a, "b; 

* a = node.pos / Bin .xs ize; /* i * / 
*b = node.pos % B i n . x s i z e ; / * j * / 

/**********************»**************•»»**•************************»* 
* You are reading mm3.c * 
* This program performs minimax t p p - d o B n GTHS. * 
* This program read in a spanning tree , B h i c h generated by * 
* e.g. r s s tS .c , and use minimax to part i t ion the spanning tree. * 
* To obtain m segments the m-1 l inks B i l l be deleted. * 
* There are eight neighbours to each p ixe ls . * 
* The pattern vectors are t B o dimensional. * 
* ***««* OBTAII SEGHEITS FROH THE IIPUT SPAIIIIG TREE FILE ****** * 
* * • • * * * URITE THE HIIIHAX LIIKS TO FILE ****** * 
» * • * • • * THE COST FUICTIDI IS THE IITRASET DISTAICE * * * * * * * 
* K.S.LAU 21-1-92 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / 

t include <malloc.h> 
tinclude <stdio.h> 
tinclude <pixrect/pixrect_hs.h> 

tdefine DIHEISIOI 3/* maximum dimension of image * / 
tdefine HAX.XSIZE 128/* image size * / 
tdefine HAX.YSIZE 128 / * image size * / 

tdefine "lOTVISIT 0/* label notvis i t * / 
tdefine VISIT 1/* label v i s i t * / 
tdefine THPVISIT 2/* label temporary v i s i t * / 

tdefine SQUARE(x) ((x)*(x)) / * macro for square • / 
tdefine demand(fact, remark) {\ 

i f ( ' (fact)) A 
fpr int f ( s tderr , "demand not m e t : fac t \n") ; \ 
fpr int f ( s tderr , "remark\n");\ 
e x i t ( l ) ; \ 

tdefine FAIL 0 / * minimax l i n k test * / 
tdefine OK 1 

tdefine DUPLICATE 1 / * f ind single node * / 
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•define UIiqUE 0 

/ « * • » * * * * • * * * * * * * * * * * • • • • • STRUCTUKE DEFIIITIOI * * * * * * * • » » • » » * • • • • • » » • • • / 
typedef struct {/* store links nhich i s to be cut » / 
int nodel; 
int node2; 
}UIiqUE_LIIK; 

typedef struct </* store the node of the links shich i s to be cut * / 
int ••.node; 
float yar; 

char root; 
}HIIIHAX_IODE; 

typedef struct tree {/• structure to store the spanning tree * / 
int nbde.pos; 

struct tree *next; 
char status; 
>TREE; / * aeaory i s allocated i n order of decleoration • / 

typedef struct {/* the l i s t of a l l nodes in a spanning tree • / 
int node.tag; 
struct tree 'node; 
}LIST_HEAD; 

typedef struct {/• statistics of a region * / 
float sua[DIHEISIOI]; 
float ssq[DIHEISIOI]; 
int nua.vec; 
}STAT; 

/ * * * • * « • • • * • • • • • • • • * * * • * FUICTIOI DEFITIOIS ***•***•****•**********/ 
char* get.aeaoryO; 
char • reget.aeBoryO; 
STAT get.tree.varianceO; 
float get.distance(); 
TREE * find.alone.nodeO; 
T R E E * depth.first.next(); 
T R E E * depth.first.attributeO; 
LIST.HEAD • depth.first.re.attributeO; 
LIST.HEAD * depth.f irst . l inkO ; 
LIST.HEAD * depth.first.pixO; 
LIST.HEAD * depth.first.screenO; 
LIST.HEAD • depth.first_link_8Uin_square(); 

/********************* GLOBAL VARIABLES •*•*****•••***********/ 
u.char iBage[DIHEISIOi][MAX.YSIZE][HAX.XSIZE]; 

int dimension,/* diaensioh of the iaage * / 
top.x, top.y,/* top left coordinates of process sindos * / 
Bin.xsize, Bin.ysize;/* size of process BindoB */ 

int *group.pixel,/* store points in a region * / 
•stack;/* stack to do depth first search * / 

LIST.HEAD *neB, *old;/* for depth first search * / 
struct rasterfile header;/* header for image * / 

mainO 
{ 

int **clust,/* pointer for start and end of a region * / 
s, t , 
segment; 

UIIQUE.LIIK *link_intree; 
TREE *tree.element; 
LIST.HEAD *vertex, 

**del.link; 
HIIIHAX.IODE **variance, 

vminimax.node; 
STAT *node.intree; 
FILE *span_tree; 

putsC'TOP DDWI HIIIHAX SEGHEITATIDI"); 
/ * read the spanning tree *7 
get.parametersCtspan.tree, tsegment); 
get.dataO ; /* read the image of the spaning tree * / 
number.linkO; / * get number of vertices • / 

/» allocate array of structure for linked l ist of spanning tree * / 
tree.element = (TREE *)get.memory<2*Bin.xsize*Bin.ysize-2, sizeof(TREE)); 
vertex = (LIST.HEAD *)get.memory(Bin_xsize*Bin.ysize, sizeof(LIST.HEAD)); 
/ * aemory for depth f irst search * / 
stack" (int *)get.aemory(Bin_X8ize*Bin.ysize, sizeof(int)); 
group.pixel = (int *)get.nempry(Bin.xsize*Bin.ysize, sizeof(int)); 
/ * memory for minimax * / 
node.intree = (STAT *)get.men6ry(Bin.xsize*Bin.ysize, sizeof(STAT)); 
link.intree = (UIiqUE.LIIK *)got_memory(Bin.xsize*Bin_ysize-l, 

sizeof(UIiqUE.LIIK)); 
minimax.node " (HIIIHAX.IODE *)get.memory(2*(segment-l), 

sizeof(HIIIHAX.IODE)); 
variance = (HIIIHAX.IODE **)get.memory(2*(segment-l), 

sizeof(HIIIHAX.IODE • ) ) ; 
load.data(tspan.tree, link.intree, tree.element," vertex) ; 
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/ * i n i t a l i z e labe l for depth f i r s t search • / 
for(s » 0; s < vin_xsize*Bin_ysize; s++) vertexEs].node.tag « s; 
/ • i n i t a l i z e array of pointer to Mininax node for sorting * / 
f o r ( 8 » 0; s < 2*(segment - 1); s++) varianceCs] « tainimax.node[s]; 
/ • do ainiaax variance * / 
putsC'Doing BiniBax . . . " ) ; 
•iniaax.variance(vertex, l ink_intree , node.intree, 

•inimax.node, variance, segment); 

mB.link.file(segment, minimax_node, vertex); 

| e t .data() 

char filename[DIHEISIOI][50]; 
int i , i ; 
FILE •f[DIHEISIOI]; 
struct ras ter f i l e head[DIHEISIOI]; 

printf("The spanning tree i s on %d dimensional data\n", dinension); 

for ( i « 0; i < dimension; i++) 

printf("Enter the channel filename Xd, ", i ) ; 
scanf ("Xi", (char, *)Jtfilename[i] [0] ) ; 
f [ i ] = fopen((char •)tf i lename[i][0] , "r"); 

^ demand(f[i]. Cannot open f i l e ) ; 

/ * store header i n global area, for la ter use « / 
fread((char *)»header, sizeof(struct r a s t e r f i l e ) , 1, f [0 ] ) ; 
reBind(f[0]); 
f o r ( i = 0; i < dimension; i++) 

fread((char *)thead[i], sizeof(struct r a s t e r f i l e ) , 1, f [ i ] ) ; 
demand(header.ras.length == head[i] .ras. length, 

^ Hake sure the images has the same size and coordinates); 

printf("The images size i s Xd\n", header.ras.vidth); 
printf("The window width (xsize) i s Xd\n", win.xsize); 
printf("The window height (ysize) i s Xd\n", win.ysize); 

p r i n t f ("The top l e f t window coordinate of the window,\n!'); 
pr int f (" \ tx : Xd\n", top.x); 
pr in t f (" \ ty : Xd\n", top.y); 

demand(head[0].ras.width >= win.xsize+top.x. 
The window i s out of range\, please reduce s ize ) ; 

f o r ( i = 0; i < dimension; i++) 
f s eek ( f [ i ] , (long)(top.y*head[i].ras.width+top.x), 1); 

for ( i = 0; i < dimension; i++) 
for (j = 0; j < win.ysize; j++) 

fread((char *)timage[i][j][0], sizeof (char), win.xsize, f [ i ] ) ; 
^ f seek( f [ i ] , (long)Thead[i].ras.width-win.xsize), 1); 

^ for ( i = 0; i < dimension; i++) f c l o s e ( f [ i ] ) ; 

get_paraBeters(spem.tree, segment) 
FILE **span.tree; 
int •segment; 

char buf[50]; 
int s; 

printf("Input the (r)sst data f i l e name, "); 
scanf("Xs", buf); 
printf("Enter the maximum number of segments to be generated,\n"); 
printf("the l inks are stored i n a f i l e to generate segmentation, "); 
scanf("Xd", segment); 
/ * open f i l e i n binary mode for reading the tree data * / 
•span.tree = fopen(buf, "r"); 
demand(*span.tree. Could not open f i l e for spanning tree); 
printf("Data read from f i l e Xs \ n " , buf); 
fread((char *)ftdimension, s i zeof ( in t ) , 1, tspan.tree); 
fread((char *)Jktop.x, sizeof ( i n t ) , 1, •span.tree); 
fread((char *)Jttop.y, sizeof ( in t ) , 1, *span.tree); 
fread((char »)twin.xsize, s i zeof ( int ) , 1, *span.tree); 

^ fread((char *)twin.ysize, s i zeof ( in t ) , 1, •span.tree); 

load.data(span.tree, heavy, tree.element, vertex) 
FILE ••span.tree; 
UIIIJUE_LIIK •heavy; 
TREE.•tree.elemerit; 

353 

http://mB.link.file


LIST_HEAD *yert8x; 

int 8, t , 
tota l_ i te«s , 
niutread •= 0; 

TBEE •teBp.tree; 

/ • read a spanning tree * / 
nuMread +« freadUchar *)heavy, sizoof <UIiqUE_LlIK), 

Bin_xsize*Bin_y8ize-l; •span.tree); 
forCt » 0; t < 2 * Bin_XBize»Bin_y8ize-2; t++) 

nnaread +« fread<(char *)ttree_eleiient[t] , 
sizeof(int)+8izeof(TEEE • ) , 1, •span.tree); 

deaandCnuBread == 3*Bin_xsize^Bin_ysize-3, Eead error) ; 
fclose(*8pan_tree); 
/ • reconstruct the tree data structures just read froa f i l e • / 
for ( t » 0, to ta l . i t eas >= 0; t < Bin_xsize^Bin_ysize; t++, total_itea8++) 

vertex[t].node « t tree.e leaentCtotal . i tens]; 
teap_tree = tree.eleaent[total . i teas] .next; 
Bhile(teap.tree !» lULL) 

8 « total_items++; 
tree_eleaent[s].next « ttree_eleaent[total_ltaB8]; 
teap.tree » tree_eleaent[total_items].next; 

} 
> 
/ • Bri te the ainiaax l inks to a f i l e • / 
aa_link_file(segment, ainiaax .node, vertex) 
int segment; 
HIIIHAX_IODE •minimax.node; 
LIST_HEAD •vertex; 

char •buf2 = "/home/image/output/mmlink"; 
FILE •mm.link; 
TEEE •temp.tree; 
int s, niuaread, t o t a l . l i n k ; 

mm.link = fopon(buf2, " B " ) ; 
demand(mm.link. Could not open f i l e for minimax l i n k ) ; 

fBrite((char •)tdimension, s i zeof ( int ) , 1, mm.link); 
fBrite((char •)»top_x, s i zeof ( int ) , 1, mm.link); 
fBrite((char • )»top .y , s i zeof ( int ) , 1, mm.link); 
fBrit6 ( ( char •)tBin_x8ize, s izeof ( int ) , 1, nm.link); 
fBrite((char •)»Bin_y8ize, s i zeof ( int ) , 1, mra.link); 
numread = 0 ; 
t o t a l . l i n k = -segment-l; 
numread += fBrite((char • )* to ta l . l ink , s i z e o f d n t ) , 1, mm.link); 
for(s = 0; s < 2^(segment-l); s++) 

numread += fBrite((char •)fa»ihimax.node[s], s i zeof ( int ) , 1, ima.link); 
for(s = 0; s < Bin .xsize«Bin.ysize; s++) 

temp.tree = vertex[s].node; 
Bhile(temp.tree != lULL) 
{ / • Bri te tree to f i l e • / 

numread += fBrite((char •)temp.tree, 
sizeof(int)-<'sizeof(TREE • ) , 1, mm.link); 

temp.tree = teBp.tree->next; 

> 
demand(numread == 2^(Bin.xsize^Bin.ysize+segment)-3, 

Hinimsuc l i n k data Brite error) ; 
p r i n t f ("Hinimax l i n k f i l e i s /Cs\n", buf2) ; 
fclose(nm.link); 

} 

chtiT • g e t . a e m o r y ( i t e B S , s ize) 
unsigned items, s ize; 

char »buffer; 

buffer = (char *)calloc(items, s ize) ; 
demand(buffer, lothing allocated for array); 

^ return(buffer); 

int number.linkO 
i 

int s, t o t a l . l i n k ; 

t o t a l . l i n k = 0; 
for (s = 1; s < Bin.xsize - 1; s++) 

t o t a l . l i n k +=8; 
t o t a l . l i n k •= 4; 
t o t a l . l i n k += 2 • (Bin .xsize^Bin_ysize - 1); 
printf("Total number of l inks i n or ig inal graph i s X d . \ n " , t o t a l . l i n k ) ; 
return ( t o t a l . l i n k ) ; 
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/ * label the root f o r depth f i r s t search « / 
Tisit^ r o o t C y o r t e x , node) 
LIST_HEAD •yortex; 
register int *node; 

int i . j ; 
register TREE * t h i 8 ; 

^ f o r ( i = O. j = 1; i < 2; i++.j—) 

t h i s * vertex[node[i]].node; 
vhi ie ( th i s !•= lULL) 

if(this->node_pos » » node[j]) 

t h i s - > 8 t a t u s = VISIT; 
break; 

th i s >: t h i 8 - > n e x t ; 

} 

/ • reset labe l after depth f i r s t search * / 
reset_tree_t>p(vertex, s tar t , nunpix) 
LIST_HEAD *vertex; 
int nunpix, *start; 

register int i , index; 
register TREE »this_hode; 

index = s tart - group.pixel; 
for ( i = 0 ; i < numpix; i++, index++) 

this.node = vertex[group_pixel[index]].node; 
while(this.node != lULL) 
{ 

i f (this_node->8tatus == THPVISIT) 
this_node->'8tatU8 = lOTVISIT; 

this.node =^thi8 .node->next ; 

> 
/ * index mapping * / 
get.coordinatesTnode.pos, a, b) 
register int node.pos; 
register int *a , *b; 

*a = node.pos / s in .xs ize ; 
•b = node.pos % B i n . x s i z e ; 

int compCa, b ) / » for qsor tO compare • / 
HIIIHAX.IODE **a , **b; 

i f ((•a)->var > (*b)->var) r e t u m ( - l ) ; 
else i f <(«a)->var < (*b)->var) r e t u m ( l ) . ; 

^ else r e t u m ( O ) ; 

/ * compute the s ta t i s t i c s of a subtreet, sum emd sum square • / 
int get.link.8um_square(vertex, i-oot.node, l i n k . i n t r e e , node.intree) 
register LIST.HEAD «vertex; 
UIIQUE.Lire * l ink . in tree ; 
STAT *node.intree; 
int root.node; 

int t o t a l . l i n k = 0 , stack.pos = 0, num.vec = 0; 
TREE *root; 
register LIST.HEAD *temp.list; 

/ * B r i t e the l i n k i n tree to l ink . in t ree tmpfile * / 
i f ((root = find.alone.node(Jtvertex[root.node])) == TOLL) 

re turn( l ) ; / * subtree i s a single node • / 
start .depth_first(»8tack.pos,»num.vec,vertex[root .node] .node.tag,root) 
l ink . in tree [ to ta l . l ink] .node l = vertex[root.node].node.tag; 
l ink . intree[ tota l . l ink++].node2 = root->node.po8; 
noB = tvertex[root->node.pos]; 
old = tvertex[root.node]; 
do 
{ / * depth f i r s t next * / 

temp.l ist = depth.f irst . l ink^sum.square(vertex, l ink.intree, 
node. intree,tnum.vec,ttotal . l ink,tstack.pos); 

old = neB; 
neB - temp.l is t ; 

} Bhile ( s t a c k _ p o s != 1); / » stack != TOLL * / 
reset,itree.tmp(vertex ,group^pixel ,num.vec); 
return(num_vec); 
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LIST.HEAD * dopth.first.link.sujB.square(vertex, l i n k . i n t r e e , node.intree, 
nuB_vec, nuB_link, stack.pos) 

LIST-HEAD •vertex; 
niIQUE.Lire »link.intree; 
STAT •node.intree; . 
register i n t ' • n u M . l i n k , •stack.pos, • n v m . v e c ; 
{ / • • • • • • • • • Bri te a l l l ink in tree to f i l e • • • • • • • • • / 

TBEE •root; 

i f ( ( r o o t « depth.first_attribute(vertex,node.intree,8tack_pos)) TOLL) 
return(TOLL); 

8 t a c k [ ( » 8 t a c k . p o 8 ) + + ] » ro6t->node.pos; / • put node to stack * / 
group.pixel[(•nuB^vec)++] = root->node_pos; / • put node for reset * / 
rbotT>statU9 » TMPVISIT; 
/ • record l ink . in tree • / 
l i n k . i n t r e e [ • n u B ^ l i n k ] . n o d e l " neB->node.tag; 
link.intree[(•nu«.link)++].nbde2 = root->node.pos; 

^ return(tvertex Croot ->node .po8] ) ; 

TBEE • depth. f irs t .at tr ibute(vertex , node.intree, stack.pos) 
register LIST.HEAD •vertex; 
register int vstack.pos; 
STAT *node_intree; 
{ 

TBEE •root; , 
LIST.HEAD • la s t ; 

/ • delete the duplicate node i n the next tree l i s t • / 
de le te .dupl icateO; 
i f ((root = f ind_a lone_node(neB)) == TOLL) 
{ / • one of the end • / 

las t = n e B ; / • take doBn the last location • / 
se l f .attribute(neB, nodo.ihtree); / • the end node • / 
B h i l e (root == TOLL) 
{ / • delete stack • / 

•stack.pos -= 2; 
n e B = tvertex[8tack[(^stack.pos)++]]; 
root " find.alone.node(neB); 
/ • no branch • / 
i f (root =«= TOLL) fu l l .a t tr ibute(neB, l a s t , node.intree); 
/ • has at least one branch • / 
else h a l f . a t t r i b u t e ( n e B , l a s t , node.intree); 
i f (•stack.pos == 1 t t root = TOLL) retum(TOLL); 
las t = noB; 

} 
^ return(root); 

/ • compute s t a t i s t i c s of a subtree • / 
ha l f .a t t r ibute ( th i s , l a s t , nbde.intree) 
LIST_HEAD • t h i s , • l a s t ; 
STAT •node.intree; 
{ 

int k; 

for (k = 0; k < dimension; k++) 

node.intree[this->node.tag].sum[k] 
+= node.intree[last->node.tag].sum[k]; 

node.intree[thi8->node_tag] . s s q M 
+= node.intree[last->node.tag] .ssq[k]; 

node.intree[this->node_tag].num.vec 
+= node.intree[last->node.tag].num.vec; 

/ » compute s t a t i s t i c s of a subtree • / 
f u l l . a t t r i b u t e ( t h i s , l a s t , node.intree) 
LIST.HEAD • t h i s , • l a s t ; 
STAT •node.intree; 

s e l f . a t t r ibute ( th i s , node.intree); 
^ half_attribute(this , l a s t , liode.intree); 

/ • compute s ta t i s t i c s of a subtree • / 
s e l f . a t t r ibute ( th i s , node.intree) 
LIST.HEAD • th i s ; 
STAT •node.intree; 
< 

int i , j , k; 

get.coordinates(this->node.tag, t i , t j ) ; 
f or (k = 0; k < dimension; k++) 

node_intree[this->node.tag] .sum[k] += (float)image[k] [i] [ j ] ; 
node. intree[thi8->node.tag] .ssq[k] += S q U A R E ( ( f l o a t ) i m a g a [ k ] [ i ] [ j ] ) ; 
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} 

^ nod8_intro»[thi8->node_tag].num_vec++i 

/ • reset labe l after depth f i r s t search * / 
reset_subtree(node_intree, niniMax.node, node, nua_vec, start) 
STAT •node.intree; 
HIIIHAX_IODE ••ininax.node; 
int node, nuji_vec, • s tart D ; 
{ / • node i s the index of wi.node just obtained • / 

/ • tree root i s the root of th is subtree • / 
register int i ; 
/ * for a l l p ixe l i n the vhole subtree * / 
for ( i = 0; i < nu«_vec; i++) 
•£ / * l inear search • / 

i f (group.pixel[i] == •iniaax.nodeCnode].Ba_node) 
{ / • f i n d p ixe l in a in subtree • / 

start[0] - tgroup.pixelCi]; 
start[1] = »grbup_pixel[i + node.intree[group_pixel[i]].hu«_vec]; 
break; 
} 
reset_node_intree(node.intree, group.pixel , 

( int) (s tart COJ -group.pixel)); 
reset^^node.intree (node.intree, s tart [ IJ , 

^ nuB.vec - ( in t ) ( s tar t [ l ] -group.pixel)) ; 

/ • reset buffer after depth f i r s t search • / 
reset.node.intree(node.intree, s tar t , items) 
STAT •node.intree; 
int • s tar t , items; 

register int i , k, index; 

index "= start - group.pixel; 
for ( i = 0; i < items; i++, index++) 

node.intree[group.pixel[index]].num.vec = 0; 
f o r (k = 0; k < dimension; k++) 

node.intree[group.pixel[index]].suB[k] = 0.0; 
node.intree[group.pixel[index]].ssq[k] = 0.0; 

> 
} 

re.attribute(vertex, root.node, node.intree, s tar t , num.vec) 
register LIST.HEAD •vertex; 
STAT •node.intree; 
int num.vec, root.node, • s t a r t [ ] ; 
•C 

int 8tack.po8 = 0; 
TBEE •root; 
register LIST.HEAD •temp.l is t ; 

/ • s r i t e the l ink i n tree to l ink . in tree tmpfile • / 
i f ((root = find.alone.node(tvertex[root.node])) == lULL) 

self .attribute(tvertex[root.node], node.intree); 
return; / • subtree i s a single node • / 

stack[8tack.po8++] = root.node; / * put root to stack • / 
stack[8tack_po8++] = root->node.pos; / • put node to stack • / 
root->status = THPVISIT; / • v i s i t node • / 
nen = tvertex[robt->ndde.pos]; 
old = tvertex[root.node]; 
do 
{ / * depth f i r s t next • / 

temp.l ist >= depth.f irst .re .attribute(vertex,node. intree,tstack.pos); 
old = new; . 
new » temp.l ist; 

} Bhile(stack.pos != 1); / * stack != lULL » / 
ro8et.tree.tmp(vertex,group.pixel,(int)(start[0] -group.pixel)); 

^ re8et.tree.tmp(veftex,start[1],num.vec - ( in t ) (8 tar t [ l ] -group.pixel)) ; 

LIST.HEAD • depth. f irst .re .attr ibute(vertex, node.intree, stack.pos) 
LIST.HEAD •vertex; 
STAT •node.intree; 
register int 'stack.pos; 
{ / • • • • • • • • • Bri te a l l l i n k i n tree to f i l e • • • • • • • • • / 
TEEE •root; 

i f ( (root •» depth.first .attribute(vertex,node.intree,stack.pos)) == lULL) 
return(lULL); 

8tack[(^stack.pos)++] = root->node.pos; / • put node to stack • / 
root->statU8 == THPVISIT; 

return(tvertex[root->node_pos]); 
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i n t g e t _ l i n k ( v e r t e x , r o o t . n o d e , l i n k . i n t r e e ) 

r e g i s t e r LIST.HEAD * v e r t e x ; 

UIIQUE.LIIK • l i n k . i n t r e e ; 

i n t r o o t , ; n o d e ; 

i n t t o t a l . l i n k = 0, s t a c k . p o s = 0, n u B _ v e c » 0; 

TBEE * r o o t ; 

r e g i s t e r LIST.HEAO • t e n p . l i s t ; 

i f ( ( r o o t " f i n d . a l o n e . n o d e ( k v e r t e x [ r o o t . n o d e ] ) ) = TOLL) 
r e t n r n ( l ) ; / • s u b t r e e i s a s i n g l e n o d e • / 

8 t a r t _ d e p t h . f i r s t ( f t s t a c k . p o s , » n u « . v e c , v e r t e x [ r o o t _ n o d e ] . n o d e . t a g , r o o t ) ; 

l i n k . i n t r e e [ t o t a l _ l i n k ] . n o d e l •= v e r t e x [ r o o t . n o d e ] . n o d o . t a g ; 

l i n k . i n t r e e [ t o t a l _ l i n k + + ] .nodo2 «• r o o t - > n 6 d e _ p o s ; 
neo = l t v e r t e x [ r o o t - > n o d e . p o s ] ; 

o l d " t v o r t e x [ r o o t . n o d e ] ; 

d o 

i / • d e p t h f i r s t n e x t • / 

t e a p . l i s t = d e p t h _ f i r s t _ l i n k ( v e r t e x , l i n k _ i n t r e e , * n u « _ Y e c , 

» t o t B l _ l i n k , » s t a c k . p o s ) ; 

o l d " n e w ; 

n e w " t e s p . l i s t ; 

} w h i l e ( s t a c k . p o s ! = 1); / • s t a c k !« TOLL • / 
r e s e t _ t r e e _ t n p ( v e r t e x , g r o u p . p i x e l , n i U i L . v e c ) ; 

r e t u m ( n u B . v e c ) ; 

} 

LIST.HEAD • d e p t h . f i r s t . l i n k ( v e r t e x , l i n k . i n t r e e , n u n . v e c , 

n u a . l i n k , s t a c k . p o s ) 

LIST.HEAD • v e r t e x ; 

UIIQUE.LIIK • l i n k . i n t r e e ; 

r e g i s t e r i n t • n u n . l i n k , • s t a c k . p o s , • n u n . v e c ; 

{ / * * • * • * • • * w r i t e a l l l i n k i n t r e e t o f i l e • * * * • * • • • / 

TBEE • r o o t ; 

i f ( ( r o o t = d e p t h . f i r s t . n e x t ( v e r t e x , s t a c k ^ p o s ) ) == TOLL) 
r e t u r n ( T O L L ) ; 

s t a c k [ ( • s t a c k . p o s ) * * ] = r o o t - > n o d e . p o s ; / • p u t n o d e t o s t a c k • / 

g r o u p . p i x e l [ ( » n u m . v e c ) + + ] = r o o t - > n o d e _ p o s ; / * p u t n o d e f o r r e s e t • / 

r o o t - > s t a t u s = TMPVISIT; 
/ • r e c o r d l i n k . i n t r e e • / 

l i n k . i n t r e e [ • n u a . l i n k ] . n o d e l = n e B - > n o d e . t a g ; 

l i n k . i n t r e e [ ( • n u i i i _ l i n k ) + + ] .node2 = r o o t - > n o d e . p o s ; 

^ r e t u r n ( * v e r t e x [ r o o t - > n o d e . p o s ] ) ; 

/ • m a i n f u n c t i o n t o d o a i n i m a x • / 

B i n i n a x . v a r i a n c e ( v e r t e x , l i n k . i n t r e e , h o d e . i n t r e e , n i n i o a x . n o d e , 

v a r i a n c e , s e g m e n t ) 

LIST_HEAD • v e r t e x ; 

STAT • n o d e . i n t r e e ; 

MIIIMAX.IODE • m i n i m a x . n o d e , • • v a r i a n c e ; 

UIIQUE.LIIK • l i n k . i n t r e e ; 

i n t s e g m e n t ; 

i n t s , t , n u m . v e c , s n a p ; 

s t a t i c i n t • s t a r t [ 2 ] ; 

/ • c h o o s e n o d e 0 a r b i t r a r i l y a s t h e r o o t f o r t h e d i a g r a p h • / 

n u m . v e c = g e t . l i n k . s u m . s q u a r e ( v e r t e x , 0, l i n k . i n t r e e , n o d e . i n t r e e ) ; 

s w a p = a i n i m a x o n . t r e e ( v e r t e x , l i n k . i n t r e e , n o d e . i n t r e e , 

m i n i m a x . n o d e , n u r a . v e c , 0, 0); 

/ • f i n a l l y a l l m m . n o d e a r e t h e t r e e . r o o t • / 

i f ( s w a p ) 

•C / • a l w a y s r e s e t a n d r e a t t r i b u t e t h e u p p e r s u b t r e e • / 

r e s e t . s u b t r e e ( n o d e . i n t r e e , m i n i m a x . n o d e , 0, n u m . v e c , s t a r t ) ; 

r e . a t t r i b u t e ( v e r t e x , m i n i m a x . n o d e [ 1 ] . m m . n o d e , n o d e . i n t r e e , 

^ s t a r t , n u m . v e c ) ; 

e l s e 

r e s e t . s u b t r e e ( n o d e . i n t r e e , m i n i m a x . n o d e , 1, n u m . v e c , s t a r t ) ; 

r e _ a t t r i b u t e ( v e r t e x , a i n i n a x _ n o d e [ 0 ] . m m . n o d e , n o d e . i n t r e e , 

s t a r t , n u m . v e c ) ; 

f o r ( t = 2; t < 2 * ( s e g m e n t - 1); t += 2) / * n u m b e r o f a i n i m a x l i n k • / 

{ / » n u m b e r o f t r e e e q u a l n u m b e r o f m i n i m a x l i n k + 1 = t / 2 +1 • / 

/ • c h o o s e t h e l i n k w h i c h m i n i m i z e t h e v a r i a n c e o f t h e m a x v a r t r e e • / 

/ * s o r t v a r i a n c e • / 

a s 6 r t ( ( c h a r • ) v a r i a n c e , t , s izeof(MIIIMAX.IODE • ) , c o m p ) ; 

/ • t a k e t h e t r u e r o o t w i t h h i g h e s t v a r i a n c e , r o o t l a b e l = 1 • / 

f o r ( s = 0; ; s + + ) i f ( v a r i a n c e [ 8 ] - > r o o t ) b r e a k ; 

n u B . v e c = g e t _ i i n k ( v e r t e x , v a r i a n c e [ s ] - > i a n . n o d e , l i n k . i n t r e e ) ; 

i f ( n u m . v e c = 1 ) 

•£ / • t h e m a x v a r s u b t r e e i s a s i n g l e n o d e • / 

p r i n t f ( " A l l Xd s u b t r e e s a r e h o m o g e n e o u s . \ n " , t / 2 +1); 

r e t u r n ; / • r e t u r n t o w r i t e m m . f i l e • / 

s w a p = a i n i m a x p n . t r e e ( v e r t e x , l i n k . i n t r e e , n o d e . i n t r e e , m i n i m a x . n o d e , 

n u m . v e c , v a r i a n c e [ s ] - > i n a _ n o d e , t ) ; 
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> 

i f (swap) 

reset.subtree(node.intree, BiniBax.node, t , nuB.Tec, s tar t ) ; 
r e.attribute (vertex, •inijBax.node[t+l]..aa.node, node.intree, 

s t a r t , nua.vec);' ' 

else 

reset.subtree(node.intree, ainiaax.node, t+1, nua_vec, s t a r t ) ; 
're.attribute(vertex, aininax .node[t] .BBunode, node.intree, 

s t a r t , nuo.vec); 

readjust.tree.var(nininax.node, t , s tar t , num.vec, ssap); 

/ * th i s i s the iaportant b i t * / 
in t •iniaaxon.tree(vertex, l i n k . i n t r e e , node.intree, 

•iniaax.node, nuB.vec, tree .root , index) 
LIST.HEAD *vertex; 
UIIQUE.Lire *l ink_intree; 
HIIIHAX.IODE » a i n i B a x _ n o d e ; 
STAT •node.intree; 
int index, tree .root , nua.vec; 

register int i ; 
int j , swap, exchange; 
UIIQUE.LIIK duaay.l ink; 
HIIIMAJCIODE l i n k l[2],link2[2]; 
I1IIIMAX.10DE • d u s n y _ p t r [ 2 ] , * n i n i B a x . p t r [ 2 ] , * t e B p . p t r [ 2 ] ; 
STAT d u o m y ; 

duiany.ptr[0] = »l inkl[0]; dummy.ptr[1] = t l i n k l[l3; 
ainimax.ptrCO] = tlink2[0]; m i n i B a x . p t r [ l ] = t l i n k 2 [ l ] ; 
f or ( i = j = P; i < nuo.vec - 1; i++) 
{ / • . n u B b e r of l i n k in subtree * / 

dummy = get . tree .variance( l ink. intree , node.intree, tree .root , i ) ; 
i f (dummy.sum[0] > dummy.ssq[0]) / » dummy.v.sum belongs to node2 */ 

/ • intraset distance of subtree 1 • / 
dumay.ptr[1]->var »= dummy.ssqCP] ; 
/ • intraset distance of subtree 2 */ 
d u B a y . p t r [ P ] - > v a r = dummy .sum[P] ; 
dUBmy.ptr[l]->mn.node = l ink_intree[i3 .node l ; 
dummy.ptr[0]->mm.node = link.intree[i].node2; 
dummy.ptr[l]->root = 1; 
dummy.ptr[b]->root = 1; 
/ * l ink . in tree nodel i s the upper subtree, node2 i s the loner * / 

^ snap = 1; / * nodel and-node2 exchange * / 

else 
{ 

dummy.ptrCo]->var = dummy.ssq[P]; 
duomy.ptr[l]->var = dummy .sum[P] ; 
diuamy.ptr[0]->mm.node •= l i n k . i n t r e e [ i ] .nodel; 
dummy.ptrCl]->mm.node = link_intree[i].node2; 
duony.ptr[0]->root = 1; 
dUBmy.ptr[l]->root = 1; 
snap = 0; 

i f ( j == 0) 
{ / * i n i t i a l i z e comparison * / 

•minimax.ptrCO] = *dummy.ptr[P]; 
*mi'nimax.ptr[l3 = •dummy.ptr [1] ; 
i f (snap) exchange = 1; 
else exchange = P; 

i f (dummy.ptr[0]->var < oinimax_ptr[03->var) 
'/* f ind ainimax var • / 
•C / • f ind mihiaum, a l l var l are maximum • / 

i f (soap) exchange = 1; 
else exchange = 0; 
temp.ptrCO] = ainimax.ptr[P]; / • exchange pointer • / 
teap.ptrCl] = ainimax.ptrCl]; 
ainiaax.ptrCP] - dummy.ptr[0]; 
ainiaax.ptrCl] = dummy.ptr[1]; 
dummy.ptr[0] = temp.ptrlO]; 
dummy.ptr[1] = temp.ptr[l]; 

} 
duBBiy.link. nodel = ainimax.ptr [P]->mm^node; 
dunny.link.node2 - ainimax.ptr[1]r>mm.node; 
/ • Bri te to minimax.node for s o r t i n g . • / 
ainiaax.node[index] = •ainimax.ptr[P]; 
ainiaax.nodeCindex-fl] = •minimax.ptrCl]; 
/ • labe l the true root • / 
adjust.Bm.node(minimax.node, num.vec, index); 
/ • v i s i t ainiaax root for depth f i r s t screen • / 
v i s i t . root (vertex , ( in t •)tdumny.link); 
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^ retuni(exchange); 

a d j u s t . B i > ^ n o d e ( B i n i M U _ n o d e , n i u i . v Q C , niui.Bm) 
NIIIIUX_IODE • • i n i M i x . n o d e ; 
int nu>_vec, n u a _ B a ; 

register i , j ; 

f o r ( i « 0; i < nim_«»i i++) 
{ / * exclude the latest pair of Ba_node • / 

for (j = 0; j < n u a _ v e c ; j++) 
i f (group.pixelCj] «« •ininax.nodeCi] .Bai_node) 
< / • only one wn.node. in a subtree can be the root * / 

'•ini>ax_nodeCi].root >: 0; 
break; 

} 

STAT get_tree_variance(link.intree, node.intree, tree.root, i ) 
tniIQUE.I,ire *link.intree; 
STAT •node.intree; 
int treejroot, i ; 
{ /***« calculate the variance of subtrees **•* / 

int k; 
STAT sum[2], result; 

i f (node.intreeCtree.root].nua.vec == 2) 
{ / « only one link in tree * / 

for (k = 0; k < diaensipn; k++) 
result.sumCk] = result.ssq[k] = 0.0; 

^ retum(result); 

/ * node2 is the loser subtree * / 
sun[0] = node.intreeClink.intreeCi].node2]; / * must be node2 * / 
/ » get variance of the other tree * / 
sumtl].num.vec = node.intreeCtree.root].num.vec-sum[0].num.vec; 
for (k = 0; k < dimension; k++) 
{ 

sumCl] .sura[k] = node.intreeCtree.root] .sum[k]-sum[0] .8um[k] ; 
^ sumCl] .ssqCk] = node.intreeCtree.root] .ssqCk]-sumCO] .ssqCk] ; 

result.ssqCO] " get.distance(sumCl]>; 
result.sumCO] = get.distance(suiaCO] > ; 

^ return(result); / • return the intraset distance of subtrees * / 

float get.distance(sub) 
STAT sub; 

int k; 
float var =0 .0 ; 

i f (sub.num.vec == 1) return(O.O);/* i f only one node variance is zero 

/ * calculate variemces of the tree, on both dimension * / 
for (k = 0; k < dimension; k++) 

var += (((float)sub.num.vec • sub.ssqCk]) 
-SQUA&E(sub.sumCk]>)/((float)sub.num.vec 
•((float)sub.num.vec-l)); 

/ * squared intraset distance * / 
^ return(2*var); 

readjust.tree.V2ir(miniaax.node, t, start, num.vec, ssap) 
HIIIHAX.IODE *miniBax.node; 
int t , snap, hum.vec, *startC]; 
•£ /»*** update the ainiaax links variance ***•/ 

i f (swap) 
{ / • f irst t B O cal l the upper subtree, last call the loser one »/ 

renes.variance(minimax.node,.group.pixel, 
(int)(startCO] -group.pixel), t+ l , t ) ; 

r e n e B . v a r i a n c e ( a i n i a a x . n o d e , startCl]> 
nuB.vec -(int)(startCl] -group.pixel), t+1, t); 

renes.variance(minimax.node, start CO], 
(int)(startCl] -startCO]), t, t); 

else 
i 

renes.variance(minimax.node, group.pixel, 
(int)(startCO] -group.pixel), t, t); 

renes.variance(minimax.node, startCl], 
num.vec -(int)(startCl] -group.pixel), t, t); 

reneB.variance(rainimax.node-, startCO], (int)(startCl] -steurtCO]), 
^ t+1, t); 
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} 

rehev_variaiice(ainimax, s t a r t , nunpix, node, t ) 
register HIIIHAX_IODE •• in iaax; 
int nuapix, -t', *staft; 
register int node; 

register int k, index; 
int j ; 

for (j = 0; j < t; 
{ / * f o r a l l aininax.node * / 

index " s tart - group.pixel; 
for (k » 6; k < nunpix; k++, index++) 
{ / • for a l l node in the present subtree * / 

/ * check the present of other nininax node * / 
i f <nihiBax[jJ.no.node == group.pixel[index]) / * node! * / 
{ / * node i s nodel or node2 * / 

• ininaxCj] .var = nininax [node] .var; 
break; 

TREE * f i n d . a l o n e . n o d e ( l i s t ) 
LIST_HEAD • l i s t ; 

register TREE ' t h i s ; 

th is = list->node; 
BhileCthis != lULL) 
{ 

i f (this->status == lOTVISIT) 
return(this) ; 

th i s = this->next; 

return(lULL); 
> 
delete.duplicate() 

register TREE »this; 

th i s = neH->node; 
B h i l e ( t h i s != TOLL) 
•£ / * n a r k the duplicate node • / 

i f ( th i s ->node .pds = old->node_tag) 

this->Btatus = THPVISIT; 
break; 

th is = this->next; 

} 

start .depth. f irst (s tack.pos , nunpix, root, node) 
register int *stack.pos, *nunpix; 
int root; 
TREE *node; 

stack[(*stack.pos)++] = root; / » put root to stack * / 
group.pixel[(»nunpix)++] = root; / • put root to c luster * / 
stack[(*stack.pos)++] = node->node.pos; / » put node to stack * / 
group.pixel[(*nunpix)++] «= node->node.pos; / » put node to c luster • / 
node->status = THPVISIT; / » v i s i t node • / 

} 

TREE * d e p t h . f i r B t . n e x t ( v e r t e x , s t a c k . p o s ) 
register LIST.HEAD *vertex; 
register int * B t a c k . p o B ; 

TREE •root; 

de lete .dupi icateO; 
/ * delete the duplicate node in the next tree l i s t * / 
i f ( (root = f i n d . a l o n e . n o d e ( n e B ) ) == TOLL) 
< 

B h i l e ( r o o t = TOLL) 

/ * delete s t a c k • / 

• B t a c k . p o B -= 2; 
n e B = *vertex[stack[(*stack.pos)++]]; 
root » find.alone.node(neB); 
i f (*stack_pos == 1 t t root = TOLL) retum(TOLL) ; 

} 

return(root); 
} 

/************'**************^***********«****************************** 
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• You &re reading tdsegS.c 
• This prograa read a spanning tree and i t s l inks generated by 
• e .g. rss tS .c or B B S . C then generated segnents and s r i t e segaents 
• to a f i l e f or c luster ing. 
• To obtain • segaents the heaviest u-t l inks s i l l be deleted. 
• There are eight neighbours to each p ixe ls . 
• • * • • * * OBTAII SEGHEITS FROH THE IIPUT DATA FILE • * * * • 
• * « « « • » USIIG (R)SST OR HIIIHAX_LIIK • * • » • 
• I .S .LAU 21-1-92 
*********************«********************************************** 

•include < B a l l o c . h > 
•include <strinz.h> 
•include <stdio.h> 
•include <aath.h> 
•include <pixrect/pixrect_hs.h> 

•define DIHEISldl 3/* BaxiauB deaension of iaage * / 
•define HAX.XSIZE 128 / * kaxinuia xsize of iaage * / 
•define MAX.YSIZE 128 / * B a x i m u n ysize of iaage * / 

•define TMPVISIT 2 / • depth f i r s t search * / 
•define VISIT 1 
•define lOTVISIT 0 

•define DUPLICATE 1 / * f ind single node * / 
•define UIIQUE 0 
•define deBand(fact, reaark) {\ 

i f (!(fact)) A 
fpr int f ( s tderr , "deaand not net: fac t \n") ; \ 
fpr int f ( s tdorr , "renarkXn");\ 
ex i t ( l>; \ 

} 

/ • * • • * * * * * * * * • « * STRUCTURE DECLARATIOI • • • • • • • * * * • • * * * / 
typedef struct tree {/* structure for tree elenents * / 
int node.pos; 
struct tree *next; 
char status; 
} TREE; 

typedef struct { / » the f i r s t element i n a l i n k l i s t • / 
int node.tag; 
TREE «node; 
} LIST.HEAD; 

typedef struct {./* store a l i n k * / 

int. nodel; 
int node2; 
} UIIQUE.LIIK; 

/ • • • • * » » * * * * » » * • « FUICTIOIS DEFIIITIOIS • • » • • • » * • • * * * * * * / 
c h a r * get.nenoryO; 
TREE * find.alone.node(); 
LIST.HEAD • depth.first .segnent(); 
LIST.HEAD • depth.first_inform(); 
TREE * depth. f irst .next( ) ; 

/***************•*** GDLBAL VARIABLES *******************/ 
u_char inage[DIMEISIOI][HAX.YSIZE][MAX.XSIZE]; 
u.char segtDIMEISIOI][MAX.YSIZE][MAX.XSIZE]; 
int nos .vert ices , /* nunber of nodes in a region * / 

dimension,/* .dinension of inage * / 
top.x, top .y , /* top l e f t coordinate of nindos * / 
B i n j x s i z e , win.ysize;/* size of nindoo • / 

f loat mean[DIMEISIOI];/* nean of a region * / 
LIST.HEAD * n e H . p t r , *o ld .p tr ; /* for depth f i r s t s e a r c h * / 

struct ras ter f i l e header;/*'header for f i l e * / 

aainO 
< 

int **clust , *group^pixel,/* storage of segaents * / 
•stack;/* for depth f i r s t search * / 

int s, numlink, segment; 
UIIQUE_LIIK •heavy;/* l inks to be cut * / 
LIST.HEAD *vertex, **heaviest; 
TREE *tree:.element; 
FILE *span.tree; 

putsC'GEIERATES SEGMEITS FOR TOP DDWI APPROACHES"); 

get_paraaeter(tspan.tree, ksegment, ftnumlink); 
get .dataO; 
number.l inkO; 

/ * allocate array of structure for l inked l i s t of tree * / 
vertex = (LIST.HEAD *)get.memory(Bin.xsize*Bin.ysize, sizeof(LIST.HEAD)); 
heavy = (UIIQUE.LIIK *)get_memory(Bin.xsize*Bin.ysize-l, 

sizeof(UIIQUE.LIIK)); 
trise.elenent = (TREE *)get.memory(2*Bin.xsize*Bin.ysize-2, s izeof (TREE)); 
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s t a c k = ( int * ) g e t_B« a o r y(Bin_zsize*Bin_ysize, s i zeof ( int ) ) ; 
grbup.pixel = ( int * ) g e t _ m e n o r y(Bin _ x s i z e * ¥ i n _ y s i z e + l , s i z e o f ( i n t ) ) ; 
/ • a l l o c a t e array of pointer to the segment l i s t s * / 

clnst « ( int * * ) g e t j i e m o r y ( s e g m e n t + l , s i z e o f ( i n t • ) ) ; 

clttst[segment] = » g r p u p _ p i x e l [ B i n i X s i z e » B i n _ y s i z e ] ; /• assign the end • / 

load_data(k8pan_tree, heavy, tree.element, v e r t e x , n u m l i n k ) ; 

/ * i n i t a l i z e labe l f or depth f i r s t s e a r c h * / 

for(s = 0; s < B i n _ x s i z e * B i n_ysize; s++) v e r t e x [ s ].node . t a g = s; 
/ * a l l o c a t e array of p o i n t e r to'the h e a v i e s t r o o t s * / 

h e a v i e s t » (LIST.HEAD •»)getjiemory(2» (segment-l) , s i z e o f (LIST.HEAD *)); 

get .root(heaviest, v e r t e x , heavy, segment); 
get.segraent(heaviest, vertex, stack, group.pixel, clust, segment); 
s e g m e n t . f i l e ( c l u s t , s e g m e n t ) ; 
image . f i l eO; / * s r i t e output i m a g e to f i l e * / 

} 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * EID OF HAII * * * * * * * * * * * * « * * * * * * * * * * * * * * / 
|et_data() 

char f i l e n a m e [ D I H E I S I O I ] [ S O ] ; 
Int i . j ; 
FILE *fLDIHEISIOI]; 
s t r i c t r a s t e r f i l e head[DIMEISIOI]; 

p r i n t f ( " T h e s p a n n i n g tree i s on Xd dimensional data\n", dimension); 

f o r ( i = 0; i < d i m e n s i o n ; i++) 

p r i n t f ( " E n t e r the c h a n n e l filename Xd, " , i ) ; 
scanf ("Xs", (char *)»filename[i] [0]) ; 
f [ i ] = fopen((char * )»filenarae [ i ] [0] , "r"); 

^ demand(f[i]. Cannot open f i l e ) ; 

/ * s t o r e h e a d e r in global area-, f or l a t e r use * / 
fread((char *)theader, sizeof(struct r a s t e r f i l e ) , 1, f [0 ] ) ; 
r e B i n d ( f [0]); 
for ( i = 0; i < d i m e n s i o n ; i++) 

fread((char • ) t h e a d [ i ] , s i z e o f ( s t r u c t r a s t e r f i l e ) ; 1, f [ i ] ) ; 
d e m a n d ( h e a d e r . r a s . l e n g t h h e a d [ i ] . r a s . l e n g t h . 

Hake sure the images has the same size and coordinates); 

p r i n t f ( " T h e images size i s Xd\n", header.ras.Bidth); 
p r i n t f ( " T h e BindoB Bidth (xsize) i s Xd\n", Bin.xsize); 
p r i n t f ( " T h e BindoB height (ysize) i s Xd\n", Bin.ysize); 

p r i n t f ( " T h e top l e f t BindoB coordinate of the BindoB , \n"); 
p r i n t f ( " \ t x : Xd\n", top.x); 
p r i n t f ( " \ t y : Xd\n", top.y); 

demand(head[0].ras.Bidth >= Bin.xsize+top.x, 
The BindoB i s out of range\, p l e a s e r e d u c e s i z e ) ; 

f o r ( i = 0; i < dimension; i++) 
f s e e k ( f [ i ] , ( l o n g ) ( t o p . y * h e a d [ i ] . r a s.Bidth+ t o p . x ) , 1); 

f o r ( i = 0; i < dimension; i++) 
for (j = 0; j < B i n . y s i z e ; j++) 

f r e a d ( ( c h a r » ) * i m a g e [ i ] [ j ] [ 0 ] , s i z e o f (char), B i n . x s i z e , f [ i ] ) ; 
^ f8eek ( f [ i ] , (long)(head [ i ].ras.Bidth -s in.xsize), 1); 

^ f or ( i = 0; i < dimension; i++) fclose ( f [ i ] ) ; 

/ * s t o r e the s e g m e n t s in a f i l e »/ 
segment . f i le(clust, segment) 
iht **clnst, segment; 

char *buf = "/home/image /output/td.seg"; 
int 8, num_pix, item; 
FILE *fp; 

fp « f o p e n ( b u f , ! ' B " ) ; 
d e m a n d ( f p . Cannot open f i l e f or s e g m e n t f i l e ) ; 

f B r i t e ( ( c h a r *)tdimahsion, sizeof ( i n t ) , 1, fp ) ; 
f B r i t e ( ( c h a r *)»top_x, s i z e o f ( i n t ) , 1, fp ) ; 
f B r i t e ( ( c h a r • ) t top .y , s i z e o f ( i n t ) . 1. fp ) ; 
f B r i t e ( ( c h a r •)tBin.xsi2e, s i z e d f ( i n t ) , 1, fp ) ; 
f B r i t e ( ( c h a r » ) t B i n . y s i z e , s i z e o f ( i n t ) , 1. fp) ; 
item ='fBrite((char • ) t s e g m e n t . s i z e o f ( i n t ) , 1, fp) ; 
for (s = 0; s, < s e g m e n t ; 8++) 
i I* Brite the s e g m e n t to f i l e , f o r m a t i s num.seg, seg » / 

nura.pix = c l u s t [ s + i ] - c l u s t [ s ] ; 
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i t en += fnriteCCchar *)»num_pix, sizeof(int), 1, fp); 
item += foriteCCchar • ) c l u 8 t t 8 ] , sizaofCint), nim.pix, fp) ; 

deaandCitaM vin_X8ize*sin_ysize+8egnent+l, Write segaent error); 
printf<"Sepient8 are stored in f i le Xs\n", buf); 

^ fclose(fp); 

char vget^eaorydteas, size) 
int iteas, size; 

char *buffer; 

buffer = (char *)calloc((u_int)items, (u_int)size); 
demand(buffer, lothing allocated for array); 

^ retum(buffer); 

/ * store the segmented image • / 
iaage.fileO 
•£ / • only write the visible image */ 

FILE *fp; 
int item, i , a; 
char *^ath « "/home/image/output/seg", 

buf [50]; 

header.ras.height = Hin.ysize; 
header.ras.vidth = vin.xsize; 
header.ras.length = Bin_xsize*Bin_ysize; 
for (a = 0; a < dimension; a++) 

strcpy(buf, path); 
strcpy(c, 164a((long)(a+2))); 
strcat(buf, c); 
strcat(buf, ".ras"); 
fp = fopen(buf, "v") ;. 
demand(fp. Cannot open f i le for output image); 

item = fBrite((char *)fcheader, sizeof(struct rasterfile), 1, fp); 
for (i = 0; i < vin.ysize; i++) 

item += fvrite((char •)tseg[a] [i] [0] , 
sizeof(char), vin.xsize, fp); 

demand(item == vin.xsize»vin_ysize+l, Write output f i le error); 
fclose(fp); 
printf(I'Segment image is stored in XsNn", buf); 

} 

init ial izeO 

int )c; 

nos.vertices. = 0; 
^ for (k = 0; k < dimension; k++) m a a n [ k ] = 0.0; 

calculate.sum(a) 
int a; 

int i , j , k; 

get.coordinates(a,ti,tj); 
for (k = 0; k < dimension; k++) 
^ mean[k] += (float)image[k] [i] [j] ; 

get.coordinates(node.pos, a, b) 
m t node.pos; 
int •a , *b; 

*a = node.pos / vin.xsize; 
*b = node.pos % B i n . x s i z e ; 

get.parameter(span.tree, segment, numlink) 
FILE ••span.tree; 
int *segment, *numlink; 

char buf [50]; 
int pos, 

tot, 
length; 

printf("Enter the spanning tree filename, "); 
scanf("%8", buf); 
•span.tree = fopen(buf, "r"); 
demand(^span.tree, cannot open f i le) ; 
fseek(•span.tree, OL, 2); 
pos = f telK^span.tree) ; 
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printf("spanning tree f i le length Xd bytes\n", pos); 
reBind(*span_tree); 
fread((char •)tdiBension, s izeof( ir i t ) , 1, *span_tree); 
fread((char •)ttop_x, sizeof (int) , 1, *span.itree) ; 
fread((char •)ttop_y, s i zebf ( in t ) , 1, *span_tree); 
fread((char *)tBin_xs ize , s i zeof ( int ) , 1, »spsm_tree); 
fread((char »)tBin_ysize, s i zeof ( int ) , 1, »span_tree); 

tot » Bin_xsize*Bin_ysize; 
length » ( t o t - l ) * 8 i z e o f ( U I I Q U E _ L I I K ) 

+(2*tot-2)*(sizeof(int)+sizeof(TBEE •)) 
+5*sizeof(int); 

i f (pos = length) 
{/• use only spanning tree • / 

*nuBlink » 0; 

p r i n t f (."Enter the nu«ber of segments to be generated, "); 

else 
{/• use minimax * / 

fread((char *)numlink, s i zeof ( int ) , 1, •span.tree); 

printf("Input the number of segments, must be <» Xd, " , •numlink + 1); 

scanf("Xd", segment); 
in t number.linkO 

int 8 , to ta l_ l ink; 

t o t a l . l i n k = 0; 
for ( 8 = 1 ; 8 < B i n.xsize-l; s++) 
t o t a l . l i n k += s; 
t o t a l . l i n k •= 4; 
t o t a l . l i n k += 2 * ( v i n . X 8 i z e * B i n . y 8 i z e - l ) ; 
pr intf ("Total number of l inks in or ig inal graph i s Xu\n" , to ta l . l ink) ; 
return ( t o t a l . l i n k ) ; 
} 

l o a d . d a t a ( 8 p a n . t r e e , heavy, tree.element, vertex, ntimlink) 
FILE ••span.tree; 
UIiqUE.LIIK •heavy; 
TBEE •tree.element; 
LIST.HEAD •vertex; 
int numlink; 
{ 

int s, t , total . i tems, numread = 0; 
TREE'•temp.tree; 

i f (numlink) / • th i s i s a minimax f i l e • / 
numread += fread((char •)heavy, sizeof(UIIQUE.LIIK), 

numlink, •span.tree); 
else 

niunread *= fread((char •)heavy, sizeof (UIIQUE.LIIK), 
Bin . x s i z e * B i n . y s i z e - l , •span.tree); 

for (t = 0; t < 2^Bin.xsize^Bin .ysize-2; t++) 
numread += fread((char •)Jttree.eleBent[t], 

sizeof(int)+sizeof(TREE *) , 1, •span.tree); 
demand(numlink ? nnmread == 2*Bin^xsize»Bin.ysize+numlink-2 

: numread == 3»Bin .xsize*Bin_ysize-3, Read error) ; 
fclo8e(^span.tree); 

/ • reconstruct the tree data structures just read from f i l e • / 
for ( t = 0, total . i tems = 0; t < Bin . x s i ze*Bin .ys i ze ; t++, total.itens++) 

v e r t e x M .node = ttree.element [total.items] ; 
temp.tree'= tree.element[total.items].next; 
Bhile (temp.tree != lULL) 

s = totaliitems++; 
tree.element[s].next = ttree.element[total.items]; 
temp.tree - tree.element[total.items].next; 

} 
} 

/ • prepare for depth f i r s t search * / 
get.root(heaviest, vertex, heavy, segment) 
LIST.HEAD ••heaviest, •vertex; 
UIIQUE.LIIK •heavy; 
int segment; 
</• locate a l l the root node i n the l i s t head.• / 
register int s, t ; 

for(s = 0,t = 0; s < segment - 1; 8++) 
{ / • take doBn the required 2 * ( 8 e e m e n t - l ) heaviest l ink(root) • / 

heaviest [t++] = tvertex[heavy[sl.nodel] ; 
/ • do the duplicate l i n k • / 
heaviest[t++] = tvertex[heavy[s].node2]; 
/ • labe l the root as v i s i t • / 
v i s i t . root (heavies t , t -2 ) ; 
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/ * cut spanning troa and obtain sepaents • / 
get.segnent(heaviest, vertex, stack, group.pixel , c lus t , segment) 
LIST.HEAD'«vert ex, *»heaviest; 
int *stack, *group.pixel, •*clust; 
int segment; 

LIST.HEAD *temp.list; 
TREE «root; 
int k, t , stack_pos, root.pos, numpixel; 

numpixel =0; / • a l l root already v i s i t ed * / 
t " get_single.node(heaviest, 2*(segment-l), group.pixel , 

c lus t , tnumpixel); 
i f (t > 0) 

printf("There are Xd single point segments\n", t ) ; 
^ output.single.node(group.pixel, c lus t , t ) ; 

f o r (root.pos " 0; t < segment; root.pos++, t++) 

/ * delete a l l s ingle nodes from the heaviest l i s t • / 
in i t ia l izeO; 
stack.pos =0; 
clustCt]"»group.pixol[nunpixel]; / » point to start of nen c luster * / 
while ((root = find.alone.node(heaviest[root_pos])) »= TOLL) 

root.pos++; 
s tart .dopth. f irs t (group.pixe l , stack, tstack.pos, 

tnumpixel, heaviest[roo.t.pos]->node.tag, root) ; 
calc"ulate.sum(heaviestLroot.pos]->node.tag); 
calculate.sum(root->node.pos); 
nos.vertices += 2; 
neo.ptr = tvertex [robt->node.pos]; 
o l d . p t r = heaviest[root.pos]; 
do 
{ / * depth f i r s t next * / 

temp.l ist = depth.first.segment(vertex, tstack.pos, 
tnumpixel, grpup^'pixel, stack) ; 

o l d . p t r = nes.ptr; 
neo.ptr = temp.l ist; 

} while(stack.pos != 1); / • stack != TOLL * / 
f o r (k = 0; k < dimension; k++) 

nean[k] /= nos.vertices; 
output.image(clust[t], group^pixel); 

^ c lust[ t ] = tgroup.pixel[numpixel]; / • point to end * / 

output.single.node(group.pixel, c lus t , num.node) 
int *group.pixel, **clust, num.node; 

register int i ; 

for ( i = 0; i < num.noda; i++) 
{ 

in i t ia l izeO; 
calculate.sum(group.pixel[i]); 
nos.vertices++; 
output.image(clust[i], group.pixal); 

> 
s tart .depth. f irs t (group.pixe l , stack, stack.pos, numpix, root, node) 
int *stack.pos, •numpix, *grbup.pixel, *stack, root; 
TREE *node; 

stack[(*stack.pos)++] = root; / * put root to stack * / 
grbup.pixel[(»humpix)++] = root; / • put root to d u s t e r • / 
8tack[(*stack_pos)++] = node->node.pos; 
group.pixel[(*numpix)++] = node->node.pos; 
node->8tatus = TMPVISIT; 

> 
LIST.HEAD • depth.first.segment(hode.head, stack.pos, numpixel, 

group.pixel , stack) 
LIST.HEAD •nbde.head; 
int *group.pixel, *8tack; 
int *stack.pos, ^numpixel; 

TREE «root; 

i f ((root " depth.first.next(node.head, stack.pos, numpixel, 
grbup.pixel , stack)) == TOLL) 

return(TOLL); 
calculate_8um(root->node_po8); 
nos.vertices++; 

return(tnode.head[root->node.pos]); 
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yis i t . root (heavies t , root.pos) 
LIST_HEAD ••heaviest; 
int root.pos; 

Int i . j ; 
TREE *this ; 

f o r ( i » O. j « 1; i < 2; i++.j—) 
•C / » v i s i t a pa ir of root * / 

th i s » heaviest[root.pos+i]->node; 
sh i l e (this i* lULL) 

i f (this->node.pos == heaviest[root.pos+j]->node_tag) 

this->status = VISIT; 
break; 

th i s = this->neit; 

int get.single.node(heaviest, nua.root, a l l .node, c lus t , nnnpixel) 
LIST_HEAD ••heaviest; 
in t nuii_root, all .node • , •c lust 0 , •nuopixel; 

TREE • th i s . t r ee ; 
int i , j , k, nua.seg; 
char test;. 

nun_seg = 0; 
for (k = 0; k < num.root; k++) 
< / • go over a l l root • / 

i = 0; 
th i s . t ree = heaviest[k]->node; 
Bhile ( t h i s . t r e e != lULL) 
{ / • count number of node • / 

i f (this.tree->status == lOTVISIT) 
i++; / • count any l o t v i s i t node * / 

th i s . t ree = this.tree->noxt; 

i f ( i == 0) 
i I* node e l i g ib l e to be single node • / 

test = UIiqUE; 
i f (num.seg > 0) 
•£ /• more than 1 segment * / 

for (j = 0; j < num.seg; j++) 

i f (all .node[j] == heaviest[k]->node.tag) 
{ / • check each cluster • / 

test = DUPLICATE; 
break; 

^ } 

i f (test == UIIQUE) 
{ / • put unique single node to the cluster l i s t • / 

clust[num_seg++] = tall.node[•numpixel]; 
all.node[(•numpixel)++] = heaviest[k]->node.tag; 

} 
} 

^ return(num_seg); / • return number of s ingle node * / 

TREE • f ind.alone.node(l ist) 
LISTi.HEAD • l i s t ; 

TREE • t h i s ; 

th is = list->node; 
Bhile ( th i s != lULL) 
{ 

i f (this->status == IQTVISIT) 
return(this) ; 

th i s = this->next; 

^ return(IULL); 

delete .dupl icateO 

TREE • t h i s ; 

th is = neB.ptr->node; 
Bhile ( this != lULL) 
< /• mark the duplicate node * / 

i f (this->node.pos = old.ptr->node_tag) 

this^>status = THPVISIT; 
break; 
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> 
t h i s " this->next; 

TEEE * depth.first_next(vertex, stack.pos, nunpix, group.pixel , stack) 
LIST.HEAD »vertex; 
int .*stack.pos, *nuDpix; 
int *group.pixel , 'stack; 

TEEE *root; 

de le te .dupl icateO; / * delete duplicate node i n the next tree l i s t * / 
i f ((root = find.aione.node(netr.ptr)) == lULL) 

vhile (root ».» TOLL) 
i 

I* delete stack * / 
*stack.pos -= 2; 
nev.ptr = tvertexistack[*stack.pos]]; 
root » find.alone.node(Jtvertex[stack[(*stack.pos)++]]); 
if(*stack.pos »= 1 root = TOLL) return(TOLL); 

> 
/ * put node to stack • / 
8tackC(*stack.pos)++] = root->node.pos; 
/ * put node to notepad for reset * / 
group.pixel [(•nu]apix)++] = root->node.pos; 
root->status « THPVISIT; 
return(root); 

output. inage(clust .start , group.pixel) 
int *c lus t . s tar t , group.pixel • ; 

I* v r i t e to screen v i t h precalculated average value * / 
int i , k, a, b, index; 

index = c lust . s tart -group.pixe l ; / * get the index of group p ixe l * / 
f o r ( i = 0; i < hos.vertices; i++ ,index++) / * nuinber of p ixe l » / 

get_coordinates(group.pixel[index], t a , tb) ; 
for (k = 0; k < dimension; k++) seg[k][a][b] = meanW; 

} 

/****«*** .****************«*************«***************************** 
* You are reading bhcS.c * 
* This program read a segments f i l e generated by tdseg3.c, and * 
* cluster the segments. * 
* Segment clustering based on graph theoretic approach. * 
* To obtain m segments the m-1 l inks v i l l be deleted. * 
* Use Hotel l ing test as distance betveen tvo segments. • 
* Bottom up clustering. * 
* K.S.LAU 24-1-92 » 
• • • • * • • • • • • * • • • • • • * * • * * * * • * • • * • * • • • • * * * * • * * • • • * * • * * * * * * * * • • * * • • • • • * * / 

t include "cluster.h" 

typedef struct { 
f loat sumCDIHEISIOI] ; 
f loat ssqCDIHEISIOI]; 
f loat cosumCDIHEISI0I*(DIHEISI0I-l)/2]; 
int num.vec; 
}ISTAT;/* s t a t i s t i c required for a gaussian model * / 

f loat hotel l ing_distanceO; 
f loat •ahalanobis.distance(); 
f loat get .hotel l ing^distanceO; 
ISTAT add.ISTAT(); 
ISTAT segment.all .statO; 

/ • * * * * * * * * * * * * * * * * * * * * * * * * * * GLOBAL VARIABLES ********************* / 
u.char imageCDIHEISIOI]CHAX.YSIZE]CHAX.XSIZE]; 
char labelCHAX.YSIZE]CHAX.XSIZE]; 
int *group.pixel, 

•stack, 
*class.segment,/* store segments * / 
num.seg,/* number of segments • / 
dimension, 
top.x, top.y , 
v in .xs ize , v in .ys ize; 

LIST head; 
LIST.HEAD tnav, *old; 
struct ras t er f i l e header; 

mainO 
{ 

int num.class,/* number of clusters * / 
numread, 
**seg, * » c l a 8 s . p t r , 
r , 8 , t ; 
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LIST_HEAD »vertex, • •root; 
STAT 8tat[HAX_CLUS]; 
FILE • s eg . f i l e ; 

putsC'SEGHEIT CLUSTERIIG USIIG RST(IITRSET DISTAICE)"); 
noBread « 0; 
get_paraneters(tseg_file, tnumread, tnun_class, JtnuB.seg); 
got.dataO; 
stack ' ( int •)get_BeBory (nun_seg, s izeof ( int ) ) ; 
group.pixel = (ant »)get_«emory(Bin_xsize*Bin_ysize+l , s izeof( int) ) 
yeftex >• (LIST_HEAD *)get jtomory(nu»_8eg, s izeof (LIST_HEAD)) ; 
seg « ( int »*)get_iie«ory(nUB_seg+l, sizeof (int »)) . ; 
/ • point to end • / 
seglnuB.seg] « tgroup.pixel[Bin_xsize*Bin_ysize]; 
/ • al locate array of structure f o r l inked l i s t of tree * / 
load_data(tseg_file, tnunread, seg); 

puts("Grouping segnents.. ."); 
/ * th i s i s the essential ly the sane as the CEST algorithn • / 
rst_clustering(vertex, seg, ntUB_class); 

/ * al locate array of pointer to the heaviest roots » / 
class.segnent = (int *)get_nenory(nun_seg+l, s i zeof ( int ) ) ; 
c la s s .p tr = ( int **)get_nenory (nun_class-M, sizeof (int *)); 
root " (LIST.HEAD **)get.nenory(nuB.class, sizeof(LIST.HEAD *)); 
get.root (vertex-, root , 'nun.class) ; 
group.segnent(vertex, root, c lass .p tr , n u n.clEi8s); 
output.clusters(nun.class, seg, c lass .p tr , s tat ) ; 
shoB . c luster .paraneters(nun.c lass , s tat ) ; 
i n a g e . f i l e(nuB . c l a s s , s tat ) ; 

get.root(vertex, root, nun.class) 
LIST.HEAD *vertex, ••root; 
int nun.class; 
{ 

int i , . j , 
comptagO; 

LIST.HEAD ••ptr; 

ptr = (LIST.HEAD ••)get.nenory(nun.seg, sizeof(LIST.HEAD • ) ) ; 

for (i = 0; i < nun.seg; i++) ptr[i] = tvertex[i] ; 
qsort((char •)ptr, nun.seg, sizeof(LIST.HEAD • ) , conptag); 

/ • get roots • / 
for (i = j = 0; i < nun.seg; i++, j++) 

i f (ptr[i]->node.tag == 0) rootCj] = ptr[i]; 
else break; 

root[j++] = ptr[i++]; 
for ( ; i < nun_8eg; i++) 

i f (ptr[i]->node.tag != ptrCi-l]->node.tag) 
root[j++] = ptrti]; 

demand(num.class == j , find inconsistent nunber of segaents); 
free((char •)ptr); 

/ • initalize label for depth f irst search • / 
for(i = 0; i < num.seg; i++) vertexCi]'.node.tag = i ; 

int conpteig(a, b) 
LIST.HEAD • • a , ••b; 
{ / • in ascending order of naenitude • / 

retum((^a)->node.tag - (•bT->node.tag); 

group.segnent(vertex, del^l ink, c lass .p tr , num.class) 
LIST.HEAD 'vertex, • • d e l . l i n k ; 
in t • • c l a s s . p t r , num_class; 

int i ,stack.pos,num.seg,root.pos; 
TREE •root; 
LIST.HEAD •temp.l is t ; 

nua.seg = 0 ; 
i * f ind.single.segment(del. l ink, num.class, tnum.seg, c la s s .p tr ) ; 
for (root.pos = 0 ; i < nun.class; r6pt.pos++, i++) 

stack.pas = 0; 
B h i l e ( ( r o o t = find.alone.node(del. l ink[root.pos])) == lULL) 

root.pos++; 
c lass .ptrCiJ = tcl2iss .segment[num.seg]; 
s tar t .dspth . f i r s t ( t s tack.postnum.seg , 

del.]ink[root.pos]^>node.tag, root) ; 
nes * »vertex[foot->node.pos]; 
old•= tvertex[del.link[root.pos]->node_tag]; 
do 
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tonp_list = depth.first.clBss(vertex, tstack.pos, tnttB_seg); 
old = neo; 
now >« temp.list; 

^ } while(stack_pos •= 1); 
^ class.ptrCi] " tclass_segDent[nuja.seg] ; / • point to end • / 

•ake.link(total, vertex, link, region.svm, seg.stat) 
int total; 
LIST.HEAD 'vertex; 
ISTAT 'region.suM, 'seg.stat; 
LIST 'link; 

int i , j , k; 

/ • f ix the head • / 
head.next » tlink[0]; 
head.last » tlink[total-l] ; 
link[0].last = linkCtotal -l].next = thead; 
for ( i " 0, j «• total-1; i < total-1; i++, j—) 
•C / * connect the link * / 

linkCi].next « tlinkCi +1]; 
link[j].last = tlinkCj -1]; 

for ( i >« k » 0; i < nun.seg-1; i++) 

for (j = i+1; j < num.seg; j++) 
•C / • calculate link weight » / 

link M . node, nodel = i ; 
link[k].node.node2 = j ; 
link[k++].weight = 

get.hotelling.distance(i, j , vertex, region.sum, 
0, seg.stat); 

} 
} 

float get.hotelling_distance(nodel, node2, vertex, 
region.sura, region, seg.stat) 

int nodel, node2, region; 
LIST.HEAD 'vertex; 
ISTAT 'region.sura, 'seg.stat; 

i f (vertexCnodel].node.tag = 0 t t vertex[node2].node.tag = 0) 
return(single.single(nodel, node2, seg.stat)); 

else i f (vertexCnpdel].node.tag == 0 t t vertex[node23.nodo.tag != 0) 
return(single_group(nodel, region.sum, region, seg_8tat)); 

else i f (vertexCnodel].node.tag != 0 t t vertex[node2].node.tag == 0) 
retum(single.group(node2, region.sum,, region, seg.stat)) ; 

else returh(group.group(region_sum, vertex[nodel].node.tag, 
^ vertex [node2]l. node.tag) ) ; 

float sihgle.single(nodel,. node2, seg.stat) 
int nodel, node2; 
•STAT 'seg.stat; 

float dist; 

dist = hotelling.distance(seg.stat[nodel], seg.stat[node2]); 
^ retum(dist); 

float single.group(node, region.sum, region,.seg.stat) 
int node, region; 

ISTAT 'region_sum, 'seg.stat; 

float dist; 

dist = hotelling.distance(seg.stat[node], region.sumCregion]); 

retttm(dist); 

float group.group(region.sum, regionl, region2) 
int regionl, region2; 
ISTAT 'region.sura; 

float dist; 

dist = hotelling.distance(region.suraCregionl] , region.sum[region2]); 
^ retum(dist); 

float hotelling_distance(a, b) 
•STAT a, b; 
{ 
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int i . j , k; 
f loat prod, add, d i s t , 

•eanl [DIHEISIOI], 
Bean2[DIHEISIOI]., . 
covarl[DIKEISIOI][DIHEISIOI], 
covar2[DIHEISIOI][DIHEISIOI], 
addcovar[DIHEISIOI][DIHEISIOI]; 

add = (f loat) (a.nuB_vec)+(float)<b.nuni.vec) ; 
prod = (float)(a.nmi_vac)*(float)(b .nua_vec); 
for (k * 0; k < dimension; k++) 

•eanl[k] = a.suQ[k]/(float)(a.nun.vec); 
•ean2[k] = b.sun[k]/(float) (b.nun.vec) ; 

i f (add < DIHEISIOI) 
{/* i f cannot conpute covariance natr ix return Euclidean distance * / 

d i s t =0.0; 
for (k = 0; k < dinension; k++) 

d is t += SQUARE(noanl[k]-nean2[k]); 
return(dis t ) ; 

else i f (a.nun_vec < DIHEISIOI 11 b.nua_vec < DIHEISIOI) 
{/* i f any one group i s too s n a i l • / 

i f (a.nun_vec < DIHEISIOI) 
•C 

get_covar(b, covar2); 
inverse j i a t r i x(covar2); 
dis t = nahalanobis_distance(neanl, nean2, c o v a r 2 ) ; 

else 
{ 

get_covar(a, covarl); 
inverse.natrix(covarl); 

^ d i s t = nahalanobis_distance(meanl, Bean2, covarl ) ; 

d i s t = dist*prod/add; 

else 
{/* both covariance natrix can be computed *l 

get_vithin_group_ssq(a, covarl ) ; 
get_vithin_group_SEq(b, c o v a r 2 ) ; 
f o r ( i = 0; i < dimension; i++) 

f o r (j = 0 ; j < dimension; j++) 
addcovarti] [j] += covarl [i] [ j]+covar2 [ i ] [j] ; 

inverse_Batrix (addcovar) ; 
for ( i = 0; i < dimension; i++) 

for (j = 0; j < dimension; j++) 
addcovar[i] [j] •= add-2.0; 

dis t = mahal'anobis_distetnce(meanl, mean2, addcovar); 
^ d i s t = dist*prod/add; 

^ re tum(d i s t ) ; 

get_covar(c, covar) 
ISTAT c; 
f loat bovarD [DIHEISIOI]; 

register int i , j j k, t o ta l ; 

t o t a l = c.num.vec; 

for (k = 0; k < dimension; k++) 
covar[k][k] = ((float)total'c.3sq[k]-SIJUABE(c.suB[k])) 

/ ( ( f loa t ) to ta l* ( f loa t ) ( to ta l - l ) ) ; /* uribaised * / 
for ( i = k = 0; i < dimension; i++) 

f o r (j = i+1; j < dimension; j++, k++) 

covar[ i ] [ j ] = ((float)total*c.cosum[k]-(c.sum[i]*c.sum[j])) 
/ ( ( f loat ) tota l*( f loat ) ( tota l -1) ) ; 

covar [ j ] [ i ] = covar[ i ] [ j ] ; 

} 

get.Bithin_group_s8q(c , covar) 
ISTAT c; 
f loat covar •[DIHEISIOI]; 

register int i , j , k, to ta l ; 

t o ta l = c.num.vec; 

for (k = 0; k < dimension; k++) 
covar[k][k] = ((float)total*c.ssq[k]-sqUARE(c.sum[k])) 

/ ( f l oa t ) to ta l ; 
f o r ( i = k = 0; i < dimension; i++) 

for (j = i+1; j < dimension; j++, k++) 

covar[ i ] [ j ] = ((float)total*c.cosum[k]-(c.sum[i]*c.sum[j])) 
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/ ( f l oa t ) to ta l j 
covar[j]Ci] = covarCi][ j ] ; 

> 
in¥er8e_«atrix(Bcovar) 
f l oa t HcovarCDIHEISIOI][DIHEISIOI]; 

register int i , j , k; 

/ • conpute elenents of reduced natrix • / 
for <k •= 0; k < dinension; k++) 
{ / • nes elenents of pivot roB •/ 

for (j = 0 ; j < dinonsion; j++) 
i f (j != k ) Bcovar[k ] [ j ] /«= Bcovar[k] [ k ] ; 

/ • element replacing pivot elenent * / 
B c o v a r[k][k] = 1 .0/Bcovar[k] [ k ] ; 
/ * conpute n e B elements not in pivot roB or pivot column * / 
for ( i " 0; i < dimension; i++) 

i f ( i != k ) 
f o r (.3*0; j < dinension; j++) 

i f (j != k ) 
Bcovar[i]Cj] = Bcovar [ i ] [ i ] 

-Bcovar[k][j]*BcoYar[ i] [ k ] ; 
/ • compute replacement elenents for 

pivot colunn-except pivot elenent * / 
for ( i = 0 ; i < dinension; i++) 

i f ( i != k ) 
Bcovar [ i][k] *= -Bcovar[k] [ k ] ; 

} 

f loat nahalanobis_distance(neanl, nean2, B c o v a r ) 
f loa t *neanl, *nean2, 

Bcovar[] [DIHEISIOI] ; 
{/* generalised Hahalanobis distance * / 
register i n t k , a, b; 
f loa t vector[DIHEISIOI], 

result[DIHEISIOI], 
distance - 0.0; 

for ( k = 0; k < dinension; k++) r e s u l t[k] = 0.0; 

f o r ( k = 0; k < dinension; k++) 
v e c t o r i k ] = neanl[k] -nesm2[k] ; 

for (a = 0; a < dimension; a++) 
f o r (b = 0; b < dimension; b+.+) 

result[a] += v e c t o r [ b ] * B c o v a r [ b ] [a] ; 

f o r ( k = 0; k < dimension; k++) 
distance += r e s u l t[k] • v e c t o r[k]; 

retum(distance); 

calculate_cosum_square(node, sum) 
int node; 
ISTAT *sum; 
{ 

int i , j , k, a, b; 

get.coordinates(node, ti, t j ) ; 
for (k = 0; k < dimension; k++) 
< 

sum->sum[k] += (float)image[k] [i] [j] ; 
sum->s8q[k] += SQUAREUfloat)iBagetk][i][j]); 

for (a = k = 0; a < dimension; a++) 
f o r (b » a+1; b < dimension; b++, k++) 

8um->co8um[k] +«= (float)image[a] [i] [j]*(float)image[b] [i] [j] ; 

ISTAT add_ISTAT(a, b) 
ISTAT a, b; 
< 

int k; 

for (k = 0; k < dinension; k++) 
{ 

a.sum[k] += b.sum[k] ; 
a.8sq[k] += b.s8q[k] ; 

for (k = 0; k < dimension*(diBension-l)/2; k++) 
a.co8um[k] += b.co8um[k]; 

a.num_vec += b.num_vec; 

return(a); 

ISTAT segraent_all_stat(node, seg) 
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int node, •*8eg; 
register int index, i ; 
ISTAT su>; 

initialize_ISTAT(Jtsu>); 
index ' segCnode].- group.pixel; 
sUB.nua_vec » seg[node+lJ - seg[node]; 
for ( i » 0; i < sun.nua.vec; i++, index++) 

calculate_cosun_square(group.pixel[index], tsun); 
'retum(sun); / * intraset distance * / 

initialize_ISTAT(a) 
•STAT *a; 

int k; 

a->nun.vec » 0; 
for (k " 0; k < dinonsion; k++) 

&->sun[k] " a->ssq[k] * 0.0; 
f o r (k « 0; k < dinensioh*(dinension-l)/2; k++) 

^ a->co»un[k] « 0.0; 

rst_clust.ering(vertex, seg, nun^class) 
LIST.HEAD *vert»x; 
int ««seg, nun.class; 

int region, total, regionl, region2, nodel, node2; 
LIST *link, *Bin; 
ISTAT *region_sun, *seg_stat; 
TEEE •templ.tree,»temp2_tree; 

total = nunber.listO; 
link = (LIST *)get.nenory(total, sizeof(LIST)); 
region.sun = (ISTAT *)'get.nenory(nun.seg, sizeof(ISTAT)); 
8eg.stat = (ISTAT *)get.nenory(nun.seg, sizeof(ISTAT)); 
for (region = 0; region < nun.seg; region++) 

seg.stat[region] » segment.all.stat(region, seg); 
nake_link(total, vertex, link, region.sum, seg.stat); 
/ • take down the region of each segment */ 
for(region = 1; region < num.seg; region++) 

/ * pick the smallest link • / 
/ * record to unique link for sorting later • / 
• in = lightest.linkO; 
regionl = vertex[min->node.nodel].node.tag; 
region2 = vertexDnin->node.node2].node.tag; 
nodel = min->node.nodel; 
node2 = min->node.node2; 
/ * save the smallest link * / 
templ.tree « get.nodeO; / * put into linked l i s t * / 
temp2.tree = get.nodeO; 
templ_tree->node.pos = node2; 
temp2.tree->node.pos = nodel; 
/ * put link into the tree • / 
vertex[nodel].node = front.of.tree(templ.tree, vertex[nodel].node); 
vertex[node2].node = front.of.tree(tenp2.tree, vertex[node2].node); 
i f (region < num.seg-1) 

sum.label_vertex(seg.stat, region.sum, vertex, nin, 
region, regionl, region2); 

delete.recal(seg_stat, min, link, vertex, region.sum, 
region, regionl, region2); 

^ i f (num.seg-num.class == region) break; 

free((char •)region.8um); 
free((char *)seg.stat); 

^ free((char •)link); 

LIST *lighte8t_link() 

LIST •nin, • th i s ; 

• in = this = head.next; 
vhile (this != thead) 

i f (nin->Beight > this->Height) nin = this; 
^ this = this->next; 

•in->last->next = nin->next; 
Bin->next->last = •in->last; 
•in->next = lULL; 

^ return(nin); 

sua.label_vertex(8eg.stat, region.sun, vertex, nin, region, regionl, region2) 
int region, regionl, region2; 
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LIST • • in ; 
LIST_UEAD •vertex; 
ISTAT •region.siw, •seg.stat; 

int i ; 

i f (region! »» 0 kk region2 •= 0) 

vertex[•in->node.nodel].node.tag > region; 
vertex[nin->node.node2].node.tag = region; 
region.sunCregioh] = add_ISTAT(seg.stat[min->node.nodel], 

^ seg.stat[Bin->node.node2]); 

else i f (regionl 0 kk region2 !» 0) 

vertex[•in->node.nodel].node.tag » region; 
for ( i >! 0; i < n»ui_seg; i++) 

i f (vertexCi].node.tag = re^ion2) 
^ vertexCi].node.tag = region; 

region.sim[region] = add.lSTAT(seg_statDain->node.nodel] , 
^ region.8u»[region2]); 

else i f (regionl != 0 kk region2 = 0) 

vertexDiin->node.node2].node.tag « region; 
for ( i = 0; i < nua_seg; i++) 

i f (vertexCi].node.tag == regionl) 
vertexCi]•node.tag = region; 

region.sumCregion] = add.ISTAT(seg_statCmin->node.node2], 
region.sumCregionl]); 

else 
{ 

for (i = 0; i < nura.seg; i++) 

i f (vertexCi].node.tag == regionl 11 
vertexCi].node.tag == region2) 
vertexCi].node.tag = region; 

region.sunCregion] = add.lSTAT(region.siimCregionl], 
region.sumCregion2]); 

i n t jump(nodel) 
int nodel; 
{ / • return the start position • / 
return((nura.8eg^nodel)-(nodel^(nodel+1)/2)); 

delete.recal(seg.stat, B i n , l i n k , vertex, region.sum, 
region, regionl, region2) 

LIST • l i n k , • m i n ; 
LIST.HEAD •vertex; 
ISTAT •region.sum, • s e g.stat; 
int region, regionl, region2; 

register i n t i , j , k; 
LIST •this, •that; 
i n t m i n i , Bin2, region.node, nev.node, t o p ; 

B i n l = min->node.nodel; 
• in2 = Bin->node.node2; 
top = jump(minl+l); 
i f (regionl = 0 kk region2 = 0) 
{ / • del.recal single t o single • / 

this = head.next; 
Bhile ( t h i s != t h e a d ) 
•C 

i f (this - link > top) break; 
i f (this->node.nodel == Binl 

II this->node.node2 == m i n i ) 
{ 

i f (this->node.nodel == m i n i ) 
noB.node = this->node.node2; 

else 
neB_node * this->node.nodel; 

/ • recalculate first • / 
this->Beight = 

get_hotelling.distance(this->node.nodel, 
this->node.node2, vertex, 
region^iSum, region, s e g.stat); 

i f (neB_node == this->node.nodel I I 
neB_node = this->node.node2) 
j = this -link +1; 

else i f (noB.node > nin2) j = jump(min2); 
else j = jump(neB.node); 
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that " tlinkCj] ; 
while (that->next = lULL) that = tlink[++j]; 
while (that !> thead) 
< / » delete * / 

i f •((that->noae.nodel «« new.node tt 
thatOnode.node2 == Bin2) 11 
(that->node.node2 » new.node tt 
that->hode.nodei == Bin2)) 

i I* del' one link for every node * / 
that->la8t->hext » thatr>next; 
that->next->last « that->last; 
that->next = lULL; 
break; 

that = that->next; 
} 

} 
this = this->next; 

> 
else 
•£ / » del.recal for single to group tmd group to group » / 

for ( i = 0; i < nuB.seg; i++) 
{ / * for a l l node in region • / 

i f (vertexti].node.tag =« region) 

region.node = i ; 
this = head.next; 
while (this != thead) 
•C / * for every other node to this region node * / 

i f (this - link > top) break; 
i f (this->node.nodel == region.node 11 

this->node.node2 == regioh.node) 

i f (this->node.nodel == region.node) 
new.node = this->node.node2; 

else 
new.node = this->node.nodel; 

this->weight = 
get.hotelling.distance(this->node.nodel, 

this->node.node2, vertex, 
region_sum, region, seg.stat); 

i f (new.node == this->node.hodel | | 
new.node == this->node.node2) 
k = this -link +1; 

else i f (new.node > Bin2) k = juBp(min2); 
else k - jump(new.node); 
that = tlinkCk]; 
while (that->next == lULL) that = tlink[++k]; 
while (that != thead) 
{ 

i f ((that->node.nodel == new.node tt 
vertex[that->node.node2].node.tag == region) 
11 (that->node.node2 == new.node tt 
vertex[that->node.nodel].node.tag == region)) 

that->last->next « that->next; 
that->next->last = that->last; 
that->next = lULL; 
break; 

} 
that = that->next; 

} 
} 
this = this->next; 

* You are reading b B i r s l . c 
* BottoB up segnentation using CEST. 
» This i s bas ical ly the sane as rsstS.c 
* Compute information loss to guide segmentation. 
* Use a gaussian model for each segment. 
* K.S.LAU 24-1-92 
******************************************************************** 

tinclude "bu.h" 

/ * when to .start computing entropy • / 
tdefine START.EITROPY 0.2/* percentage of number of p ixe l i . e . segments * / 
tdefine EITROPY.STEP 30/* compute entropy after EITROPY.STEP of segments * / 
tdefine TRIVIAL.SEG 5/* no entropy for segment smaller than th is * / 
/*************************** FUICTIOI DEFITIOIS **•*********************/ 
char * get.memory(); 
f loa t link_weight(); 
f l oa t get.entropyO; 
f loa t get.whole.entropyO; 
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f loat 
f loa t 
LIIK * 
LIIK * 
LIIK • 
TREE • 
TREE * 
TREE • 
STAT 
STAT 

•atrix.deterninantO; 
noB.weightO; 
lightestO; 
juapO; 
coapressO; 
front_of_treeO; 
f ind.alone^^nodeO; 
depth.first.next0; 
add.structO; 
get.pix.valueO; 

LIST.HEAD * depth.f i r s t . s e g b ; 

/ * • • • • • • • • * • * • « • • • • * • * * * * • • * * QLQBAL VARIABLES • • • • • * • • • • * • • • * • * * * * • • • • / 
extern LIST.HEAD »neii_ptr, t o ld .p tr ; 
u_char iaage[DIHEISIOI]tHAX_YSIZEJCHAX.XSIZE];/* store laage * / 
n_char segtDIHEISIOI][HAX.YSIZE][HAX.XSIZE];/• store segaented image * / 
int num.8eg,/* user required niuaber of segments * / 

entropy.step,/* how often to compute entropy loss * / 
s tart .entropy, /* shen to start conpute entropy loss * / 
dimension,/* diaension of the iaage * / 
top.x, t op .y , / * top l e f t coordinates of the process sindos * / 
B i n . x s i z e , b in .ys ize ; /* s ize of process BindoB */ 

struct ras t er f i l e header;/* header of the iaage f i l e * / 
LIIK *edges, head; / * edges for array, head for l i s t * / 

char ansBerCS]; 
int s, 

t o t a l . l i n k , 
**clus, *groupipixel , /* to store a region * / 
•*stack,/* f o r depth f i r s t search * / 
cpu.tine; 

char *r tag; /* root labe l * / 
LIST.HEAD *vertex; 

putsC'BOTTOH UP SEGHEIATIOI USIIG RST"); 
get .dataO ; / * get input data * / 
start.entropy = (int)(Bin.xsize*Bin.ysize*START.EITROPY); 
entropy.step = EITROPY.STEP; 
pr ih t f ("StJirt computing entropy Bhen number of segments are Xd\n", 

start.entropy); 
p r i n t f ("The sampling frequency of entropy i s every Xd segmentsW, 

entropy.step); 
printf("Do you Bant to change the above parameters? y /n "); 
scanf("Xs", ansBer); 
i f (strchr(ansBer, 'y») | | strchr(ansBer , 'Y') ) 

p r i n t f (''Enter the required start ing point, "); 
scanf("Xd", tstart .entropy); 
p r i n t f (''Enter the sampling frequency, ") ; 
scanf("Xd", tentropy.step); 

printf("Enter the number of segments to be generated, "); 
scanf("Xd", tnum.seg); 
t o t a l . l i n k = number.l inkO; 
/ * al locate array of structure for l inked l i s t of tree * / 
vertex = (LIST.HEAD *)get.nemory(Bin_xsize*Bin.ysize, sizeof (LIST^iHEAD)); 
edges = (LIIK *)get.memory(4«Bin.xsize*Bin.ysize-4, sizeof(LIHK)); 
rtag =• (char *)get jiemory(Bin_xsize*Bin_ysize, s izeof (char)); 
f o r (s = 0; s < Bin . x s i z e*Bin . y s i z e ; s++) rtag[s] = ROOT; 
stack = ( int *)getjaemory(Bin.xsize*Bin.ysize, s izeof ( int ) ) ; 
group.pixel = ( int *)get_memory(Bin.xsize*Bin_ysize, s i zeof ( int ) ) ; 
i f (num.seg > start.entropy) 

clus = (int **)' get_Bemory(num.seg+l, sizeof (int *)); 
else 

clus = ( int *•) get.Bemory(start.entropy+l, s izeof( int *)); 

C l o c k O ; 
/ * conpute a l l Beight of l inks * / 
printf("C2J.culating l i n k Beight.\n"); 
g e t . l i n k O ; 
printf ("Herging. . . \n"); 
recru.tree(vertex, r tag , group.pixel, c lus , stack); 
/ * free the edges nenory » / 
free((char *)edges); 

cpu.tine = c l o c k O ; 
printf("Run t ine Bas X.2f sec. \n", cpu.time / l .OeO); 

7**************************** EID OF HAII * * * * * * * * * * * * * * * * * * * * * * * * * * * * / 

| e t .data() 

char filename[DIHEISIOI][SO]; 
int i , j ; 
FILE *ftDIHEISIDI]; 
struct ras ter f i l e head[DIHEISIOI]; 

•ainO 
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printf("Enter the number of channel to be used < 4, "); 
scanf("Xd", tdimension); 

for (i « 0; i < dimension; i++) 

printf("Enter the channel filename Xd, ", i ) ; 
scanf("Xs", (char *)tfilenameCi][0]); 
fCi] = fopen((char *)fcfilename[i] [0] , "r"); 

^ demand(f[i], Cannot open f i le ) ; 

/ * store header in global area, for later use * / 
fread((char •)kheader, sizeof(struct rasterfile), 1, f [0] ) ; 
reBind(fCO]); 
for (i • 0; i < dimension; i++) 

fread((char *)»head[i], sizeof(struct rasterfile), I, fCi]); 
denand(header.ras.length = head[i].ras.length, 

.Ha]ce siire the images has the same size and coordinates); 

printf ("The inages size is Xd\n", header, reis^vidth); 
printf("Enter the windon width (xsize), "); 
scanf("Xd", tsin .xs ize); 
printf("Enter the windon height (ysize), "); 
scanf("Xd". kBin^ysize) ; 

printf("Enter the top left vindoB coordinate 
of the image to be processed,\n"); 

printf ("\tx: "); scanf ("Xd", Jttop.x); 
printf("\ty: "); scanf("Xd", ttop.y); 

denand(head[0].ras.Bidth >= Bin.xsize+top.x, 
The B i n d o B is out of range\, please, reduce size); 

for ( i = 0; i < dimension; i++) 
fseek(f[i3, (long) (top.y*head[i].ras.width+top.x), 1); 

for (i = 0 ; i < dimension; i++) 
for ( j = 0; j < Bin_ys ize; j++) 

fread((char *)timage[i] [j] [0] , sizeof (char) , Bin . x s i z e , f [ i ] ) ; 
^ fseek(f[i], (long) (head[i] .ras.Bidth-Bin.xsize) , 1); 

for (i = 0; i < dinension; i++) fclose(f [ i ] ) ; 

char *getjaemorydtems, size) 
int items, size; 

char »buffer; 

buffer = (char *)calloc((unsigned int)items, (unsigned int)size); 
demand(buffer, no memory); 

^ return(buffer); 

int nuraber.linkO 

int s, total.link; 

total.link = 0; 
for (s = 1; s < Bin_xs ize-1; s++) 

total_link += s; 
total.link »= 4; 
total.link += 2*(Bin.xsize*Bin .ysize-l); 

printf("\nT6tal number of links in original graph is Xd.\n", 
total_link); 

return (total.link); 
} 

| e t.link() 
register int i , node; 

head.next = edges; 
edges[0].last - thead; 

for ( i = node = 0; node < Bin.xsize*Bin.ysize-l; node++) 
{ / * for every vertex, except the last one •*/ 

i f (node >»= Bin_xsize*Bin_ysize-Bin.xsize) / * last r o B */ 
i f (node == Bin .xsize*Bin.ysize-2) 
{ /* last vertice * / 

edges[i].nodel = node; 
-edges[i].node2 " node+1; 
edges[i].Beight = link.Beight(node, node+1); 

edgesCi].next = thead; 
head.last = tedges[i]; 
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} 
else fill.edgesCnode, node+l, i , 4);. 

edgesL++i].weight = - 1 . 0 ; / • f i l l the gap * / 
edgesE++i].weight = - 1 . 0 ; 

edges[++i].weight = - 1 . 0 ; 

else 

i f ((node % win.xsize) = 0) / * row head * / 
< 

f i l l .edges(node, node+1, i , 1 ) ; 
f i l l .edges(node, node+win.xsize+l, ++i, 1 ) ; 
f i l l .edges(node, node+win_xsize, ++i, 2 ) ; 
edges[++i].weight « - 1 . 0 ; 
++i; ^ 

e lse^if ((node % win.xsize) == win.xsize-l) / * row t a i l * / 

f i l l .edges(node, node+win.xsize, i , 1 ) ; 
fill_edges(node, node+win.xsize-1, ++i, 3); 
edgesC++i3.weight » - 1 . 0 ; 
edgesC++i].weight = - 1 . 0 ; 
++I; 

} 
else 
{ 

fill_edges(node, node+1, i , 1 ) ; 
f i l l .edges(node, node+win.xsize+l, ++i, 1 ) ; 
f i l l .edges(node, node+win.xsize, ++i, 1 ) ; 
fill_odges(node, node+win.xsize-l, ++i, 1 ) ; 
++i;^ 

} 
} 
> 

f i l l_edges(nodel , node2, index, offset) 
register int nodel, node2, index, offset; 

edges[index].nodel = nodel; 
edges[index].node2 = node2; 
edges[index].weight = link.weight(nodel, node2); 
edges[index].next = kedges[index + offset]; 

^ edges[index + of fset ] . las t = tedges[index]; 

f loa t link.weight(nodel, node2) 
int nodel, node2; 

int i l , j l , 12 , j 2 , 
k; 

f loa t weight; 

get.coordinates (nodel,' t i l , t j l ) ; 
get.coordinates(node2, t i 2 , t j 2 ) ; 
weight = 0 . 0 ; 
for (k = 0 ; k < dimension; k++) 

weight += SlJUARE((float)image[k] [ i l ] [j 1]-(float)image[k] [ i 2 ] [ j 2 ] ) 

^ return(weight); 

TREE * front.of.tree(new, l i s t ) 
TBEE *new, * l i s t ; 
{ 

new->next = l i s t ; 
l i s t = new; 

r e t u m d i s t ) ; 
} 

/ * construct CEST using Kruskals algorithm * / 
recru.tree(vertex, r tag , group.pixel , c lus , stack) 
LIST.HEAD •vertex; 
char *rtag; 
int *group.pixel , **clus, «stack; 

char • f i l e = "/home/image/output/bu.mi"; 
int step, count, l a b e l , biggest, smallest; 
f loat entropy; 
TBEE *node; 
LIST.HEAD • •root ; 
STAT •region.sum; 
LIIK • l i ghtes t .p tr ; 
FILE • • fp ; 

node = (TREE •)get.memory(2^(win.X8ize^win.ysize-l), sizeof(TREE)); 
region.sum = (STAT •)get.Bemory(win.xsize*win.ysize, sizeof(STAT)); 
root = (LIST.HEAD ••)get_memory(start.entropy, sizeof(LIST.HEAD • ) ) ; 
fp = fopen(f i le , "w"); 

378 



de>and(fp. Cannot open entropy f i l e ) ; 
f p r i n t f ( f p , "Xd\n", ((8tart_entropy-nuB_seg)/entropy_step)+2); 
step = 0; 
for(count » 0, l a b e l " 1; labe l < Bin_xsize*Bin_ysize; label++) 

/ » pick the l ightest l i n k * / 
l i gh te s t ip tr •= l i g h t e s t O ; 
/ * put l i n k into the tree * / 
node[count].node.pos » lightest_ptr->node2; 
vertex[lightest_ptr->nodel].node " 

front_of_trea(»node[count++],yertex[lightest_ptr->n6del]inode); 
node[count].node.pos = lightest_ptr->nodel; 
yertex[lightest.ptr->npde2].node « 

front.of.tree(*node[couht++],vertex[lightest_ptr->node2].node); 
i f ( label < v i n . x s i z e»Bin_ y s i z e - l ) 

sun.label_nodes(region_suB, vertex, l i gh te s t .p tr , l a b e l , 
ftbiggest,tsmallest, r tag , group.pixel , 
c lus , stack); 

/ * delete a l l duplicate l i n k and recalculate l i n k B e i g h t * / 
^ del .duplicate .recal(yertex, region.sua, l a b e l , biggest, soa l les t ) ; 

i f ' (Bin .xs ize*Bin_ys ize- label <= start.entropy) 

i f (step X entropy.step = 0) 

entropy = get.entropy(root, vertex, group.pixel , 
c lus , stack, r tag , l abe l ) ; 

f p r i n t f ( f p , "Xd Xf\n", Bin .x8ize*Bin_ysize-label , entropy); 

^ step ++;/• compute entropy every number of step * / 

^ i f (Bin.xsize»Bin_y8ize-num.seg == label) break; 

free((cheu: *) region.sum); 
free((char *)root); 
entropy = g e t.Bhole . e n t r o p y O ; 
f p r i n t f ( f p , "Xd Xf\n", 1, entropy); 
f c l 0 8 e ( f p ) ; 

^ printf("The entropy output i s stored in Xs\n",. f i l e ) ; 

f loa t get.Bhole.entropyO 

int i , j , k, n , 
nodeinseg; 

f loat entropy, 
sum[DIMEISIOI], ssqCDIHEISIOB], 
covar[DIHEISIOI][DIHEISIOI], 
cosum[DIHEISIOI][DIHEISIOI]; 

nodeinseg = Bin .xs ize^sin.ys ize; 
for (k = 0; k < dimension; k++) 

8um[k] = S8q [k ] =0 .0 ; 
for (m = 0; m < dimension; m++) 

for (k = 0; k < dimension; k++) 
cosumDn] [k] = 0.0; 

for ( i = 0; i < Bin .ys ize; i++) 
for (3=0; j < Bin . x s i ze ; j++) 

for (k = 0; k < dimension; k++) 

sum[k] += (f loat)image[k][i][ i]; 
^ 88q[k] += SqUARE( (float) image [k ] [ i ] [ j ] ) ; 

for (m = 0; m < dimension; m++) 
for (k = B+1; k < dimension; k++) 

cosum[m][k] += (float) image [k] [i] [i] 
•(float)image[m][i]tj]; 

for (m = 0; m < dimension; m++)/* comput covariance matrix » / 
for (k = M ; k < dimension; k++) 

i f (k != m)/* covariance • / 
{ 

covar[m][k] = ((float)nodeinseg*cosum[m] [k] 
-sum[m]*sum[k])/((float)nodeinseg*(float)(nodeinseg-1)); 

^ covar [k][m] = cover [m] [k] ; 

e lse/* variance * / 
{ 

covar[B][k] = ((float)nodeinseg*ssq[k]-SqUARE(sum[k])) 
/((float)nodeinseg*(float) (nodeinseg-D); 

entropy = 17.079S*matrix.determinant(covar); 
entropy - (float)dimension*log(entropy)/2.0; 
printf("Entropy loss for Bhole image i s Xf\n", entropy); 

return(entropy); 
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float get_entropy(root, vertex, group.pixel, clus, stack, rtag, label) 
LIST_HKAD •vertex, ••root; 
int *group_pixel, ••clus, •stack, label; 
char • r tag ; 

int i , j , k, • , a. b, 
nua_node, 
liuB.segaent, 
start, 
nodeinseg; 

float signa, entropy, 
SUB[DIHEISI0I3 , ssqCDIHEISIOI], 
covarCDIHEISIOI]CDIMEISIOI], 
cosuaCDIHEISIOI]CDIHEISIOI]; 

nuw.hode « oin.xsize^nin.ysize; 
nuB.segaent • get.root(vertex, root, rtag); 
get_all_seg>ent(root, vertex, group.pixel, clus, nuB.segnent, stack); 
reset_vhole_tree(vertex); 

signa » 0.0; 
/ • coepute entropy • / 
for ( i » 0; i < nua.segiient; i++) 
•(/• entropy for each segsient • / 

nodeinseg = clusCi+1]-clusCi]; 
i f (nodeinseg < TRIVIAL.SEG) continue;/• tr iv ia l segnent • / 
for (k 0; k < dinension; k++) 

sumCk] = ssqCk] = 0.0; 
for (m = 0; « < dinansion; m++) 

for (k = 0; k < dinension; k++) 
cosunCn] Ck] = 0.0; 

start = clusCi]-clusCo]; 
for (j « 0; j < nodeinseg; j++) 

get.coordinates (group.pixelCstart+j] , ta, Jtb) ; 
for (k = 0; k < dimension; k++) 
{/• for variance • / 

sumCk] += (float)imagaCk]Ca]Cb]; 
ssqCk] += SQUARE((float)imageCk][a]Cb]); 

for (m = 0; m < dimension; n++) 
for (k = m+1; k < dimension; k++) 

cosumCm] Ck] (float) image Ck] Ca] Cb] 
^ •(float)image Cm]Ca] [b]; 

for (m = 0; m < dimension; »++)/• comput covariance matrix • / 
ifor (k = m; k < dimension; k++) 

i f (k != a)/* covariance • / 
< 

covarCm]Ck] = ((float)nodeinseg*cosumCm] Ck] 
TSumCm]^sumCk])/((float)nodeinseg*(float)(nodeinseg-1)); 
covar Ck] Cm] = covarCm]Ck]; > 

else/* variance • / < 
covarCm]Ck] = ((float)nodeinseg*ssqCk]-SqUARE(sumCk])) 
/((float)nodeinseg^(float)(nodeinseg-1)); 

entropy = matrix.determinant(covar); 
i f (iszero(entropy)) continue; 
entropy = (float)dimension^log(17.0795^entropy)/2.0; 
entropy = entropy^(float)nodeinseg/(float)num.node; 

^ sigma += entropy; 

^ return (sigma);/• sum entropy x segment proabilities • / 

float matrix.determinant(v) 
float nCDIHEISIOI]CDIHEISIOI]; 
•C 
int iflag, 

ipivotCDIHEISIOI], 
istar, 
i . j . k; 

float aoikod, 
colmax, 
r a t i o , 
roBmax, 
temp, 
det, 
dCDIHEISIOI]; 

i f l a g = 1; 
/ • initialise ipivot, d • / 
for ( i = 0; i < dimension; i++) 

ipivot Ci] •= i ; 
roBmax = 0.0; 
for (j = 0 ; j < dimension; j++) 

i f (romnax < fabsdiCi] Cj])) roBmax = f abs(BCi] Cj] ) ; 
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i f (roBB&x « • 0.0) 

iflag "= 0; 
roraaz = 1.0; 

^ dCi] « roBaax; 

/ • factorisation • / 
f o r ( k = 0; k < diBension-1; k++) 

/ * d o t o m i n e pivot r o B , the row istar • / 
coljBax « fabs<B[k] [k] ) /d [k] ; 
istar » k; 
for (i » k+1; i < diaension; i++) 

a B i k o d = f absCwCi] [k] )/dCi] ; 
i f (asikod > colaax) 
{ 

colaax • avikod; 
istar " i ; 

> 
i f (colaax •=» 0.0) i f l a g « 0; 
else 
•C 

i f (istar > k) 
{ 

/ * aake k the pivot row b y interchangeing 
i t with the chosen roH istar » / 

iflag = -if lag; 
i = ipivot[istar]; 
ipivot [istar] = ipivot [k]; 
ipivot[k] = i ; 
temp = d[istar]; 
d [istar] = d[k]; 
d[k] = tenp; 
for (j = 0; j < dimension; j++) 

temp = B[istar][j]; 
v[istar][j] = y [k][j]: 

^ B[k][j] = temp; 

/ • eliminate x[k] from rons k+l...n * / 
for ( i = k+1; i < dimension; i++) 

B[i][k] /= B[k][k]; 
ratio = B[i ] [k]; 

for (j = k+1; j < dimension; i++) 
B t i ] [ j ] -= ratio»B[k][j]; 

} 
} 

i f (B[dimension-l][dimension-l] == 0.0) iflag = 0; 

det = (float)iflag; 

for (i = 0; i < dimension; i++) det *= B [ i ] [ i ] ; 

retum(det); 
get_{dl_segment(rnode, vertex, group.pixel, clust, segment, stack) 
LIST.HEAD •vertex, *»rnode; 
int *group_pixel, ••clust, •stack; 
int segment; 
U* put a l l segments into group.pixel • / 

LIST.HEAD •temp.list; 
THEE •root; 
int t , stack.pos, root.pos, numpixel; 

numpixel = 0 ; / • a l l root already visited • / 
t = get.single.node(vertex, mode, segment, group.pixel, 

clust, tnumpixel); 
for(root.pos = 0 ; t < segment; root.pos++, t++) 

/•delete a l l single nodes from the rnode l i s t • / 
in i t ia l izeO; 
stack.pos = 0; 
/ • point to start of neB cluster • / 
clust[t] = tgrbup.pixel[numpixel]; 
B h i l e ((root =find.alone.node(rnode[root.pos])) »= lULL) 

root.pos++; 
start.depth.first(group.pixel, stack, tstack.pos, 

tnumpixel, rnode[root.pos]-vertex, root); 
noB.ptr = tvertex[root->node.pos]; 
old.ptr « rhode[root.pos]; 
do 
{. / • depth f irst next • / 

temp.list = depth.first_seg(vertex, tstack.pos, 
tnumpixel, group.pixel, stack); 

old.ptr = n e B . p t r ; 
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neB_ptr = temp.list; 
}Bhile<stack.pos != 1); / * stack != lULL » / 

clustCt] * tgroup .pixel[nUBpixel]; / * point to end * / 

LIST_HEAD * depth.first_seg<vertex, stack.pos, nunpixel, 
group.pixel, stack) 

LIST_HEAD *vertex; 
int •group.pixel, *stack; 
int •stack.pos, •nunpixel; 

TREE *root; 

i f ((root = depth.first.next(vertex, stack.pos, nunpixel, 
group.pixel, stack)) >= TOLL) 

return(TOLL); 

^ retum(tvertex[root->node_pos]); 

reset.Bhole.tree(vertex) 
LIST_HEAD •vortex; 
i 
register int i ; 
TREE •this.node; 
for ( i » 0; i < Bin^xsize»Bin.ysize; i++) 

this.node » vertexCi].node; 
Bhile (this.node != TOLL) 
{ 

i f (this.node->status == TMPVISIT) 
thi8.node->status = lOTVISIT; 

this.node = this^node->next; 
} 

} 
} 

LIIK • lightestO 
{ / • find the lightest link * / 

register LIIK •nin.ptr, •this; 

nin.ptr = head.next; 
this = nin.ptr->next; 
Bhile (this != thead) 
< 

i f (nin_ptr->Beight > this->Beight) 
nin.ptr = this; 

this = this->next; 

/ • delete lightest link * / 
nin.ptr->last->next = nin.ptr->next; 
Bin.ptr->next->last = nin.ptr->la8t; 
Bin.ptr->next = TOLL; / • status out * / 

^ retum(min.ptr); 

sum.label.nodes(region.sun, vertex, light, tag, biggest, smallest, rtag, 
group.pixel, clus, stack) 

STAT •region.sun; 
LIIK •light; 
int tag; 
register LIST.HEAD *vertex; 
register int •biggest, •snallest; 
char *rtag; 
int •group.pixel, ••clus, •stack; 

register int i , done = 0; 
int old.tag[2]; 

i f (vertex[light->nodel].node.tag = 0 t t 
vertex[light->node2].node.tag == 0) 

{ / • both are neB node, use a neB label • / 
vertex[light->nodel].node.tag = tag; 
vertex[light->node2].node.tag = tag; 
region.sun[tag] = add.structTget.pix.value(light->nodel), 

•get.pix.value(light->node2)); 
rtag[light->node2] = IROOT;/^ remove from root l i s t • / 
•smallest = light->nodel; 
•biggest = light->node2; 

else i f (vertex[light->nodel].node.tag == 0 t t 
vertex[light->node2].node.tag != 0) 

region.sumCtag] » add.struct(get_pix.value(light->nodel), 
region.sum[vertex[light->node2].node.tag]); 

vertex[light->nodel].node.tag = tag; 
old.tag[0] = vertex[light->node2].node.tag; 
rtag[light->n6del] = IROQT; 
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for ( i « 0; i < sin_xsize*Bin_ysize; i++) 
•C / * update label and count • / 

i f <Tertex[i] .node.tag == old_tag[0]) 

vertexCi].node.tag = tag; 
i f (idone) 
< 

*snallest = i ; 
++done; > 

•biggest = i ; 
> 
i f (light->nodel < *saallest) *smallest = light->nodel; 

else i f (vertex[light->nodel].node.tag != 0 tt 
^ vertex[light->node2].node.tag == 0) 

region.sua[tag] " add.struct(get.pix.value(light->node2), 
region.au»[vertex[light->nodel].node.tag]); 

vertex[light->node2].node.tag = tag; 
old.tagCOj » vertex[light->nodel].node.tag; 
rtag[light-r>node2] " IRODT; 
for ( i = 0; i < vin.xsize*Bin.ysize; i++) 
i /* update label and count • / 

i f (vertex[i].node.tag =« old.tagCO]) 

vertexCi].node.tag = tag; 
i f (idone) 
{ 

•smallest = i ; 
++done; 

} 
•biggest «! i ; 

} 
i f (light->node2 > •biggest) •biggest = light->node2; 

else 
{ / • both node tag i= 0 • / 

Old.tagCO] = vertexClight->nodel].node.tag; 
old.tagCl] = vertexClight->node2].node.tag; 
region.sum Ctag] = 

add.struct(region.sumCvertexClight->nodel].node.tag], 
rogion.sumCvertexClight->node2].node.tag]); 
remove.root(light->node2, vertex, group.pixel, clus, stack, rtag); 
reset.tree.tmp(vertex, group.pixel, clusCl]-clusCO]); 
for (i = 0; i < oin.xsize^nin.ysize; i++) 

i f (vertexCi] .node.tag == old.tagCO] I I 
vertexCi].node.tag == old.tagCl]) 

vertexCi].node.tag = tag; 
i f (idone) 
{ 

•smallest = i ; 
++done; 

•biggest = i ; 

del.duplicate.recaKvertex, region.sum, region, biggest, smallest) 
register LIST.HEAD •vertex; 
STAT •region.sum; 
int region, biggest, smallest; 

/ • delete a l l duplicate link connected to external vertices • / 
register LIIK •find,•this,•that; 
LIIK dummy; 
int temp.node, temp.re; 

/ • goto starting point • / 
this ='jump(smallest); 
/ • connect the related link in a shorter l i s t • / 
this = compress(this, vertex, region, biggest); 
B h i l e (this i= lOLL) 
{ / • f irst recalculate then delete • / 

temp.re =0; / • initialize for delete • / 
i f (vertexCthis->nodel].node.tag = region) 
{ / • find nodel in region • / 

temp.node = this->nbde2; 
i f (vortexCtemp.node].node.tag i= 0) / • node2 is in a region • / 

thi8->Beight »= neB.Beight(fegion.sumCregion], 
region_sumCveftexCtemp.node].node.tag]); 

^ temp.re = vertexCtemp.node].node.tag; 

else / • node2 is a single node • / 
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thi8->Beight » neB_8aight(regian_sum[region], 
get_pix_value(tenp_node)); 

else 
< / * find node2 in region * / 

tenp.node = this->nodel; 
i f <vertex[tenp_node].node.tag i* 0) / • nodel is in a region • / 

this->iieight * nev_Beight(region_sua[region] , 
region_suaCvertexItemp_node].node.tag]); 

teap.re " vertex[teiip_node] .node.tag; 

else / • nodel is a single node * / 
this->Beight » neB.BeightCregion.suaCregipn], 

get_pix_value(temp_node)); 

/ • delete duplicate links for a l l nodes, no link in region »/ 
that = ftduncay; 
dtuuny.other " thi8->other; 
i f (!teBp_re) / • tenp.node is single • / 

Bhile ((find = that->other) !« TOLL) 
< / • delete duplicate link, tomp_nodo i s single • / 

i f (find->nodel > temp_node) break; 
i f (find->nodel " tenp.node 11 find->hode2 tenp.node) 

/ • delete link fron Bhole l i s t * / 
find->last->next = find->next; 
find->next->last = find->last; 
find->next = TOLL; 
/ * delete link from conpressed l i s t * / 
that->other = find->other; 
break; / • only delete one link * / 

that = that->other; 
} 

} 
else 
{ / * tenp.node is in a region * / 

Bhile ((find = that->other) != TOLL) 
< / • delete duplicate link */ 

/ * only one duplicate betseen tBO regions * / 
i f (vertex[find->nodel].node.tag == temp.re II 

vertex[find->node2].node.tag == temp.re) 

find->last->next = find->next; 
findr>next->last = find->la8t; 
find->next = TOLL; 
that->other = find->other; 
break; 

} 
that = that->other; 

} / * end Bhile */ 
} / » end else * / 
this - dummy.other; / • reconnect and point to next * / 

} / * end Bhile */ 
> 
LIIK * compress(this, vertex, region, biggest) 
register LIIK *this; 
register LIST.HEAD 'vertex; 
register int region, biggest; 

LIIK *find, »8tart; 
Bhile (1) 
{ / * find the f irst link to start »/ 

i f (vertex[this->nodel].node.tag == region I I 
vertex[this->node2].node.tag = region) 
break; 

this = thi8->next; 
start = find = this; 
this = this->next; 
Bhile (this != thead) 
•C / » connect a l l relate link in a l i s t • / 

i f (this->nodel > biggest) break; 
i f (vertex[this->nodel].node.tag == region I I 

vertex[thi8->node2].node.tag == region) 

find->other = this; 
find = this; 

this " thi8->next; 
> 
find->other = TOLL; / • terminate » / 

^ r e t u m(8tart); 
LIIK * jump(snallest) 
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int s n a l l e s t ; 

register int index; 

i f (snallest < yin_xsize+l) index" 0; 
else index = 4*(snallest-Bin_xsize-l); 
/ * at least one undeleted l i n k o i thin range * / 
sh i l e (edgesCindex].next = lULL) -M-index; 

/ * return the f i r s t elenent i n the l i s t * / 
^ return (Jtbdges [index] ) ; 

f loa t nes_seight(nes, old) 
STAT nes, o ld; 

int k; 
f loa t Beight, 

neB_nean[DIHEISIOI], 
old_nean[DIHEISIOI]; 

f o r (k » 0; k < dinension; k++) 

neB.nean[k] = nev.sun[k]/(float)neB.nun.vec; 
old.nean[)0 = old.sun[k]/(float)old.nun.vec; 

B e i g h t =0 .0 ; 
f o r (k = 0; k < dinension; k++) 

Beight +» S()UARE(neBjseah[k]-old.nean[k]); 

} 
retum(Beight); 

STAT add.struct(a, b) 
STAT a, b; 
{ 

int k; 

a.nun.vec += b.nun.vec; 

for (k = 0; k < dinension; k++) a.sum[k] += b.sum[k]; 

return(a); 
} 
STAT get.pix.value(node) 
register int node; 

int i , j , k; 
STAT a; 

get.coordinates (node, Jti, t j ) ; 
a.nun.vec = 1; 

ifor (k = 0; k < dimension; k++) 
a.sun[k] = (f loat)image[k][i][j]; 

retum(a); 
} 

get.coordinates(node.pos, a, b) 
register in t node.pos; 
register int *a, *b; 

• a = node.pos / B in .xs ize ; /* i * / 
•b = node.pos % Bin . x s i z e ; / * j */ 

/*********************************************************************** 
* You are reading buseg2.c * 
* This program contains functions of bmirsl .c * 
* This f i l e contains function for bottom up approaches of segmention.* 
» This functions i s to generate segment from a forest , and output the* 
* segmented images. * 
* K S LAU 22-1-92 * 
**************»»*»**********************************»****************** / 

• include "bu.h" 

extern u.char inage[DIHEISIOI][MAX.YSIZE][MAX.XSIZE]; 
extern u.char segtDIMEISIOI][MAX.YSIZE][HAX.XSIZE]; 
extern in t nun.seg, 

dinension, 
top.x, top.y , 
B i n . x s i z e , Bin . y s i ze ; 

extern struct ras ter f i l e header; 

TREE * find.alone.node(); 
TREE * depth. f irst .next( ) ; 
LIST_HEAD * depth.first .segnent(); 
LIST.HEAD * depth_first . tree(): 
LIST_HEAD * depth.f i r s t . s e g O ; 

s ta t ic int nos.vertices; 
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s ta t i c f loat nean[DIHEISIOI]; 
LIST_HEAD m e B . p t r , • o l d . p t r ; 

iBage . f i l eC) 

FILE »fp; 
int i t e n , i , a; 
char *path * "/hoae/iaage/output/seg", 

c t s ] , 
buf [50]; 

header.ras.height = B i n . y s i z e ; 
header.ras.Bidth •« B i n . x s i z e ; 
header.ras.length " Bin^xsize*Bin.ysize; 
f o r (a " 0 ; a < dinension; a++) 

strcpy(buf, path); 
8trcpy(c, 164a((long)(a+2))); 
strcat(buf, c ) ; 
strcat(buf, ".ras"); 
fp » fopenCbuf, " B " ) ; 
denand(fp. Cannot open f i l e for output inage); 

i t e n « fBrite ( ( c h a r *)»header, sizeof(struct r a a t e r f i l e ) , 1, fp) 
f o r ( i « 0; i < Bin . y s i ze ; i++) 

i t en += fBrite ( ( c h a r * ) » s e g [ a ] [ i ] [ 0 ] , s izeof(char), 
Bin .xs ize , fp ) ; 

denand(iten == Bin . x s i z e'Bin . y s i z e - t - l , Write output f i l e error) ; 
f close(fp); 
printf("Segment inage is stored in Xs\n", buf); 

reset.tree.tnp(vertex, group.pixel , numpix) 
LIST.HEAD »vertex; 
int numpix, •group.pixel; 

register int i ; 
TREE *this.node; 

for ( i = 0; i < numpix; i++) 

this.node = vertex[group.pixel[i]].node; 
Bhile (this.node != lULL) 
{ 

i f (this.node->status == THPVISIT) 
this.node->i>tatus " lOTVISIT; 

this.node = this.node->next; 

} 

remove_root(mode, vertex, group.pixel , c lus t , stack, rtag) 
LIST.HEAD *vertex; 
int rnode, •group.pixel , • • c l u s t , •stack; 
char •r tag; 
</• traverse a tree • / 

LIST.HEAD •temp.l is t ; 
TREE •next; 
int stack.pos, numpixel, done = 0; 

numpixel = 0; 
stack.pos = 0; 
crust[0] = tgroup.pixel[0]; / • point to start of neB cluster • / 
/ • th is tree i s not a single node tree • / 
next = find.alone.node(tvertex[rnode]); 
s tart .depth. f irs t (group.pixe l , stack, tstack.pos, 

tnumpixel, tvertex [mode]-vertex, next); 
i f (rtag[rnode] == ROOT) 
{ rtag[rnode] = IROOT; done = 1; } 
else i f (rtag[next->node^pos] == ROOT) 
{ rtag[next->nodeipos] •= IROOT; done = 1; } 
i f (done) { clust[1] = tgroup.pixel[nunpixel]; return; } 
neB .ptr = tvertex[next->node.pos]; 
o ld .ptr = tvertex[rnode]'; 
do 
{ / • depth f i r s t next • / 

temp.l ist = depth^first.tree(vertex, tstack.pos, tnumpixel, 
group.pixel , stack, r tag , tdone); 

o ld .p tr » neB.ptr; 
neB.ptr " t e n p . l i s t ; 
i f (done) break; 

} Bhile (stack.pos != 1); / • stack != lULL • / 
^ clust[1] = tgroup.pixel[numpixel]; / • point to end • / 

LIST:.HEAD • depth.f irst . tree(vertex, stack.pos, nunpixel, 
group.pixel , stack', r tag , done) 

LIST.HEAD •vertex; 
int •group.pixel , •stack; 
int •stack.pos, •numpixel, •done; 
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char •rtag; 

TEEE •root; 

i f ((root " depth.f irst .next (vertex, 8tack : .pos , humpixel, 
group.pixel , stack)) = lULL) 

return(TOLL); 

i f (rtag[root->node.pos] «= EOOT)/» there i s two root, del one only * / 
{ rtagtroot->node_pos] = lEOOT; •done « 1; } 

^ retum(tvertex[root->node_pos]); 

int get.root(vertex, root , rtag) 
LIST.HEAD •vertex, • •root ; 
char •r tag; 

Int i , j . 
nuB.node; 

nnB_node ' win.xsize^Bin .ysize; 
f o r ( i « j » 0; .1 < nua.node; i++) 

i f (rtagCi] « " EOOT) rootCj++] " »vertex[ i ] ; 
/ « no need to i n i t i a l i s e node.tag, use pointer ari thaat ic • / 

^ re turn( j ) ; /^ nuaber of segments • / 

get_8egment(mode, vertex, group.pixel , c lus t , segment, stack) 
LIST.HEAD •vertex, **rnode; 
int •group.pixel , • • c l u s t , •stack; 
int segment; 

LIST.HEAD •temp.l is t ; 
TEEE •root; 
int k, t , stack.pos, root.pos, numpixel; 

numpixel = 0 ; / • a l l root already v i s i t ed * / 
t = get.single.node(vertex, rnode, segment, group.pixel , 

c lus t , tnumpixel); 
i f (t > 0) 

printf("There are Xd single point segments\n", t ) ; 
^ output.single.node(group.pixel, c lus t , t ) ; 

for"(root.pos = 0; t < segment; root_pos++, t++) 

/ • delete a l l s ingle nodes from the rnode l i s t * / 
i n i t i a l i z e O ; 
stack.pos = 0; 
c lust [ t ] = tgroup.pixel[numpixel]; / • point to start of nen cluster • / 
while ((root = find.alone.node(rnode[root.pos])) == TOLL) 

root_pos++; 
8tart_depth . f i r8 t (group .p ixe l , stack, tstack.pos, 

tnumpixel, rnode[root_pos]-vertex, root); 
calculate.sua(rnode[root.pos]-vertex); 
calculate_sua(root->node.pps); 
nos.vertices += 2; 
new.ptr = tvertex[root->node_pos]; 
o ld .p tr = rnode[root.pos] ; 
do 
i I* depth f i r s t next • / 

temp.list = depth.first.segment(vertex, tstack.pos, 
tnumpixel, group.pixel , stack); 

o ld .ptr = new^ptr; 
new.ptr = t enp . l i s t ; 

} while(stack.po8 != 1); / * stack != TOLL • / 
for (k » 0; k < dinension; k++) 

aeanCk] / " nos.vertices; 
output.inage(clust[t] , group.pixel); 

c lust[ t ] = tgroup.pixel[nunpixel]; / • point to end • / 

in t get_8ingle_node(vertex, mode, nun^^root, group.pixel , c lus t , numpixel) 
LIST.HEAD •vertex, ••mode; 
int nun.root, •group.pixel , • • c l u s t , •nunpixel; 

TEEE *this_tree; 
int i , j , k, nun.seg; 
char test; 

nun_80g = 0; 
for (k = 0; k < nun.root; k++) 
•C / • go over a l l root • / 

i = 0; 
th i s . t ree « mode [k]->node; 
whi l e(thi8_tree != TOLL) 
•{ / * count nunber of node • / 

i f ( th i s . tree->8tatus == lOTVISIT) 
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/ » count any l o t v i s i t node • / 
th i s . t ree = this_tree->next; 

} 
i f ( i = 0) 
•[ / • n o d e e l i g i b l e to be single node • / 

test » UIiqUE; 
i f (nun.seg > 0) 
i / • nore than 1 segnent • / 

for (j » 0; j < nun.seg; 

i f (group.pixel[j] = rnode[k]-vertex) 
•C / • check each cluster • / 

tost » DUPLICATE;puts("DUPLICATE"); 
break; 

> 
} 

> 
i f (test UIIQUE) 
{ / • put unique single node to- the cluster l i s t * / 

clust[nun.seg++] = tgroup.pixel[•nunpixel]; 
group.pixel[(•nunpixel)++] = rnode[kJ-vertex; 

> > 
^ retnm(nun_seg); / • return nunber of single node • / 

i n i t i a l i z e O 

int k; 

nos.vertices * 0; 
for (k = 0; k < dinension; k++) mean[k] =0 .0 ; 

} 

calculate.sun(a) 
int a; 
{ 
int i , j , k; 

get .coordinates (a , t i , t j ) ; 
for (k = 0; k < dinension; k++) 
^ nean[k] += (float) inage [k] [ i] [j] ; 

output.single.node(group.pixel, c lus t , num.node) 
int *group.pixel, • • c l u s t , nun.node; 

register int i ; 

f o r ( i = 0; i < nun.node; i++) 

i n i t i a l i z e O ; 
calculate.sum(group.pixel[i]); 
nos_vertices++; 

^ output.image(clust[i], group.pixel); 

s tart .depth. f irs t (group.pixe l , stack, stack.pos, numpix, root, node) 
int *stack.pos, •numpix, 'group.pixel , 'stack, root; 
TREE •node; 

8tack[(^stack.pos)++] = root; / • put root to stack • / 
group.pixel[(*numpix)++] = root; / • put root to cluster • / 
stack[(^stack.pos)++] = node->node.pos; 
gr6up.pixel[(^numpix)++] = node-:>n6de_pos; 
node->status = TMPVISIT; 

} 

LIST.HEAD * depth.first.segment(node.head, stack.pos, numpixel, 
group.pixel , stack) 

LIST.HEAD •node.head; 
int *group.pixel, *stack; 
int •stack.pos, •numpixel; 

TREE •root; 

i f ((root = depth.first.next(node.head, stack.pos, numpixel, 
group.pixel , stack)) == lULL) 

return (HJLL); 
calculate.sum(root->node.po's); 
no8_vertices++; 

return(tnode.head[root->node.po8]); 

TEEE • f ind.alone.node(l ist) 
LIST.HEAD • l i s t ; 

TREE • th i s ; 
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th is B list->node; 
ohileCthis !« BULL) 
{ 

i f (this->status ««-lOTVISIT) 
re tum(th i s ) ; 

^ th i s « thi8->next; 

retarn(IULL); 
} 

delete_duplicate(vertex) 
LIST_HEAD 'vertex; 

TREE ' t h i s ; 

th is = new_ptr->node; 
vh i l e ( th i s !> lULL) 
{ /' Bark the duplicate node ' / 

if(this->node_pos = old_ptr-vertex) 

this->status » TMPVISIT; 
break; 

t h i s » this->next; 

> 
TREE ' depth.first_next(vertex, stack.pos, numpix, group.pixel , stack) 
LISTJEAD 'vertex; 
int 'stack.pos, 'numpix; 
int 'group.pixel , 'stack; 

TREE ' root ; 

/ ' delete duplicate node in the next tree l i s t » / 
delete.duplicate(vertex); 
i f ( (root «= find.alone.node (nev.ptr)) == lULL) 
< 

vhile(root = lULL) 
{ 

/ ' delete stack ' / 
•stack.pos -= 2; 
nav.ptr = *vertex[stack[^stack_pos]]; 
root = find.alone_node(»vertex[stack[(*stack.pos)++]]); 

^ i f (•stack.pos == 1 kt root == lOLL) retum(IUIX); 

/ • put node to stack • / 
stack[(^stack.pos)++] = root->node.pos; 
/ ' put node to notepad for reset • / 
group.pixel[('numpix)++] = root->node.pos; 
root->status = TMPVISIT; 

^ retum(root); 

output.image(clust.start, group.pixel) 
int ' c l u s t . s t a r t , group.pixel[]; 

/ ' v r i t e to screen v i th precalculated average value ' / 
int i , k, a, b, index; 

index = c lust . s tart -group.pixe l ; / • get the index of group p ixe l • / 
f o r ( i = 0; i < nos.vertices; i++ ,index++) /•number of p ixe l • / 

get.coordinates(group.pixel[index], t a , tb) ; 
^ for (k = 0; k < dimension; k++) seg[k][a][b] = mean[k]; 

389 



Appendix J 

Programs of the Automatic 
Cloud Wind Scheme 

/***»******************************************************************** 
* The autoaatic cloud BOtion Bind vectors generation scheme includes: 
• 1) cmvl2.c 
• 2) i o . c 
« 3). geo.c 
• 4) draB_vector3.c 
« 5) rad.temp.c 
• 6) regression.h 
•«*•»*»**•**•*•*•••••*•***•»••••*»*••»**»*»*•••****•**••••«***********•* 

/***«******************************************************************** 
* You are reading regression.h * 
* • * * * * • * • • • • • * • * • • • • • • * * * * * * * • • * • • • • • • * * * * • • • * • • • • • • • * * * * * * * * * * * * * « * * * * * / 

•include <8tdio.h> 
tinclude <string.h> 
tinclude <malloc.h> 
tinclude <math.h> 

tinclude <pixrect/pixrect_hs.h> 

tdefine HAX.GCP ,100/* number of ground control points » / 

t i f d e f FIKST 
tdefine lOS^EQI 3/* number of equations * / 
tendif 
t i f d e f SECDID 
tdefine lOS.EQI 6 
tendif 

t i f d e f THIRD 
tdefine lOS.EQI 10 
tendif 

tdefine lAUT.TO.KH 1.8532 
/ * 1 n mile in km, 1 n mile = 1" of great c i r c l e arc * / 

tdefine TRUE 1 
tdefine FALSE !TRUE 
tdefine SII(x) (sin<N_PI*<x)/180.0)) 
tdefine COS(x) (cos.(M_PI*(x)/180.0)) 
tdefine TAI(x) (tan(H_PI*(x)/180.0)) 

tdefihe lOS.COL (IOS_Eqi+l) 
tdefino X 0 /» offset for coeff_of_multiple_determination * / 
tdefine Y 1/* offset for coeff_of_multiple_determination • / 
tdefine 8trsave(s) (8trcpy(mal loc(8trlen (s )+i ) ,8) ) 

extern char •optarg; 
extern int optind, opterr; 

typedef struct { 
double X; 
double y; 
}Coord;/» struct for coordinates • / 

typedef struct { 
double mean; 
double sd; 
}Stat;/* struct for standardizing * / 

/•••**************************************************************** 
* You are reading cmy.h * 

tinclude <8tdio .h> 
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•include <«ath.h> 
•include <string.h> 
•include <Balloc.h> 
•include <cgipn.h> 
•include <8uhtool/sunvieB;h> 
•include <suntool/cemva8.h> 
•include <8untool/panel.h> 
•include <pixrect/pixrect_h8.h> 

/ * f o r C M v l 2 cnvl4 cnvlS to read cluster aap * / 
•define DIHEISIOI 2 
•define lO.CEITER 10/* number of cluster f o r tracking */ 

•define VEC.LEIGTH 18 / « BaxiBun length of display vector */ 
/* use 1.0 f o r CBV7 CBV8 CBV9 CBVIO C B V I I , 2.0 for other * / 
•ifndef SCALE 
•define SCALE 1.0 / * scale f o r display */ 
•endif 

•define X.COEREL.THRESHDLD 80 / • number of p ixe l i n target B i n */ 

/ * constant for data array * / 
•define IHAGE.SIZE 256 /* naximum image size for correlation */ 
•define TARGET.AERAY 32 /* Bax size for the target array * / 
•define SEABCH.ARBAY 72 / • nax size f o r the search array * / 
/* distance b e t B e e n target BindoB and search sindoB * / 
/ * target BindoB i s i n the centre of search BindoB */ 
•define WII.OFFSET 20 / * default, can be changed */ 
•define TARGET.SIZE 4 / * default, can be changed */ 
•define SEARCH.SIZE 50 / * default, can be changed */ 
•define SURF.SIZE (SEARCH_SIZE-TARGET_SIZE+1) 
•define X.RESDLOTIOI 2.67 / * spatial resolution n mile , t r i v i a l * / 
•define Y_RESOLUTIOI 2.67 / * spatial resolution n mile, t r i v i a l */ 

/* constant f o r display BindoB, only for cmv7 cmv8 * / 
•define DEFAULT_«II_XSIZE 850 
•define DEFAULT.UII.YSIZE 1000 
•define HII_«II_XSIZE 200 
•define HII_WII_YSIZE 200 

•define HAXCa.b) (((a)>(b))?(a):(b)) 
•define MII(a,b) (((a)<(b))?(a):(b)) 
•define strsaveCs) (8trcpy(malloc(strlen(s)-)-l) ,s)) 
• i fndef SQUARE(x) 
•define SqUARE(x) « x ) * ( x ) ) 
•endif 
•define PI 3.141592654 
•define demand(fact, remark) {\ 
i f (!(fact)) i\ 

f p r i n t f(stderr, "demand not met: f a c t \ n " ) ; \ 
f p r i n t f(stderr, "remarkXn");\ 
e x i t ( l ) ; \ 

>\ 
} 
typedef struct cloud_Bin_vector { 

fl o a t speed; 
f l o a t direction; 
f l o a t l a t ; 
f l o a t longt; 
f loa t temp;/* temperature */ 
f loa t mean;/* mean of i r p ixe l , f or cloud height * / 
f l o a t sd ; /* standetrd-devation of i r pixel * / 
int count;/* number of nonzero p ixe l i n this template */ 

}CHV; 

/ * the folloBings are for regression and true distance calculation */ 
•define lOS.EQI 10 
•define HAX.GCP 70 

typedef struct { 
double x; 
double y; 

}Coord;/* struct f or coordinates */ 

typedef struct •£ 
double mean; 
double sd; 

}Stat;/* struct f o r standardizing */ 

z************************************************************************ 
• You are reading f i l e icp * 
• These are the data use f o r geometrical r e c t i f i c a i t o n . * 
********••••••••••••***•***•*•••*•****••*•***•****•*•************•******/ 
/* 
longitude latitude p ixe l l i n e 

•/ 
5.750000 58.966667 362.0 18.0 

10.750000 59.916667 416.0 11.0 
10.600000 57.733333 422.0 32.0 
10.883333 66.416667 432.0 44.0 
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10.683333 
14.183333 
12.616667 
16.416667 
14.783333 

-3.083333 
-1.816667 
-1.233333 
-3.633333 
-6.600000 
-7.316667 
-6.600000 
-8.800000 

-10.216667 
-10.450000 
-9.816667 
-6.366667 
-6.250000 
-6.416667 
-3.233333 
-4.633333 
-6.316667 
-4.616667 
-6.733333 
-6.216667 
-3.633333 
-2.066667 

1.400000 
0.116667 
1.683333 

-1.250000 
-1.850000 
-4.733333 

11.216667 
8.700000 
6.283333 

64.750033 
67.783333 
56.033333 
66.233333 
66.283333 

68.633333 
67.500000 
64.583333 
64.533333 
55.683333 
67.150000 
54.500000 
64.700000 

53.400000 
62.100000 
61.450000 
62.166667 
63.333333 
64.016667 
54.116667 
63.316667 
61.916667 
51.033333 
60;050000 
49.933333 
50.216667 
50.566667 
51.400000 
53.666667 
50.866667 
49.666667 
49.666667 
48.033333 

64.500000 
53.866667 
62.700000 

436.0 
466.0 
454.0 
501.0 
486.0 

257.0 
272.0 
280.0 
247.0 
212.0 
204.0 
221.0 
179.0 

156.0 
148.0 
154.0 
204.0 
208.0 
207.0 
251.0 
231.0 
219.0 
229.0 
210.0 
216.0 
239.0 
265.0 
316.0 
296.0 
319.0 
276.0 
267.0 
222.0 

443.0 
412.0 
367.0 

61.0 
33.0 
48.0 
48.0 
57.0 

22.0 
32.0 
60.0 
62.0 
50.0 
36.0 
62.0 
61.0 

74.0 
90.0 
97.0 
88.0 
75.0 
67.0 
65.0 
75.0 
91.0 

102.0 
114.0 
114.0 
111.0 
107.0 
97.0 
71.0 

103.0 
118.0 
117.0 
139.0 

64.0 
70.0 
82.0 

13.633333 54.516667 475.0 64.0 

-1.516667 
-1.166667 

-5.850000 
-9.000000 
-9.383333 
-8.866667 
-8.933333 
-5.600000 
-2.200000 

0.233333 
2.316667 
3.833333 
3.233333 

46.200000 
44,400000 

43.650000 
42.550000 
39.350000 
37.950000 
37.000000 
36.016667 
36.716667 

38.733333 
39.583333 
40.033333 
41.950000 

270.0 164.0 
275.0 190.0 

195.0 
138.0 
123.0 
129.6 
125.0 
187.0 
253.0 

298.0 
338.0 
365.0 
361.0 

201.0 
219.0 
269.0 
293.0 
309.0 
325.0 
313.0 

278.0 
264.0 
267.0 
227.0 

9.416667 42.950000 
10.533333 42.916667 
12.366667 44.933333 

456.0 212.0 
476.0 213.0 
498.0 185.0 

9.516667 39.100000 470.0 274.0 

/ • * * * * • * * * * « * * * • * * * * * • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * * « * « * « ' 
* You ara reading cnvl2.c 

This i s the autoaatic cloud vind scheoe use by the author, th is 
progran only use cross correlat ion, ssda and 2d search are not 
included. 

The target i s e i t h e r a v i s i b l e o r infared clustered o r ran cloud iaage 
The s e a r c h a r e a i s r a n i n a g e . 
The clustered inage i s a vindoB i n a 512x512 ran inage. 
The r a s inage i s a sindos (330 , 60} i n a B fomat HETEOSAT inage. 
Use the cluster n a p generated by the Global-Local clutering algorithn, 
a n d conpute c n v f or a l l clusters. 

The Bhole inage i s divided into snail nonoverlap t a r g e t vindoBs. 
I f t h e nunber o f pixels B i t h i n the sindoB i s nore t h a n a thershold, 
t h e progran B i l l search f o r t h e notion, othersise t h a t BindoB has no 
Bind vector calculated. 
display t h e B i n d f i e l d using pixBin Bith inage on background. 
The B i n d f i e l d i s calculated Bith geometric r e c t i f i c a t i o n . 

The r e c t i f i c a t i o n i s o n l y v a l i d t o t h e folloaing image. 
The i n a g e shich i s extraction fron a 512x512 b format image. 
The t o p l e f t coordinates of the 512x512 inage i s (330,60) 
K.S.LAU 26-2-91 
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tinclude "c»v.h" 
tdefine UPPER_TARGET_SD_THRESHOLD 10.0 
tdefine LOHER.TARGET.SD.THRESHOLB 0.0 
.tdefine SPEED.DIFF 0.5/* differenc of too vector speed * / 
tdefine DIRECT.DIFF 30.0/* difference of tno vectors * / 
tdefine TAKQET_THRESHOU) 0.3/* n i n i percentage of pixel i n target B i n */ 
tdefine PASS 1 
tdefine F A I L !PASS 
tdefine OIBQUIDARY 2/* peak on boundary * / 
tdefine HAX_ROOT 25/* aax nuaber of cluster on surface * / 
tdefine CLUSTERKEEPLIHIT 25/* cluster > this B i l l be keep * / 
tdefine PEAKSAHECLUSTER 1.05/* ratio of tso peak i f > ok * / 
tdefine PEAKDIFFCLUSTER 1.5/* ratio of tBO peak i f > ok * / 

char t i t le[60] , pregnane[50], filename[50], 
t i_f i le[50] , 82i_file[50],/* infrared target and search filename * / 
ty_file[60], 82v_ f i l e [ 5 0 ] , / * visible t and s filenane • / 
8lv_file[60], s l i_fi le[50], /* f irst search image * / 
tvo_file[60],/* the visible original » / 
tio_file[50],/* the original filename * / 
c lusaap[IHAOE_SIZE][IHAGE.SIZE] ; / * cluster nap * / 

struct rasterfile t.header, s.header,/* for clustered image * / 
to.header;/* for original header * / 

unsigned char s l i [ I H A G E . S I Z E ] [ I H A G E . S I Z E ] , / * f irst infrared search * / 
s l v[IHAGE.SIZE][IHAGE.SIZE],/* f irst visible search * / 
s 2 i[IHAGE.SIZE][IHAGE.SIZE],/* infrared search BindoB * / 
t i[IHAGE.SIZE][IHAGE.SIZE],/* infrared target template * / 
8 2 v[IHAGE.SIZE][IHAGE.SIZE],/* visible search BindoB */ 
t v[IHAGE.SIZE][IHAGE.SIZE],/* visible target template * / 
t v o[IHAGE.SIZE][IHAGE.SIZE],/» original target(visible) * / 
t i o[IHAGE_SIZE][IHAGE.SIZE]./* original target(infrared) » / 

" 8 s l v[IHAGE.SIZE][IHAGE.SIZE] , / * • contrast stretch of original • / 
8s2v[IHAGE.SIZE][IHAGE.SIZE] , / * contrast stretch of original * / 

. 8 t v[IHAGE.SIZE][IHAGE.SIZE];/* contrast stretch of original * / 
int target.size, search.size. 

Bin.of fse t , /* target BindoB B r t search BindoB * / 
Binxsize, Binysize,/* for pixrect use, not for user * / 
Bin.xsize, Bin .ys ize , /* size of clustered area * / 
nos.center,/* number of cluster * / 
dimension,/* dimension of clusters * / 
count[lO.CEITER] , /* number of pixels in cluster * / 
Bholexsize, Bholeysize,/* size of Bhole search area * / 
xs, ys,/* top left of search BindoB in search f i l e * / 
xso, yso,/* top left of search BindoB B . r . t . original * / 
size,;difference;/* the number of cross correlation shift * / 

float nean[DIHEISlbl][lO.CEITER], 
deviation[DIHEISIOI] [ICCEITER], 
get.standard.deviationO, 
•ean.gradientO; 

CHV cloudjBotionO, 
/ * to store the output vectors * / 
cmv[ lO.CEITER][IMAGE.SIZE/TARGET.SIZE][IHAGE.SIZE/TARGET.SIZE]; 

main(argc, argv) 
int argc; char **argv; 

char an8Ber[5], print[5], /* print Bind field * / 
track.type[6],/* choose v or i image for tracking * / 
fill .average[5],/• f i l l zero pixel Bith average * / 
display[5],/* hoB to display * / 
8hoB [ 5 ] , / * draB matching surface * / 
image.type[5],/* cluster inage or raB • / 
stretch[5];/* choose stretched image for tracking * / 

int i , clus; 
float ir.threshold;/* threshold for i r clusters * / 
Pixrect *pr , *men; 
colomap.t colomap; 
F I L E *fp; 

putsC'CROSS CORRELATIOI TRACKIIG") ; 
load.data(print, shoB, track.type, fill.average, stretch, image.type); 
strcpy(progname, argv[0]); 
strcpy(filename-, t i . f i l e ) ; 
get_regression.coeff();/* get formula to calculate true disttmce * / 
i f (strchrWnage.type, »y>)) 
{/* clustered tracking • / 

print.cluster.statO; 
printf("Enter the infrared pixel count threshold,\n"); 
printf("clusters Bith i r mean loser than this s i l l be ignored, "); 
scanf("Xf", tir^threshold); 
for ( i = 0; i < nos.center; i++) 

i f (mean[l][i] < ir.threshold) continue;/* infrared threshold * / 
extract.cluster(i); 
Bind.vectbr(shoB, track.type, fill.average, stretch, i ) ; 
rad.temp(i) ; / * convert infrared greiylevel to temperature * / 
i f (strchr(print, »y')) print.result(progname, t i . f i l e , i ) ; 

}. 
else 
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} 

i/* raw tracking * / 
sind.vectorTshos, track_type, f i l l . averago , s tretch, 0); 
rad.teapCO); 

^ i f (strchrCprint , »y ' ) ) print_result(progname, t i . f i l e , 0); 

mem ' •eB_create(t_header.ras.vidth, t .header.ras.height, 
t .header.ras.depth); 

fp "« fppen(t io_f i le , "r"); deiaand(fp, cannot open f i l e for p r ) ; 
pr = pr. loadCfp, tcoloraap); 
p r _ r o p(BeB, 0, 0, •eB ->pr . s i ze .x , •eDi ->pr.s ize .y , PIX.SRC, p r , 0, 0); 
pr_rop(pr, 0, 0, pr->pr.size.x> pr->pr.s ize.y, 0, (Pixrect »)IULL. 0, 0); 
i f (strchr(i«age.type, 'y')) 

coaposite.vind.f i e l d O ; 
putsC'Coaposite result"); 
i f (strchrCprint , >y')) print.result(progname, t i . f i l e , nos.center); 
p r i n t . c l u s t o r.8tat(); 

p r i n t _ t o . f i l e ( ) ; 
for (;;) 
</• display wind f i e l d • / 

printf("Do you want to display wind f i e ld? "); scanf("Xs", answer); 
i f (strchr(answer, 'n')) break; 
printf("Enter o (overlay), w ( f i e ld only) , • (on map), "); 
scanf("Xs", d isplay) ; 
p r i n t f ("Enter t h e ' d u s t e r you want to look, Xd 

f o r coaposite f i e l d " , 
(nos.center > 1) ? nos.center : nos.center- l ) ; 

scanf("Xd", kclus); 
i f (strchr(display, 'w')) display.wind.f ie ld.only(clus); 
i f (strchr(display, 'o')) display.wind.field.onimage(clus, p r , nen); 
i f (strchr(display, 'n')) display.wind.field.onmapCclus); 

wind_vector(show, track.type, fill.average, stretch, clus) 
char showQ ,/* show B a t c h surface, not used */ 

track.type • ,/* use infrared or visib l e */ 
fi l l . a v e r a g e d ,/• f i l l zero pixel with mean, not used */ 
s t r e t c h n ; / » p'reprocess v i s i b l e , not used */ 

int clus;/* which cluster */ 

unsigned char Bean, 
target[SEAKCH_ARRAY][SEARCH.ARRAY], 
si[SEARCH_ARRAY][SEARCH.ARRAY], 
s2[SEARCH.ARRAY][SEARCH.ARRAY], 
tenpClMAGE.SIZE][IHAGE.SIZE];/* f o r stretch */ 

int count, 
numxwin, humywin,/* nuraber of window in a row or column */ 
t.x,. t.y, s.x, s.y, /* coordinates of target and search win */ 
i . j . S i t, /* for loop counter */ 
pix.count; /* pixel count in a target window */ 

flo a t v.sd, i.sd,/* standard deviation of v i s i b l e emd infrared target */ 
sum, mean.speed, mean.direct; 

CMV v l , v2; 

nuBxwin = numywin = (wholexsize-2*win.offset)/target.size; 
f o r ( i = 0; i < numywin; i++) 

for ( j = 0 ; j < numxwin; j++) 
{ /* get target coordinates */ 

t.y = win.offset + i * target.size; 
t.x = win.offset + j * target.size; 
/* get search window coordinate */ 
s.y = t.y - win.offset; 
s.x = t.x - win.offset; 
pix.count = 0 ; 
for (s = 0; s < target.size; s++) 

for (t *• 0; t < target.size; t++) /* load target window */ 
i f (ti[t.y+s][t_x+t] != 0) piXiCount++; 

i f (pix.count < TARGET.THRESHOLD*SQUARE(target.size)) continue; ' 

i f (strchr(track.type, >v>)) 

i f (strchr(stretch, 'y')) 
{/* use stretched v i s i b l e */ 

fo r (s = 0; s < target.size; s++) 
for (t = 0; t < target.size; t++) 

target [s][t] = 8tv[t^y+s] [t.x+t] ; 
f o r (s = 0; 8 < search.size; s++) 

for (t = 0; t < saarch.8ize; t++) 

s i [s] [t] = sslv[s.y+s] [8_x+t] ; 
82[8][t] = 8s2v[s_y+s][s.x+t]; 

} 
else 
</* use unstretched v i s i b l e */ 

for (s = 0; 8 < target.size; 8++) 
for (t = 0; t < target.size; t++) 

target [s] [t] = tv[t.y+s] [t.x+t] ; 
fo r (s = 0; s < search.size; 8++) 
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for (t = 0; t < search_size; t++) 

s i [s] [t] = s iV [s_y+s] C8_x+t] ; 
s2[s][t] = s2v[s.y+s]Cs_x+t]; 

} 
} 
else/* use infrared * / 
< 

Ifor (s = 0; s < target .s ize; 8++) 
for (t = 0; t < target .s ize; t++) 

target Cs]Ct] = tiCt.y+s] [t.x+t] ; 
for (s " 0; s < search_size; s++) 

for (t •= 0; t < search.size; t++) 

s l [ s ] [ t ] = sli [ s .y+s][8 . x+t ] ; 
82[s][t] = 82i[s.y+s][s.x+t]; 

} 
i f ( s trchr( f i l l .average , 'y')) 
</* i f use clustered tracking, f i l l the other p i x e l n i th mean 

SUM » 0.; count = 0; 
for (s " 0; s < target .s ize; s++) 

for (t = 0; t < target .s ize; t++) 

i f (target[s][t] »= 0) continue; 
sua +»= target [s] [t] ; 
count++; 

> 
•ean = sum/count; 
for (s = 0; 8 < target .s ize; s++) 

for (t = 0; t < target .s ize; t++) 
^ i f (target[s] [tJ = 0) target[s][t] = mean; 

v l - cloud.Dotion(8hoB, target, s i , i , j ) ; 
i f (vl.speed > 0.0) 

v2 = cloud.motion(shoB, target, s2, i , j ) ; 
else v2.speed - 0.0; 
i f (v l .d irect ion > 180.0) v l .d i rec t ion -= 180.0; 
else v l .d i rec t ion += 180.0; 
nean.speed = (vl.speed+v2.speed)/2.0; 
Mean.direct = (vl .direction+v2.direction)/2.0; 
/ * check symmetric of the two vectors * / 
i f (fab8(vl.speed-v2.speed) > SPEED.DIFF*vl.speed II 

fabs(vl.8peed-v2.speed) > SPEEDiDIFF*v2.speed IJ 
fabs(vl .direct ion-v2.direct ion) > DIRECT.DIFF 11 
vl.speed ==0.0 jj v2.speed == 0.0) 

else 

cmv[clus][i][j].speed = mean.speed; 
cmv[clus][ i ] [ j ] .direct ion = mean.direct; 
cmv [clus] [ i ] [ j ] . la t = v2.1at; 
cmv [clus] [i] [j] .longt = v2. longt; 
cmv[clus][i][j].temp = v2.temp; 
cmv[clus] [i] [j] .mean = v2.mean; 
cmv [clus] [i] [ j] . 8d = v2. sd; ' 
cmv[clus][i][j].count = v2.count; 

composite.vind.fieldO 

int i , j , k, numxsin, numyvin, 
m.k, maxi; 

numxBin = numysin = (Hholexsize-2*Bin.offset)/target.8ize; 
f o r ( i = 0 ; i < numywin; i++) 

for (j = 0; j < numxBin; j++) 

• a x i = 0; 
f o r (k = 0; k < nos.center; k++) 

i f (cmv[k][i][j] .speed > 0.0 
kk cmv[k][i][j3.8d < UPPER.TARGET.SD.THRESHOLD 
kk cmv[k][i][j] .sd > LOWER.TARGET.SD.THRESHOLD) 

i f (cmv[k][i][j].count > maxi) 

maxi = cmv[k] [i] [j] .count; 
m.k = k; 

^ } 

cmv [nos.center] [ i ] [ j ] . speed = cmv[m.k] [i] [i] .speed; 
^[m.k] t i ] [ - •• cmv [nos.center] [i] [j] .direct ion = cmv[m.k][i] [j] .d irect ion; 

cmv [nos.center] [ i ] [ j ] . la t = cmvDa.k] [i] [j] . l a t ; 
cmv[hos_center][i][j].longt = cmv[m_k] [i] [i] . longt; 
cmv[noB_center][i][j].temp = cmv[m.k] [i][jJ.temp; 
cmv[nos.center][i][j].mean = cmv[m.k] [i] [j] .mean; 
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c»v[nos.center][ i][j3.8d » c«v [« .k ] [ i ] [ j ] . sd; 
CBv [nos .center] [ i ] [ j ] .count = CBV[•_][] [i] [j] .count; 

CHV cloudjiotionCshos, target, search, s h i f t . ! , s h i f t . j ) 
char shosQ; 
unsigned char target •[SEARCH.AERAY], 

search • [SEAECH.AB&AY]; 
int s h i f t . ! , 
^ s h i f t . j ; / * determine which subwindos, in order to obtain coord, offset * / 

register i , j , s, t ; 
char 8urf»ap[SVKF^SIZE][SUEF.SIZE]; 
Int nua.area, /* nua of cluster on the surface • / 

q , / * qual i ty f l a g * / 
a a x . i , a a x . j , / * index of aax coeff. * / 
s a a x i . i . s a a x l . j , saaxZ. i , saax2_j,/* peak on saoothed surface * / 
x l , y l . x2, y2./* coord, of the peak posit ion * / 
c x l , c y l . / * center coord, of target teaplate • / 
nuabertHAX.BOOT],/* nua of eleaent i n earch cluster * / 
count;/* count no. of non zero p ixe l » / 

f loat sua, ssq, s d . t , sd . s . sd . s t , 
•ean. t . aean.s , /* s t a t i s t i c for xcorrelation * / 
coefficient[SUEF.SIZE][SURF.SIZE]; 

double l a t l , l ong l , lat2.. long2./* s t a r t / f i n i s h l a t . long. * / 
departure, course;/* distance trave l and course * / 

CHV cav;/* put result here * / 

/ * cross correlation * / 
/ * coapute target sd * / 
sua = ssq = 0.0; count = 0; 
for (1 = 0; i < target .s ize; !++) 

f o r (j » 0; j < target .s ize; j++) 

i f (tetrget[i] [j] == 0) continue; 
sua += target [ i ] [ j ] ; 
ssq += SqUARE( (float) target [ i ] [ j ] ) ; 
count++; 

aeim.t = sua/(float)count; 
sd.t = ((float)c6unt*ssq-SqUARE(sum))/SqUARE((float)count); 
sd.t = sqrt ( sd . t ) ; 
/ * check temperature var iat ion , i f < IOC do not check * / 
i f (sd.t > UPPER.TARGET.SD.THRESHOLD 11 sd.t < LOWER.TARGET.SD.THRESHOLD) 
{ / * no motion bypass calculation * / 

cmv.speed = cmv.direction = cmv.lat = cmv.longt = cmv.temp = 0.0; 
cmv.sd = sd . t ; cmv.mean = mean.t; cmv.count = count; 

^ return(cnv); 

cmv.mean - aeiui.t; cnv.sd = sd . t ; cmv.count = count; 

for ( i = 0; ! < s ize.difference; i++) 
for (j = 0; j < s ize.difference; j++) 
</* coapute search template sd * / 

sum = ssq = 0.; count = 0; 
for (s = 0; s < target .s ize; s++) 

f o r (t » 0; t < target .s ize; t++) 

i f (target[s][t] = 0) continue; 
sum += search [i+s] [j+t] ; 
ssq += SqUARE((float)search[i+s][j+t]); 
count++; 

nean.s = sum/(float)count; 
sd.s = ((float)count*ssq-sqUARE(sum))/sqUARE((float)count); 
sd.s = sqrt(sd.s) ; 
/ * compute covariance * / 
sd.st = 0.; 
f o r (s = 0; 8 < target .s ize; s++) 

for (t « 0; t < target . s ize ; t++) 

i f (target[8][t] «= 0) continue; 
sd.st += ((float)search[i+s][j+t]-mean.s)* 

((float)target[s][t]-mean.t); 

sd.st /= (float)count; 
^ coef f ic ieht [ i ] [ j ] = sd .s t / ( sd .s*sd. t ) ; 

x2 = nax . j ; y2 = n a x . i ; 
x l » xs+yin.offset+shift.j*target_size;/* s tart * / 
y l " ys+Bin.offset+'shifti.i*target.size; 
i f (q == FAIL I I q == OIBQUIDARY) 
{/* i f natch point on boundary do not accept * / 

cnv.speed = cnv.direction = cnv.lat = cnv.longt = cny.temp = 0.0; 
return(cmv); 

else i f (nax. i == nin.offset t t nax.j == nin.offset) 
{ / * no notion.bypass l a t and longt calculation * / 

cnv.speed = 6.0; 
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cav.direct ion « 0.0; 

else 
{/* coapute true distance « / 

x2 +'= xs+shift_j»target_size;/* f i n i s h • / 
y2 +«• ys+shif t_i»target_size; 
pixel_to_aap((doubleyxl, (double)yl, <double)x2, (double)y2, 

» l a t l , k lbngi . * lat2 . Jtlong2); 
g e t . d i s t a n c e d a t l , l ong l , la t2 , long2, tdeparture, tcourse); 
cav.speed « departure/0.5;/• 30 ainutes * / 
c a v . d i r e c t i o n * course; 

cx l » xi+target_size/2;/* center of target Bindos • / 
cy l • yl+target_size/2; 
pixei_to_a^T<double)cxl, (double)cyl, (double)x2, (double)y2, 

t l a t l , t l o n g l , » l a t 2 , »long2); 
cav . la t = l a t l ; cav.longt = long l ; 

retum(cav); 
> 
,/********•**•****•**••**••**•*•••***•**«••**••*••**«***••*•••**•**** 

* You are reading i o . c • 
* Functions tb display result and read write data, • 
* for coaputaion of cloud aotion winds. * 
* I .S.LAU 5-3-91 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * » * * * * * * * * * * * * * * * * * * * * * / 

t include "cav.h" 

load.dataCprint, shoB, track_type, f i l l . average , s tretch, inage_type) 
char showtj, 

print • , 
track.type • , 
f i l l . average • , 
iaage . typeD, 

^ s t r e t c h U ; 

char clusteraapCSO]; 
int ii j ; 
FILE • fp ; 

putsC'Al l input f i l e should be infrared."); 
puts("The v i s i b l e f i l e w i l l fol low."); 
printf("Enter the type of inage you .use for tracking, v or i , "); 
scanf("Xs", track.type); 
i f (strchr(track.type, >v>)) 

printf("Do you want to stretch v i s ib l e inage? "); 
scanf("Xs", stretch); 

} else strcpy(stretch, "n"); 
printf("Do you want to f i l l zero pixel? "); 
scanf ("Xs", f i l L a v e r a g e ) ; 
printf("Do you want to display a l l matching surface? "); 
scanf("Xs", show); 
printf("Do you want to print wind f i e l d result? "); 
scBnf("Xs", p r i n t ) ; 
printf("Enter the size of window i n which "); 
printf("tracking window i s define,\n"); 
printf("xsize ysize: "); scanf("XdXd", twholexsize, twholeysize); 
deBand(wholexsize <= IMAGE.SIZE, tracking window too large); 
printf("Enter 'y ' i f you want to use cluster nap,\n"); 
pr in t f (" 'n ' i f you want to use clustered inage d i r e c t l y , "); 
scanf("Xs", inage.type); 
i f (strchr(inage.type, 'y')) 

printf("Enter the cluster nap filename, "); 
scanf("Xs", clusteraap); 

printf("Enter the target filename: "); 
i f (strchr(iaage.type, 'y')) pr intf ("orig inal required "); 
scanf("Xs", t i . f i l e ) ; 
I f (strchr(iaage_type, »y') ) s t r c p y ( t i o . f i l e , t i . f i l e ) ; 
else 

printf("Enter the or ig ina l filenane "); 
printf("corresponding to the target area: "); 
scanf("Xs", t i o . f i l e ) ; 

printf("Enter the 1st search filename: "); scanf("Xs", s l i . f i l e ) ; 
printf("Enter the 2nd search filename: "); scanf("Xs", s 2 i . f i l e ) ; 
printf("Enter the target window size: "); scanf("Xd", t target . s ize ) ; 
printf("Enter the search window s ize: "); scanf("Xd", tsearch.s ize); 
denand(search.size >= target.size+2, window s ize contradiction); 
printf("Enter the x and y coord, of whole "); 
printf("search area i n clustered area, \nwrt the cluster window: "); 
scanf("XdXd", txs , tys ) ; 
i f (strchr(inage.type, »y') ) 
{ / » read cluster nap • / 

fp s fopen(clustern'ap, "r"); denand(fp. Cannot open clusmap); 
fread((char *)»nos.center, s i zeof ( in t ) , 1, fp ) ; . 
fread((char *)Jtdinehsion, sizeof ( in t ) , 1, f p); 
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freadCCchar *)ftx80, s i zeo f ( in t ) , 1, fp ) ; 
fread((char *}tyso, sizeof ( i n t ) , 1, fp ) ; 
fread((char •)tBin_xsize, sizeof ( i n t ) , 1, fp ) ; 
froad((char •)JkBin_y8ize, s izeof ( in t ) , 1, fp) ; 
de»and(Bin_xsize»Bin_ysize<»IHAGE_SIZE*IHAGE_SIZE, 

IIUGE.SIZE too s a a l l ) ; 
fread((char •)cbunt, sizeof ( i n t ) , nos.center, fp ) ; 
f o r ( i » 0; i < nos.center; !++) 

for (j « 0; j < diMension; j++) 
fread((char »)»«ean[j3 [i] , sizeof (float) , 1, fp) ; 

for ( i « 0; i < nos.center; i++) 
for (j » 0; j < dinension; j++) 

fread((char •)»deviation[j][i], s i z e o f(float), 1, f p ) ; 
for ( i » 0; i < Bin . y s i ze ; i++) 

fread((char *)»clus«ap[i] [0] , sizeof (char) , Bini.xsize, f p) ; 
fc lose(fp); 
pr in t f ("Coords. of cluster area x %d y !Cd\n", xso, yso); 

else 
{ 

printf("Enter the x and y coord, of "); 
p r i n t f("cluster BindoB wrt raa inage: "); 
scanf("XdXd", »xso.«y8o); 

put8("IB: Clustered inage i s either the sane as the raB inage"); 
puts(" or snal ler size entirely of clustered area."); 
nos.center = l ; / » use.raB inage for natching • / 

xs += xso; ys += yso; 
size . d i f ference » search . s ize-target.size+l; 
Bin.offset " (search.size-target.size ) /2 ; 

r e a d . f i l o ( t i_file, 8 2 i . f i l e , t i o . f i l o , t i , s 2 i , t i o ) ; 
r e a d . f i l e ( t i _ f i l e , s l i . f i l e , t i o . f i l e , t i , s l i , t i o ) ; 

change . fnane(t i.file, t v . f i l e ) ; 
change.fnane(s2i . f i le , s 2 v_file); 
change.fnane (s l i.file, s l v . f i l e ) ; 
change.fnane(tio.file, t v o .file); 
read.file ( t v.file, s 2 v . f i l e , t v o . f i l e , tv , s2v, tvo); 
r e a d . f i l e ( t v.file, s l v . f i l e , t v o.file, tv , s l v , tvo); 

read . f i l e ( t f , s f , tof , t , s, t .o) 
char t f [ ] , s f [ ] , to f • ; 
u.char t • [IHAGE.SIZE], s[][IMAGE.SIZE], 
^ t .on[IHAGE.SIZE]; 

int i , nunread, 
clus . x , clus . y , 
raB . x , raB.y; 

FILE » f t , • f s , *fto; 

/• open a l l f i l e s */ 
f t = fopen ( t f , "r"); denand(ft. Cannot open target f i l e . ) ; 
f s = fopen(8f , "r"); demandCfs, Cannot open search f i l e . ) _ ; 
fto = fopen(tof, "r"); denand(fto. Cannot open original f i l e . ) ; 
fread((char *)ts.header, sizeof(struct r a s t e r f i l e ) , 1, f s ) ; 
fread((char *)tt.header, sizeof ( s truct r a s t e r f i l e ) , 1, f t ) ; 
fread((char •)tto.header, sizeof(struct r a s t e r f i l e ) , 1, f t o ) ; 
raB.x = xs; r a B . y = ys; 
clus.x = xs; c lus .y = y s ; / » i n i t i a l i s e for fseek • / 
/* read search f i l e */ 
nunread = 0; 
fseek ( f s , s.header.ras.Bidth*clus.y+clus_x, 1); / • goto start • / 
for ( i = 0; i < B h o l e y s i z e ; i++) 

nunread += fread((char • ) ( » ( s + i ) ) , s izeof(char), Bholexsize, f s ) ; 
.f8eek(fs, s.header.ras.Bidth -Bholexsize, 1); 

denand(nunread — Bholex8ize*Bholey8ize, read error) ; 
/ • read target f i l e •/ 
nunread = 0; 
f8eek ( f t , t.header .ras.Bidth*clus .y+clus .x , 1); / * goto start • / 
for ( i " 0; i < Bholeysize; i++) 

nunread +» fread((char *)(*(t+i).), sizeof (char), B h o l e x s i z e , f t ) ; 
fseek ( f t , t.haador.ras.Bidth - B h o l e x s i z e , 1); 

denand(nunread == Bho l e x 8 i z e * B h o l e y s i z e , read error) ; 
/* read target original */ 
nunread = 0; 
f8eek ( f to , to.header.ras.Bidth*raB.y+raB.x, 1); 
for ( i = 0; i < Bholeysize; i++) 

nunread += fread((char • ) ( • ( t .o+i ) ) , 
sizeof(char), Bholexsize, f t o ) ; 

^ fseek ( f to , to.header.ras.Bidth -Bholexsize, 1); 

denand(nunread = sholexsize^wholeysize, read error); 

fclo8e ( f t ) ; fclose ( f s ) ; fclose ( f t o ) ; 
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ch&nge.fhaae(frob, to) 
char I r o a Q , t o O ; 

int i , j , change_count = 0; 

/ * change infrared nane to v i s i b l e nane * / 
for (i » BtrlenCfron); i >= 0; i ~ ) i f (fron[i] = ' / » ) break; 
for (j « 0; j < i ; j++) to[j] = fronCj]; 
for (j " i ; j <» str len(fron); j++) 

i f (fronCj] ' i ' tk change.count < 1) 
{ to[j] = »v>;change_count++; } 

^ else to[j] - fronCj]; 

^rint_clnster_stat() 

int k, class; 

p r i n t f (" \ t»»*»» CEITERS •• • • • ' • ) ; 
printf("Vn "); 
for (class » 0; c lass < nos.center; class++) 

pr in t f (" cX2d c lass ) ; 
f o r (k = 0; k < dinension; k++) 

printf("\n"); printf("X2d: " , k) ; 
for (class = 0; class < nos.center; class++) 

p r i n t f ("X5.if, " , naan[k] [class]) ; 
}printf("\n"); 

printf("\t*»»* lUHBER OF OBJECTS. PER CLUSTER »»»» \n") ; 
f o r (class = 0; class < nos.center; class++) 

pr int f (" cX2d •', c lass) ; 
printf("Nn"); 
f o r (claiss = 0; class < nos.center; class++) 

printf("X6d " , count[class]); 
printf ("\n"); 

p r i n t f ("\t»**»* STAIDARD DEVIATIOI *• • •»• • ) ; 
pr int f (" \n "); 
for (class = 0; class < nos.center; class++) 

pr int f (" c%2d ", c lass ) ; 
f o r (k = 0; k < dinension; k++) 

printf("\n"); printf("X2d: " , k); 
for (class = 0; class < nos.center; cla8s++) 

p r i n t f C l S . l f , ", deviation [k] [class]); 
}printf("Vn"); 

p r i n t . t o . f i l e O 
X/* pr int cloud wind, vector to a f i l e • / 

char /**outf i le* / outfi le[50]; 
int i , j , k, numxwin, numywin; 
f loa t d irect ion; 
FILE •fp; 

nuBxwin = numywin = (wholexsize-2*win.off8et)/target.size; 
/ • o u t f i l e = "/home/image/output/wf";*/ 
do •[ 

printf("Enter the filename for computed wind f i e l d , "); 
scanf("Xs", ou t f i l e ) ; 
fp = fopen(outfile, "w"); 
i f (!fp) printf("Cannot open f i l e , please try again!!\n"); 

} while(ifp);*^ 
fwrite((char •)tnos.center, s i zeof ( in t ) , 1, fp); 
fwrite((char«)*numxwin, s i zeof ( in t ) , 1, fp); 
fwrite((char •)»numywin, s i zeof ( int ) , 1, fp); 
fwrite((char «)Jtwin.offset, s i zeof ( int ) , 1, f p) ; 
fwrite((char «) t target . s ize , s i zeof ( int ) , 1, fp); 
fwrite((char *)tsearch_si7.e, sizeof ( in t ) , 1, fp); 
fwrite((char *)tx8, s i zeof ( in t ) , 1, fp); 
fwrite((char •)*ys, s i zeof ( in t ) , 1, fp); 
fwrite((char *)txso, s i zeof ( in t ) , 1, fp); 
fwrite((char *)tyso, s i zeof ( in t ) , 1, fp); 
fwrite((char *)»win.xsize, s i zeof ( int ) , I , fp); 
fwrite((char *)kwin.ysize, s i zeof ( in t ) , 1, fp); 
fwrite((char •)twholexsize, 8izeof ( i n t ) , 1, fp); 
fwrite((char «)fcwholeysize, s i zeof ( in t ) , 1, fp); 

for (k = 0; k < nos.center; k++) 

for (i = 0; i < numywin; i++) 
for (j = 0; j < numxwin; i++) 

fwrite((char *)tcmv[k][i][j].lat, s izeof (float) , 1, f p) ; 
for ( i >= 0; .1 < humywin; i++) 

for (j = 0; j < numxwin; i++) 
fwrite((char •)tcmv[k][i][j].longt, s izeof ( f loat ) , 1, fp) 
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f o r ( i " 0; i < ntiBysin; i++) 
fo r (j « 0; j < nunxBin; i++) 

fBrite((char»)»c»v [k3[i ] [ j ] .speed, sizeof ( f l o a t ) , 1, f p ) ; 
f o r ( i » 0; i < nuByoin; i++) 

fo r ( j « 0; j < nuBXBin; j++) 
i f (ciiv[k][i][j].speed 0.0) 

direction = cnvlk][i] [ j ].direction; 
else i f (c«v[k][i][j].direction < 180.0) 

direction = 180.0+cmv[k][i][j].direction; 
else 

direction • cBv[k][i] [ j ].direction -180 .0 ; 
fHrite((char •)»directioh, s i z e o f ( f l o a t ) , 1, f p ) ; 

f o r ( i » 0; i < nuBynin; i++) 
fo r (j = 0; j < nujaxHin; i++) 

fBrite((char «)kcBv[k][i]Cj]-temp, s i z e o f ( f l o a t ) , 1, f p ) ; 
f o r ( i = 0; i < nuayBin; i++) 

fo r (j = 0; j < nuBXBin; j++) 
fBrito((char •)Jtcmv[k] [i] [j]-count, sizeof ( i n t ) , 1, f p ) ; 

^ fcl08e(fp); 

print.result (prog, t . f i l e , cltis) 
char *prog, ' t . f i l e ; 
int clus; 

int i , j , nuiaxBin, nuBysin; 
nuBXBin = numyBin = (Bholexsize -2*Bin_offset)/target.size; 
printf("\nProg: Xs Target: Xs", prog, t . f i l e ) ; 
printf("\nClU8ter Xd", clus); 
printf("\nSpeed i n knots, direction in degree"); 
f o r ( i = 0; i < nnayBin; i++) 

printf("\n\n"); 
printf("speed " ) ; 

f o r (j = 0; j < numxBin; j++) 
p r i n t f ( " X5.1f", cmvtclus][i][j].speed); 

printf("\n"); 
printf("direct " ) ; 
f o r (j = 0; j < nuBXBin; j++) 

i f (c»v[clus]Ci][j] .speed == 0.0) 
p r i n t f ( " XS.lf", cnv[clu8][i ]Cj ] .direction); 

else i f (cBv[elus]Ci][j] .direction < 180.0) 
p r i n t f (" XS.lf", 180.0+cmv[clus] [i ] [ j ] . .direction); 

else 
p r i n t f ( " XS.lf", cBv [c lU8][i ] [ j ] .direction -180 .0) ; 

printf("\n"); 
printf("temp " ) ; 
for (j = 0; j < numxBin; j++) 

p r i n t f ( " XS.lf", CBvCclus][i][j].temp); 
printf("\n"); 
p r i n t f ( " l a t " ) ; 
fo r (j = 0; j < numxBin; j++) 

printf (" XS.lf", cmv [clus] [ i][j] . l a t ) ; 
printf("\n"); 
printf("long " ) ; 
fo r (j = 0 ; j < numxBin; j++) 

p r i n t f ( " XB.if", cmv[clus][i3[j].longt); 
printf("\n"); 
printf("mean " ) ; 
for (j = 0; j < numxBin; i++) 

p r i n t f (" XS.lf", cmvCclus] [ill[j] .mean); 
printf("\n"); 
printf ("sd "); 
f o r (j « 0; j < numxBin; j++) 

p r i n t f ( " XS.lf", cmv [clus] [i][j] .sd); 
printf("\n"); 
printf("count " ) ; 
for (j = 0; j < numxBin; j++) 

j r i n t f ( " XSd", CBV[C1US][i] [ j ].count); 

^ printf("\n"); 

extract.cluster(clus) 
int clus; 
{/* extract a cluster f o r tracking */ 
register int i , j ; 

for ( i = 0; i < Bholeysize; i++) 
for (j = 0; j < Bholexsize; j++) 

t i[i ] [ j ] = tv[i ] [ j ] = 0; 
f o r ( i = 0; i < Bholeysize; i++) 

for (j = 0; j < Bholexsize; j++) 
i f (clusBap[i+y8-y8o][j+xs-xso] == clus) 
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t i [ i ] [j] - tioCi][j]; 
tv[i][j] » tyo[i][j]; 

/ * * * * * * • * * • • * • • • • * * * * * * * * * • * * * * * * * * * * * • * * * • * * * * * * * • * • • • • • • « • • * • • • • • • • • * 
* Yon are reading g e o . c * 
* Function to do geoaetric rec t i f i ca t ion and calculate great c i r c l e • 
* distance on earth. For calculation of true Bind speed on HETEOSAT * 
* iaages. * 
« The rec t i f i ca t ion only apply to a sindoB i n a * 
* B ( l ine 1810-2434) foraat iaage. • 
* The coord, of t h e BindoB i s (330,60), s ize 612x512 * 
* K.S.LAU 16-7-90 • 
•****************************************«****##**********************/ 

•define THIRD/* use t h r i d order polynoaial 

• include "/hoae/lau/s'rc/aap /regression. h" 

/ * variable for regression and triie distance * / 
s t a t i c int nua.gcp; / » nuaber of ground control points * / 
s ta t i c 
double indepvar[IOS_Eqi][IOS_Eqi],/* aatrix f o r indepdent variable • / 

depvar_l[IDS_Eqi],/» array f o r depdent variable , l ine * / 
depvar_p[IDS_Eqi],/* array f o r depdent variable , p ixe l • / 
coeffx[IOS_Eqi], /• t h e estiaated coefficients f o r aapped iaage x * / 
coef fyClQS.Eqi] ; / • t h e estiaated coefficients f o r aapped iaage y * / 

s ta t i c Coord iaage[HAX.GCP],/* store iaage p ixe l coord * / 
aapLHAX.GCP];/* store aap coord • / 

s ta t i c Stat a a p x . s t a t , / * aean emd variemce of aapx * / 
a a p y . s t a t ; / * aean and variance of aapy • / 

:et_regression_coeff()/* calculate the regression formula * / 

FILE *strean; 

/ * read inage control point n o t ground control point , 
because Be Bant p ixe l coord, to be indepdent variables • / 

i f ((stream = fopenC'/hone/lau/src/map/icp", "r")) == lULL) 
•£ f p r i n t f (stderr, "Cannot open dataf i le . \n") ; e x i t ( l ) ; } 

read_gcp(streBm);/* read image control point * / 
standardizing.variableO; 
setup_matrix(); 
gauss_eliaination(depvar_p, coeffx); /» solve f o r x * / 

^ gauss_eliaination(depvar_l, coeffy);/* solve f o r y * / 

read_gcp(stream) 
FILE •strean; 
{ 

int i ; 

i = num_gcp = 0; 
Bhile (fscanf(strean, "Xlf X l f X l f X l f " , timage[i3.x, t image[i] .y, 

*mapCi].x, tmap[i].y) != EOF)/» read a l l control point * / 
•C i++; num_gcp++; } 
fclose(stream); 

} 

pixel_to_map(pl, 11, p2, 12, l a t l , l o n g l , l a t2 , long2) 
double p i , 11, p2, 12,/* s t a r t / f i n i s h p ixe l coord. * / 

* l a t l , * longl , * lat2 , *long2;/* s t a r t / f i n i s h l a t . and long. * / 
{/* covert HETEOSAT pixe l t o true geometric posit ion * / 

g e t _ l a t _ l o n g(pl , 11, l a t l , longl) ; 
^ get_lat_long(p2, 12, la t2 , long2); 

get_iat_long(p, 1, l a t i , longt i ) /* use 3th order regression * / 
double p, 1,/* p ixe l (x) and'line (y) coord. * / 
^ * l a t i , * longti; 

p = (p-aapx_stat.aean)/Bapx_stat.sd;/* standardize * / 
1 = ( l -aapy_stat .aean)/Bapy_stat .sd; 
• longt i = coeffx[0]+coeffxtl]*P+coeffx[2]*l 

+coeffX[3]•poB(p, 2.0)+coeffx[4]•p*l 
+coeffxC5]*poB( l , 2.0)+coeffx[6]*poB(p, 3.0) 
+coeffx[7]^poB(p, 2.0)*1 
+coeffx[8]*p*poB(l, 2.0)+coeffx[9]*poB( l , 3.0); 

• l a t i = coeffy[0]+coeffy[l3*p+coeffy[2]*l 
+coeffy[3]*poB(p, 2.0)+coeffy[4]*p*l 
+coeffy[5]*poB ( l , 2.0)+coeffy[6]*poB(p, 3.0) 
+coeffy[7]*poB(p, 2.0)*1 

^ +coeffy[8]*p*poB(l, 2.0)+coeffy[9]*poB( l , 3 .0); 

get .d is tance( lat l , l ong l , la t2 , long2, departure, course) 
double l a t l , l a t2 , 

l ohg l , iong2, 
^ *departure, *course; 
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/ • 'Calculate the distance ft course betveen 2 point's given the ir lat itudes 
ft longitudes, using oblique spherical trigononetry. I f the latitudes 
or longitudes are the saae, then s inp l i f i ed expressions are used. 
One Minute equal to one nautical Mi le . 

*/ 
int coMplenent; 
double c o _ l a t l , co_lat2, /* s tar t / f in i sh co-latitude • / 

d;.16hg,/* difference of longitude • / 
a l p h a , / • i n i t i a l course * / 
distance;/* departure * / 

i f (Clongl < 0.0 ftft long2 < 0.0} | | ( longl > 0.0 ftft long2 > 0.0)) 
d_long " fabs(longl-long2); 

else 
d_long » fabs(longl)4fabs(long2); 

i f <d_long > 180.0) 

d.long » 360.0-d_long; 
compleMent = TRUE; 

c o . l a t l « 9 0 . 0 - l a t l ; / * north pole as C • / 
co_lat2 » 90.0-lat2; 
i f ( l a t l lat2) 
{ 

distance « 60.O*d_long;/*-convert to Minutes * / 
distance COS(lat l ) ; 
i f (long2 > longl) alpha = 90.0;/* due east * / 

^ else alpha = 270.0;/* due vest * / 

else i f (longl long2) 
•(/* alvays on great c i r c l e * / 

distance = 60.0*fabs(latl- lat2); 
i f (lat2 > l a t l ) alpha = 0.0;/* due north • / 

^ else alpha = 180.0;/* due south * / 

else 
{ 

distance = C0S(co_latl)*C0S(co_lat2) 
+SII(co_latl)*SII(co_lat2)*C0S(d_long); 

distance = acos(distance); 
distance *=« 60.0*180.0/H_PI ; / * in minutes * / 

alpha = (C0S(co_lat2)-C0S(co_latl)*C0S(di8tance/6O.0)) 
/(SII(co_latl)*SII(distance/60.0)); 

alpha = acos(alpha); 
alpha •= 180.0/M_PI;/* convert to degree * / 
i f (dong i > 0.0 tt long2 < 0.0)1 Klongl < 0.0 tt long2 > 0.0)) 

i f ((long2 < longl t t complement == FALSE)I I 
(long2 > longl t t complement == TRUE)) 

^ alpha = 360.0-alpha; 

else/* both east or both vest * / 
^ i f (long2 < longl) alpha = 360.0-alpha; 

*departure = distance;/* in n mile * / 
^ *course = alpha;/* in degree * / 

gauss_elimination(depvar, coeff)/* use pivot to reduce computional error * / 
< ouble depvarC], coeff 0 ; 

int i , j , k, k p l , i p l , loop, pivot; 
double temp, sum, quot, b ig , absolute, 

augmented[IDS_EQI][I0S_C0L];/* augmented matrix * / 

for ( i = 0; i < lOS.EQI; i+•^)/* copy to augmented matrix * / 
for (j = 0; j < lOS.Eqi ; j++) 

augmented [i] [j] = indepvar[i] [j] ; 
for ( i » 0; i < lOS.EQI; i++) 

augmented [i][I0S_C0L-13 = depvar[i]; 

for (k = 0; k < I0S_EQI-1; k++) 

pivot = k; 
b ig = fabs (augmented [k][k]); 
kpl = k+1; 
/ * search f o r largest possible pivot element * / 
for ( i = k p l ; i < lOS.EQI; i++) 

absolute = fabs(augmented[i][k]); 
i f (big < absolute) { big >= absolute; pivot «= i ; } 

^ else continue; 

i f (pivot != k ) / * decision on necessity of rov interchange * / 
for (j = k; j < lOS.COL; j++)/* rbv interchange * / 

temp " augmented[pivot][j] ; 
augmented Lpivot] [j] = augmented [k] [ j ] ; 
augmented[k] [j] = temp; 
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for <i = kpl; i < lOS.EQI; i++) 
{. I* calculation of elenents of new natrix * / 

quot = augnentedCil [k]/augnentedCk] [k]; 
for (j « kpl; j < lOS.CQL; 

augnented[i] [j] - » quot*augnented [k] [j] ; 

for ( i = kpl; i < lOS.EQI; i++) augnentedCi][k] = 0 . 0 ; 

/ * back substitution • / 
coeff[I0S_EQI-1] » augnentedClOS_E(JI-l][IOS_COL-l] 

/augnented[lbS_Eqi-l][IOS_EIJI-l];/» last coeff • / 
for (loop = 0 ; loop < I0S_EQI-1; loop++) 

sun = 0.0; 
i " I0S_Eqi-2-loop; 
ip l = i+1; 
for (j = ip l ; j < •OS.EQI; j++) 

sun += augnentedCi] ij]*coeff[j] ; 
coeff [i] = (augnerited[i]tlQS_C0L-l]-sun)/augnented[i3[i] ; 

standardizing_veiriable()/* to reduce conputational error • / 

register int i ; 
double sun_X8quare=0.0,. square_sunx=0.0, sunx=0.0,/* for nap x • / 

8Un_ysquare=0.0, sqii'are_suny=0.0, suny=0.0,/» for nap y » / 
count; 

count = (double>nun_gcp; 
for ( i = 0; i < nun.gcp; i++)/* get sum * / 

sunx += napCi] .x; 
suny += nap[i] .y; 
sum_xsquare += pov(nap[i].x, 2.0); 

^ sun.ysquare += poB(nap[i].y, 2.0); 

square.sunx = poB(sunx, 2.0); 
square.suny = pov(suny, 2.0); 
napx.stat.mean = stunx/count;/* nean * / 
napy.stat.mean = sumy/count; 
mapx.stat.sd = (sum_xsquare-square_sumx/count)/(count-1.0);/* var * / 
napy.stat.sd = (sum_ysquare-square_sumy/count)/(count-1.0); 
napx.stat.sd = sqrt(mapx_stat.sd);/* sd • / 
mapy_stat .sd = sqrt(Bapy,.stat .sd) ; 
for ( i = 0; i < nun_gcp; i++)/* standardizing ,*/ 

map[i].x = (mapCi].x-mapx_stat.mean)/mapx_stat.sd; 
•ap[i].y = (map[i].y-napy_stat.mean)/mapy_stat.sd; 

} 

setup_matrix() 
</* THRID ORDER REGRESSIOI HATRIX * / 

register int i ; 
double sum; 

/» setup matrix A first * / 
indepvar[0][0] = (double)num_gcp;/* diagonal elements first * / 
sun =0 .0 ; 
for ( i = 0; i < nun.gcp; i++) sun += poB(map[i].x, 2.0); 
indepvarClj [1] = sum; 
sun = 0.0; 
for ( i = 0; i < nun_gcp; i++) sun += pov(mapCi].y• 2.0); 
indepvar[2][2] = sum; 
sum = 0.0; 
for ( i = 0; i < nun_gcp; i++) sum += pos(map[i].x, 4.0); 
indepvar[3][3] = sum; 
sum = 0.0; 
for ( i " 0; i < num_gcp; i++) sum += poB(map[i].x*map[i].y, 2.0); 
indapvar[43[4] = sum; 
sun = 0.0; 
for ( i = 0; i < nun.gcp; i++) sun += pow(nap[i3.y, 4.0); 
indepvar[53 [53 = sun; 
sun =0 .0 ; 
for ( i = 0; i < nun.gcp; i++) sun += poB(nap[i3.x, 6.0); 
indepvar[63 [63 = sun; 
sun = 0.0; 
for ( i = 0; i < nun.gcp; i++) 

sun += poH(nap[iJ .X, 4.0)»poH(nap[i3 .y, 2.0); 
indopvar[73l73 = sum; 
sun = 0.0; 
for ( i = 0; i < num.gcp; i++) 

sun += poB(map[iJ .X, 2.0)*poB(map[i3 .y, 4.0); 
indepvar[83l83 = sum; 
sun = 0.0; 
for ( i = 0; i < num_gcp; i++) sum += poB(map[i3.y, 6.0); 
indepvar[93[93 = sum; 

sun = 0.0;/* ron element * / 
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for ( i » 0; i < niui.gcp; i++) sim +» B a p [ i ] . x ; 
indepvarCO] [1] " indepvarCi] [0] = sua; 
sua = 0.0; 
for ( i » 0; i < nua_gcp; i++) sua +» aap[i].y; 
indepvarlO][2] » indepvar[2][0] » sua; 
indepvarCO] [3] » indepvar[3] [0] « indopvar[l] [1] ; 
sua " 0.0; 
for ( i « 0; i < nua.gcp; i++) sua +» aapCi].x*aap[i].y; 
indopvarCOJ [4] » indepvarC4] [0] «= sum; 
indepvarCO] [6] = indepvar[5] [0] « indepvar[2] [2] ; 
sua = 0.0; 
for <i = 0; i < nua.gcp; i++) sum += posCmapCi].x, 3.0); 
indepvar[0] [6] « indapvar[6] [0] = sum; 
SUB = 0.0; 
for <i » 0; i < nuB_gcp; i++) sua += ponCaapCi].x, 2.0)*map[i].y; 
indepvarEO] [7] »= indepvarE7] [0] » sua; 
sua = 0.0; 
for ( i » 0; i < num.gcp; i++) sua += aapEi] .x*poB(Bap[i3 .y, 2.0); 
indopvarEO][8] » indepvarE8]EO] = sum; 
SUB = 0.0; 
for ( i »• 0; i < nua.gcp; i++) sua +» powCaapEi] .y, 3.0); 
indopvarEO] [9] « indapvarE9] E03 = sua; 

indopvarEl] E2] • indepvarE2] El] » indepvarEO] E4] ; 
indepvarEl] E3] • indepvarES] El] * indepvar EO] E6] ; 
indepvarEl] E4] » indepvarE4] El] » indepvarEO] E7] ; 
indepvarEl] ES] » indepvarES] [1] = indepvarEO] [8] ; 
indepvarEl] E6] "= indepvar E6] El] = indepvar E3] [3] ; 
sua = 0 . 0 ; 
for ( i « 0; i < num.gcp; i++) sum += ponCmapEi] .x, 3.0)*map[i]'.y; 
indepvarEl] E7] = indepvarE7] [1] = sum; 
indepvarEl] E8] = indepvarE8] [1] = indepvarE4] [4] ; 
sum = 0.0; 
f o r ( i = 0; i < num.gcp; i++) sum += aapEi].x*poB(map[i].y, 3.0); 
indepvarEl] E9] = indepvarE9] [1] = sum; 

indepvarE2] E3] = indepvarE3] E2] = indepvar EO] E7] ; 
indepvarE2]E4] = indepvarE4]E2] = indepvarEO]E8]; 
indepvarE2]E5] = indepvar[5] E2] = indepvarEO] [9] ; 
indepvarE2] E6] = ihdepvarE6] E2] = indepvarEl] E7] ; 
indepvar E2] [7] = indepvar [7] E2] = indepvar El] [8] ; 
indepvarE23 E8] »= indepvar[8] E2] = indepvarEl] E9] ; 
indepvar E2]E9] = indepvar E9] E2] = indepveu: E5] ES] ; 

indepvarES]E4] = indepvarE4]E3] = indepvarE2]E6]; 
indepvarES] E5] = indepvarES] E3] = indepvarE2] [7] ; 
sum = 0.0; 
for ( i = 0; i < nura.gcp; i++) sum += posCmapEi].x, 5.0); 
indepvarE3] E6] = indepvarE6] [3] = sum; 
S l i m = 0.0; 
for <i = 0; i < num.gcp; i++) sum += posCmapEi].x, 4.0)*mapEi].y; 
indepvarE3] E7] = indepvarE7] E3] = sum; 
sura = 0.0; 
f o r <i = 0; i < num.gcp; i++) 

sum += poB(raapCi] .X, 3.0)*poB(mapEi] .y , 2.0); 
indepvarE3] [8] = indepvarES] E3] = sum; 
siUB = 0.0; 
f o r ( i = 0; i < num.gcp; i++) 

sum+= poB(mapEi] .X, 2.0)*poB(mapEi] .y , 3.0); 
indepyarE3]L9] = indepvarE9] E3J = sum; 

indepvar[4] [5] = indepvarES] [4] = indepvar [2] E8] ; 
indepvarE4] E6] » indepvarCS] E4] «= indepvarES] E7] ; 
indepvar[4] E7] = ind.epvarE7] E4] = ihdepvarE3] E8] ; 
indepvar[4] E8] = indepvarES] E4] = indepvarES] [9] ; 
sum = 0.0; 
for ( i = 0; i < num.gcp; i++) sum += poB(mapEi].y, 4.0)*map[i].x; 
indepvBrE4] [9] » indepvarE9] E4] " sum; 

indepvarES] E6] » indepvar E6] ES] = indepvarE4] E7] ; 
indepvarES] E7] = indepvarE7] ES] = indepvarE4] E8] ; 
indepvarES] E8] = indepvarE8] ES] = indepvarE4] E9] ; 
sum = 0.0; 
for ( i = 0; i < num.gcp; i++) sura += poB(map[i].y, 5.0); 
indepvarES]E9] = indepvarE9]ES] = sum; 

sua = 0.0; 
for ( i = 0; i < nua.gcp; i++) sum += poB(mapEi].x, 5.0)*mapEi].y; 
indepvarE63E7] = indepvarE?] E6] = sum; 
indepvarEe] E8] = indepvar[8] E6] = indepvarE7] E7] ; 
sua = 0.0; 
for ( i = 0; i < num.ecp; i++) 

sura += pOBCaapCiJ.x*mapEi].y, 3.0); 
indepvarEe] [9] = indepvar [9] E6] = sum; 

indepvarE7] E8] = indepvarE8] [7] = indepvarEe] E9] ; 
indepvarE7]E9] = indepvarE9] [7] = indepvarES] E8] ; 
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SUB = 0.0; 
for ( i » 0; i < nuB.gcp; i++) sun +«= a a p C i ] .x*poy(Bap[i] .y, 5.0); 
indepvar[8] [9] » indepvar[9] [8] • siin; 

/ « s e tup depdent v a r i a b l e column f o r p i x e l *l 
S U B '0.0; 
f o r <i » 0; i < n u B . g c p ; i++) SUB +»• i B a g e [ i ] . x ; 
depveu:_p[03 = SUB; 
SUB ' 0.0; 
f o r ( i " 0; i < nua .gcp; i++) sua +« i a a g e [ i ] . x * a t ^ [ i ] . x ; 
d e p v a r . p C l ] = s u a ; 
sua = 0.0; 
f o r ( i » 0; i < nuB .gcp; i++) sua +» imageCi] .x*map[i] . y ; 
depvar.p[2] = sua; , 
sum = 0-0; 
f o r ( i » 0; i < nua .gcp ; i++) sua +» i aageCi] .x*poB (BapCi] .x , 2.0); 
depvar.p[3] = sua; 
sua « 0.0; 
f o r ( i « 0; i < nua .gcp; i++) sua +» image [ i ] .x*Bap[ i] .x*map[i] . y ; 
depvar_pC4] « sua; 
sua = 0.0; 
f o r <i = 0; i < nua .gcp; i++) sua += i a a g e [ i ] . x * p o y(Bap [ i ] . y , 2.0); 
depvar.p[5] » sua; 
sua » 0.0; 
f o r <i >! 0; i < nua .gcp ; i++) sua += i a a g e C i ] . x * p o n(Bap [ i ] . x , 3.0); 
depvar.p[6] = SUB; 
SUB = 0.0; 
f o r ( i 0; i < nua .gcp ; i++) 

sua += iBage [ i ] . x*poB (map[ i ] . x , 2.0)*map[i] . y ; 
depvar_p[7] = sum; 
sum =0.0; 
f o r ( i = 0; i < num.gcp; i++) 

sua += imageCi] .x*poB(map[i] . y , 2.0)*map[i] . x ; 
depvar.p[8] = sum; 
sum = .0.0; 
f o r (1=0; i < num.gcp; i++) sum += image [ i ] . x*poB (map[ i ] . y , 3.0); 
depvar.p[9J = sum; 

/ » se tup depdent v a r i a b l e column f o r l ine * / 
sum =0.0; 
fo r . ( i = 0; i < niua_gcp; i++) sum += i m a g e l ! i ] . y ; 
depvar.l[0] = sum; 
sum « 0.0; 
f o r ( i =0; i < num.gcp; i++) sum += i m a g e C i ] . y * m a p [ i ] . x ; 
d e p v a r . l C l ] = sum; 
sua = 0.0; 
f o r ( i = 0; i < nua .gcp ; i++) sum += i m a g e d ] .y*map[i] . y ; 
depvar.l[2] = sum; 
sum = 0.0; 
f o r ( i = 0; i < num.gcp; i++) sum += image[ i ] .y*poB (mapCi ] .x , 2.0); 
depva r . l [3 ] = sum; 
sum = 0.0; 
f o r ( i = 0; i < nura.gcp; i++) sura += image[ i ] .y*mapCi] .x*map[i ] . y ; 
depva r . l [4 ] = sum; 
Slim = 0.0; 
f o r ( i = 0; i < num.gcp; i++) sum += image[ i ] . y»poB (map[ i ] . y , 2.0); 
depva r . l [S ] = sum; 
sum = 0.0; 
f o r ( i = 0; i < num.gcp; i++) sum += image [ i ] . y*poB (map[ i ] . x , 3.0); 
dapva r . l [6 ] = sum; 
sum = 0.0; 
f o r ( i = 0; i < num.gcp; i++) 

sum += image[i] .y*poB(map[i].X, 2.0)*map[i].y; 
depvar_l[7] = sum; 
sum = 0.0; 
f o r ( i = 0; i < num.gcp; i++) 

sua += i a a g e C i ] .y*poB(map[i] . y , 2.0)*map[i] . x ; 
depvar_l[8] = sum; 
SUB = 0.0; 
f o r ( i = 0; i < nura.gcp; i++) sua += imageCi ] .y*poB (map[ i ] .y , 3.0); 
depvar_l[9] = sum; 

/******************************************«****************************« 
* You are iroad draB .vector3.c • 
* source to draB.vector, use i n cmvl2.c « 
* using the image as the background, vector overlay on i t » 
* K.S.LAU 27-2-91 * 
•******************************.*****************************************/ 

tinclude "cav.h" 
/* for display iaage on aap */ 
tdefine UPPER.UT (60.0) 
tdefine LEFT.LOIQ (-25.5) 
tdefine EARTH.RADIUS (6378.0) 
tdefine PIX.SIZE (8.0) 

s t a t i c colormap.t colormap; 

405 



s ta t i c Fraae fraae; 
s ta t i c Canvas canvas; 
s ta t i c Cursor cursor; 
s t a t i c Icon . icon; 
s ta t i c Ccgisin vpn;-
s tat ic Pizvin »pB, »fpy; 
stati c Pixrect • p r , • i con .pr ; 
s ta t i c void canvas_event_proc(), 

iMaee_canvas_event_proc(); 
s ta t i c u.char redL256], green[256l. blueC256]; 
s ta t ic char C M s n a B o [ B U F S I Z ] ; 
typedef enua direct <cala, n, ne, e, se, s, so, w, nH>; 

/ • no Botioh, 0, 45, 90, 135, 180, 225, 270, 315 • / 
s ta t ic struct pf_pos/^ arron head • / 

c l i s t o m « « 0 , 3 > , { 1 , 2 } , { 2 , 1 } , { 3 , 0 } , { 4 , 1 } , { S , 2 } , { 6 , 3 } } , 
c l i s t l [73 " « 0 , 0 } , { 1 , 0 } , { 2 , 0 } , { 3 , 0 } , { 3 , 1 } , { 3 , 2 } , { 3 , 3 } > , 
c l i s t 2 m = « 0 , 0 } , < 1 , 1 } , { 2 , 2 } , - C 3 , 3 } , - C 2 , 4 } , { 1 , 5 } , { 0 , 6 } } , 
c l ist3[7] •= « 3 . 0 } , { 3 , 1 } , - C 3 , 2 } , { 3 , 3 } , - C 2 , 3 } , { 1 , 3 } , { 0 , 3 } } , 
cl i8t4[7] » « 0 , 0 } , < l , l } , { 2 , 2 } , { 3 , 3 } , < 4 , 2 } , { 5 , i } , { 6 , 0 } } , 
c l istS[7] « « 0 i 0 } , { 0 , l } , < 0 , 2 } , { 0 , 3 } , - [ l , 3 } , { 2 , 3 } , { 3 , 3 } > , 
cl i8t6[7] « « 3 , 0 } . { 2 , 1 } . { 1 , 2 } , { 0 , 3 } , - C 1 . 4 } , < 2 , 6 } . { 3 , 6 } } . 
clist7C7] - «0.3>,{0.2},{0,1>,{0,0},-Cl,0},{2,0}.-C3,0}}; 

displayisind_field_only(clus)/^ only shon windfield, not overlay on image • / 
int c lus; 

Cint name; 

frame > vindon.create(lULL, FRAHE, 
FRAHE.LABEL, filename, 
ttll.WIDTH, 300, 
HII.HEIGHT, 300, 
WII_ERR0R_BSG, "Cannot create frame", 
0); 

cursor » cur8or_create(CURS0R_0P, PIX.SRC " PIX_DST, 
CURS0R_CROSSHAIR_LEIGTH, 20, 
CURSOR.SHOW.CROSSHAIRS, TRUE, 
0); 

canvas = sindov_create(frame, CAIVAS, 
HII.OraSOR, cursor, 

CAIVAS.WIDTH, 800, 
CAIVAS_HEIGHT, 800, 
CAIVAS_AUTO_SHRIIK, FALSE, 
«II_EVEIT_PROC, canvas_event_proc, 
«II_CQ1SUHE_PICK_EVEITS. LOC.HQVE, HS.RIGHT, 0, 
0); 

vindos.set(canvas, 
HII.VEBTICAL.SCROLLBAR, scrollbar_create(0), 
WII_HORIZOITAL_SCBOLLBAR, scrollbar_create(0), 
0); 

po = canvas.pixBin(canvas); 
open.po.cgiO ; / • open sindos * / 
open_egi_canva8(canvas, tvps, tname); 
Bind_field(FALSE, 2.0, 0, 0, clu8);/» dran the vector • / 
close_cgi_pB(kvpB); 
close_pB_cgi(); 

^ BindoB_main_loop(frame); 

display_Bind_field_onimage(clus, p ix , mem) 
Pixroct • p i x , *mem; 
int clus; 

register int i , j ; 

s p r i n t f ( t i t l e , "Xs-.ts", progname, t i . f i l e ) ; 
i f (clus == nos.cehter |1 nos.center == 1) 

pr_rop(pix', 0, 0, pix->pr_size.x, pix->pr_size.y, PIX.SRC, mem, 0, 0); 
else 

for ( i yso; i < yso+Bin_ysize; i++) 
for ( j = 0; j < meB->pr.8ize.x; j++) 

i f (j >= xso *k j < xso+Bin.xsize) 

i f (clusmap[i-yso][j-xso] == clus) 
pr_put(pix, j , i , pr.get(mem, j , i ) ) ; 

else pr.put(pix, j , i , 0); 

^ Aelse pr_put(pix, j , i,0);*/ 
pr » pix; 

^ image_BindoB_create(FALSE, c lus) ; 

display.wind.f ield_onraap(clus) 
int clus; 
{ 

char *ptr , filename[50]; 
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FILE •ff, 

strcpy(filename, t i o . f i l e ) ; 
p tr » strrchr(filename, >/'); 
8trcpy (ptr , "/map"); 
f p " fopen(filename, "r"); 
demand(fp, cannot open display f i l e ) ; 
spr int f ( t i t l e , "Xs:is", prognajie, t i . f i l e ) ; 
pr = pr . lqad(fp , tcolormap); 
demand(pr, pixrect io error) ; 
fclose ( f p ) ; 

^ image.HindoH_create(TRUE, c lus) ; 

image_sindov_create(di8playonmap, clus) 
char dis'playonmap; 
Int clns; 

Cint name; 

int scrol l . th ickness; 

set .BindoBsizesO; 
scrol l . thickness = defaults.get.integer("/Scrollbar/Thickness", 14, 0); 
frame * BindoB_ c r e a t a ( I U L L , FEAME, 

FRAME.LABEL, filename, 
HII.HEIGHT, Binysize+scroll_thickness+7, 
HII.WIDTH, Binxsize+scroll .thickness+lO, 
•HII.ERROR.MSG, "Cannot create frame", 
0); 

setup.colourmapO; 

cursor = cursor.create(CURSOB.GP, PIX.SRC * PIX.DST, 
CORS0R.CROSSHAIR_LEIGTH, 20, 
CURSOR.SH0W.CROSSHAIRS, TRUE, 
0); 

canvas = windoB.create(frame, CAIVAS, 
HII.CURSOR, cursor, 

CAIVAS.WIDTH, pr->pr.s ize .y , 
CAIVAS.HEIGHT, pr->pr_size.x, 
.CAIVAS.AUTO.SHRIIK, FALSE, 
WII.EVEIT.PROC, image.canvas . e v e n t . p r o c , 
WII_COISUHE.PICK_EVEITS, LOC.HOVE, HS.RIGHT, 0, 
0) ; 

BindoB.set(canvas, 
WII.VERTICAL.SCROLLBAR, scrol lbar.create(O), 
WII.HORIZOITAL.SCROLLBAR, scrol lbar.create(O), 
0); 

pB >= canvas.pixBin (canvas); 
pB.rop(pB, 0, 0, pr->pr_size.x, pr->pr.s ize .y , PIX.SRC, p r , 0, 0); 
icon.pr = mem.create(64, 64, 8); 
p a i n t . i c o n O ; 

open.pB .cgiO; 
open.cgi.canvas(canvas, tvpB, tname); 
Bind .field(displayonmap, 1.0, xs, ys, c lus) ; 
close_cgi_pB(kvpB); 
close.pB .cgiO; 

^ BindoB.main.loop(frame); 

s tat ic void 
canvas.event.proc(canvas, event, arg) 
Canvas canyas; 
Event *event; 
caddr.t arg; 

char buf[BUFSIZ3; 

i f (event_id(event) == LOC.HOVE) 

sprintf(buf, "%s - Xd, Xd", t i t l e , event.x(event), event.y(event)); 
BindoB.set(frame, FRAHE.LABEL, buf, 0); 

} 

s ta t i c void 
image.canvas.event.proc(canvas, event, arg) 
Canvas- canvas; 
Event *event; 
caddr.t arg; 

char bufCBUFSIZ]; 

double l a t l , l ong l , la t2 , long2; 

i f (event_id(event) == HS.LEFT) 

sprintf(buf, "Xs", t i t l e ) ; 
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s i n d o s_8et ( f r a M . FRANE.LABEL, b u f , 0); 

i f <ovent_id<event) LOC.HOVE) 
i 

pixol_to_«ap((doublo)event_x<event), (double)event_y(event), 0 . , 0. 
t l a t i . k longl , k la ta , klong2); 

sprintf(buf, "X %d y Xd l a t X.2f long X.2f = Xd", event_x(event), 
oyent.y(event), l a t l , l ong l , 
pr_get(pr, event_x(event), event_y(event))); 

BindoB_8et(fra»e, FRAME.LABEL, buf, 0); 

> 
^aint.iconO 

8ubsa«ple(pr, i con .pr) ; 

icon • icon.createdCOI.IHAGE, icon.pr , 0); 
vindoB.iBet(frane, FRAME.ICOI, icon, 0); 

subsaapledn, out) 
Pixrect * l n , •out; 

int cvx, cvy, lex . Icy, hex, hey; 
register int i , j , i l , j l ; 
int t o t a l ; 

cvx = (100 • ih->pr.size.x) / out->pr.8ize .x; 
cvy •= (100 • in->pr_size.y) / out->pr.8ize .y; 

for (j = 0; j < out->pr.size.y; j++) 
for ( i = 0; i < out->pr_size.x; i++) { 

hex = i * evx / 100; 
hey = j • cvy / 100; 
lex = ( i - 1) * cvx / 100 + 1; 
Icy = (j - 1) • cvy / 100 + 1; 
lex = (lex < 0) ? 0 : (lex > hex) ? hex : lex; 
ley = (Icy < 0) ? 0 : (ley > hey) ? hey : ley; 

t o t a l = 0; 
for ( j l = Icy; j l <= hey; jl++) 

for ( i l = lex; i l <= hex; il++) 
to ta l += p r . g e t d n , i l , j l ) ; 

pr_put(out, i , j , 
( total / ((hex + 1 - lex) • (hey + 1 - l ey ) ) ) ) ; 

8et.BindoBsizes() 

i f (pr->pr.size.x > DEFAOLT.WII.XSIZE) 
Binxsize = DEFAULT.WII.XSIZE; 

else 
Binxsize = MAX(pr->pr.size.x, MII_WII_XSIZE)+3; 

i f (pr->pr.size.y > DEFAULT.WII.YSIZE) 
Binysize = DEFAULT.BII.YSIZE; 

else 
^ Binysize = MAX(pr->pr.size.y, MII_WIB_YSIZE)+17; 

setup.eolourmapO 

register int i ; 

redCO] = greehCO] = blue[03 = 0 ; 
red[255] = greenC2SS] = blue[2SS] = 255; 

fpB = (PixBin •)BindoB.get(fraae, UII^PIXUII); 

i f (colonaap.type •=« RMT.IOIE I I eolormap.length == 0) 

sprintf(cmsname, "greyscaleXd", pr->pr.depth); 
pB.8etcrasnaine(fpB, cmsname) ; 
for ( i = 1; i < 255; i++) 
{ red[i] = greehCi] = blue[i] = i ; } 
pB_putcolorBap(fpB, 0 , 256, red, green, blue); 

^ BindoB.set(fraae. FRAME.IIHERIT.COLORS, TRUE, 0 ) ; 

Bind.field(di8playonmap, scale, xs, ys, elus) 
char displayonhap;/^ hoB to display * / 
int xs, ys;/* top left offset of clustered BindoB •/ 
fl o a t scale;/* the scale of spacing betseen vectors • / 
int cluB; 

int i , j , / » array index • / 
x.off, y.off , /• offset of the upper left subBindoB * / 
side.off,/* offset of the ul corner of the ul subBin from origin * / 
x l , y l , x2, y2 , /* image coordinates of vector * / 
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l e n g t h , / * Tector l e n g t h i n p i x e l * / 
nuMXBin, nuBysin;/* nunber of t a r g e t vindos i n a r o s and c o l u n n * / 

enun d i r e c t ' d i r e c t i o n ; 
f l o a t slope, nax . speed; 

n u n x s i n » nunys in « ( s b o l e x s i z e - 2 * s i n _ o f f s e t ) / t a r g e t_8ize; 
cgipB^ l i n e _ c o l o r ( t v p B , 255); 
cgipB_narker_color(tvpB, 255); 
cgipB_ n a r k e r _ s i z e _ s p e c i f i c a t i o n _ B o d e ( t T p B , ABSOLUTE); 
cgipB_narker_type(tvpB, ASTERISK); 
cgipB _ n a r k e r _ s i z e ( t y p B , 2.0); 
s i d e . o f f = (8earch_ s i z e - t a r g e t _ s i z e ) / 2 ; 
x . o f f « y . o f f = t a r g e t . s i z e ; 
nax .speed = 0.0;/* i n i t i a l i s e * / 
f o r ( i « 0; i < n u n y s i n ; i++) /* get nax speed f o r s c a l i n g * / 

for ( j " 0; j < nunxBin; j++) 
i f ( c n v C c l u s K i ] Cj] •8peed > nax.spaed) 

• a x . s p e e d « c n v C c l u s ] [ i ] [ j ] ' . speed ; 
f o r ( i «• 0; i < n u n y a i n ; i++) 

f o r ( j = 0; j < nunxBin; j++) 
{ /* shoB f i e l d i n roB o r d e r * / 

i f ( c n v C c l u s ] [ i ] [ j ] .speed > 0.0) 
l e n g t h " ¥EC_LEIGTH*logl0(cnvCclU8][i][j] . s p e e d ) / 

loglO (Bax_speed); 
else length = 0.0; 
y l * ((y .off*i)+sideiOff+(target_size /2))*scale+ys; 
x l « ( ( x _ o f f * j ) + s i d e . o f f + ( t a r g e t _ s i z e / 2))*8cale+ x s ; 
s l o p e = t a n ( c B v [ c l u s ] [ i ] C j ] . d i r e c t i o n * P I / 1 8 0 . 0 ) ; 
i f ( c n v C c l u s ] Ci ] Cj] .direct ion==0.0 t t c n v C c l u s ] C i ] Cj] .speed=0.0) 

x2 = x l ; 
y2 = y l ; 
d i r e c t i o n = c a l n ; 

} 
e l s e i f (cBvCclu8]Ci]Cj] . d i r e c t i o n == 0.0 II 

c n v C c l u s ] C i ] Cj] . d i r e c t i o n == 180.0) 

x2 = x l ; 
i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n == 0.0) 
{ y2 = y l + l e n g t h ; d i r e c t i o n = n ; } 
e l s e 
{ y2 = y l - l e n g t h ; d i r e c t i o n = s; } 

e l s e i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n == 90.0 | | 
^ c n v C c l u s ] C i ] C j ] . d i r e c t i o n == 270.O) 

y2 = y l ; 
i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n == 90.0) 
{ x2 = x l - l e n g t h ; d i r e c t i o n = e; } 
e l s e 
•C x2 = x l + l e n g t h ; d i r e c t i o n = B ; } 

e l s e i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n < 90.0) 

y2 = y l + ( i n t ) ( ( f l o a t ) l e n g t h / s q r t ( l ; 0 + s q U A R E ( s l o p e ) ) ) ; 
x2 = x l - ( i n t ) s q r t ( ( f l o a t ) (SqUARE(length)-SIJUARE(yl-y2))); 
i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n < 5.0) d i r e c t i o n = n ; 
e l s e i f ( c n v C c l u s j C i ] C j ] . d i r e c t i o n < 85.0) d i r e c t i o n = ne ; 
e l s e d i r e c t i o n = e; 

e l s e i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n > 90.0 t t 
c n v C c l u s ] C i ] Cj] . d i r e c t i o n < 180.0) 

y2 = y l - ( i n t ) ( ( f l o a t ) l e n g t h / s q r t ( 1 . 0 + S Q U A R E ( s l o p e ) ) ) ; 
x2 = x l - ( in t ) sq r t ( ( f loa t ) (SQUARE ( l eng th ) -SQUARE (y l -y2 ) ) ) ; 
i f ( c n v C c l u s ] C i ] C j ] . d i r e c t i o n < 95.0) d i r e c t i o n = e; 
e l s e i f ( cnvCc lus ] C i ] C j ] . d i r e c t i o n < 175.0) d i r e c t i o n = s e ; 
e l s e d i r e c t i o n - s; 

e l s e i f ( c B v C c l u s ] C i ] C j ] . d i r e c t i o n > 180.0 t t 
c n v C c l u s ] C i ] C j ] . d i r e c t i o n < 270.0) 

y2 = y l - ( i n t ) ( ( f l o a t ) l e n g t h / s q r t ( 1 . 0 + S Q U A R E ( s l o p e ) ) ) ; 
x2 = x l+( in t ) sqr t ( ( f loa t ) (SQUARE ( length ) -SQUARE (y l -y2) ) ) ; 
i f ( cnvCc lus ] C i ] C i ] . d i r e c t i o n < 185.0) d i r e c t i o n = s; 
e l s e i f ( c W v C c l u s ] C i ] C j ] . d i r e c t i o n < 265.0) d i r e c t i o n = S B ; 
e l s e d i r e c t i o n = B ; 

e l s e 
•C / * 270 < d i r e c t i o n < 360 * / 

y2 » y l + ( i n t ) ( ( f l o a t ) l e n g t h / s q r t ( 1 . 0 t S Q U A R E ( s l o p e ) ) ) ; 
x2 = x l+( in t ) sqr t ( ( f loa t ) (SQUARE ( l eng th ) -SqUARE (y l -y2) ) ) ; 
i f (cnvC c l u s ] C i ] C j ] . d i r e c t i o n < 275.0) d i r e c t i o n = B ; 
e l s e i f ( cnvCc lus ] C i ] C j ] . d i r e c t i o n < 355.0) d i r e c t i o n = U B ; 

^ e l s e d i r e c t i o n = n ; 

i f (d i sp layonnap) draB .vector.onmap(x2, y2, x i , y l , d i r e c t i o n ) ; 
e l s e draB .vector (x2, y2, x l , y l , d i r e c t i o n ) ; 
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dra«_vector_oiuiap(zl, y l , z2, y2, direction) 
int z l , y l , x2, y2; / * x2, y2 should always be the centre of subsin * / 
e n U B d irect d irect ion; 
{ / « draw vector on aercator projected aap */ 

int z_off , y . o f f ; 
double p i , 11, p2, 12, 

l a t l , l ong l , la t2 , long2, 
•appiz_8ize, l ong i t .un i t , init.np; 

x .o f f " z l - z 2 ; y .o f f » y l -y2; 
pixel_to_Bap((double)zl, (double)yl, (double)x2, (double)y2, 

t l a t l , t l o n g l , fclat2; «long2); 
•appix . s ize « PIX_SIZE/(2.0*M.PI*EAETH.RADIUS/360.0); 
l ong i t .un i t = 1.0/(60.0*Bappix.si2e); 
I n i t j i p » 3437.747»log(tan(H.PI*(45.0+UPPER.LAT/2.0)/180.0)); 
/ * 
p i » ( longl-LEFT.LOIO/Bappix . s ize; 

11 » longit .unit*(init.Bp-3437.747«log(tan(M.PI*(4S+latl /2.0)/180.0))); 

p2 = <long2-LEFT.L0IG)/Bappix_size; 
12 - longit.unit»(init.Bp-3437.747*log(tan(M.PI*(45+lat2/2.0)/180.0))); 
/ * x l « anint(pl ) ; y l » a n i n t d l ) ; • / 
x2 M anint(p2); y2 " anint(12); 
x l » x2+x_off; y l » y2+y.off; 

^ dras . vectorCxl , y l , x2, y2, direct ion); 

draB .vector(xl , y l , x2, y2, direction) 
enuB direct d irect ion; 
int x l , y l , x2, y2; / * x2, y2 should alBays be the centre of s u b B i n * / 

Ccoor head, vector[2]; 
Ccoorl is t coor l i s t ; 

/ » vector[1] i s the head, ie start from vector[0] * / 
vector[0].x = x l ; 
vector[0].y = y l ; 
head.x = vector[l] .x = x2; 
head.y = vector[ l ] .y = y2; 
SBitch (direction) 
{ 

case calm: 
c o o r l i s t . n = 1; 
c o b r l i s t . p t l i s t = fchead; 
cgipB_polymarker(*vpB, ftcoorlist); 
break; 

case n: 
pB_po lypo int(pB, x2-3, y2, 7, c l i s t O , PIX.SRClPIX.COLOR(l)); 
break; 

case ne: 
pB_polypoint(pB, x2-3, y2, 7, c l i s t l , PIX.SRClPIX.COLORd)); 
break; 

case e: 
pB . p o l y p o i n t ( p B , x2-3, y2-3, 7, c l i s t 2 , PIX.SRClPIX.COLOR(l)); 
break; 

case se: 
pB . p o l y p o i n t(pB, x2-3, y2-3, 7, c l i s t 3 , PIX_SRC|PIX_C0L0R(1)); 
break; 

case s: 
pB_po lypo int(pB, x2-3, y2-3, 7, c l i s t 4 , PIX_SRC|PIX_C0L0R(1)); 
break; 

case S B : 
pB .polypoint(pB, x2, y2-3, 7, c l i s t S , PIX.SRClPIX.COLOR(l)); 
break; 

case B : 
pB_po lypo in t(pB, x2, y2-3, 7, c l i s t 6 , PIX.SRClPIX.COLOR(l)); 
break'; 

case U B : 
pB_po lypo int(pB, x2, y2, 7, c l i s t 7 , PIX.SRC|PIX_C0L0R(1)); 

^ break; 

c o o r l i s t . n = 2; 
c o o r l i s t . p t l i s t = vector; 

^ cgipB_ p o l y l i n e(tvpB, t c o o r l i s t ) ; 

/******«********************************************************* 
* You are reading rad.temp.c * 
* This i s the function to convert METEOSAT 4 CHAIIEL IRl p ixe l * 
* count into temperature. For period Jan. to March 1991 * 
* Bef: Annexe to the HETE0SAT4 cal ibrat ion report. * 
* K.S.LAU 13/5/91 * 
* * * * * * * * • * * * • • • • • * • • * * • * • • • * • • * * • » • • * * • • * • * * * * * • • • • * * • * * * * * * * * * * / 

i include "cmv.h" 

tdefine SPACECOUIT 5.0 
tdefine COEFFICIEIT 0.077/* average cal ibrat ion coefficient • / 
tdefine lUM.TEMPERATURE 102 
tdefine UP • 1 
tdefine DOUl 2 
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rad.teapCclus} 
int c lua ; /* Bhich cluster * / 

int i , j . k, 
d i r e c t i o n , / * search direct ion * / 
nuaxBin, nuayBin; 

f l o a t teap_offset, rad, teap_rad[IU«_TEHPERATURE]; 

ntuucBin " nuaysin = (Bholexsize -2*Bin_offset)/target_8ize; 
teap.offset » 200.0;/* teap[03 = 200K * / 

teap_rad[0] = 1.446; teap_rad[l] = 1.492; 
teap_rad[3] » 1.588; t e a p . r a d M = 1.637; 
toap_rad[6] « 1.738; teBp_rad[7] = 1.791; 
teap_rad[9] » 1.899; temp_rad[10] = 1.954; 
teBp_rad[12] = 2.068; teap_i:ad[13] = 2.127; 
teap_rad[16] « 2.248; teBp_rad[16] =• 2.310; 
teap .radClS] a 2.438; teBp_rad[19] =2.503; 
teap_rad[21] =2.638; teBp_rad[22] =2.707; 
tiBap_raa[24] = 2.848; teap_rad[25] = 2.921; 
teBp_rad[27] = 3.070; teap_rad[28] = 3.146; 
teap_rad[30] = 3.302; teap_rad[3l3 » 3.381; 
teap_rad[33] = 3.545; teBp_rad[34] =3.628; 
teap_rad[36] » 3.799; teBp_fad[37] = 3.886; 
teap_rad[39] " 4.064; teBp_rad[40] « 4.155; 
teap_rad[42] = 4.341; teBp_rad[43] = 4.436; 
teBp_rad[45] » 4.630; teBp_rad[46] = 4.728; 
teap_rad[48] =4.930; teBp.rad[49] =5.032; 
teap_rad[61] = 5.242; teBpiradC52] = 6.348; 
teBp_rad[54] = 6.565; teBp_rad[55] = 6.676; 
teBp_rad[57] = 5.901; teBp_radC58] = 6.015; 
teBp_rad[603 = 6.248; teBp_rad[61] = 6.367; 
teBp_rad[63] = 6.608; tenp_rad[64n = 6.730; 
temp_rad[66] = 6.979; tenp_rad[67] = 7.106; 
temp_rad[69] =7.363; teBp_rad[70] =7.494; 
teap_rad[72] = 7.759; temp_rad[73] = 7.894; 
teBp_rad[75] = 8.167; tenp_rad[76] =8.306; 
teap_rad[78] = 8.588; teBp_rad[79] = 8.731; 
temp_radC81] = 9.020; teBp_rad[82] = 9.167; 
teBp_rad[84] = 9.465; temp_rad[85] = 9.616; 
teBp_rad[87] = 9.922; temp.rad[88] = 10.078; 
teBp_rad[90] = 10.392; temp_rad[91] = 10.551; 
tempirad[93] = 10.874; temp_rad[943 = 11.037; 
teBp_rad[96] = 11.367; temp_rad[97] = 11.535; 
teBp_rad[99] = 11.873; temp_rad[100] = 12.045; 

teBp_rad[2] 
temp_rad[5] 
teDp_rad[8] 
toBp .radCll] 
teBp_rad[14] 
teiap_rad[17] 
teBp_rad[20] 
teBp_rad[23] 
teBp_rad[26] 
teBp_rad[29] 
teBp_rad[32] 
teDp_rad[35] 
teBp_rad[38] 
teBp_rad[41] 
teBp_rad[44] 
temp_rad[47] 
temp_rad[50] 
teBp_rad[53] 
temp.radCse] 
teBp_rad[S9] 
temp_rad[62] 
teop_rad[65] 
temp_rad[68] 
tenp_rad[71] 
temp_rad[74] 
teBp_rad[77] 
teBp_rad[80] 
teBp_rad[83] 
teBp_rad[86] 
teBp_rad[89] 
temp_rad[92] 
teBp_rad[9S] 
tenp_rad[98] 
temp_rad[101] 

« 1.640; 
• 1.687; 
« 1.844; 
« 2.011 
=2.187 
» 2.373 
= 2.670 
» 2.777 
« 2.995 
» 3.223 
» 3.462 
« 3.713 
- 3.975 
= 4.248 
= 4.532 
= 4.828 
= 5.136 
= 5.456 
= 5.788 
= 6.131 
= 6.487 
= 6.854 
= 7.234 
= 7.626 
= 8.030 
= 8.446 
= 8.875 
= 9.316 
= 9.769 
= 10.234 
= 10.712 
= 11.201 

11.703 
•• 12.218 

for ( i = 0; i < numyBin; i++) 
for (j = 0; j < numxBin; j++) 

i f (cmvCclus][i][j].mean == 0.0) continue; 
rad = (256.0-cmv[clus]Ci][j].mean-SPACECOUHT)*COEFFICIEHT; 
i f (temp_rad[IUM_TEHPERATURE/2] > rad) direction = DOWI; 
else direction = UP; 
SBitch (direction) 
< 

case UP: 
for (k = IUM_TEMPERATURE/2; k < lUH.TEHPERATURE; k++) 

i f (temp_rad[k] >= rad) break; 
break; 

case DOVI: 
for (k = IUI1_TEMPERATURE/2; k >= 0; k ~ ) 

i f (temp_rad[k] <= rad) break; 
break; 

cBv[clus][i]Cj3.teBp = ((float)k+tenp_offset) 
-273.0;/* in celcius */ 

} 
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Spatial-spectral clustering using recursive 
spanning trees 

K.S. Lau 
G. Wade 

Indexing terms: Remote sensing, Pattern recognition, Meteorology 

Abstract: The inherent contextual property of 
spanning trees is exploited in a nonparametric 
contextual clustering algorithm for multispectral 
satellite data. The linkage problem associated with 
shortest spanning trees is avoided by making 
extensive use of global information, and a two-
stage algorithm (segmentation then clustering) is 
described, each stage being based upon recursive 
spanning trees and minimax variance techniques. 
A conditional entropy or 'segmentation loss' 
derived from mutual information is shown to 
provide a useful indication of the number of seg
ments needed before clustering. The performance 
of the algorithm is compared with a single-pixel 
clustering algorithm and shows significant 
reduction in classification noise, both at class 
boundaries and within classes, while the spatial 
resolution of the single-pixel classifier is retained. 

1 Introduction 

Multispectral data from the Meteosat weather satellite is 
frequently analysed with the objective of extracting spe
cific cloud classes. Information such as cloud height, type 
and distribution can then be deduced. Individual classes 
can be tracked from transmission to transmission using 
crosscorrelation or other techniques to estimate wind 
vectors at particular altitudes or pressure levels [1, 2]. A 
first step in the cloud classification is to cluster the data 
in multispectral space and this often done by fitting 
Gaussian PDFs to a multispectral histogram [2]. Usually 
the histogram is derived from the visible and thermal 
infra-red bands and only two or three distinct cloud 
layers or classes are identified [3]. 

Like the Bayes classifier, the histogram approach is a 
simple form of single-pixel classifier and takes no account 
of the context or spatial relationship of individual pixels. 
It is widely recognised that single-pixel classifiers are 
prone to classification noise, particulary (but not 
exclusively) at class boundaries [4-6]. It is also widely 
recognised that the use of contextual or spatial informa
tion can improve classification accuracy. For example, 
Kittler and Pairman [6] describe a parametric (i.e. PDF 
based) approach to contextual classification of weather 
satellite data and report significant improvement in cloud 
classification, particularly at cloud boundaries. Such 
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improvement can significantly affect the subsequent 
shape analysis of the clouds which may be needed to rec
ognise larger scale weather patterns. 

This paper describes a nonsupervised approach to the 
problem of cloud classification, based upon graph-
theoretic algorithms (although, since no training data is 
used we restrict discussion to clustering rather than true 
classification). The inherent contextual advantage of a 
graph-theoretic approach has been verified by Morris et 
al. [7] who claim very accurate boundary determination 
when segmenting monochrome images. Here we extend 
the concept to multispectral images and so use both 
spatial and multispectral information to minimise classi
fication noise. Another advantage of the graph-theoretic 
approach is that it automatically yields hierarchical clus
tering, in the sense that the most significant clusters are 
generated first. 

The clustering algorithm is based on nondirected 
graphs and is done in essentially two stages. The first or 
segmentation stage attempts to partition the image into 
homogeneous regions, and automatically terminates 
using information theory concepts. The second stage of 
the algorithm attempts to cluster the segments into a few 
classes. 

2 Recursive spanning tree segmentation of 
multispectral images 

A simple image to graph mapping maps a pixel gray level 
intensity to a node weight in graph G, as in Fig. la. The 
graph is a weighted graph if we assign edge (or link) 
weights, and the simplest assignment is on a local basis, 
i.e. the weight of an edge between nodes i and j could be 
simply 

Wij = \Vi-Vj\ (1) 

where v, and Vj are the node weights. The shortest span
ning tree (SST) of this graph is a set of edges linking 
every node in G such that there are no loops (cycles) and 
such that the sum of the edge weights is a minimum. Tiie 
SST for Fig. la can be obtained using Prim's or 
Kruskal's algorithm and is shown in Fig. lb. Hierarchical 
segmentation into N segments can be achieved by simply 
cutting the SST at the i\f — 1 most costly edges, and three 
segments are shown in Fig. lb. Ideal segmentation gener
ates regions which are homogeneous in some image sense 
and which are statistically independent of their neigh
bours. Unfortunately, as pointed out in Reference 7, SST 
segmentation has several significant shortcomings. For 
example, it is possible that two nodes differ markedly in 
weight but are connected by a series of edges each with a 
low weight. In this case, SST segmentation will tend to 
assign the two nodes to the same segment, causing signifi
cant segmentation error (the linkage problem). 
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The use of a recursive spanning tree (RST) provides a 
solution to this problem since edge weights are assigned 
on a global rather than a local basis [7], Given a' 

250 200 210 180 

220 180 160 150 

100 80 140 120 

30 5 0 60 70 

Fig. 1 Four-connecied graph, SST and RST 
II FouMonnected graph generated by mapping pixel gray levels (0-255 scale) to 
node weights 

SST fo ra and hierarchical segmentation for W = 3 
r R S T for fl and hierarchical segmeniation for N = 3 

weighted graph G, an RST needs only a small modifi
cation to Kruskal's algorithm and can be generated as 
follows: 

(o) while there is more than one node in G: 
(i) save the next least weighted edge, say edge C p , 

between nodes p and q. (In general, node p will rep
resent rip original node weights and node q will rep
resent n, original node weights. The weight of n^, (n,) 
will be the mean of the weights of all the nodes it rep
resents.) 

(ii) inerge the two nodes p and q to make a new 
node r with weight equal to the mean of all the node 
weights in nodes p and q, i.e. 

1 
(2) 

(iii) find the new edge weights (as in eqn. 1) for all 
edges which were connected to nodes p and q and 
which are now connected to node r (frequently this 
process leaves redundant edges, which are discarded). 
(b) generate a spanning tree (link every node in G) with 

the saved edges. This is not an SST, but it provides a 
better representation of the relationship between pixels 
than the SST. 

The significant point to note about the RST algorithm is 
that the edge weights Wy are computed from an ever 
increasing neighbourhood as iteration proceeds, rather 

than from just local nodes. In fact, the final edge links the 
two remaining 'multinodes' and so its weight is a function 
of all node weights in G. Fig. ic shows the RST algo
rithm applied to Fig. la; the final spanning tree is not an 
SST but the mean small-sample variance of the segments 
is lower than-that for Fig. lb, indicating more homoge
neous regions on average. 

In our study, each node in G is connected to its eight 
nearest neighbours, rather than to just four nearest 
neighbours as in Fig. la. Also, for multispectral (m-band) 
data, each node weight in G is a m-dimensional pattern 
or vector 

Vi = lVu,V2i,---,V„„Y (3) 

and, using the Euclidean distance metric, eqn. 1 becomes 

k=i. 
(4) 

2.1 RST-minimax segmentation 
Given the RST we could perform hierarchical segmen
tation into N segments by cutting it at the N — 1 most 
costly edges, as in Fig. Ic. Alternatively, the RST could 
be cut such that an objective function is minimised. For 
example, the first cut in the RST could generate two trees 
Tl, T2 such that the maximum of two cost functions c(Ti) 
and c{T-^ associated with these trees is minimised, i.e. the 
initial partitioning of the RST could correspond to 

min [max ic{T{), ciT^m (5) 

Since it is generally accepted that segmentation should 
account for the statistical properties of an image, the cost 
function c{T^ could based upon an intraset distance 
measure [13]. For multispectral data we then have 

c(TJ = 
1 

t^aiN. - 1) ,^1 A )^=1 

" w . V y e T ^ (6) 

where is the number of nodes in Tg. This can be 
reduced to 

c(7;;) = 2Z<^.\ 
»: = 1 

(7) 

where al^ is the variance of tree % in band k. This sta
tistical segmentation scheme can be extended to yield N 
regions using the following algorithm: 

do N — 1 times 
(i) find tree T„„ in G such that 

c(T„ J = max [c(T)] VT e G 

(ii) cut T„a^ at edge e,,j linking nodes i,j which gives 

mm [max [c(73, c(7})]] Ve,-; e T„„ 

Thisigenerates two trees, 7] and 7} from T„„^ 

The advantage of the RST-minimax approach is that 
global (statistical) information is again taken into con
sideration, and it is intuitively reasonable to partition 
those trees with the largest intraset distance since they 
are less likely to be homogeneous. Similar minimax seg
mentation schemes have been investigated in References 
7 and 8. 

2.2 Automatic segmentation 
Ideally, the segmentation process should automatically 
terminate once near-homogeneous regions have been 
found and popular ways of doing this are based upon 
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entropy nieasures [8-10]. This is reasonable since the 
zero-order entropy of a near-homogeneous segment, for 
example, tends to zero. 

Information measure has been applied to feature selec
tion in many pattern recognition problems [11]. The 
general information measure of a set of segments Y — 
{Yi, 72,.. . , ŷ v} can be defined as [10] 

= L r - " ZP("ii> ''a,. I'Nt) 
I j k 

X log P(fn. Vij Vsk) 

P{Vu)P(V2j),---,P{Vf,k) 

k 
log piVu,V2j,...,VNk) + lOg 

PiVu) 

+ l o g -
1 

+ log 
1 

Pivm). PiV2j) 

= HiY,) + H{Y2) + --- + H{Y^) 

-H{Y„Y2,...,Y^) (8) 

where Vj^k is the fcth vector in segment N. Eqn. 8 can be 
interpreted as the total information conveyed by the 
segment set {Y} with properties 

(1) liY) > 0, 
(2) 7(y) = 0 if and only if the vectors are independent, 

therefore 

P(yi(. ywit) = P{VlM"2j\ Pi^Nk) 

For an ideal segmented image all the terms of eqn. 8 are 
zero, and in practice we seek to minimise I{Y). It should 
be noted that H{Yi, Y j , . . . , ŷ )̂ is the joint entropy of the 
segments and is independent of the partition (constant), 
since it is a function of the probability distribution of the 
image itself Therefore we could terminate segmentation 
when H{Y) = Ya (̂5̂ ) < 6, where 9 is a threshold and 
H{Y) is the segment entropy. In practice, due to problems 
of computing the segment entropy, only the zero-order 
approximation would be used. This is reasonable, since, 
when the segmentation proceeds, interaction between 
segments will decrease and most higher-order terms can 
be neglected. 

Daskalakis et al [9] used a criterion similar to eqn. 8 
to monitor the segmentation. They assume the segment 
entropy H(y) is composed of two components by 

HiY) = H, + j:pimj) • (?) 
J 

where H , is the entropy due to the existence of segments, 
pij) is the probability of occurence of a particular 
segment Yj and H(j) is the entropy of segment Yj. They 
assume the existence of segments obeys a Raylbigh PDF 
and pixels within a segment obey a normal PDF. 

In this paper we use the concept of mutual informa
tion and model the segmentation process as a noisy com
munication channel (Fig. 2). For such a channel, the 
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segmeniation 
process 

segmented 
image Y 

multispectral 
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segmeniation 
process 

segmented 
image Y 

Fig. 2 
234 

loss,.H(X|Y) 

Segmentation modelled as an informationJlow process 

mutual information (the information common to both 
ends of the channel) is given by 

I{X; Y) = H{X)-H{X\Y) (10) 

where H(X) is the source entropy and H{X | y) is an indi
cation of the loss of information during transmission. 
Alternatively, if H(X| Y) = Q, there is no ambiguity in the 
channel output. For the segmentation problem, H{X) is 
the entropy of the multispectral data source and finite 
H{X j y) denotes an uncertainty in the segmentation or a 
'segmentation loss'. It follows that if F ( X | y ) = 0 we 
could consider the segmentation process complete in the 
sense that the source data has been segmented into 
homogeneous regions (see Appendix). For any real pic
torial data the segments always have some residual 
variance and so, in general, we look for a significant 
reduction in the rate of change of H{X\ Y) with segmen
tation, rather than H{X \Y) = 0. Automatic segmentation 
can then be achieved by terminating segmentation when 
the rate of change falls below a nominal threshold. 

It is shown in Appendix 10 that the segmentation loss 
is given by 

F(x iy)=-ZZp( ; IOp(Oiog • P(JIOP(0 
EPO'IOKO 

(11) 

where p(i) is the probability of input vector D,, and is 
deduced from the multispectral histogram of the input 
data. Bearing in mind that, in general, a set of identical 
vectors will be distributed amongst spatially unconnected 
segments, and later these segments will be identified as 
belonging to the same class (through clustering), the con
ditional probability p{j\i) can be computed as 

Pij\i) = 
#{vi e segment;} 

(12) 
#{i5f6 G} 

where # is the number of elements in the set. 

3 Spatial spectral clustering 

Ideally, the segmentation process generates homogeneous 
regions in the image, each corresponding to a particular 
signature in m-dimensional spectral space. In general, 
some of these regions will have similar (or even identical) 
spectral signature, even though they may be spatially 
separated, and clustering is required to group these 
regions into a relatively few classes (an underlying 
assumption here is that each region or segment contains 
only one class). The clustering process was again based 
upon a spanning tree (RST) and so is a hierarchical form 
of unsupervised classification. The overall spatial-spectral 
clustering algorithm can be viewed as an essentially two-
stage (segmentation then clustering) process, as shown in 
Fig. 3. 

A simple way of mapping a segmented image onto a 
graph G is to assume near homogeneous regions so that 
the mean vector for segment f can be used as the weight 
of node i in G. The edge weights could then be computed 
as the Euclidean distance between node vectors, as in 
eqn. 4. In practice, this approach gave unsatisfactory 
clustering, and it was necessary to account for the 
residual variance within each segment. Interset distance 
might seem most appropriate here, but several of these 
measures have been found unsuitable due either to divi
sion by class variance [12] (which could give near infinite 
distance for sparse segments) or due to the difficulties of 
reducing the measure to a closed form [13]. 
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The clustering algorithm was therefore based upon 
intraset distance (a mean square measure which is essen-. 
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tially a measure of class variance) and from eqn. 7 we can 
write this distance as [13] 

D' = 2t<^i (13) 
k=l 

where is the variance of the segment in band k. 
Clearly, the measure for sparse segments now tends to 
zero rather than infinity. 

An RST can now be generated by trying mergers of 
pairs of segments and looking for the minimum value of 
D^. The smallest distance then corresponds to an edge 
weight in the RST and the process is repeated to obtain 
all edges of the RST. This approach to tree generation is 
justified on the grounds that spectrally identical and 
homogeneous segments will have zero intraset distance 
when merged. It should be noted that the RST clustering 
method is remarkably similar to the average linkage 
method. The only difference between them is that, in the 
RST method, the distances between clusters are updated 
by recalculating the pairwise distances among the 
merging clusters, while in the average linkage method, 
the distances between clusters are updated by taking the 
average of all pairwise distance (no recalculation) from 
the original similarity matrix. 

A formal algorithm for generating an RST and based 
on intraset distance is as follows: 

(a) map the N segments to N nodes in G, and label all 
nodes 

(b) calculate all possible link (edge) weights using intra
set distance D-

while the number of nodes N > I { 
(i) find the next least costly link weight Wij 
(ii) save the link 
(iii) merge node (segment pair i , ; as the union of 

sets Nj and Nj and decrement N 
(iv) recalculate the link weights 
(v) remove any links which form a cycle 

(c) generate the spanning tree using the saved links. 

Several clustering strategies are possible once an RST has 
been generated. Clustering into N classes can be achieved 
by simply cutting the tree at the iV - 1 most costly edges. 
Alternatively, global information can again be incorpo-
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rated by applying a minimax type algorithm, as in 
minimax segmentation, and this approach was found (o 
yield the best results in practice. 

4 Complexity of the algorithm 

The complexity of segmentation depends on the inci
dence matrix of the image graph, and can be expressed as 
0(F, L), where V is the number of vertices and L is the 
number of links. The amount of computation can be pro
hibitive with a moderate size image say, 200 x 200. Das
kalaskis et al [9] described a procedure which can 
reduce the overall complexity to 0(7 '̂̂ ). Using this 
approach complexity varies as the power of vertices and 
so computational efficiency can be further improved by 
dividing the image into subimages and segmenting indi
vidual subimages. Alternatively, the spatial resolution of 
the image could first be reduced by averaging, and seg-

• menting the reduced image. 
In the clustering stage the RST approach involves a 

complexity of roughly 0(2iV )̂ [16], where N is the 
number of segments. This complexity assumes the simi
larity matrix is stored in its entirety in memory. Much of 
the clustering process involves a search for the most 
similar pair of segments and the subsequent updating of 
the similarity matrix. Usually the number of segments is 
at least an order less than the number of pixels, and a 
256 X 256 image for example with 1000 segments can be 
clustered within a reasonable time. The real computation 
effort of course depends very much on the programming 
style and the algorithm chosen. 

5 Comparison with single-pixel clustering 

The performance of the contextual clustering algorithm 
in Fig. 3 was compared with the performance of a single-
pixel (i.e. nonspatial) clustering algorithm based upon 
well tried techniques drawn from the ISOCLUS [12, 14] 
and ISODATA [13] algorithms. These are 'split and 
merge' routines and require input parameters such as 
maximum standard deviation of each class, minimum 
number of pixels/class, and a merging coefficient. 

Essentially, the single-pixel clustering algorithm com
mences with a single cluster (as in the ISOCLUS 
algorithm) and splits clusters along the axis correspond
ing to the maximum standard deviation until the 
required number of classes have been generated. 

6 Results 

Fig. 4 shows typical behaviour of the segmentation loss 
H{X I Y) during the segmentation of two-dimensional 
(visible and infrared) Meteosat data. Initially the loss 
decreases very rapidly as the major features in the data 
are identified, and, clearly, for 128 x 128 images, termina
tion at 20 segments (say) appears premature. On the 
other hand, the graphs suggest that it may be unneces
sary to generate 300 segments or more. Above approx
imately 150 segments the graphs exhibit near 
zero-gradient regions where increasing the number of 
segments is doing little to reduce the 'uncertainty' in the 
segmented image. In other words, it might be argued that 
near zero-gradient regions are optimal points at which to 
terminate segmentation, and in practice termination at 
around 200 segments gave good cluistering for most cloud 
types. 

In fact, as Fig. 5 shows, clustering is not a strong func
tion of segment number (probably because spurious seg
ments tend to be recombined at the clustering stage), and 
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Fig. 4 Segmentation loss for four 128 x 128 images 

SO only a nominal threshold is required for automatic 
segmentation. However, there is some evidence to suggest 
that if an excessive number of segments are generated 
(say > 500) the spatial relationship between pixels tends 
to be destroyed and clustering becomes noisy, as in 
single-pixel clustering. 

The improvement gained through the use of spatial 
information is illustrated in Fig. 6 for four different 
Meteosat images, Each of these figures shows raw visible 
and infrared images (digital data received on a Metcosat 
Primary Data User Station) and compares graph-
theoretic clustering with single-pixel clustering for the 
same cloud class. Generally speaking, graph-theoretic 
clustering generates cleaner edges and more solid clusters 
than the ISOCLUS algorithm, while retaining the spatial 
resolution of the single-pixel classifier. 

7 Conclusion 

A nonparametric contextual clustering algorithm based 
upon spanning trees has been found to give improved 
clustering for multispectral Meteosat data when com
pared to single-pixel clustering. Classification noise is sig-
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F i g . 6 Comparison of graph-theoretic and single-pixel clustering for 128 x 128 images 

nificantly reduced in tlie sense tliat class boundaries are 
more well defined and more 'solid' regions are generated, 
while the spatial resolution of the single-pixel classifier is 
retained. A disadvantage of the graph-theoretic approach 
is that it requires at least an order of magnitude increase 
in CPU time compared to the single-pixel clustering 
algorithm, the major computational task being the gener
ation of the RST for the muitispectral image. 

The mutual information (segmentation loss) concept 
has been found to provide a useful indication of the point 
at which segmentation should terminate. This enables the 
overall clustering algorithm to be semi-automatic in the 
sense that it only requires the specification of a (rather 
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noncritical) threshold for the rate of change of segmen
tation loss and the required number of classes. 

The best clustering results are obtained when global 
information is used to generate the spanning trees and 
when global information is used to partition the trees. 
The final clustering algorithm (Fig. 3) used a combination 
of RST and minimax variance algorithms in both the seg
mentation and clustering stages. 
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10 Appendix: Segmentation loss 
JO 

The conditional entropy in eqn.^ can be expressed as 
H{X\Y) = HiX, Y)-HiY) (14) 

where H{Y) is the entropy of the segmented image. For 
simplicity we might assume that the N segments of the 
processed image are approximately statistically indepen
dent and write H{Y) as the zero-order entropy 

H(Y)=- Zp(;)logp(;) 
j=i 

= - E I p ( U - ) i o g PU) (15) 

Here p(i, j) is the joint probability of pattern y, and 
segment j. The zero-order entropy assumption becomes 
more realistic as segmentation proceeds, and individual 
segments become more homogeneous and statistically 
independent. The joint entropy in eqn. 14 can be written 
as 

H(x, y ) = - i ; i p ( z = i. y=;) 
J I 

X log piX = I, Y =;•) 

= - E E p f t ; ) i o g K ' . j ) 
J ' 

mx\Y)=-\Y,Y.pii,j)\og piuj) 

- Z E p ( ' . v ) i o g p{j) 
J I 

-EEp (w - ) iog 
J i 

PJiJ) 

LPOOJ 
(16) 

But 

P(;") = EP(' . ;) 

and 

Pihj) - P(;)p(i|;) = P(OP(;I 0 (Bayes' rule) 

Therefore 

P(;IOP(0 
/ ^ ( ^ i n = - Z S p ( ; l ' ) ( p ( O i o g 

J i 

Alternatively 

H{X\Y) = Ei:p(i|;")p(;)iog 
J i 

ZP(;IOP(0 
L ( 

p{i\MJ) 
llpiUMJ) 

L i 

(17) 

(18) 

Note that eqn. 16 can be expressed as 

H(xi y) = - S PU) Z pm log p{i\j) 

='ZpU)m (19) 

where pii\j) is the probability of pattern Dj occurring in 
segment; and HiJ) is a 'segment entropy'. If segment j is 
homogeneous, then p{i\j) = 1 at some input pattern D, 
and H{j) = 0. In practice we look for a significant 
reduction in the rate of change of H{X | Y) with segmen
tation, rather than HiX\ Y) = 0. 
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1 
Abstract. Reliable cloud motion wind generation from Meteosat images 
requires good target selection. This is usually done by examining the infrared 
channel and selecting target windows which have a temperature variation 
between an upper limit and lower limit, i.e., windows containing essentially a 
single cloud layer. In this paper we apply an optimised multi-spectral clustering 
algorithm in an attempt to extract the principal cloud targets prior to target 
tracking. Experimental results show an increase in the number of trackable 
targets compared to conventional techniques based on riEiw data, the, paper also 
examines the optimal target size and compares the performance of several target 
tracking techniques. 

1. Introduction 
Cloud motion winds are usually derived by tracking targets in sequences of 

images captured from a geostationary satellite. Essentially, motion vectors are 
computed by searching for aJxK picture element (pixel) target in an M x N search 
window of the next image of the sequence (Leese and Novak 1971). 

Since the sensed image is an overview from the cloud top, it is possible that there 
are multiple layers of cloud within the target window. Due to the fact that different 
cloud layers may move with different direction and speed, it follows that accurate 
estimation of wind vectors can only be achieved by selecting targets whose 
temperaure can be accurately estimated (Hubert 1971), and for which evaporation or 
formation is minimal. In other words, some mechanism for identifying essentially 
single layer cloud must be applied: This paper attempts to do this via multi-spectral 
clustering on the assumption that the resulting natural data patterns (clusters) 
extract the principal cloud layers. Experimental results (§ 5) show that multiple cloud 
types present in the window often result in sei:ious tracking errors i.e., failure to 
track the same cloud feature. 

Too large a target window will generate an. average motion of all objects within 
it, whilst too small a target can lead to poor tracking and increased error in wind 
vector estimation. The paper therefore also examines the optimal target size for 
Meteosat images, as well as several image matching algorithms for target tracking. 
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2. Development of clustering scheme 
2.1. Clustermg 

Cluster ing can be defined as the automatic identification o f natural groupings, or 
structures, within multi-spectral data. The process is to partit ion the data set into 
subsets using some distance (or similarity) measure, such that al l samples in a subset 
are s imilar to each other. : 

Cluster ing has been shown to be a very effective tool for segmentation o f mul t i 
spectral c loud images. It has been applied to c loud images by Par ikh and Rosenfled 
(1978), Desbois et al. (1982), Seddon and H u n t (1.985) and Ki t t l e r and Pairman ; 
(1985). They all used a type o f iterative clustering algori thm to parti t ion mult i 
spectral c loud images and their results indicate that clustering is capable of !. 
par t i t ioning c loud images into different c loud types. It is recognised, however, that it 
is not always possible to relate every cluster to a single information category. F o r • 
example, one cluster may be thick c loud, while the edge o f the thick c loud is usually i 
assigned to another cluster. O n the other hand, given the above experimental 
evidence, it is reasonable to conjecture that the clusters partit ion principal c loud ; 
types. ; 

A clustering scheme has been developed to investigate the concept o f individual 
object tracking and it is designed to be both efficient and objective. It is based on the ; 
widely used I S O D A T A clustering algorithm (Bal l and Hai ly l967) . This algori thm 
starts by selecting a set o f pixels as cluster centres, and then assigns every pixel to the 
nearest centre. Next , the centres are updated using the mean value o f the pixels 
assigned to that cluster and the process is repeated with the new centres. The 
a lgor i thm terminates when there is no significant change in the'new centres. Spli t t ing 
and merging o f clusters can be introduced tq speed up convergence and to al low the 
number o f clusters to vary such that the subset generated is closest to the inherent 
data structure. 

This basic type o f iterative mode separation algorithin (a form o f dynamic 
clustering algorithm), has several major limitations: 

1. The selection o f starting centres is subjective and inefficient and the influence 
on the final part i t ion can be very significant. 

2. The use o f the cluster mean for the cluster centre is not a good model for 
c loud images, since it does not al low clusters to have different populat ion and 
variance. 

2.2. Selection of starting points ; 
The I S Q D A T A algori thm requires ini t ial cluster centres to be specified before 

iteration commences, and usually a sensible estimate o f these centres is made in ; 
order to reduce convergence time (Desbois et al. 1982, Seddon and H u n t 1986, ' 
Pai rman and Ki t t le r 1986), F o r automatic clustering, manual selection o f these 
points must be avoided and we seek some other starting procedure. Anderberg 
(1973) describes a number o f starting techniques, most o f them being based upon a 
random selection o f ini t ia l centres such that they span the data set evenly. However, 
in our experience, this random selection usually fails to separate clusters with small 
variance. 

In this article we generate the starting points using a non-parametric clustering 
algori thm (Narenda and Go ldbe rg 1977). This algori thm attempts to parti t ion the 
multi-dimensional histogram into un imoda l regions, and the statistics o f each region 
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are used as starting points for tlie I S O D A T A algorithm. Histogram clustering relies 
on a high pixel to vector ratio in order to obtain a good estimate of the probability 
density in the feature space. This is the case for Landsat images (for which the 
algorithm was designed) and is often the case for the land and sea classes in 
Meteosat images. However, the algorithm fails to separate overlapped clusters with 
no definite boundary (most middle level cloud), although the cluster statistics still 
provide realistic starting points for subsequent clustering. 

We shall now brielfy describe the histogram clustering alogrithm, as applied to 
Meteosat data. First, the 8-bit resolution of the visible and infrared images needs to 
be reduced to minimise the niimber of trivial clusters. We have found that a 
compression ratio of 4 (giving 64 grey levels/band) is required for most Meteosat 
images. Histogram compression (as suggested by Wharton 1983) therefore provides 
a first degree of histogram smoothing as well as data reduction. The histogram is 
stored in a hashing table (Narenda and Goldberg 1977) which is essentially a look
up table, the main purpose being to minimise memory usage. 

It is also necessary to smooth the compressed histograih, again to minimise the 
number of trivial clusters. Smoothing is simply achieved by averaging the histogram 
values over the neighbourhood of a histogram cell and replacing the cell count with 
the mean count. A smoothing threshold is set such that cells with densities above the 
threshold will not be smoothed. The compressed and smoothed histogram is now 
clustered using the valley seeking algorithm described by Koontz et al. (1976) This 
algorithm groups the histogram cells by constructing a directed tree as shown in 
figure I. A directed link is placed between each vector and the immediate neighbour 
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Figure 1. A twoTdimensional illustration of the histogram clustering scheme. Each square 
denotes a histogram cell and its associated frequency count. The arrows link ceils to 
neighbours with maximum positive gradient in frequency count. Cells A and B are 
local maxima (roots), 

422 



4 G. Wade et al. 

which is in the direction of the maximum positive density gradient. The gradient is 
defined as 

where / j is the frequency of cell j, and dij is the squared Euclidean distance between 
histogram cells / and j. 

A vector is called a root and lies at a local maximum or mode of the histogram if 
all neighbours have density values less than itself. Ties are resolved arbitrarily. A 
cluster will then be determined by tracing the directed tree starting from the root. 

2.3. Selection of clustering model i 
For C clusters, a dynamic clustering algorithm aims to minimise some global 

, criterion function, j 

m ^ t t ^ i ^ p ^ i ) (2) ! 
i=u=i r 

over all possible partitions Q. of the image. Here A(.Xj, K^is some positive valued 
distance (similarity) measure between pixel vector Xj and the kernel Ki for cluster w,-
and N, is the total number of samples in the data set. The original I S O D A T A ! 
algorithm (Ball and Hal l 1967) used a simple cluster mean model i.e. it assigned Xj to 
cluster <Uj if, 

A(xj, Ki)==mn A{xj, K,) k=\„..C (3) ; 

where K,- is the mean of cluster coj. • 
The cluster mean model uses squared Euclidean distance to measure the distance 

of each sample to each centre, which implies that every cluster has an identical 
normal distribution and an identity covariance matrix. This assumption is clearly 
not true for cloud images, and it is better to model the clusters for cloud images : 
using a general multi-variate normal distribution. In this case, 

^.•(•Vy.y/) = ^^^^^J^^^^i^,- exp i^-\ixj-m,fZrKxj-m,)^ (4) • 

where is the covariance matrix, m-^ is the mean of cluster cu„ and D is the 
dimension of the feature space. 

In order to allow clusters with different distribution paratneters (different 
covariance matrices and populations) it |s necessary to derive an expression for the 
distance of each sample to every cluster kernel. Using Baysian criteria, Kittler and 
Pairman (1986) give the following metric for the model of (4): 

Aixj,K,) = (Xj-rm:fi:rH.Xj-mO + log\i:,l-2log^ (5) 

where ^ is the sample estimation of the cluster population. Various simplifications 

of (5) are possible. For example, if we assume all classes equiprobable, i.e,, p(.cO[) = ^, 

/= I , . . . C (5) reduces to 
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Aixj, K , )=Gx; -m, )^2rH .V ; -m, ) + log|2, | (6) 

If we further assume all covariance matrices are equal, (6) reduces to the Mahalano
bis distance 

Mxj,Kj)={xj-m,f'^r\xj-m,) (7) 

Finally, if all covariance matrices are equal to the identity matrix, (7) reduces to 

Aixj,Kf) = (xj-m,nxj-mi) (8) 

which is the squared Euclidean distance metric used in the original I S O D A T A 
algorithm " • . 

Clustering algorithms using (6), (7), (8) tends to generate clusters with minimum 
within-cluster variance, and so the cluster sizes tend to be equal. By allowing 
different cluster sizes and variances (5) generally gives better results (Pairman and 
Kittler 1986). 

2,4. The hybrid clustering algorithm 
The hybrid algorithm in figure 2 is the union of the histogram clustering 

algorithm and the optimised I S O D A T A algorithm. The first step uses the histogram 
clustering algorithm to obtain an initial partition. This gives the user a general idea 
of the number of clusters and their tightness, and if the partition is believed to be 
suboptimal, it is supplied to the I S O D A T A algorithm as starting points. The second 
step is to optimise the partition based on the global objective function in (5). We 
have included split and merge routines in the I S O D A T A algorithm to improve 
convergence—a particulgrW important point i f some cloud clusters (usually middle 
level cloud) generated bv/nistogram algorithm have high standard deviation. 

Although I S O D A T A is regarded as an efficient algorithm, it can still be 
computationally Intensive when applied to large, multi-spectral images. However, 
rather than follow the usual approach of clustering individual pixels, significant 
improvernent can be achieved by cliistering individual vectors in the histogram. For 
example, using visible and infrared Meteosat images yields a pixel to vector ratio in 
the range 7-15 for a full resolution two-dimensional histogram, indicating a 
significant computational saving. This more efficient approach is adopted in figure 2. 

3. Wind vector determination 
3.1. Target selection 

Many operational wind generation schemes (either manual or automatic) have 
been derived since the first meteorological satellite was launched in the late 1960s. 
Hubert (1979) has an excellent review of operational wind systems. However, due to 
the extremely complicated nature of the atmosphere, not all cloud motion can be 
representative of the surrounding wind. Errors arise due to gravity waves, lee vvaves, 
banner clouds and other cloud development, as well as from inultiple layer clouds 
within a target window. Therefore all wind system outputs usually have to be edited 
by a trained meteorologist. 

Manual schemes generate wind by tracking targets selected by a trained 
operator. A n image sequence is animated on a video screen and the operator selects 
the cloud tracer that persists over a long period. The cloud motion is then 
determined either by cross-correlation or by measuring the displacement by viewing 
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Figure 2, The hybrid clustering scheme. 

the sequence. Manual schemes are inefficient (only a small number of vectors are 
generated) and so they tend to be used only when automatic schemes fail 

Automatic schemes generate wind vectors by dividing the area of interest into 
overlapped or nonoverlapped target windows, the typical window size being 8 ^ 8 , 
16 (b^ 16. or 32 32 pi.xels.A window is then analysed to determine whether it 
contains a suitable cloud target for tracking. A simple check is to make sure that the 
infrared window has -a temperature variation less than a threshold (indicating the 
absence of multi-layer cloud). A sophisticated approach has been developed by the 
Europeaii Space Operations Centre (ESOC) and is applied to Meteosat images 
operationally. A multi-spectral histrogram is analysed for every 32 J?^ 32 

target window, and all objects are classified as sea, or as various types of land, or 
cloud. The original scheme was described by Bowen et al. (1979). 

Since then more development has been done to improve tracking of target 
windows containing multiple cloud types. Schmetz and Nuret (1987) used a radiance 
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slicing technique for high level clouds. Hoffman (1990) used a filtering technique to 
preprocess the target window before tracking. The filtering process extracts pixels 
belonging to the highest cloud layer and smoothes contaminated pixels and the 
background. Schemetz and Holmlund (1990) have shown that using the radiance 
slicing and filtering technique, forecast guided tracking and better height assignment 
of semi-transparent clouds, the error between radiosonde wind and cloud motion 
wind can be reduced. It is evident from these recent investigations, that the 
introduction of cloud type separation before tracking can improve cloud wind 
quality. 

3.2. Target tracking 
Tracking is usually based on cross-correlation (Leese and Novak 1971). Essen

tially, an array of data (the target window) is selected from an image and correlated 
element by element with selected pixels (the search window) of a second image, see 
figure 3. The displacement is determined by the lag position which produces the 
maximum correlation. The cross-correlation function is defined as 

R{u,v) = 
cov{u, v) 

ajGsiu, v) (9) 

where Cy is the standard deviation of the target window, Os is the standard deviation 
of the search window at lag position u, v, and COU(M, v) is the covariance between the 
target window and the search window at lag position u, v. Specifically, 

\ ] K -) 1/2 

3K J=lk=l 

,95 

1 / K 

cov{u, (;) = — X ^Z [9T((hik)-Qr][9sU-u, k-v)-Gs) 

(10) 

(H) 

f 1 ^ ^ ^P> -)U2 
iu, k-v)-GsU-u, k-v))H (12) 

•(13) 

SEARCH WINDOW S 

TARGET WINDOW T 

Figure 3. Definition of target and search window. 
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where 0 is the mean grey level of the window. 
The lag position is given by / V — i C + l , M — J + 1 in the horizontal and vertical 

directions, respectively. A disadvantage of cross-correlation is its efficiency; it is 
computationally denianding especially for large lag positions, although computation 
time can be reduced by using the Fast Fourier transform. 

Another matching technique is called the Sequential Similarity Detection Algor
ithm (SSDA) (Barnea and Silverman 1972). This technique does not require 
normalisation as in cross-correlation. It is defined as the mean absolute error of the 
target and search window at every lag position. 

S{it,o)=^-l^t t\9TU^I^)-9sU-ti,lc-v)\ (14) ; 

Wilson (1984) have computed wind vectors using this simple technique, and the 
displacement is determined by the lag position with minimum error, ; 

A third technique is the twdrdiinensional log search (2-d search) (Jain 1987), The 
2-d search computes a few values of the surface coefficient and uses these to search 
for the local minima (or maxima). This approach reduces computation to a 
minimum, but the siaccess of the method depends on the smoothness of the surface. 

Finally,^© note that the images must be accurately registered in order to provide > 
unbiased wind estimation. For example, a misregistration of one infrared pixel using 
Meteosat imagery can produce a error of 2-8 ms~^ at the subsatellite point. 
Currently real time rectification (Bos et al. 1990) is applied operationally to 
Meteosat images, and the accuracy is good enough for cloud motion tracking 
without further image registration, 

3,3, Strategy to reject erroneous vectors 
The correlation surface does not always provide a clear peak corresponding to 

the displacement and a typical correlation surface can have one of the following 
characteristics, 

1. More than one obvious peak: the pattern in the target window is similar to 
more than one pattern in the search window. 

2. A well-defined peak cannot be found: the target window probably contains a 
large area without any features, 

3. Generally speaking, a large window always produc/a clearer peak than a 
small window at the same location. 

The uncertain tly in the real displacement is usually reduced by, 

1. Using three images to compute two vectors and rejecting all unsymmeirical 
vectors (Bowen et al. 1979). 

2. Using a hiarchical search technique; a large target window generates a first 
guess to guide the searchand then the window size is reduced (Hubert 1979). 

3. Use the most recent atmosphere analysis to provide an estimate of the lag 
position (Bristpr 1975). 

These three methods can be combined to form the most effective strategy. 
In order to improve efficiency, a search strategy can be adopted. ESOC's (Bowen 

et gl. 1979) search strategy finds the direction of steepest ascent from the original 
position and converges to the maximum correlation in this direction. The success of 
this search strategy depends on the smoothness of the surface. 
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3.4. Height assignment 
To be meaningful, each wind vector must be assigned to a height (or pressure) 

level. IMbrtunately, some low level winds correlate best to the cloud base, while 
somoi^T^late best to the cloud top, and so cloud top temperature frequently does 
not provide adequate vector height information. Also, cloud top temperature cannot 
be estimated accurately due to the low emissivity of cloud. E S O C (Bowen and 
Sanders 1984) use two infrared channels to correct the emissivity of semi-transparent 
cloud and the mean valued of the corrected infrared pixels in the target window is 
used to calculate the cloud top temperature. 

4. The automatic scheme 
Figure 4 shows an automatic scheme for wind vector computation. It uses either 

raw or clustered iinages, and any one of three target tracking techniques discussed in 
§3.2 (giving six experimental approaches). Target window sizes can be 4i>^ 4, 81)| 8, 
16 b£ 16, 24 bvX,24, or 32 32 (yielding one vector per target). 

The basic approach is to use sequences of three (visible and infrared) images 
spanning a total of one hour. The second infrared image is divided into nonover
lapped areas which define possible target windows, and these are then checked for 
suitable targets. If the window has an infrared variance < 100 (i,e., black body scene 
temperature variations are usually < IO°C), then it is tracked in the first and third 
image of the sequence. 

When using the clustered approach, only the second image is clustered, and only 
pixels gTU^k)ecO{ will be used in (9) and (14) when cluster / is used for tracking, 
other pixels in the target window being ignored. This results in a target window 
which is not necessarily filled with pixels, and so a further check must be made. At 
present, a window less than 30 per cent filled is rejected for a target; the threshold is 
not critical, but i f it is too small spurious winds may be generated. Clearly, target 
windows containing more than one cluster may have more than one wind vector. 

Targets are located in the centre of search windows (figure 3), and 28 lag 
positions are allowed in the horizontal and vertical direction respectively. This 
provides for a maximum wind speed of at least 75-5 knots. Two vectors are obtained 
by tracking the first and third images in the sequence. Vectors corresponding to 
minima (SSDA) or maxima (correlation) falling on the borders of the^earch area 
are rejected. Vectors are then checked for symmetry; i f the spee^^fRrence is 
>50 per cent of the smaller vector, or the direction differs by >30°, the wmd vector 
is again rejected, 

5. Experimental results 
Wind vectors have been computed for three image sequences taken on 5, 8 and 

11 March 1991, see figure 5, The first image in the sequence was received at 
11.30 G M T and the following images at 30 minute intervals. Cloud motion winds 
were computed in 256 pixel by 256 pixel areas (outlined), the coordinates of the 
corners being (moving from the top right hand corner in a clockwise direction) 61° N 
5-5' E, 40° N 3-4° E, 40° N 10-7° W, 61° N 17-1° W, Tracking was performed on non-
geomeirically corrected images, and displacement correction was applied after 
tracking. 

5.1. Clustering 
Each set of Images highlights three cloud signatures associated with depressions 

in three stages of development. The images for the 5 March show frontal cloud 
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Visible and infrared images for 5. 8, and 11 March 1991. 
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associated with an occluding depression centred to the north of Scotland. The 
associated cold front stretches from the North Sea across southern England, with 
relatively cloud-free air behind. The deep frontal cloud is embedded in a predomin
antly southwesterly flow. On 8 March a well-occluded low pressure is centred over 
Cornwall and the Meteosat images show a classic spiral cloud pattern. Cloud motion 
vectors confirm the converging airflow associated with such a mature system, A 
major low pressure comlex is situated in mid-Atlantic on 11 March and there is a 
southwesterly turning northwesterly flow in the upper troposphere. Ahead of the 
warm and occluded front it is possible to identify the southeasterly winds associated 
with the polar trough. The clouds here- are medium level and therefore are moving 
under the polar front cloud. 

The hybrid clustering scheme was applied to the second image of the three 
sequences. Seven clusters were found in the 5 and 8 March images, and eight clusters 
were found in the 11 March image. Figure 6 shows the cluster map of the three 
images. 

The cluster images compare favourably with the cloud types identified on the 
original pictures in the infrared and visible wavelengths. The important features are 
highlighted in terms of the following classes: 

1, Deep and thick cirrus, 
2, Altostratus. 
3, Stratus and stratocumulus, 
4, Low clouds and land, 
5, Sea, '-̂  

Since only visible (0-4-M fxm) and infrared (10-5-12-5 jiw.) images are used, these 
features are insufficient to separate all cloud types. For example, in most cases the 
clustering algorithm has failed to separated thin cirrus, (using the water vapour 
(5'7-7-l;im) image can improve the separation of thin cirrus, but this is only 
available every hour). However, it is clear that clustering is able to separate major 
cloud features for subsequent tracking. 

On the 5 March three thick masses of class 2 are clearly distinguished, while over 
Biscay a secondary mesoscale depression is comprised of stratus and stratocumulus 
and appears bright on the cluster map. Class 1 associated with the fronts on the 
occluding low is evident over the United Kingdom. On the 8 March classes I and 2 
are well-represented in the spiral frontal cloud while the clearance to the north-west 
shows cellular convection of class 4. On the 11 March the complex meteorological 
situation presents a problem in identifying class 4. However, deep thick cirrus is 
identifiable in the upper jet stream flow. Class 3 is well-represented to the south over 
Spain and in the North Sea. 

5.2. Wind vectors 
Figure 7 shows cloud motion vectors for 5, 8 and- 11 March using raw and 

clustered approaches. Here, all tracking was done on infrared images, using the 
SSDA method. The vectors shown have been selected from the original set by cross
checking with data generated by the Meteorological Office fine resolution model at 
three levels (850 mb, 500 mb, and 250 mb). These vectors are all within a speed 
deviation of less than 50 per cent and a direction deviation of less than 30°. The wind 
vectors are assigned to the level of best fit, i.e., to the level with minimum speed 
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deviation. It should be noted that wind density using a large template size can be 
increased by overlapping the target windows. 

Tables 1 to 3. gives the detailed c loud motion wind results for the three 
sequences. These show that, for a target size greater than 8 8. the number o f 
'va l id ' wind vectors computed using clustered images is significantly more than for 
raw images (figure 8). The ^diminishing advantage o f using clustered image tracking 
for target sizes below \ 6 1 6 may be partly due to the diminishing chance o f 
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Raw image 5 March Clustered image 5 March 

Raw image 8 March Clustered image 8 March 

Raw image 11 March Clustered image 11 March 

ure 7. Wind field generated using 24 W24 target window, with raw and clustered images 
(SSDA tracking). 
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Table 1 (a). 5 March 1991, cloud motion wind results using raw images, where tracking 
method x represents cross-correlation, ssda for sequential similarity detection algor
ithm, and 2-ds for two-dimensional search. 'Valid vectors' see §5.2. 

Original 'Valid' Mean speed Mean dir. R.ra.s. speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

178 • 50 4-93 -1-7 9-95 4 by 4 X 
197 121 3-84 -0-9 8-39 4 by 4 ssda 
208 120 1-32 -1-4 6-13 4 by 4 2ds 
106 86 3-38 0-6 7-47 8 by 8 X 
142 122 2-78 -1-9 7-36 8 by 8 ssda 
100 77 2-03 -2-1 6-63 8 by 8 2ds 
64 61 2-99 -4-6 6-63 16 by 16 X 
67 61 1-61 -5-1 5-58 16 by 16 ssda 
48 41 0-87 -4-2 5-75 16 by 16 2ds 
27 25 2-11 -1-0 5-60 24 by 24 X 
24 24 0-04 1-4 4-37 24 by 24 ssda 
21 20 -1-01 3-7 4-76 24 by 24 2ds 
-1'2- 11 Orl3 0-2 6-19 32 by 32 X 
11 11 0-41 -1-7 7-18 32 by 32 ssda 
9 8 -0-33 . -0-8 7-39 32 by 32 2ds 

Table 1 (b). 5 March 1991, cloud motion wind results using clustered images. 

Original 'Valid' Mean speed Mean dir. R.m.s. speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

267 46 • 6-25 3-8 10-54 4 by 4 X 
267 123 4-16 2-1 8-17 4 by 4 ssda 
296 136 1-24 -3-8 5-71 4 by 4 2ds-
123 78 3-26 -1-3 7-15 8 by 8 X 
154 112 3-45 -2-0 7-58 8 by 8 ssda 
123 80 1-91 -1-2 5-86 8 by 8 2ds 
75 63 2-27 -1-9 5-97 16 by 16 X 
77 62 1-98 • -3-2 5-83 16 by 16 ssda 
62 45 1-84 -1-9 4-61 16 by 16 2ds 

• 43 28 1-69 -0-3 5-47 24 by 24 X 
39 28 1-88 -3-6 5-1 24 by 24 ssda 

.33 22 1-77 -1-3 5-48 24 by 24 2ds 
28 22 1-14 - M 6-28 32 by 32 X 

-29 22 I-Ol -0-8 4-69 32 by 32 ssda 
23 20 0-53 -0-9 5-49 32 by 32 2ds 

selecting a target covering multi-layer clpud. The general increase in the number 
of vectors using clustered image trac^iilg strongly suggests that multi-layer cloud 
motion can be tracked belter by first separating different cloud types and tracking 
them individually. It is also found that clustering provides less improvement over 
the raw image approach when the sequence has a relatively uniform wind field 
(5 March). 

Winds were generated using five different target sizes, and figure 9 shows the 
r.m.s, speed deviation versus target size. Winds are compared with interpolated 
values using four nearest grid points; the resolution of the analysed data is 0-75'' in 
the north-south direction and 0-9375° in the east-west direction respectively. Ml 
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(the three tracking methods, , . "3^0^"^^^ a clear minimum (at a target_si^e 
m--24_bi_24);_Lrbv U"^ l e / ^ L W'''̂ '=̂  vCc5>irs. / " . . . 
Lunnon and Lowe (1990) used target sizes of 4 ^ 4 , 4 ̂  8, 8 1̂3̂  8, 8 16, 16 16, 
16 32 and 32 32, and found the optimum target size for Meteosat images to be 
16 f>,̂  16. Note that no optimum target size can be defined for the clustered approach 
since the window may not be filled with cloud pixels. 

It is clear that if the target size is either too small or too large for a specific wind 
resolution, then the error will increase. In other words, there is an optimum target 
size for a given wind resolution. The larger error with small target size is probably 
due to the lack of cloud features, while for large targets, the wind is the weighted 
mean of the small scale winds within the window. 

Table 2(a). 8 March 1991, cloud motion wind results using raw images. 

Original 'Valid' Mean speed Mean dir. R.m.s. speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

214 77 5-31 1-9 7-95 4 by 4 X 
241 118 4-31 -0-6 7-75 4 by 4 ssda 
288 138 1-57 0-6 5-06 4 by 4 2ds 
106 75 '3-09 0-9 7-67 8 by 8 X 
131 87 3-00 2-0 6-38 8 by 8 ssda 
115 72 1-45 0-3 5-03 8 by 8 2ds 
43 32 4-38 4-9 10-63 16 by 16 X 
42 29 1-54 5-0 4-74 16 by 16 ssda 
43 29 1-07 3-9 4-24 16 by 16 2ds 
13 9 -3-38 1-9 4-41 24 by 24 X 
13 9 -1-53 -0-5 3-14 24 by 24 ssda 
14 9 -1-89 -3-2 3-49 24 by 24 2ds 
5 3 2-21 7-6 3-18 32 by 32 X 
6 4 4-15 12-1 5-57 32 by 32 ssda 
6 4 4-15 12-1 5-57 32 by 32 2ds 

Table 2(b). 8 March 1991, cloud motion wind results using clustered images. 

Original 'Valid- Mean speed Mean dir. R.m.s, speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

268 62 4-43 1-2 7-5 4 by 4 X 
303 107 4-56 0-6 7-71 4 by 4 ssda 
370 141 2-47 2-0 6-18 4 by 4 2ds 
128 81 5-12 -1-9 9-55 8 by 8 X 
155 93 3-64 0-5 7-74 8 by 8 ssda 
136 84 0-39 0-7 5-51 8 by 8 2ds 
69 47 2-73 1-4 9-34 16 by 16 X 
66 45 1-34 2-3 4-55 16 by 16 ssda 
65 42 1-35 -0-1 4-0 16 by 16 2ds 
41 27 2-50 1-1 6-33 24 by 24 X 
44 29 1-65 2-2 4-72 24 by 24 ssda 
32 20 0-58 -2-9 4-17 24 by 24 2ds 
25 17 2-20 3-0 7.-16 32 by 32 X 
26 16 0-3 9-0 4-97 32 by 32 ssda 
26 15 -0-51 11.-4 6-09 32 by 32 2ds 
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Table 3(a). 11 March 1991, cloud motion wind results using raw images. 

Original 'Valid ' Mean speed Mean dir. R.m.s. speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

244 118 2-88 6-3 6-19 4 by 4 X 
321 197 2-06 4-2 6-51 4 by 4 ssda 
303 185 1-98 1-4 5-25 4 by 4 2ds 
142 79 2-82 8-0 6-19 8 by 8 X 
160 119 1-62 5-3 5-56 8 by 8 ssda 
116 79 M 7 3-8 5-17 8 by 8 2ds 
46 36 1-45 7-2 4-41 16 by 16 X 
40 31 1-34 4-4 4-14 16 by 16 ssda 
39 30 0-53 4-7 3-81 16 by 16 2ds 
17 14 -0-41 6-0 4-94 24 by 24 X 
22 18 -0-99 3-2 3-01 24 by 24 ssda 
2? 17 -1-60 0-7 3-17 24 by 24 2ds 
7 6 -0-52 8-5 3-26 32 by 32 X 
4 3 -1-04 5-3 3-84 32 by 32 ssda 
5 4 - M 3 3-1 2-83 32 by 32 2ds' 

Table 3(b). 11 March 1991, cloud motion wind results using clustered images. 

Original 'Valid ' Mean speed Mean dir. R.m.s. speed Target Tracking 
vectors vectors error (knots) error (deg.) error (knots) size method 

306 95 3-25 4-12 7-11 4 by 4 X 
357 179 1-88 4-6 6-89 4 by 4 ssda 
358 163 l-OI 2-0 4-78 4 by 4 2ds 
147 103 2-79 8-6 6-43 8 by 8 X 
172 117 1-53 6-0 5-08 8 by 8 ssda 
129 85 0-44 - 0-41 4-52 8 by 8 2ds 
82 58 1-59 7-6 5-25 16 by 16 X 
83 58 1-57 5-8 5-47 16 by 16 ssda 
66 44 1-30 5-2 4-51 16 by 16 2ds 
46 36 1-87 9-6 4-'52 24 by 24 X 
46 36 0-56 6-5 4-05 24 by 24 ssda 
38 31 0-22 4-2 4-09 24 by 24 2ds 
27 22 0-69 8-0 4-96 32 by 32 X 
27 22 0-43 6-1 4-45 32 by 32 ssda 
31 26 -0-5 4-8 3-85 32 by 32 2ds 

Figure 10 compares the number o f vectors generated using different tracking 
methods. The number o f vectors generated by crossrcorrelation is much less than 
S S D A for target size less than 16 by 16, but for larger targets the number o f vectors 
are approximately the same. This suggests that S S D A is a more reliable method than 
cross-correlation. Also,\the number o f vectors generated by 2-d search is comparable 
to that for S S D A and c^oss-correlation. and, since the computat ion time is only a 
fraction o f that for crossrcorrelation, a 2-d search provides a quick alternative for 
cloud mot ion tracking. \ 

6. Conclusion 
A new clustering scheme has been developed for automatic clustering o f c loud 

images. The hybr id scheme uses a histogram algorithm to select the starting centres. 
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RAW IMACSES 

4 by 4 8 by 8 16 by 16 
TARGET SIZE 

24 by 24 32 by 32 

M i - CORREIATION -+- SSDA . 2-0 SEARCH 

CLUSTERED IMAGES 

4 by 4 8 by 8 16 by 16 
TARGET SIZE 

21 by 24 32 by 32 

• CORRELATION • • SSOA 2-D SEARCH 

Figure 10. Comparison of the number of 'valid' vectors generated by cross-correlation. 
SSPA and 2-d search using raw and clustered images. 
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This replaces manual selectionjwhich is inefficient and subjective) and also reduces 
convergence time sinced th^^^tartmn^entres generated are.^ood representation of 
the underlying clusters. Convergence time has also been reouced by clustering the 
multi-dimensional histogram rather than individual pixels. A n optimised model has 
been used, which allows clusters with different variance and population. The hybrid 
algorithm has not been extensively tested e.g., for all four seasons, but has been 
found to perform well on data sets spread over several months. 

Experimental results suggest that clustering before target tracking can signifi
cantly improve cloud motion wind estimates, although any advantage may be small 
for uniform wind fields. The advantage stems from the ability of clustering to select 
natural data patterns, which in turn tend to correspond to different cloud types. 

It is also found that there is an optimum target size for a given wind resolution. 
In our case, the optimum target size is around 24 by 24 for a wind resolution of 0-75° 

^ tiy 0-9375". However, this criteria does not apply to clustered image tracking, since, 
in this case, the effective target size is variable. 

A comparison between the classic cross-correlation approach and the SSDA 
indicates that S S D A is a more reliable method for target tracking; it is also much 
faster since it avoids the need for normalisation. The 2-d search can be used when a 
large wind field is required. 
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