
School of Engineering, Computing and Mathematics Theses

Faculty of Science and Engineering Theses

1992

APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE

CLOUD MOTION TRACKING CLOUD MOTION TRACKING

KING SHING ALBERT LAU

Let us know how access to this document benefits you

General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-theses

Recommended Citation Recommended Citation
LAU, K. (1992) APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE CLOUD MOTION
TRACKING. Thesis. University of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/37
This Thesis is brought to you for free and open access by the Faculty of Science and Engineering Theses at PEARL. It
has been accepted for inclusion in School of Engineering, Computing and Mathematics Theses by an authorized
administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-theses
https://pearl.plymouth.ac.uk/fose-theses
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-theses?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/37?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

PEARL

PHD

APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE CLOUD
MOTION TRACKING

LAU, KING SHING ALBERT

Award date:
1992

Awarding institution:
University of Plymouth

Link to publication in PEARL

https://researchportal.plymouth.ac.uk/en/studentTheses/e2ae9935-0884-443a-b14f-b479c3a1ea39

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise*.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

 That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

 That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

 * Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.
Download date: 28. Oct. 2024

PI 1

\ ' ' UBRARYSTORE
; . • i

. •

Dedicated to my mother

Wong How Chun

and to the memory of my father

Lau Wing Hee

1916—1992

BEFEBEK OMLY

90 0166560 4

• • I I I

Item
Np.
iCiass
m -

Contl
No. _

^c)e l66560i£

LIBRARY STORE

Copyright

The copyright of this thesis rests wi th the author, and no part of i t may be

published without permission i n wri t ing from the author. This thesis may be

photocopied for research purposes.

A P P L I C A T I O N OF I M A G E ANALYSIS

TECHNIQUES TO S A T E L L I T E C L O U D

M O T I O N T R A C K I N G

K I N G SHING A L B E R T L A U

School of Electronic, Comnuinication & Electrical Eng.,

University of Plymouth, Plymouth, PL4 8AA, England.

In collaboration with the Meteorological OfSce, Bracknell.

A thesis submitted in partial fulfilment of the

requirements of the Council for National Academic Awards

for the degree of Doctor of Philosophy

May 1992

Abstract

I Application of Image Analysis Techniques to Satellite Cloud Motion Tracking

Author: King Shing Albert Lau

Cloud motion wind (C M W) determination requires tracking of individual cloud targets.

This is achieved by first clustering and then tracking each cloud cluster. Ideally, differ

ent cloud clusters correspond to diiferent pressure levels. Two new clustering techniques

have been developed for the identification of cloud types in multi-spectral satellite im

agery.

The first technique is the Global-Local clustering algorithm. It is a cascade of a

histogram clustering algorithm and a dynamic clustering algorithm. The histogram

clustering algorithm divides the multi-spectral histogram into'non-overlapped regions,

and these regions are used to initialise the dynamic clustering algorithm. The dynamic

clustering algorithm assumes clusters have a Gaussian distributed probability density

function with diiferent population size and variance.

The second technique uses graph theory to exploit the spatial information which is

often ignored in per-pixel clustering. The algorithm is in two stages: spatial clustering

and spectral clustering. The first stage extracts homogeneous objects in the image

using a family of algorithms based on stepwise optimization. This family of algorithms

can be further divided into two approaches: Top-down and Bottom-up. The second

stage groups similar segments into clusters using a statistical hypothesis test on their

similarities. The clusters generated are less noisy along class boundaries and are in

hierarchical order. A criterion based on mutual information is derived to monitor the

spatial clustering process and to suggest an optimal number of segments.

A n automated cloud motion tracking program has been developed. Three images

(each separated by 30 minutes) are used to track cloud motion and the middle image

is clustered using Global-Local clustering prior to tracking. Compared with traditional

methods based on raw images, it is found that separation of cloud types before cloud

tracking can reduce the ambiguity due to multi-layers of cloud moving at different

speeds and direction. Three matching techniques are used and their reliability compared.

Target sizes ranging from 4 x 4 to 32 x 32 are tested and their errors compared. The

optimum target size for first generation M E T E O S A T images has also been found.

Acknowledgements

I gratefully acknowledge my supervisors D r J . G . Wade and D r N . L . H . Wood for

setting up this project, introduce me to clustering and many other helps through

out this study.

I should also like to thank my friends, Raymond Ho and Terry Cheung for

typing some of the reference wind data, and Pau l Davey for reading parts of my

manuscript.

This work was funded by the Science and Engineering Research Counci l under

grant number G R / E / 7 4 0 0 7 .

Contents

1 Introduction 1
1.1 Objective 1
1.2 Atmospheric Motion 2
1.3 Cloud Identification and Characterisation from Satellite 4

1.3.1 Optical Properties of Clouds 7
1.3.2 Interpretation of Cloudy Images 8

1.4 Cloud and Wind Relationship 11
1.5 Cloud Classification 14
1.6 M E T E O S A T images 15
1.7 Chapter OutHnes 20

2 Review of Cloud Analysis and Cloud Wind Systems 24
2.1 Cloud Identification Algorithms 24
2.2 Supervised Cloud Classification 29
2.3 Unsupervised Cloud Classification 33
2.4 Operational and Research Wind Systems 34

2.4.1 Other Cloud Wind Applications 40
2.5 Summary • • 40

3 Statistical Pattern Recognition and Clustering 42
3.1 What is Pattern Recognition? 45

3.1.1 Feature Selection 46
3.1.2 Decision Rules 47
3.1.3 Distances 51
3.1.4 Pattern Classifier 52

3.2 Parametric Density Estimator 54
3.2.1 Maximum Likelihood Estimator 54

3.3 Non-Parametric Density Estimator 56
3.3.1 Histograni Estimator 57

3.4 Unsupervised Learning 59
3.4.1 Unsupervised Maximum Likelihood Estimation 60

3.5 Clustering • . • • 62
3.5.1 Dissimilarities 63
3.5.2 Problems of Measuring Dissimilarities in Clustering 64
3.5.3 Partitiohal Clustering 69
3.5.4 Hierarchical Clustering 75

3.6 Summary 82

4 A Global-Local Clustering Algorithm for M E T E O S A T Imagery 84
4.1 Initial Partitions 85
4.2 The Global-Local Clustering Algorithm ^ . . 88

4.2.1 The First Stage of the Global-Local Clustering Algorithm 90
4.2.2 Starting Partition . 103
4.2.3 The Second Stage of the Global-Local Clustering Algorithm . . . 104
4.2.4 Other Features of the Global-Local Clustering Algorithm 113

4.3 M E T E O S A T Data Used for Algorithm Evaluation 117
4.3.1 Description of the Imagery 124

4.4 Clustering Results 125
4.5 Discussion 137

5 A Spatial-Spectral Clustering Algorithm 139
5.0.1 Review of Contextual Classifier . 140
5.0.2 Summary . 143

5.1 Graph Theoretic Hierarchical Segmentation (GTHS) 144
5.1.1 Definition of Spatial Space and Feature Space 144
5.1.2 Spatial Clustering 146
5.1.3 Basic Graph Theory 148
5.1.4 Spatial Clustering: A Stepwise Optimal Approach 149
5.1.5 General Form of the Spatial Clustering Algorithm 150
5.1.6 The Image Graph 151
5.1.7 Single Linkage Spatial Clustering 153
5.1.8 Complete Linkage Spatial Clustering 154
5.1.9 The Centroid Method for Spatial Clustering 156
5.1.10 The Variance Method for Spatial Clustering 158
5.1.11 Summary 160

5.2 Bottom-Up Segmentation Approach 161
5.3 Top-down Segmentation Approach . 163

5.3.1 Minimax Segmentation 165
5.4 Monitoring Segmentation 166
5.5 Spatial-spectral Hierarchical Clustering 171

5.5.1 Statistical Hypothesis as a Distance Measure 173
5.6 Spatial-Spectral Clustering Results 177

5.6.1 Segmentation Results 179
5.6.2 Properties of M S T Segmentation 190
5.6.3 Properties of C E S T segmentation 190
5.6.4 General Properties of GTHS 190
5.6.5 Clustering Results 191

5.7 Summary 198

6 Computation of Cloud Motion Wind (C M W) Vectors 199
6.1 Elements of Cloud Motion Wind Determination 200

6.1.1 Wind Tracer,Selection 200
6.1.2 Tracking the Selected Targets 205
6.1.3 Height Assignment . 209
6.1.4 Editing Wind Vectors 213

6.2 Details of Automated Cloud Wind Determination 214
6.2.1 Image Registration 214
6.2.2 Image Matching Methods 215
6.2.3 Strategies for Cloud Motion Vector Selection 223

i i

6.2.4 Spatial Resolution . 227
6.2.5 Image Rectification 229
6.2.6 Calctilation of Distance ^ 235

6.3 A n Automated Cloud Motion Determination Scheme 237
6.4 Cloud Motion Wind Results 241
6.5 Discussion 271

7 Conclusion 272
7.1 Global-Local Clustering Algorithm 272
7.2 Spatial-Spectral Clustering Algorithm 274
7.3 Generation of Cloud Motion Vectors r 275

Bibliography 278

A Maximum Likelihood Estimator 293

B Formula for Updating Gaussian Kernel Parameters for Post Transfer
Advantage Rule. 296

C Efficient Algorithms for Constructing a Spanning Tree and Minimax
Segmentation. 298
C . l Efficient Implementation of Spanning Tree Algorithms 298

C.2 Efficient Implementation of Minimax Segmentation 300

D Intraset Distance 301

E The Entropy of a Gaussian Distribution 303

F Least Square Method for Geometry Rectification 305

G Surface Chart of the Images Used in This Study 308

H Programs of the Global-Local Clustering Algorithm 315

I Programs of the Spatial-Spectral Clustering Algorithm 342

J Programs of the Automatic Cloud Wind Scheme 390

K Published Papers 412

i i i

List of Figures

1.1 Example of VIS-IR bi-dimensional histogram where classes can be iden
tified visually. 10

1.2 M E T E O S A T visible, infrared, and water vapour images 17
1.3 Fields of view of five geostationary satellites (Hubert 1979) 19
1.4 Break down of statistical pattern recognition 21

2.1 Fit t ing of one-dimensional Gaussian model onto a histogram 27
2.2 Typical plot obtain using spatial coherence method. Cluster of points at

Tl represents cloud-free scan spots, the cluster near represents cloud-
covered scan spots. The points between these cluster represents partially
covered field of view 28

2.3 Operational cloud motion vectors system operated by Meteorological In
formation Extraction Center in European Space Operations Center. . . 37

3.1 A multi-spectral image 43
3.2 A n Image pattern recognition system for cloud motion tracking 44
3.3 Two disjoint pattern classes 46
3.4 A basic pattern recognition system 47
3.5 A simple decision function for two pattern classes 50
3.6 Pattern classification using distance. 51
3.7 a) Samples in measurement space, b) Possible partition with two classes,

c)Possible partition with five classes 53
3.8 The maximum likelihood estimate for a parameter 6 55
3.9 The approximation of probability density function by histogram, where

h determine the volume of a cell 57
3.10 A point X in these cases should belongs to 0^2, although 6{x,m2) >

^(x, m i) , where ^(x, m i) is the Euclidean distance between cluster centre
m i and point x 65

3.11 General shape of the criterion function J4 71
3.12 Example of dendrogram. 76
3.13 Single linkage clustering example 78
3.14 Example of complete linkage clustering 79

4.1 A two stages Global-Local clustering algorithm which eliminates manual
selection of initial partitions 89

4.2 Flowchart of the histogram clustering scheme for generation of initial
partitions (first stage of the Global-Local clustering algorithm) 91

4.3 Schematic diagram showing how vectors are stored and accessed using a
hashing function (Narendra & Goldberg 1977) 93

4.4 Example of a directed tree 95
4.5 A two dimensional illustration of the histogram clustering scheme. Cell

A and B are roots . ; 99

iv

4.6 Illustration of how to avoid a directed cycle in a region of uniform density.
If A and B is linked then a directed cycle results 100

4.7 The effect of noise in the Unsmoothed histogram wiU lead to generation
of trivial clusters. ? • • 102

4.8 The Global-Local Clustering scheme 105
4.9 Use of the duster mean model to cluster data with equal variance but

different population 107
4.10 Visible (top) and infrared (bottom) images of 5th March 1991 (middle

pair) • . • 118
4.11 Visible (top) and infrared (bottom) images of 8th March 1991 (middle

pair) 119
4.12 Visible (top) and infrared (bottom) images of l l t h March 1991 (middle

pcur) 120
4.13 Visible (top) and infrared (bottom) images of 15th March 1991 (middle

pair) 121
4.14 Visible (top) and infrared (bottom) images of 18th March 1991 (middle

pair) 122
4.15 Visible (top) and-infrared (bottom) images of 20th March 1991 (middle

pair) 123
4.16 Clustering results of 5th March images 127
4.17 Clustering results of 8th March images , 128
4.18 Clustering results of l l t h March images 129
4.19 Clustering resiilts of 15th March images 130
4.20 Clustering results of 18th March images 131
4.21 Clustering results of 20th March images 132

5.1 Partitions of a 4 x 4 image 145
5.2 The neighbourhood of a pixel x 147
5.3 Mapping of a 3 x 3 image onto a graph with 8 connectedness. 152
5.4 M S T of a 4 X 4 image (4 connectedness), removal of edge eaandej generate

three homogeneous regions 154
5.5 C S T of a 4 X 4 image (4 connectedness), removal of edge eaande6 genera;te

three homogeneous regions 155
5.6 C E S T of a 4 X 4 image (4 connectedness), removal of edge eaande6 gen

erates 3 homogeneous regions 158
5.7 V S T of a 4 X 4 image (4 connectedness), removal of edge Caandcfc generates

three homogeneous regions 160
5.8 Segmentation modelled as an information flow process 168
5.9 Spatial-spectral clustering approach 172
5.10 Probabilities of error i n hypothesis testing 174
5.11 Visible (top) and infrared (bottom) images of 8th, 18th, 20th March. . . 178
5.12 Top-Down Minimax C E S T segmentation of 8th March images 181
5.13 Top-Down Minimax C E S T segmentation of 18th March images 181
5.14 Top-Down Minimax C E S T segmentation of 20th March images 181
5.15 Entropy Loss of different segmentation approaches for 8th March images. 183
5.16 Entropy Loss of different segmentation approaches for 18th March images. 184
5.17 Entropy Loss of different segmentation approaches for 20th March images. 185
5.18 Comparison of different segmentation approaches on 8th March images

(the number of segments = 300 in each case) 187
5.19 Comparison of different segmentation approaches on 18th March images

(the nuinber of segments = 300 in each case) 187

v

5.20 Comparison of diiferent segmentation approaches on 20th March images
(the number of segments = 300 in each case) 187

5.21 Different segmentation approaches with same Entropy Loss, 8th March
images , 189

5.22 Different segmentation approaches with same Entropy Loss, 18th March
images. ; 189

5.23 Different segmentation approaches with same Entropy Loss, 20th March
images 189

5.24 Spatial-Spectralclustering of 8th March images with different number of
segments (the number of clusters = 5 in each case) 192

5.25 Spatial-Spectral clustering of 18th March images with different number
of segments (the number of clusters = 5 in each case) 192

5.26 Spatial-Spectral clustering of 20th March images with different number
of segments (the number of clusters = 5 in each case) 192

5.27 Comparison of Global-Local clustering algorithm and Spatial-Spectral
clustering algorithm on 8th March images 194

5.28 Comparison of Global-Local clustering algorithm and Spatial-Spectral
clustering algorithni on 18th March images 195

5.29 Comparison of Global-Local clustering algorithm and Spatial-Spectral
clustering algorithm on 20th March images 196

6.1 The semi-transparent problem: thin cloud such as cirrus often appears to
be of warmer because background radiation is confused with the actual
radiation 202

6.2 Comparison of a) the author's and b) current approach for cloud motion
tracking 208

6.3 Definition of target and search window 218
6.4 Illustration of the five locations which wiU be computed at the beginning

of the hill climbing algorithm. The area contained by the five locations
contract after each step until the area reduces to a 3 x 3 pixel size.
In the final step all the nine locations are searched and the location
corresponding to the maximum or miniinum is the inatch position. . . 221

6.5 Example of cross correlation surfaces, surface with distinct peak (top),
surface without distinct peak (bottom) 224

6.6 Example of SSDA surfaces, surface with distinct minimum (top), surface
without distinct minimum (bottom) 225

6.7 Image matching strategy adopted by NESS 226
6.8 The image matching strategy adopted by E S G C 227
6.9 The variation of spatial resolution with latitude. . 228
6.10 Coordinate system for image rectification -. 231
6.11 Mercator projection of the U . K . using nearest neighbour interpolation. . 232
6.12 Spherical triangle for calculating the distance between A and B 236
6.13 The automatic cloud motion wind scheme used in this study. 238
6.14 Reference wind field of 5th March interpolated on 16 x 16 target size grid. 254
6.15 Reference wind field of 8th March interpolated on 16 x 16 target size grid.254
6.16 Reference wind field of l l t h March interpolated on 16 x 16 target size grid.254
6.17 Reference wind field of 15th March interpolated on 16 x 16 target size grid.255
6.18 Reference wind field of 18th March interpolated on 16 x 16 target size grid.255
6.19 Reference wind field of 20th March interpolated on 16 x 16 target size grid.255
6.20 Mean rms speed deviation for different target sizes and tracking methods

using raw images (Low level). 257

v i

6.21 Mean rms speed deviation for different target sizes and tracking methods
using raw images (Middle level) 257

6.22 Mean, rms speed deviation for different target sizes and trackinginethods
using raw ima,ges (High level). • 258

6.23 Mean rms speed deviation-for different target sizes using raw images (Al l
• tracking methods) 258

6.24 Mean rms speed deviation for different target sizes and tracking methods
using clustered images (Low level) 260

6.25 Mean rms speed deviation for different target sizes and tracking methods
using clustered images (Middle level) 260

6.26 Mean rms speed deviation for different target sizes and tracking methods
using clustered iinages (High level). 261

6.27 Mean rms speed deviation for different target sizes using clustered images
(Al l tracking methods) 261

6.28 Cumulative speed deviation for low, middle, high level wind vectors ob
tained by tracking of raw and clustered images 262

6.29 Total number of 'valid' vectors using different target sizes, cross correla
tion tracking with raw and clustered images 264

6.30 Total number of 'valid' vectors using different target sizes, SSDA tracking
with raw and clustered images 264

6.31 Total number of 'valid' vectors using different target sizes, 2d search
tracking with raw and clustered images 265

6.32 Total number of 'valid' vectors using different target sizes, tracking meth
ods with raw images 266

6.33 Total number of 'valid' vectors using different target sizes, tracking meth
ods with clustered images 266

6.34 Wind field of 5th March, a) raw tracking, and b) clustered tracking (24
X 24 target size) 268

6.35 Wind field of 8th March, a) raw tracking, and b) clustered tracking (24
X 24 target size) 268

6.36 Wind field of l l t h March, a) raw tracking, and b) clustered tracking (24
X 24 target size). 268

6.37 Wind field of 15th March, a) raw tracking, and b) clustered tracking (24
X 24 target size) 269

6.38 Wind field of 18th March, a) raw tracking, and b) clustered tracking (24
X 24 target size) 269

6.39 Wind field of 20th March, a) raw tracking, and b) clustered tracking (24
X 24 target size) 269

G . l Surface chart of 5th March 309
G.2 Surface chart of 8th March 310
G.3 Surface chart of l l t h March : 311
G.4 Surface chart of 15th March 312
G.5 Surface chart of 18th March 313
G.6 Surface chart of 20th March 314

v i i

List of Tables

1.1 Traditional cloud classes 5
1.2 Cloud type and typical cloud base height (kna) as a function of latitude. 6
1.3 Representative cloud response in atmospheric window. These number

vary with cloud depth, width and particle size. Only typical values are
given here (After Bunting and Hardy in Ch.6 in Henderson-SeUers 1984). 7

1.4 Comparative features of images from four types of geostationary weather
satellites . 19

4.1 Clustering statistics for 5th March 1991 images 133
4.2 Clustering statistics for 8th March 1991 images 133
4.3 Clustering statistics for l l t h March 1991 images 134
4.4 Clustering statistics for 15th March 1991 images 134
4.5 Clustering statistics for 18th March 1991 images 135
4.6 Clustering statistics for 20th March 1991 images 135

6.1 Wind vectors resiilts by tracking raw images on 5th March 242
6.2 Wii id vectors results by tracking clustered images on 5th March 243
6.3 Wind vectors results by tracking raw images on 8th March 244
6.4 Wind vectors results by tracking clustered images on 8th March 245
6.5 Wind vectors results by tracking raw images on l l t h March 246
6.6 Wind vectors results by tracking clustered images on l l t h March 247
6.7 Wind vectors results by tracking raw images on 15th March 248
6.8 Wind vectors results by tracking clustered images on 15th March 249
6.9 Wind vectors results by tracking raw images on 18th March 250
6.10 Wind vectors results by tracking clustered images on 18th March 251
6.11 Wind vectors results by tracking raw images on 20th March 252
6.12 Wind vectors results by tracking clustered images on 20th March 253

v i i i

Chapter 1

Introduction

Meteorological satellites provide a continuous observation of the globe. The i m

agery plays a v i t a l part i n modern forecasting practice, allovs^ing the forecaster to

observe directly both the movement and development of the individual weather

systems. Its role may be regarded as complementary to that of the numerical

models, providing the basis for more accurate analyses as well as more effective

use of the numerical output (Woodroffe 1987). M a n y meteorological parameters

can be extracted from satellite images, such as wind direction and speed from

clouds, ice movement, atmospheric stability, relative humidi ty and precipitation

from clouds, and turbulence from clouds etc.

1.1 Objective

W i n d speed and direction are important parameters i n the study of weather sys

tems, and previous studies show that wind can be inferred from cloud motion.

C loud tracking requires identification of cloud type and cloud altitude. The a im

of this study is to investigate and develop pattern recognition techniques to i m

prove cloud motion wind (C M W) derivation. Clustering has been chosen for cloud

separation since i t requires min imum a priori information. Two clustering tech

niques are developed: the first algorithm partitions only the measurement space,

whilst the second algorithm first part i t ion the spatial space and then the measure-

1

ment space, thereby exploiting contextual information. The concispt of tracking

clouds of the same height is tested by applying the first algorithm i n an automated

wind tracking system and encouraging results are obtained.

1.2 Atmospheric Motion

The atmosphere is a gigantic heat engine in which the constantly maintained dif

ference i n temperature existing between the poles and the equator provides the

energy supply necessary to drive the planetary atmospheric circulation. The con

version of the heat energy into kinetic energy to produce motion must involve

rising and descending air, but vertical movements are generally much less i n evi

dence than horizontal ones, which may cover vast areas and persist for periods of

a few days to several months.

Atmospheric motion, either vertical or horizontal is caused by an imbalance of

forces due to pressure difference. Vert ical air niotion while exceedingly significant

for atmospheric processes is greatly l imited by the shallow depth of the atmo

sphere, and the balance of the downward acting gravitational force of the earth

and the vertical pressure gradient. Whi l e the horizontal motion wi th much less

constraint of the gravitational force usually happens i n large scale and this motion

is termed wind .

W i n d speed is generally lowest on the earth surface and gradually increases

wi th altitude. This effect is due to surface friction reducing the rate of flow in the

lowest layers of the atmosphere. A t increasing heights above the surface, frictional

effects become smaller, and the wind speeds generally increeise i n magnitude. A

zone of maximum wind speed is frequently found near the tropopause (« 1 0 k m

height).

O n the hemispheric scale, horizontal variations i n pressure brought about by

temperature differences sets air i n motion. The rotation of the earth signifi

cantly modifies the direction of large-scale flow, but superimposed on the major

wind patterns are smaller secondary disturbances induced by local variations i n

2

temperature-pressure patterns. Mot ion plays a fundamental role i n the transport

of heat, moisture and mechanical energy from one part of the earth's surface to

another.

In total there are four forces which determine the horizontal motion.

They are (Par ikh 1976):

1. Pressure gradient; The pressure gradient is defined as the pressure difference

between two isobars divided by the distance. The forces caused by a pressure

gradient acts from high pressure to low pressure.

2. Coriolis acceleration; If the ear th 'did not rotate warm air would rise near

the equator and flow at a high altitude towards the pole where i t would

cool, sink and flow back towards the equator near the surface. However, the

rotation of the Ear th prevents winds from blowing directly northwards and

southwards from the equator, instead they tend to be deflected sideways by

the coriolis effect, so that most poleward flowing air is deflected towards the

east whereas equator flowing air is directed towards the west.

3. Centrifugal acceleration; the centrifugal effect arises i n conjunction wi th the

Coriolis effect. It is an apparent restoring force opposing motion i n a curved

path by attempting to establish straight line flow. It is directed radial ly

outward from the centre of curvature.

4. Fr ict ion forces; Th is forces always oppose the motion. It arises from contact

resistance to relative motion between systems.

The resultant of these four forces determine the.speed and direction of the

horizontal motion. W h e n friction is small , the motion is determine by pressure

gradient, Coriolis force and centrifugal force. In areas where the motion is not

turning, the effect of centrifugal force can be ignored. The resulting motion is

termed geostrophic wind. The geostrophic wind balance is obtained when the wind

is blowing parallel to the isobars. In the Northern Hemisphere the Coriolis force

has an effect of turning a northward motion eastward. If the motion is turning

3

then the wind is non-geostrophic and is ca;lled gradient wind. The resultant wind

blows i n a counter-clockwise direction parallel to the curved isobars wi th in a low

pressure system. In the Northern Hemisphere this circulation is called cyclonic.

Frict ion always exists at the earth's surface^ here the wind w i l l no longer flow

parallel to the isobars, but slightly across the isobars. This creates convergence

i n a low pressure system.

Clouds axe abundant i n the atmosphere and useful wind vectors can be gen

erated by tracking cloud targets whose motion seems i n approximate agreement

wi th the synoptic situation.

1.3 Cloud Identification and Characterisation

from SateUite

Clouds are usually wet atmospheric aerosols composed of t iny spheres of l iquid

water ranging i n radius from 2 to 200/zm. Clouds form when air becomes super

saturated wi th respect to l iquid water or ice; the most common means by which

supersaturation occurs i n the atmosphere is through the ascent of air parcels,

which results i n the expansion of the air and adiabatic cooling. Under these con

ditions, water vapour condenses onto some of the aerosol i n the air to form a cloud

of small water droplets.

The principle types of ascent, each of which produces distinctive cloud forms,

are (Henderson-Sellers Ch.2 1984):

1. Loca l ascent of warni , buoyant air parcels i n a conditionally unstable en

vironment which produces convective clouds. These clouds have diameters

ranging from about 0.1 to 10km. The lifetimes of convective clouds range

from minutes to hours (cumulus, cumulonimbus).

2. Forced lifting of stable air which produces layer clouds. These clouds can

occur at altitudes from ground level up to the tropopause and extend over

areas of hundreds of thousands of square kilometres. Layer clouds gener-

4

ally exists over periods of tens of hours (stratus, cirrocumulus, altocumulus

altostratus and stratocumulus). These two ascents account for most cloud

types that are visible i n satellite imagery and which are suitable for wind

motion determination.

3. Lee wave, standing wave, not real motion.

Water by evaporation from the surface stays i n the atmosphere as clouds, then

followed by precipitation falls back to the surface, this endless cycle is responsible

for the transportation of water around the Ear th . Since clouds are usually ad-

vected by surrounding winds, tracking the cloud movement allows us to deduce

the pattern of atmospheric motion.

Cir r i form clouds are composed of ice crystals, altiform are supercooled water

droplets existing at temperatures below 273K, while stratiform clouds are gener

ally layered. Cumuliform clouds occur i n unstable conditions. Nimbus clouds are

rain or snow-producing. The Wor ld Meteorological Organisation (W M O) classify

cloud into 10 types (Table l . l a n d 1.2, International C loud Al tas 1957).

Level Cloud Appearance

High Cirrus Detached, fibres

High Cirrostratus Transparent sheet

High Cirrocumulus Smal l regular elements, no shading

Midd l e Altostratus Grey/b lu ish sheet, slightly transparent

Midd l e Altocumulus Layer wi th structure and shading

Low Nimbostratus Grey layer, precipitation

Low Stfatocumulus Layer wi th structure and shading

Low Stratus Grey layer, uniform base

Cloud wi th vertical

Development

Ctunulus Detached, fluffy Cloud wi th vertical

Development Cumulonimbus Heavy, dense, very ta l l

Table 1.1: Tradit ional cloud classes.

5

The height levels of these cloud genera are determined by their cloud base.

The separation these cloud types are crucial to success of cloud wind generation

(Par ikh 1976).

Lati tude Cloud type

Polar Temperate Tropical

Cloud type

3-8 5-18 6-18 C i r r b — H i g h

2-4 2-7 2-8 A l t o — M i d d l e

0-2 0-2 0-2 Strato—Low

Table 1.2: Cloud type and typical cloud base height (km) as a function of latitude.

6

1.3,1 Optical Properties of Clouds

Opt ica l properties of clouds are reflectivity (visible band) and emissivity (infrared

band), these depend on the physical properties of clouds. C loud can exists as ice

or supercooled water droplets. Water clouds have many small particles while ice

clouds have relatively few but larger particles.

B o t h water and ice clouds have high reflectivities due to low emission/absorption

at 0.5—1.3fJ.m (visible band), and are good emitters; therefore the radiance emit

ted by them can be used to estimate the temperature of themselves by means of

the Planck function (Henderson-Sellers Ch.2 1984). However,, most cirrus type

clouds are semi-transparent, therefore the energy sensed'by a satellite is not a

reliable indicator of the cirrus cloud top temperature, but i t is the sum of the

cloud and background radiance underneath i t .

Property Wavelength Water cloud Ice cloud

Reflectivity of

sunlight when

the Sun is

overhead

0.7//m 0.8 0.8

Emissivi ty for

thermal

radiation

ll.bfjim 0.95 0.95

Table 1.3: Representative cloud response i n atmospheric window. These number

vary wi th cloud depth, width and particle size. Only typical values are given here

(After Bunt ing and Hardy i n Ch.6 i n Henderson-Sellers 1984).

7

1.3.2 Interpretation of Cloudy Images

Cloud observations at high lat i tude from the satellite are degraded due to the

Earth 's curvature. Firs t ly , the degradation of the horizontal resolution of the

imagery as a result of changing the nadir angle is accentuated. Secondly, the

data requires corrections at oblique vievi^ing angles for changing viewing geometry

between the Sun, the cloud and the sateUite. Thi rd ly , the satellite tends to see

more cloud at dbhque viewing angles since i t looks through more atmosphere

and therefore has a higher probabiHty of encountering a cloud. Moreover, i t may

confuse the sides of a cloud wi th the top and also simultaneously see several types

of cloud. Final ly , most Ea r th location procedures assign .ta^ pixel to a location

at the Earth 's surface based on spherical trigonometry. A high cloud may be

mislocated horizontally by twice its altitude i f i t is viewed at an angle of 60° oif

local vertical (Anderson and Veltishchev ed. C h a p . l 1973).

The Meteorological satellite usually makes multi-spectral observations i n order

to distinguish different cloud types. The most effective wavebands are the visible

(0.4—1.1/fm) and infrared (10.5—12.5/im) channels. Due to different cloud thick

ness, background such as snow, ice, land surface, sea surface, which have different

reflectivities at visible wavelengths and often have different temperature at ther

m a l wavelengths; when using computer analysis, these varying backgrounds may

be confused wi th clouds.

Meteorological phenomena can be roughly observed i n two scales. The first

scale is called mesoscale i t refers to phenomena i n small scale (usually an area less

than 100 x lOOkm^ but greater than 10 x lOkm^), for example a thunder storm.

The second is called synoptic scale i t refers to phenomena'fofge^j'l^j'lan large area,

such as a weather front. One objective of this work is to derive mesoscale cloud

motion wind.

Some useful features for interpreting weather images are size, shape, tone, and

texture of individual clouds or cloudy regions. Image sequences also help to locate

clouds i n relation to other weather or geographical information. Deta i l analysis

of satellite imagery can be found in Anderson and Veltishchev ed. (1973).

8

Cloud size varies considerably and gives important information to the im

age analyst. Individual cumulus clouds are normally too smaU to be resolved

i n the visible image. W h e n the Cumulus clouds develop to large Cumulonim

bus i n thunderstorms, the contrast between the background and cloud increases

and are evident i n the visible and infrared images. Mid- la t i tude low pressure

areas or cyclonic storms and the fronts extending from them often have cloudy

areas exceeding 1000km. Meteorologists use these sizes to identify isolated clouds,

niesoscale cloud Hues, larger-scale fronts and storms.

Shape is used along wi th size as a means to characterise clouds. It is partic

ularly useful for identifying layer cloud such as Stratus since its boundaries are

sharply defined and the shape of a low Stratus area often outlines topography,

such as coastlines, mountains and valleys. Co ld air blowing over warm water of

ten produces long Unes of clouds known as cloud streets. Cirrostratus is normally

smooth and uniform i n appearance, thus may appear i n the form of long bands

extending for hundreds of kilometres, or as an extensive sheet. Jet stream Cirrus

forms at high altitudes and has a characteristic shape on the poleward edge; this

shape usually consists of a long smooth curve close to the max imum winds of the

jet. Mature tropical storms called hurricanes or typhoons may appear nearly cir

cular wi th a smaller circle or eye, lacking high clouds, i n the centre. H igh clouds

associated wi th cyclogenesis or storm formation at mid-latitudes may look first

like an elongated leaf, smooth on the poleward size and ragged on the opposite,

and later l ike a larger comma, the t a i l of the comma corresponding to clouds on a

cold front. Frontal zones appear as long, multi-layered cloud bands extending for

several thousand kilometres and range from one to several hundred kilometres i n

width .

T h e cloud tone represents how bright the cloud appears on the image. In vis

ible channels, i t relates to cloud reflectivity, brighter clouds being more reflective

and thicker. In thermal channels, the grey level for cloud pictures are usually

reversed so that bright tones represent low thermal energy of cold clouds and

dark tones represent high thermal energy of warmer clouds or clear areas. F i g -

9

texture is useful for distinguishing cumuhform clouds from stratiform clouds, in

frared images show fewer areas of rough texture even when the resolution is the

same as a coincident visible image. The fields of thermal radiation emitted by

clouds or the Earth 's surface are smoother than the scattered sunlight at shorter

wavelengths. Patchy cirrus clouds are an exception and often show rougher texture

on infrared images.

1.4 Cloud and Wind Relationship

W i n d can be derived from geostationary satellite images by measuring the dis

placements of cloud fields as displayed by a sequence of images (Izawa and Fuj i ta

1969). Th i s measurement is based on the assumption that the clouds move wi th

the surrounding air parcel. In order to justify this assumption, we have to consider

the following factors (Hubert 1979):

1. The nature of the cloud targets to be tracked i n relation to the image reso

lut ion and to cloud target persistence as compared to image frequency.

2. The relation between cloud motion and wind.

C loud targets which are tracked i n the low troposphere are different from those

of the upper troposphere because the mesoscale circulation systems that persists

at low levels are not apparent in the upper troposphere. Therefore satellite wind

is usually derived for low and high levels. Midd l e level clouds are usually difficult

to track and are not good wind tracers (Parikh 1974).

Convective clouds provide most of the low tropospheric wind tracers because

they are abundant and well suited to tracking. A s w i th other cloud types con

vective clouds are not inert bodies, individual clouds form and disappear while

the air parcels are carried along by wind. However, animated sequences taken

at different t ime intervals reveal that mesoscale patterns of cloud such as trade

cumulis, cumulus congestus, and even strato cumulus, have life times i n the order

of hours.

11

M a n y empirical studies have shown that the motion of the lower mesoscale pat

terns correlate well w i th air motion. A n analysis by Hubert and Whi tney (1971)

showed that low level cloud vectors represented the 850mb flow wi th approxi

mately the same degree of accuracy as rawinsonde data. Hasler et a l . (1976,1977)

conducted a multi-aircraft experiment to measure simultaneous cloud motions and

winds at various levels and found that ctimuH motions were correlated best wi th

cloud-base winds, while cirrus appears to represent a layer mean. Similar studies

w i th altocumulus have not been made, mostly because of the great difllculty i n

obtaining the necessary data.

In contrast, many upper clouds that are suitable for tracking appear to be

layer clouds. A t upper levels patches of layer cloud often change slowly—they

may last many hours.

Comparisons of cloud motions i n persistent features wi th nearby rawinsonde

observations indicate that many of these persistent cloud patterns are embedded

i n layers wi th small vertical shear and they are advected wi th the layer wind.

For cloud wind to be useful i t must be assigned to a level which best repre

sents the wind, and vectors should be derived from targets which move wi th the

environment wind. The first generation of meteorological satellites (early 1960's)

only carried visible sensors, so no information about temperature was provided.

If the cloud top temperature can be inferred then the vector can be assigned to

a level which best represents the wind. Shenk and Kerins (1970) were among the

first to investigate the use of an infrared channel for cloud top height estimation

applied to cloud track wind.

Hubert and Whi tney (1971) investigated the usability of cloud winds. They

found that low and high cloud motions correspond best to winds at 3000 ft and

30000 ft respectively. The median vector deviation of the cloud velocities are

9 knots and 17 knots for low and high cloud winds. The deviations are due to

1. uncertainty of cloud height

2. non-advective cloud motion

12

3. photograph measurement errors (mapping error)

4. tracking errors

5. unrepresentative rawinsonde observations

The relationship between observed cloud motion and wind is strongly influ

enced by the type of cloud. Fuj i ta and Pearl (1975) tracked single turret cumulus

target and found that the best target size was 0;3 to 2 k m , and their movement

may not correspond to the environmental wind as a consequence of the compli

cated nature of clouds including the vertical wind shear, updrafts and downdrafts.

The quality of cloud wind was studied by Bauer (1976). He made a comparison

of cloud motion winds wi th coninciding radiosonde winds which showed that both

have a similetr capability to represent atmospheric motions; the study showed

that the differences between cloud motion winds and radiosonde winds fall wi th in

the l imits determined by computational techniques, observational methods and

atmospheric variability. Maddox and Vonder Haar (1979) developed a quantitative

estimate of the random error inherent in satellite derived winds. They concluded

that random error i n vector winds derived from cumulus cloud tracking using

high-frequency satellite data is less than 1.75 ms~'^.

Hasler et a l . (1979) have presented high resolution aerial photography taken as

frequently as one every 7 minutes which show that the lifetimes of individual cells

are short, but that cumulus ensembles can maintain a recognisable pattern for

well over an hour. Cirrus cloud lifetimes can often be resolved by the 30 minutes

satellite observations. Orographic clouds tend to be stationary and clouds caused

by gravity waves tend to move wi th the wave phase velocity and neither would be

good estimators of the ambient wind.

The data used throughout this work was generated from M E T E O S A T . The

M E T E O S A T images have resolution, of 5km i n the infrared channel and 2.5km or

5km in the visible channel at the sub satellite point and an image frequency of

two per hour. TheM«x\,a)\ier^^h^ single pixel can be inuch larger than some cloud

types, therefore the identification of < fea ture^ould require at least a few pixels.

13

It is clear that satellite images do not display individual clouds, but rather patches

of cloud. Furthermore, the target usually contains a much larger area than a few

pixels, and so cloud motion is tracked by means of patterns rather than individual

patches.

It is apparent that, at this resolution and frequency of present geostation

ary satellite imagery, large classes of cloud fields provide trackable targets whose

motion are closely related to the winds.

1.5 Cloud Classification

One of the ei^ac^ves of this study is to develop cloud classification algorithms for

cloud motion wind generation, these algorithms belong to a field of study called

statistical pattern recognition.

Pat tern Recognition has been used to classify cloud images wi th variable de-

greesof success. Two approaches can be used (Duda and Har t 1973). The first

approach is called supervised classification, i t is based on Bayes decision theory.

Th i s approach is based on the assumption that the decision problem is posed i n

probabilistic terms, and that a l l of the relevant probabili ty values are know. This

implies that the class conditional probabili ty density function (pdf) p(x|u;,-) de

scribing each class is known exactly. Here x is a pixel vector and w,- denotes class

i. Usual ly these pdfs are estimated from a set of t raining samples from known

classes. The classification of a new pattern is achieved by a set of decision rules

such that the error probabili ty of classification is minimised.

A prior i knowledge is difficult to obtain i n some practical uses such as cloud

classification. The cloud classes i n visible and infrared imagery vary substantially

during different times of day and season, i f a supervised method is used a database

of cloud signatures i n different conditions must be bu i ld . The second approach

called unsupervised classification requires a min imum of a priori knowledge and

therefore was chosen for this study. Clustering is the most commonly used unsu

pervised method and i f used correctly i t can seek out the natural structure of the

14

data, and therefore the boundaries which separate the different classes. Par t i t ionl i

of even a small set of data requires that an enormous nu-mfe^r .of combinations

be tested, therefore a suboptimal method; such as clustering must be employed.

Clustering w i l l be discussed i n detail throughout the rest of this thesis.

1.6 M E T E O S A T images

M E T E O S A T images are used in this study for cloud motion wind generation.

M E T E O S A T is a geostationary satellite wi th a nominal position on the Greenwich

Mer id ian over the equator at an altitude of about 36000 k m . The raw data

obtained from the three-channel radiometer are visible and infrared radiances of

the full Ea r th disk i n the following bands (F ig . 1.2):

1. visible (0.4—1.1 fim) (VIS)

2. thermal infrared (10.5—12.5 (im) (IR)

3. infrared water vapour absorption (5.7—7.1 /zm) (W V)

The visible band measures the reflected radiance of the electro-magnetic spec

t rum. The brightness of visible imagery is a measure of the Earth 's albedo, gen

erally displayed i n picture form where white represents areas of high albedo and

black represents areas of lowest reflectivity. (Reflectivity of an object is measured

i n albedo, which is defined as the ratio of the amount of electromagnetic radi

ation reflected by a body to the amount incident upon i t , commonly expressed

as a percent). The brightness of a cloud as seen from space depends upon the

i l luminat ion of the cloud (sun angle), the angular position of the cloud i n relation

to the sensor and the sun, and the reflectivity of the cloud i t se l f Reflectivity, i n

turn, is related to cloud thickness, particle size distribution, particle composition

(ice or water), and to the character of the upper cloud surface.

The thermal infrared band measures the long-wave radiation emitted by cloud,

land and water surfaces. These measurements may be converted to temperature

representative of the surfaces viewed. Radiat ion from these surfaces is transferred

15

to space through complex radiative transfer processes w^hich involve absorption

and re-emission by several atmospheric components. In infrared imagery darkest

areas represent the warmest surfaces, while the brightest represent the coldest

surfaces. They also shows relative cloud height.

The water vapour band measures radiation that is not controlled by absorption

i n the atmosphere, but by the temperature near the boundary between moist and

dry air. The moister the air, the higher and colder this boundary, so the less

ra:diatibn i t is. O n the image dark areas correspond to relatively large amounts

of radiation (originating at low, warm altitudes) a,nd brighter areas correspond to

relatively small amounts of radiation (originating at high, cold altitudes).

16

Visible channel

Infrared channel

Water vapour channel

Figure 1.2: M E T E O S A T visible, infrared, and water vapour images.

17

The field of view of the visible detector is 2.5 k m , at the subsatellite point

(the point which has the shortest distance between the satellite and Ear th) , while

for the other two infrared band detectors it is 5 k m . The radiometer generates

a new Ear th image every half hour. The image is created i n the direction from

south to north and east to west by making use of the spin motion of the satellite

and stepping the radiometer. A n I R or W V image consists of 2500 lines by 2500

pixels, whilst each visible image consists of 2500 Hnes x 5000 pixels. There are two

visible detectors which are offset by one pixel i n the north-south direction, so i f

both visible channels are active the full visible image consists of 5000 Hnes x 5000

pixels. Normal ly the radiometer operates as (i) I R plus one V I S and (ii) I R plus

one V I S plus W V . The V I S images transmitted are usually w i th half resolution,

i.e. i t is also 2500 lines x 2500 pixels the same as I R and W V images. In the

operational timetable W V is only available every 60 minutes, instead of 30 minutes

as for V I S and IR . V I S is only available when the sun i l luminat ion is reasonable,

however I R & W V can be generated even at night-time. Figure 1.3 shows the

relationship of resolution wi th earth surface. Due to the surface curvature the

resolution decreases rapidly away from the subsatellite point (ssp).

There are i n to ta l five geostationary weather satellites covering the majority

of the earth surface. Table 1.4 shown a comparison of these satellites. Figure 1.3

shows the distribution of the satellites.

18

Figure 1.3: Fields of view of five geostationary satellites

(Hubert 1979).

Satellite Spectral Resolution Imaging period

bands (at ssp) period

G O E S visible 1 x 1 k m

(U S A) infrared 8 x 4 k m 1/2 h

M E T E O S A T visible 2.5 k m

(E S A) infrared 5.0 k m 1/2 h

water vapour 5.0 k m

G M S visible 1.25 k m

(J A P A N) infrared 5.0 k m 1/2 h

G O M S visible 1.5 k m

(USSR) infrared 12 k m 1/2 h

Table 1.4: Comparative features of images from four types of geostationary

weather satellites.

19

It is noted that Second Generation Meteosat Operational Programme (M O P)

satellite i n the late 1998 wi l l provide image data i n al l spectral channels simultane

ously (VIS , I R and W V) , the high resolution visible (HRVIS) w i l l have a sampling

distance of 1km at nadir and image repeat t ime w i l l be 15 minutes.

1.7 Chapter OutHnes

The ma in objective of this study is to develop cloud classification algorithms and

investigate^'^'^application to cloud tracking. The next chapter reviews different

cloud identification algorithms and their applications. The problems associated

w i th each algorithm are highlighted and their application discussed. C loud wind

systems w i l l also be reviewed, some of them are for research purposes whilst others

are operational.

Chapter 3 is an overview of various techniques related to clustering. Clustering

is usually referred to as unsupervised learning i n statistical pattern recognition

hterature. It is closely related to supervised learning i n which many techniques

can be extended and applied to clustering. Techniques related to the algorithms

developed i n this study w i l l be introduced and some problems are highlighted. A

breakdown of fields of study i n pattern recognition is shown i n F i g . 1.4.

20

Classifications
(Pattern Recognition)

Non-Exclusive
(overlapping subsets)

e.g.. fuzzy clustering

parametric

Exclusive
(non-overlapping subsets)

supervised'
learning

unsupervised
learning

non-parametric
categories unknown

use clustering
categories known
mixture resolving

Hierarchical
e.g. graph theorectic

clustering

Parti tional
e.g. dynamic

clustering

Figure 1.4: Break down of statistical pattern recognition.

A major problem i n iterative clustering is the need for a set of starting centres,

and these are usually selected from the image manually. This procedure is thought

to be subjective and can have a profound effect on the results as shown i n this

work. Chapter 4 describes a Global-Local clustering scheme which part ial ly

solves this problem. The first stage of the clustering scheme consists of a non-

parametric clustering algorithm which is used to obtained an in i t ia l parti t ion of

the data without any a priori knowledge of the data, however due to the nature

of M E T E O S A T data this in i t ia l parti t ion is usually unacceptable and therefore

a second stage consists of a dynamic clustering algorithm is used to refine the

part i t ion. Several distance measures derived from a general Gaussian model are

also presented. T h e effectiveness of the Global-Local algorithm is demonstrated

using several sets of M E T E O S A T images.

Clustering of image data is computation intensive, the Global -Local clustering

algori thm exploits the multiple occurrence of patterns, and hence^ery efficient.

21

Spatial information is usually ignored by clustering algorithms. In Chapter 5

a Spatial-Spectral clustering algorithm is introduced. The first stage consists

of a segmentation technique called Graph Theoretic Hierarchical Segmentation

method which exploits the contextual information of image data. The second

stage is the clustering of segments generated i n the first stage. Segmentation is

regarded as spatial clustering, based on this concept two stepwise opt imal segmen

tation approaches are presented, they are the top-down and bottom-up approaches

respectively. A cost function is evaluated i n each step such that a criterion func

t ion is min imized , and cost functions are classified into global and local types,

and i t is shown that performance of global type cost functions are superior to lo

cal type functions. Segmentation results are always justified subjectively, i n this

study the performance of a segmentation process is monitored using the mutual

information measure. Segmentation is modelled as a communication channel and

the entropy loss of the system reflects how well the segments approximate the

original image. The opt imum number of segments are then clustered using an

agglomerative method, this uses a statistical hypothesis testing as a similarity

measure of segments, and the most similar pair of segments are merged in each

step. The complete process integrates both contextual and spectral information

and therefore generates "clean" clusters. The Spatial-Spectral clustering algo

r i thm is compared wi th the Global-Local algorithms (per-pixel), and problems of

this algorithm are also discussed.

Procedures to compute cloud winds is discussed in Chapter 6. They included

geometric rectification of images, choice of tracking algorithms, target size, height

assignrnent of wind vectors and target selection. The Global -Local clustering algo

r i thm is included i n an automated cloud wind generation scheme which compares

tradit ional methods of cloud tracking using raw images and the clustering ap

proach employed i n this study. Six sets of M E T E O S A T images w i l l be used and

the result compared wi th numerical model data supplied by Meteorological Ofiice

Bracknel l . A n encouraging improvement using a clustering approach has been

achieved. The opt imal target size which yields min imum low level wind speed

22

error has been found to be 24 x 24 pixel at mid-lati tude for M E T E O S A T imagery.

F ina l ly , Chapter 7 summaries the results and highlights the advantages and

disadvantages of the different techniques.

23

Chapter 2

Review of Cloud Analysis and

Cloud Wind Systems

This chapter reviews various methods for cloud identification and cloud motion

wind (C M W) systems. Satellite wind generation has been studied since the m i d

1960's, and many wind systems have been developed. However, major problems

s t i l l exist. M a n y cloud algorithms have been developed but most of them are

designed for purposes other than cloud wind tracking. In general, a l l cloud iden

tification algorithms are concerned wi th the classification of pixels i n an image.

Different algorithms w i l l be discussed and we shall explain why clustering is chosen

for cloud tracking in this study.

2.1 Cloud Identification Algorithms

Most of the Earth 's surface is constantly covered by clouds, ice and isnow, these

substances dominate the reflectivity of the planet. The height and amount of cloud

is an important mechanism i n the control of infrared radiation emitted to space.

It is clear that clouds play an important role i n the mechanism that conirdU'the

planet's climate. The International Satellite Cloud Climatology Project (I S C C P)

was set up i n 1981 as pa,rt of the world climate research program (Rossow et

a l . 1985). The objectives of this project a.re to generate a representative data

24

base of satellite data and extract from this the cloud information- appropriate for

atmospheric modeUing and chmate studies. The huge number of images received

from current satellite systems demand an automated technique for evaluating the

cloud parameter. The objective of cloud analysis is to deduce properties such

as cloud height, description, amount and type. A good cloud algori thm should

be able to deduce a l l these features of the image. However, since many different

forms of cloud exist, and because, the background can confuse observation of some

cloud types (cirriform), this task can be extremely difficult. M a n y algorithms are

heuristic and usually designed specifically for a single cloud property.

M a n y cloud analysis algorithms havubeen developed specifically for cloud cover

estimation, since cloud cover is the most important parameter affecting the en

ergy budget of the earth-atmosphere system. A small consistent perturbation i n

cloud cover may cause a significant change i n chmate. O n the other hand, cloud

signatures reflect the nature of atmosphere circulation and is important for the

study of climate variations.

C loud identification algorithms are used to estimate cloud cover. Satellite-

based cloud identification algorithms can be grouped into three classes. 1) Thresh

old methods, 2) statistical procedures^and 3) radiative transfer techniques (Good-

mane and Henderson-Sellers 1988).

Threshold techniques can use only a single visible channel, an infrared chan

nel or both (Rossow et al . 1985). They assign to each pixe l (or field of view) a

completely clear or cloudy label according to the magnitude of the observed radi

ance or albedo relative to the predetermined threshold level. V I S thresholds are

intended to represent the apparent temperature. The areas i n the infrjired images

which are colder than the threshold are assumed to be clouds. There are four
a.

main methods for choosing^hreshold. Firs t ly , the threshold for both V I S and I R

are constant. Secondly, they can be derived from other weather or geographical

data bases: infrared thresholds can be derived from surface reports of temperature

and visible thresholds can be derived from the type of surface which is viewed.

Thi rd ly , thresholds can be derived from the image itself i f the area includes clear

25

areas. Clustering or Spatial Coherence methods(to be described later) can help to

establish the threshold. Final ly , to ensure that an area is part ly clear so that the

threshold represents 'c lear/cloud' boundaries and not 'c loud layer' boundaries,

the threshold can be determined from a series of images at different times and

the extreme radiance (dark visible or warm infra-red) can be used as the thresh

old. Unfortunately, these techniques perform badly when pixels are part ial ly or

semi-transparent clouded. It is also difficult to define the clear sky radiance value.

In contrast, statistical techniques part i t ion the multi-dimensional histogram

into representative classes. They assume that every class has a distinct mode

i n the multiT|p«jctvfi,l histogram (usually visible and infra-red). These classes

are associated wi th relatively homogeneous emitting and reflecting surfaces, cloud

types, oceans and land. There are three type of approaches based on the concept

of multi-dimensional histograms, they are:

1. Gaussian histogram analysis (Piatt 1983, Phu lp in et a l . 1983).

2. Dynamic Clustering (Desbois et al . 1982).

3. Spatial Coherence method (Coakley and Bretherton 1982).

The first method fits a Gaussian (normal) distribution function to one and

two dimensional frequency histograms i n order to isolate distinct clusters (see

F i g . 2.1). The success of this technique depends on the decision criterion and

the resulting effectiveness of the cluster definition. The European Space Agency

(E S A) uses a histogram analysis of this type and applies i t to 32 x 32 pixel visible

and infrared window. A cluster is then identified in the histogram and classified

(Bowen et a l . 1979).

26

assumed Gaussian

radiance temperature

Figure 2.1: F i t t i n g of one-dimensional Gaussian model

onto a histogram.

The second method uses a clustering algorithm to indirectly part i t ion the his

togram. The maximum number of clusters to be found may be l imited but the

algorithms are otherwise free to jfind as many clusters as the image suggests. This

is important because i t distinguishes the clustering algorithms from classification

aJgorithms, which use a previously determined set of clear and cloudy categories

as a fixed set of choices. Clustering algorithms are known as unsupervised pro

cedures that produce unldbelled categories. They are very flexible and useful for

coping wi th a great variety of cloud types and backgrounds found i n meteorologi

cal images. A drawback of clustering algorithms for cloud cover estimation is the

i i iabi l i ty to treat partially cloudy pixels correctly. Other limitations such as bad

performance when clusters are not well defined in the histogram space. The ini t ia l

centres also have a profound effect upon the number of resulting classes.

The last method called Spatial Coherence algorithms. This method studies

the local spatial variance of a 3 x 3 pixel array and it relies on the assumption

that over small horizontal distances the sea surface emitted radiance values from

each pixel wi l l be vir tual ly constant (see F ig . 2.2). The emitted radiance values

27

of cloud tops are assumed to be variable from pixel to pixel . Over cloud-free sea

surface the local standard deviation i n infrared is found to be small , whereas

for cloud contaminated pixels it. Is normally much higher. A l l local arrays wi th

standard deviation higher than a predefined threshold value are assigned as cloud

contaminated. The local standard deviation of 11 fim brightness temperature is

plotted as a function of local mean radiating temperature. Funct ion values wi th

high standard variation and medium mean temperature represent overlap area in

the histogram and hence partially cloud covered class. Th i s spatial properties

can be considered as a feature and be included i n clustering to improve cloud

boundary classification (Seze and Desbois 1987).

O

•V
u a •a fl
a

o

•
•

• • •
• • • • •

• •
• * • • • •

• • •• •

- • • • • • • •••••
1̂ '2

Local mean temperature

Figure 2.2: Typica l plot obtain using spatial coherence

method. Cluster of points at T\ represents cloud-free

scan spots, the cluster near represents cloud-covered

scan spots. The points between these cluster represents

partially covered field of view.

The last type of algorithm is called the radiative transfer type. This algorithm

usiss a cloud radiative model to simulate what the satellite would sense and what

cloud properties could be retrieved if the data in different atmospheric windows

28

were available. The calculated radiances and corresponding cloud properties can

be used i n a look-up table so that measured radiances can be related to cloud

properties.

The above techniques can be combined to complement each other advantages

and disadvantages. Saunders and Kr iebe l (1988) used five tests to detect clear

sky and cloudy radiances on A V H R R data. The first test applied to both daytime

and night-time data is an infrared (12//m) threshold test as a check on cloud

contamination. The second test is a local uniformity or spatial coherence test

applied on a 3 x 3 pixel array of l l / z m brightness temperatures. This test is

applied over the sea during the day, as the horizontal temperature variations over

cloud-free land can be significant, so this test is only suitable for smal l temperature

variation surfaces. The th i rd test applied during the day is a dynaimic reflectance

threshold test, the threshold is determined by examining a histogram of a 50 x 50

pixel window of the visible and infrared images. The fourth test used during the

day, uses the ratio of near infrared reflectances to visible reflectances, this ratio is

close to uni ty over clouds. The final test applied to both day and night t ime data

examines the difference between 11/im and 12fim brightness temperatures. This

cloud detection scheme was compared wi th Pairman's (1986) clustering algorithm,

although no solid conclusion can be drawn due to difficulties i n comparison, both

schemes are useful for detection of clear sky radiance.

2.2 Supervised Cloud Classification

The main application of a cloud identification algorithm is to provide a cloud cover

estimation, and so i t is not directly related to the recognition of cloud types. B u t

cloud identification algorithms such as those using clustering or histogram fitting

produce unlabelled cloud types as a by product. There are many algorithms de

signed specifically for cloud classification, and these can have other meteorological

applications, such as cloud cover estimation. Another possible application is the

identification of cloud targets for cloud tracking, as suggested by Pa r ikh (1977).

29

Most cloud classifications algorithms are statistical pattern recognition techniques

and fall under the heading of supervised, classification. -Basically, the supervised

technique uses a set of labelled samples to represent the typical pattern classes,

then model parameters (usually Gaussian probabili ty distribution function) are

derived from these samples and hence the decision boundaries for different classes.

Therefore classes have to be provided to the algorithm init ial ly, and this is very

difficult because images taken at different times of day and seasons can vary

greatly due to different sun-satellite angles (although a data base can be buil t to

compensate for these).

To avoid the problem of bui lding a data base, an unsupervised classification

approach seems highly desirable. One class of unsupervised classification is called

clustering. Basically, clustering tries to part i t ion the data set into its natural

pattern, wi th l i t t le or no a priori knowledge of the data. A disadvantage of

clustering is that spatial information is difficult to apply and therefore is often

ignored. However, i n Chapter 5 we w i l l describe a new clustering algorithm which

incorporates the use of spatial information.

A common type of cloud classification breaks the satellite image into small

regions and classifies the cloud class of each region as a whole. The method

may use many statistical and textural features to help classify each region more

accurately. Due to the coarse resolution i t is suitable for classifying large areas.

A study using the region approach was done by Pa r ikh (1977), which compared

the value of different features i n classifying clouds. Cloud was classified into

four types, low, mix , cirrus and cumulonimbus. The original application of this

study is cloud motion wind determination. It was found that the visible and

infrared images are good features for cloud classification. Pa r ikh and Rqsenfeld

(1978) use a mixture of segmentation, thresholding and classification techniques

to classify cloud types. The infrared image is first thresholded to separate cloud

and background, and then the cloudy pixels are segmented using a clustering

technique. F ina l ly the clusters are classified using decision tree classifier based on

the statistical features derived from each cluster.

30

A region approach was adopted by Garand (1988), Ebert (1987, 1989). Ebert

nsed a max imum likehhood technique to classify four channels of Advance Very

High Resolution Radiometer (A V H R R) data into eighteen cloud classes. Spec

tral and textural features characterizing each class is extracted from each 32 x 32

pixel cell. Eight features were chosen out of a total of sixty six features. A m o n g

them three are spectral features and the others are textural features. A n itera

tive training procedure is used to reduce subjectiveness of in i t i a l t raining set. A

classification accuracy of 85% on 25 classes was reported on a data set taken over

the polar region.

Garand also used a maximum likelihood technique to classify bispectral G O E S

data into twenty cloud classes. The features used were slightly different from the

usual spectral and textural features. Features such as cloud fraction at low, middle

and high altitude, cloud top height and mean cloud albedo, multi-layer index, a

streakiness factor connectivity indices and power spectrum were used. The use of

two dimensional features can detect cloud stre«tks and ro l l . A n accuracy of 79%

was reported.

Despite a l l the difficulties of coping wi th the great variation of the data, an

operational cloud classification model has been implemented i n Sweden (Karlsson

1989). A data base of Sun elevations and air mass temperatures was buil t to allow

diurnal and seasonal variations of radiances. The variation of data is mainly due

to the following factors:

1. sun elevation at the object,

2. sun-sateUite azimuth angle (i.e. the azimuth angle between the satellite

viewing point and the sun measured at the object),

3. the shape of the object (e.g. i f the object produces shadows, i f i t is trans

parent or i f i t is only partly filling the pixel),

4. differences i n radiometer performance between different satellite and con

secutive orbits.

31

5. variable radiance contributions from intercepting atmospheric water vapour

and aerosols,

6. temperature variations of the object.

Karlsson's classification model included 828 class categories wi th 3 levels:

1. three season classes (summer, spring/autumn and winter),

2. twelve sun elevation classes,

3. twenty three object classes.

The classifier was based on max imum likehhood classification.

Another approach to classification is to segment the image based on the fea

tures being used, and then to label each of the regions or segments afterwards.

M a n y more measurements are then derived to make a decision when labelling

each of the resulting segments. Measurements such as the object shape can also

be used. These axe not available when individual pixels or arbitrary defined re

gions are being labelled. Studies by Seddon (1983) use cluster analysis to part i t ion

multi-spectral images. It should be noticed that the clustering technique assigns

pixels to a cluster on an individual basis, so like the per-pixel classification, noise

problems w i l l be encountered at the boundaries between classes. Seddon used a

heuristic post processing algorithm to clean up the regions before making shape

measurements. Many spectral, textural and shape features were derived and the

clusters were classified using decision tree classifier.

Algori thms which assign pixels individually tend to produce a rather noisy

boundary between areas belonging to different classes. Studies by K i t t l e r and

Pai rman (1985b) consider the use of contextual information i n per-pixel classifi

cation. They argued that i f the classification is a preprocessing step for a pattern

recognition process, then the effect of noisy edges is undesirable for subsequent

shape analysis of the classes. For instance, the result of the classification may

be interpreted by a syntactic method to identify entities such as fronts, cyclones

or jet streams. To do this the shapes of the objects would be examined. The

32

existence of many extraneous incorrectly classified pixels w i l l make, the task much

more difficult. Their iterative contextual algorithm considered the classification

of the neighbouring pixel , the classification rule was based on modified version of

the Bayes' decision rule.

2.3 Unsupervised Cloud Classification

A n area w i th a more direct relevance to the work described i n the next three

chapters is that of unsupervised classification or cluster analysis. Th i s approach

has been used i n deriving cloud properties as well as cloud classification. Desbois

et ,al.(1982) used dynamic clustering to cluster three channels Meteosat images

(visible, infrared and water vapour). Dynamic clustering is a type of iterative

process which tries to optimise an objective function representing the part i t ion.

The most common type of objective function is the mean square error wi th in each

cluster. W e l l defined types of cloud can be associated w i th a specified spectral

signature i n the multi-spectral histogram, therefore assuming every k ind of cloud

is represented i n the spectral space by a compact cluster, decision boundaries can

be drawn between different cloud types. Desbois find 5—7 clusters i n a 200 x 200

pixel window. The clustering result was applied to determine the top temperature

of semi-transparent cloud.

Seddon and Hunt (1985) and Pai rman and Ki t t l e r (1986) also applied clus-

tering to cloud images, and they usedy^similar clustering algorithm^of Desbois.

Seddon and Hunt included split and merge functions to allow clusters wi th too

large a standard deviation to split , or clusters which are very similar to metge

as i n the classical I S O D A T A algorithm (Ba l l and H a l l 1967). Seddon also used

a linear transform (principle component analysis) to preprocess the image, and

obtained better partit ioning. Pai rman used a modified distance metric derived

from a normal distribution model. The metric allowed generalised Gaussian clus

ters and also account for different cluster population. The i r algorithms required

an in i t ia l part i t ion to start. This in i t ia l parti t ion can be generated randomly, but

33

random starting points can have a profound effect on the final result and therefore

is not recommended (Seddon 1985, K i t t l e r and Pa i rman 1985b). A n algorithm to

obtain good starting points w i l l be discussed i n Chapter 4.

Clustering produces decision boundaries that are fixed i n spectral space, i.e.

every pixel can only belong to one cluster. K e y et a l . (1989) u.̂ e4 a new clustering

approach called fuzzy clustering applied to cloud images. The fuzzy clustering

algorithm assigns each observation to a l l clusters, w i th membership values as a

function of distance to the cluster centre. The fuzzy set provides information

on which spectral channels are best suited to the classification of particular fea

tures and can help determine likely areas (cloud boundaries) of misclassification.

The abihty to assign a pixel to more than one class may help to identify cloud

contaminated pixels.

A supervised approach requires many resources to collect and verify a cloud

data base which is not always a feasible approach. A quick start can be ac-

comphshed by using clustering, which requires l i t t le or no prior information and

should perform weU for a l l situations. Desbois (1982) found that clustering can

compensate for images taken wi th different sun angle.

2.4 Operational and Research Wind Systems

A l l satellite cloud motion wind systems consist of the following process: image ref

erencing, segment processing (target selection), w ind vector determination, height

attr ibution, manual editing, final processing (Hubert 1979).

Most early operational wind systems only generated low level winds. Green et

al . (1975) described an operational model for SMS-1 low level winds. Since cross

correlation is computationally expensive, they used a first guess/fast displacement

algorithm to reduce the search area. They also used temperature slicing of infrared

images to compute wind vectors, and then the output from the automatic proce

dure was presented to meteorologists for manual editing. A significant proportion

of the automatic wind vectors which are rejected during manual editing represent

34

multi-layered or upper-level clouds.

Novak and Young (1977,1978) gave a review of operating cloud motion system.

A n automatic method was used to produce only low level wind , and a manual

method was used for both low and high level wind . After 1974 meteorological

satellites carried infrared detectors, and this allowed cloud height to be estimated;

however only low level (700~900mb) winds were computed operationally. They

used temperature slicing for cross correlation. Manua l analysis techniques provide

the final quali ty control of the wind estimates produced by the automated and

manual procedures.

A n interesting wind system was presented Endhch et a l . (1971). Here a

clustering algorithm called I S O D A T A was used to separate cloud clusters in visible

images and each cluster was represented by the centre of gravity. These centres

were tracked i n the image and the displacement of the centre represented the cloud

motion. This clustering algorithm was found to be too t ime consuming and was

modified by Wol f et al . (1977). The modified automatic system for cloud wind

used 4 k m x 4km S M S - G O E S images. They used a 21 x 21 pixels window and only

retain pixels which are above the mean gray level of the window. These pixels are

supposed to be a l l cloudy pixels, which are then grouped together as i f they are

spatially connected. Very large groups were reduced and very small groups were

dropped. Two consecutive images were processed as mention above, then group

centres are matched wi th heuristic procedures, these matches similarities produce

the displacement of cloud targets. The process uses both V I S and I R information,

but not simultaneously.

The operational wind system (Fig . 2.3) of the E S O C was describe by Bowen et

a l . (1979). This system is designed for extraction of meteorological information

from M E T E O S A T images. The system is highly automatic and required Uttle

human intervention, although manual editing of the final result was necessary.

This system also allowed manual tracking using a technique similar to a movie

loop, but using cross correlation for interactive tracking. The whole image is

divided into 32 x 32 p i x e l segments, and a cloud analysis using VIS4-IR, and/or

35

I R - f W V bi-dimensional histogram is applied to each segment. The Gaussian

model is being fitted onto the I R histogram and then each fitting is regarded as a

cluster. The mean radiance of each cluster in the histogram is compared wi th the

predicted radiaince and classified. I f a suitable target is identified, i t was tracked i n

the previous and next infrared image using cross correlation, therefore two vectors

were obtained. If the two vectors diifef by more than a threshold, then the target

was assumed to produce spurious wind and be rejected. If a vector passed the test,

another test was used to determined which cloud type i n the segment i t belongs

to. This test performs cross correlation of every cloud type found i n the previous

histogram analysis, and the cloud type having max immn correlation was assigned

to the wind vector.

36

Input three METEOSAT images
VIS+IR+WV or IR+WV

i
image registration

Divide images into 32 x 32
pixel segments

I
Performs histogram analysis

on all segments

target tracking using
cross correlation

i
track each cloud type found in

the histogram analysis and
determine the cloud type which

has the highest correlation coefficient,
•find the- cloud height of this cloud type,

and assign the vector in previous step
to this icloud height.

no

m a n u a l (editing a n d output
wind vectors

Figure 2.3: Operational cloud motion vectors system op-:

erated by Meteorological Informa,tion Extract ion Center

in European Space Operations Center:
37

Wilson (1984) described a new multi-spectral image processing system for

extracting mesoscale wind fields automatically from sequences of G O E S imagery.

The system include a preprocessing stage, which performs the following image

processing functions

1. clean up image to reduce random missing elements and hnes, using nearest

neighbour averaging.

2. contrast stretch to expand the image count value to the full 0-255 dynamic

pixe l resolution.

3. alignment of the visible/infrared scenes to account for element shift offset.

4. resample the infrared imagery to an equivalent resolution of the visible scene.

5. edge preserving filtering of the visible image.

The targets are selected by examining the visible and infrared greyscales, i f the

visible variance is less than a threshold Tvis and infra-red variance is greater than

TiR then the window is assumed to contain a suitable cloud target. Wi l son applied

a tracking techniques called Sequential Similari ty Detection Algor i thm (S S D A)

which was proposed by Barnea and Silverman (1972). A performance index was

computed for every correlation surface and wind vectors wi th performance index

lower than a threshold were rejected. He claimed less than 1% of wind vectors

require meteorological editing.

Turner and Warren (1989) described two schemes for obtaining cloud motion

vectors i n the polar region using A V H R R data. The manual scheme used a movie

loop to assist target selection and used cross correlation for tracking. The auto

mat ic scheme use three consecutive polar stereographic projected infrared images

wi th a target window of 7 x 7, very flat featureless area were not selected because

of difficulty i n separating cloud and ice. The target and search area must have a
VaifioitToK

mean temp eratur^less than b°K. Cross correlation was used and several threshold

methods were used to speed up the computation. Two vectors were computed for

each window and i f either the speed or direction differ by more than a threshold

38

of 50% or 30° they are rejected. The height assignment use infra-fed brightness

temperatufe, no atmospheric correction or semi-transparency correction was ap-

phed. A s i n this thesis, their results were compared wi th numerical model results

from the Meteorological Office.

Lunnon and Lowe (.1990) investigated the relationship between template geom

etry and rms vector error using template size ranging from 4 x 4 to 32 x 32 pixels

(M E T E O S A T infrared images) and found a m i n i m u m low level vector difference

wi th a teinplate size of 16 x 16 pixels. They followed the operational cloud wind

extraction procedure of the European Space Operation Centre (E S O C) .

Schmetz and Holmlund (1990) described the up to date version the of opera

t ional cloud motion wind scheme operated by E S O C . The wind extraction works

fully automatically and is following by a manual quality control. The main fea

tures of the system remain unchanged as described by Bowen et a l . (1979). The

changes were

1. a radiance sHcing technique for high level clouds was introduced alleviating

the problem of tracking a mixture of clouds at various levels.

2. a new calibration of the M E T E O S A T water vapour channel based on ra

diative transfer calculations gave considerably higher calibration coefficient,

which has lead to a better height assignment of semi-transparent clouds

forming the major share of high level cloud tracers.

3. use a wind forecast to guide the cross correlation search.

4. the radiance slicing was replaced by a preprocessing and image transforma

t ion which extracts pixels belonging to the highest cloud layer i n a segment

area and smooths contaminated pixel values and the background.

In spite of these improvements, high level wind speed is s t i l l systematically

underestimated. Bowen (1979) also suggests that satellite wind extraction using

cirrus as tracer should be regarded as the mean wind of a deep layer instead of a

specific level.

39

2.4.1 Other Cloud Wind Applications

Satellite cloud images can also be used to obtain mesoscale wind vectors. Wi l son

and Houghton (1979) computed 3 dimensional wind fields for a severe storm situ

ation determined from S M S cloud images. He used the leading edge of large trade

wind cumulus as tracers, and assign a l l winds to cloud top level. Thei r results

show that satellite cloud wind data provided reasonable and useful information

for mesoscale wind fields.

Al though the infrared image is used for tracking low and high level wind , mid

dle level w ind can be obtained by tracking features i n the W V channel. End l ich

et a l . (1981) tracked M E T E O S A T W V images using the wind system described

by Wol f et al . (1977). However due to the flatness of the W V image, high vector

density can only be obtained in and around regions of active weather phenom

ena. Eigenwil l ing and Fischer (1982) used cross correlation on M E T E O S A T water

vapour image. The W V image was preprocessed by high pass filtering using a gra

dient filter. They obtained results applicable to mid-troposphere level (500 mb) ,

and also found that W V features always can last as long as 10 hours.

2.5 Summary

There are several basic difficulties that have been encountered i n automatic cloud

mot ion tracking. The most important problems are

1. Height assignment of wind vector.

2. Target selection.

3. Mult i - layer cloud confuse cross correlation tracking.

Each of the above problems can be treated as a separate research topic. In

this study the primary objective is to improve the abil i ty of cloud tracking in

multi-layered regions. The necessity to separate cloud types before tracking is

well recognised and has been done using simple temperature slicing (Green et a l . .

40

1975) and by more sophisticated techniques such as histogram analysis (Bowen et

a l . , 1979). The temperature slicing techniques does not use the visible information.

W h i l e the histogram technique only uses histogram analysis for tairget detection,

no attempt was make to track individual cloud type. Al though clustering was

tried by End l i ch et a l . (1971), i t d id not use both the V I S and I R information and

their concept of tracking cluster centre is different from our concept of tracking the

cluster pattern. In Chapter 1 i t was mentioned that effective cloud analysis can

only be made i f both V I S and I R images are analysed simultaneously, therefore

V I S + I R images are used in this study.

Based on the forgoing literature reviews, i t is believe that cloud separation

using multi-spectral clustering can improve cloud tracking and at least provide

another approach for cloud motion tracking.

41

Chapter 3

Statistical Pattern Recognition

and Clustering

Cloud recognition requires a,^ott'it<>n<hii^ of the feature space, this is obtained by

pattern recognition methods. Pat tern recognition can be divided into two main

areas: supervised and unsupervised approach (Duda and Har t 1973). The only

difference i n these two approaches is whether samples w i th known labels are given.

If samples are labelled, a supervised approach is employed, otherwise unsupervised

learning is applied. The main area of study in this work is unsupervised learning

(clustering), but, due to the similarity of the two approaches, many techniques are

equally applicable. This chapter discuss clustering techniques which are relevant

to the project.

An application of pattern recognition in image analysis is to classify or

label ind iv idua l pixels (Ki t t ler and Pairman 1985a, Swain et a l . 1981). Other

approaches (Seddon 1983, Ebert 1987, 1989, Garand 1988) classify groupjof pixels

(region). Every p ixe l is a pattern vector i n the case of a multi-spectral image.

The dimension of the pattern vector is equal to the number of spectral bands only

i f direct observed features are used (F ig . 3.1).

42

Figure 3-1: A multi-spectral image.

Each band i n a multi-spectral image responds to a different window in the elec

tromagnetic spectrum. M a n y more sophisticated features can be derived such as

hnear or non-linear combinations of bands, or different local texture measurement

(Seddon 1983, Eber t 1987, 1989, Garand 1988). It is assumed that patterns that

belong to the same class have similar feature values and clusters in the feature

space.

The main objective of this work is the separation of cloud types before track

ing cloud motion and this is to be achieved using pattern recognition techniques.

M E T E O S A T images have three spectral bands; visible (VIS) , infrared (IR), and

water-vapour (W V) . Most cloud types can be distinguish using V I S and I R bands

(Par ikh 1978). and since these bands are transmitted every 30 minutes most of

the processing wi l l use only V I S and I R images. However the algorithms derived

could work with more spectral bands.

In this application the emphasis of classification is not on the accuracy of

labelling patterns but rather on the homogeneity of the clusters, especially in

the infrared band, because the cloud level can be inferred from infrared radiance,

43

and cloud at the same level should have a small temperature different. One could

argue that thresholding on the I R image wi l l have the same result as multi-spectral

clustering. However, this is not the case because some cloud types may have a

similar temperature but their reflectance is very difference (e.g. cumulus and

stratus). Therefore a multi-spectral method is more effective than a single band

method. A n image pattern recognition system (F ig . 3.2) has been developed to

first cluster V I S and I R images and then track clusters to ascertain cloud motion

winds.

input three sets of image
VIS+IR or VIS+IR+WV

cluster the second
set of images

match each cloud cluster
in the previous and

next image

compute velocity
and check quality

edit vectors and, output

Figure 3.2: A n Image pattern recognition system for

cloud motion tracking.

Many wind systems reviewed in Chapter 2 do not take advantage of the full

multi-spectral information; i.e. they do not separate cloud types using mul t i

spectral information before tracking. However, it is intui t ively attractive to sep

arate cloud types before tracking as suggested by Hubert and Whi tney (1971),

Par ikh (1977), Par ikh and Rosenfeld (1978).

44

A clustering approach (unsupervised learning) has been chosen i n this work for

cloud classification since it was not possible to bu i ld up a data base to account for

cloud classes at different times of day and season (Karlsson 1989). Clustering is

often refer t o as "learning without a teacher", its purpose is to learn the underlying

distribution of the patterns and parti t ion the data into unimodal clusters (Devijver

and Ki t t l e r 1982).

Almost a l l common clustering approaches have been used i n this study, and

so i t is useful to give an overview of clustering and some pdf estimators before

introducing the clustering algorithms i n Chapter 4 and 5.

3.1 What is Pattern Recognition?

For our work a pattern w i l l be defined as a vector x = [xi,X2,...,xj]-^ i n mul t i

spectral space. The concept behind statistical pattern recognition is that i f rep

resentative features can be extracted from the object to be classified, and i f those

features have well separated probabili ty density functions (pdfs) i n the feature

space, then objects can be classified by forming decision boundaries between these

densities. New objects can then be classified using the decision functions.

In case of a multi-spectral image, a

pattern is usually the pixel wi th or without additionally derived features. Patterns

that belong to a particular class are not unique, due to noise i n generating the

patterns, and variations among objects. The variabili ty of patterns imphes that

the problem of pattern recognition is the discrimination of input data, not between

ind iv idua l patterns but between populations.

Figure. 3.3 shows two typical classes usually found i n weather satellite images.

Notice the variation i n the pattern clciss. The land and high cloud class are disjoint

clusters i n the measurement space, but i n fact land often overlaps w i th low cloud

and sea, while high cloud overlaps wi th middle cloud. Also , most cloud classes

are usually not unimodal.

45

255

oc^ high clouds

fctO

0)
I—(

•i-i

CO

0 infrared grey-levels 255

Figure 3.3: Two disjoint pattern classes.

3.1.1 Feature Selection

In most pattern recognition systems a major concern is the dimension of the

measurement space. In some cases dimensions up to a hundred are not unusual.

One might think that the more features the better the abi l i ty to discriminate

classes, but i n fact this is not true. A basic pattern recognition system is shown i n

F i g . 3.4. Usual ly certain features are common to some classes but not others, i t is

useful to extract or select those features which axe discriminatory for each pattern

class wi th m i n i m u m loss of information. This preprocessing of measurements is

necessary not only for the reason just mention but also to reduce computational

cost (Mausel et a l . 1990, Sheffield 1985). When the most effective features have

been selected, i t is required to derive a set of classification rules from samples of

classified patterns. This process is called discrimination, while new patterns are

classified using the classification rules.

In this application the nmvifeo- of features is no more than three and

it is. found that feature selection is unnecessary.

46

objects
1 ' ^ ^ features

selection and
preprocessing

y discrmination
and

classification

d(x) features
selection and
preprocessing

discrmination
and

classification
pattern class

pattern space feature space

Figure 3.4: A basic pattern recognition system.

3.1.2 Decision Rules

Supervised classifiers use decision rules to classify new patterns, these rules assign ft,

class label to a pattern based on their estimated class conditional probability. In

contrast to this, decision rules based on distance measure (or dissimilarity) are

used extensively i n unsupervised methods.

Classification of new patterns using decision rules is based on the classical

Bayesian approach. The basic concept of this approach is to minimise a decision

loss function and hence the average risk. A pattern x is represented by a vector

x = [s i , . . . where d is the dimension of the feature space and coi i =

1, . . . , C represent possible classes. The a im of statistical pattern recognition is

to be able to determine the class membership of a giveii pattern wi th minimum

probabil i ty of error by means of decision rules or discriminant functions.

47

Let P(a;,) = the a priori probabili ty i&f dUss XO^ :

p{x.) = the probability that a pattern is x

p (x I u>,-) = the class conditional probabili ty that the pattern is x ,

given that i t belongs to class u;,-

P{u>i I x) = the a posteriori conditional probabili ty that the pattern

belongs to class w,-, given that the pattern is x

P(a;,-,x) = the joint probabili ty that the pattern is x

and that its class membership is a?,-

where VP(W,-) = 1, / p{x.)dx=l

We have, P (x , a ; i) = p (x | a;;)P(wi) (3.1)

and P(x ,a ; .) = pC*^.-| x) P (x) (3.2)

Combine 3.1 and 3.2 we have

P (a , H x) = ^ ^ " ' 7 \ ^ (" - -) (3.3)
p(x)

Ideally, a pattern x is assigned to class w,- i f p(w,-|x) > p(u;j|x) V j 7^ i . However,

p(a;,|x) is usually very difficult to estimate. Bayes' relation (eqn. 3.3) provides a

practical means for cleissification, because the class conditional probabihty can be

estimated from a set of s.imples wi th known categories.

The Bayes ' classification rule becomes: assign x to class w,- i f

p[A^i)P{^i) > K x k) P (a ; i) V j ^ i (3.4)

If i t is further assumed that al l classes have equal probabili ty the rule becomes,

decide x € w,- i f ;j(x | w,) > p (x | Wj) V i , j a n d i ^ j; ij = 1 , . . . , C. Rules 3.4 is

also known as^maximum likelihood decision rule, because they use the hkehhood

function
lunct ion p(x|wj)P(a;j) •

The class conditional probability density function p (x | w,) is not normally

known. It can be estimated from a training set of correctly classified data. A l

though a non-parametric pdf seems appropriate, i n practice a multi-variate normal

48

distributed pdf is usually assumed. Despite ." its use without any proof, this as

sumption performs reasonably well provided the distribution is unimodal .

The use of normal distribution is justified by the following reasons. (Hand

1981):

1. The normal distribution is a good model of many naturally occurring phe

nomena. A possible reason for this is due to the central hmi t theorem.

2. T h e multi-variate normal distribution can be defined uniquely by its mean

vector n and a covariance mat r ix S . This property of normal distribution

allows very simple and efficient computation.

3. After any non-singular linear transformation of the axes a normal distribu

t ion is s t i l l normal but wi th different parameters.

4. The principle of maximum entropy states that, i f the probabil i ty density

function characterizing a random variable is not known, the probabili ty den

sity function which niaxiniizes the entropy of the random variable subject

to any known constraints, and i t can be shown that normal distribution is

a satisfactory choice.

The class conditional pdf using a Gaussian distribution is

- i (x - / z ,) ^ i 7 r ^ (x - / . ,) (3.5) K x | a ; . -) = (27r)-''/2|i7.-|-^/2exp

where d is the dimension of x , /z,- is the mean vector, Si is the covariance matr ix

for class u;,-, and is the determinant of the covafiance matr ix .

Substi tuting 3.5 into 3.4 and taking the logari thm, the max imum likelihood

rule becomes

assign x € w,- i f

log + (x - liifsfi?^ - y^i) - <

\og\E^\ + {x-ti^i^Efi^-li.)-\ogP{u:i) Mji^i (3.6)

The second stage of the Global-Local clustering algorithm i n Chapter 4 clusters

patterns based on eqn. 3.6.

49

A simple decision function for two pattern classes is shown i n Figure 3.5,. where

Ci and ii is the class error probabilities J (x) = 0 is the decision boundary.

ei = / p(x I a;i)c?x (3.7)

(3.8)

p(x|W.)

/ P(x|CO)

Figure 3.5: A simple decision function for two pattern

classes.

Notice that in Figure 3.5 the maximum likelihood decision surface is chosen to

minimize the sum of error. A full treatment of error rate can be found in Devijver

and Ki t t l e r (1982).

A criterion function based on min imum error probabili ty is used i n the second

stage of the Global-Local clustering algorithm presented i n Chapter 4.

50

3.1.3 Distances

The maximum Hkelihood decision rule (eq. 3.4) classifies patterns based on the

ratio of two probabilities. A n alternative way to classify patterns, is to use a

distance based discrmination. Consider two sample sets i n d dimensional space,

the greater the difference between the two populations wi and U2, the greater w i l l

be the separation between the two groups. A pattern x would be allocated to the

population to whose training set i t is "nearer".

It is natural to assign x to class w,- i f the distance of x i n the feature space is

such that

5(x,a;,)<<^(x,u;i) V i ^ ^ j (3.9)

where (5(x,a;,-) is a distance function of pattern x and class u;,-. The distance

function provides a measure of dissimilarity (or similarity) between patterns. This

concept of classification is illustrated i n Figure 3.6.

255

in

>

u

m
>

new pattern assigned
to

\

00:

X
x x x x

XX X X X x

i n f r a r ed g r e y - l e v e l s 255

Figure 3.6: Pattern classification using distance.

The most familiar distance measure is probably the Euclidean metric. How

ever, there are many other measures which are more suitable in certain situations,

51

e.g. when the knowledge about the cluster structures is known beforehand. We

shall discuss problems of using distance measures i n clustering, and suggest an

approach to derive a distance measure suitable for M E T E O S A T images which is

being used i n the Global-Local clustering algorithm presented i n Chapter 4.

3.1.4 Pattern Classifier

There are many methods to derive decision rules. So far we have assumed that

p(x I Ui) came from a known faniily of distributions, leaving only the parameters

to be estimated. Other methods are non-parametric, this applies when we can

not make simplifying assumptions about the pdfs or decision surfaces.

Besides the division of parametric and non-parametric methods, pattern recog

ni t ion can further divided into two main areas, namely supervised classifica

t ion and unsupervised classification. Suppose we are given a set of samples

X = { x i , . . . , x „ } i n which the samples are independent and identically dis

tr ibuted random variables wi th continuous pdf p(x). This sample set is labelled

i f the classification is supervised, while i f the classification is unsupervised the

sample set is unlabelled.

B o t h supervised and unsupervised learning may be formulated as a classical

estimation problem. Unsupervised learning however, causes the problem solu

t ion to generally be much more complex than when there is supervised learning.

To simpHfy the unsupervised problem it is often necessary to apply engineering

intui t ion. In weather images most pattern classes are t ime varying, so the un

supervised approach seems appropriate because supervised learning usually can

not detect mult i-modal classes and requires training samples which are difficult

to obtain.

Clustering is a common approach for unsupervised classification and i t is very

often used to generate training samples for supervised classification. Figure 3.7

shows that clustering makes sense only i n terms of a priori knowledge used, and

this is part ly due to the inabil i ty to define the term cluster. The uncertainty i n

the number of clusters i n the weather images are further confused by high overlap

52

of cloud classes. Very often using visible and infrared features can not identify

semi-transparent cloud, because the background radiance always interferes wi th

the cloud radiance (Desbois et a l . 1982).

x l x l r l

(a) (b) (c)

Figure 3.7: a) Samples i n measurement space, b) Possible

part i t ion with two classes, c)Possible part i t ion w i th five

classes.

We shall introduce two density estimation methods which; are used i n the

clustering algorithms in Chapter 4 and 5. The first is parametric and the second

is non-parametric, both methods are very popular in supervised and unsupervised

classification. The first method is called max imum likelihood estimator and the

second is the histogram estimator.

53

3.2 Parametric Density Estimator

The major goal of supervised learning is to estimate P(wt) and p(x | w,) and use

Bayes decision rule to classify input patterns. Usual ly estimation of P(a;,-) present.?

no problem, but not the conditional densities. The general problem i n estimating

the conditional density is the small number of samples and large dimension of

feature vectors. If a parametric model of a pdf can be assumed (usually Gaussian),

then the problem can be simplified to estimation of mean vector n and Sj of

p(x I ujj). We w i l l assume patterns are normally distributed throughout this

section.

3.2.1 Maximum Likelihood Estimator

The M a x i m u m likehhood estimator is probably the most popular method for

parameter estimation due to its simphcity. Less common methods such as dis

tance minimisat ion, Bayes method, and sequential methods can be found i n Hand

(1981), D u d a and Hart (1973) and Ton and Gonzalez (1974).

M a x i m u m likelihood estimation of parameters requires construction of a cr i

terion function which is a function of the unknown parameters and the siamples.

Those parameter values are then found by optimizing this function. The max

i m u m likelihood estimator treats the parameters as quantities whose values are

fixed but unknown. The estimator selects the parameter vector which has largest

a posteriori probabili ty (Wilks 1962).

Suppose there are G sets of samples X i , . . . , X c r w i th the sample i n X j hav

ing been drawn independently and randomly according to the probabil i ty law

p(x I wj), assume that p(x | Wj) has a known parametric form, and is therefore

determined uniquely by the value of a parameter vector Oj. The M a x i m u m like

hhood estimaitor uses the information provided by the samples to obtain a good

estimator for the unknown parameter vectors 6i,... ,6c,iov which the probabil i ty

of obtaining the observed samples is a m a x i m u m . To simplify the problem, i t is

assumed that the class conditional densities are independent; This assumption

54

allows one to work wi th each class separately. The traditional way of using the

informaJtion in the sample set X , is to use an estimate 6i in p(x |, (Aitchison

et a l . 1977).

Suppose the set X contains n samples, { x i , . . . , x „ } . - Then since the samples

were drawn independently,

p{x\e) = f[p{Kk\e) (3.10)
jt=i

p (X I 6) is called the likehhood function of 9 wi th respect to the set of samples.

T h e max imum likehhood estimator of 6 is, by definition, the value 6 that maxi

mizes p (X j 6) (Figure 3.8). The classical approach is to differentiate p (x | 6) w i th

respect to 6, equate 5 p (X | 0) fdO = 0, and solve for 6.

p(x |e)

Figure 3.8: The maximum likelihood estimate for a pa

rameter 0.

Suppose the sample set X is from a normal distribution with parameter 0 =

(n, E), the maximum likelihood estimate of the mean p. and covariance matrix E

is obtained by substituting

p(x I 0) = {27r)-<^/'\Sr/'exp [-\{x-. f,fE-'{x-fi)

55

into eqn. 3.10, then gives the hkehhood function

p{X I 6) = (27r)-'^"/2|.^|-n/2exp

1=1

(3.11)

It is more convenient to work wi th the logarithm of the likehhood function

than wi th the likehhood function itself.

L' = \ogp{X\0)

= | l o g | i 7 n - i t r i : - V V

- | t r i : - ^ (m „ - A*)(m„ - p^f + y log27r (3.12)

Setting 1̂ and | ^ to zero (see Appendix A for proof)

P- = \JZ^i (3.13)

^ = ^ E (^ i - A) (x i - A f (3-14)

The M a x i m u m likehhood estimator is used to estimate parameters of cluster

models i n the second stage of the Global-Local algorithm described i n Chapter 4,

i t is also used to obtain parameters of mutual information model described i n

Chapter 5.

3.3 Non-Parametric Density Estimator

In some cases i f the probabili ty densities can not be approximated by a general

parametric form pdf, we have to use the sample points to estimate the densities

w i th non-parametric methods. The assumption that the forms for the underlying

density function can not be characterised by parametric form is not uncommon.

For example, when the density function of classes are mult i -modal .

There are three major type of non-parametric estimators: 1) the histogram

method, 2) the kernel method, and 3) the k-nearest-neighbour (k-nn) method

56

(Duda and Hart 1973). We shall only look at the histogram estimator, and the

other two are essentially a generalization of the histogram estimator.

3.3,1 Histogram Estimator

Histograms are the conceptually simplest method of estimating a pdf. The gener

alisation of the histogram from one dimension to many is s imply to part i t ion the

whole space into disjoint cells of equal volume.

Consider a small region wi th volume V (F ig . 3.9) about the point x where

the density p(x \ w,-) is to be estimated. Since we are working wi th single class,

we shall drop the class subscript. Given n independent samples X i , . . . , x „ the

probabili ty P that ^-of these n samples fall into this region is

P= [p{pc')dx' (3.15)
JR''

Frequency

k .

Ax=Zh

\

X

Figure 3.9: The approximation of probability density

function by histogram, where h determine the volume

of a cell.

If the region is sufhciently small , we can write •

57

/ p{x')dx' w p (x) y (3.16)

SO, pix) « ^ (3.17)

It is required to estimate P from the set of samples X i , . . . , x „ . Since the

samples are independent, the probabihty of finding any k of these samples i n

is given by the binomial distribution

T h e max imum hkelihood estimation of Pk can be found by differentiating Pk

wi th respect to k and setting dPk/dk to zero (Duda and Hart 1972),

dk \ ̂ /
P ^ - ^ (l - p)"- '=-i [fc(l - P) - P (n - k)] (3.19)

= .0

Solving for P , the estimate is given by

P = t
n

(3.20)

The local estimated density of p(x) is given by

nV
(3.21)

If we consider the region P'^ as a cell, then the histogram estimation of p(x)

is given by 3.21. The histogram estimate for cell hj is

A M = ^ (3.22)

where kj is the number of points he i n cell fej and V is same for a l l cells.

This method has the advantage that the points themselves do not need to

be stored after the estimate has been made. Only statistics describing the cell

location, number of points need be retained. The histogram approach is largely

58

l imited by the dimension of the feature space. If the space is divided into N

intervals then the number of cell is equal to A'^'^.

In some cases there may be another problem occurring due to discontinuity

between ceU boundaries. The estimate given by 3.22 is applied to the volume

occupied by a cell,, so there is an abrupt change of level between two adjacent

cells. The Spline line function can be used to smooth the boundaries (Ichida and

Kiyono 1975).

The first problem, wi th this histogram method is the prohibit ively large number

of cells needed even i n relatively low dimensional problems, this can be alleviated

by storing non-empty cells only (Shlien and Smi th 1975). Another method is to

let the data somehow determine the cell locations, number of points as suggested

by Sebestyen and Edie (1966).

Local density estimate are commonly used i n mode seeking clustering algo

r i thm which shall be discussed later. A practical method to construct mul t i

dimensional liis-tô v«oKs was described by Narendra and Goldberg (1977) and Whar

ton (1983). This method is incorporated in the first stage of the Global -Local

clustering algorithm which partitions a multi-dimensional histogram (see Chap

ter 4).

3.4 Unsupervised Learning

Unsupervised learning is to classify samples without any ftfor kho^M^^j,

such as sample labels, parameters and forms characterise the underlying

distribution. ' ' . '

If no prior knowledge of the class pdf is given, the problem becomes one of

decomposing a mixture of distributions into their components. A mixture pdf for

C classes of samples is given by (Everitt and Hand 1981)

59

Pix\e) = J2p{^\^jA)PM (3-23)
3=1

Assume the form of the class condition pdf p (x $j) is known. A l l that is

unknown is the values for the C parameter vectors di,...,9c. The conditional

densities p (x | Uj, 6j) are called the component densities, and the a pr ior i probabil

ities P{u}j) are called the mixing parameters. If the parameters can be estimated

from the samples, we can decompose the mixture into its coinponents.

3.4.1 Unsupervised Maximum Likelihood Estimation

We introduce clustering using the max imum likelihood approach for densities de

composition, this approach is very restrictive since a parametric rhodel and number

of clusters are assumed known. The maximum likehhood method can be used to

learn the parameters of a mixture density (Wolfe 1970, Hasselblad 1966).

Assumed the following:

1. The samples come from a known number C of classes.

2. T h e mixing parameters P{u}j) for each class are known, j = 1 , . . . , C

3. The form for the class conditional pdf p(x | ^j) are known, j = 1 , . . . , C .

4. A l l that is unknown are the values for the C parameter vectors, 9i,...,6c.

Given a set of unlabelled sample X = { x i , . . . , x „ } drawn independently from

the mixture density

p{x\e) = J2p{^\o:jA)Pi^j)
3=1

Assume independence of samples, we have

p (X I 6) = f[p{xk I 6) (3.24)
k=i

It is required to find the estimate 9 that maximise the mixture p (X | 9). The

logari thm of the hkehhood function is

60

k=l
n

(3.25)
k=i Li=i

Wolfe (1970) shown that the estimate which maximizes eqn. 3.25. are given by:

PM = -P (a ; , |x . - ,^) (3.26)
n

k = l,...,C-1

= - 3 ^ E P K | X , , ^) X , (3.27)
nPM ^

h = -^—y2^{iVk\xi,d){xi-pk){xi-hf (3.28)

fc = l , . . . , C

It is found that the max imum likehhood estimators for the unsupervised case

(mixture) are analogous to those i n the supervised case (single distribution).

W h i l e i n the unsupervised case the sample points are weighted by the posteri

ori probability, so a l l samples are contribute to the estimation.

Equat ion 3.26, 3.27 and 3.28 do not give 6 explicit ly, they must be solved

using some type of iterative (hi l l climbing) procedure. One iterative technique

which is commonly used has two stages (Wolfe 1970, Hasselblad 1966). The first

stage estimates the membership probabili ty for the kth. component 3.26 and the

second stage uses these membership probabili ty estimates to update the estimates

of P{u});),p.f.,Ek- These two steps are then repeated iteratively. A U iterative

techniques are not guarantied to yie ld the global maximum, but the convergences

can be improved by a set of good in i t ia l values of 6. D u d a and Hart (1973

Ch.6) use the max imum likelihood estimator on a simple one dimensional, two

components normal mixture. He demonstrated that the solution depends on the

in i t ia l estimate, and multiple solutions always exist using a clustering technique.

Clustering techniques which shall be discussed later are popular and practical

61

approach for unsupervised learning. Al though it is suboptimal, the simphcity and

efficiency always out grows their disadvantages.

Since unsupervised max imum hkelihood estimation requires many assumption

and some of them are unrealistic i n many applications, so this is usually replaced

by other clustering methods. In the rest of this chapter the most commonly

used clustering techniques and the problem of i n choosing a distance measure

are discussed. Concepts of these techniques are used i n clustering algorithms

developed i n Chapter 4 and 5.

3.5 Clustering

In the last section clustering wets introduced as a mixture decomposition approach.

Clustering also finds many applications outside the pattern recognition area. It

is generally known as a tool for exploratory data analysis (Jain and Dubes 1988).

Cluster analysis attempts to organise data into their natural structure such that

patterns i n the same cluster are more similar than patterns i n different clusters.

Th i s organisation can be a pvtî TonTtwj of the data set into non-overlapping subsets,

or i t can be a hierarchy of groups (see F i g . 1.2 for various methods).

The concept of distance was introduced i n section 3.1.3, i t is a measure of

similari ty of two patterns. The use of similarity i n clustering is analogous to

human recognition of objects. We tend to group objects based on their similarity,

so i t is natural to use this concept i n clustering. Similar i ty (dissimilarity) is the

heart of clustering, but from the first moment when a clustering method is chosen

a structure is imposed on the data which is somehow conflicting wi th the original

goal of clustering (Hartigan Ch.2 1975). For example, the hierarchical methods

"single linkage" is suitable for clustering enlongated clusters, i f this methoS'ls"^

applied to normal distributed data, the original structure may not be recovered.

So i f a priori knowledge about the data is sparse, different clustering methods

should be tried before any results can be accepted.

A general problem wi th clustering is to solve the problem of determining the

62

number of clusters. Usual ly this problem is scale dependent as shown i n F i g . 3.7.

This problem is referred as cluster validation (Duda and Har t Ch.6 1973, Dubes

and Ja in 1979, Ja in and Moreau 1987). If the data can not be projected into

two or three dimensions such that its structure can be viewed, then i t becomes

necessary to test the validity as an objective measure of the clustering results. In

clustering of imagery data, these problem is caused by the uncertainty between

objects boundaries. In this study cluster validity is not a serious problem since the

approximate number of clusters can be obtained by inspecting the original image,

and for most situations (same image size) the number of clusters only differ by

one or two.

3.5.1 Dissimilarities

The dissimilarity between the ith. and kth. patterns is denoted S{i, k) and must

satisfy the following four properties (Anderberg 1973):

A distance measure only needs to satisfy 1-3, while for a distance metric i t

must satisfy 1-4. Assumption 1 implies that an object is zero distance from

itself and that two points zero distance apart are identical. Assumpt ion 2 implies

symmetry of distance, assumption 3 prohibits negatives distances, and assumption

4 is known as the triangle inequahty, this requires that the length of one side of a

triangle be no longer than the sum of the lengths of the other two sides.

The Euclidean metric is a special case of the Minowsk i metric

1. 6{-Xi,Xi) = 0,

2. 6{xi,Xk) = 6{xk,Xi), \/i,k

3. S{xi,xk)>0, V i , k

4. S{Xi, Xk) < S{Xi, X,n) + ^(Xm, Xfc), V z, k, m

where r > 1 (3.29)

63

where x,j is the jih variable of the ith. pattern. If r = 2 we have the Euclidisan

metric. Other special cases of the Minkowski metric are the C i t y block and sup-

norm metric
d

(5i(x.-,x,) = J ^ | x o - - x , , | (3.30)
i=i

(5OO(XJ,XA) = sup | x y - X f c j | (3.31)
i<i<d

Sibson (1972) argues convincingly, order relationships are more important than

numerical values. A dissimilarity measure need not be a metric, for example the

squared Euchdean distance is usually used to replace the Eucl idean distance for

more efficient computation. However the squared Euclidean distance is not a

metric, because i t does not satisfy the triangle equality.

3.5.2 Problems of Measuring Dissimilarities in Cluster

ing

If prior information about the data can be obtained, i t allows us to choose an

appropriate distance measure ĵ Asedl'On the model of the data structure. For exam

ple, most weather image data can be modelled by multi-variate normal mixture

(Pairman and K i t t l e r 1986). In this case, a distance function can be derived from

the normal distributed model which takes into account of the cluster size and

population.

W h e n prior information is not available, a common approach is to normalise

the data such that Euclidean distance can be used to produce better clustering.

For example i n Figure 3.10, i f Euclidean distance is used the point x w i l l be as-

signed to the wrong cluster coi. This problem may be solved by taking account o f

the variance of the clusters. Ideally we would like to normalise the data so that

wi th in clusters variances are approximately equal. This is essentially a normal

izat ion of the features variables i n each cluster. Let the mean of the jth. variable,.
1

of cluster Wfc be m,jt = — y^x,- Vx,- € ufk, " ' - an^ -be., the variance of the

j t h variable of cluster Wjt,

64

s%=--Y,i''ij-mjk? j = h....d (3.32)
.=1

Unfortunately, this normalization can not be justified i f the clusters are not known

a pr ior i .

Another reason for normalization of data is the scaling effect (Hartigan Ch.2

1975). If the values of some variables are particularly large, these variablejwill

dominate the distance measure. To equalise the importance of each feature vari

able, eax:h variable could be scaled by dividing by its sarnple standard deviation

s'j = -J2{-Kij-mjy i = l , . . . , r f (3.33)

where m,- = — >^ x,- V x is the mean of the i t h variables,
n -f—'

Figure 3.10: A point x in these cases should belong, to

CJ2, although 5(x ,ma) > 5 (x , m j) , where 5 (x , n i i) is the

Euclidean distance between cluster centre m i and point

X .

65

Equat ion 3.33 rescales a l l the variables to have unit variances wi th respect

to the whole data set. A problem wi th this normalization method is that after

normalization those variables wi th relatively large Between Cluster Variances w i l l

be reducejin importance, as their scaling factors are larger. This means that

the overall between cluster variance wi l l be reduced relative to the wi th in cluster

variance and the clusters w i l l become less distinct (Hartigan Ch.2 1975).

A n alternative to normahzihg the data and using Ei ichdean distance is to use

some k i n d of normalized distance, such as Mahalanobis distance

5(x,, i^j) = { (x , -fJij)S-\xi - fijff' (3.34)

where is the covariance matr ix of cluster Wj.

Generally, we would prefer to use 3.32 for normalization, because 3.33 reduces

the distinctness of clusters. So normalization is just one method to deal wi th the

variation of cluster size and shape. Clearly, the effect of normalization is more

difficult to access when applied to >wn-:ilr»a\irjy separable clusters. Hart igan (Ch.2

1975) highlighted the difficulty of normalization as a basic circularity:

1. In order to cluster patterns, it is necessary to propose a measure of distance

between patterns.

2. In order to define distance, i t is necessary to weight the variables.

3. In order to weight the variables, it is necessary to know the clusters of objects

so within-cluster variances can be equalised.

There is no doubt that :»o distance measure is universal and the choice of a

suitable measure should be obtained from prior information of the data whenever

possible.

In spite of a l l the cri t icism about normahzation, Fukunaga and Koontz (1970)

proposed a normalizing transformation for clustering and showed that the result

using this transformation for clustering Gaussian data io as improved. Suppose we

wish to parti t ion a data set { x i , . . . , x „ } of cf-dimensional vectors into C clusters

66

with population ni,...,nc. The scatter v«i=ctnc<s are then defined as

n

Total scatter T = E ^ * ^ ? ^^'^^^
def T

Jb=l

where the data set has zero mean.

def
W i t h i n group scatter Wj = ^ (x^ - mj){xk - mjf (3.36)

Xfcewj

where m,- = — Xfc
X ^ j

c
Total wi th in group scatter = Y^Wj (3.37)

i=i
C

Between group scatter B = n j m j m j (3.38)
i=i

and r = W + B (3.39)

The eigenvalues of W~^B, A i , . . . , A ja re invariant under non-singular linear trans

formations of the data set.

Three clustering criteria (discuss later) Kdya been defined in terms of these

scatter matrices. They are

c

Jo = t r T y = E E l l ' ^^ fc -^^ i l l ^ (minimize) (3.40)

j=l Xk€OJj

d
J i = | r | / | i y | = J J (1 - | - A ;) (maximize) (3.41)

»=i
d

J2 = t r l ^ - i 5 = X) ' ^ ' (maximize) (3.42)
t=i

Jo was. proposed by Casey and Nagy (1968) and McQueen(1967), which is

not invariant under non-singular linear transformations of the data set. A non-

singular linear transformation of a positive definite scatter matr ix T proves that

a non-singular matr ix A exists such that ATA-^ = J. J\ and J2 was proposed

by Friednian and R u b i n (1967), these two criteria are invariant to non-singular

linear transformation. Fukunaga and Koontz (1970) showed that J i and J2 are

superior to Jo i n the sense of the performance requirement. However only Jo can

be directly optimized using the K-means type algorithm (MacQueen 1967). Jo is

67

computationally more efficient than J i and J2, so Fukunaga and Koon tz (1970)

derived a normalizing transformation and applied on Jo to produce

" 1
J i = E j ^ (3.43)

which is invariant under non-singular linear transformation of the xs . Fukunaga

and Koon tz (1970) showed that for two group Gaussian data, JQ yields the same

op t imum part i t ion as J i and J2 wi th greater efficiency.

Lumelsky (1982) argued that the weighting (another form of normalization)

of variables should be done wi th in the clustering stage and not as a preprocessing

step. A clustering transformation was incorporated into a K-means type clustering

algorithm. The criterion to be winrmTzeolsris the average wi th in group square error

J = E ^ T T ^ ^ ^ " ' ^" ' - ^ - ' ^ ' ^ ' - ' ' ^

where Wp is the weight for pth. variables and is

Wg = d — ^ l ^ , q=l,-.-,d (3.45)
i ; p = i i / c p

The clustering results compared favourably wi th algorithm using Mahalanobis

distance and equal variance normalisation.

In general normalization is an attempt to equalize the variation of clusters,

i t should be used carefully to assist clustering, rather than taken for granted. It

is also beheved that normalization usually improves clustering of hyperspherical

or hyperellipsoidal clusters, although a different clustering method is suitable to

identify either linearly or non-linearly separable clusters.

It was mentioned that most weather image data can be modelled by a normal

mixture. W i t h this prior information, K i t t l e r and Pai rman (1985b) derived a dis

tance function using Bayes min imum error criterion (section 3.1.2). The distance

measure is suitable for clustering of normal niixture and produces better results

68

than either the Eucl idean or Mahalanobis distance. In Chapter 4 a Global -Local

clustering algorithm has been developed based on this distance function.

3.5.3 Partitional Clustering

Part i t ional clustering algorithmscan be divided into two categories, they are itera

tive and non-iterative algorithms. Iterative part i t ional clustering algorithms allow

patterns to be transferred from one cluster to another to optimize some criterion

function. The choice of a criterion function and a distance measure are most i m

portant i n iterative clustering algorithm. Jain, and Dubes (Ch.3 1988) suggested

that criteria can be classified as global or local . A global criterion represents each

cluster by a prototype (usually the cluster centroid) and assigns patterns to clus

ters according to the most similar prototype. M a n y iterative clustering algorithms

(I S O D A T A , K-means) use the global criterion. A local criterion forms clusters by

ut i l iz ing local structure in the data which is most popular i n mode seeking type

algorithms. For example, clusters can be formed by identifying bigb density re

gions i n the pattern space (Narendra and Goldberg 1977, Torn 1976, Ince 1981,

Whar ton 1983) or by assigning a pattern and its k-nearest neighbours to the same

cluster (Gowda and Kr i shna 1978, Urquhart 1982, Jarvis and Patr ick 1973).

Our objective is to part i t ion n patterns into C groups such that a criterion is

optimized. The solution to this parti t ional problem is straight forward, this can

be accomplished by searching for al l possible combination and sdes^jthe best one.

If iterative clustering algorithms are used, a criterion must be chosen. Cr i te r ia

are highly dependent on problem parameters (Jain and Dubes Ch.3 1988). Some

criteria have been mentioned i n section 3.5.2. We repeat those criteria here for

convenience.

Jo = txW

J l = \T\/\W

Jo = tiW-^B

(3.46)

(3.47)

(3.48)

69

Jz = irW-ixB (3.49)

T i i e most popular criterion is Jo

c C nk

ivW = t^^fc = E E ^ ^ ' ^ - ^kfi^ik - mk) (3.50)
A:=l k=l «=1

which is equal to the sum of variance of a l l clusters, and i t is equivalent to the

sum of square error criterion. The trW criterion is invariant under orthogonal

transformations, such as rotations, but is not invariant under non-singular hnear

transformations. That i s , the min imum square error part i t ion may change i f the

coordinate axes are scaled (Fukunaga and Koontz 1970). However, J i and J2

(Friedman and R u b i n 1976) are invariant under non-singular linear transforma

tions. Friedman and R u b i n described a two passes algori thm for optimizing J i

and J2. The first pass is a hi l l -cl imbing pass, i t changes the cluster label of an

object only to improve the criterion function. K-means (MacQueen 1967) is a

popular algorithm for performing such task. The K-means algorithm is as follow:

Step 1. Select C in i t ia l cluster centres.

Step 2. Assign patterns to the closest centre using a distance measure.

Step 3. Update the centres using the new parti t ion.

Step 4. If the centres have not changes then terminate,

otherwise goto Step 2.

Usual ly the iterations stop when the number of patterns that changed label are

insignificant, or simply specify a max imum number of iterations. The second pass

of Friedman and Rubin 's algorithm is a forcing pass, i t perturbs the part i t ion

to avoid getting trapped at a local min imum of the criterion function. A l l pat

terns i n a cluster are transferred to other clusters and the criterion function is

recalculated after each test. The best part i t ion found is retained, and the forcing

pass is repeated for the next cluster. This process is repeated unt i l convergence

is obtained.

Coleman and Andrews (1979) use the criterion J4 = trB • t r W (maximize)

for image segmentation. It was showed that J4 attains a max imum wi th in the

70

upper and lower bound of number of clusters (F ig . 3.11), and the maximum of J 4

represent the intrinsic number of clusters. A large number of features were derived

using the Sobel edge operator with window sizes of 3 x 3, 7 x 7, 15 x 15. Then

the best features were selected by comparing values of the criterion function, and

clustering of the best features were accepted as the best results.

opt imum no. of clusters

number of clusters

Figure 3.11: General shape of the criterion function J 4 .

Koontz and Fukunaga (1972) derived a family of criteria based on minimisation

of the error committed in estimating distances between pairs of patterns. Koontz

and Fukunaga then showed that the iterative algorithm to minimize the criterion

is i n fact an iterative use of a decision rule, and the criterion has. a very important

property that it is valley seeking, so non-linearly separable clusters can also be

found. Therefore different criterion functions can produce very different results.

The second problem of iterative clustering is how to l imi t the search space such

that a solution can be found. The K-means algorithm forms the basis of many

variations in iterative clustering. Ba l l and Ha l l (1967) generalize the K-means

algorithm by adding split and merge capabilities. This algorithm is known as

71

Iterative Self Organizing Da ta Analysis Techniques A (I S O D A T A) , Those itera

tive part i t ional clustering techniques can be generalized as (Jain and Dubes Ch,3

1988):

Step 1. Select an in i t ia l set of C cluster centres, '

Step 2. Generate a new parti t ion by assigning each pattern to its

closest cluster centre.

Step 3, Compute new cluster centres as the centroids of the clusters.

Step 4. Repeat Step 2 and 3 unt i l an opt imum value of the criterion

function is formed.

Step 5. Adjust the number of clusters by merging and spli t t ing

existing clusters or by removing small , or outlier clusters.

If any split or merge has occurred goto Step 2 otherwise stop.

The structure of the I S O D A T A algorithm forms the basis of the second stage

of the Global-Local clustering i n Chapter 4.

The detailed implementation of these steps involves heuristic procedures (Fromm

and Northouse 1976, see also section 4.2.4) and the performance of the algorithm

also depends on the choice of distance measure and input parameters which de

cide the split and merge of clusters. Furthermore, Step 2 and 3 can be changed

such that the centres are updated after a pattern has been transferred. However

this procedure is susceptible to being trapped at a local min imum, and a further

disadvantage of making the results depend on the order of pattern being clustered

(Duda and Hart Ch.6 1973). These k ind of h i l l c l imbing procedures i n general

do not guarantee global optimization. Koontz et al.(1975) proposed a branch and

bound algorithm to l imi t the search space, by eliminating searches which are un

necessary, this algorithm generates global opt imum result. However for large data

sets, this approach is s t i l l impractical .

In Step 1 an in i t ia l set of centres or partitions is need to initialise the iterative

clustering algorithm, and i t is well know that changing the initiahsation gener-

atesdifferent results (Wolfe 1970). Good results can only be obtained wi th in i t ia l

72

part i t ion close to the global opt imal . The Global -Local clustering algorithm in

Chapter 4 generates an in i t i a l part i t ion using a very efficient mode seeking clus

tering algori thm.

Dynamic Clustering

So far we have only considered using the centre to represent a cluster, and this

representation allows us to minimise the sum of square error using very efficient

h i l l c l imbing techniques. However, i t is also possible t o use cluster rep

resentations other than the centre such that appropriate distance measures can

be derived, for example, using a parametric models of the kernel, Diday (1974)

generahsed the representation of a cluster LOJ by a kernel Kj — / i r (x, Vj) w i th Vj

denoting a set of parameters defining / iQ, The kernel can be the centre as before,

a set of points which are close to the cluster centre (Mi lg ram et al , 1977), or a

parametric model (Ki t t le r and Pai rman 1985b), The idea of dynamic clustering

is also based on iterative optimization of a criterion function. Let t ing d{x,Kj) be

a similari ty measure between the pattern x and kernel Kj, the criterion function

is given by

'^ = E E < ^ ' ' ^ ^ i) (3.51)
i=l i=l

The algorithm for dynamic clustering is given as:

Step 1. Choose an in i t i a l part i t ion of the data set, u}j,j = 1,.-.., C ,

determine kernel Kj,j = l,...,Cioi each cluster.

Step 2. Assign each point x,- to that cluster Uj

i f d{xi, Kj) = min(x,-, Kk)

Step 3. Update the kernel using the new part i t ion,

i f kernels Kj,Wj remain unchange, terminate

the algorithm otherwise goto Step 2.

The kernel function allows a better representation of the cluster. K i t t l e r and

73

Pai rman (1985b) used a multi-variate normal kernel and applied i t to cloud images

wi tb good results compared wi th algorithms using Eucl idean and Mahalanobis

distances. This approach allows the use of a Gaussian model to represent^cluster,

and i t is used i n the Global-Local algorithm i n Chapter 4.

Clustering by Mode Seeking

The mixture decomposition method introduced i n section 3.4 which assumed a

Gaussian model , most mode seeking methods are non-parametric counter part of

i t . The objective of mode seeking is to identify a unimodal cluster of points i n the

feature space. Unl ike the iterative clustering algorithm, mode seeking algorithms

are usually non-iterative and because they are non-parametric only local density

estimates are used for clustering.

The simplest way to identify modes i n the data is to construct a histogram by

part i t ioning the feature space into a number of non-overlapping regions or cells.

Cells wi th relatively high frequency counts are probably modes and the valleys of

the histogram represent the boundaries between clusters. Since these methods are

non-parametric they can identify clusters wi th any shape. Th i s approach is incor

porated i n the iirst stage of the Global-Local clustering algorithm presented i n C h -

pater 4, which identifies unimodal clusters by part i t ioning the multi-dimensional

histogram to generate an in i t ia l part i t ion for the iterative clustering algorithm i n

the second stage.

K i t t l e r (1976) proposed a mode seeking algorithm using a Parzen window

estimate of the density function wi th a hypercubic kernel function. This algorithm

essentially tries to map the multi-dimensional histogram into a one dimensional

sequence of density estimates. A pattern is chosen randomly and corresponds to

the first point i n the sequence. The second point i n the sequence is that pattern

which has a max imum density i n a hypercubic window around the first pattern.

The pattern wi th the max imum density i n the region which is the union of the

windows around the first two patterns is selected for the th i rd point. This chain

of hypercubes i n the data set which w i l l eventually reach the local peak of the

74

pdf. W h e n the sequence has reached the first peak, the points selected w i l l be

wi th lowest probabihty density unt i l the valley x „ is reached. Since a l l points from

the first peak wi th p (x) > p (x „) have already been selected, the following point

X r , w i th p (X r) > p (x „) w i l l belong to the second mode of the p d f The process

continues unt i l a l l modes have been included i n the sequence.

3.5.4 Hierarchical Clustering

In contrast to parti t ional clustering, i n hierarchical clustering, patterns are not

transferred between clusters once they are processed. Hierarchical clustering pro

duces a sequence of partitions i n which each part i t ion is nested into the next

part i t ion in the sequence. If n patterns are partitioned into C clusters, we shall

say we are at level k i n the sequence when c = n — k +1. Given any two patterns

X and x ' i f they are in the same group at level k then they w i l l remain i n the same

group for al l higher levels (Jain and Dubes 1988). A n agglomerative algori thm for

hierarchical clustering starts wi th n clusters and each cluster has one pattern. The

clusters are merged pair by pair using some distance measure unt i l a l l patterns

are contained i n one cluster. The result of this can be represented using a tree

structure (Fig . 3.12) which is usually known as a dendrogram.

75

X g X 3 X ^ X

level 1 Hx,).Cx^).(x3).(x^),(x^){ ^ # # ^ «

level 2 Kxp,(x^).(x^).(x^,x^)|

level 3 Kxp,(x^,x^),(x^.Xg)J

level 4 l{x^),(x2.X3,x^,Xg)}

level 5 Kx^.x^.Xg.x^.Xg)}

Figure 3.12: Example of dendrogram.

Mos t hierarchical clustering starts by constructing the similarity matrix, for

n patterns there are n (n — l) / 2 pairs of measure. The size of the similarity

mat r ix l imits the number of patterns which can be clustered. So hierarchical

clustering algorithms are only l imited to clustering a relatively smaU number of

patterns. Anderberg (Ch.6 1973) provided three approaches for implementation

of hierarchical agglomerative clustering algorithms, they are the stored matrix,

the stored data, and sorted data approach. These approaches all a im to solve

the problem of clustering a large data set. Traditionally, hierarchical clustering

has found l i t t le application on multi-spectral image data, probably because of the

storage problem and the complexity in comparing large number of pixels. There

are many hierarchical clustering methods, they can be divided into three categories

and they are predominantly agglomerative approaches (Anderberg Ch.6 1973):

1. linkage method.

2. centroid method.

3. error sum of square or variance method.

76

Linkage Methods

The hnkage method is conceptually the simplest of a l l clustering methods. The

basic agglomerative clustering method is (Duda and Hart 1973):

Step 1. Let g = n and w,- = {x,-}, i = 1 , . . . , n

Step 2. li g < C, stop (C is the number of clusters)

Step 3. F i n d the nearest pair of distinct clusters, say a;,- and UJJ

Step 4. Merge Wf and Wj, remove Uj and decrease by one

Step 5. goto Step 2

The following are the most popular distance measures for linkage methods:

^inin('*'.-,'^i) = min <5(x,x') (3.52)
X6aJ,-,x'€u;j

Smaxi'iOi^iOj) = max (5(x,x') (3.53)

S^^,{ui,coj) = E E *^(^'^') (3.54)

Sme^{(^i,^j) = 5(m,-,mj) (3.55)

where m,- = — x is the mean of group a;,-

Each of these four distance measures produces a different clustering method.

Single Linkage Method

If ^min is used, the method is called single linkage. The patterns are regarded as

nodes-and edges are used to connected these nodes i n the merging process. W h e n

^min is used to measure the distance between two groups the edge that satisfies Sjoin

w i l l connect two nodes which are nearest neighbours. Every t ime an edge is added

two distinct clusters are connected, i f the process is allowed to continue unt i l there

is only one cluster the result is a graph which does not contain any closed loops;

i n graph theory this procedure generates a tree. If a weight is assigned to an edge

and is equal to the distance between the two nodes to which i t is connected, then

the sum of weight is min imum and so i t is known as the a M i n i m a l Spanning Tree

77

(M S T) or Shortest Spanning Tree (SST) . Figure 3.13 gives some example of single

linkage clustering.

x l x l x l
(a) (b) (c)

Figure 3.13: Single linkage clustering example.

In F i g . 3.13a there are two compact clusters and the edge e connecting them is

the longest, so i f the edge is removed we discover the number of clusters exactly,

however i f these clusters move closer, they can not be discovered by removing

the longest edge. So single linkage is only suitable for well separated clusters.

O n the other hand single linkage is capable of detecting enlongated clusters as in

F i g . 3.13bi Unfortunately this property leads to a problem that two very different

patterns may be assign to the same group as in F i g 3.13c. This behaviour is often

called the "chaining effect".

78

C o m p l e t e L i n k a g e M e t h o d

When 6max is used to measure the distance between clusters, the growth of enlon

gated clusters is discouraged. This method is called complete linkage because a l l

nodes wi th in a group are l inked to each other at some max imum distance. Such

a cliister is called a "complete subgraph" in graph theory. Figure 3. r<f-shows an

example of complete linkage clustering. W h i l e a single linkage method concen

trates on seekirig clusters which are isolated from each other, paying no attention

to their cohesion; the complete l ink method concentrates on the internal cohesion

of clusters.

x 2

x l

Figure 3.14: Example of complete linkage clustering.

A v e r a g e L i n k a g e M e t h o d

The single linkage and complete linkage methods rely on min imu in and maximum

distance measure. Because the use of distance can affect the cluster structure

to be detected, it is natural to use âvg and 5mean in the hope that some of the

problems such as the chaining effect can be reduced.

79

The Centroid Method

The Centroid method was proposed by Sokal and Michener (1958). Groups are

depicted to l ie i n the Euclidean space, and are replaced on formation by the coor

dinates of their centroid. The distance between groups is defined as the distance

between the group centroids. The algorithm merges groups according to the dis

tance between their centroids, the groups wi th the smaUest distance being fused

first.

Error Sum of Square Method (Variance Method)

Ward (1963) suggested a hierarchical clustering method i n which the merges at

each stage are chosen so as to maximize an criterion function. The choice of

a objective function is a specific problem, since i t is well known that there is

no universal criteria (Fukunaga and Koontz 1970). Ward used the error sum of

squares criterion function, at each stage those two clusters whose merger gives

the m i n i m u m increase i n the total W i t h i n Group Error Sum of Squares. Wishar t

(1969) showed that the Ward algorithm could be implemented by updating a

stored matr ix of squared Euclidean distances between cluster centroids.

Graph Theoretic Methods

So far we consider hierarchical agglomerative clustering as a process to merge

patterns and transform the similarity matr ix into a dendrogram, then a cluster

ing is obtained by cutting the dendrogram horizontally. A n alternative way for

clustering can be obtained by graph theory which is based on a visual perceptual

model of clusters.

Graph theoretic clustering is very similar to hierarchical agglomerative clus

tering. The major difference between the linkage method and the graph theoretic

method is how the tree is presented. The dendrogram is presented i n an hierarchi

cal order of the merging of objects or groups, and the tree completely spans the

data set. In graph theoretic clustering, the tree may or may not span the data set

completely, and the tree does not necessary contain information on the merging

80

order of objects. However, they share a common characteristic that clusters are

formed i n an hierarchical order.

It was mentioned that the single linkage method is equivalent to the generation

of the m i n i m a l spanning tree (M S T) . Efficient algorithms exist for generation of

the M S T (P r i m 1957, Kruska l 1956). Given a M S T we can find the clustering

produced by the single linkage algorithm. Removal of the longest edge forms two

clusters, removal of the next longest edge produces one more cluster and so on.

In this way we first merge a l l patterns into one cluster and divide the cluster into

subclusters, so we can perform a divisive hierarchical procedure.

Instead of the removal of an edge based solely on its weight, we can select

an edge to remove by comparing the length of edges i n its neighbourhood. For

example, i f the length of an edge is much longer than the mean length of its neigh

bour, removal of this inconsistent edge may produce two distinct clusters. Zahn

(1971) produced an excellent discussion on various method to locate inconsistent

edges i n spanning tree. Urquhart (1982) used a Gabrie l graph and a relative

neighbourhood graph as an extension to Zahn's (1971) M S T method. A review

of applications of graph theory to clustering was given by Hubert (1974).

The property of the spanning tree abil i ty to identify clusters of arbitrary shape

has seldom been exploited on image data. If a spanning tree is constructed wi th

the constraint of a pixels' spatial relationship, the resulting segments are found to

be superior to other thresholding segmentation techniques i n the sense that the

segments are less noisy (Morris et al . 1986). This noise insensitive property is

particularly important for subsequent shape analysis of the segmentation (Ki t t le r

and Pa i rman 1985a). The new Spatial-Spectral clustering algori thm i n Chapter 5

follows this principle and is able to produce clusters wi th clean boundaries.

Most hierarchical agglomerative and graph theoretic clustering methods can

be regarded as stepwise opt imal procedures. A t every step i n the process the

two most similar pairs of groups or objects are merged. A criterion function

can be derived such that the sum of cost is minimized. In clustering, the cost

of merging a pair of groups is often the distance between them. This stepwise

81

approach form the basis of the Spatial-Spectral clustering algorithm presented i n

Chapter 5. In the algorithm Graph theoretic clustering has been generalized to

the clustering of the spatial space (segmentation) and four distances commonly

used i n hierarchical clustering have been used to demonstrate the idea of spatial

clustering. The principle of agglomerative clustering (stepwise optimization) is

also used i n the final stage of the Spatial-Spectral clustering algorithm , which

clusters segments generated by the Spatial-Spectral clustering.

3.6 Summary

This Chapter has reviewed statistical pattern recognition as a problem of class

conditional probabihty density function estimation. The difference between su

pervised learning and unsupervised learning is only the presence or absence of

labels of the samples. Non-parametric estimators are also introduced which can

be used when the pdf to be estimated can not assumed a particular model.

W h i l e decision rules based on probabihty are used to classify patterns i n super

vised learning applications, the distance function plays'a similar role i n clustering.

Distance is a measure of dissimilarity between patterns. Euclidean distance is a

popular distance but i t is not capable of discovering clusters w i th different wi th in

cluster variances. So the data is usually normalized such that the variance of each

cluster is approximately equal. Since normalization does not always produce the

desired effects, the choice of distance would be much easier i f a prior knowledge

of the structure of the da;ta is available.

Par t i t ional clustering, especially iterative h i l l c l imbing type techniques which

minimize sum of square error usually imposed a hyperspherical model on the

clusters. However, i f a suitable distance function is used, clusters can assume

different sizes, shapes, covariances and populations. A l l h i l l c l imbing techniques

do not guarantee a global opt imum and usually only a local op t imum is found.

Design of h i l l chmbing techniques involves two steps, the first is to define a criterion

for optimization, the second is the iteration procedure to optimize the criterion

82

function. Different criteria w i l l lead to very different algorithms, The sum of

square error is the most popular criterion function, but this criterion implies the

cluster to be recovered are hyperspherical and does not always give good results.

Another problem of h i l l cl imbing techniques is that i t requires a set of in i t ia l

starting points or partitions. Since h i l l cl imbing algorithms can be trapped i n a

local opt imum, a set of in i t i a l starting points or part i t ion close to the true solution

is essential for quick convergence and opt imum result.

Clustering by mode seeking is usually non-parametric and therefore suitable

for detecting clusters which are irregularly shaped. Loca l density estimation is

generally noisy, so i t is practically impossible to establish whether some of the

peaks i n the estimates correspond to the actual modes in the data. So for the

local estimate to be more reliable, a large set of data is required.

The new Global -Local clustering algorithm presented i n Chapter 4 uses a cas

cade of a mode seeking clustering algorithm and an iterative clustering algori thm

such that their advantage can be combined. The first algorithm is an efficient

histogram clustering (mode seeking) algorithm which generates an in i t ia l part i

t ion, and the second algorithm is an iterative clustering algorithm which refines

the part i t ion using an optimized cluster model .

Hierarchical clustering is closely related to graph theoretic clustering, some of

them are capable of detecting non-linearly separable clusters (probably due to the

chaining effect). Graph theoretic clustering has a valuable property that it can

exploit spatial information within a data set. This property forms the basis of the

Spatial-Spectral clustering presented i n Chapter 5. However hierarchical cluster

ing techniques have a general disadvantage: since the clustering is constructed i n

one pass, they can not recover from a poor in i t i a l clustering.

83

Chapter 4

A Global-Local Clustering

Algorithm for M E T E O S A T

Imagery

This chapter presents a new and optimised Global -Local clustering algorithm

which is a cascade of two clustering algorithms. The first stage of the algorithm

generates an in i t ia l part i t ion by clustering the multi-dimensional histogram into

unimodal regions and the second stage is the optimizat ion of the in i t i a l part i t ion

using a dynamic clustering algorithm. The objective of the Global -Local cluster

ing algori thm is to eliminate the manual or random selection of an in i t i a l parti t ion

which is required for a l l iterative parti t ional clustering algorithms. It is true that

manual selection of an ini t ia l parti t ion is t ime consuming and subjective, on the

other hand random selection as shown later i n this chapter, always produces sub-

opt imal results. Therefore i t is desirable to generate in i t i a l partitions which are

close to the opt imum part i t ion objectively.

Dynamic clustering is chosen because i t is stable for most data types and

can be implemented wi th good efficiency for clustering of image data. The large

data set normally found in remote sensing imagery makes i t natural to think of

clustering as part i t ion of the multi-spectral histogram into unimodal regions.

Section 2.3 reviewed that dynamic clustering is an efficient and,reliable method

. 84

for unsupervised classification of weather images (Desbois et a l . 1982, Seddon

and Hunt 1985, K i t t l e r and Pairman 1985b). Among many clustering methods

part i t ional clustering is found to be the most popula,r i n application to image

classification (Jain and Dubes 1988).

A s mentioned previously niany more features (e.g. textural) can be derived

from the raw image. However, this work concentrates on the separation of homo

geneous cloud clusters which represent layers of cloud corresponding to different

altitude or pressure. Results i n this work are based on V I S and I R data only, since

the goal is to identify clusters correspond to a single level of cloudi.., and not "t© tr^ •-

to identify every possible type of cloud. It should be noted that more features

in addition to the visible and infrared features are necessary for classification of

all cloud types (Seddon and Hunt 1985). It is therefore possible that a cluster

represents more than one cloud type. This is not a serious problem when the

application is mesoscale cloud motion tracking since different cloud types at the

same level tend to move wi th similar speed and direction.

However, addit ional features are often necessary, because most low cloud trac

ers are cumulus type and most high cloud tracers are cirrus type (Hubert 1971).

A n extension of this work can be an investigation of additional features which

provide better class discrimination between cloud types appearing at the same

level and hence towards the goal of better satellite wind accuracy and automatic

target selection. C loud classification using features i n addition to raw data can be

found i n work done by Par ikh Sz Rosenfeld (1978), Seddon (1983) and Pa i rman

(1985).

4.1 Initial Partitions

A major problem common to a l l iterative clustering algorithms is the requirement

of an good in i t ia l parti t ion or centres to converge to a local opt imal solution (see

section .3.5.3), and the final result is highly dependent on the in i t i a l conditions.

Since dynamic clustering is a generalization of iterative clustering methods, i t

85

therefore requires a set of i n i t i a l points or partitions.

Iterative clustering can be used as an approximate estimation of the mixture

components (Wolfe 1970). It is well known that mult iple solutions exist for a l l

kinds of iterative optimization methods (Ba l l 1967, Friedman and R u b i n 1967).

These solutions are due to trapping of the criterion function i n a local min imum.

Wolfe (1970) suggested that the updating of cluster parameter is responsible for

the cause of multiple solutions. So wi th different in i t ia l conditions the algorithm

w i l l converge to different local minimum, and one can only t ry different in i t i a l

conditions and select one which he thinks is the best solution.

It is interesting to note that the inabi l i ty of hierarchical clustering methods

to transfer pattern vectors is regarded as an disadvantage, while the abihty of an

iterative clustering algorithm to transfer pattern vectors leads to the problem of

multiple solutions. Studies by Desbois et al . (1982), Seddon and Hunt (1985),

K i t t l e r and Pai rman (1985b) a l l used iterative clustering algorithms to classify

cloud images. Al though their algorithms perform so.ili-fMA,<>»^lj, the starting par

t i t ion was selected manually from the image. This procedure is thought to be

tedious and prone to human error, if a^number of images have to be clustered.

Anderberg (Ch.7 1973) reviewed some methods to eliminate the manual se

lection of in i t ia l centres or parti t ion. The in i t ia l centres are called seed points

because the subsequent result depends on these starting points. If no prior knowl

edge is given about the data set, the starting points are usually dtfejii<j4 in a random

manner. Suppose k seed points are to be chosen, i t couy be done in One 6f tKe -(oUotoJ'

1. Choose the first k patterns i n the data set (MacQueen 1967).

2. Labe l the patterns from 1 to n and choose the patterns corresponding to k

different random numbers i n the range 1 to n (M c R a e 1971).

3. Take any desired part i t ion of the patterns into k mutual ly exclusive groups

and compute the group centroids as seed points (Forgy 1965).

4. Choose seed points which span the data set, that is, most patterns are

relatively close to a seed point but the seed points are well separated from

86

each other (Astrahan 1970).

5. Subjectively choose A; subsets of representative patterns from the data set.

(Desbois et a l . 1982, Seddon and Hunt 1985, K i t t l e r and Pai rman 1985b).

A n in i t i a l part i t ion can be obtained as follows:

1. For a given set of seed points, assign each pattern to the cluster buil t around

the nea;rest seed point. The seed points remain stationary throughout the

assignment of the full data set (Forgy 1965).

2. Assign patterns to the nearest seed points, after a pattern is assigned to a

cluster, update the centroid so that i t is the true mean vector for a l l the

patterns currently i n that cluster (MacQueen 1967).

3. Use a hierarchical clustering to produce an in i t ia l part i t ion (Wolfe 1970).

T h e most promising method to generate in i t ia l part i t ion is to use a clustering

algorithm. This has the advantage of reducing convergence t ime and generating

better solutions. A hierarchical clustering method can be used for such purpose,

but i t is impractical , for example, when the data set is an 256 x 256 pixel mul t i

spectral image. A n efficient clustering algorithm wi th very few or no control

parameters is therefore highly desirable.

The most important factors i n using an iterative clustering algorithm is the

choice of a criterion function, a distance measure and a set of in i t i a l centres or

partitions. The Global-Local algorithm uses a cascade of two clustering algorithms

which combine the advantages of the two algorithms such that the results is better

than using either of them alone. The first algorithm is mode seeking and avoids the

subjective manual selection of a set of in i t ia l partitions by clustering the mul t i

dimensional histogram. The second algorithm is iterative and uses a criterion

which minimize the average error probability and hence a distance measure is

derived using a Gaussian model.

The primary task of the first stage of the Global-Local algori thm is to estimate

the in i t i a l cluster configuration. Given a d band multi-spectral image 7, the goal

87

of clustering is to organize the data into C non-overlapping subsets a;,- , i =

1 , . . . , C , such that a clustering criterion J(ft ; X) evaluated over the part i t ion O

is optimized. The image / is regarded as a data set X = { x i , . . . , x „ } where

X j , i = 1 , . . . , n are cZ-dimensional vectors representing the image points (pixel).

These vectors can include additional features i f better cloud classification is

required. In this study the dimension d is l imi ted to two since only V I S and I R

data are used, although the algorithm is applicable for d>2.

4.2 The Global-Local Clustering Algorithm

The components i n the Global-Local clustering algorithm o-fe. i n F i g . 4.1. The

scheme includes a global clustering algorithm which generates an in i t i a l part i t ion

i n a semi-automatic and objective manner, •follow?!̂ by a local clustering algorithm

(a classic iterative algorithm) which uses a clustering model tailored to the data

to be clustered. The in i t ia l parti t ion is then optimized locally i n order to converge

to a local op t imum of the criterion function. This Global -Local approach was also

used by Eigen et a l . (1974).

The in i t ia l part i t ion is generated using a very efficient and simple histogram

clustering algorithm. The clustering algorithm is non-parametric and does not

require specification of the number of clusters a priori . It was original designed to

cluster L A N D S A T images, which are.very different from M E T E O S A T images in

the area of coverage is much smaller (with a 75m resolution) and therefore class

boundaries i n the image are rather distinct. W h i l e the M E T E O S A T images Wve.

fuzzy boundaries along a l l cloud types except land and sea i n general. In other

words, objects i n L A N D S A T images are represented by pdfs wi th l i t t le overlap

while i n M E T E O S A T cloud classes are represented by highlyoveWoppfn^ pdfs. Results

show that this algorithm performs *n«sf(:7sfet±<'r|j(«j • w i th M E T E O S A T images due

to the fuzziness of pdfs boundaries. However, some classes (in particular land and

sea) which have pdfs wi th l i t t le overlap can always be identified successfully. It is

also found that the clustering although far from opt imum does serve as very good

88

in i t ia l estimates for the iterative clustering algori thm.

inpu t d-band:
mul t i spec t ra l images

Global c lus ter ing

(histogram clustering)

i n i t i a l par t i t ions

Local c lus te r ing

(Dynamic clustering)

c lus ter ing results

Figure 4.1: A two stages Global-Local clustering algo

r i t h m which eliminates manual selection of in i t i a l part i

tions.

89

4.2.1 The First Stage of the Global-Local Clustering A l

gorithm

The first stage of the Global-Local clustering algorithm is to generate an in i t ia l

part i t ion of the multi-dimensional histogram using the histogram clustering al

gori thm o f Narendra and Goldberg (1977). This includes the construction of

a multi-dimensional histogram and a non-parametric clustering algorithm which

partitionsthe histogram.

The histogram clustering scheme is very efficient because i t clusters the mul t i -

spectral histogram which is usually compressed by varying the cell size (to be

discussed later). For most remotely sensed data the number of distinct vectors

i n the pattern space is usually much less than the number of possible vectors,

h i case of M E T E O S A T imagery, the ratio of distinct vector to possible vector is

lower than L A N D S A T imagery since most cloud clusters W«;e.large variance. For

example a 256 x 256 two dimensional (VIS & IR) histogram of M E T E O S A T data

(full resolution) has an average possible vector to distinct vector ratio of 6.

There are several characteristics of the histogram clustering scheme which

make i t suitable for either independent use or generating in i t ia l partitions.

1. The number of computations needed to identify clusters i n the histogram is

much less than that for clustering individual pixels.

2. N o parametric assumptions about the underlying probabil i ty density.

3. The program is more or less automatic, only two parameters are required,

the smoothing and compression parameter (the compression can be fixed i f

data sets are from the same batch).

4. Number of clusters does not need to be specified a priori .

5. The scheme is very efficient and non-iterative.

Figure 4.2. is the flowchart of the histogram clustering algori thm used by the

author.

90

Input mult i spectra l
images

I
Specify h i s togram
compress ion ratio

r

compute h i s togram

/ histogram \ .

< fits into hashinc ?•

no

map h i s togram
cells to pat tern

vectors

output cli
and st

aster m a p
atistics

table?

yes

Input smoothing
window size and

smoothing
threshold

no

valley seeking
c luster ing

identify roots
and trace al l

trees

use clusters
as

in i t ia l part i t ion

T

Figure 4.2: Flowchart of the histogram clustering scheme

for generation of ini t ia l partitions (first stage of the

Global-Local clustering algorithm).

Multi-dimensional Histogram

A histogram is a very good estimate of the mixture density provided that the

p ixe l to distinct vector ratio is high (see section 3.3). T h e histogram can be used

directly w i th a non-parametric clustering algorithm that seeks to part i t ion the

histogram into unimodal regions.

The first problem is to construct a multi-dimensional histogram. Al though

only V I S - f l R images are used i n this study, the histogram clustering algorithm

used is capable of handling more than two bands such that W V band can be

used when available. The number of possible vectors is equal to g"^ whe re^ is the

number of quantization levels and d is the dimension of the pattern space. The

number of grey-levels in M E T E O S A T is 2^ = 256, and the max imum nuraber of

spectral bands are three, so it requires 256^ cells to store the histogram. This

amount of memory obviously make the histogram construction impract ical . Since

the number of distinct vectors is much less than the number of possible vectors,

a huge saving i n memory can result i f only the distinct vectors are stored. Then

the problem becomes one of how to store and access the distinct vectors i n an

efficient way.

A n efficient way to store a multi-dimensional histogram was suggested by

Shhen and Smi th (1975). The method is based on a computing technique called

hashing function k = h{y), where k is the key to the location where vector y is

stored and hiy) is the function that maps every vectors to a storage location. The

hashing function can be a simple division of a^rtowtev d<ify.y^i„t,ei by <{rst'Mct v<i<Xor

CL f)»-Tm-ir\M,i«bey. The prime number is usually equal to the length

of the scatter table used to stored the distinct vectors. The scatter table there

fore contains al l the distinct vectors of the multi-dimensional histogram such that

items i n the table representing a distinct vector. The table must be slightly bigger

that the number of distinct vectors i n order to have efficient access. Figure 4.3 is

a schematic i l lustration of how the hashing function operates.

92

gray levels of a vector

« 0 S i ^2

32 bits

key=h(g ,g g)
0 X &

o
>

d X>
CO

o o u o
>

scatter table

Figure 4.3: Schematic diagram showing how vectors are

stored and accessed using a hashing function (Narendra

k Goldberg 1977).

In this study the pixel intensity of the three bands (VIS , IR , and W V) are

stored i n the first three bytes of an 32-bi t integer. The key is the remainder

after the division by the length of the scatter table. In order that the key are

scattered evenly along the table the length of the table is usually chosen to be a

prime number.

Whar ton (1983) generalised the hashing function such that an arbitrary num

ber of dimensions is allowed. Wharton's hashing function performs a series of

remainder operations, one for each feature. The hashing function first completes

the remainder of the iirst feature. This remainder is concatenaiteA with the second

feature,. The hashing function then computes the remainder of this result, and

coricatenates it to the third features. This process continues unti l al l the features

have been considered. The final remainder is used as the location key

It is possible that more than two different vectors wi l l be rhapped to the same

location, in this case a collision occurs. The problem is easily solved by a tr ial and

93

error process which iteratively apphes a different hashing function unt i l either a

vector match or an empty location is found. A s the scatter table is gradually filled

the chance of collision increases, so the scatter talble should be bigger than the

number of distinct vectors (the actual size depends on hashing function efficiency).

A non-paranietrie Valley Seeking Clustering Algorithm

The multi-dimensional histogram is clustered using the valley seeking algorithm

described by Koon tz et al.(1976). This algorithm is non-iterative andnon-parametric,

i t requires no starting classification, is valley seeking and is capable of detecting

generally shaped clusters. The algorithm uses both graph theory and.local density

estimation to cluster the histogram cells.

The cells w i l l be clustered by constructing directed trees on them. A directed

graph is a set of nodes {V} and edges (arcs) {E}, each edge connects an in i t ia l

node V to a final node v'. A directed path is a set of edges e i , . . . , e„ from v to v',

i f V is the in i t i a l node of C i , v' is the final node of Cn and the final node of ejt is

the in i t i a l node of Ck+i for ^ = 1 ,2 , . . . , n — 1.

A directed tree is a directed graph wi th a unique node v, called the root such

that (F ig . 4.4):

1. Every node v r is the in i t ia l node of exactly one arc.

2. r is the in i t ia l node of no arc.

3. There is no directed path from a node v to itself (i.e. no cycles).

94

Figure 4.4: Example of a directed tree.

The final node of an edge is called the parent node of the in i t i a l node. Therefore

the root node has no parent node.

The pattern set (distinct vectors) X = { x i , . . . , x „ } is regarded as a set of

nodes, i.e. vi = X i , . . . , t;„ = Xn . The goal is to construct one or more directed

trees on the set of nodes. The clustering procedure is governed by a set of rules

for assigning a parent node to each x,-. A n y nodes without a parent node become

roots. A n d no cycle should exists i n the directed graph. The number of roots w i l l

determine the number of directed tree's hence the number of clusters. Every x,-

w i l l belong to only one directed tree ((|\oiKr&yp[^^7^^^

The nodes are linked by an edge according to the density gradient between

two nodes. The density gradient between two nodes x,- and Xj is defined as

= (4.1)

where p(j) is the local density at Xj and </,_,• denote the distance between x,-

and X j . p(j) can be estimated using any non-parametric methods. In the author's

algorithni, the local density is given by the histogram estimator. Koontz et a l .

95

used a Parzen estimator wi th a rectangular window,

Pii)=l^J2K{^u^j) (4.2)
i=i

where

f (2/i)-'^ i f c Z (x , , x ,) < 5

I 0 otherwise

where 2h i s the wid th of the window, n is the total number of patterns. Let

kj be the number of patterns .% wi th in the window centred d n x j . Since ^

is constant, and only relative value is important, we can denote p{j) =^ kj. The

window wid th is determined by an input parameter 9 such that h = 9. The effect

of changing the value of 9 is such that the larger the value of 9 the smoother the

estimates are, and the best value is found by t rying several settings. The relative

density is then estimated hy counting the number of patterns xjt which satisfy

dik < 0 and k ^ i. Define a set which represent the neighbourhood of vector x^ ,

i]\ = {xfcjJ.jt <9,k^ i } , and = #{77^} The density gradient is then given by

9i3 = ^ (4.3)
dij

Koontz et al . also used the k-rm estimator for estimation of p{j), and in this

Ccise the parameter is the number of k nearest neighbour and the density is given

by the volume enclosing the k nearest neighbours.

The multi-dimensional histogram is clustered using the following procedure:

96

Step 1. If ki = 0,x,- is a root.

Step 2. li ki > 0, compute g* where

g* = max gij

Step 3. If g* < 0, x,- is a root.

Step 4. If g* > 0, the parent node of x,- is XAT,

where 5* = gik,Xk € rjl

(ties are resolved arbitraryly)

Step 5. If g* = 0, consider the set 11,- = { x j | x j G i]g,gij = 0}.

El iminate from E,- any node xj such that there is

a directed path from X j to x,-. If the resulting

n," is empty, then x,- is a root. Otherwise, the parent

node of x,- is xjt such that dik = mm dij.
ien;

(ties are resolved arbitrary)

Th i s procedure of assigning parent nodesensure that i f Xj is uniform within a

region such that ^* = 0 and H,- has more than one elements, then we have to make

sure no cycleswill result by making Xj a parent node of x,-. This is achieved by

eliminating a l l nodes in H,- that have a directed path to x,- to the closest neighbour

i n n,-. If g* > 0 we are certain that no directed path exists from Xfc to Xj since

p{k) >p{i).

The directed trees obtained have a uniquely identified root, and a l l the nodes

te-i^RlIhl^to a tree can be identified by tracing from the root. Since any node x,- can

only associate wi th one directed tree, the cluster defined by the directed tree is

non-overlapping. Consider any two nodes x,- and Xj connected by a directed edge.

Suppose X,- is the parent node of Xj then p{i) > p{j), i f we delete from the tree

some node x/ such that p{l) < t for some t > 0. If any nodes remain, they also

constitute a directed tree whose root is identical to that of the original tree, thus

these trees are unimodal directed trees. It is also true that every root has the

highest density in the tree i t belongs to. Thus, each cluster is uniquely associated

wi th a mode.

97

Koontz et a l . also shown thai the asymptotic properties of the algorithm, i f

V ^ P (y) is bounded and p{y) > 0 for a;ll y such that ||x,- — y | | < ^ then

where v p (x t) is the density gradient at x,-.

This property means that the ancestors of x,- follow the line of steepest ascent,

and therefore is a h i l l chmbing property. The other property of the algorithm is

that the cluster boundaxies pass through the valleys i n p (x) , thus the algorithm

is also termed a valley seeking algorithm.

Implementation of the Histogram Clustering Algorithm

It is now clear that the histogram estimator can be used to substitute the Parzen

or k-nn estimator i n the valley seeking algorithm. In the case of histograms,

every distinct vector Xj is represented by a histogram cell and the frequency i n

the cell is the local density estimates p{xj) of X j . We have already obtained the

density estimate of every pattern, all we need is to construct a directed tree on the

histogram cells. The distinct vectors w i l l be denoted as nodes i n the tree. Because

of the way distinct vectors are arranged i n the histogram, i t is only necessary to

consider the nearest neighbours when comparing the density gradient. A n example

using a two dimensional histogram is shown i n Figure 4.5.

(4.4)

98

40
\

45

30
\

60
\

\ 60 70 40

50 \ 85 \ \
90

N

80 40 50
\

65 55
/

85
/

k

75 \ 70 35 45 s 70
/

60

1
60

)
70

S
60 40 65

s
30

20 20

Figure 4.5: A two dimensional i l lustration of the his

togram clustering scheme. C e l l A and B are roots.

T h e original valley seeking algorithm requires a distance threshold parameter

because the Parzen estimator was used. For histograms this parameter is no

longer required because the density estimate only depends on the frequency of a

cell . Thus, theoretically, no clustering pararheter is necessary.

In F i g . 4.5 every cell has eight nearest neighbours, and for ^^-dimensional his

togram the number of nearest neighbour is equal to 3'' — 1. For J = 3 there are 2̂

nearest neighbours and an edge can only be constructed after densitj^gradient of

a l l neighbours have been computed, which require n(n — l) / 2 operation to search

for the neighbours. This constitutes the major computational effort involved in

valley seeking clustering.

T h e number in the box of F i g . 4.5 represents the frequency of that cell . A

directed edge is placed between each vector and the immediate neighbour which

is in the direction of the maximum positive density gradient. The density gradient

is given by

99

50- = (4-5)
dij

d
dij = J ^ | x , - / t - X j f c l (4.6)

k=i

where fj is the frequency of cell j and dij is the C i t y Block distance between cell

i and j .

F i g . 4.5 also shows clearly the idea of a unimodal directed tree wi th their

roots representing the n iax imum local density, and two trees are separated by the

boundary between the valley of two adjacent densities. F i g . 4.6 shows a case when

the local density i n a region is uniform.

7 0

1
J

100
r

100 100
1
J L

100 100 100

A B

100

60 4 0

Figure 4.6: Illustration of how to avoid a directed cycle

i n a region of uniform density. If A and Biwtl inked then

a directed cycle results.

When regions of uniform density o c c u r t h e maximum density gradient wil l

be zero, and directed cycle can be f b f i ^ therefore i n Step 5 of the algorithm, we

have to find out a l l nodes that have a directed path connected to the current node

100

Xj and make the neighbour node that has no directed path as the parent node of

X,-, X,- is a root. Since ties are resolved arbitrary, the directed tree generated is

not unique and depends on the order of the node begin processed.

Once the directed trees have been generated the nodes wi th in a tree can be

traced from the root using computing techniques of graph theory. There are two

graph traversing algorithms, namely the depth-first search and breath-first search,

depth-first search is used by the author. After a l l nodes i n a tree are traced they

are labelled as i n the same cluster. The graph traversing algorithm is very efficient

and the search depends linearly on the number of nodes.

Neighbourhood Computation

Narendra and Goldberg (1977) suggested a scheme for finding the nearest neigh

bours which required p x 2n instead of n (n — l) / 2 operations, where p is the

number of nearest neighbours. Their scheme is to first l inearly order the con

catenated values of the vectors (See F i g . 4.3). It is noted that a l l the possible

neighbours can be represented by an offset vector O wi th respect to the current

vector. For example (0,0,1,0) denotes the neighbour which differs wi th the one

vector only i n the thi rd position. Taking advantage that the ordered nature of

the list , the i t h neighbour of x^+i (i.e. Oi + Xk+i) i f i t exists, must occur lower

down i n the ordered list than the zth neighbour of Xk (i.e. Oi + Xk). Hence i t is

only necessary to search the ordered list once to find the zth neighbours of a l l n

vectors. The hst is stored i n a file on the bulk storage device, i t has been found

that this does not perform as efficient as i t was supposed, so a different method

is adopted.

The scheme used by the author is to generate a list of offset vectors. The zth

neighbour of x^ (i.e. Oi + Xk) can be found directly using the hashing function,

this scheme is simpler to implement and requires only n x p operations when

compared to Narendra's scheme.

Whar ton (1983) suggested a even more efficient scheme using a i f -dimensional

binary tree, he showed that the actual number of neighbours A is much less than

101

the number of nearest neighbours per cell p. B y constructing a, K — d tree of the

distinct vectors the search t ime can be further reduced. However, i t is noted that

for dimension d < i the number of actual neighbour is about 50% but considering

the overhead of constructing the tree, a simple scheme such as the one used by

the author should perform equally well.

H i s t o g r a m S m o o t h i n g a n d C o m p r e s s i o n

T h e success of the histogram method for density estimation depends on a large

p ixe l to vector ratio, and existence of distinct valleys. However, everi wi th a

large data set, the resulting estimate is locally noisy. Th i s may due to the sensor

noise, quantization error, atmospheric interference and other problems i n remote

sensing. If the histogram is clustered without any preprocessing, t r iv ia l clusters

may be generated. This situation is illustrated i n F i g . 4.7.

Figure 4.7: The effect of noise i n the unsinoothed his

togram wil l lead to generation of t r iv ia l clusters.

T w o methods of histogram smoothing is possible. The histogram discussed

so far is constructed using the highest resolution of the grey level. The first

102

possible smoothing method is to requantizis the grey levels. For example, we can

compress 256 grey levels to just 128 levels thus achieving a compression of factor

1^. This compression of grey level has two effects. F i r s t ly the effective p ixe l to

vector ratio has increased, which improves the smoothness of the local density

estimates. Secondly, the number of distinct vectors have also been reduced, which

i n turn allows the histogram to, be clustered w i th less t ime. Unfortunately, a

problem arises due to requantization. Since volume of the cell increase by 2'^, i f

we chose to double the compression ratio each time. The higher the compression

ratio, the more patterns fall wi th in a cell , i f any cell is classified as w,- then a l l

patterns wi th in i t w i l l have the same label, obviously the total error w i l l increase

w i th the compression ratio. However, i f the clustering is used to provide in i t ia l

estimates the error can be corrected in the local clustering stage.

The second method for histogram smoothing is by replacing a cell estimate

by the local average. The average window is adjustable, and the possible window

sizes are 3 x 3, 5 x 5, Therefore every cell estimate is replaced by the average

of a l l neighbours inside the window. The neighbours are searched using the offset

vector list . It is noted that the resulting histogram depends on the order of the

histogram cell being processed. B y choosing different window sizes we can control

the number of clusters obtained.

B o t h requantization and averaging methods are employed i n the Global-Local

clustering scheme. It is found that clusters corresponding to high and middle

cloud have relatively low pixel to vector ratio and large variance. Those cloud

clusters are difficult to part i t ion using the valley seeking algori thm, because the

boundaries are not well defined i n these regions. Regions wi th well defined peaks

have more reliable estimates, so smoothing should only applied to region w i th low

density, where the estimates are more prone to noise.

4.2.2 Starting Partition

There are two methods to obtain an in i t ia l part i t ion from the histogram clustering.

Given a part i t ion generated using the histogram clustering algorithm, the first

103

method is to use the mean of each ini t ia l cluster and assigns pixel to the nearest

centre using squared Euclidean distance, and then parameters of the Gaussian

models are estimated using these partitions, this is the method employed in this

study. The second method uses the in i t ia l part i t ion directly to estimated the

Gaussian model's parameters. It is noted that the histogram may generates some

t r iv ia l clusters which are ignored.

The second stage of the Global-Local clustering algori thm can split or merge

clusters according to some control parameters. If spht or merge occurred, the

newly formed cluster parameters have to be estimated, they are obtained by re

assigning a l l p ixe l to the nearest cluster mean, alternatively we can only estimate

parameters of the newly formed clusters by reassigning only pixels previously i n

the split or merged clusters without changing the other cluster models.

In this study al l pixels are reassigned after split or merge. This method is

chosen because i t is found that clustering has better stabil i ty than using the

second method. This can be explained that some of the clusters generated by the

histogram clustering algorithm is very different from the Gaussian model used i n

the second stage, therefore the estimates do not fit the model well and require

several iterations to recover. Assigning a l l pixels to their nearest centres provide

a better estimate of the cluster models because i t assumes a l l clusters having a

Gaussian model wi th unity variance and same a priori probability. However, one

disadvantage of the first method is that clusters which are adjacent and wi th

small variance (e.g. different type of land or sea) are assigned to the same cluster.

Fortunately, this confusion is not a serious problem, because land and sea clusters

are not used i n tracking of cloud motion.

4.2.3 The Second Stage of the Global-Local Clustering

Algorithm

The second stage of the Global-Local clustering algorithm is to optimize the in i t ia l

part i t ion generated by the histogram clustering. This is achieved by using a

dynamic clustering algorithm. The complete Global -Local clustering scheme is

104

shown in Figure 4.8.

Input mulUspectral
iinages

generate iniUal parUtion
(histogram
clustering)

'recompute histogram
(no compression)

if after split or merge or
first iteraUon, assign
pixels to the nearest

center

compute two new cluster
centers using the old

centers
compute new

center

compute parameters
of Gaussian models

assign pixels to cluster
using post transfer

advantage rule

update n u m b e r of
clusters

if any cluster with sd
greater than threshold

then split else
If any clusters closer than

threshold then merge

0

Figure 4.8: The Global-Local Clustering scheme.

105

It was mentioned i n section 3.5.3 that the most important factors i n using an

iterative clustering algorithm are the choice of a criterion and a distance function.

A criterion based on minimizing the average error probabili ty and a distance

function derived from a general Gaussian model described by Ki t t l e r and Pa i rman

(1985b) have been adopted in the second stage of the Global -Local algorithm.

Dynamic Clustering

Dynamic clustering was introduced i n section 3.5.3, which allows clusters to be

represented using parametric models. In this study a general Gaussian model has

been chosen and found to perform rehably on M E T E O S A T images.

Problems on Choosing a Distance Measure for M E T E O S A T Images

It can be seen i n histogram of M E T E O S A T imagery (F ig . 1.1) the size and vari

ance of each cluster in the feature space is very different. The squared Euclidean

distance assumes all clusters to have equal covariance and is obviously not satis

fied by the data. A better model is the Gaussian model which allows clusters

to have different variance. Another important point that can be observed i n the

histogram is that most clusters have very differeiit size, which is equivalent to

different a priori probability P(w,-). It is well known that most distance mea

sure onemot able to identify clusters wi th great difference in cluster variance and

size (Symons 1981). Some of the problem drtiusing distance was discussed i n sec

t ion 3.5.2 where only well separated clusters were considered. It was suggested

that difference in cluster variance can be compensated by normalising the data

and then using Euclidean or Mahalanobis distance for clustering. However, al l

tKe5e=-methods (Ki t t le r and Pairman 1985b) imphci t ly assume-that clusters to have

the same a priori probability.

The problem of using squared Euchdean distance is mainly due to the lack of

a priori knowledge of the underlying data structure. It is then safe to assume all

clusters have similar population and variance, therefore clusters generated using

the cluster mean model tends to have equal size and variance. This point was cited

106

by K i t t l e r and Pairman (1985b) i.e. "If a similarity measure becomes the key point

of a clustering philosophy, then indeed i t is inappropriate to argue that a data

point has a greater affinity to one cluster than another, just because the former

one is larger in size." Similar cornment was also given by Symons (1981). This

idea is illustrated i n Figure 4.9. T w o clusters wi th equal variance but different

size, the opt imum decision boundary is the one which minimizefthe Bayes error

probability.

Figure 4.9: Use of the cluster mean model to cluster data

wi th equal variance but different population.

When using the cluster mean model the decision boundary di is well within

the larger cluster i n order to satisfy the equal variance assumption. This problem

can be solved by a distance measure which wi l l produce a decision boundary close

to the optimum.

107

A Model that Allows Different Cluster Size and Variance

A clustering criterion based on probability of classification error should allow a

better distance measure to be derived for a specific cluster model . We have already

seen that the squared Euclidean distance has an underlying pdf model which is

normally distributed w i th the identity covariance matr ix . The advantage of using

a clustering criterion based on minimizing classification probabil i ty error allows

cluster sizes to. be taken into account.

A criterion based on the concept of minimizing the average error probabil i ty

is used (Ki t t l e r and Pa i rman 1985b) :

J = nflKxilc^OPCc^.-)
Lt=i j=i

(4.7)

Similar ly we can define a criterion without population weighting as

where 6 w,-
.«=i i=i

Assume the class conditional pdf is modelled by a Gaussian pdf.

(4.8)

K x) = (2x)-^/2|i;,|-V2 exp [- i(x - iiifST\x - ^,)] (4.9)

w h e r e i s the mean of class a;,-.

Four clustering criteria can be obtained from eqn. 4.7 and 4.8 assuming that

p(x I Wj) is a Gaussian pdf wi th a identity or general covariance matr ix .

Neglecting the constant (27r) 2 and substitute eqn. 4.9 gives

J =
C n,-

- i (x , - / z ,) ^ r r (x , - / z ,)
L.-=i i=i

The first two criterion assume a l l clusters have the same size, i.e. ^

^ and y ; ? 1 2 i = 1. We have

(4.10)

22. = =

J' =
C m

exp
L.-=i i=i

^ Ej\xj - p,) (4.11)

108

taking the minus logarithm we have

Yi^j - fiifST'i^j - fid + n , log
.•=1 Li=i
C n,-

= ^ E E K ^ i - f^d^'^T'i^j - / ^ .o+ i °g i^.-i
t l i=i

(4.12)

J l is called the Gaussian model w i th equal a priori probability. If a l l coVariances

are equal to the identity matr ix, then J i becomes

1 ^
= - E E ^ ' ^ i - "

" i=i i=i
J2 is the well known nearest mean model.

(4.13)

For the next two criteria i t is assumed al l classes have unequal a priori proba

bil i ty, and taking the minus logarithm of J gives:

= X ^ (x , - A . J ^ i ; r ^ (x , - - ^ . 0 + ' ^ a o g | i 7 d - 2 n a o g ^
.=1 Lj=i J

= ^ E E h - - ^'•) + - 21og ^] (4.14)
.•=1 i=i

J3 is using the population weight general Gaussian model.

If al l covariance matr ix are equal to the identity matr ix / , we have

C n,"

•̂ ^ = ^ E E [(^ i - ^ . ^ ^ (^ i - ^.o - 2 log ^
«=i i=i

J4 is called the population weighted nearest mean model,

(4.15)

B y comparing wi th eqn. 3.51 four distance measures could be derived from the

min imum error probabili ty concept based on Gaussian model . They are

dz = {xj-iXifST\xj-pi) + \og\Ei

Til'

dA = {xj-fiif{xj-fii)-2\og^

^^)k<Lr^ Is <^Wtv\. by ^n, B J ^
109

. 2 1 o g ^
n

(4.16)

(4.17)

(4.18)

(4.19)

B o t h (x j — ' ^ (x j — a n d log |i7,-| terms are used very often i n clustering

Diday and Simon (1976) and they enforce a min imum variance solution, the term

—2 log ^ would tends to allocate all. points into one cluster, i t enforces a min imum

entropy solution. Therefore the population weighted Gaussian model is composed

of three terms and a solution correspond to a compromise between the three

terms. It is well known that di and d^ favour equal cluster sizes because they

neglect cluster size and designed to minimize the total variance. The use of

alleviate the problem of different cluster size only to an extend that the cluster

satisfy the identity covariance matr ix exactly. Clustering using ds perform best

and allows cluster to have different size and variance.

It is noted that finding a suitable distance measure is a very difficult task.

This is part ly due to the fact that every distance imposes its own model on the

data to be clustered, and i f the data does not satisfy the assumption the distance

measure fails to recover the data structure. To be on the safe side one should

always uses as much a priori knowledge as possible when selecting the distance

measure.

The estimates of the parameters Si&ndP{ui) are obtained by the maximum

likelihood method, and are the standard ones

Piui) = ^ (4.20)
n

li, = m . = - 5 ^ x (4.21)

= - E (' ' i - m . - f (x i - m ,) (4.22)

Tit
where V x 6 a;,-

So far four distance functions have been derived using a Gaussian model wi th

different degree of simphfication. The performance of di,d2,d3, and c?4 has been

studied by Ki t t l e r and Pairman (1985b), and i t was found that 3̂ is the best when

used to cluster cloud images. Therefore dz (i.e. J3) is used i n the Global-Local

clustering algorithm.

110

Assignment Rules

In Figure 4.8 i t is shown that the second stage of the Global -Local algorithm is

based on a classical I S O D A T A frame work. After a distance function and a cluster

model have been determined pixels a,re assigned to kernels using an assignment

rule.

There are two assignment rules which are used extensively. The first rule (clus

ter affinity rule) is traditionally used i n the I S O D A T A algorithm, the second rule

(post transfer advantage rule) is used i n the K-means algorithm (see section 3.5.3).

The major difference between them is the model parameters updating order. The

first rule updates the model parameters after a l l points have been assigned to

their nearest cluster, while the second rule update the rnodel as soon as a point

is transferred. The second difference is that the second rule is a stepwise opti

m a l assignment rule which guarantee the transfer of any points w i l l decrease the

criterion function's value i f the criterion is to be minimized.

Specifically, the cluster affinity rule is

assign x ; G to u>j i f

d{xi, Kj) = m m d{xu / C) (4.23)

the post transfer advantage rule is

assign x,- € to iOj i f

-^-d{xi, fi^) = m i n -^-rd{xi, fir) < - ^ d { x i , //,•) (4.24)

Tlj + i rjSt + t n,- — i

where Ur is the number of data points currently belongs to cluster Ur.

Ki t t l e r and Pai rman (1988) argue that using the point to cluster affinity rule

may not guarantee even reaching a local min imum of the criterion function. So

they suggest using the post transfer advantage rule (eqn 4.24) as a possible solu

t ion. However, D u d a and Hart (Ch.6 1973) said that the post transfer advantage 111

rule wi th immediate parameters updating is more susceptible to being trapped

at a loca l min imum, and i t has the further disadvantage of making the results

depend on the order i n which the points are selected.

Regardless of the above statement Ki t t l e r and Pa i rman (1988) proposed a post

transfer advantage rule for the population weighted Gaussian model . The reassign

ment rule is based on the nearest mean post transfer advantage rule (eqn. 4.24).

Usual ly patterns i n imagery data w i l l have multiple occurrence, as for mul t i

spectral image being shown i n previous section. The single point assignment rule

should be modified to take account of the mult iple occurrence of patterns. A s

signment rule eqn. 4.24 becomes

assign x/ € w,- into u>j i f

_ ^ i (x „ „ ,) = m m ^ 4 ^ , . < ^ < i (x „ !'>) (4-25)

where k is the frequency of x / .

The post transfer advantage rule is a stepwise opt imal rule such that the

criterion function is guarantee to reduce by an amount of A J . The assignment

rule for J 3 (eqn. 4.14) is given by

n;

assign x/ 6 IJ^I to u>j only i f

d{xi,Kj) = mmd(-Ki, Kr) < log \S{

n,- — k
log 1 -

k

Tii — k
fit , , ~ k , 71;

_ 2 b g - I - (r f + 2) — l o g —

where d(xi,Kr) = log | i7 r | +
Ur + k

n
1 +

Ur +k

_ 2 1 o g - + (,i + 2) - ^ l o g —

T r " - l / and A{xi,Ki) = (xi - Sr\xi -

(4.26)

(4.27)

(4.28)

when the cluster size Ur is large eqn. 4.26 can be approximated by

112

assign X/ 6 w,- to ojr if

l o g | i 7 , | + A (x , , i r O - 2 1 o g ^

= m i n (l o g + A(x, ,Kj) - 21og ^ } (4.29)

It is noted that eqn. 4.29 is equivalent to the max imum likelihood decision rule

(eqn. 3.6) for normally distributed data.

Therefore the point to cluster affinity rule can be regarded as the approxi

mation of tbe post transfer advantage rule. It is noted that the post transfer

advantage rule can be used vs^ithout immediate updating as well . The immediate

updating formulas is given i n Appendix B .

It is difficult to compare the two rules without resort to a reference cluster map.

Since the post transfer advantage rule has not been implemented by Ki t t l e r and

Pai rman, and implementation of this rule requires a multi-dimensional histogram

to be constructed, i t is therefore used conveniently i n the Global -Local algorithm.

4,2,4 Other Features of the Global-Local Clustering A l

gorithm

Most clustering algorithms do not take advantage of the mult iple occurrence of

patterns foupd i n images. This property has been exploited i n the Global -Local

algorithm such that the efficiency is much higher than ordinary algorithms. In

Figure 4.8, after the histogram clustering has completed, the histogram is recom

puted without compression, so i f a distinct vector are assigned to a cluster the

other copies w i l l follow.

It is found that i n multi-spectral image data the p ixe l to vector ratio can be

very large, i.e. the number of distinct pattern vectors is significantly less than

the total number of pixels. The clustering efficient can be greatly increased i f the

multiple occurrence can be exploited. A histogram approach can do just that,

113

once a full resolution histogram of the data is constructed and. the application of

any assignment rule is straight forward. If accuracy is to be sacrificed for efficiency

the histogram can be compressed as discussed i n section 4.2.1.

After the histogram is constructed the distinct vectors are clustered using the

population weighted Gaussian model (J3) w i th split and merge capabilities. The

split and merge routine is essential because the number of clusters usually is not

known a pr ior i and the in i t i a l part i t ion generated by the histogram clustering

algori thm may not be opt imal i f heavily overlap clusters exist. So a group having

large variance is probably a group of two or more clusters and should be split ,

and groups which is very close probably belongs to the saine cluster.

The frame work of the Global-Local clustering algorithm is based on the classi

cal I S O D A T A algorithm and is given i n section 3.5.3. Split and merge capabilities

are the main features of I S O D A T A , and these features were originally designed to

tackle the problem of bad in i t ia l centres (randomly chosen centres).

Parameters which control the histogram clustering are:

1. I3c = histogram compression ratio.

2. smoothing threshold, cell wi th frequency higher than this w i l l not be

smoothed.

3. Ws = smoothing window size.

Parameters which control the dynamic clustering are:

1. K = number of cluster desired.

2. 9n = m i n i m u m number of vectors i n a cluster, i f a cluster has number of

vectors less thain this i t is removed and vectors are reassigned to the nearest

cluster mean.

3. O3 = max imum standard deviation of a cluster allowed.

4. 6c = min imum distance allowed between two clusters.

5. 7 = max imum number of iterations.

114

The basic program flow of the Global-Local clustering algorithm is shown

F i g . 4.8. The details implementation of the algorithm is:

Step 1. Input d band images.

Step 2. Specify the parameters to control the dynamic clustering

(defined above).

Step 3. Specify the histogram dimension and compression ratio.

Step 4. If the histogram does not fit into the scatter table,

goto Step 3 and double the compression ratio ^c-

Step 5. Specify the smoothing threshold fis and window size Ws.

Step 6. Smooth the histogram adaptively using moving average method.

Step 7. If operator does not accept clustering result goto

Step 5 and adjust the value of the smoothing threshold,

and window size.

Step 8. Ignore t r iv ia l clusters generated by histogram clustering

using a threshold Ut, clusters wi th points less than

Ut w i l l not be included in the in i t ia l part i t ion.

Step 9. Recompute histogram without compression.

Step 10. Set iter = 1.

Step 11. If iter = 1 compute the mean of each cluster i n the

in i t ia l parti t ion, assign distinct vectors to the nearest mean,

else use the mean of current clusters, assign distinct

vectors to the nearest mean.

Step 12. Compute model parameters of each cluster

(covariance matrices, mean vectors and a priori probabil i ty) .

Step 13. Assign distinct vectors to kernels using the post

transfer advantage rule (eqn. 4.26).

Step 14. Test and remove any clusters attract less than

On points, i f any cluster is removed goto Step 11.

Step 15. Compute the intra cluster distance (see Appendix C) of

each cluster, and then compute the mean intraset distance.

115

Step 16. Compute the inter cluster distance dij between a;,-

niUj {mtk — mjfc)^
and (jjj as —• • > -^-^

Ui is the number of points i n w,- and cr,j

is the common variance of a;,- and Uj

A l l pairwise distance are computed.

Step 17. If iter = / stop, else continue.

Step 18. If iter is even or number of clusters greater than

2 X K, test i f there are any clusters to be merged.

Merge any pair of clusters i f their inter cluster

distance is less than 6c.

Suppose LOi and (JJJ is to be merged,

the new mean is m / = ^.^^^ [nfm,- - f rijinj].

If merge occurred reduced number of cluster by one,

increment iter by 1 and goto Step 11.

Step 19. Test the standard variation of each cluster, i f one of its

varia,ble is greater than 6s and in t ra cluster

distance is greater than the mean in t ra cluster distance

or current number of clusters greater then K/2

split the cluster into two.

Suppose the kth. variable i n loi exceeds the threshold,

the two new means m,- and rrij are

given by m.-jt = mik + 7ni;fc

and mjk = mik — 7m/fc, where

0 < 7 < 1 and 7 = 0 for variables do not exceed

6s. If spht occurred, increment iter by 1 and

goto Step 11.

Step 20. If iter < I goto Step 12, else stop.

116

4.3 M E T E O S A T Data Used for Algorithm Eval

uation

Six sets of M E T E O S A T (VIS+IR) images con^'lir^^of different weather systems

have been chosen to test the aJgorithms developed. A l l images are a 512 x 512

pixel subframe (data window) wi th in a B format image. The coordinates of the

top left corner is (330, 60) (pixel, hne) respectively. The processing window is a

256 X 256 pixel window locates at (100, 0) i n the data window (see Figure 4.10—

4.15). The dates on which the data were taken are:

. N o . Date raw image clustered result

1. 5th March 1991 F i g . 4.10 F i g . 4.16

2. 8th March 1991 F i g . 4.11 F i g . 4.17

3. l l t h M a r c h 1991 F i g . 4.12 F i g . 4.18

4. 15th March 1991 F i g . 4.13 F i g . 4.19

5. 18th M a r c h 1991 F i g . 4.14 F i g . 4.20

6. 20th March 1991 F i g . 4.15 F i g . 4.21

117

Each set of. images contains three pairs of V I S + I R images. The first pair of

images were received at 11:30 G M T , and the t ime separation of each pair was 30

minutes. The numerical weather predication of wind fields (850mb, 500mb, 250mb

wi th temperature) covering the process windows are provided by the Meteorolog

ica l Office Bracknel l . The east-west and north-south resolution of the wi i id fields

were 0.9375° and 0.75° respectively.

The longitude and latitude of the process window being (moving from the top

right hand corner i n a clockwise direction) 61°N 5 .5°£, 40°N SA°E, AO^N 10.7°

61° A'' 17.1° It covers the whole of the Uni ted K i n g d o m , Ireland, France Nether

lands, Be lg ium and Northern Spain.

4.3.1 Description of the Imagery

The surface chart of the above images can be found in Appendix G . The images

for the 5th M a r c h show frontal cloud associated wi th an occluding depression

centred to the north of Scotland. The associated cold front stretches from the

Nor th Sea across southern England, wi th relatively cloud free air behind. The

deep frontal cloud is embedded i n a predominantly southwesterly flow.

O n the 8th M a r c h a well-occluded low pressure is centred over Cornwal l and

the M E T E O S A T images show a classic spira-1 cloud pattern.

A major low pressure complex is situated i n mid-At lan t ic on the l l t h M a r c h

and there is a south-westerly turning north westerly flow i n the upper troposphere.

Ahead of the warm and occluded front i t is possible to identify the south-easterly

winds associated wi th the polar trough. The clouds here are middle level and

therefore are moving under the polar front cloud.

A n occluded cold front is found on 15th March , the system is i n its developing

stage. The cold air mass can be clearly identified i n the relatively cloud free area

behind the front. The front stretches from northern Scotland down to southern

France.

A developing frontal systems is found on 18th March , a occluded front is

stretching from north of Ireland down to B a y of Biscay. A relatively cloudless

124

area is found i n the cold air area behind the front. A large area (top right)

of thick cirrus was driven by the polar front which can be clearly identified i n

the infrared image. Behind this is a b ig lump of warm frontal cloud including a

mixture of cumulonimbus and nimbbstratus.

A warm arid cold front are found on 20th March . The warm front stretches

from southern Ireland down into the Alan t ic Sea and the cold front stretches from

southern Ireland across to Germany.

4.4 Clustering Results

The six sets of images described above have been used to test the clustering

approaches. Three clustering algorithms have been compared:

[Al] Global -Local clustering algorithm (A cascade of histogram clustering and

dynamic clustering algorithms (using J3 eqn. 4.14)).

[A2] Dynamic clustering (using J3 eqn. 4.14 and a randomly selected in i t ia l par

t i t ion).

A3] Histogram clustering algorithm.

The author has tried a procedure using Astrahan's (1970) method: k seed

points are selected such that they are evenly spanned i n the pattern space, but

without considering the density of the patterns chosen. The random ini t ia l parti

t ion is generated by specifying a distance dt, then the first center Ci is chosen as the

overall mean of the data, the second center C2 is chosen such that d{Ci, C2) > dt

and for the zth center d{Ci, Cj) > , j = 1 , . . . , n , z 7̂ j , where n is the required

number of starting part i t ion. The in i t ia l part i t ion is generated by assigning every

pixel to the nearest center C,-, i = 1,— , n .

In order to compare the two comprehensive algorithms (A l and A 2) , the same

number of clusters (6 to 7) are generated in each case. The clustering statistic

is shown i n Table 4.1— 4.6. The clustered images and different projections of

the two dimensional histogram â re shown i n Figure 4.16— 4.21, each colour i n

125

the histogram represents a cluster. Clustering algorithms (A l , A2) are allowed

to run for 11 iterations. It is noted that the split and merge capabilities allow a

bad in i t ia l part i t ion to recover, and this is true for both approaches (A l and A2)

because the histogram clustering does not always gives the best in i t i a l part i t ion.

126

Clustered image
of algorithm A l

Clustered image
of algorithm A 2

Clustered image
of algorithm A 3

2d histogram of
algorithm A l

2d histogram of
algorithm A 2

2d histogram of
algorithm A S

Top view of the 2d
histogram of algorithm A l

Top view of the 2d
histogram of algorithm A 2

Top view of the 2d
histogram of algori thm A S

Figure 4.16: Clustering results of 5th M a r c h images

127

Clustered image
of algorithm A l

Clustered image
of algorithm A 2

Clustered image
of algorithm A 3

2d histogram of
algorithm A l

2d histogram of
algorithm A 2

2d histogram of
algorithm A 3

Top view of the 2d
histogram of algorithm A l

Top view of the 2d
histogram of algorithm A 2

Top view of the 2d
histograni of algorithm A 3

Figure 4.17: Clustering results of 8th M a r c h images

128

Clustered image
of algorithm A l

Clustered image
of algorithm A 2

Clustered image
of algori thm A 3

2d histogram of
algorithm A l

2d histogram of
algorithm A 2

2d histogram of
algorithm A 3

Top view of the 2d
histogram of algorithm A l

Top view of the 2d
histogram of algorithm A 2

Top view of the 2d
histogram of algori thm A 3

Figure 4.18: Clustering results of l l t h M a r c h images

129

Clustered, image
of algorithm A l

Clustered image
of algorithm A 2

Clustered image
of algorithm A 3

2d histogram of
algorithm A l

2d histogram of
algorithm A 2

2d histogram of
algorithm A S

Top view of the 2d
histogram of algorithm A l

Top view of the 2d
histogram of algorithm A 2

Top view of the 2d
histogram of algori thm A S

Figure 4.19: Clustering results of 15th M a r c h images

ISO

Clustered image
of algorithm A l

Clustered image
of algorithm A 2

Clustered image
of algorithm A 3

2d histogram of
algorithm A l

2d histogram of 2d histogram of
algorithm A 2 algorithm A S

Top view of the 2d
histogram of algorithm A l

Top view of the 2d Top view of the 2d
histogram of algorithm A 2 histogram of algorithm A S

Figure 4.20; Clustering results of 18th M a r c h images

I S l

Clustered image
of algorithrn A l

Clustered image
of algorithm A 2

Clustered image
of algori thm A 3

2d histogram of
algorithm A l

2d histogram of
algorithm A 2

2d histogram of
algorithm A 3

Top view of the 2d
histogram of algorithm A l

Top view of the 2d
histogram of algorithm A 2

Top view of the 2d
histogram of algorithm A 3

Figure 4.21: Clustering results of 20th M a r c h irnages

132

cluster No. of pixels cluster mean variance (7 ^)

A l A2 A3 A l A2 A3 A l A2 A3

0 6101 6340 1716

85.7 85.2 77.2

207.8 205.3 209.0

9.2 6.9 4.8

4.8 6.4 3.3

1 13265 18632 11550

119.1 116.1 81.4

206:5 200.7 195.9

12.7 13.8 12.3

9.6 13.2 10.2

2 9196 5029 19938

77.7 57.5 120.8

187.2 186.2 195.9

14.2 9.7 13.7

7.6 12.2 18.3

3 6788 7016 21854

125.2 88.3 71.2

171.9 170.5 157.9

13.9 10.1 18.0

11.6 12.0 10.7

4 4498 3825 10472

93.6 130.4 29.8

160.1 163.6 145.9

7.5 14.0 6.1

6.2 7.6 7.9

5 17663 16289 —

59.1 62.0 —

155.3 153.0 —

13.4 13.5 —

10.1 8.4 —

6 8025 8405 —

27.3 27.5 —

143.3 144.7 —

4.3 4.2 —

5.3 7.1 —

Table 4.1: Clustering statistics for 5th M a r c h 1991 images.

cluster No. of pixels cluster mean (-^jp) variance

A l A2 A3 A i A2 A3 A l A2 A3

0 28002 20581 29253

96.5 89.9 96.1

201.2 204.5 200.4

16.9 13.6 18.9

11.0 10.1 11.6

1 2401 6053 3289

143.9 117.5 124.2

167.8 194.7 171.0

10.7 10.2 15.4

11.6 6.6 4.5

2 14963 2403 14919

100.7 144.1 98.9

162.2 168.3 159.4

13.7 10.5 18.0

9.3 11.9 9.6

3 8703 16528 9585

56.7 100.2 46.4

154.8 164.1 150.8

12.0 13.8 13.4

14.1 10.4 10.7

4 7549 7868 5335

24.4 57.7 22.3

138.8 154.8 134.6

5.6 11.9 4.7

7.0 13.2 3.4

5 3918 12103 3141

46.2 32.6 48.6

124.8 134.4 121.2

5.0 12.1 5.2

9.3 10.4 6.7

Table 4.2: Clustering statistics for 8th M a r c h 1991 images.

133

cluster No. of.pixels cluster mean variance (^pp)

A l A2 A3 A l A2 A3 A l A2 A3

0 5811 21139 32725

82.8 102.8 100.6

187.8 185.9 175.8

7.5 16.9 15.5

8.9 11.7 17.7

1 14588 3238 5886

112.3 60.4 123.4

185.7 174.6 153.9

12.5 7.5 8.6

12.6 9.1 6.0

2 9363 10792 13286

66.7 116.6 72.3

155.1 154.2 151.2

8.9 9.3 12.2

16.7 7.1 12.0

3 18755 10881 2896

98.5 93.2 28.6

154.4 153.3 145.1

9.7 6.7 -4.5

8.6 7.3 5.6

4 4198 8976 1573

125.0 65.9 110.3

152.2 144.2 143.7

7.8 12.1 4.1

5.3 7.2 3.6

5 3902 4356 8190

26.3 27.5 48.3

142.7 143.4 128.2

6.4 7.3 5.7

11.7 11.7 14.5

6 8907 6154 973

48.8 49.1 18.1

128.6 121.2 127.3

5.9 5.8 1.3

13.1 7.6 1.7

Table 4.3: Clustering statistics for l l t h M a r c h 1991 images.

cluster No. of pixels cluster mean (-^^) variance (^^)

A l A2 A3 A l A2 A3 A l A2 A3

0 7096 18771 8803

91.2 99.2 92.7

208.7 196.0 206.8

13.1 15.6 13.0

4.5 12.0 5.8

1 14217 2567 21922

101.4 56.7 100.6

185.8 180.9 175.2

14.9 10.5 15.2

9.9 8.0 13.4

2 5814 7253 5004

125.8 123.0 127.2

156.2 157.0 153.6

8.3 9.0 8.2

7.5 7.4 6.0

3 16010 17232 16265

64.6 97.1 71.0

151.9 155.6 150.2

13.7 10.9 15.9

17.3 11.4 12.9

4 14434 11038 3993

102.0 65.6 108.5

151.9 144.4 144.8

9.0 12.2 5.7

8.6 11.1 4.3

5 2820 3318 3288

23.8 25.3 25:2

134.7 136.8 136.0

3.8 5.2 5.1

9.1 10.8 9.9

6 5145 5357 6245

47.8 48.1 49.3

112.3 112.5 114.2

4,4 4.8 6.4

4.2 4.4 6.1

Table 4.4: Clustering statistics for 15th M a r c h 1991 images.

134

cluster No. of pixels cluster mean variance

A l A2 A3 A l A2 A3 A l A2 A3

0 7222 26229 6863

114.9 104.5 119.2

215.8 205.7 214.3

6.3 13.1 5.8

2.9 8.7 5.4

1 27441 2567 28934

100.9 57.7 98.4

196.6 194.1 196.8

15.8 12.7 16.3

11.5 11.5 12.1

2 14086 5299 11819

63.9 115.4 66.0

155.2 181.8 153.0

14.3 9.7 13.1

16.7 8.0 14.1

3 7647 5659 7623

106.4 75.6 107.1

151.4 172.9 152.0

14.0 13.5 13.4

6.2 5.1 7.0

4 3777 10519 4395

26.1 98.5 28.3

143.6 149.5 145.6

3.7 17.4 5.4

5.9 6.6 • 7.3

5 1391 5690 1584

17.4 24.9 17.8

128.3 141.7 128.7

1.1 6.0 1.6

2.6 10.7 2.9

6 3972 9573 4316

50.2 55.0 51.0

115.5 131.7 116.3

6.9 9.3 7.0

6.0 16.3 6.5

Table 4.5: Clustering statistics for ISth M a r c h 1991 images.

cluster No. of pixels cluster mean (-jfr) variance

A l A2 A3 A l A2 A3 A l A2 A3

0 12835 2065 8757

112.0 70.8 111.9

195.2 198.4 198.3

14.4 16.8 11.1

8.1 9.0 6.1

1 12330 10611 14324

103.3 102.5 104.0

176.7 195.3 177.0

10.7 10.2 15.4

7.6 7.2 13.6

2 10640 17386 11034

77.8 108.1 74.4

167.8 174.8 173.3

10.1 15.1 10.5

16.7 10.4 14.4

3 9803 12199 10163

50.9 62.1 113.3

150.2 106.5 152.5

10.4 12.0 11.3

15.4 15.2 13.0

4 6883 7530 10596

116.9 113.2 39.6

147.2 144.3 151.3

11.1 15.8 11.8

9.0 9.4 10.2

5 6314 8037 2509

24.2 26.9 20.0

140.0 143.6 129.0

4.7 6.9 2.7

9.7 12.0 4.5

6 6731 7708 8147

49.7 50.5 51.3

105.9 108.2 109.3

7.1 7.6 8.3

7.4 9.3 10.1

Table 4.6: Clustering statistics for 20th M a r c h 1991 images.

135

Since mult iple solution exists for iterative clustering, i t is very difficult i f not

at a l l possible to compare the statistics of the results, therefore they are compared

based on the actual classes found i n the original images. The exact number of

clusters are also difficult to determine, but i t is set such that the feature space

are wel l partit ioned. Due to the relatively low resolution of M E T E O S A T at high

lati tude i t is not able to distinguish a l l cloud types, especially i n regions where

multi-layers of cloud exist.

The cloud types found i n these images are:

1. L a n d

2. Sea

3. Low cloud

4. M i d d l e cloud (Altostratus, Stratocumulus etc.)

5. Cumulus (subpixel)

6. thick Cirrus

7. th in Cirrus

8. Deep convective cloud

The following paragraphs concentrate on the comparison of results obtained

using different in i t ia l parti t ion methods,.i.e. the Global-Local algorithm (A l) and

the dynamic algorithm using random ini t ia l part i t ion (A2) , since the results of

the histogram clustering are less important.

O n the 5th March , both algorithm separate the low clouds and land well ,

the main difference is the thick Cirrus (middle of the window), i t has been over

estimated by the A 2 algorithm. Most of the Stratus w i th th in Cirrus above has

been mixed wi th the thick Cirrus. The Global -Local algorithm separate the stratus

cloud underneath the thick cirrus well , without overestimating the thick cirrus.

The main features of the spiral cloud on 8th March has been identified well

by both algorithm. Areas containing cumulpnimbus (bottom) and thick Cirrus

136

(bottom right) are the main difference. The A 2 algorithm has split the cluster of

thick cirrus into two clusters, i n this case i t i s better to keep the thick cirrus i n

one cluster.

O n the l l t h March , low stratus cloud has been well represented by both algo

ri thms. The main difference is on the top left where a group of thick cirrus has

been identified by the Global -Local algorithm. The thick cirrus has been assigned

to the stratus underneath the thick cirrus by the A 2 algorithm.

O n the 15th March , the anvils of located at the cold front has been separated

well by the Global -Local algorithm but not by the random algori thm. The amount

of thick cirrus (top left) has also been overestimated by the A 2 algorithm.

O n the 18th March , the random algorithm fails to separate the warm frontal

cloud, this consists of a mixture of nimbostratus, altostratus and cirrus. The

cirrostratus along the warm front has been separated part icularly well by the

Global-Local algorithm. The altostratus and stratocumulus behind the warm

front and the warm frontal cloud has been wrongly assigned to a single cluster by

the A 2 algorithm.

O n the 20th March , the frontal baind of thick cirrus has been under estimated

by the A 2 algori thm as well as an area of cumulonimbus over southern England.

4.5 Discussion

In a l l cases, clustering using a random in i t ia l part i t ion closely resembles the

Global-Local clustering algorithm. However, in general the Global -Local clus

tering approach generates better clusters than using the random in i t ia l parti t ion

approach, as expected. In a l l six sets of images the thick cirrus and deep con

vective clouds in .particular are better represented by the Global -Local clustering

approach. Another disadvantage of the random in i t ia l part i t ion approach is that

the number of clusters is very difficult to control. Very often i t generates kernels

which does not attract enough points and are discarded, which i n turn increases

the variation of other kernels. Al though a kernel w i l l be split i f its variation ex-

137

ceeds the hmit , this usually results in unsatisfactory clusters or oscillation between

spht and merge.

The dynamic algorithms converge as expected and less than 3% of the pixels

were transferred at the l l t h iteration.

The histogram clustering (A3) is found to be able to provide very good in i

t ia l partitions for the dynamic clustering algorithm (A l) . The split and merge

capabilities are also very useful for recovery from bad randorn in i t ia l part i t ion.

In most cases the classes wi th very small variance and which are close i n the

feature space (e.g. different type of land or sea) are mixed together. This is not

a serious problem for cloud classification, however i t can be improved by only

estimating kernels which exceed the split or merge parameters, because these

clusters usually can be identified very wel l by the histogram clustering algorithm,

and i f their kernels are not disturbed they wi l l not affected by split or merge of

other clusters. For the Global-Local algorithm, i f no split or merge has occurred

the final part i t ion is very similar to the in i t ia l part i t ion generated by the histogram

clustering. This implies that the dynamic clustering algorithm is very stable once

i t locks onto a cluster and wi l l not move very much i n the feature space.

In this chapter the histogram clustering has been shown to provide good ini t ia l

partitions for classical iterative parti t ional clustering algorithm. The advantages

of the Global-Local clustering algorithm are:

1. H igh efficiency (it exploits mult iple occurrence of a pattern vector).

2. It obtains an i n i t i a l parti t ion objectively using a very efficient histogram

clustering algorithm which requires few control parameters.

3. It uses an opt imum Gaussian kernel as a cluster model , which has found to

suit cloud imagery well.

138

Chapter 5

A Spatial-Spectral Clustering

Algorithm

T h e Global -Local clustering scheme presented i n Chapter 4 classifies each vec

tor:, using only it^s spectral features. This approach is usually termed per-pixel

clustering. Per-pixel clustering algorithms are popular i n clustering of remotely

sensed data, because y^) require J i t t l e / n o data preprocessing and /\, very efficient.

However,yi^Mo,: not uti l ize the spatial information in^mage. Spatial information

is important for several reasons, 1) human interpretation of images relies heavily

on the spatial as well as the spectral relationship of objects, 2) texture, spectral

and contextual features can be found i n most images, 3) the low resolution of

most weather image is usually such that a pixel grey level representing a mixed

measurements of more than one object.

It is well known that (Ket t ig and Landgrebe 1976, K i t t l e r and Pa i rman 1985a)

per-pixel classifications of remotely sensed data are "noisy". Th i s result is due to

uncertainty of boundar^j^': pixels being classified without considering the categories

of its neighbourhoods. The "classification noise" is particularly undesirable for

subsequent shape analysis of the object shapes.

Spatial information can be characterised by textural features or extraction of

homogeneous regions i n the image. Texture refers to a description of the spatial

variabili ty of tones found wi th in part of a scene. Various measures of texture have

139

ii

been successfully used to improve classification of remotely sensed data (Haralick

and Shanmgau 1973). One disadvantage of textural measures is that there is an

effective reduction i n spatial resolution of the final classified image because for

the measure to be effective the whole image is divided into small regions and

these regions are classified using their textural measures. For example Haralick

and Shanmgau (1973) use 64 x 64 pixels sub-regions and 44 textural features to

classify L A N D S A T data, they claimed a 10% improved accuracy over per-pixel

classification. Simi lar ly approaches for cloud images was reviewed i n Chapter 2.

Whereas textural features contain information about the spatial distribution of

tonal variations wi th in a band; Contextual features contain information derived

from blocks of pictorial data surrounding the area being analysed. Since the

tracking of mesoscale cloud motion require a target window as small as 4 x 4

pixels, the textural approach is not suitable and we shall concentrate on contextual

approaches.

In this chapter a new Spatial-Spectral clustering algorithm is presented. This

comprises of two stages: firstly the image is segmented into spatially connected ho

mogeneous regions corresponding to objects in the original images using a method

called Graph Theoretic Hierarchical Segmentation (G T H S) . In the second stage,

objects belonging to the same category are grouped using an approach similar to

G T H S , but they are grouped based on their spectral similari ty only.

5i0.1 Review of Contextual Classifiers

The use of contextual information is based on the assumption that (Harahck and

K e l l y 1969):

1. Objects which are very close together are probably the same or similar type

of object.

2. A sensor which is sensing the same br^similar typesof object w i l l record the

same or similar numerical measurements.

140

The above model leads immediately to the idea of i inding homogeneous sub-

regions and then classifying each region as an object. This idea of image par-

t i t ioi i ing is called image segmentation. Segnientation is defined as the part i t ion

of an image I into m spatial connected subregions P = {R\,— ^Rm} such that

U f e i ^ — J- Each region is homogeneous such that the variatioii wi th in each

region is less than a threshold < Of

The simplest method is to divide the image into successively smaller rectangles

and produce, a paxtition that tends to minimize a criterion function. Robertson

(1973) defined ai;Sutr<t3T6rt homogeneous i f the mean M{K) = M{J) for

some subregion K wi th in image J . The whole image I is parti t ioned recursively

unt i l al l subregions are homogeneous or equal to the min imum block size allowed;

The mean test of part i t ion J into J\ and J2 is approximated by a multi-variate

statistical hypothesis test that assumes the grey-levels i n J i and J2 are normally

distributed, and tests the hypothesis that M (J i) = M (J 2) . The subimages are

then classified using either supervised or unsupervised methods. This part i t ioning

of the whole image recursively into smaller regions are referred as disjunctive

approach or top-down approach.

Farag (1978) presented a top-down procedure based on an information theo

retic approach. The algorithm started wi th the whole image and split recursively

into subregions such that the total information is minimised. If a l l regions are

homogeneous the mutua l information conveyed should be min imum.

Ke t t i g and Landgrebe (1976) suggested an contextual algorithm for mul t i

spectral image classification. The algorithm is to merge 2 x 2 pixel cells (or

larger) un t i l regions meet at their boundaries. The merging of cells are based on a

multi-variate composite hypothesis test, i.e. i f the test is positive two regions are

merged, and cells which do not pass the homogeneity test are assumed to l ie on

boundaries, these pixels are classified using per-pixel methods. The homogeneous

regions are called fields and can be classified using supervised or unsupervised

methods. Alternatively we can cluster pixels into regions and grow regions un

t i l their variance exceeds a predefined threshold. This approach is referred as

141

conjunctive or bottom-up approach.

Other approaches try to identify homogeneous objects by scanning the image

sequentially i n a line by line sequence. Nagy and Tolaba (1972) proposed a spat ial

clustering method based on^extraction of homogeneous regions . , by strip forma

t ion. A strip is a segment of a scan line. The strips are allowed to grow unt i l the

addition point •. raisesthe internal scatter of the strip above a designated strip

threshold. A t that point, the formed strip was assigned to a cluster (or designated

to start a new cluster), and the formation of a new strip begins. The assignment

of a strip to a cluster was done by comparing the strip to the cluster centres.

The search for a cluster was done i n a decreasing order of cluster population, to

eliminate small groups of abnormal components.

Jayroe (1973) introduced a three stage spatial clustering procedure for mul t i -

images. In the first stage, a boundary map is prepared bjHthresholding of gradient

images. The two gradient images used are obtained by computing the Euclidean

distance between nearest neighbours i n the horizontal and vertical directions. In

the second step clusters are formed by scanning the boundary map wi th a fixed

size window. When the window hits a region i n which there are no boundary cells,

that region is assigned to cluster 1. The window is then moved further, and i f no

boundary cells are encountered, the area wi th in the window is assigned to cluster

1. The scanning continues unt i l a l l possible cells are assigned to that cluster.

Next , the window is moved unt i l i t hits a new region wi th no boundary cells, and

the process is repeated. Final ly , clusters are merged according to their spectral

features.

Haralick and Dinstein (1975) proposed a spatial clustering procedure based

on gradient images. The procedure starts wi th computation of a gradient image

using Robert 's gradient. The gradient image is then thresholded to generate

homogeneous regions. A clearing procedure is applied to the threshold image to

eliminate fuzzy boundaries. The image is then scanned line by line to identify

connected strips, these strips are then merged into spatially connected regions.

F ina l ly these regions are clustered.

142

K a u t h et a l . (1977) introduced spatial coordinates of each pixel into the vector

description of the pixel and to use this information along wi th the spectral features

i n a conventional I S O D A T A clustering algorithm.

Bryant (1979) proposed a spatial clustering procedure il?ct&5f(;-̂ le-civ/Uy. on heuris

tics. Spatial information is incorporated by identification of pure pixel (fields) and

a pixel 's label depends on the values of its 4 nearest neighbours. The fields are

merged spatially and 5 test pixels are selected from each field. Cluster centres are

then generated using the mean vector from each field, and the test pixels are clas

sified wi th these mean vectors. F ina l ly the means that do not adequately attract

test pixels are eliminated. F ina l ly the field mean vectors and pixels are classified

using per-pixel nearest neighbour classifier.
hx<Je.

Supervised methods using contextual information,,,(>e«>istudied by Ki t t l e r and
by

Pairman (1985a), and^Swain et al . (1981). They proposed contextual classifiers

based on the max imum hkehhood classifier. These algorithms are to minimise a

loss function which take into account the dependence of a vector and its neigh

bourhood. The in i t ia l label is obtained by conventional per-pixel classification

and the label are iteratively change unt i l al l labels are stable.

For most contextual classification methodij only marginal improvement i n clas

sification accuracy is reportedj but the change i n object shape is obvious and i t

can affect subsequent machine analysis of objects.

5.0.2 Summary

A l l spatial-spectral clustering algorithms start with^identification of homogeneous

regions or objects(segmentation) and these objects are grouped. ' a later stage

using a clustering algorithm. Most algorithms require some threshold values for

testing of a region homogeneity, and spatial information is not fully ut i l ized, i.e.

the region are constructed using strip growing or merging of small blocks. The

consequence of not being able to make full use of spatial information creates re

gions wi th jagged edges and blockiness (Morris et a l . 1988).In this chapter an

unsupervised approach is used such that no threshold values are required. The

143

new Spatial-Spectral clustering algorithm is able to produce clusters wi th accu

rate boundaries and clusters are less "noisy" compared wi th per-pixel clustering

approaches. These properties are important to machine analysis of the cluster

shape.

5.1 Graph Theoretic Hierarchical Segmentation

(GTHS)

The first stage of the Spatial-Spectral clustering concerns the generation of spa

t ia l ly connected homogeneous regions. This is achieved by a Graph Theoretic

Hierarchical Segmentation (G T H S) technique which clusters the spatial space us

ing a Graph Theoretic method.

Image segmentation algorithms based on graph theoretic clustering are devel

oped i n this section. The G T H S algorithms t ry to exploit the spatial information

which is often ignored i n many image part i t ion algorithms. Segmentation is a

fundamental problem i n image analysis and understanding. Clustering algorithms

have been shown to be an effective approach for image segmentation (Fu and M u i

1981).

5.1.1 Definition of Spatial Space and Feature Space

Segmentation can be either ajAvrfoxicMw^of feature space or^the spatial space. For

classification purposes, as shown later, a part i t ion of the spatial space requires

further grouping of similar segments i n the feature space to produce unlabelled

classes.

We consider the feature (measurement) space first. A c?-dimensional image

is a two dimensional sequence of c(-tuple vectors and the elements i n each vector

correspond to the grey-levels L of the sensed image. The feature space is defined as

the Cartesian product oi G = Lix L^... x Ld. If the size of the image is A'̂ x M

pixel , then the image / can be regarded as a sequence 7 = {gij\i € Zx,j G Zy}

where Z^: = { 1 , 2 , . . . , N], Zy = { 1 , 2 , . . . , M } and gij G G, Therefore the

144

spatial space is the Cartesian product oi S =

Figure 5.1.

Z3; X Zy. A n example is given i n

1 : 2 1 6

1 5 6 6

1 10 10 5

9 6 10 9

(a) 4 x 4 image

A A A B

A B B B

A C C B

C B C C

(b) Best partition
of feature space

A A A B

A B B B

A C C B

C C C C

(c) Best partition
of spatial space

Figure 5.1: Partitions of a 4 x 4 iinage.

145

5.1.2 Spatial Clustering

It was shown i n section'3.5.4 that graph theory plays an important role i n cluster

ing. One of the advantages of graph theoretic clustering is the abil i ty to describe

the clusters i n a hierarchical order, Q-wyî to different level of interest a data set can

be partitioned into many possible combinations(Fig, 3.7). This is particularly true

for image segmentation, where an image is segmented into regions that roughly

correspond to objects, surfaces or parts of objects of the scene.

Graph theoretic and hierarchical clustering Koj/g been used extensively in^par-

t̂Twv!x|- of feature space. In this Chapter i t is shown that clustering of .the image

space (spatial space) is equivalent to parti t ion of a image into spsdtl̂ llij connected

segments. The basic concept is to cluster the image pixel wi th the constraint

that they are spatially connected. A t this point it should be stressed that graph

theoretic and hierarchical clustering fuwcone major difference; i t is the generation

of clusters. In graph theoretic clustering clusters are formed by Tttyvo în:̂ " of incon

sistent l inks, while i n hierarchical clustering the dendrogram is cut at some level

to generate clusters (Fig . 3.12). However, both methods generate clusters i n a

hierarchical fashion.

A hierarchical structure of a picture is common i n low level image analysis

(Tanimoto 1978, Tanimoto and Klinger 1980). A hierarchical structure means

that the image can be divided into components, corresponding to scene objects,

which can then be divided into subcomponents corresponding to objects. The

hierarchical level is particularly useful to represent different resolution levels:" a

region, which is higher i n the hierarchy than its subparts, is also larger than its

subparts. Hence, higher level regions could be discovered at a coarser resolution

than their subparts. Spatial clustering using graph theoretic methods automati

cally produce the hierarchical" result as described above.

In order to obtain segments wi th accurate boundaries, the process must be able

to take into account of both local and global spatial information. Graph theory

has been shown to be an effective approach for detecting gestalt clusters (Zahn

1971). The application of graph theory to image segmentation can be found i n

146

Morris et a l . (1986) and Daskalakis et a l . (1988a). The methods described i n this

Chapter ^ ' s i m i l a r to the irnage graph presented by Morr is et a l . (1986), although

the fundamental concept of our segmentation is based on clustering of the image

coordinate space and is applicable to multi-spectral data.

The complexity of graph theoretic clustering of the feature space of an image

wi th n pixels requires n{n — l) / 2 similarity measures, which is prohibitively large

even for a 256 x 256 pixel image. In image segmentation, however, only adjacent

pixels need to be considered, thus rediicing the number of similarity measures to

m X n . (m = 4 or 8). The neighbourhood of a pixel x is shown i n F i g . 5.2

X

"8 ^2

X

•̂ 6 "̂ 5

4 connectedness 8 connectedness

Figure 5.2: The neighbourhood of a pixel x

147

5.1.3 Basic Graph Theory

In order to present the G T H S segmentation method i t is necessary to introduce,

some graph theory terminology.

1. A graph G = iV^E) consists of a set of nodes or vertices joined by l ink E.

A hnk can be directed or non-directed: directed l ink is called an arc, and

a non-directed hnk is called edge. The end node of a directed l ink is the

parent of the start node.

2. A completed graph has every node l inked to every other node.

3. A graph is connected i f there is a path from any node to any other node.

4. A graph is a directed graph i f the links have direction.

5. A graph is non-directed graph i f the links have no direction. A . weighted

graph has a value or weight e,j, associated wi th the edge l inking nodes i and

j. The nodes may also be assigned weight v,-, Vj.

6. A path is a sequence of directed links, a chain is a sequence of non-directed

hnks.

7. A cycle i n a graph is a path or chain from some node i back to i tse l f

8. A tree is a connected set of paths or chains such that there are no cycles.

9. A forest is a graph which is not necessarily connected and i n which there

are no cycles.

10. A directed tree is a directed graph wi th a specific node called the root, the

root has no parent.

11. A spanning tree is a tree that contains every node i n G. The weight of a tree

is the sum of l ink weights. The min imal spanning tree (M S T) of a weighted

graph G is the spanning tree of G which has min imal weight.

148

5.1.4 Spatial Clustering: A Stepwise Optimal Approach

A H agglomerative hierarchical and graph theoretic clustering methods can be re

garded as a procedure to minimise a global cost function step by step. In the

case of clustering the cost function to be minimized io.*t> each step is usually the

distance between two groups. Assume the cost of merging two regions Ri and Rj

is C{Ri,Rj), and that it is required to minimize the total cost of merging m

segments. The criterion function is

= Y^{Ri,Rj) V i , i € L (5.1)

where L = {eki\k, 1 e ZxX Zy] is the set of hnks connecting the regions.

The identification of the min imum of J (Pm) requires the search of a l l possible

partitions, and a practical solution is found i n clustering techniques. Graph the

oretic techniques have been used because they can exploit*^ ^spatial information of

an image.

A n in i t ia l part i t ion of an image wi th n segments each containing exactly

one pixe l is P ° = A t the kth. i teration, the two most similar

regions are merged from the P''~^ part i t ion to produce a new part i t ion =

{Ri,Rl2,...,Rn-k}- Therefore the number of regions decreases by one at each

iteration, must contains n — k regions. J{P^) tends to increeise after each

merging, and can be written as:

J{P') = J{P') + Y

It is easy to see that if the increase in J{P) is minimized at each iteration then

so ; J{P'')- Thus, a suboptimal solution of the global opt imizat ion problem

is obtained using this stepwise approach. In general the criterion function J{P)

increases step by step and the stepwise approach produces a sequence of J{P°)

such that

J (P°) < J (P ^) < . . . < JiP") < J{P^) (5.3)

J{P°) - J (P ° - ^) (5.2)

149

5.1.5 General Form of the Spatial Clustering Algorithm

A graph-theoretic segmentation based on the clustering concept presented i n pre

vious sections is introduced.

The general procedure for Graph Theoretic Hierarchical Segmentation (G T H S)

is as follows:

Step 1. Begin wi th n segments each consisting of exactly one entity.

Set r = n .

Step 2. Search for the most similar pair of segments (only spatially

close neighbours are compared).

Step 3. Reduce the number of segments r by 1 through l inking of

segments Ri and Rj. Label the newly formed segment.

Save the l ink connecting Ri and Rj. Update the

similarities using the chosen distance measure.

Step 4. Perform Step 2 and 3 n — 1 times (until a l l entities are i n one

segment).

Step 5. A l l entities are connected by a graph which links are those

saved i n Step 3.

Step 6. Form segments by removal of the most costly l ink saved i n Step 3.

Step 2 is crucial to the result of the spatial clustering. The similari ty measure

of neighbouring segments determines how well the global and local spatial rela

tionships are exploited. This is demonstrated using the distance functions in the

single linkage and centroid methods.

The G T H S segmentation may consists of one or two stages: The first stage is

the construction of^spanning tree, and the process terminates when the required

number of segments is obtained. This is called the bottom-up approach. In

the second approach the spanning tree is allowed to span the whole image and

segments.are generated using a second stage. The second stage is the identification

of inconsistent edges (e.g. the m — 1 most weighted edges are removal to obtain

m segments, or the spanning tree is part i t ional such that a criterion function is

150

optimized). This is called the top-down approach.

The determination of the number of segments present i n an image is as difficult

as the deterrriination of the number of clusters present i n the feature space, and

it w i l l be helpful to have some measure of segmentation performance. A segmen

tation model based on mutual information is presented later. This monitors the

segmentation process and is used to suggest suitable number of segments.

5.1.6 The Image Graph

A n efficient algorithm is essential for practical use of the spatial clustering method.

One way to implement the G T H S segmentation method is to compute al l the

possible pairwise similariti^sof a pixel and its neighbours. The neighbourhood

of a pixel can be defined by a window of size p x p p ixel . For computational

reasons and simphcity only 4 or 8 neighbours are usually used, and i n this study 8

connectedness are used to demonstrate the abili ty of spatial clustering (F ig . 5.2).

To implement G T H S segmentation, the image must be mapped onto a graph

and the simplest mapping is to consider every pixel as a node i n the graph (see

F i g . 5.3).

151

X
11

X
12

X
13

X
21

X
2 2

X
2 3

X
31

X
3 2

X
3 3

node

image graph G

Figure 5.3: Mapp ing of a 3 x 3 image onto a graph wi th

8 connectedness.

Every node represents a vector i n the image. The vector is simply the grey-

level of the pixel . Other features such as texture or grey-level gradient can also be

used. Therefore every node carries a weight Vk — Zijki and every l ink connecting

node i and j has weight e,j = \\vi — Vj\^ which is the squared Euclidean distance

between the two vectors mapped onto u,- and Vj. Every node can be connected to

more neighbours but considering the complexity only 8 neighbours of a pixel are

used. It must be noted that the graph generated by^merging of spatially connected

segments is always a spanning tree of the image graph G.

It is noted that the merging stage (Step 1 — Step 5) in the G T H S algorithm is

a variation on constructing a M i n i m a l Spanniiig Tree (M S T) . There are two well

known algorithms to construct a M S T (P r im 1957, Kruskal 1956). The importance

of choosing a distance function has been stressed previously, and several distance

functions are chosen to illustrate the principle of spatial clustering. These distance

functions were presented in section 3.5.4. Traditionally a name is associated with

each hierarchical clustering method using a particular distance function, the same

152

name w i l l be used here for convenience, but the algorithms presented here should

not be confused w i th hierarchical clustering (section 3.5.4). .

5.1.7 Single Linkage Spatial Clustering

A clustering obtained by single hnkage clustering is equivalent to the construction

of a min imal spanning tree (M S T) on the data set. Efficient algorithms exist

to construct the M S T and usually either P r im ' s or Kruskal 's M S T algorithm is

used. It should be noted that P r im ' s algorithm is more efficient than Kruskal 's

algorithm, bii t as w i l l be shown / 'Kruskal 's algorithm is more suitable for spatial

clustering because i t allows both top-down and bottom-up approaches.

P r im ' s M S T algori thm; ' is :

Begin wi th an arbitrary node of G and add the edge wi th smallest

weight connected to this node. This l ink wi th its two end nodes con

stitutes fragmented tree Ti. The kth fragmented tree grows by adding

the shortest l ink from Tk-i to the nodes of G not i n Tk-i. Th i s con

tinues unt i l r„_i is the desired M S T .

Therefore, i n P r im ' s a,lgorithm the M S T grows from a single node by adding

the closest node to the current tree at each stage along wi th the l ink corresponding

to that closest distance. A M S T of a 4 x 4 image is shown i n F i g . 5.4. Removal of

•0<i^ Ca and 66 w i l l parti t ion the image into 3 homogeneous regions as required.

153

1 2 1 6

1 5 6 6

1 10 10 5

9 9 10 9

0

0

1 JL

T T • T
3J 1 0

O /# # O
'b 0

0

0

1

4

4 x 4 image

0 1 1

MST

Figure 5.4: M S T of a 4 x 4 image (4 connectedness),

removal of edge eaandej generate three homogeneous re

gions.

Since the P r im ' s M S T algorithm only allows the growth of one tree at a l l

times, i t is not suitable for the bot tom up segmentation approach. Th i s study

uses the Kruskal 's algorithm : ^ i % ^ i n contrast to the Pr im ' s algorithm, trees grow

simultaneously, starting from the most homogeneous regions.

T h e segments similarity measure for single linkage spatial clustering is

SrniniTi^Tj) = mm 6{v,v')

5.1,8 Complete Linkage Spatial Clustering

(5.4)

The concept of complete linkage is no more complicated than the single linkage

except the distance between segments becomes

S^a.m,Tj)= max (t;,t;')
v&Ti,v'eTj

(5.5)

154

Figure 5.5 is an example of a spanning tree generated by the complete linkage

method (G S T) .

1 2 1 6

1 5 6 6

1 10 10 5

9 9 10 9

4 x 4 image

1 1

0

0

' e

/ a 1 0

0
1

1

0 0

0 1

CST

Figure 5.5: C S T of a 4 x 4 image (4 connectedness),

removal of edge Caandet generate three homogeneous re

gions.

The algori thm to construct the C S T is similar to M S T and the weight of the

edges between segments is determined using eqn. 5.5.

The algori thm for C S T is:

Step 1. M a p the image.onto a weighted graph G. Set r = n — 1.

Step 2. F i n d the least weighted l ink.

Step 3. Save the least weighted l ink.

Step 4. Keep links ek{ij) which satisfy 5max{Tk-, T{ U Tj)

Step 5. Remove duplicated l inks.

Step 6. r = r — 1 goto Step 2 if r > 0.

Step 7. Form a spanning tree with the saved links.

155

5.1.9 The Centrpid Method for Spatial Clustering

The distance measures used i n the M S T and C S T w i l l be shown to belong to

local type distances. These distances do not incorporate the spatial information

beyond a pixel 's nearest neighbours and so,, as one could expect, they are sensitive

to local variations such as noise. A possible way of incorporating spatial infor

mation beyond a pixel 's nearest neighbours is to use the average distance (global

type) between two spatially connected regions. This section presents methods of

constructing a spanning tree based on global distances.

The distance measure used to construct "the spanning tree by the centroid

method (C E S T) is :

8mean{Tu Tj) = S{miTi), m{Tj)) (5,6)

where m{Ti) = ^ I^„^.gr, Vj is the mean or centroid of region Ri defined by Ti, Ui =

€ Ti}. It is noted that the Recursive Spanning Tree (R S T) which is

equivalent to C E S T has been used by Morr is et.al (1986|^for image segmentation.

The algorithm to generate C E S T is as follows: < ^ tv| Uw^ wvA \^U<i.Cm\)

156

Step 1. M a p the image onto a weighted graph.

Step 2. r = n - l .

Step 3. Save the next least weighted edge, say eij between nodes

i and j (in general node i w i l l represent n ;

original node weights and node q w i l l represent

original node weights. The weight of n,-, Uj w i l l be the

mean of the weights of a l l the nodes i t represents).

Step 4. Merge the two nodes i and j to make a new node k wi th

weight equal to the mean of a l l the node weights i n nodes i

and j, i.e.

Step 5. F i n d the new edge weights (using eqn. 5.6) for a l l

edges which are now connected to node k (frequently this

process leaves redundant edges, which are discarded).

Step 6. r = r - 1, goto Step 2 i f r > 0

Step 7. generate a C E S T using the saved links.

The interpretation of the C E S T is made easy by a recursive form of generating

the M S T . A t each stage of the iteration the total number of nodes is reduced by

one through merger of two closest nodes i and j. The merged node w i l l represents

a number of nodes which have been merged together and the whole process of

merging is repeated. The node weights of the new node is represented by the mean

of the merged node, and the l ink weights connecting the new nodes are updated.

A s the nodes are merged, i t is possible for one node weight to affect another which

is not necessarily its nearest neighbour. Initially only local information is used

since each region only consists of one pixel , but as the iteration progresses and

the regions grow, more global information is used. A n example of C E S T is given

i n F i g . 5.6).

157

1 2 1 6

1 5 6 6

1 10 10 5

9 9 10 9

4 x 4 image GEST

Figure 5.6: C E S T of a 4 x 4 image (4 connectedness), re

moval of edge Caandcfc generates 3 homogeneous regions.

5.1.10 The Variance Method for Spatial Clustering

So fax a l l spatial clustering methods only involve minimisation of edge weights i n

each iteration. The stepwise opt imal approach can be generalised by maximizing

an objective function instead of a distance function and a popular choice for

an objective function is to minimize the variance of a segment. This function

is justified by the assumption that each region should be homogeneous in some

scene. This method was proposed by Ward (1963) and he illustrated his method

wi th an error sum of squares objective function.

The algorithm of the variance method for constructing a spanning tree (V S T)

is similar to other spatial clustering methodsyiand is as follows:

158

Step 1. M a p the image onto a weighted graph.

Step 2. r = n — 1

Step 3. F i n d the pair of distinct treesTf and Tj whose merger

would increase the criterion function as l i t t l e as possible.

Step 4. Save the edge e,j

Step 5. r = r - 1, i f r > 0 goto Step 3.

Step 6. Generate spanning tree using the saved edges.

The criterion function over a l l part i t ion is

where Tn{Ti) is the mean of tree Ti

Suppose segment Ri and Rj are chosen to be merged and the resulting segment

is denoted as Rk. Then the increase in J (P) is

A W = E i2iv,k-mk{TiUTj)y
q^TiUTj k=l

- E E (^ ' ^ - ^ * (^ ^)) '
^.qeTi k=l

- - -EE("''^-"^'^(^i)) '
geTj k=l

= -^t:{mk{Ti)-mk{Tj)f (5.8)
rii + rijf^^

Note that eqn. 5.8 is the weighted squared distance of the two centroids, while

the Centroid method the distance is unweighted. Therefore the variance method

also uses global information. Figure 5.7 shows an example of V S T .

159

1 2 1 6

1 5 6 6

1 10 10 5

9 9 10 9

0.6 0.5 22

0.6 0

0 10.7 I

0.75

0.75

4 x 4 Image VST

Figure 5.7: V S T of a 4 x 4 image (4 connectedness), re

moval of edge Caandefc generates three homogeneous re

gions.

It is noted that an agglomerative approach similar to the variance method was

used by BeauHeu and Goldberg (1989) to segment monochrome image. They have

shown experimentally that the change in criterion A J (P) is i n general increasing

and can be used to guide the selection o^number of segments, but the mutual

information approach used in this study produces a better indication.

5.1,11 Summary

T h e search for the part i t ion Pmin that minimizes a global criterion J requires a

search over the entire space of al l possible partitions { P } . The implementation

of a exhaustive scheme is impractical , so a suboptimal solution such as stepwise

opt imal method has to be used.

In principle any distance used in a hierarchical clustering scheme e.g. average

linkage can be used to construct the spanning tree. A n important factor that

l imits the choice is the computational cost. For example, the M S T is fast but it

160

has some undesirable effects, such as chaining. If a globular distance is used the

computational cost increases, but wi th better results. There are many ways to

construct a spanning tree, but only M S T and C E S T w i l l be studied because they

are representatives of methods using local and global information. In most cases

the spanning tree is not unique because ties are resolved arbitrary.

F i g . 5.4—5.7, show that a l l spatial clustering methods produce the same par

t i t ion by removal of the two most weighted edges of these spanning trees (they

perform very differently when applied to large images). The most weighted l ink

of the V S T is much higher than the M S T , C S T and C E S T , so V S T is probably

the best among these four trees for segmentation proposes. The properties of the

spanning tree also depends heavily on the cost function chosen. There are two

major type of cost functions: The first uses local distance such as the nearest

distance, so only local information is used. The second type of cost function uses

global information by taking account of other nodes in the same region. Global

type cost functions are superior to local type for bot tom up segmentation, while

using the top down approach the performance are about the same as shown later.

A n efficient algorithm (Daskalaskis et a l . 1988a) to implement a spanning tree

can be found in Appendix C .

5.2 Bottom-Up Segmentation Approach

T w o segmentation approaches can be used to generate segments. The first method

is the bottom-up approach. Since the most similar regions are merged i n each

iteration, the construction of spanning tree can be stopped when the required

number of regions is obtained. B u t the success of this method depends on the

algorithm used to construct the spanning tree.

It is found that the P r im ' s algorithm does not allow segmentation using the

bottom-up approach. Assuming a region wi th only one p ixe l is t r iv ia l , then the

Pr im ' s algorithm startswith one node and that node grows by merging one node at

a t ime, so at every iteration there is only one tree in the forest representing a non-

161

t r iv ia l region. However i f the Kruskal 's algorithm is used (which is computational

less efficient than Pr im ' s algorithm) the number of trees i n the forest representing

non-trivial regions is greater than one after two iterations. This point is obvious

from the Kruskal ' s algorithm:

Arrange the edges of G in order from smallest to largest weight and

then select edges i n order making sure to select only edges which do

not form a cycle wi th those already chosen. Stop when n — 1 edges

have been selected. The set of edjges is then an M S T for G.

If we represent each tree as a region i n the image, i t is clear that wi th Kruskal 's

algorithm regions are allowed to grow as the process continue. A s a result G T H S

segmentation using Kruskal 's algorithm can generate Segments without the need

to complete the spanning tree.

The growth of a spanning tree generally starts wi th the most homogeneous

regions and these regions act as "seeds". Regions grow around the seeds as the

process continues. So spatial clustering belongs to the region growing methods

for segmentation (Zucker 1976).

To display a segmented image the regions grey-levels are replaced by the mean

of that region. Let the number of nodes i n tree Ti be € Tf}, the mean of

region Ri is given by

m{Ri) = ni^SlT\ #{Vj\Vj € li)

Although segmentation can be pbMVeii wi th less computational cost by termi

nating the process when the required number of segments is obtained, results may

depend very much on the spatial clustering method used. The bottom-up ap

proach is used i n this study and i t is found that i t only performs we l l wi th global

type distances. A more reliable but expensive way is to complete the spanning tree

and part i t ion the spanning tree subject to a criterion function. A minimax method

which is a suboptimal method wi l l be presented for the top down approach.

162

5.3 Top-down Segmentation Approach

A spanning tree connects pixels according to their spatial and spectra-1 relation

ship. This effectively l imi t the parti t ion space by eliminating the solutions which

clearly do not produce optimal parti t ion. Cut t ing m — 1 edges w i l l produce m

partitions of the image, generally cutt ing the most costly edges i n a spanning tree

produce the most prominent segments, but these segments are not necessary the

best par t i t ion P^- This is part ly due to how much global information is used by

a spatial clustering algorithm. Other methods may need detail inspection of the

diameter histogram (Zahn 1971) to locate local m in imum which correspond an

edge connecting two distinct segments but wi th weight similar to its neighbouring

edges. These methods is rather difficult to program and because of its ad hoc

nature the result may be unpredictable.

A more systematic approach is to optimize a criterion function. A g a i n a global

opt imizat ion method requires search of the entire part i t ion space { P } which is

computational prohibitive, therefore a suboptimal method has to be used. A

spanning tree provides a practical approach for top down segmentation by l imi t ing

the search space to only n—1 searches. A method is to optimize a criterion function

step by step to obtain a local opt imum. Let C{Ti) be the cost function of tree T,,

a criterion function

J (P) = Y ^(Ti) (5.10)
T,-6P

is minimized over a l l partitions. One possible cost function is

^(^^) = E E (" ' ^ - "^*(^')) ' (5.11)

which represent the sum of squares error for segment Pi.

Consider the process using top-down spatial clustering approach, the in i t i a l

part i t ion consists o f one region P° = { P j } . A t the ^ t h iteration, the algo

r i t hm splits two regions from the P''~^ part i t ion to produce a new part i t ion

P*^ = { P i , . . . , P ^ ^ i } . The criterion function J (P) tends generally to decrease

163

step by step i f we choose the cost function to evaluate the error sum of square or

other variance measures of {J?*} such that

k
J{P^) = J{P°)- 53[J(P"- ') - JiP°')] (5.12)

0=1.

We want to minimize J{P^) such that the two most distinct regions are split .

It is noted that the min imum value of J{P) is equal to zero, which is the t r iv ia l

segmentation of each segment contains one pixel . A step wise optimization is

therefore to find a region whose spht produces the largest decrease of J{P^). This

decrease results from the sphtting of a region Rt into Ri and so we want to

minimize

A J ' (P) = C{Ti) + C{Ti) - C{Ti U Tj) (5.13)

Since

J (P °) > J (P ') . . . > J{P'')... > J (P ") , A J ' (P ") < 0,

Therefore we can maximize the negative of A J ' (P) , which is

A J (P) = C{Ti U Tj) - C{Ti) - C{Tj) (5.14)

In a bottom-up procedure AJ{P) is being minimized, which imphes that the

two regions which increase the total cost by the least amount are being merged.

Following the same argument the change i n A J (P) of a top down procedure has

to be maximized, such that every t ime two most distinct regions are generated. - It

must be noted that this stepwise approach only produce a local opt imal solution.

Nevertheless, as w i l l be seen they generally produce good results.

Suppose we are at the kth. part i t ion P'' = {Ri,.. •,Rk+i}^ the optimization of

eqn. 5.14 requiresthe search oik+1 trees, and let n be the average number of node

i n each tree, the search requires 0{n{k 1)) operations. One way to speed up

the search is to search only the tree Ti wi th C{Ti) = m a x { C (T i) , . . . , C{Tk+i)},

because Ti is potentially the one comprising more than one distinct region and

spli t t ing Ti is most l ikely to produce maximum change i n the criterion function.

164

The algorithm for top-down G T H S segmentation is as follow:

Step 1. r = m — 1, m is the required number of segments.

Step 2. F i n d the tree Tk which maximize

A J (P) = C{Ti U TJ) - C{Ti) - C{Tj), Tk = Ti U Tj, Tk^G

Step 3. Remove the l ink connecting Ti and Tj.

Step 4. r = r — 1, i f r > 0 goto Step 2 else stop.

The top-down approach is used i n this study, and the best result is obtained

using top-down approach wi th a globular distance.

5.3.1 Minimax Segmentation

The minimax segmentation method is a simplified version of the stepwise optimal

method just described. The minimax method^minimizesthe cost function C(T i) =

m a x { C (r i) , . . . , C (r f c + i) } at the fcth part i t ion P ^ . This criterion based on the

assumption that the segment wi th the largest variance potentially consists of more

than one distinct regions. Once the tree C{Ti) wi th highest cost is identified i t

is split into two trees C{Ti) and C(72) over a l l possible part i t ion of C{Ti), and

selects the parti t ion which minimizes

A J ' (P) = C{Ti) -h C{T2) (5.15)

Since C{Ti U Tj) i n equation 5.14 is fixed therefore i t is equivalent to min imi

sation of equation 5.15. However, i t should be noted that minimax method- is

suboptimal to the stepwise opt imal method because the optimizat ion of Cmax^i)

does not necessary produce the largest change i n the criterion function. However

i t is computation efficient. A n efficient algorithm (Daskalaskis et a l . 1988b) to

implement .minimax on a spanning tree can be found in Appendix C .

The algorithm for top-down minimax G T H S segmentation is as follows:

165

Step 1. r = m — 1,771 is the required number of segments.

Step 2. F i n d the tree Tk wi th C{Tk) = max{C(r ,) |2> G G}

Step 3. Cu t Tk at edge ejj connecting Ti and Tj

min[max[a(r .) , CiTj)]] V e.-,- € T , , = Tf U T,-

Step 4. r = ?— l , i f r > 0 goto Step 2 else stop.

The cost function C{T) used i n this study is the intraset distance (see A p

pendix D) , which is essentially the average pairwise distance wi th in a segment,

and is

« P I " P ^) ,-=1 j - ^ i

where rip is the number of nodes in Tp.

It can be shown that C{Tp) = 2Yfk=i ^Ip where af^ is the unbiased variance

of the A;th variance i n the p segment.

^l = Z;^Y.^^ik-^^^Tp)f (5.17)

5.4 Monitoring Segmentation

Relatively htt le work has been done on determining the number of segments i n an

image. This problem is similar to and as difficult as validating clustering studies.

In this section a criterion function based on mutual information is presented. Due

to the hierarchical structure of segments, this function only provides guidance for

determination of number of segments.

Segmentation can be regarded as the approximation of an image. This is clearly

the approach presented i n previous sections, where a cost function of each segment...

Irt minimized. These cost functions are related to the variance of ; segments in

general, and is most explicit i n the centroid and variance methods. However, it

is clear that theigVs îcfef tbe number of segments, the better is the approximation.

166

Therefore the goal of segmentation is a compromise of local details and global

features required by the application.

Ideally, the segmentation process should automatically terminate once near

homogeneous regions have been found and one way of doing this is based upon

entropy measure (Daskalakis et.al 1988b, Farag 1978). This is reasonable since

the zero-order entropy of a near homogeneous segment, for example, tends to zero.

The general information measure of a set of segments P = . . . , Rm) can be

defined as (Farag 1978)

I{P) = IiRr,R2;...;Rm)
Rl Ri R:

.Rl ^̂ 2 Rm

= E E - E
P (x i i , X 2 i , . . . , X ^ f c) log —. r + log — r- . . . + log —. r - log •

X x i i) P (x 2 i) * " P(x,nk) K x i i , X 2 i , . . . , X m f c) .

= H{Ri) + E{R2)... + H{Rm)-H{Ri,R2,...,Rm) (5.18)

where Xmk is the A;th vector in segment m. E q n . 5.18 can be interpreted as the

total information conveyed by the segment P wi th properties

1. m > 0,

2. I(P) = 0 i f and only i f the vectors are independent, p (x i , - ,X2j , . . .,Xmk) =

p{Xii)p{X2j)...,p{Xmk)

For an ideal segmented image X(P)='0 sinct dl^iribuijpni, ofx ^in practice

we seek to minimise / (P) . It should be noted that H{Ri,R2,..., Rm) is the joint

entropy of the segments and is independent of the part i t ion (constant), since i t is

a function of the probabihty distribution of the image itself. Therefore we could

terminate segmentation when H{P) = YT -^(•^O < ^'J where 6i is a threshold

and i ? (P) is the segment entropy. In practice, due to problems of computing the

higher order segment entropy, only the zero order approximation would be used.

167

This is reasonable, since, when the segmentation proceeds, interaction between

segments w i l l decrease and most higher order terms can be neglected (Ryan 1968).

Daskalakis et.al (1988b) used a similar criterion to monitor the segmentation.

They assume the segment entropy H{P) is composed of two components by

H{P) = Hs + J2p{Ri)H{Rj) (5.19)
i

where Hs is the entropy due to the existence of segments, p{Rj) is the probability-

of occurrence of a particular segments Rj and H(Rj) is the entropy of segment Rj.

They assume the existence of segments obeys a Rayleigh pdf and pixels wi thin a

segment obey a normal pdf.

In this study, the concept of mutual information is used and the segmentation

process is modelled as a noisy communication channel (see F i g . 5.8).

m u l t i s p e c t r a l
image source

S
Segmentat ion

process
Segmented

image P

m u l t i s p e c t r a l
image source

S
Segmentat ion

process
Segmented

image P

E n t r o p y loss H(S|P)

Figure 5.8: Segmentation modelled as an information

flow process.

For such a channel, the mutual information common to both ends of the channel

is given by the well known expression

168

I{S; P) = H{S) - HiS\P) (5.20) '

where 5* = { x i , X 2 , . . . , X n } is the input image, P = {Ri,R2,.-.,Rm} is the

segmented image.

The source entropy is H{S) = - X)^(^«) (^-2^)

The information given by a set of segments P is not equal to the sum of

the information given by each segments taken separately, therefore they are not

statistically independent. It is noted that the mutual iiiformatiori measure is

symmetrical i n its two arguments and may also be expressed as

7(5; P) = H{P)— H(P\S) (5.22)

E q n . 5.22 indicates that the set of segments P should be statistically indepen

dent to maximize H{P), and at the same t ime to be highly statistically dependent

on a given image to minimize H{P\S).

Since H{S) is constant for a given image, the goal is to minimize the quantity

H(S\P). If H{S\P) = 0, there is no ambiguity i n the channel output, and the set

of segments is the best representation of the input image. For the segmentation

problem, H{S\P) denotes an uncertainty i n the segmentation or a "segmentation

loss". It follows that i f H{S\P) = 0, we could consider the segmentation process

complete i n the sense that the source image has been segmented into homogeneous

regions.

The conditional entropy H{S\P) can be expressed as

H{S\P) = H{S, P) - H{P) (5.23)

For simphcity we might assume that the m segments of the processed image are

approximately statistically independent and write H{P) as the zero-order entropy

m

mP) = - E K i ? i) l o g P (^ i)
i=i

169

3 x,eR>
(5.24)

Here p(x,-, Rj) is the joint probabili ty of pattern x,- and segment Rj. The zero-order

entropy assumption becomes more realistic as segmentation proceeds and indiv id

ual segments become more homogeneous and statistically independent. The joint

entropy i n eqn. 5.23 can be writ ten as

HiS,P) = - Y l E P(xni?i)lPgP(x.-,i2i)
3 x.eflj

Substituting eqn. 5.23 gives

(5.25)

HiS\P) = -

= - E E Kx.-,i2i)log
3 XieRj

B u t piRj) = X ;Kx. ' i t : i)

and

p(x i , i2 j) = p{Rj)p{xi,Rj)

= p{xi)p{Rj\xi) (Bayes'rule)

Therefore

HiS\P) = -J^5^Ki? i |x . -)Kx.) log
»• 3

Since H{S\P) = H{P\S)

HiS\P) = - X ; E ^ (^ ' ' ^ i M - R i) l o g

Note that eqn. 5.28 can be expressed as

E Ep^'^'"'^i)logp(x.-, Rj) - E E^(^''"^^•)^°gK^i)

(5.26)

L » 3 « 3

[piRj) J

p(i?j|x;)p(x,-)

p(x.-|i?,-)p(ir:,)

Ex,6fl,P(x.|^i)p(i2i)_

(5.27)

(5.28)

HiS\P) = - J ^ K i ^ i) E P(x.|i?i)logp(x , |P,)
i X,-6Hj

= J3P(P,)F(P,) (5.29)

where p(x,-|i2j) is the probabili ty of pattern x,- occurring i n segment Rj and H{Rj)

170

r r

is entropy of segment Rj. If segment Rj is homogeneous, then p(x,-|i?j) = 1 at

some input pattern x,- and H{Rj) = 0.

For any real pictorial data the segments always have some residual variance

and so, i n general, we look for a significant reduction i n H{S\P), rather than

H{S\P) = 0. Segmentation can then be achieved by terminating segmentation

when the rate of change falls below a nominal threshold.

The minimisat ion of H{S\P) can use either eqn. 5.27 or 5.29. In this study

it is assumed that p(x , | i? j) are norma;lly distributed (see Append ix E) , and the

probabihty of a segment is given by

5.5 Spatial-spectral Hierarchical Clustering

The second stage of the Spatial-Spectral algorithm is the clustering of regions

generated by G T H S . The spatially connected segments {R} are supposed to be

homogeneous and representing objects in the image. Some of these segments are

siniilar i n the feature space, even though they may be spatially separated, and

spectral clustering is required to group these regions into several categories. B y

doing this we assume each segment represent an object belongs to a given category.

The grouping of segments is similar to the grouping of pixels except the spatial

relationship is not considered. The clustering of segments is based on the same

principle of stepwise optimization. Given a set of segments {Ri} i = 1 , . . . , m ,

these segments are merged based on minimisation of a cost function C{Ri,Rj)

when segment i?,- and Rj are merged. The objective is to minimize the overall

cost of merging:

Jiu) = J2^iRi,Rj) (5.31)
Ul

where to is a l l possible partitions.

The cost function C{Ri, Rj) can be one of the distance functions discussed

171

i n section 3.5.4. However, for the purpose of spectral clustering these distaiice

functions are found to be inadequate to discriminate classes, mainly because they

do not convey sufficient information about the segments. For example, if only the

centroid of two segments are used the variation of the "two segments is ignored.

Therefore a better similari ty measure is required. The overall Spatial-Spectral

clustering algori thm can be divided into two stages process: The first stage is

either the bottom-up or top-down G T H S , and the second stage is the clustering

of segments (F ig . 5.9).

use bottom-up or
top-down GTHS to

segment multispectral
images

cluster segments
using agglomerative

clustering

clustering results

Figure 5.9: Spatial-spectral clustering approach.

A better choice of cost function is the intraset distance which is a measure

of variance. The intraset distance is the average wi th in group distance of the

iherging Ri and Rj. It is noted that this distance has also been used in top-down

approach for spatial clustering. The intraset distance is repeated here,

<5.„,(P,, Rj) = J Y E E (^ ' ^ - - - ^ ' ^ i) ' (5-32)
"pi"p j^i fc^i

where Up = ^ { i l i U Rj} and x/.-,-, Xkj € R, U Rj.

172

The algorithm of the second stage of the Spatial-Spectral clustering is similar

to the first stage and is as foUovys:

Step 1. Set r == m — 1

Step 2. Start wi th m segments. P = {Ri,...,Rm}-

Step 3. F i n d R and Rj such that C{Ri, Rj) = min,,tj C{Ri, Rj).

Step 4. Merge R and Rj, update a l l pairwise similarities.

Save hnk connecting R and Rj

Step 5. r = r — 1

Step 6. If r = 1 or r = required number of cluster stop, else goto Step 3.

Step 7. Form clusters using the trees generated.

A g a i n top-down and bottom-up approaches can be implemented using the

above algorithm. It has been found that the top-down approach does not offer

much advantage over the bottom-up approach.

Intraset distance was used i n this study and i t does not produce good results

because i t tends to underestimate the distance between small segments and large

segments.

5.5.1 Statistical Hypothesis as a Distance Mefisure

A better measure is based on statistical hypothesis, which has been used exten

sively i n image segmentation. A statistical test involve testing of a hypothesis and

the decision w i l l be simply accept or reject the test. It is noted that for any tests

to be developed i t is necessary to assume a definite probabil i ty distribution for

the random variable i n the segments, and i n this study a multi-variate Gaussian

model is assumed. Suppose there are two sets of sample X i ,X2, a null hypothesis

Ho] fJ-i = fi2 is to test whether the mean /ii,7/2 are the same. It is assumed that the

two populations, have a common variance covariance matr ix . T w o types of error

can result from this decision. They are:

P (T y p e I error) = P(rejecting JJol^io true) = o;

173

P (T y p e II error) = ^(accepting Ho\Hi true) = P

where Hi is called the alternative hypothesis and is automatically accepted i f the

nul l hypothesis is rejected, so ^ fi^.

It is assumed that every points in segments Ri are wi th the normal distribution,

and the nu l l hypothesis is to test whether the two distr ibution are the same,

i f the test is rejected it is concluded that the two segments belong to different

populations. The statistical decision therefore accepts HQ i f the two distribution^

have a distance less than a threshold t (confidence level, see F i g . 5.10). -

0 t

Figure 5.10: Probabilities of error in hypothesis testing.

For simplici ty we shall use a single variate example to derhonstrate the sta

t ist ical hypothesis test of two populations. Suppose two segments R and Rj

with common population variance cr̂ and respective mean mi,mj, and a l l points

i n each segment has distribution 7V(m,-,<T^) and N(mj,a'^), then the distribu

tion of fii = ^X^ar.fc, Xik € R and fij = ^J^Xjk, Xjk € Rj is given by

fii = N{mi, ^) a n d pj = N{mj, ^) . Therefore fii — fij is distributed as iV(/x,- —

fij, o'^C^ + •^))- The null hypothesis for the test wi l l be that there is no difference

between the two population means, i.e. HQ : fii — fij or HQ : — fij = 0. So that,

174

under HQ, fii—fij is N{0, (^^{•^ + ;^)) . Therefore the difference of two populations'

mean has a normalized distribution (for unknown common population variance,

T = = N{0,1) (5.33)

Therefore the T distribution can be used as the similari ty measure of the two

populations. If the common population variance is unknown, the unbiased

estimate of the common population variance cr^ is given by

. , J . , - l) 5 ? H - f e - l) ^ (5.34)
ni + nj-2 ^ ^

where Sj and 5^ are the sample variance of Ri and Rj respectively. If &^ is used

the distr ibution under HQ becomes r(n,- + Uj — 2) instead of iV(0 ,1) . E q n . 5.33

can be generalised to multi-variate (Lindeman et al . 1980, pp 183)

= - J ^ i p , - f^jfSr^ifii - fij) (5.35)
n,- + Uj

where

Sr^ = ini + nj-2){Ai + Aj)-' (5.36)

Ai = Y{xk-mi)ixk-mi)^ (5.37)

A:=l

It is noted that eqn 5.35 is the weighted squared Mahalanobis distance of

fii and fij w i th Uij being the pooled sample within-groups variance covariance

matr ix of population i and j respectively, therefore is a similari ty measure of two

populations. Hence the statistical distance can be incorporated in to the clustering

algorithm.

A n assumption i n the test is that the two segments under test are having

a common covariance matrix. Al though this assumption is very restrictive, i n

general i t produces good class discrmination.

175

In each iteration the two most similar segments Ri and Rj w i l l be merged,

therefore type II error /3 is minimized. This is reasonable because i n hierarchical

segriientation type II error is considered to be the most serious beca;use merging of

two segments which committed a type II error cannot be recovered i n subsequent

process. Whereas type I error which keep separating two similar segments can be

corrected i n a following step. Therefore, i t is advantageous to keep type II error

as small as possible i n each iteration, which implies that type I error has to be

maximised.

Let Dij be the distance between groups of segments, and dij denotes the dis

tance between two segments.

The Spatial-Spectral Clustering Algor i thm is:

Step 1. Use either top-down or bottom-up G T H S to generate

m segments wi th m suggested by the mutual information models.

Step 2. Store the m{m — l) / 2 distances (dij) i n a m x m matr ix .

Step 3. F i n d the smallest distance (ties are resolved arbitrary).

If this is Dkq, merge groups k and q and call the new group r

Step 4. Calculate the distance between the new group r and each of

the existing groups. Replace the kth. and 5th rows and

columns of the matr ix by the single row/column of new

distances, thereby reducing the order of the mat r ix by one.

Step 5. Goto Step 2 i f the number of group is more than one,

otherwise, stop i f the number of groups equal to the required

number of clusters.

Other statistical distance can be substituted for the Mahalanobis distance i n

eqn. 5.35 such as the Bhattacharyya and Divergence distance, but the statistic

of the hypothesis w i l l be unknown because they allows segments to have differ

ent covariance matr ix . The Bhat tacharyya distance of two normally distributed

population is (Hand 1981):

176

SB{Ri,Rj) = kpii - lijfi^i + - txj) + \\og ^§4M (5.39)

The Divergence distance for two normally distributed population is:

8a{Ri,Rj) = ^ t r [(S , - -%)(S7^-Sr i)]+ i t r [(Sr^+S7^) (A/ . - - / / i) (/ . . - - / . , -)^] (5.40)

The estimates of covaxiance matr ix S and mean /x are given by the max imum

hkehhood estimator described i n section 3.2.

B o t h Divergence and Bhattacharyya distance allow the two populations to

have different covariance matr ix, and degenerates to the Mahalanobis distance i f

two populations have a common covariance matr ix .

A l l three weighted distances have been used i n this study and the clustering

results are very similar and so only results using eqn. 5.35 w i l l be presented.

The computational cost of hierarchical clustering is high i f the number of

units to be clustered is large (say > 1000). Note that the clustering stage can be

implemented using one of the methods (e.g. stored matr ix) described i n Anderbefg

(1973, Ch.6) . If using the stored matr ix method the complexity is 0(2m^) where

m is the number of segments. The contextual clustering methods have been

implemented and results compared wi th those from classic pre-pixel algorithm

presented i n Chapter 4. It is evident that the contextual clustering produces less

noisy results.

5.6 Spatial-Spectral Clustering Results

T h e Spatial-Spectral clustering algorithms presented i n previous sections are demon

strated using three sets of 128 x 128 pixel V I S + I R images (Figure 5.11). These

images are subregions of the images taken on 8th, 18th, and 20th M a r c h respec

tively.

177

5.6.1 Segmentation Results

The-different approaches presented i n previous sections can be summarised as:

1. Bot tbm-up approach: Construct a spanning tree of the image graph us

ing Kruskal 's algorithm (use either local or global type distance measures),

and stop construction of the tree when the required number of segments is

obtained.

2, Top-down approach: Construct a spanning tree of the image graph unt i l a l l

pixels are connected (use either local or global type distance measures), cut

the tree at the edge which satisfies the minimax or other criteria. To obtain

m segments, m — 1 edges wih be cut.

The segmentation results are presented using both top-down and bottom-up

approach as well as global and local type distances. Overal l we have six permu

tations:

[SI] Top-down approach using the M i n i m a l Spanning Tree (M S T) , cut the most

weighted m — 1 edges to obtain m segments.

[82] Top-down approach using the M i n i m a l Spanning Tree (M S T) , cut the span

ning tree using the minimax criterion.

[S3] Bottom-up approach using the M i n i m a l Spanning Tree (M S T) .

[S4] Top-down approach using the Centroid Method (C E S T) , cut the most weighted

m — 1 edges to obtain m segments.

[85] Top-down approach using the Centroid Method (C E S T) , cut the spanning

tree using the minimax criterion.

[86] Bottom-up approach using the Centroid Method (C E S T) .

In Figures 5.12— 5.14 are the segmentation results using the top-down min

imax wi th C E S T approach. The six images containing different number of seg

ments (grey-level is the mean of a region), 10 segments^ 50 segments, 100 segments,

179

200 segments, 300 segments, and 600 segments. The results show that the main

features can be obtained wi th 10 segrnents, however a l l the details have been lost.

180

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.12: Top-Down M i n i m a x C E S T segmentation of 8th M a r c h images.

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.13: Top-Down M i n i m a x C E S T segmentation of 18th M a r c h images.

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.14: Top-Down M i n i m a x C E S T segmentation of 20th M a r c h images.

181

F i g . 5.15— 5.17 shows the corresponding Entropy Loss H{S\P) for the three

images. The mutual information model gives the ideal segmentation only when

the regions having a uniform gray-level or an impulse hke pdf. For real images

this is not true and the Entropy Loss reduces to zero when al l segments contain

just one pixel , i.e. a t r iv ia l result. Therefore number of segments is determined

by a compromise between the generation of fine detail and basic features. Further

more a good segmentation uses the least number of segments to give a max imum

amount of information or min imum entropy loss. These Figures also show that for

the top-down minimax C E S T approach there is the steepest decrease of Entropy

Loss from 1 segments to say 100 segments then the Entropy Loss starts to decrease

approximately at a constant rate. Referring to the segmentation result this big

drop correspond to the generation of the most basic features of the images, when

the rate of Entropy Loss becomes constant any further segments generated only

refine local details of the images. These effects can be seen i n Figures 5.12—

5.14, the 200 segments image is very similar to the 600 segments image. The

hierarchical characteristic is also demonstrated in these example. A t the highest

level the whole image belongs to one segments and at every lower levels a segments

is always smaller than or equal to the same region which contains i t at a higher

level. This also means that the region which rema;ins unchanged at the i t h and

jth level w i l l have their region boundary unchanged.

182

Figure 5.15: Entropy Loss of different segmentation approaches for 8th March

images.

183

I
I

I

f
fi

18

16

14

12

10

8

-bottom up M S T
-top down. M S T
• Tmm'maT M S T

600 SOO 1000

No. of segments

1600

—bottom up C E S T
—top down C E S T

-minfTnax C R S T

—bottom up C E S T
—top down C E S T

-minfTnax C R S T

1 • j 1 • j

1 1

ẑ::::::̂ ;-

1 I
200 400 600 800 1000

No. of segments

1200 1400 1600

Figure 5.16: Entropy Loss of different segmentation approaches for 18th March

images.

184

i2

I

1

-bottom up M S T
-top dovwa M S T
•miciimax M S T

200 400 600 800 1000

No. of segments

1200 1400 1600

600 800 1000

No. of segments

1600

Figure 5.17: Entropy Loss of different segmentation approaches for 20th March

images.

185

The result of the six different segmentation approaches are shown i n F i g

ures 5.18— 5.20. These images are a l l w i th 300 segments. This number of seg

ments is chosen as the opt imal number as suggested by the mutual information

model . It is noted that 300 segments is only optimal for top-down approaches and

approaches using global distance i.e. C E S T . It can be seen that at 300 segments

the Entropy Loss is decreasing at a constant rate and this compare well wi th the

segmentation result. The best segmentation, as seen i n Figures 5.18— 5.20, is the

top-down minimax approach and, this also agrees wi th the Entropy Loss curves.

The results using other C E S T approaches follow closely. The worst result is being

the top-down M S T , at 300 segments only t r iv ia l segments are generated. These

results demonstrate the effect of using different distance functions and, clearly,

global type distances generate better segments than the local type distances, but

at higher computation cost.

186

Top-down
M S T

Top-down
minimax

M S T

•Bottom-up
M S T

Top-down
C E S T

Top-down
minimax

C E S T

Bot tom-up
C E S T

Figure 5.18: Comparison of diiferent segmentation approaches on 8th M a r c h i m

ages (the number of segments = 300 in each case).

Top-down
M S T

Top-down
minimax

M S T

Bot tom-up
M S T

Top-down
C E S T

Top-down
minimax

C E S T

Bottom-up
C E S T

Figure 5.19: Comparison of different segmentation approaches on 18th M a r c h

images (the number of segments = 300 in each case).

Top-down
M S T

Top-down
minimax

M S T

Bottom^up
M S T

Top-down
C E S T

Top-down
minimax

C E S T

Bot tom-up
C E S T

Figure 5.20: Comparison of different segnientation approaches on 20th M a r c h

images (the number of segments = 300 in each case).

187

THe mutual information model has found to be a useful tool for quantitative,

monitoring of segmentation. It provides a useful indication for segmentation com

parison and suggest a suitable number of segments. This has been demonstraited

i n Figures 5.18— 5.20 where top-down and bottom-up approaches using M S T are

wi th a much higher Entropy Loss than other approaches. The effectiveness of the

mutual information model is further illustrated i n Figures 5.21— 5.23. In these

figures images are having the same Entropy Loss (i.e. different number of seg

ments), i t can be seen that a l l images are very similar (except for top-down M S T

approach). Hence the mutual information model is rather accurate i n describing

the information content of the segments.

188

Top-down
M S T 2500
segments

Top-down
min imax
M S T 300
segments

Bottom-up
M S T 1000
segments

Top-down
C E S T 300
segments

Top-down
minimax

C E S T 200
segments

Bottom-up
C E S T 300
segments

Figure 5.21: Different segmentation approaclies wi th same Entropy Loss, 8th

M a r c h images.

Top-down
M S T 3000
segments

Top-down
minimax
M S T 300
segments

Bottom-up
M S T 1000
segments

Top-down
C E S T 300
segments

Top-down
minimax

C E S T 300
segments

Bottom-up
C E S T 300
segments

Figure 5.22: Different segmentation approaches wi th same Entropy Loss, 18th

M a r c h images.

Top-down
M S T 2600
segments

Top-down
minimax
M S T 330
segments

Bottom-up
M S T 1000
segments

Top-down
C E S T 400
segments

Top-down
minimax

C E S T 240
segments

Bottom-up
C E S T 400
segments

Figure 5.23: Different segmentation approaches wi th same Entropy Loss, 20th

M a r c h images.

189

5.6.2 Properties of M S T Segmentation

Basically, the problem of using M S T for segmentation suffers the same problem

found in hierarchical clustering. The most obvious effect is the "chaining" effect.

The cause of this is due to the use of localised distance measure Smin{Ti,Tj)

(eqn. 5.30). Due to the chaining effect two different region can be connected by

a series of hnks wi th small weight. Therefore the identification of inconsistent

edges becomes very difficult i f not impossible. Because only localised distance is

used, noise i n the image, which may be isolated pixels, are identified as separated

regions. This means that the M S T is sensitive to noise.

5.6.3 Properties of C E S T segmentation

The construction of G E S T uses global information and therefore i t is not sensitive

to image noise, and better use of spatial information also generates segments which

represent the most important features first.

5.6.4 General Properties of GTHS

1. Spatial information about neighbouring pixels is used, unlike most statis

t ical segmentation e.g. per-pixel clustering. Spatially connected pixels are

grouped together i f they form a homogeneous segment.

2. Region boundaries are defined very accurately. Jagged edges are not pro

duced as they are, in rectangular segments (Robertson 1973) or strip forming

(Nagy and Tolaba 1972). Results i n this chapter have been scaled by two

so the boundaries may look rather rough.

3. The spanning tree contains al l the information needed for spli t t ing the image

into any regions i n a hierarchical way.

4. Spli t t ing or merging of regions, does not alter the boundaries of other re

gions.

190

5.6.5 Clustering Results

This section presents the Spatial-Spectral clustering results. In the last section i t

was found that top-down minimax C E S T approach gives the best segmentation,

therefore this approach is chosen to demonstrate the Spatial-Spectral clustering.

Figures 5.24— 5.26 are the results of the Spatial-Spectral clustering using

different numbers of segments. These results (all wi th 5 clusters) show that the

choice of number of segments can significantly affect the clustering result. The

number of segments are (a,) 10 segments, (b) 50 segments, (c) 100 segments, (d)

200 segments, (e) 300 segments, and (f) 600 segments respectively. Inspection of

the histogram shows that the images on 20th March (F ig . 5.26) is most difficult

to cluster because of the fuzziness of pdf boundaries.

191

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.24: Spatial-Spectral clustering of 8tl i M a r c h images wi th different number

of segments (the number of clusters = 5 i n each case).

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.25: Spatial-Spectral clustering of 18th M a r c h images w i th different num

ber of segments (the number of clusters = 5 i n each case).

10 segments 50 segments 100 segments

600 segments 300 segments 200 segments

Figure 5.26: Spatial-Spectral clustering of 20th M a r c h images w i th different num

ber of segments (the number of clusters = 5 i n each case).

192

For the 8th M a r c h images the results are very similar wi th 200, 300 and 600

segments. However, wi th 600 segments sma l l fragments begin to appear, this

implies that the cluster becomes more "noisy". The effect is undesirable because

the objective of Spatial-Spectral clustering is to reduce boundaries noise.

The results for 18th M a r c h are also very similar wi th 100, 200, 300 segments.

The result w i th 600 segments is rather different and the Cirrus at the edge has

been seriously underestimated, and i n turns overestimated the subpixel cumulus

underneath i t .

O n 20th M a r c h the results are different for a l l number of segments! The result

using 200 segments has assigned a large area of low cloud to sea. The result wi th

300 segments has estimated the low cloud well and an area of Altostratus has

also been identified correctly. W i t h 600 segments the subpixel cumulus at the

top has been separated from the sea and start to look "noisy" and the Cirrus

i n the middle has been underestimated. Overal l the best clustering is obtained

using 300 segments which is suggested by the Entropy Loss curve. However, the

subpixel cumulus at the top has been assigned to cloud free sea, i f the objective

for classification subpixel cumulus, it w i l l be seriously underestimated.

These results suggest that the optimal number of segments should be chosen

as soon as the Entropy Loss starts to decrease at a constant rate.

Figures 5.27— 5.29 shows the comparison of the Global-Local clustering al

gorithm and the Spatial-Spectral clustering algprithm. These results i n general

are very similar, but the Spatial-Spectral clustering produces clusters wi th much

cleaner boundaries, as expected. Due to the lack of ground t ruth observation, i t is

not possible to quantitatively check the accuracy of the results. Nevertheless these

results agree well w i th visual inspection of the original imagCj and the objective of

using spatial information has been achieved i n that the mairi objects i n the image

are better defined while none of the boundaries sKixvc, been substantially shifted.

193

Global-Local
clustering

Spatial-Spectral
clutering

2d histogram of
Global-Local

clustering

2d histogram of
Spatial-Spectral

clustering

Figure 5.27: Comparison of Global-Local clustering algorithm and Spatial-

Spectral clustering algorithm on 8th M a r c h images.

194

Global-Local
clustering

Spatial-Spectral
clutering

2d histogram of
Global-Local

clustering

2d histogram of
Spatial-iSpectral

clustering

Figure 5.28: Comparison of Global-Local clustering algori thm and Spatial-

Spectral clustering algorithm on 18th M a r c h images.

195

Global-Local
clustering

Spatial-Spectral
clutering

2d histogram of
Global-Local

clustering

2d histogram of
Spatial-Spectral

clustering

Figure 5.29: Comparison of Global-Local clustering algori thm and Spatial-

Spectral clustering algorithm on 20th M a r c h images.

196

The difference between the two clustering algorithms is largely due to the deci

sion boundaries i n the feature space. It is found that the Global -Local clustering

algorithm tends to produce very t ight clusters, therefore vectors at the 'base' of a

cluster wi th small variance are assigned to clusters wi th larger variance. O n the

other hand, boundaries of a small variance cluster are extended further away from

the 'base' by the Spatial-Spectral clustering algorithm. These valleys between

each pdf correspond to pixels which are a mixture of more than one class.

Since clustering usually is not an end i n itself, clusters wi th clean boundaries

are important to the success of the subsequent machine processing, i.e. cloud wind

vector estimation.

197

5.7 Summary

A Graph Theoretic Hierarchical Segmentation approach is introduced. It gener

ates segments by clustering of the spatial space, and several examples of distance

measure have been proposed to construct the image spanning, tree. Two segmen

tation approaches (bottom-up and top-down) based on stepwise optimization are

proposed. Distance functions that use global information are found to produce

better results that distances using local information. It is also noted that global

information can be better uti l ized by the minimax approach.

A mutual information model has been developed and was shown to be valu

able i n monitoring segmentation and determination of the opt imum number of

segments.

A Spatial-Spectral clustering algorithm based on G T H S and stepwise opti

mization is also introduced. A statistical hypothesis has. been used as similari ty

measure of segments. The Spatial-Spectral clustering algorithm is capable of

generating clusters wi th clean boundaries. The algorithm is unsupervised and

required only two clustering parameters, 1) the number of segments, and 2) the

number of clusters. It is noted that these algorithms are computation intensive,

although their efficiency can be improved by better algorithms and data struc

tures.

198

Chapter 6

Computation of Cloud Motion

Wind (C M W) Vectors

The use of geostationary satelhtes as a source of wind observations was suggested

by Widger and Tourat (1957) before the launch of T I R O S I. Today, the wide

coverage area of satellites permits wind estimation in remote areas such as polar

and ocean areas, and this information is essential in understanding the global

climate.

This Chapter starts by introducing the essential elements of cloud motion

determination, i.e.: 1) cloud tracer selection, 2) cloud target tracking, 3) cloud

height assignment, and 4) cloud motion vector editing. This is followed by detailed

discussion of image tracking methods, image registration, image rectification and

calculation of wind speed and direction. A new automated cloud motion scheme

based on these elements is then presented, and this is used to test the performance

of clustering applied to cloud wind determination. Results indicate that clustering

is an eifective approach for tracking cloud motion.

The Global -Local clustering scheme presented i n Chapter 4 is used i n the cloud

wind tracking scheme because i t is very efficient. The concept of using clustering

is to part i t ion the image into a number of regions wi th each region representing a

distinct class i n the feature space. Some of these classes represent cloud types at

different height level, and each class is then tracked individually.

199

6.1 Elements of Cloud Motion Wind Determi

nation

This section introduces the concepts behind cloud motion wind determination,

and implementation details are discussed i n next section. Determination of cloud

mot ion winds require both meteorological and image analysis understanding.

The basic procedure to compute wind data is (Hubert 1976),

1. select suitable cloud targets,

2. track the selected targets,

3. assign heights to the resulting vectors,

4. edit the set of vectors.

In general, the first and last steps are related. For example, cloud motion may

be measured wi th l i t t le discrimination between suitable and unsuitable tracers. A

careful editing procedure is then needed to delete erroneous wind vectors. O n the

other hand, careful selection of ta,rgets (only those advected by the wind) means

that l i t t le editing of wind vectors is necessary. Usually, automatically derived

wind vectors require more careful editing than manually derived wind vectors.

6.1.1 Wind Tracer Selection

The main objective of this study is to investigate the problems of cloud motion

tracking i n multi-layer areas; Mult i - layer cloud areas can be found i n most weather

images and the primary meteorological interest is to derive low and high level

winds from sequence of images. Reliable cloud motion wind can only be obtained

by tracking of cloud targets which are advected by air motion i n the atmosphere.

For automatic cloud motion tracking, identification of the follow cloud types is

important (Par ikh 1976):

1. Low level cloud (stratocumulus, stratus, cumulus).

200

2. M i x e d cloud (semi-transparent cirrus on top of lower level cloud).

3. Cumulonimbus (not suitable for tracking).

4. H igh level cloud (cirrus, cirrocumulus, eirrostratus).

The above cloud types are classified by their cloud base height. The division of

clouds into low, middle, high, and clouds of vertical development (cumulonimbus),

is the one which is most relevant to the problem of wind velocity estimation. The

identification of different level of clouds are generally by their spectral and/or

textural features i n the .visible and infrared bands.

The determination of height level of semi-transparent cirrus is a widely recog

nised difficult problem. Firs t ly , semi-transparent cirrus cloud is very difficult to

identify using computer. Secondly, cirrus cloud temperature can only be esti

mated wi th corrected infrared radiance, since the background radiance interferes

wi th the cloud radiance. A s a result th in cirrus wi th middle clouds beneath w i l l

appear much hotter than the same cirrus by itself (see F i g . 6.1). The emissivity

problem for cirrus clouds is discussed i n further detail i n Bowen and Saunders

(1984). For low level clouds, such as clusters of small cumulus which can not

be resolved by the satelhte resolution (subpixel cumulus), the grey level i n the

infrared image w i l l appear darker than the grey level corresponding to height of

cloud top because radiation from the warm surface is combined wi th cloud top

radiation i n the sensor's field of view.

201

IR radiation to space

sea

Figure 6.1: The semi-transparent problem: th in cloud

such as cirrus often appears to be of warmer because

background radiation is confused wi th the actual radia

t ion.

Avai lab i l i ty of infrared images helps to remove some uncertainties which occur/

when only visible images*^available. For example many middle clouds are as

bright (in the visible) as lower stratocumulus, but because the latter are almost

always warmer they appear much darker i n infrared images. Another example is

the identification of th in cirrus, they are very poorly seen i n the visible image but

are prominent i n the infrared.

The selection of cloud targets can be Jissisted by analysis of the synoptic sit

uation. Hubert and Whi tney (1971) provided some guidelines for selecting and

classifying cloud targets. The synoptic situation is first determined. Grouping of

clouds is then deduced by judging how the cloud behaviour fits the appropriate

synoptic rnodel, and the target is rejected if its behaviour is not reconciled with

the synoptic situation. Once the synoptic situation is determined, observations

of cloud characteristics and cloud motion can aid segregating cloud layers and in

specifying cloud types. Selection of passive tracers is made concurrently with the

202

classification of clouds. Some guidelines are:

1. Follow the same point on cloud clusters.and patches rather than

lines, bands, or areas of equal brightness.

2. Use only those clouds moving at speeds and i n a manner that is

consistent wi th the synoptic situation. Beware of motions which

appear to move through a pattern of cloud, alternately suppress

ing and enhancing brightness. This type of motion often con

flicts wi th motion of the individual cloud elernents i n the same

layer and is probably due to gravity waves. Upward motion i n

crests of such waves enhances cloudiness, and downward motion

in troughs suppresses cloudiness. These motions are frequently

seen i n inversion-dominated low clouds and at various upper lev

els near cloud fronts. A s expected from theory, the orientation of

waves and their direction of motion bear no fixed relation to the

ambient wind.

3. Use clouds which show the least change during the time-lapse

sequence.

4. Take care i n tracking clouds that appear to penetrate vertical

shear layers. In these cases, try to track the upshear edge rather

than the centre of mass. For example, i n areas of active convec

t ion the cloud area grows rapidly because of anvil growth. The

origin of the anvi l (the brightest area at rear of the growth area)

moves wi th the middle- and low-level wind. The leading edge

of the anvi l , while advancing wi th the high-level wind , may be

moving more slowly than the wind because of evaporation. Thus

the leading edge of growing cirrus plumes should be avoided.

The manual tracer selection is based on the synoptic situation—location of the

fronts and cyclones, location of the major troughs and ridges—and the atmosphere

203

processes. The wind tracer should located i n area which air mot ion appears to be

consistent wi th the situations revealed by animated sequence of images.

However, even i f the direction of motion of the cloud target is consistent wi th

the synoptic situation, speed may be affected by non-adyective mechanisms acting

i n the same direction as expected wind flow. Analysis of cloud type and patterns of

cloud motions w i l l often reveal non-advective mechanisms such as vertical updrafts

i n cumulonimbus clouds and gravity waves (Parikh 1976). Therefore accurate

estimation of a wind vector (including height) from a cloud target whose motion

is representative of the ambient wind flow can only be achieved by choosing those

targets whose size, shape, and brightness are persistent and temperature can be

accurately estimated.

The lifetimes of high and low level cloud are very different. In the upper

tropopause cloud usually has a short lifetimes (less than 30 minutes), while low

level cloud can have longer lifetimes. M E T E O S A T transmits one set of images

every 30 minutes, and so this t ime resolution only allows cloud tracer wi th a

lifetime longer than 30 minutes to be tracked. Al though individual cloud elements

can grow and disappear in a short t ime, mesoscale cloud patterns usually exist

more than 30 minutes, especially for low level cloud due to the persistent mesoscale

circulation systems (Hubert 1979).

Due to evaporation and condensation, cloud is not a pcissive tracer of wind, and

so i t is important to select a target which is believed to be good tracer. Numerous

studies have been done on the selection of a wind tracer. Generally, cumuh cloud

is a good tracer for low level wind , and cirriform cloud a good tracer for high level

wind (Hubert and Whitney, 1971, Hasler et a l . , 1979).

The low level cloud targets are predominantly convective clouds over ocean,

and cloud patterns composed of these cloud types are well suited for lower level

cloud tracking (850mb). In the upper level, most potential cloud targets are layer

cloud, and these patches of layer cloud often change slowly and may exist for

hours. Apparent ly they persist because large scale vertical motion inhibits their

evaporation (Hubert and Whi tney 1971).

204

Targets whicb are developing or dissipating, as well as cloud types.representing

lee waves, vertical development, banner clouds, cumulonimbus tops and the edges

of frontal cloud should not be selected.

The selection of a cloud targets is therefore a highly complicated decision

process, and this is usually done by a trained meteorologist. A compromise must

be made i n order to extract cloud wind fields using computer programmes. For

example, cloud motion can be tracked wi th l i t t le discrimination between suitable

and unsuitable tracers. A careful editing procedure is then used to delete erroneous

wind vectors. This strategy is usuaUy adopted i n automated cloud motion systems,

whilst manual methods of cloud tracking usually employ careful selection of cloud

targets. The former strategy is adopted i n this work.

6.1.2 Tracking the Selected Targets

After the selection of cloud target for wind determination is completed, its dis

placement between successive images is mccisured. Cloud displacements are mea

sured using image matching techniques. The matching can be carried out using

the infrared or visible image although usually an infrared image is used to track

the cloud motion because of its direct relation to cloud top temperature.

C loud tracking can be done either manually or automatically. Manua l methods

usually use a movie loop technique which displays a t ime sequence of images and

then a target is selected manually. The tracking is either done by marking the

in i t i a l and last positions of the target or matching the target using image matching

algorithms on a computer interactively.

C loud tracking are usually computed using image matching techniques. A

reference template (subimage) is being searched for i n a larger template taken at

a t ime before or after the reference. The reference template usually contains cloud

types ifixisi"^ at different height levels, and air motion at different level may differ

radically, and the different movement of clouds can confuse the matching process

(Ark ing et.al 1978). So accurate cloud motion can only be obtained by tracking

clouds (beî njfrfg, to the same height level.

205

Cloud motion tracking was first done manually by viewing a sequence of images

project on to a screen. Izawa and Fuj i ta (1969) used.visible channel images of

E S S A and A T S for cloud tracking using manual movie loop techniques. The

images were converted to a Mercator map projection and displayed i n a movie

loop and cloud targets were tracked manually by measuring the displacement

on the screen. They found that velocities of high and low clouds correspond

approximately to winds at about the 200mb and 800mb levels respectively.

M a n u a l tracking of cloud motion using a movie loop requires a trained me

teorologist, and is t ime consuming and subjective. Leese et a l . (1970, 1971)

computed wind vector using cross correlation on raw and binary images. The

binary image was obtained by an empirical threshold to separate the cloud and

background. They found that i t is important to ensure no mixed layers of clouds

are present when using cross correlation, otherwise the correlation surface would

have several peaks i n addition to the true one. However cross correlation can

produce a better speed resolution than manual methods while there is only minor

difference i n direction. In the wind systems described by W i l s o n (1984) a tracking

technique called Sequential Similari ty Detection A l g o r i t h m (S S D A) was used (this

is computationally faster than cross correlation).

T y p i c a l automated wind systems use sequence of three images for cloud track

ing. The middle image in the t ime sequence is divided into small segments. Sta

t is t ical analysis is then performed on each segment for presence of cloud targets,

i f targets are foimd^ tracked by image matching techniques i n the previous

and next image. Since the target checking is rather crude compared wi th human

decision, the tracking results need editing before being used for other purposes.

In this thesis experimental results show that S S D A is i n fact a more rehable

tracking method than cross correlation. The desire to compute more cloud wind

vectors requires automatic algorithms to replace the human operator. However,

cross correlation can be confused by multi-layers of cloud and produce spurious

winds, and i t was thought that cloud could be tracked better i f different layers

could be separated prior to cross correlation (Hubert and Whi tney 1971, Pa r ikh

206

1976).

The author used clustering to classify the middle one of a sequence of V I S and

I R three multi-spectral images. Ideally these clusters are homogeneous segments

and each segment represents one class of object. Clouds at different levels have

different spectral features (Chapter 1), so a cluster should be a cloud class at a

paxticulax level and confusion due to different direction of movement can be alle

viated as this work has proved. Comparison of the author's and current approach

is outl ined i n F i g . 6.2.

207

input
three VIS and IR

images

input
three VJS and IR

images

divide the middle
image into smal l

segments

(e.g. 32 X 32 pixel)

1. spatial clustering

or
2. per pixel clustering

use one or bi-dimensional
histogram analysis

to determine
presence
of targets

match all segments
containing suitable

targets in the
previous and

next IR or VIS
image

divide image into smal l
segments and check
for suitable targets
i n the IR segments

divide image into smal l
segments and check
for suitable targets
i n the IR segments

match a l l segments
i n previous
and nex t IR

image

assign the vectors
to a height level

inferred f r o m the
m e a n radiance of

the targets

assign vectors to
height level

inferred form the
mean of IR radiance

of the targets

edit vectors
using a recent
weather chart

YES

edit vectors using
a recent weather

chart

Figure 6.2: Comparison of a) the author's and b) current

approach for cloud motion tracking.

208

In fact the tracking of cloud motion has stimulated the study of motion fields

from a time-varying image sequence. Mot ion fields also find important apphca-

t ion i n 2 or 3 dimensional computer vision. Studies by A b i d i and Gonzalez (1987)

applied optic flow for tracking cloud motion i n a tornado. Opt ic flow techniques

concern the determination of the "motion" of the individual pixel locations by

using intensity data i n a sequence of images. The resultant optic flow field is the

field of 2-D pixel "velocity" vectors. They used a differential motion measurement

approach that was capable of determining the global motion and a more accurate

technique called correspondence-base technique which is based on cross correla

t ion. They find that the classical correspondence-base technique was superior i n

detecting rotational motion, whereas the differential technique fails to detect the

detail of any local motion, although it is faster than cross correlation. Opt ica l

flow is a major research area on its own and wi l l not be pursued here.

6.1.3 Height Assignment

Cloud height can be inferred from the infrared band image. M E T E O S A T has

an on board calibration routine which is carried out regularly to compensate for

changes i n the respond characteristics of the detectors of the satellite radiometer.

However, the radiation reaching the sensor does not correspond to the temperature

of the object being sensed. Therefore accurate cloud top temperature requires a

correction for atmospheric absorption and re-emission (the absorption is mainly

caused by the water-vapour exist i n the atmosphere). The actual temperature, of

a surface observed by the satellite can be retrieved by computing the atmospheric

absorption. These computations require information on the vertical temperature

and humidity structure of the atmosphere^ The deterrnination of the atmospheric

correction at E S O C (Schmetz 1986) is done by radiative transfer calculations for

110 atmospheric profile models. These atmospheric correction models are stored

i n look-up tables, and the actual atmospheric profiles are assigned to one of the

models.

The most significant error i n cloud wind is the height assignment of the vec-

209

tor. C loud height is measured either i n pressure (mb) or distance (m). Satellite

observation is directly above the cloud, and so i t only provides a brightness tem

perature of the cloud top. However, for many convective cloud, the speed derived

from cloud mot ion corresponds strongly to the speed near the cloud base. For stra

tus, on the other hand, the speed may be appropriately assigned to the cloud top.

Low-level clouds over oceans are assumed to be cumulus or stratocumulus. The

low cloud motion vectors obtained over oceans are assigned to the 900mb pressure

level (Hasler et a l . 1979), which is statistically near low cloud base. There is no

reliable way of measuring cloud base height from geosynchronous sateUites, but

cloud base can be estimated from aircraft reports, or soundings. In frontal region

cumulus cloud winds may be assigned to the middle of the cloud layer. High-level

Cirrus cloud winds should be assigned to the mid-cloud level or top level. Satellite

wind is a good estimator of level wind at most equatorial through m i d latitude

ocean area.

Even i f the height of the cloud top is known, this may not be the correct level

to which the vector should be assigned (Schmetz and Holmlund 1990). C loud

top temperatures frequently do not provide adequate vector height information,

because cloud has thickness and different cloud types represents wind best at cloud

base, middle or top.

C loud height is inferred from the infrared radiance but semi-transparent cloud

seen i n the infrared image has emissivity much lower than unity. The radiation

measured is a conibiha,tion of radiation from cloud-top and from an underlying

surface or cloud layer (Fig. 6.1). Therefore, the brightness temperature must be

corrected before i t is used to infer cloud-top height, otherwise the height w i l l be

considerably lower than the true cloud-top height.

The infrared radiance observed by the satellite PT from a cirrus cloud is ap

proximately given by (Shenk and Curren 1973)

pT = eph^{l-e)Pi (6.1)

where

210

emissivit}' which is estimated on the basis of empirical rules

high cloud transmittance,

P lank radiance form high cloud,

radiance of underlying surface, observed by satellite

i n neighbourhood of the high cloud, and

radiance form cloud observed by satellite.

Solve for Ph using eqn. 6.1

ft = A - ^ 5 ^ : 1 * (6.2)

The surface radiance pb may be inferred from the cloud free pixels i n the neigh

bourhood of the high cloud, and PT is estimated form be observed infrared grey

level, and a value of e is chosen subjectively according to the general appearance

of the cloiid. Hubert (1979) shows that an error of 0.05 i n £ = 0.7 would pro

duce errors of -50mb or -f40inb, respectively. If e were only 0.25, however, an

error in emissivity of 0.05 would produce excessive height errors. Therefore this

simple method is only reliable for cirrus wi th emissivity e > 0.5. Noted that the

emissivity of cirrus clouds can be as low as 0.1.

Szejwach (1982) used the I R and W V channel (M E T E O S A T) to estimate cirrus

cloud temperature, they showed that by substituting the I R and W V radiance of

Ph,Pb and e into eqn. 6.1 a linear relationship between PT{IR) and PT(WV) is

obtained

PT{IR) = apTiwv) + b (6.3)

E q n . 6.3 is independent of the emissivity £(/it) and e (w) - Hence, a set of n

measurements obtained i n both channels over several areas of different optical

1-e =

=

PT =

211

thickness from the same cirrus clouds can be used to solve for the cloud top

temperature graphically.

The E S O C uses, similar methods as Szejwach (1982) to estimate high level

cloud emissivity. A set of functions relating PT{IR) to PT{WV) for different zenith

angle ranges was cornputed forrn a collection of representative atmospheric sound

ings. The mean function for each zenith-angle is not constant and depends on the

calibration factor for the two channels. In addition the function has to be com

puted for a complete range of cloud-top heights and model atmospheres. Deta i l

of the correction method can be found i n Bowen and Saunders (1984).

W i n d vectors can be assigned to cloud top or cloud base once the cloud tem

perature has been computed. Another method for wind vector height assignment

is "Level of Best F i t " (L B F) (Hubert and Whi tney 1971). W i n d vectors are as

signed to level wi th smallest difference compared with the wind profile of a nearby

rawinsonde. The L B F method sometimes gives unrealistic result (Lee 1979), but

compare wi th other methods which requires temperature correction i t is simpler

to use. One problem i n using the L B F is the recurrence of similar winds at dif

ferent levels. This means cloud motion may resemble an analysis wind at more

than one level, and so allow the assignment of a level at a much different height

from the actual cloud. Because of it simplicity the "Level of Best F i t " approach

is used i n this s tudy

If no correction is required the cloud top temperature can be estiniated directly

form the infrared or water vapour grey level assuming the cloud target has a

emissivity of one.

h m = PT{WV) = (C - Co) X CAL (6.4)

212

where: PT^IR) is the l l ^ m I R radiance (Wm~^5r~^ci~^)

PT(WV) is the W V radiance {Wm~^sr~^ct~^)

C is the pixel count

Co is the space count (Co = 5 for images i n this study)

CAL is the M I E G (M E T E O S A T Information Extrac t ion Centre)

cahbration coefficient (CAL « 0.077 for images i n this study).

The temperature is then obtained using a radiance to temperature look up table.

6.1.4 Editing Wind Vectors

The last step i n wind extraction from geostationary satelhte images is quality

control or editing. This is applied to both manual and automatic methods. Usu

ally editing for manually derived vectors is based on the subjective view of the

meteorologist, whilst more objective methods are employed for automated scheme.

The automatically derived vectors are usually selected by applying some inter

nal test or on comparisons made wi th the set of derived wind vectors using other

methods. Typica l ly this is done by examine the quality of correlation function,

such as number of peaks (vector ambiguity); value of the peak coefficient (only

suitable for normalised cross-correlation, low values indicates nonrpersistent cloud

pattern); a lack of sharpness of the peak.

Another strategy to improve confidence level is to use an image tr iple to derive

two vectors. If they are not symmetric to a certain degree, this indicates a possibly

unsuitable target, and vectors should be rejected. A vector can be compared wi th

near by vectors i f the vector does not agree wi th the other i t is rejected.

. Using a hierarchical search technique: a large target window generates a first

guess to guide the search and then the window size is reduced (Hubert, 1979).

The vectors may also be compared wi th a set of vectors from a prior wind

fields. The prior wind field usually obtained from the most recent analyses of

the appropriate standard levels or wi th satellite winds derived i n the previous

operation (Bristor 1975).

213

The final cloud wind vectors w i l l be inspected by an editor who w i l l have a

number of facihties to survey the synoptic situation of the wind field. T h e editor

can use some image analysis tool to enhance and superimposes wind field onto

the image, also wind field can be superimposed to certain atmospheric layers over

conventional analysis (e.g. 850mb, 500mb and 200mb) which give indication of lo

cation of cyclones and frontal zones. W i t h this facility the removal of inconsistent

erroneous vectors is very easy.

Severe selection criterion can indeed eliminate many erroneous vectors but

also eliminate many erroneous vectors but also eliminate valid vectors near dis

turbance. Thus a balance must be drawn between accepting or rejecting a vector,

usually vectors i n new or rapidly changing circulation systeni are most important,

and tracking i n these areas also prove to be most troublesome (Hubert 1979).

In general, manual tracking is s t i l l superior to automated tracking since i n

complex situations a trained meteorologist can integrate his knowledge and is

able to select and track cloud tracers which are either too difficult to pick up or

obscured by surrounding clouds (Hubert 1979).

6.2 Details of Automated Cloud Wind Deter

mination

Further details of cloud motion wind determination are discussed i n this section,

such as implementation of different image matching techniques, image rectifica

t ion, image registration, wind vector selection and computation of wind speed and

direction.

6.2.1 Image Registration

M E T E O S A T images'H<ive.'a spatial resolution of 5km at subsatellite point, for cloud

tracking using a sequence of images 30 minutes apart each one misaligned pixel

correspond to a speed error of 2.8ms~^, this error increases wi th the lat i tude due

to larger zenith angle. Smith and Phi l l ips (1972) point out the importance of

214

picture alignment for accurate cloud motion measurement. H a l l et a l . (1972)

described the use of landmarks or ground control points for picture registration

and rectification.

T w o images of the same region are said to be registered when equivalent geo

graphic points of the scenes i n the two image coincide; For accurate wind vectors

calculation, images must be registered prior to image matching. Image registra

t ion is necessary because geostationary satellite is not perfectly s t i l l relative to the

earth when the earth is being scanned. The fluctuation of the satellite generates

geornetrical distortion i n the iinage and this must be compensated by the data

processing station. Currently M E T E O S A T images are registered and rectified by

E S O C i n real t ime before dissemination. The rms error of misalignment is less

than 0,4 pixel (Bos, et a l , 1990), which correspond to an error of ±0,5ms~-^ and

is acceptable for cloud motion tracking.

Registration accuracy is especially cri t ical for cases of low wind speeds when

the image is separated by 30 minutes or one hour. In order to make useful mea

surements of motion, the displacement must be greater than al l errors of its mea

surements (Hubert 1979). This registration requirement is particularly important

i n areas near the horizon where resolution is degraded and errors due to distortion

and registration are more serious. The sources of error in cloud tracking depends

on the combination of image resolution and errors of registration and measure

ment. O n the other, hand manual tracking of cloud can uti l ize long sequences and

this makes the registration accuracy less cri t ical .

6.2.2 Image Matching Methods

Image matching can be roughly classified into two categories, they are correlation

and feature matching (Aggarwal et a l . 1981). Feature matching algorithms do

not ut i l ize intensity of the image but attempt to work wi th algorithms t o locate

boundaries or edges between regions. Edge or boundary information is extended

to determine the position at which boundaries or edges intercept. The position

of this vertex point and the direction and number of line segments emanating

215

from the vertex point form the basis of map comparison wi th the metric being

some form of a mean square distance measure between locations of vertices i n

the reference and sensed image. Typ ica l example are given by Goshtashy et al .

(1986), Stockman et a l . (1982).

The objective of this study is the extraction of rnesoscale wind vectors, and

distinct features are difficult to be extracted from cloud images only correlation

type techniques w i l l be considered. It is noted that the clustering approach i n

this study extracts the features of each cloud class, and so tracking using a clus

tered image is actually a combination of feature and correlation matching. One

advantage of these techniques is they are non-sensitive to local noise, because

they compute the average error between two patterns. Correlation techniques are

basically a measurement of similari ty between two image patterns. This is usually

done i n a p ixe l by pixel comparison of two images of the same object field obtained

from different sensors, or of two images of an object field taken from the same

sensor at different times.

In general, the image pattern i n the sensed image to be matched can have

transitional shifts, scale difference, and rotation shifts, as well as geometrical

and intensity distortions. Because of computational efficiency, whenever possible,

only transitional shifts is assumed. In thiis study scale differences, rotation shifts

and intensity distortions are assumed negligible due to the short t ime difference

between image, and so only transitional shift is measured. A r k i n g et a l . (1978)

use cross-correlation to measure cloud displacement i n a sequence of images and

found that good results can only be obtained when the objects being tracked do

not change their shape, size and orientation to more than a l imi t ed degree. The

cross-correlation is less effective when a mixture of motions exists, unless one of

the motions is strongly dominant.

This conclusion again supports the methodology i n this study where cloud

mixtures are separated using clustering before they are .̂ ^ •; ^tracked.

A r k i n g et a l . also studied the use of Fourier phase difference method but they

find cross correlation performs better for cloud images.

216

Image Matching Using Mean Absolute Difference

One of the simplest matching techniques is called 'Sequential Similar i ty Detection

A l g o r i t h m ' (S S D A) (Baruea and Silverman, 1972). Essentially, an array of data

(the target window) is selected from an image and correlated element by element

w i t h selected pixels (the search window) of a second image. This techniques does

not require normalization as in cross-correlation (to be discussed later). It is

defined as the mean absolute difference (eq. 6.5) of the target and search window

at every lag position (see F i g . 6.3)

S{u,v) = ^YIl \9tiJ,k) - 9,{j -u,k-v)\ (6.5)

The best match is determined by the lag position wi th min imum error. The

computation method can be further reduced by rejecting match position by ac

cumulating the sum of difference which exceed a threshold. Generally the sum

of difference increase rapidly on mismatch position and only slowly on possible

match position so computation saving can be realized by only examine possible

position i n the highest precision. This technique was apphed to cloud motion

tracking by Wi l son (1984).

217

file:///9tiJ

Figure 6.3: Definition of target and search window.

I m a g e M a t c h i n g U s i n g C r o s s C o r r e l a t i o n

C loud tracking usin'g cross-correlation was suggested by Leese et a l . (1971). The

displacement is determined by the lag position which produc^the maximum cor

relation. The normalised cross-correlation function is defined as

R{u, v) = ' .. = (6.6)
y ' E j E ; t 9t (i , k) T,k 9s [j -u,k-v)

where is the target window and is the search window and R(u,v) < 1. The

lag position is given hy N — K -{- l,M — J + 1, in the horizontal and vertical

directions, respectively. Computat ion of the numerator in eqn. 6.6 can be reduced

by using the Fourier transform.

Efc 9t{j, k) Y,j Ejt9s{j - u , k - v)

where G't(x,y) is the cortiplex conjugate of Gi{x,y) while Gs{x,y) is the Fourier

transform oi g^^j, k),G^Gs is called the cross spectral density of gi and gg. How-

218

ever, for a small search window size (typically < 64 x 64 pixel) the computational

saving is l i t t le . There are two basic problems wi th this simple correlation mea

sure. F i rs t , the correlation function may be rather broq.d (no distinct maximum),

making detection of the peak difficult. This w i l l happen i f the search and target

images contain large uniform regions wi th very few details. Secondly, systematic

errors such as differences i n scale size, geometric distortion, rotation, and inten

sity distortion between two images w i l l make matching difficult and effectively

suppresses the true peak.

Improved Cross Correlation

The statistical form of cross-correlation produces a more distinct peak than eqn. 6.6

because the image is subtracted by its mean and effectively increases the dynamic

range of p i x e l v grey level.

The statistical cross-correlation function is defined as

i e (u , .) = i ^ (6.8)

where (Xt is the standard deviation of the target window, as is the standard de

viat ion of the search window at lag position u,v and cov(u,v) is the covariance

between the target window and the search window at lag position u^v. Specifically,

J K
G =

I i=i fc=i)

(6.9)

(6.10)

J K
cmiu,v) = - ^ | ^ ^ [5 , (y , f c) - (5 ,] [i r . (i - t z , A : - t ;) - a] (6.11)

i=i k=l

where G is the mean grey level of a window.

Another technique to improve cross-correlation is to replace the target and

search image wi th their gradient (edge enhanced) images. The gradient operation

219

is equivalent to preprocess both image v i a a two dimensional convolution (Svedlow

et a l . 1978, Pra t t 1973, Arcese et a l . 1970).

Speed up the Matching Process

Beside computation of cross-correlation v i a the Fast Fourier transform, the search

of correlation peak can be speeded up by hil l-chmbing techniques (Jain and Ja in

1981), coarse-fine search (Rosenfeld and Vanderbrug 1977), hierarchical search

(Wong and H a l l 1978) and Sequential Similari ty Detection Algor i thm (Barnea

and Silverman 1972). These techniques can be roughly divided into sequential

and hierarchical search methods.

The brute force methods for computation of cross correlation require the ex

amination of possible lag position i n the highest resolution and is a very expensive

process.

The sequential techniques accumulate the sum of error between the target

image and each position on the search image. Since mismatches of error usually

grow faster than matches, the poorly matched area can be detected quickly and

rejected at an early stage of the operation. In this way the total cost of searching

a match is reduced considerably.

In the hierarchical approaches, resolution of images and template are reduced

by averaging or pyramids (reduced sample rate). The matching is performed first

over the reduced resolution images, and i f a promising area is detected for a given

threshold, the matching is performed at higher resolution wi th in this region.

Most of these methods require a threshold to reject a lag position as inismatch.

A threshold is usually depend on the reference image. For applications required

to perform a large number of matches the determination of a threshold is t ime

consuming and may generate excessive false alarms i f the threshold is not set

correctly.

A fast matching technique which does not require threshold for cloud motion

tracking is desirable. One of this methods searches the correction peak using the

steepest descent method. A 2rdimensional search method following this approach

220

was proposed by Ja in and J a in (1981) for image displacement measures. The

search is accomplished by successively reducing the area of search. Each step

consists of searching five lag positions (Figure 6.4),

sea r ch window

ta rge t window

Q ay J

1

Figure 6.4: Il lustration of the five locations which w i l l be

computed at the beginning of the h i l l cl imbing algorithm.

The area contained by the five locations contract after

each step unt i l the area reduces to a 3 x 3 p ixe l size. In

the final step a l l the nine locations are searched and the

location corresponding to the max imum or min imum is

the match position.

221

The 2d-logarithm search algorithm is as follow:

For any integer m > 0, we define,

A{m) = — m < i,j < m}

.{(0,0), (m, 0), (0, m) , (- m , 0), (0, - m) }

Step 1. n' = int(log2p) wherep = m a x { M — K + 1,N — J + 1}

n = max{2 ,2 " ' - i }

q = I = 0 (start from the centre of search image)

Step 2. Set B'{n) = B{n)

Step 3. find G B'{n) such that cross correlation R{i + g,j + /) is

maximum. If i = 0 and = 0, goto Step 5;

Otherwise goto Step 4.

Step 4. q = q + i,l=l + j',

B'{n) = B'{n) — {—i, —j) (shift target window to new starting point)

goto Step 3.

Step 5. n = n/2. If n = 1, goto Step 6,

otherwise, goto Step 2.

Step 6. F i n d € A{1) such that R{i + g , i + /) is max imum

q = q + i,l = l + j

(g, /) is the match position.

It is noted that successful ihatch depends on the smoothness of the correlation

surface R{u,v), and i f many peaks exist around the true peak then very often

a wrong match is obtained. This is because all h i l l chmbing algorithms only

guarantee convergence to a local opt imum. However, the 2d-log search is very

efficient for example wi th 121 lag positions only 13 to 21 locations need to be

searched to obtain the match position. The 2d-log search is applicable to other

matching methods which optimize some function, such as the mean absolute error

method used i n this study.

222

6.2.3 Strategies for Cloud Motion Vector Selection

The size of the target window and the spacing between them determines the res

olution of the computed wind field. Since a image matching function provides no

information which feature i n the search window producisd the best match. Thus

the extracted wind is assigned to the location in the centre of the area. The

use of a smaller window would increase the resolution, but would degrade the

computational stabili ty because of less distinct feature wi th in the target window.

Therefore, there - .rV=, 'exists an opt imal window size for image from a particular

sateUite. It is found i n this study that the M E T E O S A T data has an opt imal win

dow size of 24 x 24 pixel , whilst Lunnon and Lowe (1990) wi th the Meteordlogical

Office found an opt imal wind size of 16 x l 6 pixel using M E T E O S A T images.

The max imum wind speed that can be computed is l imited by the number of

lag positions i n any direction. The E S O C use a 96 x 96 pixel search window, and

a 32 x 32 pixel target window therefore the maximum shift i n either horizontal or

vertical direction is 32 pixels and this corresponding to a distance of 160km at ssp.

If the two images are taken 30 minutes apart, the maxin ium speed is therefore

173 knots. The correlation function usually contains more than one maximum

and the max imum may not represent the true displacement.

In other cases, a l l peak values may be very close. This may due to target

window con:t<gm»|(a large uniform overcast wi th no prominent features so that many

lag positions produce high correlation. Figures 6.5— 6.6 are examples of matching

surfaces generated using cross-correlation and absolute mean error methods. •

223

Due to the uncertainty normally encountered i n interpreting correlation result,

the matching is guided by weather forecast. A first guess is obtained from the

numerical model closest to the time the images were taken, then the matching is

only done i n a reduced search area suggested by the first guess (Bristor 1975, see

F i g . 6.7).

search window

target window

A t = - h

first guess vector

final vector

Figure 6.7: Image matching strategy adopted by N E S S .

E S O C uses three infrared images to compute wind vectors (see F i g . 6.8) and

this strategy is used in this s tudy The centre image is the reference image, and

matching is done on the two adjacent images. A steepest ciscent search strategy

similar to 2d-log search is used to speed up the computation. Only targets which

can be tracked in both adjacent image wi l l be used to compute wind vectors.

Th i s implies that cloud targets have to have a lifetimes of at least one hour and is

more likely a suitable tracer. Cloud targets which produce vectors which are not

symmetrical within certain thresholds are rejected.

226

search window search window

I R
9 6 x 9 6

target

2 :
IR

32x32

1

2

1 I R

t
3

Figure 6.8: The image matching strategy adopted by

E S O C .
T h e Japanese system uses a similar strategy to E S O C , but they use a coarse-

fine search to reduce computation. Vis ib le as w e l l as infrared images are used for

t racking (Hubert 1979).

6•2.4 Spatial Resolution

M E T E O S A T image usually has a resolution of 5km at the subsatellite point. Due

to curvature of earth, the resolution gradually decrease virith increase i n latitude.

For this reason the routine M E T E O S A T wind product is only derived wi th in 55°

latitude and longitude from subsatellite point at E S O C . To compute cloud motion

at higher latitudes it is necessary to compute the actual displacement, which is

usually done by geometric correction of the sensed image.

The instantaneous field o f view (I F O V) (Kashef et al.l982) is the measure of

the ground cell size from which energy is reflected and emitted before passing

through the radiometers optical system. The I F O V of each detector (VIS , IR,

VVV) can be calculated with the aid of Figure 6.9.

227

1 2

ssp

Meteosat

Figure 6.9: The variation of spatial resolution wi th la t i

tude.

The spatial resolution is given by RAO, where R is the earth radius and A O

is the angle subtended by the ground cell in radian.

^2

AQ

= sin

;m —~— sm ^ -
I F O V \

2
I F O V

= Q.2-0,1

= sin -1 1 + - s i n U +
f. IFOV \

V 2

. -1 r / , h\ . / IFOV M - s i n ^ [(l + - j s i n (. - —) _

I F O V \

)]-

2
I F O V N

- I F O V

(6.12)

(6.13)

(6.14)

R = 6378 k m

228

h = 35900 k m

I F O V = 7.1819 X 10"^^ (I R , W V , and half resolution V I S)

The vertical spatial resolution of M E T E O S A T at 60° latitude is therefore

nearly doiible that at subsateUite point and at southern England i t i s approxi

mately 10 X 5km i n the north-south and east-west direction respectively. Therefore

image matching results have to be corrected to the true distance.

6.2.5 Image Rectification

Once the displacement is measured using some image matching techniques. The

velocity is easily computed by converting the displacement to distance and divided

by the t ime difference between two images.

It is noted that al l M E T E O S A T images have geometric distortion, this dis

tort ion increases as the I F O V move away form the subsatellite point. In order to

compute the true displacement the imag^must be rectified before image matching.

Th i s approach is computational expensive, in this study the image matching is

done on raw image and the resulting in i t ia l and final position is mapped to the ac

tual longitude and latitude on the earth surface. In this way only two coordinates

^-lV\need to be computed.

Rectification is the process by which the geometry of an image area is made

planimetric. In the case of M E T E O S A T the image is a two dimensional projection

of the three dimensional earth surface, the problem of finding the mapping between

a pixel 's coordinates, and the earth location is often referred as image to map

rectification. This is not to be confused wi th image-image registration where the

two images may have similar distortion and one of them is treated as reference.

Generally only two types of distortion can be removed by rectification, they

are radiometric distortion and geometric distortion (Kashef and Sawchuk 1982).

Radiometric distortion is caused by atmospheric and sensor induced filtering, sen

sor imperfections, scanner non-uniform responses, detector gain variations and

sensor detection gain errors. Geometric distortion is caused by:

229

1. Sensor related: Variations i n the motion of the sensor over

successive passes introduce distortions.

For example, irregular angular velocity of

the spin scan operation.

2. Alignment Variations: The variation i n alignment of the sensor wi th

respect to the spacecraft coordinates axis.

3. At t i tude Variations: Variations i n the spacecraft attitude (yaw,

ro l l , and pitch) wi th respect to a previous

pass w i l l cause registra,tion error.

4. Ephemeral Variations: The results form variations i n the location

of the platform wi th respect to the ground

wi th successive passes over a given region.

There arc mainly two methods to rectify images wi th geometric distortion.

The first uses direct modelling, the time-dependent deviations of the satellite

from nominal position, attitude and speed are described by an image geometry

model . The geometry model provides a deformation vector field which relates the

ideal reference image to the actual image. This method is used by E S O C to rectify

M E T E O S A T image operationally (Bos et a l . 1990). The second is an empirical

rnethod which requires no explicit knowledge of the distortion effects, but uses

ground control points (G C F s) whose position in both image aiid map are utilised

to derive the mapping or transformation equations.

G C P s are distinct features i n the image for which the lati tude and longitude

values are known. A s the model method requires many parameters, the empirical

method is used. The first step of rectification is to estabhsh a distortion model .

Let us define the coordinates system of image and map as in Figure 6.10

230

Longitude Pixels
E , , ,

M a p I i n a g e

Figure 6.10: Coordinate systeni for image rectification.

Suppose the distortion relationship between image and map is given by dis

tort ion functions

E = a{P,L) (6.15)

N = P{P,L) (6.16)

Let the map be a function f{E, N), i t can be writ ten in term of E, N:

f{E, N) = / (a (P , i) , /?(P, L)) = g{P, L) (6.17)

The distortions given by eqn. 6.15 and 6.16 may be non-linear functions of

(P , L) but must be a one to one mapping of points form one coordinate system

to another. Since we are t rying to obtain an estimate of the map from the image,

the system may be inverted, the inverted distortion functions are:

P = <f>{E,N)

L = ^iE,N)

231

(6.18)

(6.19)

found and used to generate the rectified image f{E, N) using intensity interpola

t ion.

To solve the distortion model of eqn. 6.15 and 6.16, pairs of ground control

points i n both the map and image must be found. These points are usually small

islands or distinctive features on the coastline,, such as headlands.

The empirical method is to approximate the distortion function by polynomials

of degree n having the form

m m—i
E = a (P , L) = J353a.yP'i^' (6.21)

t=o i=o
m m—t

N = ^ (P , L) = J]J]6oP'i>^' (6.22)
x=0 j=0

The value of degree m usually depends on the accuracy required, i f the distor

t ion area is large and severe, then m equal to 2 or 3 should be used.

T h i r d order polynomials are used in this study because of the large area to

be converted. The area coverage is (moving form the top right hand corner i n

a clockwise direction) 61°N5.5°E,A0°mA°E,40°N10.7°W,61°N17.1'>W. Using

th i rd order polynomials for E and N we have

E = ao + aiP-{-a2L + a3P^ + a4PL + a5L'^

+a6P^ + arP^'L + agPL^ + a^L^ (6.23)

N = bo + biP + b2L + hP'' + hPL + hL'^

+beP^ + b7P''L + bsPL'' + bsL^ ' (6.24)

where P and L are the row(pixel) and column(line) of a p ixe l coordinate re-

spectively and E and N are' estimates of the Northing (latitude) and East ing

(longitude) respectively for the corresponding pixel . E q n . 6.23 and 6.24 are of the

same form and may be generalised:

7 = Co -h c i P + C2L + czP'' + C4PL + CsL^ + ceP^ + c y P ' L + csPL^ + CQL^ (6.25)

233

The solving of oc{P,L) is the same as for P(P,L) but each has i t own set

of coefficients. CQ, . . . ,09 and bQ,...,bQ respectively. To solve eqn. 6.25 only

ten equations are required which implies ten. G C P s is enough and the system of

equations is said to be exactly determined. However, the solution of these exact

systems is often ill-conditioned (numerically unstable) and i t is usually solved by

using more than ten G C P s . One standard method for solving this over-determined

system (no exact solution) of equations is least-squares analysis.

Fi rs t the non-linear equation 6.25 has to be transformed into a linear equation

by change of variables. Let

So — 1

Xl = P

X2 L

X3 = p2

XA = PL

= L^

X6 = p3

X7 PH

X8 = PL^

X9 L^

Substitute XO,...,XQ into eqh. 6.25 gives

7 = CQXQ + CiXi + C2X2 + C3X3 + C4X4

+C5X5 + ceXe + C7X7 + csxs + C9X9 (6.27)

Least square method is to fit a model to minimize the sum of square error be

tween the model and the estimate (between E and E, and N and N respectively).

T w o sets of equations must be determined: one for calculating E and the other

for calculating N form P and L.

234

The objective function of the least square method is

n

(6.28)
i=l

when n is the number of G C P s . E q n , 6.28 may be expanded by substituting for

7,- from eqn. 6.27 and by introducing XQU . • , , ajg,- for the i t h G C P :

The solution of this criterion can be found by minimizing the sum of square error

e (see Appendix F) .

6.2.6 Calculation of Distance

The distortion models gives the estimates of longitude and latitude of a pair of

pixel coordinates i n the image. If the starting point is (PQJ LQ) and the ending point

is (P i j L i) the corresponding longitude and lati tude are {EQ^NQ) and {Ei,Ni)

respectively. The geometry of Earth's surface is calculated wi th oblique spherical

trigonometry (Ayres 1954), which approximates the Earth 's surface by a sphere.

The distance of cloud displacement can be measured assuming that the cloud's

path is along a great circle. The course (direction) is measured clockwise from

Nor th . The situation is represented by the spherical triangle i n Figure 6,12,

n

(6.29)

235

T

01

(3

A = Ini t ia l posi t ion
B = F ina l posi t ion
C = Pole (North or South)
a = Colatitude of B
b = Colatitnde of A
c = Distance expressed as

an angle
01 = In i t ia l course
P= 180 — f ina l course
y= Difference i n

longitude between
A and B

B

Figure 6.12: Spherical triangle for calculating the dis

tance between A and B.

Note that a, b and c are arclengths expressed as angles subtended at the Earth 's

centre. The lati tude and longitude of A and B are used to find a, 6 and 7 as follows;

a = 9 0 ° - (latitude of B)

b = 9 0 ° - (latitude of A)

7 = I (longitude of A)-(longitude of

The great circle distance C is given by cosine law

cos C = cos a cos 6 + sin a sin b cos 7 (6.30)

The wind direction w i l l be defined as the in i t ia l course a , since the in i t i a l course

is very close to the final course due to short distance travelled, using sine law

s i n a s i n 7
s i n a = . ^ — (6.31)

sin C

If the final position is East of the in i t ia l one, the ini t ia l course is a. Otherwise

the ini t ia l course is 360° — a. The length of arc C is converted to minute, since

236

one minute of arc (1/60°) at the Earth 's surface is a distance of one nautical mile ,

the arc length C is 60C nautical miles. One nautical mile is equivalent to 1.15078

statute mile or 1.852km.

The distance dis then used to compute the average speed of the cloud which

is then the estimate of wind velocity around the tracer. The average wind speed

is

_ distance travelled by the cloud tracer , .
t ime between images used to track the cloud tracer

For M E T E O S A T

N . B . 1 knot = 0.5148 m/s

V = knots/hr. (6.33)
0.5

6.3 A n Automated Cloud Motion Determina

tion Scheme

A n automated scheme wcis developed to compare the "separate then track" ap^

proach and the traditional "track without discrimination" approach. Figure 6.13

shows the automatic scheme used i n this study.

237

Select raw or clustered
images for tracking

Select tracking method
1. cross correlation

2. SSDA, or 3. 2D search

Scan next windows in second
image for suitable target

no
temperature variation < 10 C

no

if clustered image, check
filled area > 30%

no

compute vectors using first
and third image

accept results if two vectors
are roughly symmetric

no
all windows scanned

no
if clustered image, check all

clusters are scanned

no

height assignment and
quality control

Figure 6.13: The automatic cloud motion wind scheme used in this s tudy

238

The Global-Local clustering algorithm presented i n Chapter 4 - i ^ used to sepa

rated cloud classes j then tracking is done using one cloud class at a t ime. Tracking

is also done using raw image such that a target window may contain clouds from

more than one height levels. Results show that the "separate then track" approach

improves tracking abil i ty significantly. The improvement is part icularly obvious

i n frontal areas where cloud mixtures are moving i n different direction and these

are most valuable to modelling of weather systems.

The scheme is developed based on the elements discussed i n previous sections.

Some simplification has to be made since the main objective of the scheme is to

test the performance of the "separate then track" approach and i t is not intended

for operational use. The height assignment is the most difficult part to be carried

out among al l others, since the correct cloud top height requires accurate cloud top

temperature (radiance) estimation. This process is very complicated and requires

a database of 110 atmospheric models (Bowen and Saunders 1984). We have

taken a simplified approach namely the "Level of Best F i t " (Hubert and Whi tney

1971) which assigns vectors to height level which produce the ntiinimum velocity

difference. The L B F method has been compared wi th cloud top and cloud base

assignment method by Lee (1979), the L B F method has found to give unrealistic

results i n some cases, nevertheless L B F is a useful for statistical analysis (Hubert

1979).

Different combination of target size and image resolution w i l l give slightly

different cloud patterns, therefore using different satellite data to track the same

target should produce difference error. Another objective of the experiment is

to investigate an opt imum target size for M E T E O S A T images for cloud tracking.

Three tracking methods namely; 1) normalised cross-correlation, 2) absolute mean

difference (S S D A) and 3) 2d-log search wi th absolute niean difference. Target

window sizes are 4 x 4, 8 x 8, 16 x 16, 24 x 24, and 32 x 32.

The scheme uses either raw or clustered images, and any one of the three target

tracking techniques so giving six experimental approaches.

The basic approach is to use sequences of three (visible and infrared) images

239

spanning a total of one hour. The second infrared irnage is divided into non-

overlapped areas w^hich define possible target windows, and these are then checked

for suitable cloud tracers. If the window has an infrared variance < 100 (i.e. black

body scene temperature variations are usually < 10°C), then i t is tracked i n the

first and th i rd image of the sequence.

W h e n using the clustered approach, only the middle pair of images are clus

tered, and only pixels gt{j, k) e oj, w i l l be kept i n the target window when using

cluster a;,- for tracking. This results in a target window which is. not necessarily

filled wi th pixels, and so a further check must be made. A t present, a window

less than 30% fiUed is rejected for a target (the threshold is not cri t ical but i f i t is

too small spurious winds may be generated). Alternatively, tracking can be done

using only the cluster which has the most number of pixel i n a window. Clearly,

target windows containing more than one cluster rnay have more than one wind

vector, and results show that only a small number of target window generate more

than one vectors (see Table 6.1— 6.12).

Since no prior information of wind direction is given, targets windows are

located i n the centre of search windows, and 15 to 25 lag positions are allowed

i n the horizontal and vertical direction respectively (dependents on the max imum

wind speed found i n the reference wind field from the Meteorological Office). This

provides for a maximum wind speed of at least 75.5 knots (15 lag position) i n the

southern most of the clustering window. Since the spatial resolution decreases

wi th increase of latitude, the maximum speed is larger than 75.5 knots i n area of

higher latitude. Two vectors are obtained by tracking cloud tracers i n the first

and th i rd images i n the sequence. Vectors corresponding to min imum (S S D A) or

maximum (cross correlation) fall ing on the borders of the search area are rejected.

Vectors are then checked for symmetry; i f the speed difference is > 50% of the

sinaller vector, or the direction differs by > 30°, no wind vector is generated for

that window.

240

6.4 Cloud Motion Wind Results

The six sets of images described i n chapter 4 oir^used to test the cloud motion

scheme. Each of these images include either a warm or cold front and is suitoiile..

for cloud motion tracking.

Cloud motion tracking using raw and clustered infrared images has been tried.

A l l tracking was done on images without geometric rectification, and the dis

placements were then corrected using a least square error rectification model

(section 6.2.5). The outputs of the cloud tracking scheme were compared wi th

the Meteorological Office numerical weather niodel results, and only wind vectors

which are close to the predicted results were selected. The criteria to select a

'va l id ' vector are: i f i t is wi th in a speed deviation of less than 50% and a direction

deviation of less than 30°. The wind vectors are assigned to a height level using

the "Level of Best F i t " method , i.e. to the level wi th n i in imum speed deviation.

The middle image is divided into an array of target windows and so higher wind

density can be obtained by overlapping the target windows.

Tables 6.1— 6.12 gives the detailed cloud motion wind results for the six se

quences (L=iow level (850mb), M = m i d d l e level (500mb), H=high level (250inb)).

Figures 6.14— 6.19 give the numerical prediction results (provided by Me t . Office)

interpolated onto a 16 x 16 target size grid, showing the wind field at 850mb (red),

500mb (green), and 250mb (yellow) levels. These reference wind fields indicate

that wind at different levels can have very different speed and direction.

241

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target

size

i:!racking

method L M H L M H L M H L M H L M H

Target

size

i:!racking

method

18 38 M 8 12 11 41 -0.63 10.07 4.80 4.61 -4.28 -3.28 2.86 13.27 10.19 4x4 x

36 56 151 22 42 85 0.97 4.18 4.80 2.36 1.36 -2.27 4.15 7.72 9.89 4x4 ssda

73 93 75 35 65 36 1.26 0.63 3.84 7.51 -2.50 -10.18 4.28 6.03 8.21 4x4 2ds

27 24 55 24 21 41 1.24 5.92 3.32 3.00 2.66 -1.95 2.83 10.63 7.39 8x8 X

30 41 71 27 38 57 0.43 2.63 4.00 4.39 -1.38 -5.33 2.84 7.44 • 8.68 8x8 ssda

29 32 39 20 29 28 0.43 1.37 3.84 6.51 -3.09 -7.17 4.13 6.61 7.96 8x8 2ds

9 29 26 8 27 26 1.14 3.15 3.41 -0.14 -4.41 -6.23 2.65 7.16 6.92 16x16 X

13 31 23 12 29 21 -0.39 2.18 1.92 -4.83 -5.28 -5.87 2.32 4.47 7.73 16x16 ssda

12 23 13 8 22 12 -0.51 1.62 0.38 ,-4.62 -3.02 -7.86 2.79 4.86 8;03 16x16 2ds

10 7 10 9 6 10 -0.79 4.61 3.22 1.02 -0.71 -2.92 3.63 6.95 6.13 24x24 X

7 8 9 7 8 9 -0.34 0.44 -0.02 6.69 2.50 • -3.71 3.92 4.52 4.56 24x24 ssda

7 8 6 7 8 5 -0.34 0.14 -3.79 6.69 3.90 -0.68 3.92 4.78 5.70 24x24 2ds

6 3 3 5 3 3 0.55 3.20 -3.65 -2.54 4.28 0.82 7.65 3.82 5.32 32x32 X

5 2 4 5 2 4 0.55 5.57 -2.36 -2.54 3.33 -3.10 7.65 5.58 7.29 32x32 ssda

5 2 2 4 2 2 -0.21 5.57 -6.46 0.38 3.33 -7.36 6.57 5.58 10.04 32x32 2ds

Table 6.1: W i n d vectors results by tracking raw images on 5th March .

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target

size

Tracking

method L M n L M H L M H L M H L M H

Multi-vec.

window

Target

size

Tracking

method

22 51 189 7 14 35 0.01 8.94 6.29 11.16 1.01 -0.38 2.21 12.07 11.37 0 4x4 X

44 78 165 25 44 82 0.35 5.16 5.57 8.35 2.61 -0.55 2.45 9.02 9.67 1 4x4 ssda

94 113 102 40 70 • 46 1.63 1.03 3.07 6.30 •-4.51 -9.91 4.35 6.03 7.92 3 . 4x4 2ds

22 29 72 18 19 41 1.18 4.31 3.69 5.01 -0.01 -4.70 3.29 7.61 8.10 1 8x8 X

29 46 79 23 33 56 0.26 4.53 4.13 3.74 -0.99' -5.04 2.98 8.08 8.53 7 8x8 ssda

36 41 46 21 33 26 0.30 0.76 4.67 7.89 -3.39 -5.69 3.06 5.07 8.09 0 8x8 2ds

11 27 37 10 21 32 2.26 2.92 1.86 4.58 -1.48 -4.17 3.77 7.27 5.58 6 16x16 X

16 28 33 13 23 27 -1.10 2.57 2.91 -2.99 -1.05 -6.02 6.32 4.67 6.76 7 16x16 ssda

18 20 24 11 19 16 2.95 0.64 2.40 4.94 -0.54 -9.62 3.67 3.57 5.95 4 16x16 2ds

10 15 18 6 11. 11 -1.13 2.57 2.35 5.59 0.73 -4.56 3.26 5.33 6.49 5 24x24 X

9 12 18 5 10 13 0.63 0.11 3.73 7.21 -0.08 -10.40 1.65 4.69 6.16 7 24x24 ssda

9 8 16 5 7 10 1.39 0.86 2.60 12.65 0.77 -9.78 1.81 4.84 6.93 2 24x24 2ds

8 7 13 6 6 10 1.80 4.38 -1.21 2.82 1.40 -4.98 3.39 6.90 7.16 5 32.X32 X

8 7 14 7 6 9 0.50 4.42 -0.87 6.23 -0.89 -6.29 3.45 6.66 3.85 7 32x32 ssda

6 7 10 5 6 9 -1.81 4.42 -0.77 9.74 -0.89 -6.90 6.50 6.66 3.73 3 32x32 2ds

Table 6.2: W i n d vectors results by tracking clustered images on 5th March.

243

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target

size

Tracking

metliod L M H L M H L M H L M H L M H

Target

size

Tracking

metliod

55 56 103 23 18 31 4.01 3.86 8.14 5.26 0.50 -1.24 .6.98 6.31 12.86 4x4 X

51 87 101 26 39 59 2.45 3.21 . 10.20 -1.31 1.50 0.60 4.30 6.55 15.27 4x4 ssda

91 99 103 35 48 59 1.15 0.22 2.75 -0.59 0.33 0.89 4.43 4.67 6.97 4x4 2ds

34 31 41 21 22 32 1.44 3.10 4.18 -0.16 2.33 1.85 3.17 5.95 10.34 8x8 X

38 45 48 26 29 33 1.42 3.25 3.95 6.34 1.37 0.38 4.32 5.83 7.93 8x8 ssda

32 40 43 21 26 25 1.69 1.34 1.37 -1.56 1.69 0.64 3.35 5.78 5.35 8x8 2ds

9 19 15 8 12 13 -0.06 3.09 8.00 4.28 5.21 5.65 2.30 5.63 15.68 16x16 X

12 21 9 11 11 8 0.04 3.22 1.16 6.53 3.41 5.99 2.38 6.22 4.50 16x16 ssda

11 24 8 10 14 6 0.26 2.36 -0.68 1.46 3.99 9.07 2.24 5.65 2.00 16x16 2ds

6 4 3 4 2 3 -1.98 -3.83 -4.95 8.70 -6.85 -1.43 2.16 3.84 6.51 24x24 X

6 5 2 5 2 2 -1.93 -3.83 1.76 5.15 -6.85 -8.42 3.25 3.84 1.81 24x24 ssda

5 6 3 4 2 3 -2.45 -0.97 -1.75 -1.74 -4.46 -4.30 3.78 2.74 3.55 24x24 2ds

1 * 4 0 1 2 0 3.91 1.36 27.88 -2.52 — 3.91 2.75 . 32x32 X

3 3 0 3 1 0 5.01 1.58 — 12.60 10.61 6.36 1.58 — 32x32 ssda

3 3 0 3 1 0 5.01 1.58 — 12.60 10.61 — 6.36 1.58 — 32x32 : 2ds

Table 6.3: W i n d vectors results by tracking raw images on 8tK March.

244

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target :

size

Tracking

method L . M H L M H L M H L M H L M H

Multi-vec.

window

Target :

size

Tracking

method

45 63 133 10 16 38 4.97 1.85 9.23 6.22 -1.57 1.44 7.74 6.89 14.00 1 4x'l X

66 88 123 25 38 50 2.42 2.64 9.45 2.72 3.69 -0.53 4.38 6.80 13.66 4 4x4 ssda

104 125 116 39 55 60 1.86 -0.58 3.59 -0.85 0.91 3.14 4.36 4:94 7.88 3 4x4 2ds

35 42 51 17 30 34 1.54 3.36 8.46 0.09 -2.81 -0.96 3.48 5.78 13.48 1 8x8 X

35 50 70 22 30 41 2.08 2.15 5.56 2.88 1.52 -0.77 3.71 6.40 9.93 6 8x8 ssda

38 44 54 26 22 37 0.48 2.14 -0.63 0.65 1.26 0.08 3.18 4.94 6.90 6 8x8 2ds

14 33 22 9 21 17 -0.15 1.45 6.16 1.90 2.30 1.01 3.93 4.83 14.23 3 16x16 X

IG 32 18 11 20 14 0.23 2.38 0.98 6.27 4.07 -2.63 2.24 5.26 4.73 1 16x16 ssda

19 37 9 12 26 5 0.52 1.85 0.58 -3.15 1.96 -1.02 2.51 4.61 2.96 3 16x16 2ds

7 15 19 5 8 ' 14 0.67 0:91 4.07 8.97 -0.89 -0.65 3.66 4.52 7.80 4 24x24 X

16 13 15 11 8 10 , 0.43 1.97 2.74 2.83 -0.80 4.00 4.01 4.89 5.27 4 24x24 ssda

11 13 8 8 6 6 • - o . i i 1.12 0.95 2.71 -9.90 -3.24 2.28 2.20 6.79 2 24x24 2ds

2 14 9 2 8 7 2.90 0.46 3.99 10.90 -1.51 5.94 3.07 3.38 10.43 1 32x32 X

5 13 8 4 5 7 1.38 1.06 -0.85 8.42 5.91 11.48 1.82 1.97 7.19 3 32x32 ssda

8 13 5 5 6 4 2.95 -1.47 -3.38 14.23 5.22 17.09 5.29 4.97 8.19 3 32x32 2ds

Table 6.4: W i n d vectors results by tracking clustered images on 8th March.

245

Computed vectors 'Vaiid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target'

size

Trac]<ing

method , L M H L M H L M H L M H L M H

Target'

size

Trac]<ing

method

23 38 178 13 23 65 0.14 2.92 3.33 9.46 6.33 8.29 2.02 4.77 7.42 4x4 X

34 72 209 22 45 113 -2.70 1.81 3.74 6.24 4.34 4.88 5.46 4.49 7.08 4x4 ssda

87 78 123 40 47 59 -0.57 0.95 2.99 3.94 -0.27 .5.44 4.00 3.29 5.70 4x4 • 2ds

24 29 89 15 24 64 . 0.24 3.22 3.27 8.72 5.76 8.72 3.52 6.32 6.61 8x8 X

31 29 100 25 20 74 -0.34 1.17 2.41 8.73 1.84 5.05 3.41 4.09 6.43 8x8 ssda

30 32 54 18 23 38 0.25 0.09 2.27 9.09 -0.54 3.84 2.91 2.85 6.84 8x8 2ds

15 12 19 10 10 16 -0.00 1.22 2.50 7.31 4.79 8.73 2.93 3.67 5.48 16x16 X

13 12 15 , 9 10 12 -0.08 2.20 1.68 -0.53 5.17 7.36 2.76 4.28 4.83 16x16 ssda

16 9 14 11 8 11 -0.95 1.38 1.40 2.78 3.00 7.85 2.60 4.57 4.21 16x16 2ds

3 7 7 2 6 6 -2.80 -1.25 1.23 11.06 2.32 7.88 3.85 4.45 5.68 24x24 X

7 7 8 5 6 7 -0.91 -1.10 -0.97 7.42 -2.11 4.84 2.75 2.73 3.39 24x24 ssda

6 6 9 4 5 8 -1.56 -1.96 -1.39 3.05 -3.83 2.36 3.08 2.62 3.52 24x24 2ds

3 1 3 3 0 3 -2.05 1.01 14.87 — 2.15 3.92 — 2.43 32x32 X

1 1 2 1 0 2 -4.95 — 0.91 12.30 — 1.81 4.95 3.14 32x32 ssda

1 1 3 1 0 3 -4.95 — 0.14 12.30 — 0.03 4.95 — 1.60 32x32 2ds

Table 6.5: W i n d vectors results by tracking raw images on l l t h March.

246

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target

size

Tracking

method L M H L M H L M H L M H. L M H

Multi-vec.

window

Target

size

Tracking

method

15 46 235 7 17 56 -0.24 3.66 3.42 17.95 3.80 5.00 1.17 5.06 7.81 0 4x4 X

31 59 239 17 35 114 -2.61 1.37 3.34 4.44 6.42 3.42 5.62 3.88 7.37 3 4x4 ssda

93 97 144 36 50 54 -0.98 0.78 2.03 5.83 1.30 4.13 4.41 3.43 5.26 2 4x4 2ds

20 25 102 14 21 68 -0.25 1.96 3.68 10.43 6.09 9.01 4.11 4.85 7.20 2 8x8 X

•21 41 110 14 25 78 -0.14 0.10 2.28 7.91 2.84 6.71 4.03 3.53 5.64 6 8x8 ssda

35 42 52 26 28 31 -0.69 0.17 1.64 6.97 1.31 4.09 3.19 3.35 6.10 3 8x8 2ds

. 14 19 49 10 12 36 -0.68 1.05 2.40 9.75 7.71 6.98 2.23 3.67 6.21 7 16x16 X

21 28 34 12 21 25 -1.29 1.96 2.62 11.93 2.28 5.85 2.93 5.56 6.27 9 16x16 ssda

20 22 24 11 14 19 -0.12 2.53 1.23 4.69 2.40 7.54 2.21 6.27 3.92 5 16x16 2ds

9 19 18 8 13 15 -1.44 2.21 3.35 19.73 7.44 6.04 2.86 3.49 5.83 4 24x24 X

8 21 17 8 13 15 -1.40 0.57 1.59 13.82 3.39 5.31 3.36 2.91 5.11 3 24x24 ssda

7 17 14 7 12 12 -1.91 -0.11 1.80 13.68 -0.96 3.86 3.60 2.62 5.36 3 • 24x24 2ds

4 10 13 3 7 12 -5.38 1.01 2.02 16.83 . 11.22 3.83 5.40 4.16 5.27 3 32x32 X

6 8 13 5 6 11 -1.37 0.74 1.07 14.95 3.22 3.61 5.04 3.68 4.55 3 32x32 ssda

9 8 14 7 7 12 -2.31 0.40 0.04 13.58 0.60 2.05 5.41 3.02 3.12 4 32x32 2ds

Table 6.6: W i n d vectors results by tracking clustered images on l l t h March.

247

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target

size

Tracking

method L M H L M H L M H L M H L M IT

Target

size

Tracking

method

37 38 164 18 28 56 0.24 1.16 3.85 5.62 -4.24 4.17 3.81 4.29 6.58 4x4 X

79 74 165 50 54 85 -0.05 0.14 4.15 4.22 -3.84 1.64 4.01 3.92 7.73 4x4 ssda

102 96 155 38 58 69 0.19 0.37 1.90 1.44 -1.70 2.56 4.61 3.89 6.05 4x4 2ds

57 53 60 40 49 49 0.19 0.02 1.74 • 1.67 -6.60 4.71 3.17 3.55 4.99 8x8 X

71 70 64 57 62 47 0.95 -0.09 2.83 -0.03 -3.08 2.09 3.65 3.59 5.66 8x8 ssda

54 56 41 37 50 25 0.40 -0.51 1.57 2.17 -4.18 5.87 . 4.39 3.45 6.48 8x8 2ds

23 27 17 22 25 12 0.65 -0.97 0.50 0.63 -1.28 1.66 • 3.49 4.06 8.46 16x16 x

29 22 18 26 20 11 1.90 -0.47 1.87 1.31 -1.73 3.87 3.80 4.18 ,8.77 16x16 ssda

23 25 14 20 22 8 1.51 -0.43 0.87 3.15 -1.07 7.08 3.51 3.25 6.90 16x16 2ds

11 •11 5 9 10 4 0.83 0.18 -0.13 2.01 4.43 1.45 4.06 3.93 3.40 24x24 X

14 12 5 12 11 4 0.71 0.30 1.89 1.62 1.10 2.71 3.28 3.08 5.03 24x24 ssda

14 12 3 11 11 2 0.83 0.30 4.71 2.75 0.34 12.64 3.42 3.00 7.17 24x24 2ds

8 4 2 8 4 2 1.41 -1.38 -4.22 -4.78 6.09 -5.39 3.83 3.30 4.54 32x32 X

11 1 1 10 1 1 0.98 -0.23 -8.47 -1.77 6.81 -4.33 4.06 0.23 8.47 32x32 ssda

10 1 0 9 1 0 0.21 -0.23 — -0.37 6.81 — 3.37 0.23 — 32x32 2ds

Table 6.7: W i n d vectors results by tracking raw images on 15th March .

248

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target

size

Tracking

method L M H L M H L M H L M H L M ; H

Multi-vec.

window

Target

size

Tracking

method

24 40 203 10 21 48 1.12 0.53 4.73 -1.13 -8.97 2.93 4.35 3.87 8.09 0 4x4 X

85 77 201 54 55 87 1.21 0.54 4.90 4.58 -3.66 0.70 4.10 4.48 7.85 0 4x4 ssda

126 114 165 52 61 65 0.37 0.42 2.81 3.06 -3.26 0.22 4.55 3.61 6.36 6 4x4 2ds

39 50 73 26 45 50 -0.25 -0.46 2.27 2.50 -5.86 4.29 • 3.42 4.21 5.85 6 8x8 X

60 82 95 46 67 59 , 0.80 0.43 3.43 . 1.23 -4.89 1.03 3.66 4.04, 6.53 13 8x8 ssda

55 68 60 37 53 33 0.27 -0.01 2.06 6.38 -3.94 2.80 4.75 3.82 7.97 6 8x8 2ds

36 29 34 28 25 28 0.56 0.39 0.16 -0.46 -1.14 2.43 3.52 3.51 5.47 6 16x16 X

'12 36 35 29 29 24 2.12 -0.45 0.78 -0.67 -5.23 7.17 3.24 3.28 5.65 18 16x16 ssda

35 29 27 24 23 17 2.20 0.59 0.23 1.12 -1.55 4.65 3.50 2.97 6.61 10 16x16 2ds

21 20 11 13 16 10 -0.09 0.46 1.78 8.22 -3.90 3.94 2.45 3.89 5.41 5 24x24 X

27 25 12 19 21 10 1.78 1.19 2.81 4.18 . -3.31 -1.19 4.06 2.89 7.76 8 24x24 ssda

26 22 4 21 18 3 1.39 0.91 -0.27 3.79 -4.04 4.92 4.88 2.52 3.35 6 24x24 2ds

16 14 5 10 12 4 1.49 -0.56 2.41 -3.17 -4.61 0.19 3.56 2.32 3.02 7 32x32 X

16 11 9 10 10 7 1.84 -1.15 1.29 -2.26 -5.19 -2.76 4.97 2.11 9.56 7 32x32 ssda

17 10 5 10 10 3 0.85 -1.15 2.03 1.44 -5.19 1.44 4.08 2.11 2.76 6 32x32 2ds

Table 6.8: W i n d vectors results by tracking clustered images on 15th March.

249

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target

size

Tracking

metliod L M H L M H L M H L M H L M H

Target

size

Tracking

metliod

0 0 0 0 0 0 4x4 X

22 27 145 6 11 59 -1.06 14.15 -10.14 2.22 11.88 -5.97 3.11 15.84 15.40 4x4 ssda

38 61 99 6 17 37 5.94 7.58 -9.04 17.85 • 12.28 5.90 9.45 10,79 16.24 4x4 2ds

0 0 0 0 0 0 8x8 X

25 24 63 8 18 52 1.89 15.71 -13.74 2.48 12.16 -5.96 6.61 17.01 16.24 8x8 ssda

17 10 19 3 5 10 11.79 7.76 -9.63 -2;79 7.21 0.83 13.27 11.74 12.05 8x8 2ds

IJ 0 0 0 0 0 — — — — - — — — 16x16 X

9 13 19 2 8 19 -3.74 14.76 -17.75 1.80 12.28 -7.10 3.74 16.53 18.80 16x16 ssda

9 8 12 2 5 12 -4.92 2.59 -15.75 -6.73 4.84 -6.67 5.13 9.00 16.76 16x16 2ds

0 0 0 . 0 0 0 24x24 X

4 7 4 2 4 4 -0.46 14.34 -20.58 10.88 2.56 -6.15 1.47 15.30 21.19 24x24 ssda

3 3 2 2 2 2 -0.46 3.26 -17.73 10.88 -8.60 -6.88 1.47 5.14 18.06 24x24 2ds

0 0 0 0 •0 0 — • — — — — — — 32x32 X

0 2 1 0 2 1 — 13.36 -16.05 — 14.29 3.26 — 15.43 16.05 32x32 ssda

0 2 1 0 2 1 — 18.05 -16.05 — 22.84 3.26 — 18.30 16.05 32x32 2ds

Table 6.9: W i n d vectors results by tracking raw images on 18th March.

250

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target

size

Tracking

method L M H L M H L M H L M H L M H

Multi-vec.

window

Target

size

Tracking

method

0 0 0 0 0 0 0 4x4 X

11 30 175 3 11 62 2.89 • 12.71 -8.24 -7.83 6.95 -3.87 3.30 15.66 15.93 0 4x4 ssda

35 63 109 7 16 39 4.76 8.58 -10.40 14.31 9.76 5.48 8.71 11.93 15.53 1 4x4 2ds

0 0 0 0 0 0 0 8x8 X

17 30 56 0 22 37 — 12.83 -13.46 — 11.14 -4.29 15.42 15.56 0 8x8 ssda

14 18 25 3 10 10 5.52 4.72 -10.06 11.71 8.61 -0.30 7.09 8.80 11.89 1 8x8 2ds

0 0 0 0 0 0 0 16x16 X

12 16 27 3 10 26 5.15 10.02 -16.53 5.33 10.48 -3.78 13.58 13.64 17.88. 1 16x16 • ssda

8 11 14 1 7 12 -3.48 11.01 -12.49 8.33 4.18 -6.58 3.48 14.77 14.52 1 16x16 2ds

0 0 0 0 0 0 — — — — — — • — — 0 24x24 X

1 7 5 0 5 4 — 12.59 -22.14 — 4.54 -6.93 — 15.23 23.18 0 24x24 ssda

2 5 3 0 3 2 — 14.07 -19.23 — -3.10 -6.71 — 14.15 19.32 0 24x24 2ds

0 0 0 0 0 0 — — — — — — — — 0 32x32 X

1 1 1 0 1 1 — 5.65 -14.76 • — 7.11 -12.15 5.65 14.76 0 32x32 ssda

1 1 0 0 1 0 — 10.97 — — 29.12 — — 10.97 — 0 32x32 2ds

Table 6.10: W i n d vectors results by tracking clustered images on 18lh March.

251

Computed vectors 'Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Target

size

Tracking

method L M H L M - I-I L M H L M H L M H

Target

size

Tracking

method

5 25 146 2 20 42 11.81 5.47 -0.74 7.49 0.24 -0.66 11.97 12.68 9.88 4x'l X
15 57 127 5 51 76 -3.69 5.82 2.80 7.28 1.27 -1.42 9.29 11.23 16.29 4x4 ssda

51 52 30 13 20 7 6.12 -2.95 -1.25 3.69 7.10 -0.17 7.67 9.26 5.20 4x4 2ds

3 22 43 2 22 33 4.81 9.34 -3.33 -3.90 3.73 -2.41 5.24 13.50 13.04 8.x8 X
7 28 50 5 24 47 5.80 8.19 -0.71 7.41 4.30 -2.72 6.96 11.65 16.25 8x8 ssda

13 14 13 3 10 7 6.77 -0.28 5.64 -0.35 4.91 -4.44 10.60 7.88 13.25 8x8 2ds

0 14 8 0 14 8 10.68 -4.74 — 2.87 -1.33 — 13.15 12.43 16x16 X
2 15 7 1 15 7 8.79 6.56 -2.00 -19.04 2.36 -2.30 8.79 13.28 11.52 16x16 ssda

3 7 0 1 7 0 8.79 0.31 — -19.04 0.36 8.79 13.66 — 16x16 2ds

0 7 0 0 • 6 0 —r 8.50 — — 1.56 — — 11.70 — 24x24 X
0 6 0 0 5 0 9.74 — — -1.56 — — 10.89 — 24x24 •ssda

0 1 0 0 1 0 2.70 — — -1.84 — 2.70 — 24x24 2ds

0 2 0 0 • 2 0 6.00 — — 10.63 — — 6.56 — 32x32 X
0 2 0 0 2 0 4.77 — — 10.20 — 6.15 — 32x32 ssda

0 1 0 0 1 0 0.89 — — 11.09 • — — 0.89 — 32x32 2ds

Table 6.11: W i n d vectors results by tracking raw images on 20th March.

252

Computed vectors •Valid'vectors Mean speed dev. Mean dir. dev. R M S speed dev. Multi-vec.

window

Target

size

Traclcing

method L M H L M H L M H L M H L M H

Multi-vec.

window

Target

size

Traclcing

method

2 26 233 1 19 36 1.79 4.68 -1.79 5.30 1.59 -1.80 1.79 13.52 8.76 0 4x4 X

11 63 138 3 48 66 -2.78 4.65 5.02 19.30 0.19 -3.17 9.53 11.82 16.90 2 4x4 ssda

46 74 54 12 31 4 3.80 -3.26 0.27 11.39 9.80 0.50 7.22 8.98 4.74 2 4x4 2ds

5 18 67 4 17 39 -0.31 11.54 -0.66 -13.48 2.53 -3.13 14.16 13.06 13.17 1 8x8 X

10 32 55 5 28 40 4.35 8.75 0.99 10.65 1.94 -2.44 7.49 13.48 14.35 1 8x8 ssda

15 25 19 4 12 7 -3.43 -1.76 4.41 14.60 2.59 -8.13 10.13 10.43 14.71 0 8x8 2ds

4 14 26 3 13 22 -5.59 10.89 -2.03 5.51 1.57 -1.06 9.24 13.43 11.44 1 16x16 X

6 14 22 3 14 17 8.36 7.97 -4.14 -11.36 3.15 -2.18 10.31 10.50 11.21 2 16x16 ssda

5 5 4 2 5 3 -5.13 5.00 -6.70 -2.24 -2.18 -1.68 18.97 5.85 7.20 0 16x16 2ds

1 10 13 1 10 11 3.47 7.76 -5.39 -10.25 1.65 -1.52 3.47 11.73 13.31 2 24x24 X

2 12 9 2 10 9. 4.29 7.23 1.81 -12.91 4.41 -3.59 7.26 10.27 6.62 1 24x24 ssda

4 4 3 2 3 3 8.80 1.80 -1.34 8.37 7.08 -2.65 8.91 6.96 9.73 0 24x24 2ds

0 2 1 0 2 1 — 13.16 1.56 — 11.59 4.76 13.56 1.56 0 32x32 X

0 1 1 0 1 1 — 8.65 -0.86 — 9.30 -1.50 8.65 0.86 0 32x32 ssda

0 0 0 0 0 0 0 32x32 2ds

Table 6.12: W i n d vectors results by tracking clustered images on 20th March.

253

Low level M i d d l e level H i g h level

Figure 6.14: Reference wind field of 5th M a r c h interpolated on 16 x 16 target size

grid.

Low level Midd l e level H igh level

Figure 6.15: Reference wind field of 8th M a r c h interpolated on 16 x 16 target size

grid.

Low level Midd l e level H igh level

Figure 6.16: Reference wind field of l l t h M a r c h interpolated on 16 x 16 target

size grid.

254

Low level Midd l e level H igh level

Figure 6.17: Reference wind field of 15th M a r c h interpolated on 16 x 16 target

size grid.

Low level Midd le level H igh level

Figure 6.18: Reference wind field of 18th M a r c h interpolated on 16 x 16 target

size grid.

Low level Midd l e level H igh level

Figure 6.19: Reference wind field of 20th M a r c h interpolated on 16 x 16 tai,rget

size grid.

255

Figures 6.20— 6.23 show the mean rms speed deviation of 'vahd ' vectors ob

tained by tracking using raw iinages. For low level wind vectors a clear min imum

speed deviation for a l l three tracking methods occurs between 16 x 16 and 24 x

24 target sizes. However, a min imum can not be found for middle level and high

level wind . F i g . 6.23 is the overall mean rms speed deviation for the three tracking

method again a clear min imum for low level wind vector occurs at target size of

24 x 24. Lunnon and Lowe (1990) use target sizes of 4 x 4, 4 x 8, 8 x 8, 8 x 16,

16 X 16, 16 x 32 and 32 x 32, and found the opt imum target size for M E T E O S A T

images to be 16 x 16 for low level vectors.

256

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.20: M e a n rms speed deviation for different target sizes and tracking

methods using raw images (Low level).

I
.a
ri

o —'

V 3

8

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.21: Mean rms speed deviation for different target sizes and tracking

methods using raw images (Middle level).

257

4x4 8x8 16x16 24x24 32x32

Target size
Figure 6.22: M e a n rms speed deviation for different target sizes and tracking

methods using raw images (High level).

Target size
Figure 6.23: Mean rms speed deviation for different target sizes using raw images

(A l l t racking methods).

2.58

Figures 6.24— 6.27 show the corresponding mean rms speed deviation for wind

vectors obtained by tracking clustered irnages. It is noted that for clustered images

the target window may not be fully filled wi th pixel especially wi th larger target

window (say 16 x 16 and larger). Therefore the target sizes for clustered windows

are undefined. N o relationship of target size wi th speed deviation can be observed

i n these Figures. However, there is a tendency for the speed deviation to decrease

wi th larger target windows for middle and high level wind vectors.

259

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.24: M e a n rms speed deviation for different target sizes and tracking

methods using clustered images (Low level).

C/5

I

If
8

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.25: Mean rrtis speed deviation for different target sizes and tracking

methods using clustered images (Middle level)'.

260

i2
o

M •

§
Ji Ji

13

12

11

10

9

8

7

6

5

4

1 j i
\ \

^x„.... i - "">....- * —
1 !
1 1

OX
^ssda
-o-2d - \ 1 1

OX
^ssda
-o-2d

- 1 : \ :
-

\ ; J \ : \ \ -
r" : \ : \ I \

- : : \ >

- :
1 \)

•

i I
i

\]
4x4 8x8 16x16 24x24 32x32

Target size

Figure 6.26: M e a n rms speed deviation for different target sizes and tracking

methods using clustered images (High level).

.52
o

i !

P ^ «-(

15,
ri

I

11

10

9

8

7

6

5

4

3

- i
\

-. - \ ': \

Oiow level
-o-mid. level
-o-high level

-. - \ ': \

Oiow level
-o-mid. level
-o-high level

...J"
: :

1 \ \\
:
:

i

I
I \ \ \

: : \
1 = \

j : : :

I
i
:

1
: ;

> 1 i
\ -

\ i
\ :
\ i

:
I

jZ^., .1..... j \ - K ^ \-
1 :

I x/o

-

:

:
r
: 1

: >̂
: ^

1
i

i
1
i

4x4 8x8 16x16 24x24 32x32

Target size
Figure 6.27: Mean rms speed deviation for different target sizes using clustered

images (A l l tracking methods).

261

Figure 6.28 is the cumulative error for al l 'va l id ' vectors. For low level wind

93% of vectors have a speed deviation less than 10 knots, and the error is almost

identical for raw and cluster tracking. For middle level wind 85% of vectors have

a speed deviation less than 10 knots, and for high level wind 76.5% have a speed

deviation less than 10 knots.

The error for middle and high leveil vectors using clustered tracking is slightly

(~ 1%) less than that using the raw tracking approach. Figure 6.28 also confirms

the fact that high level winds have much larger error than low level vectors.

120

I 100

o

-I
§

80 -

60 -

40 -

20 -

0 L

ra-w,low, lOlSvectors
cltister,Iow, 104ivectors
raw,mid-,1449vectors
clTister,mid[.,1666vectors
ra.w,hig'h,1934vectors
cluster,liigiL,2225vectors

0 10 20 30 40
Speed deviation in knots

Figure 6.28: Cumulat ive speed deviation for low, middle, high level wind vectors

obtained by tracking of raw and clustered images.

262

Figure 6.29— 6.31 shows the nuinber of 'vahd' vectors for different target size,

and tracking methods. This reveals that, for a target size greater than 8 x 8 , the

number of 'va l id ' wind vectors computed using clustered iinages are significantly

more than for raw images. For example, for 24 x 24 and larger targets, clustering

gives approximately 50% more 'va l id ' vectors using cross correlation or S S D A . The

diminishing advantage of using clustered image tracking for target sizes below 16

x 16 may be part ly due to the diminishing chance of selecting a target covering

more than one type of cloudy,and at the saihe t ime 'holes' are generated into the

target window after removal of other clusters. The general increase i n the number

of vectors using clustered image tracking strongly suggests that multi-layers cloud

motion can be tracked better by first separating different cloud types and tracking

them individually.

F i g . 6.31 also reveal that clustering method generates more vectors for a l l tar

get sizes. In order to obtain a correct match point the 2d search requires matching

surfaces to have a dominant peak or val ley This suggests clustering improves the

general shape of matching surfaces, such that more consistent matching can be

achieved.

263

Ul 3

I
o
§

•a

5

d
0
•4—»

1
o

500

400

300

200

100

0

- i
: ; : :
: : : :

i i i 1 -

1
i - o - r a w

- 0 - c l u s t e r e d

< / j

^ 1

\ \
\ \ ^

- o - r a w

- 0 - c l u s t e r e d

< / j

^ 1

\ \
\ \ ^ i

i
1
: 1
j \
1
1
i
1 1
:

;
1
1
:
:

i

>

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6,29: Tota l number of 'va l id ' vectors using different target sizes, cross

correlation tracking wi th raw and clustered images.

900

in

O

> bO

rt

13

800

700

600

500

400

300

200

100

0

• i

I
3

1
i \ \
i \ \
i \

1 1

1 N;
v \ i - o - r a w

:

- ^ c l u s t e r e d „ .

:

:

1 Y \ \
I I

\ \

1 I 1

\
:

f 1
i
: V .1 ..

j

:

1

1
:

:

:

1
j

1 \

i

i

i

: 771"

i i i

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.30: Total number of 'va l id ' vectors using different target sizes, S S D A

tracking with raw and clustered images.

264

Target size
Figure 6.31: Total number of ' va l id ' vectors using different target sizes, 2d search

tracking wi th raw and clustered images.

The 18th M a r c h image is a very difficult case for cloud tracking, this is shown

i n Table 6.9 and 6.10 that wind vectors can only be obtained using S S D A , and

cross correlation has produced none at a l l , this is mainly because the whole image

is covered by a b ig lump of bright featureless frontal cloud. The tracking abil i ty of

the three tracking methods can be seen i n F i g . 6.32— 6.33 for raw and clustered

tracking respectively S S D A has been able to produce more wind vectors that

cross correlation tracking for a l l target sizes. Therefore i t should be used for cloiid

motion tracking instead of cross correlaition for its higher efficiency and tracking

ability. T h e higher tracking abil i ty can be explain by the fact that the matching

surfaces of S S D A are generally less ' spiky ' than cross correlation (Fig . 6.5 and

6.6).

265

4x4 8x8 16x16 24x24 32x32

Target size
Figure 6.32: Total nuinber of 'va l id ' vectors using different target sizes, tracking

methods wi th raw images.

900 I : - T — 1

4x4 8x8 16x16 24x24 32x32
Target size

Figure 6.33: Total number of 'va l id ' vectors using different target sizes, tracking

methods with clustered images.

266

Figures 6.34— 6-39 show the wind field computed by S S D A tracking of raw

and clustered images wi th a target size of 24 x 24.

267

Figure 6.34: W i n d field of 5t l i March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

Figure 6.35: W i n d field of 8th March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

Figure 6.36: W i n d field of l l t h March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

268

Figure 6.37: W i n d i ie ld of ISth March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

Figure 6.38: W i n d field of 18th March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

Figure 6.39: W i n d field of .20th March , a) raw tracking, and b) clustered tracking

(24 X 24 target size).

269

The 2d search method although produces least number of 'va l id ' vectors, but

i t is much more efficient that cross correlation and S S D A , i f large wind field is

required then i t can be used wi th overlap target window to increase the to ta l

number of wind vectors.

270

6.5 Discussion

The clustering approach for cloud wind tracking has proved to increased the yield

of wind vector by as inuch as 50% for target size of 24 x 24. The advantage stems

from the abil i ty of clustering to select natural data patterns, which i n turn tends

to correspond to different cloud types and by tracking a single cluster, features

such as cloud boundaries can improve the matching process. Clustering approach

is found to neither increase nor decrease the wind vector error.

It is also found that there is an op t imum target size for a given wind resolution,

and i t is 24 x 24 for low level wind using raw iinages. However, this criterion does

not apply to clustered image tracking, since, i n this case, the effective target size

is variable, also no relationship of target size and speed deviation can be observed

at a l l .

The S S D A is found to be more reliable method for target tracking (in this

study an infinity threshold is used, therefore S S D A degenerate to mean absolute

error method), than cross correlation; i t is also much faster since i t avoids the need

for normalisation. The 2d search is -^f/^qs^•^-•e&cient and can be used when a

large wind field is required.

271

Chapter 7

Conclusion

Clustering techniques have proved to be effective for improving cloud motion

t racking i n multi-layer regions. Two clustering techniques have been developed,

i) The Global -Local clustering algorithm and 2) Spatial-Spectral clustering algo

rithms. B o t h of them assumed clusters to have a Gaussian distribution, since this

assumption is found to be reasonable for M E T E O S A T imagery.

7.1 Global-Local Clustermg Algorithm

A l l iterative part i t ional clustering algorithms require an in i t i a l part i t ion or set

of centres to start and it is well known that different in i t ia l conditions generate

different clustering. In conventional clustering of image data in i t i a l partitions or

centres are obtained manually and therefore bias is introduced. The bias can be

eliminated by cliposm^ some random in i t ia l centres or part i t ion, but i t is also well

known that clustering can be trapped i n some local op t imum which may not be

the global opt imum.

A classical and almost universal solution to this problem is to allow clusters

which are l ikely to contain points from more than one class to spht, or conversely,

, to permit clusters which are very similar to merge. In this study i t has been shown

that split and merge does not solve the problem completely Ideally the in i t ia l

part i t ion should be as close to the best solution (global optimum) as possible

272

to avoid trapping i n a local opt imum. This is achieved by using a Global -Local

clustering, approach. Essentially the first stage i s to identify modes i n the feature

space and then generate an in i t ia l part i t ion which is close to the best solution

using a histogram clustering algorithm. The second stage is to optimize the in i t ia l

par t i t ion using an iterative clustering algorithm. The Global -Local clustering

approach is found to be effective i n improving the clustering.

The second problem of using clustering techniques is the choice of distance

function. The cluster mean has been used as a cluster model for a long time, but

the deficiency of its abil i ty to recover clusters wi th large difference i n variance has

long been realised. The classical solution to the cluster variation problem is to

normalise the variables, such that cluster variation can be reduced. The normal

isation can be performed using simple scaling of variables, clustering transform,

and principle component transform etc. A l l these techniques do not require any

prior knowledge of the data structure, and therefore i f the data structure does not

conform to the normalisation model, the discrimination between clusters may be

decreased. However, i f a parametric model can be assumed, then it is possible

to derive a distance function which is opt imum wi th respect to certain criteria

(e.g. M i n i m u m Sum of Error probability) and this implies the data structure are

known beforehand.

Dynamic clustering allows the latter approach to be implemented. The com

monly used cluster mean model is replaced by a kernel, and this may take any

model which represents the clusters best. In this study a Gaussian model is used,

which allows clusters to have different size and variance. Several distance functions

can be derived from the Gaussian model wi th different levels of simplification, and

i n this way the cluster mean model can be related to the Gaussian inodel.

The number of patterns i n an multi-spectral image is very large, so any clus

tering algorithm should perform efficiently. The Global -Local algori thm achieves

high efficiency by exploiting the multiple occurrence of distinct vectors. Dist inct

vectors are clustered using the dynamic algorithm and i f a distinct vector is as

signed to a particular cluster so are the other copies of i t . Since the histogram

273

clustering is also very efficient the combined algorithm remains so.,

7.2 Spatial-Spectral Clustering Algorithm

Contextual information exists i n al l imagery, although it is usually ignored i n

image analysis. Classification of a pixel may be ambiguous i f i t is a mixture

of different objects, usually these pixels lie on the boundaries of images. The

contextual information can be exploited by considering a p ixe l and i t neighbours.

The Spatial-Spectral clustering algorithm is based on the assumption that i f a

pixel has uncertain classification then i t should be assigned to the class wi th the

majority of its neighbours belongs to.

The contextual information has been exploited by clustering of the spatial

space using Graph Theoretic Hierarchical Segmentation (G T H S) . This results i n

a number of homogeneous regions which corresponds to objects i n the image and

these objects aire then grouped based on their spectral similarity.

The spatial clustering is a stepwise opt imum approach. It is also a gener

alization of the hierarchical clustering approach which usually clusters patterns

based on their spectral similarities. The spatial clustering algorithm constructs

an image graph based on two types of distance function: local and global. Loca l

type distances only use the information of the nearest neighbours, while global

type distances use information of other pixels by considering the statistics of a

neighbouring region.

Segmentation is usually compared visually but i t is desirable to have a measure

to indicate the goodness of a segmentation. To this end a mutual information

model has been developed to monitor the segmentation process and the entropy

loss is used as an indicator of the generation of the basic features i n an image. A

good segmentation should use the least number of segments to retain the maximum

amount of information of the original image, and so the segmentation should stop

when the basic features have been recovered and the entropy loss starts to decrease

at a constant rate. Al though this criterion is heuristic, i t has found to provide

274

good segmentation.

The clustering of segments is also based on the. agglomerative approach: a

statistical hypothesis is used as a distance measure between two segments and

every t ime the two most similar segments axe merged. Clustering stops when the

number of groups equals the number of clusters required.

The Spatial-Spectral clustering algorithm therefore requires two user param

eters; 1) number of segments, 2) number of clusters. It is found that the first

parameter is quite independent of the data once the windows size is fixed. Spatial-

Spectral clustering is computation expensive so i t is not used for testing of cloud

wind tracking. However, i t is able to produce clusters wi th 'clean' boundaries,

and this abili ty should be valuable i f further machine analysis of cluster shape is

required.

Due to the lack of ground truth, i t was not able to access the accuracy of

the two clustering algorithms quantitatively. However, the clusterings compare

favourably wi th the original observation.

7.3 Generation of Cloud Motion Vectors

Cloud motion wind has been generated by tracking raw and clustered images.

The separation of cloud type prior to cloud tracking has been proposed a long

t ime ago (Hubert 1971). However most operational wind systems do not take

advantage of the multi-spectral information and only used simple I R thresholding

to segment a target window before tracking cloud targets. The efficient Global -

Loca l clustering algorithm has been designed for operational use, and even a single

band of infrared can be used at night t ime when other channels are not available.

It is the author's experience that most of the control parameters can be fixed

once the first set of images have been processed. Specifically, the next clustering

process (providing the two sets of images are similar) can use the previous clusters

as a starting parti t ion. Also other parameters for split or merge can be kept

unchanged. Therefore the algorithm is only used interactively when necessary to

275

generate in i t ia l part i t ion and specify the clustering parameters. A t present the

clustering only generates unlabelled classes, but the study by Seddon (1985) for

example can be used to produces labeUed classes for better use of the wind vectors.

The clustering approach has been able to increase the wind vector yield by

as much as 50%, for target sizes of 16 x 16 or larger. The advantage for larger

targets is mainly due to the fact that mixed cloud types i n a small target are less

probable. Al so , clustering introduces 'holes' into the target which confuses the

matching process.

Al though more vectors can be generated by the clustering approach, i t does

not seem to improve the speed deviation significantly. It must be noted that only

a small set of images are used i n this study, and ideally more statistics are required

to firm the results.

The effect on varying the target size on the mesoscale wind speed deviation has

been investigated. There is a tendency for larger target size to produce smaller

speed deviation, and no obvious min imum for high and middle level wind can be

found between 4 x 4 and 32 x 32 target size. O n the other hand, an obvious

min imum for low level wind wi th a target size of 24 x 24 can be found for a l l

tracking methods, and this result agrees wi th the Meteorological Office findings

(Lunnon and Lowe 1991).

Cross correlation has been used for image tracking since the very first applica

t ion, since i t possesses the matched filter characteristic and provides an opt imum

result when the image is corrupted by white noise. In this study the simple S S D A

(absolute mean error) is found to be more reliable than the classical cross corre

lat ion and i t is highly reconunended as a substitute for cross correlation tracking.

If even higher efficiency is required the two-dimensional search method can be

employed.

A n y future work should be concentrated on using a more sophisticated clas

sification algorithm to separate cloud types before tracking cloud targets. Large

high level wind error is a major problem, and i t is hoped that i t can be improved

by better classification methods. It is noted that tracking abil i ty is not the only

276

factor to affect high level wind error.

277

Bibliography

;1] AbidijM.A., and Gonzalez,R.C., "Motion detection in radar images", International Confer
ence of Pattern Recognition, Montreal, Canada, 787-790, 1984.

[2] AbidijM.A., and Gonzalez,R.C., "Cloud motion measurement from radar image sequences",
Proc. SPIE Vol.846, Digital image processing and visual communications technologies in
Meteorology, 54-60,. 1987.

3̂] Aggarwal.J.K., and Duda,R-0., "Computer analysis of moving polygonal images", IEEE
Trans, on Computers, Vol.C-24, No.lO, 966-976, 1975.

[4] AggarwaljJ.K., Davis,L.S., and Martin,W.N., "Correspondence processes in dynamic scene
analysis", Proceedings of IEEE, Vol.69, No.5, 562-572, 1981.

[5] Aitchison,J., Habbema,J.D.F., and Kay,J.W., "A critical comparison of two methods of
statistical discrimination", Applied Statistics, 26, 15-25, 1977.

[6] Amadasun.M., and King,R.A., "Low-level segmentation of multispectral images via agglom
erative clustering of uniform neighborhoods", Pattern Recognition, Vol.21, No.3, 261-268,
1988.

[7] AnderbergjM.R., Cluster analysis for applications, Academic Press, Inc. New York, 1973.

[8] AndrewSjH.C, Introduction to mathematical techniques in pattern recognition, John Wiley
and Sons, Inc., New York, 1972.

[9] Anderson, R.K., and Veltishchev, N.F., ed., "The use of satelhte pictures in weather analysis
and forecasting", World Meteorological Organization, Technical Note No.l24, 1973.

[10] Anuta,P.E., "Spatial registration of Multispectral and Multitemporal Digital Imagery Using
Fast Fourier Transform Techniques", IEEE Tran. Geoscience Electronics, Vol.GE-8, No.4,
353-368, 1970.

[11] Arcese,A., Mengert,P.H., and Trombini,E.W., "Image detection through bipolar correla
tion", IEEE Tran. on Information Theory, Vol.IT-16, No.5, 534-541, 1970.

[12] Arkiiig, A., and Chlids, J.D., "Retrieval of cloud parameters from multispectral satellite
images", Journal of Climate and Applied Meteorology, Vol.24, 322-333, 1985.

[13] Arking,A, Lo,R.C., and Rosenfeld,A., "A Fourier approach to cloud motion estimation",
Journal of Applied Meteorology, Vol.17, 735-744, 1978.

14] Ashby,W.R., "Measuring the internal informational exchange in a system", Gybernetica,
Vol.1, 5-22, 1965.

[15] Astrahan, M.M. , "Speech analysis by clustering, or the hyperphoneme method", Stanford
Artificial Intelligence Proj. Men. AIM-124, AD 709067. Stanford Univ., Standford, California,
1970.

[16] Ayres,F., Schaum's outline of theory and problems of plane and spherical trigonometry,
Schaum Publishing Company, New York, 1954.

278

[17] BalljG.H., and Hall,D.J., "A clustering technique for summarizing multivariate data", Be
havioural Science, Vol.12, 1967,153-155.

[18] Ball.G.H., "Data analysis in the social sciences:What about the details?", Proc. of Fall
Joint Comput. Gonf., 27, part 1, 533-559, 1965.

[19] Bader, M. , and Waters, T. , "Satellite and Radar Imagery Interpretation", Preprints for
a Workshop on Satellite and Radar Imagery Interpretation, Meteorological OfBce Gollege,
England, 1987, EUMETSAT.

[20] Barnea,D.I., and Silverman,H.F., "A class of algorithms for fast digital image registration",
IEEE Transactions on Computers, Vol.C-21, 1972, 179-186.

[21] Bauer,K.G., "A comparison of cloud motion winds with coinciding radiosonde winds",
Monthly Weather Review, Vol.104, 922-931, 1976.

[22] Beaulieu,J-M., and Goldberg,M., "Hierarchy in Picture Segmentation: A Stepwise Opti
mization Approach", IEEE TVans. Pattern Analysis and'Machine Intelligence, Vol.11, No.2,
150-163, 1989.

[23] Bernstein,R., "Digital image processing of earth observation sensor data", IBM Journal of
Research and Development, Vol.20, 40-57, 1976.

[24] Bos,A.M., de Waard.J., and Adamson,J., "Real-time rectification of Meteosat images",
European Space Agency Journal 1990, Vol.14, 179-191.

[25] Bowen,R.A., and Saunders,R.W., "The semirtransparency correction as applied opera
tionally to Meteosat infrared data: A remote sensing problem", European Space Agency
Journal 1984, Vol.8, 125-131.

[26] Bowen,R.A., Fusco,L.,Morgan,J.,and Roska.K.O., 1979, "Operational production of cloud
motion vectors(satellite winds) from METEOSAT image data: Use of data from meteorolog
ical satellites", Paper ESA SP 143, European Space Agency, Paris.

[27] Bowen,R.A., "The meteorological product: cloud-top height", European Space Agency
Bulletin, No.30, 16-20, 1982.

[28] BoweUiR.A., and Saunders,R., "The semi-transparency correction as applied operationally
to Meteosat IR data", ESA Journal 8, 125-131.

[29] Bow.S.T., Pattern recognition, Marcel Dekker, Inc., New York, 1984.

[30] Bradford, R., Leese,J., and Novak,C., "An experimental model for the automated detection,
measurement, aiid quality control of low-level cloud motion vectors from geosychronous satel
lite data", Proc. 8th International Symposium on Remote Sensing of Environment, 441-462,
1972.

[31] Bristor.C.L., (ED.), GREEN.R., HUGHES.G., NOVAK.G;, and SCHREITZ,R., "The au
tomatic extraction of wind estimates from VISSR data", NOAA technical memoradum NESS
64, U.S.DEPT. of COMMERCE, WASHINGTON, D.C., 94-110, 1975.

[32] Bruce,J., Thomas,B., and Dubes,R., "A variation on a nonparametric clustering method",
IEEE Transcations on Pattern Analysis and Machine Intelligence, Vol.PAMI-1, No.4,400-408,
1979.

[33] Bryant.J., "A fast classifier for image data", Pattern Recognition, Vol.22, No.l, 45-48,1989.

[34] BryantjJ., "On the clustering of multidimensional pictorial data", Pattern Recognition,
Vol.11, 115-125, 1979.

279

[35] Bryant.J., "AMOEBA clustering revisited", Photogrammetric Engineering and Remote
Sensing, Vol.56, No.l, 41-47, 1990.

[36] Butler.G.A., "Evaluating feature spaces for the two class problem", IEEE Annual Sympo
sium Record, IEEE Systems, Man and Cybernetics, 119-125, 1971.

[37] Butler,G.A., Ritea,H.B., "Estimation of mutual information in two class pattern recogni
tion", IEEE Trans, on Computers, 410-420, April 1974.

[38] Byrne.G.F., Crapper,P.F., and Mayo.K.K., "Monitoring land-cover change by principal
component analysis of multitemporal Landsat data", Remote Sensing of Environment, 10,
175-184, 1980.

[39] Campbell,J.B., Introduction to remote sensing, The Guildford Press, London, 1987.

[40] Cannon,R.L, Dave.J.V., Bezdek,J.C., and Trivedi,M.M., "Segmentation of a thematic map
per image using the fuzzy c-means clustering algorithm", IEEE Trans, on Geoscience and
Remote Sensing, Vol.GE-24, No.3, 400-408, 1986.

[41] Casey, R.G., and Nagy, G. , "An autonomous reading machine", IEEE Trans. Computers,
vol.C-17, 492-503, 1968.

[42] Cayla,F.R., and Tomassini.C, "Determination of the temperature of semi-transparent cir
rus", ESA Special Publication, SP-143, Oct., 1979.

[43] Chen.Z., and Fu.K.S., "On the connectivity of clusters", Information Science, 8, 283-299,
1975.

[44] Chidananda Gowda,K., and Krishna,G., "Agglomerative clustering using the concept of
mutual nearest neighbourhood", Pattern Recognition, Vol.10, 105-112, 1978.

[45] ChoUjM.D., Childs,J., and Dorian,P., "Cloud cover estimation using bispectral satellite
measurements", Journal of Climate and Applied Meteorology, Vol.25, 1281-1292, 1986.

[46] Coakley,J.A., and Baldwin,D.G., "Towards the objective analysis of clouds from satellite
imagery data", Journal of Climate and Applied Meteorology, Vol.23, 1065-1099, 1984.

[47] Coakley, J.A., and Bretherton, F.P., "Cloud Cover From High-Resolution Scanner Data:
Detecting and Allowing for Partially Filled Fields of View", Journal of Geophysical Research,
Vol.87, No.C7, 4917-4932, 1982.

[48] Coggins,J.M., and Jain,A.K., "A Spatial Filtering Approach to Texture Analysis", Pattern
Recognition Letters, 3, 195-203, 1985.

[49] Coleman,G.B., and Andrews,H.C., "Image segmentation by clustering", Proc. of The IEEE,
Vol.67, No.5, 773-785, 1979.

[50] Conrow,E.H., and Ratkovic,J.A., "Almost everything one needs to know about image
matching systems", Image Processing for Missile Guidance, SPIE Proc. 238, 426-453, 1980.

[51] Cover.T.M., and Hart,P.E., "Nearest neighbour pattern classification", IEEE Trans. Info.
Theory, IT-13, 21-27, 1967.

[52] Cracknell, A.P., Remote Sensing in Meteorology, Oceanography and Hydrology, iEllis Hor-
wood Limited, Chichester, 1981.

[53] DaskaIakis,T.N., Heaton,A.G., and Daskalakis.C.N., "A graph-theoretic algorithm for un
supervised image segmentaion", Signal Processing IV: Theories and Applications, North Hol
land, 1621-1624, 1988a.

280

[54] Daskalakis.T.N., Heaton.A.G., and Daskalakis.C.N., "Minimax variance entropy-based im
age segrhentation", l E R E Fifth Int. Conf. on Digital Processing of Signals in Communications,
Loughborough University of Technology, 20th-30rd Sep., 1988b, 291-297.

[55] Decotiis,A.G., and Conlan,E., "Cloud information in the three spatial dimensions using IR
thermal imagery and vertical temperature profile data", Proc. 7th Symposium on Remote
Sensing of the Environment. ANN ARBOR/MI, 595-606, 1971.

[56] DesboiSjM., and Seze,G., "Use of space and time sampUng to produce representative satel
lite cloud classifications", Annales de Geophysique, 1984, 2, 5, 599-605.

[57] Desbois,M., Seze,G., and Sewjwach,G., "Automatic classification of clouds on METEOSAT
imagery: Application to high-level clouds", Journal of Applied Meteorology, 21, 401-412,
1982.

[58] Devijver,P.A., and Kittler,J., Pattern Recognition, A statistical approach, Prentic-Hall,
International, Inc., Englewood Cliffs., N.J., 1982.

[59]. Diday.E., "Optimization in non-hierarchical clustering", Paittern Recognition, Vol.6,17-33,
1974.

[60] Diday.E., Simon,J.C., "Clustering analysis". Digital Pattern Recognition, K.S.Fu (ed.),
Springer-Verlag, 47-94, 1976.

[61] Drake.K.W., and Gerhardt,L.A., "A class of pdf modehng algorithms", IEEE Trans, on
Systems, Man, and Cybernetics, Vol.SMC-2, No.3, 402-407, 1972.

[62] Dubes,R., and Jain,A.K., "Validity studies in clustering methodologies". Pattern Recogni
tion, Vol.11, 235-254, 1979.

[63] DubeSjR., and Jain,A.K., "Clustering techniques: The user's dilemma", Pattern Recogni
tion, Vol.8, 247-260, 1976.

[64] Duda,R.O., and Hart,P.E., Pattern classification and scene analysis, John Wiley and Sons,
New York, 1973.

[65] Ebert, E . , "A pattern recognition technique foir distinguishing surface and cloud types in
the polar regions". Journal of Climate and Applied Meteorology, Vol.26, 1412-1427, 1987.

[66] Ebert, E . , "Analysis of polar clouds from satellite imagery using pattern recognition and a
statistical cloud analysis scheme", Journal of Applied Meteorology, Vol.28, 382-399, 1989.

[67] Eigen, D.J., Fronxm, F.R., and Northouse, R.A., "Cluster analysis based on dimensional
information with applications to feature selection and classification", IEEE Trans, on Systeins,
Man, and Cybernetics, Vol.SMC-4, No.3, 284-294, 1974.

[68] Eigenwilling,N., and Fischer,H., "Determination of midtropospheric wind vectors by track
ing pure water vapour structures in METEOSAT water vapour image sequences", Bull. Amer.
Meteor. Soc, Vol.63, No.l, 44-58, 1982.

[69] Endlich,R.M., Wolf,D.E., Hall,D.J., and Brain.A.E., "Use of a pattern recognition technique
for determining cloud motions from sequences of satellite photographs", Journal of Applied
Meteorology, Vol.10, 105-117,1971.

[70] EndUch,R.M., and Wolf,D.E., "Automatic cloud tracking applied to GOES and M E
TEOSAT observations", Journal of Applied Meteorology, Vol.20, 309-319, 1981.

[71] Everitt, B.S., and Hand, D.J., Finite Mixture Distributions, Chapman and Hall, London,
1981.

281

[72] Farag,R.F.H., "An information theoretic approach to image partitioning", IEEE Trans, on
Systems, Man and Cybernetics, Vol.SMC-8, No.l l , 829-833, 1978.

[73] Fischer.H., EigenwilUng.N., and Muller,H., "Information content of METEOSAT and'Nim-
bus/THRR water vapour channel data: Altitude association of observed phenomena", Journal
of Applied Meteorology, Vol.20, 1344-1352, 1981.

[74] Fix,E., and Hodges,J.L., "Discriminatory Analysis; Non-parametric Discrinaination: Con
sistency Properties", USAF School of Aviation Medicine Project Number 21-49-004, Rept.
No. 4, Randolph Field, Texas, 1951.

[75] Forgy, E.W., "Cluster analysis of multivariate data:efficiency verus interpretability of clas
sifications". Biometrics 21, No.3, 768, 1965, (Abstract).

[76] Freeman,J., "Experiments in discrimination and classification", Pattern Recognition, Vol.1,
207-218,1969.

[77] Friedman, H.P., and Rubin, J . , "Oil some invariant criteria f̂or grouping data", Amer. Stat.
Assoc. J . , vol.62, 1159-1178, 1967.

[78] Fromm,F.R., and Northouse,R.A., "CLASS: A nonparametric clustering algorithm", Pat
tern Recognition, Vol.8, 107-114, 1976.

[79] Fu,K.S., and Mui,J.K., "A Survey on Image Segmentation", Pattern Recognition, Vol.13,
3-16, 1981.

[80] Fu,K.S., "Pattern recognition in remote sensing of the earth's resources", IEEE 'ftans. on
Geoscience Electronics, Vol.GE-14, No.l, 10-18, 1976.

[81] Fu,K.S., and Rosenfeld,A., "Pattern recognition and image processing", IEEE Trans, on
Computers, Vol.C-25, No.l2, 1336-1346, 1976.

[82] Fukunaga.K., and Koontz,W.L.G., "A Criterion and an Algorithm for Grouping Data",
IEEE Trans. Computers, Vol.C-19, 917-923, 1970.

[83] Fujita,T.T., and Pearl,E.W., "Satellite-tracked cumulus velocities". Journal of Applied
Meteorology, Vol.14, 407-413, 1975.

[84] Garand, L. , "Automated recognition of oceanic cloud patterns. Part I: Methodology and
Application to cloud climatology". Journal of Climate, Vol.1, 20-39, 1988.

[85] Garrett,G.S. Reagh,E.L., and Hibbs,E.B.Jr., "Detection threshold estimation for digital
area correlaton", IEEE Tran. on Systems, Man and Cybernetics, 65-70, 1976.

[86] GerstingjJ.L., Mathematical structures for computer science, 2nd ed., W.H.Freeman and
Co., New York, 1987.

[87] Ghaffary,B., "Review of image matching techniques", SPIE Vol.596, Architectures and
Algorithms for Digital Image Processing, 164-172, 1986.

[88] Gitman,!., "A parameter-free clustering model", Pattern Recognition, Vol.4, 307-315,1972.

[89] Goldberg,M., and Shlien,S., "A clustering scheme for multispectral images", IEEE IVans.
oh Systems, Man and Cybernetics, Vol.SMC-8, No.2, 86-92, 1978.

[90] Gonzalez,R.C., and Wintz,P., Digital image processing, Addison-Wesley, Reading Mas
sachusetts, 1977.

[91] Goodma,n,A.H., and Henderson-Sellers,A., "Cloud detection and analysis: A review of
recent progress", Atmospheric Research, 21, 203-228,1988.

282

[92] GooljL.V., Dewaele,P., and Oosterlinck.A., "Survey: Texture analysis anno 1983, Computer
vision, Graphics, and Image processing", Vol.29, 336-357, 1984.

[93] Goshtasby,A., Stockman,G.C., and Page;C;V., "A region-based approach to digital image
registration with subpixel accuracy", IEEE Transactions on Geoscience and Remote Sensing,
Vol.GE-24, No.3, 390-399, 1986.

[94] Gowda,K.C, "A feature reduction and unsupervised classification algorithm for multispec
tral data". Pattern Recognition, Vol.17, No.6, 667-676, 1984.

[95] Gowda, K.C. , and Krishna, G. , "Agglomerative clustering using the concept of mutual
nearest neighbourhood", Pattern Recognition, vol.10, 105-112, 1978.

[96] Green,R., Hughes,G., Novak,G., ahd Schreitz,R., "The automatic extraction of wind es
timates from VISSR data", NOAA technical memoradum NESS 64, U.S.DEPT. of COM
M E R C E , WASHINGTON, D.C. BRISTOR, C.L. , (ED), 94-110, 1975.

[97] HEiass,U.-L., and Brubaker,T.A., "Estimation of cloud motion from satellite pictures". In
ternational conference on Acoustics, Speech and Signal processing. 422-425, April, 1980.

[98] Hall.D.J., "An adaptive process for tracking clouds from satellite images". Image Science
Mathematics, Symposium, California, 1976, in Western Periodicals Corp. North Holland,
118-122, 1977.

[99] Hall,D.J., Endhch.R.M., Wolf,D.E., and Brain.A.E., "Objective methods for registering
landmarks and determining cloud motions from satellite data", IEEE Trans, on Computers,
768-776, July 1972.

[100] Hall,E.L., Davies,D.L., and Casey,M.E., "The selection of critical subsets for signal, image,
and scene matching", IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol.PAMI-
2, No.4, 313-322, 1980.

[101] Halpern,D., "Surface wind measurements and lowrlevel cloud motion vectors near the
intertropical convergence zone in the central pacific ocean from November 1977 to March
1978", Monthly Weather Review, Vol.107, 1525-1534, 1979.

[102] Halpern,D., "Comparison of low-level cloud motion vectors and moored buoy winds".
Journal of Applied Meteorology, Vol.17, 1866-1871, 1978.

[103] Hand, D.J., Discrmination and Classification, John Wiley and Sons, Chichester, 1981.

[104] Hartigan, J.A., Clustering Algorithms, John Wiley and Sons, New York, 1975.

[105] Haralick,R.M., "Statistical and structuralapproaches to texture", Proc. of the IEEE,
Vol.67, No.5, 786-803, 1979.

[106] Haralick,R.M., Shanmugam,K., and Dinstein,!., "Textural features for image classifica
tion", IEEE Trans, on Systems, Man, and Cybernetics, Vol.SMC-3, Np.6, 610-621, 1973.

[107] Haralick,R.M., and Shapiro,L.G., "Image Segmentation Techniques", Computer Vision,
Graphics, and Image Processing, 29, 100-132, 1985.

[108] Haralick,R.M., and Kelly,G.L., "Pattern recognition with measurement space and spatial
clustering for multiple images", Proc. IEEE Vol.57, No.4, 654-665, 1969.

[109] Haralick, R.M. , and Dinstein, I., "An iterative clustering procedure", IEEE Trans, on
Systems, Man, and Cybernetics, Vol.SMC-1, No.3, 275-289, 1971.

[110] HaralickjR.M., and Dinstein, !., "A spatial clustering procedure for multi-image data",
IEEE Trans, on Circuits and Systems, Vol.CAS-22, No.5, 440-450, 1975.

283

[Ill] Hasselblad, v., "Estimation of parameters for a mixture of normal distributions", Techno-
metrics, 8, 431-444, 1966,.

[112] Hasler,A.F., Shenk,W.E., and Skillman,W.C., "Wind estiinates from cloud motions —
Phase I of an in situ aircraft verification experiment", J . AppL Meteor., 15, 10-15, 1976.

[113] Hasler,A;F., Shenk,W.E., and Skillman,W.C., "Wind estimates from cloud motions: pre
liminary results of Phases I, II, and III of an in situ aircraft verification experiment", J . Appl.
Meteor., 16, 812-815, 1977.

[114] Hasler,A.F., Skillman,W.C., and Shenk.W.E., "In situ aircraft verification of the quality
of satellite cloud winds over oceanic regions", Vol.18, 1481-1489, 1979.

[115] Helmuth Spath, Cluster Analysis Algorithms for data reduction and classification of ob
jects, Ellis Horwood Ltd., Chichester, 1980.

[116] Henderson-Sellers, A., Satellite Sensing of a Cloudy Atmosphere: Observing the third
planet, Taylor and Francis, London and Philadelphia, 1984.

[117] Hoffman,J., "Cloud motion wind retrieval in multilayered areas". Submitted to
J.Geophysics Research. 1990.

[118] Hubert,L.F., "Wind derivation from geostationary satellites", in Quantitative Meteorolog
ical Data from Satellites, World Meteorological Organization Technical Note No.66, edited
by Winston,J.S., 1979, 33-59.

[119] Hubert,L.F., and Whitney.L.F.Jr., "Wind estimation from geostationary satellite pic
tures", Monthly Weather Review, 99, 665-672, 1971.

[120] Hubert.L.J., "Some applications of graph theory to clustering", Psychometrika, Vol.39,
No.3, 283-309, 1974.

[121] Hughes,Gi, Novak,C., and Schreitz, R., "Automatic techniques for the detection and dis
placement measurement of selected cloud imagery observed in geostationary satellite data",
Proc. 8th Annual Automatic Imagery Pattern Recognition Symposium, Graithersburg, MD,
81-90, 1978.

[122] Ichida,K., and Kiyono,T., "Estimation of a probability density function of very many
variables", IEEE Trans, on Systems, Man and Cybernetics, 463-466, July, 1975.

[123] Ince,F., "The application of the coalescence clustering algorithm to remotely sensed mul
tispectral data". Pattern Recognition, Vol.14, No.l, 121-130, 1981.

[124] Izawa,T., and Fujita,T., "Relationship between observed winds and cloud velocities deter
mined from pictures obtained by the ESSA III, ESSA V and ATS I satellites", SPACE RE
SEARCH IX - NORTH HOLLAND PUBLISHING C G M R , A M S T E R D A M , 571-579, 1969.

[125] Jain,A.K., Fundamentals of digital image processing, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1989.

[126] Jain,A.K., and Dubes,R.C., Algorithms for clustering data, Prentice-Hall, Englewood
Cliff's, N.J., 1988.

[127] Jain,J.R., and Jain,A.K., "Displacement measurement and its application in interframe
image coding", IEEE Transactions on Communications, Vol.COM-29, No.l2, 1981, 1799-
1808.

[128] Jaih,A.K., and Moreau, J.V., "Bootstrap technique in cluster analysis". Pattern Recogni
tion, Vol.20, No.5, 547-568, 1987.

284

[129] Jain,A.K., Smith.S.P., and Backer.E., "Segmentation of Muscle Cell Pictures: A Prelim
inary Study", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.PAMI-2, No.3,
232-242, 1980.

[130] Jarvis,R.A., "Shared near neighbour meiximal spanning trees for cluster analysis", Proc.
4th Int. Joint Conf. on Pattern Recognition, Kyoto University, Kyoto, 308-313, 1978.

[131] Jarvis,R.A., and Patrick,E.A., "Clustering using a similarity ineasure based on shared
near neighbors", lEEJE Trans, on Computers, Vol.C-22, No.l l , 1025-1034, 1973.

[132] Jayroe, R.R.Jr., "Unsupervised spatial clustering with spectral discrimination", NASA
Technical Note, NASA T N D-7312, NASA, Washington.D.C, May, 1973.

[133] Jenson,S.K., Loveland,T.R., and Bryant,J., "Evaluation of amoeba: a spectral-spatial
classification method". Journal of Applied Photographic Engineering, 159-162, Vol.8, 1982.

[134] Jensen,J.R., Introductory digital image processing, Preritice-Hall, Inc., Englewood Cliffs,
N.J., 1986.

[135] Johnston,B., Bailey,T., and Dubes,R., "A Variation on a Nonparametric Clustering
Method", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.PAMI-1, No.4, OC
T O B E R 1979, 400-408.

[136] Jones,D.S., Elementary information theory. Clarendon press, Oxford, 1979.

[137] Karlsson,K., "Development of an operational cloud classification model", Int.J.Remote
Sensing, Vol.10, No.4, 687-693, 1989.

[138] Kashef,B.G., and Sawenuk,A.A., "A survey of new techniques for image registration and
mapping". Applications of Digital Image Processing VI. Proc.SPIE (SAN DIEGO, CA), 222-
239, 1982.

[139] Kauth,R.J., Pentland,A.P., and Thomas,G.S., "BLOB: An Unsupervised Clustering Ap
proach to Spatial Preprocessing of MSS Imagery", l l th Symp. on Remote Sensing of Envi
ronment, Vol.2 1309-1317, 1977.

[140]. Kettig.R.L., and Landgrebe,D.A., "Classification of multispectral image data by extrac
tion and classification of homogeneous objects", IEEE Trans, on Geoscience Electronics,
Vol.GE-14, No.l, 19-26, 1976.

[141] Key,J.R., Maslanik,J.A., and Barry.R.G., "Gloud classification from satellite data using
a fuzzy sets algorithm: A polar example", International Journal of Remote Sensing, Vol.10,
No.l2, 1823-1842, 1989.

[142] Kittler,J., "A locally sensitive method for cluster analysis", Pattern Recognition, Vol.8,
23-33, 1976.

[143] Kittler,J., and Illingworth,J., "Minimum error thresholding", Pattern Recognition, Vol.19,
No.l, 41-47, 1986.

[144] Kittler,J., and Pairman.D., "Contextual pattern recognition applied to cloud detection
and identification", IEEE Trans, on Geoscience and Remote Sensing, Vol.GE-23, No.6, 855-
863, 1985a.

[145] Kittler,J., and Pairman,D., "Segmentation of multispectral imagery using iterative clus
tering", Proc. of the 4th Scandinavian conference on image analysis, T R O N D H E I N , VOI . I ,

39-49,1985b.

[146] Kittler,J., and Pairman,D., "Optimality of reassignment rulies in dynamic clustering".
Pattern Recognition, Vol.21, No.2, 169-174, 1988.

285

[147] Koontz.W.L.G;, and Fukunaga.K., "A nonparametric valley-seeking technique for cluster
analysis", IEEE Trans, on Computers, VoI.C-21, No.2,171-178, 1972.

[148] Koontz,W;L.G., Narendra.P.M., and Fukunaga,K., "A branch and bound clustering algo
rithm", IEEE Trans, on Computers, Vol.C-24, No.9, 908-915, 1975.

[149] Koontz,W.L.G., Narendra,P.M., and Fukunaga,K., "A graph-theoretic approach to non
parametric cluster analysis", IEEE Transaction on Computers, Vol.C-25, No.9, 936-944,1976.

[150] Kruskal, J.B.,Jr., "On the shortest spanning tree of a graph", Proc. of the Amer. Math.
Soc, 7, 48-49, 1956.

[151] Kuglin.C.D., and Eppler.W.G., "Map-matching techniques for use with multispec-
tral/multitemporal data. Image processing for missile guidance", SPIE Proc.238, 146-155,
1980.

[152] Kuglin,C.D., Blumenthal,A.F., and Pearson,J.J., "Map-matching techniques for terminal
guidance using Fourier phase information", SPIE Vol.186, Digital Processing of Aerial Images,
21-29, 1979.

[153] Landgrebe, D.A., "The Development of a Spectral-Spatial Classifier for Earth Observa-
tional Data", Pattern Recognition, Vol.12, 165-175, 1980.

[154] Lee,D.H., "Level assignment in the assimilation of cloud motion vectors". Monthly j / ^ ^
Weather Review, Vol.107, 1055-1074, 1979.

[155] Leese,J.A., and Novak,C.S., "An automated technique for obtaining cloud motion ftom^^^^^"^^^
geosynchronous satellite data using cross-correlation", Journal of Applied Meteorology,
Vol.10, 119-132, Feb., 1971.

[156] Leese,J.A., Novak.C.S., and Taylor,V.R., "The determination of cloiid pattern motions
form geosynchronous satellite image data". Pattern Recognition, Vol.2,279-292, 1970.

[157] Leese,J.A., N6vak,C.S., and Clark,B.B., "An automated technique for obtaining cloud
motion from geosynchronous satellite data using cross correlation", Journal of Applied Me
teorology, Vol.10, 118-132, 1971.

[158] Lindeman,R.B[., Merenda, P.F., and Gold,R.Z., Introduction to Bivariate and Multivariate
Analysis, Scott, Foresman and Company, 1980.

[159] Lo,R., and Parikh,J.A., "Application of Fourier transforms to cloud movement estima
tion from satellite photographs", Technical Report 242, Computer Science Center, Univ. of
Maryland, 1973.

[160] Lumelsky, V.L. , "A combined algorithrii for weighting the variables and clustering in the
clustering problem", Pattern Recognition, vol.15, No.2, 53-60, 1982.

[161] Lunnon,R.W., and Lowe,D.A., "Spatial scale dependency of errors in satellite cloud track
winds", COSPAR Id No MA 1.1.7, 26th June 1990.

[162] MacQueen, J.B., "Some methods for classification and analysis of multivariate observa
tions", Proc. of 5th Berkeley Symposium, 1, 281-297, 1967.

[163] MacRae, D.J., "MIKCArA FORTRAN IV iterative k-means cluster analysis program",
Behavioral Sci., 16, No.4, 423-424, 1971.

[164] Maddox,R.A., and Haar,H.V., "Covariance analyses of satellite-derived mesoscale wind
fields". Journal of Applied Meteorology, Vol.18, 1327-1334, 1979.

286

[165] MandeljI.D;, and Chernyi.L.B., "Experimental comparison of cluster analysis of al
gorithms", Automation and Remote Control(English Translation of Automatika i Tele-
mekhanika) Journal of the Institution of Electronics and Telecommunication Engineers,
Voi.34, Part 3, 258-265, 1988.

[166] Mandel,I.D., and Mirkin,B.G., "Cluster analysis and related problems (Brief review of
basic trends)", Soviet Journal of Automation and Information Sciences :(English Translation
of Avtomatyoka), Vol.20, Part 3, 74̂ 84, 1987.

[167] Mausel,P.W., Kramber,W.J., and Lee.J.K., "Optimum band selection for supervised clas
sification of multispectral data", Photogrammetric Engineering and Remote Sensing, Vol.56,
No.l, 55-60, 1990.

[168] Menzel.W.P., Smith,W.L., and Stewart,T.R., "Improved cloud motion wind vector and
Altitude Assignment using VAS", Journal of Climate and Applied Meteorology, Vol.22, 377-
384, 1983.

[169] METEOSAT SYSTEM GUIDE, Vol.5 - Meteorological Products, 1980, European Space
Agency, ESOC, Darmstadt, W.Germany.

[170] Michael,M., and Lin ,W.C., "Experimental study of information measure and inter-intra
class distance ratios on feature selection and orderings", IEEE Trans, on Systems, Man, and
Cybernetics, Vol.SMC-3, No.2, 172-181, 1973.

[171] Milgram.M., Dubuisson,B., and Vachon,B., "A computationally efficient clustering algo
rithm", IEEE Trans, on Systems, Man, and Cybernetics, 99-104, Feb., 1977.

[172] Mittchum,G.T., "A bias in the satellite observed low-level cloud motion winds over the
central tropical pacific". Journal of Geophysical Research, Vol.29, No.C4, 3861-3865, 1987.

[173] MitchelljO.R., and Carlton,S.G., "Image Segmentation Using a Local Extrema Texture
Measure", Pattern Recognition, Vol.10, 205-210, 1978.

[174] Mizoguchi,R., and Shimura,M., "A nonparametric algorithm for detecting clusters us
ing hierarchical structure", IEEE Trans, on Pattern Analysis and Machine Intelligence,
Vol.PAMI-2, No.4, 292-300, 1980.

[175] Morris,O.J., Lee,M., and Constantinides,A.G., "Graph theory for image analysis: an ap
proach based on the shortest spanning tree", l E E Proc., Vol.133, Pt. F, No.2, 146-152, 1986.

[176] Mucciardi,A.N., and Gose,E.E., "An algorithm for automatic clustering in N-dimensional
spaces using hyperellipsoidal cells", Proc. IEEE Systems Science and Cybernetics Conf. 201-
209, 1970.

[177] Nack,M.L., "Rectification and registration of digital images and the effect of cloud detec
tion", IEEE, Machine Processing of Remotely Sensed Data Symposium, 12-23, 1977.

[178] Nagy, G. , and Tolaba, J . , "Nonsupervised crop classification through airborne multispec
tral observations", IBM J . RES. DEVELOP., 16, 2, 138-153; 1972.

[179] Narendra,P.M., and Goldberg,M., "A non-parametric clustering scheme for LANDSAT",
Pattern Recognition, Vol.9, 207-215, 1977.

[180] Narendra,P.M., and Goldberg,M., "Image segmentation with directed trees", IEEE Trans,
on Pattern Analysis and Machine Intelligence, Vol.PAMI-2, No.2, 185-191, 1980.

[181] Ney,H., "Dynamic programming as a technique for pattern recognition", Proc. 6th Int.
Conf. on Pattern Recognition, Munich, IEEE New York, CH 1801-0, 1119-1125, 1982.

[182] Novak,C., and Young.M., "The operational processing of wind estimates from cloud mo
tions: past, present and future", Proc. of l l th International Symposium on Remote Sensing
of the Environment, ANN ARBOR, MICHIGAN, 1589-1598, 1978.

287

[183] Pairman, D., "Image Processing in Geophysics", Jesus college, Oxford, D.JPhil Thesis,
Trinity Term, 1986.

[184] Pairman,D., and Kittler.J., "Clustering algorithms for use with images-of clouds", Inter
national Journal of Remote Sensing, Vol.7, No.7, 855-866, 1986.

[185] Parikh,J.A., "An approach to selection of wind tracers from tropical maritime geosyn
chronous satellite cloud imagery". Computer Science Tec.Rep.Ser., Univ. of Maryland, TR-
450 F-44620-72C-0062, March, 1976.

[186] Parikh,J.A., "Automatic wind velocity estimation froin multispectral geosynchronous
satellite data: a proposal", Computer Science Tec.Rep.Ser., Univ. of Maryland, TR-328 F-
44620-72C-0062, Sept, 1974.

[187] Parikh,J.A., "Gloud classiiication from visible and infrared SMS-1 data,", Remote Sens, of
Environ., No.7, 85-92, 1978.

[188] Parikh,J.A., "A comparative study of cloud classification techniques". Remote Sensing of
Environment, 6, 67-81, 1977.

[189] ParikhjJ.A., and Rosenfeld,A., "Automated segmentation and classification of infrared
meteorological satellite data", IEEE Transaction System, Man and Cybernetic, SMC-8, 736-
743, 1978.

[190] Parzen,E., "On estimation of a probability density function and mode", Ann.Math.Stat.,
Vol.33, 1065-1076, 1962.

[191] Pelleg,S., N£ior,J., Hartley.R., and Avnir,D., "Multiple resolution texture analysis and
classification", IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol.PAMi-6, No.4,
518-523, 1984.

[192] Peslen,C.A., Koch,S.E., and Uccellini,L.W., "The effect of the arbitrary level assignment of
satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment".
Journal of Climate and Applied Meteorology, Vol.25, 615-632, 1986.

[193] Phulpin,T, Derrien.M., and Brard,A., "A two-dimensional histogram procedure to analyze
cloud cover form NOAA satellite high-resolution imagery", Journal of Climate and Applied
Meteorology, Vol.22, 1333-1345, 1983.

[194] Platt,C.M.R., "On the bispectral method for cloud paraineter determination from satellite
VISSR data: Separating broken cloud and semitransparent cloud", Journal of Climate and
Applied Meteorology, Vol.22, 429-439, 1983.

[195] Pratt,W.K., "Correlation techniques of image registration", IEEE Trans, on Aerospace
and Electronic systems, Vol.AES-10, No.3, 353-358, 1974.

[196] Prim, R.C., "Shortest connection networks and some generalizations". Bell System Tech
nical J. 36, 1389-1401, 1957.

[197] Ray,K.S., and Majumder,D.D., "An intelligent search for clustering", J. Inst Electronics
and Telecom. Engrs., Vol.34, No.3, 1988.

[198] Rayn.H.F., "The information content measure as a performance criterion for feature se
lection", IEEE Proc. 7th Symp. Adaptive Processes, 2-c-l - 2-c-ll, 1968.

[199] Reynolds,D.W., and Vonder Haar,T.H., "A bispectral method for cloud parameter deter
mination". Monthly Weather Review, Vol.105, 446-457, 1977.

[200] Robertson, T.V. , "Extraction and classification of objects in multispectral images", Conf.
on Machine Processing of Remotely Sensed Data, Purdue Uni., West Lafayette, section 38,
27-34, 1973.

288

[201] Rosenfeld,A., and Vanderbrug,G.J., "Coarse-fine template matching", IEEE Tran. on Sys-
tems,Man and Cybernetics, 104-107, Feb., 1977.

[202] Rosenfeld,A., "Image pattern recognition". Proceedings of The IEEE, Vol.69, No.5, 596-
605, 1981.

[203] Rosenfeld, A., and Kak, A.C. , Digital Picture Processing, Vol.l, 2, 2nd ed.. Academic
Press, INC., New York, 1982.

[204] Rossow.W.B., "Measuring cloud properties from space: A Review, Journal of Climate",
Vol.2, 201-213, 1989.

[205] Rossow.W.B., Mosher,F., Kinsella,E., Arking,A., Desbois.M., Harrison.E., Minnis,P.,
Ruprecht.E.. Seze.G.. Simmer,C., and Smith,E., "ISCCP cloiid algorithm intercomparison",
Journal of Climate and Applied Meteorology, Vol.24. No.9. 877-903. 1985.

[206] Sadler.J.C, and Kilonsky.B.J.. "Deriving siirface winds from satellite observations of low-
level cloud motions". Journal of-Climate and Applied Meteorology. Vol.24, 758-769, 1985.

[207] Saunders,R.W., and Kriebel.K.T.. "An improved method for detecting clear sky and
cloudy radiances from AVHRR data". Int. J . Remote Sensing, Vol.9, No.l, 123-150, 1988.

[208] Schachter,B.J., Davis.L.S.. and Rosenfeld.A., "Some Experiments in Image Segmentation
by Clustering of Local Feature Values". Pattern Recognition. VoLl l , 19-28, 1979.

[209] Schmetz,J., "An atmospheric-correction scheme for operational application to Meteosat
infrared measurements", ESA Journal, Vol.10, 145-159, 1986.

[210] Schmetz,J., and Nuret,M.. "Automatic tracking of high-level clouds in Meteosat infrared
images with a radiance windowing technique". European Space Agency Journal, 1987, Vol.11,
275-286.

[211] Schmetz,J.. and Holmlund.K., "Operational cloud motion winds from Meteosat and the
use of cirrus clouds as tracers", COSPAR 1990.

[212] Scott,A.J., and Symons,M.J., "Clustering Methods Based on Likelihood Ratio Criteria",
Biometrics 27, 387-397, 1971.

[213] Schwartzmann,D.H., and Vidal,J.J., "An algorithm for determining the topological di
mensionality of point clusters", IEEE Trans, on Computers. Vol.C-24, No.l2, 1175-1182,
1975.

[214] Sebestyen,G. and Edie, J . . "An algorithm for non-parametric pattern recognition", IEEE
Transactions on Electronic Computers, EC-15. 908-915, 1966.

[215] Seddon, A . M . , "The application of scene analysis techniques to automatic classification
of atmospheric data from multispectral satellite imagery". PhD thesis. University College
London, 1983.

[216] Seddon,A.M., and Hunt,G.E.. "Segmentation of clouds using cluster analysis". Interna
tional Journal of Remote Sensing, Vol.6. No.5. 717-731, 1985.

[217] Seze. G.. and Desbois, M. , "Cloud cover analysis from satellite imagery using spatial and
temporal characteristics of the data", Journal of Climate, Vol.26, 287-303, 1987.

[218] Shlieri,S., and Smith,A., "A rapid method to generate spectral theme classification of
LANDSAT imagery", Remote Sensing of Environment, 4,67-77, 1975.

[219] Shefiield,C., "Selecting band combinations from multispectral data", Photbgrammetric
Engineering and Remote Sensing, Vol.51, NO.6. 681-687, 1985.

289

[220] ShenkjW.E., and Kreins,E.R., "A comparison between observed winds and cloud motions
derived from satellite infrared measurements", Journal of Applied Meteorology, Vol.9, 703-
710, 1970.

[221] Shenk.W.E., and Curren,R.J., "A multi-spectral method for estimating cirrus cloud top
heights". Journal of Applied Meteorology. Vol.12, 1213-1216, 1973.

[222] Shen,H.C., and Wong,A.K.C., "Generalized texture representation and metric", Computer
vision, Graphics, and Image Processing, Vol.23, 187-206, 1983.

[223] Sibson,R., "Order invariance methods for data analysis (with discussion)". Journal Royal
Stat. Soc. B, 34. 311-349. 1972.

[224] Simon.J.C, "Clustering and digital image analysis", Inst. Phys. Conf. Ser. No.44, 20-39.

[225] Smith,E.A.. and Phillips.D.R.. "Automated cloud tracking using precisely aligned digital
ATS pictures", IEEE Trans, on Computers, Vol.C-21, No.7, 715-729, 1972.

[226] Sokal, R.R., and Michener, C D . . "The statistical method for evaluating systematic rela
tionships", Univ. Kansas Sc. Bull., 38. 1409-1438, 1958.

[227] Spann,M., and Wilson,R., "A Quad-tree Approach to Image Segmentation which Com
bines Statistical and Spatial Information", Pattern Recognition, Vol.18, Nos 3/4, 257-269,
1985.

[228] Specht,D.F., "Generation of polynomial discriminant functions for pattern recognition",
IEEE Trans, on Electronic Computers, Vol.EC-16, No.3, 308-319, 1967.

[229] Stockman,G., Kopstein,S., and Benett,S., "Matching images to models for registration and
object detection vis clustering". IEEE Tran. on Pattern Analysis and Machine Intelligence.
Vol.PAMI-4, No.3, 229-241, 1982.

[230] Stromberg,W;D., and Fa.rr,T.G., "A Fourier-based textural feature extraction procedure",
IEEE Trans, on Geoscience and Remote Sensing, Vol.GE-24, No.5, 722-731, 1986.

[231] Sun,C., and Wee.W.. "Neighboring gray level dependence matrix for texture classifica
tion". Computer vision.Graphics.. and Image processing, Vol.23, 341-352, 1983.

[232] Suomi,V.E., ed.. Wind determination from geostationary satellites in Meteorological ob
servations from space. Their contribution to the first GARP global experiment. Philadelphia
Symposium Proc. 188-250, 1976.

[233] Suomi,V.E., Fox.R., Limaye,S.S.. and Smith.W.L., "McIDAS III: A modern interactive
data access and analysis system", Journal of Cliiriate and Applied Meteorology, Vol.22, 767-
778, 1983.

[234] Svedlow,M, McGillem.C.D.. and Anuta.P.E.. "Image registration:Similarity measure and
preprocessing method comparisons". IEEE Trans, on Aerospace and Electronic systems,
Vol.AES-14. No.l, 141-149. 1978.

[235] Swain,P.H., Vardeman,S.B., and Tilton.J.C., "Contextual classification of multispectral
image data". Pattern Recognition, Vol.13, No.6, 429-441. 1981.

[236] Symons.M.J., "Clustering criteria and multivariate normal mixtures". Bioihetrics. 37, 35-
43, 1981.

[237] Szejwach,G., "Determination of semi-transparent cirrus cloud temperature from infrared
radiances: application to METEOSAT". Journal of Applied Meteorology. Vol.21. 384-393,
1982.

290

[238] TanimotOjS.L., "Regular hierarchical image and processing structures in machine vision",
in Computer Vision System. New York: Acaderriic, 1978, pp.165-174.

[239] Taninioto, S., and Klihger,A., Structured Computer Vision. New York: Academic, 1980.

[240] Torn.A., "Cluster analysis using seed points", Proc. 3]rd Int. Joint Conf. on Pattern Recog
nition, Colorado, CA, 394-398, 1976.

[241] Torn,A., "Cluster analysis using seed points and density determined hyperspheres as an
aid to global optimization", IEEE Trans, on Systems, Man, and Cybernetics, Vol.SMC-7,
No.8, 610-616, 1977.

[242] Townshend,J.R.G., and Justice,C.O., "Unsupervised classification of MSS Landsat data
for mapping spatially complex vegetation". International Journal of Remote Sensing, Vol.l,
No.2, 105-120, 1980.

[243] Tou.J.T., and Gonzalez,R.C., Pattern recognition principles, Addison-Wesley, Reading,
Massachusetts, 1974.

[244] Tsonis.A.A., "On the separability of various classes form the GOES satellite data", Journal
of Climate and Applied Meteorology, Vol.23, No.lO, 1393-1410, 1984.

[245] Turner, J . , and Warren,D.E., "Cloud track winds in the polar regions from sequences
of AVHRR images", International Journal of Remote Sensing, 1989, Vol.10, Nos.4 and 5,
695-703.

[246] Umesh,R.M., "A technique for cluster formation", Pattern Recognition, Vol.21, No.4,
393-400, 1988.

[247] Unser,M., "Sum and difference histograms for texture classification", IEEE Trans, on
Pattern Analysis and Machine InteUigence, Vol.PAMI-8., No.l, 118-125, 1986.

[248] Urquhart,R., "Graph theoretical clustering based on limited neighbourhood sets". Pattern
Recognition, Vol.15, No.3, 173-187, 1982.

[249] Vonder Haar.T.H., and Reynolds.D.W., "A bi-spectral method for inferring cloud amount
and cloud-top temperature using satellite data", 6th conference on aerospace and aeronautical
meteorology, Amer. Met. Soc, 190-193, 1974.

[250] Ward, Jr., J .H. . "Hierarchical grouping to optimise an objective function". J . Amer.
Statist. Assoc. 58, No.301, 236-244,1963.

[251] Warnecke.G., Zick,C., Carus,B., Doring.R.. Eriksson.A., and Voellger,C., "Information ex
traction from meteorological satellite image sequences", R.A.Vaughan(ed.), Remote Sensing
Applications in Meteorology and Climatology, 259-283, D.Reidel Publishing company, 1987.

[252] Wharton,S.W., "A generalised histogram clustering scheme for multidimensional image
data". Pattern Recognition, Vol.16, No.2. 193.199, 1983.

[253] Wharton.S.W.. "A Contextual Classification Method for Recognizing Land Use Patterns
in High Resolution Remotely Sensed Data". Pattern Recognition. Vol.15. No.4. 317-324,1982.

[254] Wharton,S.W., and Turner,B.J.. "ICAP:An interactive cluster analysis procedure for an
alyzing remotely sensed data". Remote Sensing of Environment, 11, 279-293, 1981.

[255] Widger.W.K., Jr., and Touart, C.N.. "Utilization of satellite observations in weather anal
ysis and forecasting". Bull. Amer. Meteor. Soc, 38,.521-533, 1957.

[256] Wilson,G.S., "Automated mesoscale wind fields derived frorn GOES satellite imagery".
American Meteorology Society Conference on Satellite/Remote Sensing Application. 1984.
164-171.

291

[257] Wikon.T., and Houghton,D., "Mesoscale wind fields for a severe storm situation deter
mined from SMS cloud observations", Monthly Weather Review,1198-1209,1979.

[258] Wilks,S.S., Mathematical statistics, Wiley, London, 1963.

[259] Winston,J.S. ed.. Quantitative meteorological data from satellites, in World Meteorologi
cal Organization, Technical note No.166, Chapter 2., 1979.

[260] Wishart, D., "An algorithm for hierarchical classifications", Biometrics, 25,165-170,1969.

[261] WMO. 1956. "International cloud atlas", preface to the 1939 edition Vol.1 World Meteo
rological OflSce, Paris,

[262] Wolfe,J.H., "Pattern clustering by multivariate mixture analysis", Multivariate Behav.
Res., 5, 329-350, 1970.

[263] Wolf.D.E., Hall,D.J., and Endlich,R.M., "Experiments in automatic cloud tracking using
SMS-GOES data". Journal of Applied Meteorology, Vol.16-, 1219-1230, 1977.

[264] Wolf,R., Meteosat high resolution image dissemination, Meteosat System Guide, Vol.9,
Issue 4, August, 1984, ESA.

[265] Wong,R.Y., "Sequential Scene Matching Using Edge Features", IEEE Tran. on Aerospace
and Electronic systems, Vol.AES-14,No.l, 128-140, 1978.

[266] Wong.R.Y. and Hall,E.L., "Scene matching with invariant moments", Computer Graphics
and Image Processing 8, 16-24, 1978.

[267] Wong,R.Y., and Hall,E.L., "Sequential Hierarchical Scene Matching", IEEE Tran. on
Computers, Vol.C-27, No.4, 359-366, 1978.

[268] Woodroffie, A., The Operational Use of Satellite Imagery in the Central Forecasting Office,
Braknell, Preprints for a Workshop on Satellite and Radar Imagery Interpretation, Meteoro
logical Office College, England, 3-20, 1987.

[269] Wright,W.E., "Gravitational clustering". Pattern Recognition, Vol.9, 151-166, 1977.

[270] Wright.W.E., "A Formalization of Cluster Analysis", Pattern Recognition, Vol.5, 273-282,
1973.

[271] Wylie,D.P., Hinton,B.B., and Millett,K.M., "A comparison of three satelHte-based meth
ods for estimating surface winds over oceans". Journal of Applied Meteorology, Vol.20, 439-
449, 1981.

[272] Yau,S.S., and Chang,S.C., "A direct method for cluster analysis". Pattern Recognition,
Vol.7, 215-224, 1975.

[273] Zahn,C:T., "Graph-theoretical methods for detecting and describing gestalt clusters",
IEEE Trans, on Computers, Vol.C-20j No.l, 68-86, 1971.

[274] Zucker,S.W., "Region Growing: Childhood and Adolescence", Computer Graphics and
Image Processing, 5, 382-399, 1976.

292

Appendix A

Maximum Likelihood Estimator

Suppose the set X contains n samples, X = { x i , . . . , x „ } . Then since the samples

were drawn independently,

p (x I e) = n p (x , 16) (A . l)

;:=i
p (X I 9) is called the likehhood function of 9 wi th respect to the set of samples.

The max imum likehhood estimator of 9 is, by definition, the value 9 that maxi

mizes p (X I 9). The classical approach is to differentiate p{x \ 9) w i th respect to

9, equate dp{X \ 9)/89 = 0, and solve for 9.

We want to find the maximum likehhood estimate of the mean fi and covariance

matr ix 27 of a sample set X form a multi-variate normal pdf, so 9 = (p, S), we

have

p (x 1^) = (27r)- ' ' /2 | i : | - i /2exp [- | (x - pfE-''{x - p)

p{X\9) = (27r)-'^"/2|i;|-"/2exp

j=i
= (27r) - '^"/2 |^ | -n /2gj^p[_ l t j .^ - l^j

where A = ^ ^ (X j - p)(xj - pf

Let n in denotes the samples mean vector where n i„ =^ ^ Y^^=i ^«

(A . 2)

(A . 3)

293

B u t A = J^[(xj - m „) " + (m „ - n)][{xj - m „) + (m „ - fi)

n
= ^ (x j - m „) (x j - m „) ^ - f n (m „ - / [i) (m „ - / /) ^ (A.4)

i=i

Since JZ^^i ~ n i „) (m „ - xjf = 5]^(m„ - /z)(xj - m „) ^ = 0
i= i

Substitute A . 4 into A . 3 and let V = ^ (x y — m„) (Xj — ninf be tbe sample
i=i

covariance matr ix , we have

p (X I e) = (27r)-'^"/2|i7|-"/2 e x p { - i t r i ; - M l ^ + n (m „ - /z)(m„ - fif]} (A.5)

It is more convenient to work wi th the logari thm of the l ikelihood function,

than wi th the likehhood function itself.

L = l o g p (X l ^)

= | i o g | i ; r - i t r i ; - ^ y

- | t r i : - ^ (m „ - / /) (m „ - fif + ^ l o g 2 7 r (A.6)

Differentiating wi th respect to p. gives

= - | 2 i ; - ^ (y . - m „) (A.7)

M u l t i p l y by S and rearranging, we obtain

t=l

Similarly, using the matr ix identity

(A.8)

^ Y\ = \Y\Y-\^tr{B^Y) = B
dY

294

we have

^ = i - U (A.9)
dS-^ 2 2

Setting the derivative equal to zero and solving gives the estimator

s=if:{^j-ii)(?^j-iif (A.10)

295

Appendix B

Formula for Updating Gaussian

Kernel Parameters for Post

Transfer Advantage Rule.

The paxameters which have to be updated after each reallocation of points are /x,-

and Si the mean and covariance matr ix of the i t h cluster respectively. Suppose

that k copies of pattern X; are transferred form cluster i to j with, parameters fij

and Sj (Ki t t l e r and Pai rman 1988).

B y definition

X/ € cluster u)i

= f^i + Ani (B.l).

Similar ly

(B.2)

Substitute eqn. B . l into eqn. B . 2 we obtaiin

296

Si =
n,- — k

J3(Xr - Pi - Api)(Xr - Pi - Apif
Lr=l

-k{xi -Pi - Api){xi - Pi - ApiY

Since ^ (X r — /x,) = 0
r=l

E q n . B . 3 simplifies to

(B.3)

Si =
n,- — k

rii — k

mSi + Api ApJ-^A Pi A pj

Si-
rii — k

{Pi-xi){pi-xiy

The updating formulas for cluster j can be obtained similarly.

(B.4)

k
(B.5)

S- =
^ Uj + k

(B.6)

297

Appendix C

Efficient Algorithms for

Constructing a Spanning Tree

and Minimax Segmentation.

W h e n graph is implemented on computer, i t is stored using a data structure called

l inked l ist , and the traversal algorithm can be either Depth Firs t Search or Breath

Fi rs t Search. These algorithm can be found i n numerous text book (e.g. Gerstl ing

1982).

The construction of spanning tree and minimax segmentation i n Chapter 5

can be constructed using graph theory algorithm proposed by Daskalaskis et al .

(1988a, 1988b).

C . l Efficient Implementation of Spanning Tree

Algorithms

The complexity of the algorithm to construct the spanning tree is 0{m) and

therefore perform reasonably well even for large n , where n is the number of

nodes in the graph. This is based on the Kruskal 's algorithm but using a special

data structure.

The spanning tree algorithm starts wi th n components and each components

298

is a binary tree data structure (Daskalakis et a l . 1988a). A binary tree is a special

k ind of tree i n which every node has at most two children. In a binary tree, each

child of a node is designated as either the left child or the right chi ld. The left

child would consists of the nodes i n this component and the right child of the links

of the original graph incident to these nodes, which do not belong to the forest.

So in i t ia l ly each left chi ld consists of a single node and each right child of 8 or 4

edges of i ts nearest neighbours.

The spanning tree algorithm is:

Step 1. Initialise the data structures of the image graph

described above.

Step 2. Arrange the edges i n each structures i n ascending order

of weight.

Step 3. Create a list of pointer p, and point to the first

edge in each structure.

Step 4. Save the edge wi th the lightest weight by searching

al l n pointers.

Step 5. Merge the binary trees which are joined by this edge and

rearrange pointers.

Step 6. Remove edges i n each tree which form cycles.

Step 7. Recompute the weight of the edges of the newly formed

binary tree.

Step 8. F i n d the least weighted edge and label the rest i n this

tree to prevent them from selected.

Step 9. Rearrange pointer and point to the least weighted edge.

Step 10. If the number of saved links is less than n — 1 goto Step 4.

Step 11. Form the spanning tree from the saved l inks.

299

c.2 Efficient Implementation of Minimax Seg

mentation

A efficient implementation of minimax segmentation must avoid repeat computa

t ion of the intraset distance of a subtree. This is achieved by transforming the

spanning tree into its directed counterpart (arborescense) by choosing arbitrary

a node as its root. A branch 6,- of the arborescense is represented by its parents

node Vi whilst the root represents the whole arborescence.

The sum, the sum of squares of each variables and the number of nodes of

each branch are attribute to its parents node. Therefore the intraset distance of

a branch can be computed by visit ing node v,-. After this transformation the

minimax segmentation can be implemented using algorithm described in Chap

ter 5.

300

Appendix D

Intraset Distance

In <Z-dimensional Euclidean space, the distance between two points a and b is

given by (Tou and Gonzalez 1974 pp 248)

I).(a,b) = | | a - b | |

= v ' (a-b)^(a-b)

(D . l)

where a and b are d-dimensional vectors wi th the A;th components equal to â

and hk respectively. The intraset distance for a set of pattern points {a*, i =

1 , 2 , . . . , i f } is given by

i?2 (.{ai} ,{a '}) , i , i = l , 2 , . . . , / i : - l ; i ^ i (D:2)

define the square distance between â and a' i j

D\3J,a.') = (a^'- a')̂ (a^ - a')

= i:{4-4r (D.3)
k=i

For fixed a-' and wi th a' ranging over al l oi K — 1 other points i n the set {a'},

the part ial average is

301

K d
(D.4)

«=i fc=i

It is noted that the contribution for i = j is zero and may harmlessly be left

i n the expression. There are K terms, but only K — 1 non-zero terms.

Following the same line of reasoning, we then take the average over a l l K

points i n set {a^} to express the intraset distance as

K d

K K d

-f*̂ V-**- j=i k=i

The intraset distance may also be expressed i n terms of the variance associated

w i th the components of the pattern points. Rearranging, we may write

K

2K
k=l L i=l :=1

^ 2

K - l l

-rr2

(a l P - (a D (D.6)

The last step follows since (a{)2 - (4) and ^ J2f=:i W = i^Y and ^ EjLi

-^2 Since (aj.)^ — (a ^ = (a^)^ is the biased sample variance of the fcth component

of the K pattern points in {a*}, the intraset distance is given by

(D.7)

Not ing tha;t

The intraset distance can be writ ten i n terms of the unbiased sample variance

(D.9)
k=l

302

Appendix E

The Entropy of a Gaussian

Distribution

The entropy of a pdf f{x) is defined as H{x) = — J^^f{x)\ogf{x), i f f{x) is

n-dimensional Gaussian distributed, we have (Jones 1979 pp 151)

(E.1)

log fix) = log ^ - ^(x - n)^S-\x - fx) log e (E.2)

respectively, where A is the determinant of the matr ix

i.e. H{x) =

Loo (27r) f^°^(27r) t
exp -^(x-p)^E-\x-p)

+
A a log e

{x — fi)-^S (̂x —/i)exp
7-00 (27r)? 2

- i (x - / z) ^ i ; - H x - / z) dx(E.3)

Let (x^/x) = u, since S the covariance matr ix is symmetric and positive definite,

a linear non-singular transform exists such that iFS~^L = A where u = L\. It

is noted that A is a diagonal matr ix wi th elements A i , , . . , A„.

303

r°° As A i
H{X) = - . n log . • n -oo

roo

exp

+ r ^

J-oo (27r)?

A i

loge
v ^ A v e x p

- - v ^ A v

- - v ^ A v

(2

exp

^5 A i f°° r

- 5 (A i v ? + A2v2...-FAdv2) dViV2 ...dVn

log e / / . . . / - (A i v ^ + A2v l . . . -1- A„v^)
(27r)2 J-oo J-oo J-oo^

exp - ^ (A i V i + A2V2 . . . - { - A„v^)

(27re)f

dVidV2 ... dVn

= log
A i

(E.4)

The last equation is obtained since the integral can be carried out on each v

separately.

304

Appendix F

Least Square Method for

Geometry Rectification

Rectification of image require fitting of a model to the ground control points

(G C P) that satisfy a least-squares criteria (section 6.2.5).

Consider a single control point (see eqn. 6.27) and assume we are attempting

to compute the Ck coefficients:

7f = CoXoi + CiXii + C2X2i + CsXzi -f 04X41

(F.l)

If we use n G C P s in total we shall have n such equations which we may write i n

matr ix form as:

71

72

7n

xoi Xn X21 . . . X91

X02 X\2 ^22 • • • 2:92

Co ei

Cl 62

: + •
•

C9 en

(F.2)

XOn X2n • • • ^971

We have to include the errors since there w i l l not be a set of CQ . . . Cg which

w i l l simultaneously provide us wi th exactly 7 1 . . . 7n i n the overdetermined case.

Equat ion F .2 can be abbreviated and generalized to m degree polynomial ,

305

r = x c + e (F . 3)

where T can be either the longitude or latitude to be calculated. We want to

obtain c such that the sum of square error 6*^6 is minimized,

e = r - x c (F . 4)

we form the sum of the square of each error by computing e'^e:

e^e = (r - x c) T (r - x c) (F . 5)

Differentiating e-^e wi th respect to T and equating to zero:

= (o - x i f (r - x c) + (r - x c) T (o - x i)

= (- x i f (r - x c) + (r T _ (x c) T) (- x i)

= - i x T (r - x c) + (r T - c T x T) (- x i)

= - i x ' ^ r + i x T x c - r T x i + 0 ^ x ^ x 1

= 2 (I) (x T x c - x T r) (F . 6)

Since F - ^ x I = (F'^XI) and c ' ^ x ' ^ x l = (c '^x '^x l) ' ^ , because both are 1 x 1 matr ix .

Equat ing eqn. F . 6 to zero thus:

0 = 2 (I) (xTxc - x^r)

(x T x) - i x T x c = { A r V r

c = (x T x) - i x ^ r (F . 7)

The elements i n matr ix x is substitute for variables given by equation 6 .27 .

The matr ix x for m = 3 is therefore:

3 0 6

X =

1 P i i l P 2 P i i i Ll Pi PiLl PrL\ L \

1 P2 Lr Pi P2L2 Ll Pi PiLl P2LI Ll
(F.8)

1 P„ Ln PI PnLn Ll P^ PlLn PnLl Ll

and

c'̂ r = x T

71

72
(F.9)

7n

307

Appendix G

Surface Chart of the Imag

Used in This Study

308

Figure G . l : Surface chart of 5th March

309

Figure G.2: Surface chart of 8th March .

310

Figure G.3: Surface chart of l l t h March ,

311

Figure G.4: Surface chart of 15th March .

312

Figure G.5: Surface chart of 18th March .

313

Figure G.6: Surface chart of 20th March .

314

Appendix H

Programs of the Global-Local
Clustering Algorithm

/***•*•••*••••*•********•*•»*•**••**»****•••****•*••••******•*****•*******
* loted that this i s a co l lect ion of f i l e s , so soae extern variable *
« declaration has been deleted, to be conpliable some changes has to *
» be Made. *
• The Clobal-Local algorithm includes the following f i l e s : *
* 1) i sovar l .h •
« 2) i sodatal .h *
• 3) graph.h *
* 4) output.h *
• S) hicap.h *
• 6) isoS.c *
• 7) i sodatal .c *
• 8) i s o . i o l . c *
* 9) h icapl . c *
* iO) smooth2.c *
* 11) graph2.c •
• 12) outputl .c •
***************************************'**********************************/

/*******«***»»********************
* You are reading i sovar l .h •
«********************«***/

extern char *optarg;
extern int optind, opterr;

u.char inageCDIHEISIOI][HAX.YSIZE][HAX.XSIZE]j/* store the image data • /
char label[MAX_YSIZE][MAX_XSIZE];/* l abe l the samples • /
int dimension,/* number of chemnel used, v i s , i r , nv * /

hos.center,/* the current number of clusters * /
nos_discard,/* number of discarded center • /
init_nuBi_center,/* desired number of centers form histogram clustering * /
count[HAX.CEITER],/* the number of samples in a cluster • /
top_x, top_y,/* top l e f t of the image sindos to be clustered * /
v in .xs ize , v in .y s i ze , / * sindos sizes * /
gc, e r r f l a g ; / * for getopt • /

f loat theta . s , /* standard deviation parameter * /
t h e t a . l , / * lumping parameter * /
o v e r a l l . i d , / * overal l average intraset distance * /
intra_d[l!AX_CEITER] , / * intraset distance * /
center[DIHEISIOI][HAX.CEITER],/• cluster center * /
sumCDlHEISIOI][HAX.CEITER]./* for standard deviation * /
sun.sq[DIHEIS10I][HAX_CEITER],/* for standard deviation * /
deviation[DIHEISIOI][HAX_CEITER];/* standard deviation of c luster • /

/ • these are for histogram clustering * /
int num.dist inct , /* number of d is t inct vector * /

c e l l . s i z e , / * the size of histogram c e l l * /
succleh, /* to ta l length of hash • /
•axhash,/*.record of longest hash * /
•ax^freq;/* record of maximum frequency » /

HIST.TABLE * * h i s t . p t r , / * for sort ing * /

table[TABLESIZE];/* histogram table * /

struct ras ter f i l e header;/* info , of input image, f o r output result * /

int compare();
f loat distance_to_centerC);
/ * * * * * * * * * * • * * * * • * * • • • • * • * * * * • • * • * • * * * • * • • • • * • • * • * * * * * • * * • * * * • • * * * • * • * * * *

« You are reading isodatal .h *
**/

•include <8tdio.h>
•include <string.h>
•include <math-.h>

315

finclude <»alloc.h>
•include <pixrect/pixrect_hs.h>

•define HAX.XSIZE 512 / » BaxiMum oindoB size » /
•define HAX.YSIZE 512
•define UII_XSIZE 256
•define UII.YSIZE 256
•define MAX.CEITEE 20 /» estimated max number of center during process
•define DIMEISIOI 3/* y i s , i r , wv » /
•define HAX.OREY 258.0/* maximum greyscale • /
•define HII.GREY 0.0/* minimum greyscale * /

•define OUT.CHAl 1/* the channel that w i l l be used for output * /

/ * parameter for isodata * / •define 6ANHA
•define THETA.I
•define LUMP
•define ITERATIOI
/••define t

•define TABLESIZE

0.8/* parameter for newly sp l i t ed center * /
0.01/* min number of samples • /
.2/* max number of pairs of center to be lumped • /
11/* number of i terat ion allowed * /

9 number of center desired * /

60013/* 12007 histogram table s ize * /

•define TRUE 1
•define FALSE !TRUE
•define CHAIGE 1
•define UICHAIGE !CHAIGE
•define SQUARE(x) « x) * (x))
•define strsave(s) (strcpy(malloc(strleri(s)-)-l), s))
•define demand(fact, remark) {\

i f (!(fact)) A
fpr in t f (s tderr , "demand not met: fac t \n") ; \
fpr in t f (s tderr , "remark\n")A
exit (DA

}\

typedef struct {/* for function lump cluster » /
int c l ;
int c2;
f loat distance;
}IITER_CLUST;

typedef struct {/* for function lump cluster * /
int c l ;
int c2;
}CEITER_PAIR;

typedef struct {/* struct for histogram table * /
flo.at prob;/* probablity * /
int f r e q ; / * frequency count * /
int fpos; /* index i n neighbor l i s t f i l e * /
u_char vec[4];/* the vector values * /
char l a b e l ; / * class labe l * /
}HIST_TABLE;

/**
* You are reading graph.h *
**/

•define lOTVISlT 0
•define VISIT ilOTVISIT

typedef struct tree {
int key;/* the key for th is node * /
struct tree *next;
char status;
} TREE; /* memory i s allocated in order of declaration • /

typedef struct {
/ • i n t key;*/
struct tree *node;
} TREE_HEAD;

typedef struct l i s t i
int key;
struct l i s t *next;
} LIST;

f loat distance() ,
get .gradientO;

TREE *get_node(),
*depth_first_next(),
*find_alone_node(),
*front_of_tree();

TREE_HEAD *depth_first_search();
LIST *front_of_l ist () i

/****»**********»********************«***********************
* You are reading output.h *
**/

316

•define OUT.CHAIIEL 0 /» noraally v i s i b l e • /

•define LIMIT 10/* nuaber of inter c luster distance to be shoon * /

f loat intfa_distance();
/«••**•*****«««*******«*•»••**••••••*•**•*••*••**•••**••****•••

* You are reading h icapl .h *
«***/

• include "ispdatal.h"

•define lOS.IEIGH 26/* number of neighbors for 3 dimension * /
•define BUFSIZE ((int)(TABLESIZE/10))

•define HAX.ROOT 50/* max number of .root(cluster8) al losed * /

•define SHALL -1E30/* a very small number * /

typedef struct {/* to compute the offset table * /
char yec[4];
} VECTOR;

typedef struct •[/* struct f o r neighbor l i s t buffer • /
short count;/* number of neighbors * /
u.char meC4];/* the vector i t s e l f * /
u.char neigh[IOSiIEIGH][4];/• neighbor of th is vector • /
}IEIGH;

typedef struct {/* use for s t a t i s i c * /
f loa t sumCDIHEISIOI];
f loa t ssqCOIHEISIOI];
int num;
> STAT;

/**************************»***
* You are reading isoS.c
*
* This i s the main program of the Global-Local clustering algorithm
* presented i n Chapter 4 of th is thesis . The f i r s t stage of the
* Global-Local algorithm i s a histogram clustering algorithm, and
* consists of f i l e s : hicap.c smooth.c graph.c The second stage of the
* Global-Local algorithm i s a dynamic clustering algorithm based on
* ISODATA and consists of f i l e s : isoS.c isodatal .c i s b . i o l . c outputl.c
*
* hicap.c i s to construct a multidimensional histogram (up to 4
* variables) .
* smooth.c i s to smooth the histogram.
* graph.c i s the val ley seeking algorithm Bhich par t i t i on the histogram
* isoS.c i s the main program.
* i sodata l .c , and i s o . i o l . c include a l l main functions of the second
* stage.
* outputl .c i s to compute the clustering s t a t i s t i c s .
*
* Deta i l implemenation can be found in "Pattern recognition
* p r i n c i p l e s ' ' , J . T . T o u , R.C.Gonzalez Addision-Uesley Publishing
* Co. Inc. 1974.
*
* This programme i s intended for c lustering of HETEOSAT images
* up to 3 channels, v i s i b e l , infrared and vater vapour respectively.
*
* The dynamic clustering uses J . K i t t l e r ' s population oeighted Gaussian
* model. The multiple occurrence of pixel i s exploited to increase
* eff ic iency. The f i r s t stage part i t ion the multidimensional histogram
* and an i n i t i a l part i t ion i s generated using methods described i n
* Chapter 4 oif th i s thesis . The second stage use a dynamic clustering
* algorithm shich use a Gaussian cluster model and post transfer
* advantage rule (see Chapter 4 for de ta i l s) .
*
* K.S.LAU 1-12-90
**************************«***

•include "iscdatal.h"
•include "isovarl.h'"

f loa t w_covar[HAX.CEITER][DIHEISIOIJ[DIHEISIOI]./* n i th in c luster covar * /
iB.covar[HAX.CEITER][DIHEISIOI][DIHEISIOI],/* inversed covar matrix * /
C08um[HAX.CEITER][DIHEISIOI][DIHEISIOI],/* for covariance natrix * /
log.covar[HAX.CEITER]./* log of covariance matrix « /
mahalanobis_di8timce();/* compute mahalanobis distance * /

/*
Main function of the Global-Local c lustering algorithm.

main(argc, argv)
int argc; char **argv;

Bhile ((gc = getopt(argCi argv, " ")) != EOF)
sBitch (gc) { case ' ? ' : errflag++; break; }

if. (errflag) quit (argv);

317

get_data(>;/* get the input image filename * /
mitial.centeraO;/* the first stage of the Global-Local algorithm

• /
get.parametorsO;/» specify the parameters for the second stage * /
i8odata_resolution();/• recompute the histogram nith different

compression ratio * /
isodataO;/* the main function for the second stage * /

map_pixel_to_hi8togram();/• label pixel to clusters » /
s h o H . r e s u l t O ; / * print statistics • /
j5et_objective_function_value() ; / * compute objective function • /

^ output_result();/* vrite output to files * /

/*
isodata.resoltttion is to recompute the histogram.
* /
i8odata_resolution()
{

char answer [10] ;
int i ;
printf("Do you vant to change the histogram cellsize for isodata? ");
8canf("Xs", answer);
i f (answer[0] != »n')
•C I* reconstruct histogram with new resolution * /

printf("Enter the histogram cellsize, ");
8canf("Xd", Jkcell.size);/• compression ratio, 1 ,2 ,4 , . . . • /
clear.tableO;/* reset the hashing table • /
get_hist_table();/* compute the histogram * /
free((char *)hist_ptr);
sort.histogramO;
/ * reset the label in histogram table » /
for (i = 0; i < num.distinct; i++) hist_ptr[i]->label = 0;

/«
Hain function of the dynamic clustering algorithm.
• /

isodataO
{

int i t e r , / * i terat ion counter * /
status;/* indicate any s p l i t or merge * /

/ * use nearest mean assignment only after s p l i t or merge * /

status = CHAIGE;
for (i t e r = 1; i t e r <= ITERATIOI; iter++)

printf("\nIterat ion Xd\n", i t e r) ;
do {

/ * assign p ixe l to -nearest center i f i t er= l , pr after
s p l i t or merge * /

i f (status = CHAIGE) neare8t_center_assignment();
/ * assign d i s t inc t vector using post transfer advantage rule

* /
population.weighted.Gaussiem.reassignment(status);
/ • remove small c luster * /
status = discard.clusterO;

} while (status «= CHAIGE);
pr int . s tat i s t icO;

i f (i t e r == ITERATIOI) break;/* no lump or s p l i t f or las t i t e r . • /

i f (i t e r % 2 == 0 II nos.center >= 2*init_num_center)
{ / * too memy clusters * /

status = lump.clusterO;
continue;

}.

i f ((status = split .c lusterO) = CHAIGE) ;
else i f (LUMP > 0) status = lump_cluster();/* no s p l i t , do lump * /

lump.cluster i s to merge any clusters which are closer than the
specif ied threshold.
*/

int lump.clusterO

register int i , j , k, class;
int. lump.pair = 0, /* check imy cluster to liimp * /

merged.center = 0 , / * record merged center * /
• end,/* index of las t center in table « /

used, /* labe l * /
status = UICHAIGE,/* any merge? • /
n o s . p a i r , / * how many pair of center to be test * /
compare();

f loat i n t e r _ d , / * inter cluster di'sttmce * /

318

file:///nIteration

group8_var[DIMEISI0I],/• within groups sd of kth channel * /
neB_center[DlMEISIOI];/* new center * /

IITER_CLUST close_center[HAX_CErrER3,/• record of qual i f ied centers • /
•ptrCNAX_CEITER];/• f or sort ing • /

CEITKR_PAIR used_center[LUIlP];/» record of already merged center » /

f o r (i » 0; i < nos_center-l; i++)
f o r (j » i+1; j < nos.center; j++)
{, I* f o r a l l pairwise of clusters * /

/ • check how many pa ir i s to merge * /
i f (lump.pair HAX.CEITER) break;/* cannot save any more • /
/ * compute the within group variance of two clusters * /
get_within_groups_var(i, j , groups.var);
in ter .d = 0.0;/* i n i t i a l i s e intercluster distance * /
for (k = 0; k < dimension; k++)

in ter .d += (((float)countCi]*(float)count[i])
*3QUARE(center[k][i]-center[k]tj]))
/((float)(count Ci]+count[j])*groups.var[k]);

i f (in ter .d < theta.1)/* check lumping threshold * /

close_center[lump.pair].cl • i ;
close.centerClump.pair].c2 * j ;
close.centerClump.pair].distance » i n t e r . d ;

^ lump.pair++;/* count how many pa ir to merge * /

i f (lump.pair = 0) retum(status) ; / * no lumping * /

f o r (k = 0; k < lunp.pair; k-H-)/* i n i t i a l i s e for sorting * /
ptrCk] = »close_center[k] ;

/ * select the closest pairs to merge * /
qsort((char •) p t r , lump.pair, sizeof(IITER.CLUST *) , compare);
end = nos .center- l ; /* end of l i s t posit ion » /
nos.pair = (lump.pair > LUHP) ? LUHP : lump.pair;

for (class = 0; class < nos.pair; class++)

used - FALSE;
i f (merged.center > 0)

for (i = 0; i < merged.center; i++)
/ * check whether center has been merged * /
i f (ptr[class]->cl == used.centerCi] .cl

II ptr[class]->cl == used.center[i].c2
II ptr[class]->c2 == used.center[i] .c l
II ptr[class]->c2 == used.center[i].c2)

used = TRUE;
i f (used) continue;/* do not merge * /
printf("merge cluster Xd Xd\n", ptr[c lass] ->cl , ptr[class]->c2);
status = CHAIGE;/* centers has been merged * /
f o r (k = 0; k < dimension; k++)/* merge * /
{/* compute new centre * /

new.center[k] =
((f16at)count[ptr[class]->cl]*center[k][ptr[class]->cl]
+(float)count[ptr[class]->c2]*center[k][ptr[class]->c2])
/(float)(countlptr[class]->cl]+count[ptrtclass]->c2]);

used.center[merged.center].cl = ptr[class]->cl;
used.center[merged.center].c2 = ptr[class]->c2;
merged.center++;
f o r (k = 0; k < dimension; k++)/* put into l i s t * /

centerik] [ptr[class]->cl] = new.center[k] ;
i f (ptr[class]->c2 < end)

move.center(end, ptr[class]->c2);/* move upward * /
end—;

nos.center -= merged.center;/* update current no. of clusters * /

retum(status);

/*
check i f c luster kernels have to be recomputed.
* /

population_weighted.Gaussian.reassignment(status)
int status;/* any s p l i t or merge in previous i terat ion * /

int c lass;

i f (status = CHAIGE)
{/• compute covariance matrix of every clusters * /

get_wcovar.raatrix();/* within cluster covariance matrix * /
f o r (class = 0; class < nos.center; class++)

log_matrix.determinant(class);/* log covariance matrix * /
inverse^matrix(class);/* inverse of covariance matrix.*/

}

/ * assign d is t inct vector using ^ost transfer advantage rule * /
populationiweighted.Gaussian.assignment();
/ * get c luster s t a t i s t i c s * /

319

^ get_clu8ter_para»eters();

/ •
assign d i s t i n c t vectors using post transfer advantage r u l e .
• /

^opulation_Beighted_Gau8sian_assignnent()
register int class, i , j ; / * counter •/
int s i , Br;/* cluster r and i * /
f l o a t k , / « number of copies */

dr, d i , / * change i n cerition function f o r cluster r and i * /
• i n _ d r , / * Bin of change f or r , r ! » i • /
delta_8UM, delta_8unsq,/* change i n stat * /
t o t a l ; / * t o t a l number of pixel */

t o t a l = (f loat)(Bin_xsize*Bin_ysize);

f o r (i « 0; i < num .distinct; i++)

B i « hist_ p t r [i]->label;
i f (Bi < 0) continue;/* this i s a outlier */
k • (f loat)hi8t_ytrCi]->freqj
d i = log.covarlBi]

-(((float)count[B I] - k) / k)
*log(1.0-(k*mahalanobi8_distance(i, B D)
/((float)count[B I] - k))
- (2 . O*log((float)count[Bi]/total))
-(((float)diaension+2 .0)*(((float)count[BI] -k) /k)
*log((float) count [Bi] /((float) count [Bi]-k))) ;

min .dr - d i ;
for (class = 0; class < nos.center; dass++)

i f (class s i) continue;
dr = log.covar[class]

+(((float)count[class]+k)/k)
*log(l .0+(k*mahalanobis.di8tance(i, class))
/((f loat)count[class]+k))
- (2 . 0*log((float)count[class]/total))
+(((float)dimension+2.0)*(((float)count[class]+k)/k)
• l o g ((float)count[class]/((float)count[class]+ k))) ;

i f (dr < min_dr)

Br = class;
min .dr = dr ;

}
i f (min.dr < di)
{/* update s t a t i s t i c of Br and s i and reassign */

B i = hist.ptr [i]->label;/* class i * /
hi8t . p t r[ij - > l a b e l = Br;/* reassign to class r * /

update.BCovar.matrix(Br, i , 1.0);/* update the matrix */
update_Bcovar_matrix(Bi, i , -1 .0);
log_matrix.determinant(Br);
log_matrix_determinant(Bi);
inverse.matrix(Br);
inverse.matrix(Bi);

/* update s t a t i s t i c */
count[Bi] -= hist.ptr [i]->freq;/* update count */
count[Br] += hi8t_ptr[i]->freq;/* update count */
for (j = 0 ; j < dimension; j++)

delta.sum = (float) h i s t . p t r [i] - > f r e q
*(float) h i s t _ p t r [i]->vec[j];

delta.8um8q = (float)hi8t . p t r [i]->freq
*SQUARE((floatJhist.ptr[i]->vec[j]);

8um[j][Br] += delta;.sum;/* update sum */
sum_8q[j] [Br] += delta.sumsq;
8um[j][Bi] -= delta:.sum;
8um .sq[j][Bi] -= delta.sumsq;
center[j] [sr] = sum[j] [Br]/(float)count[Br] ;/* update mean*/
center[j] [Bi] = sum[j] [Bi]/(float)count [Bi] ;
deviation [j] [Br] = ((float)count[Br]*sum_sq[j] [sr]

-SQUARE (sum [j] [Br]))
/((float)count[Br]*(f loat) (count[Br] -1)) ;

deviation[j] [sr]. = sgr t(deviation[j] [sr]);
deviation[j] [Bi] = ((float)count[Bi]*sum.sq[j] [si]

-SQUARE(sum[j] [si]))
/((float)count [B i] *(float)(count[B I] - 1)) ;

deviation [j] [BI] = sqrt(deviation[j] [si]) ;

/*
Update a covariance matrix.
* /

update.BCOvar.matrix(class, x l , sign)

320

in t c la s s , / * the cluster shich para are to be updated • /
x l ; / * the rector shich i s being reassigned * /

f l oa t s ign; /* add or subtract * /

register int i , j ; "
f l o a t xCDIBEISIOl],/* a buffer matrix • /

k , / * the number of copy of th i s p ixe l * /
cO, c l ; / * constant * /

k =• (f loat)hi8t_ptr[xl3->freq;

f o r (i = 0; i < dimension; i++)
x[i] " center[i] [c lass]-(f loat)hist_ptr[xl]->vec[i] ;

cO = sign*(k/((float)count[class]+sigh*k));
c l = (float)count[class]/((float)count[class]+sign*k);
f o r (i « 0; i < dimension; i++)

f o r (j « 0; j < dimension;

B.covar [class] Ci][j] += cO*x[i]*x[j];
w.covarCclass] [i] [j] *= c l ;

}

et_Bcovar_matrix()/* compute within cluster covariance matrix * /

register int a, j , k, class;

f o r (class = 0; class < nos.center; class++)/* i n i t i a l i s e * /
for (j = 0; j < dimension;

for (k = 0; k < dimension; k++)
cosum[class][j][k]= 0.0;

for (a = 0; a < num.distinct; a++)/* compute co product * /

class = hist_ptr[a]->label;
i f (class < 0) continue;/* out l i er * /
f o r (j = 0; j < dimension; j++)

for (k = j+1; k < dimension; k++)
cosumtclass][j][k]
+= ((float)hist_ptr[a]->vec[k]*

(float)hist_ptr[a]->vec[i]*
(float)hist_ptr[a]->freq);

for (class = 0; class < nos.center; class++)
compute_comatrix(class);

compute_comatrix(class)/* compute covariance matrix • /
register int c lass;

register int j , k;

for (j = 0; j < dimension; j++)
for (k = j ; k < dimension; k++)

i f fk != j) / * covariance * /

B_covar [class] [j] [k]
= ((float)count[class]*cosum[class] [j] [k]

-sum[j][class]*8um[k][class])
/((f loat)count[class]*(float >(count[class]-1));

^ w_covar[class][k][j] = B_covar[class] [j] [k] ;

else/* variance * /
{

B_c6var[cleiss] [j] [k]
= ((float)count[class]*sum_sq[k] [class]

-SQUAIlE(8um[k] [class]))
/ ((f loat)count[class]•(f loat)(count[class]-1));

}
}

log_matrix_determinant(class)/* log of a matrix's determinant * /
in t class;
{

int i f l a g ,
ipivot[DIHEISIOI],
i s t a r ,
i . j . k;

f loat asikod,
colmax,
r a t i o ,
rovmax,
temp,
d[DIHEISIOI],
B[DIHEISIOI][DIHEISIOI];

/ * copy covar matrix into B * /
for (i = 0; i < dimension; .i++)

for (j = 0; j < dimension; j++)

321

>[i][j3 " B_covar[clas8] [i] [j] ;

iflag»=.l;
/ • initialise i p i v o t , d • /
for <i * 0; i < diaension; i++)
<

ipivot [i] = i ;
roraax * 0.0;
for (j "« 0; j < dimension;

i f (roBmax < fabsCsti] [j])) roomax = f absCsCi] [j]) ;
i f (rosmax ==0.0)
{

iflag = 0;
^ roBmax = 1.0;

dCi] = rosmax;
}
/ * factorisat ion • /
for <k = 0; k < dimension-l; k++)

/ • determine pivot row, the roB istar * /
colmax = fabs(B[kKk])/d[k];
i s t a r « k;
for <i = k+1; i < dimension; i++)

anikod « fabsCwCi] tk]) /d[i] ;
i f (asikod > colmax)
{

colmax = asikod;
istar = i ;

}
i f (colmax == 0.0) i f l a g = 0;
else
{

i f (i s tar > k)
<

/ • make k the pivot roB by intercheuigeing
i t Bith the chosen roB i s t a r * /

iflag = -iflag;
i = i p i v o t [i s t a r] ;
ipivot[istar] = ip ivot [k] ;
ipivot[k] = i ;
temp = d [istar] ;
d [istar] = d[k];
d[k] = temp;
for (j = 0; j < dimension; j++)

temp = B [i 8 t a r] [j] ;
B [istar] [j] = B[k][j] ;

^ B[k][j] = temp;

/ * eliminate x[k] from roBS k + l . . . n * /
for (i = k+1; i < dimension; i++)

B[i][k] /= B[k][k];
ra t io = B[i] [k] ;
for (j = k+1; j < dimension; j++) B[i] [j] -= ratio*v[k] [j] ;

>
}

i f (B[dimension-l][dimension-l] == 0.0) i f l a g = 0;

log_covar[class] = (float)iflag;
for (i = 0; i < dimension; i++) log_covar[class] •= B [i] [i] ;

^ log_covar[class] = log(log_covar[class]);

inverse_matrix(class)/* find the inverse of a matrix * /
register int class;

register int i , j , k;

for (i = 0; i < dimension; i++)
for (j = 0; i < dimension; j++)

iB .covartc lass] [i] [j] = B.covar[c lass] [i] [j] ;

/ * compute elements of reduced matrix • /
for (k = 0; k < dimension; k++)
{ / * neB elements of pivot roB * /

for (j = 0; j < dimension; j++)
i f (j != k) iB_covar[class][k][j] /= iB_covar[class] [k] [k] ;

/ * element replacing pivot element » /
iB.covar[class][k][k] = 1.0/iB_covar[cla88][k][k];
/ • compute neB elements not in pivot roB or pivot column • /
for (i = 0; i < dimension; i++)

i f (i != k)
for (j = 0; i < dimension; j++)

i f (j != k)
iB.covar [class] [i] [j] = iw.covar [class] [i] [j]

322

- iw.covar[class][k][j]»iw_covar[class][i][k];
/ * compute replacement elements for

pivot column-except pivot element * /
f o r (i • 0; i < dimension; i++)

i f (i !« k)
iw_covar[class] [i] [k] -iw.covar[class] [k] [k] ;

/ * compute mahalanobis distimce of a d is t inct vector and a c luster * /
f loat nahalanol)is_distance(i, class)
register int i , c lass;

register int k, a, b;
f loat vector[DIHEISI0l3,

result[DIHEISIOI],

distance =0 .0 ;

for (k = 0; k < dimension; k++) result[k] » 0.0;

for (k » 0; k < dimension; k++)
vector[k] " (float)hist_ptr[i]->vec[k]-center[k] [class] ;

f o r (a = 0; a < dimension; a++)
for (b = 0; b < dimension; b++)

.result [a] += vector[b]*iw_covar[class] [b] [a] ;

for (k = 0; k < dimension; k++)
distance += result[k]»vector[k];

return(distance);

/ * * • * * • * * • • • * * * * * * • * * * * * * * * * * » • • • • • * • * • • * * • * • • • • • • * • • * * * * • * • * * • • • * • * * * • * • *
» You Jire reading i sodatal .c *
* Functions for second stage of the Global-Local c lustering algorithm. *
• * » • • • » • » • * * * • * * • * » * * * » • * * * * • * * * * * * * * * » » • • » * « » * * * * * * » • » • • • • • * * * » • * • * * * * * * /

• include "isodatal.h"

f loat distance_to_center();

/ *
print the s t a t i s t i c of clusters after each i t era t ion .
• /

p r i n t . s t a t i s t i c O
int i , j , k, class-,

sum.change;/* number of p ixe l changed center * /
f loat i n t e r . d , groups_var[DIHEISIOI];
s ta t i c int f i r s t . t i m e = ! , / • counter » /

last.count[HAX.CEITER];/• number of p ixe l i n previous run • /

printf("\t»**»» START WITH CEITERS **•**");
pr intf ("\n ");
f o r (class = 0; class < nos.center; class++)

pr int f (" cX2d " , c lass) ;
f o r (k = 0; k < dimension; k++)

p r i n t f ("\n") ; p r i n t f ("iC2d: " , k) ;
f o r (class = 0; class < nos.center; class++)

p r i n t f ("XS. I f , " , center [k] [class]);
}printf("\n");

printf("\t**** lUHBER OF OBJECTS PER CLUSTER **»*\n");
for (class = 0; class < nos.center; cla8S++)

pr in t f (" cX2d ", c lass);
printf("\n");
for (class = 0; class <• nos.center; class++)

printf("X6d " , count[class]);
printf("\n");

printf("\t**»** STAIDARD DEVIATIOI * * * » * ") ;
pr int f (" \n ");
for (class = 0; class < nos^^center; cla8s++)

pr in t f (" c%2d ", c lass) ;
for (k = 0; k < dimension; k++)

printf("\n"); printf("X2d: " . k) ;
for (class = 0; class < nos.center; class++)

pr in t f ("XS. I f , " , deviation [k] [class]);
}printf("\n");

printf("\t*»»»« IITER CLUSTER DISTAICE • • • » » \ n ") ;
for (class = 1; class < nos.center; class++)

pr int f (" X2d " , c lass) ;
printf("\n");

f o r (i = 0; i < nos.center- l ; i++)

p r i n t f (••X2d " , i) ;
for (class = 0; class < i ; class++) pr in t f (" ");

323

for (j = i+1; j < nos.center; j++)

get-Bithin_groups_var(i, j , groups.var);
inter.d » 0.0;
f o r (k » 0; k < diaension; k++)

ihter.d +« (((float)count[i3*(float)countCj])
•SQUARE(centerCk]Ci]-center[k]Lj3))
/((float)(count[i]+c6unt[j])•groups,var[k])

inter.d « sqrt(ihter.d);

printf("X5.If, ", inter.d);

printf("\n");

i f (first.tine)
</* first call of this function • /
for (i = 6; i < nos.center; i++)

last.count[i] = count[i];
first.tiae = 0;
else
{

suB.change * 0;
for (i « P; i < nos.center; i++)

suji.change += abs (last.count [i]-count [i]) ;
for (i = 0; i < nos.center; i++)

last.count [i] = count [i]-;
printf("Percentage of pixel transferred is X.2f\n",

100.0*(float)sUB.change/(float)(win.xsize^Hin_ysize));
}

/ •
assign vectors to the nearest center
• /

nearest.center.assignmentO

euclidean.assignnentO;
^et.cluster_paraiiieters();

euclidean.assignnent 0

register int i , class;
int Bin.class;/* the ninimum distance class * /
float distance, nin.distance;

for (class = 0; class < nos.center; class++)/^ initialise * /
count[class] = 0;

for (i = 0; i < num.distinct; i++)/* for a l l samples • /

i f (hist.ptr[i]->label < 0) continue;/* this is a outlier • /
min.class •= 0;/* initialise • /
min.distance = distance.to.center(i, 0);
for (class = 1; class < nos.center; class++)

distance = distance.to.center(i, class);
i f (distance < min.distsmce)
{

min.class = class;
min.distance = distance;

}
>
hist.ptr[i]->label = min.class;
counttmin.class] += hist.ptr[i]->freq;

/ •
remove any cluster smaller them the threshold.
threshold is defined in header f i l e .
• /

int discturd.clusterO
{/* discarded samples v i l l not be visit any more * /

register int i , class;
int end,/* position index of center l i s t end • /

discard = UICHAIGE,/* set to no discared cluster * /
curreht.center;/* nuraber of center currently exist * /

end = nos_center-l;/* last index of array * /
current.center = lios.center;
for (class = 0 ; class < current.center; class++)/* for a l l class * /

i f (count[class] < yin.xsize*Hin.ysize*THETA.I)/* discard * /

nos.discard++;
/ • keep visit points
for (i = 0; i < num.distinct; i++)

i f (hist_ptr[i]->label = class)
hist.ptr[i]^>label = -nos.discard;.

*/

324

i f (class < end)/* not the last center in l i s t * /
•ove_center(end, class);/* shuffle center*/

current.center—;/* one cluster less * /
end—;

>
i f (nos.center > current.center)
{

discard » CHAIGE;
printf("Discard Xd centersXn", nos.center-current.center);

nos.center = current.center;/* update * /
^ retum(discard);

fet.cluster.paraaeters()
/ * conputer center, sd, intraset distance, and overall Intraset distance * /
/ * counting of number of pixel s i l l be done in the reassignment routine * /

register int k, i , class;

for (k « 0; k < dimension; k++)
for (class = 0; class < nos.center; class++)

sum[k][class] = sum_sq[k][class] = 0.0;/* initialise * /

for (i » 0; i < num.distinct; i++)

class = hist.ptr[i]->label;
i f (class < 0) continue;/* outlier • /
for (k = 0; k < dimension; k++)/* sum a l l clusters * /

sum[k] [class] += (float)hist_ptr[i]->vec[k]*
(float)hist_ptr[i]->freq;

sum.8q[k] [class] += SqUARE((float)hist.ptr[i]->vec[k])*
^ (float)hist.ptr[i]->freq;

for (k = 0; k < dimension; k++)/* compute center mean * /
for (class = 0; class < nos.center; class++)

center[k] [class] = sura[k][class]/(float)count [class] ;

for (class = 0; class < nos.center; class++)/* standard deviation * /
for (k = 0; k < dimension; k++)

deviation[k][class] = ((float)count[class]*sum_sq[k][class]
-SQUARE(8um[k][class]))

/((float)count[class]*(float)(count[class]-1));
^ deviation[k] [class] = 8qrt(doviation[k] [class]);

for (class = 0; class < nos.center; class++)/* intraset distance * /
<

intra_d[clas8] = 0.0;
for (k = 0; k < dimension; k++)

intra.d[class] += ((float)count[class]*sum.sq[k] [class]
-SQUARE(sum[k][class]))

/((float)count[class]*(float)(count[class]-1));
intra.d[class] •= 2.0;/* intreiset distance, use unbaised var * /

^ /*intra.d[class] = sqrt(intra.d[class]);*/

overetll.id = 0.0;/* compute overall average vithin cluster distance * /
for (class = 0; class < nos.center; clas8++)

overall.id += intra.d[class];
overail.id /= (float)nos.center;

}

/*
split any clusters whose variance larger than threshold.
* /

int split.clusterO
register int class, k;
int end,/* position index of last center element * /

status = UICHAIGE,/* any split ? * /
current.center,/* number of center currently exist * /
max.channel;/* channel which has max deviation * /

float max.sd;/* max standard deviation * /

end = nos.center-l;
current.center = nos.center;/* take a record • /
for (class = 0; class < tios.center; class++)/* for a l l cluster * /

max.channel = 0 ; / * initialise * /
max.sd = deviation[0] [clstss] ;
for (k = 1; k < dimension; k++)/* find max sd • /

i f (deviati6n[k][class] > max.sd)
{

max.channel - k;
max.sd = deviation [k] [class] ;

>
i f (max.sd > theta.s) ; / * do nothing, follow on * /

325

else continue;/* not sat isfy for s p l i t t i n g * /

i f (nos.center <« init_nuH_center/2)
/ * i f (nos.center <= ini t .nua_center- l)* /

pr int f ("sp l i t c luster Xd\n", c lass) ;
spl i t (end, c lass , aax.channel);
status * CHAIGE;
current.center++;

^ end++;

/ • s p l i t even near l imi t * /
else i f (intra.d[cleuis] > o v e r a l l . i d

« * count[class] > 2*(Bin.xsize*Bin_ysize*THETA.I+l))

pr int f ("sp l i t c luster Xd\n", c lass) ;
spl i t (end, c lass , max.channel);
status » CHAIGE;
.current.center++;
end++;

}

nos.center » current.center;/* update * /

^ retum(statu8);

sp l i t (end, c lass , channel)/* s p l i t a cluster * /
in t end, /* posit ion index of last center * /

c la s s , / * Bhich c luster * /
^ channel;/* Bhich channel * /

register int k;
f loat center.plus[DIHEISIOI],

center.ninu8[DIHEISIOI] ;

for (k = 0; k < dimension; k++)/* compute neB centers • /

/ * i f (k == channel)*//* s p l i t on max sd channel * /
/*{*/
i f (deviation[k][class] > theta.s)
{/* compute neB cluster centers * /

center.plus[k] = center[k][class]+deviation[k][class]•GAHHA;
cehter.minus[k] = center[k][class]-deviation[k][class]*GAHHA;
i f (center.plus[k] > HAX.GREY)

center.plus[k] = HAX.GBEY;
pr int f ("Spl i t center out of range, reducedXn");

i f (center.minus[k] < HII.GREY)

center.minus[k] = HII.GREY;
^ pr int f ("Spl i t center out of range, increased\n");

/*}*/
else/* other channels unchange * /

center.plus[k] = center[k][class];
center.minus[k] = center[k][class];

>
/ * move center * /
for (k = 0; k < dimension; k++)

center[k][class] = center.plus[k]; /* insert into old posit ion « /
center[k] [end+1] = cianter_minus[k] ; / * append to end of l i s t * /

}

/*
compute Bi th in group variance.
* /

get .Bithin_groups.var(cl , c2, groups.var)
m t c l , c2;/* Bhich group * /
f loat *groups_var;

register int k;
f loat s s q l , ssq2;
/ *

Ref:Pearson, K. 1936
On the coefficient of r a c i a l l ikeness.
Biometrika 18, 105.
*/

for (k a 0; k < dimension; k++)

ssql = ((fl6at)count[cl]*sum.8q[k][cl]-SQUARE(sum[k][cl]))
/ (f loat) (count [cl]r-l);

ssq2 = ((float)count[c2]*sum.sq[k] [c2]-SQUARE(sum[k] [c2]))

326

/ (f lbat)(count[c2]- l) ;
group8_Tar[k] " (8sql+B»q2)

/<(float)count[cl]+(float)count Cc2]-2.0);

int compare(a, b)
IITEE.CLUST • * a , **b;
{/• ascending order of magnitude • /
i f ((•a)->distance > (»b)->distance) return(l) ;
else re turn(- l) ;
>
f loat distance_to_center(i, class)
register int i , c lass;

register int k;
f loat distance = 0 . 0 ;

for (k = 0; k < dimension; k++)
distance += SQUAEE((float)hist_ptr[i]->vec[k]-centerW [class]);

return(distance); /• squared Euclidean distance • /

move_center(from, to) /* update array centerOD. • /
register int from, to;

register int k;

for (k = 0; k < dimension; k++)
centerik] [to] = center[k] [f rom] ;

count[to] = count[from];
}

* You are reading i s o _ i o l . c •
» Functions to shoo the resul t , store any results generated by second *
* stage of the GlobeJ.-Local clustering algorithm. *
* And some auxi l iary functions. *
* K.S.LAU 13-8-90 *
• » • • * • • * * * * • * • • « • • * * * * • • • • • • • * * • • * * • • • • • • • * * * * * * * * * * * * * * * * * * • • • * * • • * * * * /

•include "isodatal.h"

/ • •
label p i x e l .
• * /

map_pixel_t6^histogram()
u.char vector[4], r ;
register int i , j , k, x i ;

for (i = 0; i < sin^ysize; i++)
for (j = 0; j < uin_xsize; j++)

for (k = 0; k < dimension; k++)

vector [k] = image [k] [i] [j] ;
r = vector[k]%cell_size;
vector[k] -= r ;

for (; k < 4; k++) vector[k] = 0;
x i = search(vector);
l a b e l [i] [j] = table [xi] . labe l ;

}

output.resultO

char *outputl = "/home/image/output/hiso.clus",
*output2 = "/home/image/output/hiso.map";

u_char buffer[HAX.YSIZE][HAX.XSIZE];
int i , j , a, b;
FILE • f l , *f2;

i f ((f l « fopen(output1, "B")) == lULL)
•{ f p r i n t f (stderr, "Cannot open output f i l e \ n ") ; e x i t (l) ; }
i f ((f2 = fopen(output2, "B")) == lULL)
{. f p r i n t f (stderr, "Cannot open output f i l e \n") ; e x i t (l) ; }

fBrite((char *)»header, sizeof(struct r a s t e r f i l e) , 1, f l) ;

for (i = 0; i < header.ras.height; i++)/^ i n i t i a l i s e » /
for (j = 0; i < header.ras.Bidth; j++)

buf fer [i j [j] = 0;

for (a = 0, i = top .y; i < top.y+Bin.ysize; a++, i + +) / « get value • /
for (b = 0, i = top_x; j < top.x+Bin.xsize; b++, j++)

buffer[i] [j] = center [OUT.CHAI] [label [al [b]] ;

327

for (i =« 0; i < header.rti8_height; i++)
fBrite((char *)*bnffer[i][0], s izeof(char), header.ras.oidth, f l) ;

printf("The clustered image is stored i n XsXn", outputl); f c lo8e (f l) ;

forite((char *)»no8_center, sizeof(int), 1, f2) ;
fBrite((char *)»di»en8ion, sizeof(int), 1, f2) ;
fBrite((char *)ktop_x, s izeof (int) , 1, f2) ;
fBrite((char »)*top_y, sizeof(int), 1, f2) ;
fBrite((char *)tBin_xsize, sizeof(int), 1, f2) ;
fBrite((char *)tBin_ysize, sizeof(int), 1, f2) ;
fBrite((char •)count, s i zeof (int) , nos.center, f2) ;
f o r (i = 0; i < nos.center; i++)

for (i " 0; j < dimension; j++)
fBrite((char •) » c e n t e r m [i] , sizeof (float), 1, f2) ;

f o r (i " 0; i < nos.center; i++)
f o r (j = 0; j < dimension; j++)

fBrite((char *) tdeviat ion[j] [i] , sizeof(float), 1, f2) ;
f o r (i " 0; i < Bin.yaize; i++)

fBrite((char •) t l abe l [i] [0] , s izeof(char), B in .xs ize , f2) ;

^rintf("The cluster map i s stored in X s W , output2); fc lose(f2);

8hoB_result()

int i , j ;

printf("CLUSTER RESULT\n");
for (i » 0; i < 20; i++)

printf("\n");
for (j = 0; j < 20; j++)

p r i n t f ("X3d " , label [i] [j]);

j r in t f (" \n") ;

quit(argv)
char •»argv;

fpr in t f (s tderr , "Usage: Is: interact ive , no optionVn", argv[0]);
e x i t (l) ;

:et_data()/* specify input f i l e names * /

char filename[DIHEISIOI][50];
int i , j ;
FILE *fIDIHEISIOI];
struct ras t er f i l e head[DIHEISIOI];

printf("Enter the number of channel to be used < 4, ");
scanf("Xd", Jtdimension);

for (i = 0; i < dimension; i++)
{

printf("Enter the channel filename Xd, " , i) ;
s<ianf("Xs", (char »)» f ilename[i] [0]) ;
f [i] = fopen((char •)»filename[i] [0] , "r");
demand(if [i] , Cannot open f i l e) ;

/ • store header i n global area, for la ter use • /
fread((char *)ftheader, sizeof(struct r a s t e r f i l e) , 1, f [0]) ;
reBind(f[0]);
for (i = 0; i < dimension; i++)

froad((char •)»head[i] , s izeof(struct r a s t e r f i l e) , 1, f [i]) ;
demand(header.ras.length = head[i] .ras. length,

^ Make sure the images has the same s ize and coordinates);

printf("The images s ize i s Xd\n", header.ras.sidth);
printf("Enter the Bindow Bidth (xsize), ");
scanf("Xd", kwin.xsize);
printf("Enter the BindoB height (ysize) , ");
8canf("Xd", tBin .ys ize) ;

printf("Enter the top l e f t BindoB coordinate of
the image to be processed,\n");

pr int f (" \ tx: "); scanf("7:d", t top.x);
pr int f (" \ ty : "); scanf("Xd", Jttop.y);

demand(head[0].ras.Bidth >= Bin.xsize+top.x,
The BindoB i s out of rangeX, please reduce s ize) ;

f o r (i = 0; i < dimension; i++)
f s eek(f [i] , (long)(top_y*head[i].ras.Bidth+top.x), 1);

f o r (i = 0; i < dimension; i++)

328

for <j •= 0; j < Bin .ys ize;

fraad((char *)»i»age[i] [j] [0] , s izeof (char), s in .xs i ze , f [i]) ;
^ f s e e k (f [i] , (long) (head[i] .ras_Bidth-Biii .x8ize), 1);,

for (i « 0; i < dimension; i++) f c l o s e (f [i]) ;

|et^paraBeters()

printf("Enter the naxiauM standard deviation of c luster , ");
8canf("iCf", *theta_s);
printf("Enter the BininuB inter center distance, ");
8canf("Xf", »theta_l); t h e t a . l * SQUARE (thota . l) ;
init .t iuo.center = nos,:center;/* set desired nuaber of centers * /

?et_objective_function_value()
/ • the value i s only a indicat ion, rather Beaningless * /

int i , c lass ,
di8Card_count[l!AX_CEITER];

f l oa t suB.covar, suiii_'entropy, Beight;

i f (nos.discafd > 0)
{

printf("Xd CLUSTER HAS BEEI DISCARD.\n", nos.discard);
f o r (class = 0; class < nos.discard; class++)

discard.count[class] = 0;
for (i = 0; i < nun.dist inct; i++)

i f (hist_ptr[i]->label < 0)
discard.count[-hist .ptr[i] ->label- l] += h is t .ptr [i] ->freq;

for (class = 0; class < nos.discard; class++)
pr in t f (" cX2d ", c lass);

printf ("\n");
for (class =0; class < nos.discard; class++)

printf("X5d, ", discard.count[class]);
^ printf ("\n");

sun.covar «= sun.entropy = 0.0;
for (i = 0; i < nos.center; i++)

Beight = (f loat)count[i] /(f loat)(Bin_xsize*Bin.ysize);
8un.covar += log.covar[i]•Beight;
sum_entropy += -2.0*Beight*log(Beight);

printf("SUM WEIGHTED iCOVARIAICEl X . l f \ n " , sun.covar);
printf("SUM EITROPY X . l f \ n " , sum.entropy);
jrintf("OBJECTIVE FUICTIDI VALUE IS X . l f \ n " , sun_covar+8un.ontropy);

/**************•*•••*•• •*•• •****•**•******•*****••*****•*•••*••*•«*•***•
* You are reading h icapl . c
* The f i r s t stage of Global-Local c lustering algorithm.
* Contains nachine depend code.
* To cluster Meteosat images(upto 3 channels)using histogram clustering
* Ref: A lOI-PARAHETRIC CLUSTERIIG SCHEME FOR LAIDSAT

P.M.IAREIDRA and H.GOLDBERG
PATTERI RECOGIITIOI Vol.9 pp. 207-215 1977

* K.S.LAU 4-9-90
**********************«**

• include "hicap.h"

•define CEITER.THRES 200/* cluster less than th is B i l l not be selected * /

int num.clus,/* nunber of clusters found * /
smoothsize;/* BindoB size for histogram smoothing • /

f loa t thresh; /* threshold for histogram smoothing * /

i n i t ia l .cent er8()
<
char ansBer[5];
int i , k,

done,
threshold;

f loa t mean[DIHEISI0I][HAX.R00t];
STAT 8tat[HAX.R00T];

printf("Enter the histogram compression r a t i o , ");
printf("must be 1 or poser of 2, ");
scanf("Xd", t c e l l . s i z e) ;
do
{

clear.tableO;/* initialise hashing table * /
done = get.hist.tableO;/* compute histogram * /

i f (done)
{

printf("Compression rat io i s Xd, " , c e l l . s i z e) ;
printf("do you Bant to increase further? ");
scanf("Xs", ansBer);

329

i f (ahSBer[0] = »y') done = !done;

i f Cidohe) c e l l . s i z e »= 2;/* double coapression rat io * /
} while Odone); /* coapress aore i f table i s f u l l » /
p r i n t f ("The coapression ra t io i s Sd\n", c e l L s i z e) ;
sort_histograa();

do

get.saoothing.paraaeterO;/* specify saoothing threshold * /
noraal ise . frequoncyOj/* noraalise frequency froa 0 to 1 • /
saooth.histograaO;
done « density.graphO ; / • val ley seeking clustering » /

i f (done)
<

get .c lu8ter_stat is t ic (s tat , aean, labe l) ;
printf("Do you Bant to run Bi th different parameters? ");

^ scanf("JU", ansBer);

else
{

puts("Find too aany c lusters , t ry again!");
ansserCO] = >.y>;

> while (ansBerM •= »n ') ;
/ •
printf("Please enter a threshold,\n");
printf("clusters less than th i s threshold B i l l not be selected, ");
scanf("Xd", tthreshold);
• /
threshold = CEITER.THRES;
printf("Centers Bith less than Xd points are not selected\n",

CEITER.THRES);
for (nos.center = i = 0; i < num_clus; i++)

{/• take doBn the aean of the clusters selected » /
i f (stat[i].num < threshold) continue;
for (k = 0; k < dimension; k++)

centerCk] [nos.center] = mean[k]Ci];
nos.center++;

for (i = 0; i < num.distinct; i++) hist_ptr[i] ->label =0;

/ * « *
Histogram compress use the top l e f t elements as the representive
elenents of the vectors f a l l in th i s c e l l .
* • • /

int g e t . h i s t . t a b l e O
u.char r , / * remainder * /

vector[4]; /* must be 4 bytes long • /
register int i , j , k;
int count,

empty,
done = TRUE,
key;

maxhash = succlen - 0;
for (i = 0; i < Bin .ys ize; i++)

for (j = 0; j < Bin.xs ize; j++)

for (k = 0; k < dimension; k++)
{/* map vector into histogram c e l l * /

vector [k] = image [k] [i] [j] ;
r = vector[k]Xcel l . s ize;
vector[k] -= r ;

for (; k < 4; k++) vector[k] = 0;
key> insert (vector);
i f (key < 0) return(!done);
f o r (k = 0; k < dimension; k++)/« put data * /

table [key] .vec[k] = vector[k] ;
table[key].freq++;/* count frequency • /

aax.freq = count = empty = 0;
for (i = 0; i < TABLESIZE; i++)
•{/• f ind maximum and capacity » /

count += table[i] . freq;
i f (tab le [i] . f req = 0) empty++;
i f (max.freq < table[i] . freq) max.freq = tab le [i] . f req;
tab le [i] . l abe l = - 1 ; / * i n i t i a l i s e labe l » /

}printf("\n");
hum.distinct = TABLESIZE-enpty;
printf("The node i s . . ") ;
for (i = 0; i < TABLESIZE; i++)

i f (table[i] . freq = nax.freq)

for (j = 0; j < dimension; j++)
pr in t f ("Xd " , table[i] .vec[j]) ;

p r i n t f ("frequency Xd\n", meix.f req) ;

330

http://ity.gr

printf("Hear frequency i s X.2f \n", (float)count/(float)nu«_distinct);
printf("luBber of d i s t inct vector %d, ", TABLESIZE-eapty);
printf ("Total Xd\n", count);
printf("Loading factor X.2f \n", 1.0-(float)eapty/(float)TABLESIZE);
prihtf("Average probe length X.2f \n", (float)succlen/(float)count);
printf("Longest hash Xd\n", Haxhash);

retum(done);

c l e a r . t a b l e O

register int i , *to_int;

for (i » 0; i < TABLESIZE; i++)

t o . i n t " (int *)table[i] .vec;
to_int[0] = 0;
tab le [i] . f req = 0;

>
noraalise.frequencyO

int i ;

for (i = 0; i < TABLESIZE; i++)
{/• nomalise to become probablity * /

i f (t a b l e [i l . f r e a == 0) continue;
tableCi].prob = (f loat)table[i] . freq/(f loat)Bax_freq;

>
int inser t (va l) /* f ind a empty place to put data * /
u_char val [];

register int h i , h2, t r y , len;

try = h i = hash!(val);
h2 = hash2(val);
len = 1;
do
<

i f (table[try] . freq == 0 I I f ind(try , val))

succlen += len;
break;

/ * TABLESIZE and rehash value should be re la t ive ly prime * /
/ * var iat ion of double rehashing, eliminate clustering * /
try = (try+h2)XTABLESIZE;
len++;

} Bhi le (try != h i) ;

i f (len > maxhash) maxhash = l en ; /* record the longest hash » /
i f (len >= TABLESIZE) r e t u m (- l) ;
else return(try);

int search(val)/* search vector * /
register u.char v a l Q ;

register int h i , h2, t r y ;
int len = 0;

t r y = h i = hashKval) ;
h2 = hash2(val);
do
{

i f (f ind(try , val)) break;
/ * TABLESIZE and rehash value should be re la t ive ly prime * /
/ • variat ion of double rehashing, eliminate clustering * /
t r y = (try+h2)XTABLESIZE;
len++;
i f (len = maxhash) r e t u r n (- l) ; / * does not exist * /

} Bhile (try != h i) ;

re tum(try) ;

int f ind (try, v a l) / * same vector already, here * /
register int t r y ;
register u.char v a l Q ;

register u . int *a , *b;
"register int same = TRUE;

a = (u. int *)val;
b = (u. int *)table[try] .vec;
i f (*a != *b) same = FALSE;

331

return(sase);
>
int haahKval)
register u_ch&r v a l D ;

register u_int *int_ptr;
register int remainder;

i n t . p t r = -(u_int *) v a l ; / * concatenate a l l channels value * /
remainder " *int_ptr X TABLESIZE;

return(remainder);
}

int hash2(val)/* rehash Bhen c o l l i s i o n occurred * /
register u.char v a l D ;

register int i ;
register u^int • i n t . p t r ;
u.char carry[43;

i n t . p t r >= (u_iht •)carry;
• i n t . p t r = 0;
for (i = 0; i < dimension; i++)/* accumulate the remainder » /

carry [0] = carry [1] = v a l [i] ;
^ • i n t . p t r X= TABLESIZE;

retum((int)»int_ptr);

8ort_histogram()

int i . j ;
s ta t ic int tablecompO;

h i s t . p t r = (HIST.TABLE •*)calloc((u_int)num_distinct,
sizeof(HIST.TABLE));

demand(hist.ptr, cal loc fa i l ed) ;
for (i = j = b; i < TABLESIZE; i++)

i f (table[i] ; freq > 0) hist.ptr[j++] = t t a b l e [i] ;
qsort((char *)h i s t .p tr , num_distinct, sizeof(HIST.TABLE *) , tablecomp);
for (i •= 0; i < num.distinct; i++)/* write f i l e index » /

^ hist .ptr[i] ->fpos = i ;

s ta t ic int tablecomp(i, j)
HIST.TABLE • * i , * * j ;

u_int *a, * b ; / » ascending order • /

a = (u. int ») (* i) ->vec;
b = (u. int *)(*j)->vec;
i f (•a > •b) re turn(l) ;
else return(-1);

^et.smoothing^parameterO

char answer [10];

thresh = 0.0;/* default no smoothing * /
smoothsize " 3;'/* minimum smooth size * /
printf("Do you want to smooth the histogram ? ");
scanf("Xs", answer);
i f (answer[0] != 'n')

printf("Enter the probablity threshold for smoothing, 0 to 1 ");
scanf("Xf", tthresh);
printf("Enter the window size for histogram smoothing, 3 , 5 , 7 . . . ")
scanf("Xd", tsmoothsize);

>
/**

» You are reading smooth2.c •
• Functions to smooth the histogram generated by h icap l . c •
• leighborhood s ize are 3 ,5 ,7 . . . e t c . *
* K.S.LAU 13-9-90 «
* » » * • • • » » • • • • • • » * • • • • • • * » » » * * * • • • • * • » * * » » » • » * * * • * • * » » « » » » * * * * • » • * • * • • • /

finclude "hicap.h"

smooth.hi8togram()

u.char p lusof f [4] ; /» resultant vector(offseted) * /
iht i , j , k,

x i . x j ,
l e v e l i / * l eve l = 0, for smoothsize = 3 * /

332

•axneigh;/* nunber of elenents * /
f l o a t sun,

Bsize ;

VECTOR •offset;
for (level « 1, i » 3; i < snoothsizo; l+=2) level++;
ssize ' pos((double}sBoothsize, (double)dinension);

•axneigh = (int)ssize -1;
offset F (VECTOR *)calloc((u.int)naJcneigh, (u.int)sizeof (VECTOR));
denand(offset, offset calloc fa i l) ;

/ • generate offset vector table • /
offset_table(sBoothsize, l e v e l , naxneigh, offset);

for (i " 0; i < nun.distinct; i++)
{. I* conpute nezm for each distinct vector • /

xi « h i8 t_ptr [i] - tab le ;
/ • snooth only cel l with frequency loser than thresh * /

i f (tableCxi].prob > thresh) continue;

SUB = 0.0;
sun += tableCxi].prob;
for (j » 0; j < Baxneigh; j++)
{/* find a l l neighbor • /

f o r (k = 0; k < 4; k++)
plnsoffCk] »• hist_ptr[i]->vec[k]+offset[j].vec[k];

xj = search(plusoff);
^ i f (xj >= 0) SUB += table[xj].prob;/• found • /

table[xi].prob = sun/ssize;

free((char *)offset);

offset_table(size, celldist, naxneigh, off)
int size,/* sindoD size * /

celldist , /• greatest cel l difference from center • /
Baxneigh;/• number of neighbor • / VECTOR •off;

char start, count;
i n t i , j , cycle, period, channel;

for (i = 0; i < maxneigh; i++)/* initialise * /
for (j = 0; j < 4; j++)

off [i] . vec [j] = 0;

for (channel = 0; channel < dimension; channel++)
{ / • s tar t n i t h channel 0 * /

s tar t = celldist*cell_size;
count = s t a r t ;
period = (int)poB((double)size, (double)(dinension-channel-D);
cycle = period;

for (i = 0; i < maxneigh/2; i++)

i f (cycle >= period)

count += cell.size;
cycle = 0;

cycie++;
i f (count > start) count = -start;
off[i].vec[channel] = count;

for (i = 0; i < maxneigh/2; i++)/^ another half • /
for (j = 0; j < dimension; j++)

^ off[Baxneigh-l-i].vec[j] = .-off[i] .vec[j];

/ * * • • • • • • • • • • * • • • • • • * • • • • • • • • • • • • * • * • * • • • • • • • * * •
* You are reading graph2.c •
* This f i l e contains functions of the valley seeking •
* clustering algorithm shich used to cluster the histogram. •
* Functions to construct directed graph. *
* graph.c by K.S.LAU 2-10-90 •
• * • • • • • • • • • • • * • » * • • • • • • » • » * • * * • • • • • • • • • • • • • /

•include "hicap.h"
•include "graph.h"

static int »8et,/* vectors in the same cluster • /
•stack,/• for depth first search * /
count.node,/• nunber of node used * /
niuncalloc;/^ hunber of cal l to calloc • /

static TREE.HEAD •nes, •old;/* for depth f irst search • /
static TREE •freelist[HAX.ROOT];/* for freeing of node • /

333

/•
Valley seeking algorithn.

int dens i ty^gr^hO

int i , done » TRUE,
•axneigh,/* aax nuMber oi neigh • /
huaneigh,
x i , x j ;

u . in t neighlist[IOS.IEIGH];/* contain the neighbors * /
f loa t gradient;
TREE *teBp;
TREE.HEAD «vertex;
LIST 'head " l U L L , / * head of root l i s t • /

•root;
VECTOR offset[iaS.IEIGH];
s ta t i c LIST rl ist[MAX.ROOT];/• for root head l ink l i s t » /

nua.clus = count.node « nuacalloc = 0;/* i n i t i a l i s e * /
yertex = (TREE.HEAD *)cal loc((u. int)nua.di8t inct , sizeof(TBEE.HEAD));
deaand(vertex, vertex ca l loc f a i l) ;
set » (int *)cal loc((u_int)nun.dist inct , sizeof(int>);
deaand(set, set ca l loc f a i l) ;
s t a c k " (int *)calloc((u_int)nuD_distinct, s izeof (in t)) ;
deaand(stack, stack cal loc f a i l) ;

Baxneigh = (int)poB(3.0, (double)diaension)-l;
offset_table(3, 1, aaxneigh, offset);

if or (i = 0; i < nura.distinct; i++)
•C / * for every d i s t inct vectors * /

x i = h i s t_ptr [i] - table ;
/ • f ind the aaxiaun density gradient of a neighbourhood * /

get.numneigh.maxgrad(Baxneigh, hist.ptr[i!l->vec, x i , » x j ,
ne ighl i s t , tnumneigh, tgradient, offset);

i f (nunneigh = 0)
{ / * th is i s a root * /

i f (!(nun.clus < HAX.ROOT))
{ f inish(vertex, set, stack); returnCdone); }

root = trlist[nuB.clus++3;
root->key = x i ;

head = f ront_o f . l i s t (roo t , head);
continue;

i f (gradient < 0.0)
{/• th i s i s a root » /

i f (!(num.clus < HAX.ROOT))
i f inish(vertex, set, stack); return(!done); }

root = trlist[num_clus++];
root->key = x i ;
head = f r o n t . o f . l i s t (r o o t , head);

else i f (gradient > 0.0)
{ / * l i n k xj to x i * /

temp = get .nodeO;
temp->key = x i ;
vertex[table[xj].fpos].node
= front.of_tree(temp, vertex[table[xj].fpos].node);

else / * gradient = 0 * /

xj = avoid.cycle(vertex, thead, x i , ne ighl i s t ,
numneigh, r l i s t) ;

switch (xj)

case -1 :
break;

case -2:
f inish(vertex, set , stack);
retuirnddone);
break;

default:
/ » l ink xj to x i * /
temp = get.nodeO;
tenp->key = x i ;
vertex[table[xj] .fpos] .node
= front.of.tree(temp, vertex[table[xj].fpos].node);
break;

}
>
get .cluster. label(vertex, head);

f inish(vertex, set , stack);
return(done);

get.numneighjsaxgrad(maxneigh, me, x i , x j , ne ighl i s t , numneigh, gradient, off)

334

u.char *me;
int x i , *xj,

•axneigh,
•nuaneigh;

n_int neighlist • ;
float *gradient;
VECTOR off [] ;

u.char •to.charl, • ' tcchara;
u.int plusoff;
int i . j .

•ax.neigh;
float aax.grad;

•nuroeigh » 0; «ax.grad = SMALL;
to.charl " (u.char *)tplus6ff;
for (i = 0; i < aaxneigh; i++)
</* for a l l possible neighbor * /

for (j " 0; j < 4; to.charlCj] « meCjl+off [i] .vecCj];
i f ((*xj = search(to_charl)) < 0) continue;/* not exist * /
•gradient «= getjgra:dient(xi, •xj);

(•ax.grad < •gradient)

•ax.grad » ^gradient;
^ aax.neigh « •xj;

to.char2 " (u.char •)»neighliBt[^nu»meigh];/• get neighbor * /
for (j = 0; j < 4; j++) to.char2[j] = table[*xj] .vec[j];

^ (*nuaneigh)++;.

*gradient = nax.grad;
•xj = Kax.neigh;

finish(vertex, set, stack)/^ free a l l memory when finish * /
TREE_HEAD •vertex;
int •set, •stack;

free((char •)vertex); free((char •)set);
free((char •)stack); free.nodeO;
}

TREE •get.nodeO/^ get some memory • /

int s ize l ; / • the number of elements get each call • /
static TREE •head;

sizel = num.distinct;
i f (count.node >= sizel) count.node = ©;/• reset • /
i f (count.node = 0)

head = (TREE •)calloc((u.int)sizel, sizeof(TREE));
demand(head, get.node fa i l) ;
demand(numcalloc < MAX.ROOT, freelist overflow);
freelist[numcalloc++] = head;

count.node++;

return(theadCcourit^node-l]);

free.nodeO

int i ;

for (i = 0; i < numcalloc; i++) free((char •)freelist[i]);

/ • avoid forming directed cycle • /
int avoid.cycle(vertex, root.head, x i , neighlist, numneigh, r l is t)
int x i ,

numneigh;
u.int neighlist • ;
LIST ••root.head,/• point to head of root l i s t • /

r l i s t • ;
TREE.HEAD •vertex;
int i , count = 0,

card,
xj;

LIST •pi.head,
•node,
l i s t [lOS.IEIQH];

pi.head = lULL; / • initialize * /
for (i » 0; i < numneigh; i++)
{/* for a l l neighbor of xi • /

xj = searchUu.char •)»neighli8t[i]);
i f (get.gradient(xi, xj) == 0.0)
•{/• construct set p i * /

demand(count < IOS_IEldH, avoid cycle fa i l) ;

335

node = tlis.t [count++] ;
node->key = xj;

^ pi.head = front.of.list(node, pi.head);

/ * eliminate xj that has a path to x i * /
eliminate(vertex, ftpi.head, xi);
card « check_cardinality(root.head, pi.head, x i , r l i s t) ;
switch (card)

case - 1 : return(-2); break;/* return and try again * /
^ case 0: return(-l); break;/* return and do nothing * /

return(minimum_di8tance.node(pi.head, x i , neighlist, numneigh));

/ * eliminate path that already exists * /
eliminate(vertex, pi.head, xi)
int . x i ;
LIST **pi.head;
TEEE.HEAD •vertex;

/ • search tree with xi as a node for any path • /
int stack.pos, num;
TREE_HEAD *temp;
TKEE •another;

/ * delete node in trees • /
stack.pos = num = 0;
/ • xi is not a parent node yet * /
i f ((another = find_alone.node(tvertex[table[xi].fpos])) == lULL)

return;
8tart.depth.first(vertex, tstack.pos, tnum, x i , another);
do

temp = depth.fir8t.8earch(vertex, tstack.pos, tnum);
old = new;
new = temp;

} while (stack.pos != 1);

check.cycle(pi.head, num);
reset_tree(vertex, num); / * reset the tree status * /

/ • check number of nodes in a tree * /
int check.cardinality(root.head, pi.head, x i , r l ist)
int x i ;
LIST *pi.head, **root.head, r l is t • ;

int count;
LIST •node;

count = 0;
node = pi.head;
while (node != lULL)
i / • count number of elements • /

++count;
node = node->next;

}
i f (count == 0)
•C / • made xi a root • /

i f (!(num.clus < HAX.ROOT)) return(-l);
node = tr l i s t Cnum.clu8++];
node->key = xi ;
•root.hcad = front.of_list(node,••root.head);

}
return(count);

check_cycle(pi.head, num)
int num;
LIST ••pi.head;

int i ;
LIST •this, •last, dummy;

dummy.next = •pi.head;
for (i =• 0; i < num; i++)
{ / • for a l l node in this branch • /

this = dummy.next;
last - tdummy;
while (this != lULL)
i / • for a l l node in set pi • /

i f (setCi] == this->key)
{ / • delete an element • /

last->next = thi8->next;
break;

last = this;

336

th i s = this->next;
^ }

*pi_he&d » duaay.next; / * renes the head » /

/ * f ind the closest node * /
int •iniaua_distance_node(pi_head, x i , ne ighl i s t , nuiineigh)
int x i ,

niutneigh;
n . in t ne ighl i s t • ;
LIST •pi .head;
int i , f i r s t = TRUE,

• in .ne igh ,

f loat «in_dist , d i s t ;
LIST • t h i s ;

f o r (i •= 0; i < nuwieigh; i++)
{ / • for a l l node in neighborhood l i s t • /

xj » search«u_char •Xtne ighl i s tCi]) ;
this » pi_head;
shi le (this != lULL)

i f (this->key «> xj)
{ / • compare distance • /

i f (f i r s t)
{ / • i n i t i a l i s e • /

min.dist = distance(xi , x j) ;
min.neigh = x j ;

f i r s t = FALSE;

else
{

d i s t = distance(xi , x j) ;
i f (min_dist > dis t)

{
min.dist = d i s t ;
min.neigh = x j ;

}
}
th is = this->next;

}

return(min.neigh);

/ • trace a l l node in a tree * /
get .c luster. label(vertex, root.head)
TREE.HEAD •vertex;
LIST *root^head;
{
int i ,

count,/* check result * /
stack.pos,
num,
labe l ;

LIST »this;
TREE.HEAD *temp;
TREE *another;

count = labe l =0; /* inva l id label are -1 * /
th i s = root.head;
while (this •= TOLL)
{ / * search a l l trees with known root * /

stack.pos = num ? 0;
another = find.alone.node(tvertex[table[thiB->key].fpos]);
i f (another == lULL)
{ / * single node • /

tableCthis->key].label ?= label++;
th i s = this->next;

count++;
continue;

s tart .depth.f irst (vertex, ftstack.pos, Jtnum, this->key, another);
do

temp = depth.first .search(vortex, tstack.pos, tnum);
old = new;
new = temp;

} while (stack.pos != 1);
this = this->next;
for (i = 0; i < num; i++) table [se t [i]] . labe l = labe l ;
label++;

^ count += num;

demand(count ~ num.distinct, graph construction error);

337

f loat get_gradient(xi, xj)
int x i , x j ;

f loat grad;

grad ' (table[xj] .prob-tablo[xi] .prob)/distance(xi , x j) ;

ratarn(grad);

f loat distanceCxi, xj)
int x i , x j ;

int i ;
f loat d i s t ;

d i s t K 0.0;/* square Euclidean distance * /
for (1 = 0; i . < dimension; i++)

dist += SQUARE((float)table[xi] .vec[i]-(f loat)table[xj] .vec[i])

re tum(sqrt (d is t)) ;

s ta t ic
re8et_tr.ee(yertex, nu«)
int nuji;
TREE_HEAD •vertex;

int i ;
TREE *thi8;

for (i = 0; i < nuo; i++)
< / • reset a l l status • /

t h i s = vertex[table[set[i]] .fpos] .node;
ohi le (this != TOLL)
{

this->status = lOTVISIT;
th is = this->ne'xt;

}
>

/ • i n i t i a l i s e depth f i r s t search • /
s ta t ic
s tart .depth . f i rs t (yertex i stack.pos, niim, root, node)
int •stack.pos, •nuo;
int root;
TREE.HEAD •vertex;
TREE •node;

stack[(*stack.pos)++] = root; / • put root to stack • /
set[(•num)++] = root; / • put root to cluster • /
stack[(^stack.po8)++] = node->key; / • put node to stack * /
set[(^nun)++] = node->key; / • put node to cluster • /
node->statU8 = VISIT; / • v i s i t node * /
new = Jtvertex[table[node->key] .fpos] ; / • for back track • /
old = tvertex[table[root].fpos]; / • for back track • /

TREE.HEAD •depth.first .search(vertex, stack.pos, nuo)
in t •stack.pos, •nuo;
TREE.HEAD •vertex;

TREE •node;

i f ((node = depth.first .next(vertex, stack.pos)) = TOLL)
retum(TOLL);

stack[(^stack.pos)++] = node->key;
set[(•nun)**] = node->key;
node->status ? VISIT;

return (tvertex [table [!node->key] .fpos]);

TREE • depth.first .next(vertex, stack.pos)
int •stack.pos;
TREE.HEAD •vertex;
i / • f o r directed graph • /
TREE •node;

if((node = find.alone.node(new)) == TOLL)

while(node == TOLL)
{

/ • delete stack • /
•stack.pos -= 2;.
new = tvertex[table[stack[•stack.pos]].fpos];
(•8tack.pos)++;
node = find.alohe.hode(new);

338

i f (•stack.jpos 1 tk node »= lULL) return (lULL);

>

return(node);

s ta t i c
TREE * find.alone.node(head)
TREE.HEAD ihead;

TREE *this ;

th i s » head->node;
sh i l e (th i s != lULL)
{

i f (this->status »= lOTVISIT) re tum(th is) ;
th i s = thi8->next;

^ return(TOLL);

s ta t i c
LIST • front .of . l i s t (new, head)
LIST •neB, •head;

neB->next = head;
head - neB;

retum(head);

s ta t i c
TREE •front_of_tree(neB, l i s t)
TREE •neB, • l i s t ;
neB->next = l i s t ;
l i s t = neB;

r e t u m (l i s t) ;

/••••••*«*••••«••••*•**••**••*•••****•**•••*••**••**•••*••*••••••••
• You are reading outputl .c •
• Functions to obtain cluster s ta t i s t i c s generate by graphl.c •
• K.S.LAU 8-10=90 •
• /

• include "hicap.h"
•include "graph.h"
•include "output.h"

get_c luster . s tat i s t ic (s tat , nean, label)
STAT 8tat[HAX_R00T];
f loat Bean n[MAX.ROOT];
char labein[MAX.XSIZE];

u.char i,/* remainder to Bap vector • /
• to .char ,
vector[4];

register int i , j , k, a, b;
int x i ,

shoB,/^ number of cluster to be print on screen • /
c lass , index,
numcell[MAX.ROOT];/• number of d i s t inct vector in each cluster • /

f loat i n t r a . d , i n t e r . d ,
intra.sum, inter.sum,
sd,
graup.var[DIMEISIOI];

printf("class numpix numcell ");
f o r (i = 0; i < dimension; i++) pr in t f ("mean[W] ", i) ;
pr int f (" intra , d i s t . ");
f o r (i = 0; i < dimension; i++) printf("8d[Xd] " , i) ;pr int f (" \n") ;

to.char = (u.char •) s t a t ; A i n i t i t a l i s e • /
f o r (i = 0; i < sizeof(STAT)^MAX.EOOT; i++) to .char[i] = 0;
f o r (i = 0; i < MAX.ROOT; i++) numcell[i] = 0;

f o r (i = 0; i < TABLESIZE; i++)/^ count c luster 's d i s t inct vector • /
i f (tab le [i] . l abe l >= 0) numcell[table[i].label]++;

for (a = 0, i = top.y; i < top.y+Bin.ysize; a++, i++)
for (b = 0, j = top_x; j < top.x+Bin.xsize; b++, j++)
{/• obtain the labe l for each pixel • /

for (k = 0; k < dimensloh; k++)
{/• map the pixel into histogram • /

vector[k] = image[k][a][b];
r = vector[k]Xcell_size;
vector [k] -= r ;

339

}
for (; k < 4; k++) vector[k] = 0;
x i = 8«arch(vector);
label[a][b] ' tab le [x i] . l abe l ;

}

f o r (i » 0; i < Bin.ys ize; i++)
f o r (j = 0; j < Bin_xsize;
{/• coapute Stat for each clusters * /

index » l a b e l [i] [j] ;
for (k = 0; k < diaension; k++)

Stat [index]. suaCk] += <float)iaage[k] [i] [j] ;
8tat[index].Bsq[k] +=

^ SQUARE((float)iBage[k][i][j]);

Stat[index].nuB++;

for (i = 0; i < nuB.cltts; i++)/* coapute cluster aean • /
f o r (j » 0; j < diaension;

aean[j][i] " 8tat[i] . sua[j] / (f loat)s tat[i] .nua;

intra_sua = 0 . 0 ;
for (i = 0; i < nua.clus; i++)

printf("X3d, X8d, X8d. 3, s tat [i] .nua, nuace l l [i]) ;
f o r (j = 0; j < dimension; j++)

printf ("X8.If , ", aean[j][i]) ;
i n t r a . d = intra_distance(stat[i]);
p r i n t f ("%8.If ", sqrt(intra;.d));
intra.sum += i n t r a . d ;
for (k = 0; k < dimension; k++)

sd = ((f loat)stat[i] .num*stat[i] .ssq[k]
-SQUARE(stat[i] .sum[k]))/

SQUARE((float)stat[i] .num);
printf("%6.If ", sqrt(sd));

}printf("\n");

p r i n t f ("SUM IITRASET DISTAICE 5i5.2f\n\n", intra_8um);

shoB = (nura.clU8 > LIMIT) ? LIMIT : num.clus;
i f (shoB != nura.clus)

printf("Only the f i r s t %d clusters are shown.\n", LIMIT);
printf("IITER CLUSTER DISTAlCE\n");printf(" ");
f o r (class = 1; class < shoB; cla8s++)

printf("X4d " , c lass);
printf ("\n");

inter.sum = 0 . 0 ;
f o r (i = 0; i < shoB-1; i++)

printf("X2d ", i) ;
for (class = 0; class < i ; cla8S++) pr int f (" ");
f o r (j = i+1; j < shoB; j++)

get.Bithin.gfoups.varieuice(i, j , s ta t , group.var) ;
i n t e r . d =0 .0 ;
for (k = 0; k < dimension; k++)

i n t e r . d += (((f loat)stat[i] .num*(float)stat[j] .num)
*SQUARE(mean[k] [i]-mean[k] [j]))

/((float)(stat[i].num+stat[j].num)
•group.var[k]);

i n t e r . d = sqrt (inter .d) ;
inter.sum += in ter .d ;
printf ("X6.If , ", in ter .d) ;

printf ("\n");

jrintf("S0M IITER CLUSTER DISTAICE XS.2f\n\n", inter.sum);

get_Bithin_groups_variance(cl, c2, s tat , group.var)
m t c l , c2; /* Bhich group * /
STAT »8tat;
f loa t »group_var;

register int k;
f loa t s s q l , ssq2;
/ * • • • * * * • • • • • • * • • * * * * * * • • * • • • * • * * • * • • • • * • * * • • • • • • * • • « * • • * * • • *

Ref:Pearson, K. 1936 '
On the coefficient of r a c i a l l ikeness.
Bioraetrika 18, 105.

**/

for (k = 0; k < dimension; k++)

ssql = ((f loat)stat[c l] .num*stat[cl] .S8q[k]-SQUARE(stat[cl] .sum[k]))
/ (f loat)(stat[cl] .num-1);

340

ssq2 •= <(float)stat[c2] .nua*stat[c2] .S8q[k]-S(3UARE(statCc2] .sun
/ (f loat) (stat[c2] .nun-1);

group.Yar[k] = (8sql+ssq2)
/((float)stat[cl].num+(float)stat[c2].nuB-2.0);

f loat intra_di8tance(8ub)
STAT sub;
{
int i ;
f loat sun = 0.0;
i f (sub.nun == 1) return(O.O);

f o r (i • 0; i < dinension; i++)
sun +- ((float)sub.nun • sub.ssqCi] - SQUABE(sub.sun[i]))

/ ((f loat)8ub.nu» • ((float)8ub.nun-1.0));

return(2.0*sun);

341

Appendix I

Programs of the Spatial-Spectral
Clustering Algorithm

/•*••*•**»•••***•»*•••••****»•»»•••»••««««««•»*»»*•••••»»»•*••••••*******
* The Spatial-Spectral, c lustering algorithm (bottom-up approach)
* includes:
* 1) bmirsl .c
* 2) buseg2.c
* 3) bhc3.c
* 4) bu.h
* bmirsl .c and buseg2.c i s to perform bottom-up segmentation, and
* segments are store i n a f i l e , th is f i l e i s input to bhc3.c and the
* segments clustered.
*
* The Spatied-Spectral clustering algorithm (top-doon approach)
* includes:
* 1) rs t3 .c
* 2) mffl3.c
* 3) tdsegS.c
* 4) bhc3.c
* The mst algorithm i s not included because i t i s a s impli f icat ion
» of the r s t3 . c
* Use r s ta . c to construct a CEST, then store spanning tree in a f i l e .
* mm3.c read a spanning tree f i l e , and part i t ion i t using minimax method
* the removed l inks and the spanning tree i s stored in a f i l e .
* tdseg3.c read i n a f i l e created by either rst3 .c or mm3.c and generate
* a user specif ied number of segnents then store th is segments in a f i l e
* bhcS.c read a f i l e generated by tdsegS.c and cluter the segments.
* « *

* You are reading c luster .h *
**/

tinclude <malloc.h>
•include <8tdio.h>
•include <math.h>
•include <pixrect/pixrect_hs.h>

•define
•define
•define
•define

DIHEISIQI
HAX_XSIZE
1IAX_YSIZE
HAX.CLUS

•define DUPLICATE
•define UIIQUE

•define lOTVISIT
•define VISIT
•define TMPVISIT

3
128
128
15

1
0

0
1
2

/ * meucimum image size * /

/ * f ind single node * /

/ * depth f i r s t search » /

•define SQUARE(x) ((x)»(x)) / * macro for square * /
•define demand(fact, remark) {\

i f (!(fact)) .{\
fpr int f (s tderr , "demand not met: fac t \n") ; \
fpr int f (s tderr , "remark\n");\
e x i t (l) ! \

}\

/•••••••*******»»•»***••**»**»»«»•«»«*•**•»»••**•**•*•*******•*••***
• You are reading bu.h •
* * * * * * * * * • • * * * • • • * * • • * • • * * • • • * • * * • * * * * * * * « * * * * * * * • * * * • • * * « * * • * * • * • * /

•include '<string.h>
•include <malloc.h>
•include <stdio.h>
•include <math.h>
•include <pixrect/pixrect_hs.h>

342

•define ROOT l / » labe l for root * /
•define IRQOT !ROOT
•define VISIT 1 / * depth f i r s t search » /
•define lOTVISIT 0
•define MAX_XSIZE 128
•define HAX.YSIZE 128 / • Baxinim inage size * /

/ * * * * • * • • • « « • • • * « * « • • • • * • « • STRUCTURE DEFIIITIOI « • • • • • • » • * • • • • » » » * » » • /
typedef struct l i n k {

int nodel,node2;
f loa t weight;
struct l i n k 'next;
struct l i n k ' l a s t ;
struct l i n k *other;

}LIII;

typedef struct tree {
int node.pos;
struct tree *next;
char status;

}TREE;

typedef struct {
int, node.tag;
TREE •node;

>LIST_HEAD;

typedef struct {
f l oa t sun[DIHEISIOI];
int nun.vec;

>STAT;

/ • * * * * • * • « • • * • * • * • • * * « « • • • * * STRUCTURES DECLARAIOI * • • * * * • * * • * • * * * * * • * * • /
typedef struct tree {
int node.pos;
struct tree *next;
char status;
}TREE; / * nenory i s allocated in order of declaration » /

typedef struct <
int node.tag;
struct tree *node;
}LIST_HEAD;

typedef struct {
int nodel;
iht node2;
}UIH1UE_LIIK;

typedef struct <
UIiqUE_LIIK node;
f loa t weight; / * interset distance of segments * /
>LIIK;

typedef struct •£
int mm_node;
f loat var;
char root;
}HIIIKAX_IODE;/» for minimax only • /

typedef struct {
f loa t sumCDIHEISIOI];
f loa t ssqCDIMEISIDI];
int num_vec;
int num_seg;
}IODE_HTREE;/* for minimax only * /

typedef struct l i s t {
UIiqUE_LIIK node;
f loa t weight;

struct l i s t *next;
struct l i s t *last;
H I S T ;

typedef struct •£
f loat sumCDIHEISIOI] ;
f loat ssqCDIHEISIOI];
int num_vec;
}STAT;

/ * * * • * * * * * • • * * * * * * * * * * * * * * * * FUICTIOI PROTOTYPES **********************/
/ » FOR COISTRUCTIIG RST AID SST • /
char * get_maBory();
f loa t get_intraset_distanca();
f loat s i n g l e . s i n g l e O ;
f loat single_group();
f loa t ^rpup.groupO;
f loa t intra_distance();
STAT add_struct();

343

STAT segment.stat ist icO;
L I S T * l ightes t_ l ink() ;
TREE » gat_node();
TREE » depth_firBt_next();
TREE * find_alona_node();
TEEE • front_of_tr9o();
LIST_HEAD • depth_fir8t_class() ;

/ • * • * • • * * * * • • * • * • • * • • * • * * * • • FUICTIOI PROTOTYPES * * • • • • * * * * * • * * • * • • • * • * /
/ • FOR HIIIHAX * /
STAT got_tree_varianca();
TEEE * depth_fir8t_attr ibute() ;
LIST_HEAD * depthi.f i r a t . r e . a t t r i b u t a O ;
LIST_HEAD • depth_first_link_8un_8quare();
LIST.HEAD » depth_first_l ink();

. / ****************************«***«*************************************
• You are reading prograna rs tS .c
• THis prograa i8 to construct a CEST shich use global inforaation.
* laage segaentation. based, on graph theoretic approach.
* At the beginning only l o c a l mfomations are used,
• Bhen aore and aore vertices are merged, aore and aore
• global inforaations B i l l be added.
• To obtain n segaents the heaviest a-1 l inks s i l l be deleted.
* To further iaprove the CEST, top-doBn ainimax aethod can be
• used to select the l inks to be deleted.
• There are eight neighbours to each p ixe l s .
* The pattern vectors are tso disensional.
• * • * * • * OILY CALCULATE THE CEST,DOSE lOT OBTAII THE SEGMEITS * • * » •
* • * * • • • THE TEEE IS SAVE 01 THE HAED DISK FILE • * * * * »
* K.S.LAU 20-1-92
**********«**«*******************«************************************

tinclude <string.h>
•include <nalloc.h>
tinclude <stdio.h>
tinclude <pixrect/pixrect_h8.h>

STRUCTURE DEFIIITIOI * * * • • • • * * * * * * * * • • • * • • /
typedef struct {/* to store l inks in the spanning tree * /

int nodel,node2;
f loat weight;

}UIIQUE_LIIK;

typedef struct l i n k {/• to store l inks i n the image graph • /
int nodel,ndde2;
f loat weight;
struct l i n k 'next;
struct l i n k » las t ;
struct l i n k tothar;

}LIIK;

typedef struct tree { / » structure to store spanning tree, • /
int node.pos;
struct tree »next;

}TREE;

typedef struct {/* structure for a l i s t of a l l the nodes * /
int node.tag;
TREE *node;

}LIST_HEAD;

typedef struct {/* store the sum and number of nodes i n a region * /
f loa t sumCDIHEISIOI] ;
int nura_vec;

}STAT;

/ » • * * • • • • » » * • • • • • * • * « * • » » * • • FUICTIOI DEFITIOIS * « * * • • • » • • * » * » * * * * * • • • * • /
char * get.memoryO;
f l oa t l ink .weightO;
f l oa t new_weight();
STAT add_struct();
STAT get_pix_value();
LIIK * l i g h t e s t O ;
LIIK * jumpO;
LIIK * compress(};
TREE • ffont_of_tree();

/**************************** GLOBAL VARIABLES * * * * * * * * * * * * • * * * * * • * * * * * /
U.char imageCDIHEISIOI]CMAX.YSIZE]CMAX.XSIZE];
int dimension,/* dimension of the input multspectral image * /

top.x, top .y , /* top l e f t coordinates of the window i n the data f i l e
• /

win.xsize, win.ysize;/* the size of the window-to be processed * /
struct ras ter f i l e header;/* the header of data f i l e , SUI ras ter f i l e * /
LIIK *edge8, head; / * edges for array, head for l i s t * /

mainO
{

int 8,
t o t a l . l i n k , / * number of l inks i n the image graph * /

344

coapO , / • function f o r quick sort conparsion • /
cpu.tiae;

LIST.HEAO *vertex;/* l i s t of a l l nodes i n the iaage */
UIiqUE.LIlK *unique_link, **heavy;/* to store the l i n k i n spanning

tree * /

printf("GEIERATIOI OF RECURSIVE SPAIIIIG TREE AID STORE DATA 01 DISK\n"):

clockO ; / * count cpu tiae */
get_data();/• get input iaages * /
t o t a l . l i n k = nuaber.linkO ; / • nuaber of l inks i n the iaage graph • /
/ * al locate array of structure for l inked l i s t of tree * /
vertex = (LIST.HEAD •)get_aeaory(Bin .xs ize*Bin.y8ize, sizeof(LIST.HEAD));
/ * aenory to store a l l l i n k s in the iaage graph * /
edges = (LIIK *)get.aeaory(4»Bin.xsize*Bin.ysize-4, s izeof(LIIK));
/ * al locate array of structure for unique l i n k (l ink i n spanning

tree • /
unique.l ink " (UIIQUE.LIIK *)get^eaory (Bin.xs ize*Bih_ysize- l ,

sizeof(UIIQUE_LIIK));

/ * coapute a l l Beight of l inks * /
printf("Calculat ing the l i n k Beight. \n");
get . l inkO;

printf("Doing the recursive aerging.. . \n">;
recru.tree(unique. l ink, vertex); /* aain function to do CEST * /

/ • free the edges aenory */
free((char «)edges);
/ * al locate array of pointer f o r sorting array of structure * /
/ * sort the l ink in spanning tree in descending.order of Beight */
heavy = (UIIQUE.LIIK ••)get_Bemory(Bin.xsize*Bin.y8ize-l,

sizeof(UIiqUE.LIIK •)) ;
/ * i n i t a l i z e array of pointer point to unique l i n k * /
for (s = 0; 8 < Bin_X8ize*Bin .ys ize- l ; s++) heavyCs] = tunique. l ink[s];
/ * sort the unique l i n k * /
qsort((char *)heavy, Bin_xs ize*Bin.ys ize- l , sizeof(UIIQUE.LIIK *) , conp);
cpu.tine = clockO ; / * count cpu time * /
printf("Run time Bas %.2f sec. \n", cpu.time / l .OeS);

rs t_f i le (vertex , heavy);/* Bri te the spanning to a f i l e * /

}
/ * * * • • * • • * • • • • * * * * * * * * * * * * • • * EID OF HAII *****************************/

|et_data()/* get input image. * /

char filename[DIHEISIOI][bO];
int i , j ;
FILE *f[DIMEISIOI];
struct rasteriile head[DIHEISIOI];

printf("Enter the number of channel to be used < 4, ");
scanf("Xd", kdimension);/* specify number of bands in image * /

for (i = 0; i < dimension; i++)
{/* input filename * /

printf("Enter the channel filename Xd, ", i) ;
scanf ("Xs", (char *)Jtfilename[i] [0]) ;
f [i] = fopen((char •) « i l e n a n e [i] [0] , "r") ;
demand(f[i], Cannot open f i l e) ;

/ • store header in global area, for la ter use * /
fread((char *)»header, sizeof(struct r a s t e r f i l e) , 1, f [0]) ;
reBind(f [0]);
for (i « 0; i < dimension; i++)
{/* read data * /

froad((char »)*head[i] , sizeof(struct r a s t e r f i l e) , 1, f [i]) ;
demand (header. ras;.length == head[i] .ras. length.

Hake sure the images has the same size and coordinates);

printf("The images size i s Xd\n", header.ras.Bidth);
printf("Enter the BindoB Bidth (xsize), ") ;
scanf("Xd", tBin.xsize);/* process sindoB xsize */
printf ("Enter the sindou height (ysize), ") ;
scanf("Xd", tBin.ysize);/* process BindoB ysize * /

/• i n this study a l l image f i l e are S12 x 512, and top l e f t
coordinates are (330, 60) of in a B format HETEOSAT image */

printf ("Enter the top- left sindoB coordinate
of the image to be processed, \n");

printf (" \ t x : "); scanf("Xd", t top .x) ;
printf ("\ty: ") ; scanf ("Xd", kt.op.y);

demand(head[0].ras.Bidth >= vin.xsize+top.x.
The sindoB i s out of range\, please reduce size);

f o r (i = 0; i < dimension; i++)

345

fseek (f[i], (long)(top_y»head[i].ras_Hidth+top_x), 1);
f o r (i = 0 ; i < dinension; i++)

for (j « 0; j < Biri.ysize; j++)
fread((char *)ki«age[i] [j] [0] . s i z e o f (char) , Bin_xsize, f [i3) ;
f s e e k(f[i], (long)(head[i].ras.Bidth-nin.xsize), 1);

^ for (1 « 0; i < diaonsion; i++) f c l o s e (f [i]) ; / • close f i l e s •/

chttv *get.Meaory(iteBS, s ize)
unsigned i t e s s , size;

char *buffer;

buffer " (char *)calloc(iteBS. size);
deinand(buffer, no Benory);

return(buffer);
>
int ntuiber.linkO
{/* conputer t o t a l nunber of links, i n order to allocate nenory */

int 8 , to ta l_ l ink;

t o t a l . l i n k « 0;
f o r (s >: 1; s < Bin_xsize -1; s++)

to ta l_ l ink += s;
t o t a l.link *= 4;
t o t a l . l i n k += 2*(Bin_xsize«Bin_ysize-l);
printf ("\nTotal nunber of links i n original graph i s X d . \ n ".total.link)

return (t o t a l . l i n k) ;
}

^et . l i n k O / * compute a l l links in the image graph */

register int i , node;
/• the coordinate of tBO dimensional array i s transformed to
linear coordinate and store in the edges array, so a mapping
has to be used to relate the tBO coordinate systems '*/
head.next = edges;
edges[0] .last ='thead;
for (i = node = 0; node < Bin_xsize»Bin.ysize-l; node++)
•C / * f o r every vertex, except the last one */

i f (node >= Bin_xsize*Bin.ysize-Bin_xsize) /* last roB •/

i f (node == Bin_xsize*Bin.ysize-2)
{ /* la s t vertice •/

edges[i].nodel = node;
edges[i].node2 = node+1;
edges[i].Beight = link.Beight(node, node+1);
edgesCi].next = thead;
head.last = tedges[i];

else fill_edges(node, node+1, i , 4);
edges[++i3.Beight = -1.0; /* f i l l the gap */
edgest++i].Beight = -1.0;
edges[++i3.Boight = -1.0;
++i;

}
else

i f ((node % Bin.xsize) == 0) / * roB head * /

fill.edge8(node, node+1, i , 1);
fill . e d g e s(node, node+Bin_xsize+l, ++i, 1);
fill_edge's(node, node+Bin.xsize, ++i, 2);
edges[++i].Beight = -1.0;

}
else i f ((node % Bin.xsize) == sin.xsize-l) /* roB t a i l * /
{

fill.edges(node. node+Bin.xsize, i , 1);
fill.edges(node, node+Bin_xsize-l, ++i. 3);
edges[++i].Beight = -1.0;
edges[++i].Beight = -1 .0;

else
<

fill_edge8(node, node+l, i , 1);
fill_edges(node, node+Bin.xsize+1, ++i, 1);
flll_edge3 (n6de, node+sin.xsize, ++i, 1);
fill_edges(node, noda+Bin.xsize-1, ++i, 1);
++i;

346

file:///nTotal

fill.edgesdtodel, no~de2, index, offset)
.register in t nodel, node2, index,, offset;
{/* store data o f .a l i n k * /

edges[index].nodel = nodel;
edges[index].node2 = node2;
edges[index].Beight = l ink.Beight(nodel, node2);
edges[index].next * tedges[index + offset];
edges[index + offset] . l a s t - tedges[index];

fl o a t l ink.Beight(nodel , node2)/* compute l i n k Beight, squared Euclidean
distance * /

int hodel, node2;

Int i l , j l , i 2 , j2 ,
k;

f l o a t Beight;

get_coordinates(nodel , ftil, k j l) ;
get_coordinates(node2, t i 2 , t j 2) ;
Boight = 0.0;
f o r (k » 0; k < dimension; k++)

weight += SqUARE((float)image[k][il][jl]-(float)imBge[k][i2][j2]>;

^ retum(Beight);

r s t _ f i l e(vertex, heavy)
LIST.HEAD *vertex;
HIIQUE_Lire **heavy;

char »bufl = "/homa/image/output/rst";/* default output f i l e * /
FILE *fp;
int t , numBritten;
TREE •templ .tree;

/ • open f i l e in binary mode for read Brite the tree data * /
fp = fopen(bufl,"B");
demand(fp, cannot open f i l e for r s s t) ;

fBrite ((c h a r •)tdimansion, sizaof (i n t) , 1, fp) ;
fBrite ((c h a r »)Jttop_x, sizeof (i n t) , 1, fp) ;
fBrite ((c h a r •)ktop_y, s i zeof (int) , 1, fp) ;
fBrite ((c h a r «)tBin_xsize, sizeof (i n t) , 1, fp) ;
fBrite ((c h a r *)tBin_ysize, sizeof (i n t) , 1, fp) ;
/* Brite the unique l ink to f i l e * /
numwritten = 0 ;
for (t = 0; t < B in_xsize*Bin_ysize - l ; t++)

numBritten += fBrite ((c h a r *)heavy[t] , sizeof (i n t) , 2, f p) ;
f o r (t = 0; t < Bin_xsize*Bin_ysize; t++)

templ_tree = vertex[t] .node;
Bhile (templ_tree != lULL)
i I* Brite tree to f i l e • /

numBritten += fBrite ((c h a r »)templ_tree, sizeof(TREE), 1, fp) ;
templ.tree = teBpl_tree->next;

>
demand(numBritten == 4*Bin_xsize*Bin_ysize-4, Write error) ;
printf("Data ar i te to f i l e Xs . \n" ,buf l) ;

^ fclose (f p) ;

TREE • front_of_tree(ne¥, l i s t)
TREE •neB, • l i s t ;
{/• store structure i n the l i n k l i s t • /

naBr>next = l i s t ;
l i s t = noB;

r a t u m (l i s t) ;
}

/ * main function to do the CEST using Kruskals algorithm •/
recru_tree(unique_link, vertex)
LIST_HEAD "vertex;
UIIQOE.LIIK •unique^link;

int count, label, biggest, smallest;
TREE •node;
STAT •region_sum;
LIIK •lightest . p t r ;

node = (TREE •)get.memory(2 • (Bin.xsize^win.ys izerD, sizeof (TREE));
region.sum = (STAT »)get_mamory(Bin_xsize*Bin_ysize, sizeof (STAT));
for(count = 0, labe l = 1; label < Bin_xsize*Bin_ysize; label++)

/ • pick the lightest l i n k • /
liightest . p t r = lightest ' O •

347

unique_link[label-l].nodel = lighte8t_ptr->nodel;
ttnique_link[label-l].node2 = lightest_ptr->nodo2;
unique.link[label-1].veight = lighte8t_ptr->Height;
/ * put link into the tree * /
node[count].node_po8 = lightest_ptr->node2;
Yertex[lighte8t_ptr->nodel3.node *

iront_6f_tree(»nodoCcount++3,vertex[lighte8t_ptr->nodei].node);
node[count]inode_po8 * lighte8t_ptr->nodel;
vertex[lighte8t_ptr->node2].node =

front_of_trae(»node[count++],vertex[lighte8t_ptr->node23.node);
i f (label < Bin_x8ize»Bin_ysize-l)

suB^label_node8(region_sua,vertex,lightest.ptr,label,
tbiggest,ft8mallest);

/ * delete a l l duplicate link and recalculate link veight * /
del_duplicate_recal(yert«x,region_su]a,label,biggest,smallest);

>
^ free((char *)region_suB);

L i n » lightestO
< / * find the lightest link • /

register LIIK ••in.ptr, •this;

•in.ptr = head.next;
this "! •in_ptr->next;
vhile (this != thead)
{

i f (Bin_ptr->Beight > this->Beight)
Bin_ptr = this;

this = this->next;
}
/ * delete lightest link • /
Bin_ptr->last->next = Bin_ptr->next;
Bin_ptr->next->la8t = Bin_ptr->last;
Bin_ptr->next = lULL; / • status out • /

^ return(Bin.ptr);

/* coBpute sua of a region, update label of nodes • /
sua_label_nodes(region_sum, vertex, light, tag, biggest, smallest)
STAT •region.sum;
LIIK •light;
int tag;
register LIST.HEAD •vertex;
register int •biggest, •smallest;

register int i , done = 0;
int old_tag[2];

i f (vertex [light->nodel] .node.tag == Oltt
vertex[light->node2].node.tag == 0)

{ / • both are neB node, use a neB label • /
vertex[light->nodel].node.tag = tag;
vertex[light->node2].node.tag = tag;
region.8um[tag] = add.8truct(get_pix.value(light->nodel),

get.pix.value(light->node2));
•smallest = light->nodel;
•biggest = light->node2;

else i f (vertex[light->nodel].node.tag == 0 tt
vertex[light->node2].node.tag != 0)

region.sum[tag] = add.struct(get.pix.value(light->nodel),
regioh_8um[vertex[light->nodo2].node.tag])

vertex[light->nodel].node.tag = tag;
old_tag[0] = vertex[light->node2].node.tag;
for (i = 0; i < Bin.xsize*Bin.ysize; i++)
{, I* update label and count • /

i f (vertex[i].node.tag == old.tagCO])

vertex[i].node.tag = tag;
i f (idone)
{

•smallest = i ;
^ ++done;

^ •biggest " i ;

}
i f (light->nodel < •smallest) •smallest = light->nodel;

else i f (vertex[light->nodel].node.tag != 0 tt
vertex[light->node2].node.tag == 0)

region_sum[tag] = add.struct(get.pix.value(light->node2),
region.8um[vertex[light->nodel].node.tag]);

vertex[light->node2].node.tag = tag;
61d.tag[0j = vartex[light->hodel].node.tag;

348

for (i = 0; i < oin^xsizo»Bin_ysi2o; i++)
{ / * update label and count * /

i f (rortexCi] .node.tag «>• old.tag[0])

vertex[i].node.tag-= tag;
i f (!done)
<

•smallest = i ;
^ ++done;
•biggest = i ;

}
i f (light->node2 > »biggest) "biggest « light->node2;

else
•£ / * both node tag != 0 * /

old.tag[0] » vertexClight->nodel].node.tag;
old.tagCl] " vertex[light->node2].node.tag;
region.suaCtag] =

add.struct(region.sum[vertex[light->nodel].node.tag],
region.sum[vertex[light->node2].node.tag]);

for (i = 0; i < Bin.xoizo^Bin.ysize; i++)

i f (vertexCi] .node.tag = old.tagCO] 11
vertex[i] .node.tag » old.tagCl])

vertexCi].node.tag = tag;
i f ("done)
<

•smallest = i ;
++done;

•biggest = i ;

}

/ • delete duplicated links and recalculate sum of a region • /
del.duplicate.recal(vertex, region.sum, region, biggest, smallest)
register LIST.HEAD •vertex;
STAT •region.sura;
int region, biggest, smallest;

/ * delete a l l duplicate link connected to external vertices • /
register LIIK •find,•this,•that;
LIIK dummy;
int temp.node, temp.re;

/ * goto starting point • /
this = jump(smallest);
/ • connect the related link in a shorter l i s t • /
this = compress(this, vertex, region, biggest);
Bhile (this != lULL)
{ / • f irst recalculate then delete • /

temp.re = 0; / • initialize for delete • /
i f (vertexCthis->nodel].node.tag == region)
< / • find nodel in region • /

temp.node = this->node2;
i f (vertexCtemp.node].node.tag != 0) / • node2 is in a region • /

this->Beight = neB.Beight(region.sumCregion],
region.sumLvertexCtemp.node].node.tag]);

^ temp.re = vertexCtemp.hode].node.tag;

else / * node2 is a single node * /
this->Beight '= noB_Beight(region.sumCregion],

get.pix.value(temp.node));

else
{ / * find node2 in region * /

temp.node * this->nodel;
i f (vertexCtemp.node].node.tag != 0) / • nodel is in a region • /

this->Beight = noB.Beight(region.suraCregion],
region.sumCvertexCtemp.nodeJ.node.tag]);

^ temp.re = vertexttemp.node].node.tag;

else / • nodel is a single.node • /
this->Beight = neB.Beight(region_suraCregion],

^ get.pix_value(temp.node));

/ * delete duplicate links for a l l nodes, no link in region • /
that = tdunmy;
dummy.other = this->other;
i f (itenp.re) / • temp.riode is single • /

Bhi le ((find = that->other) != lULL)
{ / • delete duplicate link, temp.node is single • /

i f (find->nodel > temp.node) ' break;

349

i f <find->nodel == temp.node 11 find->node2 == temp.node)

/ * delete link form shole l i s t * /
find->last->next = find->next;
findT>noxt->last = find->la8t;
find->next = TOLL; .
/ • delete link form compressed l i s t * /
that->other = find->other;
break; / * only delete one link * /

that = that->other;

>
else
•£ / * temp.node is in a region • /

while ((find » that->other) !» lULL)
{ / » delete duplicate link • /

/ * only one duplicate between two regions * /
i f (vertex[find->nodel]'.node_tag = temp.re 11
^ ¥ertex[find->node2].hode.tag = temp.re)

find->last->next = find->next;
find->next->iaBt » find->last;
find->next « lULL;
that->other « find->other;
break;

}
that = that->other;

} / * end while * /
} / * end else • /
this = dummy.other; / * reconnect and point to next * /

} / * end while * /
>
/ » this function is to compress the l i s t of a l l links to increase
efficiecy * /
LIIK * compress(this, vertex, region, biggest)
register LIIK 'this;
register LIST.HEAD "vertex;
register int region, biggest;

LIIK "find, "start;

while (1)
< / " find the f irst link to start "/

i f (vertex[this->nodelD.node.tag == region 11
vertex[this->node2].node.tag == region)
break;

this = this->next;

start « find » this;
this = this->next;
while (this != Jthead)
< / " connect a l l relate link in a l i s t "/

i f (thi8->nodel > biggest) break;
i f (vertex[this->nodel].node.tag == region 11

vertex[this->node2].node.tag == region)

find->other = this;
find = this;

>
this = this->next;

}

find->other = lULL; / " terminate "/

^ retum(start);

/ " skip unnecessary position "/
LIIK " jump(smallest)
int smallest;

register int index;

i f (smallest < win.xsize+1) index = 0;
else index = 4"(smallest-win.x8ize-l);
/"at least one undeleted link within range * /
while (edges[index].next = lULL) ++index;

/ " return the f irst element in the l i s t "/
^ retum(ftedges[index]);

float new_weight(new, old)
STAT new, old;

int k;
float weight,

new_mean[DINEISIOI],
old.mean[DIHEISIOI];

350

for (k « 0; k < d i a o n s i o n ; k++)

nev. i iean[k] » neu . s tu i [k] / (f loa t)neH .nuB_vec;
o l d j i o a n [k] " old.«u«[k3/(f loat)old.nua_vec;

>
B e i g h t " 0 . 0 ;
for (k " 0; k < d i a e n s i o n ; k++)

B e i g h t +" S m J A R E(neBjiean [k] - o l d _ » i e a n [k]) ;

^ retumCBeight);

STAT add.struct(a, b) / » add t B O structures * /
STAT a, b;

Int k;

a . n u M _ v e c +" b.nun.vec;

for (k = 0; k < di«ension; k++) a . s u m W +" b . 8 U B [k] ;

^ retum(a);

STAT get.pix.value(node)
register int node;

int i . j , k;
STAT a ;

g e t . c o o r d i n a t e s (n p d e , t i , t j) ;
a.nun.vec " 1;

for (k = 0; k < dimension; k++)
a . s u n M = (float) image [k] [i] [j] ;

^ return(a);

int comp(a, b) /* compare function for qsor tO * /
UIiqUE.LIIK ""a, **b;
•C / * i n descending order of magnitude * /

i f ((* a) - > B e i g h t > (* b) - > B e i g h t) r e t u m (- l) ;
else i f ((• a) - > B e i g h t < (» b) - > B e i g h t) re turn(l) ;
else r e t u m (O) ;

}

get.coordinates(node.pos, a, b) /* transform mapping » /
register int node.pos;
register int "a, "b;

* a = node.pos / Bin .xs ize; /* i * /
*b = node.pos % B i n . x s i z e ; / * j * /

/**********************»**************•»»**•************************»*
* You are reading mm3.c *
* This program performs minimax t p p - d o B n GTHS. *
* This program read in a spanning tree , B h i c h generated by *
* e.g. r s s tS .c , and use minimax to part i t ion the spanning tree. *
* To obtain m segments the m-1 l inks B i l l be deleted. *
* There are eight neighbours to each p ixe ls . *
* The pattern vectors are t B o dimensional. *
* ***««* OBTAII SEGHEITS FROH THE IIPUT SPAIIIIG TREE FILE ****** *
* * • • * * * URITE THE HIIIHAX LIIKS TO FILE ****** *
» * • * • • * THE COST FUICTIDI IS THE IITRASET DISTAICE * * * * * * *
* K.S.LAU 21-1-92 *
* /

t include <malloc.h>
tinclude <stdio.h>
tinclude <pixrect/pixrect_hs.h>

tdefine DIHEISIOI 3/* maximum dimension of image * /
tdefine HAX.XSIZE 128/* image size * /
tdefine HAX.YSIZE 128 / * image size * /

tdefine "lOTVISIT 0/* label notvis i t * /
tdefine VISIT 1/* label v i s i t * /
tdefine THPVISIT 2/* label temporary v i s i t * /

tdefine SQUARE(x) ((x)*(x)) / * macro for square • /
tdefine demand(fact, remark) {\

i f (' (fact)) A
fpr int f (s tderr , "demand not m e t : fac t \n") ; \
fpr int f (s tderr , "remark\n");\
e x i t (l) ; \

tdefine FAIL 0 / * minimax l i n k test * /
tdefine OK 1

tdefine DUPLICATE 1 / * f ind single node * /

351

•define UIiqUE 0

/ « * • » * * * * • * * * * * * * * * * * • • • • • STRUCTUKE DEFIIITIOI * * * * * * * • » » • » » * • • • • • » » • • • /
typedef struct {/* store links nhich i s to be cut » /
int nodel;
int node2;
}UIiqUE_LIIK;

typedef struct </* store the node of the links shich i s to be cut * /
int ••.node;
float yar;

char root;
}HIIIHAX_IODE;

typedef struct tree {/• structure to store the spanning tree * /
int nbde.pos;

struct tree *next;
char status;
>TREE; / * aeaory i s allocated i n order of decleoration • /

typedef struct {/* the l i s t of a l l nodes in a spanning tree • /
int node.tag;
struct tree 'node;
}LIST_HEAD;

typedef struct {/• statistics of a region * /
float sua[DIHEISIOI];
float ssq[DIHEISIOI];
int nua.vec;
}STAT;

/ * * * • * « • • • * • • • • • • • • * * * • * FUICTIOI DEFITIOIS ***•***•****•**********/
char* get.aeaoryO;
char • reget.aeBoryO;
STAT get.tree.varianceO;
float get.distance();
TREE * find.alone.nodeO;
T R E E * depth.first.next();
T R E E * depth.first.attributeO;
LIST.HEAD • depth.first.re.attributeO;
LIST.HEAD * depth.f irst . l inkO ;
LIST.HEAD * depth.first.pixO;
LIST.HEAD * depth.first.screenO;
LIST.HEAD • depth.first_link_8Uin_square();

/********************* GLOBAL VARIABLES •*•*****•••***********/
u.char iBage[DIHEISIOi][MAX.YSIZE][HAX.XSIZE];

int dimension,/* diaensioh of the iaage * /
top.x, top.y,/* top left coordinates of process sindos * /
Bin.xsize, Bin.ysize;/* size of process BindoB */

int *group.pixel,/* store points in a region * /
•stack;/* stack to do depth first search * /

LIST.HEAD *neB, *old;/* for depth first search * /
struct rasterfile header;/* header for image * /

mainO
{

int **clust,/* pointer for start and end of a region * /
s, t ,
segment;

UIIQUE.LIIK *link_intree;
TREE *tree.element;
LIST.HEAD *vertex,

**del.link;
HIIIHAX.IODE **variance,

vminimax.node;
STAT *node.intree;
FILE *span_tree;

putsC'TOP DDWI HIIIHAX SEGHEITATIDI");
/ * read the spanning tree *7
get.parametersCtspan.tree, tsegment);
get.dataO ; /* read the image of the spaning tree * /
number.linkO; / * get number of vertices • /

/» allocate array of structure for linked l ist of spanning tree * /
tree.element = (TREE *)get.memory<2*Bin.xsize*Bin.ysize-2, sizeof(TREE));
vertex = (LIST.HEAD *)get.memory(Bin_xsize*Bin.ysize, sizeof(LIST.HEAD));
/ * aemory for depth f irst search * /
stack" (int *)get.aemory(Bin_X8ize*Bin.ysize, sizeof(int));
group.pixel = (int *)get.nempry(Bin.xsize*Bin.ysize, sizeof(int));
/ * memory for minimax * /
node.intree = (STAT *)get.men6ry(Bin.xsize*Bin.ysize, sizeof(STAT));
link.intree = (UIiqUE.LIIK *)got_memory(Bin.xsize*Bin_ysize-l,

sizeof(UIiqUE.LIIK));
minimax.node " (HIIIHAX.IODE *)get.memory(2*(segment-l),

sizeof(HIIIHAX.IODE));
variance = (HIIIHAX.IODE **)get.memory(2*(segment-l),

sizeof(HIIIHAX.IODE •)) ;
load.data(tspan.tree, link.intree, tree.element," vertex) ;

352

/ * i n i t a l i z e labe l for depth f i r s t search • /
for(s » 0; s < vin_xsize*Bin_ysize; s++) vertexEs].node.tag « s;
/ • i n i t a l i z e array of pointer to Mininax node for sorting * /
f o r (8 » 0; s < 2*(segment - 1); s++) varianceCs] « tainimax.node[s];
/ • do ainiaax variance * /
putsC'Doing BiniBax . . . ") ;
•iniaax.variance(vertex, l ink_intree , node.intree,

•inimax.node, variance, segment);

mB.link.file(segment, minimax_node, vertex);

| e t .data()

char filename[DIHEISIOI][50];
int i , i ;
FILE •f[DIHEISIOI];
struct ras ter f i l e head[DIHEISIOI];

printf("The spanning tree i s on %d dimensional data\n", dinension);

for (i « 0; i < dimension; i++)

printf("Enter the channel filename Xd, ", i) ;
scanf ("Xi", (char, *)Jtfilename[i] [0]) ;
f [i] = fopen((char •)tf i lename[i][0] , "r");

^ demand(f[i]. Cannot open f i l e) ;

/ * store header i n global area, for la ter use « /
fread((char *)»header, sizeof(struct r a s t e r f i l e) , 1, f [0]) ;
reBind(f[0]);
f o r (i = 0; i < dimension; i++)

fread((char *)thead[i], sizeof(struct r a s t e r f i l e) , 1, f [i]) ;
demand(header.ras.length == head[i] .ras. length,

^ Hake sure the images has the same size and coordinates);

printf("The images size i s Xd\n", header.ras.vidth);
printf("The window width (xsize) i s Xd\n", win.xsize);
printf("The window height (ysize) i s Xd\n", win.ysize);

p r i n t f ("The top l e f t window coordinate of the window,\n!');
pr int f (" \ tx : Xd\n", top.x);
pr in t f (" \ ty : Xd\n", top.y);

demand(head[0].ras.width >= win.xsize+top.x.
The window i s out of range\, please reduce s ize) ;

f o r (i = 0; i < dimension; i++)
f s eek (f [i] , (long)(top.y*head[i].ras.width+top.x), 1);

for (i = 0; i < dimension; i++)
for (j = 0; j < win.ysize; j++)

fread((char *)timage[i][j][0], sizeof (char), win.xsize, f [i]) ;
^ f seek(f [i] , (long)Thead[i].ras.width-win.xsize), 1);

^ for (i = 0; i < dimension; i++) f c l o s e (f [i]) ;

get_paraBeters(spem.tree, segment)
FILE **span.tree;
int •segment;

char buf[50];
int s;

printf("Input the (r)sst data f i l e name, ");
scanf("Xs", buf);
printf("Enter the maximum number of segments to be generated,\n");
printf("the l inks are stored i n a f i l e to generate segmentation, ");
scanf("Xd", segment);
/ * open f i l e i n binary mode for reading the tree data * /
•span.tree = fopen(buf, "r");
demand(*span.tree. Could not open f i l e for spanning tree);
printf("Data read from f i l e Xs \ n " , buf);
fread((char *)ftdimension, s i zeof (in t) , 1, tspan.tree);
fread((char *)Jktop.x, sizeof (i n t) , 1, •span.tree);
fread((char *)Jttop.y, sizeof (in t) , 1, *span.tree);
fread((char »)twin.xsize, s i zeof (int) , 1, *span.tree);

^ fread((char *)twin.ysize, s i zeof (in t) , 1, •span.tree);

load.data(span.tree, heavy, tree.element, vertex)
FILE ••span.tree;
UIIIJUE_LIIK •heavy;
TREE.•tree.elemerit;

353

http://mB.link.file

LIST_HEAD *yert8x;

int 8, t ,
tota l_ i te«s ,
niutread •= 0;

TBEE •teBp.tree;

/ • read a spanning tree * /
nuMread +« freadUchar *)heavy, sizoof <UIiqUE_LlIK),

Bin_xsize*Bin_y8ize-l; •span.tree);
forCt » 0; t < 2 * Bin_XBize»Bin_y8ize-2; t++)

nnaread +« fread<(char *)ttree_eleiient[t] ,
sizeof(int)+8izeof(TEEE •) , 1, •span.tree);

deaandCnuBread == 3*Bin_xsize^Bin_ysize-3, Eead error) ;
fclose(*8pan_tree);
/ • reconstruct the tree data structures just read froa f i l e • /
for (t » 0, to ta l . i t eas >= 0; t < Bin_xsize^Bin_ysize; t++, total_itea8++)

vertex[t].node « t tree.e leaentCtotal . i tens];
teap_tree = tree.eleaent[total . i teas] .next;
Bhile(teap.tree !» lULL)

8 « total_items++;
tree_eleaent[s].next « ttree_eleaent[total_ltaB8];
teap.tree » tree_eleaent[total_items].next;

}
>
/ • Bri te the ainiaax l inks to a f i l e • /
aa_link_file(segment, ainiaax .node, vertex)
int segment;
HIIIHAX_IODE •minimax.node;
LIST_HEAD •vertex;

char •buf2 = "/home/image/output/mmlink";
FILE •mm.link;
TEEE •temp.tree;
int s, niuaread, t o t a l . l i n k ;

mm.link = fopon(buf2, " B ") ;
demand(mm.link. Could not open f i l e for minimax l i n k) ;

fBrite((char •)tdimension, s i zeof (int) , 1, mm.link);
fBrite((char •)»top_x, s i zeof (int) , 1, mm.link);
fBrite((char •)»top .y , s i zeof (int) , 1, mm.link);
fBrit6 ((char •)tBin_x8ize, s izeof (int) , 1, nm.link);
fBrite((char •)»Bin_y8ize, s i zeof (int) , 1, mra.link);
numread = 0 ;
t o t a l . l i n k = -segment-l;
numread += fBrite((char •)* to ta l . l ink , s i z e o f d n t) , 1, mm.link);
for(s = 0; s < 2^(segment-l); s++)

numread += fBrite((char •)fa»ihimax.node[s], s i zeof (int) , 1, ima.link);
for(s = 0; s < Bin .xsize«Bin.ysize; s++)

temp.tree = vertex[s].node;
Bhile(temp.tree != lULL)
{ / • Bri te tree to f i l e • /

numread += fBrite((char •)temp.tree,
sizeof(int)-<'sizeof(TREE •) , 1, mm.link);

temp.tree = teBp.tree->next;

>
demand(numread == 2^(Bin.xsize^Bin.ysize+segment)-3,

Hinimsuc l i n k data Brite error) ;
p r i n t f ("Hinimax l i n k f i l e i s /Cs\n", buf2) ;
fclose(nm.link);

}

chtiT • g e t . a e m o r y (i t e B S , s ize)
unsigned items, s ize;

char »buffer;

buffer = (char *)calloc(items, s ize) ;
demand(buffer, lothing allocated for array);

^ return(buffer);

int number.linkO
i

int s, t o t a l . l i n k ;

t o t a l . l i n k = 0;
for (s = 1; s < Bin.xsize - 1; s++)

t o t a l . l i n k +=8;
t o t a l . l i n k •= 4;
t o t a l . l i n k += 2 • (Bin .xsize^Bin_ysize - 1);
printf("Total number of l inks i n or ig inal graph i s X d . \ n " , t o t a l . l i n k) ;
return (t o t a l . l i n k) ;

354

/ * label the root f o r depth f i r s t search « /
Tisit^ r o o t C y o r t e x , node)
LIST_HEAD •yortex;
register int *node;

int i . j ;
register TREE * t h i 8 ;

^ f o r (i = O. j = 1; i < 2; i++.j—)

t h i s * vertex[node[i]].node;
vhi ie (th i s !•= lULL)

if(this->node_pos » » node[j])

t h i s - > 8 t a t u s = VISIT;
break;

th i s >: t h i 8 - > n e x t ;

}

/ • reset labe l after depth f i r s t search * /
reset_tree_t>p(vertex, s tar t , nunpix)
LIST_HEAD *vertex;
int nunpix, *start;

register int i , index;
register TREE »this_hode;

index = s tart - group.pixel;
for (i = 0 ; i < numpix; i++, index++)

this.node = vertex[group_pixel[index]].node;
while(this.node != lULL)
{

i f (this_node->8tatus == THPVISIT)
this_node->'8tatU8 = lOTVISIT;

this.node =^thi8 .node->next ;

>
/ * index mapping * /
get.coordinatesTnode.pos, a, b)
register int node.pos;
register int *a , *b;

*a = node.pos / s in .xs ize ;
•b = node.pos % B i n . x s i z e ;

int compCa, b) / » for qsor tO compare • /
HIIIHAX.IODE **a , **b;

i f ((•a)->var > (*b)->var) r e t u m (- l) ;
else i f <(«a)->var < (*b)->var) r e t u m (l) . ;

^ else r e t u m (O) ;

/ * compute the s ta t i s t i c s of a subtreet, sum emd sum square • /
int get.link.8um_square(vertex, i-oot.node, l i n k . i n t r e e , node.intree)
register LIST.HEAD «vertex;
UIIQUE.Lire * l ink . in tree ;
STAT *node.intree;
int root.node;

int t o t a l . l i n k = 0 , stack.pos = 0, num.vec = 0;
TREE *root;
register LIST.HEAD *temp.list;

/ * B r i t e the l i n k i n tree to l ink . in t ree tmpfile * /
i f ((root = find.alone.node(Jtvertex[root.node])) == TOLL)

re turn(l) ; / * subtree i s a single node • /
start .depth_first(»8tack.pos,»num.vec,vertex[root .node] .node.tag,root)
l ink . in tree [to ta l . l ink] .node l = vertex[root.node].node.tag;
l ink . intree[tota l . l ink++].node2 = root->node.po8;
noB = tvertex[root->node.pos];
old = tvertex[root.node];
do
{ / * depth f i r s t next * /

temp.l ist = depth.f irst . l ink^sum.square(vertex, l ink.intree,
node. intree,tnum.vec,ttotal . l ink,tstack.pos);

old = neB;
neB - temp.l is t ;

} Bhile (s t a c k _ p o s != 1); / » stack != TOLL * /
reset,itree.tmp(vertex ,group^pixel ,num.vec);
return(num_vec);

355

LIST.HEAD * dopth.first.link.sujB.square(vertex, l i n k . i n t r e e , node.intree,
nuB_vec, nuB_link, stack.pos)

LIST-HEAD •vertex;
niIQUE.Lire »link.intree;
STAT •node.intree; .
register i n t ' • n u M . l i n k , •stack.pos, • n v m . v e c ;
{ / • • • • • • • • • Bri te a l l l ink in tree to f i l e • • • • • • • • • /

TBEE •root;

i f ((r o o t « depth.first_attribute(vertex,node.intree,8tack_pos)) TOLL)
return(TOLL);

8 t a c k [(» 8 t a c k . p o 8) + +] » ro6t->node.pos; / • put node to stack * /
group.pixel[(•nuB^vec)++] = root->node_pos; / • put node for reset * /
rbotT>statU9 » TMPVISIT;
/ • record l ink . in tree • /
l i n k . i n t r e e [• n u B ^ l i n k] . n o d e l " neB->node.tag;
link.intree[(•nu«.link)++].nbde2 = root->node.pos;

^ return(tvertex Croot ->node .po8]) ;

TBEE • depth. f irs t .at tr ibute(vertex , node.intree, stack.pos)
register LIST.HEAD •vertex;
register int vstack.pos;
STAT *node_intree;
{

TBEE •root; ,
LIST.HEAD • la s t ;

/ • delete the duplicate node i n the next tree l i s t • /
de le te .dupl icateO;
i f ((root = f ind_a lone_node(neB)) == TOLL)
{ / • one of the end • /

las t = n e B ; / • take doBn the last location • /
se l f .attribute(neB, nodo.ihtree); / • the end node • /
B h i l e (root == TOLL)
{ / • delete stack • /

•stack.pos -= 2;
n e B = tvertex[8tack[(^stack.pos)++]];
root " find.alone.node(neB);
/ • no branch • /
i f (root =«= TOLL) fu l l .a t tr ibute(neB, l a s t , node.intree);
/ • has at least one branch • /
else h a l f . a t t r i b u t e (n e B , l a s t , node.intree);
i f (•stack.pos == 1 t t root = TOLL) retum(TOLL);
las t = noB;

}
^ return(root);

/ • compute s t a t i s t i c s of a subtree • /
ha l f .a t t r ibute (th i s , l a s t , nbde.intree)
LIST_HEAD • t h i s , • l a s t ;
STAT •node.intree;
{

int k;

for (k = 0; k < dimension; k++)

node.intree[this->node.tag].sum[k]
+= node.intree[last->node.tag].sum[k];

node.intree[thi8->node_tag] . s s q M
+= node.intree[last->node.tag] .ssq[k];

node.intree[this->node_tag].num.vec
+= node.intree[last->node.tag].num.vec;

/ » compute s t a t i s t i c s of a subtree • /
f u l l . a t t r i b u t e (t h i s , l a s t , node.intree)
LIST.HEAD • t h i s , • l a s t ;
STAT •node.intree;

s e l f . a t t r ibute (th i s , node.intree);
^ half_attribute(this , l a s t , liode.intree);

/ • compute s ta t i s t i c s of a subtree • /
s e l f . a t t r ibute (th i s , node.intree)
LIST.HEAD • th i s ;
STAT •node.intree;
<

int i , j , k;

get.coordinates(this->node.tag, t i , t j) ;
f or (k = 0; k < dimension; k++)

node_intree[this->node.tag] .sum[k] += (float)image[k] [i] [j] ;
node. intree[thi8->node.tag] .ssq[k] += S q U A R E ((f l o a t) i m a g a [k] [i] [j]) ;

356

}

^ nod8_intro»[thi8->node_tag].num_vec++i

/ • reset labe l after depth f i r s t search * /
reset_subtree(node_intree, niniMax.node, node, nua_vec, start)
STAT •node.intree;
HIIIHAX_IODE ••ininax.node;
int node, nuji_vec, • s tart D ;
{ / • node i s the index of wi.node just obtained • /

/ • tree root i s the root of th is subtree • /
register int i ;
/ * for a l l p ixe l i n the vhole subtree * /
for (i = 0; i < nu«_vec; i++)
•£ / * l inear search • /

i f (group.pixel[i] == •iniaax.nodeCnode].Ba_node)
{ / • f i n d p ixe l in a in subtree • /

start[0] - tgroup.pixelCi];
start[1] = »grbup_pixel[i + node.intree[group_pixel[i]].hu«_vec];
break;
}
reset_node_intree(node.intree, group.pixel ,

(int) (s tart COJ -group.pixel));
reset^^node.intree (node.intree, s tart [IJ ,

^ nuB.vec - (in t) (s tar t [l] -group.pixel)) ;

/ • reset buffer after depth f i r s t search • /
reset.node.intree(node.intree, s tar t , items)
STAT •node.intree;
int • s tar t , items;

register int i , k, index;

index "= start - group.pixel;
for (i = 0; i < items; i++, index++)

node.intree[group.pixel[index]].num.vec = 0;
f o r (k = 0; k < dimension; k++)

node.intree[group.pixel[index]].suB[k] = 0.0;
node.intree[group.pixel[index]].ssq[k] = 0.0;

>
}

re.attribute(vertex, root.node, node.intree, s tar t , num.vec)
register LIST.HEAD •vertex;
STAT •node.intree;
int num.vec, root.node, • s t a r t [] ;
•C

int 8tack.po8 = 0;
TBEE •root;
register LIST.HEAD •temp.l is t ;

/ • s r i t e the l ink i n tree to l ink . in tree tmpfile • /
i f ((root = find.alone.node(tvertex[root.node])) == lULL)

self .attribute(tvertex[root.node], node.intree);
return; / • subtree i s a single node • /

stack[8tack.po8++] = root.node; / * put root to stack • /
stack[8tack_po8++] = root->node.pos; / • put node to stack • /
root->status = THPVISIT; / • v i s i t node • /
nen = tvertex[robt->ndde.pos];
old = tvertex[root.node];
do
{ / * depth f i r s t next • /

temp.l ist >= depth.f irst .re .attribute(vertex,node. intree,tstack.pos);
old = new; .
new » temp.l ist;

} Bhile(stack.pos != 1); / * stack != lULL » /
ro8et.tree.tmp(vertex,group.pixel,(int)(start[0] -group.pixel));

^ re8et.tree.tmp(veftex,start[1],num.vec - (in t) (8 tar t [l] -group.pixel)) ;

LIST.HEAD • depth. f irst .re .attr ibute(vertex, node.intree, stack.pos)
LIST.HEAD •vertex;
STAT •node.intree;
register int 'stack.pos;
{ / • • • • • • • • • Bri te a l l l i n k i n tree to f i l e • • • • • • • • • /
TEEE •root;

i f ((root •» depth.first .attribute(vertex,node.intree,stack.pos)) == lULL)
return(lULL);

8tack[(^stack.pos)++] = root->node.pos; / • put node to stack • /
root->statU8 == THPVISIT;

return(tvertex[root->node_pos]);

357

i n t g e t _ l i n k (v e r t e x , r o o t . n o d e , l i n k . i n t r e e)

r e g i s t e r LIST.HEAD * v e r t e x ;

UIIQUE.LIIK • l i n k . i n t r e e ;

i n t r o o t , ; n o d e ;

i n t t o t a l . l i n k = 0, s t a c k . p o s = 0, n u B _ v e c » 0;

TBEE * r o o t ;

r e g i s t e r LIST.HEAO • t e n p . l i s t ;

i f ((r o o t " f i n d . a l o n e . n o d e (k v e r t e x [r o o t . n o d e])) = TOLL)
r e t n r n (l) ; / • s u b t r e e i s a s i n g l e n o d e • /

8 t a r t _ d e p t h . f i r s t (f t s t a c k . p o s , » n u « . v e c , v e r t e x [r o o t _ n o d e] . n o d e . t a g , r o o t) ;

l i n k . i n t r e e [t o t a l _ l i n k] . n o d e l •= v e r t e x [r o o t . n o d e] . n o d o . t a g ;

l i n k . i n t r e e [t o t a l _ l i n k + +] .nodo2 «• r o o t - > n 6 d e _ p o s ;
neo = l t v e r t e x [r o o t - > n o d e . p o s] ;

o l d " t v o r t e x [r o o t . n o d e] ;

d o

i / • d e p t h f i r s t n e x t • /

t e a p . l i s t = d e p t h _ f i r s t _ l i n k (v e r t e x , l i n k _ i n t r e e , * n u « _ Y e c ,

» t o t B l _ l i n k , » s t a c k . p o s) ;

o l d " n e w ;

n e w " t e s p . l i s t ;

} w h i l e (s t a c k . p o s ! = 1); / • s t a c k !« TOLL • /
r e s e t _ t r e e _ t n p (v e r t e x , g r o u p . p i x e l , n i U i L . v e c) ;

r e t u m (n u B . v e c) ;

}

LIST.HEAD • d e p t h . f i r s t . l i n k (v e r t e x , l i n k . i n t r e e , n u n . v e c ,

n u a . l i n k , s t a c k . p o s)

LIST.HEAD • v e r t e x ;

UIIQUE.LIIK • l i n k . i n t r e e ;

r e g i s t e r i n t • n u n . l i n k , • s t a c k . p o s , • n u n . v e c ;

{ / * * • * • * • • * w r i t e a l l l i n k i n t r e e t o f i l e • * * * • * • • • /

TBEE • r o o t ;

i f ((r o o t = d e p t h . f i r s t . n e x t (v e r t e x , s t a c k ^ p o s)) == TOLL)
r e t u r n (T O L L) ;

s t a c k [(• s t a c k . p o s) * *] = r o o t - > n o d e . p o s ; / • p u t n o d e t o s t a c k • /

g r o u p . p i x e l [(» n u m . v e c) + +] = r o o t - > n o d e _ p o s ; / * p u t n o d e f o r r e s e t • /

r o o t - > s t a t u s = TMPVISIT;
/ • r e c o r d l i n k . i n t r e e • /

l i n k . i n t r e e [• n u a . l i n k] . n o d e l = n e B - > n o d e . t a g ;

l i n k . i n t r e e [(• n u i i i _ l i n k) + +] .node2 = r o o t - > n o d e . p o s ;

^ r e t u r n (* v e r t e x [r o o t - > n o d e . p o s]) ;

/ • m a i n f u n c t i o n t o d o a i n i m a x • /

B i n i n a x . v a r i a n c e (v e r t e x , l i n k . i n t r e e , h o d e . i n t r e e , n i n i o a x . n o d e ,

v a r i a n c e , s e g m e n t)

LIST_HEAD • v e r t e x ;

STAT • n o d e . i n t r e e ;

MIIIMAX.IODE • m i n i m a x . n o d e , • • v a r i a n c e ;

UIIQUE.LIIK • l i n k . i n t r e e ;

i n t s e g m e n t ;

i n t s , t , n u m . v e c , s n a p ;

s t a t i c i n t • s t a r t [2] ;

/ • c h o o s e n o d e 0 a r b i t r a r i l y a s t h e r o o t f o r t h e d i a g r a p h • /

n u m . v e c = g e t . l i n k . s u m . s q u a r e (v e r t e x , 0, l i n k . i n t r e e , n o d e . i n t r e e) ;

s w a p = a i n i m a x o n . t r e e (v e r t e x , l i n k . i n t r e e , n o d e . i n t r e e ,

m i n i m a x . n o d e , n u r a . v e c , 0, 0);

/ • f i n a l l y a l l m m . n o d e a r e t h e t r e e . r o o t • /

i f (s w a p)

•C / • a l w a y s r e s e t a n d r e a t t r i b u t e t h e u p p e r s u b t r e e • /

r e s e t . s u b t r e e (n o d e . i n t r e e , m i n i m a x . n o d e , 0, n u m . v e c , s t a r t) ;

r e . a t t r i b u t e (v e r t e x , m i n i m a x . n o d e [1] . m m . n o d e , n o d e . i n t r e e ,

^ s t a r t , n u m . v e c) ;

e l s e

r e s e t . s u b t r e e (n o d e . i n t r e e , m i n i m a x . n o d e , 1, n u m . v e c , s t a r t) ;

r e _ a t t r i b u t e (v e r t e x , a i n i n a x _ n o d e [0] . m m . n o d e , n o d e . i n t r e e ,

s t a r t , n u m . v e c) ;

f o r (t = 2; t < 2 * (s e g m e n t - 1); t += 2) / * n u m b e r o f a i n i m a x l i n k • /

{ / » n u m b e r o f t r e e e q u a l n u m b e r o f m i n i m a x l i n k + 1 = t / 2 +1 • /

/ • c h o o s e t h e l i n k w h i c h m i n i m i z e t h e v a r i a n c e o f t h e m a x v a r t r e e • /

/ * s o r t v a r i a n c e • /

a s 6 r t ((c h a r •) v a r i a n c e , t , s izeof(MIIIMAX.IODE •) , c o m p) ;

/ • t a k e t h e t r u e r o o t w i t h h i g h e s t v a r i a n c e , r o o t l a b e l = 1 • /

f o r (s = 0; ; s + +) i f (v a r i a n c e [8] - > r o o t) b r e a k ;

n u B . v e c = g e t _ i i n k (v e r t e x , v a r i a n c e [s] - > i a n . n o d e , l i n k . i n t r e e) ;

i f (n u m . v e c = 1)

•£ / • t h e m a x v a r s u b t r e e i s a s i n g l e n o d e • /

p r i n t f (" A l l Xd s u b t r e e s a r e h o m o g e n e o u s . \ n " , t / 2 +1);

r e t u r n ; / • r e t u r n t o w r i t e m m . f i l e • /

s w a p = a i n i m a x p n . t r e e (v e r t e x , l i n k . i n t r e e , n o d e . i n t r e e , m i n i m a x . n o d e ,

n u m . v e c , v a r i a n c e [s] - > i n a _ n o d e , t) ;

358

>

i f (swap)

reset.subtree(node.intree, BiniBax.node, t , nuB.Tec, s tar t) ;
r e.attribute (vertex, •inijBax.node[t+l]..aa.node, node.intree,

s t a r t , nua.vec);' '

else

reset.subtree(node.intree, ainiaax.node, t+1, nua_vec, s t a r t) ;
're.attribute(vertex, aininax .node[t] .BBunode, node.intree,

s t a r t , nuo.vec);

readjust.tree.var(nininax.node, t , s tar t , num.vec, ssap);

/ * th i s i s the iaportant b i t * /
in t •iniaaxon.tree(vertex, l i n k . i n t r e e , node.intree,

•iniaax.node, nuB.vec, tree .root , index)
LIST.HEAD *vertex;
UIIQUE.Lire *l ink_intree;
HIIIHAX.IODE » a i n i B a x _ n o d e ;
STAT •node.intree;
int index, tree .root , nua.vec;

register int i ;
int j , swap, exchange;
UIIQUE.LIIK duaay.l ink;
HIIIMAJCIODE l i n k l[2],link2[2];
I1IIIMAX.10DE • d u s n y _ p t r [2] , * n i n i B a x . p t r [2] , * t e B p . p t r [2] ;
STAT d u o m y ;

duiany.ptr[0] = »l inkl[0]; dummy.ptr[1] = t l i n k l[l3;
ainimax.ptrCO] = tlink2[0]; m i n i B a x . p t r [l] = t l i n k 2 [l] ;
f or (i = j = P; i < nuo.vec - 1; i++)
{ / • . n u B b e r of l i n k in subtree * /

dummy = get . tree .variance(l ink. intree , node.intree, tree .root , i) ;
i f (dummy.sum[0] > dummy.ssq[0]) / » dummy.v.sum belongs to node2 */

/ • intraset distance of subtree 1 • /
dumay.ptr[1]->var »= dummy.ssqCP] ;
/ • intraset distance of subtree 2 */
d u B a y . p t r [P] - > v a r = dummy .sum[P] ;
dUBmy.ptr[l]->mn.node = l ink_intree[i3 .node l ;
dummy.ptr[0]->mm.node = link.intree[i].node2;
dummy.ptr[l]->root = 1;
dummy.ptr[b]->root = 1;
/ * l ink . in tree nodel i s the upper subtree, node2 i s the loner * /

^ snap = 1; / * nodel and-node2 exchange * /

else
{

dummy.ptrCo]->var = dummy.ssq[P];
duomy.ptr[l]->var = dummy .sum[P] ;
diuamy.ptr[0]->mm.node •= l i n k . i n t r e e [i] .nodel;
dummy.ptrCl]->mm.node = link_intree[i].node2;
duony.ptr[0]->root = 1;
dUBmy.ptr[l]->root = 1;
snap = 0;

i f (j == 0)
{ / * i n i t i a l i z e comparison * /

•minimax.ptrCO] = *dummy.ptr[P];
*mi'nimax.ptr[l3 = •dummy.ptr [1] ;
i f (snap) exchange = 1;
else exchange = P;

i f (dummy.ptr[0]->var < oinimax_ptr[03->var)
'/* f ind ainimax var • /
•C / • f ind mihiaum, a l l var l are maximum • /

i f (soap) exchange = 1;
else exchange = 0;
temp.ptrCO] = ainimax.ptr[P]; / • exchange pointer • /
teap.ptrCl] = ainimax.ptrCl];
ainiaax.ptrCP] - dummy.ptr[0];
ainiaax.ptrCl] = dummy.ptr[1];
dummy.ptr[0] = temp.ptrlO];
dummy.ptr[1] = temp.ptr[l];

}
duBBiy.link. nodel = ainimax.ptr [P]->mm^node;
dunny.link.node2 - ainimax.ptr[1]r>mm.node;
/ • Bri te to minimax.node for s o r t i n g . • /
ainiaax.node[index] = •ainimax.ptr[P];
ainiaax.nodeCindex-fl] = •minimax.ptrCl];
/ • labe l the true root • /
adjust.Bm.node(minimax.node, num.vec, index);
/ • v i s i t ainiaax root for depth f i r s t screen • /
v i s i t . root (vertex , (in t •)tdumny.link);

359

http://just.Bm.node

^ retuni(exchange);

a d j u s t . B i > ^ n o d e (B i n i M U _ n o d e , n i u i . v Q C , niui.Bm)
NIIIIUX_IODE • • i n i M i x . n o d e ;
int nu>_vec, n u a _ B a ;

register i , j ;

f o r (i « 0; i < nim_«»i i++)
{ / * exclude the latest pair of Ba_node • /

for (j = 0; j < n u a _ v e c ; j++)
i f (group.pixelCj] «« •ininax.nodeCi] .Bai_node)
< / • only one wn.node. in a subtree can be the root * /

'•ini>ax_nodeCi].root >: 0;
break;

}

STAT get_tree_variance(link.intree, node.intree, tree.root, i)
tniIQUE.I,ire *link.intree;
STAT •node.intree;
int treejroot, i ;
{ /***« calculate the variance of subtrees **•* /

int k;
STAT sum[2], result;

i f (node.intreeCtree.root].nua.vec == 2)
{ / « only one link in tree * /

for (k = 0; k < diaensipn; k++)
result.sumCk] = result.ssq[k] = 0.0;

^ retum(result);

/ * node2 is the loser subtree * /
sun[0] = node.intreeClink.intreeCi].node2]; / * must be node2 * /
/ » get variance of the other tree * /
sumtl].num.vec = node.intreeCtree.root].num.vec-sum[0].num.vec;
for (k = 0; k < dimension; k++)
{

sumCl] .sura[k] = node.intreeCtree.root] .sum[k]-sum[0] .8um[k] ;
^ sumCl] .ssqCk] = node.intreeCtree.root] .ssqCk]-sumCO] .ssqCk] ;

result.ssqCO] " get.distance(sumCl]>;
result.sumCO] = get.distance(suiaCO] > ;

^ return(result); / • return the intraset distance of subtrees * /

float get.distance(sub)
STAT sub;

int k;
float var =0 .0 ;

i f (sub.num.vec == 1) return(O.O);/* i f only one node variance is zero

/ * calculate variemces of the tree, on both dimension * /
for (k = 0; k < dimension; k++)

var += (((float)sub.num.vec • sub.ssqCk])
-SQUA&E(sub.sumCk]>)/((float)sub.num.vec
•((float)sub.num.vec-l));

/ * squared intraset distance * /
^ return(2*var);

readjust.tree.V2ir(miniaax.node, t, start, num.vec, ssap)
HIIIHAX.IODE *miniBax.node;
int t , snap, hum.vec, *startC];
•£ /»*** update the ainiaax links variance ***•/

i f (swap)
{ / • f irst t B O cal l the upper subtree, last call the loser one »/

renes.variance(minimax.node,.group.pixel,
(int)(startCO] -group.pixel), t+ l , t) ;

r e n e B . v a r i a n c e (a i n i a a x . n o d e , startCl]>
nuB.vec -(int)(startCl] -group.pixel), t+1, t);

renes.variance(minimax.node, start CO],
(int)(startCl] -startCO]), t, t);

else
i

renes.variance(minimax.node, group.pixel,
(int)(startCO] -group.pixel), t, t);

renes.variance(minimax.node, startCl],
num.vec -(int)(startCl] -group.pixel), t, t);

reneB.variance(rainimax.node-, startCO], (int)(startCl] -steurtCO]),
^ t+1, t);

360

http://sub.num.vec

}

rehev_variaiice(ainimax, s t a r t , nunpix, node, t)
register HIIIHAX_IODE •• in iaax;
int nuapix, -t', *staft;
register int node;

register int k, index;
int j ;

for (j = 0; j < t;
{ / * f o r a l l aininax.node * /

index " s tart - group.pixel;
for (k » 6; k < nunpix; k++, index++)
{ / • for a l l node in the present subtree * /

/ * check the present of other nininax node * /
i f <nihiBax[jJ.no.node == group.pixel[index]) / * node! * /
{ / * node i s nodel or node2 * /

• ininaxCj] .var = nininax [node] .var;
break;

TREE * f i n d . a l o n e . n o d e (l i s t)
LIST_HEAD • l i s t ;

register TREE ' t h i s ;

th is = list->node;
BhileCthis != lULL)
{

i f (this->status == lOTVISIT)
return(this) ;

th i s = this->next;

return(lULL);
>
delete.duplicate()

register TREE »this;

th i s = neH->node;
B h i l e (t h i s != TOLL)
•£ / * n a r k the duplicate node • /

i f (th i s ->node .pds = old->node_tag)

this->Btatus = THPVISIT;
break;

th is = this->next;

}

start .depth. f irst (s tack.pos , nunpix, root, node)
register int *stack.pos, *nunpix;
int root;
TREE *node;

stack[(*stack.pos)++] = root; / » put root to stack * /
group.pixel[(»nunpix)++] = root; / • put root to c luster * /
stack[(*stack.pos)++] = node->node.pos; / » put node to stack * /
group.pixel[(*nunpix)++] «= node->node.pos; / » put node to c luster • /
node->status = THPVISIT; / » v i s i t node • /

}

TREE * d e p t h . f i r B t . n e x t (v e r t e x , s t a c k . p o s)
register LIST.HEAD *vertex;
register int * B t a c k . p o B ;

TREE •root;

de lete .dupi icateO;
/ * delete the duplicate node in the next tree l i s t * /
i f ((root = f i n d . a l o n e . n o d e (n e B)) == TOLL)
<

B h i l e (r o o t = TOLL)

/ * delete s t a c k • /

• B t a c k . p o B -= 2;
n e B = *vertex[stack[(*stack.pos)++]];
root » find.alone.node(neB);
i f (*stack_pos == 1 t t root = TOLL) retum(TOLL) ;

}

return(root);
}

/************'**************^***********«******************************

361

• You &re reading tdsegS.c
• This prograa read a spanning tree and i t s l inks generated by
• e .g. rss tS .c or B B S . C then generated segnents and s r i t e segaents
• to a f i l e f or c luster ing.
• To obtain • segaents the heaviest u-t l inks s i l l be deleted.
• There are eight neighbours to each p ixe ls .
• • * • • * * OBTAII SEGHEITS FROH THE IIPUT DATA FILE • * * * •
• * « « « • » USIIG (R)SST OR HIIIHAX_LIIK • * • » •
• I .S .LAU 21-1-92
*********************«**

•include < B a l l o c . h >
•include <strinz.h>
•include <stdio.h>
•include <aath.h>
•include <pixrect/pixrect_hs.h>

•define DIHEISldl 3/* BaxiauB deaension of iaage * /
•define HAX.XSIZE 128 / * kaxinuia xsize of iaage * /
•define MAX.YSIZE 128 / * B a x i m u n ysize of iaage * /

•define TMPVISIT 2 / • depth f i r s t search * /
•define VISIT 1
•define lOTVISIT 0

•define DUPLICATE 1 / * f ind single node * /
•define UIIQUE 0
•define deBand(fact, reaark) {\

i f (!(fact)) A
fpr int f (s tderr , "deaand not net: fac t \n") ; \
fpr int f (s tdorr , "renarkXn");\
ex i t (l>; \

}

/ • * • • * * * * * * * * • « * STRUCTURE DECLARATIOI • • • • • • • * * * • • * * * /
typedef struct tree {/* structure for tree elenents * /
int node.pos;
struct tree *next;
char status;
} TREE;

typedef struct { / » the f i r s t element i n a l i n k l i s t • /
int node.tag;
TREE «node;
} LIST.HEAD;

typedef struct {./* store a l i n k * /

int. nodel;
int node2;
} UIIQUE.LIIK;

/ • • • • * » » * * * * » » * • « FUICTIOIS DEFIIITIOIS • • » • • • » * • • * * * * * * /
c h a r * get.nenoryO;
TREE * find.alone.node();
LIST.HEAD • depth.first .segnent();
LIST.HEAD • depth.first_inform();
TREE * depth. f irst .next() ;

/***************•*** GDLBAL VARIABLES *******************/
u_char inage[DIMEISIOI][HAX.YSIZE][MAX.XSIZE];
u.char segtDIMEISIOI][MAX.YSIZE][MAX.XSIZE];
int nos .vert ices , /* nunber of nodes in a region * /

dimension,/* .dinension of inage * /
top.x, top .y , /* top l e f t coordinate of nindos * /
B i n j x s i z e , win.ysize;/* size of nindoo • /

f loat mean[DIMEISIOI];/* nean of a region * /
LIST.HEAD * n e H . p t r , *o ld .p tr ; /* for depth f i r s t s e a r c h * /

struct ras ter f i l e header;/*'header for f i l e * /

aainO
<

int **clust , *group^pixel,/* storage of segaents * /
•stack;/* for depth f i r s t search * /

int s, numlink, segment;
UIIQUE_LIIK •heavy;/* l inks to be cut * /
LIST.HEAD *vertex, **heaviest;
TREE *tree:.element;
FILE *span.tree;

putsC'GEIERATES SEGMEITS FOR TOP DDWI APPROACHES");

get_paraaeter(tspan.tree, ksegment, ftnumlink);
get .dataO;
number.l inkO;

/ * allocate array of structure for l inked l i s t of tree * /
vertex = (LIST.HEAD *)get.memory(Bin.xsize*Bin.ysize, sizeof(LIST.HEAD));
heavy = (UIIQUE.LIIK *)get_memory(Bin.xsize*Bin.ysize-l,

sizeof(UIIQUE.LIIK));
trise.elenent = (TREE *)get.memory(2*Bin.xsize*Bin.ysize-2, s izeof (TREE));

362

s t a c k = (int *) g e t_B« a o r y(Bin_zsize*Bin_ysize, s i zeof (int)) ;
grbup.pixel = (int *) g e t _ m e n o r y(Bin _ x s i z e * ¥ i n _ y s i z e + l , s i z e o f (i n t)) ;
/ • a l l o c a t e array of pointer to the segment l i s t s * /

clnst « (int * *) g e t j i e m o r y (s e g m e n t + l , s i z e o f (i n t •)) ;

clttst[segment] = » g r p u p _ p i x e l [B i n i X s i z e » B i n _ y s i z e] ; /• assign the end • /

load_data(k8pan_tree, heavy, tree.element, v e r t e x , n u m l i n k) ;

/ * i n i t a l i z e labe l f or depth f i r s t s e a r c h * /

for(s = 0; s < B i n _ x s i z e * B i n_ysize; s++) v e r t e x [s].node . t a g = s;
/ * a l l o c a t e array of p o i n t e r to'the h e a v i e s t r o o t s * /

h e a v i e s t » (LIST.HEAD •»)getjiemory(2» (segment-l) , s i z e o f (LIST.HEAD *));

get .root(heaviest, v e r t e x , heavy, segment);
get.segraent(heaviest, vertex, stack, group.pixel, clust, segment);
s e g m e n t . f i l e (c l u s t , s e g m e n t) ;
image . f i l eO; / * s r i t e output i m a g e to f i l e * /

}
/ * EID OF HAII * * * * * * * * * * * * « * * * * * * * * * * * * * * /
|et_data()

char f i l e n a m e [D I H E I S I O I] [S O] ;
Int i . j ;
FILE *fLDIHEISIOI];
s t r i c t r a s t e r f i l e head[DIMEISIOI];

p r i n t f (" T h e s p a n n i n g tree i s on Xd dimensional data\n", dimension);

f o r (i = 0; i < d i m e n s i o n ; i++)

p r i n t f (" E n t e r the c h a n n e l filename Xd, " , i) ;
scanf ("Xs", (char *)»filename[i] [0]) ;
f [i] = fopen((char *)»filenarae [i] [0] , "r");

^ demand(f[i]. Cannot open f i l e) ;

/ * s t o r e h e a d e r in global area-, f or l a t e r use * /
fread((char *)theader, sizeof(struct r a s t e r f i l e) , 1, f [0]) ;
r e B i n d (f [0]);
for (i = 0; i < d i m e n s i o n ; i++)

fread((char •) t h e a d [i] , s i z e o f (s t r u c t r a s t e r f i l e) ; 1, f [i]) ;
d e m a n d (h e a d e r . r a s . l e n g t h h e a d [i] . r a s . l e n g t h .

Hake sure the images has the same size and coordinates);

p r i n t f (" T h e images size i s Xd\n", header.ras.Bidth);
p r i n t f (" T h e BindoB Bidth (xsize) i s Xd\n", Bin.xsize);
p r i n t f (" T h e BindoB height (ysize) i s Xd\n", Bin.ysize);

p r i n t f (" T h e top l e f t BindoB coordinate of the BindoB , \n");
p r i n t f (" \ t x : Xd\n", top.x);
p r i n t f (" \ t y : Xd\n", top.y);

demand(head[0].ras.Bidth >= Bin.xsize+top.x,
The BindoB i s out of range\, p l e a s e r e d u c e s i z e) ;

f o r (i = 0; i < dimension; i++)
f s e e k (f [i] , (l o n g) (t o p . y * h e a d [i] . r a s.Bidth+ t o p . x) , 1);

f o r (i = 0; i < dimension; i++)
for (j = 0; j < B i n . y s i z e ; j++)

f r e a d ((c h a r ») * i m a g e [i] [j] [0] , s i z e o f (char), B i n . x s i z e , f [i]) ;
^ f8eek (f [i] , (long)(head [i].ras.Bidth -s in.xsize), 1);

^ f or (i = 0; i < dimension; i++) fclose (f [i]) ;

/ * s t o r e the s e g m e n t s in a f i l e »/
segment . f i le(clust, segment)
iht **clnst, segment;

char *buf = "/home/image /output/td.seg";
int 8, num_pix, item;
FILE *fp;

fp « f o p e n (b u f , ! ' B ") ;
d e m a n d (f p . Cannot open f i l e f or s e g m e n t f i l e) ;

f B r i t e ((c h a r *)tdimahsion, sizeof (i n t) , 1, fp) ;
f B r i t e ((c h a r *)»top_x, s i z e o f (i n t) , 1, fp) ;
f B r i t e ((c h a r •) t top .y , s i z e o f (i n t) . 1. fp) ;
f B r i t e ((c h a r •)tBin.xsi2e, s i z e d f (i n t) , 1, fp) ;
f B r i t e ((c h a r ») t B i n . y s i z e , s i z e o f (i n t) , 1. fp) ;
item ='fBrite((char •) t s e g m e n t . s i z e o f (i n t) , 1, fp) ;
for (s = 0; s, < s e g m e n t ; 8++)
i I* Brite the s e g m e n t to f i l e , f o r m a t i s num.seg, seg » /

nura.pix = c l u s t [s + i] - c l u s t [s] ;

363

i t en += fnriteCCchar *)»num_pix, sizeof(int), 1, fp);
item += foriteCCchar •) c l u 8 t t 8] , sizaofCint), nim.pix, fp) ;

deaandCitaM vin_X8ize*sin_ysize+8egnent+l, Write segaent error);
printf<"Sepient8 are stored in f i le Xs\n", buf);

^ fclose(fp);

char vget^eaorydteas, size)
int iteas, size;

char *buffer;

buffer = (char *)calloc((u_int)items, (u_int)size);
demand(buffer, lothing allocated for array);

^ retum(buffer);

/ * store the segmented image • /
iaage.fileO
•£ / • only write the visible image */

FILE *fp;
int item, i , a;
char *^ath « "/home/image/output/seg",

buf [50];

header.ras.height = Hin.ysize;
header.ras.vidth = vin.xsize;
header.ras.length = Bin_xsize*Bin_ysize;
for (a = 0; a < dimension; a++)

strcpy(buf, path);
strcpy(c, 164a((long)(a+2)));
strcat(buf, c);
strcat(buf, ".ras");
fp = fopen(buf, "v") ;.
demand(fp. Cannot open f i le for output image);

item = fBrite((char *)fcheader, sizeof(struct rasterfile), 1, fp);
for (i = 0; i < vin.ysize; i++)

item += fvrite((char •)tseg[a] [i] [0] ,
sizeof(char), vin.xsize, fp);

demand(item == vin.xsize»vin_ysize+l, Write output f i le error);
fclose(fp);
printf(I'Segment image is stored in XsNn", buf);

}

init ial izeO

int)c;

nos.vertices. = 0;
^ for (k = 0; k < dimension; k++) m a a n [k] = 0.0;

calculate.sum(a)
int a;

int i , j , k;

get.coordinates(a,ti,tj);
for (k = 0; k < dimension; k++)
^ mean[k] += (float)image[k] [i] [j] ;

get.coordinates(node.pos, a, b)
m t node.pos;
int •a , *b;

*a = node.pos / vin.xsize;
*b = node.pos % B i n . x s i z e ;

get.parameter(span.tree, segment, numlink)
FILE ••span.tree;
int *segment, *numlink;

char buf [50];
int pos,

tot,
length;

printf("Enter the spanning tree filename, ");
scanf("%8", buf);
•span.tree = fopen(buf, "r");
demand(^span.tree, cannot open f i le) ;
fseek(•span.tree, OL, 2);
pos = f telK^span.tree) ;

364

printf("spanning tree f i le length Xd bytes\n", pos);
reBind(*span_tree);
fread((char •)tdiBension, s izeof(ir i t) , 1, *span_tree);
fread((char •)ttop_x, sizeof (int) , 1, *span.itree) ;
fread((char •)ttop_y, s i zebf (in t) , 1, *span_tree);
fread((char *)tBin_xs ize , s i zeof (int) , 1, »spsm_tree);
fread((char »)tBin_ysize, s i zeof (int) , 1, »span_tree);

tot » Bin_xsize*Bin_ysize;
length » (t o t - l) * 8 i z e o f (U I I Q U E _ L I I K)

+(2*tot-2)*(sizeof(int)+sizeof(TBEE •))
+5*sizeof(int);

i f (pos = length)
{/• use only spanning tree • /

*nuBlink » 0;

p r i n t f (."Enter the nu«ber of segments to be generated, ");

else
{/• use minimax * /

fread((char *)numlink, s i zeof (int) , 1, •span.tree);

printf("Input the number of segments, must be <» Xd, " , •numlink + 1);

scanf("Xd", segment);
in t number.linkO

int 8 , to ta l_ l ink;

t o t a l . l i n k = 0;
for (8 = 1 ; 8 < B i n.xsize-l; s++)
t o t a l . l i n k += s;
t o t a l . l i n k •= 4;
t o t a l . l i n k += 2 * (v i n . X 8 i z e * B i n . y 8 i z e - l) ;
pr intf ("Total number of l inks in or ig inal graph i s Xu\n" , to ta l . l ink) ;
return (t o t a l . l i n k) ;
}

l o a d . d a t a (8 p a n . t r e e , heavy, tree.element, vertex, ntimlink)
FILE ••span.tree;
UIiqUE.LIIK •heavy;
TBEE •tree.element;
LIST.HEAD •vertex;
int numlink;
{

int s, t , total . i tems, numread = 0;
TREE'•temp.tree;

i f (numlink) / • th i s i s a minimax f i l e • /
numread += fread((char •)heavy, sizeof(UIIQUE.LIIK),

numlink, •span.tree);
else

niunread *= fread((char •)heavy, sizeof (UIIQUE.LIIK),
Bin . x s i z e * B i n . y s i z e - l , •span.tree);

for (t = 0; t < 2^Bin.xsize^Bin .ysize-2; t++)
numread += fread((char •)Jttree.eleBent[t],

sizeof(int)+sizeof(TREE *) , 1, •span.tree);
demand(numlink ? nnmread == 2*Bin^xsize»Bin.ysize+numlink-2

: numread == 3»Bin .xsize*Bin_ysize-3, Read error) ;
fclo8e(^span.tree);

/ • reconstruct the tree data structures just read from f i l e • /
for (t = 0, total . i tems = 0; t < Bin . x s i ze*Bin .ys i ze ; t++, total.itens++)

v e r t e x M .node = ttree.element [total.items] ;
temp.tree'= tree.element[total.items].next;
Bhile (temp.tree != lULL)

s = totaliitems++;
tree.element[s].next = ttree.element[total.items];
temp.tree - tree.element[total.items].next;

}
}

/ • prepare for depth f i r s t search * /
get.root(heaviest, vertex, heavy, segment)
LIST.HEAD ••heaviest, •vertex;
UIIQUE.LIIK •heavy;
int segment;
</• locate a l l the root node i n the l i s t head.• /
register int s, t ;

for(s = 0,t = 0; s < segment - 1; 8++)
{ / • take doBn the required 2 * (8 e e m e n t - l) heaviest l ink(root) • /

heaviest [t++] = tvertex[heavy[sl.nodel] ;
/ • do the duplicate l i n k • /
heaviest[t++] = tvertex[heavy[s].node2];
/ • labe l the root as v i s i t • /
v i s i t . root (heavies t , t -2) ;

365

/ * cut spanning troa and obtain sepaents • /
get.segnent(heaviest, vertex, stack, group.pixel , c lus t , segment)
LIST.HEAD'«vert ex, *»heaviest;
int *stack, *group.pixel, •*clust;
int segment;

LIST.HEAD *temp.list;
TREE «root;
int k, t , stack_pos, root.pos, numpixel;

numpixel =0; / • a l l root already v i s i t ed * /
t " get_single.node(heaviest, 2*(segment-l), group.pixel ,

c lus t , tnumpixel);
i f (t > 0)

printf("There are Xd single point segments\n", t) ;
^ output.single.node(group.pixel, c lus t , t) ;

f o r (root.pos " 0; t < segment; root.pos++, t++)

/ * delete a l l s ingle nodes from the heaviest l i s t • /
in i t ia l izeO;
stack.pos =0;
clustCt]"»group.pixol[nunpixel]; / » point to start of nen c luster * /
while ((root = find.alone.node(heaviest[root_pos])) »= TOLL)

root.pos++;
s tart .dopth. f irs t (group.pixe l , stack, tstack.pos,

tnumpixel, heaviest[roo.t.pos]->node.tag, root) ;
calc"ulate.sum(heaviestLroot.pos]->node.tag);
calculate.sum(root->node.pos);
nos.vertices += 2;
neo.ptr = tvertex [robt->node.pos];
o l d . p t r = heaviest[root.pos];
do
{ / * depth f i r s t next * /

temp.l ist = depth.first.segment(vertex, tstack.pos,
tnumpixel, grpup^'pixel, stack) ;

o l d . p t r = nes.ptr;
neo.ptr = temp.l ist;

} while(stack.pos != 1); / • stack != TOLL * /
f o r (k = 0; k < dimension; k++)

nean[k] /= nos.vertices;
output.image(clust[t], group^pixel);

^ c lust[t] = tgroup.pixel[numpixel]; / • point to end * /

output.single.node(group.pixel, c lus t , num.node)
int *group.pixel, **clust, num.node;

register int i ;

for (i = 0; i < num.noda; i++)
{

in i t ia l izeO;
calculate.sum(group.pixel[i]);
nos.vertices++;
output.image(clust[i], group.pixal);

>
s tart .depth. f irs t (group.pixe l , stack, stack.pos, numpix, root, node)
int *stack.pos, •numpix, *grbup.pixel, *stack, root;
TREE *node;

stack[(*stack.pos)++] = root; / * put root to stack * /
grbup.pixel[(»humpix)++] = root; / • put root to d u s t e r • /
8tack[(*stack_pos)++] = node->node.pos;
group.pixel[(*numpix)++] = node->node.pos;
node->8tatus = TMPVISIT;

>
LIST.HEAD • depth.first.segment(hode.head, stack.pos, numpixel,

group.pixel , stack)
LIST.HEAD •nbde.head;
int *group.pixel, *8tack;
int *stack.pos, ^numpixel;

TREE «root;

i f ((root " depth.first.next(node.head, stack.pos, numpixel,
grbup.pixel , stack)) == TOLL)

return(TOLL);
calculate_8um(root->node_po8);
nos.vertices++;

return(tnode.head[root->node.pos]);

366

yis i t . root (heavies t , root.pos)
LIST_HEAD ••heaviest;
int root.pos;

Int i . j ;
TREE *this ;

f o r (i » O. j « 1; i < 2; i++.j—)
•C / » v i s i t a pa ir of root * /

th i s » heaviest[root.pos+i]->node;
sh i l e (this i* lULL)

i f (this->node.pos == heaviest[root.pos+j]->node_tag)

this->status = VISIT;
break;

th i s = this->neit;

int get.single.node(heaviest, nua.root, a l l .node, c lus t , nnnpixel)
LIST_HEAD ••heaviest;
in t nuii_root, all .node • , •c lust 0 , •nuopixel;

TREE • th i s . t r ee ;
int i , j , k, nua.seg;
char test;.

nun_seg = 0;
for (k = 0; k < num.root; k++)
< / • go over a l l root • /

i = 0;
th i s . t ree = heaviest[k]->node;
Bhile (t h i s . t r e e != lULL)
{ / • count number of node • /

i f (this.tree->status == lOTVISIT)
i++; / • count any l o t v i s i t node * /

th i s . t ree = this.tree->noxt;

i f (i == 0)
i I* node e l i g ib l e to be single node • /

test = UIiqUE;
i f (num.seg > 0)
•£ /• more than 1 segment * /

for (j = 0; j < num.seg; j++)

i f (all .node[j] == heaviest[k]->node.tag)
{ / • check each cluster • /

test = DUPLICATE;
break;

^ }

i f (test == UIIQUE)
{ / • put unique single node to the cluster l i s t • /

clust[num_seg++] = tall.node[•numpixel];
all.node[(•numpixel)++] = heaviest[k]->node.tag;

}
}

^ return(num_seg); / • return number of s ingle node * /

TREE • f ind.alone.node(l ist)
LISTi.HEAD • l i s t ;

TREE • t h i s ;

th is = list->node;
Bhile (th i s != lULL)
{

i f (this->status == IQTVISIT)
return(this) ;

th i s = this->next;

^ return(IULL);

delete .dupl icateO

TREE • t h i s ;

th is = neB.ptr->node;
Bhile (this != lULL)
< /• mark the duplicate node * /

i f (this->node.pos = old.ptr->node_tag)

this^>status = THPVISIT;
break;

367

>
t h i s " this->next;

TEEE * depth.first_next(vertex, stack.pos, nunpix, group.pixel , stack)
LIST.HEAD »vertex;
int .*stack.pos, *nuDpix;
int *group.pixel , 'stack;

TEEE *root;

de le te .dupl icateO; / * delete duplicate node i n the next tree l i s t * /
i f ((root = find.aione.node(netr.ptr)) == lULL)

vhile (root ».» TOLL)
i

I* delete stack * /
*stack.pos -= 2;
nev.ptr = tvertexistack[*stack.pos]];
root » find.alone.node(Jtvertex[stack[(*stack.pos)++]]);
if(*stack.pos »= 1 root = TOLL) return(TOLL);

>
/ * put node to stack • /
8tackC(*stack.pos)++] = root->node.pos;
/ * put node to notepad for reset * /
group.pixel [(•nu]apix)++] = root->node.pos;
root->status « THPVISIT;
return(root);

output. inage(clust .start , group.pixel)
int *c lus t . s tar t , group.pixel • ;

I* v r i t e to screen v i t h precalculated average value * /
int i , k, a, b, index;

index = c lust . s tart -group.pixe l ; / * get the index of group p ixe l * /
f o r (i = 0; i < hos.vertices; i++ ,index++) / * nuinber of p ixe l » /

get_coordinates(group.pixel[index], t a , tb) ;
for (k = 0; k < dimension; k++) seg[k][a][b] = meanW;

}

/****«*** .****************«*************«*****************************
* You are reading bhcS.c *
* This program read a segments f i l e generated by tdseg3.c, and *
* cluster the segments. *
* Segment clustering based on graph theoretic approach. *
* To obtain m segments the m-1 l inks v i l l be deleted. *
* Use Hotel l ing test as distance betveen tvo segments. •
* Bottom up clustering. *
* K.S.LAU 24-1-92 »
• • • • * • • • • • • * • • • • • • * * • * * * * • * • • * • * • • • • * * * * • * * • • • * * • * * * * * * * * • • * * • • • • • * * /

t include "cluster.h"

typedef struct {
f loat sumCDIHEISIOI] ;
f loat ssqCDIHEISIOI];
f loat cosumCDIHEISI0I*(DIHEISI0I-l)/2];
int num.vec;
}ISTAT;/* s t a t i s t i c required for a gaussian model * /

f loat hotel l ing_distanceO;
f loat •ahalanobis.distance();
f loat get .hotel l ing^distanceO;
ISTAT add.ISTAT();
ISTAT segment.all .statO;

/ • * GLOBAL VARIABLES ********************* /
u.char imageCDIHEISIOI]CHAX.YSIZE]CHAX.XSIZE];
char labelCHAX.YSIZE]CHAX.XSIZE];
int *group.pixel,

•stack,
class.segment,/ store segments * /
num.seg,/* number of segments • /
dimension,
top.x, top.y ,
v in .xs ize , v in .ys ize;

LIST head;
LIST.HEAD tnav, *old;
struct ras t er f i l e header;

mainO
{

int num.class,/* number of clusters * /
numread,
**seg, * » c l a 8 s . p t r ,
r , 8 , t ;

368

LIST_HEAD »vertex, • •root;
STAT 8tat[HAX_CLUS];
FILE • s eg . f i l e ;

putsC'SEGHEIT CLUSTERIIG USIIG RST(IITRSET DISTAICE)");
noBread « 0;
get_paraneters(tseg_file, tnumread, tnun_class, JtnuB.seg);
got.dataO;
stack ' (int •)get_BeBory (nun_seg, s izeof (int)) ;
group.pixel = (ant »)get_«emory(Bin_xsize*Bin_ysize+l , s izeof(int))
yeftex >• (LIST_HEAD *)get jtomory(nu»_8eg, s izeof (LIST_HEAD)) ;
seg « (int »*)get_iie«ory(nUB_seg+l, sizeof (int »)) . ;
/ • point to end • /
seglnuB.seg] « tgroup.pixel[Bin_xsize*Bin_ysize];
/ • al locate array of structure f o r l inked l i s t of tree * /
load_data(tseg_file, tnunread, seg);

puts("Grouping segnents.. .");
/ * th i s i s the essential ly the sane as the CEST algorithn • /
rst_clustering(vertex, seg, ntUB_class);

/ * al locate array of pointer to the heaviest roots » /
class.segnent = (int *)get_nenory(nun_seg+l, s i zeof (int)) ;
c la s s .p tr = (int **)get_nenory (nun_class-M, sizeof (int *));
root " (LIST.HEAD **)get.nenory(nuB.class, sizeof(LIST.HEAD *));
get.root (vertex-, root , 'nun.class) ;
group.segnent(vertex, root, c lass .p tr , n u n.clEi8s);
output.clusters(nun.class, seg, c lass .p tr , s tat) ;
shoB . c luster .paraneters(nun.c lass , s tat) ;
i n a g e . f i l e(nuB . c l a s s , s tat) ;

get.root(vertex, root, nun.class)
LIST.HEAD *vertex, ••root;
int nun.class;
{

int i , . j ,
comptagO;

LIST.HEAD ••ptr;

ptr = (LIST.HEAD ••)get.nenory(nun.seg, sizeof(LIST.HEAD •)) ;

for (i = 0; i < nun.seg; i++) ptr[i] = tvertex[i] ;
qsort((char •)ptr, nun.seg, sizeof(LIST.HEAD •) , conptag);

/ • get roots • /
for (i = j = 0; i < nun.seg; i++, j++)

i f (ptr[i]->node.tag == 0) rootCj] = ptr[i];
else break;

root[j++] = ptr[i++];
for (; i < nun_8eg; i++)

i f (ptr[i]->node.tag != ptrCi-l]->node.tag)
root[j++] = ptrti];

demand(num.class == j , find inconsistent nunber of segaents);
free((char •)ptr);

/ • initalize label for depth f irst search • /
for(i = 0; i < num.seg; i++) vertexCi]'.node.tag = i ;

int conpteig(a, b)
LIST.HEAD • • a , ••b;
{ / • in ascending order of naenitude • /

retum((^a)->node.tag - (•bT->node.tag);

group.segnent(vertex, del^l ink, c lass .p tr , num.class)
LIST.HEAD 'vertex, • • d e l . l i n k ;
in t • • c l a s s . p t r , num_class;

int i ,stack.pos,num.seg,root.pos;
TREE •root;
LIST.HEAD •temp.l is t ;

nua.seg = 0 ;
i * f ind.single.segment(del. l ink, num.class, tnum.seg, c la s s .p tr) ;
for (root.pos = 0 ; i < nun.class; r6pt.pos++, i++)

stack.pas = 0;
B h i l e ((r o o t = find.alone.node(del. l ink[root.pos])) == lULL)

root.pos++;
c lass .ptrCiJ = tcl2iss .segment[num.seg];
s tar t .dspth . f i r s t (t s tack.postnum.seg ,

del.]ink[root.pos]^>node.tag, root) ;
nes * »vertex[foot->node.pos];
old•= tvertex[del.link[root.pos]->node_tag];
do

369

tonp_list = depth.first.clBss(vertex, tstack.pos, tnttB_seg);
old = neo;
now >« temp.list;

^ } while(stack_pos •= 1);
^ class.ptrCi] " tclass_segDent[nuja.seg] ; / • point to end • /

•ake.link(total, vertex, link, region.svm, seg.stat)
int total;
LIST.HEAD 'vertex;
ISTAT 'region.suM, 'seg.stat;
LIST 'link;

int i , j , k;

/ • f ix the head • /
head.next » tlink[0];
head.last » tlink[total-l] ;
link[0].last = linkCtotal -l].next = thead;
for (i " 0, j «• total-1; i < total-1; i++, j—)
•C / * connect the link * /

linkCi].next « tlinkCi +1];
link[j].last = tlinkCj -1];

for (i >« k » 0; i < nun.seg-1; i++)

for (j = i+1; j < num.seg; j++)
•C / • calculate link weight » /

link M . node, nodel = i ;
link[k].node.node2 = j ;
link[k++].weight =

get.hotelling.distance(i, j , vertex, region.sum,
0, seg.stat);

}
}

float get.hotelling_distance(nodel, node2, vertex,
region.sura, region, seg.stat)

int nodel, node2, region;
LIST.HEAD 'vertex;
ISTAT 'region.sura, 'seg.stat;

i f (vertexCnodel].node.tag = 0 t t vertex[node2].node.tag = 0)
return(single.single(nodel, node2, seg.stat));

else i f (vertexCnpdel].node.tag == 0 t t vertex[node23.nodo.tag != 0)
return(single_group(nodel, region.sum, region, seg_8tat));

else i f (vertexCnodel].node.tag != 0 t t vertex[node2].node.tag == 0)
retum(single.group(node2, region.sum,, region, seg.stat)) ;

else returh(group.group(region_sum, vertex[nodel].node.tag,
^ vertex [node2]l. node.tag)) ;

float sihgle.single(nodel,. node2, seg.stat)
int nodel, node2;
•STAT 'seg.stat;

float dist;

dist = hotelling.distance(seg.stat[nodel], seg.stat[node2]);
^ retum(dist);

float single.group(node, region.sum, region,.seg.stat)
int node, region;

ISTAT 'region_sum, 'seg.stat;

float dist;

dist = hotelling.distance(seg.stat[node], region.sumCregion]);

retttm(dist);

float group.group(region.sum, regionl, region2)
int regionl, region2;
ISTAT 'region.sura;

float dist;

dist = hotelling.distance(region.suraCregionl] , region.sum[region2]);
^ retum(dist);

float hotelling_distance(a, b)
•STAT a, b;
{

370

int i . j , k;
f loat prod, add, d i s t ,

•eanl [DIHEISIOI],
Bean2[DIHEISIOI]., .
covarl[DIKEISIOI][DIHEISIOI],
covar2[DIHEISIOI][DIHEISIOI],
addcovar[DIHEISIOI][DIHEISIOI];

add = (f loat) (a.nuB_vec)+(float)<b.nuni.vec) ;
prod = (float)(a.nmi_vac)*(float)(b .nua_vec);
for (k * 0; k < dimension; k++)

•eanl[k] = a.suQ[k]/(float)(a.nun.vec);
•ean2[k] = b.sun[k]/(float) (b.nun.vec) ;

i f (add < DIHEISIOI)
{/* i f cannot conpute covariance natr ix return Euclidean distance * /

d i s t =0.0;
for (k = 0; k < dinension; k++)

d is t += SQUARE(noanl[k]-nean2[k]);
return(dis t) ;

else i f (a.nun_vec < DIHEISIOI 11 b.nua_vec < DIHEISIOI)
{/* i f any one group i s too s n a i l • /

i f (a.nun_vec < DIHEISIOI)
•C

get_covar(b, covar2);
inverse j i a t r i x(covar2);
dis t = nahalanobis_distance(neanl, nean2, c o v a r 2) ;

else
{

get_covar(a, covarl);
inverse.natrix(covarl);

^ d i s t = nahalanobis_distance(meanl, Bean2, covarl) ;

d i s t = dist*prod/add;

else
{/* both covariance natrix can be computed *l

get_vithin_group_ssq(a, covarl) ;
get_vithin_group_SEq(b, c o v a r 2) ;
f o r (i = 0; i < dimension; i++)

f o r (j = 0 ; j < dimension; j++)
addcovarti] [j] += covarl [i] [j]+covar2 [i] [j] ;

inverse_Batrix (addcovar) ;
for (i = 0; i < dimension; i++)

for (j = 0; j < dimension; j++)
addcovar[i] [j] •= add-2.0;

dis t = mahal'anobis_distetnce(meanl, mean2, addcovar);
^ d i s t = dist*prod/add;

^ re tum(d i s t) ;

get_covar(c, covar)
ISTAT c;
f loat bovarD [DIHEISIOI];

register int i , j j k, t o ta l ;

t o t a l = c.num.vec;

for (k = 0; k < dimension; k++)
covar[k][k] = ((float)total'c.3sq[k]-SIJUABE(c.suB[k]))

/ ((f loa t) to ta l* (f loa t) (to ta l - l)) ; /* uribaised * /
for (i = k = 0; i < dimension; i++)

f o r (j = i+1; j < dimension; j++, k++)

covar[i] [j] = ((float)total*c.cosum[k]-(c.sum[i]*c.sum[j]))
/ ((f loat) tota l*(f loat) (tota l -1)) ;

covar [j] [i] = covar[i] [j] ;

}

get.Bithin_group_s8q(c , covar)
ISTAT c;
f loat covar •[DIHEISIOI];

register int i , j , k, to ta l ;

t o ta l = c.num.vec;

for (k = 0; k < dimension; k++)
covar[k][k] = ((float)total*c.ssq[k]-sqUARE(c.sum[k]))

/ (f l oa t) to ta l ;
f o r (i = k = 0; i < dimension; i++)

for (j = i+1; j < dimension; j++, k++)

covar[i] [j] = ((float)total*c.cosum[k]-(c.sum[i]*c.sum[j]))

371

/ (f l oa t) to ta l j
covar[j]Ci] = covarCi][j] ;

>
in¥er8e_«atrix(Bcovar)
f l oa t HcovarCDIHEISIOI][DIHEISIOI];

register int i , j , k;

/ • conpute elenents of reduced natrix • /
for <k •= 0; k < dinension; k++)
{ / • nes elenents of pivot roB •/

for (j = 0 ; j < dinonsion; j++)
i f (j != k) Bcovar[k] [j] /«= Bcovar[k] [k] ;

/ • element replacing pivot elenent * /
B c o v a r[k][k] = 1 .0/Bcovar[k] [k] ;
/ * conpute n e B elements not in pivot roB or pivot column * /
for (i " 0; i < dimension; i++)

i f (i != k)
f o r (.3*0; j < dinension; j++)

i f (j != k)
Bcovar[i]Cj] = Bcovar [i] [i]

-Bcovar[k][j]*BcoYar[i] [k] ;
/ • compute replacement elenents for

pivot colunn-except pivot elenent * /
for (i = 0 ; i < dinension; i++)

i f (i != k)
Bcovar [i][k] *= -Bcovar[k] [k] ;

}

f loat nahalanobis_distance(neanl, nean2, B c o v a r)
f loa t *neanl, *nean2,

Bcovar[] [DIHEISIOI] ;
{/* generalised Hahalanobis distance * /
register i n t k , a, b;
f loa t vector[DIHEISIOI],

result[DIHEISIOI],
distance - 0.0;

for (k = 0; k < dinension; k++) r e s u l t[k] = 0.0;

f o r (k = 0; k < dinension; k++)
v e c t o r i k] = neanl[k] -nesm2[k] ;

for (a = 0; a < dimension; a++)
f o r (b = 0; b < dimension; b+.+)

result[a] += v e c t o r [b] * B c o v a r [b] [a] ;

f o r (k = 0; k < dimension; k++)
distance += r e s u l t[k] • v e c t o r[k];

retum(distance);

calculate_cosum_square(node, sum)
int node;
ISTAT *sum;
{

int i , j , k, a, b;

get.coordinates(node, ti, t j) ;
for (k = 0; k < dimension; k++)
<

sum->sum[k] += (float)image[k] [i] [j] ;
sum->s8q[k] += SQUAREUfloat)iBagetk][i][j]);

for (a = k = 0; a < dimension; a++)
f o r (b » a+1; b < dimension; b++, k++)

8um->co8um[k] +«= (float)image[a] [i] [j]*(float)image[b] [i] [j] ;

ISTAT add_ISTAT(a, b)
ISTAT a, b;
<

int k;

for (k = 0; k < dinension; k++)
{

a.sum[k] += b.sum[k] ;
a.8sq[k] += b.s8q[k] ;

for (k = 0; k < dimension*(diBension-l)/2; k++)
a.co8um[k] += b.co8um[k];

a.num_vec += b.num_vec;

return(a);

ISTAT segraent_all_stat(node, seg)

372

int node, •*8eg;
register int index, i ;
ISTAT su>;

initialize_ISTAT(Jtsu>);
index ' segCnode].- group.pixel;
sUB.nua_vec » seg[node+lJ - seg[node];
for (i » 0; i < sun.nua.vec; i++, index++)

calculate_cosun_square(group.pixel[index], tsun);
'retum(sun); / * intraset distance * /

initialize_ISTAT(a)
•STAT *a;

int k;

a->nun.vec » 0;
for (k " 0; k < dinonsion; k++)

&->sun[k] " a->ssq[k] * 0.0;
f o r (k « 0; k < dinensioh*(dinension-l)/2; k++)

^ a->co»un[k] « 0.0;

rst_clust.ering(vertex, seg, nun^class)
LIST.HEAD *vert»x;
int ««seg, nun.class;

int region, total, regionl, region2, nodel, node2;
LIST *link, *Bin;
ISTAT *region_sun, *seg_stat;
TEEE •templ.tree,»temp2_tree;

total = nunber.listO;
link = (LIST *)get.nenory(total, sizeof(LIST));
region.sun = (ISTAT *)'get.nenory(nun.seg, sizeof(ISTAT));
8eg.stat = (ISTAT *)get.nenory(nun.seg, sizeof(ISTAT));
for (region = 0; region < nun.seg; region++)

seg.stat[region] » segment.all.stat(region, seg);
nake_link(total, vertex, link, region.sum, seg.stat);
/ • take down the region of each segment */
for(region = 1; region < num.seg; region++)

/ * pick the smallest link • /
/ * record to unique link for sorting later • /
• in = lightest.linkO;
regionl = vertex[min->node.nodel].node.tag;
region2 = vertexDnin->node.node2].node.tag;
nodel = min->node.nodel;
node2 = min->node.node2;
/ * save the smallest link * /
templ.tree « get.nodeO; / * put into linked l i s t * /
temp2.tree = get.nodeO;
templ_tree->node.pos = node2;
temp2.tree->node.pos = nodel;
/ * put link into the tree • /
vertex[nodel].node = front.of.tree(templ.tree, vertex[nodel].node);
vertex[node2].node = front.of.tree(tenp2.tree, vertex[node2].node);
i f (region < num.seg-1)

sum.label_vertex(seg.stat, region.sum, vertex, nin,
region, regionl, region2);

delete.recal(seg_stat, min, link, vertex, region.sum,
region, regionl, region2);

^ i f (num.seg-num.class == region) break;

free((char •)region.8um);
free((char *)seg.stat);

^ free((char •)link);

LIST *lighte8t_link()

LIST •nin, • th i s ;

• in = this = head.next;
vhile (this != thead)

i f (nin->Beight > this->Height) nin = this;
^ this = this->next;

•in->last->next = nin->next;
Bin->next->last = •in->last;
•in->next = lULL;

^ return(nin);

sua.label_vertex(8eg.stat, region.sun, vertex, nin, region, regionl, region2)
int region, regionl, region2;

373

LIST • • in ;
LIST_UEAD •vertex;
ISTAT •region.siw, •seg.stat;

int i ;

i f (region! »» 0 kk region2 •= 0)

vertex[•in->node.nodel].node.tag > region;
vertex[nin->node.node2].node.tag = region;
region.sunCregioh] = add_ISTAT(seg.stat[min->node.nodel],

^ seg.stat[Bin->node.node2]);

else i f (regionl 0 kk region2 !» 0)

vertex[•in->node.nodel].node.tag » region;
for (i >! 0; i < n»ui_seg; i++)

i f (vertexCi].node.tag = re^ion2)
^ vertexCi].node.tag = region;

region.sim[region] = add.lSTAT(seg_statDain->node.nodel] ,
^ region.8u»[region2]);

else i f (regionl != 0 kk region2 = 0)

vertexDiin->node.node2].node.tag « region;
for (i = 0; i < nua_seg; i++)

i f (vertexCi].node.tag == regionl)
vertexCi]•node.tag = region;

region.sumCregion] = add.ISTAT(seg_statCmin->node.node2],
region.sumCregionl]);

else
{

for (i = 0; i < nura.seg; i++)

i f (vertexCi].node.tag == regionl 11
vertexCi].node.tag == region2)
vertexCi].node.tag = region;

region.sunCregion] = add.lSTAT(region.siimCregionl],
region.sumCregion2]);

i n t jump(nodel)
int nodel;
{ / • return the start position • /
return((nura.8eg^nodel)-(nodel^(nodel+1)/2));

delete.recal(seg.stat, B i n , l i n k , vertex, region.sum,
region, regionl, region2)

LIST • l i n k , • m i n ;
LIST.HEAD •vertex;
ISTAT •region.sum, • s e g.stat;
int region, regionl, region2;

register i n t i , j , k;
LIST •this, •that;
i n t m i n i , Bin2, region.node, nev.node, t o p ;

B i n l = min->node.nodel;
• in2 = Bin->node.node2;
top = jump(minl+l);
i f (regionl = 0 kk region2 = 0)
{ / • del.recal single t o single • /

this = head.next;
Bhile (t h i s != t h e a d)
•C

i f (this - link > top) break;
i f (this->node.nodel == Binl

II this->node.node2 == m i n i)
{

i f (this->node.nodel == m i n i)
noB.node = this->node.node2;

else
neB_node * this->node.nodel;

/ • recalculate first • /
this->Beight =

get_hotelling.distance(this->node.nodel,
this->node.node2, vertex,
region^iSum, region, s e g.stat);

i f (neB_node == this->node.nodel I I
neB_node = this->node.node2)
j = this -link +1;

else i f (noB.node > nin2) j = jump(min2);
else j = jump(neB.node);

374

that " tlinkCj] ;
while (that->next = lULL) that = tlink[++j];
while (that !> thead)
< / » delete * /

i f •((that->noae.nodel «« new.node tt
thatOnode.node2 == Bin2) 11
(that->node.node2 » new.node tt
that->hode.nodei == Bin2))

i I* del' one link for every node * /
that->la8t->hext » thatr>next;
that->next->last « that->last;
that->next = lULL;
break;

that = that->next;
}

}
this = this->next;

>
else
•£ / » del.recal for single to group tmd group to group » /

for (i = 0; i < nuB.seg; i++)
{ / * for a l l node in region • /

i f (vertexti].node.tag =« region)

region.node = i ;
this = head.next;
while (this != thead)
•C / * for every other node to this region node * /

i f (this - link > top) break;
i f (this->node.nodel == region.node 11

this->node.node2 == regioh.node)

i f (this->node.nodel == region.node)
new.node = this->node.node2;

else
new.node = this->node.nodel;

this->weight =
get.hotelling.distance(this->node.nodel,

this->node.node2, vertex,
region_sum, region, seg.stat);

i f (new.node == this->node.hodel | |
new.node == this->node.node2)
k = this -link +1;

else i f (new.node > Bin2) k = juBp(min2);
else k - jump(new.node);
that = tlinkCk];
while (that->next == lULL) that = tlink[++k];
while (that != thead)
{

i f ((that->node.nodel == new.node tt
vertex[that->node.node2].node.tag == region)
11 (that->node.node2 == new.node tt
vertex[that->node.nodel].node.tag == region))

that->last->next « that->next;
that->next->last = that->last;
that->next = lULL;
break;

}
that = that->next;

}
}
this = this->next;

* You are reading b B i r s l . c
* BottoB up segnentation using CEST.
» This i s bas ical ly the sane as rsstS.c
* Compute information loss to guide segmentation.
* Use a gaussian model for each segment.
* K.S.LAU 24-1-92
**

tinclude "bu.h"

/ * when to .start computing entropy • /
tdefine START.EITROPY 0.2/* percentage of number of p ixe l i . e . segments * /
tdefine EITROPY.STEP 30/* compute entropy after EITROPY.STEP of segments * /
tdefine TRIVIAL.SEG 5/* no entropy for segment smaller than th is * /
/*************************** FUICTIOI DEFITIOIS **•*********************/
char * get.memory();
f loa t link_weight();
f l oa t get.entropyO;
f loa t get.whole.entropyO;

375

f loat
f loa t
LIIK *
LIIK *
LIIK •
TREE •
TREE *
TREE •
STAT
STAT

•atrix.deterninantO;
noB.weightO;
lightestO;
juapO;
coapressO;
front_of_treeO;
f ind.alone^^nodeO;
depth.first.next0;
add.structO;
get.pix.valueO;

LIST.HEAD * depth.f i r s t . s e g b ;

/ * • • • • • • • • * • * • « • • • • * • * * * * • • * * QLQBAL VARIABLES • • • • • * • • • • * • • • * • * * * * • • • • /
extern LIST.HEAD »neii_ptr, t o ld .p tr ;
u_char iaage[DIHEISIOI]tHAX_YSIZEJCHAX.XSIZE];/* store laage * /
n_char segtDIHEISIOI][HAX.YSIZE][HAX.XSIZE];/• store segaented image * /
int num.8eg,/* user required niuaber of segments * /

entropy.step,/* how often to compute entropy loss * /
s tart .entropy, /* shen to start conpute entropy loss * /
dimension,/* diaension of the iaage * /
top.x, t op .y , / * top l e f t coordinates of the process sindos * /
B i n . x s i z e , b in .ys ize ; /* s ize of process BindoB */

struct ras t er f i l e header;/* header of the iaage f i l e * /
LIIK *edges, head; / * edges for array, head for l i s t * /

char ansBerCS];
int s,

t o t a l . l i n k ,
**clus, *groupipixel , /* to store a region * /
•*stack,/* f o r depth f i r s t search * /
cpu.tine;

char *r tag; /* root labe l * /
LIST.HEAD *vertex;

putsC'BOTTOH UP SEGHEIATIOI USIIG RST");
get .dataO ; / * get input data * /
start.entropy = (int)(Bin.xsize*Bin.ysize*START.EITROPY);
entropy.step = EITROPY.STEP;
pr ih t f ("StJirt computing entropy Bhen number of segments are Xd\n",

start.entropy);
p r i n t f ("The sampling frequency of entropy i s every Xd segmentsW,

entropy.step);
printf("Do you Bant to change the above parameters? y /n ");
scanf("Xs", ansBer);
i f (strchr(ansBer, 'y») | | strchr(ansBer , 'Y'))

p r i n t f (''Enter the required start ing point, ");
scanf("Xd", tstart .entropy);
p r i n t f (''Enter the sampling frequency, ") ;
scanf("Xd", tentropy.step);

printf("Enter the number of segments to be generated, ");
scanf("Xd", tnum.seg);
t o t a l . l i n k = number.l inkO;
/ * al locate array of structure for l inked l i s t of tree * /
vertex = (LIST.HEAD *)get.nemory(Bin_xsize*Bin.ysize, sizeof (LIST^iHEAD));
edges = (LIIK *)get.memory(4«Bin.xsize*Bin.ysize-4, sizeof(LIHK));
rtag =• (char *)get jiemory(Bin_xsize*Bin_ysize, s izeof (char));
f o r (s = 0; s < Bin . x s i z e*Bin . y s i z e ; s++) rtag[s] = ROOT;
stack = (int *)getjaemory(Bin.xsize*Bin.ysize, s izeof (int)) ;
group.pixel = (int *)get_memory(Bin.xsize*Bin_ysize, s i zeof (int)) ;
i f (num.seg > start.entropy)

clus = (int **)' get_Bemory(num.seg+l, sizeof (int *));
else

clus = (int *•) get.Bemory(start.entropy+l, s izeof(int *));

C l o c k O ;
/ * conpute a l l Beight of l inks * /
printf("C2J.culating l i n k Beight.\n");
g e t . l i n k O ;
printf ("Herging. . . \n");
recru.tree(vertex, r tag , group.pixel, c lus , stack);
/ * free the edges nenory » /
free((char *)edges);

cpu.tine = c l o c k O ;
printf("Run t ine Bas X.2f sec. \n", cpu.time / l .OeO);

7**************************** EID OF HAII * /

| e t .data()

char filename[DIHEISIOI][SO];
int i , j ;
FILE *ftDIHEISIDI];
struct ras ter f i l e head[DIHEISIOI];

•ainO

376

printf("Enter the number of channel to be used < 4, ");
scanf("Xd", tdimension);

for (i « 0; i < dimension; i++)

printf("Enter the channel filename Xd, ", i) ;
scanf("Xs", (char *)tfilenameCi][0]);
fCi] = fopen((char *)fcfilename[i] [0] , "r");

^ demand(f[i], Cannot open f i le) ;

/ * store header in global area, for later use * /
fread((char •)kheader, sizeof(struct rasterfile), 1, f [0]) ;
reBind(fCO]);
for (i • 0; i < dimension; i++)

fread((char *)»head[i], sizeof(struct rasterfile), I, fCi]);
denand(header.ras.length = head[i].ras.length,

.Ha]ce siire the images has the same size and coordinates);

printf ("The inages size is Xd\n", header, reis^vidth);
printf("Enter the windon width (xsize), ");
scanf("Xd", tsin .xs ize);
printf("Enter the windon height (ysize), ");
scanf("Xd". kBin^ysize) ;

printf("Enter the top left vindoB coordinate
of the image to be processed,\n");

printf ("\tx: "); scanf ("Xd", Jttop.x);
printf("\ty: "); scanf("Xd", ttop.y);

denand(head[0].ras.Bidth >= Bin.xsize+top.x,
The B i n d o B is out of range\, please, reduce size);

for (i = 0; i < dimension; i++)
fseek(f[i3, (long) (top.y*head[i].ras.width+top.x), 1);

for (i = 0 ; i < dimension; i++)
for (j = 0; j < Bin_ys ize; j++)

fread((char *)timage[i] [j] [0] , sizeof (char) , Bin . x s i z e , f [i]) ;
^ fseek(f[i], (long) (head[i] .ras.Bidth-Bin.xsize) , 1);

for (i = 0; i < dinension; i++) fclose(f [i]) ;

char *getjaemorydtems, size)
int items, size;

char »buffer;

buffer = (char *)calloc((unsigned int)items, (unsigned int)size);
demand(buffer, no memory);

^ return(buffer);

int nuraber.linkO

int s, total.link;

total.link = 0;
for (s = 1; s < Bin_xs ize-1; s++)

total_link += s;
total.link »= 4;
total.link += 2*(Bin.xsize*Bin .ysize-l);

printf("\nT6tal number of links in original graph is Xd.\n",
total_link);

return (total.link);
}

| e t.link()
register int i , node;

head.next = edges;
edges[0].last - thead;

for (i = node = 0; node < Bin.xsize*Bin.ysize-l; node++)
{ / * for every vertex, except the last one •*/

i f (node >»= Bin_xsize*Bin_ysize-Bin.xsize) / * last r o B */
i f (node == Bin .xsize*Bin.ysize-2)
{ /* last vertice * /

edges[i].nodel = node;
-edges[i].node2 " node+1;
edges[i].Beight = link.Beight(node, node+1);

edgesCi].next = thead;
head.last = tedges[i];

377

file:///nT6tal

}
else fill.edgesCnode, node+l, i , 4);.

edgesL++i].weight = - 1 . 0 ; / • f i l l the gap * /
edgesE++i].weight = - 1 . 0 ;

edges[++i].weight = - 1 . 0 ;

else

i f ((node % win.xsize) = 0) / * row head * /
<

f i l l .edges(node, node+1, i , 1) ;
f i l l .edges(node, node+win.xsize+l, ++i, 1) ;
f i l l .edges(node, node+win_xsize, ++i, 2) ;
edges[++i].weight « - 1 . 0 ;
++i; ^

e lse^if ((node % win.xsize) == win.xsize-l) / * row t a i l * /

f i l l .edges(node, node+win.xsize, i , 1) ;
fill_edges(node, node+win.xsize-1, ++i, 3);
edgesC++i3.weight » - 1 . 0 ;
edgesC++i].weight = - 1 . 0 ;
++I;

}
else
{

fill_edges(node, node+1, i , 1) ;
f i l l .edges(node, node+win.xsize+l, ++i, 1) ;
f i l l .edges(node, node+win.xsize, ++i, 1) ;
fill_odges(node, node+win.xsize-l, ++i, 1) ;
++i;^

}
}
>

f i l l_edges(nodel , node2, index, offset)
register int nodel, node2, index, offset;

edges[index].nodel = nodel;
edges[index].node2 = node2;
edges[index].weight = link.weight(nodel, node2);
edges[index].next = kedges[index + offset];

^ edges[index + of fset] . las t = tedges[index];

f loa t link.weight(nodel, node2)
int nodel, node2;

int i l , j l , 12 , j 2 ,
k;

f loa t weight;

get.coordinates (nodel,' t i l , t j l) ;
get.coordinates(node2, t i 2 , t j 2) ;
weight = 0 . 0 ;
for (k = 0 ; k < dimension; k++)

weight += SlJUARE((float)image[k] [i l] [j 1]-(float)image[k] [i 2] [j 2])

^ return(weight);

TREE * front.of.tree(new, l i s t)
TBEE *new, * l i s t ;
{

new->next = l i s t ;
l i s t = new;

r e t u m d i s t) ;
}

/ * construct CEST using Kruskals algorithm * /
recru.tree(vertex, r tag , group.pixel , c lus , stack)
LIST.HEAD •vertex;
char *rtag;
int *group.pixel , **clus, «stack;

char • f i l e = "/home/image/output/bu.mi";
int step, count, l a b e l , biggest, smallest;
f loat entropy;
TBEE *node;
LIST.HEAD • •root ;
STAT •region.sum;
LIIK • l i ghtes t .p tr ;
FILE • • fp ;

node = (TREE •)get.memory(2^(win.X8ize^win.ysize-l), sizeof(TREE));
region.sum = (STAT •)get.Bemory(win.xsize*win.ysize, sizeof(STAT));
root = (LIST.HEAD ••)get_memory(start.entropy, sizeof(LIST.HEAD •)) ;
fp = fopen(f i le , "w");

378

de>and(fp. Cannot open entropy f i l e) ;
f p r i n t f (f p , "Xd\n", ((8tart_entropy-nuB_seg)/entropy_step)+2);
step = 0;
for(count » 0, l a b e l " 1; labe l < Bin_xsize*Bin_ysize; label++)

/ » pick the l ightest l i n k * /
l i gh te s t ip tr •= l i g h t e s t O ;
/ * put l i n k into the tree * /
node[count].node.pos » lightest_ptr->node2;
vertex[lightest_ptr->nodel].node "

front_of_trea(»node[count++],yertex[lightest_ptr->n6del]inode);
node[count].node.pos = lightest_ptr->nodel;
yertex[lightest.ptr->npde2].node «

front.of.tree(*node[couht++],vertex[lightest_ptr->node2].node);
i f (label < v i n . x s i z e»Bin_ y s i z e - l)

sun.label_nodes(region_suB, vertex, l i gh te s t .p tr , l a b e l ,
ftbiggest,tsmallest, r tag , group.pixel ,
c lus , stack);

/ * delete a l l duplicate l i n k and recalculate l i n k B e i g h t * /
^ del .duplicate .recal(yertex, region.sua, l a b e l , biggest, soa l les t) ;

i f ' (Bin .xs ize*Bin_ys ize- label <= start.entropy)

i f (step X entropy.step = 0)

entropy = get.entropy(root, vertex, group.pixel ,
c lus , stack, r tag , l abe l) ;

f p r i n t f (f p , "Xd Xf\n", Bin .x8ize*Bin_ysize-label , entropy);

^ step ++;/• compute entropy every number of step * /

^ i f (Bin.xsize»Bin_y8ize-num.seg == label) break;

free((cheu: *) region.sum);
free((char *)root);
entropy = g e t.Bhole . e n t r o p y O ;
f p r i n t f (f p , "Xd Xf\n", 1, entropy);
f c l 0 8 e (f p) ;

^ printf("The entropy output i s stored in Xs\n",. f i l e) ;

f loa t get.Bhole.entropyO

int i , j , k, n ,
nodeinseg;

f loat entropy,
sum[DIMEISIOI], ssqCDIHEISIOB],
covar[DIHEISIOI][DIHEISIOI],
cosum[DIHEISIOI][DIHEISIOI];

nodeinseg = Bin .xs ize^sin.ys ize;
for (k = 0; k < dimension; k++)

8um[k] = S8q [k] =0 .0 ;
for (m = 0; m < dimension; m++)

for (k = 0; k < dimension; k++)
cosumDn] [k] = 0.0;

for (i = 0; i < Bin .ys ize; i++)
for (3=0; j < Bin . x s i ze ; j++)

for (k = 0; k < dimension; k++)

sum[k] += (f loat)image[k][i][i];
^ 88q[k] += SqUARE((float) image [k] [i] [j]) ;

for (m = 0; m < dimension; m++)
for (k = B+1; k < dimension; k++)

cosum[m][k] += (float) image [k] [i] [i]
•(float)image[m][i]tj];

for (m = 0; m < dimension; m++)/* comput covariance matrix » /
for (k = M ; k < dimension; k++)

i f (k != m)/* covariance • /
{

covar[m][k] = ((float)nodeinseg*cosum[m] [k]
-sum[m]*sum[k])/((float)nodeinseg*(float)(nodeinseg-1));

^ covar [k][m] = cover [m] [k] ;

e lse/* variance * /
{

covar[B][k] = ((float)nodeinseg*ssq[k]-SqUARE(sum[k]))
/((float)nodeinseg*(float) (nodeinseg-D);

entropy = 17.079S*matrix.determinant(covar);
entropy - (float)dimension*log(entropy)/2.0;
printf("Entropy loss for Bhole image i s Xf\n", entropy);

return(entropy);

379

float get_entropy(root, vertex, group.pixel, clus, stack, rtag, label)
LIST_HKAD •vertex, ••root;
int *group_pixel, ••clus, •stack, label;
char • r tag ;

int i , j , k, • , a. b,
nua_node,
liuB.segaent,
start,
nodeinseg;

float signa, entropy,
SUB[DIHEISI0I3 , ssqCDIHEISIOI],
covarCDIHEISIOI]CDIMEISIOI],
cosuaCDIHEISIOI]CDIHEISIOI];

nuw.hode « oin.xsize^nin.ysize;
nuB.segaent • get.root(vertex, root, rtag);
get_all_seg>ent(root, vertex, group.pixel, clus, nuB.segnent, stack);
reset_vhole_tree(vertex);

signa » 0.0;
/ • coepute entropy • /
for (i » 0; i < nua.segiient; i++)
•(/• entropy for each segsient • /

nodeinseg = clusCi+1]-clusCi];
i f (nodeinseg < TRIVIAL.SEG) continue;/• tr iv ia l segnent • /
for (k 0; k < dinension; k++)

sumCk] = ssqCk] = 0.0;
for (m = 0; « < dinansion; m++)

for (k = 0; k < dinension; k++)
cosunCn] Ck] = 0.0;

start = clusCi]-clusCo];
for (j « 0; j < nodeinseg; j++)

get.coordinates (group.pixelCstart+j] , ta, Jtb) ;
for (k = 0; k < dimension; k++)
{/• for variance • /

sumCk] += (float)imagaCk]Ca]Cb];
ssqCk] += SQUARE((float)imageCk][a]Cb]);

for (m = 0; m < dimension; n++)
for (k = m+1; k < dimension; k++)

cosumCm] Ck] (float) image Ck] Ca] Cb]
^ •(float)image Cm]Ca] [b];

for (m = 0; m < dimension; »++)/• comput covariance matrix • /
ifor (k = m; k < dimension; k++)

i f (k != a)/* covariance • /
<

covarCm]Ck] = ((float)nodeinseg*cosumCm] Ck]
TSumCm]^sumCk])/((float)nodeinseg*(float)(nodeinseg-1));
covar Ck] Cm] = covarCm]Ck]; >

else/* variance • / <
covarCm]Ck] = ((float)nodeinseg*ssqCk]-SqUARE(sumCk]))
/((float)nodeinseg^(float)(nodeinseg-1));

entropy = matrix.determinant(covar);
i f (iszero(entropy)) continue;
entropy = (float)dimension^log(17.0795^entropy)/2.0;
entropy = entropy^(float)nodeinseg/(float)num.node;

^ sigma += entropy;

^ return (sigma);/• sum entropy x segment proabilities • /

float matrix.determinant(v)
float nCDIHEISIOI]CDIHEISIOI];
•C
int iflag,

ipivotCDIHEISIOI],
istar,
i . j . k;

float aoikod,
colmax,
r a t i o ,
roBmax,
temp,
det,
dCDIHEISIOI];

i f l a g = 1;
/ • initialise ipivot, d • /
for (i = 0; i < dimension; i++)

ipivot Ci] •= i ;
roBmax = 0.0;
for (j = 0 ; j < dimension; j++)

i f (romnax < fabsdiCi] Cj])) roBmax = f abs(BCi] Cj]) ;

380

i f (roBB&x « • 0.0)

iflag "= 0;
roraaz = 1.0;

^ dCi] « roBaax;

/ • factorisation • /
f o r (k = 0; k < diBension-1; k++)

/ * d o t o m i n e pivot r o B , the row istar • /
coljBax « fabs<B[k] [k]) /d [k] ;
istar » k;
for (i » k+1; i < diaension; i++)

a B i k o d = f absCwCi] [k])/dCi] ;
i f (asikod > colaax)
{

colaax • avikod;
istar " i ;

>
i f (colaax •=» 0.0) i f l a g « 0;
else
•C

i f (istar > k)
{

/ * aake k the pivot row b y interchangeing
i t with the chosen roH istar » /

iflag = -if lag;
i = ipivot[istar];
ipivot [istar] = ipivot [k];
ipivot[k] = i ;
temp = d[istar];
d [istar] = d[k];
d[k] = tenp;
for (j = 0; j < dimension; j++)

temp = B[istar][j];
v[istar][j] = y [k][j]:

^ B[k][j] = temp;

/ • eliminate x[k] from rons k+l...n * /
for (i = k+1; i < dimension; i++)

B[i][k] /= B[k][k];
ratio = B[i] [k];

for (j = k+1; j < dimension; i++)
B t i] [j] -= ratio»B[k][j];

}
}

i f (B[dimension-l][dimension-l] == 0.0) iflag = 0;

det = (float)iflag;

for (i = 0; i < dimension; i++) det *= B [i] [i] ;

retum(det);
get_{dl_segment(rnode, vertex, group.pixel, clust, segment, stack)
LIST.HEAD •vertex, *»rnode;
int *group_pixel, ••clust, •stack;
int segment;
U* put a l l segments into group.pixel • /

LIST.HEAD •temp.list;
THEE •root;
int t , stack.pos, root.pos, numpixel;

numpixel = 0 ; / • a l l root already visited • /
t = get.single.node(vertex, mode, segment, group.pixel,

clust, tnumpixel);
for(root.pos = 0 ; t < segment; root.pos++, t++)

/•delete a l l single nodes from the rnode l i s t • /
in i t ia l izeO;
stack.pos = 0;
/ • point to start of neB cluster • /
clust[t] = tgrbup.pixel[numpixel];
B h i l e ((root =find.alone.node(rnode[root.pos])) »= lULL)

root.pos++;
start.depth.first(group.pixel, stack, tstack.pos,

tnumpixel, rnode[root.pos]-vertex, root);
noB.ptr = tvertex[root->node.pos];
old.ptr « rhode[root.pos];
do
{. / • depth f irst next • /

temp.list = depth.first_seg(vertex, tstack.pos,
tnumpixel, group.pixel, stack);

old.ptr = n e B . p t r ;

381

http://get.single.node

neB_ptr = temp.list;
}Bhile<stack.pos != 1); / * stack != lULL » /

clustCt] * tgroup .pixel[nUBpixel]; / * point to end * /

LIST_HEAD * depth.first_seg<vertex, stack.pos, nunpixel,
group.pixel, stack)

LIST_HEAD *vertex;
int •group.pixel, *stack;
int •stack.pos, •nunpixel;

TREE *root;

i f ((root = depth.first.next(vertex, stack.pos, nunpixel,
group.pixel, stack)) >= TOLL)

return(TOLL);

^ retum(tvertex[root->node_pos]);

reset.Bhole.tree(vertex)
LIST_HEAD •vortex;
i
register int i ;
TREE •this.node;
for (i » 0; i < Bin^xsize»Bin.ysize; i++)

this.node » vertexCi].node;
Bhile (this.node != TOLL)
{

i f (this.node->status == TMPVISIT)
thi8.node->status = lOTVISIT;

this.node = this^node->next;
}

}
}

LIIK • lightestO
{ / • find the lightest link * /

register LIIK •nin.ptr, •this;

nin.ptr = head.next;
this = nin.ptr->next;
Bhile (this != thead)
<

i f (nin_ptr->Beight > this->Beight)
nin.ptr = this;

this = this->next;

/ • delete lightest link * /
nin.ptr->last->next = nin.ptr->next;
Bin.ptr->next->last = nin.ptr->la8t;
Bin.ptr->next = TOLL; / • status out * /

^ retum(min.ptr);

sum.label.nodes(region.sun, vertex, light, tag, biggest, smallest, rtag,
group.pixel, clus, stack)

STAT •region.sun;
LIIK •light;
int tag;
register LIST.HEAD *vertex;
register int •biggest, •snallest;
char *rtag;
int •group.pixel, ••clus, •stack;

register int i , done = 0;
int old.tag[2];

i f (vertex[light->nodel].node.tag = 0 t t
vertex[light->node2].node.tag == 0)

{ / • both are neB node, use a neB label • /
vertex[light->nodel].node.tag = tag;
vertex[light->node2].node.tag = tag;
region.sun[tag] = add.structTget.pix.value(light->nodel),

•get.pix.value(light->node2));
rtag[light->node2] = IROOT;/^ remove from root l i s t • /
•smallest = light->nodel;
•biggest = light->node2;

else i f (vertex[light->nodel].node.tag == 0 t t
vertex[light->node2].node.tag != 0)

region.sumCtag] » add.struct(get_pix.value(light->nodel),
region.sum[vertex[light->node2].node.tag]);

vertex[light->nodel].node.tag = tag;
old.tag[0] = vertex[light->node2].node.tag;
rtag[light->n6del] = IROQT;

382

for (i « 0; i < sin_xsize*Bin_ysize; i++)
•C / * update label and count • /

i f <Tertex[i] .node.tag == old_tag[0])

vertexCi].node.tag = tag;
i f (idone)
<

*snallest = i ;
++done; >

•biggest = i ;
>
i f (light->nodel < *saallest) *smallest = light->nodel;

else i f (vertex[light->nodel].node.tag != 0 tt
^ vertex[light->node2].node.tag == 0)

region.sua[tag] " add.struct(get.pix.value(light->node2),
region.au»[vertex[light->nodel].node.tag]);

vertex[light->node2].node.tag = tag;
old.tagCOj » vertex[light->nodel].node.tag;
rtag[light-r>node2] " IRODT;
for (i = 0; i < vin.xsize*Bin.ysize; i++)
i /* update label and count • /

i f (vertex[i].node.tag =« old.tagCO])

vertexCi].node.tag = tag;
i f (idone)
{

•smallest = i ;
++done;

}
•biggest «! i ;

}
i f (light->node2 > •biggest) •biggest = light->node2;

else
{ / • both node tag i= 0 • /

Old.tagCO] = vertexClight->nodel].node.tag;
old.tagCl] = vertexClight->node2].node.tag;
region.sum Ctag] =

add.struct(region.sumCvertexClight->nodel].node.tag],
rogion.sumCvertexClight->node2].node.tag]);
remove.root(light->node2, vertex, group.pixel, clus, stack, rtag);
reset.tree.tmp(vertex, group.pixel, clusCl]-clusCO]);
for (i = 0; i < oin.xsize^nin.ysize; i++)

i f (vertexCi] .node.tag == old.tagCO] I I
vertexCi].node.tag == old.tagCl])

vertexCi].node.tag = tag;
i f (idone)
{

•smallest = i ;
++done;

•biggest = i ;

del.duplicate.recaKvertex, region.sum, region, biggest, smallest)
register LIST.HEAD •vertex;
STAT •region.sum;
int region, biggest, smallest;

/ • delete a l l duplicate link connected to external vertices • /
register LIIK •find,•this,•that;
LIIK dummy;
int temp.node, temp.re;

/ • goto starting point • /
this ='jump(smallest);
/ • connect the related link in a shorter l i s t • /
this = compress(this, vertex, region, biggest);
B h i l e (this i= lOLL)
{ / • f irst recalculate then delete • /

temp.re =0; / • initialize for delete • /
i f (vertexCthis->nodel].node.tag = region)
{ / • find nodel in region • /

temp.node = this->nbde2;
i f (vortexCtemp.node].node.tag i= 0) / • node2 is in a region • /

thi8->Beight »= neB.Beight(fegion.sumCregion],
region_sumCveftexCtemp.node].node.tag]);

^ temp.re = vertexCtemp.node].node.tag;

else / • node2 is a single node • /

383

thi8->Beight » neB_8aight(regian_sum[region],
get_pix_value(tenp_node));

else
< / * find node2 in region * /

tenp.node = this->nodel;
i f <vertex[tenp_node].node.tag i* 0) / • nodel is in a region • /

this->iieight * nev_Beight(region_sua[region] ,
region_suaCvertexItemp_node].node.tag]);

teap.re " vertex[teiip_node] .node.tag;

else / • nodel is a single node * /
this->Beight » neB.BeightCregion.suaCregipn],

get_pix_value(temp_node));

/ • delete duplicate links for a l l nodes, no link in region »/
that = ftduncay;
dtuuny.other " thi8->other;
i f (!teBp_re) / • tenp.node is single • /

Bhile ((find = that->other) !« TOLL)
< / • delete duplicate link, tomp_nodo i s single • /

i f (find->nodel > temp_node) break;
i f (find->nodel " tenp.node 11 find->hode2 tenp.node)

/ • delete link fron Bhole l i s t * /
find->last->next = find->next;
find->next->last = find->last;
find->next = TOLL;
/ * delete link from conpressed l i s t * /
that->other = find->other;
break; / • only delete one link * /

that = that->other;
}

}
else
{ / * tenp.node is in a region * /

Bhile ((find = that->other) != TOLL)
< / • delete duplicate link */

/ * only one duplicate betseen tBO regions * /
i f (vertex[find->nodel].node.tag == temp.re II

vertex[find->node2].node.tag == temp.re)

find->last->next = find->next;
findr>next->last = find->la8t;
find->next = TOLL;
that->other = find->other;
break;

}
that = that->other;

} / * end Bhile */
} / » end else * /
this - dummy.other; / • reconnect and point to next * /

} / * end Bhile */
>
LIIK * compress(this, vertex, region, biggest)
register LIIK *this;
register LIST.HEAD 'vertex;
register int region, biggest;

LIIK *find, »8tart;
Bhile (1)
{ / * find the f irst link to start »/

i f (vertex[this->nodel].node.tag == region I I
vertex[this->node2].node.tag = region)
break;

this = thi8->next;
start = find = this;
this = this->next;
Bhile (this != thead)
•C / » connect a l l relate link in a l i s t • /

i f (this->nodel > biggest) break;
i f (vertex[this->nodel].node.tag == region I I

vertex[thi8->node2].node.tag == region)

find->other = this;
find = this;

this " thi8->next;
>
find->other = TOLL; / • terminate » /

^ r e t u m(8tart);
LIIK * jump(snallest)

384

int s n a l l e s t ;

register int index;

i f (snallest < yin_xsize+l) index" 0;
else index = 4*(snallest-Bin_xsize-l);
/ * at least one undeleted l i n k o i thin range * /
sh i l e (edgesCindex].next = lULL) -M-index;

/ * return the f i r s t elenent i n the l i s t * /
^ return (Jtbdges [index]) ;

f loa t nes_seight(nes, old)
STAT nes, o ld;

int k;
f loa t Beight,

neB_nean[DIHEISIOI],
old_nean[DIHEISIOI];

f o r (k » 0; k < dinension; k++)

neB.nean[k] = nev.sun[k]/(float)neB.nun.vec;
old.nean[)0 = old.sun[k]/(float)old.nun.vec;

B e i g h t =0 .0 ;
f o r (k = 0; k < dinension; k++)

Beight +» S()UARE(neBjseah[k]-old.nean[k]);

}
retum(Beight);

STAT add.struct(a, b)
STAT a, b;
{

int k;

a.nun.vec += b.nun.vec;

for (k = 0; k < dinension; k++) a.sum[k] += b.sum[k];

return(a);
}
STAT get.pix.value(node)
register int node;

int i , j , k;
STAT a;

get.coordinates (node, Jti, t j) ;
a.nun.vec = 1;

ifor (k = 0; k < dimension; k++)
a.sun[k] = (f loat)image[k][i][j];

retum(a);
}

get.coordinates(node.pos, a, b)
register in t node.pos;
register int *a, *b;

• a = node.pos / B in .xs ize ; /* i * /
•b = node.pos % Bin . x s i z e ; / * j */

/***
* You are reading buseg2.c *
* This program contains functions of bmirsl .c *
* This f i l e contains function for bottom up approaches of segmention.*
» This functions i s to generate segment from a forest , and output the*
* segmented images. *
* K S LAU 22-1-92 *
**************»»*»**********************************»****************** /

• include "bu.h"

extern u.char inage[DIHEISIOI][MAX.YSIZE][MAX.XSIZE];
extern u.char segtDIMEISIOI][MAX.YSIZE][HAX.XSIZE];
extern in t nun.seg,

dinension,
top.x, top.y ,
B i n . x s i z e , Bin . y s i ze ;

extern struct ras ter f i l e header;

TREE * find.alone.node();
TREE * depth. f irst .next() ;
LIST_HEAD * depth.first .segnent();
LIST.HEAD * depth_first . tree():
LIST_HEAD * depth.f i r s t . s e g O ;

s ta t ic int nos.vertices;

385

s ta t i c f loat nean[DIHEISIOI];
LIST_HEAD m e B . p t r , • o l d . p t r ;

iBage . f i l eC)

FILE »fp;
int i t e n , i , a;
char *path * "/hoae/iaage/output/seg",

c t s] ,
buf [50];

header.ras.height = B i n . y s i z e ;
header.ras.Bidth •« B i n . x s i z e ;
header.ras.length " Bin^xsize*Bin.ysize;
f o r (a " 0 ; a < dinension; a++)

strcpy(buf, path);
8trcpy(c, 164a((long)(a+2)));
strcat(buf, c) ;
strcat(buf, ".ras");
fp » fopenCbuf, " B ") ;
denand(fp. Cannot open f i l e for output inage);

i t e n « fBrite ((c h a r *)»header, sizeof(struct r a a t e r f i l e) , 1, fp)
f o r (i « 0; i < Bin . y s i ze ; i++)

i t en += fBrite ((c h a r *) » s e g [a] [i] [0] , s izeof(char),
Bin .xs ize , fp) ;

denand(iten == Bin . x s i z e'Bin . y s i z e - t - l , Write output f i l e error) ;
f close(fp);
printf("Segment inage is stored in Xs\n", buf);

reset.tree.tnp(vertex, group.pixel , numpix)
LIST.HEAD »vertex;
int numpix, •group.pixel;

register int i ;
TREE *this.node;

for (i = 0; i < numpix; i++)

this.node = vertex[group.pixel[i]].node;
Bhile (this.node != lULL)
{

i f (this.node->status == THPVISIT)
this.node->i>tatus " lOTVISIT;

this.node = this.node->next;

}

remove_root(mode, vertex, group.pixel , c lus t , stack, rtag)
LIST.HEAD *vertex;
int rnode, •group.pixel , • • c l u s t , •stack;
char •r tag;
</• traverse a tree • /

LIST.HEAD •temp.l is t ;
TREE •next;
int stack.pos, numpixel, done = 0;

numpixel = 0;
stack.pos = 0;
crust[0] = tgroup.pixel[0]; / • point to start of neB cluster • /
/ • th is tree i s not a single node tree • /
next = find.alone.node(tvertex[rnode]);
s tart .depth. f irs t (group.pixe l , stack, tstack.pos,

tnumpixel, tvertex [mode]-vertex, next);
i f (rtag[rnode] == ROOT)
{ rtag[rnode] = IROOT; done = 1; }
else i f (rtag[next->node^pos] == ROOT)
{ rtag[next->nodeipos] •= IROOT; done = 1; }
i f (done) { clust[1] = tgroup.pixel[nunpixel]; return; }
neB .ptr = tvertex[next->node.pos];
o ld .ptr = tvertex[rnode]';
do
{ / • depth f i r s t next • /

temp.l ist = depth^first.tree(vertex, tstack.pos, tnumpixel,
group.pixel , stack, r tag , tdone);

o ld .p tr » neB.ptr;
neB.ptr " t e n p . l i s t ;
i f (done) break;

} Bhile (stack.pos != 1); / • stack != lULL • /
^ clust[1] = tgroup.pixel[numpixel]; / • point to end • /

LIST:.HEAD • depth.f irst . tree(vertex, stack.pos, nunpixel,
group.pixel , stack', r tag , done)

LIST.HEAD •vertex;
int •group.pixel , •stack;
int •stack.pos, •numpixel, •done;

386

char •rtag;

TEEE •root;

i f ((root " depth.f irst .next (vertex, 8tack : .pos , humpixel,
group.pixel , stack)) = lULL)

return(TOLL);

i f (rtag[root->node.pos] «= EOOT)/» there i s two root, del one only * /
{ rtagtroot->node_pos] = lEOOT; •done « 1; }

^ retum(tvertex[root->node_pos]);

int get.root(vertex, root , rtag)
LIST.HEAD •vertex, • •root ;
char •r tag;

Int i , j .
nuB.node;

nnB_node ' win.xsize^Bin .ysize;
f o r (i « j » 0; .1 < nua.node; i++)

i f (rtagCi] « " EOOT) rootCj++] " »vertex[i] ;
/ « no need to i n i t i a l i s e node.tag, use pointer ari thaat ic • /

^ re turn(j) ; /^ nuaber of segments • /

get_8egment(mode, vertex, group.pixel , c lus t , segment, stack)
LIST.HEAD •vertex, **rnode;
int •group.pixel , • • c l u s t , •stack;
int segment;

LIST.HEAD •temp.l is t ;
TEEE •root;
int k, t , stack.pos, root.pos, numpixel;

numpixel = 0 ; / • a l l root already v i s i t ed * /
t = get.single.node(vertex, rnode, segment, group.pixel ,

c lus t , tnumpixel);
i f (t > 0)

printf("There are Xd single point segments\n", t) ;
^ output.single.node(group.pixel, c lus t , t) ;

for"(root.pos = 0; t < segment; root_pos++, t++)

/ • delete a l l s ingle nodes from the rnode l i s t * /
i n i t i a l i z e O ;
stack.pos = 0;
c lust [t] = tgroup.pixel[numpixel]; / • point to start of nen cluster • /
while ((root = find.alone.node(rnode[root.pos])) == TOLL)

root_pos++;
8tart_depth . f i r8 t (group .p ixe l , stack, tstack.pos,

tnumpixel, rnode[root_pos]-vertex, root);
calculate.sua(rnode[root.pos]-vertex);
calculate_sua(root->node.pps);
nos.vertices += 2;
new.ptr = tvertex[root->node_pos];
o ld .p tr = rnode[root.pos] ;
do
i I* depth f i r s t next • /

temp.list = depth.first.segment(vertex, tstack.pos,
tnumpixel, group.pixel , stack);

o ld .ptr = new^ptr;
new.ptr = t enp . l i s t ;

} while(stack.po8 != 1); / * stack != TOLL • /
for (k » 0; k < dinension; k++)

aeanCk] / " nos.vertices;
output.inage(clust[t] , group.pixel);

c lust[t] = tgroup.pixel[nunpixel]; / • point to end • /

in t get_8ingle_node(vertex, mode, nun^^root, group.pixel , c lus t , numpixel)
LIST.HEAD •vertex, ••mode;
int nun.root, •group.pixel , • • c l u s t , •nunpixel;

TEEE *this_tree;
int i , j , k, nun.seg;
char test;

nun_80g = 0;
for (k = 0; k < nun.root; k++)
•C / • go over a l l root • /

i = 0;
th i s . t ree « mode [k]->node;
whi l e(thi8_tree != TOLL)
•{ / * count nunber of node • /

i f (th i s . tree->8tatus == lOTVISIT)

387

http://find.alone.node

/ » count any l o t v i s i t node • /
th i s . t ree = this_tree->next;

}
i f (i = 0)
•[/ • n o d e e l i g i b l e to be single node • /

test » UIiqUE;
i f (nun.seg > 0)
i / • nore than 1 segnent • /

for (j » 0; j < nun.seg;

i f (group.pixel[j] = rnode[k]-vertex)
•C / • check each cluster • /

tost » DUPLICATE;puts("DUPLICATE");
break;

>
}

>
i f (test UIIQUE)
{ / • put unique single node to- the cluster l i s t * /

clust[nun.seg++] = tgroup.pixel[•nunpixel];
group.pixel[(•nunpixel)++] = rnode[kJ-vertex;

> >
^ retnm(nun_seg); / • return nunber of single node • /

i n i t i a l i z e O

int k;

nos.vertices * 0;
for (k = 0; k < dinension; k++) mean[k] =0 .0 ;

}

calculate.sun(a)
int a;
{
int i , j , k;

get .coordinates (a , t i , t j) ;
for (k = 0; k < dinension; k++)
^ nean[k] += (float) inage [k] [i] [j] ;

output.single.node(group.pixel, c lus t , num.node)
int *group.pixel, • • c l u s t , nun.node;

register int i ;

f o r (i = 0; i < nun.node; i++)

i n i t i a l i z e O ;
calculate.sum(group.pixel[i]);
nos_vertices++;

^ output.image(clust[i], group.pixel);

s tart .depth. f irs t (group.pixe l , stack, stack.pos, numpix, root, node)
int *stack.pos, •numpix, 'group.pixel , 'stack, root;
TREE •node;

8tack[(^stack.pos)++] = root; / • put root to stack • /
group.pixel[(*numpix)++] = root; / • put root to cluster • /
stack[(^stack.pos)++] = node->node.pos;
gr6up.pixel[(^numpix)++] = node-:>n6de_pos;
node->status = TMPVISIT;

}

LIST.HEAD * depth.first.segment(node.head, stack.pos, numpixel,
group.pixel , stack)

LIST.HEAD •node.head;
int *group.pixel, *stack;
int •stack.pos, •numpixel;

TREE •root;

i f ((root = depth.first.next(node.head, stack.pos, numpixel,
group.pixel , stack)) == lULL)

return (HJLL);
calculate.sum(root->node.po's);
no8_vertices++;

return(tnode.head[root->node.po8]);

TEEE • f ind.alone.node(l ist)
LIST.HEAD • l i s t ;

TREE • th i s ;

388

th is B list->node;
ohileCthis !« BULL)
{

i f (this->status ««-lOTVISIT)
re tum(th i s) ;

^ th i s « thi8->next;

retarn(IULL);
}

delete_duplicate(vertex)
LIST_HEAD 'vertex;

TREE ' t h i s ;

th is = new_ptr->node;
vh i l e (th i s !> lULL)
{ /' Bark the duplicate node ' /

if(this->node_pos = old_ptr-vertex)

this->status » TMPVISIT;
break;

t h i s » this->next;

>
TREE ' depth.first_next(vertex, stack.pos, numpix, group.pixel , stack)
LISTJEAD 'vertex;
int 'stack.pos, 'numpix;
int 'group.pixel , 'stack;

TREE ' root ;

/ ' delete duplicate node in the next tree l i s t » /
delete.duplicate(vertex);
i f ((root «= find.alone.node (nev.ptr)) == lULL)
<

vhile(root = lULL)
{

/ ' delete stack ' /
•stack.pos -= 2;
nav.ptr = *vertex[stack[^stack_pos]];
root = find.alone_node(»vertex[stack[(*stack.pos)++]]);

^ i f (•stack.pos == 1 kt root == lOLL) retum(IUIX);

/ • put node to stack • /
stack[(^stack.pos)++] = root->node.pos;
/ ' put node to notepad for reset • /
group.pixel[('numpix)++] = root->node.pos;
root->status = TMPVISIT;

^ retum(root);

output.image(clust.start, group.pixel)
int ' c l u s t . s t a r t , group.pixel[];

/ ' v r i t e to screen v i th precalculated average value ' /
int i , k, a, b, index;

index = c lust . s tart -group.pixe l ; / • get the index of group p ixe l • /
f o r (i = 0; i < nos.vertices; i++ ,index++) /•number of p ixe l • /

get.coordinates(group.pixel[index], t a , tb) ;
^ for (k = 0; k < dimension; k++) seg[k][a][b] = mean[k];

389

Appendix J

Programs of the Automatic
Cloud Wind Scheme

/***»**
* The autoaatic cloud BOtion Bind vectors generation scheme includes:
• 1) cmvl2.c
• 2) i o . c
« 3). geo.c
• 4) draB_vector3.c
« 5) rad.temp.c
• 6) regression.h
•«*•»*»**•**•*•*•••••*•***•»••••*»*••»**»*»*•••****•**••••«***********•*

/***«**
* You are reading regression.h *
* • * * * * • * • • • • • * • * • • • • • • * * * * * * * • • * • • • • • • * * * * • • • * • • • • • • • * * * * * * * * * * * * * « * * * * * /

•include <8tdio.h>
tinclude <string.h>
tinclude <malloc.h>
tinclude <math.h>

tinclude <pixrect/pixrect_hs.h>

tdefine HAX.GCP ,100/* number of ground control points » /

t i f d e f FIKST
tdefine lOS^EQI 3/* number of equations * /
tendif
t i f d e f SECDID
tdefine lOS.EQI 6
tendif

t i f d e f THIRD
tdefine lOS.EQI 10
tendif

tdefine lAUT.TO.KH 1.8532
/ * 1 n mile in km, 1 n mile = 1" of great c i r c l e arc * /

tdefine TRUE 1
tdefine FALSE !TRUE
tdefine SII(x) (sin<N_PI*<x)/180.0))
tdefine COS(x) (cos.(M_PI*(x)/180.0))
tdefine TAI(x) (tan(H_PI*(x)/180.0))

tdefihe lOS.COL (IOS_Eqi+l)
tdefino X 0 /» offset for coeff_of_multiple_determination * /
tdefine Y 1/* offset for coeff_of_multiple_determination • /
tdefine 8trsave(s) (8trcpy(mal loc(8trlen (s)+i) ,8))

extern char •optarg;
extern int optind, opterr;

typedef struct {
double X;
double y;
}Coord;/» struct for coordinates • /

typedef struct {
double mean;
double sd;
}Stat;/* struct for standardizing * /

/•••**
* You are reading cmy.h *

tinclude <8tdio .h>

390

•include <«ath.h>
•include <string.h>
•include <Balloc.h>
•include <cgipn.h>
•include <8uhtool/sunvieB;h>
•include <suntool/cemva8.h>
•include <8untool/panel.h>
•include <pixrect/pixrect_h8.h>

/ * f o r C M v l 2 cnvl4 cnvlS to read cluster aap * /
•define DIHEISIOI 2
•define lO.CEITER 10/* number of cluster f o r tracking */

•define VEC.LEIGTH 18 / « BaxiBun length of display vector */
/* use 1.0 f o r CBV7 CBV8 CBV9 CBVIO C B V I I , 2.0 for other * /
•ifndef SCALE
•define SCALE 1.0 / * scale f o r display */
•endif

•define X.COEREL.THRESHDLD 80 / • number of p ixe l i n target B i n */

/ * constant for data array * /
•define IHAGE.SIZE 256 /* naximum image size for correlation */
•define TARGET.AERAY 32 /* Bax size for the target array * /
•define SEABCH.ARBAY 72 / • nax size f o r the search array * /
/* distance b e t B e e n target BindoB and search sindoB * /
/ * target BindoB i s i n the centre of search BindoB */
•define WII.OFFSET 20 / * default, can be changed */
•define TARGET.SIZE 4 / * default, can be changed */
•define SEARCH.SIZE 50 / * default, can be changed */
•define SURF.SIZE (SEARCH_SIZE-TARGET_SIZE+1)
•define X.RESDLOTIOI 2.67 / * spatial resolution n mile , t r i v i a l * /
•define Y_RESOLUTIOI 2.67 / * spatial resolution n mile, t r i v i a l */

/* constant f o r display BindoB, only for cmv7 cmv8 * /
•define DEFAULT_«II_XSIZE 850
•define DEFAULT.UII.YSIZE 1000
•define HII_«II_XSIZE 200
•define HII_WII_YSIZE 200

•define HAXCa.b) (((a)>(b))?(a):(b))
•define MII(a,b) (((a)<(b))?(a):(b))
•define strsaveCs) (8trcpy(malloc(strlen(s)-)-l) ,s))
• i fndef SQUARE(x)
•define SqUARE(x) « x) * (x))
•endif
•define PI 3.141592654
•define demand(fact, remark) {\
i f (!(fact)) i\

f p r i n t f(stderr, "demand not met: f a c t \ n ") ; \
f p r i n t f(stderr, "remarkXn");\
e x i t (l) ; \

>\
}
typedef struct cloud_Bin_vector {

fl o a t speed;
f l o a t direction;
f l o a t l a t ;
f l o a t longt;
f loa t temp;/* temperature */
f loa t mean;/* mean of i r p ixe l , f or cloud height * /
f l o a t sd ; /* standetrd-devation of i r pixel * /
int count;/* number of nonzero p ixe l i n this template */

}CHV;

/ * the folloBings are for regression and true distance calculation */
•define lOS.EQI 10
•define HAX.GCP 70

typedef struct {
double x;
double y;

}Coord;/* struct f or coordinates */

typedef struct •£
double mean;
double sd;

}Stat;/* struct f o r standardizing */

z**
• You are reading f i l e icp *
• These are the data use f o r geometrical r e c t i f i c a i t o n . *
********••••••••••••***•***•*•••*•****••*•***•****•*•************•******/
/*
longitude latitude p ixe l l i n e

•/
5.750000 58.966667 362.0 18.0

10.750000 59.916667 416.0 11.0
10.600000 57.733333 422.0 32.0
10.883333 66.416667 432.0 44.0

391

10.683333
14.183333
12.616667
16.416667
14.783333

-3.083333
-1.816667
-1.233333
-3.633333
-6.600000
-7.316667
-6.600000
-8.800000

-10.216667
-10.450000
-9.816667
-6.366667
-6.250000
-6.416667
-3.233333
-4.633333
-6.316667
-4.616667
-6.733333
-6.216667
-3.633333
-2.066667

1.400000
0.116667
1.683333

-1.250000
-1.850000
-4.733333

11.216667
8.700000
6.283333

64.750033
67.783333
56.033333
66.233333
66.283333

68.633333
67.500000
64.583333
64.533333
55.683333
67.150000
54.500000
64.700000

53.400000
62.100000
61.450000
62.166667
63.333333
64.016667
54.116667
63.316667
61.916667
51.033333
60;050000
49.933333
50.216667
50.566667
51.400000
53.666667
50.866667
49.666667
49.666667
48.033333

64.500000
53.866667
62.700000

436.0
466.0
454.0
501.0
486.0

257.0
272.0
280.0
247.0
212.0
204.0
221.0
179.0

156.0
148.0
154.0
204.0
208.0
207.0
251.0
231.0
219.0
229.0
210.0
216.0
239.0
265.0
316.0
296.0
319.0
276.0
267.0
222.0

443.0
412.0
367.0

61.0
33.0
48.0
48.0
57.0

22.0
32.0
60.0
62.0
50.0
36.0
62.0
61.0

74.0
90.0
97.0
88.0
75.0
67.0
65.0
75.0
91.0

102.0
114.0
114.0
111.0
107.0
97.0
71.0

103.0
118.0
117.0
139.0

64.0
70.0
82.0

13.633333 54.516667 475.0 64.0

-1.516667
-1.166667

-5.850000
-9.000000
-9.383333
-8.866667
-8.933333
-5.600000
-2.200000

0.233333
2.316667
3.833333
3.233333

46.200000
44,400000

43.650000
42.550000
39.350000
37.950000
37.000000
36.016667
36.716667

38.733333
39.583333
40.033333
41.950000

270.0 164.0
275.0 190.0

195.0
138.0
123.0
129.6
125.0
187.0
253.0

298.0
338.0
365.0
361.0

201.0
219.0
269.0
293.0
309.0
325.0
313.0

278.0
264.0
267.0
227.0

9.416667 42.950000
10.533333 42.916667
12.366667 44.933333

456.0 212.0
476.0 213.0
498.0 185.0

9.516667 39.100000 470.0 274.0

/ • * * * * • * * * * « * * * • * * * * * • * • * * * * * * * * * * * * * * * « * « * « '
* You ara reading cnvl2.c

This i s the autoaatic cloud vind scheoe use by the author, th is
progran only use cross correlat ion, ssda and 2d search are not
included.

The target i s e i t h e r a v i s i b l e o r infared clustered o r ran cloud iaage
The s e a r c h a r e a i s r a n i n a g e .
The clustered inage i s a vindoB i n a 512x512 ran inage.
The r a s inage i s a sindos (330 , 60} i n a B fomat HETEOSAT inage.
Use the cluster n a p generated by the Global-Local clutering algorithn,
a n d conpute c n v f or a l l clusters.

The Bhole inage i s divided into snail nonoverlap t a r g e t vindoBs.
I f t h e nunber o f pixels B i t h i n the sindoB i s nore t h a n a thershold,
t h e progran B i l l search f o r t h e notion, othersise t h a t BindoB has no
Bind vector calculated.
display t h e B i n d f i e l d using pixBin Bith inage on background.
The B i n d f i e l d i s calculated Bith geometric r e c t i f i c a t i o n .

The r e c t i f i c a t i o n i s o n l y v a l i d t o t h e folloaing image.
The i n a g e shich i s extraction fron a 512x512 b format image.
The t o p l e f t coordinates of the 512x512 inage i s (330,60)
K.S.LAU 26-2-91

392

tinclude "c»v.h"
tdefine UPPER_TARGET_SD_THRESHOLD 10.0
tdefine LOHER.TARGET.SD.THRESHOLB 0.0
.tdefine SPEED.DIFF 0.5/* differenc of too vector speed * /
tdefine DIRECT.DIFF 30.0/* difference of tno vectors * /
tdefine TAKQET_THRESHOU) 0.3/* n i n i percentage of pixel i n target B i n */
tdefine PASS 1
tdefine F A I L !PASS
tdefine OIBQUIDARY 2/* peak on boundary * /
tdefine HAX_ROOT 25/* aax nuaber of cluster on surface * /
tdefine CLUSTERKEEPLIHIT 25/* cluster > this B i l l be keep * /
tdefine PEAKSAHECLUSTER 1.05/* ratio of tso peak i f > ok * /
tdefine PEAKDIFFCLUSTER 1.5/* ratio of tBO peak i f > ok * /

char t i t le[60] , pregnane[50], filename[50],
t i_f i le[50] , 82i_file[50],/* infrared target and search filename * /
ty_file[60], 82v_ f i l e [5 0] , / * visible t and s filenane • /
8lv_file[60], s l i_fi le[50], /* f irst search image * /
tvo_file[60],/* the visible original » /
tio_file[50],/* the original filename * /
c lusaap[IHAOE_SIZE][IHAGE.SIZE] ; / * cluster nap * /

struct rasterfile t.header, s.header,/* for clustered image * /
to.header;/* for original header * /

unsigned char s l i [I H A G E . S I Z E] [I H A G E . S I Z E] , / * f irst infrared search * /
s l v[IHAGE.SIZE][IHAGE.SIZE],/* f irst visible search * /
s 2 i[IHAGE.SIZE][IHAGE.SIZE],/* infrared search BindoB * /
t i[IHAGE.SIZE][IHAGE.SIZE],/* infrared target template * /
8 2 v[IHAGE.SIZE][IHAGE.SIZE],/* visible search BindoB */
t v[IHAGE.SIZE][IHAGE.SIZE],/* visible target template * /
t v o[IHAGE.SIZE][IHAGE.SIZE],/» original target(visible) * /
t i o[IHAGE_SIZE][IHAGE.SIZE]./* original target(infrared) » /

" 8 s l v[IHAGE.SIZE][IHAGE.SIZE] , / * • contrast stretch of original • /
8s2v[IHAGE.SIZE][IHAGE.SIZE] , / * contrast stretch of original * /

. 8 t v[IHAGE.SIZE][IHAGE.SIZE];/* contrast stretch of original * /
int target.size, search.size.

Bin.of fse t , /* target BindoB B r t search BindoB * /
Binxsize, Binysize,/* for pixrect use, not for user * /
Bin.xsize, Bin .ys ize , /* size of clustered area * /
nos.center,/* number of cluster * /
dimension,/* dimension of clusters * /
count[lO.CEITER] , /* number of pixels in cluster * /
Bholexsize, Bholeysize,/* size of Bhole search area * /
xs, ys,/* top left of search BindoB in search f i l e * /
xso, yso,/* top left of search BindoB B . r . t . original * /
size,;difference;/* the number of cross correlation shift * /

float nean[DIHEISlbl][lO.CEITER],
deviation[DIHEISIOI] [ICCEITER],
get.standard.deviationO,
•ean.gradientO;

CHV cloudjBotionO,
/ * to store the output vectors * /
cmv[lO.CEITER][IMAGE.SIZE/TARGET.SIZE][IHAGE.SIZE/TARGET.SIZE];

main(argc, argv)
int argc; char **argv;

char an8Ber[5], print[5], /* print Bind field * /
track.type[6],/* choose v or i image for tracking * /
fill .average[5],/• f i l l zero pixel Bith average * /
display[5],/* hoB to display * /
8hoB [5] , / * draB matching surface * /
image.type[5],/* cluster inage or raB • /
stretch[5];/* choose stretched image for tracking * /

int i , clus;
float ir.threshold;/* threshold for i r clusters * /
Pixrect *pr , *men;
colomap.t colomap;
F I L E *fp;

putsC'CROSS CORRELATIOI TRACKIIG") ;
load.data(print, shoB, track.type, fill.average, stretch, image.type);
strcpy(progname, argv[0]);
strcpy(filename-, t i . f i l e) ;
get_regression.coeff();/* get formula to calculate true disttmce * /
i f (strchrWnage.type, »y>))
{/* clustered tracking • /

print.cluster.statO;
printf("Enter the infrared pixel count threshold,\n");
printf("clusters Bith i r mean loser than this s i l l be ignored, ");
scanf("Xf", tir^threshold);
for (i = 0; i < nos.center; i++)

i f (mean[l][i] < ir.threshold) continue;/* infrared threshold * /
extract.cluster(i);
Bind.vectbr(shoB, track.type, fill.average, stretch, i) ;
rad.temp(i) ; / * convert infrared greiylevel to temperature * /
i f (strchr(print, »y')) print.result(progname, t i . f i l e , i) ;

}.
else

393

}

i/* raw tracking * /
sind.vectorTshos, track_type, f i l l . averago , s tretch, 0);
rad.teapCO);

^ i f (strchrCprint , »y ')) print_result(progname, t i . f i l e , 0);

mem ' •eB_create(t_header.ras.vidth, t .header.ras.height,
t .header.ras.depth);

fp "« fppen(t io_f i le , "r"); deiaand(fp, cannot open f i l e for p r) ;
pr = pr. loadCfp, tcoloraap);
p r _ r o p(BeB, 0, 0, •eB ->pr . s i ze .x , •eDi ->pr.s ize .y , PIX.SRC, p r , 0, 0);
pr_rop(pr, 0, 0, pr->pr.size.x> pr->pr.s ize.y, 0, (Pixrect »)IULL. 0, 0);
i f (strchr(i«age.type, 'y'))

coaposite.vind.f i e l d O ;
putsC'Coaposite result");
i f (strchrCprint , >y')) print.result(progname, t i . f i l e , nos.center);
p r i n t . c l u s t o r.8tat();

p r i n t _ t o . f i l e () ;
for (;;)
</• display wind f i e l d • /

printf("Do you want to display wind f i e ld? "); scanf("Xs", answer);
i f (strchr(answer, 'n')) break;
printf("Enter o (overlay), w (f i e ld only) , • (on map), ");
scanf("Xs", d isplay) ;
p r i n t f ("Enter t h e ' d u s t e r you want to look, Xd

f o r coaposite f i e l d " ,
(nos.center > 1) ? nos.center : nos.center- l) ;

scanf("Xd", kclus);
i f (strchr(display, 'w')) display.wind.f ie ld.only(clus);
i f (strchr(display, 'o')) display.wind.field.onimage(clus, p r , nen);
i f (strchr(display, 'n')) display.wind.field.onmapCclus);

wind_vector(show, track.type, fill.average, stretch, clus)
char showQ ,/* show B a t c h surface, not used */

track.type • ,/* use infrared or visib l e */
fi l l . a v e r a g e d ,/• f i l l zero pixel with mean, not used */
s t r e t c h n ; / » p'reprocess v i s i b l e , not used */

int clus;/* which cluster */

unsigned char Bean,
target[SEAKCH_ARRAY][SEARCH.ARRAY],
si[SEARCH_ARRAY][SEARCH.ARRAY],
s2[SEARCH.ARRAY][SEARCH.ARRAY],
tenpClMAGE.SIZE][IHAGE.SIZE];/* f o r stretch */

int count,
numxwin, humywin,/* nuraber of window in a row or column */
t.x,. t.y, s.x, s.y, /* coordinates of target and search win */
i . j . S i t, /* for loop counter */
pix.count; /* pixel count in a target window */

flo a t v.sd, i.sd,/* standard deviation of v i s i b l e emd infrared target */
sum, mean.speed, mean.direct;

CMV v l , v2;

nuBxwin = numywin = (wholexsize-2*win.offset)/target.size;
f o r (i = 0; i < numywin; i++)

for (j = 0 ; j < numxwin; j++)
{ /* get target coordinates */

t.y = win.offset + i * target.size;
t.x = win.offset + j * target.size;
/* get search window coordinate */
s.y = t.y - win.offset;
s.x = t.x - win.offset;
pix.count = 0 ;
for (s = 0; s < target.size; s++)

for (t *• 0; t < target.size; t++) /* load target window */
i f (ti[t.y+s][t_x+t] != 0) piXiCount++;

i f (pix.count < TARGET.THRESHOLD*SQUARE(target.size)) continue; '

i f (strchr(track.type, >v>))

i f (strchr(stretch, 'y'))
{/* use stretched v i s i b l e */

fo r (s = 0; s < target.size; s++)
for (t = 0; t < target.size; t++)

target [s][t] = 8tv[t^y+s] [t.x+t] ;
f o r (s = 0; 8 < search.size; s++)

for (t = 0; t < saarch.8ize; t++)

s i [s] [t] = sslv[s.y+s] [8_x+t] ;
82[8][t] = 8s2v[s_y+s][s.x+t];

}
else
</* use unstretched v i s i b l e */

for (s = 0; 8 < target.size; 8++)
for (t = 0; t < target.size; t++)

target [s] [t] = tv[t.y+s] [t.x+t] ;
fo r (s = 0; s < search.size; 8++)

394

for (t = 0; t < search_size; t++)

s i [s] [t] = s iV [s_y+s] C8_x+t] ;
s2[s][t] = s2v[s.y+s]Cs_x+t];

}
}
else/* use infrared * /
<

Ifor (s = 0; s < target .s ize; 8++)
for (t = 0; t < target .s ize; t++)

target Cs]Ct] = tiCt.y+s] [t.x+t] ;
for (s " 0; s < search_size; s++)

for (t •= 0; t < search.size; t++)

s l [s] [t] = sli [s .y+s][8 . x+t] ;
82[s][t] = 82i[s.y+s][s.x+t];

}
i f (s trchr(f i l l .average , 'y'))
</* i f use clustered tracking, f i l l the other p i x e l n i th mean

SUM » 0.; count = 0;
for (s " 0; s < target .s ize; s++)

for (t = 0; t < target .s ize; t++)

i f (target[s][t] »= 0) continue;
sua +»= target [s] [t] ;
count++;

>
•ean = sum/count;
for (s = 0; 8 < target .s ize; s++)

for (t = 0; t < target .s ize; t++)
^ i f (target[s] [tJ = 0) target[s][t] = mean;

v l - cloud.Dotion(8hoB, target, s i , i , j) ;
i f (vl.speed > 0.0)

v2 = cloud.motion(shoB, target, s2, i , j) ;
else v2.speed - 0.0;
i f (v l .d irect ion > 180.0) v l .d i rec t ion -= 180.0;
else v l .d i rec t ion += 180.0;
nean.speed = (vl.speed+v2.speed)/2.0;
Mean.direct = (vl .direction+v2.direction)/2.0;
/ * check symmetric of the two vectors * /
i f (fab8(vl.speed-v2.speed) > SPEED.DIFF*vl.speed II

fabs(vl.8peed-v2.speed) > SPEEDiDIFF*v2.speed IJ
fabs(vl .direct ion-v2.direct ion) > DIRECT.DIFF 11
vl.speed ==0.0 jj v2.speed == 0.0)

else

cmv[clus][i][j].speed = mean.speed;
cmv[clus][i] [j] .direct ion = mean.direct;
cmv [clus] [i] [j] . la t = v2.1at;
cmv [clus] [i] [j] .longt = v2. longt;
cmv[clus][i][j].temp = v2.temp;
cmv[clus] [i] [j] .mean = v2.mean;
cmv [clus] [i] [j] . 8d = v2. sd; '
cmv[clus][i][j].count = v2.count;

composite.vind.fieldO

int i , j , k, numxsin, numyvin,
m.k, maxi;

numxBin = numysin = (Hholexsize-2*Bin.offset)/target.8ize;
f o r (i = 0 ; i < numywin; i++)

for (j = 0; j < numxBin; j++)

• a x i = 0;
f o r (k = 0; k < nos.center; k++)

i f (cmv[k][i][j] .speed > 0.0
kk cmv[k][i][j3.8d < UPPER.TARGET.SD.THRESHOLD
kk cmv[k][i][j] .sd > LOWER.TARGET.SD.THRESHOLD)

i f (cmv[k][i][j].count > maxi)

maxi = cmv[k] [i] [j] .count;
m.k = k;

^ }

cmv [nos.center] [i] [j] . speed = cmv[m.k] [i] [i] .speed;
^[m.k] t i] [- •• cmv [nos.center] [i] [j] .direct ion = cmv[m.k][i] [j] .d irect ion;

cmv [nos.center] [i] [j] . la t = cmvDa.k] [i] [j] . l a t ;
cmv[hos_center][i][j].longt = cmv[m_k] [i] [i] . longt;
cmv[noB_center][i][j].temp = cmv[m.k] [i][jJ.temp;
cmv[nos.center][i][j].mean = cmv[m.k] [i] [j] .mean;

395

c»v[nos.center][i][j3.8d » c«v [« .k] [i] [j] . sd;
CBv [nos .center] [i] [j] .count = CBV[•_][] [i] [j] .count;

CHV cloudjiotionCshos, target, search, s h i f t . ! , s h i f t . j)
char shosQ;
unsigned char target •[SEARCH.AERAY],

search • [SEAECH.AB&AY];
int s h i f t . ! ,
^ s h i f t . j ; / * determine which subwindos, in order to obtain coord, offset * /

register i , j , s, t ;
char 8urf»ap[SVKF^SIZE][SUEF.SIZE];
Int nua.area, /* nua of cluster on the surface • /

q , / * qual i ty f l a g * /
a a x . i , a a x . j , / * index of aax coeff. * /
s a a x i . i . s a a x l . j , saaxZ. i , saax2_j,/* peak on saoothed surface * /
x l , y l . x2, y2./* coord, of the peak posit ion * /
c x l , c y l . / * center coord, of target teaplate • /
nuabertHAX.BOOT],/* nua of eleaent i n earch cluster * /
count;/* count no. of non zero p ixe l » /

f loat sua, ssq, s d . t , sd . s . sd . s t ,
•ean. t . aean.s , /* s t a t i s t i c for xcorrelation * /
coefficient[SUEF.SIZE][SURF.SIZE];

double l a t l , l ong l , lat2.. long2./* s t a r t / f i n i s h l a t . long. * /
departure, course;/* distance trave l and course * /

CHV cav;/* put result here * /

/ * cross correlation * /
/ * coapute target sd * /
sua = ssq = 0.0; count = 0;
for (1 = 0; i < target .s ize; !++)

f o r (j » 0; j < target .s ize; j++)

i f (tetrget[i] [j] == 0) continue;
sua += target [i] [j] ;
ssq += SqUARE((float) target [i] [j]) ;
count++;

aeim.t = sua/(float)count;
sd.t = ((float)c6unt*ssq-SqUARE(sum))/SqUARE((float)count);
sd.t = sqrt (sd . t) ;
/ * check temperature var iat ion , i f < IOC do not check * /
i f (sd.t > UPPER.TARGET.SD.THRESHOLD 11 sd.t < LOWER.TARGET.SD.THRESHOLD)
{ / * no motion bypass calculation * /

cmv.speed = cmv.direction = cmv.lat = cmv.longt = cmv.temp = 0.0;
cmv.sd = sd . t ; cmv.mean = mean.t; cmv.count = count;

^ return(cnv);

cmv.mean - aeiui.t; cnv.sd = sd . t ; cmv.count = count;

for (i = 0; ! < s ize.difference; i++)
for (j = 0; j < s ize.difference; j++)
</* coapute search template sd * /

sum = ssq = 0.; count = 0;
for (s = 0; s < target .s ize; s++)

f o r (t » 0; t < target .s ize; t++)

i f (target[s][t] = 0) continue;
sum += search [i+s] [j+t] ;
ssq += SqUARE((float)search[i+s][j+t]);
count++;

nean.s = sum/(float)count;
sd.s = ((float)count*ssq-sqUARE(sum))/sqUARE((float)count);
sd.s = sqrt(sd.s) ;
/ * compute covariance * /
sd.st = 0.;
f o r (s = 0; 8 < target .s ize; s++)

for (t « 0; t < target . s ize ; t++)

i f (target[8][t] «= 0) continue;
sd.st += ((float)search[i+s][j+t]-mean.s)*

((float)target[s][t]-mean.t);

sd.st /= (float)count;
^ coef f ic ieht [i] [j] = sd .s t / (sd .s*sd. t) ;

x2 = nax . j ; y2 = n a x . i ;
x l » xs+yin.offset+shift.j*target_size;/* s tart * /
y l " ys+Bin.offset+'shifti.i*target.size;
i f (q == FAIL I I q == OIBQUIDARY)
{/* i f natch point on boundary do not accept * /

cnv.speed = cnv.direction = cnv.lat = cnv.longt = cny.temp = 0.0;
return(cmv);

else i f (nax. i == nin.offset t t nax.j == nin.offset)
{ / * no notion.bypass l a t and longt calculation * /

cnv.speed = 6.0;

396

cav.direct ion « 0.0;

else
{/* coapute true distance « /

x2 +'= xs+shift_j»target_size;/* f i n i s h • /
y2 +«• ys+shif t_i»target_size;
pixel_to_aap((doubleyxl, (double)yl, <double)x2, (double)y2,

» l a t l , k lbngi . * lat2 . Jtlong2);
g e t . d i s t a n c e d a t l , l ong l , la t2 , long2, tdeparture, tcourse);
cav.speed « departure/0.5;/• 30 ainutes * /
c a v . d i r e c t i o n * course;

cx l » xi+target_size/2;/* center of target Bindos • /
cy l • yl+target_size/2;
pixei_to_a^T<double)cxl, (double)cyl, (double)x2, (double)y2,

t l a t l , t l o n g l , » l a t 2 , »long2);
cav . la t = l a t l ; cav.longt = long l ;

retum(cav);
>
,/********•**•****•**••**••**•*•••***•**«••**••*••**«***••*•••**•****

* You are reading i o . c •
* Functions tb display result and read write data, •
* for coaputaion of cloud aotion winds. *
* I .S.LAU 5-3-91 *
* » * /

t include "cav.h"

load.dataCprint, shoB, track_type, f i l l . average , s tretch, inage_type)
char showtj,

print • ,
track.type • ,
f i l l . average • ,
iaage . typeD,

^ s t r e t c h U ;

char clusteraapCSO];
int ii j ;
FILE • fp ;

putsC'Al l input f i l e should be infrared.");
puts("The v i s i b l e f i l e w i l l fol low.");
printf("Enter the type of inage you .use for tracking, v or i , ");
scanf("Xs", track.type);
i f (strchr(track.type, >v>))

printf("Do you want to stretch v i s ib l e inage? ");
scanf("Xs", stretch);

} else strcpy(stretch, "n");
printf("Do you want to f i l l zero pixel? ");
scanf ("Xs", f i l L a v e r a g e) ;
printf("Do you want to display a l l matching surface? ");
scanf("Xs", show);
printf("Do you want to print wind f i e l d result? ");
scBnf("Xs", p r i n t) ;
printf("Enter the size of window i n which ");
printf("tracking window i s define,\n");
printf("xsize ysize: "); scanf("XdXd", twholexsize, twholeysize);
deBand(wholexsize <= IMAGE.SIZE, tracking window too large);
printf("Enter 'y ' i f you want to use cluster nap,\n");
pr in t f (" 'n ' i f you want to use clustered inage d i r e c t l y , ");
scanf("Xs", inage.type);
i f (strchr(inage.type, 'y'))

printf("Enter the cluster nap filename, ");
scanf("Xs", clusteraap);

printf("Enter the target filename: ");
i f (strchr(iaage.type, 'y')) pr intf ("orig inal required ");
scanf("Xs", t i . f i l e) ;
I f (strchr(iaage_type, »y')) s t r c p y (t i o . f i l e , t i . f i l e) ;
else

printf("Enter the or ig ina l filenane ");
printf("corresponding to the target area: ");
scanf("Xs", t i o . f i l e) ;

printf("Enter the 1st search filename: "); scanf("Xs", s l i . f i l e) ;
printf("Enter the 2nd search filename: "); scanf("Xs", s 2 i . f i l e) ;
printf("Enter the target window size: "); scanf("Xd", t target . s ize) ;
printf("Enter the search window s ize: "); scanf("Xd", tsearch.s ize);
denand(search.size >= target.size+2, window s ize contradiction);
printf("Enter the x and y coord, of whole ");
printf("search area i n clustered area, \nwrt the cluster window: ");
scanf("XdXd", txs , tys) ;
i f (strchr(inage.type, »y'))
{ / » read cluster nap • /

fp s fopen(clustern'ap, "r"); denand(fp. Cannot open clusmap);
fread((char *)»nos.center, s i zeof (in t) , 1, fp) ; .
fread((char *)Jtdinehsion, sizeof (in t) , 1, f p);

397

file:///nwrt

freadCCchar *)ftx80, s i zeo f (in t) , 1, fp) ;
fread((char *}tyso, sizeof (i n t) , 1, fp) ;
fread((char •)tBin_xsize, sizeof (i n t) , 1, fp) ;
froad((char •)JkBin_y8ize, s izeof (in t) , 1, fp) ;
de»and(Bin_xsize»Bin_ysize<»IHAGE_SIZE*IHAGE_SIZE,

IIUGE.SIZE too s a a l l) ;
fread((char •)cbunt, sizeof (i n t) , nos.center, fp) ;
f o r (i » 0; i < nos.center; !++)

for (j « 0; j < diMension; j++)
fread((char »)»«ean[j3 [i] , sizeof (float) , 1, fp) ;

for (i « 0; i < nos.center; i++)
for (j » 0; j < dinension; j++)

fread((char •)»deviation[j][i], s i z e o f(float), 1, f p) ;
for (i » 0; i < Bin . y s i ze ; i++)

fread((char *)»clus«ap[i] [0] , sizeof (char) , Bini.xsize, f p) ;
fc lose(fp);
pr in t f ("Coords. of cluster area x %d y !Cd\n", xso, yso);

else
{

printf("Enter the x and y coord, of ");
p r i n t f("cluster BindoB wrt raa inage: ");
scanf("XdXd", »xso.«y8o);

put8("IB: Clustered inage i s either the sane as the raB inage");
puts(" or snal ler size entirely of clustered area.");
nos.center = l ; / » use.raB inage for natching • /

xs += xso; ys += yso;
size . d i f ference » search . s ize-target.size+l;
Bin.offset " (search.size-target.size) /2 ;

r e a d . f i l o (t i_file, 8 2 i . f i l e , t i o . f i l o , t i , s 2 i , t i o) ;
r e a d . f i l e (t i _ f i l e , s l i . f i l e , t i o . f i l e , t i , s l i , t i o) ;

change . fnane(t i.file, t v . f i l e) ;
change.fnane(s2i . f i le , s 2 v_file);
change.fnane (s l i.file, s l v . f i l e) ;
change.fnane(tio.file, t v o .file);
read.file (t v.file, s 2 v . f i l e , t v o . f i l e , tv , s2v, tvo);
r e a d . f i l e (t v.file, s l v . f i l e , t v o.file, tv , s l v , tvo);

read . f i l e (t f , s f , tof , t , s, t .o)
char t f [] , s f [] , to f • ;
u.char t • [IHAGE.SIZE], s[][IMAGE.SIZE],
^ t .on[IHAGE.SIZE];

int i , nunread,
clus . x , clus . y ,
raB . x , raB.y;

FILE » f t , • f s , *fto;

/• open a l l f i l e s */
f t = fopen (t f , "r"); denand(ft. Cannot open target f i l e .) ;
f s = fopen(8f , "r"); demandCfs, Cannot open search f i l e .) _ ;
fto = fopen(tof, "r"); denand(fto. Cannot open original f i l e .) ;
fread((char *)ts.header, sizeof(struct r a s t e r f i l e) , 1, f s) ;
fread((char *)tt.header, sizeof (s truct r a s t e r f i l e) , 1, f t) ;
fread((char •)tto.header, sizeof(struct r a s t e r f i l e) , 1, f t o) ;
raB.x = xs; r a B . y = ys;
clus.x = xs; c lus .y = y s ; / » i n i t i a l i s e for fseek • /
/* read search f i l e */
nunread = 0;
fseek (f s , s.header.ras.Bidth*clus.y+clus_x, 1); / • goto start • /
for (i = 0; i < B h o l e y s i z e ; i++)

nunread += fread((char •) (» (s + i)) , s izeof(char), Bholexsize, f s) ;
.f8eek(fs, s.header.ras.Bidth -Bholexsize, 1);

denand(nunread — Bholex8ize*Bholey8ize, read error) ;
/ • read target f i l e •/
nunread = 0;
f8eek (f t , t.header .ras.Bidth*clus .y+clus .x , 1); / * goto start • /
for (i " 0; i < Bholeysize; i++)

nunread +» fread((char *)(*(t+i).), sizeof (char), B h o l e x s i z e , f t) ;
fseek (f t , t.haador.ras.Bidth - B h o l e x s i z e , 1);

denand(nunread == Bho l e x 8 i z e * B h o l e y s i z e , read error) ;
/* read target original */
nunread = 0;
f8eek (f to , to.header.ras.Bidth*raB.y+raB.x, 1);
for (i = 0; i < Bholeysize; i++)

nunread += fread((char •) (• (t .o+i)) ,
sizeof(char), Bholexsize, f t o) ;

^ fseek (f to , to.header.ras.Bidth -Bholexsize, 1);

denand(nunread = sholexsize^wholeysize, read error);

fclo8e (f t) ; fclose (f s) ; fclose (f t o) ;

398

ch&nge.fhaae(frob, to)
char I r o a Q , t o O ;

int i , j , change_count = 0;

/ * change infrared nane to v i s i b l e nane * /
for (i » BtrlenCfron); i >= 0; i ~) i f (fron[i] = ' / ») break;
for (j « 0; j < i ; j++) to[j] = fronCj];
for (j " i ; j <» str len(fron); j++)

i f (fronCj] ' i ' tk change.count < 1)
{ to[j] = »v>;change_count++; }

^ else to[j] - fronCj];

^rint_clnster_stat()

int k, class;

p r i n t f (" \ t»»*»» CEITERS •• • • • ' •) ;
printf("Vn ");
for (class » 0; c lass < nos.center; class++)

pr in t f (" cX2d c lass) ;
f o r (k = 0; k < dinension; k++)

printf("\n"); printf("X2d: " , k) ;
for (class = 0; class < nos.center; class++)

p r i n t f ("X5.if, " , naan[k] [class]) ;
}printf("\n");

printf("\t*»»* lUHBER OF OBJECTS. PER CLUSTER »»»» \n") ;
f o r (class = 0; class < nos.center; class++)

pr int f (" cX2d •', c lass) ;
printf("Nn");
f o r (claiss = 0; class < nos.center; class++)

printf("X6d " , count[class]);
printf ("\n");

p r i n t f ("\t»**»* STAIDARD DEVIATIOI *• • •»• •) ;
pr int f (" \n ");
for (class = 0; class < nos.center; class++)

pr int f (" c%2d ", c lass) ;
f o r (k = 0; k < dinension; k++)

printf("\n"); printf("X2d: " , k);
for (class = 0; class < nos.center; cla8s++)

p r i n t f C l S . l f , ", deviation [k] [class]);
}printf("Vn");

p r i n t . t o . f i l e O
X/* pr int cloud wind, vector to a f i l e • /

char /**outf i le* / outfi le[50];
int i , j , k, numxwin, numywin;
f loa t d irect ion;
FILE •fp;

nuBxwin = numywin = (wholexsize-2*win.off8et)/target.size;
/ • o u t f i l e = "/home/image/output/wf";*/
do •[

printf("Enter the filename for computed wind f i e l d , ");
scanf("Xs", ou t f i l e) ;
fp = fopen(outfile, "w");
i f (!fp) printf("Cannot open f i l e , please try again!!\n");

} while(ifp);*^
fwrite((char •)tnos.center, s i zeof (in t) , 1, fp);
fwrite((char«)*numxwin, s i zeof (in t) , 1, fp);
fwrite((char •)»numywin, s i zeof (int) , 1, fp);
fwrite((char «)Jtwin.offset, s i zeof (int) , 1, f p) ;
fwrite((char «) t target . s ize , s i zeof (int) , 1, fp);
fwrite((char *)tsearch_si7.e, sizeof (in t) , 1, fp);
fwrite((char *)tx8, s i zeof (in t) , 1, fp);
fwrite((char •)*ys, s i zeof (in t) , 1, fp);
fwrite((char *)txso, s i zeof (in t) , 1, fp);
fwrite((char *)tyso, s i zeof (in t) , 1, fp);
fwrite((char *)»win.xsize, s i zeof (int) , I , fp);
fwrite((char *)kwin.ysize, s i zeof (in t) , 1, fp);
fwrite((char •)twholexsize, 8izeof (i n t) , 1, fp);
fwrite((char «)fcwholeysize, s i zeof (in t) , 1, fp);

for (k = 0; k < nos.center; k++)

for (i = 0; i < numywin; i++)
for (j = 0; j < numxwin; i++)

fwrite((char *)tcmv[k][i][j].lat, s izeof (float) , 1, f p) ;
for (i >= 0; .1 < humywin; i++)

for (j = 0; j < numxwin; i++)
fwrite((char •)tcmv[k][i][j].longt, s izeof (f loat) , 1, fp)

399

f o r (i " 0; i < ntiBysin; i++)
fo r (j « 0; j < nunxBin; i++)

fBrite((char»)»c»v [k3[i] [j] .speed, sizeof (f l o a t) , 1, f p) ;
f o r (i » 0; i < nuByoin; i++)

fo r (j « 0; j < nuBXBin; j++)
i f (ciiv[k][i][j].speed 0.0)

direction = cnvlk][i] [j].direction;
else i f (c«v[k][i][j].direction < 180.0)

direction = 180.0+cmv[k][i][j].direction;
else

direction • cBv[k][i] [j].direction -180 .0 ;
fHrite((char •)»directioh, s i z e o f (f l o a t) , 1, f p) ;

f o r (i » 0; i < nuBynin; i++)
fo r (j = 0; j < nujaxHin; i++)

fBrite((char «)kcBv[k][i]Cj]-temp, s i z e o f (f l o a t) , 1, f p) ;
f o r (i = 0; i < nuayBin; i++)

fo r (j = 0; j < nuBXBin; j++)
fBrito((char •)Jtcmv[k] [i] [j]-count, sizeof (i n t) , 1, f p) ;

^ fcl08e(fp);

print.result (prog, t . f i l e , cltis)
char *prog, ' t . f i l e ;
int clus;

int i , j , nuiaxBin, nuBysin;
nuBXBin = numyBin = (Bholexsize -2*Bin_offset)/target.size;
printf("\nProg: Xs Target: Xs", prog, t . f i l e) ;
printf("\nClU8ter Xd", clus);
printf("\nSpeed i n knots, direction in degree");
f o r (i = 0; i < nnayBin; i++)

printf("\n\n");
printf("speed ") ;

f o r (j = 0; j < numxBin; j++)
p r i n t f (" X5.1f", cmvtclus][i][j].speed);

printf("\n");
printf("direct ") ;
f o r (j = 0; j < nuBXBin; j++)

i f (c»v[clus]Ci][j] .speed == 0.0)
p r i n t f (" XS.lf", cnv[clu8][i]Cj] .direction);

else i f (cBv[elus]Ci][j] .direction < 180.0)
p r i n t f (" XS.lf", 180.0+cmv[clus] [i] [j] . .direction);

else
p r i n t f (" XS.lf", cBv [c lU8][i] [j] .direction -180 .0) ;

printf("\n");
printf("temp ") ;
for (j = 0; j < numxBin; j++)

p r i n t f (" XS.lf", CBvCclus][i][j].temp);
printf("\n");
p r i n t f (" l a t ") ;
fo r (j = 0; j < numxBin; j++)

printf (" XS.lf", cmv [clus] [i][j] . l a t) ;
printf("\n");
printf("long ") ;
fo r (j = 0 ; j < numxBin; j++)

p r i n t f (" XB.if", cmv[clus][i3[j].longt);
printf("\n");
printf("mean ") ;
for (j = 0; j < numxBin; i++)

p r i n t f (" XS.lf", cmvCclus] [ill[j] .mean);
printf("\n");
printf ("sd ");
f o r (j « 0; j < numxBin; j++)

p r i n t f (" XS.lf", cmv [clus] [i][j] .sd);
printf("\n");
printf("count ") ;
for (j = 0; j < numxBin; j++)

j r i n t f (" XSd", CBV[C1US][i] [j].count);

^ printf("\n");

extract.cluster(clus)
int clus;
{/* extract a cluster f o r tracking */
register int i , j ;

for (i = 0; i < Bholeysize; i++)
for (j = 0; j < Bholexsize; j++)

t i[i] [j] = tv[i] [j] = 0;
f o r (i = 0; i < Bholeysize; i++)

for (j = 0; j < Bholexsize; j++)
i f (clusBap[i+y8-y8o][j+xs-xso] == clus)

400

file:///nProg
file:///nClU8ter
file:///nSpeed

t i [i] [j] - tioCi][j];
tv[i][j] » tyo[i][j];

/ * * * * * * • * * • • * • • • • * * * * * * * * * • * * * * * * * * * * * • * * * • * * * * * * * • * • • • • • • « • • * • • • • • • • • *
* Yon are reading g e o . c *
* Function to do geoaetric rec t i f i ca t ion and calculate great c i r c l e •
* distance on earth. For calculation of true Bind speed on HETEOSAT *
* iaages. *
« The rec t i f i ca t ion only apply to a sindoB i n a *
* B (l ine 1810-2434) foraat iaage. •
* The coord, of t h e BindoB i s (330,60), s ize 612x512 *
* K.S.LAU 16-7-90 •
•**«****##**********************/

•define THIRD/* use t h r i d order polynoaial

• include "/hoae/lau/s'rc/aap /regression. h"

/ * variable for regression and triie distance * /
s t a t i c int nua.gcp; / » nuaber of ground control points * /
s ta t i c
double indepvar[IOS_Eqi][IOS_Eqi],/* aatrix f o r indepdent variable • /

depvar_l[IDS_Eqi],/» array f o r depdent variable , l ine * /
depvar_p[IDS_Eqi],/* array f o r depdent variable , p ixe l • /
coeffx[IOS_Eqi], /• t h e estiaated coefficients f o r aapped iaage x * /
coef fyClQS.Eqi] ; / • t h e estiaated coefficients f o r aapped iaage y * /

s ta t i c Coord iaage[HAX.GCP],/* store iaage p ixe l coord * /
aapLHAX.GCP];/* store aap coord • /

s ta t i c Stat a a p x . s t a t , / * aean emd variemce of aapx * /
a a p y . s t a t ; / * aean and variance of aapy • /

:et_regression_coeff()/* calculate the regression formula * /

FILE *strean;

/ * read inage control point n o t ground control point ,
because Be Bant p ixe l coord, to be indepdent variables • /

i f ((stream = fopenC'/hone/lau/src/map/icp", "r")) == lULL)
•£ f p r i n t f (stderr, "Cannot open dataf i le . \n") ; e x i t (l) ; }

read_gcp(streBm);/* read image control point * /
standardizing.variableO;
setup_matrix();
gauss_eliaination(depvar_p, coeffx); /» solve f o r x * /

^ gauss_eliaination(depvar_l, coeffy);/* solve f o r y * /

read_gcp(stream)
FILE •strean;
{

int i ;

i = num_gcp = 0;
Bhile (fscanf(strean, "Xlf X l f X l f X l f " , timage[i3.x, t image[i] .y,

*mapCi].x, tmap[i].y) != EOF)/» read a l l control point * /
•C i++; num_gcp++; }
fclose(stream);

}

pixel_to_map(pl, 11, p2, 12, l a t l , l o n g l , l a t2 , long2)
double p i , 11, p2, 12,/* s t a r t / f i n i s h p ixe l coord. * /

* l a t l , * longl , * lat2 , *long2;/* s t a r t / f i n i s h l a t . and long. * /
{/* covert HETEOSAT pixe l t o true geometric posit ion * /

g e t _ l a t _ l o n g(pl , 11, l a t l , longl) ;
^ get_lat_long(p2, 12, la t2 , long2);

get_iat_long(p, 1, l a t i , longt i) /* use 3th order regression * /
double p, 1,/* p ixe l (x) and'line (y) coord. * /
^ * l a t i , * longti;

p = (p-aapx_stat.aean)/Bapx_stat.sd;/* standardize * /
1 = (l -aapy_stat .aean)/Bapy_stat .sd;
• longt i = coeffx[0]+coeffxtl]*P+coeffx[2]*l

+coeffX[3]•poB(p, 2.0)+coeffx[4]•p*l
+coeffxC5]*poB(l , 2.0)+coeffx[6]*poB(p, 3.0)
+coeffx[7]^poB(p, 2.0)*1
+coeffx[8]*p*poB(l, 2.0)+coeffx[9]*poB(l , 3.0);

• l a t i = coeffy[0]+coeffy[l3*p+coeffy[2]*l
+coeffy[3]*poB(p, 2.0)+coeffy[4]*p*l
+coeffy[5]*poB (l , 2.0)+coeffy[6]*poB(p, 3.0)
+coeffy[7]*poB(p, 2.0)*1

^ +coeffy[8]*p*poB(l, 2.0)+coeffy[9]*poB(l , 3 .0);

get .d is tance(lat l , l ong l , la t2 , long2, departure, course)
double l a t l , l a t2 ,

l ohg l , iong2,
^ *departure, *course;

401

/ • 'Calculate the distance ft course betveen 2 point's given the ir lat itudes
ft longitudes, using oblique spherical trigononetry. I f the latitudes
or longitudes are the saae, then s inp l i f i ed expressions are used.
One Minute equal to one nautical Mi le .

*/
int coMplenent;
double c o _ l a t l , co_lat2, /* s tar t / f in i sh co-latitude • /

d;.16hg,/* difference of longitude • /
a l p h a , / • i n i t i a l course * /
distance;/* departure * /

i f (Clongl < 0.0 ftft long2 < 0.0} | | (longl > 0.0 ftft long2 > 0.0))
d_long " fabs(longl-long2);

else
d_long » fabs(longl)4fabs(long2);

i f <d_long > 180.0)

d.long » 360.0-d_long;
compleMent = TRUE;

c o . l a t l « 9 0 . 0 - l a t l ; / * north pole as C • /
co_lat2 » 90.0-lat2;
i f (l a t l lat2)
{

distance « 60.O*d_long;/*-convert to Minutes * /
distance COS(lat l) ;
i f (long2 > longl) alpha = 90.0;/* due east * /

^ else alpha = 270.0;/* due vest * /

else i f (longl long2)
•(/* alvays on great c i r c l e * /

distance = 60.0*fabs(latl- lat2);
i f (lat2 > l a t l) alpha = 0.0;/* due north • /

^ else alpha = 180.0;/* due south * /

else
{

distance = C0S(co_latl)*C0S(co_lat2)
+SII(co_latl)*SII(co_lat2)*C0S(d_long);

distance = acos(distance);
distance *=« 60.0*180.0/H_PI ; / * in minutes * /

alpha = (C0S(co_lat2)-C0S(co_latl)*C0S(di8tance/6O.0))
/(SII(co_latl)*SII(distance/60.0));

alpha = acos(alpha);
alpha •= 180.0/M_PI;/* convert to degree * /
i f (dong i > 0.0 tt long2 < 0.0)1 Klongl < 0.0 tt long2 > 0.0))

i f ((long2 < longl t t complement == FALSE)I I
(long2 > longl t t complement == TRUE))

^ alpha = 360.0-alpha;

else/* both east or both vest * /
^ i f (long2 < longl) alpha = 360.0-alpha;

departure = distance;/ in n mile * /
^ *course = alpha;/* in degree * /

gauss_elimination(depvar, coeff)/* use pivot to reduce computional error * /
< ouble depvarC], coeff 0 ;

int i , j , k, k p l , i p l , loop, pivot;
double temp, sum, quot, b ig , absolute,

augmented[IDS_EQI][I0S_C0L];/* augmented matrix * /

for (i = 0; i < lOS.EQI; i+•^)/* copy to augmented matrix * /
for (j = 0; j < lOS.Eqi ; j++)

augmented [i] [j] = indepvar[i] [j] ;
for (i » 0; i < lOS.EQI; i++)

augmented [i][I0S_C0L-13 = depvar[i];

for (k = 0; k < I0S_EQI-1; k++)

pivot = k;
b ig = fabs (augmented [k][k]);
kpl = k+1;
/ * search f o r largest possible pivot element * /
for (i = k p l ; i < lOS.EQI; i++)

absolute = fabs(augmented[i][k]);
i f (big < absolute) { big >= absolute; pivot «= i ; }

^ else continue;

i f (pivot != k) / * decision on necessity of rov interchange * /
for (j = k; j < lOS.COL; j++)/* rbv interchange * /

temp " augmented[pivot][j] ;
augmented Lpivot] [j] = augmented [k] [j] ;
augmented[k] [j] = temp;

402

for <i = kpl; i < lOS.EQI; i++)
{. I* calculation of elenents of new natrix * /

quot = augnentedCil [k]/augnentedCk] [k];
for (j « kpl; j < lOS.CQL;

augnented[i] [j] - » quot*augnented [k] [j] ;

for (i = kpl; i < lOS.EQI; i++) augnentedCi][k] = 0 . 0 ;

/ * back substitution • /
coeff[I0S_EQI-1] » augnentedClOS_E(JI-l][IOS_COL-l]

/augnented[lbS_Eqi-l][IOS_EIJI-l];/» last coeff • /
for (loop = 0 ; loop < I0S_EQI-1; loop++)

sun = 0.0;
i " I0S_Eqi-2-loop;
ip l = i+1;
for (j = ip l ; j < •OS.EQI; j++)

sun += augnentedCi] ij]*coeff[j] ;
coeff [i] = (augnerited[i]tlQS_C0L-l]-sun)/augnented[i3[i] ;

standardizing_veiriable()/* to reduce conputational error • /

register int i ;
double sun_X8quare=0.0,. square_sunx=0.0, sunx=0.0,/* for nap x • /

8Un_ysquare=0.0, sqii'are_suny=0.0, suny=0.0,/» for nap y » /
count;

count = (double>nun_gcp;
for (i = 0; i < nun.gcp; i++)/* get sum * /

sunx += napCi] .x;
suny += nap[i] .y;
sum_xsquare += pov(nap[i].x, 2.0);

^ sun.ysquare += poB(nap[i].y, 2.0);

square.sunx = poB(sunx, 2.0);
square.suny = pov(suny, 2.0);
napx.stat.mean = stunx/count;/* nean * /
napy.stat.mean = sumy/count;
mapx.stat.sd = (sum_xsquare-square_sumx/count)/(count-1.0);/* var * /
napy.stat.sd = (sum_ysquare-square_sumy/count)/(count-1.0);
napx.stat.sd = sqrt(mapx_stat.sd);/* sd • /
mapy_stat .sd = sqrt(Bapy,.stat .sd) ;
for (i = 0; i < nun_gcp; i++)/* standardizing ,*/

map[i].x = (mapCi].x-mapx_stat.mean)/mapx_stat.sd;
•ap[i].y = (map[i].y-napy_stat.mean)/mapy_stat.sd;

}

setup_matrix()
</* THRID ORDER REGRESSIOI HATRIX * /

register int i ;
double sum;

/» setup matrix A first * /
indepvar[0][0] = (double)num_gcp;/* diagonal elements first * /
sun =0 .0 ;
for (i = 0; i < nun.gcp; i++) sun += poB(map[i].x, 2.0);
indepvarClj [1] = sum;
sun = 0.0;
for (i = 0; i < nun_gcp; i++) sun += pov(mapCi].y• 2.0);
indepvar[2][2] = sum;
sum = 0.0;
for (i = 0; i < nun_gcp; i++) sum += pos(map[i].x, 4.0);
indepvar[3][3] = sum;
sum = 0.0;
for (i " 0; i < num_gcp; i++) sum += poB(map[i].x*map[i].y, 2.0);
indapvar[43[4] = sum;
sun = 0.0;
for (i = 0; i < nun.gcp; i++) sun += pow(nap[i3.y, 4.0);
indepvar[53 [53 = sun;
sun =0 .0 ;
for (i = 0; i < nun.gcp; i++) sun += poB(nap[i3.x, 6.0);
indepvar[63 [63 = sun;
sun = 0.0;
for (i = 0; i < nun.gcp; i++)

sun += poH(nap[iJ .X, 4.0)»poH(nap[i3 .y, 2.0);
indopvar[73l73 = sum;
sun = 0.0;
for (i = 0; i < num.gcp; i++)

sun += poB(map[iJ .X, 2.0)*poB(map[i3 .y, 4.0);
indepvar[83l83 = sum;
sun = 0.0;
for (i = 0; i < num_gcp; i++) sum += poB(map[i3.y, 6.0);
indepvar[93[93 = sum;

sun = 0.0;/* ron element * /

403

for (i » 0; i < niui.gcp; i++) sim +» B a p [i] . x ;
indepvarCO] [1] " indepvarCi] [0] = sua;
sua = 0.0;
for (i » 0; i < nua_gcp; i++) sua +» aap[i].y;
indepvarlO][2] » indepvar[2][0] » sua;
indepvarCO] [3] » indepvar[3] [0] « indopvar[l] [1] ;
sua " 0.0;
for (i « 0; i < nua.gcp; i++) sua +» aapCi].x*aap[i].y;
indopvarCOJ [4] » indepvarC4] [0] «= sum;
indepvarCO] [6] = indepvar[5] [0] « indepvar[2] [2] ;
sua = 0.0;
for <i = 0; i < nua.gcp; i++) sum += posCmapCi].x, 3.0);
indepvar[0] [6] « indapvar[6] [0] = sum;
SUB = 0.0;
for <i » 0; i < nuB_gcp; i++) sua += ponCaapCi].x, 2.0)*map[i].y;
indepvarEO] [7] »= indepvarE7] [0] » sua;
sua = 0.0;
for (i » 0; i < num.gcp; i++) sua += aapEi] .x*poB(Bap[i3 .y, 2.0);
indopvarEO][8] » indepvarE8]EO] = sum;
SUB = 0.0;
for (i »• 0; i < nua.gcp; i++) sua +» powCaapEi] .y, 3.0);
indopvarEO] [9] « indapvarE9] E03 = sua;

indopvarEl] E2] • indepvarE2] El] » indepvarEO] E4] ;
indepvarEl] E3] • indepvarES] El] * indepvar EO] E6] ;
indepvarEl] E4] » indepvarE4] El] » indepvarEO] E7] ;
indepvarEl] ES] » indepvarES] [1] = indepvarEO] [8] ;
indepvarEl] E6] "= indepvar E6] El] = indepvar E3] [3] ;
sua = 0 . 0 ;
for (i « 0; i < num.gcp; i++) sum += ponCmapEi] .x, 3.0)*map[i]'.y;
indepvarEl] E7] = indepvarE7] [1] = sum;
indepvarEl] E8] = indepvarE8] [1] = indepvarE4] [4] ;
sum = 0.0;
f o r (i = 0; i < num.gcp; i++) sum += aapEi].x*poB(map[i].y, 3.0);
indepvarEl] E9] = indepvarE9] [1] = sum;

indepvarE2] E3] = indepvarE3] E2] = indepvar EO] E7] ;
indepvarE2]E4] = indepvarE4]E2] = indepvarEO]E8];
indepvarE2]E5] = indepvar[5] E2] = indepvarEO] [9] ;
indepvarE2] E6] = ihdepvarE6] E2] = indepvarEl] E7] ;
indepvar E2] [7] = indepvar [7] E2] = indepvar El] [8] ;
indepvarE23 E8] »= indepvar[8] E2] = indepvarEl] E9] ;
indepvar E2]E9] = indepvar E9] E2] = indepveu: E5] ES] ;

indepvarES]E4] = indepvarE4]E3] = indepvarE2]E6];
indepvarES] E5] = indepvarES] E3] = indepvarE2] [7] ;
sum = 0.0;
for (i = 0; i < nura.gcp; i++) sum += posCmapEi].x, 5.0);
indepvarE3] E6] = indepvarE6] [3] = sum;
S l i m = 0.0;
for <i = 0; i < num.gcp; i++) sum += posCmapEi].x, 4.0)*mapEi].y;
indepvarE3] E7] = indepvarE7] E3] = sum;
sura = 0.0;
f o r <i = 0; i < num.gcp; i++)

sum += poB(raapCi] .X, 3.0)*poB(mapEi] .y , 2.0);
indepvarE3] [8] = indepvarES] E3] = sum;
siUB = 0.0;
f o r (i = 0; i < num.gcp; i++)

sum+= poB(mapEi] .X, 2.0)*poB(mapEi] .y , 3.0);
indepyarE3]L9] = indepvarE9] E3J = sum;

indepvar[4] [5] = indepvarES] [4] = indepvar [2] E8] ;
indepvarE4] E6] » indepvarCS] E4] «= indepvarES] E7] ;
indepvar[4] E7] = ind.epvarE7] E4] = ihdepvarE3] E8] ;
indepvar[4] E8] = indepvarES] E4] = indepvarES] [9] ;
sum = 0.0;
for (i = 0; i < num.gcp; i++) sum += poB(mapEi].y, 4.0)*map[i].x;
indepvBrE4] [9] » indepvarE9] E4] " sum;

indepvarES] E6] » indepvar E6] ES] = indepvarE4] E7] ;
indepvarES] E7] = indepvarE7] ES] = indepvarE4] E8] ;
indepvarES] E8] = indepvarE8] ES] = indepvarE4] E9] ;
sum = 0.0;
for (i = 0; i < num.gcp; i++) sura += poB(map[i].y, 5.0);
indepvarES]E9] = indepvarE9]ES] = sum;

sua = 0.0;
for (i = 0; i < nua.gcp; i++) sum += poB(mapEi].x, 5.0)*mapEi].y;
indepvarE63E7] = indepvarE?] E6] = sum;
indepvarEe] E8] = indepvar[8] E6] = indepvarE7] E7] ;
sua = 0.0;
for (i = 0; i < num.ecp; i++)

sura += pOBCaapCiJ.x*mapEi].y, 3.0);
indepvarEe] [9] = indepvar [9] E6] = sum;

indepvarE7] E8] = indepvarE8] [7] = indepvarEe] E9] ;
indepvarE7]E9] = indepvarE9] [7] = indepvarES] E8] ;

404

SUB = 0.0;
for (i » 0; i < nuB.gcp; i++) sun +«= a a p C i] .x*poy(Bap[i] .y, 5.0);
indepvar[8] [9] » indepvar[9] [8] • siin;

/ « s e tup depdent v a r i a b l e column f o r p i x e l *l
S U B '0.0;
f o r <i » 0; i < n u B . g c p ; i++) SUB +»• i B a g e [i] . x ;
depveu:_p[03 = SUB;
SUB ' 0.0;
f o r (i " 0; i < nua .gcp; i++) sua +« i a a g e [i] . x * a t ^ [i] . x ;
d e p v a r . p C l] = s u a ;
sua = 0.0;
f o r (i » 0; i < nuB .gcp; i++) sua +» imageCi] .x*map[i] . y ;
depvar.p[2] = sua; ,
sum = 0-0;
f o r (i » 0; i < nua .gcp ; i++) sua +» i aageCi] .x*poB (BapCi] .x , 2.0);
depvar.p[3] = sua;
sua « 0.0;
f o r (i « 0; i < nua .gcp; i++) sua +» image [i] .x*Bap[i] .x*map[i] . y ;
depvar_pC4] « sua;
sua = 0.0;
f o r <i = 0; i < nua .gcp; i++) sua += i a a g e [i] . x * p o y(Bap [i] . y , 2.0);
depvar.p[5] » sua;
sua » 0.0;
f o r <i >! 0; i < nua .gcp ; i++) sua += i a a g e C i] . x * p o n(Bap [i] . x , 3.0);
depvar.p[6] = SUB;
SUB = 0.0;
f o r (i 0; i < nua .gcp ; i++)

sua += iBage [i] . x*poB (map[i] . x , 2.0)*map[i] . y ;
depvar_p[7] = sum;
sum =0.0;
f o r (i = 0; i < num.gcp; i++)

sua += imageCi] .x*poB(map[i] . y , 2.0)*map[i] . x ;
depvar.p[8] = sum;
sum = .0.0;
f o r (1=0; i < num.gcp; i++) sum += image [i] . x*poB (map[i] . y , 3.0);
depvar.p[9J = sum;

/ » se tup depdent v a r i a b l e column f o r l ine * /
sum =0.0;
fo r . (i = 0; i < niua_gcp; i++) sum += i m a g e l ! i] . y ;
depvar.l[0] = sum;
sum « 0.0;
f o r (i =0; i < num.gcp; i++) sum += i m a g e C i] . y * m a p [i] . x ;
d e p v a r . l C l] = sum;
sua = 0.0;
f o r (i = 0; i < nua .gcp ; i++) sum += i m a g e d] .y*map[i] . y ;
depvar.l[2] = sum;
sum = 0.0;
f o r (i = 0; i < num.gcp; i++) sum += image[i] .y*poB (mapCi] .x , 2.0);
depva r . l [3] = sum;
sum = 0.0;
f o r (i = 0; i < nura.gcp; i++) sura += image[i] .y*mapCi] .x*map[i] . y ;
depva r . l [4] = sum;
Slim = 0.0;
f o r (i = 0; i < num.gcp; i++) sum += image[i] . y»poB (map[i] . y , 2.0);
depva r . l [S] = sum;
sum = 0.0;
f o r (i = 0; i < num.gcp; i++) sum += image [i] . y*poB (map[i] . x , 3.0);
dapva r . l [6] = sum;
sum = 0.0;
f o r (i = 0; i < num.gcp; i++)

sum += image[i] .y*poB(map[i].X, 2.0)*map[i].y;
depvar_l[7] = sum;
sum = 0.0;
f o r (i = 0; i < num.gcp; i++)

sua += i a a g e C i] .y*poB(map[i] . y , 2.0)*map[i] . x ;
depvar_l[8] = sum;
SUB = 0.0;
f o r (i = 0; i < nura.gcp; i++) sua += imageCi] .y*poB (map[i] .y , 3.0);
depvar_l[9] = sum;

/**«****************************«
* You are iroad draB .vector3.c •
* source to draB.vector, use i n cmvl2.c «
* using the image as the background, vector overlay on i t »
* K.S.LAU 27-2-91 *
•******************************.***/

tinclude "cav.h"
/* for display iaage on aap */
tdefine UPPER.UT (60.0)
tdefine LEFT.LOIQ (-25.5)
tdefine EARTH.RADIUS (6378.0)
tdefine PIX.SIZE (8.0)

s t a t i c colormap.t colormap;

405

s ta t i c Fraae fraae;
s ta t i c Canvas canvas;
s ta t i c Cursor cursor;
s t a t i c Icon . icon;
s ta t i c Ccgisin vpn;-
s tat ic Pizvin »pB, »fpy;
stati c Pixrect • p r , • i con .pr ;
s ta t i c void canvas_event_proc(),

iMaee_canvas_event_proc();
s ta t i c u.char redL256], green[256l. blueC256];
s ta t ic char C M s n a B o [B U F S I Z] ;
typedef enua direct <cala, n, ne, e, se, s, so, w, nH>;

/ • no Botioh, 0, 45, 90, 135, 180, 225, 270, 315 • /
s ta t ic struct pf_pos/^ arron head • /

c l i s t o m « « 0 , 3 > , { 1 , 2 } , { 2 , 1 } , { 3 , 0 } , { 4 , 1 } , { S , 2 } , { 6 , 3 } } ,
c l i s t l [73 " « 0 , 0 } , { 1 , 0 } , { 2 , 0 } , { 3 , 0 } , { 3 , 1 } , { 3 , 2 } , { 3 , 3 } > ,
c l i s t 2 m = « 0 , 0 } , < 1 , 1 } , { 2 , 2 } , - C 3 , 3 } , - C 2 , 4 } , { 1 , 5 } , { 0 , 6 } } ,
c l ist3[7] •= « 3 . 0 } , { 3 , 1 } , - C 3 , 2 } , { 3 , 3 } , - C 2 , 3 } , { 1 , 3 } , { 0 , 3 } } ,
cl i8t4[7] » « 0 , 0 } , < l , l } , { 2 , 2 } , { 3 , 3 } , < 4 , 2 } , { 5 , i } , { 6 , 0 } } ,
c l istS[7] « « 0 i 0 } , { 0 , l } , < 0 , 2 } , { 0 , 3 } , - [l , 3 } , { 2 , 3 } , { 3 , 3 } > ,
cl i8t6[7] « « 3 , 0 } . { 2 , 1 } . { 1 , 2 } , { 0 , 3 } , - C 1 . 4 } , < 2 , 6 } . { 3 , 6 } } .
clist7C7] - «0.3>,{0.2},{0,1>,{0,0},-Cl,0},{2,0}.-C3,0}};

displayisind_field_only(clus)/^ only shon windfield, not overlay on image • /
int c lus;

Cint name;

frame > vindon.create(lULL, FRAHE,
FRAHE.LABEL, filename,
ttll.WIDTH, 300,
HII.HEIGHT, 300,
WII_ERR0R_BSG, "Cannot create frame",
0);

cursor » cur8or_create(CURS0R_0P, PIX.SRC " PIX_DST,
CURS0R_CROSSHAIR_LEIGTH, 20,
CURSOR.SHOW.CROSSHAIRS, TRUE,
0);

canvas = sindov_create(frame, CAIVAS,
HII.OraSOR, cursor,

CAIVAS.WIDTH, 800,
CAIVAS_HEIGHT, 800,
CAIVAS_AUTO_SHRIIK, FALSE,
«II_EVEIT_PROC, canvas_event_proc,
«II_CQ1SUHE_PICK_EVEITS. LOC.HQVE, HS.RIGHT, 0,
0);

vindos.set(canvas,
HII.VEBTICAL.SCROLLBAR, scrollbar_create(0),
WII_HORIZOITAL_SCBOLLBAR, scrollbar_create(0),
0);

po = canvas.pixBin(canvas);
open.po.cgiO ; / • open sindos * /
open_egi_canva8(canvas, tvps, tname);
Bind_field(FALSE, 2.0, 0, 0, clu8);/» dran the vector • /
close_cgi_pB(kvpB);
close_pB_cgi();

^ BindoB_main_loop(frame);

display_Bind_field_onimage(clus, p ix , mem)
Pixroct • p i x , *mem;
int clus;

register int i , j ;

s p r i n t f (t i t l e , "Xs-.ts", progname, t i . f i l e) ;
i f (clus == nos.cehter |1 nos.center == 1)

pr_rop(pix', 0, 0, pix->pr_size.x, pix->pr_size.y, PIX.SRC, mem, 0, 0);
else

for (i yso; i < yso+Bin_ysize; i++)
for (j = 0; j < meB->pr.8ize.x; j++)

i f (j >= xso *k j < xso+Bin.xsize)

i f (clusmap[i-yso][j-xso] == clus)
pr_put(pix, j , i , pr.get(mem, j , i)) ;

else pr.put(pix, j , i , 0);

^ Aelse pr_put(pix, j , i,0);*/
pr » pix;

^ image_BindoB_create(FALSE, c lus) ;

display.wind.f ield_onraap(clus)
int clus;
{

char *ptr , filename[50];

406

FILE •ff,

strcpy(filename, t i o . f i l e) ;
p tr » strrchr(filename, >/');
8trcpy (ptr , "/map");
f p " fopen(filename, "r");
demand(fp, cannot open display f i l e) ;
spr int f (t i t l e , "Xs:is", prognajie, t i . f i l e) ;
pr = pr . lqad(fp , tcolormap);
demand(pr, pixrect io error) ;
fclose (f p) ;

^ image.HindoH_create(TRUE, c lus) ;

image_sindov_create(di8playonmap, clus)
char dis'playonmap;
Int clns;

Cint name;

int scrol l . th ickness;

set .BindoBsizesO;
scrol l . thickness = defaults.get.integer("/Scrollbar/Thickness", 14, 0);
frame * BindoB_ c r e a t a (I U L L , FEAME,

FRAME.LABEL, filename,
HII.HEIGHT, Binysize+scroll_thickness+7,
HII.WIDTH, Binxsize+scroll .thickness+lO,
•HII.ERROR.MSG, "Cannot create frame",
0);

setup.colourmapO;

cursor = cursor.create(CURSOB.GP, PIX.SRC * PIX.DST,
CORS0R.CROSSHAIR_LEIGTH, 20,
CURSOR.SH0W.CROSSHAIRS, TRUE,
0);

canvas = windoB.create(frame, CAIVAS,
HII.CURSOR, cursor,

CAIVAS.WIDTH, pr->pr.s ize .y ,
CAIVAS.HEIGHT, pr->pr_size.x,
.CAIVAS.AUTO.SHRIIK, FALSE,
WII.EVEIT.PROC, image.canvas . e v e n t . p r o c ,
WII_COISUHE.PICK_EVEITS, LOC.HOVE, HS.RIGHT, 0,
0) ;

BindoB.set(canvas,
WII.VERTICAL.SCROLLBAR, scrol lbar.create(O),
WII.HORIZOITAL.SCROLLBAR, scrol lbar.create(O),
0);

pB >= canvas.pixBin (canvas);
pB.rop(pB, 0, 0, pr->pr_size.x, pr->pr.s ize .y , PIX.SRC, p r , 0, 0);
icon.pr = mem.create(64, 64, 8);
p a i n t . i c o n O ;

open.pB .cgiO;
open.cgi.canvas(canvas, tvpB, tname);
Bind .field(displayonmap, 1.0, xs, ys, c lus) ;
close_cgi_pB(kvpB);
close.pB .cgiO;

^ BindoB.main.loop(frame);

s tat ic void
canvas.event.proc(canvas, event, arg)
Canvas canyas;
Event *event;
caddr.t arg;

char buf[BUFSIZ3;

i f (event_id(event) == LOC.HOVE)

sprintf(buf, "%s - Xd, Xd", t i t l e , event.x(event), event.y(event));
BindoB.set(frame, FRAHE.LABEL, buf, 0);

}

s ta t i c void
image.canvas.event.proc(canvas, event, arg)
Canvas- canvas;
Event *event;
caddr.t arg;

char bufCBUFSIZ];

double l a t l , l ong l , la t2 , long2;

i f (event_id(event) == HS.LEFT)

sprintf(buf, "Xs", t i t l e) ;

407

s i n d o s_8et (f r a M . FRANE.LABEL, b u f , 0);

i f <ovent_id<event) LOC.HOVE)
i

pixol_to_«ap((doublo)event_x<event), (double)event_y(event), 0 . , 0.
t l a t i . k longl , k la ta , klong2);

sprintf(buf, "X %d y Xd l a t X.2f long X.2f = Xd", event_x(event),
oyent.y(event), l a t l , l ong l ,
pr_get(pr, event_x(event), event_y(event)));

BindoB_8et(fra»e, FRAME.LABEL, buf, 0);

>
^aint.iconO

8ubsa«ple(pr, i con .pr) ;

icon • icon.createdCOI.IHAGE, icon.pr , 0);
vindoB.iBet(frane, FRAME.ICOI, icon, 0);

subsaapledn, out)
Pixrect * l n , •out;

int cvx, cvy, lex . Icy, hex, hey;
register int i , j , i l , j l ;
int t o t a l ;

cvx = (100 • ih->pr.size.x) / out->pr.8ize .x;
cvy •= (100 • in->pr_size.y) / out->pr.8ize .y;

for (j = 0; j < out->pr.size.y; j++)
for (i = 0; i < out->pr_size.x; i++) {

hex = i * evx / 100;
hey = j • cvy / 100;
lex = (i - 1) * cvx / 100 + 1;
Icy = (j - 1) • cvy / 100 + 1;
lex = (lex < 0) ? 0 : (lex > hex) ? hex : lex;
ley = (Icy < 0) ? 0 : (ley > hey) ? hey : ley;

t o t a l = 0;
for (j l = Icy; j l <= hey; jl++)

for (i l = lex; i l <= hex; il++)
to ta l += p r . g e t d n , i l , j l) ;

pr_put(out, i , j ,
(total / ((hex + 1 - lex) • (hey + 1 - l ey)))) ;

8et.BindoBsizes()

i f (pr->pr.size.x > DEFAOLT.WII.XSIZE)
Binxsize = DEFAULT.WII.XSIZE;

else
Binxsize = MAX(pr->pr.size.x, MII_WII_XSIZE)+3;

i f (pr->pr.size.y > DEFAULT.WII.YSIZE)
Binysize = DEFAULT.BII.YSIZE;

else
^ Binysize = MAX(pr->pr.size.y, MII_WIB_YSIZE)+17;

setup.eolourmapO

register int i ;

redCO] = greehCO] = blue[03 = 0 ;
red[255] = greenC2SS] = blue[2SS] = 255;

fpB = (PixBin •)BindoB.get(fraae, UII^PIXUII);

i f (colonaap.type •=« RMT.IOIE I I eolormap.length == 0)

sprintf(cmsname, "greyscaleXd", pr->pr.depth);
pB.8etcrasnaine(fpB, cmsname) ;
for (i = 1; i < 255; i++)
{ red[i] = greehCi] = blue[i] = i ; }
pB_putcolorBap(fpB, 0 , 256, red, green, blue);

^ BindoB.set(fraae. FRAME.IIHERIT.COLORS, TRUE, 0) ;

Bind.field(di8playonmap, scale, xs, ys, elus)
char displayonhap;/^ hoB to display * /
int xs, ys;/* top left offset of clustered BindoB •/
fl o a t scale;/* the scale of spacing betseen vectors • /
int cluB;

int i , j , / » array index • /
x.off, y.off , /• offset of the upper left subBindoB * /
side.off,/* offset of the ul corner of the ul subBin from origin * /
x l , y l , x2, y2 , /* image coordinates of vector * /

408

l e n g t h , / * Tector l e n g t h i n p i x e l * /
nuMXBin, nuBysin;/* nunber of t a r g e t vindos i n a r o s and c o l u n n * /

enun d i r e c t ' d i r e c t i o n ;
f l o a t slope, nax . speed;

n u n x s i n » nunys in « (s b o l e x s i z e - 2 * s i n _ o f f s e t) / t a r g e t_8ize;
cgipB^ l i n e _ c o l o r (t v p B , 255);
cgipB_narker_color(tvpB, 255);
cgipB_ n a r k e r _ s i z e _ s p e c i f i c a t i o n _ B o d e (t T p B , ABSOLUTE);
cgipB_narker_type(tvpB, ASTERISK);
cgipB _ n a r k e r _ s i z e (t y p B , 2.0);
s i d e . o f f = (8earch_ s i z e - t a r g e t _ s i z e) / 2 ;
x . o f f « y . o f f = t a r g e t . s i z e ;
nax .speed = 0.0;/* i n i t i a l i s e * /
f o r (i « 0; i < n u n y s i n ; i++) /* get nax speed f o r s c a l i n g * /

for (j " 0; j < nunxBin; j++)
i f (c n v C c l u s K i] Cj] •8peed > nax.spaed)

• a x . s p e e d « c n v C c l u s] [i] [j] ' . speed ;
f o r (i «• 0; i < n u n y a i n ; i++)

f o r (j = 0; j < nunxBin; j++)
{ /* shoB f i e l d i n roB o r d e r * /

i f (c n v C c l u s] [i] [j] .speed > 0.0)
l e n g t h " ¥EC_LEIGTH*logl0(cnvCclU8][i][j] . s p e e d) /

loglO (Bax_speed);
else length = 0.0;
y l * ((y .off*i)+sideiOff+(target_size /2))*scale+ys;
x l « ((x _ o f f * j) + s i d e . o f f + (t a r g e t _ s i z e / 2))*8cale+ x s ;
s l o p e = t a n (c B v [c l u s] [i] C j] . d i r e c t i o n * P I / 1 8 0 . 0) ;
i f (c n v C c l u s] Ci] Cj] .direct ion==0.0 t t c n v C c l u s] C i] Cj] .speed=0.0)

x2 = x l ;
y2 = y l ;
d i r e c t i o n = c a l n ;

}
e l s e i f (cBvCclu8]Ci]Cj] . d i r e c t i o n == 0.0 II

c n v C c l u s] C i] Cj] . d i r e c t i o n == 180.0)

x2 = x l ;
i f (c n v C c l u s] C i] C j] . d i r e c t i o n == 0.0)
{ y2 = y l + l e n g t h ; d i r e c t i o n = n ; }
e l s e
{ y2 = y l - l e n g t h ; d i r e c t i o n = s; }

e l s e i f (c n v C c l u s] C i] C j] . d i r e c t i o n == 90.0 | |
^ c n v C c l u s] C i] C j] . d i r e c t i o n == 270.O)

y2 = y l ;
i f (c n v C c l u s] C i] C j] . d i r e c t i o n == 90.0)
{ x2 = x l - l e n g t h ; d i r e c t i o n = e; }
e l s e
•C x2 = x l + l e n g t h ; d i r e c t i o n = B ; }

e l s e i f (c n v C c l u s] C i] C j] . d i r e c t i o n < 90.0)

y2 = y l + (i n t) ((f l o a t) l e n g t h / s q r t (l ; 0 + s q U A R E (s l o p e))) ;
x2 = x l - (i n t) s q r t ((f l o a t) (SqUARE(length)-SIJUARE(yl-y2)));
i f (c n v C c l u s] C i] C j] . d i r e c t i o n < 5.0) d i r e c t i o n = n ;
e l s e i f (c n v C c l u s j C i] C j] . d i r e c t i o n < 85.0) d i r e c t i o n = ne ;
e l s e d i r e c t i o n = e;

e l s e i f (c n v C c l u s] C i] C j] . d i r e c t i o n > 90.0 t t
c n v C c l u s] C i] Cj] . d i r e c t i o n < 180.0)

y2 = y l - (i n t) ((f l o a t) l e n g t h / s q r t (1 . 0 + S Q U A R E (s l o p e))) ;
x2 = x l - (in t) sq r t ((f loa t) (SQUARE (l eng th) -SQUARE (y l -y2))) ;
i f (c n v C c l u s] C i] C j] . d i r e c t i o n < 95.0) d i r e c t i o n = e;
e l s e i f (cnvCc lus] C i] C j] . d i r e c t i o n < 175.0) d i r e c t i o n = s e ;
e l s e d i r e c t i o n - s;

e l s e i f (c B v C c l u s] C i] C j] . d i r e c t i o n > 180.0 t t
c n v C c l u s] C i] C j] . d i r e c t i o n < 270.0)

y2 = y l - (i n t) ((f l o a t) l e n g t h / s q r t (1 . 0 + S Q U A R E (s l o p e))) ;
x2 = x l+(in t) sqr t ((f loa t) (SQUARE (length) -SQUARE (y l -y2))) ;
i f (cnvCc lus] C i] C i] . d i r e c t i o n < 185.0) d i r e c t i o n = s;
e l s e i f (c W v C c l u s] C i] C j] . d i r e c t i o n < 265.0) d i r e c t i o n = S B ;
e l s e d i r e c t i o n = B ;

e l s e
•C / * 270 < d i r e c t i o n < 360 * /

y2 » y l + (i n t) ((f l o a t) l e n g t h / s q r t (1 . 0 t S Q U A R E (s l o p e))) ;
x2 = x l+(in t) sqr t ((f loa t) (SQUARE (l eng th) -SqUARE (y l -y2))) ;
i f (cnvC c l u s] C i] C j] . d i r e c t i o n < 275.0) d i r e c t i o n = B ;
e l s e i f (cnvCc lus] C i] C j] . d i r e c t i o n < 355.0) d i r e c t i o n = U B ;

^ e l s e d i r e c t i o n = n ;

i f (d i sp layonnap) draB .vector.onmap(x2, y2, x i , y l , d i r e c t i o n) ;
e l s e draB .vector (x2, y2, x l , y l , d i r e c t i o n) ;

409

dra«_vector_oiuiap(zl, y l , z2, y2, direction)
int z l , y l , x2, y2; / * x2, y2 should always be the centre of subsin * /
e n U B d irect d irect ion;
{ / « draw vector on aercator projected aap */

int z_off , y . o f f ;
double p i , 11, p2, 12,

l a t l , l ong l , la t2 , long2,
•appiz_8ize, l ong i t .un i t , init.np;

x .o f f " z l - z 2 ; y .o f f » y l -y2;
pixel_to_Bap((double)zl, (double)yl, (double)x2, (double)y2,

t l a t l , t l o n g l , fclat2; «long2);
•appix . s ize « PIX_SIZE/(2.0*M.PI*EAETH.RADIUS/360.0);
l ong i t .un i t = 1.0/(60.0*Bappix.si2e);
I n i t j i p » 3437.747»log(tan(H.PI*(45.0+UPPER.LAT/2.0)/180.0));
/ *
p i » (longl-LEFT.LOIO/Bappix . s ize;

11 » longit .unit*(init.Bp-3437.747«log(tan(M.PI*(4S+latl /2.0)/180.0)));

p2 = <long2-LEFT.L0IG)/Bappix_size;
12 - longit.unit»(init.Bp-3437.747*log(tan(M.PI*(45+lat2/2.0)/180.0)));
/ * x l « anint(pl) ; y l » a n i n t d l) ; • /
x2 M anint(p2); y2 " anint(12);
x l » x2+x_off; y l » y2+y.off;

^ dras . vectorCxl , y l , x2, y2, direct ion);

draB .vector(xl , y l , x2, y2, direction)
enuB direct d irect ion;
int x l , y l , x2, y2; / * x2, y2 should alBays be the centre of s u b B i n * /

Ccoor head, vector[2];
Ccoorl is t coor l i s t ;

/ » vector[1] i s the head, ie start from vector[0] * /
vector[0].x = x l ;
vector[0].y = y l ;
head.x = vector[l] .x = x2;
head.y = vector[l] .y = y2;
SBitch (direction)
{

case calm:
c o o r l i s t . n = 1;
c o b r l i s t . p t l i s t = fchead;
cgipB_polymarker(*vpB, ftcoorlist);
break;

case n:
pB_po lypo int(pB, x2-3, y2, 7, c l i s t O , PIX.SRClPIX.COLOR(l));
break;

case ne:
pB_polypoint(pB, x2-3, y2, 7, c l i s t l , PIX.SRClPIX.COLORd));
break;

case e:
pB . p o l y p o i n t (p B , x2-3, y2-3, 7, c l i s t 2 , PIX.SRClPIX.COLOR(l));
break;

case se:
pB . p o l y p o i n t(pB, x2-3, y2-3, 7, c l i s t 3 , PIX_SRC|PIX_C0L0R(1));
break;

case s:
pB_po lypo int(pB, x2-3, y2-3, 7, c l i s t 4 , PIX_SRC|PIX_C0L0R(1));
break;

case S B :
pB .polypoint(pB, x2, y2-3, 7, c l i s t S , PIX.SRClPIX.COLOR(l));
break;

case B :
pB_po lypo in t(pB, x2, y2-3, 7, c l i s t 6 , PIX.SRClPIX.COLOR(l));
break';

case U B :
pB_po lypo int(pB, x2, y2, 7, c l i s t 7 , PIX.SRC|PIX_C0L0R(1));

^ break;

c o o r l i s t . n = 2;
c o o r l i s t . p t l i s t = vector;

^ cgipB_ p o l y l i n e(tvpB, t c o o r l i s t) ;

/******«***
* You are reading rad.temp.c *
* This i s the function to convert METEOSAT 4 CHAIIEL IRl p ixe l *
* count into temperature. For period Jan. to March 1991 *
* Bef: Annexe to the HETE0SAT4 cal ibrat ion report. *
* K.S.LAU 13/5/91 *
* * * * * * * * • * * * • • • • • * • • * * • * • • • * • • * * • » • • * * • • * • * * * * * • • • • * * • * * * * * * * * * * /

i include "cmv.h"

tdefine SPACECOUIT 5.0
tdefine COEFFICIEIT 0.077/* average cal ibrat ion coefficient • /
tdefine lUM.TEMPERATURE 102
tdefine UP • 1
tdefine DOUl 2

410

rad.teapCclus}
int c lua ; /* Bhich cluster * /

int i , j . k,
d i r e c t i o n , / * search direct ion * /
nuaxBin, nuayBin;

f l o a t teap_offset, rad, teap_rad[IU«_TEHPERATURE];

ntuucBin " nuaysin = (Bholexsize -2*Bin_offset)/target_8ize;
teap.offset » 200.0;/* teap[03 = 200K * /

teap_rad[0] = 1.446; teap_rad[l] = 1.492;
teap_rad[3] » 1.588; t e a p . r a d M = 1.637;
toap_rad[6] « 1.738; teBp_rad[7] = 1.791;
teap_rad[9] » 1.899; temp_rad[10] = 1.954;
teBp_rad[12] = 2.068; teap_i:ad[13] = 2.127;
teap_rad[16] « 2.248; teBp_rad[16] =• 2.310;
teap .radClS] a 2.438; teBp_rad[19] =2.503;
teap_rad[21] =2.638; teBp_rad[22] =2.707;
tiBap_raa[24] = 2.848; teap_rad[25] = 2.921;
teBp_rad[27] = 3.070; teap_rad[28] = 3.146;
teap_rad[30] = 3.302; teap_rad[3l3 » 3.381;
teap_rad[33] = 3.545; teBp_rad[34] =3.628;
teap_rad[36] » 3.799; teBp_fad[37] = 3.886;
teap_rad[39] " 4.064; teBp_rad[40] « 4.155;
teap_rad[42] = 4.341; teBp_rad[43] = 4.436;
teBp_rad[45] » 4.630; teBp_rad[46] = 4.728;
teap_rad[48] =4.930; teBp.rad[49] =5.032;
teap_rad[61] = 5.242; teBpiradC52] = 6.348;
teBp_rad[54] = 6.565; teBp_rad[55] = 6.676;
teBp_rad[57] = 5.901; teBp_radC58] = 6.015;
teBp_rad[603 = 6.248; teBp_rad[61] = 6.367;
teBp_rad[63] = 6.608; tenp_rad[64n = 6.730;
temp_rad[66] = 6.979; tenp_rad[67] = 7.106;
temp_rad[69] =7.363; teBp_rad[70] =7.494;
teap_rad[72] = 7.759; temp_rad[73] = 7.894;
teBp_rad[75] = 8.167; tenp_rad[76] =8.306;
teap_rad[78] = 8.588; teBp_rad[79] = 8.731;
temp_radC81] = 9.020; teBp_rad[82] = 9.167;
teBp_rad[84] = 9.465; temp_rad[85] = 9.616;
teBp_rad[87] = 9.922; temp.rad[88] = 10.078;
teBp_rad[90] = 10.392; temp_rad[91] = 10.551;
tempirad[93] = 10.874; temp_rad[943 = 11.037;
teBp_rad[96] = 11.367; temp_rad[97] = 11.535;
teBp_rad[99] = 11.873; temp_rad[100] = 12.045;

teBp_rad[2]
temp_rad[5]
teDp_rad[8]
toBp .radCll]
teBp_rad[14]
teiap_rad[17]
teBp_rad[20]
teBp_rad[23]
teBp_rad[26]
teBp_rad[29]
teBp_rad[32]
teDp_rad[35]
teBp_rad[38]
teBp_rad[41]
teBp_rad[44]
temp_rad[47]
temp_rad[50]
teBp_rad[53]
temp.radCse]
teBp_rad[S9]
temp_rad[62]
teop_rad[65]
temp_rad[68]
tenp_rad[71]
temp_rad[74]
teBp_rad[77]
teBp_rad[80]
teBp_rad[83]
teBp_rad[86]
teBp_rad[89]
temp_rad[92]
teBp_rad[9S]
tenp_rad[98]
temp_rad[101]

« 1.640;
• 1.687;
« 1.844;
« 2.011
=2.187
» 2.373
= 2.670
» 2.777
« 2.995
» 3.223
» 3.462
« 3.713
- 3.975
= 4.248
= 4.532
= 4.828
= 5.136
= 5.456
= 5.788
= 6.131
= 6.487
= 6.854
= 7.234
= 7.626
= 8.030
= 8.446
= 8.875
= 9.316
= 9.769
= 10.234
= 10.712
= 11.201

11.703
•• 12.218

for (i = 0; i < numyBin; i++)
for (j = 0; j < numxBin; j++)

i f (cmvCclus][i][j].mean == 0.0) continue;
rad = (256.0-cmv[clus]Ci][j].mean-SPACECOUHT)*COEFFICIEHT;
i f (temp_rad[IUM_TEHPERATURE/2] > rad) direction = DOWI;
else direction = UP;
SBitch (direction)
<

case UP:
for (k = IUM_TEMPERATURE/2; k < lUH.TEHPERATURE; k++)

i f (temp_rad[k] >= rad) break;
break;

case DOVI:
for (k = IUI1_TEMPERATURE/2; k >= 0; k ~)

i f (temp_rad[k] <= rad) break;
break;

cBv[clus][i]Cj3.teBp = ((float)k+tenp_offset)
-273.0;/* in celcius */

}

411

Appendix K

Published Papers

412

Spatial-spectral clustering using recursive
spanning trees

K.S. Lau
G. Wade

Indexing terms: Remote sensing, Pattern recognition, Meteorology

Abstract: The inherent contextual property of
spanning trees is exploited in a nonparametric
contextual clustering algorithm for multispectral
satellite data. The linkage problem associated with
shortest spanning trees is avoided by making
extensive use of global information, and a two-
stage algorithm (segmentation then clustering) is
described, each stage being based upon recursive
spanning trees and minimax variance techniques.
A conditional entropy or 'segmentation loss'
derived from mutual information is shown to
provide a useful indication of the number of seg
ments needed before clustering. The performance
of the algorithm is compared with a single-pixel
clustering algorithm and shows significant
reduction in classification noise, both at class
boundaries and within classes, while the spatial
resolution of the single-pixel classifier is retained.

1 Introduction

Multispectral data from the Meteosat weather satellite is
frequently analysed with the objective of extracting spe
cific cloud classes. Information such as cloud height, type
and distribution can then be deduced. Individual classes
can be tracked from transmission to transmission using
crosscorrelation or other techniques to estimate wind
vectors at particular altitudes or pressure levels [1, 2]. A
first step in the cloud classification is to cluster the data
in multispectral space and this often done by fitting
Gaussian PDFs to a multispectral histogram [2]. Usually
the histogram is derived from the visible and thermal
infra-red bands and only two or three distinct cloud
layers or classes are identified [3].

Like the Bayes classifier, the histogram approach is a
simple form of single-pixel classifier and takes no account
of the context or spatial relationship of individual pixels.
It is widely recognised that single-pixel classifiers are
prone to classification noise, particulary (but not
exclusively) at class boundaries [4-6]. It is also widely
recognised that the use of contextual or spatial informa
tion can improve classification accuracy. For example,
Kittler and Pairman [6] describe a parametric (i.e. PDF
based) approach to contextual classification of weather
satellite data and report significant improvement in cloud
classification, particularly at cloud boundaries. Such

Paper 80921 (E4), first received 23rd October 1989 and in revised form
18th February 1991
The authors are with the School of Electronic and Electrical Engineer
ing, Faculty of Technology, Polytechnic South West, Drake Circus, Ply
mouth, Devon PL4 8AA, United Kingdom

232

improvement can significantly affect the subsequent
shape analysis of the clouds which may be needed to rec
ognise larger scale weather patterns.

This paper describes a nonsupervised approach to the
problem of cloud classification, based upon graph-
theoretic algorithms (although, since no training data is
used we restrict discussion to clustering rather than true
classification). The inherent contextual advantage of a
graph-theoretic approach has been verified by Morris et
al. [7] who claim very accurate boundary determination
when segmenting monochrome images. Here we extend
the concept to multispectral images and so use both
spatial and multispectral information to minimise classi
fication noise. Another advantage of the graph-theoretic
approach is that it automatically yields hierarchical clus
tering, in the sense that the most significant clusters are
generated first.

The clustering algorithm is based on nondirected
graphs and is done in essentially two stages. The first or
segmentation stage attempts to partition the image into
homogeneous regions, and automatically terminates
using information theory concepts. The second stage of
the algorithm attempts to cluster the segments into a few
classes.

2 Recursive spanning tree segmentation of
multispectral images

A simple image to graph mapping maps a pixel gray level
intensity to a node weight in graph G, as in Fig. la. The
graph is a weighted graph if we assign edge (or link)
weights, and the simplest assignment is on a local basis,
i.e. the weight of an edge between nodes i and j could be
simply

Wij = \Vi-Vj\ (1)

where v, and Vj are the node weights. The shortest span
ning tree (SST) of this graph is a set of edges linking
every node in G such that there are no loops (cycles) and
such that the sum of the edge weights is a minimum. Tiie
SST for Fig. la can be obtained using Prim's or
Kruskal's algorithm and is shown in Fig. lb. Hierarchical
segmentation into N segments can be achieved by simply
cutting the SST at the i\f — 1 most costly edges, and three
segments are shown in Fig. lb. Ideal segmentation gener
ates regions which are homogeneous in some image sense
and which are statistically independent of their neigh
bours. Unfortunately, as pointed out in Reference 7, SST
segmentation has several significant shortcomings. For
example, it is possible that two nodes differ markedly in
weight but are connected by a series of edges each with a
low weight. In this case, SST segmentation will tend to
assign the two nodes to the same segment, causing signifi
cant segmentation error (the linkage problem).

413
I EE PROCEEDINGS'l, Vol. 138, No. 4, AUGUST 1991

The use of a recursive spanning tree (RST) provides a
solution to this problem since edge weights are assigned
on a global rather than a local basis [7], Given a'

250 200 210 180

220 180 160 150

100 80 140 120

30 5 0 60 70

Fig. 1 Four-connecied graph, SST and RST
II FouMonnected graph generated by mapping pixel gray levels (0-255 scale) to
node weights

SST fo ra and hierarchical segmentation for W = 3
r R S T for fl and hierarchical segmeniation for N = 3

weighted graph G, an RST needs only a small modifi
cation to Kruskal's algorithm and can be generated as
follows:

(o) while there is more than one node in G:
(i) save the next least weighted edge, say edge C p ,

between nodes p and q. (In general, node p will rep
resent rip original node weights and node q will rep
resent n, original node weights. The weight of n^, (n,)
will be the mean of the weights of all the nodes it rep
resents.)

(ii) inerge the two nodes p and q to make a new
node r with weight equal to the mean of all the node
weights in nodes p and q, i.e.

1
(2)

(iii) find the new edge weights (as in eqn. 1) for all
edges which were connected to nodes p and q and
which are now connected to node r (frequently this
process leaves redundant edges, which are discarded).
(b) generate a spanning tree (link every node in G) with

the saved edges. This is not an SST, but it provides a
better representation of the relationship between pixels
than the SST.

The significant point to note about the RST algorithm is
that the edge weights Wy are computed from an ever
increasing neighbourhood as iteration proceeds, rather

than from just local nodes. In fact, the final edge links the
two remaining 'multinodes' and so its weight is a function
of all node weights in G. Fig. ic shows the RST algo
rithm applied to Fig. la; the final spanning tree is not an
SST but the mean small-sample variance of the segments
is lower than-that for Fig. lb, indicating more homoge
neous regions on average.

In our study, each node in G is connected to its eight
nearest neighbours, rather than to just four nearest
neighbours as in Fig. la. Also, for multispectral (m-band)
data, each node weight in G is a m-dimensional pattern
or vector

Vi = lVu,V2i,---,V„„Y (3)

and, using the Euclidean distance metric, eqn. 1 becomes

k=i.
(4)

2.1 RST-minimax segmentation
Given the RST we could perform hierarchical segmen
tation into N segments by cutting it at the N — 1 most
costly edges, as in Fig. Ic. Alternatively, the RST could
be cut such that an objective function is minimised. For
example, the first cut in the RST could generate two trees
Tl, T2 such that the maximum of two cost functions c(Ti)
and c{T-^ associated with these trees is minimised, i.e. the
initial partitioning of the RST could correspond to

min [max ic{T{), ciT^m (5)

Since it is generally accepted that segmentation should
account for the statistical properties of an image, the cost
function c{T^ could based upon an intraset distance
measure [13]. For multispectral data we then have

c(TJ =
1

t^aiN. - 1) ,^1 A)^=1

" w . V y e T ^ (6)

where is the number of nodes in Tg. This can be
reduced to

c(7;;) = 2Z<^.\
»: = 1

(7)

where al^ is the variance of tree % in band k. This sta
tistical segmentation scheme can be extended to yield N
regions using the following algorithm:

do N — 1 times
(i) find tree T„„ in G such that

c(T„ J = max [c(T)] VT e G

(ii) cut T„a^ at edge e,,j linking nodes i,j which gives

mm [max [c(73, c(7})]] Ve,-; e T„„

Thisigenerates two trees, 7] and 7} from T„„^

The advantage of the RST-minimax approach is that
global (statistical) information is again taken into con
sideration, and it is intuitively reasonable to partition
those trees with the largest intraset distance since they
are less likely to be homogeneous. Similar minimax seg
mentation schemes have been investigated in References
7 and 8.

2.2 Automatic segmentation
Ideally, the segmentation process should automatically
terminate once near-homogeneous regions have been
found and popular ways of doing this are based upon

/££ PROCEEDINCS-l, Vol. 138, No. 4, AUGUST I99J 414 233

entropy nieasures [8-10]. This is reasonable since the
zero-order entropy of a near-homogeneous segment, for
example, tends to zero.

Information measure has been applied to feature selec
tion in many pattern recognition problems [11]. The
general information measure of a set of segments Y —
{Yi, 72,.. . , ŷ v} can be defined as [10]

= L r - " ZP("ii> ''a,. I'Nt)
I j k

X log P(fn. Vij Vsk)

P{Vu)P(V2j),---,P{Vf,k)

k
log piVu,V2j,...,VNk) + lOg

PiVu)

+ l o g -
1

+ log
1

Pivm). PiV2j)

= HiY,) + H{Y2) + --- + H{Y^)

-H{Y„Y2,...,Y^) (8)

where Vj^k is the fcth vector in segment N. Eqn. 8 can be
interpreted as the total information conveyed by the
segment set {Y} with properties

(1) liY) > 0,
(2) 7(y) = 0 if and only if the vectors are independent,

therefore

P(yi(. ywit) = P{VlM"2j\ Pi^Nk)

For an ideal segmented image all the terms of eqn. 8 are
zero, and in practice we seek to minimise I{Y). It should
be noted that H{Yi, Y j , . . . , ŷ)̂ is the joint entropy of the
segments and is independent of the partition (constant),
since it is a function of the probability distribution of the
image itself Therefore we could terminate segmentation
when H{Y) = Ya (̂5̂) < 6, where 9 is a threshold and
H{Y) is the segment entropy. In practice, due to problems
of computing the segment entropy, only the zero-order
approximation would be used. This is reasonable, since,
when the segmentation proceeds, interaction between
segments will decrease and most higher-order terms can
be neglected.

Daskalakis et al [9] used a criterion similar to eqn. 8
to monitor the segmentation. They assume the segment
entropy H(y) is composed of two components by

HiY) = H, + j:pimj) • (?)
J

where H , is the entropy due to the existence of segments,
pij) is the probability of occurence of a particular
segment Yj and H(j) is the entropy of segment Yj. They
assume the existence of segments obeys a Raylbigh PDF
and pixels within a segment obey a normal PDF.

In this paper we use the concept of mutual informa
tion and model the segmentation process as a noisy com
munication channel (Fig. 2). For such a channel, the

multispectral
source X

segmeniation
process

segmented
image Y

multispectral
source X

segmeniation
process

segmented
image Y

Fig. 2
234

loss,.H(X|Y)

Segmentation modelled as an informationJlow process

mutual information (the information common to both
ends of the channel) is given by

I{X; Y) = H{X)-H{X\Y) (10)

where H(X) is the source entropy and H{X | y) is an indi
cation of the loss of information during transmission.
Alternatively, if H(X| Y) = Q, there is no ambiguity in the
channel output. For the segmentation problem, H{X) is
the entropy of the multispectral data source and finite
H{X j y) denotes an uncertainty in the segmentation or a
'segmentation loss'. It follows that if F (X | y) = 0 we
could consider the segmentation process complete in the
sense that the source data has been segmented into
homogeneous regions (see Appendix). For any real pic
torial data the segments always have some residual
variance and so, in general, we look for a significant
reduction in the rate of change of H{X\ Y) with segmen
tation, rather than H{X \Y) = 0. Automatic segmentation
can then be achieved by terminating segmentation when
the rate of change falls below a nominal threshold.

It is shown in Appendix 10 that the segmentation loss
is given by

F(x iy)=-ZZp(; IOp(Oiog • P(JIOP(0
EPO'IOKO

(11)

where p(i) is the probability of input vector D,, and is
deduced from the multispectral histogram of the input
data. Bearing in mind that, in general, a set of identical
vectors will be distributed amongst spatially unconnected
segments, and later these segments will be identified as
belonging to the same class (through clustering), the con
ditional probability p{j\i) can be computed as

Pij\i) =
#{vi e segment;}

(12)
#{i5f6 G}

where # is the number of elements in the set.

3 Spatial spectral clustering

Ideally, the segmentation process generates homogeneous
regions in the image, each corresponding to a particular
signature in m-dimensional spectral space. In general,
some of these regions will have similar (or even identical)
spectral signature, even though they may be spatially
separated, and clustering is required to group these
regions into a relatively few classes (an underlying
assumption here is that each region or segment contains
only one class). The clustering process was again based
upon a spanning tree (RST) and so is a hierarchical form
of unsupervised classification. The overall spatial-spectral
clustering algorithm can be viewed as an essentially two-
stage (segmentation then clustering) process, as shown in
Fig. 3.

A simple way of mapping a segmented image onto a
graph G is to assume near homogeneous regions so that
the mean vector for segment f can be used as the weight
of node i in G. The edge weights could then be computed
as the Euclidean distance between node vectors, as in
eqn. 4. In practice, this approach gave unsatisfactory
clustering, and it was necessary to account for the
residual variance within each segment. Interset distance
might seem most appropriate here, but several of these
measures have been found unsuitable due either to divi
sion by class variance [12] (which could give near infinite
distance for sparse segments) or due to the difficulties of
reducing the measure to a closed form [13].

41 ^ I EE PROCEEDINGS-I. Vol. 138, No. 4, AUGUST 1991

The clustering algorithm was therefore based upon
intraset distance (a mean square measure which is essen-.

image

generate
RST

loss
threshold"

minimax
segmentation

number
of
classes

Fig. 3

generate
RST

minimax
clustering
minimax

clustering

clustered image

Contextual nonparametric clustermg algorithm

tially a measure of class variance) and from eqn. 7 we can
write this distance as [13]

D' = 2t<^i (13)
k=l

where is the variance of the segment in band k.
Clearly, the measure for sparse segments now tends to
zero rather than infinity.

An RST can now be generated by trying mergers of
pairs of segments and looking for the minimum value of
D^. The smallest distance then corresponds to an edge
weight in the RST and the process is repeated to obtain
all edges of the RST. This approach to tree generation is
justified on the grounds that spectrally identical and
homogeneous segments will have zero intraset distance
when merged. It should be noted that the RST clustering
method is remarkably similar to the average linkage
method. The only difference between them is that, in the
RST method, the distances between clusters are updated
by recalculating the pairwise distances among the
merging clusters, while in the average linkage method,
the distances between clusters are updated by taking the
average of all pairwise distance (no recalculation) from
the original similarity matrix.

A formal algorithm for generating an RST and based
on intraset distance is as follows:

(a) map the N segments to N nodes in G, and label all
nodes

(b) calculate all possible link (edge) weights using intra
set distance D-

while the number of nodes N > I {
(i) find the next least costly link weight Wij
(ii) save the link
(iii) merge node (segment pair i , ; as the union of

sets Nj and Nj and decrement N
(iv) recalculate the link weights
(v) remove any links which form a cycle

(c) generate the spanning tree using the saved links.

Several clustering strategies are possible once an RST has
been generated. Clustering into N classes can be achieved
by simply cutting the tree at the iV - 1 most costly edges.
Alternatively, global information can again be incorpo-

lEE PROCBEDINGS-1, Vol. 138, No. 4, AUGUST 1991

rated by applying a minimax type algorithm, as in
minimax segmentation, and this approach was found (o
yield the best results in practice.

4 Complexity of the algorithm

The complexity of segmentation depends on the inci
dence matrix of the image graph, and can be expressed as
0(F, L), where V is the number of vertices and L is the
number of links. The amount of computation can be pro
hibitive with a moderate size image say, 200 x 200. Das
kalaskis et al [9] described a procedure which can
reduce the overall complexity to 0(7 '̂̂). Using this
approach complexity varies as the power of vertices and
so computational efficiency can be further improved by
dividing the image into subimages and segmenting indi
vidual subimages. Alternatively, the spatial resolution of
the image could first be reduced by averaging, and seg-

• menting the reduced image.
In the clustering stage the RST approach involves a

complexity of roughly 0(2iV)̂ [16], where N is the
number of segments. This complexity assumes the simi
larity matrix is stored in its entirety in memory. Much of
the clustering process involves a search for the most
similar pair of segments and the subsequent updating of
the similarity matrix. Usually the number of segments is
at least an order less than the number of pixels, and a
256 X 256 image for example with 1000 segments can be
clustered within a reasonable time. The real computation
effort of course depends very much on the programming
style and the algorithm chosen.

5 Comparison with single-pixel clustering

The performance of the contextual clustering algorithm
in Fig. 3 was compared with the performance of a single-
pixel (i.e. nonspatial) clustering algorithm based upon
well tried techniques drawn from the ISOCLUS [12, 14]
and ISODATA [13] algorithms. These are 'split and
merge' routines and require input parameters such as
maximum standard deviation of each class, minimum
number of pixels/class, and a merging coefficient.

Essentially, the single-pixel clustering algorithm com
mences with a single cluster (as in the ISOCLUS
algorithm) and splits clusters along the axis correspond
ing to the maximum standard deviation until the
required number of classes have been generated.

6 Results

Fig. 4 shows typical behaviour of the segmentation loss
H{X I Y) during the segmentation of two-dimensional
(visible and infrared) Meteosat data. Initially the loss
decreases very rapidly as the major features in the data
are identified, and, clearly, for 128 x 128 images, termina
tion at 20 segments (say) appears premature. On the
other hand, the graphs suggest that it may be unneces
sary to generate 300 segments or more. Above approx
imately 150 segments the graphs exhibit near
zero-gradient regions where increasing the number of
segments is doing little to reduce the 'uncertainty' in the
segmented image. In other words, it might be argued that
near zero-gradient regions are optimal points at which to
terminate segmentation, and in practice termination at
around 200 segments gave good cluistering for most cloud
types.

In fact, as Fig. 5 shows, clustering is not a strong func
tion of segment number (probably because spurious seg
ments tend to be recombined at the clustering stage), and

416 235

2.6 r

60 100 UO 180 220

segments in 128x128 image

Fig. 4 Segmentation loss for four 128 x 128 images

SO only a nominal threshold is required for automatic
segmentation. However, there is some evidence to suggest
that if an excessive number of segments are generated
(say > 500) the spatial relationship between pixels tends
to be destroyed and clustering becomes noisy, as in
single-pixel clustering.

The improvement gained through the use of spatial
information is illustrated in Fig. 6 for four different
Meteosat images, Each of these figures shows raw visible
and infrared images (digital data received on a Metcosat
Primary Data User Station) and compares graph-
theoretic clustering with single-pixel clustering for the
same cloud class. Generally speaking, graph-theoretic
clustering generates cleaner edges and more solid clusters
than the ISOCLUS algorithm, while retaining the spatial
resolution of the single-pixel classifier.

7 Conclusion

A nonparametric contextual clustering algorithm based
upon spanning trees has been found to give improved
clustering for multispectral Meteosat data when com
pared to single-pixel clustering. Classification noise is sig-

3m \'3

^la 10 50 100

i B O C l U B I s a c l u B

F i g . 6 Comparison of graph-theoretic and single-pixel clustering for 128 x 128 images

nificantly reduced in tlie sense tliat class boundaries are
more well defined and more 'solid' regions are generated,
while the spatial resolution of the single-pixel classifier is
retained. A disadvantage of the graph-theoretic approach
is that it requires at least an order of magnitude increase
in CPU time compared to the single-pixel clustering
algorithm, the major computational task being the gener
ation of the RST for the muitispectral image.

The mutual information (segmentation loss) concept
has been found to provide a useful indication of the point
at which segmentation should terminate. This enables the
overall clustering algorithm to be semi-automatic in the
sense that it only requires the specification of a (rather

I EE PROCEEDINGS-I, Vol 138, No. 4, AUGUST 1991

noncritical) threshold for the rate of change of segmen
tation loss and the required number of classes.

The best clustering results are obtained when global
information is used to generate the spanning trees and
when global information is used to partition the trees.
The final clustering algorithm (Fig. 3) used a combination
of RST and minimax variance algorithms in both the seg
mentation and clustering stages.

8 Acl<nowledgment
This work has been carried out as part of a programme
supported by the U K Science & Engineering Research
Council.

9 References

1 S C H M E T Z , J., and NURET, M . : 'Automatic tracking of high-level
clouds in Meteosat infrared images with a radiance windowing tech
nique', £5.4 Journal, 1987,11, pp. 275-286

2 Meteosat System Guide — Volume 5: 'Meteorological products',
ESOC, Darmstadt, Germany, 1980

3 W A R N E C K E , G., ZICK, C , CARUS, B., DORING, R., ERIKS
SON, A., and V O E L L G E R , C : 'Information extraction from
meteorological satellite image sequences', in 'Remote sensing appli
cations in meteorology and climatology' (D. Reidel Pub. Co., 1987),
pp. 25^279

4 BRYANT, J.: 'On the clustering of multidimensional pictorial data'.
Pattern Recognition, 1979,11, pp. 115-125

5 KITTLER, J., and PAIRMAN, D.: 'Contextual classification of
niultispectral pixel data', Image & Vision Comput., 1984, 2, (1), pp.
13-29

6 KITTLER, J., and FOGLEIN, J.: 'Contextual pattern recognition
applied to cloud detection and identification', IEEE Trans., 1985,
GE-23, (6), pp. 855-863

7 MORRIS, O.J., L E E , M.J., and CONSTANTINIDES, A. G;:
'Graph theory for image analysis: an approach based on the short
est spanning tree', lEE Proc. F, Commun., Radar & Signal Process.,
1986,133, (2), pp. 146-152

8 DASKALAKIS, T.N., H E A T O N , A.G. , and DASKALAKIS, C.N.:
'Minimax variance entropy-based image segmentation'. l E R E Fifth
Int. Conf. on Digital Processing of Signals in Communications,
Loughborough University of Technology, 20th-23rd September
1988, pp. 291-297

9 DASKALAKIS, T.N., H E A T O N , A.G. , and DASKALAKIS, C.N.:
'A graph-theoretic algorithm for unsupervised image segmentation',
in 'Signal processing IV: theories and applications' (Elsevier Science
Publishers, North-Holland, 1988), pp. 1621-1624

10 F A R A G , R.F.H.: 'An information theoretic approach to image par
titioning', IEEE Trans., 1978, SMC-8, (11), pp. 829-833

11 BUTLER, G.A., and RITEA, H.B.: 'Estimation of mutual informa
tion in two-class pattern recognition', IEEE Trans., 1974, C-23, pp.
410-420

12 T O W N S H E N D , J.R., and JUSTICE, C O . : 'Unsupervised classi
fication of MSS Landsat data for mapping spatially complex vegeta
tion'. Int. J. Remote Sensing, 1980,1, pp. 105-120

13 T O U , J.T., and G O N Z A L E Z , R.C.: 'Pattern recognition principles'
(Addison-Wesley, 1974)

14 E.S.L. (Electromagnetics Systems Laboratory Inc.), IDIMS User's
Guide. Technical Memorandum E S L - T M 705, Sunnyvale, Califor
nia, 1976

15 HARALICK, R.M.. and DINSTEIN, I.: 'A spatial clustering pro
cedure for multi-image data', IEEE Trans., 1975, CAS.̂ 22, (5), pp.
440-450

16 A N D E R B E R G , M.R.: 'Cluster analysis for applications' (Academic
Press, Inc., 1973), Chap. 6

10 Appendix: Segmentation loss
JO

The conditional entropy in eqn.^ can be expressed as
H{X\Y) = HiX, Y)-HiY) (14)

where H{Y) is the entropy of the segmented image. For
simplicity we might assume that the N segments of the
processed image are approximately statistically indepen
dent and write H{Y) as the zero-order entropy

H(Y)=- Zp(;)logp(;)
j=i

= - E I p (U -) i o g PU) (15)

Here p(i, j) is the joint probability of pattern y, and
segment j. The zero-order entropy assumption becomes
more realistic as segmentation proceeds, and individual
segments become more homogeneous and statistically
independent. The joint entropy in eqn. 14 can be written
as

H(x, y) = - i ; i p (z = i. y=;)
J I

X log piX = I, Y =;•)

= - E E p f t ;) i o g K ' . j)
J '

mx\Y)=-\Y,Y.pii,j)\og piuj)

- Z E p (' . v) i o g p{j)
J I

-EEp (w -) iog
J i

PJiJ)

LPOOJ
(16)

But

P(;") = EP(' . ;)

and

Pihj) - P(;)p(i|;) = P(OP(;I 0 (Bayes' rule)

Therefore

P(;IOP(0
/ ^ (^ i n = - Z S p (; l ') (p (O i o g

J i

Alternatively

H{X\Y) = Ei:p(i|;")p(;)iog
J i

ZP(;IOP(0
L (

p{i\MJ)
llpiUMJ)

L i

(17)

(18)

Note that eqn. 16 can be expressed as

H(xi y) = - S PU) Z pm log p{i\j)

='ZpU)m (19)

where pii\j) is the probability of pattern Dj occurring in
segment; and HiJ) is a 'segment entropy'. If segment j is
homogeneous, then p{i\j) = 1 at some input pattern D,
and H{j) = 0. In practice we look for a significant
reduction in the rate of change of H{X | Y) with segmen
tation, rather than HiX\ Y) = 0.

238 419 lEE PROCEEDINGS-I, Vol. 138, No. 4, AUGUST 1991

INT. J . REMOTE SENSING, 69365C

Clustering applied to cloud wind determination

G . W A D E , K . S. L A i J
School of Electronic, Communication and Electrical Engineering,
Polytechnic South West, Plymouth PL4 8AA, England

and N . L . H . W O O D
Institute of Marine Studies, Polytechnic South West, Plymouth PL4 8AA,
England

1
Abstract. Reliable cloud motion wind generation from Meteosat images
requires good target selection. This is usually done by examining the infrared
channel and selecting target windows which have a temperature variation
between an upper limit and lower limit, i.e., windows containing essentially a
single cloud layer. In this paper we apply an optimised multi-spectral clustering
algorithm in an attempt to extract the principal cloud targets prior to target
tracking. Experimental results show an increase in the number of trackable
targets compared to conventional techniques based on riEiw data, the, paper also
examines the optimal target size and compares the performance of several target
tracking techniques.

1. Introduction
Cloud motion winds are usually derived by tracking targets in sequences of

images captured from a geostationary satellite. Essentially, motion vectors are
computed by searching for aJxK picture element (pixel) target in an M x N search
window of the next image of the sequence (Leese and Novak 1971).

Since the sensed image is an overview from the cloud top, it is possible that there
are multiple layers of cloud within the target window. Due to the fact that different
cloud layers may move with different direction and speed, it follows that accurate
estimation of wind vectors can only be achieved by selecting targets whose
temperaure can be accurately estimated (Hubert 1971), and for which evaporation or
formation is minimal. In other words, some mechanism for identifying essentially
single layer cloud must be applied: This paper attempts to do this via multi-spectral
clustering on the assumption that the resulting natural data patterns (clusters)
extract the principal cloud layers. Experimental results (§ 5) show that multiple cloud
types present in the window often result in sei:ious tracking errors i.e., failure to
track the same cloud feature.

Too large a target window will generate an. average motion of all objects within
it, whilst too small a target can lead to poor tracking and increased error in wind
vector estimation. The paper therefore also examines the optimal target size for
Meteosat images, as well as several image matching algorithms for target tracking.

0143-1161/92 S3.00 :g) 1992 Taylor & Francis Ltd
420

2 G. Wade et a l .

2. Development of clustering scheme
2.1. Clustermg

Cluster ing can be defined as the automatic identification o f natural groupings, or
structures, within multi-spectral data. The process is to partit ion the data set into
subsets using some distance (or similarity) measure, such that al l samples in a subset
are s imilar to each other. :

Cluster ing has been shown to be a very effective tool for segmentation o f mul t i
spectral c loud images. It has been applied to c loud images by Par ikh and Rosenfled
(1978), Desbois et al. (1982), Seddon and H u n t (1.985) and Ki t t l e r and Pairman ;
(1985). They all used a type o f iterative clustering algori thm to parti t ion mult i
spectral c loud images and their results indicate that clustering is capable of !.
par t i t ioning c loud images into different c loud types. It is recognised, however, that it
is not always possible to relate every cluster to a single information category. F o r •
example, one cluster may be thick c loud, while the edge o f the thick c loud is usually i
assigned to another cluster. O n the other hand, given the above experimental
evidence, it is reasonable to conjecture that the clusters partit ion principal c loud ;
types. ;

A clustering scheme has been developed to investigate the concept o f individual
object tracking and it is designed to be both efficient and objective. It is based on the ;
widely used I S O D A T A clustering algorithm (Bal l and Hai ly l967) . This algori thm
starts by selecting a set o f pixels as cluster centres, and then assigns every pixel to the
nearest centre. Next , the centres are updated using the mean value o f the pixels
assigned to that cluster and the process is repeated with the new centres. The
a lgor i thm terminates when there is no significant change in the'new centres. Spli t t ing
and merging o f clusters can be introduced tq speed up convergence and to al low the
number o f clusters to vary such that the subset generated is closest to the inherent
data structure.

This basic type o f iterative mode separation algorithin (a form o f dynamic
clustering algorithm), has several major limitations:

1. The selection o f starting centres is subjective and inefficient and the influence
on the final part i t ion can be very significant.

2. The use o f the cluster mean for the cluster centre is not a good model for
c loud images, since it does not al low clusters to have different populat ion and
variance.

2.2. Selection of starting points ;
The I S Q D A T A algori thm requires ini t ial cluster centres to be specified before

iteration commences, and usually a sensible estimate o f these centres is made in ;
order to reduce convergence time (Desbois et al. 1982, Seddon and H u n t 1986, '
Pai rman and Ki t t le r 1986), F o r automatic clustering, manual selection o f these
points must be avoided and we seek some other starting procedure. Anderberg
(1973) describes a number o f starting techniques, most o f them being based upon a
random selection o f ini t ia l centres such that they span the data set evenly. However,
in our experience, this random selection usually fails to separate clusters with small
variance.

In this article we generate the starting points using a non-parametric clustering
algori thm (Narenda and Go ldbe rg 1977). This algori thm attempts to parti t ion the
multi-dimensional histogram into un imoda l regions, and the statistics o f each region

421

Clustermg applied to cloud wind determination 3

are used as starting points for tlie I S O D A T A algorithm. Histogram clustering relies
on a high pixel to vector ratio in order to obtain a good estimate of the probability
density in the feature space. This is the case for Landsat images (for which the
algorithm was designed) and is often the case for the land and sea classes in
Meteosat images. However, the algorithm fails to separate overlapped clusters with
no definite boundary (most middle level cloud), although the cluster statistics still
provide realistic starting points for subsequent clustering.

We shall now brielfy describe the histogram clustering alogrithm, as applied to
Meteosat data. First, the 8-bit resolution of the visible and infrared images needs to
be reduced to minimise the niimber of trivial clusters. We have found that a
compression ratio of 4 (giving 64 grey levels/band) is required for most Meteosat
images. Histogram compression (as suggested by Wharton 1983) therefore provides
a first degree of histogram smoothing as well as data reduction. The histogram is
stored in a hashing table (Narenda and Goldberg 1977) which is essentially a look
up table, the main purpose being to minimise memory usage.

It is also necessary to smooth the compressed histograih, again to minimise the
number of trivial clusters. Smoothing is simply achieved by averaging the histogram
values over the neighbourhood of a histogram cell and replacing the cell count with
the mean count. A smoothing threshold is set such that cells with densities above the
threshold will not be smoothed. The compressed and smoothed histogram is now
clustered using the valley seeking algorithm described by Koontz et al. (1976) This
algorithm groups the histogram cells by constructing a directed tree as shown in
figure I. A directed link is placed between each vector and the immediate neighbour

40 45

30
\

60
s

80
/

70 40

SO
N

85
\

/

1
90

k
80 40 50

s /
55

85
/

\

1
75

\

\
70

\
35 45

T..
70
B

/

N
60

t
jso 70

\
SO 40 6 5

1

\
30

SO
/ 1

ao

Figure 1. A twoTdimensional illustration of the histogram clustering scheme. Each square
denotes a histogram cell and its associated frequency count. The arrows link ceils to
neighbours with maximum positive gradient in frequency count. Cells A and B are
local maxima (roots),

422

4 G. Wade et al.

which is in the direction of the maximum positive density gradient. The gradient is
defined as

where / j is the frequency of cell j, and dij is the squared Euclidean distance between
histogram cells / and j.

A vector is called a root and lies at a local maximum or mode of the histogram if
all neighbours have density values less than itself. Ties are resolved arbitrarily. A
cluster will then be determined by tracing the directed tree starting from the root.

2.3. Selection of clustering model i
For C clusters, a dynamic clustering algorithm aims to minimise some global

, criterion function, j

m ^ t t ^ i ^ p ^ i) (2) !
i=u=i r

over all possible partitions Q. of the image. Here A(.Xj, K^is some positive valued
distance (similarity) measure between pixel vector Xj and the kernel Ki for cluster w,-
and N, is the total number of samples in the data set. The original I S O D A T A !
algorithm (Ball and Hal l 1967) used a simple cluster mean model i.e. it assigned Xj to
cluster <Uj if,

A(xj, Ki)==mn A{xj, K,) k=\„..C (3) ;

where K,- is the mean of cluster coj. •
The cluster mean model uses squared Euclidean distance to measure the distance

of each sample to each centre, which implies that every cluster has an identical
normal distribution and an identity covariance matrix. This assumption is clearly
not true for cloud images, and it is better to model the clusters for cloud images :
using a general multi-variate normal distribution. In this case,

^.•(•Vy.y/) = ^^^^^J^^^^i^,- exp i^-\ixj-m,fZrKxj-m,)^ (4) •

where is the covariance matrix, m-^ is the mean of cluster cu„ and D is the
dimension of the feature space.

In order to allow clusters with different distribution paratneters (different
covariance matrices and populations) it |s necessary to derive an expression for the
distance of each sample to every cluster kernel. Using Baysian criteria, Kittler and
Pairman (1986) give the following metric for the model of (4):

Aixj,K,) = (Xj-rm:fi:rH.Xj-mO + log\i:,l-2log^ (5)

where ^ is the sample estimation of the cluster population. Various simplifications

of (5) are possible. For example, if we assume all classes equiprobable, i.e,, p(.cO[) = ^,

/= I , . . . C (5) reduces to

423

Clustering applied to cloud wind determination 5

Aixj, K ,)=Gx; -m,)^2rH .V ; -m,) + log|2, | (6)

If we further assume all covariance matrices are equal, (6) reduces to the Mahalano
bis distance

Mxj,Kj)={xj-m,f'^r\xj-m,) (7)

Finally, if all covariance matrices are equal to the identity matrix, (7) reduces to

Aixj,Kf) = (xj-m,nxj-mi) (8)

which is the squared Euclidean distance metric used in the original I S O D A T A
algorithm " • .

Clustering algorithms using (6), (7), (8) tends to generate clusters with minimum
within-cluster variance, and so the cluster sizes tend to be equal. By allowing
different cluster sizes and variances (5) generally gives better results (Pairman and
Kittler 1986).

2,4. The hybrid clustering algorithm
The hybrid algorithm in figure 2 is the union of the histogram clustering

algorithm and the optimised I S O D A T A algorithm. The first step uses the histogram
clustering algorithm to obtain an initial partition. This gives the user a general idea
of the number of clusters and their tightness, and if the partition is believed to be
suboptimal, it is supplied to the I S O D A T A algorithm as starting points. The second
step is to optimise the partition based on the global objective function in (5). We
have included split and merge routines in the I S O D A T A algorithm to improve
convergence—a particulgrW important point i f some cloud clusters (usually middle
level cloud) generated bv/nistogram algorithm have high standard deviation.

Although I S O D A T A is regarded as an efficient algorithm, it can still be
computationally Intensive when applied to large, multi-spectral images. However,
rather than follow the usual approach of clustering individual pixels, significant
improvernent can be achieved by cliistering individual vectors in the histogram. For
example, using visible and infrared Meteosat images yields a pixel to vector ratio in
the range 7-15 for a full resolution two-dimensional histogram, indicating a
significant computational saving. This more efficient approach is adopted in figure 2.

3. Wind vector determination
3.1. Target selection

Many operational wind generation schemes (either manual or automatic) have
been derived since the first meteorological satellite was launched in the late 1960s.
Hubert (1979) has an excellent review of operational wind systems. However, due to
the extremely complicated nature of the atmosphere, not all cloud motion can be
representative of the surrounding wind. Errors arise due to gravity waves, lee vvaves,
banner clouds and other cloud development, as well as from inultiple layer clouds
within a target window. Therefore all wind system outputs usually have to be edited
by a trained meteorologist.

Manual schemes generate wind by tracking targets selected by a trained
operator. A n image sequence is animated on a video screen and the operator selects
the cloud tracer that persists over a long period. The cloud motion is then
determined either by cross-correlation or by measuring the displacement by viewing

424

6 G. Wade et al.

• c.JSS . ry foc'"> o:xcl
i scc;'-o^rg to

V

Enter naxinurt stontford deviation,
nininun o'istonce between clusters,
and histogran conpression ratio.

conpute nodel poraneters
of clusters

co.npute Nstogran
fron Inage doto

assign vectors to kernel
using equation 5"

I updotg nodel pttroneters~|<-

If ony cluster with s.d greater
thon threshold then split,
if ony clusters closer than
threshold then nerge.

yes

stop

Figure 2, The hybrid clustering scheme.

the sequence. Manual schemes are inefficient (only a small number of vectors are
generated) and so they tend to be used only when automatic schemes fail

Automatic schemes generate wind vectors by dividing the area of interest into
overlapped or nonoverlapped target windows, the typical window size being 8 ^ 8 ,
16 (b^ 16. or 32 32 pi.xels.A window is then analysed to determine whether it
contains a suitable cloud target for tracking. A simple check is to make sure that the
infrared window has -a temperature variation less than a threshold (indicating the
absence of multi-layer cloud). A sophisticated approach has been developed by the
Europeaii Space Operations Centre (ESOC) and is applied to Meteosat images
operationally. A multi-spectral histrogram is analysed for every 32 J?^ 32

target window, and all objects are classified as sea, or as various types of land, or
cloud. The original scheme was described by Bowen et al. (1979).

Since then more development has been done to improve tracking of target
windows containing multiple cloud types. Schmetz and Nuret (1987) used a radiance

425

Clustering applied to cloud wind determination 7

slicing technique for high level clouds. Hoffman (1990) used a filtering technique to
preprocess the target window before tracking. The filtering process extracts pixels
belonging to the highest cloud layer and smoothes contaminated pixels and the
background. Schemetz and Holmlund (1990) have shown that using the radiance
slicing and filtering technique, forecast guided tracking and better height assignment
of semi-transparent clouds, the error between radiosonde wind and cloud motion
wind can be reduced. It is evident from these recent investigations, that the
introduction of cloud type separation before tracking can improve cloud wind
quality.

3.2. Target tracking
Tracking is usually based on cross-correlation (Leese and Novak 1971). Essen

tially, an array of data (the target window) is selected from an image and correlated
element by element with selected pixels (the search window) of a second image, see
figure 3. The displacement is determined by the lag position which produces the
maximum correlation. The cross-correlation function is defined as

R{u,v) =
cov{u, v)

ajGsiu, v) (9)

where Cy is the standard deviation of the target window, Os is the standard deviation
of the search window at lag position u, v, and COU(M, v) is the covariance between the
target window and the search window at lag position u, v. Specifically,

\] K -) 1/2

3K J=lk=l

,95

1 / K

cov{u, (;) = — X ^Z [9T((hik)-Qr][9sU-u, k-v)-Gs)

(10)

(H)

f 1 ^ ^ ^P> -)U2
iu, k-v)-GsU-u, k-v))H (12)

•(13)

SEARCH WINDOW S

TARGET WINDOW T

Figure 3. Definition of target and search window.

8 G. Wade et al.

where 0 is the mean grey level of the window.
The lag position is given by / V — i C + l , M — J + 1 in the horizontal and vertical

directions, respectively. A disadvantage of cross-correlation is its efficiency; it is
computationally denianding especially for large lag positions, although computation
time can be reduced by using the Fast Fourier transform.

Another matching technique is called the Sequential Similarity Detection Algor
ithm (SSDA) (Barnea and Silverman 1972). This technique does not require
normalisation as in cross-correlation. It is defined as the mean absolute error of the
target and search window at every lag position.

S{it,o)=^-l^t t\9TU^I^)-9sU-ti,lc-v)\ (14) ;

Wilson (1984) have computed wind vectors using this simple technique, and the
displacement is determined by the lag position with minimum error, ;

A third technique is the twdrdiinensional log search (2-d search) (Jain 1987), The
2-d search computes a few values of the surface coefficient and uses these to search
for the local minima (or maxima). This approach reduces computation to a
minimum, but the siaccess of the method depends on the smoothness of the surface.

Finally,^© note that the images must be accurately registered in order to provide >
unbiased wind estimation. For example, a misregistration of one infrared pixel using
Meteosat imagery can produce a error of 2-8 ms~^ at the subsatellite point.
Currently real time rectification (Bos et al. 1990) is applied operationally to
Meteosat images, and the accuracy is good enough for cloud motion tracking
without further image registration,

3,3, Strategy to reject erroneous vectors
The correlation surface does not always provide a clear peak corresponding to

the displacement and a typical correlation surface can have one of the following
characteristics,

1. More than one obvious peak: the pattern in the target window is similar to
more than one pattern in the search window.

2. A well-defined peak cannot be found: the target window probably contains a
large area without any features,

3. Generally speaking, a large window always produc/a clearer peak than a
small window at the same location.

The uncertain tly in the real displacement is usually reduced by,

1. Using three images to compute two vectors and rejecting all unsymmeirical
vectors (Bowen et al. 1979).

2. Using a hiarchical search technique; a large target window generates a first
guess to guide the searchand then the window size is reduced (Hubert 1979).

3. Use the most recent atmosphere analysis to provide an estimate of the lag
position (Bristpr 1975).

These three methods can be combined to form the most effective strategy.
In order to improve efficiency, a search strategy can be adopted. ESOC's (Bowen

et gl. 1979) search strategy finds the direction of steepest ascent from the original
position and converges to the maximum correlation in this direction. The success of
this search strategy depends on the smoothness of the surface.

427

Clustering applied to cloud wind, determination 9

3.4. Height assignment
To be meaningful, each wind vector must be assigned to a height (or pressure)

level. IMbrtunately, some low level winds correlate best to the cloud base, while
somoi^T^late best to the cloud top, and so cloud top temperature frequently does
not provide adequate vector height information. Also, cloud top temperature cannot
be estimated accurately due to the low emissivity of cloud. E S O C (Bowen and
Sanders 1984) use two infrared channels to correct the emissivity of semi-transparent
cloud and the mean valued of the corrected infrared pixels in the target window is
used to calculate the cloud top temperature.

4. The automatic scheme
Figure 4 shows an automatic scheme for wind vector computation. It uses either

raw or clustered iinages, and any one of three target tracking techniques discussed in
§3.2 (giving six experimental approaches). Target window sizes can be 4i>^ 4, 81)| 8,
16 b£ 16, 24 bvX,24, or 32 32 (yielding one vector per target).

The basic approach is to use sequences of three (visible and infrared) images
spanning a total of one hour. The second infrared image is divided into nonover
lapped areas which define possible target windows, and these are then checked for
suitable targets. If the window has an infrared variance < 100 (i,e., black body scene
temperature variations are usually < IO°C), then it is tracked in the first and third
image of the sequence.

When using the clustered approach, only the second image is clustered, and only
pixels gTU^k)ecO{ will be used in (9) and (14) when cluster / is used for tracking,
other pixels in the target window being ignored. This results in a target window
which is not necessarily filled with pixels, and so a further check must be made. At
present, a window less than 30 per cent filled is rejected for a target; the threshold is
not critical, but i f it is too small spurious winds may be generated. Clearly, target
windows containing more than one cluster may have more than one wind vector.

Targets are located in the centre of search windows (figure 3), and 28 lag
positions are allowed in the horizontal and vertical direction respectively. This
provides for a maximum wind speed of at least 75-5 knots. Two vectors are obtained
by tracking the first and third images in the sequence. Vectors corresponding to
minima (SSDA) or maxima (correlation) falling on the borders of the^earch area
are rejected. Vectors are then checked for symmetry; i f the spee^^fRrence is
>50 per cent of the smaller vector, or the direction differs by >30°, the wmd vector
is again rejected,

5. Experimental results
Wind vectors have been computed for three image sequences taken on 5, 8 and

11 March 1991, see figure 5, The first image in the sequence was received at
11.30 G M T and the following images at 30 minute intervals. Cloud motion winds
were computed in 256 pixel by 256 pixel areas (outlined), the coordinates of the
corners being (moving from the top right hand corner in a clockwise direction) 61° N
5-5' E, 40° N 3-4° E, 40° N 10-7° W, 61° N 17-1° W, Tracking was performed on non-
geomeirically corrected images, and displacement correction was applied after
tracking.

5.1. Clustering
Each set of Images highlights three cloud signatures associated with depressions

in three stages of development. The images for the 5 March show frontal cloud

428

G. Wade et al.

Select row images or

clustered imoges for

trocVing.

select trocWng method

1. cross correlation

2. meon absolute error

i. two d log search

if clustered imoge is used

specify which cluster will

be use for tracking

scon all windows

in second imoge

for suitable target

temperature
o

venation < 10 C

NO

YES

If clustered

imoge. check filled

oreo > 30%

NO

. YES

compute vector

using (irst ond

third images

occept results if

two vectors art

symmetric

oil windows sconned

NO

i VES

height ossignmen!

ond quoiity control

Figure 4. The automatic scheme used for experiment.

429

Clustering applied to cloud wind determination 11

Visible and infrared images for 5. 8, and 11 March 1991.

430

12 G. Wade et al.

associated with an occluding depression centred to the north of Scotland. The
associated cold front stretches from the North Sea across southern England, with
relatively cloud-free air behind. The deep frontal cloud is embedded in a predomin
antly southwesterly flow. On 8 March a well-occluded low pressure is centred over
Cornwall and the Meteosat images show a classic spiral cloud pattern. Cloud motion
vectors confirm the converging airflow associated with such a mature system, A
major low pressure comlex is situated in mid-Atlantic on 11 March and there is a
southwesterly turning northwesterly flow in the upper troposphere. Ahead of the
warm and occluded front it is possible to identify the southeasterly winds associated
with the polar trough. The clouds here- are medium level and therefore are moving
under the polar front cloud.

The hybrid clustering scheme was applied to the second image of the three
sequences. Seven clusters were found in the 5 and 8 March images, and eight clusters
were found in the 11 March image. Figure 6 shows the cluster map of the three
images.

The cluster images compare favourably with the cloud types identified on the
original pictures in the infrared and visible wavelengths. The important features are
highlighted in terms of the following classes:

1, Deep and thick cirrus,
2, Altostratus.
3, Stratus and stratocumulus,
4, Low clouds and land,
5, Sea, '-̂

Since only visible (0-4-M fxm) and infrared (10-5-12-5 jiw.) images are used, these
features are insufficient to separate all cloud types. For example, in most cases the
clustering algorithm has failed to separated thin cirrus, (using the water vapour
(5'7-7-l;im) image can improve the separation of thin cirrus, but this is only
available every hour). However, it is clear that clustering is able to separate major
cloud features for subsequent tracking.

On the 5 March three thick masses of class 2 are clearly distinguished, while over
Biscay a secondary mesoscale depression is comprised of stratus and stratocumulus
and appears bright on the cluster map. Class 1 associated with the fronts on the
occluding low is evident over the United Kingdom. On the 8 March classes I and 2
are well-represented in the spiral frontal cloud while the clearance to the north-west
shows cellular convection of class 4. On the 11 March the complex meteorological
situation presents a problem in identifying class 4. However, deep thick cirrus is
identifiable in the upper jet stream flow. Class 3 is well-represented to the south over
Spain and in the North Sea.

5.2. Wind vectors
Figure 7 shows cloud motion vectors for 5, 8 and- 11 March using raw and

clustered approaches. Here, all tracking was done on infrared images, using the
SSDA method. The vectors shown have been selected from the original set by cross
checking with data generated by the Meteorological Office fine resolution model at
three levels (850 mb, 500 mb, and 250 mb). These vectors are all within a speed
deviation of less than 50 per cent and a direction deviation of less than 30°. The wind
vectors are assigned to the level of best fit, i.e., to the level with minimum speed

431

Clustering applied to cloud wind determination 13

deviation. It should be noted that wind density using a large template size can be
increased by overlapping the target windows.

Tables 1 to 3. gives the detailed c loud motion wind results for the three
sequences. These show that, for a target size greater than 8 8. the number o f
'va l id ' wind vectors computed using clustered images is significantly more than for
raw images (figure 8). The ^diminishing advantage o f using clustered image tracking
for target sizes below \ 6 1 6 may be partly due to the diminishing chance o f

432

14 G. Wade et a l .

Raw image 5 March Clustered image 5 March

Raw image 8 March Clustered image 8 March

Raw image 11 March Clustered image 11 March

ure 7. Wind field generated using 24 W24 target window, with raw and clustered images
(SSDA tracking).

433

Clustermg applied to cloud wind determination 15

Table 1 (a). 5 March 1991, cloud motion wind results using raw images, where tracking
method x represents cross-correlation, ssda for sequential similarity detection algor
ithm, and 2-ds for two-dimensional search. 'Valid vectors' see §5.2.

Original 'Valid' Mean speed Mean dir. R.ra.s. speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

178 • 50 4-93 -1-7 9-95 4 by 4 X
197 121 3-84 -0-9 8-39 4 by 4 ssda
208 120 1-32 -1-4 6-13 4 by 4 2ds
106 86 3-38 0-6 7-47 8 by 8 X
142 122 2-78 -1-9 7-36 8 by 8 ssda
100 77 2-03 -2-1 6-63 8 by 8 2ds
64 61 2-99 -4-6 6-63 16 by 16 X
67 61 1-61 -5-1 5-58 16 by 16 ssda
48 41 0-87 -4-2 5-75 16 by 16 2ds
27 25 2-11 -1-0 5-60 24 by 24 X
24 24 0-04 1-4 4-37 24 by 24 ssda
21 20 -1-01 3-7 4-76 24 by 24 2ds
-1'2- 11 Orl3 0-2 6-19 32 by 32 X
11 11 0-41 -1-7 7-18 32 by 32 ssda
9 8 -0-33 . -0-8 7-39 32 by 32 2ds

Table 1 (b). 5 March 1991, cloud motion wind results using clustered images.

Original 'Valid' Mean speed Mean dir. R.m.s. speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

267 46 • 6-25 3-8 10-54 4 by 4 X
267 123 4-16 2-1 8-17 4 by 4 ssda
296 136 1-24 -3-8 5-71 4 by 4 2ds-
123 78 3-26 -1-3 7-15 8 by 8 X
154 112 3-45 -2-0 7-58 8 by 8 ssda
123 80 1-91 -1-2 5-86 8 by 8 2ds
75 63 2-27 -1-9 5-97 16 by 16 X
77 62 1-98 • -3-2 5-83 16 by 16 ssda
62 45 1-84 -1-9 4-61 16 by 16 2ds

• 43 28 1-69 -0-3 5-47 24 by 24 X
39 28 1-88 -3-6 5-1 24 by 24 ssda

.33 22 1-77 -1-3 5-48 24 by 24 2ds
28 22 1-14 - M 6-28 32 by 32 X

-29 22 I-Ol -0-8 4-69 32 by 32 ssda
23 20 0-53 -0-9 5-49 32 by 32 2ds

selecting a target covering multi-layer clpud. The general increase in the number
of vectors using clustered image trac^iilg strongly suggests that multi-layer cloud
motion can be tracked belter by first separating different cloud types and tracking
them individually. It is also found that clustering provides less improvement over
the raw image approach when the sequence has a relatively uniform wind field
(5 March).

Winds were generated using five different target sizes, and figure 9 shows the
r.m.s, speed deviation versus target size. Winds are compared with interpolated
values using four nearest grid points; the resolution of the analysed data is 0-75'' in
the north-south direction and 0-9375° in the east-west direction respectively. Ml

434

16, - ^. G. Wade et al.

(the three tracking methods, , . "3^0^"^^^ a clear minimum (at a target_si^e
m--24_bi_24);_Lrbv U"^ l e / ^ L W'''̂ '=̂ vCc5>irs. / " . . .
Lunnon and Lowe (1990) used target sizes of 4 ^ 4 , 4 ̂ 8, 8 1̂3̂ 8, 8 16, 16 16,
16 32 and 32 32, and found the optimum target size for Meteosat images to be
16 f>,̂ 16. Note that no optimum target size can be defined for the clustered approach
since the window may not be filled with cloud pixels.

It is clear that if the target size is either too small or too large for a specific wind
resolution, then the error will increase. In other words, there is an optimum target
size for a given wind resolution. The larger error with small target size is probably
due to the lack of cloud features, while for large targets, the wind is the weighted
mean of the small scale winds within the window.

Table 2(a). 8 March 1991, cloud motion wind results using raw images.

Original 'Valid' Mean speed Mean dir. R.m.s. speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

214 77 5-31 1-9 7-95 4 by 4 X
241 118 4-31 -0-6 7-75 4 by 4 ssda
288 138 1-57 0-6 5-06 4 by 4 2ds
106 75 '3-09 0-9 7-67 8 by 8 X
131 87 3-00 2-0 6-38 8 by 8 ssda
115 72 1-45 0-3 5-03 8 by 8 2ds
43 32 4-38 4-9 10-63 16 by 16 X
42 29 1-54 5-0 4-74 16 by 16 ssda
43 29 1-07 3-9 4-24 16 by 16 2ds
13 9 -3-38 1-9 4-41 24 by 24 X
13 9 -1-53 -0-5 3-14 24 by 24 ssda
14 9 -1-89 -3-2 3-49 24 by 24 2ds
5 3 2-21 7-6 3-18 32 by 32 X
6 4 4-15 12-1 5-57 32 by 32 ssda
6 4 4-15 12-1 5-57 32 by 32 2ds

Table 2(b). 8 March 1991, cloud motion wind results using clustered images.

Original 'Valid- Mean speed Mean dir. R.m.s, speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

268 62 4-43 1-2 7-5 4 by 4 X
303 107 4-56 0-6 7-71 4 by 4 ssda
370 141 2-47 2-0 6-18 4 by 4 2ds
128 81 5-12 -1-9 9-55 8 by 8 X
155 93 3-64 0-5 7-74 8 by 8 ssda
136 84 0-39 0-7 5-51 8 by 8 2ds
69 47 2-73 1-4 9-34 16 by 16 X
66 45 1-34 2-3 4-55 16 by 16 ssda
65 42 1-35 -0-1 4-0 16 by 16 2ds
41 27 2-50 1-1 6-33 24 by 24 X
44 29 1-65 2-2 4-72 24 by 24 ssda
32 20 0-58 -2-9 4-17 24 by 24 2ds
25 17 2-20 3-0 7.-16 32 by 32 X
26 16 0-3 9-0 4-97 32 by 32 ssda
26 15 -0-51 11.-4 6-09 32 by 32 2ds

435

Clustering applied to cloud wind determination 17

Table 3(a). 11 March 1991, cloud motion wind results using raw images.

Original 'Valid ' Mean speed Mean dir. R.m.s. speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

244 118 2-88 6-3 6-19 4 by 4 X
321 197 2-06 4-2 6-51 4 by 4 ssda
303 185 1-98 1-4 5-25 4 by 4 2ds
142 79 2-82 8-0 6-19 8 by 8 X
160 119 1-62 5-3 5-56 8 by 8 ssda
116 79 M 7 3-8 5-17 8 by 8 2ds
46 36 1-45 7-2 4-41 16 by 16 X
40 31 1-34 4-4 4-14 16 by 16 ssda
39 30 0-53 4-7 3-81 16 by 16 2ds
17 14 -0-41 6-0 4-94 24 by 24 X
22 18 -0-99 3-2 3-01 24 by 24 ssda
2? 17 -1-60 0-7 3-17 24 by 24 2ds
7 6 -0-52 8-5 3-26 32 by 32 X
4 3 -1-04 5-3 3-84 32 by 32 ssda
5 4 - M 3 3-1 2-83 32 by 32 2ds'

Table 3(b). 11 March 1991, cloud motion wind results using clustered images.

Original 'Valid ' Mean speed Mean dir. R.m.s. speed Target Tracking
vectors vectors error (knots) error (deg.) error (knots) size method

306 95 3-25 4-12 7-11 4 by 4 X
357 179 1-88 4-6 6-89 4 by 4 ssda
358 163 l-OI 2-0 4-78 4 by 4 2ds
147 103 2-79 8-6 6-43 8 by 8 X
172 117 1-53 6-0 5-08 8 by 8 ssda
129 85 0-44 - 0-41 4-52 8 by 8 2ds
82 58 1-59 7-6 5-25 16 by 16 X
83 58 1-57 5-8 5-47 16 by 16 ssda
66 44 1-30 5-2 4-51 16 by 16 2ds
46 36 1-87 9-6 4-'52 24 by 24 X
46 36 0-56 6-5 4-05 24 by 24 ssda
38 31 0-22 4-2 4-09 24 by 24 2ds
27 22 0-69 8-0 4-96 32 by 32 X
27 22 0-43 6-1 4-45 32 by 32 ssda
31 26 -0-5 4-8 3-85 32 by 32 2ds

Figure 10 compares the number o f vectors generated using different tracking
methods. The number o f vectors generated by crossrcorrelation is much less than
S S D A for target size less than 16 by 16, but for larger targets the number o f vectors
are approximately the same. This suggests that S S D A is a more reliable method than
cross-correlation. Also,\the number o f vectors generated by 2-d search is comparable
to that for S S D A and c^oss-correlation. and, since the computat ion time is only a
fraction o f that for crossrcorrelation, a 2-d search provides a quick alternative for
cloud mot ion tracking. \

6. Conclusion
A new clustering scheme has been developed for automatic clustering o f c loud

images. The hybr id scheme uses a histogram algorithm to select the starting centres.

436

18 G. Wade et a l .

437

Clustering applied to cloud wind determination 19

RAW IMACSES

4 by 4 8 by 8 16 by 16
TARGET SIZE

24 by 24 32 by 32

M i - CORREIATION -+- SSDA . 2-0 SEARCH

CLUSTERED IMAGES

4 by 4 8 by 8 16 by 16
TARGET SIZE

21 by 24 32 by 32

• CORRELATION • • SSOA 2-D SEARCH

Figure 10. Comparison of the number of 'valid' vectors generated by cross-correlation.
SSPA and 2-d search using raw and clustered images.

438

20 G. Wade et al.

This replaces manual selectionjwhich is inefficient and subjective) and also reduces
convergence time sinced th^^^tartmn^entres generated are.^ood representation of
the underlying clusters. Convergence time has also been reouced by clustering the
multi-dimensional histogram rather than individual pixels. A n optimised model has
been used, which allows clusters with different variance and population. The hybrid
algorithm has not been extensively tested e.g., for all four seasons, but has been
found to perform well on data sets spread over several months.

Experimental results suggest that clustering before target tracking can signifi
cantly improve cloud motion wind estimates, although any advantage may be small
for uniform wind fields. The advantage stems from the ability of clustering to select
natural data patterns, which in turn tend to correspond to different cloud types.

It is also found that there is an optimum target size for a given wind resolution.
In our case, the optimum target size is around 24 by 24 for a wind resolution of 0-75°

^ tiy 0-9375". However, this criteria does not apply to clustered image tracking, since,
in this case, the effective target size is variable.

A comparison between the classic cross-correlation approach and the SSDA
indicates that S S D A is a more reliable method for target tracking; it is also much
faster since it avoids the need for normalisation. The 2-d search can be used when a
large wind field is required.

Acknowledgment
This work is carried out under S E R C grant GR/E74007. We are also grateful to

D r Lyne of the Meteorological Office, Bracknell, U . K . , for supplying data from their
fine resolution model.

References
ANDERBERG, M . R . , 1973, Cluster analysis for applications, (Academic Press, Inc), chapter 7.
BALL, G . H . , and H A L L , D . J., 1967, A clustering technique for summarizing multivariate

data. Befiavioural Science, 12, 153̂ 155.
BARNEA, D . I., and SILVERMAN, H . F . , 1972. A class of algorithms for fast digital image

registration. I.E.E.E. Transactions on Computers. C-21, 179-186.
Bos, A. M . , DE WAARD. J. , and ADAMSON, J . , 1990, Real-time rectification of Meteosat

images. European Spaced Agency Journal, 14, 179-191.
BOWEN, R . A., and SAUNDERS, R . W , . 1984, The semi-transparency correction as applied

operationally to »Meteosat infrared data: A remote sensing problem. European Space
Agency Journal, 8, 125-131.

BOWEN, R. A.. Fusco. L . , MORGAN, J.. and ROSKA, K . O . , 1979, Operational production of
cloud motion vectors (satellite winds) from Meteosat image data. Use of Data from
Meteorological Satellites, Technical Conference, Lannion, France, E.S.A. SP-143
(Paris: E.S.A.) pp. 27-37.

DESBOIS, M . , SEZE, G . , and SEWJWACH. G . , 1982, Automatic classification of clouds on
Meteosat imagery: Application to hiah-Ievel clouds. Journal of Applied Meteorology,
21, 401-412.

ENDLICH, R . M . , and WOLF, D . E . , 1981, Automatic cloud tracking applied to GOES and
Meteosat observations. Journal of Appiied Meteorology, 20, 309-310.

HUBERT, L . F . , 1979, Wind derivation from geostationary satellites. In Quantitative Meteor
ological Data from Satellites, World Meteorological Organization Technical Note No.
66. edited by J. S. Winston, pp. 33-59,

HUBERT, L , F „ and WHITNEY, L , F . JR., 0000, Wind estimation from geostationary satellite
pictures. Monthly Weather Review, 99, 665-672.

HoFF.MAN, J., 1990, Cloud motion wind retrieval in multilayered areas. Journal of Geophysical
Research, awaiting publication.

439

Clustermg applied to cloud wind determination 21

JAIN, J. R., and JAIN, A. K . , 1981, Displacement measurement and its application in
interframe image coding. I.E.E.E, Transactions on Communications, COM-29,
pp. 1799-1808.

KITTLER, J., and PAIRMAN, D . , 1985, Segmentatioii of multispectral imagery using iterative
clustering. Proceedings of the 4th Scandinavian Conference on image analysiSi Trond-
hein, I, 39-40.

KITTLER, J., and PAIRMAN, D . , 1988, Optimality of reassignment rules in dynamic clustering.
Pattern Recognition, 21, 169-174.

KOONTZ, W . L , G . , NARENDRA, P. M. , and FUKUNAGA, K . , 1976, A graph-theoretic approach
to nonparametric cluster analysis. I.E.E.E. Transaction on Computers, C-25, 936-944.

LESSE, J. A., and NOVAK, C . S., 1971, An automated technique for pljtaining cloud motion
from geosynchronous satellite data using cross-correlation. Journal of Applied Meteor
ology, 10, 119-132.

LiWNON, R . W . , and LOWE, D . A., 1990, Spatial scale dependency of errors in satellite cloud
track winds. COSPAR, the Hague, No. M A 1.1.7, 26 June 1990.

NARENDRA. P. M. , and GOLDBERG, M . , 1977, A nonrparametric clustering scheme for
Landsat. Pattern Recognition, 9, 207-215,

PAIRMAN, D „ and KITTLER, J., 1986, Clustering algorithms for use with images of clouds.
International Journal of Remote Sensing, 7, 855-866,

PARIKH, J , A., 1977, A comparative study of cloud classification techniques. Remote Sensing
of Environment, 6, 67-81,.

PARIKH, J. A., and ROSENFLED, A., 1978, Automated segmentation and classification of
infrared meteorological satellite data. I.E.E.E. Transaction System. Man and Cyberne
tic, SMC-8, 736-743,

SEDDON, A, M„ and Hum, G. E„ 1985, Segmentation of clouds using cluster analysis.
International Journal of.Remote Sensing, 6, 717-731.

SCHMETZ, J., and NimET, M„ 1987, Automatic tracking of high-level clouds in Meteosat
infrared images with a radiance windowing technique, European Space Agency Journal.
II, 275-286,

SCHMETZ, J,, and HOLMLIWD, K , , 1990, Operational cloud motion winds from Meteosat and
the use of cirrus clouds as tracers. COSPAR, the Hague, No. M A l . L l , 26 June 1990,

TURNER, J „ and WARREN, D , E . , 1989, Cloud track winds in the polar regions from sequences
of AVHRR images. International Journal of Remote Sensing, 10, 695-703.

WHARTON, S. W . , 1983, A generalised histogram clustering scheme for multidimensional
image data. Pattern Recognition, 16, 193-199,

WILSON, G . S., 1984, Automated meoscale wind fields derived from GOES satellite imagery,
American Meteorology Society Conference on Satellite/Remote Sensing Application
() pp, 164-171,

440

	APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE CLOUD MOTION TRACKING
	Recommended Citation

	tmp.1730155851.pdf.2zObm

