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Jetsam ambergris, found on beaches worldwide, has always been assumed to
originate as a natural product of sperm whales (Physeteroidea). However,
only indirect evidence has ever been produced for this, such as the presence
of whale prey remains in ambergris. Here, we extracted and analysed
DNA sequences from jetsam ambergris from beaches in New Zealand and
Sri Lanka, and sequences from ambergris of a sperm whale beached in
The Netherlands. The lipid-rich composition of ambergris facilitated high
preservation-quality of endogenous DNA, uponwhich we performed shotgun
Illumina sequencing. Alignment of mitochondrial and nuclear genome
sequences with open-access reference data for multiple whale species confirms
that all three jetsam samples derived originally from sperm whales (Physeter
macrocephalus). Shotgun sequencing here also provides implications formetage-
nomic insights into ambergris-preserved DNA. These results demonstrate
significant implications for elucidating the origins of jetsam ambergris as a
prized natural product, and also for the understanding of spermwhale metab-
olism and diet, and the ecological mechanisms underlying these coproliths.

1. Introduction
Ambergris, a known natural product of the sperm whale [1–4], is also found as
jetsam on beaches worldwide [5], and has been highly prized for its utility in
the perfume industry [6]. Although it has long been held that the jetsam ambergris
collected on beaches originates from spermwhales [4], little or no evidence for this
has ever been published, and distinctions exist between such samples and samples
of ambergris directly taken from sperm whales. For example, jetsam ambergris
samples generally contain much higher proportions of the triterpenoid alcohol
ambrein and much lower proportions of sterols than do samples of ambergris
from sperm whales [5,7]. Conversely though, jetsam ambergris sometimes does
contain fragments of squid beaks [4], and since cephalopods, such as squid,
constitute themajor dietary component of spermwhales, this has been cited as evi-
dence of an origin of the jetsam coproliths from spermwhales. It is even theorized
ambergris may originate as a pathological secretion from the irritant of the hard
squid beak chitin [8]. However, other marine mammal species (e.g. members of
Globicephala and Ziphiidae) also predate on squid [9–11], and some (including
dwarf and pygmy sperm whales) are also cited as potential sources of ambergris
[4]. Therefore, to further elucidate the origin of jetsam ambergris, we analysed
DNA from an ambergris sample collected from a sperm whale beached in
The Netherlands and compared it with DNA sequences isolated from jetsam
ambergris collected from beaches in New Zealand and Sri Lanka.
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Ambergris is held to be predominantly composed of
ambrein due to its production from squalene, a common meta-
bolic product in many organisms [12]. This process may be
induced by gut microbial influence, and precipitates in dense,
solid masses within the whale colon [7]. The coprolitic accre-
tions that result are compositionally well-suited to preserving
DNA from the colon since ambrein is hydrophobic and appar-
ently resistant to degradation within the acidic enteric
environment. Evidence from radiocarbon dating certainly
indicates resistance to microbial and photo-degradation in the
marine environment for up to a millennium in some jetsam
ambergris samples [13]. We hypothesized that such material
might provide an opportune cache for preserving DNA, even
after prolonged exposure to detrimental conditions at sea.

2. Material and methods
Jetsam ambergris specimens from the North Sea, the Indian
Ocean and the Pacific were analysed, representing the material’s

global distribution [13]. Three jetsam ambergris specimens (one
from Sri Lanka, two from Pitt Island, New Zealand) were
subsampled for DNA extraction. A fourth specimen originated
from dissection of a male sperm whale beached in December
2012, at Razende Bol near Texel, The Netherlands. The latter
‘fresh’ ambergris, from a confirmed spermwhale carcass, provided
a known comparison to the jetsam specimens with unconfir-
med biological history. Specimens of ambergris were obtained
and analysed for ambrein and faecal sterol content in previous
studies [5,7].

DNA extraction and sequencing were undertaken at the
GLOBE Institute, University of Copenhagen, in a dedicated ancient
DNA laboratory following strict procedures for minimization of
contamination. Approximately 120 mg was subsampled (figure 1
and table 1) for DNA extraction. Samples were incubated in
400 µl proteinase K-containing buffer following Gilbert et al. [14]
at 56°C for 10 h; supernatants were then treated using a
phenol–chloroform step following Carøe et al. [15] and purified
using Monarch DNACleanup Columns (5 µg) (New England Bio-
labs, Beverly, MA, USA) according to the manufacturer’s
guidelines. Double-stranded libraries were built from DNA
extracts following the BEST protocol [15], designed and proven

(b)

S.01 S.03

S.02 TEXEL

(a)

Figure 1. Details for ambergris samples analysed. (a) Map showing localities where ambergris samples were originally found. (b) Photographs showing high
diversity in physical characteristics of ambergris fragments: TEXEL151212 (from dissected whale specimen) was grainy in consistency, while jetsam samples
superficially appeared more dense and heterogeneous, and were internally equigranular and significantly paler in colour.
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specifically for sequencing of ancient and degraded DNA.
Libraries were amplified and indexed through PCR using
PfuTurbo Cx Hotstart (Agilent Technologies, Santa Clara, CA,
USA) according to the manufacturer’s guidelines. Products
were pooled at equimolar concentration before sequencing
on an Illumina HiSeq 4000 (Illumina, San Diego, CA, USA)
platform, using 80 bp single end read chemistry at the
Danish National High-throughput DNA Sequencing Centre,
Copenhagen, Denmark.

Sequence analysis was undertaken on the high-performance
computing facility at the University of Copenhagen, with FASTQ
files processed using the PALEOMIX pipeline (v. 1.2.13) [16].
FastQC v. 0.11.8 [17] was initially used for quality control of raw
sequence data. Adapters were trimmed using AdapterRemoval
v. 2.3.1 [18], with reads less than 25 bp also removed. Reads were
then mapped to reference sequences using BWA [19], also apply-
ing mapDamage2.0 [20] for basic degradation quantification,
producing alignments with references sequences. ANGSD [21]
was then used to produce sequences in FASTA format.

Uncertainty around the origin and the biological mechanisms
for the production of ambergris prompted us to consider
multiple possible candidate cetacean and pinniped species in
sequence analysis. Species identity was inferred by mapping suc-
cess and phylogenetic relationship to 19 cetacean and pinniped
candidate species in NCBI RefSeq (see the electronic supplemen-
tary material). These species were selected based on potential
suitability as deep-diving marine mammals filling a similar

ecological niche to sperm whales, to rule out such species being
co-adapted to produce ambergris. Sample sequences were conca-
tenated and aligned using MAFFT v. 7.392 [22]. Phylogenetic tree
models were then produced inMEGAX [23] using the maximum-
likelihood method with the Hasegawa–Kishino–Yano model [24],
with distances estimated by the maximum composite likelihood
approach (details of all reference sequences used are included in
the electronic supplementary material).

3. Results
The phylogenetic analyses unequivocally supported the sperm
whale origin of the four ambergris samples (figure 2; electronic
supplementary material, figure S1). Likewise, alignment with
the Physeter macrocephalus mitochondrial reference genome
from NCBI (NC_002503.2) produced the highest coverage
results for all samples of all the alignments made and provides
a confident attribution, though with significant variations in
success between samples. Sequencing of the sample from a
stranded sperm whale (TEXEL151212) produced by far the
highest coverage (approx. 20×) for spermwhalemitochondrion,
while one of the jetsam samples from Pitt Island (S.01) only
yielded approximately 0.2× coverage (see table 2). Alignments
with Kogia sima (dwarf sperm whale) and Kogia breviceps

Table 1. Details of sample find localities, masses of original coproliths, subsampled masses used for DNA extraction, and percentage ambrein component (based
on DCM-soluble fraction [7,13]).

sample location total mass (g) analysed mass (mg) % ambrein

S.01 Pitt Island, New Zealand 50 96 92

S.02 20 110 83

S.03 west Sri Lanka 101 188 60

TEXEL151212 Texel, Netherlands 83000 92 93

S.01 (ambergris)

74

100

S.02 (ambergris)

S.03 (ambergris)

TEXEL151212 (ambergris)

NC 002503.2 Physeter macrocephalus mitogenome

NC_005272.1 Kogia breviceps mitogenome

NC_041303.1 Kogia sima mitogenome

0.020

Figure 2. Maximum-likelihood phylogenetic tree model generated from reference sequences and aligned sample mitochondrial genomes. Samples are clearly situ-
ated as grouping with sperm whale (P. macrocephalus) rather than dwarf and pygmy sperm whales (Kogia spp.). This tree reflects the highest log-likelihood model,
values reflect the percentage of trees computed in which the associated taxa were clustered, indicating confidence in positioning, and branch lengths measure the
number of substitutions at each site (see scale). Figure produced in MEGA X [23]. Whale depictions from: https://commons.wikimedia.org/wiki/File:Sperm whales_
size.svg. A phylogenetic tree including all 19 candidate species is presented in electronic supplementary material, figure S1.
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(pygmy sperm whale) reference mitochondrial genomes
(NC_041303.1, NC_005272.1) also yielded coverage (details in
electronic supplementary material), though many highly con-
served functional regions are shared between analysed
species, resulting in high sequence similarity [25]. However,
coverage for kogiid species was typically around a factor of 10
less than for Physeter. Alignment with the P. macrocephalus
whole nuclear reference genome (ASM283717v2) was also suc-
cessful, though this is more apparent in comparisons of total
number of reads mapped to the genome. Alignment for Archi-
teuthis dux (giant squid), a reputed common prey of sperm
whales (e.g. [26]), was unsuccessful, but this is not their predo-
minant prey [26].

Results from MapDamage show remarkably little inter-
sample variation affecting C to T transitions at the 50 strand
ends, though a higher percentage of G to A transitions at
the 30 end exists for S.01 (details in electronic supplementary
material, figure S2), indicating possible higher biomolecular
degradation. Generally, however, very little chemical modifi-
cation has occurred, and the distribution of alterations across
strands remains uniform and flat.

4. Discussion
This study has demonstrated that three jetsam ambergris
samples can confidently be attributed to sperm whale through
DNA extraction. While confirmation of a sperm whale origin
for jetsam ambergris is not a surprising result, the present
study is the first in providing a significant proof-of-concept in
retrieving endogenous DNA from ambergris and successfully
using it for organism identification. Importantly, the origin of
all three jetsam ambergris samples studied here can confidently
be identified as sperm whale on the basis of not only genetic
alignment success, but alsomodellingofmitochondrial genomes
in phylogenetic relatedness trees, including for a large sample of
outgroup marine mammal taxa. However, although all samples
analysedherewere identified as originating fromspermwhale, it
is still quite possible that other closely related deep-diving
marine mammals (such as the dwarf and pygmy sperm
whales) might produce ambergris [4] and have simply still not
been recorded as doing so to date.

The predominant cause of the dramatic variation in genetic
coverage seen between samples is unclear. Analysis of DNA
degradation in mapDamage2.0 shows little correlation with
alignment coverages, as might be expected, and there is also
little variation between ambrein content in samples that
might be expected to contribute to differential DNA

preservation. The precise age of the present jetsam samples is
unknown, although previous studies have successfully
radiocarbon dated other ambergris samples [13]. However,
radiocarbon dating of relatively recent samples is problem-
atical owing to the impact of fossil fuel emissions [27], and
radiocarbon dates since the increase of anthropic carbon
release are unreliable. Producing a consistent degradation
rate for G to A transitions in reliably dated older samples
might, in future, aid a better understanding of differential
DNA damage. Another option for future research might be
studies of glutamine deamidation and aspartic acid racemiza-
tion from analysis of organic peptides possibly also present
in ambergris [28,29]. Alternatively, however, intra-sample vari-
ation in DNA and ambrein concentration might just as likely
account for low coverage in sample S.01, while more recent
exposure to sperm whale tissue undoubtedly accounts for the
high coverage in beached whale sample TEXEL151212.

The preservational potential of ambrein precipitates for
DNA extends not just to endogenous whale genetics, but
also to metagenomic coverage of the whale gut microbiome,
and potentially also the DNA of their prey. For example,
DNA may also remain within partially or undigested squid
beaks found in sperm whale faeces [30], and in ambergris
[31], which are even theorized to be a pathological cause of
ambergris secretion [8]. Understanding of the prokaryotic com-
position of the microbiome environment in ambergris could
also further elucidate the origin of ambergris, particularly in
the conversion of squalene to ambrein and the process by
which ambergris appears to form in layers of accretion. Further
analyses on endogenousDNA retrieval from jetsamambergris,
including also DNA from whale gut microbiota and prey,
would yield significantly greater insights into sperm whale
ecology, evolution and metabolism.

5. Conclusion
Jetsam ambergris has long been an enigmatic material, subject
to discussion and analyses in scientific publications since the
eighteenth century [1,31]. This study is the first to our knowl-
edge to present final confirmation of the biological origin of
jetsam ambergris samples as sperm whales, through DNA
analysis. Beyond this, however, the present study lays out the
potential of ambergris as a new source of genetic data related
to sperm whales with a considerable longevity across time.
Greater elucidation remains to be achieved through the study
of the preservational conditions of DNA in ambrein and of
the differential effects from multiple factors. However, the

Table 2. Results from sequencing and sequence alignment for P. macrocephalus mitochondrial and whole genome references. Coverage estimations are
calculated from unique reads aligned with reference sequences. Despite low coverage for S.01, sufficient alignment data exist for species attribution to
P. macrocephalus, confirmed by phylogenetic model below.

sample

total
retained
reads

average retained
read length (bp)

total aligned
reads (mtDNA)

times of
coverage
(mtDNA)

total aligned
reads (whole
genome)

times of coverage
(whole genome)

S.01 77 261 083 72.9 43 0.175 12 782 0.0000546

S.02 89 486 411 71.7 2440 1.648 26 169 0.000135

S.03 71 907 406 68.3 40 235 9.717 2 447 082 0.00426

TEXEL151212 92 385 587 62.6 71 190 19.654 3 099 642 0.00639
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potential implications for aiding our understanding of past
population dynamics in whales and their ecologically associ-
ated taxa may be profound. The oldest-known ambergris
found within Pleistocene deposits feature permineralized
squid beaks containing amino acids endogenous to squid,
which the authors attribute to the preservational capacity of
the local sediment [32,33]. Although it is unlikely DNA will
be preserved for such an age (1.75 Ma), this finding might
also be attributable to the effectiveness of ambergris and
ambrein as preservational substrates. A great deal is still
unknown about the ecology and adaptation of the marine
giants formerly characterized as semi-mythical beasts,
and ambergris may now prove a small but significant key to
understanding some further aspects of them.
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gris samples analysed in this study, three (S.01–S.03) were
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fourth sample (TEXEL151212) was kindly provided as a subsample

of the ambergris specimen TEXEL151212 by Dr A. Oosterbaan on
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