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Ambergris, which is a coprolith originating from the sperm whale, has been found 

only rarely, but for centuries, as jetsam on beaches all over the world. There are no 

reliable data indicating how long such samples may have remained at sea, with 

unsubstantiated accounts suggesting maybe decades. Here, we obtained over forty 

jetsam samples many collected on known dates, from mostly known beach locations 

across the globe. Such an inventory of verified jetsam ambergris is unprecedented. 

Each sample was characterised by analytical methods such as gas chromatography-

mass spectrometry (GC-MS). We then determined the radiocarbon ages of some of 

the samples by well-described accelerator-MS techniques. Surprisingly, some 

samples of jetsam have remained in the environment for about a thousand years.  

1. Introduction 

Ambergris is an enigmatic waxy substance, known since the ninth century (Levey 

1961; Clarke 2006; Read 2013; Srinivasan 2015; Brito et al. 2016; Azzolini 2017). It 

was once a global economic commodity (Brito et al. 2016) and, for example, was 

long considered valuable as incense. In perfumery it was used in pomanders and to 

perfume gloves, including for Queen Elizabeth I and Catherine de Medici (Dugan 

2011).  

Ambergris has been known to occur in the sperm whale (Physeter macrocephalus), 

since at least the time of Marco Polo in the 13th Century, and was certainly known at 

the time of Elizabeth I (Purchas 1613; Bolyston 1724). Indeed, it has been used to 

anoint English monarchs from the time of King Charles I in 1626, to the present 

Queen Elizabeth II in 1953.  

For a long time, its origin was a matter of debate. A series of questions raised by the 

Royal Society of London during the mid- to late-seventeenth century included two 

relating to the origins of ambergris (Read 2013; Dugan 2011). Finally in 1783, Dr 

Franz-Xavier Schwediawer and Sir Joseph Banks determined that ambergris is a 

natural product of the sperm whale and not simply ingested by the animal 

(Schwediawer and Banks 1783): a view which has ever since, been accepted (Clarke 

2006). 

In more modern times, data from whale catches (Berzin 1971; Korzh and Strigina 

1972; Clarke 2006) supported much earlier reports (Boylston 1724) that ambergris 
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only actually occurs in about one in a hundred whales. To date, sperm (and probably 

pygmy and dwarf sperm) whales (Clarke 2006), are the only known natural sources. 

Although historically it was important (Brito et al. 2016), ambergris is now largely a 

rare biological and chemical curiosity; synthetic chemical analogues have mostly 

replaced the natural material in perfumery (Serra 2013). Unsurprisingly therefore, few 

modern investigations of the composition and fate of this mammalian coprolith have 

been made.  

However, it is known that ambergris taken historically from whales and now archived 

in museums, contains the terpenoid alcohol, ambrein and significant, though 

variable, proportions of a number of faecal steroids (Baynes-Cope 1962; Rowland 

and Sutton 2017).  

For centuries, ambergris has also been found as jetsam on beaches from all over the 

globe (Boylston 1724; Clarke, 2006). Although verified accounts are virtually absent 

from the scientific literature, with unsubstantiated media accounts predominating 

(Kemp 2012), recent sparse data have shown that, in contrast to whale ambergris, 

extracts of jetsam samples comprise almost entirely ambrein, with, so far, very low 

steroid contents (Rowland and Sutton 2017; Rowland et al. 2018). However, very few 

data exist and there are no reliable data indicating how long such jetsam ambergris 

samples may have remained in the environment, with unsubstantiated accounts 

suggesting years, or maybe decades (Kemp 2018).  

Here we obtained over forty rare jetsam ambergris samples collected by ourselves, 

and by others, many on known dates and from mostly known beach locations across 

the globe. Each sample was characterised by determining its chemical composition 

by analytical methods such as gas chromatography-mass spectrometry (GC-MS) 

using the methods of Rowland and Sutton (2017) and of Rowland et al. (2018). We 

also determined the radiocarbon (14C) ages of the samples by well-described 

accelerator-MS (AMS) techniques (e.g. Synal et al. 2007; Wacker et al. 2010). AMS 

also provided approximate measures of the 13C/12C isotope ratios of the ambergris.  

 

2. Results and discussion 
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We verified that each extract of jetsam (Table 1) contained ambrein as a major 

constituent of the organic soluble portions, by previously published methods of GC-

MS and Fourier transform infrared spectroscopy (Rowland and Sutton 2017).  

Samples included (Figure 1) those from the northern hemisphere (e.g. Japan, 

England, Scotland, Ireland, France, The Bahamas), nearer the equator (Somalia, 

Kenya, Sri Lanka, Indonesia) and from the southern hemisphere (Chile, New 

Zealand, Australia). Some pieces of ambergris reportedly weighed over twenty 

kilograms (Table 1). The samples were found to comprise mainly material 

extractable into dichloromethane (mean 96 ± 7 %; n=43); of this, most GC-MS 

detectable material was ambrein (mean 81 ± 22 %; n=43). 

Accelerator mass spectrometry (AMS) analyses showed that the 13C/12C isotope 

ratios in the ambergris ranged from -15 to -25 ‰ (Table 1; mean -21 ± 2 ‰; n=26). 

Repeat analyses of samples 6-9 from Chile (Table 1; n=4) established the 

reproducibility of the method for replicate samples as ± 0.4 ‰.  

The radiocarbon dates of the jetsam ambergris were also determined by AMS. The 

data indicated that four jetsam ambergris samples collected from Mar Brava beach, 

Chiloé Island, Chile in 2017, had a radiocarbon age of 1538 ± 14 y (Table 1). A 

further sample had a radiocarbon age of 1500 y (Table S1 and Figure S2). 

Calibration of radiocarbon age requires knowledge of any ‘reservoir effects’ of 14C in 

the system under study. Since such ‘reservoir effects’ for sperm whale carbon are 

presently unknown, we calibrated the radiocarbon age using the Marine13 calibration 

curve (Reimer et al. 2013). This revealed that the samples from Chile were about 

1000 years old (Table 1; Figure S1). Two of the other samples (samples 10 and 11; 

Table 1) had radiocarbon dates of 545 years and 219 years. Use of the same 

calibration (Figure S1) indicated an age for sample 10 of between 184 and 328 

years. The 14C data for the other samples (Table 1) indicated that they were ‘modern’ 

(F14C values up to 1.057). ‘Modern’ samples are those which demonstrate the 

incorporation of 14C resulting from atmospheric nuclear weapons testing which 

started in the 1950s and thus indicate a modern post-1950s origin for the carbon. 

Indeed, as verification, an ambergris sample taken from a dead sperm whale 

beached in The Netherlands (Rowland and Sutton 2017) in 2012, showed a F14C 

value of 1.062 (Table S1). 
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The major organic constituent of ambergris, ambrein, was one of the first terpenoids 

for which a chemical structure was deduced (Lederer et al. 1946; Ruzicka and 

Lardon 1946). In vitro, ambrein is produced from squalene or squalene oxide, by two 

terminal cyclisations, mediated by two bacterial enzymes, the squalene-hopene 

cyclase AacSHC mutant D377C and a tetraprenyl-β-curcumene cyclase isolated 

from Bacillus megaterium (Ueda et al. 2013).  

The 13C/12C isotopic value of the ambergris samples in the present study (Table 1; 

mean -21.6 ‰) was not statistically different (P=0.001) to that of squalene from 

sharks (-20.6 ‰; Camin et al. 2010), and similar to values reported for dentine from 

sperm whales (-14 to -11 ‰; Borell et al. 2013; Mendes et al. 2007)). Such data are 

thus consistent with a proposed origin from marine organic matter such as squalene, 

in the whale rectum (Clarke 2006). A bacterially-mediated mechanism is presumably 

responsible. A bacterium, Spirillum recti physeteris, was isolated from an ambergris 

sample stored for four years (Beauregard 1898), though nothing detailed is known.  

The microbiomes of dwarf (Kogia sima) and pygmy (Kogia breviceps) sperm whales 

have now been elucidated (Erwin et al. 2017), but not that of the sperm whale. 

Clarke (2006) stated that “there is reason to believe that [ambergris] also occurs in 

the pygmy sperm whale” and reviewed the evidence. The gut microbiome of K. 

breviceps is dominated by Firmicutes and Bacteroidetes bacteria. Other core 

members of kogiid gut biomes were affiliated with sulfate-reducing bacteria (Erwin et 

al. 2017). This may also be true of the sperm whale, since sperm and pygmy sperm 

whales have similar cephalopod diets (Clarke 1954; 2006). If so, such microbes 

might be amongst those involved in the conversion of squalene to ambrein in the 

sperm whale. Our isotope data (Table 1) certainly do not contradict the likelihood 

that ambrein is biosynthesised by bacteria from squalene in the whale.  

The results of the present study show that, in ambergris, ambrein certainly occurs as 

one of the major organic-soluble constituents (Table 1), of what are sometimes 

recorded as huge boulders weighing as much as 455 kg (Clarke 1954; 2006). On the 

death and decomposition of the whale, ambergris is presumed to be released into 

the oceans (Clarke 2006). Although numerous studies of the fate of carcasses of 

sperm whales (whale falls), including video records, have been made, these have 

not included reports of the fate of ambergris. Nonetheless, our results show that in 
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large coproliths of up to 20 kg (Table 1), ambrein is rather resistant to extensive 

microbial or photodegradation, under the conditions prevailing, even for periods of 

about a thousand years (Table 1). This is far longer than had been thought likely 

previously (Kemp 2018).  

3. Conclusions 

The samples from Chile studied herein were produced by a whale or whales living 

300-500 y before Ferdinand Magellan visited Chile, when the island (Chiloé meaning 

‘seagull-land’) was inhabited only by the ancient Chunos people. At this time, in the 

UK, Magna carta had not been signed. This piece of ambergris was thus formed at 

the time the earliest records of the use of ambergris by humankind were made 

(Levey 1961). This substantial age indicates that marine preservation of ambergris is 

more likely than considered hitherto and perhaps lends support to reports that rare 

lithification of ambergris is represented in the marine geological record (Baldanza et 

al. 2013; Monaco et al. 2014).  
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Figure 1. Locations of finds of jetsam ambergris samples. Numbers refer to samples  

listed in Table 1. (The exact location of sample 20 is unknown).
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Table 1. Locations, dates and amounts of finds of jetsam ambergris samples with 
13C data and 14C isotopic radiocarbon ages. Key: a= total weight of unrelated pieces 

in same collection batch; b,c = total weight of pieces in same collection batch d  = % of 

ambrein as TMS ether as determined by GC-MS. (The calibration curves for the 

radiocarbon to calendar age conversions are shown in Fig. S1) e= Calibrated age of 

mean of samples 6-9 (Figure S1) n.d.= not determined. 
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Abstract 

Ambergris, which is a coprolith originating from the sperm whale, has been found 
only rarely, but for centuries, as jetsam on beaches all over the world. There are no 
reliable data indicating how long such samples may have remained at sea, with 
unsubstantiated accounts suggesting maybe decades. Here, we obtained over forty 
jetsam samples collected many on known dates, from mostly known beach locations 
across the globe. Such an inventory of verified jetsam ambergris is unprecedented. 
Each sample was characterised by analytical methods such as gas chromatography-
mass spectrometry (GC-MS). We then determined the radiocarbon ages of some of 
the samples by well-described accelerator-MS techniques. Surprisingly, some 
samples of jetsam have remained in the environment for about a thousand years.  

 

Experimental 

Materials  

Jetsam ambergris samples were collected from beaches worldwide, including by 
ourselves, and on receipt were stored in a dry dark cabinet prior to analysis 
(Rowland and Sutton 2017). 

 

Methods  

The methods for GC-MS analysis have been published (Rowland and Sutton 2017). 
Methods for AMS are well described (Bronk Ramsey 2017). Due to their chemical 
purity (mean 81% ambrein; Table 1), samples were graphitised (Wacker et al. 2010) 
without pretreatment and analysed using a MICADAS AMS (Synal et al. 2007). 
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Figure S1. Example calibration curves for samples from Chile (samples 6-9) and  

Somalia (sample 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Calibration curve for  an additional sample from Mar Brava, Chiloé, Chile 
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Table S1. Radiocarbon and 13C data for ambergris collected from a dead sperm 

whale beached on 15 December 2012 at Razende Bol near Texel, Netherlands and 



16 
 

archived by the Ecomare Museum, Texel and an additional sample from Chile 

(calibration for the latter is shown in Figure S2). 

Sample Name 13C (‰)    14C Age (BP)  F14C 

  

Texel 15.12.12  -21.1    -486  1.062±0.003 

  

Mar Brava Chiloé Chile -21.1    1500  0.829±0.003 
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