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Level-two Visual perspective taking as perceptual simulation. 

 

Eleanor K A Ward 

 

Abstract 

Visual perspective taking lies at the heart of social interactions, allowing people to 

readily compute what another person can see, or how they see it (Flavell et al., 

1981). This ability not only links to the unique human propensity to infer others’ 

beliefs, desires, and goals (Schurz et al., 2015), but also to more general spatial 

abilities such as navigation skill (Kozhevnikov et al., 2006) and action planning 

(Creem-Regehr et al., 2013). What is unclear is how others’ perspectives are 

represented. While several studies have in the past implied that others’ perspectives 

are represented in a similar way as our own viewpoint (e.g. Freundlieb et al., 2016; 

Sampson et al., 2010; Surtees et al., 2016) none have demonstrated the form that 

this overlapping perspective takes, and how these altercentric representations 

interfere with our own. 

The experiments in this thesis provide the first known evidence that when 

taking another’s perspective, representations of their visual input take a (quasi)-

perceptual form, and can drive perceptual decision making in the same way as own 

input (e.g. Roelfsema & de Lange, 2016). Using a modified mental rotation paradigm 

(Shepard & Metzler, 1971), we simply asked participants to state whether 

alphanumeric characters appearing at varying orientations away from upright were 

canonical or mirror inverted (e.g. “R” vs. “Я”). In some scenes another person was 

present, seen sitting at 90 degrees either to the left or the right of the character. We 
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first confirmed the classic mental rotation effect, where response times increase 

gradually as a function of the item’s increasing angular disparity away from upright. 

Crucially, we also found that the angular disparity relative to the inserted persons 

also produced this response pattern, and found that participants responded 

surprisingly quickly to items that would normally be difficult when they were facing 

the other person. These effects occurred spontaneously, and specifically in the 

presence of a human (but not a lamp), even when the other person was task 

irrelevant. Subsequent studies showed these effects were not sensitive to the 

looking direction of the other person, but instead reflected their position in space 

more generally. Finally, we found that a person’s perceived ability to move (and 

therefore motorically emulate the position of the other person) did not influence these 

effects.  

These findings show that (1) others’ perspectives can indeed ‘stand in’ for our own 

input, taking the form of a perceptual simulation, which paints the (imagined) 

perspective of another person onto our own perception, (2) these simulations reflect 

what someone could – in principle – see from their position in space, and speculate 

that (3) VPT emerged primarily to support navigation of, and interaction with, the 

environment and that more sophisticated Theory of Mind may then capitalise on the 

epistemic insight derived through more primitive forms of VPT.  
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1 Chapter One – Knowing how the world looks to others 

 

1.1  Visual Perspective Taking in social interactions  

Every-day life gives rise to many situations where it is helpful to know what another 

person can see, or how the world looks to them (Flavell, Everett, Croft & Flavell, 1981), 

and humans do-so effortlessly via a process commonly referred to as visual 

perspective taking (VPT). Traditionally, visual perspective taking is thought to be 

comprised of two levels, one and two (Flavell et al., 1981). First to be acquired is level 

one VPT (VPT-1), which allows a person to identify whether or not another person can 

see something, perhaps by following their line of sight from their eyes to an object (e.g. 

Michelon & Zachs, 2006). Following this, a more sophisticated ability to infer how an 

object looks to another person is acquired, allowing for more complex visual and 

spatial judgements. This ability allows one to decide what a “6” looks like a “9” to a 

person opposite to oneself, or that one’s own right will be their left, for example. This 

ability is commonly referred to as level two VPT (VPT-2). 

There are numerous everyday situations where we might benefit from 

understanding what another person can see, or how they see it. With regard to VPT-

1, consider, for example, an attempt to cross a busy street. We must first check not 

only whether we can see an oncoming vehicle, but also whether the driver has noticed 

us (VPT-1). We use the same ability to hide objects from others, to steal from them, 

alert them to danger or just simply to point there attention towards objects they are 

looking for but cannot currently see. VPT-2 plays equally important roles. When we 

play a competitive sport, we can use VPT-2 to better predict what the other player will 
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do next by using our knowledge about how the game looks to them (e.g. Creem-

Regehr, Gagnon, Geuss & Stefanucci, 2013), which can lead to better performance in 

team sports, such as football (e.g. Mann, Farrow, Shuttleworth, Hopwood & 

MacMahon, 2009). Similarly, if we try to coordinate our dance moves with a partner, 

we may make use of VPT-2 to know how our actions appear to our partner as well as 

ourselves (Freundlieb, Kovacs & Sebanz, 2015). Even in simple day-to-day 

interactions, such as showing a picture to somebody else, we instinctively orient it so 

that they can easily see it (Lempers, Flavell & Flavell, 1977), or when a passer-by asks 

for directions, we do not describe the route from our own perspective, but do so, 

intuitively, from the other person’s (Tversky & Hard, 2009). In each case, we use our 

knowledge of both what others can see, and how they see it, to facilitate these social 

interactions, often without conscious, effortful calculation. 

 It is well-established that VPT is a key developmental milestone in childhood 

that facilitates the transition from an egocentrically-anchored world view, to one 

which incorporates others’ perspectives (Piaget & Inhelder, 1956) and is known to be 

linked to mental state attribution, or ‘Theory of Mind’ (ToM; Apperly & Butterfill, 2009; 

Batson, Early, & Salvarani, 1997; Erle & Topolinski, 2015; Tomasello, Carpenter, 

Call, Behne, & Moll, 2005) and also to empathy (e.g. Chartrand & Bargh, 1999; 

Decety & Jackson, 2004; Mattan, Rotshtein & Quinn, 2016). Piaget (1929; 1951) 

placed huge value in perspective taking for both social and cognitive development. 

Famous for his constructivist developmental theory, Piaget proposed that a child’s 

egocentricism was key determinant of their cognitive and social development, and 

that children could only progress through each developmental stage through 

incremental forms of decentration, where children gradually progress to a point 

where they can hold more than one thought, or representation, in mind at one time. 
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Piaget and Inhelder’s (1956) Three Mountains Task was classically used to assess 

children’s accuracy in representing the world from a non-egocentric perspective. In 

this task, a child would be presented with a model of three mountains, which they 

were instructed to study from different angles. A doll was then placed at varying 

positions around the model, and the child would be asked to select, from a series of 

pictures, how the mountains appeared to the doll.  

The age of the child reliably predicted the outcome of this task. Four year olds 

were unable to imagine what another person could see, generally choosing the 

picture that showed their own egocentric view. In contrast, at 8 years most children 

were able to accurately point out how the mountains looked to the doll, leading 

Piaget and Inhelder (1956) to conclude that children below this age remained 

egocentric in their thinking. However, the suggestion by Piaget and Inhelder (1956) 

that children as old as six or seven find it difficult to make judgements from others’ 

perspectives has long been overturned by growing evidence that children as young 

as 14 months demonstrate very basic VPT abilities in both explicit (e.g. Borke, 1975; 

Flavell et al., 1981; Hughes, 1975) and implicit measures (e.g. Kampis, Parise, 

Csibra & Kovács, 2015; Lempers et al., 1977; Poulin-Dubois, Sodian, Metz, Tilden & 

Schoeppner, 2007; Sodian, Thoermer & Metz, 2007).  

For example, using a looking-time paradigm, Sodian et al. (2007) observed that 

14 month old infants spent more time looking at pictures of a person reaching for, 

and grasping a novel target-object if the person in the pictures could no longer see a 

previously-grasped object due to the presence of an occluding screen. This indicates 

that these infants therefore possessed some awareness of what the other person 

could and could not see, and more critically, used this knowledge to rationalise the 

observed action. Poulin-Dubois et al. (2004) also used a preferential looking 
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paradigm to examine the seeing-knowing relationship in children ranging in age from 

14 to 24 months. At 18 months old, children showed longer looking times for 

unexpected outcomes (an adult finding a concealed object despite not watching it 

during a hiding phase). Again, this study demonstrates that young children are able 

to infer another’s epistemic state and use this to derive predictions about how they 

expect them to act, and indicates an important role of VPT in understanding others’ 

actions.   

Other studies show that young children are able to use their knowledge of what 

others can see to actively engage in social interactions. Lempers et al. (1977) found 

that children as young as 18 months would reposition themselves to align with 

another person to whom they were showing a picture, and by the age of 3 years, 

most children knew to orient a picture away from themselves to appear upright to a 

person standing opposite themselves. This may suggest that young children possess 

implicit knowledge not only about what another person can see (Sodian et al., 2007) 

but also how this person’s perspective differs from their own. This transition from 

knowing how to position oneself to align perspectives with another, to actively 

manipulating the position of an object to show it to another person may also mark the 

emergence of more sophisticated social abilities. If we infer a person’s epistemic 

state via their access to information then, as visual input is one’s main source of 

information, we cannot infer others’ internal states without first representing what 

others can or cannot see.  

In adults, VPT is more often measured using tasks where participants are asked 

to make explicit judgements about what another person can see, or how an object or 

scene looks to another person (e.g. Sampson, Apperly, Braithwaite, Andres & 

Bodley Scott, 2010; Kessler & Rutherford, 2010; Kessler & Thompson, 2010). 
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Explicit tasks are important, as they allow researchers to directly measure a person’s 

ability to represent an object or scene from another person’s point of view. One such 

example was a ‘visibility task’ used by Michelon and Zacks (2006), wherein 

participants were shown a scene depicting a doll, a number of objects, and several 

occluding screens, and were required to make judgements about what the doll could 

or couldn’t see. Participants judged quickly and accurately what could be seen from 

the doll’s perspective, and performance was not influenced by the position of the doll 

relative to the participants. When the distance between the doll and the object was 

increased, however, participants took longer to respond. In the same study, judging 

whether an object appeared to the left or the right of the doll delivered a different 

pattern of results, whereby response times increased as a function of the doll’s 

increasing angular rotation away from the participant, indicating different types of 

VPT, and indeed different mechanisms. 

  Adapted versions of Piaget and Inhelder’s (1956) Three Mountains Task have 

also been used to explicitly measure VPT in children (e.g. Borke, 1975), as have 

tasks that operate using the same principle (e.g. how does this scene look to person 

X?) but use more ‘child friendly’ stimuli (e.g. Hamilton, Brindley & Frith, 2009). Borke 

(1975), for example, simplified Piaget and Inhelder’s (1956) experiment design by 

simply placing the model of the mountains on a revolving surface and instructing 

children to turn the model to show the perspective of a doll, rather than selecting a 

scene from a series of photographs. By simplifying the response method by 

removing the necessity to change modalities between learning and responding, this 

adaptation led to higher accuracy in younger children, showing that at four years old 

most children could accurately show how a scene would look to another person.  



- 6 - | P a g e  
 

Other tasks explicitly instruct participants which perspective to take (e.g. self or 

other; Sampson et al., 2010), allowing for the measurement of behavioural 

differences when either one’s own, or another’s perspective is taken when making 

judgements about an object or scene. One commonly used experimental paradigm 

requires participants to make numerical judgements about the number of coloured 

disks appearing in a scene (Sampson et al., 2010). The scene depicts the back wall, 

and two side walls of a room, in which a human avatar is positioned facing either to 

the left or to the right. In each trial, coloured disks appear on either one, or both of 

the walls. In consistent perspective trials, the number of disks visible from the 

perspective of the avatar matches that of the observer (e.g. disks only appear on the 

wall that the avatar is facing), whilst in inconsistent trials, this number differs (e.g. 

disks appear on both walls, whilst the avatar only has visual access to one wall). 

Participants then judge how many disks they can see either from their own 

perspective (self), or from that of the avatar (other).  

The classic finding is that responses to inconsistent trials are slower when 

responding from a self-perspective because what the observer can see differs to 

what the avatar can see, despite the avatar being irrelevant to the task. This finding 

highlights the ease with which we can represent the world from another perspective, 

that this can sometimes happen spontaneously without prompting, and indicates that 

other people’s visual perspectives automatically overlap with our own. Several other 

studies have demonstrated similar interference effects (e.g. Freundlieb et al., 2016;  

Surtees, Apperly & Sampson, 2016), whilst the original work by Sampson et al. 

(2010) has been replicated many times (e.g. Furlanetto, Becchio, Samson & Apperly, 

2016; Nielsen, Slade, Levy & Holmes, 2015;  Ramsey, Hansen, Apperly & Samson, 

D, 2013; Schurz, Kronbichler, Weissengruber, Surtees, Sampson & Perner, 2015). 
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This finding is critical for our understanding of the overlap between our own and 

others’ visual perspectives, and supports Piaget’s (1951; 1956) proposal that 

decentration in childhood is marked by the ability to represent multiple perspectives 

at the same time. This integration of other perspectives can be beneficial to joint 

action (Freundlieb et al., 2016) and action understanding (Creem-Regehr et al., 

2013), and has also been shown to help us to imagine, and describe routes from 

different perspectives (Janzen, Schade, Katz & Herrmann, 2001).  

In order to coordinate our actions with another person’s, we need to be able to 

make online predictions about our partner’s action intentions. One possible way that 

we do this is via the knowledge we possess about what the other person can see, 

and how their individual vantage point will afford their interaction with their 

environment (Creem-Regehr et al., 2013). Therefore, in joint actions, we rapidly 

override our own egocentric perspective (the way we see the world through our own 

eyes) and instead adopt a shared perspective that integrates both our own and our 

co-actor’s perspectives (Freundlieb et al., 2015). Several studies, this time using 

more implicit measures of VPT, have shown that we are particularly sensitive to the 

visual perspectives of others when engaging in joint actions, and we spontaneously 

override our own egocentric perspective and incorporate others’ perspectives. In a 

negative priming task, Frischen, Loach, and Tipper (2009) showed that, in a joint 

action scenario, participants adopted an allocentric (non-egocentric) reference frame 

when inhibiting distractor targets, and were found to selectively attend to targets from 

the perspective of their partner, demonstrating that the observation of a co-actors 

actions can induce a preference for their, and not one’s own, visual perspective.  

Further studies have demonstrated that the presence of another person when 

performing joint actions can cause spontaneous shifts into their visual perspective 
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(e.g. Freundlieb et al., 2016; Freundlieb, Kovaks & Sebanz, 2018; Surtees, Apperly 

& Sampson, 2016; Tversky & Hard, 2009). Freundlieb et al. (2016), used a classic 

stimulus response task and demonstrated that acting with another agent led to 

spontaneous recruitment of the other’s visual perspective. Typically, spatial 

compatibility effects occur in stimulus response (SR) tasks where participants 

respond to laterally presented targets using either compatible (left button-press for 

left target) or incompatible (left button-press for right target) response buttons. The 

classic finding is that responses are faster when the laterality (left/right) of the 

response button maps directly on to that of the observed target, whilst incompatibly 

mapped responses are slower (Fitts & Seeger, 1953). Freundlieb et al. (2016) 

demonstrated that these effects occur spontaneously in response to vertically 

presented targets (top/bottom judgements) when these same stimuli would appear 

laterally (left/right) from a co-actors frame of reference. Specifically, response times 

for top/left mapped targets were faster than bottom/left mapped targets when this 

target appeared to the left of the other person, therefore demonstrating the 

incorporation of the other person’s perspective into participants’ egocentric frame of 

reference. 

Note, that it was necessary in these studies for the co-actor to be an active 

participant in the task in order for participants to adopt their visual perspective. In 

contrast, other studies have shown that simply suggesting to a participant that 

another person might act upon a set of objects, can induce a rapid shift from an 

egocentric to an allocentric frame of reference when judging the spatial relationships 

of object arrays in their presence (Tversky & Hard, 2009), indicating that knowledge 

about, and not observation of, a co-actor’s actions may induce spontaneous VPT in 

some circumstances.  
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Further insight into the social importance of VPT comes from studies which 

explore the relationship between VPT ability and individual differences in social 

functioning, often focusing on clinical samples of individuals with social impairments 

such as individuals with Autism Spectrum Disorder (ASD; e.g. Hamilton, Brindley & 

Frith, 2009) or schizophrenia (e.g. Langdon & Coltheart, 2001). Successful human 

social interaction is largely attributed to the possession of a ‘Theory of Mind’ (ToM; 

Astington & Jenkins, 1995; Frith & Frith, 2005; Watson, Nixon, Wilson & Capage; 

1999), which enables us to represent others’ mental states (e.g. Wimmer & Perner, 

1983), therefore research investigating a direct link between VPT and Theory of 

Mind (ToM) has focused predominantly on individuals, including children, with 

Autism Spectrum Disorder (ASD; e.g. Hamilton et al., 2009; Leekam, Baron Cohen, 

Perrett, Milders & Brown, 1997; Warreyn, Roeyers, Oelbrandt & De Groote, 2005; 

Zwickel, White, Coniston, Senju & Frith, 2011). ASD is primarily characterised by 

impairments in social cognition (American Psychiatric Association, 2013) and poor 

performance in ToM tasks compared to neurotypical (NT) individuals (Baron-Cohen, 

Leslie & Frith, 1985; Frith, 2001; Happe, 1995). It is unsurprising, therefore, that in 

some studies, individuals with ASD have been shown to under-perform typically 

developing (TD) individuals in measures of VPT (e.g. Hamilton et al., 2009; Leekam 

et al., 1997; Warreyn et al., 2005), especially given the evidence for the important 

contribution of VPT to social and cognitive development (e.g. Piaget, 1951; Flavell et 

al., 1981). However, given the vastly varied clinical picture of ASD (APA, 2013), and 

the already mentioned discrepancies in the reported age of VPT acquisition in 

children (e.g. Flavell et al., 1981; Piaget & Inhelder, 1956, Sodian et al., 2007), it is 

equally unsurprising that, on the whole, the relationship between ASD and VPT 

remains unclear, with some studies (e.g. Zwickel et al., 2011) showing that 
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individuals with ASD may indeed possess the same VPT abilities as TD individuals, 

and some finding that verbal mental age, rather than ASD per sé, predicts poor 

performance in VPT tasks (Leekam et al., 1997; for review see Pearson, Ropar & 

Hamilton, 2013). 

There is, however, some indication in the scientific literature that other psychiatric 

disorders may also be associated with difficulties in taking another person’s 

perspective. Individuals with schizophrenia, whom are similarly impaired in social 

cognition to those with ASD, have been shown to underperform healthy individuals in 

a number of studies (Eack, Wojtalik, Newhill, Keshavan & Philips, 2013; Eack, 

Wojtalik, Keshavan, & Minshew, 2017; Langdon & Coltheart, 2001; Langdon, 

Coltheart, Ward & Catts, 2001). Similarly, interference effects observed in the avatar 

task (Sampson et al., 2010), which have been reliably replicated on several 

occasions (Furlanetto et al., 2016; Nielsen et al., 2015;  Ramsey et al., 2013; 

Schurzet al., 2015) do not replicate with psychopaths (Drayton, Santos & Baskin-

Sommers, 2018), who typically exhibit a lack of empathy for others (Decety, Chen, 

Harenski & Kiel, 2013; Jolliffe & Farrington, 2004) showing that VPT may be 

necessary for people to empathise with others. 

In summary, it is clear that VPT plays a role in the development of (Flavell et al., 

1981) and sustainment (Freundlieb et al., 2018; Freundlieb et al., 2016) of 

successful social interactions, and also that those who lack the ability to take others’ 

perspectives are likely impaired in other areas of social cognition (Eack et al., 2013; 

2017; Hamilton et al., 2009; Langdon et al., 2001). Yet, despite the abundant 

evidence that VPT plays an important role in social interactions, it is still unclear 

which mechanisms drive some of these processes. 
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1.2  Types of visual perspective taking. 

 Flavell and colleagues (1981) proposed two qualitatively different, and 

sequentially acquired processes in visual perspective taking (VPT): level-one VPT 

(VPT-1), which computes what another person can see, and level-two VPT (VPT-2), 

which calculates how a scene appears to another person. As in the previous 

examples, VPT-1 allows us to judge whether an oncoming driver can see us 

approaching a road, whereas VPT-2 enables us to derive how a photograph would 

look to another person, and adjust its position to allow them to see it clearly. VPT-2 

is also the process by which we can quickly derive that an object appearing to our 

left would appear to the right of a person standing opposite us. 

The distinction between level-one and level-two perspective taking is well 

supported by research which shows that very young children possess knowledge 

about what another person can or cannot see (Flavell et al., 1981; Poulin-Dubous et 

al., 2007; Sodian et al., 2007), but it is not until later that children are able to explicitly 

express how a scene or object would appear to another person (e.g. Borke, 1975; 

Hughes, 1975; Lempers et al., 1977), demonstrating that the respective levels of 

perspective taking are sequentially acquired in childhood, and likely require different 

levels of cognitive development (Flavell et al., 1981; Piaget, 1951; Piaget & Inhelder, 

1956). For example, although infants as young as 14 months show evidence of 

representing what another person can or cannot see to better understand why they 

are reaching for a particular object (Sodian et al., 2007), but it is not until they reach 

the age of four years that they are able to accurately report how an arrangement of 

model mountains would appear from someone else’s perspective (Borke, 1975).  
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Though by adulthood, most people have already acquired the more complex 

ability of representing how a scene or object appears to others, both levels are still 

used under different circumstances throughout adulthood, indicating that VPT-1 and 

VPT-2 serve different functions, and are driven by separate mechanisms. Several 

studies have found a clear qualitative distinction between VPT-1 and VPT-2 in adults 

as well as in children (e.g. Kessler & Thompson, 2010; Michelon & Zacks, 2006; 

Surtees, Apperly & Sampson, 2013), this time demonstrating the different functions 

of VPT-1 and VPT-2, rather than emphasising sequential acquisition. Michelon and 

Zacks (2006), for example, demonstrated that judgements about whether or not a 

doll could see an object (indexing VPT-1) were unaffected by the position of the doll 

relative to the participant, but spatial judgements about whether an object appeared 

to the left or the right of the doll (indexing VPT-2) took longer the further the doll was 

rotated away from them. The same distinction has also been observed by Kessler 

and colleagues (2010) in similar studies, indicating different underlying mechanisms 

for each level of perspective taking.  

Tasks that measure VPT-1 (e.g. Furlanetto et al., 2016; Michelon & Zacks, 

2006; Nielsen et al., 2015; Sampson et al., 2010) provide evidence that VPT-1 

calculates what another person can or cannot see in an often implicit and automatic 

manner (e.g. Sampson et al., 2010). In Sampson et al.’s (2010) avatar task, for 

example, numerical judgements about items in a scene were slower and less 

accurate if the avatar in the scene could see a different number of items than the 

participant, even though the avatar in the scenes was completely task irrelevant. 

These interference effects are attributed to an involuntary overlap of self and other 

perspectives, though interestingly they appear to be largely reduced when 
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participants believe that the avatar in the scene is wearing occluding goggles, and 

therefore cannot ‘see’ the disks on the wall (Furlanetto et al., 2016).  

The mechanisms that establish whether someone sees an object (or not) 

seem to reflect relatively straightforward line-of-sight computations (e.g. Baker, 

Levin, & Saylor, 2016; Michelon & Zacks, 2006; Surtees et al., 2013). Michelon and 

Zacks (2006) demonstrated that VPT-1 is derived from following another person’s 

line of sight by manipulating the distance between the doll and the target object. 

Larger distances were reflected by longer response latencies, whilst objects 

positioned close to the doll were judged more rapidly. In contrast, the orientation of 

the doll’s position, relative to the participant, did not influence response times, 

suggesting a more straight forward mechanism for VPT-1 than VPT-2, which is 

known to be influenced by the degree to which another agent is rotated away from 

us (e.g. Kessler & Rutherford, 2010; Kessler & Thompson, 2010; Kozhevnikov, 

Motes, Rasch & Blajenkova, 2006). 

VPT-1 calculation therefore depends upon following another person’s line of 

sight towards an object or scene, and when interrupted with opaque goggles, or an 

occluding screen, participants rapidly compute that the person cannot see the object, 

and do not experience interference from their perspective. 

Unlike VPT-1, which serves a seemingly basic function, more sophisticated 

VPT-2 can be broken down further into spatial, or ‘where’, judgements (e.g. 

Freundlieb et al., 2015; Zwickel & Muller, 2010; Tversky & Hard, 2009) and visual, or 

‘how’, judgements (e.g. Freundlieb et al., 2018; Surtees et al., 2016). Spatial VPT-2, 

often referred to as ‘spatial perspective taking’ (SPT) refers to judgements made 

about spatial properties of objects. For instance in explicit tasks, participants may 
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judge whether an object appears to the left or the right of another agent (e.g. Kessler 

& Rutherford, 2010; Kessler & Thompson, 2010; Michelon & Zacks, 2006), or in 

implicit tasks, people may be asked to make such judgements from their own 

perspective (e.g. whether an object appears to the left or right) in the presence of 

another person that would make these judgments differently(e.g. Freundlieb et al., 

2016; Tversky & Hard, 2009; Zwickel & Muller, 2010).  

One common manipulation used in explicit SPT tasks is to vary the angular 

distance between the participant and another agent and ask participants to make 

judgements about where objects are positioned from the perspective of the other 

person (e.g. Kessler & Rutherford, 2010; Kessler & Thompson, 2010; Kessler & 

Wang, 2012; Koshevnikov et al., 2006). Kessler and Thompson (2010) demonstrated 

that people find it harder to make spatial judgements from another person’s 

perspective the further they are rotated away from them. Participants were shown 

pictures of an avatar sitting facing a round table, the position of whom was varied 

between trials. Sometimes the avatar was positioned very close to the observer, and 

at other times the avatar was positioned further away. During the trials, a flower and 

a gun appeared on the table in front of the avatar, and participants were asked to 

make a left/right judgement about the location of one of the objects from the avatar’s 

viewpoint. Unlike in VPT-1 tasks, which have shown that angular disparity has no 

influence on people’s ability to judge whether or not another agent can see an object 

(e.g. Michelon & Zacks, 2006), for SPT, Kessler and Thompson (2010) found the 

distance between the participant and the avatar reliably predicted response duration. 

When the avatar was positioned further away, response times became much longer 

compared to when the avatar was closer to the participant. These, and other similar 

findings (e.g. Kessler & Rutherford, 2001), demonstrate a clear linear relationship 
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between time taken to compute how a scene looks to another person and where this 

other person is positioned relative to oneself. One well supported explanation for this 

is that people mentally rotate themselves into the position of another person. The 

further a person has to rotate, the longer this transformation takes (Kessler & 

Rutherford, 2010; Kessler & Thompson, 2010; Kessler & Wang, 2012; Koshevnikov 

et al., 2006).  

Despite the relatively sophisticated mental travel that it requires, implicit 

measures of VPT-2, or SPT, (e.g. Freundlieb et al., 2016; Tversky & Hard, 2009; 

Zwickel & Muller, 2010) have demonstrated a similar overlap of perspectives to that 

shown in VPT-1 tasks (e.g. Sampson et al., 2010). For example, Zwickel and Muller 

(2010) used a simple spatial judgement task to demonstrate interference effects of 

conflicting perspectives. In their task, participants were shown images of a face or a 

grey rectangle, and white dots were presented either laterally or vertically around the 

object. The task was simply to judge the location of the dot when it appeared on the 

screen. Left/right judgements were slower in the presence of a face compared to a 

rectangle, whilst vertical judgements were unaffected by the central stimulus. In this 

task, a dot presented to the right of a participant would appear to the left of the face 

on the screen, and this inconsistency in spatial reference frames was found to slow 

down responses, indicating an overlap between the self and other perspectives.  

Visual VPT-2 judgments, rather than spatial judgements, reflect the visual 

properties of objects or scenes, for example, whether a number might appear 

differently from a non-egocentric perspective. Indeed, Surtees et al. (2016) recorded 

participants’ recognition times for numbers, and found that judgements were slowed 

down when the same number would appear differently to another person positioned 

opposite the participant (e.g. “6” vs. “9”), whilst recognition judgements about 



- 16 - | P a g e  
 

numbers which had the same appearance from both perspectives (e.g. “8”) were not 

affected by the presence of another person. Similar interference effects were 

reported in a recent study by Freundlieb et al. (2018), who found that semantic word 

categorisation judgements were affected by the presence of another person. In this 

task, participants sat at 90 degrees (left or right) to a confederate and were asked to 

categorise a series of words presented vertically to the participant, and either upright 

or inverted to the confederate dependent upon where this person was sitting. 

Participants were particularly slow to make judgements about words that appeared 

upside down to the confederate, indicating that the participants’ knowledge of the 

relative difficulty of the task when responding from the confederate’s position 

interfered with their actual perspective, and slowed down judgements.  

Such findings have been influential to our understanding of VPT, primarily 

informing the qualitative distinction between level-one and level-two, and the relative 

sophistication of each level of perspective calculation. Overall, the evidence clearly 

demonstrates sequential acquisition of these abilities in childhood (VPT-1 followed 

by VPT-2), and shows that each level supports a different function (‘what’ vs. 

‘how/where’). We also know that both level-one and level-2 perspectives are 

represented similarly to our own, leading to interference effects in both VPT-1 (e.g. 

Nielsen et al., 2015; Sampson et al., 2010) and VPT-2 (e.g. Freundlieb et al., 2016; 

Freundlieb et al., 2018; Surtees et al., 2016) tasks, however what is less clear is 

which mechanisms underlie these types of perspective taking. Whilst there is 

evidence for a line-of-sight explanation for VPT-1 (e.g. Furlanetto et al., 2016), the 

mechanisms underlying VPT-2 are less well understood, and therefore require 

further study.  
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1.3  Mechanisms underlying VPT-1  

Level-one VPT computes what another person can or cannot see, and this 

information is derived from following another person’s line of sight in the direction of 

a target object (Furlanetto et al., 2016; Kessler & Rutherford, 2010; Michelon & 

Zacks, 2006; Sampson et al., 2010; Surtees et al., 2013). Several studies have also 

suggested that VPT-1 is an automatic process and it is widely accepted that 

humans can compute what others can see without cognitive effort or control 

(Bukowski, Hietanen & Sampson, 2015; Ramsey, Hansen, Apperly & Sampson, 

2013; Sampson et al., 2010). This is indeed supported by work that demonstrates 

VPT-1 in very young children (e.g. Flavell et al., 1981; Poulin-Dubous et al., 2007; 

Sodian et al., 2007), and also in primates (e.g. Hare, Call, Agnetta & Tomasello, 

2000), which demonstrate that very little cognitive control is required for this process.   

There has, however, been some suggestion in the literature that implicit 

measures of VPT-1 may be better explained in terms of gaze cuing (e.g. Gardner, 

Hull & Taylor, 2018), or domain general attention orienting effects (Santiesteban, 

Catmur, Hopkins, Bird & Heyes, 2014). Similarities between the effects observed in 

implicit VPT-1 tasks (Sampson et al., 2010) and those seen in studies employing a 

gaze cuing paradigm (e.g. Driver, Davis, Ricciardelli, Kidd, Maxwell & Baron-Cohen, 

1999; Friesen & Kingstone, 1998) have raised questions about whether VPT-1 and 

gaze cuing are distinct processes, and whether we automatically derive what other 

people can see, rather than simply reflexively orient our attention to where another 

person is looking.  

In gaze cuing tasks, the typical finding is that the looking direction of another 

person causes the observer to orient their attention to look in the same direction, 
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leading to faster identification of targets that are presented in the line of sight of this 

other person (e.g. Driver et al., 1999). The well-known finding is that these gaze 

congruency effects typically do not occur with an SOA of less than 300ms (Freisen & 

Kingstone, 1998; Friesen, Moore & Kingstone, 2005; Xu, Tanaka & Mineault, 2012). 

Bukowski et al. (2015) therefore manipulated stimulus onset asynchrony (SOA) in a 

variant of Sampson et al.’s (2010) task combining the classic avatar task stimuli with 

a simple gaze cuing paradigm (e.g. Posner, 1980) to test whether this experiment 

design would induce gaze cuing effects at SOA < 300ms, owing perhaps to its 

relative salience compared with classic cuing paradigms (Treisman & Gelade, 1980).  

Participants were shown a scene identical to that used in Sampson et al.’s (2010) 

task. Participants were asked to validate the number of coloured disks that appeared 

on the wall, either within the line of sight of the avatar (congruent) or on the wall to 

which the avatar’s back was turned (incongruent). In half of all trials, the disks were 

presented at the same time as the avatar (SOA = 0ms) and in the other half, disk 

onset was delayed by 300ms relative to the appearance of the avatar (SOA = 

300ms). Response times were fastest in congruent trials following a 300ms delay, 

replicating prior gaze congruency thresholds (Freisen & Kingstone, 1998; Friesen et 

al., 2005; Xu et al., 2012), however, these gaze congruence effects could not be 

systematically found when the avatar and the disks appeared at the same time. The 

exception, however was that congruency effects did occur when participants were 

prompted to take the perspective of the avatar when performing the task. Whilst 

these results may indicate that VPT-1 does not fully satisfy the third automaticity 

criterion of being stimulus driven (Moors et al., 2006), this study does validate the 

avatar task (Sampson et al., 2010) as a measure of implicit VPT-1, rather than one 

that indexes attention orienting. Interestingly, Gardner, Bileviviute and Edmonds 
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(2018), whom in one paper (Gardner et al., 2018) supported an attention orienting 

view of VPT, found similar evidence for a distinction between gaze congruency and 

VPT-1 in another variant of the avatar task (Sampson et al., 2010), lending further 

support to Bukowski et al.’s (2015) findings. Taken together, these findings certainly 

point to spontaneous, if not automatic, computation of what another person can see, 

and cannot be fully explained by attentional cuing.  

A further assumption is that VPT-1 is an intrinsically social process, and that we 

are more susceptible to an overlap in perspectives in the presence of another seeing 

agent (Sampson et al., 2010), compared to non-seeing agents (Furlanetto et al., 

2016) or objects (Nielsen et al., 2015). VPT-1 is indeed believed to tap into 

mentalizing abilities (e.g. Hamilton et al., 2009; Schurz, Kronbichler, Weissengruber, 

Surtees, Samson & Perner, 2015) which allow us to represent others’ beliefs, goals, 

desires, and crucially, knowledge. We therefore do not automatically adopt the 

perspective of objects because they do not possess a mental state. Bukowski et al. 

(2015), for example, provided strong evidence for a mentalising account of VPT, 

where it was only when representing the mental state of the avatar that gaze 

congruency effects occurred with a short SOA. 

This, again, has come under scrutiny (e.g. Santiesteban et al., 2014; Cole & 

Millet, 2019), but the evidence for VPT -1 as a social process is extensive (see 1.1 

for overview). In response to claims that VPT-1 effects occur in the presence of other 

objects, such as an arrow (e.g. Santiesteban et al., 2014), Nielsen et al. (2015) 

substituted the avatar in Sampson et al.’s (2010) task for either an arrow, or a 

coloured box and asked participants to respond from a ‘self’ perspective, or an 

‘other’ perspective (i.e. respond from the perspective of the avatar, the arrow, or the 

coloured box). They found that participants were most likely to experience 
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altercentric interference effects in the presence of a human avatar when responding 

from their own perspective, whilst the smallest effects were seen in the coloured box 

condition. Conversely, in ‘other’ trials, the largest interference of egocentric 

perspective was observed, showing that participants generally took longer to 

respond from the ‘other’ perspective, due to their own conflicting perspective, whilst 

in human trials this egocentric interference was much smaller. Self-reported 

measures of perspective taking and empathic concern (Interpersonal reactivity index; 

IRI, Davis 1980) were found to correlate only with interference from a human avatar, 

and not from the non-social objects. This study therefore demonstrates that 

interference of another’s perspective occurs more for social than non-social stimuli, 

and also by extension that VPT-1 is stimulus driven, and might therefore satisfy the 

criteria for automaticity (Moors et al., 2006). 

To summarise VPT-1 is, to our knowledge, automatically derived in the presence 

of a seeing agent. By following another person’s line of sight, humans rapidly 

calculate what another person can or cannot see, and do so effortlessly, and without 

intent. What is less clear is how the intrusion of others’ perspectives is mentally 

represented, and whether the reported interference occurs on a conceptual, 

perceptual or epistemic level.   

 

1.4  Mechanisms underlying VPT-2 

Whilst we have a relatively clear understanding of the cues and mechanisms that 

drive VPT-1, the mechanisms that drive VPT-2 are less well understood. It is, 

however, widely assumed that VPT-2 is a cognitively effortful and controlled process 

(Flavell et al., 2018), unlike its level one counterpart.  
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 One explanation of the mechanisms underlying allocentric perspective 

calculations is that we (mentally) reposition ourselves in space when we probe the 

visual perspective of another person. This type of transformation is often described 

as a ‘self-rotation’ (e.g. Kessler et al., 2010; 2010), and refers to an egocentric 

perspective transformation (Kozhevnikov et al., 2006) where we imagine ourselves 

to rotate around a central point in a scene, whilst the scene itself remains static. 

Related to, but qualitatively different from this are object-based transformations, 

where instead of imagining ourselves in a different position in space, we imagine the 

scene we are judging to rotate to align with our own viewing perspective 

(Kozhevnikov et al., 2006). To solve an explicit perspective taking task (e.g. the 

Three Mountains Task; Piaget & Inhelder, 1953), it is clear that either one of these 

strategies could be employed, but distinguishing between which transformation might 

happen in an implicit task (e.g. the ‘6’ vs. ‘9’ distinction; Surtees et al., 2016) is much 

harder and still actively debated (e.g. Muto, Matsushita & Morikawa, 2018). 

In explicit measures of VPT-2, several studies have demonstrated a link between the 

angular distance from the observer to the target other person, in each case showing 

a reliable linear increase in time taken to make left/right judgements from the agent’s 

perspective with increasing angular rotation away from the observer (e.g. Kessler & 

Rutherford, 2010; Kessler & Thompson, 2010; Kessler & Wang, 2012). One 

explanation is that to represent how a scene looks to another person, we must first 

mentally rotate our position in space into that of the target ‘other’, taking longer the 

further we have to (mentally) travel. This explanation fits with an embodied account 

of social cognition (e.g. Glenberg, 2010; Proffitt, 2006; Tversky & Hard, 2009), which 

proposes that our real or imagined actions facilitate cognitive processes, in the 

present case, taking the perspective of another person. This explains why, for 
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example, the match or mismatch of our posture with that of the target person might 

interfere with, or improve performance in VPT-2 tasks (e.g. Kessler & Rutherford, 

2010; Kessler & Thompson, 2010). Kessler and colleagues (2010; 2010) have 

demonstrated across a number of tasks that if an observer adopts a posture that 

matches that of the target ‘other’, then responses are faster compared to if they 

posture is misaligned, because the mental transformation from actual to imagined 

position becomes more effortful. However, in implicit VPT-2 tasks, such as Surtees 

et al.’s (2016) number identification task, this explanation does not hold, or at least it 

does not seem an efficient strategy for an individual to use if it is indeed a controlled 

cognitive process.  People may indeed mentally rotate to the position of the person 

standing opposite them when making VPT-2 judgements in their presence, and as 

such find it more difficult than usual if, for instance, a “6” would appear as a “9” this 

other person. However, if such mental transformations are controlled, it is difficult to 

interpret why participants would rotate into the position of another person when (1) 

the other person is task irrelevant, and (2) doing so impedes their performance in the 

task. Similarly, in Freundlieb et al.’s (2016) spatial compatibility task, where 

participants appear to spontaneously recruit the perspective of their co-actor, it is not 

clear why this would happen voluntarily if the task demands do not require effortful 

computation of the other’s perspective.  

It is also unclear which social cues drive VPT-2. For example, we know that for 

VPT-1 calculations, a person’s visual access to an object is determined by following 

their line of sight however, the few studies that have directly tested this for VPT-2 

(Freundlieb, Sebanz & Kovaks, 2017; Mazzarella, Hamilton, Troiani, Mastromauro & 

Conson, 2012; Furlanetto, Cavallo, Manera, Tversky & Becchio, 2013) have 

delivered inconsistent results. For example, Freundlieb et al. (2017) found that a co-
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actor’s visual access to a stimulus mediates participants’ level-two computations of 

their visual perspective. Using the same experimental design as in their prior work 

(Freundleib et al., 2016), participants responded with either a left or a right button to 

vertically presented stimuli. These same stimuli appeared laterally from the 

perspective of a co-actor who was positioned at 90 degrees to the left or the right of 

the participant. As in prior work, the data showed spatial compatibility effects as 

though participants were responding from the other person’s perspective, however 

the same effects were not present when this other person wore occluding glasses 

and could therefore not see the target stimuli.  This may indicate that VPT-2 is 

computed secondarily to VPT-1 (i.e. ‘what’ before ‘how’), or, like VPT-1, it could be 

that VPT-2 is similarly dependent upon line of sight following.  

However, in contrast, Mazzarella et al. (2012) found that merely seeing another 

person look towards an object did not induce a detectable shift to their perspective. It 

was only through observing the other person reach for the object that caused 

interference from their spatial perspective. Similarly, Furlanetto et al. (2013) showed 

that while viewing someone gaze at an object numerically increased shifts to their 

spatial perspective, this did not seem to be statistically robust, and even removing 

gaze cues altogether (by blurring the eye region) did not affect whether people 

judged objects from another’s or their own perspective. It is therefore unclear 

whether eye-gaze towards the target object drives VPT-2.   Again, with action, the 

picture is very similar. Whilst in Freundlieb et al.’s (2016) spatial compatibility task 

shifts into another’s perspective only occurred if this other person was actively 

engaging in the task, Tversky and Hard (2009) found that people were more likely to 

respond from another’s perspective simply because they were present when asked 
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to make judgements about the spatial location of objects. This raises further 

questions about what drives VPT-2 calculations.  

In sum, the specific mechanisms that drive VPT-2 are poorly understood. Whilst 

the evidence for an embodied account of VPT-2 (e.g. Kessler et al., 2010) is very 

clear, such studies employing the methods used here rely on participants’ explicit 

allocentric judgements, therefore in the case of implicit VPT-2, there may be an 

alternative explanation. In particular, we need to question the long-held belief is that 

VPT-2 is a cognitively demanding, controlled process. Primarily, this does not fit with 

the results in implicit tasks (Surtees et al., 2016; Freundlieb et al., 2016; Freundlieb 

et al., 2018), which show seemingly unintentional VPT-2, which happens at the 

detriment to participants’ performance in these tasks. Secondly, the notion that VPT-

2 is an effortful process does not fit with the numerous examples of daily social 

interactions in which people benefit from, it seems unknowingly, taking another’s 

perspective.  

 

1.5  VPT as perceptual simulation    

One pressing issue is to better understand exactly how we represent what others 

can see, and how they see it. While it is well supported that people can – often 

spontaneously – represent another’s perspective, the mechanisms that support it are 

unclear. Several studies have suggested that we represent the content of others’ 

visual perspectives in a similar way to our own (e.g. Furlanetto et al., 2016; 

Freundlieb et al., 2016; Freundlieb et al., 2017; Kampis et al., 2015; Sampson et al., 

2010; Surtees et al., 2016). Surtees et al. (2016), for example, demonstrated that 

judgements about objects from one’s own perspective are harder if this same object 
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appears differently to somebody else (e.g. a “6” would appear as a “9” to a person 

standing opposite oneself). Similarly, Sampson et al.’s (2010) avatar task 

demonstrates that making judgements about a number of objects visible in a scene 

is more difficult when another person would judge this differently from their own 

perspective. Other studies have provided evidence for similar intrusion of others’ 

perspectives, not only when making judgements about what one can see (Sampson 

et al., 2010) but also how one sees the world (Surtees et al., 2016), or where objects 

appear relative to oneself (Freundlieb et al., 2016).  

This interference suggests that, on some level, own and others’ views of an item 

are represented similarly. However, to our knowledge, it has not yet been shown 

what form this ‘overlap’ between multiple perspectives takes. It is possible, for 

example, that it takes longer to judge a “6” as a “6” when it looks like a “9” to 

someone else (Surtees et al., 2016) simply because our judgments become more 

uncertain. In other words, we may generally know that what they see is different to 

us, without actually representing what specifically the other person is seeing. In other 

words, the slowing of responses when own and others’ views on an item mismatch 

(e.g. Sampson et al., 2010, Surtees et al., 2016) could simply reflect uncertainty that 

results from this uncertainty, but would not indicate that participants are really 

representing the content of the other person’s visual perspective. Another possibility 

is that the slowing indexes that people are simply aware that the other person would 

respond to the stimulus using a different button to oneself. Indeed, this could explain 

why these effects are larger – or only observed – in joint action situations, or when 

the other person makes any action at all (e.g. Freundlieb et al., 2016).  

The strongest explanation, which is implied in many descriptions of perspective 

taking, but never directly tested, is that the representation of others’ visual input 
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takes a (quasi)-perceptual form, and that VPT ‘paints’ an image of the content of 

others’ perspectives onto our own perceptual system. In the above experiments, 

judging a “6” as a “6” would therefore become more difficult because the visual 

representation of the others’ view – the shape “9” – intrudes into our own perceptual 

processes, making it harder to recognize it as it really is. Indeed, all of the findings 

described above, from slowed down judgements about the magnitude of a number 

(Surtees et al., 2016), to judgements about the number of objects visible in a scene 

(Sampson et al., 2010) could be explained by a framework of perceptual intrusions of 

the others’ viewpoints into our own perception. 

Confirming such a perceptual representation of others’ viewpoints would solve 

several problems with our current understanding on how others’ perspectives are 

represented and how they could drive behaviour in social interactions. If others’ 

views on the world would be represented in a (quasi-) perceptual manner, they could 

drive processes such as perceptual decision making and action control in the same 

bottom-up manner as our own input (Kampis et al., 2015; Roelfsema & de Lange, 

2016), perhaps explaining the link to joint action (Creem-Regehr et al., 2013; 

Freundlieb et al., 2016). A (quasi-) perceptual representation would also provide 

direct access to others’ view the world, and how their view differs from ours, opening 

up the possibilities to link visual perspective taking to more sophisticated mentalizing 

abilities like Theory of Mind and false belief understanding in particular (Hamilton et 

al., 2009; Schurz et al., 2015).  

On a theoretical level, such a perceptual account would link perspective taking to 

prior research on mental imagery. Mental imagery has been proposed to serve as a 

mechanism by which we re-live – or mentally manipulate – a seen object or event by 

way of a simulation, or ‘emulation’ (Moulton & Kosslyn, 2009). Indeed, the role of 
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mental imagery in perceptual decision-making is well established (e.g. Shepard & 

Metzler, 1971). It is argued that visual simulations are pictographic, visual memories, 

and that their retrieval and reliving operates using the same perceptual machinery as 

‘real’ visual perception (e.g. Ganis, Thompson & Kosslyn, 2004), which allow us to 

make specific predictions by drawing on past experiences. Mental imagery is 

therefore a very powerful tool, allowing us to predict action outcomes, evaluate 

emotional stimuli, plan the best route home, and even empathise with others.  

It is noteworthy that VPT is thought to serve similar roles in social cognition 

(Creem-Regehr et al., 2013; Flavell et al., 1981; Hamilton et al., 2009; Piaget, 1951), 

and that similar brain regions, commonly known as the ‘core network’ (Buckner, 

Andrews-Hanna & Schacter, 2008) have been implicated in tasks measuring visual 

mental imagery and VPT, and also ToM (Buckner & Carroll, 2007; Hassabis & 

Maguire, 2007). Other studies have shown a clear overlap in neural machinery for 

mental imagery and visual perception (e.g. Ganis et al., 2004; Kosslyn, Thompson & 

Alpert, 1997), demonstrating that visual mental imagery elicits perception-like 

patterns of low-level processing in the primary visual cortex, indicating that visual 

simulations happen at the perceptual level.   

 Another key characteristic of mental imagery is that visual mental simulations 

happen sequentially (e.g. Fisher, 2006; Moulton & Kosslyn, 2009). For instance, the 

retrieval of one image from memory can trigger a series of further images (e.g. the 

unfolding of an action), or affective responses (e.g. by triggering the simulation of a 

feeling of joy at the birth of a child, or grief at the death of a loved one; Holmes, 

Mathews, Mackintosh & Dalgleish, 2008), all of which contribute to our ability to 

make specific event-related predictions (Moulton & Kosslyn, 2009). Shepard and 

Metzler’s (1971) seminal work which investigated mental rotation of objects 
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contributed substantially to our current understanding of the sequential nature of 

such mental simulations. They presented participants with pairs of three-dimensional 

block objects at differing orientations and asked them to judge whether both were the 

same, or whether one object was the mirror-inverted version of the other. They found 

that the time taken to judge whether a rotated object was the same as its upright 

counterpart increased linearly with the increasing angular difference between the two 

objects. Since then, numerous studies have replicated this pattern with alphanumeric 

characters (Rusiak, Lachman, Jaskowski & van Leeuwen, 2007), abstract shapes 

(Shepard & Metzler, 1988), and body parts, such as hands and feet (Ionta, Fourkas, 

Fiorio & Aglioti, 2007).  

These studies demonstrate that in order to solve MR problems, we simulate 

intermediate representations of objects at different orientations, with each 

intermediate simulation serving as the basis for the next, until we arrive at a point 

where we can accurately judge the characteristics of the object we are observing. 

Simulation therefore serves as an ‘epistemic device’ (Moulton & Kosslyn, 2009; 

p1276) that operates sequentially and can form the basis of perceptual decision 

making. Put simply, we perceptually represent the rotating object continuously until it 

appears upright on our ‘mind’s eye’ (Farah, 1989), thereby simulating the experience 

of actually observing the object rotating in real life. As with a real object rotation, the 

further the object needs to be rotated back to upright, the longer this takes, as is 

reflected in the classic MR response pattern where response times increase linearly 

as a function of the object’s increasing angular disparity away from upright (Ionta et 

al., 2007; Rusiak et al., 2007; Shepard & Metzler, 1971; Shepard & Metzler, 1988).  

It is possible, then, that VPT allows such simulations to occur not from one’s 

own perspective, but from that of the other person. For example, when judging the 
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magnitude of the number “6”  when standing opposite somebody who views it as a 

“9”, it is possible that the first representation arises from this other person’s 

perspective, after which this intrusion must be corrected to upright from one’s own 

perspective. If we spontaneously simulate the content of another person’s 

perspective, this mental image may override our own perceptual input, leading to the 

necessity to correct the mental image prior to making a judgement, which would 

result in the observed longer response times in Surtees et al.’s (2016) study.   

As with mental imagery (Fisher, 2006; Moulton & Kosslyn, 2009) and 

perceptual decision making (e.g. Shepard & Metzler, 1971), other studies show that 

a person’s perceptual experiences, for example when observing an action, can be 

distorted by top-down influences (e.g. Hudson, McDonough, Edwards & Bach, 2018; 

McDonough, Hudson & Bach, 2019), and that our judgements can be biased by prior 

knowledge about a stimulus (e.g. Bruner & Goodman, 1947; Summerfield & de 

Lange, 2014). That what people perceive, or ‘see’ is biased by their prior 

expectations about an action or event is accumulating increasing support in the 

scientific literature. Indeed, several behavioural studies have demonstrated that 

social perception itself is an inferential process (e.g. Bruner & Goodman, 1947; 

Hudson, McDonough, Edwards & Bach, 2018; McDonough, Hudson & Bach, 2019), 

and what we ‘see’ is often not a veridical representation of what ‘is’. Moreover, fMRI 

evidence (e.g. Kok, Brouwer, van Gerven & de Lange 2013) has shown that high-

level processes, such as our prior knowledge or expectations, can influence very 

low-level perceptual processes in their earliest stages, leading to distortions in the 

way we perceive an event. Therefore when another’s simulated perspective provides 

an entry point to our perceptual decision making (such as in a MR task; e.g. Shepard 

& Metzler, 1971), what we perceive may indeed reflect our knowledge about how the 
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world looks to another person, rather than what we see ourselves, causing us to 

spontaneously make judgements from this allocentric perspective.  

This view would support the notion of a shared representational space for own 

and others’ visual perspectives (e.g. Jolicoeur & Cavanagh, 1992; Kampis et al., 

2015; Piaget, 1951), Indeed, such an overlap for own and others’ perspectives has 

been observed in infants (Kampis et al., 2015). Kampis et al. (2015) recorded infants’ 

event-related EEG activity while they observed scenes showing an actor and an 

object to test whether they used their own representational system when tracking the 

actor’s knowledge, beliefs, and visual perspective. As in other studies (e.g. Kaufman, 

Csibra & Johnson, 2005; Kaufman, Csibra & Johnson, 2003), the authors found 

gamma-band oscillatory activity for sustained object representation when objects 

were occluded from the infants’ sight. Crucially, the same activations were found 

when the object was occluded from the actor’s perspective, despite the infants 

having continued visual access to the object. The infants therefore derived that the 

actor could not see the object for a time, and held its representation in mind on 

behalf of the actor, indicating a shared representational space for own and others’ 

object representations. This may indeed help to explain the overlap in perspectives 

that is thought to drive interference effects in implicit measures of VPT (Freundlieb et 

al., 2016; Sampson et al., 2010; Surtees et al., 2016) and may also explain its link to 

sophisticated mentalizing abilities (Furlanetto et al., 2018; Hamilton et al., 2009; 

Kampis et al., 2015; Piaget, 1951).  

When we take another’s visual perspective, the visual system is perhaps, 

therefore, not simply a space for processing direct visual input, but is a ‘blackboard’ 

(Roelfsema & de Lange, 2016) upon which perceptual experiences are constructed 

via the integration of own and (imagined) others’ visual input, and our own prior 
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expectations (e.g. Kok et al., 2013). These (quasi)perceptual experiences may then 

drive all processes that operate on perceptual input (Roelfsema & de Lange, 2016), 

facilitating perceptual decision making, but also emotional responses (Holmes et al., 

2008) and event-specific predictions (Moulton & Kosslyn, 2009) 

The primary aim of this thesis is to directly test whether VPT takes the form of a 

perceptual simulation, and whether this simulated perceptual input can facilitate 

faster perceptual decision making than one’s own visual input. It rests on one central 

prediction that follows from perceptual accounts of perspective taking: if we can 

virtually “see” through another’s eyes, then this perspective should not only interfere 

with own judgments (i.e. the slowing down of responses due to conflicting ‘self’ and 

‘other’ perspectives; Sampson et al., 2010; Surtees et al., 2016), but would also 

facilitate faster responding in tasks where another agent might (in principle) have 

clearer visual access to a scene than oneself.  

To our knowledge, no study has directly tested this prediction. Several studies 

show that different perspectives affect judgment of how many objects one sees 

(Sampson et al., 2010), where an object is positioned relative to oneself (Tversky & 

Hard, 2009), or how a number looks to oneself (Surtees et al., 2016). However, none 

of these studies were able to disentangle whether these intrusions from another’s 

perspective to only interfere with perceptual decision making, or whether they can 

also be beneficial, specifically in cases where we could rely on another’s view of an 

item that would be difficult to judge from one’s own. 

 

1.6    Thesis overview 



- 32 - | P a g e  
 

The primary aim of this thesis is to investigate whether VPT-2 takes the form of a 

perceptual simulation, and whether these simulated perspectives can facilitate, 

rather than only interfere with perceptual decision making.  All experiments 

presented in this thesis will employ a modified mental rotation experiment, similar to 

that used by Shepard & Metzler (1971), but with the critical manipulation that at 

times during the experiment the participants will also see another person, or non-

social (control) object, at the same time as the object they are judging. These 

experiments will measure whether the incidental insertion of another person (or 

object) will disrupt the known mental rotation pattern, where responses become 

progressively longer with objects’ increasing angular disparity away from upright 

(e.g. Shepard & Metzler, 1971).  

In each experiment, participants will be presented with a series of images 

showing a table, upon which alphanumeric characters will appear in either in their 

canonical or mirror-inverted form. As in similar studies (e.g. Ionta et al., 2007; Rusiak 

et al., 2007; Shepard & Metzler, 1971; Shepard & Metzler, 1988), these items will be 

presented at varying degrees of rotation away from upright to the participant. In 

some scenes another person or object will be present, appearing at 90 degrees to 

the left or the right of the participant, facing the table. In others, only the table and 

object will be visible to the participant. Participants will simply be asked to judge 

whether the character is canonical or mirror inverted (e.g. “R” vs. “Я”). We will then 

compare whether the classic response time patterns are disturbed by the presence 

of another person present in the scene.   

The experiments presented in chapters 2, 3 and 4  will use this method to directly 

test (1) whether we spontaneously adopt another person’s visual perspective during 

perceptual decision making, (2) whether others’ visual perspectives can facilitate 
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faster recognition of items, and (3) whether VPT takes the form of a perceptual 

simulation. Secondary to this, further experiments will begin to unpick the cues that 

drive VPT by substituting the inserted person with an object (chapter 3), and 

manipulating the person’s gaze direction (chapter 4). 

To support this work, we draw on prior evidence which demonstrates that mental 

imagery likens to the reliving of an event by way of a mental simulation (Moulton & 

Kosslyn, 2009). Several studies have demonstrated the perceptual nature of mental 

imagery (e.g. Ganis et al., 2004), which is known to be employed when we mentally 

rotate an object (e.g. Shepard & Metzler, 1971), providing us with an excellent tool to 

test whether VPT operates using similar perceptual mechanisms. By simply 

comparing the mental rotation pattern of objects in the presence of another person 

vs. when they are not there, any disturbances in the response time pattern might 

then be explained by a perceptual simulation framework, where intrusions of the 

other person’s perspective interfere with our own perceptual processes. 

The central prediction here is that if we perceptually simulate the content of the 

other person’s perspective, judgements about items oriented towards this person, 

and therefore (in principle) easier to judge from their perspective than our own, will 

be faster compared to if the characters are facing away from the other person or if 

this person is not present. Equally, if VPT does take the form of a perceptual 

simulation, we also expect to see some interference when judgements from this 

other person’s perspective would be harder than our own, that is, if a character is 

inverted from their perspective. Crucially, if mental rotation response times are 

governed by both one’s own and the others’ view on an item, then response times 

for the whole mental rotation (i.e. across angular disparities) will be predicted by not 

only the object’s orientation relative to the participant, but also its orientation relative 
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to the other person. Indeed, such an effect would demonstrate that VPT takes a 

perceptual form, and that intrusions from another’s visual perspective can be 

facilitatory as well as being a hindrance to task performance (e.g. Freundlieb et al., 

2018; Sampson et al., 2010; Surtees et al., 2016), and that they can serve as input 

to mental rotation processes. 

Chapter 2 of this thesis will first test whether we see such intrusions, and indeed 

whether VPT does take the form of a perceptual simulation. By using an implicit task, 

where the individuals inserted into the scenes are task-irrelevant, we will also 

observe whether any such intrusions occur spontaneously. This is important as VPT-

2 is widely assumed to be a controlled and cognitively effortful process (e.g. Flavell 

et al 1981; Kessler et al, 2010). However, if participants experience involuntary 

intrusions from the other’s perspective, this may indicate that VPT-2 is more 

spontaneous than previously thought. A further replication of the same study is also 

presented in this chapter.  

  Secondly, in this chapter we will begin to explore the cues that drive these 

effects. We therefore present a second experiment that addresses whether VPT 

intrusions occur in the presence of a ‘mindless’ object instead of a person. Several 

studies (e.g. Furlanetto et al., 2016; Nielsen et al., 2015) have shown that only 

humans, but not objects, can induce spontaneous VPT, supporting the link to social 

ability and ‘mindreading’ (Furlanetto et al., 2016). Indeed, in the presence of a 

person who possesses their own mind, and therefore thoughts, beliefs, knowledge 

and so on, we may simulate their visual perspective on order to probe their epistemic 

stance. In the case of an object that lacks such human qualities, we are less likely to 

attempt to understand how the world looks to it. To test this directly, we manipulate 
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between-subjects whether participants see a person or a lamp appear to the left or 

the right of the table, and compare the effects between groups.   

Finally in this chapter we present a third experiment, which will test this 

paradigm’s sensitivity to different instructions, specifically by manipulating between-

subjects whether we instruct participants to take the other person’s perspective or 

not. If consciously taking another’s perspective improves task performance in 

general, this will be reflected in an overall acceleration in response times, whereas if 

our paradigm does truly index spontaneous VPT, then we will see both increased 

facilitation and interference effects, simply reflecting a heightened version of 

intrusions recorded without perspective cuing in earlier experiments.   

Whilst chapter 2 of this thesis addresses the theoretical proposal that VPT-2 

takes the form of a perceptual simulation, subsequent chapters aim to test more 

basic assumptions that have been discussed in the earlier literature, such as which 

social cues drive VPT-2, or whether VPT-2 is indeed supported by mental self-

rotation. Chapter 3 therefore tests whether VPT-2 is driven by where another person 

is looking. People are known to derive what another person can see by following 

their line of sight (Furlanetto et al., 2016; Kessler & Rutherford, 2010; Michelon & 

Zacks, 2006; Sampson et al., 2010; Surtees et al., 2013) indicating a central role of 

gaze direction in VPT-1 calculations. However, few studies have directly tested this 

for VPT-2 (Furlanetto et al., 2013; Freundlieb et al., 2017; Mazarella et al., 2012), 

and the results from these studies have largely been inconclusive. For example one 

study indicates that a person’s gaze towards an object plays a critical role in driving 

VPT-2 calculations (Freundlieb et al., 2017), whereas others conclude that gaze is 

only relevant in conjunction with cues to action intention (Tversky & Hard, 2009), and 
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the data from a third indicate no contribution of eye-gaze in driving VPT-2 (Mazarella 

et al., 2012).  

The two experiments outlined in this chapter use the same experimental paradigm 

as the experiments outlined in chapter 2, but for one simple manipulation. In the first 

experiment we vary, between-trials, whether the inserted person in the scenes is 

looking at the object on the table, or looking away from the table towards the corner 

of the room. In the second experiment we vary looking directions between-

participants, thereby controlling for carryover effects (MacFie, Bratchell, Greenhoff & 

Vallis, 1989). This experiment also includes a third ‘outward’ gaze condition, in which 

the inserted individual looks away from the table and out towards the participant. 

This type of mutual gaze is known to be particularly special, in that it serves as an 

alerting signal, captures attention, and eliminates gaze cuing altogether (e.g. 

Mazzarella et al. 2012; for a review, see Hamilton, 2016). We therefore include this 

manipulation to (1) rule out gaze cuing as an explanation of effects observed in 

earlier versions of the task, and (2) to test whether the elimination of gaze-following 

disrupts the already reported response pattern.  

Finally, Chapter 4 will test whether VPT-2 is an embodied process, whereby we 

motorically simulate a whole body spatial transformation into the position of the other 

person in a scene. Several studies have shown that the time taken to make an 

explicit spatial judgement from another’s perspective (e.g. “where is the flower 

relative to the gun”) increases as a function of increasing angular distance between 

the observer and the other person (Kessler & Thompson, 2010; Kessler & 

Rutherford, 2010; Kozhevnikov et al., 2006; Surtees et al., 2013). Such studies have 

concluded that these judgements rely on an effortful process by which we imagine 

ourselves in a different position in space, and do so by way of mental self-rotation. 
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What is not clear is whether the same mechanism is involved in implicit VPT-2 

computations. Here we draw on research that shows that embodied cognitive 

processes, such as emotion recognition or mental rotation can be interfered with if a 

person is unable to physically perform a simulated action (e.g. Cook et al., 2012; 

Neal & Chartrand, 2011; Parsons, 1994). To test whether VPT-2 operates using a 

similar mechanism, in this experiment we restrict participants’ movement during half 

of the experiment trials. This experiment also considers whether participants’ 

movement plays a causal role in the deployment of VPT-2 processes (e.g. Friston, 

2010), or whether this movement may represent epiphenomenal ‘leakage’ of 

simulated self-rotation in space (Colton et al., 2018; Jacobson, 1930). 

‘Note that throughout the experiments outlined in this thesis, Bayes Factors are 

reported to quantify how well H1 predicts the observed data relative to H0 (BF10). BFs 

are described using the common terminology applied to Bayes Factors (Wagenmakers 

et al., 2018). By this convention, BF < 0.33 provides moderate evidence in support of 

H0 whilst BF > 3 indicates moderate evidence in favour of H1.   BFs that fall between 

these values are considered inconclusive, while the strength of the evidence increases 

the further they lay outside these boundaries (e.g. strong evidence > 10 – 30; very 

strong evidence > 30 – 100; extremely strong evidence >100). BFs are not reported in 

chapter 2 as these data were published prior to the date of submission of this thesis.  

Note 2. The people in the scenes observe the items at an angle of 90 degrees to the 

left or right of the participant respectively. This angle is calculated from the straight line 

from the centre of the item to the centre of the inserted person’s chest and does not 

change when gaze is manipulated (Chapter 3).  
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2. Chapter Two - Visual Perspective Taking as Perceptual simulation  

The initial studies aimed to resolve whether representations of others’ visual 

perspectives take the form of a perceptual simulation as has been implied in several 

accounts of VPT (Kampis et al., 2015; Surtees et al., 2013). These studies use a 

variant on a classic mental rotation task (Shepard & Metzler, 1971), and capitalise on 

the existing evidence that mental transformations recruit the same neural machinery 

as visual perception, which then drive perceptual decision making in a bottom up 

manner (Roelfsema & de Lange, 2016).  

These studies also test (1) whether others’ visual perspectives are derived 

spontaneously, (2) whether perspective taking occurs specifically in the presence of 

a human, compared to an object, and (3) whether explicit instructions to perspective 

take alter perceptual decision making.  

The experiments in this chapter were published in Current Biology and are presented 

in their published form (green copy). 
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2.1 Spontaneous vicarious perception of the content of another’s visual 

perspective. 

 

Eleanor Ward, Giorgio Ganis, Patric Bach 

 

Summary 

 

Visual perspective taking (VPT) is a core process of social cognition, providing 

humans with insights into how the environment looks from another’s point of view 

(Batson et al., 1997; Erle & Topolinski, 2015; Flavel et al., 1981; Tomasello et al., 

2005). While VPT is often described as a quasi-perceptual phenomenon (Kampis et 

al., 2015; Surtees et al., 2013), evidence for this proposal has been lacking. Here we 

provide direct evidence that another’s perspective can “stand in” for own sensory 

input perceptual decision-making. In a variant of the classic mental rotation task, 

participants judged whether characters presented in different orientations were 

canonical or mirror-inverted. In the absence of another person, we replicate the well-

established positive linear relationship between recognition times and angle of 

orientation, such that recognition becomes slower the more an item has to be 

mentally rotated into its canonical orientation (Shepard & Metzler, 1971). Importantly, 

this relationship was disrupted simply by placing another individual in the scene. 

Items rotated away from the participant were recognised more rapidly not only the 

closer they appeared in their canonical orientation to the participant but also to this 

other individual, showing that another’s visual perspective drives mental rotation and 

item recognition in a similar way as one’s own. The effects were large and replicated 

in the three independent studies. They were observed even when the other person 

was completely passive, enhanced for explicit instructions to perspective-take, but 

reduced when the persons in the scenes were replaced with objects. The content of 
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another’s perspective is therefore spontaneously derived, takes a quasi-perceptual 

form, and can stand in for own sensory input during perceptual decision-making. 

  
Keywords: Perspective taking; visuospatial perspective taking, mental rotation; 

mental imagery, imagery, perceptual decision making, perceptual simulation.   

 

2.2 Results  

Visual perspective taking (VPT) lies at the core of the ability to make sense of other 

people. It allows one to derive not only which objects can be seen from another’s 

perspective (Level 1 VPT), but also how these objects will look to them (Level 2 

VPT) (Flavell et al, 1981; Tomasello et al., 2005). It is a phylogenetically recent, 

human-specific ability that forms an important milestone during development and is 

linked to more sophisticated mentalizing abilities, such as empathy or theory of mind 

(Batson et al., 1997; Erle & Topolinski, 2015; Tomasello et al., 2005). People rely on 

it regularly to judge how fellow drivers will respond to a difficult situation on the road, 

how their dance moves will be seen by others, or how to best show an object to a 

child so that they can recognise it easily, for example. 

A recent proposal is that VPT takes a (quasi-)perceptual form, “painting” a mental 

image of the content of another person’s viewpoint onto one’s perceptual system that 

can stand in for one’s own perception (Kampis et al., 2015; Surtees et al., 2013). In 

such a view, VPT not only remaps the other’s spatial reference frame to one’s own 

(e.g. that one’s own left is another’s right) but derives their view on an object as if 

one would perceive it oneself. “Seeing” the content of another’s perspective in this 

manner could then – in a bottom-up fashion – drive all processes that operate on 
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perceptual input (Roelfsema & de Lange, 2016) so that one’s own faculties for 

decision making can be deployed to predict how the person will behave (Bach et al., 

2014; Creem-Regehr et al., 2013; Freundlieb et al., 2016; Kovacs et al., 2010). Few, 

if any, studies have tested this proposal, however. While people can intentionally 

rotate their own body into another’s perspective if so instructed (Kessler & 

Rutherford, 2010; Surtees et al., 2013), implicit measures only show general 

interference when making judgments that would be made differently from another’s 

perspective (Sampson et al., 2010; Surtees et al., 2016; Zwickel & Muller, 2010), an 

effect that may index uncertainty when others would respond to a stimulus differently 

than oneself but not necessarily knowledge of how specifically they would see it. 

Moreover, these effects are only observed when sharing a task with the other 

individual, leading to the proposal that – while there might be a fast, automatic 

mechanism that derives what others can see, deriving how they see it takes longer 

and is under (effortful) cognitive control (Freundlieb et al., 2016; Kessler & 

Thompson, 2010; Surtees et al., 2016).  

Here, we tested whether humans have immediate, (quasi-)perceptual access to the 

content of another’s viewpoint. We reasoned that a different perspective might then 

not only interfere with own judgments but facilitate them, specifically if these 

judgments would be easier from the other’s perspective. In a variant of the mental 

rotation task (e.g. Shepard & Metzler, 1971) (Experiment 1a, n=34), participants 

simply judged in every trial whether alphanumeric characters appearing in different 

orientations on a table in front of them were in canonical form or mirror-inverted (e.g. 

“R” vs. “Я”). Typically, decision times increase the more an item is rotated away from 

the participant because it needs to be mentally rotated into an orientation from which 

it can be judged, a process that relies on pictorial (non-abstract) item representations 
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in early sensory cortices (Albers et al., 2013; Christophel, Cichy, Hebart & Haynes, 

2015). Crucially, in 50% of trials, we inserted another person into the scene who 

would view the characters from either the participant’s left or their right (Figure 1.1, 

Panel A). We hypothesized that if people have immediate, (quasi-) perceptual 

access to another’s viewpoint, then recognition times for items rotated away from the 

participant should be faster if these items appear in a closer-to-canonical 

orientation to this other person, and can be better judged – or mentally rotated – 

from their perspective.  
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Figure 1. 1 Schematic of the trial sequence and scene setup (A) in Experiment 

1a and 1b and main conditions (B). Participants judged whether alphanumeric 

characters were presented canonically or mirror inverted (e.g., “R” vs. “Я”), 

depending on whether these items appeared in the presence of another person on 

the left (B, upper left), a person on the right (B, upper right), in the absence of 

another person (B, upper middle), or in the presence of a non-human object (B, 

lower panels, Experiment 2, manipulated between participants). See Figure S1.3 for 

camera setup and measurements of all stimulus items. 
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2.2.1 Experiment 1a  

 

Person location systematically biases mental rotation curves 

 

We first confirmed that our task replicates the mental rotation effect (Shepard & 

Metzler, 1981). We derived a summary measure (Towards/Away-Bias) of how much 

faster characters are recognized the more they face the participant. For each 

participant and condition (No-human, Human-left, Human-right), we averaged the 

participant’s mean response times for each character orientation, scaled by the 

negative of the cosine of the character orientation (see Methods). Positive values 

therefore indicate slower responses the more an item is oriented away from the 

participant, and vice versa for negative values. As expected, simple t-tests revealed 

slower responses for characters oriented away rather than towards participants, in all 

three conditions, t(33)>7.065, p<.001, d>1.21 (Figure 1.2A, 1.2B). This mental 

rotation effect was also confirmed by regressing each item’s recognition time to the 

expected linear increase with angular disparity, revealing positive slopes in all bar 

one participant, mean β =1.01; t(33)=10.5, p<.001, d=1.80.  
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Figure 1.2 Results of Experiment 1a and 2: Person location systematically 
biases mental rotation curves. (A) Recognition times (ms) to correctly classify 
items as canonical or mirror-inverted in each of the eight orientations, depending on 
whether the person was absent, was sitting on the left, or was sitting on the right. B) 
Violin charts showing the Towards/Away-bias when the person was not present (N), 
was on the right (R), or was on the left (L); means are indicated by diamond 
symbols. (C) Violin charts showing the Left/Right-bias when the person was absent 
(N), was on the right (R), or was on the left (L); means are indicated by diamond 
symbols. (D) Results of Experiment 2: person location biases mental rotation curves 
more strongly than object (lamp) location. Violin charts showing the Left/Right-biases 
when a human (or lamp) was on the right (R), was not present (N), or was on the left 
(L); means are indicated by diamond symbols. See Figure S1.2 for the same data 
presented as line graphs, and Table S1.1 for error rate data.  
 
 
The crucial test is whether shapes oriented away from the participant are easier to 

recognise if they appeared upright to the other person. We derived an analogous 

summary measure (Left/Right-bias, Figure 1.2A, 1.2C, see Figure S1.2A for mental 

rotation curves) indexing how much faster characters were recognised the more they 
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were oriented left compared to right. For each participant and condition (No-human, 

Human-left, Human-right), we calculated the average recognition times, scaled by 

the sine of each character orientation. Positive values indicate slower recognition of 

right-oriented compared to left-oriented characters and vice versa for negative 

numbers. Directly comparing these values revealed substantial differences between 

Human-left and Human-right conditions, t(33)=5.185, p<.001, d=.889. As predicted, 

for persons on the left, left-oriented characters were recognised more quickly than 

right-oriented characters, t(33)=3.584, p=.001, d=.614, but vice versa for persons on 

the right, t(33)=-4.074, p<.001, d=.698. Both directional shifts differed from the 

(baseline) No-human condition, t(33)>3.444, p<.002, d>.591.  

To test whether these biases reflect mental rotation from one’s own and the other’s 

perspective, we entered each participant’s mean recognition times for all item 

orientations in the Human-Left and Human-Right condition into a multiple regression, 

with the item’s angle to the participant and to the other person as two (statistically 

orthogonal) predictors. As expected, recognition times increased not only with the 

angular disparity to the participant, mean β=1.06, t(33)=9.92, p<.001, d=1.71, but 

also to the other person, mean β=.41, t(33)=4.92, p<.001, d=.84. Figure S1.2, top 

panels, shows the fit of recognition times (aggregated across all experiments) to the 

regression model and that they can be decomposed into two mental rotation 

functions from one’s own and the other’s perspective.  

 

2.2.2 Experiment 1b  

Replication  



- 47 - | P a g e  
 

A replication study (Experiment 1b) with the same design (n=33) confirmed all 

findings (see Figure S1.1B). Towards/away-biases confirmed the mental rotation 

effect in all conditions, t(32)>7.723, p<.001, d>1.34. Left/Right biases differed 

between the Human-left and Human-right conditions, t(32)=-4.881, p<.001, d=.85, 

showing faster recognition of left-oriented than right-oriented characters in the 

Human-left condition, t(32)=-4.293, p<.001, d=.747, and vice versa for the Human-

right condition, t(32)=-2,079, p=.046, d=.362. Both differed to the No-human 

(baseline) condition, t(32)>2.993, p<.005. Moreover, as before, recognition times 

increased linearly with the item’s angle towards the participant, mean β=1.14, 

t(32)=9.30, p<.001, d=1.63, and towards the other person, mean β=.40, t(32)=5.76, 

p<.001, d=1.00. 

2.2.3 Experiment 2 

Person location biases mental rotation curves more strongly than object location 

Having established that another’s perspective speeds up recognition of characters 

oriented towards this perspective, (Experiment 2, n=54) tested whether the same 

was true for non-human spatial reference points, i.e. ‘mind-less’ objects. For half of 

the participants, the persons in the images were replaced with a lamp that was 

similarly oriented towards the items on the table as the two individuals (and therefore 

provided similar directional cues towards it, Figure 1.1B, lower panels). To avoid 

imbuing the lamp with intentionality, all motion was removed from the stimuli. Lamps 

and other person did not initially “look” outwards at the participant and then back at 

the table, but started the trial already facing the location at which the character would 

appear.  
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As before, Towards/Away-biases confirmed the mental rotation effect, in all 

conditions of both groups, t(27)>10.837, p<.001, d>2.05, for all. To test whether VPT 

shifts towards other persons are larger than towards objects, we entered the 

Left/Right biases into an ANOVA with the within-subjects factor Location 

(Object/Human-left, Object/Human-right) and the between-subjects factor Group 

(object, human). A main effect of Location replicated the known Left/Right-biases 

towards person locations, F(1,52)=23.328, p <.001, ηp
2=.310, which was further 

qualified by an interaction with Group, F(1,52)=7.636, p=.008, ηp
2=.128, revealing 

larger shifts in the human than the object group (Figure 1.2D, see Figure S1.1CD for 

mental rotation curves). 

Step-down analysis of the human group fully replicated the known pattern. 

Left/Right-shifts differed between Human-left and Human-right conditions, 

t(27)=5.729, p<.001, d=1.08, and each differed to the baseline No-human condition, 

t(27)>2.449, p<.021, d=.457. Recognition times again reflected the item’s angular 

difference to the participant, mean β=1.46, t(27)=11.0, p<.001, d=2.09, and to the 

other person, mean β=.31, t(27)=5.70, p<.001, d=1.07. 

These shifts were virtually eliminated in the object group (Figure 1.2D). Left/Right 

biases in the Object-left, Object-right, and No-Human conditions did not differ from 

each other, t(25)<1.722, p>.097, d<.338. Moreover, recognition times only captured 

the item’s angular difference to the participant, mean β=1.83, t(25)=16.6, p<.001, 

d=3.27, but not to the lamp, mean β=.08, t(25)=1.15, p=.262, d=.23, and this mean 

beta-coefficient was smaller than in the Human group, t(52)=2.72, p=.009. 

 

2.2.4 Experiment 3 
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Explicit perspective taking increases bias towards other persons 

People can make perceptual judgements from another’s perspective if explicitly 

instructed (Kessler & Rutherford, 2010; Surtees et al., 2013). Experiment 3 (n=52) 

therefore explicitly instructed half of participants to adopt the other persons’ 

perspective (Explicit-VPT group) while giving no instructions to the other half 

(Implicit-VPT group), as in previous experiments. If our task truly indexes perspective 

taking (rather than biases in rotation direction for example), then such an explicit 

instruction should elicit the same, but more pronounced, biases towards the other 

persons, and be described by the same regression model.  

Results fully supported our predictions.  As before, Towards/Away-biases confirmed 

the mental rotation effect, in all conditions of both groups, t(25)>5.168, p<.001, 

d>1.01, for all. An ANOVA on Left/Right biases revealed the expected main effect of 

Person Location, F(1,50)=120.419, p <.001, ηp
2=.707, which interacted with Group, 

F(1,50)=13.464, p=.001, ηp
2=.212. Thus, as expected, the faster recognition of left- 

compared to right-oriented characters for persons sitting on the left, and vice versa 

for persons on the right, was even more pronounced in the Explicit-VPT than the 

Implicit-VPT group (Figure 1.3).  

As before, our simple regression model described recognition times in terms of 

mental rotation from one’s own and the other’s viewpoint. Yet, while in the Implicit-

VPT group recognition times again showed a stronger contribution of the item’s 

angular difference to the participant, mean β=1.31, t(25)=9.89, p<.001, d=1.93, than 

the other person, mean β=.40, t(25)=6.79, p<.001, d=1.34, this difference was 

reduced in the Explicit-VPT group (Figure 1.3). It showed strong weightings of both 

the angular disparity to the participant, mean β=.91, t(25)=6.182, p<.001, d=1.21, 
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and to the other person, mean β=.84, t(25)=8.412, p<.001, d=.1.65. Both coefficients 

differed between groups, t(50)>2.017, p<.049, d>.56. 

 

Figure 1.3. Results of Experiment 3: Explicit perspective-taking increases bias 
towards other persons. (A) Recognition times (ms) in the Explicit-VPT group to 
correctly classify items as canonical or mirror-inverted in each of the eight 
orientations, depending on whether the person was absent, was sitting on the left, or 
was sitting on the right. B) Violin charts showing the Towards/Away-bias when the 
person was not present (N), was on the right (R), or was on the left (L); means are 
indicated by diamond symbols. (C) Violin charts showing the Left/Right-bias when 
the person was absent (N), was on the right (R), or was on the left (L); means are 
indicated by diamond symbols. (D) Comparison with Implicit-VPT group: person 
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location biases mental rotation curves in the Explicit-VPT group more strongly than 
in the Implicit-VPT group. Violin charts showing the Left/Right-biases in both groups 
when a human was on the right (R), was not present (N), or was on the left (L); 
means are indicated by diamond symbols. See Figure S1.2 for the same data 
presented as line graphs, and Table S1.1 for error rate data. 

Other’s perspectives cause both facilitation and interference 

Exploratory analyses with data pooled across experiments (1a, 1b, 2 human 

condition, 3 implict-VPT condition, see methods for details) to increase power 

showed that the Left/Right shifts in the Human-left and Human-right condition 

reflected both facilitation for characters oriented towards the other persons, 

t(120)=7.27, p<.001, d=.66 and, to a lesser degree, interference, t(120)=5.17, 

p=.001, d=.47, when characters were oriented away, relative to the No-Human 

baseline condition. 

 

2.3 Discussion 

We tested whether humans have direct, (quasi-)perceptual access to the content of 

another’s perspective that can stand in for own input. We show that the classic 

finding from mental rotation tasks – that it takes longer to recognise an item the more 

it has to be mentally rotated into its canonical orientation (Shepard & Metzler, 1971) 

– is disrupted by other persons in the scene. In this case, recognition times increase 

not only with an item’s angular disparity to the participant but also to the other 

person, such that items oriented away from participants are recognised more rapidly 

if they are oriented towards this person (and even more slowly when oriented away 

from them). Recognition times therefore reflect an integration of one’s own and the 

others’ perspectives, either from parallel processes within each judgment or across 

them, when participants fluently switch between own and others’ perspectives. The 
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resulting biases had a large effect size, were sensitive to instructions to take the 

other’s perspective, but decreased when the persons were replaced with mind-less 

objects, even when these objects had the same directionality and faced the items as 

the persons did. Results therefore show that the content of another’s perspective is 

available in (quasi-) perceptual form, so that the characters could be mentally rotated 

from this perspective and are recognised more rapidly if they appear in their 

canonical “upright” orientation from this point of view.  

While VPT has been proposed before to reflect perceptual simulations of others’ 

viewing perspective (Kampis et al., 2015; Surtees et al., 2013) direct evidence has 

been lacking. Prior work has only shown interference on a conceptual and/or 

response level, leaving open whether participants simply represent that others see a 

scene differently, without representing their specific perceptual input (Cole et al., 

2016; Santiesteban et al., 2014). Moreover, in these tasks, VPT was only observed 

when the other person was at least somewhat relevant to one’s own task, leading to 

the proposal that while humans are endowed with a quick (and potentially automatic) 

mechanism that computes what others can see, deriving how they see it is under 

cognitive control (Freundlieb et al., 2016; Kessler & Thompson, 2010; Sampson et 

al., 2010; Surtees et al., 2016) and may require effortful mental rotation of one’s own 

body into that of the other (Kessler & Rutherford, 2010; Surtees et al., 2013). 

In contrast, the perceptual biases observed here reveal that humans can rely on 

others’ visual perspective to drive own perceptual decision making. They therefore 

shown that VPT takes the form of a perceptual simulation that can drive subsequent 

processing like actual input, allowing it to be integrated into recent perceptual 

accounts of imagery and working memory, for which a similar reliance on (even 
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early) visual representations has been demonstrated (see Roelfsema & de Lange, 

2016, for review]. Second, they challenge the notion that VPT2 is under cognitive 

control. Here, another’s viewing perspective drove processing even (1) when the 

person stimulus was completely passive and task-irrelevant, (2) without requiring 

blocking person presence/location across trials or (3) asking participants to switch 

between self- and other-perspective, which can induce carry-over effects 

(Freundlieb, Kovacs & Sebanz, 2018; Freundlieb et al., 2016). Moreover, (4) effects 

occurred rapidly, with an upper limit provided by the time it would take to mentally 

rotate the item oneself (about 100 ms for orientations to 90/2700), and involuntarily, 

even in trials (5) in which the other’s perspective did not help but interfere with item 

recognition (because items were oriented even further away from them).  

Together, these findings provide direct evidence that humans are endowed with a 

mechanism that allows them to rapidly and spontaneously derive how others see an 

object. The (inferred) view of the other person takes a quasi-perceptual form that can 

stand in for own sensory input. In this way, the content of another’s perspective can 

feed directly into perceptual representations and can drive, in a bottom-up manner, 

the processes operating on them, without explicit control, as has been demonstrated 

for imagery and working memory (Roelfsema & de Lange, 2016). Such spontaneous 

perceptual simulations of others’ viewing perspective could explain not only why 

better perspective takers are more empathetic (Erle & Topolinski, 2015; Gronholm, 

Flynn, Edmonds & Gardner, 2012), why people sometimes describe object locations 

from another’s viewpoint, or why patients with hemispatial neglect sometimes report 

neglected items when imagined from a different perspective (Becchio, Del Guidice, 

Dal Monte, Latini-Corazzini & Pia, 2011). They may also provide novel insights into 

more sophisticated socio-cognitive abilities in humans, such as joint action and 
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mentalizing, and their impairment in autism, which have been shown to be related to 

VPT (Hamilton et al., 2009). 

 

2.4 Method 

Participants 

203 (166 females) naive participants (42 in Experiment 1a, 37 in Replication 

Experiment 1b, 56 in Experiment 2, 68 in Experiment 3) were initially recruited via 

the University of Plymouth participation pool. All participants were adults (age range 

18-50) and gave written informed consent according to the declaration of Helsinki. 

Approval was obtained from the University of Plymouth Ethics Committee. 

Participants received course credit as compensation. After exclusion (for criteria, see 

below), 34 participants (28 females; mean age: 22.8 years, range: 18-50) were 

considered for analysis in Experiment 1a, 33 in Experiment 1b (28 females, 21.7 

years, age range: 19-50), 54 in Experiment 2 (42 Females; mean age: 20.07 years, 

age range: 18-34), and 52 in Experiment 3 (47 Females; mean age: 20.5 years, age 

range: 18-30).  

 

Elimination criteria 

In all experiments, erroneous responses were excluded from the analysis of 

recognition times (RTs), as well as trials with RTs longer than 2000ms, or shorter 

than 150ms. Participants with error rates in excess of 20% across all conditions were 

not considered for analysis (Experiment 1a, n=8; Experiment 1b, n=4; Experiment 2, 

n=2; Experiment 3, n=16). 
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Power analysis 

Power analyses were conducted in G*Power (Version 3.1) [27], assuming a power of 

.80, using the sensitivity analysis function. We do not report theoretical power based 

on previously reported effect sizes as this neglects uncertainty around these effect 

size measurements [28-29]. Instead, we report effect sizes that can in principle be 

detected with our experimental parameters (i.e. given required power, participant 

numbers and type of test). These analyses were conducted for the crucial 

comparison of Left/Right-biases in the Human-left and Human-right conditions, which 

measures the extent that person presence biases mental rotation towards either 900 

or 2700.  

For initial Experiment 1a, a final sample size of n= 34 provides .80 power to detect 

effect sizes in the predicted direction (one-sided) of at least Cohen’s d=.43 and 

effects in either direction of Cohen’s d=.49. As measured effect sizes from this 

experiment (and in additional piloting in our lab) robustly exceeded this criterion 

(d=.89), we replicated the study with similar sample sizes. For the replication 

Experiment 1b, the final sample size of n=33 allows us to detect effects in the 

predicted direction of at least Cohen’s d=.44 and effects in either direction with 

Cohen’s d=.50. Assuming that the object condition eliminates the effects in reported 

Experiment 1a and 1b, and that the between-participant standard deviation stays the 

same, anticipated effect sizes for the crucial between-groups comparison should 

again be larger (d=.89, when derived from effect sizes of Experiment 1, d=.85 when 

derived from Experiment 2). For Experiment 2, the final sample size of n=54 allows 

us to detect between-group differences of d=.69 (one-sided) and .77 (two-sided). 

Similarly, for Experiment 3, the final sample size of n=54 allows us to detect 

between-group differences of d=.69 (one-sided) and .79 (two-sided).  
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Experiment 1a and 1b - Apparatus, stimuli & procedure 

All experiments were conducted in behavioural testing lab space of the University of 

Plymouth. The experiments were administered using Presentation® software 

(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

Stimuli were presented on a 19” LED computer monitor (Resolution: 1900x1200; 

Refresh rate: 60Hz). Responses were made on a standard computer keyboard with 

UP, DOWN, and SPACE keys as active response keys. Red and green stickers were 

positioned on the DOWN and UP keys, respectively.   

Participants sat upright facing the screen at a distance of approximately 60cm and 

were given written and verbal instructions. They were given examples of the rotated 

items that would appear on the screen and completed eight training trials that were 

identical to the main experiment (Figure 1.1). Each trial (total trials = 520) started 

with a fixation cross displayed for 400ms, followed by 300ms blank screen. The 

subsequent stimulus sequence included three frames, presented without inter-

stimulus interval, creating the impression of apparent motion (Wertheimer, 1912). 

The first frame, measuring 33.4 by 23.5 degrees of visual angle, was presented for 

800 ms. In 50% of the trials, it showed a view onto a corner of a square table in a 

grey room. In the other 50%, it showed a person sitting behind the same square 

table, gazing outwards at the participant. The person (either male or female) sat 

either on the left or right side of the table (12.5% of trials, each).  

The second frame in the sequence was identical to the first for the No-human trials. 

In the trials with the person, (s)he now looked down towards the middle of the table. 

Then, after a random interval between 700ms and 1400ms, the third frame was 

presented. This was identical to frame 2, but now one of 64 possible items appeared 
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on the table, at the location on the table the on-screen person was gazing at. This 

item was one of four alphanumeric characters (4, Z, P, or R), presented either in the 

canonical version or mirror-inverted about their vertical axis, in one of eight 

orientations (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, with 0° denoting the upright 

canonical orientation and angles increasing in a counter-clockwise fashion) relative 

to the participant. The characters always appeared in the same position on the table, 

half-way between the outward corner of the table and its centre, such that the 

persons to the left and right would gaze at the table from roughly 90° and 270°, 

respectively (perpendicular to the viewpoint of the participant, see Figure 1.1A inlay, 

Figure S1.3 for measurements of the scene setup), as at these angles the 

character’s angular disparities from the participant and the other person were 

statistically independent across conditions. Character rotation occurred around the 

character’s centre point. 

Participants were asked to judge whether each character was presented in its 

canonical or mirror-inverted form. The third frame remained on the screen until a 

response was made to a maximum duration of 3500ms. Participants responded 

using their right hand by pressing the green key to indicate a canonical item and the 

red key to indicate a mirrored item. Response times were measured relative to item 

onset. 

Following this task, participants were asked to report via free text any particular 

strategies they used for their judgements. Some reported that they noticed 

themselves sometimes taking the perspective of the other persons: Experiment 1a, 

n=5; Experiment 1b, n=5; Experiment 2, n=6; Experiment 3, n=4. No participants in 

the object condition reported taking the perspective of the lamp. All effects reported 
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in the main text remain if these participants are removed from the analyses (see 

Robustness analyses below). 

For a demonstration of the design (albeit with slightly different timing), please see the 

movie here: https://goo.gl/eAV1eg 

 

Experiment 2 - Apparatus, stimuli & procedure 

Participants completed a total number of 584 trials, following the same apparatus 

and procedure as in Experiment 1a, with the following exceptions. First, for half of 

the participants, the person in the picture was replaced with a lamp of similar height 

and orientation towards the character. The lamp was chosen as it possesses similar 

characteristics as other people, such as a clear front and back, and the potential to 

“look” in a certain direction on the table (see Figure 1.1B, lower panels). Second, the 

letter Z was removed from the item list because participants alerted us that it could 

be mistaken for an N when rotated 90 degrees. Third, the first (outward gaze 

towards the participant) frame (Figure 1.1A) was removed from the sequence. In 

Experiment 1a, the transition from Frame 1 (person gazing towards the participant) 

to Frame 2 (person gazing at the table) resulted in apparent motion and the 

impression of the other person directing attention to the item, which drew attention to 

the person, might signal internal states, and would therefore not be appropriate to 

the inanimate and mind-less lamp stimulus. In order to keep the trial duration 

consistent with that of the first experiment, the original second image in the 

sequence was presented for an additional 800ms. Fourth, to increase power for the 

crucial comparison between person/object on the left and right, the No-human trials 

were reduced to 33%. The remaining two thirds of trials were divided equally 

https://goo.gl/eAV1eg
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between the person/lamp appearing on the left and the right (33% each). To ensure 

that person and lamp trials were of equal variability, each participant in the Human 

group only saw only one of the two individuals (the male or the female), 

counterbalanced between participants.  

 

Experiment 3 - Apparatus, stimuli & procedure 

 

Participants completed a total number of 584 trials, following the same apparatus 

and procedure as in Experiment 2 (human condition), with the exception that half of 

the participants were simply instructed to take the perspective of the actors when 

they appeared on the screen, and to respond from their own perspective when there 

was no actor present. The exact instruction given was ‘You will see some people 

appear on the screen. When this happens, I would like you to respond from their 

visual perspective. If there are no people visible on the screen, you should respond 

from your own perspective’. The other half of participants did not receive any specific 

instructions to perspective-take. In fact, the presence of persons in some trials was 

not mentioned. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data (pre-)processing and analysis were conducted in Microsoft Excel (2010), SPSS 

(version 23). Figures 1.2 and 1.3 were created using R (ggplot2). Power analyses 

were conducted in G*Power (Version 3.1; Erdfelder, Faul, & Buchner, 1996). 
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Dependent measures 

Dependent measures were the recognition times (measured from item onset) for 

each character orientation (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315), depending on 

condition (No-human, Human-left, Human-right). Analogous analyses of error rates 

were also conducted to rule out speed/accuracy trade-offs. In all experiments, error 

rates numerically followed the pattern of the main recognition times but did not show 

statistically reliable differences (Table S1.1). 

 

Figure 1.4. The contribution of each character orientation to the summary 
measures Towards/Away-bias (A) and Left/Right-bias (B). Each character’s 
contribution to the Towards/Away-biases and Left/Right-biases are defined by the 
negative of the cosine and the sine of the character rotation angle, respectively. The 
red arrows show the positive (filled arrows) and negative (dotted arrows) 
contributions of each character orientation to the Towards/Away-bias. The blue 
arrows show the positive (filled arrows) and negative (dotted arrows) contributions to 
the Left/Right-bias. 
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Toward/Away-bias and Left/Right-bias 

To quantify the recognition times when the characters either faced the participant 

(i.e. was seen in its canonical orientation from the perspective of the participant) or 

the other person in the scenes, we derived two analogous and statistically 

independent summary measures. The first summary measure (Toward/Away-bias) 

indexes to what extent characters were recognized faster the more they were facing 

towards the participant (0°) rather than away from them (180°), separately for each 

participant and each condition (No-human, Human-left, Human-right). This measure 

therefore quantifies the mental rotation effect [18]. The second summary measure 

(Left/Right-bias) indexes how much faster characters were recognized when oriented 

towards the left (270°) rather than right (90°), or vice versa. 

The contribution of each character orientation to the two summary measures is 

derived by treating each participant’s recognition time for this character orientation 

as a vector in a coordinate system, with the recognition time providing the distance 

from the origin and the rotation angle the polar angle. A character orientation’s 

contribution to the Toward/Away-bias is then derived simply from the recognition 

times multiplied with the negative of the cosine of the orientation angle. As a result, 

characters contribute negatively the more they face the participant (315°, 0°, 45°; 

Figure 1.3A, red filled arrows) and positively they more they are oriented away from 

them (225°, 180°, 135°; Figure 1.3A, red dotted arrows). Similarly, the contribution of 

a character’s orientation to the Left/Right-bias was calculated as the recognition time 

multiplied with the sine of the orientation angle. Character orientations contribute 

positively the more they face to the right (45°, 90°, 135°; Figure 1.3B, blue dotted 

arrows) and negatively the more they face to the left (225°, 270°, 315°; Figure 1.3B, 
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blue filled arrows). This procedure effectively maps the changes evident in the radar 

plots for each angle onto two orthogonal and statistically independent summary 

measures, so that they can be compared across conditions (either within- or 

between-participant), without accruing alpha inflation due to multiple testing, which 

would result if each of the eight angles were compared separately. 

By averaging these values, separately for each summary measure, participant and 

condition (No-human, Human-left, Human-right), we are able to calculate, first, 

whether characters were recognized faster the more they appear in the canonical 

orientation to the participant (negative values on the Toward/Away-bias) compared 

to when they are oriented away (positive values), reflecting the expected mental 

rotation effect. Similarly, they allowed us to calculate to what extent characters were 

recognized faster the more they are oriented leftwards and would appear in their 

canonical orientation to a person sitting to the left (positive values on the Left/Right-

bias) rather than rightwards, appearing in their canonical orientation to a person 

sitting on the right (negative values). We were then able to determine if this left/right 

bias changed depending on whether another person was presented in the scenes 

and on whether the person was on the left or on the right.  

The crucial comparison is the difference between the Left/Right-biases in the 

Human-left and Human-right conditions, but additional comparisons of interest are 

also reported. Note that the direct comparison of the Human-left and Human-right 

conditions is statistically identical to the comparison of how much person presence 

shifts mental rotation performance in the Human-left and Human-right conditions 

relative to the No-Human baseline (i.e. how much person presence shifts recognition 

times away from 00 towards either 900 or 2700), as this would involve subtracting the 
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same baseline value from each of the two conditions for each participant, and would 

therefore not affect the absolute difference between them. In Experiment 1a and 1b, 

differences between these conditions were assessed with repeated measures t-

tests. Effect sizes were measured in Cohen’s d. In Experiment 2, a mixed-factors 

ANOVA with the within-subjects factor Location (left, right) and between-subjects 

factor Group (human, object) was used to assess whether the difference in 

Left/Right-biases towards a person on the left or right was larger than the difference 

in perceptual shifts towards an inanimate object (a lamp) in the same position. In 

Experiment 3, the same ANOVA model was used to whether the difference in 

Left/Right-biases towards a person on the left or right increased when participants 

were explicitly instructed to take the other person’s perspective compared to when 

they received no instruction, as in the previous experiments.  

 

Distinguishing between facilitation and interference 

Additional analyses were conducted on the pooled data across experiments (Exp. 

1a, Exp. 1b, Human condition of Experiment 2) to verify whether the measured 

Left/Right-biases towards person locations reflect only facilitation (i.e. faster 

recognition of items oriented towards another person) or interference as well (slower 

recognition of items oriented away from the other person). To this end, we used the 

same logic as for the overall perceptual shifts and again scaled average recognition 

times by the sine of each character orientation, but separately for the trials in which 

the items were facing towards the other person (e.g. for a person on the right: 450, 

900, 1350) and away from the other person (e.g. 3150, 2700, 2250), separately for the 

Human-Left and Human-Right conditions, across all participants of the three 
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experiments to increase power (Experiment 1a, 1b, human group of Experiment 2, 

implicit group of Experiment 3). We were then able to separately assess, with paired 

t-tests, whether recognition times were generally slower than would be expected 

from the baseline No-human condition for items facing away from the other person 

(i.e. measuring interference), and whether they were faster than expected when 

facing towards the other person (measuring facilitation). 

 

Across-participant regression analyses 

In prior work, the mental rotation effect is sometimes characterised in terms of 

separate linear regressions of an items’ recognition time to its angular disparity 

relative to the participant, for each participant separately [18]. The results reveal 

linear increases with increasing angular disparity for the large majority of 

participants. Here, we used this analysis model to test whether an item’s recognition 

times can be described, on a single participant basis, as a linear increase of the 

character’s angular disparity both to the participant and to the other person. To this 

end, we entered each participant’s item mean recognition times for each character 

orientation in the Human-left and Human-right condition as dependent variable in a 

multiple regression, with the item’s angular disparity to the participant and to the 

other person as two statistically independent predictors. This analysis provides 

regression coefficients for both predictors – angular disparity to participant and other 

person – for each participant separately. We report mean across-participant 

regression coefficients for each of these two predictors and compare them with t-

tests against zero.  
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The fit of model and observed data can be seen in Figure S1.2, separately for the 

aggregated data across all experiments in which VPT was induced implicitly in the 

top row (Exp. 1a, 1b, Exp. 2 human group, Exp. 3 Implicit-VPT group) and when it 

was induced explicitly in the bottom row (Exp. 3). To increase power, the data of the 

Human-right condition was “flipped” and collapsed onto the data for the (mirror-

symmetrical) Human-left condition (so that recognition times for 2700 when a person 

sitting on the left map onto 900 for a person sitting on the right). The left panels (A, 

D) show the data predicted from the average across-participant regression 

coefficients and intercepts, for the No-Human “baseline” condition, and the Human-

left condition. The middle panels (B, E) show the observed data for the No-human 

condition and the Human-left condition. Finally, the right panels (C, F) show the 

residuals when only the expected mental rotation function from the participant’s own 

perspective is regressed out. As can be seen, these residuals show a mental rotation 

function from the perspective of the other person (sitting at 2700), showing 

graphically that, in the Human-left and Human-right conditions, an item’s recognition 

times across angles can be decomposed into mental rotation functions from one’s 

own and the other person’s perspective.  

 

Robustness analyses 

We confirmed that our effects did not depend on specific (groups of) participants. We 

first verified that our analysis still holds when all participants were excluded that 

explicitly reported noticing taking the perspective of the other individuals in the 

scene. This was the case, without substantially reducing overall effect sizes 

(Experiment 1a, excluded n=4, t(29)=5.052, p<.001, d=.92;  Experiment 1b, excluded 
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n=3, t(29)=4.316, p<.001, d=.79; Experiment 2, human group, n=5, t(22)=5.167, 

p<.001, d=1.08; no participants reported VPT in Experiment 2, object group; 

Experiment 3, implicit group, excluded n=4, t(21)=6.634, p<.001, d=1.41). 

Second, we verified that our effects are not over-inflated due to some participants 

being older than usual (>35 years, Experiment 1a, n=5; Experiment 1b, n=2; 

Experiment 2, n=0; Experiment 3, n=0). While there was a weak correlation with the 

difference in Left/Right-bias between the Human-left and Human-right condition and 

participant age across all participants (r=.294, p=.001), re-running these tests with 

older participants excluded revealed overall identical effect sizes. Indeed, when we 

exclude all participants older than 35, the overall effect size in Experiment 1a 

decreases (from d=.89. to d=.80) but increases in Experiment 1b (from d=.85 to 

d=.94). 
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2.5 Supplemental Information  

 

Figure S1.1. Results of Experiments 1a, 1b, 2 and 3 in line graph form. Relates 
to Figure 1.2 (Person location systematically biases mental rotation curves) and 
Figure 3 (Explicit perspective-taking increases Left/Right-bias). (A) Results of 
Experiment 1a. (B) Results of Experiment 1b. (C) Results of Experiment 2, Human 
Group. (D) Results of Experiment 2, Object group. (E) Results of Experiment 3, 
Implicit-VPT group. (F) Results of Experiment 3, Explicit-VPT group. In each plot, 
data points show recognition times (RTs) for all eight character orientations when the 
other person was not present (No-Human, grey lines), was on the right (Human-
Right, red lines), or was on the left (Human-Left, blue lines). Note that, following 
symmetry conventions in these plots in the literature, the data points for 00 angular 
disparity are identical with the data points for 3600 angular disparity.  
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Figure S1.2. Fit of regression model and observed data. Relates to Figure 1.2 
and 1.3. The top panels show the aggregated data across all experiments in which 
VPT was induced implicitly (Exp. 1a, 1b, Exp. 2 human group, Exp. 3 Implicit-VPT 
group). The bottom row shows the data when VPT was induced explicitly (Exp. 3). 
For all panels, the data of the Human-right condition was “flipped” and collapsed 
onto the data for the (mirror-symmetrical) Human-left condition, with the small arrow 
indicating the viewpoint of the other person at 2700. The left panels (A, D) show the 
data predicted from the average across-participant regression coefficients and 
intercepts, for the No-Human “baseline” condition, and the Human-left condition. The 
middle panels (B, E) show the observed data for the No-human condition and the 
Human-left condition. The right panels (C, F) show the residuals when only the 
expected mental rotation function from the participant’s own perspective is regressed 
out, leaving a mental rotation function centred on the other person’s perspective 
(2700). 
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Figure S1.3. Scene Dimensions. Measurements for the setup of table, person 
locations (red, blue) and observer/camera position (green) from which all 
experimental stimuli were derived. Relates to Figure 1.1. 

 

Table S1.1 Means (M) and Standard Deviations (SD) for the Left/Right- and 
Towards/Away-biases in Error rates in Experiment 1a, 1b, Experiment 2, and 
Experiment 3. Relates to Figure 1.2 and Figure 1.3 and Figure S1.1. Forward/Away 
and Left/Right-biases were calculated analogously as for the recognition times. 
*p<.05. **p<01, ***p<.005. 
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3.  Chapter Three - Gaze Direction as a cue to VPT 

The studies in this chapter aimed to resolve whether perceptual simulations of 

others’ perspectives are specifically driven by where the actor in the scenes was 

looking, or whether VPT reflects a more general spatial navigational ability. Again, 

these studies use a variant on a classic mental rotation task (Shepard & Metzler, 

1971). 

The experiments in this chapter were submitted to Cognition and are currently 

undergoing a first round of revisions. Experiments presented in their submitted form 

(green copy). A pre-print of this chapter is available at https://psyarxiv.com/hfnrw, and 

will be updated once resubmitted to Cognition.  

 

3.1 Perspective taking as virtual navigation? Perceptual simulation of how 

others see the world reflects their location in space but not their gaze. 

 
Eleanor Ward*, Giorgio Ganis, Katrina McDonough, Patric Bach 

 

Abstract  

Other peoples’ (imagined) visual perspectives are represented perceptually in a 

similar way to our own, and can drive bottom-up processes in the same way as own 

perceptual input (Ward, Ganis & Bach, 2019). Here we test directly whether visual 

perspective taking is driven by where another person is looking, or whether these 

perceptual simulations represent their position in space more generally. Across two 

experiments, we asked participants to identify whether alphanumeric characters, 

presented at one of eight possible orientations away from upright, were presented 

https://psyarxiv.com/hfnrw
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normally, or in their mirror-inverted form (e.g. “R” vs. “Я”). In some scenes, a person 

would appear sitting to the left or the right of the participant. We manipulated either 

between-trials (Experiment 4a) or between-subjects (Experiment 4b), the gaze-

direction of the inserted person, such that they either (1) looked towards the to-be-

judged item, (2) averted their gaze away from the participant, or (3) gazed out 

towards the participant (Exp. 2 only). In the absence of another person, we 

replicated the well-established mental rotation effect, where recognition of items 

becomes slower the more items are oriented away from upright (e.g. Shepard and 

Meltzer, 1971). Crucially, in both experiments and in all conditions, this response 

pattern changed when another person was inserted into the scene. People 

spontaneously took the perspective of the other person and made faster judgements 

about the presented items in their presence if the characters were oriented towards 

upright to them. The gaze direction of this other person did not influence these 

effects. We propose that visual perspective taking is therefore a general spatial-

navigational ability, allowing us to calculate more easily how a scene would (in 

principle) look from another position in space, and that such calculations reflect the 

spatial location of another person, but not their gaze.   

Keywords: visual perspective taking; perceptual simulation; gaze cuing; navigation; 

mental rotation; mental imagery 

 

Introduction 

Visual perspective taking (VPT) allows people not only to derive what others can 

see, but also how they see it (Flavell, Everett, Croft, & Flavell, 1981). Doing so helps 

us navigate our social environment (Kozhevnikov, Motes, Rasch & Blajenkova, 
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2006), engage in joint action (Freundlieb, Kovács, & Sebanz, 2016) and work out 

what others will do next (Bach, Fenton-Adams, & Tipper, 2014; Creem-Regehr, 

Gagnon, Geuss, & Stefanucci, 2013; Kovacs, Teglas, & Endress, 2010). Deriving 

how the world appears to other people may also form a foundation for more 

sophisticated abilities to reason about others mental states, such as their beliefs, 

emotions, and goals (Batson, Early, & Salvarani, 1997; Erle & Topolinski, 2015; 

Tomasello, Carpenter, Call, Behne, & Moll, 2005; Mattan, Rotshtein & Quinn, 2016). 

Yet, the mechanisms underlying the ability to perspective take, and the stimulus 

features that trigger shifts to another’s perspective are largely unclear. 

Recent research has started to conceptualize perspective taking as a form of 

perceptual simulation, which “paints” or “inserts” another’s view of the world onto 

one’s own perceptual processes, as if it were one’s own perceptual input (Kampis, 

Parise, Csibra, & Kovács, 2015; Surtees, Apperly, & Samson, 2013; Ward, Ganis, & 

Bach, 2019). As soon as another’s perspective is represented in such a (quasi-

)perceptual manner, it could drive one’s own action and decision making processes 

just like own input, explaining the developmental link between VPT and higher level 

mentalizing abilities (Hamilton, Brindley, & Frith, 2009) and its link to joint action 

(Freundlieb, Kovács & Sebanz, 2016; Tversky & Hard, 2009).  

Direct evidence for such a proposal had been lacking however. Consistent with a 

similar representational format of one’s own and others’ perspectives, it has been 

shown that own judgments of a stimulus are harder if another person around us 

would make the same judgments differently. People find it harder, for example, to 

judge how many objects they can see from their own perspective when another actor 

sees a different number (Samson, Apperly, Braithwaite, Andrews, & Bodley Scott, 
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2010). Similarly, it is harder to identify a character as a “6” if it looks like a “9” to 

another person (Surtees, Samson, & Apperly, 2016), or to judge whether an object is 

to the left or the right to oneself when this object is in another location for another 

person (Tversky and Hard, 2009; Zwickel, 2009; Zwickel and Müller, 2010). Yet, 

these studies leave open whether the interference happens on the perceptual, 

conceptual, response or even metacognitive level, perhaps indexing simply the 

uncertainty when a person becomes aware that others would judge – or respond to – 

the same stimulus differently from another perspective, without representing how 

specifically they see it.  

A recent series of studies from our lab (Ward et al., 2019) provided the first direct 

evidence that another’s visual perspective is perceptually represented. We reasoned 

that if people have (quasi-)perceptual access to the content of another’s’ 

perspective, then this perspective should not only interfere with one’s perceptual 

judgements (Sampson et al., 2010; Surtees et al., 2016), but should also facilitate 

them, precisely if this other perspective would offer a better view on an object than 

one has oneself. To test this, we let participants take part in a variant of the classic 

mental rotation task (Shepard & Melzer, 1971) in which they simply judged whether 

alphanumeric characters presented at varying orientations were ‘normal’, or mirror-

inverted (e.g. “R” v. “Я”). The classic finding is that these judgements become 

progressively slower with increasing angular disparity away from upright (Cooper, 

1975; Shepard & Melzer, 1971) because people must mentally rotate each item back 

into its canonical orientation before judging it. We find that this classic pattern can be 

dramatically altered simply by inserting another person into the scenes that views the 

items from another perspective. Items oriented away from participants were 

identified more quickly if they appear upright to the other person, as if people could 
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simply identify it from their alternative perspective. Conversely, they judged it more 

slowly if the item was even further rotated away from the other person. Regression 

analyses showed that recognition times across letter orientations can be predicted 

from the angular disparity of the item not only to the participant, but also to the other 

person, suggesting that participants mentally rotated the items from both their own 

and the other’s perspective.  

These data showed that people can represent the content of another’s (imagined) 

viewing perspective in a form that can drive perceptual judgements in the same 

bottom-up manner as our own perception (e.g. Roelfsema & de Lange, 2016), 

allowing us to make judgments from others’ perspectives that would be more difficult 

from our own. Importantly, these shifts to the others’ perspective occurred 

spontaneously, even when the persons in the scene were completely task-irrelevant. 

They were enhanced when participants were explicitly instructed to take the others’ 

perspective, but were eliminated when the other person was replaced by an 

inanimate object (Ward et al., 2019), suggesting that these perceptual shifts capture 

another’s ability to see (or at least mentally represent) the world. 

This paradigm provides us with a unique window into the process that underlie visual 

perspective taking. Here, we use this task to test which cues are used to drive 

spontaneous shifts into another’s visual perspective. One important candidate is 

another person’s gaze. Gaze has long been associated with mentalizing and 

perspective taking, exemplified perhaps by the folk-psychological interpretation of 

perspective taking as “seeing through another’s eyes”. People are highly sensitive to 

others’ gaze, to the extent that one’s own spatial attention is involuntarily directed to 

the object another person is looking at, creating shared attention (for a review, see 
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Frischen, Bayliss and Tipper, 2007). Importantly, this effect is at least partially driven 

by mental state attributions to the gazing person (Morgan, Freeth & Smith, 2019), 

and seeing others gaze at an object transfer their emotional state (e.g. a smile or 

frown) to it, rendering it more/less appealing (e.g., Bayliss, Paul, Cannon & Tipper, 

2006; for review, Becchio, Bertone & Castiello, 2008). In addition, a person’s gaze 

direction signals how they intend to act upon an object (Ambrosini, Costantini & 

Sinigaglia, 2011), promotes later (automatic) imitation of these actions (Wang & 

Hamilton, 2012), and increases activity in brain regions related to Theory of Mind 

and mentalizing (e.g., Mosconi, Mack, McCarthy & Pelphrey, 2005; Williams, Waiter, 

Perra, Perret & Whiten, 2005). If the associated processes rely on embodying the 

content of another’s visual perspective, then visual perspective taking, too, should be 

highly sensitive to where another is looking. 

Another possibility is however that spontaneous visual perspective taking is separate 

to these mentalizing processes and primarily driven by the presence – and spatial 

location – of another person in the scene. In other words, people might be putting 

themselves generally into the shoes of others, without truly looking through their 

eyes. It is well supported that people embody another’s location in space. Several 

studies have shown, for example, that it takes longer to explicitly judge where an 

object is from another’s perspective the more this person is oriented away from us, 

as we mentally rotate our own bodies into the other’s perspectives, with this 

transformation taking longer the more we are oriented away from them (Kessler & 

Thompson, 2010; Kessler & Rutherford, 2010; Kozhevnikov et al., 2006; Surtees et 

al., 2013). Other studies link perspective taking not to Theory of Mind and 

mentalizing, but to more fundamental navigational abilities (Allen, Kirasic, Dobson, 

Long & Beck, 1996; Hegarty & Waller, 2004; Kozhevnikov et al., 2006) and the ability 



- 80 - | P a g e  
 

to decide from which other locations one can interact with the environment (Gunalp, 

Moossaian & Hegarty, 2019; Kessler & Thompson, 2010). 

Strikingly, there is very little evidence about whether another’s eye gaze is an 

important cue for taking another’s visual perspective. Most studies have 

demonstrated only that another person’s eyes contribute to working out what this 

person can or cannot see (Level 1 perspective taking), not how they see it (Level 2 

perspective taking). These studies have shown that this form of Level 1 perspective 

taking relies on a process that “mentally scans” (Kosslyn, Ball, & Reiser, 1978) the 

line of sight between another’s eyes and the object they can potentially see (e.g., 

Michelon & Zacks, 2006) and that, based on this information, people work out 

whether their own judgment and others differs (e.g., Surtees et al., 2013). To our 

knowledge only two studies have investigated how others’ eye gaze contributes to 

Level 2 perspective taking, people’s ability to work out how objects look to the other 

person, with both providing non-conclusive results. Mazzarella, Hamilton, Troiano, 

Mastromauro and Conson (2012) found that seeing another person reach for an 

object induces spatial interference effects from the others’ perspective, so that 

participants were less likely to judge object location from their own perspective. 

However, merely seeing the other person shift their eyes towards the object (and not 

reaching for it) did not induce a detectable shift to their perspective. Similarly, 

Furlanetto, Cavallo, Manera, Tversky and Becchio (2013) showed that while viewing 

someone gaze at an object numerically increased shifts to their spatial perspective, 

this did not seem to be statistically robust, and even removing gaze cues altogether 

(by blurring the eye region) did not affect whether people judged objects from 

another’s or their own perspective.     
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Our paradigm provides an ideal means to disentangle these two possibilities. By 

measuring how much faster items are identified the more they are oriented towards 

other people in the scenes (and slower the more they are oriented away from them), 

our paradigm provides a quantitative measure of participants’ tendency to 

spontaneously take another’s visual perspective. If another’s gaze is critical to trigger 

these VPT processes, then these recognition biases should only be seen for an 

actors that gazes at the items but be eliminated if the actor is not looking directly at 

them, but gazes elsewhere. If, on the other hand, VPT represents a mental 

transformation from one’s own position in space into that of another, then the gaze 

direction of this other person will not influence recognition times, and all conditions 

will show shifts towards the incidentally presented people in the scenes, even if they 

gaze away from the relevant items. Here, we test these predictions in two 

experiments. 

3.2 Experiment 4a – manipulating gaze between trials 

Experiment 1 tests how another’s gaze affects perspective taking, using a within-

subject design. Participants were shown a series of scenes depicting a table in front 

of them. In each trial, an alphanumeric character appeared on the table, presented 

either normally, or in its mirror-inverted form, at varying rotations away from upright. 

Participants had to simply judge, with a button press, whether the items were 

mirrored or normal (“R” vs. “Я”). In some trials, another person was seen sitting to 

the left or the right of the table. Our previous studies have shown that people 

spontaneously make use of another person’s perspective when making these 

judgements. When letters are facing another person, it was easier to judge whether 

they are mirrored or normal than it would be if this other person was not there or 
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sitting in the opposite direction, indicating that people judged the letters through this 

person’s eyes. Here we manipulated – between trials – the direction in which the 

person was looking, in order to test whether people’s tendency to spontaneously 

represent how an object looks to another person is affected by whether this person is 

actually looking at the object. In different trials, the person on the screen could either 

(1) look at the item on the table, as in our prior work, or (2) look away from it to the 

wall in the room. If perspective taking takes the others’ gaze into account, then the 

ability to recognize an object from another’s perspective should be enhanced – or 

only found – when the person is actually looking at the to-be-judged item, but less so 

if looking at the participant or the room’s back wall. If, however, perspective taking 

emerges from a general rotation of one’s own body into the spatial location of 

another then it should happen irrespective of where the actor is looking.  

3.2.1  Method 

 Participants 

Thirty-seven (31 females) naive participants were initially recruited via the University 

of Plymouth participation pool. All participants were adults (age range 18-35) and 

gave written informed consent according to the declaration of Helsinki. Approval was 

obtained from the University of Plymouth Ethics Committee. Participants received 

course credit as compensation. As in Ward et al., (2019), participants with more than 

20% error rates across all conditions were not considered for analysis (n=5). The 

remaining thirty-two participants (27 females; mean age: 20.1 years, range: 18-35) 

provide enough power to detect effects in the range of d =.45. Prior work on this 

paradigm (Ward et al., 2019) has revealed that effect sizes are substantially larger 

(.747 < d < 1.08 for the main perspective taking effect). 
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Apparatus, stimuli and procedure 

The study was conducted in behavioural testing lab space of the Action Prediction 

lab of the University of Plymouth. It was administered using Presentation® software 

(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

Stimuli were presented on a 19” LED computer monitor (Resolution: 1900x1200; 

Refresh rate: 60Hz). Responses were made on a standard computer keyboard with 

UP, DOWN, and SPACE keys as active response keys. Red and green stickers were 

positioned on the DOWN and UP keys, respectively.  

Participants sat upright facing the screen at a distance of approximately 60cm and 

were given written and verbal instructions. Before the experiment proper 

commenced, they were given examples of the rotated items that would appear on 

the screen and completed eight training trials that were identical to the main 

experiment. The experiment proper consisted of 520 trials. Each trial (Figure 2.1) 

started with a fixation cross displayed for 400ms, followed by 300ms blank screen. 

The subsequent stimulus sequence included three frames, each measuring 33.4 by 

23.5 degrees of visual angle. The first frame was presented for 800 ms. In one third 

of the trials, it showed a view onto a corner of a square table in a grey room without 

a person being present (No-Person trials). The remaining trials showed a person 

(either male or female) sitting at the same square table, gazing outwards at the 

participant. The person sat either on the left side of the table (Person-left trials) or on 

its right side (Person-right trials), so that they were positioned at roughly 270 or 90 

degree angle to the position at which the rotated items would appear, relative to the 

participant.  
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Figure 2.1. Example stimuli used in Experiment 4a. Looking direction (Item-gaze 
or Averted-gaze) varied between trials. 

 

The second frame in the sequence was identical to the first for the No-Person trials. 

In the other trials, the person looked down towards the middle of the table in half the 

trials, where the item would appear, and in the other half they looked away towards 

the corner of the room. Because this second frame was presented without inter-

stimulus interval, it created the impression of apparent motion (Wertheimer, 1912), 

so that the person seemed to shift their gaze from the participant towards the table 

or towards the back of the room. Then, after a random interval between 700ms and 

1400ms, the third frame was presented. This was identical to frame 2, but now one 

of 48 possible items appeared on the table, at the location on the table the on-screen 

person was gazing at. This item was one of three alphanumeric characters (4, P, or 

R), presented either in the canonical version or mirror-inverted about their vertical 

axis, in one of eight orientations (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, with 0° 
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denoting the upright canonical orientation and angles increasing in a counter-

clockwise fashion) relative to the participant. The characters always appeared in the 

same position on the table, half-way between the outward corner of the table and its 

centre, such that the persons to the left and right would gaze at the table from 

roughly 90° and 270°, respectively (perpendicular to the viewpoint of the participant). 

Character rotation occurred around the character’s centre point.  

Participants were asked to judge whether each character was presented in its 

canonical or mirror-inverted form (e.g. “R” vs “Я”). Participants responded using their 

right hand by pressing the green key to indicate a canonical item and the red key to 

indicate a mirrored item. Response times were measured relative to item onset. The 

third frame remained on the screen until a response was made to a maximum 

duration of 3500ms. 

 Analysis 

Data (pre-)processing and analysis was identical to Ward et al., (2019) and 

conducted in Microsoft Excel (2010) and JASP (2018). Violin plots were created 

using Raincloud Plots (Version 1; Allen, Podiaggi, Whitaker et al., 2019). Power 

analyses were conducted in G*Power (Version 3.1; Erdfelder, Faul, & Buchner, 

1996). 

Dependent measures were the recognition times (measured from item onset) for 

each character orientation (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315), depending on 

Person location (No-Person, Person-left, Person-right) and Gaze direction (Item-

gaze, Averted-gaze). As in our original study (Ward et al., 2019), the recognition 

times for each angle and condition were mapped onto two orthogonal and 

statistically independent summary measures, so that they can be compared across 
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conditions, without accruing alpha inflation due to multiple testing, which would result 

if each of the eight angles were compared separately. These two summary 

measures are derived by treating each participant’s recognition time for this 

character orientation as a vector in a polar coordinate system, with the recognition 

time providing the distance from the origin and the rotation angle the polar angle. 

The first summary measure (Toward/Away-bias) quantifies the mental rotation effect 

(Shepard & Meltzer, 1971) and indexes to what extent characters are recognized 

faster the more they are facing towards the participants (0°) rather than away from 

them (180°), separately for each participant and condition (No-Person, Person-left 

Item-gaze, Person-left Averted-gaze, Person-right Item-gaze, and Person-right 

Averted-gaze). A character orientation’s contribution to the Toward/Away-bias is 

derived simply from the recognition times multiplied with the negative of the cosine of 

the orientation angle. As a result, characters contribute negatively the more they face 

the participants (315°, 0°, 45°) and positively they more they are oriented away from 

them (225°, 180°, 135°). Positive values on this score therefore indicate faster 

recognition of letters oriented towards rather than away from the participant. 

The second summary measure (Left/Right-bias) indexes how much faster characters 

were recognized when oriented towards the left (270°) rather than right (90°), and 

therefore allows us to quantify whether people present in these location induce shifts 

in how quickly these letters can be identified. It was derived analogously to the 

Towards/Away-bias. The contribution of a character’s orientation to the Left/Right-

bias was calculated as the recognition time multiplied with the sine of the orientation 

angle. Character orientations contribute negatively the more they face to the right 

(45°, 90°, 135°) and positively the more they face to the left (225°, 270°, 315°). A 
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zero value on the Left/Right-bias therefore indicates that items oriented left and right 

are identified equally quickly, while positive numbers indicate faster identification for 

left- compared to right-oriented letters, and vice versa for right-oriented letters.  

By averaging these values, separately for each summary measure, participant and 

condition (No-Person, Person-left-item, Person-left-averted, Person-right-item, 

Person-right-averted), we can calculate, first, whether characters are recognized 

faster the more they appear in the canonical orientation to the participant compared 

to when they are oriented away (positive values on the Toward/Away-bias), reflecting 

the expected mental rotation effect. Similarly, they allow us to calculate to what 

extent characters are recognized faster the more they are oriented leftwards and 

would appear in their canonical orientation to a person sitting to the left (positive 

values on the Left/Right-bias) rather than rightwards, appearing in their canonical 

orientation to a person sitting on the right (negative values). We were then able to 

determine if this difference in left/right biases changed depending on whether the 

other person was looking at the object or not. Note that the direct comparison of the 

Person-left and Person-right conditions is statistically identical to the comparison of 

how much the presence of person shifts mental rotation performance in the Person-

left and Person-right conditions relative to the No-Person baseline (i.e. how much 

person presence shifts recognition times away from 0 towards either 900 or 2700), as 

this would involve subtracting the same baseline value from each of the two 

conditions for each participant, and would therefore not affect the absolute difference 

between them.  

 

Across-participant regression analyses  
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In prior work, the mental rotation effect is typically also characterised in terms of a 

linear regressions of an items’ recognition time to its angular disparity relative to the 

participant, for each participant separately (Shepard & Meltzer, 1971). The results 

reveal linear increases with increasing angular disparity for the large majority of 

participants. Here, we used this analysis model to test whether an item’s recognition 

times can be described, on a single participant basis, as a linear increase of the 

character’s angular disparity both to the participant and to the other person. To this 

end, we entered each participant’s item mean recognition times for each character 

orientation in each condition (No-Person, Person-item, Person-averted) as 

dependent variable in a multiple regression analysis, with the item’s angular disparity 

to the participant and to the other person as two statistically independent predictors. 

This analysis provides regression coefficients for both predictors – angular disparity 

to participant and other person – for each participant and condition separately. We 

report mean across-participant regression coefficients for each of these two 

predictors and compare them with t-tests against zero, and against each other. 

 

3.2.2 Results 

Erroneous responses (7% on average) were excluded from the analysis of 

recognition times (RTs), as well as trials with RTs longer than 2000ms, or shorter 

than 150ms.  
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Figure 2.2. Results of Experiment 4a. (A) Mean recognition times (ms) for mirror-
inverted/canonical judgements for Item-gaze trials when the actor is inserted on the right and 
the left showing faster recognition times for items oriented upright to the actor. (B) Left/right 
bias when the inserted person is looking at the table showing faster recognition times for 
items appearing upright to the actor. (C) Mean recognition times (RTs) for mirror-
inverted/canonical judgements for Averted-gaze trials (D) Left/right bias when then inserted 
person appears to look away from the table (towards to wall).  

 

Mental rotation 

We first determined whether our data replicated the classical mental rotation effect 

(Shepard & Metzler, 1971). To this end, we first compared the overall (across 

conditions) towards/away bias, indexing, in milliseconds, how much more slowly 

items are identified the more they are oriented away from the participant compared 

to towards them, with a simple t-test against zero. The towards/away bias across all 
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conditions was positive, M=56.34; SD=28.05, t(31)=11.36, p<.001, d=2.01, 

BF10=5.797e+09, showing – unsurprisingly – that items are identified more quickly 

the more they are oriented towards rather than away from participants. This mental 

rotation effect was also confirmed by regressing each item’s recognition time to the 

expected linear increase with angular disparity, as in prior research, (Shepard & 

Metzler, 1971; Ward et al., 2019), revealing positive slopes in all participants, mean 

β =1.4; t(31)=14.60, p<.001, d=2.6, BF10=3.181e+12. 

We then verified that this overall mental rotation effect was not affected by person 

presence. As the actors would sit at 90 and 270 degree angle to the participant, and 

their location was therefore orthogonal to the towards/away axis, we did not expect 

that the presence/location of the other person would affect the overall mental rotation 

effect. Indeed, a 2x3 ANOVA on the towards/away-biases across conditions with the 

factors Gaze (item, averted) and Location (person left, person right, no person) did 

not reveal any main effects or interactions, F<2.68, p>.08, for all. When the six 

conditions were analysed separately, slower recognition of turned away items was 

present in all conditions, t(31) > 8.29, p <.001, d >1.5 for all.  

 

Perspective taking 

The main question was whether people would spontaneously take the perspective of 

the other person in the scenes, such that items were recognized faster when 

oriented towards compared to away from them, and whether this effect, in turn, was 

determined by where this person was looking. We therefore calculated, for each 

participant and condition separately, the left/right-bias (for details, see analysis-

section), indexing, in ms., how much faster items were identified the more they were 
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oriented to the left than to the right. The resulting left/right-bias summary scores 

were then entered into a 2 x 2 repeated measures ANOVA with within-subjects 

factors of Location (Person-left, Person-right) and Gaze (Averted-gaze, Item-gaze). 

This analysis revealed decisive evidence for a main effect of Location, 

F(1,31)=27.921, p <.001, ηp2=.474, BF10=4379.04. As in our prior work (Ward et al., 

2019), left/right-biases were more negative (indexing faster recognition of rightwards- 

than leftwards oriented letters) when someone was sitting on the right, and more 

positive (indexing faster recognition of leftwards- than rightwards oriented letters) 

when someone was sitting on the left. Strikingly, this analysis provided moderate 

evidence against a main effect of Gaze, F(1,31)=.545, p=.466, ηp2=.017, BF10=.203, 

and against an interaction of Location and Gaze, F(1,31)=.291, p=.593, ηp2=.009, 

BF10=.216, showing that the location of the actor, and not where they were looking, 

was the critical cue to induce perspective taking.  

Table 2.1 Means (M) and Standard Deviations (SD) for the Left/Right- and 
Towards/Away-biases in Error rates in Experiment 4a and Experiment 4b. Relates to 
Figure 2.1 and Figure 2.4. Forward/Away and Left/Right-biases were calculated 
analogously as for the recognition times. *p<.05. **p<01, ***p<.005. 
 Toward/away bias Left/right bias 

Exp. Looking 
direction 

Person-left 
M (SD) 

Person-right 
M (SD) 

No-Person 
M (SD) 

Person-left 
M (SD) 

Person-right 
M (SD) 

No-
Person 
M (SD) 

1. Item .021 
(.027)*** 

.022 
(.027)*** 

.021  
(.024) *** 

-.0001 
(.024) 

-.005  
(.02) 

.0004 
(.02) 

 Averted .024  
(.028) *** 

.025 
(.026)*** 

.021  
(.024) *** 

.003  
(.021) 

-.006 
(.022) 

.0004 
(.02) 

2. Item .028  
(.026) *** 

.024  
(.026) *** 

.022  
(.03) *** 

.004  
(.011) 

-.001 
(.017) 

.004  
(.015) 

 Averted .028  
(.027) *** 

.031  
(.032) *** 

.022  
(.025) *** 

-.0019 
(.014) 

-.0023 
(.015) 

-.003 
(.016) 

 Participan
t 

.034  
(.029) *** 

.025 
(.024) *** 

.033  
(.022) *** 

-.007  
(.02) 

-.01  
(.021) 

-.005 
(.019) 

 

Indeed, when the difference in left/right-bias between Person-left and Person-right 

conditions was compared separately for each gaze condition, the predicted 
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differences were apparent for both Item-gaze trials t(31)=-3.287, p=.003, d=.58, 

BF10=14.55, and Averted-gaze trials t(31)=5.044, p<.001, d=1.01, BF10=1145.37, 

with effect sizes, if anything, being larger in the away trials. 

 

Regression analyses 

As in our previous studies, we tested whether recognition times could be described 

as independent linear increases depending on an item’s angular disparity to the 

participant as well as the other person, by using both disparities as orthogonal 

predictors in a simple regression model, for each participant and condition separately 

(and then comparing them against zero). Overall, these revealed very strong 

evidence for independent contributions of both the angular disparity to the 

participant, mean β =1.39, t(31)=11.09, p<.001, d=1.96, BF10=3.278e+09, and to the 

other person, mean β =.27, t(31)=4.95, p<.001, d=.87, BF10=919.8, showing that 

recognition times can be described by independent mental rotation functions form 

one’s own and the other person’s perspective.  

To test how these relationships were affected by the other person’s gaze,  

regression coefficients for each participant and condition were entered into a 2 x 2 

repeated measures ANOVA with Gaze (Item, Averted) and Perspective (Self, Other) 

as within-subject factors. This analysis only revealed a main effect of Perspective, 

F(1,31)=68.96, p<.001, ηp2=.69, BF10=2.118e+18 showing that, as expected, 

angular disparity towards the participants determined recognition times to a stronger 

extent that angular disparity to the other person. Replicating the main analysis, the 

analysis provided moderate against a contribution of gaze, neither revealing a main 

effect of Gaze, F(1,31)=.267, p=.609, ηp2=.009, BF10=.24, nor an interaction of Gaze 
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and Perspective, F(1,31)=.044, p=.835, ηp2=.001, BF10=.193. In Item-gaze trials, 

both the angular disparity away from upright to the participant, mean β=1.39, 

t(31)=9.55, p<.001, d=1.7, BF10=1.044e+08, and to the actor, mean β=.25, 

t(31)=3.273, p=.003, d=.58, BF10=13.98 contributed to recognition times. This pattern 

was the same in the Averted-gaze trials, with the stronger contribution again coming 

from the angular disparity to the participants, mean β=1.42, t(31)=10.81, p<.001, 

d=1.9, BF10=1.799e+09, and the smaller contribution coming for the angular disparity 

to the other person in the scene, mean β=.30, t(31)=5.25, p<.001, d=.91, 

BF10=2002.84.  

 

3.3  Experiment 4b – manipulating gaze between participants 

Experiment 4b confirmed that the mere presence of a person is sufficient to induce a 

shift into their perspective. As in our prior research (Ward et al., 2019), we found that 

oriented items were recognized more rapidly if they appeared closer to their 

canonical orientation to another person in the scenes. Moreover, recognition times 

could be well-described by mental rotation functions centred on both one’s own and 

the other person’s perspective. Strikingly, however, these shifts into the others’ 

perspective were independent of the other person’s gaze and occurred irrespective 

of where they are looking at the to-be-recognized item or away from it. This suggests 

that taking another’s visual perspective is based on their location in space, but not 

their gaze at (or away) from the relevant items. 

 One reason for this lack of a difference might be that within-participant experiments 

such as ours suffer from influential companion (e.g., Poulton, 1992) and carry-over 

effects (MacFie, Bratchell, & Greenhoff, 1989), for example when a participant’s 
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memory of the actor’s gaze (e.g. at the item) in a previous trail influenced their 

processing in the current trial (e.g. at the wall). In Experiment 2, we therefore varied 

gaze between participants to rule out such an explanation. In addition, we added a 

third condition, in which the on-screen actors looked outwards at the participant. 

Prior work suggests that such gaze at the participant plays a special role in social 

cognition. It serves as an alerting signal, captures attention, and eliminates gaze 

cuing altogether (e.g. Mazzarella et al. 2012; for a review, see Hamilton, 2016). It 

may therefore provide the perhaps strongest manipulation of gaze. If visual 

perspective taking takes into account what another actually sees through their ideas 

– rather than what they could see from their position in space – then it should now be 

disrupted. 

 

3.3.1. Method 

 Participants 

Ninety-one (61 females) naive participants were initially recruited via the University 

of Plymouth participation pool. All participants were adults (age range 18-35) and 

gave written informed consent according to the declaration of Helsinki. Approval was 

obtained from the University of Plymouth Ethics Committee. Participants received 

course credit as compensation. After exclusion (>20% error), 80 participants (51 

females; mean age: 19.9 years, range: 18-30) were considered for analysis, with at 

least 26 participants for each condition. This provides enough power to detect effects 

in the range of d = .5 for our critical comparison of left/right-bias across person 

locations. Results of the previous study (Ward et al., 2019) and as well as 

Experiment 1 show that effects are likely larger. 
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Apparatus, stimuli and procedure 

Participants completed 584 trials following the same apparatus and procedure as in 

Experiment 1. Between participants, we varied whether the actor always looked out 

towards the participant (participant-gaze), looked directly at the item on the table 

(item-gaze), or looked away from the item towards the corner of the room (averted-

gaze). In each group, an equal number (1/3rd) of trials showed a person on the left, a 

person on the right, or no person. The starting frame in each trial showed the table, 

with either the person present or absent. Depending on the participant’s group 

allocation, the person present in the scenes either looked directly at the future item 

location, at the corner of the room or outwards towards participant. This frame was 

displayed for a randomized time between 1500 and 2220ms. It was directly followed 

by the appearance of the item on the centre of the table for 3500ms (while the 

person remained present), or until a response was made (Figure 2.3). 

 

3.3.2. Results 

As in Experiment 1, erroneous responses (10% on average) were excluded from the 

analysis of recognition times (RTs), as well as trials with RTs longer than 2000ms, or 

shorter than 150ms. 
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Figure 2.3. Example stimuli used in Experiment 4b. Participants viewed only one of 
the three possible looking directions in a between-subjects design.  

 

Mental rotation 

We again first verified that our data would replicate the mental rotation effect 

(Shepard & Metzler, 1971). As in Experiment 1, a simple t-test comparing 

toward/away bias across all conditions against zero confirmed that recognition times 

were generally slower the more items were rotated away from participants, 

t(79)=20.69, p<.001, d=2.31, BF10=2.223e+30. This mental rotation effect was also 

confirmed by regressing each item’s recognition time to the expected linear increase 

with angular disparity, revealing positive slopes in all bar one participant, mean β 

=.85; t(79)=54.96, p<.001, d=6.15, BF10=9.342e+60. 
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To confirm that this overall mental rotation effect was not affected by person 

presence, we ran a 3x3 ANOVA on the towards/away-biases across conditions with 

the factors Gaze (item, averted, participant) and Location (person left, person right, 

no person) as in Experiment 1. As before, this did not reveal any main effects or 

interactions, F(2/4,154/77)<2.47, p>.088, BF<.404 for all.  The mental rotation effect 

was present in all conditions, t(25/26) > 9.17, p <.001, d > 1.8, for all. 

 

Perspective taking 

We then tested whether the task would replicate the shift to the other person’s 

perspective and whether this shift was modulated by their gaze. Left/right-biases 

from all participants were entered into a 2 x 3 repeat measures ANOVA with within-

subjects factors of Location (Person-left, Person-right) and between-subject factors 

of Gaze (Averted-gaze, Item-gaze, Participant-gaze). It again revealed a main effect 

of Location, F(1,77)=29.472, p<.001, ηp2=.277, BF10=15474.14. As can be seen in 

Figure 2.3, left/right-biases were more negative when someone was sitting on the 

right and more positive when someone was sitting on the left. Thus, letters were 

identified more quickly when pointing leftwards when someone was also sitting on 

the right, but identified more quickly when oriented rightwards when someone was 

sitting on the left. However, as in Experiment 1, there was neither a main effect of 

Gaze, F(2,77)=1.189, p=.310, ηp2=.030, BF10 =.230 , nor an interaction of Location 

and Gaze, F(2,77)=2.11, p=.128, ηp2=.052. BF10 = .554. Pairwise comparisons of 

the critical Left/Right actor locations for all conditions confirmed that regardless of 

where the actor was looking, recognition times were faster when items that would 

usually be difficult to recognise were easier when appearing upright from this 
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person’s position,  t(26)=2.347, p=.027, d=.5, BF10=2.055, t(26)=2.730, p=.011, 

d=.54, BF10=4.239, and t(25)=4.173, p<.001, d=.89, BF10=94.93  for Item, 

Participant, and Averted-gaze, respectively.  

 

Figure 2.4. Results of Experiment 4b. (Left) Mean recognition times (ms) for mirror-
inverted/canonical judgements and (Right)  Left/right bias when the inserted person is 
looking at the table showing faster recognition times for items appearing upright to the actor 
for (A) Item-gaze, (B) Participant-gaze, and (C) Averted-gaze.  
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Regression analyses 

As in Experiment 1, we tested whether recognition times can be described as 

independent linear increases depending on an items angular disparity to the 

participant as well as the other person. Mean beta coefficients for all gaze conditions 

were entered into a simple regression model, with the angular disparity of the 

character relative the actor and the participant as independent predictors of 

recognition times. To test for differences between gaze conditions, mean Beta for all 

participants were entered into a 3x2 ANOVA with the between-subjects factor, Gaze 

(item, participant, averted), and within-subjects factor, Perspective (own, other). As 

in Experiment 1, a 2 x 3 ANOVA revealed only a main effect of Perspective, 

F(1,77)=285.99, p<.001, ηp2=.788, BF10=1.587e+34, showing that the angular 

disparity of an item to one’s own perspective determined recognition times to a 

stronger extent than to the other’s perspective. There was no main effect of Gaze, 

F(2,79)=.231, p=.794, BF10=.099, and no interaction of Perspective and Gaze, 

F(2,77)=.23, p=.795, ηp2=.006, BF10=.130. Step-down analyses confirmed that, in 

each condition, recognition times could be described by a linear combination of an 

item’s angular disparity to the participant (Item-gaze, β=1.45, t(26)=10.207, p<.001, 

d=1.95, BF10=7.276e+7; Averted-gaze, β=1.57, t(26)=13.697, p<.001, d=2.64, 

BF10=6.344e+7; Participant-gaze, mean β=1.63, t(25)=10.352, p<.001, d=2.03, 

BF10=3.399e+10) and to a lesser extent to the other person (Item-gaze, mean β=.13, 

t(26)=2.234, p=.034, d=.429, BF10=1.684; Averted-gaze, β=.13, t(26)=2.699, p=.012, 

d=.52, BF10=68.782; participant-gaze, β=.28, t(25)=4.032, p<.001, d=.79, 

BF10=3.982).  
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3.3.3 General Discussion 

Using our recently developed task (Ward et al., 2019), we tested whether 

spontaneous shifts into another’s visual perspective depend on the other person 

looking at the to-be-judged item. We replicated the finding that people spontaneously 

represent – perceptually simulate – the content of another’s viewing perspective and 

use it to recognize items that would be more difficult to recognize from their own 

perspective. Thus, participants identified leftwards oriented items oriented more 

quickly when another person was sitting to the right than on the left, and vice versa 

for rightwards oriented items. Moreover, as in our original study (Ward et al., 2019), 

recognition times were well described by mental rotation functions based on the 

item’s orientation away from the participant and the other person. Our results 

therefore confirm that participants spontaneously shift their perspective into the 

location of another person and represent how an item would look from this position. 

Once represented in such a quasi-perceptual manner, the content of another’s 

viewing perspective can therefore drive perceptual decision making in a similar 

manner as one’s own perceptual input, and drive mental rotation processes. 

Here we asked whether these spontaneous acts of visual perspective taking only 

reflect the other person’s location in space or whether they are also driven by the 

person’s gaze at the task-relevant objects (or away from them). We therefore 

manipulated, in two experiments, whether the other person was directly looking at 

the item, towards the wall, or towards the participant (Experiment 2 only). Neither 

experiment revealed an influence of gaze on visual perspective taking. The signature 

perspective taking effect – that items are identified more quickly when appearing 

upright to another person – was robustly present irrespective of whether this person 
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was looking at the item, towards the wall, or directly at the participant, and 

irrespective of whether looking direction was manipulated between-trials in 

Experiment 1 and between participants in Experiment 2, preventing any obscuring 

influence of carry over or influential companion effects (MacFie et al., 1989; Poulton, 

1982). 

These data show that spontaneous visual perspective taking is primarily driven by 

the presence of another person and their location in space, but does not take into 

account where they are looking. This insensitivity to another’s gaze is surprising 

under the (folk-psychological) assumptions that visual perspective taking is based on 

a sophisticated mechanism that allows us to “see” through another’s eyes (e.g., 

Furlanetto, Becchio, Samson, & Apperly, 2016). It may also be surprising given the 

crucial role others’ gaze is assumed to play in social perception generally. Viewing 

another’s gaze provides immediate information about whether another person can 

see an item (e.g., Gardner et al., 2018), shifts one’s own spatial attention towards 

the gazed at object (Frischen et al., 2007), and transfers the actor’s emotional 

evaluation (e.g., when smiling, frowning) to the object so that one’s own and others 

judgments align (Becchio et al., 2008). Our data suggest that these effects, insofar 

as they imply any sort of mental state attribution, are separate from the perceptual 

shifts into the eyes of the other person, and therefore reflect different mechanisms 

(see Cole, Atkinson, Le, & Smith, 2016, for a similar argument for gaze cuing). 

Instead, the reliance on another’s position in space suggests that spontaneous visual 

perspective taking relies on a more general mechanism that calculates how an item 

would, in principle, look from another’s vantage point, irrespective of whether this 

person is currently looking at the item. It is consistent with the observation that visual 
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perspective taking, when explicitly instructed, relies on mentally rotating one’s own 

body into the position of the other person (e.g., Kessler & Rutherford, 2010; Surtees 

et al., 2013). In such views, rather than gaze, the ability to mentally transform one’s 

own position in space into that of another is integral for deriving how the world looks 

to this other person.  

These findings align visual perspective taking with fundamental navigational abilities, 

particularly the ability to navigate an imagined environment, rather than with more 

sophisticated Theory of Mind and mentalizing abilities. Several authors have made 

such a case, reporting for example a correlational link between perspective taking 

and navigational skills, or that people are just as ready to judge items from the 

perspective of another person or from the perspective of a location they could, 

potentially, occupy (Gunalp et al., 2019; Hegarty & Waller, 2004; Kessler & 

Thompson, 2010; Kozhevnikov et al., 2006). Similarly, it is well-established that a 

key node of the theory of mind network, the Temporoparietal junction (TPJ) is also 

involved in visual perspective taking (e.g., Zacks, Rypma, Gabrieli, Tversky and 

Glover, 1999; for meta-analysis, see Schurz, Aichhorn, Martin & Perner, 2013) and 

self-other distinction (David et al., 2006; Lamm, Bukowski, & Silani, 2016) perhaps 

on the basis of the spatial difference vector between self and other (e.g., Jeannerod, 

2007). However, the TPJ, and posterior parietal regions in general, are also 

implicated in imagined navigation (Committeri, Piccardi, Galati & Guariglia, 2015), 

specifically the translation of allocentric hippocampal place representations into 

representation of a location into egocentric space (Boccia, Sulpizio, Palermo, 

Piccardi, Guariglia, & Galati, 2017). The perhaps most dramatic example for this 

relationship is the link between the TPJ and out-of-body-experiences, in which 

patients subjectively “see” the world (and themselves) from outside their own body. 
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The TPJ is the one region typically impaired in patients that report these experiences 

and stimulation of the TPJ in healthy individuals, via transcranial magnetic 

stimulation (TMS), can induce them (Blanke et al., 2005). We therefore speculate 

that the ability to visually perspective-take might emerge from an evolutionary 

ancient mechanism that allows us to calculate what we can see – and what/how we 

can interact with – from different positions in space, therefore serving both epistemic 

and action functions. More sophisticated abilities for mentalizing and Theory of Mind 

can then capitalise on the emerging insights that other perspectives might provide 

one with very different knowledge of the same scenes (Frith & Frith, 2007; Kessler & 

Thompson, 2010; Mundy & Newell, 2007), giving rise to a common neuronal network 

for Theory of Mind, visual perspective taking, self-other distinction and (imagined) 

navigation. 

A question for future research is how complete this simulation of different locations 

is. In our experiments, the other person’s posture remained consistent across 

conditions, and their head was averted to the corner of the room, or outwards 

towards the participant. What, however, would happen if not only the actor’s head, 

but their whole body was turned to face away from the table in our task? Such 

studies would allow one to disentangle if visual perspective taking is primarily based 

on locations in space, or whether it is embodied, in the sense that it is derived from a 

mental model of oneself in a target posture (Amorim, Isableu, & Jarraya, 2006). If so, 

this would predict that one’s own ability to embody another’s posture through our 

own behaviour might influence these effects. Aligning one’s posture with that of 

another person has been shown to make judgements from their perspective easier 

(Kessler & Thompson, 2010; Kessler & Rutherford, 2010). In our own task, could 

participants’ inadvertent imitation of their virtual partner’s posture then explain why 
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mental rotation can be performed with such ease from their perspective, even 

without any instruction to do so?  

 

3.3.4 Conclusion 

This study provides the first evidence that perceptual shifts into another person’s 

perspective are unaffected by where this person is looking. It therefore confirms that 

people perceptually represent the content of another’s perspective in a 

(quasi)perceptual manner, but that these perceptual simulations are based on their 

location in space, but do not take into account whether this person can actually ‘see’ 

target items. These data link perspective taking to more fundamental navigational 

skills and the ability what one could, in principle, see from another’s vantage point, 

irrespective of what this person is currently looking at.  
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4. Chapter Four - Is Implicit VPT-2 embodied? 

This final experimental chapter uses the same mental rotation paradigm to 

directly test whether participants’ movement plays a causal role in their tendency to 

spontaneously shift into the perspective of the other person. Prior work (e.g. Kessler 

& Thompson, 2010) has conceptualised VPT as being supported by a motorically 

driven, mental body transformation into the position of another person. To test this 

directly, we simply restricted participants’ movement during half of the experimental 

trials, and measured whether this affected participants’ tendency to spontaneously 

derive how the object of interest appeared to the inserted persons in the scene.  

 

4.1  Is Implicit Level-2 Visual perspective taking embodied? Spontaneous 

perceptual simulation of others’ perspectives is not impaired by motor 

restriction. 

Eleanor Ward*, Giorgio Ganis, Katrina L. McDonough, Patric Bach 

School of Psychology, University of Plymouth, Drake Circus, Devon, UK, PL4 8AA 

*Corresponding author/lead contact: Eleanor.ward@plymouth.ac.uk 

Abstract 

Embodied accounts of VPT suggest that making judgements from another’s 

perspective becomes less effortful if one’s own body position aligns with that of the 

other person (e.g. Kessler & Thompson, 2010) indicating a causal role of body 

posture in visual perspective taking. Here we test whether movement has a causal 

role in perspective taking. We used our previously established task that shows that 

other peoples’ visual perspectives are represented perceptually in a similar way to 
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one’s own and can drive bottom-up processes in the same way as own perceptual 

input (Ward, Ganis & Bach, 2019; Ward, Ganis, McDonough & Bach, under review). 

We asked participants to identify whether alphanumeric characters, presented at one 

of eight possible orientations away from upright, were presented normally, or in their 

mirror-inverted form (e.g. “R” vs. “Я”). In some scenes, a person would appear sitting 

to the left or the right of the participant. In half of the trials, participants’ movement 

was restricted with a standard chin rest, and in the remaining half, participants could 

move freely when making their judgements. In the absence of another person, we 

replicated the well-established mental rotation effect, where recognition of items 

becomes slower the more items are oriented away from upright (e.g. Shepard and 

Meltzer, 1971). Crucially, in all conditions, this response pattern changed when 

another person was inserted into the scene. People spontaneously took the 

perspective of the other person and made faster judgements about the presented 

items in their presence if the characters were oriented towards upright to them. 

Participants’ ability to move did not influence these effects. The results therefore rule 

out active physical movement as a causal explanation of visual perspective taking, 

and instead argue that subtle postural readjustments when making judgements from 

an other’s perspective are a bodily consequence of the mental transformations of a 

person’s actual to imagined position in space. 

Keywords: visual perspective taking; perceptual simulation; navigation; mental 

rotation; mental imagery; active inference  
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Introduction 

Humans effortlessly take others’ perspectives and derive what they can or cannot 

see, or how a scene looks to them (Flavell, Everett, Croft & Flavell, 1981). This 

everyday skill allows people to give a passer-by directions so they can plan a route 

from their own perspective, or work out whether an oncoming driver has noticed 

them before safely crossing a road, for example. These abilities have been argued to 

underlie the ability to coordinate actions with others (Freundlieb, Kovács, & Sebanz, 

2016), and may form the basis of more sophisticated social abilities such as 

reasoning about others’ beliefs, desires, and goals (Batson, Early, & Salvarani, 1997; 

Erle & Topolinski, 2015; Tomasello, Carpenter, Call, Behne, & Moll, 2005; Mattan, 

Rotshtein & Quinn, 2016).  

Recent work has conceptualised perspective taking as a form of perceptual 

simulation, which inserts the content of another’s perspective onto one’s own 

perceptual processes, as if it were one’s own perceptual input (Kampis, Parise, 

Csibra, & Kovács, 2015; Surtees, Apperly, & Samson, 2016; Ward, Ganis, & Bach, 

2019). Such a (quasi-)perceptual representation could then drive one’s own action 

and decision making processes just like own input, explaining the developmental link 

between visual perspective taking and higher level mentalizing (Batson et al., 1997; 

Erle & Topolinski, 2015; Hamilton, Brindley & Frith, 2009; Tomasello et al., 2005; 

Mattan, et al., 2016) and its link to joint action (Freundlieb et al., 2016).  

A recent series of studies from our lab provided the first direct evidence that people 

represent others’ perspectives in a similar way to their own (Ward et al., 2019; Ward, 

Ganis, McDonough & Bach., 2020), and that these (imagined) other-perspectives 

can drive perceptual decision making processes in the same way as their own 

perceptual input, similar to other perceptual simulation processes (e.g. see 
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Roelfsema & de Lange, 2016, for a review). Prior studies had already provided 

evidence for an overlap between one’s own and others representations of the world, 

so that stimulus judgments become harder if another person around us would make 

the same judgements differently from their perspective (e.g., Sampson, Apperly, 

Braithwaite, Andrews, & Bodely Scott, 2010; Surtees, Samson, & Apperly, 2016; 

Tversky and Hard, 2009; Zwickel and Müller, 2010; Zwickel, White, Constantin, 

Senju & Frith, 2010). Yet, these studies left open whether this interference happens 

on a perceptual level or a conceptual/response level, or whether it simply indexes 

the uncertainty when a person becomes aware that others would judge the same 

stimulus differently from their perspective.  

To reveal whether people have direct perceptual access to the content of another’s 

perspective, we tested whether another’s viewpoint allows people to make 

perceptual judgments that would be difficult from their own perspective. We adapted 

the established mental rotation task, in which participants simply report, as quickly as 

possible, whether alphanumeric characters at various orientations are presented in 

their canonical or mirror-inverted form (e.g. “R” vs. “Я”). The well-known finding is 

that these judgements increase linearly the more the characters are rotated away 

from upright (Shepard & Melzer, 1971), because people first must mentally rotate 

them back into their canonical orientation before being able to judge them. Here, we 

used this task to test whether people would spontaneously make these judgments 

from the perspective of the other person, so that they can rapidly judge items that 

are oriented away from themselves, if they appear upright to the other person. 

Indeed, participants recognized the items more quickly when an incidentally inserted 

other person would have a more upright view of the to-be-judged character than 

them, whilst judgements that would be more difficult from this other perspective 
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became slower. Moreover, regression analyses showed that recognition times 

across letter orientations increased linearly with the angular disparity of the item not 

only to the participant’s viewpoint, but also to the other person’s viewpoint, 

suggesting that participants could mentally rotate the items from their own or the 

other’s perspective.  

These data provided direct evidence that people can mentally represent the content 

of another’s viewing perspective in a form that can “stand in” for own visual input and 

drive subsequent perceptual judgements and mental rotation processes. Importantly, 

these shifts to the others’ perspective occurred spontaneously, even when the 

persons in the scene were completely task-irrelevant. Further studies showed that 

the same effects were not present when the person was substituted for an inanimate 

object (i.e. a lamp, Ward et al., 2019), but increased substantially when participants 

were asked explicitly to take the other person’s perspective. More recent work (Ward 

et al., under review) shows that these shifts into the other’s perspective are not 

sensitive to where this person looks but reflect their location in space and which 

perspectives this vantage point would, in principle, afford onto the to-be-judged item 

(irrespective of where the person actually looks). 

An interesting anecdotal observation was that, within these tasks, participants would 

sometimes inadvertently shift their actual position towards the other person’s, 

angling their head slightly leftwards if another person appeared to the left of the 

items on the screen, and rightwards if the person appeared to the right. This 

observation fits with the view that perspective taking is an ‘embodied’ process (e.g. 

Kessler & Rutherford, 2010; Kessler & Thompson, 2010; Kessler & Wang, 2012), in 

which people mentally rotate themselves into the position of the other person. 

Studies have shown for example that explicit perspective taking (i.e. consciously 
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judging how a scene would appear to another person with a different view) takes 

longer the more another person is rotated from one’s own perspective (Kozhevnikov 

, Motes, Rasch & Blajenkova, 2006; Surtees et al., 2013; Kessler & Rutherford, 

2010). Similarly, when people physically align their posture with that of another 

person, judgements from this other-perspective become easier, whilst adopting a 

misaligned posture makes it harder to take this other person’s perspective.  

Whilst there have been a number of distinct claims made about the processes 

involved in embodied cognition – and what embodied cognition can mean – (e.g. 

Wilson, 2002), the assumption tested in this work is that of the interaction of 

cognition and action. Most relevant to this work is the notion that ‘off-line’ cognition is 

grounded in the body, and that, given the evolutionary emphasis on human survival, 

high-level cognitive functions are likely based generally on more primitive functions 

such as motor processing (Muto, Matsushita & Morikawa, 2018). This view holds that 

even when we are not actively performing an action, activity in the mind remains 

grounded in mechanisms that evolved to afford interaction with the environment 

(Wilson, 2002). It is possible in our task, therefore, that when we (mentally) move 

into another person’s perspective, we draw on mechanisms that evolved to facilitate 

actual action, such as mechanisms that would actively help us navigate – and move 

– through space. Participants’ overt movements in earlier versions of this task  might 

therefore reflect an epiphenomenal ‘leakage’ from the mental transformation of 

people’s actual to the imagined other-position, similar to other bodily consequences 

of motor imagery (Colton, Bach, Whalley & Mitchel, 2018; Bach, Allami, Tucker, & 

Ellis, 2014; Jacobson, 1930; Vargas, Olivier, Craighero, Fagida, Duhamel & Sirigu, 

2004). 
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Here we ask whether these bodily movements are not be simply bodily signs of a 

mental perspective transformation, but whether they play a causal role in driving the 

shift to the other person’s perspective. There are two ways in which overt body 

movements could support judgments from the other person’s perspective. First, 

several recent proposals from the field of embodied cognition argue that people 

actively use their own body and the environment to support cognitive judgments 

(e.g., Glenberg, 2010; Proffitt, 2006; for perspective taking, see Tversky & Hard, 

2009). In our case people could have used the bodily movement to trigger 

“embodied” processes that allow them to picture the world from another’s 

perspective. When people grow up, they develop highly automatic processes that 

allow them to predict the perceptual consequences of their actions (i.e. “forward 

models”, Blakemore, Frith & Wolpert, 1999; Miall & Wolpert, 1996), such that they 

can predict, before the action is completed, which visual (e.g., Hughes & Waszak, 

2011), auditory (Kunde, Koch, & Hoffmann, 2004), or tactile sensation it will produce 

(e.g., Morrison, Tipper, Fenton-Adams & Bach, 2013; Bach, Fenton-Adams & Tipper, 

2014). In mental rotation tasks, it has been shown for example that manual rotations 

consistent with the speed and direction of mental rotations facilitate faster 

judgements. These movements appear to directly support the mental movement, as 

restricting these movements or asking participants to make different movements 

interferes with imagery of finger movements (e.g., Vargaset al., 2004) or mental 

rotation processes (Wohlschläger & Wohlschläger, 1998). Similar links have been 

observed for emotion judgments and restrictions of one’s own facial musculature, 

and abstract mathematical relationships and hand gestures (Cook, Yip & Goldin-

Meadow, 2010; Neal & Chartrand, 2011; Parsons, 1994). In our task, therefore, 

people could make overt movements towards the other person’s location for the 
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same purpose: to trigger processes that predict the perceptual consequences of how 

the world would look if these movement had been completed.  

A second possibility is that the body movements reflect active attempts to effectively 

sample the scenes from the other person’s perspective. Recent proposals from the 

domain of predictive processing argue that perception is not a passive process, but a 

process of “active inference” in which people constantly move their bodies (Friston, 

Daunizeau & Kiebel, 2009) and their eyes (e.g., Parr & Friston, 2017) to most 

effectively sample the information that they require for the task, or to fulfil their prior 

expectations and avoid ‘surprising’ states (Friston, 2010). In our task, the presence 

of a person on the left or the right, might have triggered body movements so that 

people’s own perspective – and the perceptual input they receive – aligned more 

closely with that of the other person. For our task, this raises the possibility, 

therefore, that the measured shift into the other’s perspective does not reflect 

changes to participants’ mental representation of perceptual input, but an actual 

change in the perceptual input they receive, so that they can actually see the item 

better in orientations that aligns with the other person’s location.  

One effective way to test whether the subtly body movements of participants play a 

causal role in perspective taking is by comparing performance in conditions in which 

these movements are possible and conditions in which they restricted. As noted 

above, restricted movement tasks have been used to test embodied emotional 

processes (Neal & Chartrand, 2011), mental rotation processes (Moreau, 2013), and 

even mathematical reasoning processes (Cook et al., 2012). We gave participants 

the same mental rotation task as in our previous studies (Ward et al., 2019; 2020) 

and asked them to report whether alphanumeric characters appearing on a table in 

front of them in different orientations were presented normally or were mirror-
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inverted (e.g. “R” vs. “Я”). In some of the trials, a person appeared in the scenes and 

looked at items from either the left or the right of the table. This allows us to measure 

how much faster items are identified when they face the other person, compared to 

facing away from them. The crucial manipulation was that in half of the trials, 

participants’ movement was restricted using a chinrest; they could therefore not 

adjust their own body movement to either actively sample the scenes from the 

others’ perspective or to trigger “embodied” perspective taking processes. If 

movements are causal in creating the shifts to the others’ perspective, then 

restricting participants’ movement should disrupt perspective taking, and the 

response time benefits for items easy to recognize for the other person would be 

reduced or eliminated. If, however, the movements are simply epiphenomenal 

‘leakage’ of mental rotations into the other person’s body (e.g. Colton et al., 2018), 

then preventing these movements should have no effect. 

A secondary goal of the current study was to explore which individual differences 

determine the tendency to spontaneously take another’s visual perspective. Prior 

work (e.g. Langdon, Coltheart, Ward & Catts, 2001) indicates that individuals with 

schizophrenia are impaired in visual perspective taking. We therefore tested whether 

participants’ individual ability to judge from the other’s perspective (as measured in 

our task) is related to their tendency to experience psychosis-like states, using the 

Schizotopy Questionnaire (STQ; Claridge & Brocks, 1984). Similarly, we tested 

whether prior findings that link perspective taking to more sophisticated mentalizing 

abilities and social interaction (e.g. Batson et al., 1997; Erle & Topolinski, 2015; 

Hamilton et al., 2009; Tomasello et al., 2005; Mattan, et al., 2016) can be 

demonstrated in our task. We therefore also gave the Interpersonal Reactivity Index 

(IRI; Davies, 1983) and the Autism Quotient (AQ; Baron-Cohen, Wheelwright, 



- 121 - | P a g e  
 

Skinner, Martin & Clubley, 2001) to all participants, to ascertain to what extent the 

presence of autistic-like traits and social interaction abilities predict spontaneous 

perspective-taking. 

 

4.2 Experiment 5 

 

4.2.1 Method 

Participants 

Sixty-nine (59 females, 1 non-binary gender) naive participants were initially 

recruited via the University of Plymouth student participation pool. All participants 

were adults (age range 18-35) and gave written informed consent according to the 

declaration of Helsinki. Approval was obtained from the University of Plymouth 

Ethics Committee. Participants received course credit as compensation. After 

exclusion (error >20%), the remaining sixty-one participants (51 females, 1 non-

binary gender; mean age: 20.5 years, range: 18-30) provide 80% power to detect 

effects in the range of d =.32. Prior work on this paradigm (Ward et al., 2019) has 

revealed that effect sizes are substantially larger (.747 < d < 1.08 for the main 

perspective taking effect). For correlations with measures of individual differences, 

the sixty-one participants also provide 80% power to detect correlation coefficients in 

the range of r = .25 (two-tailed) or r = .23 (one-tailed).   

 

 Apparatus, stimuli and procedure 
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All experiments were conducted in behavioural testing lab space of the University of 

Plymouth. The experiments were administered using Presentation® software 

(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

Stimuli were presented on a 19” LED computer monitor (Resolution: 1900x1200; 

Refresh rate: 60Hz). Responses were made on a standard computer keyboard with 

UP, DOWN, and SPACE keys as active response keys. Red and green stickers were 

positioned on the DOWN and UP keys, respectively. A standard chinrest was 

provided for participants, fixed with a screw clamp central to the computer monitor at 

a distance of 60cm, and a height of 30 cm from the desk surface.  

 

Figure 3.1. (A) Scene set up and, (B) schematic of the trial sequence. Panel A 
shows the position of the inserted persons relative to the character on the table, 
producing a viewing angle of approx. 90 degrees relative to the participant. Panel B 
shows the timing of the trial sequence. First participants viewed a fixation cross and 
300ms blank screen. The next scene showed a male (pictured above) or female 
actor positioned either to the left (as shown above) or the right of the table. After a 
random period of 1500ms to 2200ms, an alphanumeric character appeared on the 
table either in its canonical or mirror-inverted form. Participants responded with a 
button press to indicate whether they though the letter was normal or mirrored. In 
half of all trials, participants’ movement was restricted using a standard chin rest.   
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Participants sat upright facing the screen at a distance of approximately 60cm and 

were given written and verbal instructions. They were given examples of the rotated 

items that would appear on the screen and completed eight training trials that were 

identical to the main experiment (Figure 3.1). Each trial (total trials = 572) started 

with a fixation cross displayed for 400ms, followed by 300ms blank screen. The 

subsequent stimulus sequence included two frames, measuring 33.4 by 23.5 

degrees of visual angle, presented without inter-stimulus interval. The first frame was 

presented for 1500 to 2200 ms. In one third of the trials, it showed a view onto a 

corner of a square table in a grey room. The remaining trials showed a person sitting 

behind the same square table, gazing at the centre of the table. The person could 

either be male or female and sat either on the left or right side of the table on an 

equal number of trials.   

The second frame in the sequence was identical to the second frame, but now one 

of 48 possible items appeared on the table, at the location on the table the on-screen 

person was gazing at. This item was one of three alphanumeric characters (4, P, or 

R), presented either in the canonical version or mirror-inverted about their vertical 

axis, in one of eight orientations (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, with 0° 

denoting the upright canonical orientation and angles increasing in a counter-

clockwise fashion) relative to the participant. The characters always appeared in the 

same position on the table, half-way between the outward corner of the table and its 

centre, such that the persons to the left and right would gaze at the table from 

roughly 90° and 270°, respectively (perpendicular to the viewpoint of the participant), 

as at these angles the character’s angular disparities from the participant and the 

other person were statistically independent across conditions. Character rotation 

occurred around the character’s centre point.  
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The third frame remained on the screen until a response was made to a maximum 

duration of 3500ms. Participants were asked to judge whether each character was 

presented in its canonical or mirror-inverted form. Participants responded using their 

right hand by pressing the green key to indicate a canonical item and the red key to 

indicate a mirrored item. Response times were measured relative to item onset.  

The trials were divided into four blocks of 144 trials each. Half were completed using 

a chin rest (height 30 cm from desk, 60 cm from screen) in order to restrict motion, 

and the remaining half of trials were completed without a chin rest, in an ABAB 

order, counterbalanced across participants. The presented stimuli were 

pseudorandomised across blocks, such that all possible combinations of actor-

location/item/presentation/orientation were shown in both the headrest and no-

headrest condition throughout the experiment. In both conditions the viewing 

distance from head to screen was approximately 60cm, as in all previous 

experiments.  

 

Quantification and Statistical analysis 

Data (pre-)processing and analysis was identical to Ward et al., (2019) and 

conducted in Microsoft Excel (2010) and JASP (2018). Violin plots were created 

using Raincloud Plots (Version 1; Allen, Podiaggi, Witaker et al., 2019). Power 

analyses were conducted in G*Power (Version 3.1; Erdfelder, Faul, & Buchner, 

1996). 

Dependent measures were the recognition times (measured from item onset) for 

each character orientation (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315), depending on 

person location (No-person, Person-left, Person-right) and movement condition 
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(Free-movement, No-Movement). Analogous analyses of error rates were also 

conducted to rule out speed/accuracy trade-offs. In both conditions, error rates 

numerically followed the pattern of the main recognition times but did not show 

statistically reliable differences (Table 3.1). 

To quantify changes in recognition times when the characters either faced the 

participant (i.e. was seen in its canonical orientation from the perspective of the 

participant) or the other person in the scenes, we derived two analogous and 

statistically independent summary measures, as in our previous work (Ward et al., 

2019). The first summary measure Toward/Away-bias indexes to what extent 

characters were recognized faster the more they faced towards the participant (0°) 

rather than away from them (180°), separately for each participant and each 

condition (No-person Free-movement, Person-left Free-movement, Person-left No-

movement, Person-right Free-movement, Person-right No-movement and No-person 

No-movement). This measure therefore quantifies the mental rotation effect 

(Shepard & Melzer, 1981). The second summary measure (Left/Right-bias) indexes 

how much faster characters were recognized when oriented towards the left (270°) 

rather than right (90°), or vice versa.  

The contribution of each character orientation to the two summary measures was 

derived by treating each participant’s recognition time for this character orientation 

as a vector in a coordinate system, with the recognition time providing the distance 

from the origin and the rotation angle the polar angle. A character orientation’s 

contribution to the Toward/Away-bias was then derived simply from the recognition 

times multiplied with the negative of the cosine of the orientation angle. As a result, 

characters contribute negatively the more they face the participant (315°, 0°, 45°) 

and positively they more they are oriented away from them (225°, 180°, 135°). 
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Similarly, the contribution of a character’s orientation to the Left/Right-bias was 

calculated as the recognition time multiplied with the sine of the orientation angle. 

Character orientations contribute positively the more they face to the left (45°, 90°, 

135°) and negatively the more they face to the right (225°, 270°, 315°). This 

procedure effectively maps the changes evident in the radar plots for each angle 

onto two orthogonal and statistically independent summary measures, so that they 

can be compared across conditions without accruing alpha inflation due to multiple 

testing, which would result if each of the eight angles were compared separately.  

By averaging these values, separately for each summary measure, participant and 

condition (No-person, Person-left, Person-right), we are able to calculate, first, 

whether characters were recognized faster the more they appear in the canonical 

orientation to the participant (negative values on the Toward/Away-bias) compared 

to when they are oriented away (positive values), reflecting the expected mental 

rotation effect. Similarly, they allowed us to calculate to what extent characters were 

recognized faster the more they were oriented leftwards and would appear in their 

canonical orientation to a person sitting to the left (positive values on the Left/Right-

bias) rather than rightwards, appearing in their canonical orientation to a person 

sitting on the right (negative values). We were then able to determine if this left/right 

bias changed depending on whether another person was presented in the scenes 

and on whether the person was on the left or on the right. 

The crucial comparison is the difference between the Left/Right-biases in the 

Person-left and Person-right conditions, which describes how much faster letters are 

recognized when rotated left than right, depending on whether the other person is 

sitting to the left or right. Note that the direct comparison of the Person-left and 

Person-right conditions is statistically identical to the comparison of how much 
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person presence shifts mental rotation performance in the Person-left and Person-

right conditions relative to the No-Person baseline (i.e. how much person presence 

shifts recognition times away from 0˚ towards either 90˚ or 270˚), as this would 

involve subtracting the same baseline value from each of the two conditions for each 

participant, and would therefore not affect the absolute difference between them.  

 

Across-participant regression analyses. 

 In prior work, the mental rotation effect is sometimes characterised in terms of 

separate linear regressions of an items’ recognition time to its angular disparity 

relative to the participant, for each participant separately (Shepard & Melzer, 1971). 

The results reveal linear increases with increasing angular disparity for the large 

majority of participants. Here, we used this analysis model to test whether an item’s 

recognition times can be described, on a single participant basis, as a linear increase 

of the character’s angular disparity both to the participant and to the other person. To 

this end, we entered each participant’s item mean recognition times for each 

character orientation in the Person-left and Person-right condition as dependent 

variable in a multiple regression, with the item’s angular disparity to the participant 

and to the other person as two statistically independent predictors. This analysis 

provides regression coefficients for both predictors – angular disparity to participant 

and other person – for each participant separately. We report mean across-

participant regression coefficients for each of these two predictors and compare 

them with t-tests against zero. 

 

Individual differences measures 
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All participants were given three paper questionnaires after the computer task. First, 

the Autism Quotient (AQ; Baron-Cohen, Wheelwright, Skinner, Martin & Clubley, 

2001) consists of 50 questions assessing social skills (e.g., I enjoy social occasions), 

attention to detail (e.g., I often notice small sounds when others do not), attention 

switching (e.g., I prefer to do things the same way over and over again), 

communication (e.g., I enjoy social chit-chat), and imagination (e.g., I find making up 

stories easy). The overall score gives a measure of autistic traits, where numerically 

high scores indicate high levels, and scores at the lower end indicate lower levels of 

autistic traits. Responses are recorded using a four-point Likert scale, with the 

options Definitely Agree, Slightly Agree, Slightly Disagree, and Definitely Disagree. 

Prior validation studies (e.g., Baron-Cohen et al., 2001b and Wakabayashi et al., 

2006) show moderate to high internal consistency (Cronbach’s alpha = .63–.77) and 

high test–retest reliability (r = .70), in both autistic and neurotypical samples. 

Second, the Interpersonal Reactivity Index (IRI; Davis, 1983) is a 28 item 

questionnaire measuring empathy, comprised of the four subscales measuring 

perspective taking (e.g. I sometimes try to understand my friends better by imagining 

how things look from their perspective), empathic concern (e.g. I am often quite 

touched by things that I see happen.), fantasy (e.g. I daydream and fantasize, with 

some regularity, about things that might happen to me) and personal distress (e.g. 

When I see someone who badly needs help in an emergency, I go to pieces). 

Responses are made on a 5-point Likert scale ranging from “does not describe me 

well” to “describes me very well”. Numerically high scores indicate high levels of 

empathy, whilst lower scores indicate low levels of empathy. Prior validation studies 

show moderate to high internal consistency (Cronbach’s alpha = .73–.83; DeCorte, 

Buysse, Verhofstadt, Roevers, Ponnet & Davis, 2007) and high test–retest stability 
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(Intraclass correlation coefficients =.71-.86; Gilet, Mella, Studer, Grühn, Labouvie-

Vief, 2013). 

Finally, the Schizotypy Questionnaire (STQ; Claridge & Brocks, 1984) is a short 

measure of schizotypal personality traits, and consists of two scales, corresponding 

to the distinction made in the Diagnostic and Statistical Manual of Mental Disorders, 

Third Edition (DSM-III; American Psychiatric Association, 1980) between schizotypal 

personality disorder (STA scale) and borderline personality disorder (STB scale). 

Simple ‘yes/no’ responses are made to questions targeting schizophrenic-like 

features (e.g. Do you ever suddenly feel distracted by distant sounds that you are 

not normally aware of?), and borderline-personality traits (e.g. Do you at times have 

an urge to do something harmful or shocking?), scoring 1 for ‘yes’ responses, and 0 

for ‘no’ responses. Numerically high scores indicate higher levels of Schizotypy, 

whilst lower scores indicate lower levels. Here we are interested specifically in 

schizotypal traits, therefore only responses for questions 1-37 in the STA part of the 

STQ are collected and reported in this study.  

We were interested in whether either of these individual difference measure predicts 

people’s spontaneous tendency to take the other person’s perspective. This 

tendency is indexed by the difference between left/right-biases when a person is 

sitting on the left compared to when they are sitting on the right, reflecting how much 

faster/slower item recognition the more items are oriented towards/away from the 

other person. We therefore calculated this difference for participant separately by 

subtracting the mean left/right-bias value for a person sitting on the right from the 

value for a person sitting on the left. Scores for the AQ (Baron-Cohen et al., 2001), 

the IRI (Davis, 1983), and the STQ (Claridge & Brocks, 1984) were then entered as 
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predictor variables, and perspective taking scores as the dependent variable, into a 

multiple linear regression model. 

 

4.2.2 Results 

As in our prior work (Ward et al, 2019; Ward et al., under review), erroneous 

responses (8% on average) were excluded from the analysis of recognition times 

(RTs), as well as trials with RTs longer than 2000ms, or shorter than 150ms.  

 

 Mental rotation 

We first confirmed that our data replicate the known mental rotation effect (Shepard 

& Meltzer, 1971), where RTs increase linearly with the item’s angular disparity to the 

participant. We first derived the overall (across conditions) towards/away bias, 

indexing in milliseconds, how much more slowly items are identified the more they 

are rotated away from the participant compared to towards them, and compared it 

with a simple t-test against zero. This towards/away bias was positive in all 

conditions, M=54.14; SD=22.09, t(60)=19.14, p<.001, d=2.45, BF10=2.124e+24, 

showing, unsurprisingly, that items are identified more quickly the more they are 

oriented towards the participants. We further confirmed this mental rotation effect by 

regressing each item’s recognition time to the expected linear increase with angular 

disparity, as in prior research (Shepard & Melzer, 1971; Ward et al., 2019), revealing 

positive slopes in all bar one participant, mean β =1.5; t(60)=23.34, p<.001, d=2.99, 

BF10=3.124e+28.  

We then verified that this overall mental rotation effect was not affected by person 

presence and the chinrest manipulation. As the actors would sit at 90 and 270 
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degree angle to the participant, and their location was therefore orthogonal to the 

towards/away axis, we did not expect that person presence/location would affect the 

overall mental rotation effect. Indeed, a 2x3 ANOVA on the towards/away-biases 

across conditions with the factors Movement (No-movement, Free-movement) and 

Location (person left, person right, no person) did not reveal any significant main 

effects or interactions, F<1, BF10<.155 for all. When conditions were analysed 

separately, decisive evidence of slower recognition of turned away items was 

present in all conditions, t(60) > 12.99, p <.001, d >1.7, BF10>1.188e+16, for all. 

 

Figure 3.2. Results for both free-movement and no-movement conditions: Movement 
restriction does not impede visual perspective taking. (A) Free-movement condition. Left 
panel: Mean recognition times (ms) to correctly classify items as canonical or mirror-inverted 
in each of the eight orientations depending on whether the person was absent, sitting on the 
left, or sitting on the right. Right: Violin charts showing the Left/right bias when a person was 
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sitting on the right (top), the person was absent (middle), and the person was sitting on the 
left (bottom). (B) No-movement condition. Left: Mean recognition times (ms) for mirror-
inverted/canonical judgements as described for (A). Right: Left/right bias when participants’ 
movement is restricted using a chin rest, as described for (A). 

 

Perspective taking 

The main question was whether people would spontaneously take the perspective of 

the other person in the scenes, such that items were recognized faster when 

oriented towards compared to away from them, and whether this effect, in turn, was 

determined by whether participants were able to physically align their posture with 

the actors in the scenes. We therefore derived, for each participant and condition 

separately, the Left/Right-bias, which indexes how much faster left-oriented items 

are identified compared to right-oriented items. Here, positive values indicate faster 

recognition times for left-oriented items (upright to person sitting on the left) and 

negative values indicate faster recognition of items oriented to the right (upright to a 

person seated on the right).  

These left/right biases were entered into a 2 x 2 ANOVA, with Location (person-left, 

person-right) and Movement (headrest, no-headrest) as within subject factors. 

Replicating our prior work, this analysis revealed decisive evidence of a main effect 

of Location, F(1,60)=50.556, p<.001, ηp2=.457, BF10 =2.240e+14. As in our prior 

work (Ward et al., 2019), left/right-biases were more negative (indexing faster 

recognition of rightwards- than leftwards oriented letters) when someone was sitting 

on the right, and more positive (indexing faster recognition of leftwards- than 

rightwards oriented letters) when someone was sitting on the left confirming that the 

presence of another person facilitates faster judgements when items are seen as 

upright from the position of this other person.  
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The predicted interaction of Location and Movement, F(1,60)=.689, p=.41, ηp2=.011, 

BF10 =1.196, was not significant, indicating that people spontaneously simulate the 

visual perspectives of the inserted persons, even when they are unable to physically 

align themselves with their position in space. Direct comparisons for left/right bias 

revealed reliable differences for person-left and person-right locations in both the 

free-movement condition, t(60)=6.81, p<.001, d=.87, BF10 =2.367e+6, and in the no-

movement condition, t(60)=5.07, p<.001, d=.65, BF10 =3916.17. Next to this, the 

analysis only revealed an unpredicted and theoretically irrelevant main effect of 

Movement, so that recognition times were generally faster in the free movement 

condition, but Bayesian analyses revealed this effect to be negligible, F(1,60)=4.82, 

p=.031, ηp2=.074, BF10=.381.  

 

Table 3.1. Means (M) and Standard Deviations (SD) for the Left/Right- and 
Towards/Away-biases in Error rates in all conditions. Relates to Figure 3.2. 
Forward/Away and Left/Right-biases were calculated analogously as for the 
recognition times. *p<.05. **p<001. 

 Toward/away bias Left/right bias 

Condition Person-
left 

M (SD) 

Person-
right 

M (SD) 

No-
person 

M (SD) 

Person-
left 

M (SD) 

Person-
right 

M (SD) 

No-
person 

M (SD) 

 

All  

 

-.023 
(.02)** 

 

-.02 
(.02)** 

 

-.021 
(.02)** 

 

-.005 
(.015)* 

 

.002 

(.016) 

 

-.001 
(.014) 

 

Free-movement 

 

-.022 
(.02)** 

 

 

-.017 
(.02)** 

 

-.019 
(.03)** 

 

-.006 
(.019)* 

 

.000 

(.022) 

 

.002 

(.021) 

No-movement -.024 

(.02)** 

-.022 
(.02)** 

-.024 
(.02)** 

-.005 
(.021)* 

.003 

(.021) 

-.004 
(.017) 
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Regression analysis 

As in our previous studies, we tested whether recognition times could be described 

as independent linear increases depending on an items angular disparity to the 

participant as well as the other person, by using both disparities as orthogonal 

predictors in a simple regression model, for each participant and condition separately 

(and then comparing them against zero). Overall, these revealed very strong 

evidence for independent contributions of both the angular disparity to the 

participant, mean β =1.39, t(60)=19.181, p<.001, d=2.46, BF10=1.189e+24, and to 

the other person, mean β =.38, t(60)=7.209, p<.001, d=.92, BF10=1.000e+07, 

showing that recognition times can be described by independent mental rotation 

functions from one’s own and the other person’s perspective.  

To test how these linear relationships were affected by participants’ ability to move 

freely, beta estimates were entered into a 2 x 2 repeated measures ANOVA with 

Movement (Free-movement, No-movement) and Viewpoint (Self, Other) as within-

subject factors. As expected, this analysis provided decisive evidence for a main 

effect of Viewpoint, F(1,60)=129.57, p<.001, ηp2=.68, BF10= 2.117e+32, showing 

that the angular disparity towards the participants determined recognition times to a 

stronger extent that angular disparity to the other person. As the main analysis, it 

provided considerable evidence against any influence of the ability to move freely on 

the linear relationships. There was neither a main effect of Movement, F(1,60)=.615, 

p=.436, ηp2=.010, BF10=.154, nor an interaction of Movement and Perspective, 

F(1,60)=.016, p=.9, ηp2=.00. BF10=.141. Thus, there was neither an overall change 

in how strongly angular disparities to the participant and the other person determined 

recognition times, nor a specific change in the contribution of either the angular 

disparity to the participant and the other person. Indeed, in the no-movement trials, 
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both the angular disparity away from upright to the participant, mean β=1.37, 

t(60)=16.01, p<.001, d=2.05, BF10=1.632e+20, and to the actor, mean β=.35, 

t(60)=5.02, p<.001, d=.64, BF10=3507.56, determined recognition times. The same 

was also true for free-movement trials, where angular disparity to the participant, 

mean β=1.41, t(60)=17.426, p<.001, d=2.23, BF10=9.920e+21, and to that of the 

other person, mean β=.402, t(60)=6.87, p<.001, d=.88, BF10=2.818e+06 provided 

reliable contributions to RTs.  

 

Relationships to individual differences  

A second goal of the study was to test how individual differences in the tendency to 

judge the items from other’s perspective is related to individual differences in 

Schizotypy, Autistic Traits and Reactivity in social interactions. We therefore 

correlated each participant’s perspective taking score (the difference between 

perceptual biases when another person was sitting on the left or the right) separately 

with each of their three questionnaire scores and their age, each time correlating 

separately against perspective taking scores for all conditions. Other correlations of 

interest are reported in table S3.1. 

We first correlated participants’ age against perspective taking scores, replicating our 

prior finding (Ward et al., 2019) that people take another’s perspective more as they 

increase in age, r=.38, p=.003, BF10=13.52. We then tested whether perspective 

taking was negatively correlated with participants’ self-reported measures of 

schizotopy as seen in prior work (Langdon et al., 2001; Langdon & Coltheart, 2001). 

Participants’ STQ scores were correlated against perspective taking scores, 

replicating the negative relationship between schizotopy and visual perspective 
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taking, r=-.26, p=.044, BF10=1.166. Note that here BF is under 3, indicating the 

possibility that this is a spurious effect. We then correlated perspective taking scores 

against IRI scores (M=68.45; SD=11.34) and AQ scores (M=16.64; SD=6.29) giving 

a measure of the relationship between perspective taking and social ability. Neither 

revealed a reliable relationship, r <.08, p >.543, BF10<.191, for all.  

Multiple linear regressions analyses were conducted to test whether these 

questionnaire scores and participants’ age were reliable predictors of perspective 

taking. Using the enter method, all variables were hierarchically entered into the 

model individually, revealing that when all variables were included, the model reliably 

predicted perspective taking score, R2=.24, F(4,53)=4.059, p=.006. With all variables 

included, beta coefficients confirmed that both age, β=.376, t=3.013, p=.004, and 

STQ score, β=-.268, t=-2.154, p=.036, provided reliable contributions to the model, 

whilst AQ score, β=.093, t=.679, p=.5, and IRI score, β=.094, t=.716, p=.477, did not.  

The addition of STQ scores increased the predictive power of a model containing 

only age as a predictor by 6%, F(1,55)=4.210, p=.045, but the individual addition of 

AQ and IRI scores as predictors did not improve the model, R2change <.07%, 

F(1,54/53)<.513, p>.477 for all, further confirming that AQ and IRI scores are 

unrelated to visual perspective taking.  

 

4.2.3 Discussion 

We tested whether people’s spontaneous tendency to take another’s visual 

perspective depends on the being able to make active head movements to physically 

align one’s own perspective with that of another. In a version of our recent task 

(Ward et al., 2019), we asked participants to judge the presentation (mirror-inverted 
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or canonical) of alphanumeric characters on a table, shown at varying orientations. 

Between trials, an incidentally presented person appeared to either the left or the 

right of the item. The results replicated, first, the well-established mental rotation 

effect (e.g. Shepard & Melzer, 1971), with recognition times increasing linearly the 

more items were rotated away from the participant’s own viewing perspective, in line 

with the idea that the items first have to be mentally rotated back into their canonical 

(upright) orientation before they can be judged. The results also replicate our finding 

(Ward et al., 2019; Ward et al., 2020) that participants can rely on the other person’s 

perspective to make these judgments. Participants recognized items oriented away 

from themselves more quickly when the items would appear upright to the other 

persons in the scenes. Thus, leftward-oriented items were recognized more quickly 

when another person was present who saw the letter from the left, and rightward-

oriented items were recognized more quickly when another person was viewing 

them from the right. Moreover, regression analyses showed that recognition times 

increased linearly not only with the item’s angular disparity to the participant, but also 

to the other person. Together, these data therefore confirm that people 

spontaneously represent other’s visual perspectives in a (quasi-)perceptual manner 

that can “stand in” for own perceptual input. Once represented in such a manner, the 

others’ view on the scene can drive item recognition and mental rotation processes 

like one’s own perceptual input, facilitating item judgments that would be more 

difficult from one’s own perspective.  

The crucial question was whether these spontaneous shifts into the other’s 

perspective depend on people’s ability to shift their own body posture into the other’s 

position, either because such movements physically more closely align one’s own 

viewpoint with that of another, or because they trigger “embodied” rotation processes 
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into the other’s location in space. Prior research has shown that several cognitive 

processes, such as emotion recognition (e.g. Neal & Chartrand, 2011) or 

mathematical reasoning (Cook et al., 2012) are supported by the body movements 

people make at the same time, with performance decreasing if these movements are 

restricted or not compatible with the mental operation (Neal & Chartrand, 2011; 

Parsons, 1994). We did not, however, find this to be the case for visual perspective 

taking here. When participants’ movements were restricted with a chinrest, the shifts 

into the others’ perspective were just as strong as when participants were free to 

move, ruling out that the mechanisms which enable people to represent how a scene 

looks to another person rely on the ability to physically shift their head orientation.  

These findings show, first, that perspective taking, as measured in our task (Ward et 

al., 2019), cannot simply be explained as a consequence of participants’ physical 

alignment with the persons on the screen, which could potentially make item 

recognition easier. Several proposals argue that perception is not a passive process, 

but a process of “active inference” in which people actively try to sample the 

information required (e.g. Friston, 2010). Our data strongly rule out that, in our task, 

simulation of others’ perspectives is achieved by bringing one’s own perspective into 

physical alignment with that of the other person in such a manner.  

Second, the findings offer some additional insights into the proposal that “embodied” 

processes play a causal role in visual perspective taking. Several recent studies 

have revealed that in order to take another’s visual perspective, people have to 

mentally rotate their own body into the location and orientation of the other person, 

with time taken to judge another’s perspective increasing the more this person is 

rotated away from oneself (Kessler & Thompson, 2010; Kessler & Rutherford, 2010; 

Kozhevnikov et al., 2006; Surtees et al., 2013). Our data do not argue against such a 
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mental rotation process per se. They might suggest, however, that it is not one of 

motorically simulated bodily rotation, which would be affected by a person’s 

perceived ability to move (Decety, 1995; Moreau, 2012; Parsons, 1994; 

Wohlschläger & Wohlschläger, 1998). Instead, our findings argue that people that 

shifts into the other’s visual perspective do not draw on processes that track one’s 

(perceived) ability to move their head to actively sample relevant input, but emerge 

from a more mental transformation into the other’s space. The body movements of 

participants that we sometimes observed in our task are therefore likely to reflect an 

epiphenomenal “leakage” of these simulated changes in viewpoint, as is typically 

observed for other forms of imagined action (e.g., Colton et al., 2018; Jacobson, 

1930).  

It is important to note that whilst we do anecdotally report that participants moved 

their bodies when they were free to do so, that we did not include a condition in the 

present study, which actively instructed participants to move. While this leaves open 

whether actively inducing body movements would help or hinder visual perspective 

taking, it provides direct evidence that participants either do not make such 

movements spontaneously (in the free-movement condition) or that the inability to 

make these movements (in the no-movement condition) does not interfere with 

simulated changes in viewpoint.  

‘A limitation of this study is the overall strength of the chosen manipulation to test the 

embodied nature of VPT-2, specifically the use of a chin rest to restrict deliberate 

motion. Whilst a chin rest is a useful tool for minimising head movements, and 

therefore a good measure of how this particular aspect of embodied processing 

might influence VPT-2 calculations, the standard chin rest used in this study did not 

fully restrict the potential for a bodily rotation. In other words, whilst participants could 
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not move their heads, they could, in principle, still align their torso with the persons 

appearing in the scenes. Indeed Kessler and Thompson (2010) directly employed 

manipulations in their work which have demonstrated that aligned or misaligned 

postures (participant relative to on-screen avatar), but not head position can, 

respectively, speed up or slow down allocentric judgements. Further work should 

address this by employing a more active embodiment manipulation, which would 

seek to directly test whether the findings of Kessler and Thompson (2010) are also 

apparent in implicit VPT-2, as measured by our task. For example, by manipulating 

the congruency of the rotation of the participants’ own body (so that it is either closer 

or further away from the specific orientation of the avatar in the scenes) we could 

test directly whether people’s tendency to spontaneously compute others’ 

perspectives is driven by this postural, rather than head, alignment. Moreover, if 

perspective taking is affected by one’s own body (but not head) rotation, it would go 

some way of revealing that perspective taking occurs through a mental 

transformation of one’s of body (Kessler & Thompson, 2010), rather than through a 

rotation of the object in question (Shepard & Metzler, 1971). 

A second, more exploratory, goal of the study was to determine whether individual 

differences can explain the stronger (or weaker) tendencies to take another’s visual 

perspective across participants. To this end, we correlated our individual measures 

of perspective taking with common individual difference measures that have been 

empirically or conceptually linked to perspective taking and Theory of Mind, such as 

Schizotypical traits (STQ; Claridge & Brocks, 1984), Autistic traits (AQ; Baron-Cohen 

et al., 2001), or the ability to coordinate social interactions (IRI; Davis, 1983). Our 

data replicate the existing weak (negative) link between Schizotypical symptoms and 

problems with taking others’ perspective (Langdon & Coltheart, 2001; Langdon et al., 
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2001). Measures of social ability and empathy (AQ and IRI), however, did not 

correlate with perspective taking, and Bayesian analyses provided considerable 

evidence against such a link.  

These findings may be surprising in light of the proposed link between visual 

perspective taking and mentalizing and other coordination processes in social 

interactions (e.g., Batson et al., 1997; Erle & Topolinski, 2015; Tomasello et al., 

2005; Mattan, et al., 2016; Freundlieb et al., 2016) and that those with autism find it 

more difficult to make perceptual judgments from another’s visual perspective 

(Hamilton et al., 2009; for a review, see Pearson, Ropar & Hamilton, 2013). Of 

course, our task involved people with autistic traits only, without actual diagnoses of 

ASD. Moreover, it did not involve actual social interactions, so that any 

fundamentally “social” mechanisms may not be engaged as effectively. 

Nevertheless, it is noteworthy that even in prior literature, such relationships are 

inconsistent, and often found most robustly in children but not adults with ASD, 

implying that, while perspective taking might be delayed in ASD, it may have mostly 

caught up when participants reach adulthood, such as in the present sample. In 

addition, difficulties with representing another’s view in ASD are usually observed in 

tasks in which people have to explicitly take others’ perspectives (Pearson et al., 

2013), but less so in more implicit tasks such as ours (e.g., Zwickel, et al., 2010), 

suggesting that those with ASD may have primarily problems in the more cognitively 

demanding process of intentionally selecting one of several possible perspectives 

(Ramsey, Hansen, Apperly & Samson, 2013; Schwarzkopf, Schilbach, Vogely & 

Timmermans, 2014; Qureshi, Apperly & Samson, 2010) rather than in perspective-

taking per se.  
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If these considerations are taken seriously, than our data is more consistent with the 

view that perspective taking may not have specifically developed – either in 

ontogeny or phylogeny – to support social interactions, but may build upon a more 

fundamental process of navigation and action planning (e.g., Ward et al., under 

review; Kozhevnikov et al., 2006). To effectively act in the world, humans constantly 

need to be able to derive from which position they may be able to see an object 

clearly or operate on it effectively. Visual perspective taking may have developed 

from this basic skill to imagine the world from another location that one could occupy, 

with other people providing simple landmarks to drive these processes. Several 

findings seem to support such an account. For example, it has been known for a 

long while that people’s ability to take another’s perspective are correlated with 

navigation skills (Allen, Kirasic, Dobson, Long & Beck, 1996; Hegarty & Waller, 2004; 

Kozhevnikov et al., 2006) and it has been reported that people are as ready to view 

the world from another person’s perspective as from the perspective of a landmark 

that supports navigation towards it, such as an empty chair (Gunalp, Moossaian & 

Hegarty, 2019). In neuroimaging studies of the mentalizing and perspective taking 

network, the temporo-parietal junction (TPJ) is also a node in navigation skills, and 

(virtual) lesion of this area can induce out of body experiences (Blanke et al., 2005), 

effectively moving oneself mentally into other possible locations one could occupy. In 

our own work with the present task, we have found that perspective taking is not 

sensitive to “social” features of the other person, such as whether they are looking at 

the item to be judged or not (Ward et al., under review), but specifically their location 

in space.  

If these links were borne out by future research, it may suggest that at least the 

spontaneous shifts of perspective measured in our and the above tasks puts rely on 
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fundamental spatial abilities, which put one into another’s shoes, but do not 

necessarily let one see through their eyes. Future studies should include measures 

of navigational skill in perspective taking tasks. When these abilities are properly 

accounted for, and parcelled out, it may be possible to uncover the more social 

components that drive perspective taking. It may then be possible to describe not 

only how visual perspective taking has developed out of basic skills for spatial 

navigation, but also how more sophisticated processes for mentalizing and theory of 

mind build upon these processes, to help us understand other people better and 

interact with them more effectively. 

 

4.2.4 Conclusions & Future directions 

Our results confirm, first, that people represent others’ viewpoints in a quasi-

perceptual manner, such that other’s perspectives can “stand in” for own input and 

drive subsequent item recognition and mental rotation processes. Second, they 

show that people can derive others’ visual perspectives irrespective of whether they 

could move their heads to align with the other person, ruling out that this type of 

physical movement is necessary either to trigger “embodied” perspective taking 

processes or to physically align one’s own perspective with that of the other person. 

Third, people’s ability to perspective take is relatively independent from their autistic 

traits and their competency in coordinating social interactions, point towards a 

reliance on fundamental processes of mental travel.  
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4.2.6 Supplementary tables 

 

Table S3.1. IRI, AQ, and STQ scores, age, handedness (left, right), gender (male, 
female), dyslexia diagnosis (yes, no), ASD diagnosis (yes, no). Correlations (r) with 

perspective taking score *p<.05. **p<.01, ***p<.001  

Variables 1 2 3 4 5 6 7 8 9 

1. Perspective 
taking score 
 

-         

2. AQ score 

 

.08 -        

3. IRI score 
 

.03 -.36** -       

4. STQ score -.26* .19 .05 - 

 

     

5. Age 
 

.38** .24 -.08  -.06 -     

6. Handedness 
 

.07 .18 -.01 .09 .04 -    

7. Gender 
 

.11 -.05 .22 -.18 -.18 -.07 -   

8. Dyslexia 
 

-.17 .02 -.28* -.1 -.03 .38** -.4** -  

9. ASD .11 .07 .05 -.09 .12 .57*** .07 -.02 - 

6. coded as 1=left and 0=right 7.coded as 1=female, 0=male 8.coded as 1=yes, 0=no, 9.coded as 1=yes, 
0=no.  
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5.  Chapter Five - General Discussion   

Knowing how the world looks to another person is critical to our everyday social 

interactions. Representing space from another’s perspective allows us to probe their 

epistemic stance, and may therefore allow us to engage in joint actions (Freundlieb 

et al., 2015), understand their beliefs, desires and goals (Hamilton et al., 2009; 

Schurz et al., 2015), and empathise with them (Mattan et al., 2016). Several studies 

have shown that the way we perceive a scene can be influenced by the presence of 

another person and the way they see it (Freundlieb et al., 2015; Freundlieb et al., 

2018; Sampson et al., 2010; Surtees et al., 2016), indicating some form of overlap 

between what we see with our own eyes, and what we know about how an object or 

scene appears from another’s perspective.  

This aim of this thesis was to investigate the form that this overlap takes. One 

proposal that has previously been implied in many accounts of VPT but, prior to this 

work, never directly tested, is that we represent others’ visual perspectives 

perceptually, in a similar way to our own. This explanation proposes that the 

representation of others’ visual input takes a (quasi)-perceptual form, and that VPT 

‘paints’ an image of the content of others’ perspectives onto our own perceptual 

system. Indeed, several studies have shown reliable interference effects from the 

perspective of another person (e.g. Surtees et al., 2010; Sampson et al., 2016), 

where responses to judgements about a stimulus from one’s own perspective are 

slowed down when this judgement would be made differently by someone else (e.g. 

judging a number as a “6” when it appears as a “9” to a person standing opposite 

oneself). However, what such studies have not been able to establish is at what level 

of processing these intrusions occur. Do they indeed reflect perceptual intrusions, or 

can they be accounted for by processes at the response or conceptual level?  
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Using a modified mental rotation task (e.g. Shepard & Metzler, 1971), the 

experiments presented in this thesis provide evidence that VPT-2 takes a (quasi)-

perceptual form, and can indeed ‘stand in’ for our own perceptual input in the form of 

a perceptual intrusion, painting the content of another’s perspective onto our own 

perception. These studies also showed that spontaneous simulation of others’ 

perspectives happens specifically in the presence of a human, but not an object, 

even when this person is task-irrelevant (Chapter 2). This thesis also explored some 

of the social cues involved in the deployment of VPT-2 mechanisms. Experiments 

4a and 4b demonstrated that the perceptual representation of another’s visual 

perspective reflects their position in space, but is very much insensitive to a person’s 

gaze (Chapter 3). Finally, Experiment 5 tested the causal role of movement in the 

simulation of others’ visual perspectives (Chapter 4), revealing that implicit VPT-2 is 

not impaired by head-movement restriction, but rather head movements that arise 

when making judgements from another person’s perspective are a bodily 

consequence of the mental transformations of a person’s actual to imagined position 

in space.  

Together these findings support a perceptual simulation framework for 

explaining VPT-2, and argue against the long-standing view that representing how 

the world looks to another person is a deliberate and cognitively demanding process. 

Instead, these data point to VPT-2 as being a spontaneous, low-level process which 

reflects someone’s spatial position more generally, allowing us to efficiently derive 

how (in principle) another person perceives an object of interest from their individual 

vantage point.  
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 5.1 Summary of results 

Experiments 1a and 1b of this thesis tested whether people have direct (quasi-

)perceptual access to the content of another’s perspective. Participants were 

presented with a series of scenes showing either a table in the corner of a room, or 

the same scene but with a person inserted either to the left or the right of the table. 

An alphanumeric character, either mirror-inverted or normal, would then appear on 

the table either upright to the participant, or at one of seven other possible 

orientations away from upright. Participants simply judged whether the characters 

they observed were mirror-inverted or normal.  

 These, and all subsequent studies in this thesis, showed the classic mental 

rotation pattern, where participants’ response times increased linearly as a function 

of increasing angular rotation away from upright (e.g. Shepard & Metzler, 1971), 

showing that it takes longer to make a judgement the more an item has to be 

mentally rotated into its upright position. Critically, these data show that the angular 

disparity relative to the other person also reliably produced this response pattern, 

showing that items were identified faster the more they were oriented towards the 

other person and slower the more they were oriented away from them. As a 

consequence, judgements that would normally be difficult from the perspective of the 

participants were faster if items were oriented towards the inserted persons, 

compared to when the other person was not present.  

It has been argued that mental object rotation is known to operate using the same 

neural machinery as visual perception (Albers et al., 2013). When we mentally rotate 

an object of interest, we do so sequentially from the observed orientation to upright 

via a series of mental manipulations, which simulate the perceptual experience of 
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actually seeing the object rotate. The recognition time data obtained in all 

experiments indicate that in the presence of another person, the entry point of this 

rotation reflects an integration of both own and others’ perspectives, particularly 

when this other person would have a clearer view of the object of interest. This 

observation therefore supports the proposal that others’ perspectives are derived as 

a perceptual simulation, which can then drive perceptual decision making in the 

same way as own input (e.g. Roelfsema & de Lange, 2016).  

 In Experiment 2 we manipulated between-subjects whether participants 

viewed another person (human condition), or a lamp in the scene (object condition). 

In the human condition we replicated the effects observed in Experiments 1a and 1b, 

implying again a perceptual overlap of own and others’ perspectives. For the lamp, 

however, no bias was observed despite the lamp sharing similar directional 

properties (front/back) as a human agent. Participants did not show the response 

time benefit for items oriented towards the lamp, and moreover the position of the 

lamp did not reliably predict the mental rotation response pattern indicating that 

spontaneous perceptual simulation of others’ visual perspectives is therefore a 

human-specific mechanism.  

 In Experiment 3 we used the same experimental paradigm as Experiments 1a 

and 1b, but for the simple change that we varied the instructions given to 

participants. Half of participants were only given instructions relating to the mental 

rotation task (implicit condition), thereby avoiding drawing attention to the presence 

of the people who would appear in the scene. The other half of participants were told 

explicitly to adopt the perspective of the actors when they appeared in the scene 

(explicit condition). As in earlier experiments, participants in both the implicit and 

explicit conditions showed a response time bias in the direction of the inserted 
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persons. This bias was of equivalent size to previous studies (Experiments 1a – 2) in 

the implicit condition, whilst in the explicit condition this bias was even more 

pronounced, implying that the bias observed when the actors were viewed passively 

was a consequence of participants’ (involuntary) simulation of the content of the 

actors’ perspectives. Overall, therefore, the preliminary work presented in Chapter 

Two of this thesis provide reliable support for a perceptual framework of VPT.  

Subsequent experiments applied this same experimental paradigm to test 

which cues drive the spontaneous simulation of another’s visual perspective. 

Experiment 4a tested whether spontaneous shifts into the visual perspective of 

another person depend on whether or not the other person is looking at the to-be-

judged item on the table. Here, we asked participants to perform the same mirror vs. 

canonical judgements of alphanumeric characters as before, but this time we 

manipulated the looking direction of the person on the screen. In some trials, the 

person looked directly at the item on the table, and in others the person looked away 

from the table towards the corner of the room.  

As in previous experiments, the data replicated the finding that the mere 

presence of another person induced spontaneous shifts into their visual perspective. 

We found, again, that participants identified characters more quickly that were facing 

to the left if there was also another person pictured to the left, and vice versa for 

items that were facing the right. We also replicated the finding that the orientation of 

the items relative to both the participant and the inserted persons reliably predicted 

recognition times, with those oriented away from both the participant and the actor 

taking longer to judge compared to those appearing upright to the participant/actor. 

Surprisingly, this effect was not found to be mediated by where the actor was 
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looking. In both table and away facing trials, participants adopted the perspective of 

the other person when making their responses.  

Experiment 4b replicated these findings. We used the same experimental 

design as experiment 4a with the exception of one methodological difference. In this 

study we varied looking directions between, rather than within-subjects. The results 

from experiment 4a can therefore not be explained by carry over (MacFie et al., 

1989) or influential companion effects (Poulton, 1982). Indeed, they confirmed again 

that perceptual simulation of another’s perspective is not sensitive to the gaze 

direction of the other person (i.e. whether they are looking towards or away from a 

to-be-judged item), but that we rather represent how the world might look from their 

position in space. These data therefore demonstrate that VPT does not necessarily 

reflect a looking ‘through the eyes’ of another person in order to represent their 

perspective, but rather being ‘in their shoes’ and simulating how the world might (in 

principle) look to them from their general position in space. 

The final experiment (Experiment 5) in this thesis tested whether the 

simulation of another’s visual perspective is a motorically embodied process, as has 

been suggested in several studies (e.g. Kessler & Rutherford, 2010; Kessler & 

Thompson, 2010). Specifically, we tested whether people’s spontaneous tendency to 

take another’s visual perspective depends on the ability to make active body 

movements to physically align one’s own perspective with that of another. In 

experiment 5 we therefore restricted participants’ head movement during half of the 

experimental trials, and in the other half, participants were able to move freely whilst 

making their judgements. As in all previous experiments, we replicated the known 

mental rotation pattern (Shepard & Metzler, 1971), finding that response times 

(judging whether a character is canonical or mirror inverted) became gradually 
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longer with increasing angular disparity away from upright to both the participant and 

the other person present in the scene. We also replicated the finding that 

judgements about items oriented upright to the other person were faster compared to 

when items were oriented away from them, showing once again that people 

spontaneously shift into the perspective of the other person, giving rise to faster than 

usual responses to (otherwise) difficult perceptual decisions. However, we did not 

find that these shifts were altered when participants were not able to actively shift 

their heads to better align themselves with the actors in the scenes. This suggests 

therefore, that the ability to change one’s head position does not have a causal 

influence on our tendency to adopt another’s visual perspective, and suggests 

instead that head movements that occur when taking another’s perspective are an 

incidental bodily consequence of the mental transformation from a person’s real to 

imagined position in space.  

A secondary aim of experiment 5 was to test whether the previously reported 

relationships between VPT ability and measures of autistic traits (e.q. Hamilton et al., 

2009), empathy (e.g. Mattan et al., 2016) and schizotypy (e.g. Langdon & Coltheart, 

2001) would be observed in our implicit task. Prior work has demonstrated a link 

between social ability and VPT, where those found to underperform on measures of 

ToM, in particular false belief reasoning (e.g. Frith, 2001), also underperform in VPT 

tasks (Hamilton et al., 2009). We therefore asked participants to complete three self-

report questionnaires which were then correlated against participants’ individual VPT 

scores (the mean difference in left/right bias when a person is seen on the right of 

the table compared to when they appear on the left). We replicated the prior findings 

(Langdon & Coltheart, 2001; Langdon et al., 2001) that individual measures of 

schizotypic personality traits (STQ; Claridge & Broks, 1984) are negatively linked to 
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VPT performance. Our data showed a negative correlation between VPT and STQ 

scores, indicating that individuals with schizophrenic type thinking were less 

influenced by spontaneous perceptual intrusions of others’ perspectives when 

making their judgements. We note, however, that Bayesian analyses could not fully 

support such a link, indicating a possibly spurious effect.  

Surprisingly we found no relationship between social ability and spontaneous 

VPT. Neither the IRI (Davis, 1980), which measures empathy, nor the AQ (Baron-

Cohen et al., 2001), which measures autistic traits, were found to correlate with VPT.  

Unsurprisingly, these scores were also not reliable predictors of VPT when entered 

into a regression model. Indeed, Bayesian analyses of these relationships provided 

fairly strong evidence against a link.  

Together, the findings from the experiments presented in this thesis reveal 

substantial implications for our knowledge about (1) how we represent others’ level-

two visual perspectives, (2) the spontaneity of this process, (3) the cues which drive 

VPT-2, and (4) the role our own actions play in VPT. Indeed, whilst our results 

support a perceptual framework for explaining VPT, they also argue against several 

assumptions that have been made in prior literature, pertaining largely to the cues 

involved in the deployment of VPT (e.g. Freundlieb et al., 2016; 2017), and the 

mechanisms involved (e.g. Kessler & Rutherford, 2010; Kessler & Thompson, 2010; 

Michelon & Zacks, 2006; Surtees et al., 2013). This may indicate, then, that prior 

conclusions have been drawn prematurely or perhaps that the conclusions drawn 

from explicit measures of VPT-2 may not automatically apply to implicit VPT-2 as 

observed in our, and others’ (e.g. Freundlieb et al., 2015; Surtees et al., 2016) tasks. 

The results of the experiments presented herein are discussed in relation to these 

assumptions in the following sections. 
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5.2 Implications  

 5.2.1 Visual perspective taking as perceptual simulation 

The primary aim of this thesis was to test whether level-two VPT takes the 

form of a perceptual simulation, whereby (quasi)-perceptual intrusions from the 

perspective of another agent are painted onto our own perceptual system, driving 

perceptual decision making in the same bottom up way as own perceptual input, in 

the same way as has been implied by work on imagery in non-social situations (e.g., 

Csibra, 2008; Kok et al., 2013; Roelfsema & de Lange, 2016; Kosslyn et al., 1997). 

In recent years, such a view has been implied in several accounts of VPT (e.g. 

Freundlieb et al., 2018; Sampson et al., 2010; Surtees et al., 2016), however to our 

knowledge, no study has directly tested the perceptual nature of the ‘overlap’ in 

perspectives, often termed ‘altercentric interference’ (Sampson et al., 2010).  

We concluded from the experiments presented in this thesis that VPT takes a 

(quasi)-perceptual form, essentially ‘painting’ another’s perspective onto our own 

perception. This conclusion rests on existing data which show that mental rotation of 

objects recruits low-level visual areas (e.g. Albers et al., 2013), wherein the primary 

representation of a seen object is sequentially manipulated to appear (in the mind’s 

eye) at different orientations until the current image matches the known canonical 

representation of the judged object (Shepard & Metzler, 1971). Prior studies have 

shown an overlap in neural machinery for mental imagery and visual perception (e.g. 

Ganis et al., 2004; Kosslyn et al., 1997) indicating that visual simulations happen at 

the perceptual level. Note, however, that it is important to consider limitations in our 

understanding of mental imagery in general (Pylyshyn, 2002) when considering the 

completeness of any perceptual overlap that occurs during perspective taking. For 
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example, it has not yet been resolved whether mental images reflect a pictoral or a 

symbolic representation of a scene or object (e.g. Pylyshyn, 2002). 

 Insofar as the mental rotation of objects is concerned, behaviourally, this 

mental transformation is demonstrated in the classic response time pattern that has 

reliably been observed in mental rotation tasks (Shepard & Metzler, 1971). Studies 

show that the time taken to mentally orient an object to its upright position increases 

linearly as a function of increasing angular disparity away from upright. Therefore in 

our own work, participants reliably took longer to judge the presentation of objects 

(e.g. “R” vs “Я”), the further they were rotated away from upright, and response times 

were reliably accounted for by the items’ angle of orientation relative to the 

participant. The finding that this same response time pattern was reliably predicted 

from the perspectives of the other people in the images provides critical evidence 

that VPT does indeed take a perceptual form. Rather than mentally rotating items to 

upright to themselves in our task, participants spontaneously derived how the items 

appeared to the other person, and used this alternative view as an entry point into 

the mental rotation. Responses were therefore faster when items were facing these 

other inserted persons, and slower when this judgement would be harder from the 

actor’s perspective. These data therefore imply that people are able to access to the 

content of another’s visual perspective and can rely on it to drive own recognition or 

mental rotation processes, as implied by perceptual accounts of perspective taking 

or imagery in general (Roelfsema & de lange, 2016; Kosslyn et al., 1997). 

Our findings provide answers to the previous problems with our understanding 

of how others’ perspectives are represented, and how they drive behaviour in social 

interactions. By representing them in a (quasi)-perceptual manner, others’ 

perspectives can drive processes such as perceptual decision making (e.g. 
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Freundlieb et al., 2018) and action control in the same way as our own input (Kampis 

et al., 2015; Roelfsema & de Lange, 2016), explaining why we spontaneously shift 

into others’ perspectives when making spatial judgements (e.g. Tversky & Hard, 

2009), and also explaining the link between joint action and VPT (Creem-Regehr et 

al., 2013; Freundlieb et al., 2015). Our data also give insight into the link between 

VPT and more sophisticated social abilities such as Theory of Mind and false belief 

understanding (Hamilton et al., 2009; Schurz et al., 2015). By providing fast access 

to a simulation of others’ view of the world in a (quasi)-perceptual manner, others’ 

perspectives may allow us access to their epistemic state, and thereby facilitate 

reasoning about their beliefs, desires, goals and so on.  

At a theoretical level, too, our data confirm the link between VPT and mental 

imagery, and provide further evidence that others’ perspectives take the form of a 

perceptual simulation. Mental imagery is proposed to serve as a mechanism which 

allows us to re-live, and mentally manipulate a seen object or event by way of 

simulation (Moulton & Kosslyn, 2009). The studies in this thesis confirm that others’ 

simulated perspectives can indeed provide the entry point to such mental 

manipulations, again explaining the link between joint actions and action 

understanding (Creem-Regehr et al., 2013; Freundlieb et al., 2015) both of which 

play an important role in facilitating efficient social interactions.  

 It is tempting to speculate that most, if not all previously reported cases of 

altercentric intrusions, irrespective if measured through response time lengthening 

(e.g. Freundlieb et al., 2018; Sampson et al., 2010; Surtees et al., 2016) or through 

spontaneous shifts into another’s spatial perspective (e.g. Freundlieb et al., 2018; 

Tversky & Hard, 2009 
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) in the presence of another agent, can be accounted for by a perceptual framework. 

One example comes from Surtees et al. (2016). In their task, participants were 

required to judge the magnitude of a number either alone or in the presence of 

another person standing opposite them. They found that judgements about numbers 

that would have different correct interpretations dependent on perspective (e.g. “6” or 

“9”) were more difficult in the presence of another agent. The data strongly indicated 

an overlap in representations of items with perspective dependent interpretations (“6” 

or “9”), however unlike in our mental rotation task, it is unclear whether these 

overlapping representations only interfered with judgements, or whether they 

facilitated them, too.   

When there were two conflicting interpretations of the presented number, this 

perceptual overlap of own and other perspectives appeared to slow down responses, 

but the numbers which did not differ between perspectives (“8” and “5”) were 

recognised more quickly in the presence of another person compared to when 

participants responded alone. One explanation for this finding is that ‘easy’ tasks (i.e. 

judging a number with only one possible interpretation) were sped up simply 

because another person was present. Zajonc (1965) proposed, and indeed others 

have demonstrated (e.g. Guerin & Innes, 1982; Rajeki, Ickes, Corcoran & Lenerz, 

1977) that task performance generally can be improved in the presence of another 

person. However, the present work demonstrated that the presence of another agent 

in our task did not just improve mental rotation performance generally, but 

specifically facilitated (and interfered with) judgements based on their orientation 

relative to the actor. It is therefore possible that the acceleration in responses in 

Surtees et al.’s (2016) task may also be explained by a similar integration of own and 

others’ perceptual representations of the to-be-judged numbers, where those which 
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match (“5” and “8”) are faster to disentangle than those which do not (“6” and “9”). 

This overlap could therefore also help to explain the slowing of responses in the 

presence of another person, where coinciding representations of conflicting input 

require participants to effortfully ‘select’ the correct perspective before making a 

response, resulting in relatively longer response durations.  It is also possible, 

however, that the inverse effect of social facilitation, ‘social interference’ may have 

influenced these response time delays, and further research is needed here.  

 The same argument could be made for the work of Freundlieb and colleagues 

(2016; 2018). In one task Freundlieb et al. (2016) demonstrated that participants 

showed spatial compatibility effects from the perspective of their co-actor in a 

stimulus-response task, where matching spatial mapping of the response button and 

the presented stimulus is known to accelerate responses, and a mapping miss-

match produces the opposite effect (e.g. Fitts et al., 1953). Here, participants 

responded to horizontally presented stimuli with a left/right button press. These same 

stimuli appeared laterally from the perspective of their partner, who was positioned 

90 degrees to the left or the right of the participant. Therefore, responding to a ‘down’ 

stimulus with a button positioned on the right should not induce spatial compatibility 

effects, if participants just represented the stimuli from their own spatial perspective. 

However, Freundlieb et al. (2016) found that participants were indeed faster to 

respond to stimuli, which were spatially compatible to response buttons from the 

perspective of the other person. Conversely, responses to stimuli that were spatially 

incompatible from the perspective of the other person, were slowed down, 

demonstrating again an integration of own and others’ stimulus representations.  

 Although such a perceptual account of others’ findings (Freundlieb et al., 

2016; Surtees et al., 2016) is tempting, it needs to be established whether they can 
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be accounted for in such a manner. Our own representation of the world is not only 

derived from perceptual input, but also in terms of a scene’s spatial make up (i.e. the 

distance between oneself and an object, or whether they appear to our left or our 

right). We also represent our own view of the world on a conceptual level (i.e. what 

objects are we seeing?) and in terms of the uncertainty we have about our own 

decisions. As noted above, from the findings themselves it is not clear whether in 

Surtees et al.’s study it is just uncertainty because one knows that the other person 

would respond differently. Also in Freundlieb et al.’s studies, it is not clear whether 

people really simulate the perspective of the other person, or whether they merely 

represent the spatial reference of the other person without representing what they 

see. Future work needs to resolve these questions.  

  

5.2.2 Level-two VPT as an effortful controlled process 

A further implication of our findings is that our data strongly argue against the 

proposal that VPT-2 is an effortful, controlled cognitive process (Flavell et al., 1981; 

Surtees et al., 2013). Instead, our findings support the proposal that people 

sometimes spontaneously derive how others view the world without explicit 

instructions to do so. Already in prior studies in implicit VPT-2 tasks, spontaneous 

intrusions from others’ perspectives have been shown to influence how people 

respond to a stimulus, by slowing down responses when own and others’ 

representations do not match (Surtees et al., 2016), or by causing someone to 

switch to an allocentric spatial reference frame when describing object locations in 

the presence of another person (Tversky & Hard, 2009). In all cases, these effects 

occur despite the other agent being largely task irrelevant, and with no explicit 
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instructions for participants to take the perspective of the other person. In contrast, in 

explicit tasks, explicit judgements from another’s perspective take longer with 

increasing angular disparity between the participant and the other agent (Surtees et 

al., 2013; Kessler & Rutherford, 2010; Kessler & Thompson, 2010). This suggests 

that in order to judge, for example, whether a flower appears to the left or the right of 

a gun from the perspective of another person (e.g. Kessler & Rutherford, 2010), it is 

necessary to mentally rotate one’s own position into that of the other person. Indeed, 

such findings do point towards a controlled and effortful mental transformation as an 

underlying mechanism for explicit VPT-2 judgements.  

One possible explanation is that the task demands of an explicit VPT-2 task, 

such as making a judgement about the position of two objects from another person’s 

perspective (e.g. Surtees et al., 2013; Kessler & Rutherford, 2010; Kessler & 

Thompson, 2010) recruit different processes to those employed in tasks, including 

our own, which measure VPT-2 implicitly (e.g. Freundlieb et al., 2016; Freundlieb et 

al., 2017; Surtees et al., 2016). Indeed, this explanation is supported by evidence 

that suggests that individuals with ASD show no performance deficits in implicit 

measures of VPT but they do struggle in explicit measures (Schwarzkopf et al., 

2014; Zwickel et al., 2010). This may therefore indicate that VPT-2 is derived 

spontaneously, but the selection of an appropriate perspective when making a 

response is itself effortful. In the case of individuals with ASD, this fits with the 

research which reliably shows that they are impaired in mentalizing abilities (e.g. 

Frith, 2001). Failure to disentangle representations of conflicting perspectives could 

therefore interfere with the processes which allow us to infer others’ mental states 

and lead to failure in such tasks.   
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This explanation may help to explain data from studies which do not instruct 

participants to consider a conspecific’s point of view, but nonetheless show that 

participants’ responses are reliably influenced by their conflicting perspective of an 

object or scene (Freundlieb et al., 2015; Freundlieb et al., 2017; Surtees et al., 2016; 

Tversky & Hard, 2009). In Surtees et al.’s (2016) study for example, it is not clear 

why a person would engage in a controlled and effortful mental transformation from 

own to another’s position in space without instruction to do so, if doing so would 

impair their ability to make fast, accurate judgements about a stimulus. However it is 

possible that the effortful process of selecting one of two representations causes a 

slowing of responses in this task, rather than the mental travel itself.  

Similarly, in Freundlieb et al.’s (2018) word categorisation task, if implicitly 

deriving how a scene appears to another person is a cognitively effortful process 

there should be no difference in reaction times when the to-be-judged word appears 

upright and inverted to the other agent. This is not the case, however. Freundlieb et 

al. (2018) instructed participants to categorise a series of words that appeared on a 

table in front of them. These words appeared vertically from the participants’ 

perspective, and dependent upon the seating position of a confederate (either 

90degrees to the left or the right of the participant), either upright or inverted from 

their perspective. The data showed that judgements were faster when the word 

appeared upright to the confederate, but were relatively slowed down when they 

were inverted. Only when this perceptual decision would be harder for the other 

person (because the word appears upside down to them) are there any substantial 

response delays relative to seeing the word upright to this person, indicating that 

these judgements were disrupted by a spontaneous perceptual simulation which 

occurred independently of any effortful mental transformation in space.  
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In these, and our own tasks, we note that participants had ample time during 

the course of a trial to mentally reorient themselves into the position of the other 

person. For example, in our own task, the character of interest appeared in some 

cases almost 2000ms following the onset of the person in the scene. Similarly, in 

Surtees et al.’s number recognition task, and Freundlieb et al.’s (2016; 2017; 2018) 

studies, their partner was present during the course of the experiment, thereby 

allowing ample time for the rotation process into another’s body prior to the onset of 

any to-be-judged item. We therefore cannot conclude from these studies the extent 

to which others’ perspectives are spontaneously represented, or more specifically 

whether perceptual simulation of the others’ perspective occurs independently of a 

mental rotation into their body. Future work should aim to manipulate stimulus onset 

asynchrony as has been done in variants of Sampson et al.’s (2010) avatar task (e.g. 

Bukowski et al., 2015) in order to investigate this further.  

We also note that other studies have identified a mediating effect of the other 

person’s actions when deriving their visual perspective. In many tasks, shifts are only 

observed when acting with the other person, or seeing them act in an intentional way 

(e.g. Freundlieb et al., 2016; Furlanetto et al., 2013; Surtees et al., 2016) in contrast 

to the other person having no involvement in the task, or merely gazing at an object 

of interest (e.g. Mazzarella et al., 2012; Tversky & Hard, 2009). The spontaneity of 

these shifts may therefore be driven by a requirement to anticipate the other 

person’s actions and thereby encourage perspective taking, particularly if 

representing another’s perspective helps one predict their upcoming actions. From 

the present work, it is not clear whether the continued presentation of our actor in the 

same place would induce the same level of perspective taking as observed in the 

current design. If, for example, observing an action does indeed encourage 
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perspective taking, then we would expect our effects to be reduced when the 

position of the person on the screen does not change. Again, further work should 

seek to resolve this.  

Despite these remaining questions, the spontaneity of the effects observed 

across our own, and others’ (Freundlieb et al., 2016; Freundlieb et al., 2017; Surtees 

et al., 2016; Tversky & Hard, 2009) experiments do argue against VPT-2 being a 

cognitively controlled and effortful process, and point more towards a spontaneous, if 

not automatic, mechanism that rapidly computes how an object of interest appears 

from a non-egocentric perspective. Whilst we do not necessarily propose that implicit 

and explicit VPT-2 operate using different mechanisms altogether, it is instead more 

likely that when making explicit judgements about how a scene or object appears to 

another person, it is necessary to ‘select’ between own and others’ representations, 

leading to slower responses. This may also explain why in explicit tasks we observe 

a reliable relationship between angular disparity and response times in studies which 

propose VPT-2 is calculated by way of a mental rotation into the position of another 

person (e.g. Kessler & Rutherford, 2010), but why in other implicit tasks (e.g. 

Freundlieb et al., 2016; Tversky & Hard., 2009), people shift into another person’s 

spatial reference frame without considerable response time costs.  

 

5.2.3 VPT: Seeing through another’s eyes or wearing their shoes? 

Few studies have directly tested whether a person’s gaze direction (i.e. whether they 

are looking directly at an object of interest) influences our tendency to adopt their 

visual perspective, and results from these studies have been inconclusive. For 

example, Mazzarella et al. (2012) tested whether gaze at an object or action towards 
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it more strongly influenced participants’ tendency to shift into their spatial perspective 

when judging object locations. They found that, whilst observing a person reach for 

an object caused participants to judge the object location from the other person’s 

perspective, simply seeing the other person gaze towards the object did not induce 

such a shift. In contrast, Furlanetto et al. (2013) showed that viewing someone gaze 

at an object did numerically increase shifts into the other’s perspective, but also 

showed that the removal of gaze cues altogether did not affect whether participants 

responded from their own, or the other person’s perspective.  

 The results from Experiments 4a and 4b in this thesis indicate that the gaze-

direction of the other person does not influence people’s tendency to adopt their 

visual perspective during perceptual decision making. Instead, our data suggest that 

spontaneous computations of others’ visual perspectives reflect their position in 

space more generally, rather than their gaze. This is a surprising finding given the 

(folk-psychological) assumptions that VPT allows us to ‘see’ through another 

person’s eyes (e.g. Furlanetto et al., 2016), and also given the well- established link 

between eye gaze and social perception more generally (e.g. Frischen et al., 2007; 

Gardner et al., 2018; Becchio et al., 2008).  Our data suggest that such social gaze 

effects, which are strongly linked to mental state attribution, are separate to the 

perceptual shifts which underlie VPT-2, and therefore suggest a separate 

mechanism for mentalising and perceptual simulation of the content of others’ visual 

perspectives.  

 Spontaneous VPT-2 calculations appear to operate using a mechanism which 

computes more generally how an item would, in principle, look from another’s 

position in space, even when this person is not looking at the object of interest. This 

is consistent with the finding that during explicit VPT-2 tasks (e.g. Kessler & 
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Rutherford, 2010; Surtees et al., 2013), calculation of other’s perspectives is reliant 

on a bodily mental rotation into the position of another person. Rather than linking 

perspective taking directly to Theory of Mind processes, our data link VPT to a more 

general, perhaps evolutionary, spatial-navigational ability, indicating that the primary 

function of this ability is to enable navigation of, and interaction with, our 

environment. Indeed, support for such a view has been reported in a number of 

studies which show a correlational relationship between VPT and navigation ability 

(Kozhevnikov et al., 2006) and also other studies that have found that the presence 

of an object which signals a position in space which one could occupy (e.g. a chair) 

can induce spatial shifts into this viewing perspective (e.g. Gunalp et al., 2019). 

Moreover, the TPJ has been linked to both VPT (Zacks et al., 1999), imagined 

navigation (Committeri et al., 2015), and to out of body experiences (Blanke et al., 

2005), indicating that, though also implicated in Theory of Mind and mentalizing 

(Perner & Aichhorn, 2008), the primary function of VPT may be to compute what and 

how we can interact with in our environment.  

 Our ability to take another’s perspective may therefore emerge from an 

evolutionary ancient mechanism, which emerged to help us to interact safely with our 

environment and plan actions (e.g. evading capture) from different positions in 

space. More sophisticated abilities for Theory of Mind and mentalizing may then 

capitalise on the emerging insights from others’ perspectives, allowing us to identify 

epistemic differences between our own, and others’ knowledge about the same 

scene, giving rise to the common neuronal network for Theory of Mind, VPT, self-

other distinction, and navigation. By this view, our ability to perspective take serves 

both epistemic and action functions, perhaps explaining the link to false belief 

reasoning (Schurz et al., 2013), and also to joint action (Creem-Regehr et al., 2013).  
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 5.2.4 Action precipitates VPT 

Embodied accounts of VPT propose that our own actions, or posture, can interfere 

with our judgements when responding explicitly from another person’s perspective. 

Work by Kessler and colleagues (2010; 2010) has, for example, demonstrated that 

when participants align their body position with that of another person, judgements 

from this other perspective are relatively easy, and vice versa if the postures of both 

individuals are misaligned these judgements take longer.  This finding indicates a 

possible causal role of movement, or posture, in VPT. In some earlier experiments 

we noticed that some participants would make subtle postural adjustments during 

the course of the experiment. We therefore tested whether this movement had a 

causal influence on the observed perceptual shifts in our task. We tested this directly 

by restricting participants’ movement when they were making judgements, and 

predicted that if movement was causally linked to the perceptual shifts observed in 

our earlier experiments, we would see a reduction in these shifts when participants 

were unable to physically simulate the position of the actor in the scenes.  

Prior work investigating embodied mechanisms such as emotion recognition 

(Neal & Chartrand, 2011) have demonstrated that a person’s ability to move, or 

motorically emulate, key gestures or expressions can interfere with our ability to 

identify others’ emotional expressions. For example, people who are unable to move 

their own faces have been shown to perform worse than usual in emotion recognition 

tasks (Neal & Chartrand, 2011). Similarly, estimates of distances between locations 

are larger when participants are weighed down with a heavy load (Proffitt, 2006), 

indicating that our cognitive processes are influenced by our real bodily experiences, 
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and critically our perceived ability to move (Decety, 1995; Moreau, 2012; Parsons, 

1994; Wohlschläger & Wohlschläger, 1998). 

 While embodied accounts or VPT endorse a motorically embodied rotation 

into the position or another person when making allocentric judgements (e.g. Kessler 

& Rutherford, 2010), we did not find evidence in support of this view. Although we 

have shown in earlier experiments that a person’s position in space, rather than 

where they are looking, is a critical cue to deploy VPT mechanisms (Experiments 

4a and 4b), we did not find that restricting participants’ ability to move interfered with 

these effects (Experiment 5). We therefore do not argue against an embodied 

account of VPT per se, rather against a motoric basis for the mental transformation 

from a person’s real to imagined position in space. Our findings suggest that the 

shifts we observed across these experiments do not draw on processes that track 

one’s perceived ability to move their bodies, but emerge from mental transformation. 

We conclude, therefore, that the movements sometimes observed during our task 

are perhaps epiphenomenal leakage of simulated changes in viewpoint, as have 

been observed in other imagined actions (e.g. Colton et al., 2018; Jacobson, 1930). 

 It is important to now consider how these shifts might be affected by 

instructing participants to move their bodies, rather than to allow them to simply have 

the option to move. As yet, it is not clear whether actively inducing body movements 

would interfere with, or facilitate VPT, therefore future studies should consider this. 

Doing so would help to disentangle the processes which underlie explicit and implicit 

computation of the content of others’ visual perspectives. We know from prior work, 

for example, that intentional postural alignment with a target ‘other’ does indeed give 

rise to faster judgements about object locations from the allocentric perspective, 

however it is not clear whether a similar manipulation would increase spontaneous 
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shifts into the other person’s perspective in our task. Such findings would provide 

large steps not only in supporting this mental rotation view of perspective taking, but 

would also provide further support of the link between perspective taking and 

navigation through space, as discussed above. 

 

 5.2.5 Individual differences in VPT 

A final exploratory goal of this thesis was to examine whether individual differences 

in social functioning and schizotopy could explain the variance in tendency to take 

another’s perspective in our task. We therefore entered participants’ scores from a 

series of questionnaires (AQ; Baron-Cohen et al., 2001; IRI; Davis, 1983; STQ; 

Claridge & Brocks, 1984), which have been conceptually, or empirically linked to 

visual perspective taking in prior work (Hamilton et al., 2009; Langdon et al., 2001; 

Schurz et al., 2013; Schwarzkopf et al., 2014; Zwickel et al., 2011) into a multiple 

regression model to identify reliable predictors of VPT. Surprisingly, despite its 

assumed link to mentalizing and false belief reasoning (Schurz et al., 2013), VPT 

was not found to correlate with measures of social ability and empathy (AQ and IRI) 

in our task, though measures of schizotopy (STQ) did provide some contribution in 

explaining variance in VPT across participants, replicating prior work (e.g. Langdon 

et al., 2001; Langdon & Coltheart, 2001).  

 Though initially surprising, these findings support the underlying theme of this 

work, which proposes that visual perspective taking is not an inherently social 

mechanisms, but one that builds upon evolutionary ancient mechanism which may 

allow us to interact with our environment from multiple viewpoints. Already, we note 

above that there may be distinct differences between implicit perceptual intrusions 
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from another’s visual perspective, and the effortful act of selecting one of several 

representations of the same scene. Indeed, studies have shown that individuals with 

ASD, whom are characteristically impaired in social functioning, are not impaired in 

implicit measure of perspective taking (e.g. Schwarzkopf et al., 2014; Zwickel et al., 

2011), but struggle with explicit tasks (Hamilton et al., 2009). We therefore do not 

propose that there is no link between social ability, Theory of Mind, mentalizing etc. 

and VPT, instead we speculate that these more sophisticated social abilities 

capitalise on a pre-existing mechanism which simply allows us to navigate and 

interact with our environment (e.g. Kozhevnikov et al., 2006). This mechanisms is 

then effortfully selected to solve social tasks.  

 

5.3   Chapter Six - Future directions and remaining questions 

This thesis provides by no means an exhaustive explanation of the mechanisms by 

which we derive the content of others’ visual perspectives. We have, however, 

provided considerable evidence in support of a perceptual simulation account. 

Moreover, the evidence presented in this thesis support our speculation that 

representing others’ visual perspectives draws on an ancient evolutionary 

mechanism which developed first to support navigation and interaction with the 

environment, and later developed to support more sophisticated mentalizing abilities. 

There are, of course, many remaining questions, some of which are outlined below 

either in terms of planned studies (5.3.1 – 5.3.2), or theoretical questions (4.3.4).  

 

 5.3.1  How complete is the perceptual simulation of others’ input? 
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Since the publication of Experiments 1a - 3 (Ward et al., 2019), there has been 

some backlash in the literature against the viability of our perceptual simulation 

account (e.g. Cole and Millet, 2019). In light of this, there are a number of actions 

that need to be taken to clarify the extent to which we truly simulate others’ 

perceptual input.  

 One argument against a perceptual simulation account brought forward by 

Cole and Millet (2019) is that without utilizing a condition where the inserted actors 

cannot ‘see’ the item on the table, we cannot conclude that our effects demonstrate 

any representation of the content of the other’s visual perspective. Whilst the 

Experiments 4a and 4b in this thesis do indeed employ such a manipulation, it is 

important to consider possible limitations of this design, and moreover more fully 

explain why a turned away head (as in our own experiments) does not reduce VPT, 

but why in other studies (e.g. Freundlieb et al., 2017; Freundlieb et al., 2018) shifts 

into others’ perspectives become much less likely when this other person is wearing 

occluding glasses. One possibility is that the occluding glasses prevent gaze at the 

relevant items in principle, while a simply averted gaze does not. After all, a turned 

away head can, in principle, turn to look at – and judge – an item at any point, whilst 

a person wearing a blindfold could not. One future study would then be to integrate 

Freundlieb and colleagues’ alternative approach with our existing experiment, so that 

in some trials a blindfold is applied to the actors’ head. This would test whether 

visual access, rather than gaze direction, is a critical cue in the deployment of 

spontaneous VPT-2 mechanisms. If our effects remain when the other person 

cannot see the item due to the blindfold, this would lend support to our proposal that 

perceptual simulations of another’s perspective reflect a more general mechanism 

which allows us to represent how, in principle, an object of interest appears from an 
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alternative vantage point. If, on the other hand, we saw a reduction in perceptual 

bias, this might indicate that VPT is driven by the perceived potential for another 

person to view, or act upon an object.  

 A further argument, again from Cole and Millet (2019), is that it is not possible 

that another’s perspective could be perceptually represented in full when taking their 

perspective. It is not clear from the present work, for instance, whether the same 

effects would be observed with the use of different stimuli. Alphanumeric characters 

are commonly used in mental rotation studies and are particularly useful because 

they are easily recognised. However, often people already have experience in 

mentally transforming them (e.g. when reading a word that has been presented 

vertically or viewing mirrored characters in the rear view mirror of a car), and people 

could therefore simply rely on these memories of rotated letters rather than fully 

computing the others’ perspective of the item. It would therefore be useful to replace 

these characters with other objects in future versions of this study for which such 

prior knowledge is unavailable. Nevertheless, a critical characteristic of these 

replacement stimuli would be to ensure that, like in our original study, the stimuli 

appear to be ‘different’ from the participant and the inserted person’s perspective, 

allowing us to determine whether participants really represent the content of 

another’s perspective, or whether the presence of another person merely triggers a 

shift into an alternative position from which they might recall a previously encoded 

version of the item at this specific orientation.  

One possibility would be to replace our alphanumeric characters with faces 

(e.g. Thompson, 1980). Faces are a unique stimulus because we learn faces during 

ontogeny from an upright perspective, to the extent that face perception appears to 

be specialized for recognizing and distinguishing faces in this upright orientation only 
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(e.g. the face inversion effect, (Diamond & Carey, 1986). The classic ‘Thatcher 

Illusion’ (Thompson, 1980; figure 4.0), which is similarly specific to faces in upright 

orientations could provide an excellent opportunity to further our understanding of 

the way we represent others’ perspectives. In tasks employing the thatcher illusion 

(e.g. Edmonds & Lewis, 2007; Thompson, 1980; Lewis, 2001), participants are 

typically shown a series of faces, some of which are distorted (eyes and mouth 

inverted) and some of which are un-edited, and are asked to state which faces are 

normal, and which are grotesque. The classic finding is that people find it more 

difficult to distinguish between normal and grotesque faces when they are rotated by 

180 degrees because it is necessary to mentally rotate the images back to upright 

before making a judgement. As such, reaction times follow a similar linear pattern to 

those seen in classic mental rotation tasks, where decisions take longer as a 

function of increasing angular disparity away from upright (e.g. Lewis, 2001).  

 

Figure 4.0. Example of ‘Thatcherised’ face stimuli used by Thompson (1980) 

 A planned future study will therefore utilize these stimuli to test the extent to 

which we represent others’ perspectives during perceptual decision making. As the 

central manipulation, and therefore the best indicator of the ‘strength’ of the Thatcher 

illusion, is to fully invert the face stimuli, the faces in this future study will only be 

presented at 0 or 180 degrees. Participants will be shown grotesque and unedited 

faces, and using a simple button press will be asked to indicate whether the 
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observed faces are ‘normal’ or ‘grotesque’. In half of the trials, participants will 

perform the task standing adjacent to another person (same perspective condition), 

and in the other half, participants will be positioned opposite one another (different 

perspective condition). If we spontaneously derive how the faces appear to the other 

person, then judgements about grotesque faces which appear upright to the other 

person (and therefore inverted to ourselves) will be faster compared to when 

participants share the same view of the item. Similarly, judgements about upright 

faces will be slower when this same face appears inverted to the other person. If 

participants are therefore less ‘fooled’ by the illusion when they are able to recruit 

another’s perspective during this task, this would provide confirmatory evidence that 

others’ perspectives take the form of a perceptual simulation, and would strengthen 

the argument for spontaneous VPT-2. If, on the other hand, people are unaffected by 

the presence of another individual (with an inconsistent view of the object of 

interest), this will shed light on the limits of such simulations. For example, it is 

possible that it is necessary that we have extensive prior experience with the stimuli 

(as with alphanumeric characters) if we are to accurately represent, and integrate, 

others’ perspectives when making judgements. The above proposal would help to 

solve this problem, and would indeed contribute to the generation of a more 

comprehensive theoretical model of a perceptual simulation framework of visual 

perspective taking.  

 

 5.3.2   How is VPT embodied? 

Do we assume ownership of the other person’s body when taking their perspective 

or do they represent a position in space that we could occupy? 
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We have shown across these studies that a person’s position in space, rather than 

their gaze (Experiments 4a and 4b) or one’s own ability to move (Experiment 5) is 

central in deriving how the world appears from this alternative perspective. This has 

led to speculation that taking another’s perspective may have evolved as a general 

mechanism which allows us to navigate and interact with our environment rather 

than one which has developed specifically to support complex Theory of Mind 

processes (Hamilton et al., 2009). Indeed, other studies point towards this view. For 

example, some studies have demonstrated a link between navigational skill and VPT 

(e.g. Kozhevnikov et al., 2006), and others have indicated that occupiable spaces 

(e.g. an empty chair) can induce spatial shifts akin to perspective taking (Gunalp et 

al., 2019). However, it remains to be tested whether this process is ‘social’ rather 

than ‘spatial’, and specifically whether, when taking another’s perspective, we 

assume ownership of this other person’s body (thereby allowing us to simulate their 

world view) or whether they simply represent a more general position in space that 

we could – in principle – occupy. We therefore propose a series of studies below, 

which will help to disentangle this problem.  

We will first test whether the recognition-time benefits observed in our prior 

work are exclusively observed in the presence of another person, or whether the 

same pattern emerges when the person is substituted for a chair. Our first study will 

test directly whether the mechanism driving these effects is socially embodied 

(rotating into another person’s body) or spatially embodied (rotating into a space that 

could easily be occupied by oneself). We will replicate our previous method, but for 

one critical manipulation. Between subjects, we will vary whether in half of the trials, 

another person, or a chair (representing a position in space that is inviting the 

participant to occupy it) appears either to the left, or the right of the participant. If 
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VPT is driven by a socially embodied rotation into another’s position, judgements 

about items oriented towards this person, but not the chair, will be faster than when 

this item is oriented away from them. If, on the other hand, the inserted person 

signifies a space which could otherwise be occupied by oneself, then we will see the 

same response time benefits in the presence of the chair as we do this other person. 

A further experiment will build upon this by making the same comparisons between a 

person, a usable chair, and one which is not safe to sit in (e.g. covered with barbed 

wire). If VPT is driven by the embodiment of another person, we will only see RT 

benefits for the inserted person. In contrast, if VPT is a spatially embodied, 

navigational process, by which people mentally rotate themselves into a space that 

they could occupy, we will see RT benefits for the person and the ‘safe’ chair, but not 

the ‘dangerous’ chair.  

To assess the social nature of VPT, we will also test whether those who easily 

assume ownership over others’ bodies are more strongly influenced by their 

perspective during perceptual decision making. We will test whether participants’ 

susceptibility to the Rubber Hand Illusion (Botvinick & Cohen, 1998) predicts VPT as 

indexed in our task. Participants will observe a rubber hand being stroked, whilst 

their own concealed hand will also be stroked. Participants will be asked to rate how 

much they felt that the rubber hand was their own. We will then replicate the first 

experiment using only trials with a person inserted, and trials featuring just the table. 

If VPT is facilitated by the embodiment of another person, then people who are more 

susceptible to such body transfer illusions will show more perspective taking than 

those who are not so fooled by the RHI. A striking further manipulation would be to 

induce an outer body illusion but stroking the participant and the other person in the 

scene at the same time. If perspective taking is a means of inducing body ownership, 
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or reflects ownership of the other’s body, then such a manipulation could increase 

perspective shifts into the other person. 

 

 5.3.3 What role do others’ actions play in VPT? 

Several studies have shown that people are more sensitive to others’ visual 

perspectives when this other person is performing an action (e.g. Surtees et al., 

2016; Tversky & Hard, 2009; Freundlieb at al., 2016), however it is not clear whether 

others’ actions serve as a cue to perspective take, or whether the perceived 

intentionality of an action (compared simply with movement) gives rise to 

spontaneous perspective taking. Several studies have tested this (e.g. Freundlieb et 

al., 2016; Surtees et al., 2016; Tversky & Hard, 2009) but the results overall have 

been inconclusive. During Freundlieb et al.’s (2016) spatial compatibility task, for 

example, they found that participants would only shift into a confederate’s 

perspective if they perceived them to be an intentionally acting agent. Similarly, 

Tversky and Hard (2009) found that the mere presence of another person was 

enough to cause participants to describe the spatial relationships of objects from the 

other person’s perspective. Importantly, when these other people appeared to reach 

from one of the objects, this shift into the other person’s spatial reference frame was 

even more pronounced, suggesting that a person’s action intentions towards an 

object might play a causal role in VPT. These findings align with studies which link 

VPT to Theory of Mind process (e.g. Furlanetto et al., 2016; Hamilton et al., 2009), 

as VPT might play a role in helping the participant understand the actions they 

observe (e.g., Jeannerod, 2007). 
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 Other studies did not find this relationship, however. Surtees et al. (2016) 

found in their number recognition task that the aspect of the stimulus that 

participants were sensitive to (the magnitude) did not have to match the aspect to 

which their partner was attending (e.g. colour). Regardless of the task being 

performed by their partner, participants’ responses were consistently influenced by 

the other person’s perspective when making their judgements. This suggests a more 

primitive explanation, whereby the content of others’ perspectives is derived 

spontaneously in response to any movement from one’s partner. Similarly, in 

Freundlieb et al.’s (2016) task, the movement, rather the intentional actions, of the 

confederate may have caused a similar process of regular spatial updating. One 

possible explanation may then be that it is not action per se that drives these effects, 

more so it is the relative salience of movement which causes participants to 

continuously update their spatial reference frame, and thereby rotate themselves into 

the other perspective.  

 In contrast, in the studies presented in this thesis, the individuals in the 

images did not reach for the items, nor did they ‘move’ in any way (with the 

exception of Experiments 1a and 1b, which was shown in subsequent studies to 

have no impact on the effects observed). Despite this lack of action, and their 

irrelevance to the task, the mere presence of the actors in our studies reliably 

induced VPT across all experiments. We note, however, that whilst there was no 

action, the random distribution of the trials in our experiments, varying the 

appearance of a person on either the left or the right if the screen, may have caused 

participants to spontaneously derive in each trial how the scene appeared from the 

others’ perspective, in contrast to these other experiments in which the actor location 

was usually blocked.  
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To test whether VPT is triggered by a process of spatial updating (e.g. 

Wolbers, Hegarty, Buchel & Loomis, 2008), a future version of our mental rotation 

experiment may therefore adapt the trial distribution such that the actors appear in 

the same place across blocks of trials. This would eliminate any movement, and 

would clarify whether the unpredictable position of the actor played a causal role in 

participants’ tendency to take the other’s perspective in the present work. Further 

experiments could introduce an explicit action manipulation. For example, rather 

than using a computer based task to test spontaneous VPT, in future versions of this 

task we will project our mirrored and cannonical alphanumeric characters onto a 

table, and will ask two participants to take part at the same time. By 

counterbalancing participants’ positions relative to one another (left or right) 

throughout the experiment, we will replicate the existing experiment design in a ‘live’ 

setting, thereby allowing us to directly test whether others’ actions induce 

spontaneous shifts into the other’s visual perspective. Whilst Surtees et al. (2016) 

have demonstrated that participants need not be engaged in the same task to induce 

perspective taking, Tversky & Hard (2009) and Freundlieb et al. (2016) found 

evidence indicating that the perceived intentionality of observed actions might induce 

spontaneous shifts into another’s spatial frame of reference. Our task could play a 

unique role in disentangling these possibilities.  

 

5.3.4   VPT-2 is a perceptual simulation, but how do we get there? 

The experiments outlined in this thesis provide substantial evidence for a perceptual 

simulation account of visual perspective taking, but how this simulation is achieved 

remains unanswered. For example, we cannot say from the data presented herein 
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whether we really do have ‘immediate’ access others’ visual perspectives, or indeed 

whether any transformation is necessary to derive what others can see. Although 

overall the experiments in this study suggest that people do rapidly and 

spontaneously compute others’ perspectives, there are limitations to the current 

design if we are to attempt to conclusively argue that VPT-2 is derived in a ‘direct’ or 

‘immediate’ way. For example, in all the experiments described throughout this 

thesis, participants had a minimum of 1500ms to align their perspectives with those 

of the people in the scenes (i.e. between appearance of the person and the letter to 

be judged). Although the evidence for VPT-2 as a spontaneous, unintentional 

process is clear throughout this thesis, the speed at which these computations are 

achieved remains therefore in question, with an upper limit of 1500 ms. A simple 

solution to this problem would be to manipulate the stimulus onset asynchrony 

(SOA) between the onset of the person in the scene, and the to-be-judged item. This 

could be varied between trials at SOAs of, for example, 0ms, 300ms, 600ms and 

1000ms. If others’ perspectives can be accessed immediately, then the shifts into the 

other person’s perspective would not differ between SOAs, and the RT pattern 

relative to the onset of the item would not vary between conditions. If, however, 

access to others’ simulated perspectives is not ‘immediate’ or ‘direct’ but relies on a 

(costly) transformation of space, then a different pattern would be more likely, where 

evidence of VPT might only be apparent at longer SOAs   

In the introduction, we briefly introduced the distinction between self-rotation (Kessler 

& Thompson, 2010) and object-centred rotations (Kovhevnikov et al., 2006), where 

the former describes how we mentally transport our bodies into a different position to 

sample a scene from an alternative viewpoint, and the latter describes that we anchor 

ourselves in space, and mentally rotate a scene or object so we can ‘observe’ it from 
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a desired angle. From the data presented in this thesis, we cannot conclude which 

method of mental transformation is employed in solving our task. It is important to note, 

however, that regardless of whether the relevant mental transformation is anchored in 

one’s own perspective (object-based transformation) or if VPT-2 is achieved by 

rotating oneself into the position of another person (self-rotation), the end result would 

not differ. The simulated perceptual input that drives perceptual decision making in our 

task would be the same. Therefore, for the purpose of the present work the two 

processes are viewed interchangeably and the distinction is mentioned here simply 

with the goal of clarification. 

 The mechanisms preceding the perceptual simulation of others’ perspectives, 

specifically the presence of a rotation transformation could be tested by manipulating 

the angular disparity between the participant and the person appearing on the screen. 

Prior work has shown that response times for explicit allocentric judgements increase 

linearly as a function of the rotational distance between the ‘self’ and ‘other’ 

perspectives (e.g. Michelon & Zacks, 2005; Kessler and colleagues, 2010; 2010). If 

the same rotational processes are involved in implicit VPT-2 computations, then this 

same linear relationship should be present in our task. Here, a future study could 

simply increase or decrease the angular disparity between the participant and the 

person appearing in the scene and measure whether shifts in the others’ perspective 

become apparent earlier in time than for people sitting further apart. This would 

provide further insights into the mechanisms that underpin implicit VPT-2. Further 

studies could instruct participants explicitly to take the alternative perspective, either 

by performing a mental self-rotation, or by mentally rotating the scene towards 

themselves. This, again, might help to disentangle which, if any, rotational 

transformation occurs during VPT-2. 
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To conclude, we can speculate that people have immediate (quasi)perceptual access 

to others’ visual perspectives, and that this is achieved by performing a rapid, mental 

transformation in space, however further work needs to be done to address the 

mechanics of the transformation that enables such rapid computations of others’ visual 

perspectives.  

 

5.4 Summary and concluding remarks 

While it has been inferred in several past accounts of visual perspective taking, the 

experiments presented in this thesis provide the first known evidence that the 

content of others’ visual perspectives is represented similarly to our own, and takes 

the form of a perceptual simulation that can drive perceptual decision making in the 

same way as our own input (Roelfsema & de Lange, 2016). This work has therefore 

substantially advanced our knowledge about the overlapping representations of own 

and others perspectives and, using a perceptual framework, helps to explain why 

others’ perspectives can interfere with our own, even when we are not instructed to 

consider them (Freundlieb et al., 2016; Sampson et al., 2010; Surtees et al., 2016; 

Tversky & Hard, 2009).  

The data presented in the latter part of this thesis have advanced our understanding 

of the mechanisms involved in deriving how the world looks to others. In contrast to 

some folk-psychological accounts (e.g. Furlanetto et al., 2016), which imply that we 

‘see through others’ eyes’ when taking their perspective, we found here that the 

mere presence of another person is sufficient to induce spontaneous simulation of 

their perspective. Moreover, we found that measures of social ability and empathy 
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are not reliably linked to implicit VPT-2 as measured in our task, raising further 

questions about its evolutionary basis.   

The experiments presented in this thesis have provided a strong entry point from 

which new knowledge and research can now be developed, in particular in relation to 

the social vs. spatial nature of VPT. Based on our findings we conclude that (1) 

deriving what another person can see occurs spontaneously in the presence of 

another person, (2) VPT takes the form of a perceptual simulation, and (3) speculate 

that VPT emerged primarily to support navigation of, and interaction with the 

environment. Future studies should now focus on disentangling the spatial from the 

social determinants of VPT deployment, and investigate the possibility that VPT 

emerged to support navigation and action planning.  
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