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ABSTRACT 

The elemental physiology of the highly complex and regulated cellular response to stress 

remains poorly understood. Hypothermia and reperfusion are necessary and unavoidable 

stresses associated with the procurement, storage and transplantation of organs such as the 

kidney. Signal transduction pathways and transcription factors are evolutionarily conserved 

mediators of stress responses. This project has investigated the activation of the 

transcription factors Nuclear Factor kappa B (NFKB), Activator Protein I (API) and the 

Heat Shock Factor I (HSFI) as well as the mitogen activated protein kinases (MAPK), 

p38, JNK and ERK I /2, during hypothermic and reperfusion stress in cultured endothelial 

cells (HUVECS) as a model of kidney graft endothelial cells. HUVECS were subjected to 

72 hours of hypothermia at 4°C in a renal preservation solution. For reperfusion 

experiments cells were returned to 3 flc after 30 minutes or 12 hours of hypothermia. 

NFKB was activated within minutes of a hypothermic insult, correlating with the 

phosphorylation ofthe p38 and ERK 1/2 MAPKs (p<O.Ol).lnhibition ofp38 had no effect 

on NFKB translocation. but inhibition ofERK I /2 prevented subsequent NFKB activation 

(p<O.Ol). In contrast API was not significantly up-regulated until 12 hours of hypothermia 

and HSF I was down regulated during hypothermia. The downstream effects of NFKB 

activation were investigated by measuring the production of the inflammatory cytokines 

IL-6, IL-8 and TNFa. All three cytokines were up-regulated during hypothermia and 

reperfusion and the inhibition of NFKB with a decoy oligonucleotide reduced the 

expression of these cytokines. HUVECS were not killed by hypothermia with greater than 

95% cell viability for 48 hours. Similarly DNA fragmentation. an event that occurs during 

apoptosis was not seen during hypothermic or reperfusion stress in HUVECS. There was a 

consistent expression of the mitochondrial anti-apoptosis protein BCL-2 during 
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hypothermia. HlNECS did not release von willebrand factor (VWF), a marker of 

endothelial dysfunction during hypothermia, however, cells did produce lactate after 

prolonged storage indicating a degree of hypoxia developed during hypothermic stress. To 

extrapolate the in vitro work to a clinical setting 17 preservation solutions were collected 

from cadaveric donor kidneys. Levels of lactate, VWF, IL-6, IL-8, TNFa and the anti

inflammatory IL-4 were measured. A large range in values was found for all markers in the 

17 preservation solutions, however, no correlation was found between increasing cold or 

warm ischaemic times, early graft function or rejection with the markers chosen. IL-6 was 

significantly increased in donor kidneys that had experienced greater than 30 minutes 

warm ischaemia (p<O.OS). The response of a donor kidney may be regulated by 

polymorphisms which the graft cells contain. Microsatellite polymorphisms in the NFKB 

and TNFa genes and restriction enzyme sites in the IL-6 and NAD(P)H genes were 

investigated in 50 donor DNA samples. No correlation was found with rejection episodes 

with any of these polymorphisms. However, in the 17 preservation solutions, donors with 

the IL-6 allele which is linked to high protein production had higher IL-6 levels than 

donors with the low production allele. The role of IL-6 in transplantation remains unclear. 

However, this study has demonstrated that IL-6 may be a useful marker of stress. The 

ability to block cytokines by inhibiting transcription factors such as NFKB may have a 

therapeutic potential in ischaemic injury. 
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1.1. A Brief History of Renal Transplantation 

The first description of a transplant dates back to the fifteenth century with the 

legend of Saint Cosmos and Saint Damien. Paintings from this time show the two Saints 

removing a diseased leg from a sleeping man and replacing it with a healthy leg that they 

have removed from a dead man. The 'laws of transplantation' were formulated by Little 

and Tyzzer at the beginning of the century have been paraphrased as 'Isografts succeed, 

allografts fail' (Halloran et a/ 1993). The two major periods of interest in the development 

of the transplantation of organs for the treatment of disease were in the early 1900's and 

later in the 1950's. At the beginning of the century surgical techniques were vastly 

improving and the establishment ofthe method of suturing by the Nobel Prize winner Alex 

Carrel in 1902 accelerated interest in vascular surgery. In the same year Emerich Ullman 

from Vienna demonstrated the first autotransplant of a kidney, when he removed the 

kidneys from a dog, and replaced one by implanting it in the neck area. In 1905, Carrel 

repeated Ullman's experiment but without success and Alfred Von Decastello 

demonstrated the first allograft dog-to-dog transplant. Small amounts of urine were passed 

but all transplanted animals died within hours of the operations. In 1906 Mattieu Jaboulay 

carried out two xenotransplants from pig and goat donors in to the arms or thighs of human 

patients with renal failure. The grafts were reported to have functioned for I hour. In 1909 

Ernst Unger attempted a dog-to-dog transplant that was successful for 14 days. He 

performed many such transplants, including an unsuccessful monkey-to-human transplant. 

In 1923 Cart Williarnson examined a failed kidney transplant, and was the ftrst to use the 

term 'rejection' when describing the appearance of the kidney. This early work established 

the technical possibility that kidneys could be transplanted, but the uncertainty as to why 

the grafts were rejected led to a diminished interest in renal transplantation. 
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Before the revival of interest in transplantation the soviet surgeon Yu. Yu Voronoy carried 

out 6 transplants including the first recorded human allograft transplant in 1933. The 

patient died 2 days later. An important discovery was made between 1936 and 1937 by 

George SneU in the US and Peter Gorer in the UK, who used inbred strains of mice to 

transplant tumours and found that tumours grew in mice of the same strain. but were 

rejected by other strains. Snell identified the H2 'histocompatibility' gene in mice, which 

was associated with strong rejection of tumours. Later Gorer demonstrated that the H2 

gene was in an identical locus to the human blood group antigen II. During the war years 

the large number of casualties dying from renal failure and requiring skin grafts, due to 

burns, intensified the need to understand tissue rejection. In the late 1940's and early 

1950's surgeons Kuss, Sevelle and Dubost from Paris and David Hume from Boston 

attempted allografts without immunosuppression. No sustained function was achieved in 

any cases. During this time, Nobel Prize scientists Peter Medawar and MacFarlane Burnet 

produced pioneering work on the function of the immune system in transplantation using 

skin grafts from genetically disparate mice. It was established that grafts from disparate 

mice are rejected, whilst mice were tolerant to grafts from the same strain. They also 

showed that the immune system has a memory function. In 1944 the 'artificial kidney' was 

first used to treat acute renal failure by Willem Kolf In the UK. artificial kidneys were first 

used at the Hammersmith Hospital, London in 1948. The increased interest in the kidney 

led to the formation of the Renal Association in 1952. In 1954, Joseph Murray performed 

the first isograft transplant between identical twins in Boston. The graft survived for 7 

years and is widely regarded as the first truly 'successful' transplantation of a kidney in 

humans. The identification ofthe human leukocyte antigens (HLA) in 1958 by Dausset and 

Hamberger, led to the proposal that histocompatibility systems were common to all 

mammals. 
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Between 1959 and 1960 in Boston and Paris the first attempts at immunosuppression were 

carried out. These involved total body irradiation, but results were poor. In a 1959 paper by 

Dameshek and Schwartz, it was found that rabbits treated with the anti-cancer drug 6-

mercaptopurine (6-MP) developed a poor immune response to foreign protein. Roy Calne 

saw the potential for 6-MP and used it as immunosuppression in dog allografts with 

improved survival. Calne and colleagues developed a less toxic derivative of6-MP, known 

as BW57-322, (later lmuran/Azathioprine). During the next few years, 6-MP was used 

with total irradiation in a number of transplants with some success. In 1961 Imuran became 

available for human use. Improvements in dialysis methods in the mid 1960's allowed 

better preparation of patients and the introduction of immunosuppression encouraged the 

use of transplantation. Terasaki and colleagues, cross-matched donor cells with recipient 

serum and proposed leukocyte grouping as a basis for patient selection in 1965. In 1966 

Bach and Voynow designed the mixed lymphocyte culture assay, which was based on 

stimulating the recipients lymphocytes with donor lymphocytes to identify positive cross

matches. The first international congress on transplantation was held in 1966. The 'London 

Transplant Club' was set up in 1971. The co-operation of John Hopewell from the 

Transplant Club and Roy Calne from the Immunological Society, led to the formation of a 

'transplantation committee' of the Immunological Society, which held an inaugural 

meeting at the Royal Free Hospital, London, in 1972 chaired by Sir Peter Medawar. This 

committee later became the British Transplantation Society. 

The 1970's brought the establishment of transplantation as the choice treatment for patients 

with end stage renal disease. This was the result of increased public awareness leading to 

improved cadaveric donation, the establishment of brain death, improvements in HLA 

typing methods, organ sharing schemes, and the important discovery by Opelz that regular 

blood transfusion during dialysis improved outcome. In the late 1970's a major advance in 
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immunosuppression was made with the discovery of a new immunosuppressive agent, 

cyclosporine. Cyclosporine was available for general use in 1982, and in conjunction with 

azathioprine and corticosteriods became the common regime for transplant 

immunosuppression. 

1.2 The basic function of the kidney 

The kidneys have both excretory and hormonal functions. The prime function of 

the kidney is the excretion of waste, water and electrolytes. The kidneys also synthesise 

hormones such as erythropoietin and renin and regulate insulin metabolism. The kidney is 

a vital organ subserving the diverse metabolic requirements of the body systems. 

The basic functional unit of the kidney is the nephron. An adult kidney contains between 

850,000 and I ,000,000 nephrons. A nephron consists of five main sections, the glomerulus, 

proximal tubule, loop of Henle, distal tubule and collecting duct leading to the bladder. 

The kidney achieves the regulation of homeostasis by three main processes. Firstly 

filtration of plasma at the glomerulus, followed by selective absorption and reabsorption by 

the tubules and production of ammonia and fmally excretion of urine. Plasma is forced 

through the glomerulus by the hydrostatic pressure of the blood. The glomerular basement 

membrane does not allow macromolecules to pass through and hence the glomerular 

filtrate is a soluble concentrate containing solutes such as glucose and amino acids, and 

ions such as sodium, potassium, chloride, calcium, phosphorus and magnesium. The 

glomerular filtrate also contains waste products such as creatinine, urea and urate as well 

as acidification products such as bicarbonate and hydrogen ions. The net filtration rate of 

the glomeruli over 24 hours should be approximately 180 litres. The filtrate then enters the 

proximal tubule, which is the main area of reabsorption of glucose, amino acids and most 

electrolytes. The proximal tubule also absorbs 65-70% of the water from the glomerular 
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filtrate. The process of reabsoption in the proximal tubule is an active (energy requiring) 

event. The purpose of the proximal tubule is to prevent loss of fluid and solute. The filtrate 

then enters a thin loop structure with a descending and ascending limb, known as the loop 

of Henle. The loop of Henle is essentially a counter-current system that reabsorbs sodium 

and results in the eventual formation of hypotonic urine. The descending limb is freely 

permeable to water and sodium and the ascending limb is impermeable to water. As water 

diffuses out of the descending limb, the urine becomes more concentrated at the bottom of 

the loop. The ascending limb is the site of numerous sodium pumps that remove sodium 

from the urine into the medulla. The countercurrent system is achieved by this passive 

diffusion of water in the descending limb resulting in a hypertonic solution, an isotonic 

solution at the bottom of the loop, where the two limbs meets, and the removal of sodium 

ions in the ascending limb resulting in a more hypotonic solution at the top the loop where 

it joins to the distal tubule. The distal tubule plays a vital role in feedback from the tubules 

to the glomerulus and blood system (tubuloglomerular feedback). This feedback is vital in 

controlling ultrafiltration rates in the glomerulus. Cells in a region of the distal tubule 

known as the macula densa, can sense changes in glomerular filtration rate or sodium and 

chloride ion concentrations and produce vasoactive substances such as adenosine and 

prostaglandins that effect the haemodynamics of the glomerulus. Similarly the distal tubule 

controls the secretion of renin, which is a proteolytic enzyme that removes angiotensin 

from angiotensinogen and forms angiotensin Il, the potent vasoconstrictor. The other 

function of the distal tubule is the secretion of hydrogen ions and the formation of 

ammonia. Ammonia is formed by the production of glutaminase by tubule cells, which 

converts glutamine to glutamate, a process that liberates ammonia. Ammonia binds to 

hydrogen ions to form the ammonium cation. The distal tubule is also sensitive to the anti

diuretic hormone (ADH), which is secreted by the pituitary gland in response to a message 
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from the hypothalamus, which contains osmoreceptors that react to hypo-osmotic blood. 

ADH acts by increasing the permeability of the distal tubule and collecting duct, allowing 

water to re-enter the blood. 

The maintenance of fluid balances and the secretion of waste products and hydrogen ions 

are vital in maintaining homeostasis. A reduction in glomerular filtration rate would lead to 

a reduced excretory capacity. Any reduction in urine output by the kidney is a serious 

problem for the maintenance of internal pH, fluid balance and availability of solutes in the 

body. 

1.3 Recipients of kidney transplants. 

The progressive loss of kidney function leads to renal insufficiency, which may 

develop to advanced end stage renal failure (ESRF). The major causes of ESRF are 

autoimmune disease such as glomerulonephritis, systemic disease such as diabetes and 

inherited conditions such as polycystic kidney disease (See Table 1.1 ). Chronic renal 

failure is the result of long standing nephron loss and damage leading to glomerular 

sclerosis and uraemia. Acute renal failure is the sudden and often reversible loss of kidney 

function leading to the rapid accumulation of nitrogenous waste such as urea or creatinine 

and an inability to regulate electrolytes. Many substances can cause acute renal failure due 

to their nephrotoxic properties including heavy metals (lead, mercury), certain antibiotics 

(gentamicin) and alkylating agents (streptozotozin). Renal failure can also occur as a 

consequence of heart disease, sepsis, anaphylactic shock or liver disease. The loss of 

kidney function leads to the need for renal replacement therapy (RRT). One means ofRRT 

is dialysis. Dialysis is the process of filtering the blood, hence removing fluid, toxins and 

waste materials. Dialysis via the blood is known as haemodialysis, and patients require 4-6 

hours, 3 times a week. Continuous ambulatory peritoneal dialysis (CAPD) is 
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Autoimmune Diseases Systemic Diseases 

Glomerulonephritis Lupus (SLE) 

Pyelonephritis Vasculitits 

Diabetes Amyloidosis 

Other Inherited Disease 

Infection (Cystitis) Polycystic Kidneys 

Obstruction (kidney stones) 

Disease of renal blood vessels 

Hypertension 

Table 1.1. Common reasons for the development of chronic ESRF leading to the need 
for RRT (Data from the UK Renal Registry 200 I). 
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performed via a permanently fitted tube in the abdomen. Approximately 2 litres of dialysis 

fluid is passed through the abdomen, 4 times a day. CAPD is less efficient but allows the 

patient to perform dialysis at home. Dialysis can not replace the hormonal functions of the 

kidney, although a major improvement in the quality of life for dialysis patients has been 

the introduction of synthetic erythropoietin (Evans et a/ 1990). 

A second means of RRT is the transplantation of a kidney from a donor, thus restoring 

organ function more effectively than dialysis. Kidney transplantation is the most common 

allograft organ transplantation. World wide in 1997 there were an estimated 24,200 renal 

transplants (Van Den Berghe 1998). Transplantation is the choice treatment for patients 

with end stage renal failure as it greatly improves the quality of life for the patient and 

reduces the substantial cost of dialysis to the health service. According to the united 

network of organ sharing (UN OS) in the US, dialysis costs $70,000 a year. Transplantation 

in the first year costs the same, but subsequent care costs $12,000 a year (UNOS 2000). 

Transplantation offers the chance of returning to a near normal lifestyle. It has been shown 

that 91.6% of successful transplant recipients are able to return to full time or part time 

work (Jacobs et a/ 1977). In the US, 75% of patients receiving a successful cadaveric 

transplant return to work, whereas only 25-59% of dialysis patients are employed (Evans et 

a/ 1985, Manninen et a/ 1991 ). In a subjective assessment of the quality of life for 

transplant patients compared to dialysis patients, as measured by eating and sleeping 

behaviour, symptoms, general satisfaction and happiness, it was found that 79% of patients 

with a transplant felt that they function at a near normal level compared with 47%-59% of 

dialysis patients (Evans et al 1990). According to data in the UK, one-year patient survival 

for patients on RRT in 2000 was 83.7% for dialysis compared with 97.3% for transplant 

patients (UK Renal Registry report 2001 ). 
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1.4 Waiting lists and organ donation. 

In 1990 there were 3668 people on the kidney transplant waiting list in the UK. In 

1998 this had risen to 5693, with only 1637 cadaveric organs retrieved from donors and in 

2001 there were 2,339 kidney transplants with 6284 people on the waiting list (UK 

Transplant 2002). There has been a steady increase in the number of living donors, with 

183 in 1996, 245 in 1998 and 358 in 200 I in the UK (UK Transplant 2002). However, in 

Europe, living related donors make up only 9% of all donors, whereas in the US, 30% are 

from live donors (UNOS) (Fig 1.1.1 ). The majority of cadaveric donors are in the 18-59-

age range. Improved safety in the motoring industry has resulted in a reduced amount of 

donors from road traffic accidents, with 29% in 1989 and 16% in 1998 (UK T ransp !ant). 

The largest proportion of donors are from cardiac arrest deaths (61 %), with natural causes 

and trauma constituting the final 23% (Fig 1.1.2). With organs in such short supply, 

attention is now centring on increasing living related donors, as well as making best use of 

cadaveric organs when available. In the US, an average of 3.68 organs are removed from 

each cadaveric donor (V an Den Berghe 1998). The system in the US for organ donation is 

different from the UK and mainland Europe. The US has a system of required consent, 

whereby the next of kin must give permission for an organ to be removed with no 

expectation that a donation will result. In the UK, the current system for organ donation 

relies on 'opting in' or required consent. This means that organ donation is a voluntary act 

and individuals can opt to be a donor by registering their intentions or by carrying a donor 

card, which states their intentions. The next of kin is still approached to give consent for an 

organ to be removed, but are approached without expectation of donating organs. In certain 

European countries such as Spain and Belgium a system of 'opting out' or presumed 

consent has been legislated. This means all individuals are presumed to be donor unless 

they have registered 
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Figure 1.1.1. The increase in living donors in the US over the last decade to numbers 
approaching cadaveric donors (A). Estimates suggests more than 30% of donors in the 
US are living compared to only 9% currently in Europe (data from the UNOS registry). 
In the UK, there has been a gradual increase in living donors (B) (data from UK 
Transplant 2002). 
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Figure 1.1.2. The reduction in donors from road traffic accidents has been reflected by 
the increase in waiting lists for renal transplants in the UK over a ten-year period (Data 
from UK Transplant). 
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their wish not to donate. The next of kin are therefore approached with the expectation of 

receiving consent to remove organs. Presumed consent has increased the donation rates in 

countries such as Germany and Italy that have adopted this system within the past 5 years 

(Rev by Andrews 2002). Another means of increasing the donor pool would be to use a 

greater number of marginal donors. Marginal donors are from donors with factors which 

may cause the kidney to function poorly including; extremes of age (<I4 years or >65 

years), diabetic or hypertensive/hypotensive donors, donors with primary brain tumours 

and donors with impaired renal function. Non-heart beating donors (NHBD) represent a 

further pool of donors. Normally donors will remain ventilated until the organs are 

removed. NHBD have organs retrieved without ventilation and suffer from increased graft 

damage as a result. It has been suggested that the use of more marginal donor and NHBDs 

can increase the organ donation rate by 20-40% (Cho et a/I998, Koostra I997, Andrews 

2002). However, the higher number of transplants may be matched by poorer outcomes. 

1.5 Kidney allocation 

Kidneys are allocated in the UK on the basis of a 3-tier system of priority (Rev by 

Fuggle et a/200I). In each tier, priority is first given to paediatric patients and then adults 

and local patients before national patients (Fig I.2). Tier I represents 000 mismatched 

patients and tier 2 represents favourably matched patients with I 00, 010 or I 10 

mismatches. Tiers I and 2 give priority to DR-homozygotes before DR-heterozygotes if 

the donor is a DR-homozygote as well. Tier I also gives priority to highly sensitised 

patients. Tier 3 represents non-favourably matched patients that are normally allocated a 

kidney from the nearest local transplant unit, depending on the units own policy for 

allocation or sharing. 
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Tier One - 000 mismatched patients 

Priority order 

Local paediatric sensitised 

National paediatric sensitised 

Local paediatric HLA-DR homozygous 

National paediatric HLA-DR homozygous 

Local paediatric non-sensitised 

National paediatric non-sensitised 

Adults in the same order 

Tier Two- 100, 010, 110 mismatched patients 

n's as 
'-iJIIIM .......... 

Adla .... _...., 

Tier Three- Non favourably matched patients 

Kidneys retained for use within the local centre 

If two patients are 
~ mismatched both kidneys 
~ wiiJ be offered nationally 

if no local donor is found 

One kidney to made 
~ available nationally if there 
UUt_____y are one or no local patients 

in higher priority 

Kidneys that cannot be 
used locally can be 

exported via Transplant 
UK to other units 

Figure 1.2. The kidney allocation system in current use in the UK (Adapted from Fuggle 
et a/2001). 
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Within each Tier, patients are matched for blood group by the ABO system. This means 

that a patient with a more common blood group is more likely to receive a transplant than 

someone with a less common group. Currently in the UK the most common blood group is 

0, which accounts for 45% of the population. 43% of the population are group A and 

groups B and AB account for 9% and 3% respectively (data from the National Blood 

Service). This is reflected by the waiting list which had 50% group 0, 30% group A, 17% 

group B and 3% group AB in 1998 (UK Transplant). 84% of the population are rhesus 

positive and 16% rhesus negative. However, allocation does not take account of rhesus 

antigens. 

1.6 Transplant Success 

One-year graft survival rates for cadaveric grafts are currently above 90%, with 

ten-year survival now at 60% (UK Transplant 2002). One year patient survival is currently 

95%, with five-year rates now at 87% and ten year survival rates now above 65% (Parrott 

1995, UK Transplant 2002). Monozygotic twins have the best graft and patient survival 

rates with a 55% graft survival rate at 25 years (Tilney 1986). The longest surviving and 

functioning cadaveric transplant is 36 years which was received by a 19 year-old in 1966, 

and the longest surviving live donor transplant is 39 years, which was received by a 39 

year-o Id in 1963 (UNOS 2002). Living related donors have better survival rates for both 

the graft and patients then cadaveric donors (see fig 1.3). One-year graft survival is 97.3% 

in live donors compared with 93.7% in cadaveric donors and four-year graft survival is 

93.8% in live donors compared with 84.9% in cadaveric donors (UNOS 2002). The reason 

for this is due to the better HLA match between donor and recipient as well as living 

related donor sharing common 'minor' antigens with the recipient that are not matched by 

routine tissue typing. Living donor transplants also benefit from minimal cold ischaemic 
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times. It has been found that a well-matched cadaver organ with a minimal cold ischaemic 

time will function as well as living related donor (Cicciarelli & Terasaki 1991 ). With 

modern immunosuppression there is also evidence to suggest non-related living donors 

(e.g. spousal) can function as well as cadaveric donor organs (Terasaki et a/1985, Opelzet 

a/ 1993). Independent analysis of risk factors for outcome of primary cadaveric transplants 

in the UK, found a significant relationship between matching, donor and recipient age, cold 

ischaemia time and a centre effect in 6363 primary cadaveric transplants carried out in the 

UK between 1986 and 1993 (Morris et a/ 1999). 

1.7 Tbe Immune Response 

The immune response involves an innate or 'nonspecific' response, mediated by 

phagocytes, natural killer cells and plasma enzyme systems which functions to prevent the 

entry of potential pathogens into the body. Innate defences include the protective outer 

surface of the skin and secretions such as mucus (mucocilliary escalator), tears (lachrymal 

glands) and urine (urinary flush). The bodies internal defences include the acidic 

environment found in potential entry sites for pathogens including the stomach, 

commensals and skin. Non-specific cells of the innate system act as scavenger cells as they 

can detect a wide range of antigens, internalise and destroy with lysosomal enzymes any 

potential pathogen. 

1. 7.1 Leukocytes 

Phagocytes are scavenger leukocytes, which are commonly one of three cell types, 

macrophages, monocytes or polymorphonuclear neutrophils (PMNs). PMNs are further 

split into three classes, neutrophils, eosinophils and basophils. Phagocyte cells are 

differentiated into two main types depending on whether or not they present antigen toT-
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cells. Neutrophils do not act as antigen presenting cells (APCs) but they have the ability to 

migrate into tissue. When a pathogen is engulfed by a neutrophil it internalises and 

enzymatically digests it. After encountering a pathogen neutrophils die. Generally, 

phagocytic cells have a short life span of 2-3 days in the circulation. When in the 

circulating blood phagocytes are known as monocytes, however, when migrating into a 

tissue, monocytes differentiate into mature antigen presenting macrophages. Monocytes 

have a longer life span than other phagocytes such as PMN cells. 

1.7.2 Antigen presenting cells (APCs) 

APCs present antigen to T-cells and B-cells via class I or class n MHC expression. 

Macrophages, dendritic cells and langerhan cells are the most common APCs, but cells 

such as endothelial and epithelial are able to act as APCs in certain circumstances such as 

during an inflammatory or active immune response. APCs present antigen by one of two 

mechanisms depending on whether they are presenting via the class I or class li MHC 

molecule. During antigen presentation via the class li pathway an antigen is first 

internalised by endocytosis. The pathogen is then degraded by proteolysis within the 

endoplasmic reticulum. Processed antigen peptides are then displayed within the class li 

receptor with proteins such as CLIP and DM facilitating the loading of peptides into the 

MHC groove in a structure known as the MIIC compartment. The MHC receptor is then 

exocytosed to the membrane, where they are displayed to the T-cells in the surrounding 

environment of the APC. Class I antigen presentation occurs within the cell where internal 

antigens and 'self peptides are placed in the class I binding groove by TAP-I and TAP-2 

transporters. The class I receptor is then expressed on the cell surface with the peptide on 

display to circulating COS+ T -cells. 
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Cell Features 

T-cell Lymphocytes from the thymus. 15% of circulating 

leukocytes. Many functions including inducing 

cytotoxic killer activity and antigen presentation 

B-cell Develop in the fetal liver and bone marrow.l-3% of 

circulating leukocytes Divide into mature plasma 

cells secreting immunoglobulin. 

Natural Killer cell 3% of circulating leukocytes. Involved in Antibody 

dependent cell cytotoxicity (ADCC) via numerous 

receptors including the Fe receptor. 

Macrophage Vital for antigen presentation. Phagocytes which 

account for 5% of leukocytes. 

Neutrophil 65% of circulating leukocytes, contain granules. 

Involved in phagocytosis and ADCC. 

Eosinophil 2-5% of circulating leukocytes, also contain 

granules and are involved in phagocytosis. 

Basophil Less than 0.2% of circulating leukocytes. Important 

in allergy. 

Mast cell Inflammatory mediators. Found throughout the 

body's tissues. 

Table 1.2. A list of the major cells of the immune system and their basic features. 
Adapted from Van de Berghe 1999, Male 1998 
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1.8 Complement 

The complement system is a group of serum proteins that function in the innate 

immune response, but also co-operate with components of the adaptive response. The 

complement system was frrst described in I900 by Jules Bordet. 

The major function of the complement proteins is lysis of cells that are coated with 

antibody by puncturing the cell membrane. Complement also co-ordinates with the specific 

immune response by combining with antibody and natural killer (NK) cells to attack cells 

displaying viral or bacterial peptides in the antibody dependent cell cytotoxic (ADCC) 

reaction. Complement proteins also mediate phagocyte recruitment into inflamed tissue, by 

coating target cells (opsonisation). Phagocytes have a receptor for complement proteins 

known as CRI. When complement binds to a target cell it displays C3b and/or C4b on the 

cell surface, which bind CRI and attract phagocytes to these target cells. There are 

collectively I7 proteins in the complement system that function in a cascade fashion, and 

account for a large amount of the globulin fraction of serum. Complement proteins exist in 

an inactive state in the plasma and serum. There is an order of activation by 

immunoglobulins, with complement more reactive to IgM then IgG. When complement 

proteins bind to an antigen-antibody complex to lyse the cell the reaction is known as 

complement fixation. This has been the basis of the complement fixation test, where an 

antigen-containing serum is incubated with test serum. If the serum contains antibodies 

against the test antigen, the antigen it will bind to the antibody. Complement will then 'fix' 

to the antigen-antibody complex when added. Red blood cells and anti-erythrocyte 

antibodies are then added and if complement has been fixed the cells will lyse (negative 

result) which can be visualised. 

Complement can be activated via two pathways, the classical and alternative pathways. 

Both result in the cleavage ofC3 to C3a and C3b, which is mediated by a convertase 
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CS Convertase 
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Figure 1.4. A simplified overview of the classical and alternative pathways of 
complement activation, which leads to the formation of the membrane attack complex 
(MAC). Diagram redrawn with modification from Roitt et a/1996. The complement 
proteins were first described in 1900 by Jules Bordet. 
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enzyme. The C3 convertase ofthe classical pathway is formed as a result of the binding of 

C4 with C2 proteins, known as C4b2a. The C3 convertase formed by the alternative 

pathway is as a result of C3 binding to FB proteins, and is known as C3bBb. Once C3 is 

cleaved by a convertase of either pathway, the C3a protein initiates fixation. The C3b 

protein is a CS convertase and activates the terminal lytic sequence of complement by 

binding CS with C9, which forms the membrane attack complex. The classical pathway 

links the adaptive response with the innate response, by its activation by antigen-antibody 

complexes (Schifferli et a/ 1986). The alternative pathway does not have such specificity 

and is activated when C3b binds to a membrane that does not contain a complement 

regulatory protein (Atkinson et a/ 1987) such as bacterial cell walls and other micro-

organ1sms. 

1.9 Tbe specific or antigen mediated immune response 

The adaptive or specific response is mediated by two main classes of receptor 

bearing cells that interact with MHC receptors, the lymphocytes and antibody producing 

B-cells. This response involves a two-stage process. An activation phase where host cells 

recognise a potential pathogen as 'foreign' and an effector phase where it is eliminated. 

1.9.1 Lympbocytes 

Lymphocytes are circulating white blood cells, that are grouped into two main 

classes the T -cells and B-cells. They exist as virgin cells before they encounter an antigen. 

After a lymphocyte has bound to an antigen it divides (clonal expansion). Generally this 

occurs when the lymphocyte migrates back to lymphoid tissue such as the spleen or lymph 

nodes. After an immune response during which Tc-cell and Th-cell clones will have 

developed, the majority of cells will die. A remaining population of cells, specific for the 
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antigen remain in the periphery, these are memory cells. If the antigen enters the body 

again a secondary response occurs which is greater in magnitude and response time due to 

the presence of these memory cells. 

1.9.2 T -cells 

T -cells are grouped into two main classes, although a third class is also recognised. 

The Th-cells (T-helper cells), which are CD4+ and the Tc-cells (T-cytotoxic cells), which 

are CD8+ are the classic T-cell sub-populations. The third group ofT-cells which are 

generally CD4+ hence are often regarded as a subset of Th-cells, also express CD25 and 

were previously known as T-suppresser cells. CD25 encodes the ~ chain of the IL-2 

receptor and it is now clear that these cells function in a regulatory way be controlling the 

effects of IL-2 on T-cell populations, so are known as T-regulatory cells or CD25+ CD4+ 

T-cells. Th-cells are subdivided into Thl and Th2 cells depending on the cytokines they 

produce and their transcriptional response (Mossmann & Coffman 1989). T -cells in a 

resting state, are designated ThO (Rocken et a/ 1992). IL-2 and IL-12 induce a Th I 

phenotype, whilst IL-2 and IL-4 work in synergy to induce a Th2 response (Romagnani 

1994, 1997). Thl cells produce IFNy, TNFa and IL-2, and are associated with 

inflammatory and cell mediated responses. Th2 responses produce IL-4 and IL-l 0, and are 

associated with humoral and anti-inflammatory responses. Both subsets can produce IL-3, 

IL-13 and GM-CSF. Host T-cells can recognise foreign MHC molecules and proliferate in 

a direct manner or indirectly via antigen presentation. Antigen and foreign peptides 

displayed by APC with an MHC class II receptor bind to specific T-cells bearing aT-cell 

receptor (TCR) which recognises the antigen. Antigen is presented to Th-cells via the 

MHC class II molecule, which interacts with the T-cell receptor. This signal alone is not 
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sufficient to induce an immune response and a second or eo-stimulatory receptor needs to 

be activated to induce T -cell stimulation. 

1.9.3 Tbe T-Cell Receptor (TCR) 

The outline structure of the TCR was determined using X-ray diffraction studies 

and led to a proposed model similar to the structure of an antibody (Chothia et a/ I 988, 

Davis & Bjorkmann 1988, Boulot et a/ I 994). However, due to the technical difficulty in 

extracting large quantities of soluble TCR, it was crystallographic analysis of the ~ chain 

that led to the first three-dimensional view of the TCR, and confirmed previous models 

(Bentley et a/ 1995). 

The TCR is a disulphide-linked glycoprotein that consists of either an a and ~ chain or y 

and 8 chain, linked by disulphide bonds. The TCR has immense diversity due to the 

arrangement of the genes encoding it. The genes are the V (variable), D (diversity) and 1 

(joining). The a and y loci have V and 1 segments only, whereas the ~ and 8 chains contain 

V, D and 1 segments. Each chain consists of an external V and C domain, a transmembrane 

segment containing negatively charged amino acids and a cytoplasmic tail. The TCR 

subunits interact with the CD3 complex (Clevers et a/ 1988). The interaction between the 

TCR and MHC bearing APC results in clustering of the TCR subunits and phosphorylation 

of the CD3 complex. The CD3 complex consists of four polypeptide chains named, 

y,8,E and I; that span the cell membrane, and are all linked on chromosome 11. They, 8 and 

E chains interact with the TCR subunits in the extracellular region of the cell membrane, 

whereas the I; chains form a heterodimer in the intracellular region and contain 

immunoreceptor tyrosine-based activation motifs (IT AMS). The binding of the TCR to an 

MHC receptor phosphorylates the IT AMS, due to the conformational change this induces. 

The subsequent signal transduction that leads to cytokine production is mediated by protein 
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kinase C isoforms, and results in transcription fuctor activation (Valge et a/1988, Sun et a/ 

2000). 

The C (constant) genes encode the transmembrane and intracellular motifs of the TCR, and 

are linked to the V gene. TCR diversity is the result of the random recombination of the V 

and D genes and the joining process, which is associated with the addition of nucleotide 

sequences (N-region diversification). Further diversity is acquired by the fact that the ~ 

chain contains two copies of each C, D, and J gene, adding to the possible number of 

recombination and joining variations. It has been estimated that the possible number of 

combinations for the a chain are 6.5 x 1012 and 4.4 x 10 13 for the ~chain (Hunkapiller & 

Hood 1990). 

1.9.4 T -cell eo-stimulation signals 

During antigen presentation between an APC and aT-cell, the surface expression 

of molecules such as B7, LFA1 and CD40 on APC's, interact with their ligands on T-cells 

which include CD28, ICAM-1 and CD40L on CD4+ Th-cells. eo-stimulation is thought to 

be involved in the activation of signal transduction pathways within the T-cell leading to 

its activation. Absence of a second signal causes anergy (Bretscher & Cohn 1970). Once 

activated the Th-cell produces numerous cytokines that in turn activate other immune cells. 

CD40 is a 50 KDa glycoprotein, which interacts with the 30-33 KDa cell surface molecule 

CD40L, which is transiently expressed on activated CD4+ T-cells. CD40L is also 

expressed on mast cells, eosinophils and dendritic cells. 

The CD40L - CD40 mediated signal pathway has been shown to be important in the 

functional interactions of T-cells with endothelial cells as cultured endothelial cells 

constitutively express a low level of CD40 antigen in vitro (Yellin et a/ 1995). 
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Figure 1.5. The structure of the TCR and its interaction with an APC. Picture reproduced 
with modification from Prescott et a/1996. The outline structure of the TCR was 
proposed in the late 1980's by X-ray diffraction analysis. However, its structure was not 
determined fully until 1995 using crystallographic analysis of the p chain (Bentley et a/ 
1995). 
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Jt is thought that CD40 also functions as a signalling receptor in the development ofT -cell 

mediated inflammatory responses (Karmann et al 1995). The same paper showed that 

CD40 ligand treated endothelial cells results in increased expression of VCAM-1, E

selectin and LFA-3. The hypothesis is that activated CD4+ T-cells express CD40 ligand, 

which interacts with CD40 expressing endothelial cells to induce leukocyte adhesion 

molecules and with monocytes to induce cytokine production, contributing to local 

inflammation. T-cells produce IFN-y and TNFa which also upregulate the expression of 

CD40 on endothelial cells CD40 stimulates human monocytes to release nitric oxide 

(generated by iN OS) and proinflammatory cytokines. 

eo-stimulatory signals are also important in cell survival. CD40 inhibits Fas mediated 

apoptosis. Studies have shown sustained viability of monocytes and dendritic cells in 

culture when exposed to CD40L. Therefore, CD40 enhances the survival of APC and helps 

to sustain cell mediated immune responses. 

In transplantation, studies have demonstrated that blockade of the CD40-CD40L pathway 

leads to improved graft survival (Larsen et al 1996). However, intragraft expression ofT

cell cytokine transcripts IL-2, IL-4, IL-10 and IFN-y in the early post-transplant period 

were unaffected by anti-CD40 MAbs, and that therefore, T -cells enter the graft early in the 

post-transplant period regardless of the CD40 pathway blockade (Larsen et al 1997). This 

indicates that the CD40-CD40L interactions occur downstream of the initial T -cell 

recognition. It has been shown that the CD40 - CD40L pathway can induce cytokine 

production via transcription factor activation (Hess et al 1995). 

l.l 0 8-cells 

8-cells express immunoglobulin on their cell surfaces. 8-cells develop in the bone 

marrow and can be categorised into two types depending on whether or not they express 
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the cell surface marker CD5. CD5+ cells are a minority population, that develop in early 

life, and respond to common microbial pathogens, but only express a limited number of 

immunoglobulin types on their cell surface. The majority of B-cells in an adult are CD5-

cells that have a greater diversity of immunoglobulin receptors on the cell surface. 

B-cells can recognise foreign antigen directly, via the surface immunoglobulin binding to 

antigen, or indirectly via antigen presentation. B-cells receive antigen via interaction with 

Th-cells. Once an APC presents to a B-cell, it differentiates into a mature plasma cell. 

Plasma cells migrate to lymphoid tissue and actively secrete antibody. 

1.10.1 Immunoglobulin (lg). 

The term 'antibody' was ftrst used in 1890 by Emil Von Behring, who immunised 

rabbits with diphtheria toxin. Behring received the Noble Prize in l90l. B-cells that have 

been stimulated by recognition of an antigen secrete antibody. Hence, antibodies can be 

found as circulating forms, or expressed on the surface of B-cells. The surface expression 

of antibody by a B-cell is dependent on the activity of the CD79 molecule, which contains 

IT AMS and is involved in the signalling pathways resulting in antibody expression. 

There are five main classes of antibody, IgG, IgA, lgM, IgD and lgE, which differ in their 

size, charge, amino acid composition and carbohydrate content. The general structure of 

an antibody was determined in the 1960's (Cohn & Porter 1964, Porter 1967ab Steiner & 

Porter 1967). The Nobel Prize was awarded to RR Porter in 1972 for his work on the 

structure of antibodies. 

Antibody molecules contain two heavy chains and two light chains. The heavy chains 

differ between immunoglobulin classes. The heavy and light chains contain two separate 

regions, a C-terminal that is a constant region and shows no variability and anN-terminal 

region that is variable. The heavy chain does not vary as much as the light chain, and can 
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Figure 1.6. The basic structure of an antibody molecule comprising heavy and light 
chains with variable and constant regions. Picture reproduced with modification from 
Prescott et a/1996. The original structure of an antibody was first described in 1967 and 
led to the No bel Prize in 1972 for RR Porter. 
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be of five main types depending on the Ig class (J.L;y,a,&,<5). Heavy chains are generally 53 

or more KDa in size. The light chains are usually 23KDa. The light chain contains two 

subunits the K and A. chains, which are encoded by separate gene loci. IgG is the major 

serum Ig and is associated with stimulation of the classical pathway of complement 

activation. IgG can cross the placenta and can be divided into 4 subclasses (IgG 1-4). IgM 

is important in a primary response and fixes complement. IgA is found extensively in the 

mucous membranes and other sites of potential entry for a pathogen. Epithelial cells 

express a poly-Ig receptor that binds IgA dimers and transports them across the 

endothelium into tissues. IgD is only eo-expressed with IgM and functions during B-cell 

maturation, but is not expressed in mature B-cells. IgE binds to mast cells and initiates the 

release of histamine after contact with an antigen. It is also found extensively at the 

mucousal surfaces. Ig diversity is achieved in a similar way to TCR diversity. Ig's are also 

subject to recombination between V, D and J genes and N-region diversification, but also 

have varied combinations of light and heavy chains and have somatic mutations within the 

V genes of individual B-cells. Estimates have suggested 400 possible combinations for the 

light chain and 4,800 combinations for the heavy chain, leading to I, 920,000 possible 

combinations ofantibody structure (Nossall993). 

1.10.2 Natural killer cells (NK cells) 

NK cells are the third major subset of lymphocytes. NK cells are large granular 

lymphocytes. Cells expressing MHC class I molecules are protected from lysis by NK cells 

(Lao et a/ 1991 ). NK cells express immunoglobulin superfarnily receptors on the cell 

surface known as killer inhibitory receptors (KIRs). Binding of 'self MHC class I 

molecules to these KIRs inhibits NK cell activation (Long et a/ 1997). NK cells have been 
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shown to infiltrate organs during rejection. but depletion ofNK cells in mice was shown to 

have little effect on preventing rejection (Manily & Sykes 1998). 

1.11 Cytokines in tbe Immune response 

Cytokines are soluble proteins that are secreted or expressed on the surface of many 

cell types. Cytokines bind to receptors on cell membranes and initiate signal transduction 

and second messenger pathways. Cytokines are released by many cell types during an 

immune response and function as a communication network between cells (Balkwill & 

Burke 1989). Cytokines are pleiotrophic and can act in synergy or as antagonists. They 

were first identified as soluble proteins released from lymphocytes that regulated the 

growth and differentiation of cells. Because they were thought to be produced by 

lymphocytes only they were initially known as lymphokines (Dumonde et a/ 1969). 

However as it became clear that these proteins were produced by many cell types the term 

'cytokine' was developed (Cohn et a/ 1974). The term 'interleukin' was developed to 

describe cytokines that relay messages between leukocytes (Aarden et a/ 1979). However, 

as the pleiotrophic nature of many interleukins has become clear it is now common for the 

same protein to be called a cytokine, interleukin or lymphokine (e.g. IL-2). Cytokines can 

be grouped according to the cellular process they initiate, including the acute phase 

response (IL-l, IL-6, IL-8 and TNF-a), proliferation and differentiation of cells (IL-2, 

GM-CSF and G-CSF) and immunoglobulin class switching (IL-4 and IL-5). 

Therefore cytokines can be grouped into 4 main classes 

I. Mediators of natural immunity 

2. Mediators oflymphocyte activation. growth, and differentiation. 

3. Mediators of immature leukocyte growth and differentiation 

4. Mediators of effector cell activation. 

51 



Cells contain receptors for cytokines that are expressed on the cell surfaces. Cytokine 

receptors can be grouped into classes depending on shared conserved sequences and 

properties. The major receptors are the class I receptors, class 11 receptors (IFN receptor 

family), TNF receptor family, IL-l receptor family and chemokine receptors. After binding 

of a ligand to a receptor, cytokine receptors have a distinct and characteristic signal 

transduction response leading to cytokine production (Vilcek 1998). 

The cytokine receptor superfamilies do not have intrinsic protein tyrosine kinases and are 

therefore associated with intracellular protein kinases. One particular set of kinases that are 

contained within the cytoplasm, receptor-bound and are involved in downstream actions 

after cytokine signalling are the }anus-associated kinases (JAK). JAK kinases 

phosphorylate tyrosine residues on signal transducers and activators of . transcription 

(STATS), when a cytokine binds to its receptor. STATS dimerise to form heterodimers. 

ST AT dimers then enter the nucleus and act as transcription factors binding to regulatory 

regions in cytokine genes causing the transcription of the gene. Different receptor families 

utilise different JAK-STAT pathways and many combine with other kinase pathways. The 

TNF receptor family do not use the JAK-ST AT pathway, instead have their own 

intracellular receptor associated proteins (RIPs) (Hsu et a/1996). 

Thl cytokines such as IL-2 and IFNy are important mediators of the immune response. IL-

2 initiates the maturation of the precursors of Tc-cells into mature Tc-cells. IFNy is 

produced by numerous cell types and induces the expression ofMHC class 11 molecules on 

cell surfaces, further promoting immunogenicity. Th2 cytokines such as IL-4 are also 

important in the immune response. IL-4 is produced by active Th-cells, basophils and mast 

cells and is responsible for the proliferation and differentiation of B-cells into antibody 

secreting plasma cells. IL-4 is structurally similar to IL-13 another cytokine which acts as a 

T-cell stimulant, with 20% homology of their amino acid sequences (Minty 1993). Like 
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IL-2 expression of IL-4 is dependent on the binding of the NF AT transcription factor 

(Rincon & Flavell 1997). IL-4 has been suggested to function as a protective or anti

inflammatory cytokine. Expression of IL-4 leads to the up-regulation of other Th-2 

dependent cytokines such as IL-l 0, as well as acting in an autocrine fashion to up-regulate 

its own expression. The protective nature of IL-4 has been demonstrated by its ability to 

induce the expression of anti-apoptosis proteins including Bcl-2 and anti-oxidant genes 

such as the heme oxygenase enzyme (Ke et a/ 2000). IL-4 induced into grafts via 

adenoviral transfer has lead to prolonged allograft survival in rats (Kato et a/ 2000a) and 

mice via the down-regulation ofNFKB activity (Kato et a/2000b). 

1.12 The Major Histocompatibility Complex (MHC) 

The MHC in humans is coded for by a region on the short arm of chromosome 6 at 

position 6p21.3 (Trowsdale et a/ 1983, Morton et a/ 1984). The MHC region was frrst 

mapped in 1991 (Trowsdale 1991 ). The MHC region is subdivided into classes I, II and Ill. 

(Hood 1983, Campbell & Trowsdale 1993, Trowsdale 1993, 1995). Each class region 

contains many polymorphic alleles. The Class 11 region was cloned using yeast artificial 

chromosomes (Y ACs) in 1989 (Ragoussis et a/ 1989), with a more detailed Y AC system 

incorporating the class I region in 1994 (Abderrallirn et a/ 1994). 

In humans, the MHC contains the human leukocyte antigens (HLA). The frrst HLA gene 

was identified in 1958 by Jean Dausset. The importance of associations with the HLA 

system and immune disease, such as autoimmunity and tumour resistance in chickens were 

frrst noted in the 1970's (Doherty & Zinkernagel 1974, Pazderka et a/ 1975, Bacon & Rose 

1979). The MHC class I region contains the 'classical' HLA-A, B and C genes and the 

'non-classical' HLA- E, F, G, and X genes (Koller et a/ 1988, Geraghty et a/ 1992). The 

MHC class 11 region contains the HLA-D genes, DR, DQ and DP (Trowsdale 1993, 1995). 
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The Class II region also contains genes for the LMP and TAP proteins (Giynne et a/1991 ). 

The MHC class Ill region contains genes for the complement proteins C2, C4 and factor B 

(Campbell & Porter 1983, Carroll et al 1985), the BAT6-BAT9 genes (Spies et al 1986) 

important HSP70 gene {Dunham 1987, Sargent 1989) and the TNF genes (Spies et al 

1986, 1989). 

The three-dimensional structure of the MHC was first described in the class 11 DR 

molecule (Brown et al 1993). Both MHC class I and 11 molecules consist of two 

glycoprotein chains which display small peptide fragments forT-cell recognition. 

The HLA class I molecule is a dimer of a polymorphic heavy chain and a non-polymorphic 

light chain, known as the 13-microglobulin chain (coded for on chromosome 15). Both the 

heavy and light chains of the class II molecule are encoded within the MHC. The DQ and 

DP loci are both polymorphic, whereas, the DR locus tends to be highly polymorphic in 

the heavy chain, but with a common shared light chain. The number ofDR genes can vary 

amongst individuals. MHC class I antigens are expressed most, but not all nucleated cells 

(Daar et al 1984a). In a study of the distribution of HLA-A B and C antigens in normal 

tissue, weak expression was found in the endocrine system, including the Thyroid, 

Pituitary gland and Islet cells in pancreas and a high expression in the Respiratory and 

Cardiovascular systems. No expression of HLA class I antigens was found in the 

endothelium of the Cornea demonstrating that class I molecules are not ubiquitously 

expressed (Daar et al 1984a). MHC class I molecules are associated with interactions with 

CD8+ Tc-cell response. 

MHC class Il molecules are highly expressed by lymphoid tissue including B-cells, 

dendritic cells and endothelial cells (Daar et al 1984b). Tissue distribution of class 11 

shows a low expression in the endothelium of the brain and endocrine organs. In a similar 

fashion as class I, class 11 is not expressed by the Cornea (Daar et a! 1984b ). 
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Figure 1.7. The structure of the MHC class I and II molecules. Picture reproduced with 
modification from Johnson & Feehally 1999. The 3D structure ofthe MHC was first 
determined in the class II DR molecule (Brown et a/1993). 
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However, during an active immune response, MHC class II molecules are upregulated on 

most cell surfaces (Pober et a/1996, Shackleton 1998). 

1.12.1 HLA matching 

Experiments with inbred mice strains in the 1930's demonstrated that mice of a 

certain strain would react to human serum proteins, whilst others would not, indicating the 

presence of an 'inherited antigenic difference' between the mice (Gorer 1936). 

Tissue Typing was developed as a means of matching donor and recipients for HLA 

antigens in order to reduce the risk of rejection. It has been long established that HLA 

matched grafts survive for longer than poorly matched grafts (Batchelor & Joysey 1969, 

Oplez & Terasaki 1977). The traditional method was serology or cellular typing, however, 

DNA based typing utilising PCR technology has become the standard. Serological assays 

use test sera that is known to react with certain HLA class molecules to determine a 

persons HLA type. The idea stemmed from the fact that women are exposed to paternal 

HLA molecules during pregnancy. Some women react to these antigens and develop an 

antibody response to them. Sera were collected from many women and tested to see which 

HLA molecules it reacted against. A potential donors cells were than added to the different 

HLA containing sera, to see if the cells reacted to the sera. 

Cellular typing was developed from the mixed lymphocyte reaction. A panel of cells 

homozygous for a HLA molecule is added to the donors lymphocytes to determine if there 

is a response. Cellular typing allowed the more specific identification of subtypes. 

DNA based typing utilises PCR technology to amplify specific fragments of DNA. When 

the HLA genes were sequenced many new alleles and polymorphisrns were identified. 

Commonly now, donor DNA will be screened with primers for different loci such as the 

DR or DQ region, then a sequence specific primer will be used to discriminate alleles. 
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The continual need to update and replenish stocks of sera and panel reactive cells led to the 

formation of international workshops for histocompatibility. This led to the use of the letter 

'w' (from workshop) as an abbreviation for newly identified antigens. Later when 

reproducibility was accepted the 'w' would be dropped (i.e. DRw4, DR4). 

The specificity of DNA based typing has made HLA nomenclature quite complex. A 

current gene, will have a number to represent the locus, a number to represent other 

structurally related genes and a number to represent its particular nucleotide sequence. For 

example the old name for the DRI gene is currently DRBI*OIOI. The high degree of 

polymorphism in the MHC genes means that truly identical donors are rare in the 

population. With mismatches unavoidable for minor antigens, immunosuppression is 

always needed. Lower rejection rates are found with increasing HLA matches (Terasaki 

1989, 8eckingham et a/1994) and HLA-DR mismatches are associated with early and late 

rejection episodes (McKenna et a/ 1998). The frrst description of the benefits of matching 

HLA-DR antigens and outcome in renal transplantation was in 1978 (Ting & Morris 1978). 

The major loci that need to be matched are HLA-A, -8 and -Cw of the Class I region and 

HLA -DR and -DQ of the class II region. The most important antigens to match are the 

DR and 8 antigens, with HLA-A antigens having less effect. Matching for the DR antigen 

is generally considered to have the largest effect on graft survival (Opelz et a/ 1993). 

Matching of HLA-A and HLA-8 loci have been shown to influence graft rejection in 

males but not females (Opelz & Terasaki 1977). In comparison to perfectly matched grafts 

one mismatch is thought to effect graft loss by two-fold for A antigens, three-fold for 8 

antigens and five-fold for DR antigens (UNOS 2002). Analysis of outcome in renal 

transplants found the best survival rates in patients with no HLA-A, -8 or DR mismatches 

(000). The second most favourable match was one mismatch for HLA-A or -8 or both 

loc~ but without a mismatched HLA-DR allele (Morris et a/ 1999). 
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Figure 1.8. The influence ofHLA matching on short term graft survival (Data from Hata 
et a/ 1996) demonstrating as has been known for some time the importance ofHLA-DR 
matching on graft survival. 
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Current ideas are focusing on whether or not certain combinations of mis-matches may 

have a greater effect than others on long term survival. Matching alone does not guarantee 

a good outcome and factors such as ischaemic times are important (Morris et a! 1999). 

The benefits of 0 HLA mismatches are lost in grafts with over 36 hours cold ischaemic 

times compared to grafts with I or more mismatches (71% Vs 72%) (Lee et a/2000). Also 

graft survival is higher in grafts with zero mismatches compared to grafts with one or more 

HLA-DR mismatch at one and five years only if the cold ischaemic time is less than 26 

hours (Connolly et a/1996). 

1.13 The Immunology of graft rejection 

The first demonstration of the importance of an immune response to transplanted 

material was shown by Medawar and colleagues who showed that skin grafts from 

genetically disparate individuals (allografts) were rejected, whereas, grafts from the same 

individual (autografts) were tolerated (Gibson & Medawar 1943). The importance of this 

work was further developed in rabbits by the discovery of an immune memory to the grafts 

(Medawar 1944). The important components of the alloresponse to a graft are the 

immunoglobulin superfamily, adhesion molecules and cytokines (Halloran et a/1993). 

1.13.1 'Self 'versus 'non-self' 

It is estimated that everyday some 2 million new T -cells and 20 million new B-cells 

are produced (Scollay 1980, Osmond 1993). Antibodies to 'self antigens such as keratin 

and DNA are common. How does the immune system achieve tolerance when there are 

some 55,000 proteins in the body and 10 12 different B and T-cell idiotypes? (Matzinger 

1994). 'Self antigens have been the subject of much debate on how to classify. Early work 

centred on a dose response theory in that self peptides occurred at a concentration above a 
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certain threshold allowing them to be ignored (Jerne 1974). Amongst other ideas the notion 

of a positive selection theory was also proposed whereby the thymic cells positively select 

'self peptides and remove T -cells that may be reactive to them (Salaun et a/ 1990). 

In terms of the T -cell 'self is generally considered to be any peptide from an individuals 

own cells found complexed within the MHC (Matzinger 1994). 'non-self is therefore 

anything from outside of the body, something that has caused much debate as the immune 

system will not respond to materials such as bone, silicone or many haptens, including 

some metals and food. Other complicating factors include privileged sites, areas where 

immune cells generally do not enter, such as the cornea, which are tolerated and freely 

transplantable. However, it was later demonstrated using components of the bacterial cell 

wall, that certain molecules are seen as more antigenic or foreign than others (Janeway 

1989). There are four classes of structures to which the immune system reacts (I) visible 

self which the immune system is capable of reacting to, but is tolerant toward, (2) invisible 

self- structures to which the immune system has no response (3) visible non-self- foreign 

antigens to which the immune system normally responds and (4) invisible non-self

'structures such as silicone, bone certain foods etc (Matzinger 1994). The function of the 

immune system is therefore to distinguish between these classes and make an appropriate 

response. Immunology is complex in its interpretation of how the immune system does 

this. 

1.13.2 Tolerance 

In 1945 Owen described an 'experiment of nature,' in which non-identical twin 

cattle who shared haemopoietic stem cells, were found to be tolerant to each others foreign 

cells. Later in 1953, Peter Medawar demonstrated tolerance by grafting skin from mice of 

non-identical strains, which had been made tolerant by injection of donor cells at birth 
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(Billingham et a/ 1953). These experiments were the basis of the 'clonal selection theory' 

proposed by MacFarlane Burnet in 1957. The theory states that a lyrnphocyte is selected by 

an antigen that it meets after birth and divides to form a clone. Self antigens or 'forbidden 

clones' in Burnets model are deleted from the T -cell repertoire, before birth. Lederberg in 

the 1959 modified the clonal selection theory to suggest that immature lymphocytes 

encounter antigen and develop to mature Iymphocytes providing the antigen is not a self 

peptide. If the antigen is a self molecule the lyrnphocyte does not develop, therefore, there 

is 'clonal abortion' of autoreactive lymphocytes. 

The first molecular evidence to explain tolerance came from the notion of second signal or 

eo-stimulation requirements for T -cell activation (Bretscher & Cohn 1970, Lafferty & 

Cunningham 1975). The first signal is the interaction between the TCR and MHC bearing 

peptide APC. The mechanism proposed by the two groups was slightly different as the first 

signal in Bretscher and Cohns model switched the T -cell 'off' and destroyed it if a second 

signal was not received. In the Lafferty and Cunningham model absence of a second signal 

failed to activate the T-cell and led to anergy. These observations lead to a theory of 

tolerance based on the fact that an 'antigen specific' T-cell was supplying the second signal 

not the APC, which has no ability to distinguish self from non-self and would routinely 

express self peptides. T -cells in the periphery should not be reactive to self peptides 

according to the theories of clonal deletion and so therefore, any T -cell which binds to a 

peptide displayed in an APC should only have a TCR capable of recognising 'non-self 

peptides'. Ifthe eo-stimulatory molecules interact, this T-cell will replicate and become an 

active helper cell or cytotoxic killer cell. 
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Infant mice from strain A are injected with spleenocyte cells from adult strain B mice 

<-------' 

Mature strain A mice receive a skin allograft from strain B and C mice 

Grafts from strain B mice are tolerated and grow. 

Grafts from strain C mice are rejected 

Figure 1.9. An overview of the classic experiment carried out by Peter Medawar and colleagues in 1953 

who grafted skin from mice of different strains to demonstrate that tolerance could be induced by 

exposure of foreign antigen to the immune system during early development. The results ofthis experiment 

led MacFarlane Bumet to propose the ' clonal selection theory' in 1957 which explains the deletion of 'self 

antigens in thymus during early life. Both Burnet and Medawar received the Nobel Prize. 
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1.14 Immunosuppression 

The stages ofT -cell activation are frrstly stimulation of the TCR via binding to an 

APC or direct recognition of a foreign peptide. This interaction activates calcineurin, 

which dephosphorylates the nuclear factor of activated T -cells (NF AT) transcription factor. 

Provided the T-cell receives and appropriate second signal from a eo-stimulatory molecule, 

NF AT. will enter the nucleus and bind to the IL-2 promoter. IL-2 can work in an autocrine 

fashion as well as binding to its receptor on other T-cells. Binding ofiL-2 to its receptor 

sends the T-cell into the cell cycle hence causing their proliferation and activation. All 

current immunosuppressive drugs target T -cells (Denton et a/ 1999). The mechanisms for 

this are via preventing clonal expansion, IL-2 cytokine production or both. 

1.14.1 Calcineurin inhibitors 

Cyclosporin was frrst described as an immunosuppressive agent in 1976 and was 

used in trials where it was found to increase one-year graft survival (Bore! et al 1976). 

Cyclosporin binds to cyclophylin and inhibits calcineurin, thus preventing IL-2 production 

in T-cells. The problem with cyclosporin is its side effects. Cyclophylin is widely 

distributed in many tissues and cyclosporin is associated with acute nephrotoxicity and 

hypertension. The most damaging side effect of cyclosporine is its role in chronic 

nephropathy. Cyclosporin induces TGF-P expression, which is likely to cause the 

formation of interstitial fibrotic tissue associated with chronic graft nephropathy (Bennet et 

a/1996). 

Tacrolirnus was developed as a less toxic form of cyclosporin which also has the advantage 

of better oral adsorption (Spencer et a/ 1996). Tacrolirnus binds to the FK506 binding 

protein that also blocks calcineurin activation and IL-2 production. Tacrolimus does not 
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induce TGF-13 expression but has similar nephrotoxicity as cyclosporine due to an 

unknown mechanism. Patients treated with Tacrolimus have a 20% increase in diabetes, 

but the advantage over cyclosporin in terms of side effects, are less hypertension and 

hyperlipidaemia (Pirsch et a/1991). 

1.14.2 Anti-proliferative agents 

Azathioprine was developed as a derivative of 6-MP and has been used since the 

1960's (Calne 1960). It works by preventing T-cell and B-cell proliferation by binding to 

DNA and inhibiting purine synthesis. This affects both DNA and RNA synthesis in the 

lymphocyte. The major disadvantage to this is the fact that this suppresses bone marrow. A 

newer version of azathioprine, mycophenolate mofetil is a more selective inhibitor ofT

cell and B-cell purine synthesis and therefore has the advantage of not affecting bone 

marrow. A further anti-proliferative drug has been developed known as Sirolimus, which is 

a derivative of rapamycin. Sirolimus blocks the IL-2 induced entry of the T-cell into the 

cell cycle. It does this by blocking p70 kinase, which is important in cell cycle entry. 

Sirolimus is designed to be used with cyclosporine as it also binds to the FK506 receptor in 

the same fashion as Tacrolimus. 

1.14.3 Anti-cytokine agents 

Corticosteriods are non-specific anti-inflammatory agents that block inflammatory 

cytokine production by fJistly binding to glucocorticoid response elements in cytokine 

genes and secondly by blocking the activation of the Nuclear Factor kappa B (NFKB) 

transcription factor (Scheinman et a/ 1995). The anti-IL-2 receptor antibodies, 

Daclizurnab and Basilixirnab have been shown to reduce the incidence of acute rejection 
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and may be used during induction immunosuppression (Nashan et a! 1997, Vincenti et a! 

1998). 

Patients are first gtven an induction immunosuppressive drug during the early post

transplant period to prevent an immune response to the graft. In many cases this is simply 

an increased dose of maintenance drugs, but can commonly include anti IL-2 receptor 

antibodies or the anti-CD3 antibody OTK3, which binds to the T -cell receptor down 

regulating its activity (Burt & Matuszewski 1997). 

After the initial post-transplant period, patients are given a maintenance therapy, which is 

normally a combination of drugs given to reduce the side effects of any one drug alone. 

The usual combination therapy would likely be a calcineurin inhibitor such as cyclosporine 

or tacrolimus and an anti-proliferative agent such as azathioprine or mycophenolate 

mofetil. 

1.15 New immunosuppressive strategies 

The ideal situation in transplantation would be donor-specific tolerance, whereby 

the recipient maintains a normal immune response, but is tolerant to the graft. This is the 

aim of future immunosuppressive strategies, to immunosuppress or remove T-cells specific 

for donor antigens, but to leave an intact immune system. One potential way this could be 

achieved is in the selective blockade of eo-stimulatory molecules (Sayegh & Turka 1998). 

Removal of eo-stimulation causes T -cell anergy (Bretscher & Cohn 1970, Lafferty & 

Cunningham 1975), a situation that would be beneficial to induce in Th-cells specific for 

donor antigens (Denton et a! 1999). Another potential target for future immunosuppressive 

strategies is the blockade of important transcription factors such as NFKB and AP1 

(Mortellaro et a! 1999). 
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Finally the advances that have been made in the use of gene therapy in transplantation 

(Wood 1997), have recently included adenoviral delivery of IL-4 and been shown to 

improve graft survival in rat models (Kato et al2000a). 

1.16 Rejection 

1.16.1 Early graft loss 

Early graft function is an important indication of long term graft survival (Ojo et a/ 

1997). Delayed graft function (DGF) is normally characterised by the need for dialysis 

within the first week post-transplant. Studies have shown that DGF in combination with 

acute rejection reduced graft survival rates from 92% to 68% at one year (McLaren et a/ 

1999). More factors are likely to influence short term survival graft function than long 

term. One year survival was found to be influenced by numerous factors such as 

sensitisation (9%) race (8%) transfusion (6%) donor age (6%) diabetes (3%) recipient age 

(3%) and cold ischaemia (1%) in a prospective study across many transplant centres in the 

US (Terasaki et a/1989). 

Within the first 28 days post transplant, the major causes of graft loss are due to technical 

problems, acute rejection or acute graft thrombosis, usually of the renal vein (Hefty et a! 

1993). Renal vein thrombosis induced early graft loss accounts for 4-5% of all graft loss 

(Parrott 1995). Trials with low molecular weight heparin in paediatric transplants have 

shown reductions in the incidence of graft thrombosis, but have been coupled with high 

rates of postoperative haemorrhage (Parrot 1995). Reasons for this is currently unknown 

and explanations proposed include technical problems with surgery (size of renal vein) or 

non-anatomical factors such as the hydration-state of the recipient. The clinical signs are of 

graft tenderness; swelling, sudden allograft deterioration of function, anuria and diagnosis 

is usually confirmed by Doppler ultrasound scanning. 
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Other causes of early graft loss include urinary leak or obstruction by clot or lymphocele, 

and stenosis. Pre-formed antibodies in the recipient against lll.A antigens from the donor 

cause Hyperacute rejection. This is normally due to a previous exposure to them 

(sensitisation) either from a previous transplant or a situation where exposure to foreign 

lll.A types has occurred such as during pregnancy. This is now a rare event due to cross

matching before transplantation. 

1.16.2 Acute rejection 

Acute rejection occurs as result of the activation of recipient T-cells, which can 

directly recognise donor peptides in the donor MHC or indirectly via antigen presentation 

of donor peptides to Th-cells by recipient APCs. Passenger leukocytes are also thought to 

have the ability to sensitise the host as they have a high expression of MHC class II, and 

also express class I molecules, suggesting they can directly activate host T-cells (Fabre & 

Morris 1973). Data has also suggested that donor cells can initiate a recipient anti-donor 

response by the upregulation ofMHC molecules (Pober et a/1996). 

The clinical signs of a rejecting renal graft are the infiltration of lymphocytes into both the 

graft tubules and interstitium (tubulitis) and endothelium of small vessels (endothelialitis). 

In tubulitis, the infiltration occurs via the basement membrane where the highest degree of 

MHC expression is found (Hall 1991). Lymphocytes enter the endothelium via adhesion 

molecules. Adhesion molecules expressed on activated microvascular endothelial cells 

mediate peripheral recruitment ofT-cells and their ligands expressed on differentiated T

cells. Adhesion molecules are grouped into three main classes, the selectins, integrins and 

the immunoglobulin superfamily (Bevilacqua 1993). 

The selectins contain the molecules E-selectin (endothelial), P-selectin (platelet) and L

selectin (leukocyte) named after the cell type, which express them. They all share an N-
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terminal lectin domain, which binds specific sugar groups. L-selectin is an important 

recirculation receptor, which also binds to the endothelium in inflammatory responses via 

its ligand, E-selectin. The expression of E-selectin is upregulated by IL-l and TNF. 

Soluble e.g. shed levels ofE-selectin are thought to represent activation ofthe endothelium 

as elevated levels have been found in septic shock patients (Newman et a/ 1993). P

selectin is stored in the granules of platelets and the weibel palade bodies of the 

endothelium and is released in response to the clotting cascade. The ligand for P-selectin is 

L-selectin. The selectins are primary adhesion receptors involved in the initial binding of 

leukocytes to the endothelium. This slows leukocyte passage and exposes endothelial cells 

to other surface molecules in the local environment. Selectins mediate the recruitment of 

Thl but not Th2 cells to areas of inflammation (Austrup et a/ 1997). 

The integrins are a family of alP heterodirners, divided into three families, based on shared 

subunits pl, P2 and p3. The PI family contains VLA 1-6; the P2 family contains LFAI, 

MACl, p150 and p95. The P3 group contains VNR, gpllb and gpiilb, these are found on 

platelets and bind to the ligand Von Willebrand factor (VWF). Integrins represent the 

second level of adhesion. 

The immunoglobulin superfamily contains the ICAM 1-3, LFA2-3, VCAMI, B7 and 

CD28 molecules. I CAM-I, V CAM-I and E-selectin have been shown to increase in 

expression during ischaemic injury in the post-transplantation period and to be associated 

with the CD4+ T -cell infiltration of the graft (Briscoe et a/ 1995). The same paper found 

that cell expression ofE-selectin and ICAM-1 increase in cardiac biopsies prior to clinical 

and pathological rejection, whereas VCAM-1 is concurrent with active rejection episodes 

(Briscoe et a/ 1995). Endothelial cells constitutively express ICAM-1 and VCAM-1. 

Levels peak at around 12-18hrs during rejection episodes. Interactions between 

lymphocyte (LFA-1) molecules and ICAM-1 result in higher affmity firm adhesion of 
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leukocytes in rejection. VCAM-1 is a ligand for the integrin VLA-4 that is functionally 

expressed on activated lymphocytes, monocytes and NK cells. 

The adhesion of the immunoglobulin superfamily represents the final category of firm 

adhesion. The sequential cellular and molecular kinetics of acute rejection has been studied 

in a rat model, over a 14-day period post transplantation (Nagano et a/ 1997). 

1.16.3 Chronic rejection 

Chronic rejection is often referred to as chronic graft nephropathy, and is the result 

of prolonged damage to the graft over time. Chronic rejection has no real basis of 

classification and is the subject of much debate, particularly as many of the symptoms of 

chronic rejection are seen in cyclosporine nephrotoxicity. In general the characteristics of 

chronic rejection are of patchy fibrosis within the graft, vessel wall thickening and 

narrowing ofthe luminar surface of the vessels leading to coagulation. There are a variable 

amount of lymphocyte infiltrates found in the graft during chronic rejection. Fibrosis is 

linked to TGF p expression in grafts. Correlation between TGF p and matrix deposition in 

needle biopsies from grafts with chronic nephropathy was found to correlate with collagen 

Ill and TGF p expression (Nicholson et a/ 1999). Biopsies studied one year after 

transplantation and after a 4 year follow up period showed a correlation between chronic 

graft nephropathy and TGF p mRNA expression (Hueso et a/200!). However, the same 

study showed that although the expression correlates with tubular necrosis, TGF p 

expression is also found in stable functioning grafts. 
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Cytokine Expression Peak 

TGF-~ Day 3 

IL-6 Day 5 

IL-2 Day7 

IL-l Until day 7 

TNF-a Until day 7 

RANTES Until day 7 

IFN-y Progressively until day 14 

Adhesion Molecule Expression Peak 

E-Selectin 24 hours 

ICAM-1 After day 3 

LFA-1 Day 5 

Other immune cells Peak 

Complement Protein C 1 24 hours 

Complement Protein C3 24 hours 

MHCII Consistently after day 1 

Infiltrating CD8+ Cells Day 5 

Infiltrating CD4+ Cells Day 5 

Table 1.3. The sequential kinetics of acute rejection has been studied in rats, with 
differing peaks in the expression of cytokines and adhesion molecules. Adapted from 
Nagano et a/ 1997. 
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1.17 Histological analysis of rejection 

The characteristic signs of rejection from histological studies are of an increased 

number of MHC class 11 positive, IL-2 receptor positive T-cell infiltrates in tubular 

basement membranes. Based on histology findings from rejecting biopsy samples a 

classification system of rejection was developed, known as the Banff criteria (Solez et a/ 

I 993). A biopsy is taken when elevated serum creatinine or loss of renal function suggests 

a rejection episode. For acute rejection the system is based on the presence oftubulitis and 

arteritis in the graft. Mild tubulitis and arteritis are associated with borderline rejection. 

Severe arteritis and associated necrosis with lymphocyte infiltration of the graft are the 

signs of severe acute rejection. Chronic rejection is identified by the presence of fibrosis in 

the interstitium of the graft and atrophy of graft tubules. 

1.18 Cytokines in rejection 

Numerous cytokines have been implemented as potential factors in transplant 

rejection (Mantovani et a/ I 998, Kaminski et a/ I 995, Cho et a/ I 998). Cytokine genes are 

polymorphic and certain polymorphisms have been linked to rejection (Abdallah et a/ 

I 999). The regulation of cytokine genes is likely to be important in many disease states as 

well as transplant rejection (Taniguchi 1988, Ferrara 1993, Dallman 1993). Po1ymorphisms 

are likely to be important in both the donor and recipient, as well as the matching 

combination between the two. Certain polymorphisms are functional and effect protein 

production resulting in high or low production individuals, for example IL-6 and TNFa 

(Fishman et a/ 1998, Bourna et a/ 1996). A high producer donor in combination with a 

low producer recipient may be less of a risk factor for graft success compared with a high 

producer donor and high producer recipient. Cytokine genes are polymorphic for both the 

receptor and protein itself In a study of recipient cytokine receptor polymorphisms no 
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Category 

Borderline 

Type lA 

Type 18 

Type HA 

Type liB 

Type Ill 

Antibody mediated 

Features 

No intimal arteritis and mild tublitis. <4 mononuclear 
cells/tubular section 

Significant interstitual inflammation and moderate 
tubulitis. >4 mononuclear cells/tubular section 

Significant interstitual inflammation and severe tubulitis 
> l 0 mononuclear cells/tubular section 

Mild to moderate arteritis found in at least one arterial 
cross section. 

Severe arteritis associated with loss of greater than 25% 
of the luminal area 

Severe arteritis and necrosis of smooth muscle cells 
associated with lymphocyte inflammation of the vessel 

Anti-donor antibody present in graft. 

Table 1.4. Categories of the Banff criteria and associated histological findings used for 
the diagnosis of acute rejection episodes. 
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Category 

Grade I 

Grade ll 

Grade Ill 

Features 

Mild fibrosis of the interstitium affecting< 25% of the 
cortical area and mild atrophy of tubules affecting 
<25% oftubules 

Moderate fibrosis of the interstitium affecting 25-50% 
of the cortical area and moderate tubular atrophy 
affecting 25-50% of tubules 

Severe interstitial fibrosis affecting >50% of the cortical 
area with severe atrophy oftublues affecting >50% of 
tubules 

Table 1.5. Categories of the Banff criteria and associated histological findings used for 
the diagnosis of chronic rejection and chronic graft nephropathy. 

73 



Trichrome staining xlOO 

Immunoperoxidase staining x160 

Trichrome staining xl 00. 

Figure 1.10. Histological analysis of graft rejection showing a normal (A), acute 
rejecting (B) and chronic rejecting (C) biopsy. 
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association was found with 22 cytokine or cytokine receptor polymorphisms in 11 genes 

studied in 209 cadaveric transplant recipients, in particular TNFa and IL-l 0 (Marshall et a! 

2000). In donors, a cytokine polymorphism in the IL-6 gene was associated with incidence 

and severity of recipient acute rejection, recipient or donor-recipient matching for IL-6 had 

no effect (Marshall et a! 200 I). High and low producer status has also been studied in 29 

donors for the TNFa, IL-6, TGFI3 and IL-l 0 genes in relation to early graft function. The 

TNFa high producer status was found to correlate with graft rejection, the same trend was 

found in liver and heart grafts (Gandhi et at 200 I). In recipients a study of 169 cadaveric 

transplants showed a correlation between high producer TNFa genotype and increased risk 

of rejection, more severe episodes and higher serum creatinine levels at one month post 

transplant (Poli et a! 200 I). However a similar study found a higher frequency of rejection 

in high IL-6 producers in 43 recipients but this was not significant. The same paper found 

also an increased frequency of rejection episodes in TNFa high producers but again not 

significantly so (Reviron et a! 200 I). 

1.19 Vascular rejection/intragraft coagulation 

1.19.1 The endothelium 

The internal lining of the vascular system contains endothelial cells. It is estimated that 

in an average 70Kg adult the endothelium would occupy a surface area of more than 

I OOOM2 and weigh in excess of I OOg (Jaffe 1987). The earliest recognition of the 

importance of endothelial cells in injury was in Listers' 1865 paper on the role of the 

vessel wall in injury. The prime function of the endothelium is in the rapid exchanges 

between the blood plasma and the interstitial fluid. The endothelial cells participate in the 

regulation of vessel tone and permeability, haemostasis, fibrinolysis and the synthesis of 

growth factors. The endothelium produces many substances (see Table 1.8). Due to its 
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Polymorphism Organ recipient/Donor Outcome Author 

IL-4 ( -590) Heart Donor rejection Bijlsma et a/2002 

VEGF(-ll54) Kidney Recip rejection Shahbazieta/2002 

VEGF (-2578) Kidney Recip rejection Shahbazieta/2002 

TNFa (-308) Kidney/Liver Donor rejection Gandhi et a/ 200I 

IL-10 (-I064) Kidney Recip graft survival Poli et a/ 200I 
>IS years 

IL-6(-I74) Kidney Donor rejection Marshall et a/ 200 I 

TFNy CA(n) Kidney Recip rejection Asderakis et a/ 200 I 

TNFa CA(n) Kidney Recip rejection Asano et a/ I997 

Table 1.6. Recent polymorphisms associated with rejection and graft survival in 
transplantation. 
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unique and crucial positioning the endothelium plays a vital role in the homeostatic 

maintenance of a non-thrombotic surface between the blood and tissue. Activation of the 

endothelium during an inflammatory response was first noted in the 1960's (Willms

Kretschmer et a/ 1967). The five main changes seen in the endothelial cell during 

activation are loss of vascular integrity, expression of adhesion molecules, a change in 

phenotype from anti-thrombotic to pro-thrombotic, cytokine production and HLA up

regulation (Hunt & Jurd 1998). The activation of endothelial cells occurs in a two-stage 

process. The first stage is the stimulation phase, which does not require de novo protein 

synthesis, so is a rapid response and results in the release of VWF and expression of P

selectin. The second phase is the activation phase that results in the transcription of genes 

including cytokines and further adhesion molecules (Mantovani et a/ 1997a, 1997b). In the 

endothelium of small arteries and arterioles the adhesion of lymphocytes, causes 

endothelialitis and destructive changes leading to graft destruction (Halloran et a/ 1993). 

The vascular endothelial cells participate in the process of allograft rejection by promoting 

both the recruitment and activation of alloreactive T -cells via three pathways (Rev by 

Briscoe et a/ 1998). 

1. Endothelial cells mediate selective recruitment of CD4+ T-cells, including the Thl and 

Th2 subsets via chemokines and adhesion molecules. 

2. Endothelial cells eo-stimulate the production of effector cytokines by the Th cells. 

3. Endothelial cells regulate T-cell apoptosis via signalling pathways e.g. CD40 -CD40L 

and Fas- FasL. 

The hypothesis is that selective recruitment of the Thl and Th2 cells to the site of 

inflammation is based on the differential expression of the adhesion molecule ligands and 

cytokine receptors (Austrup et a/!991). Under culture conditions, endothelial cells express 
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Connective tissue components Coagulation Components 

Laminin Factor V 

Fibronectin Thrombomodulin 

Vitronectin Thromboplastin 

Heparin Von Willebrand Factor 

Sulphate rich glucoproteins Tissue Factor 

Adhesion Molecules Vasoactive Substances 

E-Selectin Endothelin 

ICAM-1 Prostacycl ins 

VCAM-1 Nitric Oxide 

Angiotensin converting enzyme 

Table 1.7. The major substances produced by endothelial cells 
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class I molecules but not class II MHC molecules. Endothelial cultures can activate CD4+ 

T-cells only if they are pre-treated with IFN-y to cause MHC class 11 expression. 

The capacity of endothelial cells to activate alloreactive memory cells would suggest that 

graft endothelial cells could initiate rejection episodes (Pober et a/1996). 

Endothelial cells express CD40 and CD40L which Influence T -cell activation and 

recruitment, and may regulate immune responses by expressing FasL and promoting T-cell 

apoptosis (Briscoe et a/ 1998). The leukocyte - endothelial interaction has been described 

as a multi-step paradigm in which a sequential process of leukocyte adhesion occurs. 

Firstly low affmity 'rolling' reactions followed by firm tight adhesion (Springer 1994). The 

three classes of adhesion molecules each play a vital role in this process of leukocyte 

adherence to the endothelium (Beekhuizen and Van de Gevel 1998). An activated 

endothelium may be vital in the early pathogenesis of many inflammatory diseases (Pober 

and Cotran 1990). The upregulation of MHC expression has been demonstrated in 

ischaemic conditions in animal models (Shackleton 1998). This follows early work by 

Thorsby (1975) who reported that cultured human endothelial cells could stimulate 

allogeneic T-cells to proliferate in vitro. This has lead to debate into whether graft 

endothelial cells are sufficiently competent APC's to initiate a host-anti-graft immune 

response (Pober et a/1996). 

Numerous possible markers of a dysfunctional or activated endothelium have been 

suggested. There is however, considerable argument as to which represents the most ideal 

in relation to ease of measurement, reliability and specificity (Pearson 1993,Blann 1995). 
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1.19.2 Markers of endothelial dysfunction. 

1.19.3 V on Willebrand factor (VWF). 

VWF is a pro-coagulant product of the endothelium stored intracellularly in the 

Weibel palade body, a specific organelle of the endothelial cell, which are about 0.1 J.lm 

wide and up to 4J.lm long (Weibel and Palade 1964). VWF has a molecular weight in the 

active form of 220-225 KDa. Transcriptional regulation of VWF production is in part 

regulated by the Oct-1 transcription factor (Schwachtgen et a/ 1998) and polymorphisms 

exist in coagulation factors suggesting a genetic component to vascular disease (Ferrer

Antunes 1998). VWF is produced by the a granules of platelets, but the majority of plasma 

levels originate from the endothelium (Wagner 1990). Raised levels are found in numerous 

inflammatory diseases where a damaged or dysfunctional endothelium is involved, 

including renal disease, and it is cited as a possible indirect marker of the development of 

atherosclerosis and/or thrombosis (Blann 1993, Lip and Blann 1996). Damaged 

endothelial cells release VWF and increased levels have been found during injury 

responses (Reinders et a/ 1987). Normal plasma levels are in the range of 5-l OJ.lg/rnl. VWF 

is secreted via two distinct pathways. The frrst is a constitutive pathway, where the VWF 

molecules are composed mainly of small multimers and dirners. The second pathway of 

secretion is the regulated release from the Weibel-palade body. The stored pool of VWF 

tends to be of a higher molecular weight, which are more active in platelet aggregation 

(Sporn et a/ 1986). Numerous secretagoges including, PMA, thrombin, histamine, fibrin 

and the complement proteins C5b-9 can induce the secretion of VWF (Giddings & Shall 

1987). VWF release is coupled to Ca2
+ influx and an acidic intracellular environment. It 

has been shown that VWF levels are increased during exercise or adrenaline intake 

(Prentice et a/ 1972), suggesting a mass release from the Weibel-palade bodies. However, 
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it has also been shown that the release from storage pools does not affect the overall 

distribution or synthesis ofVWF (Mayadas et a/1989). 

VWF is involved in the aggregation and adhesion of platelets following endothelial injury. 

The mass platelet clumping associated with the condition thrombotic thrombocytopenic 

purpura is linked to the overproduction of large VWF multimers. The main function of 

VWF is to protect protein factor Vlll from inactivation (Koppelman et a/ 1996). VWF is 

normally found in excess (x100) of factor VIII, which is degraded by protein C when not 

bound to VWF. Patients with VWF syndrome, who do not produce the molecule, have 

clotting abnormalities. Raised levels of VWF are thought to increase the risk of thrombus 

formation as VWF cross-links platelets and mediates adhesion of platelets to the sub

endothelia, which is exposed by damage to the endothelium (Biann 1998). The initiating 

stimulus for VWF release or synthesis in patients with vascular disease is currently 

uncertain, but is suggested that factors such as oxygen free radicals or hypoxia may be 

important (Lip and Blann 1997). During ischaernia/reperfusion injury in the rat, plasma 

VWF levels were elevated after surgery, but not significantly from sham operated rats and 

did not correlate with the degree of intestinal injury (Abu-Ziden et a/ 1999). As a marker 

of endothelial activation in transplant injury, VWF in xenotransplantation has been shown 

to be upregulated in pigs, but they did not receive any immunosuppression (Brouland et a/ 

1999). Cyclosporine is cytotoxic to endothelial cells and has been shown to increase VWF 

production (Yussim et a/1994). Also in transplant recipients with CMV infection levels of 

VWF were found to be higher than in patients without the virus (Kas-Deelen et a/ 2000). 

In rejection, increased glomerular deposits of VWF were found in chronic rejecting grafts 

but less in acute rejecting grafts in primates (Lagoo et a/2000). 

Endothelial cell activation during an immune response is a likely to influence the 

development of vascular damage and coagulation. Endothelial damage results in an altered 
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coagulant state, with down-regulated thrombomodulin and antithrombin Ill and up

regulated tissue factor and VWF factor expression. These alterations in endothelial 

function have been found to correlate with fibrin deposition in rejecting cardiac allografts 

(Salom et at 1998) and are thought to produce a pro-coagulant environment (Ogawa et at 

1990). At least 13 coagulation proteins and nearly as many inhibitors are involved in the 

formation of a blood clot (Esman 1993). 

Endothelial cells participate in many key events in the coagulation cascade, including the 

propagation of the initial stimulus and interaction with fibrinogen and fibrin to modifY the 

structure of the clot. Synthesis of the major coagulation and anticoagulant factors occurs 

mainly in the liver, but the endothelium also synthesises some factors. Damaged 

endothelial cells can initiate the coagulation cascade, which involves the conversion of 

prothrombin to thrombin, activation of platelets and fibrinogen. Fibrinogen is converted to 

fibrin, which interacts with the activated platelets forming a thrombus. Thrombomodulin 

regulates thrombin by converting it from a procoagulant to an anticoagulant form. It has 

been proposed that soluble levels in cell culture supematants reflect damaged endothelium 

(Ishii et at 1991 ). The proposed mechanism is that the appearance of soluble 

thrombomodulin reflects a loss of cellular levels and hence the homeostasis of 

coagulopathy. Soluble thrombomodulin is specific to the endothelium and independent of 

inflammatory cytokines such as IL-l and TNF. 

Drugs used to treat coagulative disorders such as atherosclerotic disease are aimed at 

lowering fibrinogen levels (e.g. aspirin, beta-blockers). The blood contains three major 

anticoagulant protein systems that regulate coagulation. One involves antithrombin Ill and 

is enhanced by heparin. The second involves two vitamin K-dependent factors protein C 

and protein S, along with the endothelial derived thrombomodulin. The third involves 

tissue factor and its inhibitor TFPI. Monocytes can be envisioned as circulating loci for the 
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Figure 1.11. A basic overview of the coagulation cascade associated with vascular 
rejection. Adapted from Blann 1998 
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production of tissue factor in inflammation, atherosclerotic lesions and septic shock. 

Upregulation of endothelial adhesion molecules during inflammation leads to attachment 

of procoagulant monocytes to the endothelium. Platelets may then adhere to the bound 

neutrophils or monocytes via L-selectin and its ligand, P-selectin. 

Anti-coagulant pathways may be down regulated by inflammation. Cytokines such as TNF 

and IL-l can lead to the down regulation of thrombomodulin production in the 

endothelium. The thrombin receptor may be upregulated during inflammatory responses, 

as thrombin binding leads to mitogenic effects on fibroblasts, macrophages and smooth 

muscle cells. Thrombin activates endothelial cell release of vasoactive substances such as 

VWF, nitric oxide and prostacyclin. Thrombin also activates platelets. Thus, thrombin 

mediates coagulation and vascular tone in inflammatory processes. Thrombosis leads to the 

occlusion of vessels, causing progressive necrosis as a result of hypoxia. 

1.20 Renal preservation and Ischaemic/Reperfusion injury 

Preservation time includes the removal of the kidney from a donor, tissue typing, 

selection of a recipient, preparation ofthe recipient and surgical transplant of the graft. The 

use of donor kidneys within a restricted community can reduce preservation times, 

however, when transport to other areas is required, preservation times can exceed 60 hours 

and times of greater than 100 hours have been reported in the US (Marshal! et a/ 1994). In 

the European transplant region the average cold ischaemia time is 22 hours (Offermann 

1998). After removal from a suitable donor the kidney is preserved in one of two ways. 

Static storage involves the graft being immersed in cold preservation fluid and stored at 0-

40C. Perfusion storage involves the kidney being continuously perfused with a solution at 4 

- I 0°C. Generally studies have found no difference (Heil et a/ 1987) or better survival 

rates in static stored kidneys (Opelz & Terasaki 1982). Current preservation solutions are 
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designed to reduce stress to the graft and preserve organ integrity. Many exist including; 

Collins' type solution, citrate based solutions, sucrose based solutions, Bretschneiders's 

HTK solution and the University of Wisconsin solution. Storage in UW solution has been 

shown to have a less measurable effect on endothelial damage than HTK solution and 

Eurocollins solution as assessed by mitochondrial, ER and cytoskeletal fibre damage 

(Eberl et a! 1999). Effects of ischaemic damage have been shown to reversible during 

rewarming, and when cells are replaced in culture media (Gerlach et a/ 1993). Cost 

effective calculation measurements have suggested the use of I OL of perfusion fluid per 

multiorgan donor (Muhlbacher et a/1999). 

The ischaemic period consists of an intial normothermic ischaemia during organ removal 

(Warm ischaemia), a hypothermic preservation period during organ storage (Cold 

ischaemia), and finally revascularisation leads to reperfusion injury. 

Ischaemia results in oxygen and nutrient depletion, continuing anaerobic metabolism, 

build-up of catabolites with the potential to precipitate cell death and obstruction of the 

vasculature with erythrocytes and leukocytes. 

The organisms response to hypoxia and hypothermia has been well studied (Hochachka 

1986). It has been shown that warm ischaemia is of greater importance than cold ischaemia 

in terms of damage, as the effect of 30 minutes warm ischaemia is more damaging to graft 

survival than an additional 24 hours of cold storage (Sacks et a/ 1973). Studies have also 

shown that warm ischaemic damage needs to be less than 30 minutes to be reversible 

(Florack et a/1986). Protection of the graft from warm ischaemia is to reduce the exposure 

time to a minimum by rapid cooling of the kidney using a double balloon catheter to begin 

in situ cooling of the graft in the donor. 

Cold storage is recommended to be less than 24 hours (Abouna et a/ 1987), with an 

estimated 2% reduction in 5-year graft survival for every 12 hours cold ischaemic time 
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Figure 1.12. The effects of ischaemia on cellular metabolism. Adapted from Marshall et 
a/1994 
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(Held et al 1994). Studies have shown reduced long term survival of grafts that have 

experienced prolonged ischaemic periods (Naimark & Cole 1994). A recent study 

compared the incidence of delayed graft function and general graft function at one year in 

locally transplanted kidneys and kidneys shipped to other units in the US. The analysis was 

from data contained in the UNOS registry and compared 5446 pairs of cadaveric kidneys. 

The study found a significant increase in delayed graft function in shipped kidneys 

compared with locally transplanted kidneys, which was also found when adjusted for HLA 

matching (Mange et al 2001). The authors highlight increased Cl times as a possible 

explanation, but also suggest units may tend to send damaged kidneys away (Mange et al 

2001). 

1.20.1 Hypoxia 

The kidneys receive a large supply of oxygen, approximately 20-25% of the total 

cardiac output. The great majority (80%) is consumed by the medulla with the cortex less 

demanding of oxygen. Hypoxia is associated with a loss of ATP, which leads to the 

inability to function cellular transporters such as the Na + and K+ ATP-ases. This results in 

the accumulation of calcium and sodium ions and hence cell swelling, due to the inability 

to regulate the electrolyte gradient in the cell. Hypoxia causes the upregulation of 

vasoconstrictors and smooth muscle mitogens such as PDGF-B, endothelin-1, VEGF, 

thrombospondin-1 and matrix remodelling factors such as collagenase IV, MMP-9, 

thrombospondin-1. Hypoxia inhibits vasodilatory or antimitogenic factors such as eNOS 

(Faller 1999). Hypoxia causes increased endothelial monolayer permeability, leukocyte

endothelial interactions and the prevalence of pro-coagulant over anti-coagulant properties, 

with increased polymorphonuclear cell adherence to endothelial cells (Arnould et a! 1993). 

The activation of endothelial cells by hypoxia may be responsible for the microvascular 
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thrombosis seen after extensive periods of ischaemia. Hypoxia has been shown to induce 

apoptosis in endothelial cells (Matsushlta et a/ 2000). Studies on endothelial cells have 

shown lactate and H202 release during hypoxia with peak production at 4 hours (Kondo et 

a/1996). 

1.20.2 Hypothermia 

Local cooling of the vasculature results in reduced blood flow due to an associated 

increase in blood viscosity. The formation of extracellular ice will cause damage to the 

intima of blood vessels and endothelial integrity when thawed. Endothelial damage and 

tissue oedema leads to poor reopening of the vasculature, a condition known as the "no 

retlow" phenomenon (Massberg & Messmer 1998). The endothelial cell monolayer has 

increased permeability, Jeukocyte-endothelial cell interactions are promoted and the 

procoagulant properties prevail over anticoagulant properties (Seigneur et a/ 1994). It has 

been shown that endothelial cells can tolerate low temperature with 79% cell survival at 

4°C for 48 hours (Hansen et a/ 1994). During cold stress, the plasma membrane is 

considered the primary site of damage, but in fibroblast, lymphocytes and granulocytes, 

disruption of lysosomes leading to mitochondrial damage was found to be the major lesion 

at slow cooling temperatures down to -40°C (McGann et a/ 1988). In liver, aortic and 

coronary endothelial cells, susceptibility to cold injury was reduced if the cells were at a 

non proliferating stage of cell growth compared to proliferating cultures (Rauen et al 

1994). Similar to the effects of hypoxia, cold ischaemia causes the inhibition of enzymes 

and active transport mechanisms resulting in the influx ofNa +, Ca +, er and water, with the 

efflux of K+ and Mg2+ resulting in cell swelling. Cryopreservation has also been shown to 

upregulate mRNA for mitogenic factors such as VEGF and PDGF (Liu et a/2000). 
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Sections from kidneys with increasing cold ischaemic times have shown a correlation with 

ICAM-1 expression, MHC class ll expression and macrophage infiltration in both 

allografts and isografts of rats (Kouwenhoven et a/ 200 I). Immunohistological analysis of 

donor biopsies from living or cadaveric sources showed a higher expression of ICAM-1, 

VCAM-1 and E-selectin in cadaveric donors compared with live donors, also higher 

degrees of tubular antigen expression in trauma related deaths correlating with rejection 

episodes (Koo et a/ 1999). T -cells cryopreserved at very low temperatures ( -196°C) have 

been shown to have a good viability when thawed. These T -cells retained their ability to 

produce cytokines such as IL-6, TNFa. and IFN-y, and had a significantly increased IL-2 

production compared to contro~ freshly isolated T-cells (Wang et a/ 1998b). This may 

have implications for passenger cells in donor organs. 

1.20.3 Reperfusion 

ATP is reduced during hypoxia but is replaced during reoxygenation as is lipid 

peroxidation (Windischbauer et al 1994). Oxygen free radicals such as reactive oxygen 

intermediates (ROIS) and species (ROS) are central mediators of the cellular injury that 

occurs upon post ischaemic reperfusion. Critical to the signalling pathways found during 

hypoxia and reoxygenation are the intracellular thiol-redox proteases and antiproteases 

which are modified by oxidants and are involved in calcium mobilisation (Chakraborti & 

Chakraborti 1998). The intracellular redox state and the generation of oxygen free radicals 

and H202 activates protein tyrosine kinases which elevate intracellular calcium via flux 

from the intra- and extra- cellular space. H202 is an evolutionary conserved second 

messenger as it induces signal transduction activation in plants, as well as inducing 

transcriptional responses in higher vertebrates (Muller et a/ 1997). 
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Aerobic cells generate energy by the reduction of oxygen to water. The reduction of 

molecular oxygen produces intermediate molecules such as the superoxide anion radical, 

the hydroxyl radical and hydrogen peroxide. Lipid peroxidation also produces unstable 

intermediates. Excessive production of ROS such that the cells anti-oxidant enzymes 

systems cannot remove them leads to the condition known as oxidant stress (oxidative 

stress). Damage is caused by the fact that these ROS molecules have unpaired electrons so 

are free radicals. Free radicals have the ability to react with virtually any biological 

molecule. The major free radicals are superoxide, the hydroxyl radical, nitric oxide, and 

the lipid radicals. Other ROS's include H202, hypochlorous acid and peroxynitrite, but 

these have oxidising effects as opposed to free radicals. The lipid radicals are produced in a 

chain reaction when radicals react with polyunsaturated fats within a membrane forming 

fatty acid peroxyl radicals that can react with adjacent side chain molecules leading to lipid 

peroxidation and hence membrane damage. ROS cause the inactivation of nitric oxide 

(NO"). 

1.21.1 Nitric Oxide 

NO· was discovered as a free radical produced when L-arginine is catalysed to L

citrulline in the presence of oxygen and NADPH by the No· synthase enzymes (Garthwaite 

et a/1988) 

L-arginine L-citrulline + NO· 
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NO· was initially thought to have a role in mainly physiological processes such as the 

control of blood pressure and respiration, but now is implicated in many events including 

platelet aggregation, blood brain barrier permeability and anti-bacteriaUviral defences 

(Hurst & Dobbie 2001). In pathological states, high levels of NO· can be found to be 

beneficial or detrimental. This has led to the conclusion that the relative amount of NO· is a 

confusing measure and its level in relation to other free radicals and ROS is likely to 

influence the nature of a cellular response. There are three main NO· synthases which have 

been identified in mammalian cells (Michel & Feron 1997). A constitutively expressed 

form identified in endothelial cells (eN OS), but also found in myocytes and blood platelets. 

An inducible form (iNOS) is found in many cell types and is induced by pro-inflammatory 

cytokines and mediators such as bradykinin and histamine. There is also a neurone-derived 

form of NO· synthase (nNOS) that has been shown to also be produced by skeletal muscle 

(Michel & Feron 1997). NO" stimulates the production of the second messenger, cGMP at 

normal levels. In neuronal cells binding of NO· to soluble guanylyl cyclase receptors 

results in an increase in calcium influx to the cell. This activates nNOS and the 

accumulation of cGMP causing muscle relaxation. High levels of NO· are cytotoxic, as it 

starves cells of ATP by inhibiting mitochondrial respiratory chain ATP production (Brown 

1995). Glycolysis is also thought to be affected by high NO· levels as it binds to the 

important glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme (Padgett & 

Whorton 1995) thus inhibiting its vital role in the glycolytic pathway. High levels of NO· 

are also associated with deamination of DNA nucleotide bases and DNA fragmentation 

(Tamir et a! 1996). NO· reacts directly with protein prosthetic groups, and can interact with 

the superoxide radical to form peroxynitrite (ONOO") a powerful oxidant which can 

oxidise iron-sulphur clusters, zinc-fingers and protein thiol groups, resulting in cell toxicity 

(Christopherson & Bredt 1997). Knockout mice which are iNOS deficient show a 
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confusing pattern of inflammatory response, as noted by a reduction in neutrophil 

adherence to the endothelium and increased LPS-induced lung damage, but an increased 

rate of acute allograft rejection (Nathan 1997). In the absence of L-arginine eN OS can act 

as xanthine oxidase and produce superoxide and H202. This reaction is known as 

uncoupling. 

1.31.2 Xanthine oxidase 

Xanthine oxidase converts oxygen to H202, creating the superoxide anion. It is 

derived from xanthine oxidoreductase which catalyses the oxidation of xanthine. 

Superoxide production by xanthine oxidase is thought to inhibit NO· reading to endothelial 

dysfunction (Cai & Harrison 2000) 

1.31.3 NAD(P)H Oxidase 

Increases in ROS during ischaemia and reperfusion may be the result of NADPH 

oxidase activity (Wei et a/ 1999). Two major NAD(P)H oxidases exist in humans. The 

neutrophil NAD(P)H oxidase and the vascular NAD(P)H oxidase. They are similar in 

structure, but differ in their output, with the vascular NAD(P)H oxidase thought to have 

one third the superoxide output of the neutrophil NAD(P)H oxidases (Griendling & Ushio

Fukai 1998). Vascular N AD(P)H oxidases release superoxide over minutes or hours 

compared with an instantaneous release in neutrophils. 

The NAD(P)H oxidases are bound in the plasma membrane and contain 4 major subunits. 

The membrane spanning cytochrome b558 which is composed in turn of a large subunit 

known as gp9lphox and a smaller subunit known as p22phox. The complex also has 2 

cytosolic components, p47phox and p67phox, which regulate the activity of the 
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cytochrome subunits. The active complex is assembled and in part regulated by the small 

GTP-binding proteins rac2 and rap I A. The orientation of the enzyme complex would 

suggest the utilisation of intracellular NADH or NADPH and the removal of superoxide to 

the extracellular space. However, superoxide and H202 production is mainly intracellular 

(Griendling et a/2000). 

The enzyme complex catalyses the reduction of oxygen using NADH or NADPH as the 

electron donor. 

NAD(P)H + 20z 

The maJor source of ROS in vascular tissue was thought to originate from xanthine 

oxidase, arachidonic acid and mitochondrial oxidases, but it is now thought that the 

NAD(P)H oxidases are the major source ofROS production in vascular tissue. 

The NAD(P)H oxidases have been found to be important in physiological processes such 

as cell growth, migration and extracellular matrix modification (Rev by Griendling et al 

2000). The role of NAD(P)H oxidases in the production of ROS has implicated them in 

diseases such as hypertension and arteriosclerosis (Cahilly et al 2000). 

The NAD(P)H oxidase activity is upregulated by two mechanisms. Firstly, by the 

activation of a second messenger (such as calcium), and secondly by the direct 

upregulation of oxidase subunit mRNA. It has been shown that TNFa can induce the 

increased transcription of p22phox (De Keulenaer et a/ I 998). 

Importantly reoxygenation after ischaemia and associated increases in lactate have been 

shown to cause the upregulation of NADH oxidase dependent superoxide production 

(Mohazzab et a/ I 997). The effect of upregulated oxidase activity is the increased 
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production of ROS which function as second messengers mediating further cellular 

responses. The majority of studies into the effect of polymorphisrns of the NAD(P)H 

system are in vascular disease such as atherosclerosis. The p22phox subunit contains a 

C242T transition polymorphism that creates a histidine to tyrosine change altering the 

heme binding site in the gene (De Boer et a/ 1992). Individuals with the T allele have a 

less active NAD(P)H oxidase system and hence less superoxide production (Guzik et a/ 

2000, Zalba et al 2001). It has been shown that control populations have a higher 

incidence of the T allele compared with patients with coronary artery disease (Inoue et a/ 

1998). The polymorphism has also been linked to progression of the disease (Cahilly et a/ 

2000). In a Japanese population with ischaemic heart disease the T allele was found to be 

statistically higher in patients with cerebrovascular disease, suggesting the polymorphism 

does not have a protective effect (Ito et al 2000). 

Defences mechanisms exist in cells to breakdown ROS. Cells have protective enzymes 

such as catalase, superoxide dismutases (SOD) and glutathione peroxidase as well as anti

oxidants such as ascorbic acid and reduced glutathione (GSH). Endothelial cells have low 

catalase levels compared to other cells, but utilise GSH as a potent free radical scavenger. 

Reduced levels of GSH during ROS-induced injury are compensated for by an increase in 

superoxide dismutases. These also include the free radical scavengers such as vitamin E. 

Cells must maintain a balance between the production of ROS and their breakdown. 

Oxidative stress occurs as a result of an imbalance between these two systems. 

ROS production can be induced by UV light, certain drugs and tissue hypoxia. ROS can 

react with any biological macromolecules including proteins, lipids and carbohydrates 

causing cellular dysfunction and ultimately cell death. Administration of SOD during 

surgery has been shown to reduce the production of free radicals (Land 1998). SOD does 

not transverse the endothelial and myocyte membranes due to its molecular weight of 32 
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KDa which suggests that free radical generation occurs at the cell surface of the 

endothelium or within the vascular lumen adjacent to the endothelium (Zweier 1998). In 

ischaemic tissue xanthine dehydrogenase is converted by a proteolytic cleavage to xanthine 

oxidase which reduces oxygen producing free radicals. During ischaemia elevated 

concentrations of the substrates xanthine and hypoxanthine may occur due to the 

breakdown of ATP. It has been shown in endothelial cells subjected to periods of hypoxia 

followed by reoxygenation that free radicals are produced (Zweier 1998). It is thought that 

xanthine oxidase was the major source and that iron mediated fenton reactions further 

catalysed the formation of the reactive hydroxyl radical from the enzyme derived 

superoxide and hydrogen peroxide. Clinical studies using more sophisticated methods are 

needed to confirm data indicating increased oxygen free radical formation in kidney 

transplant patients during the peri/post surgical phase (IIlner & Land 1998). 

1.22 The 'Injury response' 

All types of post-transplant allograft destroying events such as hyperacute, acute 

and chronic rejection have been interpreted as the result of specific immunological 

phenomena, primarily brought about by cell mediated and/or antibody mediated tissue 

injuries. At the 1992 congress of the international transplantation society, it was suggested 

that initial nonspecific injury of an allograft mediated by postischaemic reperfusion injury 

contributes to the development of chronic graft failure. This idea lead to the formation of 

the hypothesis that, ischaemic/reperfusion injury mediates an inflammatory response that 

provokes an increased level of acute host immunological reactivity (Tilney & Guttmann 

1997, Hallo ran et a/ 1997, Land 1998, Lu et a/1999). The hypothesis is the results of the 

initial fmding that increased acute rejection in renal allografts which had experienced 

delayed function, was attributed to severe injury which made them 'more rejectable' 
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(Halloran et a/ 1988). This hypothesis is also an extension of theories that the immune 

system recognises potential danger and non-specific activation of the immune system 

(Matzinger 1994, Ibrahim et a! 1995, Fearon & Lockersly 1996). The damage caused to 

the graft by surgical removal, transport and implantation are well known in terms of 

hypoxia, cold ischaemia and reperfusion, but how do these events influence rejection? One 

proposed answer is that rejection depends on the host T -cells recognising the donors 

foreign antigens. Injury results in inflammation, which leads to the more rapid infiltration 

and migration of recipient T-cells and APCs such as dendritic cells into the donor organ 

(Lu et a! 1999). Many potential immunomodulatory mediators are released during 

ischaemic injury such as TGFJ3, NO and IL-2 (Shackleton 1998). Dendritic cells migrate to 

lymph nodes and the spleen, where they can activate naive T -cells (Austyn 1996). Injury to 

the kidney whilst it is still in the donor may recruit donor dendritic cells into the graft 

which will leave the graft after transplantation and directly activate host T-cells by 

displaying foreign 'donor' MHC in the lymph. Similarly, recipient dendritic cells 

migrating into inflamed tissue could return to the lymph and activate T-cells indirectly by 

displaying donor peptides (Lu et a! 1999). 

The major cell type involved in the injury response leading to inflammation and initiation 

of rejection is the endothelial cell (Pober et a! 1996). Many studies have shown that 

ischaemia leads to the upregulation of adhesion molecules on endothelial cell surfaces 

(Troulong et a! 1996). The upregulation of adhesion molecules by endothelial cells has 

been shown to increase T-cell migration into tissues (Adarns & Shaw 1994). It has also 

been shown in mice that the expression of endothelial E-selectin selectively recruits Thl T

cell subsets into inflamed tissue (Austrup et a! 1997). 
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It has also been shown that under ischaemic conditions endothelial cells have an 

upregulated MHC class II expression (Shackleton 1998). Endothelial cells also express 

CD40 (Yell in et a/ 1995), the eo-stimulatory molecule involved in T -cell activation, 

hence, endothelial cell 'immunogenicity' is increased by the preservation process (Ono et 

a/1998). 

Other evidence to back the injury hypothesis is pointed towards demonstrations that living 

unrelated donors have survival rates as good as well matched cadaveric donors (Terasaki et 

a/ 1995), also the benefits of good matching are lost in grafts with prolonged ischaemic 

times (Held et a/1994). Finally by the demonstrations that interventions such as the use of 

antibodies against adhesion molecules, or administration of anti-oxidants such as SOD 

improve outcome in animal models, is further indirect evidence for the role of injury in 

graft rejection. The problem with testing the injury hypothesis, is that the ideal test, is to 

compare grafts transplanted injury-free, of course this can not be done (Lu et a/1999). 

1.23 The 'Heat shock' paradox 

The demonstration that a prior heat shock can protect cells from an ischaemic insult 

has lead to a suggested 'heat shock paradox' protective response (DeMeester et a/ 2001). 

Protein biosynthesis is an essential part of homeostasis and requirement for cells to 

function. Formation of a protein molecule involves translocation. folding, assembly and 

degradation before the mature protein is formed. Stress can result in demands on cellular 

homeostasis resulting in misfolding and assembly of vital proteins leading to their mis

function. To maintain and re-establish protein synthesis during stress, cells possess 

chaperone proteins and proteases, known collectively as the heat shock proteins 

(Morimoto 1993). Heat shock proteins respond to environmental and physical stress and 

repair protein damage (Morimoto & Santoro 1998). Activation of the heat shock factor 
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(HSFI) transcription factor results in the up-regulation of the heat shock proteins, which in 

turn form an autoregulatory loop and further regulate the activity ofHSFI (Abravaya et a/ 

1992). The activation ofHSFI requires phosphorylation and occurs via Ras and Rac GTP

protein dependent signalling pathways (Bomfeldt 2000). Studies have shown that mitogen 

activated protein kinase (MAPK) activity works as a repressor of HSFI activation (Kim et 

a/1997). 

The heat shock family of proteins is large and they are named on the basis of their 

molecular weight. Some of the more important larger proteins are hsp 100, hsp90, hsp70, 

hsp60 and hsp40. The smaller proteins generally form complexes with the larger proteins 

and include hsp27 as well as some irnmunophilin molecules such as FKPB52. 

Heat shock proteins such as hsp60, hsp70 and hsp90 recognise hydrophobic residues in 

polypeptide chains exposed during protein misfolding and bind as eo-chaperone complexes 

utilising ATP to aid refolding of the protein (Hart! 1996). Chaperone proteins can attain 

concentrations of 1-5% of the total cell volume during stress (Morirnoto & Santoro 1998). 

Heat shock proteins are induced by ischaemia and may provide a degree of protection from 

ischaemia and hypothermia (Gowda et a/ 1998, Duquesnoy et a/ 1995). Hsp60 and hsp70 

have been shown to act as a marker of preservation-induced injury in endothelial cells 

(Eberl et a/ 1999a, l999b ). The mechanism of heat shock activation during ischaemia is 

likely to be due to oxidative stress. Oxidative stress has been shown to activate and cause 

the binding of HSF I to its consensus sequence (Tacchini et a/ 1995). As a protective 

response, tissue levels of ATP have been shown to be higher in rats treated with a heat 

shock inducer before hypothermic storage (Zhang et a/ 1996). Improvement in renal 

function. mortality and histological abnormalities are found in rats pre-treated with 

ischaemia to induce heat shock protein expression compared to rats without heat shock 

activation (Kelly et a/ 2001 ). This has led to the 'heat shock paradox' in that inducing the 
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activation of heat shock proteins by pre-treatment may protect during subsequent 

ischaemic insults. Recently hsp90 has been shown to influence phenotype and morphology 

in plants. Manipulation of hsp90 to reduce its function, led to several different phenotypes 

produced in response to environmental changes such as temperature variation (Queitsch et 

a/2002). 

A similar situation is seen with an ischaemic pre-treatment. Animal studies have 

demonstrated that an initial ischaemic insult to cells can also protect them from subsequent 

exposure to ischaemia (Morgan et a/ 1999). Ischaemic adaptation in myocytes to repeated 

ischaemic/reperfusion results in a decreased production of oxygen free radicals when re

exposed to ischaemia, mediated by increased protective BCL-2 expression (Maulik et a/ 

1999). Pre-treatment with mild hypothermia has also been shown to be protective of renal 

function in rats (Zager et a/ 1989). Ischaemic pre-treatment with H202 was shown to 

reduce TNFa induced IL-6, IL-8 and ICAM-1 and E-selectin expression in rats (Zahler et 

a/2000). 

One proposed mechanism for this is in the fact that the heat shock response inhibits NFKB 

(Heneka et a/ 2000). The pro-inflammatory and pro-apoptosis nature of NFKB may be 

down-regulated by heat shock protein expression. It has been suggested that ischaemic pre

treatment acts by reducing subsequent MAPK activity on second ischaemic insult, at the 

level of reduced MKK phosphorylation (Park et a/ 2001). Reduced MAPK stimulation 

may lead to decreased NFKB activation. One study has suggested the recovery of cells 

from an ischaemic insult can be determined by the recovery of IKBa and increased 

expression of IKBa (Wong et a/ 1997). Attempts have been made to fmd drugs that can 

activate the HSF1 transcription factor and inhibit NFKB. These have included protease 

inhibitors and prostaglandins (Rossi et a/1997,1998) and anti-inflammatory drugs such as 

NSAIDS (Lee et a/ 1995). 
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However, NFKB has also been shown to have a protective role in ischaemic injury. For 

example NFKB activated by ischaemia has been shown to induce the expression of the 

'protective' endothelial gene A20 (Ferran et al 1998). NFKB expression has been shown to 

have a protective anti/apoptosis function in liver grafts exposed to cold ischaemia injury 

(Takahashi et a/2001). 

As information gathers about the potential damage caused by initial ischaernic/reperfusive 

injury to allografts in clinical transplantation, the pressure to reduce cold ischaemia times 

to a minimum has increased. However, many people are concerned that reducing cold 

ischaemia times will result in increased HLA mismatches due to the reduced time in which 

to match and prepare recipients and donors. Many believe and have produced data to show 

that purely immunological factors such as preformed cytotoxic antibodies, the number of 

previous graft failures in a patient and HLA mismatches have a much greater impact on 

graft survival than cold ischaemia time (Lange and Kuhlmann 1998). A combination of 

good matching and reduced ischaemic time in combination produces the better graft 

survival, than either alone (Connolly et a/1996). 

1.24 Interventions/ treatments of ischaemic injury 

The damage caused by ischaemia and reperfusion injury at a cellular level is only 

really detectable in vitro as it is technically difficult to determine graft viability in vivo 

(Southard 1989). The determination of successful interventions in clinical use therefore 

relies on outcome measures such as delayed graft function or the incidence of acute 

rejection episodes, which may be attributable to many other factors (e.g. recipient status). 

Preservation solutions have been designed to attempt to address the numerous problems of 

in vitro kidney storage. The first factor to overcome is the lack of an oxygen supply. 

100 



Attempts have been made to continuously perfuse the kidney with an oxygenated 

perfusate, but have not shown significantly improved graft function compared with static 

stored kidneys (Merion et a/ 1990). The potential of perfusion storage is in the use of 

higher risk donor organs to expand the donor pool (Tesi et a/ 1993). The idea of perfusion 

storage was to address the metabolic supply to the kidney. Cooling the kidney reduces the 

metabolic need and the addition of glucose, amino acids, fatty acids, ATP and adenosine to 

perfusion fluids has attempted to address this problem. Cellular pH is maintained in the 

range of7.1-7.8 and cellular oedema is prevented by electrolyte balancing solutions. It has 

long been shown that the anion content of perfusion solutions is very important (Coli ins et 

a/ 1979). A major concern in kidney storage is free radical mediated tissue damage. 

Prevention of free-radical damage has been addressed by the addition of mannitol, an anti

oxidant to solutions. The addition of the anti-oxidant allopurinol, which inhibits the 

activity of xanthine oxidase has been found to improve creatinine clearance in canine heart 

beating donors, but had no effect on organs from non-heart beating donors (Hernandez et 

a/1999). 

The addition of SOD to kidneys via viral gene delivery has recently been shown to reduce 

free radical production and cyclosporine induced nephrotoxicity in rats (Zhi et a/ 200 I). 

Simple addition of lecithinized SOD, which binds with a higher affinity than recombinant 

SOD to cell membranes, to preservation solutions has also been shown to reduce 

neutrophil adhesion to endothelial cells during subsequent reperfusion in an endothelial 

cell culture (Koo et a/ 2001 ). Gaseous oxygen perfusion during cold storage has been 

found to be effective in rat livers if SOD is administered before treatment to reduce free 

radical tissue damage (Minor & Kotting 2000). Other antioxidants including trolox, 

deferoxamine, ascorbate and quinacrine have been added to solutions with varying degrees 

of success (McAnulty & Huang 1997, McAnulty & Wailer 1999). 
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Other recent treatments have included the use of calcium channel blockers, direct energy 

sources such as ATP, allopurinol, free radical scavengers, vasoactive drugs, steroids and 

the use of protease inhibitors ( Jung et a/ 1999). 

As with its role in improving graft survival, adenoviral delivery ofiL-4 has recently been 

shown to reduce ischaemia/reperfusion injury in rat models (Kato et a/ 2000b). A major 

cytokine target has been TNFa. One reason is that TNFa production leads to neutrophil 

infiltration, which has been shown to be prevented by administering an anti-TNFa 

antibody to rats during ischaemia (Donnahoo et a! 1999b). Administration of anti-TNFa 

antibodies to rat lungs has also shown to prevented endothelial damage during 

ischaemia/reperfusion (Khimenko et a/1998). 

Ischaernia/reperfusion in isolated rat hearts leads to NFKB activation, TNFa upregulation 

and ICAM-1 expression resulting in neutrophil infiltration and adherence to the 

endothelium. These events have been reduced by using an NFKB decoy oligonucleotide 

and TNFa inhibitor (Kupatt et a! 1999). The role of SOD as a protective agent might be 

linked to the fact that the overexpression of manganese SOD suppresses NFKB activation 

and reduces TNFa mediated apoptosis (Manna et a/ 1998). SOD gene delivery has been 

shown in the liver to reduce both NFKB and AP1 expression, during ischaernia/reperfusion 

injury (Zwacka et a/ 1998). The advantage of blocking NFKB would be to prevent its 

inflammatory and apoptosis pathways, whilst preserving its anti-inflammatory properties. 

This has been achieved to some degree in rheumatoid synovium using adenoviral-mediated 

overexpression of IKBa directly into the inflamed joint (Bondeson et a! 1999). A recent 

study has also demonstrated that blocking NFKB indirectly, by inhibiting guanylyl cyclase

A reduces the expression ofP-selectin in myocardial ischaemia (lzumi et a/2001 ). 
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Further understanding of the nature of when NFKB activation IS protective and anti

inflammatory, and when it is mediating an inflammatory response, may lead to its selective 

inhibition and useful intervention in the future treatment of ischaernia-reperfusion injury 

(Boyle et a/ 1999). There have also been advances in the use of stern cells in ischaemic 

injury, with a recent study demonstrating the regrowth of cardiac rnyocytes and endothelial 

cells in ischaemic coronary arteries of mice engrafted with adult stern cells (Jackson et a/ 

2001). 

1.25 The cellular response to stress 

1.25.1 Signal transduction 

Protein tyrosine phosphorylation was first described in 1980 (Hunter & Sefton 

1980). Protein phosphorylation occurs as a result of phosphorylation by protein kinases, 

and removal of phosphates by protein phosphatases. Protein phosphorylation is crucial to 

many cellular events and is reflected by the fact that there are an estimated 2000 protein 

kinase genes in humans (Hunter 1995). Protein phosphorylation can occur via two main 

sets of kinases and associated phosphatases, the tyrosine kinases and the serine/theonine 

kinases. The process of phosphorylation involves the transfer of the terminal phosphate 

group in ATP to the hydroxyl group in serine, theonine or tyrosine residues on substrate 

proteins (Lodish et a/ 1995). The process of protein phosphorylation by kinases occurs 

when the stimulation of cell surface receptors leads to an elevation of intracellular second 

messenger molecules. 
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1.25.2 Second messengers 

Kinases have regulatory domains bound to their active sites. Second messenger 

molecules bind to kinases and a conformational change leads to a release of the regulatory 

subunit and the enzymatic activity of the kinase is initiated (Lodish et a/ 1995). 

The major second messenger molecules in humans are, cyclic AMP (cAMP), calcium, 

inositol1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG). 

There is a great deal of cross-talk between these second messenger pathways with 

elevations in one leading to an accumulation of another. Calcium is stored intracelluarly in 

the ER and mitochondria. When calcium is released it binds to the cytosolic protein 

calmodulin. The calcium-calmodulin complex is involved in the activation of many 

kinases. The calcium-calmodulin complex inactivates cAMP, thus regulating certain 

cellular processes. Raised levels of intracellular calcium ions (due to release from the ER), 

is induced by IP3 hydrolysis of membrane lipids. Calcium also interacts with DAG to form 

a membrane associated complex that activates protein kinase C. 

1.25.3 Receptor tyrosine kinases (RTK). 

RTKs comprise an extracellular ligand binding receptor complex, a transmembrane 

spanning hydrophobic region, and an intracellular cytosolic domain containing protein 

tyrosine kinases. Binding to the receptor causes dirnerisation and phosphorylation of 

tyrosine kinases (autophosphorylation). 

RTKs stimulate the exchange of GTP to GDP by G-proteins such as the Ras and Rho 

families. Ligands for RTKs are protein/peptide hormones such as insulin and other growth 

factors. G-proteins exist in an inactive GDP-bound state. G-proteins can be activated by a 

number of different receptors, and G-protein families interact with each other. Ras is 
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activated by the guamne nucleotide exchange (GEF) factor Sos. Intracellular 

concentrations ofGTP are higher than GDP, so GEFs catalyse the release ofGDP allowing 

GTP to bind. There have been over 35 GEFs identified in humans (Bar-Sagi & Hall 2000). 

The GEF, Sos is recruited to the membrane by a number of mechanisms (Rev by 

Schlessinger 2000). The adapter protein Grb2 can form a complex with Sos by binding to 

its Src homology 3 (SH3) domains. The Grb2/Sos complex is translocated to the 

membrane when the SH2 domain of Grb2 binds to an activated RTK. The Sos!Grb2 

complex can also translocate to the membrane by binding to the adapter protein She. The 

fmal way in which Sos can be recruited to RTK.s is by binding to membrane docking 

proteins such as IRS1, which is phosphorylated by activated RTK.s. Once at a RTK, Sos 

stimulates the exchange of GTP to GDP by Ras. Ras interacts with proteins such as Raf 

and phosphatidylinositol-3 (PI-3) kinase by binding to the N-terminus thus bringing them 

to the membrane. The Raf family of proteins are MAPK kinase kinases (MAPKKK) which 

phosphorylate serine residues, in particular MEK, leading to further pathway activation by 

including the serine/theonine kinases such as the MAPK.s (Lopez-Liasaca 1998). 

1.26 Mitogen activated protein kinase (MAPK) cascades 

The function of signal transduction pathways is to relate signals across the 

cytoplasm to the nucleus to initiate an appropriate transcriptional response (Paul et al 1997, 

Woodgett et a/ 1996, Karin 1998). MAP kinase cascades function in higher eukaryotes as 

signal transducers from the cell surface to the nucleus where they phosphorylate a range of 

transcription factors including ELK1, c-Jun and CREB (Kyriakis 1998). Extracellular 

stimuli may bind to membrane receptors (growth factors, cytokines) or be a physical stress 

such as oxidation or osmotic shock. G-proteins activate PI3-K and then tyrosine 

phosphorylation via adapter proteins She, Grb2 and Sos (Lopez-Liasaca 1998). Redox 
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regulated pathways include the MAPK's, Phospholipase Cgamma (PLCgamma) and PI-3 

kinase (Kamata & Hirata 1999). MAPK pathways are involved in cross talk between 

different pathways including the ceramide SMase activation ofNFKB (Ballou et a/ 1996). 

MAPK's have been found to play an important role in a wide range of cellular functions 

including embryonic development, innate and acquired immunity and have recently been 

implicated in numerous disease processes including heart disease, stroke and diabetes 

(Kyriakis & Avruch 2001, Pearson et a/ 2001). MAPK activation leads to the 

phosphorylation and regulation of numerous cellular proteins, growth factor receptors, 

transcription factors, cytoskeletal proteins, phospholipases and protein kinases (Guan 1994, 

Treisman 1996). In renal injury the main cellular responses such as proliferation. growth 

arrest, hypertrophy, differentiation. and apoptosis have been linked to MAPK activation 

(Bonventre & Force 1998, Tian et a/2000, Wang et a/1998c). 

The core ofthe MAPK pathway consists of three protein kinases that receive signals from 

the plasma membrane and other stimuli via GTP-binding proteins. The most upstream 

component of the cascade is the MAPKKK this phosphorylates the dual specificity MAPK 

kinase (MAPKK) which in turn activates the MAPK (Reiser et al 1999, Marshall 1994). 

Phosphorylation occurs on closely spaced threonine and tyrosine residues. In mammalian 

cells there are five conserved MAPK pathways which have been identified. These are the 

mitogenic extra-cellular regulated kinase (ERK) 112 cascade, the stress activated c-jun N

terrninal kinase (.JNK), the protein 38 (p38) cascades and the poorly understood ERK3 and 

ERK5 cascades. It has been suggested that MAP kinases can participate in the regulation 

of NFKB both in the cytoplasm and nucleus (Schulze-Osthoff et al 1997, Zechner et a/ 

1998, Van den Berghe et a/ 1998). Both are activated in response to similar conditions 

such as hyperglycaemia (Yerneni et a/ 1999, Igarashi et a/ 1999), although the pathway by 

which is occurs is not clear (Wesselberg et al 1997). The role of MAPK activation during 
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ischaemic injury is also unclear (Park et a/ 2001). The JNK MAPK cascade is known to 

respond to mainly stressful external stimuli including UV light, oxidative stress and 

inflammation (Guan 1994, Kyriakis et a/ 1994, Woodgett et a/ 1996). It is therefore often 

referred to as a stress activated protein kinase (SAPK). The p38 MAPK can be activated in 

a protein kinase C independent pathway (Igarashi et a/ 1999), suggesting that it can also 

respond to receptor independent stimuli. JNK activation in ischaemic/reperfusion injury 

has been shown in rat models (Onishi et a/ 1999) and most studies conclude that the JNK 

pathway is only activated by reperfusion (Bogoyevitch et a/ 1996, Bradham et a/ 1997). 

Severe hypoxia can activate both p38 and JNK proteins (Scott et a/1998), but inhibition of 

JNK has been linked to increased cellular apoptosis, whilst inhibition of p38 has no effect 

on cell death (Wang et a/ 1998c ). 

Hypoxia followed by reoxygenation has been shown to activate p38, JNK and ERK 

MAPK's (Scott et a/ 1998, Seko et a/ 1997). In perfused rat heart, ischaemia alone was 

found to activate the p38 and ERK kinases, but only reperfusion activated JNK 

(Bogoyevitch et a/ 1996). Warm and cold hypoxia followed by rewarming/reoxygenation 

is linked to apoptosis and inhibition of JNK during hypoxia has been shown to prevent 

apoptosis in hepatocytes (Crenesse et a/ 2000a., Crenesse et a/ 2000b). JNK induced 

apoptosis is via MEKK-1 regulated activation, as MEKK -/- cell lines do not activate JNK 

or undergo apoptosis when stressed with oxidative stress (Minamino et a/ 1999). 

The production of an inflammatory response is likely to involve co-operative mechanisms 

between signal transduction pathways and transcription factors. Cytokine production may 

in part be regulated by MAPK activation (Kracht 2000). The p38 MAPK is involved in IL-

8 expression during rewarming of epithelial cells (Gon et a/ 1998). P38 may be an 

upstream kinase in the activation of NFKB during myocardial ischaemia (Maulik et a/ 
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1998). Inhibition ofNFKB and p38 have been associated with reduced expression ofiL-1 

beta, IL-6, TNFa and iNOS (Chandrasekar et a/1998). 

In plants an MAPK type pathway has been identified and found to be activated by cold 

stress and drought (Jonak et a/ 1996). MAPK activation is also associated with osmotic 

shock, which is associated with Raf-1 and MEKK activation (Matsuda et a/ 1995). 

Release of nitric oxide may be important in MAPK activation (Katori et a/ 1999) as 

stimulation with NO releasing compounds can result in p38 activation within I 0 minutes 

(Huwiler & Pfeilschifter 1999). 

1.17 Transcription Factors. 

A gene is transcribed when an RNA polymerase is recruited to the genes promoter 

region. Mammalian cells contain three classes of RNA polymerases. Class I polymerases 

bind to promoter regions in the 5' end of a gene. Class 11 polymerases also bind to 

promoters in the 5' region and normally bind to TATA motifs, which are located about 30 

base pairs upstream of the transcription start point. Some class III polymerase genes have 

TATA boxes, but most contain a regulatory region known as the A-B box in the coding 

region itself. RNA polymerases do not bind directly to DNA, but are recruited to the 

promoter by a set of proteins specific for each class of polymerase. The protein complex 

for class I polymerases are known as SL l. Class 11 polymerases are associated with the 

TFIID complex and class Ill with the TFIIIB complex. All three polymerase complexes 

contain the TAT A-binding protein (TBP), which interacts with the TAT A box (Rev by 

Cox & Sinclair 1998). 

The interaction between the RNA polymerase, numerous general transcription factors, the 

polymerase specific transcription factor and numerous stabilising proteins at the gene 

promoter form the basal transcription complex. This complex is the basis for transcription 
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of the gene. In order to achieve tissue specific transcription of certain genes, numerous 

specific transcription factors exist that can be activated under certain circumstances and 

initiate the expression of a gene containing a binding site for the transcription factor. 

Transcription factors are transcriptional regulators that bind to regulatory elements in a 

gene which interact with the transcription initiation complex. Transcription factors are 

trans-acting as they are distinct from the gene it regulates. They bind to cis-elements which 

are contained within the gene it regulates. A transcription factor can either bind directly to 

a cis-acting sequence or interact with DNA-binding proteins. Transcription factors are 

group into 6 main classes depending on their effect on gene transcrition (from Semenza 

1998). 

I. Activators 

2. Coactivators 

3. Architectural factors (for protein structure) 

4. Repressors and corepressors 

5. Chromatin remodelling factors 

6. Transcription elongation factors 

Structurally transcription factors are of three main types. The largest group are the zinc 

finger proteins. Other types are either basic leucine zipper proteins or helix-loop-helix 

proteins. Mutations in the genes encoding transcription factors genes have been associated 

with numerous diseases including muscular atrophy, prostrate cancer and osteoporosis. 

Also, transcription factor genes contain nucleotide polymorphisms that are likely to effect 

their function (Shinohara et a/2001). 
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1.17.1 Nuclear factor kappa B (NFKB) 

The NFKB transcription factor and its cytoplasmic inhibitor IKB are evolutionary 

conserved co-ordinating elements in the organisms response to situations of infection, 

stress and injury (Ghosh et a/ 1998). The activation of NFKB results in the increased 

expression of numerous proteins involved in the acute phase and inflammatory response. 

NFKB is found bound to its inhibtor complex, IKB in the cytoplasm of many cell types, 

including mature B-cells, plasma cells, macrophages and neurons. upon receiving an 

appropriate signal, the IKB/NFKB complex disociates and NFKB is released to translocate 

to the nucleus where it upregulates the transcription of specific genes. NFKB is involved in 

the expression of some 60 pro inflammatory genes including IL-l, IL-6 and TNF a 

(Baeuerle 1998). The NFKB molecule also regulates the transcription of its inhibitor IKBa, 

forming an auotoregulatory pathway (Sun et a/ 1993). NFKB has been shown to be 

activated by UV light, heat shock, oxidative stress, cytokines and other agents (Ghosh et a! 

1998, Baldwin 1996). NFKB does not rely on de novo protein synthesis and therefore is 

able to transduce a quick message to the nucleus upon stimulation (Baeuerle & Baltimore 

1988, Read et a/ 1994). The family of proteins to which NFKB belongs is known as the 

Rei proteins. Each contains anN-terminal 300 amino acid conserved sequence known as 

the Rei homology domain. This region is responsible for DNA binding, dimerisation and 

the interaction with IKB subunits. NFKB is a dimer of the rei family proteins. Rei protein 

members include Dif, Dorsal, Relish, v-rel, e-re!, p52, p65, pSO and rei-B. The most 

common NFKB dimer is the heterodimer formed between the pSO and p65 subunits, and is 

generally the protein referred to as NFKB (Ghosh et a/ 1998). Transgenic mice lacking 

Re lA and e-Re! genes are found to have inhibited IL-4, IL-l 0 and IFN-y expression, 

increased apoptosis and interfered cell cycle progression (Ferreira et a/ 1999). The NFKB 
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heterodimer or homodimer subunits, p50 and/or p65 have differing functions. A p65 

antisense oligo and p50 oligo in combination was found to affect cell adhesion properties, 

but only cells treated with a p50 oligo maintained normal morphology (Narayanan et a! 

1993), the p65 subunit is likely to be involved in cell growth and regulation. Inhibition 

using a p65 anti-sense oligonucleotide has been found to reduce tumour regression in mice 

(Higgins et a/1993). 

The crystal structure of the NFKB/IlcBa complex has recently been discovered (Jacobs and 

Harrison 1998, Huxford et a[ 1998), which has revealed a detailed knowledge of the 

interactions between the subunits. Activation ofNFKB is tightly regulated in the cytoplasm 

inhibitor IKB, which binds to NFKB and masks its nuclear localisation signal. NFKB is 

activated when IKBa is phosphorylated and dissociates, freeing the p65/p50 subunits to 

enter the nucleus (Rice & Ernst 1993). This leads to the proteolysis and degradation of 

IKBa at the proteosome (Henkel et a! 1993, Lin et al 1995). 

IKB is a member of a large family of proteins which contain a multiple region of homology 

known as the ankyrin-repeat motifs. These include IKBa, IKB~, lKBE, IKBy, and Bcl-3. 

This group also contains the Drosophila protein cactus. The IKBa is mainly involved in the 

interaction with NFKB, as it inhibits the nuclear translocation signal contained in the NFKB 

p65 subunit. IKBa phosphorylation can be induced by a wide variety of stimulants 

including UV light, glucose and oxidative stress (Du et a/1999). 

NFKB mediated transcription can be initiated by cytokines such as IL-l and TNF-a, which 

are also stimulated by NFKB, IL-6, IFN-y and lymphotoxin. thus initiating an 

autoregulatory feedback loop. Recent studies however, have produced conflicting results as 

to the benefit of inhibiting this molecule in inflammatory disease (Satoh et a/1999, Steinle 
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et a/1999). Although targeting NFKB in systemic inflammatory diseases such as sepsis has 

reduced symptoms in animal models (Bohrer et a/1991). 

Hypoxia and reoxygenation have been shown to activate NFKB (Koong et a! 1994, 

Howard et a/ 1998, Li et a/ 1999) through redox mediated pathways and reactive oxygen 

intermediates (Daemen et a/ 1999, Onishi et a! 1999). Some studies have found a lack of 

NFKB activation by oxidative stress in T-cells and epidermal cells (Brennan & O'Neill 

1995). The hypoxic activation ofNFKB is thought to be mediated by Ras signalling and to 

be independent of ERK I I 2 activation (Koong et a/ 1994). It may be that a combination 

of oxidative stress and cytokine production is needed for NFKB activation, as it was found 

that both hydrogen peroxide and TNFa were needed for NFKB activation in rat lung 

epithelial cells (Janssen-Heininger et a/ 1999). It has been suggested that NFKB is 

predominantly activated by the pro-oxidant state and AP-1 by the antioxidant state (Meyer 

et al 1994, Peng et a/1995). Hence, the response to hypoxia is predominantly AP-1 driven, 

whilst during reoxygenation its NFKB that contributes to inflammation (Rupee & Baeuerle 

1995). Reperfusion has been shown to activate both AP-1 and NFKB with maximal mRNA 

activity after 60 minutes reperfusion (Bradham et a! 1997). Endothelial cells exposed to 

H202 after reperfusion show upregulation ofNFKB (Canty et a! 1999) and anti-oxidants 

inhibit NFKB activity by scavenging hydroxyl radicals which act as a second messenger to 

NFKB (Shi et a/ 1999). 

Little is known about the role ofNFKB during cold ischaemia. NFKB expression has been 

shown to correlate with cold ischaemia in serial biopsies and expression at 120 minutes 

was found to correlate with post-reperfusion bile flow and sorbitol dehydrogenase activity 

(Ricciardi et a/2000). In the injury setting it has been found that inhibiting NFKB prevents 
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LPS induced upregulation ofHLA-DR, CD40 and CDla in dendritic cells (Ardeshna et a/ 

2000). Also that adhesion molecules are useful markers of graft damage (Troulong et a/ 

1996) and are under NFKB control (Howard et a/1998). 

1.17.2 Activator Protein 1 (AP1) 

Ap I is a multimeric transcription complex that consists of homodimers or 

heterodimers of the Jun, fos or AFT protein families. Typically API is found as a 

heterodimer complex of c-Jun and c-fos. AP-1 is a vital transcription factor for leukocyte 

gene expression (Foletta et a/1998). MAPK pathways have been linked to AP-1 activation 

(Whitmarsh & Davis 1996). T -cell activation and IL-2 promoter activity are dependent on 

both NFKB and AP-1 costimulatory signalling (Jung et a/ 1995). Ap 1 is activated by a 

similar set of stimuli as NF KB, particularly oxidative stress (Peng et a/ 1995, Jung et a/ 

1995), TNFa (Kyriakis 1999) and post -ischaemic injury (Yeh et a/ 2000). Phorbol esters 

activate NFKB but not AP-1 (Tran-Thi et a/ 1995). Both transcription factors are vital for 

the production of inflammatory cytokines such as IL-8 (Lakshminarayanan et a/ 1998, 

Roebuck 1999). It is thought that NFKB is vital for IL-8 expression (Hsu et a/ 1999) but 

may be cell type specific and AP-1 binding is also required for gene transcription 

(Lakshminarayanan et a/ 1998). Treatment of cells with adenosine prevented TNFa 

production in rat hearts and blocked NFKB activation but not AP-1 activity (Li et a/ 2000). 

Hypoxia can induce the AP-1 transcription factor, however the level of AP-1 genes 

transcribed does not correlate with transcription factor activation. These include 

endothelin-1, platelet derived growth factor B, collagenase IV and c-Jun (Bandyopadhyay 

et a/ 1995). AP-1 components c-jun, junB and c-fos have been shown to be induced by 

ischaemia, but the study only reduced temperature to 33°C (Kamme et a/ 1995). Recent 
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gene therapy for ischaemia!reperfusion and new immunosuppressive agents, have targeted 

NFKB and API in mouse models (Zwacka et atl998, Mortellaro et atl999). 

1.18 Cytokines during stress responses 

1.18.1 Interleukin-6 (IL-6) 

IL-6 is produced in response to injury of tissue or infection during graft rejection. 

IL-6 is a pleiotrophic cytokine involved in the regulation of immune responses, acute phase 

reactions, haematopoiesis and immunoglobulin production in B-cells. IL-6 deficient mice 

are severally defective in acute phase responses to infection or tissue damage showing that 

it is essential for localised inflammatory reactions but not systemic responses (Fattori et at 

1994, Cuzzocrea et at 1999). IL-6 has a critical role in ICAM-1 expression (Nose 1993, 

Kukielka et at 1995). Myocytes show reperfusion dependent expression of IL-6 mRNA 

with peak expression after l hour of reperfusion (Gwechenberger et at 1999). IL-6 can be 

induced by ischaemia alone with 24 hours of ischaemia producing levels comparable with 

l hour ischaemia followed by 24 hours reperfusion, but IL-6 production is accelerated by 

reperfusion (Kukielka et at 1995). IL-6 has also been shown to be induced by hypoxia via 

NFKB activation (Muraoka et at 1997). 

The role of IL-6 in neutrophil adherence v.a induction of ICAM-1 expression IS 

demonstrated by the fact that neutrophils only adhere to isolated cardiac myocytes if the 

myocytes have been previously exposed to cytokines lL-1, TNF-a and IL-6 (Yamanchi

Takihawa et atl995). These cytokines are likely to function in synergy, as IL-6 production 

is TNF-a dependent, and blockade of TNF-a by monoclonal antibody reduces IL-6 

production (Yao et at 1997). IL-6 produced during reperfusion in coronary bypass grafting 

causes a higher percentage of neutrophil transendothelial migration compared to normoxic 

myocytes (78% Vs 26%) which is attenuated if an anti-IL-6 monoclonal antibody is 
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administered during reperfusion (Sawa et a/ 1998). The IL-6 promoter has several 

transcription factor binding sites including two APl sites and an NFKB site. The IL-6 gene 

and its receptor are regulated by a CEBP transcription factor binding site in the 

promoter/enhancer region (Chandrasekar et a! 1999). NFKB is the primary inducer of IL-6 

in cardiac myocytes, although binding of the NF-IL-6 transcription factor was also found 

during hypoxia (Matsui et a/ 1999). Studies have concluded that binding of NFKB to its 

site is sufficient for activation of the IL-6 gene, (Libermann & Baltimore 1990, Shimizu et 

a! 1990, Muraoka et a/ 1997) but discrepancies between the abundance of activated NFKB 

and IL-6 mRNA levels are found, indicating that other transcription factors are necessary 

for IL-6 production (Patestos et a/ 1993). The explanation for the differences found in 

expression of IL-6, are that it exerts stimulant specific and tissue or cell type specific 

activation, especially during hypoxia (Gruss et a! 1992, Fiebich et a! 2000, Y an et al 

l997a 1997b). Polymorphism of the IL-6 gene affects plasma levels of the protein 

(Fishman et a/ 1998). Several in vivo studies have implicated IL-6 as a possible marker of 

disease severity. IL-6 plasma levels are elevated during reperfusion in a rat model of 

hepatic ischaemialreperfusion with maximal levels after 6 hours (McCurry et al 1993). In 

lung transplantation, IL-6 levels peak 4 hours after reperfusion and correlate with alveolar 

damage and low arteriaValveolar oxygen tension (Pham et al 1992). In liver 

transplantation, IL-6 levels have been shown to correlate with VWF during poor early graft 

function when measured in the first 50 ml of reperfused etlluent (Basile et a/ 1999). 

However, IL-6 has also been shown to have a protective effect in rats pre-treated with 

recombinant IL-6 before a warm ischaemic period with reduced serum C-reactive protein 

(Carmargo et al 1997). But confusion still exists as LPS stimulated rats have reduced 

mRNA for TNFa and IL-6 and reduced apoptotic cells during reperfusion of preclamped 

renal vessels (Heeman et a/ 2000). In vivo during reperfusion of the aorta in aneurysm 
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repair, elevated levels of IL-6 are found during the operation and reperfusion correlating 

with endotoxin release and organ dysfunction (Holzheirner et a/1999). Also after coronary 

reperfusion IL-6 levels are increased systemically in the plasma (Seino et at 1995). IL-6 

levels in the urine have been shown to correlate with progressive mesangial 

glomerulonephritis (Hirano 1998) indicating a role in kidney damage. 

1.18.2 IL-8 

IL-8 was first discovered in 1988 as an 'intercrine' cytokine with neutrophil 

attracting and inflammatory properties (Matsushima et a/ 1988). Mature neutrophils 

express IL-8 receptors at a much higher rate than T-cells. IL-8 regulates the expression of 

its receptors, as binding to the receptor causes the internalisation of the receptor before IL-

8 is released. Internalised IL-8 causes the very rapid accumulation of intracellular calcium 

ions, within 2 seconds {Thelen et a/ 1988). IL-8 therefore initiates signal transduction 

pathways and IL-8 receptors are thought to be closely linked to protein kinase C activation 

and protein phosphorylation (Rev by Oppenheim et a/ 1991). The IL-8 gene has binding 

sites for NFKB, AP1 and AP2. IL-8 expression is thought to require the binding of 

transcription factors to two important cis elements in the IL-8 gene, an NFKB site and a 

C/EBP-like site (Oppenheim et a/ 1991). IL-8 is produced by a wide range of cell types 

including macrophages, T-cells, B-cells, endothelial cells, platelets and neutrophils. IL-8 

also has chemoattractant properties for T-cells and has been shown to increase T-cell 

adherence to endothelial cells via up-regulated HLA class I expression on T -cell surface 

(Carveth et al 1989). 
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1.18.3 Tumour Necrosis Factor (TNFa) 

TNFa was first identified to be the same as the macrophage secreted protein 

cachectin (Beutler et a/ 1985). TNFa is a proinflamrnatory cytokine produced by a variety 

of cell types including immune cells such as B cells, T cells and neutrophils and non 

immune cells such as smooth muscle and endothelial cells. TNFa synthesis can be induced 

by a wide range of stimuli, both biological and chemical. The synthesis of TNFa is tightly 

regulated so that under normal or quiescent circumstances TNFa production is small 

(Beutler et a/ 1995). Many human disease states are associated with increased TNFa 

production, including sepsis, autoimmunity and lymphoma and TNFa is known to be 

involved in autoimmune disease such as lupus nephritis (Jacob 1992) and the development 

of renal insufficiency syndromes (Meldrum & Donnahoo 1999, Donnahoo et a!I999a). 

The TNFa gene is one ofthe immediate response genes induced by stress. TNFa does not 

rely on de novo protein synthesis and increased mRNA levels can be detected within I 0 

minutes of stimulation, because the factors necessary for TNFa synthesis pre-exist in the 

cell (Zhang & Tracey 1998). Inducers of TNFa include cytokines IL-l, IL-2 and IFN

y, complement proteins and X-ray radiation. Suppressors of TNFa production include 

cytokines IFN-a, lL-4 and IL- 10, glucocorticoids and cyclosporine A. IL-10 suppresses 

NFtcB and TNFa activation in hepatocellular ischaemic injury (Yoshidome et a/ 1999a,b). 

TNFa has evolved as a mediator of host defence responses. In endothelial cells TNFa 

plays a vital role in the modulation of angiogenesis, cellular permeability, MHC class I 

expression, procoagulant activity, and the induction oflL-1, ICAM-1, VCAM -I, P- and E

Selectin. In the kidney increased TNFa levels can induce glomerular fibrin deposition, 

cellular infiltration and vasoconstriction leading to a reduced glomerular filtration rate 
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(Meldrum & Donnahoo 1999). The TNFa gene contains binding sites for NFKB, APl and 

NFAT amongst many other transcription factors. Its regulation is complex and the TNFa 

gene is highly polymorphic. Individual polymorphisms create differences m 

TNFa production within the population (Jacob et a! 1992). The cell type specific 

regulation ofTNFa activity is likely to be due to the differential use of regulatory elements 

in the TNFa promoter (Zhang & Tracey 1998) and polymorphic variations of the TNFa 

gene. TNFa is also involved in the release of IL-6 (Yao et a/ 1997, Kurokouchi et a! 

1998). 

The MAPK pathways are also implicated in TNFa production via the activation of 

transcription factors important in TNF a synthesis (Donnahoo et a! 1999). 

In transplant rejection the infiltration of TNFa secreting macrophages correlates with acute 

rejection, elevated plasma TNFa and VWF production in the liver (Hoffinarm et a! 1993). 

Protein kinase C mediates TNFa expression leading to apoptosis under hypoxia in 

endothelial cells (Li et a/ 1999). TNF receptor cytoplasmic domains recruit Pas-associated 

death domain proteins that activate proteases and caspases (Natoli et a/1997). 

TNFa and IL-l~ have been shown to induce the expression IL-6, I CAM-I and VCAM 

mRNA during hypoxia under the control of NFKB and AP-1 (Kurokouchi et a! 1998, 

Kacimi et a/1998). Levels ofTNFa production in bile effluent from liver grafts was found 

to be induced by both warm and cold ischaemia, and was reduced by cold perfusion of 

livers before warm ischaemia (Lutterova et a! 2000). The TNFa microsatellite 

polymorphism has been associated with rejectors in kidney transplantation (Asano et a! 

1997). 
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1.19 Cell death 

1.19.1 Apoptosis 

Apoptosis is an organised process of cell death that functions to maintain a balance 

in normal cellular growth and development (Behms et a/ 1999). It was frrst recognised in 

the 1970's as an organised cell disassembly, distinct from necrosis (Kerr et a/ 1972). 

Necrosis occurs during injury and is associated with profound inflammation of tissue and 

cells. Necrosis results in the breakdown of internal and plasma membranes resulting in the 

loss of cellular contents to the surrounding environment. This invokes an inflammatory 

response involving numerous cytokine secreting immune cells. Apoptosis is often found in 

mesangial cells during acute renal failure (Ueda et a/ 2000). 

Apoptosis can be distinguished from necrosis as cell death m the absence of an 

inflammatory response. Apoptosis occurs in single cells and is associated with cell 

shrinkage, loss of contact, chromatin condensation and nuclear fragmentation (Alien et a/ 

1997). Cell shrinkage is induced by loss of intracellular fluid by inhibition of membrane 

eo-transporter systems. Biochemical changes in the plasma membrane cause 

phosphatidylserine to be exposed on the outer membrane surface. This is recognisable to 

phagocytes and parenchyma) cells, which can engulf the apoptotic body. During formation 

of this apoptotic body chromatin in the cell nucleus condenses to form a mass and the 

DNA is fragmented. 

Apoptosis can be induced in vitro by a range of stimuli including serum deprivation, 

oxidative stress and growth factor withdrawal (Hogg et a/ 1999). Cells undergo apoptosis 

when an appropriate signal activates a cascade of proteases known as cytosolic aspartate

specific proteases (caspases). Caspases exist as pro (inactive) proteases in the cytoplasm. 

There are approximately 14 caspase proteins in human cells. Caspases are highly 

conserved proteases that cut cytoplasmic and nuclear contents into apoptotic bodies. The 
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caspase cascade is induced when a ligand binds to a cell surface receptor. Cell receptors 

such as TNFa, TGFP and Fas have intracellular death domains (DD) that interact with 

adapter proteins and activate the caspase cascade. Ligands that induce apoptosis must 

crosslink receptors and aggregate DD's. The orientation of DD's is vital in the recruitment 

of adapter proteins to activate the caspase cascade. Adapter proteins include the TNF 

receptor-associated death domain (TRAF) protein, apoptotic protease activating factor- I 

(AP AF-1) and apoptosis inducing factor (AlP) proteins. The major caspases in the cascade 

are caspases -8,9 and 10, which are known as initiators as they can directly activate the 

cascade. Caspases -3, 6 and 7 are known as effectors as they cleave proteins vital for cell 

survival. The third group of caspase proteins are involved in cytokine processing and 

cleavage. Caspase -1 cleaves IL-l p into its mature form, and caspase-3 cleaves IL-16 into 

its active and secretary form. Caspases -4, -5, -12, -13 and -14 are thought to be involved 

in cytokine processing. Receptor mediated apoptosis is the major way in which cellular 

apoptosis is induced, however, apoptosis can also be induced by loss of suppressive 

mechanisms. Cells contain many proteins that function to prevent apoptosis by inhibiting 

caspases or preventing activation of caspases. The Bcl-2 family of proteins regulates 

mitochondrial membrane permeability. This means they can function as pro or anti

apoptotic mediators depending on how they effect mitochondrial permeability. 

Cytochrome c, which is contained in the mitochondria, is released when the mitochondrial 

membrane is damaged (Reed 1997). Cytochrome c activates caspase -9 which in turn 

activates other caspases. Other proteins that inhibit apoptosis include the anti-oxidant 

glutathione and NFKB. 

NFKB has been linked to the regulation of apoptosis in a cell type specific manner 

(Baichwal & Baeuerle 1997) NFKB knockout mice die of massive apoptosis in liver cells 

(Begg et at 1995). NFKB is thought to prevent apoptosis by blocking the activation of 
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caspase 8 (Chu et al 1997, Wang et a/ 1998a). NFKB mediated prevention of cell death is 

limited, as severe oxidative or cytokine induced stress causes cell death despite NFKB 

activation in a necrotic response (Li et a/ 1997). Hyperoxia in cell culture has been shown 

to induce cell death with an associated increase in NFKB activation, this was found to be 

independent of ERK I /2 MAPK activity (Kazzaz et a/ 1999). A potent stimulator of 

MAPK and SAPK known currently as haematopoietic progenitor kinase-] (HPKI) is 

found to inhibit NFKB when mediating caspase cleavage and hence apoptosis (Arnold et a/ 

2001 ). Inhibitor of apoptosis proteins (lAP) are under NFKB control (Er! et al 1999) and 

TNFa stimulation results in feedback between c-IAP2 activity and NFKB activity and anti

apoptosis (Chu et al 1997). Newly identified proteins involved in apoptosis such as Par-4 

are found to inactivate protein kinase C and hence NFKB (Diaz-Meco et al 1999). NFKB 

anti-apoptotic effects are independent of de novo protein synthesis as shown in cells treated 

with cyclohexarnide and IL-l~ stimulated (Kajino et a/ 2000). In Cancer, dysfunctional 

NFKB activity has been shown in HeLa cells, breast carcinoma cells and malignant 

tumours (Rupee & Baeuerle 1995, Kurt et a/ 1998, Royds et al 1998). Caspase-3 cleaves 

and truncates IKBa resulting in its increased binding to NFKB and suppression of its 

activity, and hence apoptosis (Reuther & Baldwin 1999). During ischaemic injury 

reperfusion after 30 hours at 4°C has been shown to induce apoptosis (Rauen et a/ 1999) as 

well as hypoxia and reperfusion., in animal models (Nogae et al 1998 Daemen et a/ 1999). 

In endothelial cells apoptosis can be induced in culture by the addition of cytokines such as 

TGF~, oxidative stress or by serum deprivation (Hogg et a/ 1999). Signalling via TNFa 

and PKC pathways are vital in hypoxia-reoxygenation mediated apoptosis in endothelial 

cells (Li et al 1999). Also signals from MKK6 and p38/NFKB inhibit apoptosis in cardiac 

myocytes (Zechner et al 1998). In lymphocytes glucocorticoids such as dexamethasone can 

induce apoptosis (Fearnhead et a/ 1994, Cidlowski et a/!996). Dexamethasone reduces the 
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expression ofNFKB (Tsao et al 1997). Heat shock proteins are likely to be involved in the 

regulation of apoptosis in stressed cells (Santoro 2000). The heat shock response is thought 

to inhibit NFKB (Heneka et a/ 2000). Hsp70 prevents the formation of the apoptosome by 

blocking the interaction of APAF-1 with caspase protein 9 (Morano & Thiele 1999). 
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1.20 Project overview 

The aim of this project is to investigate the effects of hypothermia and reperfusion 

on endothelial cells. Preservation injury involves hypothermia, hypoxia and reperfusion. 

The effects of hypoxia are well documented in the literature, due to the fact that hypoxia 

plays a vital role in other disease processes such as angiogenesis during tumour growth and 

vascular disease (Rupee & Baeuerle 1995, Voelkel & Tuder 2000). The effects of 

hypothermia are less well documented as hypothermia in disease is a rare event. The aim 

of this project is therefore to focus on the effects of hypothermia at the cellular level and to 

try and extrapolate any findings into the clinical setting. 

The injury sustained to graft cells during the procurement of organs for transplantation is 

thought to influence subsequent graft function. This has led to the formation of the 'injury 

hypothesis' that attempts to explain the role of ischaemic injury in graft function (Halloran 

et a/ 1998). However, data to support the injury hypothesis is not conclusive and many 

studies have found good graft survival rate in organs with longer ischaemic times, and 

argue that reducing ischaemic times may be detrimental to HLA-matching (Lange & 

Kuhlmann 1998). Also, recently studies have found a benefit from a pre-ischaemic insult 

to cells on preventing subsequent injury from ischaemia, leading to an apparent 'heat shock 

paradox' (Demeester et a/2001). 

Endothelial cells are at a vital interchange between the vascular system and the organ from 

which they are found. Data has shown that endothelial cells up-regulate HLA class II 

molecules during ischaemia and may have the ability to activate host T-cells (Shackleton 

1998, Pober et a/ 1996). Endothelial cells are also an important source of adhesion 

molecule expression as well as playing a vital role in the coagulation system. Renal vein 

thrombosis and vascular rejection can account for some 5% of early graft loss (Parrot 

1995). One particular event that is likely to be important in the quality of graft cells is 
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apoptosis, which can be associated with inflammation (Daemen et a/ 1999). Previous 

studies have shown been conflicting as to the role of hypothermia in apoptosis (Hansen et 

a/ 1994, Kruman et a/ 1992). Cytokines are likely to be important mediators in the 

response to injury, as well as in the subsequent inflammatory response and host immune 

response. Recently cytokines such as IL-6 and TNFa have been shown to have 

polymorphisms which correlate with both protein production and rejection in kidney 

transplantation (Marshall et a/ 2001, Ghandi et a! 200 I). The aim of this project is to 

subject endothelial cells to hypothermia for a time course relevant to preservation times 

and determine the subsequent effect on cells. The outcome measures will be apoptosis, 

inflammatory markers such as TNFa and IL-6 production, as well as to try and elucidate 

the pathway by which this may occur. The transcription factor NFKB is likely to be 

involved in the regulation of both apoptosis and inflammatory cytokine production. 

although its role in hypothermia to date is unknown. The MAPK cascades are thought to 

play a possible role in NFKB activation. although there is also controversy as to how this 

may occur (Schulze-Osthoff et a/ 1997). There is great potential to use numerous inhibitors 

in cell culture to investigate pathways and to block the production of certain cytokines as 

well as the potential to add to preservation solutions. 

Further to investigating these events in a cell culture system the aim of this project is to 

also link events to the actual graft itself. To achieve this, levels of hypoxic markers and 

inflammatory cytokines are going to be measured in preservation solutions surrounding 

kidney grafts during the cold ischaemic period. A non-invasive marker of graft damage 

would have a great use in a clinical setting (Hauet et a/2000). 

The response of donor cells to cold ischaemia is likely to be different depending on the 

donor. This may in part be due to a polymorphism which the donor cells may have. In 

particular certain polymorphisms are linked to high or low producer status for certain 
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cytokines. The aim of this project is to also investigate functional polymorphisms in the 

IL-6 and TNFa genes of donor patients to determine if they correlate with rejection 

episodes. The role and importance of the donor in transplantation is becoming more 

evident. The role of oxidative stress in many disease processes is becoming more important 

as this area is more actively investigated. The NAD(P)H system is widely researched in the 

cardiovascular field and a functional polymorphism of the phox22 subunit has been shown 

to have a protective effect by reducing free radical production in heart disease (Inoue et al 

1997). This polymorphism may play a protective role in transplant donors. The redox 

regulated transcription factor NFKB is involved in many disease processes and a recently 

discovered polymorphism in the NFKB gene, although not shown to be functional to date 

may be involved in the regulation of inflammatory responses in the donor kidney. 

Finally the aim of this work on genetics in the donor is to try and correlate levels of 

cytokines found in the donor kidney with the functional polymorphism that they have. The 

IL-6 ( -174) polymorphism is functional, but the role ofiL-6 protein levels in early graft 

function is unclear, despite the fact that the polymorphism has been shown to correlate 

with rejection. 

With the role of the donor being further appreciated as data accumulates, the aim of this 

project is to add to the 'injury hypothesis' by investigating the molecular events occurring 

during hypothermic and reperfusion stress in the donor organ during its procurement, 

storage and transplantation into the recipient. 
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2.1 Reagents 

All reagents were analytical grade or equivalent. 

Hydrochloric Acid, Magnesium Chloride, Orthoboric Acid, Potassium Chloride, 

Sodium Chloride, Sodium Dodecyl Sulphate (SOS), Sodium Fluoride and Tween 20 

were purchased from BDH UK. Ammonium persulphate (APS), Aprotonin, 

Bromophenol blue, Dimethylsulfoxide (DMSO), Foramide, Glycerol, Glycine, 2-

Mercaptoethanol, Phenyl-methyl-sulphonyl-fluoride (PMSF), Sodium Orthovanadate, 

Tetramethylethylenediamine (Temed), Triton xiOO, Tergitol (NP40) and Trizma Base 

(Tris) were purchased from sigma chemicals UK. Acrylamide and NN'-Methylene

Bis-Acrylamide (Bis) were purchased from Biorad UK. Chloroform, Ethanol and 

Methano I were purchased from Rathburns UK. Low melting point Agarose was 

purchased from Boehringer Mannheim Germany. 

2.1.1 Water 

Double distilled water (Millipore UK) was used for all stock reagent preparation. 

Sterile water (Baxter Healthcare UK) was used for PCR and primer dilutions. 

2.1.2 Culture Media 

Medium 199 supplemented with 10% Foetal Calf Serum (FCS), 5% 

Penicillin/Streptomycin (pen!strep) and 5% L-Glutamine (Life Technologies UK) for 

ACHN and ECV 304 cell lines. Medium 200 supplemented with Low serum growth 

Supplement (Totam Biologicals UK) and 5% Pen!Strep for primary endothelial 

culture. Cells were grown in a culture incubator (LEEC UK) maintained at 37°C and 

5% C02 (BOC Gases UK). 

131 



2.1.3 Tissue Culture Plastics 

Sterile 5 and IOml pipettes, 75 cm2 cell culture flasks and 25ml plastic test tubes were 

purchased from Fahrenheit UK. All tissue culture was carried out in a class 11 

microflow safety cabinet (BioqueU UK). Aseptic technique was observed at all times 

and cabinets swabbed with 70% industrial metholated spirit (IMS) before and after 

use. 

2.2 Specialised reagents and kits 

An electromobility shift assay system (EMSA) was obtained from Promega Life 

Sciences UK, containing oligonucleotides for NFKB, SPI, API (see Table 2.) and a 

HeLa cell extract (5mg/ml total protein in 20mM HEPES, O.IM KCL, 0.2 mM 

EDT A, 0.5mM PMSF, 0.5mM DTT and 20% glycerol). Taq polymerase and buffer 

were purchased from HT Biotechnology UK. Deoxynucleoside 5'-triphosphates 

(dNTP's), T4 polynucleotide kinase (T4 PNK) and i 2
P dATP radioactive isotopes 

were purchased from Amersham Pharrnacia Biotech UK. Whatman 3MM filter paper 

(Whatman International UK) and ECL nitrocellulose membranes (Amersham 

Pharrnacia Biotech UK) were used for western blotting. Renal preservation solution 

(Baxter Healthcare UK) was obtained from Derriford Hospital, Plymouth. 

2.3 Stock solutions 

I. Soltran kidney perfusion solution pH 7 .I 

Potassium citrate 8.6g/L, Sodium citrate 8.2g/L, Mannitol 33.8g/L, 

Magnesium sulphate lOg/L, Potassium 80mmol/L, Sodium 84mmol/L, 

Magnesium 41 mmol!L, Citrate 54mmol/L, Sulphate 41 mmol/L. 
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2. Tris/borate electrophoresis buffer (TBE) 

IOx solution: 0.89mM Tris base, 0.89M Boric acid, 2mM EDT A pH 8.0 

3. Tris-EDTA buffer (TE) 

IOmM Tris-HCL pH 8.0, I mM EDTA 

4. Tris-Buffered Saline (TBS) Tween 20 

80ml 2.5M NaCl, 20ml 1 M Tris, 1900ml H20, 2ml Tween-20 

5. Western Blot Running buffer 

5x: 45g Tris-base, 216g Glycine, 15g SDS, 3L H20 

6. Western Blot Transfer buffer 

15.1g Tris-base, 72g Glycine, 5L H20 

7. Ethidium bromide 

IOmg/ml Ethidium bromide diluted in H20 

8. Xylene cyanolloading buffer 

0.25% w/v Xylene cyanol, 10% v/v Glycerol in IOx TBE 

9. 10% (w/v) SOS 

1 Og SOS in 60ml H20 made to 1 OOml after dissolving 

10. 10% (w/v) APS 

1 OOmg APS in I OOml H20 

11. Sample Loading buffer 

3ml H20, 1 m! 0.5M Tris-HCL, pH 6.8, 1.6ml Glycerol, 1.6ml 10% SDS, 

0.4ml P-mercaptoethanol, 0.5% w/v bromophenol blue 

2.4 Autoclaving 

All solutions and glassware were autoclaved at 121 °C and 15 p.s.i pressure for 30 

minutes in a steam autoclave (Prior UK) before use. 
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2.5 Culture of endothelial cells 

Primary cultures ofHuman Umbilical Vein Endothelial Cells (HUVECS) and Primary 

Human Aortic Endothelial Cells (HAEC) were obtained (Totam Biologicals, 

Northampton. UK). Cells were guaranteed to be of endothelial origin confirmed by 

positive immunohistochemical staining for VWF and the endothelial surface marker 

CD31 (Cascade Biologies, USA). To further confirm the cells were endothelial after 

long term culture, cell extracts were immunoblotted for VWF (see Fig 2.1 ). 

Other cell lines were used as controls and to optimise experiments. These include a 

renal carcinoma cell line (ACHN) and a bladder carcinoma cell line (ECV 304) (both 

ECACC UK). Cells were cultured in Medium 200 (HUVEC, HAEC) supplemented 

with endothelial growth supplement, or Medium 199 (ACHN, ECV 304) with L

Giutarnine (5%), Foetal calf serum (10%) and penicillin/streptomycin (5%) as 

previously described (Merrick et a/ 1997). 

2.5.1 Routine for cell passage. 

Cell growth was monitored using a Leica inverted microscope (Jencons Scientific 

UK). Confluent 75 cm2 flasks were detached using 4ml Trypsin!EDT A solution (Life 

Tech UK). The flask was tapped gently to encourage the cells to detach from the 

flask, and the trypsin neutralised by adding an equal volume of FCS. Cells were 

harvested by removing the media and centrifuging at I OOOrpm for 4 minutes. The 

pellet was resuspended in wash buffer (culture medium without supplements), and 

again pelleted at I OOOrpm for 4 minutes. The resulting pellet was resuspended in 

complete media and cells counted by haemacytometer (Weber UK). 
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1 2 3 4 5 6 

VWF liJil 

Figure 2.1. Positive Immunoblotting for VWF in 6 separate endothelial cell lines used as 
controls in different experiments. Blotting for VWF confirmed that cells used were 
endothelial. The picture also demonstrates equal protein loading using the Bradford assay 
to determine concentrations and accurate transfer of protein from gel to ECL membrane. 
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2.5.2 Neubauer haemacytometer cell counts 

Cells were counted in a neubauer haemacytometer. To visualise cells, 50J.!I of cell 

suspension was mixed with 50J.!I of trypan blue. Cells exclude trypan blue reagent if 

they are viable, as it cannot transverse the cell membrane. However, if the cell 

membrane is damaged and hence the cell is dead trypan blue with enter the cell and 

stain it blue. The haemacytometer grid was covered with a cover slip, and the 

suspension added until the grid was covered. Cells were counted in sixteen squares. 

The area of the grid is l.Omm2 and the depth is O.lmm so the volume of cells in 

sixteen squares is calculated as n x 104 cells/m!. 106 were placed in a 75cm2 culture 

flask containing 20mls of complete media. Cells were grown to confluence in a 5% 

C02, 37°C incubator (LEEC UK) with changes of media every 24 or 48 hours until 

confluence. The percentage cell viability was calculated as the number of cells 

excluding the Trypan blue dye divided by the total number of cells. Cell viability was 

normally found to be above 90%. 

2.5.3 Cryopreservation of cells 

To keep a stock of endothelial cells, certain cells were cryopreserved in liquid 

nitrogen for storage (BOC gases UK). After detaching cells and pelleting, cells were 

resuspended in I ml of culture media supplemented with l 0% DMSO and 30% FCS 

and placed in a plastic cryovial tube (Fahrenheit UK). Cells were frozen slowly at -

20°C for one hour, -go°C overnight and fmally transferred to the gas phase of liquid 

nitrogen in pods (BOC Gases UK). 
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2.5.4 Retrieval of cells from frozen storage 

To retrieve cells from storage, 15-20 mls of media was pre-equilibrated in the 

incubator. Cells were removed from liquid nitrogen storage and rapidly thawed in a 

37°C water bath. Once thawed cells were transferred to a centrifuge tube and pelleted 

at I OOOrpm for 4 minutes. The pellet was re-suspended in 5mls PBS to wash away 

potentially harmful DMSO. Cells were pelleted again at 1000rpm for 4 minutes and 

the pellet re-suspended in complete media. Cells were counted and viability tested, 

before being re-seeded in pre-equilibrated 75cm2 flasks. 

2.6 Incubation of cells with growth factors, inhibitors and other agents. 

Cells were stimulated with PMA (Sigma Aldrich Ltd, UK) at Sng/ml for 18 hours as a 

positive control. PMA is an acute growth factor that is known to induce the 

expression of VWF, NFKB, AP1 and the MAPK cascades (Giddings & Shall 1987). 

To induce apoptosis cells were incubated with the anti-inflammatory glucocorticoid, 

Dexamethasone (Affmiti Research, UK) at 1mM for 12 hours in serum free media. A 

stock solution of 25mg/ml Dexamethasone suspended in DMSO was stored at "20°C 

until use. To inhibit NFKB a cell permeable inhibitory oligonucleotide peptide (SNSO) 

was used (Affmiti Research, UK). SNSO is a cell-permeable peptide that contains the 

nuclear localisation sequence residues 360-369 of the NFKB p50 subunit linked to the 

hydrophobic region of the kaposi fibroblast growth factor. The peptide was suspended 

in H20 at 1 OOJ.Lg/ml and stored at "20°C until use. 

To inhibit MAPK's a MEK inhibitor (PD98059) for ERK 1 I 2 or a specific p38 

inhibitor (SB203580) for p38 (Both Promega, UK). PD98059 was dissolved m 

DMSO at a stock concentration of6.5mg/ml and stored at "20°C until use. 
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SB203580 is a cell permeable inhibitor of the phosphorylation of p38 and the 

homologues p38a, p38~ and p38~2. A stock solution of 10mM suspended in DMSO 

and stored at "20°C until use. Cells were pre-treated with inhibitors in culture media 

for I hour before the experiment and fresh inhibitor was added to the preservation 

solution before cells were suspended in it and placed in hypothermia. 

2. 7 Incubation of cells for hypothermia, hypoxia and reperfusion experiments. 

Confluent cell monolayers were washed twice in PBS and resuspended in renal 

preservation solution (Baxter Healthcare UK) with or without inhibitor. Cells were 

counted before and after cold storage experiments to correct for differences in cell 

number. Cells were placed in a L TD 20G 4°C water bath (Grant Instruments, UK) for 

up to 72 hours. For reperfusion experiments an 'add back' protocol was used as 

previously described (Chan et a! 1999). Before the end of the incubation period, half 

the preservation solution was removed and pre-warmed to 37°C. The solution was 

then added back to the cells and the cells placed in a 37°C water bath. For hypoxia 

experiments confluent cells were given fresh media and placed in a hypoxic incubator 

for the same time points. The incubator was equilibrated overnight before the 

experiment and maintained at <I% (h and 37°C (NuAire Inc, USA). At time points, 

cells were pelleted and supematant collected and stored at -80°C until use. 

2.8 Preparation of whole cell and nuclear extracts 

Nuclear extracts were prepared with modification as previously described (Dignam et 

a/ 1983). Cells were harvested and pelleted at 13000rpm for 30 seconds. Cell pellets 

were resuspended in Dignam buffer A containing IOmM HEPES (pH 7.9), 1.5 mM 

MgCh, 1 OmM KCL, 0.5mM Dithiothereitol (DTT), 0.2% NP-40, I OOmM 
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Aminoethyl Benzenesulfonyl Fluoride (AEBSF), 18.4mg/ml sodium orthovanadate 

(NaNo4), 42mg/ml sodium fluoride (NaF) and 2.2mg/ml aprotonin. The lysate was 

incubated on ice for 15 minutes, with vortexing at 5-minute intervals. Lysates were 

then centrifuged at 13000rpm for 15 minutes. Supernates contain cytoplasmic 

proteins. Nuclear pellets were then resuspended in Dignam buffer C containing 20mM 

HEPES, 25% glycerol, 420mM NaCI, 1.5mM MgCh. 0.5mM DTT, 0.2mM EDT A, 

IOOmM AEBSF, 18.4mg/ml Na3Vo4, 42mg/ml NaF and 2.2mg/ml aprotonin. The 

nuclear protein lysate was then incubated on ice for 15 minutes with vortexing and 

centrifuged at 13000 rpm for 15 minutes. The resulting supernate contained the 

nuclear proteins and was stored at -80°C until use. 

Whole cell extracts were prepared using two methods 

Method one- Recommended by New England Biolabs, UK 

Cells were lysed in SDS sample buffer containing 62.5mM Tris-HCL (pH 6.8), 2% 

SDS, I 00/o glycerol, 50 mM OTT and 0.1% bromophenol blue. The suspension was 

sonicated for 15-20 seconds at 20,000cpm. and boiled for 10 minutes at 100°C. The 

extract was cooled on ice and centrifuged for 10 minutes at 13000rpm. The resulting 

supernate contains a whole cell fraction. Whole cell proteins were stored at -80°C 

until use. 

Method two-

Cell pellets were re-suspended in IOOfll of a lysis solution containing 0.1 M Tris-HCL 

(pH 7.5), 5% NP40, O.OIM NaF, O.OIM NaVo4 and lflg/ml PMSF. The lysate was 

then placed on ice for 20 minutes. The suspension was then centrifuged for 15 

minutes at 13000rpm. The resulting supernatant contained whole cell proteins that 

were removed and stored at -80°C until use. 
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2.9 Determination of protein concentrations. 

Protein concentrations for both whole cell and nuclear fractions were determined 

using a Bradford assay (Pierce UK). A standard curve was prepared using 2.0mg/ml 

bovine serum albumin (BSA) as the high standard and serially diluting to 0.125mg/ml 

5jll of unknown protein was added to 1 m1 coomassive blue dye and incubated for 10 

minutes at room temperature. The mixture was transferred to a cuvette and 

absorbance read against a blank containing the buffer cells were lysed in at 595nm on 

a Cecil 5500 spectrophotometer (Cecil, UK). 

2.10 Preparation of DNA from cell lines 

DNA was extracted from the cells by phenoVchloroforrn extraction. Cells were 

pelleted at 13000rpm for 30 seconds. Cells were lysed in 500jll DNA lysis buffer 

containing 1 M Tris-HCL (pH 8.0), I M NaCI, I 0% SDS and 0.02% EDT A. Proteinase 

K was added to make 200jlg/ml i.e. 5 Jll of 20mg/ml stock added to 500J.1l lysate. The 

suspension was then incubated for a minimum of I hour at 37°C and DNA extracted 

by adding 500J.1l of a 25:24: I phenoVchloroforrn/isoamyl mixture and centrifuging at 

13000 rpm for I 0 minutes. After centrifugation the viscous top layer was removed 

and kept. 3.5M ammonium acetate (1110 volume removed) and 2.5 volumes absolute 

alcohol were added. The DNA was allowed to precipitate overnight at -20 °C. A final 

centrifugation step at 13000rpm for 15 minutes pelleted the DNA. This was 

resuspended in double distilled water and !Ou/ml DNase free RNase was added. DNA 

was diluted I in 10 with double distilled water and the quantity of DNA recovered 

was measured by its absorbance at 260nm versus a blank containing water only. 
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One optical density (OD) unit at 260nm is equivi I ant to SOJ.Lg/ml of DNA. Therefore 

absorbance at 260nm x 50 x I 0 (the dilution factor used), is equal to the amount of 

DNA present in the sample (J.Lg/ml). 

2.10.1 DNA fragmentation analysis. 

Apoptosis was measured by DNA fragmentation analysis. DNA extracts were 

separated on a 1.5% agarose gel. Gels were prepared by placing l.Sg of agarose in 

lOOml O.Sx TBE and boiled in a microwave to dissolve. Gels were stained with 

ethidium bromide (0.01% v/v) and run in O.SX TBE buffer at IOOV for 2 hours. 

Fragmentation was visualised using a UV transilluminator (UVP USA). 

2.11 Electrophoretic mobility shift assay (EMSA) 

The EMSA is a means of analysing the amount of a transcription factor present in a 

nuclear extract sample. A labelled oligonucleotide is incubated with the nuclear 

extract, and run through a gel. The electrophoretic mobility of the oligonucleotide will 

be less if a transcription factor has bound to it. Therefore a 'shift' away from the probe 

is an indication of the amount of the transcription factor present in the sample. The 

specificity of the probe can be demonstrated by adding an excess of the unlabelled 

oligonucleotide, which will compete for the transcription factor and remove the shifter 

band. Further the subunits of a transcription factor complex can be determined by 

adding an antibody, specific for the subunit, to the nuclear extract. The antibody will 

bind to the probe-transcrition factor complex and further reduce the electromobility of 

the complex and hence form a further 'shifted' band, known as a supershift. 
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Figure 2.2. An example of the EMSA assay. Lane one- negative control, Lane Two
positive control, Lane three - positive control with competitive inhibition, Lane four 
positive control with non-specific inhibitor. 
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Transcription Factor 

NFKB 

API 

HSFI 

SPI 

Oligonucleotide Sequence 

5' AGTTGAGGGGACTITCCCAGGC 3' 

5' CGCTTGATGAGTCAGCCGGAA 3' 

5'GCCTCGATTGTTCGCGAAGTT3' 

5'ATTCGATCGGGGCGGGGCGAGC3' 

Table 2.1. Oligonucleotide sequences used for EMSA assays 
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Method 

If.tl of Oligonucleotide (1.75pmol) was labelled with [y-32P] ATP (20,000 Cpm) in a 

phosphorylation reaction containing T4 kinase (IOu/f.ll), !Ox T4 polynucleotide kinase 

buffer (700mM Tris-HCL pH 7.6, IOOmM MgCI2 and 50mM DTT) and H20. The 

probe was incubated at 37°C for 30 minutes. The reaction was stopped by the addition 

of I f.tl 0.5M EDT A and placing on ice for 5 minutes. The reaction mixture was re

suspended in 89fll TE buffer. Nuclear protein (5-IOf.lg) was mixed with a binding 

buffer (20% glycero~ 5mM MgCI2, 2.5mM EDT A, 2.5mM DTT, 250mM NaCI, 

50mM Tris-HCL, 0.25mg/ml poly di-dC) at room temperature for 20 minutes. The 

probe (I fll) was added and the reaction allowed a further 20 minutes to develop. 

Protein-DNA complexes were resolved on a 5% native polyacrylamide gel containing 

I Ox TBE, 2% bisacrylamide, 40% acrylamide, 80% glycerol, H20 and 10% APS and 

TEMED as the catalysts. Gels were assembled in a Biorad protein II system (Biorad) 

and gels were run in 0.5x TBE for 3-4 hours at IOOV. Following this gels were 

removed and exposed to autoradiography overnight. 

Competition experiments to demonstrate the specificity of the probe were performed 

with a molar excess of unlabelled oligonucleotide or non-specific oligonucleotide. 

Competition probes were incubated with nuclear extracts for 20 minutes before the 

addition of labelled probes. For NFKB supershift experiments, I fll of antibody to p65 

subunit (pharminogen, UK) and/or p50 subunit (Affmiti) of NFKB were incubated 

with the nuclear protein and probe for I hour at 4°C before being resolved on the gel. 
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2.12 lmmunoblotting (Western blotting) 

Whole cell extracts (20Jlg) were resolved on 12% polyacrylamide gels, containing 

30% acrylamide, 1.5M Tris-HCL (pH 8.8), 10% SDS and H20 with a 4% stacking gel 

to compress the bands (30% acrylamide, 0.5M Tris-HCL pH 6.8, 10% SDS, H20). 

Gels were run in western blot running buffer for 4-5 hours at 120V in the Protein 11 

system. ECL membranes (Amersham International, UK) were soaked for 1 hour in 

transfer buffer before gels were removed. Gels were sandwiched between filter paper 

and ECL membranes and placed in the transfer buffer in a tank (Biorad). Gels were 

transferred overnight at lOmA. Following removal from the tank, membranes were 

washed in PBS. Gels were normally discarded at this point, but occasionally stained 

with gelcode blue stain reagent (Pierce) for one hour, which allows visualisation of 

protein bands. This was used to confirm all bands had transferred and that the transfer 

times and conditions were optirnised. Further confirmation of accurate transfer was 

possible due to the fact that pre-stained molecular weight markers were run on each 

gel (Amersham UK). The proteins range from 220 (Myosin) to 14.3 (lysozyme) K.Da 

and are coloured. The 'rainbow ladder' can be seen on the gel and ECL membrane and 

also allows the determination of protein size. Nonspecific sites were blocked using a 

blocking buffer (TBS-Tween 20, 5% non fat milk) for 1 hour with gentile agitation. 

Blots were then washed in 5minute steps for a total of 3 times in TBS-Tween 20. 

Blots were then incubated with primary antibodies. Primary antibodies were diluted in 

blocking buffer at a concentration dependent on the antibody. Membranes were 

incubated with primary antibody for 1-2 hours at room temperature with gentle 

agitation. Blots were then washed again for a total of 5 times in TBS-Tween 20. 

Careful washing at this stage is necessary to remove all unbound antibody to prevent 

'background' on developed films. Blots were then incubated with a horseradish 
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Transcription Factor 

NFKB 

API 

HSF! 

SPl 

Oligonucleotide Sequence 

5' AGTTGAGGGGACTTTCCCAGGC 3' 

5' CGCTTGATGAGTCAGCCGGAA 3' 

5'GCCTCGATTGTTCGCGAAGTT3' 

5'ATTCGATCGGGGCGGGGCGAGC3' 

Table 2.1. Oligonucleotide sequences used for EMSA assays 
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Method 

lf.ll of Oligonucleotide (1.75pmol) was labelled with [y-32P] ATP (20,000 Cpm) in a 

phosphorylation reaction containing T4 kinase (!Ou/f.ll), !Ox T4 polynucleotide kinase 

buffer (700mM Tris-HCL pH 7.6, IOOmM MgC12 and 50mM DTT) and H20. The 

probe was incubated at 37°C for 30 minutes. The reaction was stopped by the addition 

of lf.ll 0.5M EDTA and placing on ice for 5 minutes. The reaction mixture was re

suspended in 89f.ll TE buffer. Nuclear protein (5-1 Of.lg) was mixed with a binding 

buffer (20% glycerol, 5mM MgC12, 2.5mM EDT A, 2.5mM DTT, 250mM NaCl, 

50mM Tris-HCL, 0.25mg/ml poly di-dC) at room temperature for 20 minutes. The 

probe (lf.ll) was added and the reaction allowed a further 20 minutes to develop. 

Protein-DNA complexes were resolved on a 5% native polyacrylamide gel containing 

!Ox TBE, 2% bisacrylamide, 40% acrylamide, 80% glycerol, H20 and 10% APS and 

TEMED as the catalysts. Gels were assembled in a Biorad protein II system (Biorad) 

and gels were run in 0.5x TBE for 3-4 hours at I OOV. Following this gels were 

removed and exposed to autoradiography overnight. 

Competition experiments to demonstrate the specificity of the probe were performed 

with a molar excess of unlabelled oligonucleotide or non-specific oligonucleotide. 

Competition probes were incubated with nuclear extracts for 20 minutes before the 

addition of labelled probes. For NFKB supershift experiments, If.! I of antibody to p65 

subunit (pharminogen, UK) and/or p50 subunit (Affiniti) of NFKB were incubated 

with the nuclear protein and probe for I hour at 4°C before being resolved on the gel. 
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2.12 Immunoblotting (Western blotting) 

Whole cell extracts (20J.Lg) were resolved on 12% polyacrylamide gels, containing 

30% acrylamide, 1.5M Tris-HCL (pH 8.8), 10% SDS and H20 with a 4% stacking gel 

to compress the bands (30% acrylamide, 0.5M Tris-HCL pH 6.8, 10% SDS, H20). 

Gels were run in western blot running buffer for 4-5 hours at 120V in the Protein I1 

system. ECL membranes (Arnersham International, UK) were soaked for I hour in 

transfer buffer before gels were removed. Gels were sandwiched between filter paper 

and ECL membranes and placed in the transfer buffer in a tank (Biorad). Gels were 

transferred overnight at lOrnA. Following removal from the tank, membranes were 

washed in PBS. Gels were normally discarded at this point, but occasionally stained 

with gelcode blue stain reagent (Pierce) for one hour, which allows visualisation of 

protein bands. This was used to confirm all bands had transferred and that the transfer 

times and conditions were optirnised. Further confirmation of accurate transfer was 

possible due to the fact that pre-stained molecular weight markers were run on each 

gel (Arnersham UK). The proteins range from 220 (Myosin) to 14.3 (lysozyme) KDa 

and are coloured. The 'rainbow ladder' can be seen on the gel and ECL membrane and 

also allows the determination of protein size. Nonspecific sites were blocked using a 

blocking buffer (TBS-Tween 20, 5% non fat milk) for I hour with gentile agitation. 

Blots were then washed in 5minute steps for a total of 3 times in TBS-Tween 20. 

Blots were then incubated with primary antibodies. Primary antibodies were diluted in 

blocking buffer at a concentration dependent on the antibody. Membranes were 

incubated with primary antibody for 1-2 hours at room temperature with gentle 

agitation. Blots were then washed again for a total of 5 times in TBS-Tween 20. 

Careful washing at this stage is necessary to remove all unbound antibody to prevent 

'background' on developed films. Blots were then incubated with a horseradish 
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Antibody Dilution Host Company 

NFKB p65 I:500 Mouse Phanningen UK 

NFKB p50 I :500 Mouse Affmiti UK 

IKBa I :1000 Rabitt New England Biolabs UK 

P38 I :1000 Rabitt New England Biolabs UK 

JNK I :1000 Rabitt New England Biolabs UK 

ERK I :1000 Rabitt New England Biolabs UK 

BCL-2 I :1000 Mouse Santa Cruise USA 

HSP 70 I:IOOO Goat Santa Cruise USA 

VWF I :500 Mouse SigmaUK 

Table 2.2. Antibodies used for western blotting assays 
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peroxidase (HRP) conjugated secondary antibody (I :5000-l: I 0,000 dilution) which is 

specific for the primary antibody (e.g. Mouse IgG anti-human primary antibody, Anti

mouse IgG HRP conjugated secondary antibody). The fluorescence reaction was 

visualised by chemiluminescence using the supersignal detection system (Pierce, 

UK). Equal volumes of reagent I and 2 were incubated with the blot for 5 minutes. 

Excess fluid was removed and blots wrapped in saran wrap, before being exposed to 

film. An initial 2 minute exposure was used to determine optimal exposure time. 

2.13 Autoradiography 

All gels were transferred to Whatman 3MM paper, (Whatman Inc UK). If the gel was 

excessively wet, due to poor removal from the assembly apparatus it was dried using 

a vacuum heat source. Gels were wrapped in saran wrap and exposed to kodak XLS5 

photographic X-ray film (XO graph image systems UK) overnight at -80°C in a 

cronex intensifying screen. For western blotting fluorescence signals were extremely 

strong, so a minimal exposure time ranging from 30 seconds to 5 minutes were 

needed at room temperature. 

Films were developed using X-ray developer, stop-bath solution and liquid fixer 

(Amersham UK) in a dark room. 

2.14 Measurement of Lactate 

Lactate was measured in supernatant by spectrophotometric analysis using an NAD 

reaction (Sigrna). Vials containing NAD were reconstituted with 2ml Glycine, 4ml 

water and O.lml Lactate dehydrogenase enzyme. 100!!1 of sample was added to 2.9ml 

of this solution and incubated for 15 minutes at 3'fC. A standard curve was 
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constructed using a 4.4mmoi/L lactate standard. Absorbance was read at 340nm 

within 10 minutes ofthe end of incubation. 

2.15 Measurement of hydrogen peroxide (H202) 

H202 was measured in culture supernatant by colourmetric analysis (R&D systems). 

A 25mM stock H202 solution was standardised at 240nm, where it has an absorbance 

of 1.08. A 1/250 dilution of this stock provided a IOOf.lM standard that was serially 

diluted to make a standard curve. Reagent one (25mM ammonium iron sulphate, 

2.5M H2S04) was added to 100 volumes reagent two (100mM sorbitol, 125 f.LM 

xylenol orange). 1 volume of standard or unknown was added to 10 volumes of 

reagent one/two mixture and incubated for 30 minutes at room temperature. 

Absorbance was measured at 560nm. 

2.16 Enzyme Linked lmmunoabsorbant Assay (ELISA) 

Human IL-6, IL-8 and TNFa levels were measured in commercial kits from R&D 

systems UK. VWF levels were measured in a diagnostic ELISA kit from Baxter 

Healthcare Ltd UK. JL-4 was measured in a commercial kit from Pharminogen UK. 

All were measured in samples of cell culture supernate or renal preservation solution. 

The sandwich ELISA is performed in 96well microtiter trays coated in monoclonal 

antibody. The antibody is immobilised and binds to the free protein in the sample. A 

standard curve is constructed with each assay using recombinant standards. The 

samples and standards were added to the wells in the plate and incubated for 1-2 

hours at room temperature. The plate is sealed to avoid contamination. The plate was 

then aspirated and washed for a total of 5 times in wash buffer containing TBS-Tween 

20 with 0.02% thimerosal as a preservative. Washing removes any unbound and non-
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specific proteins in the sample. The second phase is the conjugation reaction, where a 

labelled antibody binds to the immobilised antibody in the plate forming the 

'sandwich'. A working detector is prepared within 15 minutes of use containing 

biotinylated monoclonal antibody and a 250x streptavidin-horseradish peroxidase 

conjugate and added to each well. The plate is sealed and incubated for I hour at 

room temperature. Plates were aspirated and washed 7 times with wash buffer. The 

second was phase removes unbound conjugate antibody. The final stage is the 

substrate reaction during which the peroxidase-conjugated antibody is oxidised in the 

presence of H202 and chromogen forming a blue/green colour, which is proportional 

to the amount of bound protein. The substrate solution (equal volumes hydrogen 

peroxide and tetramethylbenzidine) is prepared within 15 minutes ofuse and added to 

each well. The plate is incubated for 30 minutes at room temperature in the dark to 

allow the colour to develop. A stop solution (sulphuric acid) added to each well which 

turns the colour yellow and the absorbance can be read at 450nm with a correction at 

570nm. 

2.17 Polymerase cbaio reaction (PCR) 

PCR allows the selective amplification of a region of DNA, such as a polymorphism 

by using primers designed to complement the region of interest (see Fig 2.3). 

Primers are designed to flank the 5'-3' direction (forward) and 3'-5' direction 

(reverse) of the region of DNA of interest. Generally primers are around 20 bases 

long. There is a random base distribution and a guanosine and cytidine ratio of around 

50%. The specificity of the primer can be checked using known sequences contained 

in databases such as on the Genbank webpage to prevent the binding to other regions 

in a gene containing a similar sequence creating artefacts and non-specific bands, 
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known as primer dimers. The primer and thermostable polymerase enzyme bind to the 

single strand of DNA and then synthesise a new strand by extending along the 

template region. Repeating cycles creates the selective amplification of a single 

fragment of target DNA that can easily be visualised by running out the PCR product 

on an agarose gel and staining with ethidium bromide. There are numerous ways to 

optimise the PCR reaction and conditions including optimising the Mg2
+ 

concentration, number of cycles, dNTP concentration, annealing temperature and 

primer concentrations. 

Primers used in this study were synthesised commercially by MWG Biotech Germany 

(Table 2.3.1 lists primers used). Primers are supplied at a scale of 0.05f.1mol and 

concentration made to I OOpmoVfll with water. Primers are further diluted in sterile 

water to a concentration of lOpmol and stored in aliquots at -20°C until use. 

2.17.1 5' end labelling of oligonucleotide 

End labelling of the primers was achieved using the T4 'ready to go' polynucleotide 

kinase labelling system (Pharmacia Biotech, Sweden). 25 fll of sterile water was 

added to T4 PNK and incubated at room temperature for 5 minutes. 5fll (IOpmol) of 

dilute primer was added and H20 to make a 49 fll total volume. lfll of l 2
P dATP 

{3,000Cilmmol) was added and the sample mixed by vortexing and centrifuged at full 

speed for 10 seconds to collect the contents. The probe was incubated for 30 minutes 

at 3'fC and the reaction stopped by the addition of 5fll of250mM EDTA and placing 

on ice for 5 minutes. Unincorporated nucleotides were removed using the 'Quick 

Precip™' system (Advanced Biotech Corps, USA). 5fll of 5M NaCI was added and 

2111 Quick Precip and 160fll 100% ethanol before being centrifuged at 13000rpm for 3 

minutes. The sample was vortexed and re-centrifuged at 13000rpm for I minute. The 
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Figure 2.3. Basic overview of one PCR cycle. Typically 20-40 cycles are performed 
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Primer Forward/Reverse Sequence 

NFKB F 5'AGTTGAGGGGACTTTCCCAGGC3' 

R 5' CAAGTAAGACTCTACGGAGTC 3' 

TNFa F 5' GCCTCTAGATTTCATCCAGCCACA 3' 

R 5' CCTCTCTCCCCTGCAACAACAA 3' 

IL-6 F 5' TTGTCAAGACATGCCAAAGTGC 3' 

R 5' GGGAAAATCCCACATTTGATAA 3' 

NAD(P)H F 5' TGCTTGTGGGT AAACCAAGG 3' 

R 5'GGAAAAACACTGAGGT AAGTG 3' 

table 2.3.1 Oligonucleotide sequences \J$ed for PCR analysis 
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reaction was stopped by placing the sample on ice and the radioactive supernatant 

removed and disposed. The remaining pellet was washed in 70% ethanol and dried 

before being resuspended in SOJ.!l H20. 

2.17.2 PCR Reactions 

The following reaction was set up for NFKB: l OOng of genomic DNA was mixed with 

3mM MgCb, 2J.1l lOx SuperTaq buffer (SOmM Tris-HCL pH 9.0, l.SmM MgCh, 

250mM KCL, l% Triton X-1 00, 0.1% w/v gelatin), 1 Opmol of forward primer, 

reverse primer and labelled forward primer, 200mM of each dNTP and 1 unit of Taq 

polymerase enzyme. H20 was added to make a final reaction volume of30J.1l. 

The following reaction was set-up for TNFa: lOOng of genomic DNA mixed with 

l.SmM MgCh, 2J.1l SuperTaq buffer, lOpmol of forward primer, reverse primer and 

labelled Forward primer,200mM of each dNTP and l unit ofTaq polymerase enzyme. 

H20 was added to make a final reaction volume of30J.1l. 

All PCR reactions were carried out in thin walled 0.2ml PCR strips (Anachem, UK). 

The cycles used are shown in Figs 2.3.2 and 2.3.3. The PCR reaction was carried out 

in a Techne 40/96 well thermocycler (Techne, UK). 

PCR products were checked by running them through a 1.5% agarose gel for 30 

minutes at l20V. Bands were visualised using a UV transilluminator. 

If successful, PCR products were run on 6% polyacrylamide gels. Gels were 

constructed using a Biorad Sequigen GT 30x50cm electrophoresis system (Biorad). 

The system was cleaned thoroughly before use with warm water and 70% IMS. The 

assembled gel rig contained 0.4mm spacers and a 49 well comb. The gel was 

constructed using SequaGel reagents (National Diagnostics UK). 99ml of diluent, 

lSml buffer, 36ml concentrate and lOml foramide were mixed before the addition of 
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70fll TEMED and I 0% APS. The gel mixed was inserted into the gel, avoiding air 

bubbles and allowed to polymerise overnight. Gels were pre-warmed to 40°C in I x 

TBE. PCR products were mixed with a stop solution containing 98% deionised 

foramide, lOmM EDT A (pH 8.0), 0.025% xylene cyanol and 0.025% bromophenol 

blue (Life Tech) and loaded to the gel using a sequencing pipette (Drummond 

Laboratories, USA). Gels were run for 3-5 hours at variable voltage in order to keep 

the temperature at 50°C, for optimal resolution ofthe bands. 

Gels were removed using a 10% methanol, 10% acetic acid solution, transferred to 

filter paper and dried on a gel dryer, before being exposed to film overnight. 

2.17.3 Restriction Enzyme analysis. 

The IL-6 C ( -174)G polymorphism was amplified in the following PCR reaction. 

IOOng of genomic DNA was mixed with 3mM MgCh, lOpmol forward and reverse 

primers, 2fll 1 Ox PCR buffer, 200mM of each dNTP and 1 unit of Taq polymerase. 

Water was added to make the fmal volume 20fll. PCR products were checked by 

running through a 1.5% agarose gel. If successful, a I Oflg sample of the PCR product 

was digested with I 0-20 units of the Nlalll restriction enzyme. The reaction volume 

was increased to a final volume of 30fll by the addition of enzyme buffer (50mM 

potassium acetate, 20mM Tris-acetate, lOmM magnesium acetate and lmM DTT). 

The reaction was allowed to proceed overnight at 37°C. 

The PCR reaction for the NAD(P)H phox 22 (-242) was: IOOng genomic DNA mixed 

with 1.5mM MgCh, lOpmol forward and reverse primers, 2fll !Ox PCR buffer, 

200mM of each dNTP and I unit of Taq polymerase. If the PCR was successful the 

PCR product was digested with Rsai restriction enzyme for 3 hours at 3 7°C. 
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PCR conditions Cycles 

NFx:B 95°C 5mins Hotstart 1 cycle 

94°C 30 secs 

53.5°C 2 mins 30 cycles 

72°C 2 mins 

72°C 10 mins 1 cycle 

TNFa 94°C 5 mins Hotstart 1 cycle 

94°C 30 secs 

65°C 2 mins 30 cycles 

72°C 2 mins 

72°C 10 mins 1 cycle 

Table 2.3.2 PCR conditions used for microsatellite analysis of the NFKB and TNFa CA 

(n) repeat polymorphisrns. 
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IL-6 

NAD(p)H 

PCR Conditions 

95°C Smins 

94°C 30 secs 

53.5°C 2 mins 

72°C 2 mins 

72°C 10 mins 

96°C 2mins 

94°C 30 secs 

56°C 2 mins 

72°C 2 mins 

Cycles 

Hotstart I cycle 

30 cycles 

I cycle 

Hotstart I cycle 

30 cycles 

Table 2.3.3. PCR conditions used for analysis of IL-6 and NAD(P)H phox22 restriction 

site analysis 
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Digestion products were run on a 1.5% ethidium bromide stained agarose mini gel at 

120v for 30 minutes. A molecular 100 base pair ladder was run with samples to check 

fragment sizes. Cut bands were visualised by using a UV transilluminator. 

2.18 Data Analyses 

Bands were quantified using a phosphorlmager (BioRad) with multianalyst software, 

and expressed as optical density. By comparing to a control in each experiment a fold 

increase or decrease was obtained to account for differences in radioactivity, 

fluorescence and exposure times. Results are expressed as means ± SE. Control cells 

positive or negative are compared to stressed ce"!Is at different time points. This is a 

repeated measure, so ANOV A was used with Fisher's least significant difference test 

for planned comparisons between stressed and control cells. Two-sample comparisons 

were made by student's t tests, after an F-test to determine sample variance. Trends in 

data were compared by simple regression for two samples or multiple regression for 

more than two samples. 

The frequency of alleles and genotypes in rejection and non-rejection donor DNA 

were compared by x.2 analysis and 2 X 2 contingency tables. All statistical tests were 

carried out using the Statgraphics Plus package (Statistical Graphics Corp, USA). 

A p-value of less than 0.05 was considered significant in all statistical analysis. 

2.19 Clinical samples 

50 donor DNA samples were obtained from the Immunology department, Derriford 

Hospital, Plymouth. All donors had been typed and used in first cadaveric renal 

transplants. Full details of the patient clinical characteristics can be found in the 

appendix. All clinical data was blind to the investigator until after all samples were 
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genotyped. Seventeen preservation solutions were obtained from imported kidneys 

received for cadaveric transplantation at Derriford Hospital. Solutions were collected 

from fluid surrounding the kidney during its harvesting and transportation. Samples 

were collected at the time of kidney removal from storage by the surgeon performing 

the operation and placed in a sterile specimen jar. Samples were filtered to remove 

solid mass and frozen at -80°C until use. A detailed description of the donors clinical 

characteristics can be found in the appendix. Details of ischaemic times remained 

blind to the investigator until all data was collected. 
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3.1 Background 

To investigate the effect of hypothermia on endothelial cells, HlNECS were re

suspended in renal preservation solution and placed at 4°C for 72 hours. Total Lactate 

and H202 was measured as described in the methods. For comparison HUVECs were 

placed in a hypoxic incubator for the same time points and supernatant collected. To 

assess endothelial cell function VWF was measured by ELISA, during hypothermia. To 

determine the effect of hypothermia on apoptosis, cell viability was measured, DNA 

fragmentation was measured, BCL-2 and Hsp70 expression was measured. 

3.2 Lactate 

There was an increase in lactate production by HUVECS over time in hypothermia (Fig 

3.1 ), reflecting a switch toward anaerobic metabolism. Control cells produced 1.52 ± 0.42 

mmol/1 over 72 hours. In cells exposed to hypothermia the production of lactate was 

significantly increased at 48 hours (6.32 ± 1.34 mmol/1 p=0.02) and peaked at 72 hours 

(7.34 ± 1.82 mmol/1 p=0.03). In cells placed in hypoxic conditions there was an increase 

in lactate compared to control cells at all time points (Fig 3.1) (p<0.05). There was a 

significant difference between the amounts of lactate produced during hypothermia and 

hypoxia at 6 hours (2.17 ± 0.1 mmol/1 Vs 4.82 ± 0.1 mmol/1 p<0.05) and 12 hours (2.53 

± 0.8 mmol/1 Vs 7.3 ± 1.0 mmol/1 p<0.05). However, after 12 hours cold storage there 

was no difference between the amounts of lactate produced between hypoxic and 

hypothermic cells. 
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3.3 Hydrogen peroxide 

H202 is produced by endothelial cells, but there was no significant differences between 

control cells and hypothennic stored cells. Control cells produced 21.90 ± 0.32 f.LM. Peak 

levels during hypothennia were at 48 hours (22. 73 ± 1.0 f.LM). During hypoxia levels 

peaked at 24.50 ~-tM. 

3.4 VWF 

There was no significant increase in VWF levels during the 72 hour time period. Control 

cells produced 0.026 ± 0.003 IU/ml when cultured in standard conditions. PMA was a 

strong inducer ofVWF production with levels rising to 0.45 ± 0.25 IU/ml (17.3 fold 

increase) when PMA was added to the culture. There was an initial increase in VWF after 

5 minutes of hypothermic stress (3.9 fold increase), but this was not significant and levels 

did not increase further beyond this time point. 

3.5 Cell viability 

Cell viability remained above 95% until 48 hours when it dropped to 79 ± 3.5%. After 72 

hours cold storage viability was reduced further to 61 ± 5%. During reperfusion, cell 

viability remained above 95% at all time points. Cell viability in dexamethasone treated 

cells was reduced to 37 ± 6%. (p<0.01 Vs control cells). 
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3.6 DNA Fragmentation 

No fragmentation of DNA was observed during hypothermia. Dexamethasone was used 

as a positive control and it was found to cause shearing and fragmentation of DNA. 

Similarly no fragmentation was observed during reperfusion (Fig 3.4). 

3.7 BCL-2 expression 

BCL-2 was consistently expressed throughout the time course. There was no significant 

difference between the expression of BCL-2 at the time points. After IS minutes of 

hypothermia levels were higher than control cells (1.23 ± 0.10 fold) and remained so 

through to 72 hours (1.48 ± 0.31 fold). There was a peak at 12 hours (2.0 ± 0.31 fold 

increase) but there was no significant difference from control cell expression. 

3.8 Hsp70 expression 

The highest expression of Hsp70 protein was in control cells (3.89 ± 1.32 OD units). 

There were no significant differences between the time points, but the expression of 

HSP70 was down-regulated during hypothermia. The highest expression during 

hypothermia was at 4 hours (3.33 ± 0.85 OD units), which was still 0.15 fold less than 

control cells. In contrast, Hsp70 expression was up-regulated during reperfusion, 

although not significantly there was an increase in optical density after both 30 minutes 

and 12 hours hypothermia followed by reperfusion. 
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Figure 3.1. Lactate production by HUVECS during hypothermic and hypoxic stress. One 
asterisk indicates a significant difference between time points (p<0.05). Two asterisks 
indicate a significant difference from control cells (p<0.05). All experiments were 
duplicated. 
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Figure 3.2. H202 production by HlNECS during hypothermic and hypoxic stress. H202 
was measured by colourmetric analysis. 
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Figure 3.3. VWF production by HUVECS during hypothermic stress. Results are the 
mean of triplicate ELISA experiments. Although PMA was a strong stimulant ofVWF 
synthesis there were no significant differences between samples. 
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Hypothermia 1 2 3 4 5 6 7 8 9 

Lane 1: 1Kb ladder, Lane 2:Contro1 cells, Lane 3: Dexamethasone treated cells, lane 4: 
PMA stimulated cells, Lane 5: 6 hours, Lane 6: 12 hours, Lane 7: 24 hours, Lane 8: 48 
hours, Lane 9: 72 hours. 

Reperfusioo 1 2 3 4 5 6 7 8 9 

Lane 1: lKb ladder, Lane 2: Control cells, Lane 3: Dexamethasone treated cells, Lane 4: 
30mins+l5mins Lane 5: 30mins+30mins, Lane 6: 30mins+lhr lane 7: 12hr + 15mins 
Lane 8: 12hr +30mins Lane 8: 12hr +lhr. 

Figure 3.4. DNA fragmentation was not seen during hypothermia or reperfusion in 
endothelial cells. Dexamethasone reduced cell viability to 37% and was associated with 
fragmentation and shearing ofDNA. 
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Figure 3.5. BCL-2 expression during hypothermic stress in endothelial cells. An example 
of a western blot for total BCL-2 is shown in A. The average optical density readings of 
four experiments is shown in B. There were no significant differences between time 
points by ANOV A. 
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Figure 3.6. Hsp70 expression during hypothermia. An example of a western blot for total 
HSP70 is shown in A. The average optical density readings of three experiments is 
shown in B. A high expression ofHsp70 was found in control cells. There were no 
significant differences between time points by ANOV A. 
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3.9 Discussion 

Placing endothelial cells in hypothermia for 72 hours in sealed tubes resulted in lactate 

formation in a similar amount to cells placed in a hypoxic environment for the same time 

point. Endothelial cells also produced H202 during hypothermia, but levels did not reach 

the levels found during hypoxia. 

Endothelial cells appear to be resistant to hypothermic induced cell death (Hansen 1989). 

Placing cells at 4°C for 72 hours reduced viability from 95% to 61%. However, there was 

no fragmentation of DNA noted during hypothermia. Dexamethasone treated cells had a 

reduced viability to 37 ± 6% and a marked difference in DNA from these cells was seen 

in the fragmentation experiments. 

Expression of the protective anti-apoptosis protein BCL-2 was not up-regulated during 

hypothermia, but levels were found to be similar to the expression in control cells. The 

protective protein hsp70 was highly expressed in control cells and cells experiencing 

hypothermia did not regain the same level of expression. Cells did not release VWF 

during hypothermic storage. 
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4.1 Background 

The transcription factors NFKB, API and HSFI were measured in nuclear extracts by 

EMSA analysis. The three common MAPK pathways, p38, JNK and ERK I I 2 were 

investigated by immunoblotting with 'anti-active' antibodies. To investigate the effect of 

these pathways on NFKB activation, the specific p38 inhibitor SB203580 and the general 

MAPK inhibitor PD98059 were used. 

4.2 NFKB 

NFKB is activated by hypothermia, and translocates to the nucleus after 5 minutes of 

hypothermia (4.8 ± 1.1 fold increase over control cells p<0.05). Control cells have a low 

level ofNFKB proteins in the nucleus using EMSA (Fig 4.1.1). PMA strongly stimulates 

NFKB activation. When HUVECS were treated for 18 hours with PMA, there was an 8.6 

± 1.8 fold increase in NFKB levels in the nucleus {p<O.Ol). There is a peak in NFKB in 

the nucleus at 24 hours (5.6 ± 2.0 fold p<O.OI), which is comparable to, and not 

significantly different from the shift observed after 18 hours PMA stimulation (p>0.05). 

After 24 hours the activation remains significant at 48 hours (5.4 ± 1.1 fold increase 

p<0.05) and 72 hours (4.8 ± 1.0 fold increase p<0.05). Competition experiments were 

used to show the specificity of the NFKB band and supershift analysis demonstrates that 

the complex contained both p65 and p50 protein heterodimers. Reperfusion did not up

regulate NFKB after 30 minutes or 12 hours hypothermia (p>0.05) (Fig 4.1.5). The 

'active' antibodies demonstrated the phosphorylation of IKBa (Fig 4.1.3). Inhibition of 
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NFKB with PD98059 inhibitor was associated with the inhibition of IKBa 

phosphorylation (Fig 4. 7.1 ). 

Western blotting of whole cell extracts suggested the expression of the p50 subunit of 

NFKB remains consistent in the cell, whereas the expression of the p65 subunit is less 

consistent (Fig 4.1.4). 

4.3 APl activation 

The AP l transcription factor is activated by hypothermia (Fig 4.2.1) with peak activation 

after 12 hours (3.8 ± 0.2 fold increase p<O.OS). There was a 2.6 ± l.O fold increase in 

API activity after 48 hours (p<O.OS). Reperfusion did not cause an increase in the 

expression of API either after 30 minutes or 12 hours of hypothermia (p >0.05) (Fig 

4.2.2). Competition experiments demonstrated the specificity of the API band (Fig 

4.2.3). 

4.4 HSF I 

HSFI was strongly expressed in control cells by EMSA (Fig 4.3.1). During hypothermia 

there was an initial drop in HSFI expression until levels returned to control values after 

30 minutes (Fig 4.3.1). There was no significant increase in HSFI expression during 

hypothermia (p>O.OS) or reperfusion (p>O.OS) which was similar to what was found with 

the expression of hsp70 (Fig 3.6). Competition experiments demonstrated the specificity 

of the HSFI band (Fig 4.3.2). 
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4.5 ERK 1/2 

The ERK I /2 pathway was also activated by PMA stimulation (2.9 ± 0.4 fold increase 

p=0.005). During the initial5 minutes of cold shock there was a 2.7 ± 0.08 fold increase 

in ERK phosphorylation (p <0.05). However, the ERK I I 2 activation was sustained 

during the time course (Fig 4.4.1 ), with a second wave of peaks at 4 hours (2.99 ± 0.63 

p<0.05), 6 hours (3.11 ± 0.65 p<O.Ol) and 12 hours (2.98 ± 0.26 p= 0.01). Activation of 

ERK I /2 was significantly associated with NFKB (Fig 4.7.1) activation throughout the 

72 hour time course (p<0.05 R2= 0.33). Inhibition of ERK I /2 with the PD98059 

inhibitor was associated with the reduced expression ofNFKB (p<0.05) (Fig 4. 7.2). 

Reperfusion did not effect ERK I /2 phosphorylation after 30 minutes or 12 hours 

hypothermia (p>0.05) (Fig 4.4.2). 

4.6 P38MAPK 

P38 MAPK was activated by hypothermia with peak phosphorylation after 5 minutes 

compared with control cells (13.6 ± 2.0 fold p<0.05). This was greater than during PMA 

stimulation (10.2 ± 0.9 fold). The initial stimulation ofthe p38 pathway was reduced over 

time (Fig 4.5.1 ). The initial activation of p38 during the first 30 minutes of hypothermia 

was significantly associated with NFKB activation (p=0.007 R2=0.79). P38 activity was 

not increased by reperfusion after 30 minutes or 12 hours hypothermia (p>0.05). 

Inhibition ofp38 with SB203580 was not associated with inhibition ofNFKB (Fig 4.7.3). 
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4.7 JNK 

The JNK pathway is not stimulated by hypothermia alone (Fig 4.6.1), but reperfusion 

back to 37°C after 30 minutes of hypothermia causes the activation of this protein (Fig 

4.6.2). Ten minutes of reperfusion caused a 4.8 ± 0.1 fold increase in JNK 

phosphorylation compared to cells that experience hypothermia alone (p<0.05). The JNK 

pathway remains activated up to I hour after reperfusion, where there is still a 4.9 ± 0.30 

fold increase (p<0.05). However, reperfusion after 12 hours hypothermia did not up

regulated JNK activation (p>0.05) (Fig 4.6.2). JNK was not associated with NFKB 

activation (p>O.OS). 
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Figure 4.1.1. NFKB activation during hypothermic stress in endothelial cells. A typical 
EMSA assay for NFKB is shown in A. The fold activation from optical density readings 
are shown in B. Results are the mean of five experiments. Asterisks indicate a significant 
difference from control cells. 
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Figure 4.1.2 . Competition and supershift analysis to determine the specificity and 
subunits of the NFKB bands. Adding an excess of unlabelled oligo 'competes' for the 
NFKB probe and there is no shift from the free probe. Antibodies bind to the probe and 
increase the molecular weight of the complex causing a further 'supershift' away from the 
band. 

176 



A. 

B. 

8 
7 

~ 6 
"§ 5 

~ 4 
·- 3 
~ 2 

1 
0 

Control PMA 5m IOm 15m 30m lhr 2hr 4hr 6hr 12hr 24hr 48hr 72hr 

... 
§ s 

V') 
s 

0 
(.) - E 

0 
~ 

~ 

r=-

,...,.... 

Figure 4.1.3. IKBa. phosphorylation during hypothermic stress. A typical western blot is 
shown in A. Antibodies are specific for the phosphorylated form of the IKBa. protein. 
Optical density readings are shown in B. Results are the average of duplicate 
experiments. 
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Figure 4.1.4. NFKB p50/p65 subunits. Whole cell extracts were western blotted for total 
p65 (A) or p50 (B) protein. The activation of NFKB appears to be associated with an 
increase in p65 expression, but little change in p50 expression in whole cell extracts. The 
experiment was only carried out once, so optical density readings are not shown. 
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Figure 4.1.5. NFKB during reperfusion in endothelial cells. A typical EMSA is shown in 
A. Optical density readings are shown in B. Cells were returned to 37°C after 30 minutes 
or 12 hours of hypothermia. There was no significant up-regulation of NFKB during 
reperfusion. 
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Figure 4.2.1 . AP-1 activation during hypothermia in endothelial cells. A typical EMSA is 
shown in A Optical density readings are shown in B. The results are the average of 
duplicate experiments. Asterisks indicate a significant increase from control cells. 
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Figure 4.2.2. APl during rewarming in endothelial cells, and competition experiment to 
demonstrate the specificity ofthe API band. A typical EMSA is shown in A, along with a 
competition experiment using an excess of unlabelled APl oligo to demonstrate the 
specificity of the band seen. Optical density readings of duplicate experiments are shown 
in B. There was no significant increase in API activity after reperfusion. 
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Figure 4.3.1. HSFl activation during hypothermic stress in endothelial cells. A typical 
EMSA is shown in A. HSFI activity was highest in control cells in a similar fashion to 
Hsp70 protein. Optical density readings are shown in B. Results are the average of three 
experiments. There were no significant differences in the expression ofHSFl. 
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Figure 4.3.2. HSFl during reperfusion in endothelial cells and competition experiments 
to demonstrate the specificity ofthe HSFl probe. A typical EMSA is shown in A, also a 
competition experiment with an excess of unlabelled probe to demonstrate the specificity 
of the probe. Optical density readings of duplicate experiments are shown in B. There 
was no significant up-regulation ofHSFl by reperfusion. 
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Figure 4.4.1. ERK 1 I 2 activation during hypothermic stress in endothelial cells. A 
typical western blot is shown in A. Antibodies only bind to the phosphorylated form of 
the protein. Optical density readings are shown in B. Experiments were repeated three 
times. Asterisks indicate a significant difference from control cells (p<0.05). 
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Figure 4.4.2. ERK 1 I 2 during reperfusion in endothelial cells. A typical western blot is 
shown in A. Antibodies only bind to the phosphorylated form of the protein. Optical 
density readings are shown in B. Experiments were duplicated. There was no significant 
up-regulation ofERK 1 I 2 by reperfusion. 

185 



A. 

Control PMA 5m tOm 15m 30m lhr 2hr 4hr 6hr 12hr 24hr 48hr 72hr 
~ - --

38 KDa _,. 
- - ~.,.,.--- ., 

B. 

18 
16 

~ 14 0 
·~ 12 
> ·.p 10 
< 8 
:g 6 
0 
~ 4 

2 

* 

* * 

o ~~~~-L~~~~~~~~~~~~~~~~~~ 

s 8 8 
lr) 0 V) - -

Figure 4.5.1. P38 activation during hypothermia in endothelial cells. A typical western 
blot is shown in A. Antibodies only bind to the phosphorylated form of the protein. 
Optical density readings are shown in B. Experiments were repeated three times. 
Asterisks indicate a significant difference from control cells (p<0.05). 
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Figure 4.5.2. P38 during reperfusion in endothelial cells. A typical western blot is shown 
in A. Antioodies only bind to the phosphorylated form of the protein. Optical density 
readings are shown in B. Experiments were duplicated. There was no significant up
regulation of p38 by reperfusion. 

187 



A. 

Cont PMA 5m I Om I 5m 30m lhr 2hr 4hr 6hr l2hr 24hr 48hr 72hr 

47 KDa---. 

en 
~ 

"§ 

~ 
~ 

:0 
~ 

B. 

2 .5 

2 

1.5 

1 -

0.5 

0 -
~ 
0 
(.) 

..:0:::. 

8 
V) 

8 e 
0 V) 
....... -

n 
8 

0 
M 

..-

I 

13 ....... 

Figure 4.6.1. Lack of up-regulation of JNK during hypothermic stress in endothelial 
cells. A typical western blot is shown in A. Antibodies only bind to the phosphorylated 
form of the protein. Optical density readings are shown in B. Experiments were 
duplicated. Although there appeared to be an increase in JNK activity after 4 hours, there 
were no significant increases in JNK activity from control cells. 
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Figure 4.6.2. JNK during rewarming in endothelial cells. A typical western blot is shown 
in A. Antibodies only bind to the phosphorylated form of the protein. Optical density 
readings are shown in B. Experiments were duplicated. Asterisks indicate a significant 
increase (p<0.05). 
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Figure 4.7.1. The relationship between NFKB and the MAPK's p38 and ERK 1 /2·during 
hyPothermia. Regression analysis demonstrates the relationship between NFJdl activation 
and MAPK activation during hypothermic stress. In the first 30 minutes there was 
relationship between NFKB andp38 (p<0;05) shown in A. Througbout·the 72 hour time 
period studied there was a significant.relationship·.between NFKB and ERK 1 /2 (p<0.05) 
shown in B. 
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Figure 4.7.2. The effect ofERK 1 I 2 inhibition on NFKB activation in endothelial cells. 
ERK 1 /2 phosphorylation was blocked using the inhibitor PD98059 as shown in the 
western blot for ERK 1 I 2 in A The effect ofERK 1 I 2 inhibition on NFKB can be seen 
by the EMSA shown in B. Inhibition of ERK 1 I 2 was associated with a significant 
reduction in NFKB activity (p<0.05). 
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Figure 4.7.3. Inhibition ofp38 selectively did not effect the mobility shift ofNFKB. P38 
phosphorylation was blocked using the inhibitor SB203589 as shown in the western blot 
for p38 shown in A. The effect of p38 inhibition on NFlCB can be seen by the EMSA 
shown in B. Inhibition ofp38 had no effect on the mobility shift for NFlCB. 
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Figure 4.7.4. The inhibition ofNFKB by ERK 1 /2 may be in part due the inhibition of 
IKBa. The inhibition of ERK 11 2 which was associated with the reduction in NFKB 
activity was found in this experiment to be associated with a reduction in phosphorylation 
IKBa. The western Blot for IKBa is shown in A, with the optical density shown in B. 
However, this experiment could not be repeated. 
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4.8 Discussion 

The NFKB transcription factor was activated within minutes of hypothermia correlating 

with p38 and ERK I I 2 phosphorylation. A p38 inhibitor had no effect on NFKB 

activation, but a general MAPK inhibitor blocked NFKB translocation to the nucleus. 

This was associated with reduced IKBa phosphorylation. The JNK MAPK was not 

activated by hypothermia, but was strongly up regulated by reperfusion. The API 

transcription factor was up regulated after 12 hours of hypothermia. Reperfusion had 

little effect on NFKB, API and HSFI transcription factors or the p38 and ERK I I 2 

MAPKs. The HSFI transcription factor was strongly expressed in control cells in a 

similar fashion to the Hsp70 protein. 
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5.1 Background 

The production of inflammatory cytokines IL-6, IL-8 and TNFa was investigated during 

hypothermia by ELISA. For comparison, cells were exposed to hypoxia for the same time 

points. To determine the role ofNFKB in cytokine production the decoy oligonucleotide 

SN50 was used. 

5.2 IL-6 production 

At all hypothermic time points there was a reduction in IL-6 compared to control cells 

(Fig 5.2.1). However, at 12 hours there was a 15.6 ± 1.7 fold increase in IL-6 (p=0.0004). 

Hypoxia caused a large increase in IL-6 compared to control cells (p<O.O I) (Fig 5.2.2). 

Reperfusion after 30 minutes hypothermia caused a large upregulation of IL-6 (Fig 

5.2.2). 15 minutes ofreperfusion caused an 18.1 ± 1.7 fold increase from 30 minutes of 

hypothermia alone (p<O.O I), 30 minutes of reperfusion caused an 11.6 ± 0.5 fold increase 

(p<0.05) and 60 minutes ofreperfusion caused a 13.0 +0.6 fold increase from 30 minutes 

of hypothermia alone (p<0.01). Reperfusion after 30 minutes hypothermia caused a 

higher amount ofiL-6 than during hypoxic storage (299.28 ± 30.7 pg/ml and 266.5 ± 

28.94 pg/ml respectively). The addition of SN50 caused a reduction in IL-6 at all time 

points compared with cells that experienced hypothermia alone (Fig 5.2.1 ). After 12 

hours hypothermia this was associated with a significant reduction in IL-6 (p<0.05). 
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5.4 IL-8 production 

Hypothermia caused the up-regulation ofiL-8 at all time points (Fig 5.3.1 ), 6 hours (6.83 

± 4.8 Vs 190.3 ± 36.9 pg/ml p=<0.05), 12 hours (14.45 ± 7.0 Vs 343.2 ± 47.4 pg/ml 

p<0.05), 24 hours (75.1 ± 7.35 Vs 182.9 ± 22.2 pg/ml p<0.05) 48 hours (110.9 ± 49.1 Vs 

286.4 ± 6.8 p<0.05) and 72 hours (66.8 ± 18.4 Vs 519.1 ± 70.45 pg/ml p<0.05). 

The administration of SN50 during hypothermia reduced IL-8 expression at 12 hours 

(343.2 ± 47.4 Vs 45.0 ± 0. 7 pg/ml p=<0.05). After 12 hours levels of IL-8 rose to levels 

similar to cells without the inhibitor (Fig 5.3 .1 ). Reperfusion did not increase IL-8 levels 

after 30 minutes or 12 hours hypothermia (Fig 5.3.2). Hypoxia was a strong inducer of 

IL-8 expression at all time points (p<0.01). 

5.5 TNFn production 

Hypothermia caused a significant increase in TNFn levels after 6 hours (7.59 ± 0.3 Vs 

5.14 ± 0.6 pg/ml p<0.05), 12 hours (8.94 ± 0.8 Vs 5.46 ± 0.4 pg/ml p<0.05) and 72 hours 

(8.04 ± 0.3 Vs 4.11 ± 0.2 pg/ml p=<0.01) of hypothermia. This was significantly reduced 

at 72 hours by the addition of SN50 inhibitor (6.17 ± 0.06 Vs 8.04 ± 0.3 pg/ml p=<0.05). 

Hypoxia caused the up-regulation of TNFn at all time points with a significant increase 

compare to control cells (p<O.Ol ). Reperfusion caused a slight increase in TNFn 

production after 30 minutes and 12 hours. 
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SNSO 

Figure 5.1 . Inhibition of NFKB with the SNSO cell permeable inhibitor. Increasing 
concentrations of SNSO were found to block NFKB activation. An EMSA for NFKB is 
shown. 
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Figure 5.2.1. IL-6 production by HUVECS during hypothermia and reduction with SN50 
inhibitor. IL-6 was measured by ELISA. Experiments were repeated three times. 
Asterisks indicate a significant difference between samples (p<0.05). 
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Figure 5.2.2. IL-6 production during hypoxic and reperfusion stress. IL-6 was measured 
by ELISA. Experiments were repeated at least twice. Asterisks indicate a significant 
difference between samples (p<0.05). 
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Figure 5.3.1 . IL-8 production during hypothermic stress and with the SNSO inhibitor. 
IL-8 was measured by ELISA. Experiments were duplicated. Asterisks indicate a 
significant difference between samples (p<O.OS). 
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Figure 5.3.2 IL-8 production during hypoxic and reperfusion stress. IL-8 was measured 
by ELISA. Experiments were duplicated. Asterisks indicate a significant difference 
between samples (p<0.05). 
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Figure 5.4.1. TNFa production during hypothermic stress and with the SN50 inhibitor. 
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5.6 Discussion 

Hypothermic stress caused a significant increase in IL-6, IL-8 and TNFa cytokine levels 

in endothelial cells. Each cytokine was significantly active after 12 hours of hypothermic 

storage. All three were largely up-regulated by hypoxia. Reperfusion after 30 minutes of 

hypothermia caused an increase in cytokine expression ofiL-6, but not IL-8 or TNFa. 

Reperfusion after 12 hypothermia did not increase the production of any cytokine. 

NFKB appears to play a role in the expression of all three cytokines, as blockade of 

NFKB with the SN50 oligonucleotide reduced the expression of all cytokines during 

hypothermia. However, Inhibition of NFKB was not associated with a reduced cytokine 

production at all time points. After 12 hours of cold stress inhibition of NFKB was 

associated with a reduction in both IL-6 and IL-8 levels in HUVECS. 
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6.1 Background 

Seventeen preservation solutions were collected from allografts received for 

transplantation at Plymouth. The inflammatory cytokines IL-6, IL-8 and TNFa along 

with the anti-inflammatory IL-4 were measured. Lactate was measured as a marker of 

hypoxia and VWF for endothelial dysfunction. Total protein was measured in the 

solutions and used to correct for differences in the volume collected. 

The clinical characteristics of the donors are in the appendix. A summary is shown in 

table 6.1. There was a range in Cl times from 13 hours 40 minutes to 3 7 hours 27 minutes 

(average 21 hours). WI times ranged from 20 minutes to 65 minutes (Average 34 

minutes). Twelve samples were free from rejection and 5 experienced at least one 

rejection episode. Seven of the kidneys had delayed function and I 0 had primary 

function. 
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Donor age (± SD) 45 ± 14.5 

Male:Female Ratio 10:7 

Cl time (hours)± SD 21 ± 7.0 

WI time (minutes)± SD 34 ± 15.7 

Delayed function 7 of 17 

Rejection episodes 12:2:3 
(0: I :2) 

Table 6.1. Clinical characteristics of the donor kidneys from which solutions were 
collected (n=17). Full details are in the appendix. 
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Figure 6.1. Total protein concentrations found in preservation solutions. Levels were 
measured by the Bradford assays to correct for differences in the volumes of samples 
collected. 
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6.2 IL-6 

IL-6levels were found to range from 54.73 pg/ml to 435.69 pg/ml (7.9 fold difference) in 

the 17 donors (Fig 6.1.1 ). There was no correlation between increased Cl or WI times and 

IL-6 levels (Fig 6.1.2). In samples with < 24 hours Cl time, the average level was 151.3 ± 

31.9 pg/ml compared with 197.7 ± 22.6 pg/ml in kidneys with> 24 hours Cl time (p=ns). 

There was a significant difference between IL-6 levels in kidneys that has experienced < 

30 minutes WI time compared with> 30 minutes WI time, 108.22 ± 18.8 pg/ml Vs 210.6 

± 38.5 pg/ml (p=O.OJ). There was no difference in IL-6 levels between kidneys with 

primary or delayed function (6.1.4). The donors were genotyped for the C(-174)0 

polymorphism. and levels compared with genotype. Nine donors (53%) were GG 

homozygotes, 6 (35%) were GC heterozygotes and 2 (11 %) were CC homozygotes. 

There were no significant differences between the amounts ofiL-6 in donors with the GG 

genotype compared with the GC or CC genotype (Fig 6.1.5). However the average in the 

GG genotype was higher than the CC genotype (196.17 ± 40.79 Vs 166.12 ± 6.23pg/ml 

p= ns) 
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6.3 IL-8 

Two donors had levels below the detection range of the ELlS A. In the detectable levels, 

there was a range from 2.96 pg/ml to 119.3 pg/ml (40.3 fold difference). There was no 

association found between increased Cl or WI times and graft function in relation to lL-8 

levels (Fig 6.2.2). In kidneys with less than 24 hours Cl time there was less lL-8 than 

kidneys with greater than 24 hours Cl time (35.24 ± 11.4 pg/ml Vs 50.89 ± 14.5 pg/ml 

p=Ns). IL-8 was higher in kidneys with primary function (39.8 ±14 Vs 37.5 ± 11.3 

pg/ml), and in non-rejecting kidneys (45.7 ± 12.0 Vs 22.5 ± 11.0 pg/ml). 
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and levels corrected for total protein. A range of 40.3 fold was found between samples. 
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6.4 TNFa 

There was a range in TNFa levels in the donor samples from 1.76 pg/ml to 8.73 pg/ml 

(4.9 fold difference) (Fig 6.3.1). There were no significant differences between Cl or WI 

times or Primary function. or rejection. TNFa levels were slightly higher in kidneys with 

> 24 hours Cl time compared with < 24 hours Cl time (5.44 ± 0.77 Vs 5.29 ± 0.58 

pg/ml). Similarly in kidneys with> 30 minutes WI time compared with < 30 minutes WI 

time.(5.82 ± 0.6 Vs 4.76 ± 0.6 pg/ml). In the same fashion as IL-8, TNFa levels were 

higher in kidneys with primary function (5.87 ± 0.64 Vs 4.55 ± 0.61 pg/ml) and in non

rejection (5.59 ± 0.4 Vs 4.68 ± 1.1 pg/ml). 
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6.5 IL-4 

The anti-inflammatory cytokine, IL-4 was found to range from 0. 7 pg/ml to 82.15 pg/ml 

(117.3 fold difference). No association was found with ischaemic times. In grafts with 

primary function, there was a higher IL-4 level than in grafts with delayed function 

(21.28 ± 7.7 pg/ml Vs 9.65 ± 3.6 pg/ml p=NS). IL-4 levels were higher in kidneys with 

longer ischaemic times. Higher in kidneys with> 24 hours Cl time (27.4 1.8 Vs 13.14 3.4 

pg/ml) and> 30 minutes WI time (21.43 ± 8.8 Vs 10.94 ± 2.91 pg/ml). IL-4 levels were 

also higher in non-rejecting kidneys (20.63 ± 6.5 Vs 7.35 ± 1.7 pg/ml). 
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6.6 VWF 

VWF levels were found to range from 0.011 IU/ml to 0.265 IU/ml (26.5 fold difference). 

There was no correlation between increasing ischaemic times and VWF levels in the 

solutions. The average in solutions with < 24 hours Cl time was 0.073 ± IU/ml compared 

with 0.108 ± 0.009 IU/ml in solutions with> 24 hours Cl time (p=Ns). Levels were 

similar in solutions with< or> 30 minutes WI time (0.080 ± 0.02 IU/ml Vs 0.081 ± 0.01 

IU/ml). Levels were slightly lower in kidneys with primary function (0.06 ± 0.06 IU/ml 

Vs 0.09 ± 0.03 IU/ml p=Ns), and in non-rejecting kidneys (0.07 ± 0.07 IU/ml Vs 0.10 ± 

0.04 lU/ml p=Ns). 

231 



0.3 

0.25 

e 0.2 -;;;. - 0.15 r. 

~ 0.1 

0.05 

0 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
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6.7 Lactate 

There was a range in lactate levels between 1.02 and 17.50 mmoi/L in the preservation 

solutions (17.1 fold difference). As a marker of hypoxia there was slightly higher levels 

in samples with> 24 hours Cl time (7.36 ± 0.44 mmoi/L Vs 6.90 ± 0.35 mmoi/L p=Ns). 

Lactate was also higher in solutions with delayed function (8.45 ± 0.6 mmoi/L Vs 5.99 ± 

0.30 mmoi/L p=Ns). Lactate was also higher in rejectors (9.19 ± 1.0 Vs 6.09 ± 0.27 

mmoVI). 
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6.8 Discussion 

There was a range of levels found in the solutions. The largest fold difference between 

samples was found for IL-4 (117 fold). The lowest range was for TNFa (4.9 fold). Only 

two samples were undetectable and this was only for IL-8. It is difficult to compare the 

levels found in the solutions with any 'normal' level as cytokine levels in serum and 

plasma vary amongst individuals. During an inflammatory response cytokine levels are 

likely to be highly elevated (Land 1998, Mantovani et a/ 1998). According to the ELISA 

manufacturers recommendations the following are found. 

Cytokine 

IL-8 

IL-6 

TNFa 

IL-4 

Serum level in normal healthy individuals 

< 31.2pg/rnl 

3.13- 12.Spg/rnl 

< I 5.6pg/rnl 

< 4 pg/ml 

Eight samples for IL-8 were found to be in this range. No IL-6 samples were found to be 

in the range, the lowest was 54. 73pg/rnl. All samples were found to have TNFa levels 

below the range, with the highest 8. 73pg/rnl. Four samples for IL-4 were in the range 

with the highest 82.1 Spg/rnl. 

Normal blood plasma VWF are S-10f.1g/rnl. Levels ofVWF have also been shown to be 

raised during infection or injury (Reinders et a/ 1987). Eight samples had VWF levels in 

this range with the highest value 26flg/rnl. 
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Normal blood lactate levels are in the range of 1.0 ± 0.5 rnmol!L, and levels above this 

are used as an indication of acid-base disturbances (Manji & Bion 1999). Only two 

samples were below this level and the highest was 12.65 mmoVL. Different preservation 

solutions have been suggested to effect cytokine production, with UW solution less 

damaging to endothelial cells than HTK solution and EuroCollins type solution (Eberl et 

a/ 1999). However, information on the types of solutions received was not available in 

this study. 

The correlation between levels of IL-6 and the genotype of the donor revelaled that 

donors with the CC genotype had 1.1 fold less IL-6 than donors with the GG genotype 

(1.66 ± 6.2 pg/ml Vs 196.17 ± 40.79 pg/ml p=ns). In a previous study of healthy 

individuals a 1.6 fold difference between CC genotypes and GG genotypes was found in 

serum IL-6 levels (Fishmann et a/1998). 
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7.1 Background 

Four polymorphisms were investigated in donor DNA samples. Two microsatellite CA(n) 

repeat polymorphisms in the TNFa and NFKB genes and two restriction enzyme sites in 

the IL-6 and NAD(P)H phox22 genes. Kidneys were separated according to whether they 

were subsequently rejected or not. The kidneys were then sub-grouped into less than 

three total mismatched alleles, one or more HLA-A mismatch and one or more HLA-8 

mismatch for further analysis. There were insufficient numbers of HLA-DR mismatched 

non-rejectors (n=4) to include analysis of HLA-DR matching. Full details of the donors 

can be found in the appendix. A brief description of clinical characteristics is shown in 

Table 7.1. 

7.2 Microsatellite analysis 

50 donor kidney DNA samples were used for microsatellite analysis, 4 were exported to 

other hospitals, I experienced surgical failure, and 2 were not used. Six donors had both 

kidneys removed and used. From this there was a total of 49 samples available for 

analysis. Of the 49 kidneys, 30 ( 61.2%) experienced a least one rejection episode and 19 

(38%) were rejection free. Of the rejectors 18 (60%) had one episode, 7 (23%) had two 

episodes and 5 (16%) had three or more episodes. 

7.2.1 HLA matching 

41 (83%) ofthe donor-recipients had less than 3 mismatches. Of the rejectors 25 (83%) 

had less than 3 mismatches and 16 (84%) of non-rejectors had less than 3 mismatches. 38 

(77%) had an HLA-A allele mismatch 21 (55%) in the rejection group and 17 (44%) in 
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the non-rejection group. Similarly 38 (77%) had an HLA-B mismatch, 25 (65%) in the 

rejection group and 13 (34%) in the non-rejection group. HLA-DR mismatch was found 

in 23 ( 46%) of patients with the majority 19 (82%) in the rejection group and only 4 

(17%) in the non-rejection group. 
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Age±SD 

M:F Ratio 

M-M 

M-F 

F-F 

F-M 

HLA-A Mismatch 

0 
1 
2 

HLA-B Mismatch 
0 
1 
2 

HLA-DR Mismatch 
0 
1 
2 

Rejection episodes 
0 
1 
2 
>3 

Nephrectomy 

Donors (n=43) 

47 ± 15.9 

21:22 

19 (39%) 

6 (12%) 

9 (18%) 

15 (31%) 

ll (22.4%) 
32 (65.3%) 
6 (12.2%) 

ll (22.4%) 
29 (59.1%) 
9 (18.4%) 

26 (53.1%) 
22 (44.9%) 
1 (2%) 

Recipients (n=49) 

46 + 12.9 

33:16 

19 (38.8%) 
18 (36.7%) 
7 (14.3%) 
5 (10.2%) 

2 (4.1%) 

Table 7.1. Clinical details of donor and recipients used for microsatellite analysis. Full 
details are available in the appendix. 
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7.3 NFJCB CA(n) microsatellite 

In the total rejection group the most common allele was the 138 which was found in 24 

(40%) donors compared with 11 (29%) in the non-rejection group (p=ns). The most 

common allele in the non-rejection group was the 126 allele which was present in 16 

(42%) compared with 18 (30%) in the rejection group (p-llS). The most common 

genotype in the rejection group was the 126, 138 genotype, found in 8 (26%) donors and 

it was also the most common genotype in the non-rejection group with 3 (15%) (p=ns). 

No association was found between NFKB alleles or genotypes when comparing rejectors 

and non-rejectors (Table 7.2.1). In donors with <3 mismatches the most common allele in 

the rejection group was the 138 allele, which was found in 20 (40%) donors compared to 

9 (28%) non-rejectors (p=ns). In the non-rejection group the most common allele was the 

126 allele which was present in 14 (44%) donors compared to 14 (28%) rejectors (p-llS). 

The most common genotype in the rejection group was the 126,138 genotype which was 

6 (24%) compared with 2 (12%) in the non-rejectors {p-llS). The most common genotype 

in the non-rejectors was the 126,126 which was found in 3 (18%) compared with 2 (8%) 

in the rejectors (p-llS). No association was found with any allele or genotype by 

comparing rejectors and non-rejectors with <3 HLA mismatches (Table 7.2.2). In donors 

with an HLA-A mismatch, the most common allele in the rejection group was the 138 

allele which was found in 19 (45%) compared with 10 (29%) in the non-rejectors (p=ns). 

The most common allele in the non-rejectors was the 126 allele which was found in 15 

(44%) donors compared with 11 (26%) in the rejection group (p=ns). The most common 

genotype in both the rejection group and non-rejection group was the 126,138 genotype 

which was found in 5 (24%) rejectors and 3 (I 8%) non-rejectors (p=ns ). No association 
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was found between rejectors and non-rejectors with a mismatched HLA-A allele (Table 

7.2.3). In donors with a mismatched HLA-B allele, the most common allele in the 

rejection group was the 138 allele, which was found in 21 (42%) compared with 7 (27%) 

in the non-rejection group (p=ns). In the non-rejection group the most common allele was 

found to be the 126 allele which was found in 11 (47%) donors compared with 16 (32%) 

in the rejection group (p=ns). The most common genotypes in both the rejection groups 

was the 126,138 which was found in 7 (28%) in the rejectors and 2 (15%) in the non

rejectors (p=ns). No association was found between NFKB alleles or genotypes in 

rejectors and non-rejectors with a mismatched HLA-B allele (Table 7.2.4). 
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1 2 3 4 5 6 

150 bp ____. 

140 bp ____. 

130 bp ____. 

l20bp ____. 

Figure 7.1. Representation of the NFKB CA(n) alleles found in donor DNA 

Lane 1 - Base pair ladder 

Lane 2 - 132/136 

Lane 3 - 1281138 

Lane 4 - 126/138 

Lane 5 - 126/142 

Lane 6 - 126 
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NFKB CA(n) Rejection (n=30) No Rejection (n= 19) x2 p value 

Alleles 

126 30 (18) 42 (16) 0.72 os 

132 5 (3) 5 (2) 0.00 ns 

136 6 (4) 5 (2) 0.00 os 

138 40 (24) 28.9 (11) 0.60 os 

X 18 (11) 18 (7) 0.00 os 

Haplotype 

126,126 10 (3) 15 (3) 0.30 ns 

126,138 26 (8) 15 (3) 0.51 os 

136, 138 10 (3) 10 (2) 0.00 os 

138,138 13 (4) 10 (2) 0.07 os 

x,x 50 (15) 63 (12) 0.23 ns 

Table7.2.1 The percentage frequency of NFKB alleles and haplotypes in transplanted 
kidneys which were rejected or not. Only the most common types are shown. The actual 
number is shown in brackets. X represents other alleles or haplotype combinations. 
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NFICB CA(n) Rejection (n=25) No Rejection (n=16) x2 p value 

Alleles 

126 28 (14) 43.7 (14) 1.03 os 

132 6 (3) 6.2 (2) 0.00 os 

136 8 (4) 3 (1) 0.72 os 

138 40 (20) 28.1 (9) 0.68 os 

X 18 (9) 18 (6) 0.01 os 

Haplotype 

126,126 8 (2) 18.7 (3) 0.81 os 

126, 138 24 (6) 12.5 (2) 0.57 os 

136,138 12 (3) 6.2 (1) 0.30 os 

138,138 16 (4) 12.5 (2) 0.07 os 

x,x 40 (10) 18 (6) 0.01 os 

Table 7.2.2 The percentage frequency ofNFKB haplotypes in transplanted kidneys with 
less than 3 mismatched alleles. Only the most common types are shown. The actual 
number is shown in brackets. X represents other alleles or haplotype combinations. 
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NFKB CA(n) Rejection (n=21) No Rejection (n=17) x2 p value 

Alleles 

126 26.1 (11) 44.1 (15) 0.96 ns 

130 4.7 (2) 5.8 (2) 0.04 os 

136 7 (3) 5.8 (2) 0.04 os 

138 45.2 (19) 29.4 (10) 0.91 ns 

X 16.6 (7) 14.7 (5) 0.04 os 

Haplotype 

126,126 4 (1) 11.7 (2) 0.54 ns 

126,138 23.8 (5) 17.6 (3) 0.39 os 

136, 138 14.2 (3) 5.8 ( 1) 0.58 os 

138,138 14.2 (3) 11.7 (2) 0.04 ns 

x,x 42.8 (9) 52.9 (9) 0.14 ns 

Table 7.2.3 The percentage frequency of NFKB alleles and haplotypes in transplanted 
kidneys with at least one mismatched HLA-A allele. Only the most common types are 
shown. The actual number is shown in brackets. X represents other alleles or haplotype 
combinations. 
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NFKB CA(n) Rejection (n= 25) No Rejection (n=13) x2 p value 

Alleles 

126 32 (16) 47.3 (11) 0.37 ns 

136 8 (4) 7.6 (2) 0.00 ns 

138 42 (21) 26.9 (7) 0.80 ns 

X 18 (9) 23.0 (6) 0.18 ns 

Haplotype 

126,126 12 (3) 7.6 (1) 0.14 ns 

126,138 28 (7) 15.3 (2) 0.48 ns 

136, 138 12 (3) 7.6 (1) 0.14 ns 

138,138 16 (4) 15.3 (2) 0.00 ns 

x,x 32.0 (8) 53.8 (7) 0.71 ns 

Table 7.2.4 The percentage frequency ofNFKB haplotypes in transplanted kidneys with 
at least one mismatched HLA-B allele. Only the most common types are shown. The 
actual number is shown in brackets. X represents other alleles or haplotype combinations. 
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7.2 TNFa. CA(n) microsatellite 

The most common allele in the rejection group was found to be the 2 allele which was 

present in 18 (30%) of rejectors compared with 6 (15%) in the non-rejection group 

(p=ns). The most common allele in the non-rejection group was the 10 allele which was 

present in 12 (31%) donors compared with 11 ( 18%) in the rejectors (p=ns ). The most 

common genotype in the rejection group was the 6, 7 genotype which was found in 3 

(10%) of donors, compared to 0 (0%), in non-rejectors (p--ns). The most common 

genotype in the non-rejection group was the 6,10 genotype which was found in 4 (21%) 

donors, compared to 2 (6%) in rejectors (p=ns). No association was found with any allele 

or genotype by comparing rejectors and non-rejectors (Table 7.3.1). In donors with <3 

mismatches the most common allele in the rejection group was the 2 allele, which was 

found in 14 (28%) donors compared to 5 ( 15%) non-rejectors (p--ns ). In the non-rejection 

group the most common allele was the 10 allele which was present in 9 (28%) donors 

compared to 9 (18%) rejectors (p=ns). The most common genotype in both the rejection 

and non-rejection group was the 6, I 0 genotype which was 8% in the rejectors and 25% in 

the non-rejectors (p=ns). No association was found with any allele or genotype by 

comparing rejectors and non-rejectors with <3 HLA mismatches (Table 7.3.2). 

In donors with an HLA-A mismatch, the most common allele in the rejection group was 

the 2 allele which was found in 13 (30%) compared to 4 (12%) in the non-rejectors 

(p=ns). The most common allele in the non-rejectors was the 10 allele which was found 

in 11 (32%) donors compared with 6 (14%) in the rejection group (p=ns). The most 

common genotype in the rejection group was the 6,7 genotype which was found in 3 
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(14%) donors compared with 0 (0%) in the non-rejectors (p--ns). In the non-rejection 

group the most common genotype was the 6,10 genotype which was found in 4 (23%) 

donors compared with I (4%) in the rejection group (p=ns). No association was found 

between rejectors and non-rejectors with a mismatched HLA-A allele (Table 7.3.3). 

In donors with a mismatched HLA-B allele, the most common allele in the rejection 

group was the 2 allele, which was found in I4 (28%) compared with 4 (IS%) in the non

rejection group (p---ru;). In the non-rejection group the most common allele was found to 

be the 10 allele which was found in I I (42%) donors compared with 8 (I6%) in the 

rejection group (p--ns). The most common genotypes in the rejection group were the 7,10 

which was found in 3 (I2%) compared to I (7%) in the non-rejectors (p=ns) and the 6,7 

which was found in 3 (I2%) compared to 0 (0%) in the non-rejectors (p=ns). In the non" 

rejection group the most common genotype was found to be the 6, I 0 genotype which was 

found in 4 (30%) of non-rejectors compared with 2 (8%) in the rejection group (p=ns). 

No association was found between TNFa alleles or genotypes in rejectors and non

rejectors with a mismatched HLA-B allele (Table 7.3.4). 
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Figure 7.2. Representation of the 13 alleles found in the TNFa CA(n) 

Lane 1-7/10 lane 7-2/12 

Lane 2-2/11 Lane 8-2/10 

Lane 3-2/10 Lane 9-2/4 

Lane 4-2/10 Lane 10-2/6 

Lane 5-7/10 

Lane 6 - 616 
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TNFa Rejection (n=30) No Rejection (n=19) x2 p value 

Allele 

2 30 (18) 15 (6) 1.59 os 

6 13 (8) 21 (8) 0.39 os 

7 13 (8) 5 (2) 0.24 os 

10 18 (11) 31 (12) 0.24 os 

X 25 (15) 26.3 (10) 0.01 os 

Haplotype 

2,2 3 (1) 0 (0) 0.63 os 

2,10 10 (3) 15 (3) 0.28 os 

6,7 10 (3) 0 (0) 1.83 os 

6,10 6 (2) 21 (4) 1.71 ns 

10,10 3 (1) 5 (1) 0.10 os 

x,x 66.6 (20) 57.8 (11) 0.09 ns 

Table 7.3.1 The percentage frequency ofTNFa alleles and haplotypes in transplanted 
kidneys which were rejected or not. Only the most common types are shown. The actual 
number is shown in brackets. X represents other alleles or haplotype combinations. 
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TNFa Rejection (n=25) No Rejection (n=16) x2 p value 

Allele 

2 28 (14) 15 (5) 1.07 os 

6 16 (8) 25 (8) 0.67 os 

7 12 (6) 3 (1) 1.69 os 

10 18 (9) 28 (9) 0.74 os 

X 26 (13) 28.1 (9) 0.03 ns 

Haplotype 

2,2 4 (1) 0 (0) 0.63 ns 

2,10 4 (1) 12 (2) 0.88 os 

6,10 8 (2) 25 (4) 1.64 ns 

7,10 12 (3) 0 (0) 1.84 os 

10,10 4 (1) 6 (1) 0.10 ns 

x,x 68 (17) 56.2 (9) 0.13 ns 

Table 7.3.2 The percentage frequency ofTNFa alleles and haplotypes in transplanted 
kidneys with less than 3 mismatched alleles. Only the most common types are shown. 
The actual number is shown in brackets. X represents other alleles or haplotype 
combinations. 
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TNFa Rejection (n=21) No Rejection (n=17) x2 p value 

Allele 

2 30.9 (13) 11.7 (4) 2.59 ns 

6 14.2 (6) 23.5 (8) 0.73 ns 

7 16.6 (7) 5 (2) 1.67 ns 

10 14.2 (6) 32.3 (11) 2.22 ns 

X 23.8 (10) 26.4 (9) 0.04 ns 

Haplotype 

2,2 4. 7 (1) 0 (0) 0.79 ns 

2,10 9.5 (2) 11.7 (2) 0.04 ns 

6,10 4.7 (1) 23.5 (4) 2.20 ns 

6,7 14.2 (3) 0 (0) 2.29 ns 

7,10 9.5 (2) 5.8 (1) 0.15 ns 

10,10 0 (0) 5.8 (1) 0.79 ns 

x,x 57 (12) 52.9 (9) 0.02 ns 

Table 7.3.3 The percentage frequency of TNFa alleles and haplotypes in transplanted 
kidneys with at least one mismatched HLA-A allele. Only the most common types are 
shown. The actual number is shown in brackets. X represents other alleles or haplotype 
combinations. 

259 



TNFa Rejection (n=25) No Rejection (n=13) x2 p value 

Allele 

2 28 (14) 15.3 (4) 0.96 ns 

6 16 (8) 15.3 (4) 0.00 ns 

7 16 (8) 3 (I) 1.98 ns 

10 16 (8) 42.3 (11) 3.59 ns 

X 24 (12) 23 (6) 0.00 ns 

Haplotype 

2,10 12 (25) 15.3 (2) 0.07 ns 

6,10 8 (2) 30.7 (4) 2.30 ns 

6,7 12 (3) 0 (0) 1.50 ns 

7,10 12 (3) 7 (1) 0.14 ns 

10,10 0 (0) 7 (1) 1.83 ns 

x,x 56 (14) 38.4 (5) 0.37 ns 

Table 7.3.4 The percentage frequency of TNFa alleles and haplotypes in transplanted 
kidneys with at least one HLA-B mismatched allele. Only the most common types are 
shown. The actual number is shown in brackets. X represents other alleles or haplotype 
combinations. 

260 



7.4 Restriction digest analysis 

A total of 67 donor DNA samples were available for restriction digest analysis. 49 

samples were available from the previous microsatellite study, and the 17 DNA samples 

from the preservation solution donors were also available for analysis. From the previous 

study 49 samples had data available for analysis. From the 17 new samples, I had no data 

on HLA matching or acute rejection episodes so was excluded. This made a total of 65 

donors. 

7.4.1 HLA matching 

A total of35 (53.3%) ofthe donors had at least one rejection episode when transplanted. 

30 (46.2%) had no rejection episodes. In the rejection group 28 (51.9%) had less than 3 

mismatched alleles, compared with 26 (48.1%) in the non-rejection group. 25 (71.4%) of 

the rejectors had HLA-A mismatched recipients and this was found in 25 (83.3%) of the 

non-rejectors. HLA-B mismatches were found in 29 (58%) of rejected grafts compared 

with 21 (42%) in the non rejectors. 
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7.5 IL-6 G (-174) C 

In both the rejection groups the most common allele was the G allele which was found in 

39 (55.7%) rejectors compared with 32 (53.3%) in the non-rejection group (p-llS). The 

most common genotype in both the rejection group and non-rejection group was the GC 

which was found in 19 (54.3%) rejectors and 12 (40%) non-rejectors (p=ns). No 

association was found between IL-6 alleles or genotypes when comparing rejectors and 

non-rejectors (Table 7.4.1). In donors with <3 mismatches the most common allele in 

both the rejection groups was the G allele, which was found in 33 (60%) rejectors 

compared with 28 (53.8%) non-rejectors (p=ns). The most common genotype in both the 

rejection groups was the GC genotype which was 12 (42.8%) in the rejectors compared 

with 16 (38.5%) in the non-rejectors (p=ns). No association was found with any allele or 

genotype by comparing rejectors and non-rejectors with <3 HLA mismatches (Table 

7.4.2). In donors with an HLA-A mismatch, the most common allele in the rejection 

group was the C allele, which was found in 27 (54%) compared with 24 (48%) in the 

non-rejectors (p=ns). The most common allele in the non-rejectors was the G allele which 

was found in 28 (53.8%) compared with 23 (46%) in the rejectors. The most common 

genotype in both the rejection group and non-rejection group was the GC genotype which 

was found in 27 (54%) rejectors and 10 (40%) non-rejectors (p=ns). No association was 

found between rejectors and non-rejectors with a mismatched HLA-A allele (Table 

7.4.3). In donors with a mismatched HLA-B allele, the most common allele in the 

rejection group was the G allele, which was found in 32 (55.2%) compared with 20 

(47.6%) in the non-rejection group (p=ns). In the non-rejection group the most common 

allele was found to be the C allele which was found in 22 (52.4%) donors compared with 
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26 (44.8%) in the rejection group (p=ns). The most common genotypes in both the 

rejection groups was the GC, which was found in 16 (55.2%) in the rejectors and 8 

(38.1%) in the non-rejectors (p=ns ). No association was found between IL-6 alle1es or 

genotypes in rejectors and non-rejectors with a mismatched HLA-B allele (Table 7.4.4) 
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Figure 7.3. Representation of the IL-6 alleles created by the restriction enzyme nlalll. 

Lane 1 - 1 00 base pair ladder 

Lane2 - GC heterozygote 

Lane 3 - CC homozygote 

Lane 4 - CC homozygote 

Lane 5 - GG homozygote 

Lane 6 - CC homozygote 

Lane 7 - CC homozygote 

Lane 8 - GC heterozygote 

Lane 9 - CC homozygote 
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IL-6 C(-174)G Rejection (n=35) No Rejection (n=30) x2 p value 

Allele 

G 55.7 (39) 53.3 (32) 0.02 ns 

c 44.3 (31) 46.7 (28) 0.03 os 

Haplotypes 

GG 28.6 (10) 33.3 (10) 0.09 ns 

GC 54.3 (19) 40 (12) 0.47 ns 

cc 17.1 (6) 26.7 (8) 0.56 os 

Table 7.4.1 The percentage frequency of IL-6 alleles and haplotypes in transplanted 
kidneys which were rejected or not. The actual number is shown in brackets. 
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IL-6 C(-174)G Rejection (n=28) No Rejection (n=26) xl p value 

Allele 

G 60 (33) 53.8 (28) 0.08 ns 

c 40 (23) 46.2 (24) 0.11 ns 

Haplotypes 

GG 39.3 (11) 34.6 (9) 0.06 ns 

GC 42.8 (12) 38.5 (10) 0.05 ns 

cc 17.9 (5) 26.9 (7) 0.41 ns 

Table 7.4.2 The percentage frequency of IL-6 alleles and haplotypes in transplanted 
kidneys with less than 3 mismatched alleles. The actual number is shown in brackets. 
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IL-6 C(-174)G Rejection (o=25) No Rejection (o=25) x2 p value 

Allele 

G 46 (23) 52 (26) 0.12 ns 

c 54 (27) 48 (24) 0.12 os 

Haplotypes 

GG 16 (4) 32 (8) 1.08 ns 

GC 60 (15) 40 (10) 0.67 ns 

cc 24 (6) 28 (7) 0.06 os 

Table 7.4.3 The percentage frequency of IL-6 alleles and haplotypes in transplanted 
kidneys with at least one HLA-A mismatch. The actual number is shown in brackets. 
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IL-6 C(-174)G Rejection (n=29) No Rejection (n=21) x2 p value 

Allele 

G 55.2 (32) 47.6 (20) 0.18 ns 

c 44.8 (26) 52.4 (22) 0.19 ns 

Haplotypes 

GG 27.6 (8) 28.6 (6) 0.00 ns 

GC 55.2 (16) 38.1 (8) 0.51 ns 

cc 17.2 (5) 33.3 (7) 1.04 ns 

Table 7.4.4 The percentage frequency of IL-6 alleles and haplotypes in transplanted 
kidneys with at least one HLA-B allele mismatch. The actual number is shown in 
brackets. 
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7.6 NAD(P)H C(-242)T 

In the both the rejection groups the most common allele was the C allele which was 

found in 54 (77.1%) of rejectors and 43 (71.6%) in the non-rejection group (p=ns). The 

most common genotype in both the rejection group and non-rejection group was the CC 

which was found in 19 (54.3%) rejectors and 15 (50%) non-rejectors (p=ns). No 

association was found between NAD(P)H alleles or genotypes when comparing rejectors 

and non-rejectors (Table 7.5.1). In donors with <3 mismatches the most common allele 

in both the rejection groups was the C allele, which was found in 43 (76.8%) rejectors 

compared with 37 (71.2%) non-rejectors (p-llS). The most common genotype in both the 

rejection groups was the CC genotype which was 15 (53.6%) in the rejectors compared 

with 13 (50%) in the non-rejectors (p=ns). No association was found with any allele or 

genotype by comparing rejectors and non-rejectors with <3 fll..A mismatches (Table 

7.5.2). In donors with an fll..A-A mismatch, the most common allele in both rejection 

groups was the C allele, which was found in 40 (80%) in rejectors and 37 (74%) in the 

non-rejectors (p=ns). The most common genotype in both the rejection group and non

rejection group was the CC genotype which was found in 15 (60%) rejectors and 13 

(52%) non-rejectors (p=ns). No association was found between rejectors and non

rejectors with a mismatched HLA-A allele (Table 7.5.3). 

In donors with a mismatched HLA-B allele, the most common allele in the both rejection 

groups was the C allele, which was found in 46 (79.3%) rejectors compared with 31 

(73.8%) in the non-rejection group (p=ns). The most common genotypes in both the 

rejection groups was the CC, which was found in 17 (58.6%) in the rejectors and 11 
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(52.4%) in the non-rejectors (p=ns). No association was found between alleles or 

genotypes in rejectors and non-rejectors with a mismatched Ill..A-B allele (Table 7.5.4). 
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1 2 3 4 5 6 

Figure 7.4. Alleles of the NAD(P)H p22phox subunit cut with the Rsa 1 restriction 
enzyme 

Lane 1 - CC homozygote 

Lane 2 - IT homozygote 

Lane 3 - CT heterozygote 

Lane 4 - IT homozygote 

Lane 5 - CC homozygote 

Lane 6 - CT heterozygote 
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NAD(P)pbox C(242)T Rejection (n=35) No Rejection (n=30) x2 p value 

Allele 

c 77.1 (54) 71.6 (43) 0.07 ns 

T 22.8 (16) 28.3 (17) 0.30 os 

Haplotypes 

cc 54.3 (19) 50 (15) 0.04 os 

CT 45.7 (16) 43.3 (13) 0.01 ns 

TT 0 (0) 6.6 (2) 2.25 os 

Table 7.5.1 The percentage frequency of NAD(P)H alleles and haplotypes in 
transplanted kidneys which were rejected or not. The actual number is shown in brackets. 
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NAD(P)H C(-242)T Rejection (n=28) No Rejection (n=26) x2 p value 

Allele 

c 76.8 (43) 71.2 (37) 0.07 ns 

T 23.2 (13) 28.8 (15) 0.26 ns 

Haplotypes 

cc 53.6 (15) 50 (13) 0.02 ns 

CT 46.4 (13) 42.3 (11) 0.04 ns 

TT 0 (0) 7.7 (2) 2.07 ns 

Table 7.5.2 The percentage frequency of NAD(P)H alleles and haplotypes in 
transplanted kidneys with less than 3 mismatched alleles. The actual number is shown in 
brackets. 
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NAD(P)H C(-242)T Rejection (o=25) No Rejection (o=25) x2 p value 

Allele 

c 80 (40) 74 (37) 0.07 os 

T 20 (10) 26 (13) 0.32 os 

Haplotypes 

cc 60 (15) 52 (13) 0.09 os 

CT 40 (10) 44 (11) 0.03 os 

TT 0 (0) 4 (1) 0.98 os 

Table 7.5.3 The percentage frequency of NAD(P)H alleles and haplotypes in 
transplanted kidneys with at least one 1-ll.,A-A mismatch. The actual number is shown in 
brackets. 
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NAD(P)H C(-242)T Rejection (n=29) No Rejection (n=21) x2 p value 

Allele 

c 79.3 (46) 73.8 (31) 0.05 ns 

T 20.7 (12) 26.2 (11) 0.26 ns 

Haplotypes 

cc 58.6 (17) 52.4 (11) 0.05 ns 

CT 41.4 (12) 42.8 (9) 0.00 ns 

TT 0 (0) 4.8 (1) 1.34 ns 

Table 7.5.4 The percentage frequency of NAD(P)H phox alleles and haplotypes in 
transplanted kidneys with at least one HLA-B allele mismatch. The actual number is 
shown in brackets. 
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7.8 Discussion 

There was no association found between any of the polymorphisms studied and acute 

rejection episodes in the donor kidneys studied. This was independent of HLA matching 

as no associations were found with <3 mismatches or HLA-A or HLA-B mismatched 

kidneys. There were insufficient numbers of HLA-DR mismatched kidneys for analysis 

of this group. The observed and expected frequencies of genotypes confrrmed Hardy

Weinberg equilibrium. 

In this small number of donors, previous reports of an association between the IL-6 C 

allele and rejection in donors (Marshall et a/2001) could not be confirmed. Similarly, an 

association between the TNFa CA(n) microsatellite allele 9 (ll3bp) and rejection in 

recipients (Asano et a/ 1997) could not confrrmed in donors. However, in kidneys with at 

least one mismatched HLA-B allele the frequency of the 10 allele was 42.3% in the non

rejection group compared with 16% in the rejection group (x2 3.59 p=0.05 uncorrected). 

This allele should be investigated in a larger number of donors as a possible protective 

function in the rejection free group. 

The NAD(P)H C(242)T polymorphism has not been previously investigated in transplant 

recipients or donors. The potentially protective TT genotype was found in 6.6% of non

rejectors compared with 0% in the rejection group (x2 2.25 p=O.I 0). This should also be 

investigated in a larger number of donors. 

276 



CHAPTER EIGHT: DISCUSSION 

8.1 

8.2 

8.3 

General Discussion 

Conclusion 

Future work 

277 

274 

292 

292 



This project has used endothelial cells as a model of kidney graft cells to 

determine the effects of hypothermia and rewarming associated with cold ischaemia and 

reperfusion on endothelial cells. Endothelial cells are thought to play a role in initiating 

an immune response (Pober & Cotran 1990, Pober et a/ 1996, Briscoe et a/ 1998). The 

endothelium is also a vital source of thrombotic proteins that may play a role in vascular 

rejection and graft coagulation (Ishii et a/ 1991, Esmon 1993, Hefty et al 1993, Lagoo et 

a/ 2000). Recent data has suggested that during injury or stress, endothelial cells may 

upregulate key immunogenic factors such as MHC class 11 molecules (Shackleton 1998, 

Eberl et a/1999b), hence ischaemic injury may increase graft immunogenicity (Ono et a/ 

1998). Endothelial cells were stressed at 4°C. The temperature was chosen as it is 

relevant to perfusion, static cold storage and machine perfusion storage (Marshall et a/ 

1994, Massberg & Messmer 1998). Temperatures below 4°C (nearing 0°C) can result in 

the formation of intracellular ice, which is lethal to most cells (Mazur 1970, Mazur 1983, 

Karlsson et a/ 1993). The initial aim was to try and measure the effects that cold injury 

might have on immunogenicity and the prothrombotic process. 

Hypoxia is associated with ischaemia and is known to cause the generation of ROI and 

ROS which are known to play a major role in many diseases and during stress 

(Hochachka 1986, Chen & Fang 1987, Ogawa et a/ 1990, Seigneur et a/ 1994, Faller 

1999). Endothelial cells were rendered hypoxic to compare the effects of hypoxia with 

hypothermia. By using lactate as an indicator of a switch towards carbohydrate 

metabolism and hence hypoxia, it was shown that cells placed at 4°C for 48 hours 

produce an equivalent amount of lactate as cells placed in an hypoxic incubator for the 

same amount of time. The role of oxidative stress in reperfusion injury is well known 
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( Wei 1999) however, the production of ROS during hypothermia is not well investigated. 

It is thought that hydrogen peroxide may function as a second messenger activating 

numerous cellular signal transduction pathways and redox regulated genes (Muller et a/ 

1997). It was found that H202 was produced during hypothermia in endothelial cells, but 

did not reach the level found during hypoxia. This demonstrated that hypothermia is 

associated with hypoxia, but not ROI and that although oxidative stress is likely to be 

important in ischaemic injury, its role in hypothermia may not be so important. This may 

be due to the fact that the preservation solution used contained mannitol, which is an anti

oxidant and may have prevented the production of H202 by the cells. The next aim was 

to determine if this environment was actually damaging the cells or resulting in their 

death or loss of viability. 

A marker of endothelial cell dysfunction is VWF (Biann 1993, Lip & Blann 1997). It is 

known that a release of VWF is associated with stress to endothelial cells (Spom et al 

1986, Pearson 1993). There was no sudden release of VWF in the endothelial cultures 

used in these experiments, suggesting that the cells although 'stressed' by a low 

temperature, that they would not normally experience in vivo, were not 'stressed enough' 

to release a classic marker of endothelial dysfunction. This may again in part be due to 

the fact that the cells were re-suspended in a preservation solution designed to try and 

enable cell survival, containing electrolytes to prevent osmotic damage and cell swelling. 

Further to the finding that the cells did not release VWF was the fact that cell viability 

remained above 95% for 48 hours of hypothermic stress. It has previously been shown 

that endothelial cells have a high viability after 48 hours of cold storage and the figure 

quoted in one study was 79% viable after 48 hours at 4°C (Hansen et al 1994) which was 
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very similar to the percentage viability found in this study (82%). This data suggests that 

endothelial cells are resistant in some way to hypothermic-induced stress at 4°C (Gerlach 

et a/ 1993, Hansen et a/ I 994). The analysis of DNA fragmentation as an indicator of 

cellular apoptosis also showed that cells were not killed by the hypothermic insult, as 

DNA fragmentation was not seen during the hypothermic storage period studied. Further 

there was a consistent expression of Hsp70 and a slight up-regulation of BCL-2 during 

the later stages of the time course investigated. Both of these proteins are linked to the 

inhibition of apoptosis via preventing of the formation of the apoptosome and inhibiting 

cytochrome-c release in the mitochondria (Badrichani et a/ I 999, Morano & Thiele 

I999). 

This data demonstrated that hypothermia was not a lethal stress to endothelial cells, so 

the next stage was to investigate the effect at the molecular level on the activation of 

signal transduction pathways and transcription factors. 

The transcription factor NFKB has been widely investigated in numerous diseases since 

its discovery, but little is known about its response to hypothermia (Ricciardi et a/ 2000). 

It was found to be up-regulated within minutes of hypothermia. This rapid response is 

typical of the NFKB system (Baeuerle & Henkel 1994, Baldwin 1996) and further 

investigation demonstrated, as expected the phosphorylation of IKBa within minutes of 

hypothermia as well. This rapid response is likely to be mediated by a signal 

transduction pathway that would link the stress signal to the transcription factor 

activation. 

MAPK cascades are thought to be involved in the phosphorylation of IKBa, but there is 

some debate in the literature as to their role in NFKB activation (Schulze-Osthoff et a/ 
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1997). The role of a kinase cascade is to transduce a message from the cell surface to the 

nucleus after receiving a stimulus. Both ERK I 12 and p38 MAPKs were found to be up

regulated within minutes of hypothennia and correlated with NFKB activation. This was 

particularly significant during the initial 30 minutes of hypothermia. The correlation 

between NFKB and p38 was found to be highly significant (R2 0.77 p<O.Ol) and the 

relationship between NFKB and ERK I I 2 was significant throughout the 72 hour time 

course (R2 0.33 p<0.05). The JNK SAPK was not up-regulated by hypothermia, with no 

difference found in phosphorylation between controls and cells stressed by hypothennia, 

indicating that this MAPK is not involved in the response to hypothermia. 

Interestingly, the JNK pathway has been linked to apoptosis (Wang et al 1998a Tourniet 

et a/2000). The absence of JNK activation was concurrent with the absence of apoptosis 

in this model. Similarly, NFKB has been suggested to be an anti-apoptotic protein (Kajino 

et al 2000). Inhibition of NFKB with the SN50 inhibitory peptide did not result in cell 

death. Viability remained above 95% when NFKB was inhibited and no fragmentation of 

DNA was seen. However, this demonstrates that NFKB can be inhibited in endothelial 

cells without inducing cell death or affecting viability under hypothermic conditions. 

In order to determine which of MAPK's are involved in NFKB activation, specific 

inhibitors were used. The PD98059 inhibitor was used to block ERK I 12, however this 

inhibitor blocks MEK, which is an upstream kinase involved in the activation of all 

MAPK's (Marshalii994). The SB203589 inhibitor was used as it specifically blocks the 

p38 MAPK. Although the p38 MAPK was significantly associated with NFKB activation, 

treatment of cells with the SB203580 inhibitor was not found to prevent the activation of 

NFKB during the first 30 minutes of hypothermia. However, inhibition ofERK I I 2 with 
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PD98059 was found to prevent subsequent NFKB activation. As this inhibitor is working 

at the level of MEK., the data suggests that an interaction between MAPK's may be 

important in NFKB activation. The inhibition of NFKB with the PD98059 inhibitor was 

found to be associated with a reduction in IKBa phosphorylation. 

Other important transcription factors were also found to be activated by hypothermic 

stress in endothelial cells. The HSFl transcription factor was found to be expressed at a 

high rate in control cells in a similar fashion to Hsp70. Despite showing a peak after 2 

hours of hypothermia, HSFI did not reach the control levels seen during hypothermia. 

The HSFI transcription factor is involved in the regulation of the heat shock proteins and 

the expression ofHsp70 followed a similar trend to the HSFI transcription factor during 

hypothermia. 

The transcription factor AP I was also activated during hypothermia, and was found to 

peak after 12 hours. This was in contrast to the activation of NFKB within minutes, 

however, the AP I transcription factor is formed as a heterodimer complex of c-jun and c

fos proteins and is not pre-formed in the cell as NFKB is. 

Reperfusion was investigated by re-warming the cells back to 37°C after hypothermia. 

One of the main effects ofreperfusion injury in vivo is the sudden availability of oxygen 

that results in the formation of ROis. In the model in this study this was difficult to 

reproduce. Hypothermic experiments were carried out in sealed tubes, so for reperfusion 

experiments the lids were open to allow oxygen to enter. 

A short time course of 30 minutes and a longer time of 12 hours were chosen and cells 

returned to 3~C for up to I hour in order to investigate the effects of reperfusion. In a 

similar fashion to what was observed during hypothermia, endothelial cells had viability 
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above 95% throughout the time course studied. DNA fragmentation was also absent 

during the reperfusion experiments. There was no increase in either NFKB, APl or HSFl 

transcription factor activity during reperfusion at both the time points studied. 

Reperfusion also had no effect on the ERK 1 I 2 and p38 MAPK's, however, JNK was 

largely up-regulated during reperfusion after 30 minutes of hypothermia. Reperfusion 

after 12 hours of hypothermia had less effect on JNK activity. JNK is thought to be 

activated predominantly by reperfusion or re-oxygenation (Bogoyeritch et a/ 1996, 

Laderoute & Webster 1997, Crenesse et a/ 2000a). This further suggests that the JNK 

MAPK is not involved in the response to hypothermia. 

Reperfusion is likely to be an important factor in graft injury. This culture system offered 

the opportunity to study the effects of 're-warming' on endothelial cells, but was of 

limited use for studying the effects of hypothermia followed by re-warming and re

oxygenation as would be expected in vivo. Many of the pathways studied are redox 

sensitive and therefore the effects of reperfusion in relation to the production of free 

radicals is likely to important. 

The downstream effects of the activation ofNFKB were investigated by the production of 

cytokines. Previous studies have shown cytokine production during hypothermia is 

variable in respect to the levels found (Wang et a/ 1998b, Eberl et a/ 1999b ). The 

cytokines studied were IL-6, IL-8 and TNFa. These were chosen as they all contain KB 

binding sites in their genes and are rapidly released in a stress responses, either due to the 

fact that they are preformed in cells or are quickly synthesized. 

IL-6 was found to have a large peak in production after 12 hours of hypothermia, which 

was consistent with both NFKB and APl activation. The IL-6 gene contains both NFKB 
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and AP1 binding sites (Chandrasekar et a/ 1999). It has previously been shown that the 

eo-binding of these two transcription factors is required for the synthesis of many 

cytokine genes including IL-6 and IL-8 (Matsui et a/ 1999, Oppenheirn et a/ 1991 ). This 

peak at 12 hours was significantly reduced when the NFKB inhibitor was added before 

the experiment. 

IL-8 was also produced during hypothermia and was significantly upregulated from 

control cells at all time points studied. The addition of SNSO significantly reduced IL-8 

levels at 12 hours but did not reduce levels at the other time points. TNFa was also 

produced by the endothelial cells during hypothermia with an early peak at 6 hours which 

was maintained at 12 hours and a third peak at 72 hours was seen. Addition of SNSO 

significantly reduced the third peak at 72 hours. This data demonstrates that NFKB has a 

role to play in the expression of these cytokines during hypothermia, as its inhibition 

resulted in the reduced production of them. However, levels of cytokines were not 

blocked completely when inhibiting NFKB and it is likely that other factors are involved 

in the regulation of these cytokines. Reperfusion caused a large increase in IL-6 after 30 

minutes of hypothermia, but not after 12 hours. IL-8 and TNFa levels were unaffected by 

reperfusion. Consistent with previous fmdings, hypoxia induced a large production of all 

three cytokines (Yan et a/ 1997ab, Li et a/ 1999). 

Preservation solutions can easily be modified to contain such inhibitors if these or other 

cytokines are shown to have an effect on graft function. The next stage of this study was 

to try and determine firstly, if these cytokines are found in grafts and secondly if they 

have any effect on early graft function. The primary function of the graft is thought to be 

the most likely place that damage occurring to the graft during its procurement and 
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storage (Tilney et a! 1997). Early graft function is known to be an important indication 

of the likely subsequent function of the graft (Ojo et a/1997, MacLaren et a/1999). 

In the preservation solutions collected from donors, there was a large variation in levels 

of cytokines. The range was as high as a 117-fold difference between samples with IL-4 

and 40-fold difference for IL-8. This suggests heterogeneity in the amount of cytokines 

produced by donor kidneys during storage. However, it is difficult to determine exactly 

where these cytokines have originated from, and what exactly induced their secretion. 

Land et al first demonstrated that high levels of IL-6 can be found in the donor before 

organ removal, which may be attributable to the donors death (Land et a/ 1998a). 

Perfusion during organ removal would be expected to 'flush' the kidney, removing any 

residual cytokines in the graft. The cytokines found in the solutions after static storage 

could be attributable to the ischaemic times or as a result of the donors death. Data was 

not available on the ventilation times and perfusion techniques used in these donors as the 

kidneys were imported from other Hospitals. It is possible that the cytokines are in the 

solutions as graft cells as a result of the donors death release them. However, their role as 

an indicator of subsequent graft function would be of great use irrespective of their 

origin. 

Levels of IL-6 were found to correlate with increasing WI times. Similarly IL-6 levels 

from kidneys with greater then 30 minutes WI time were higher than from those with less 

than 30 minutes WI time. As shown with the hypoxia experiments in endothelial cells, 

IL-6 is largely up-regulated by hypoxia. Warm ischaemia is associated with hypoxia and 

is thought to be potentially more damaging than cold ischaemia if prolonged (Sacks et a! 

1973, Florack et a! 1986). 
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IL-6 was also up-regulated by reperfusion in the culture system and has been shown to 

correlate with graft function when measured in the reperfused effluent in liver grafts 

(Basille et a/ 1999). There was a trend in the data with higher inflammatory IL-6, IL-8 

and TNFa in grafts with delayed function and rejection and higher anti-inflammatory IL-

4 in grafts with primary function and no-rejection episodes. Recent data has suggested a 

protective role for IL-4 in transplantation (Kato et a! 2000ab). The fact that only 17 

preservation solutions were available for analysis may have contributed to the lack of 

statistical significance. 

One potential explanation for the range in cytokine levels found in the solutions may be 

due to certain polymorphisms which the donor may have in cytokine genes. The IL-6 C(-

174)G polymorphism is linked to protein producer status (Fishman et a/ 1998). This 

polymorphism has recently been shown to correlate with rejection episodes in kidney 

transplant donors (Marshall et a/ 200 I). A higher incidence of rejection in patients 

receiving a kidney from a donor who has the C allele, which is linked to lower production 

ofiL-6 was found. 

In the 67 donor samples studied there was no correlation found between either allele or 

genotype and rejection episode in theses donors. In the 17 preservation solutions there 

was a higher amount of IL-6 found in donors who have the G (high producer) allele than 

in those with the C allele. This did not reach significance, but raises the interesting point 

as to whether cytokine levels found in preservation solutions are as a result of 

polymorphisms which donors have. One explanation for the link between donor 

polymorphisms and transplant success is that cytokine producer status in the donor may 

influence the host immune response. However, another explanation may be that the 
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ability of the donor kidney to withstand the preservation process ts linked to the 

production of certain cytokines, which may be protective or detrimental to graft function. 

A study of a large number of donor kidneys with a link between cytokine producer 

genotype, and cytokine levels in preservation solution or early perfused eftluent would 

generate interesting data. The in vitro model has shown that inhibitor can be used to 

reduce cytokine production and these could easily be added to preservation solutions. 

The microsatellite polymorphism of the TNFa gene has previously been shown to be 

associated with rejection in both kidney and heart transplant recipients (Asano et a/ 

1997, Abdallah et a/ 1999). In our donor population there was no association found 

between TNFa microsatellite alleles or genotypes and rejection episodes. However, 

there was an increase in the frequency of the 2 allele in rejectors, which was most 

frequent when categorising donors with HLA-A mismatched alleles (x2 2.59). The 6, I 0 

genotype was not significantly different, but was higher in non-rejectors (x2 3.04). 

The number of donors in this study was relatively low, but if the same frequency was 

found with twice the number of donors, a significant difference would be found. 

Therefore, the TNFa microsatellite polymorphism should be investigated in a larger 

number ofkidney transplant donors to determine if this allele and genotype are associated 

with rejection. 

It is important that novel gene polymorphisrns are studied to determine if there are any 

associations with rejection or graft survival. The NFKB gene contains a microsatellite 

polymorphism that has not previously been investigated in transplant donors or 

recipients. This polymorphism was not associated with rejection in the donors in this 

study. The NAD(P)H system is a major producer of the superoxide radical. The 

287 



polymorphism of the NAD(P)H oxidase p22 subunit has been shown to protect certain 

individuals from heart disease and is known to effect the heme binding site in the gene 

and is hence likely to effect the function of the subunit (Inoue et a/ 1998, de Boer et a/ 

1992). This polymorphism has not been investigated in transplant patients or donors. 

There was no correlation found between this polymorphism and rejection in 67 donors. 

However, the potentially protective TT genotype was absent in the rejection group but 

present in 7% ofthe non-rejection group (x2 2.07). This genotype should be investigated 

in a larger number of donors. 

It is likely that numerous pathways are activated during ischaemic injury and this study 

has focused on one of potentially many. The difficulty is integrating a wealth of data on 

ischaemia and reperfusion into a model of graft injury that can be used to identify 

potential interventions or therapeutic targets. Events occurring to the donor during organ 

retrieval and the donors death, in combination with ischaemia lead to stress to graft cells. 

The first problem is that cells are likely to react in differing ways to this. For example, 

endothelial cells were resistant to death induced by cold, however, previous studies have 

demonstrated cold-induced apoptosis in tumour ceUs (Kruman et a/ 1992) and 

hepatocytes (Rauen et a/ 1999). The activation of stress pathways will lead to the 

production of inflammatory cytokines and stress proteins, which will work in an 

autocrine fashion to up-regulate adhesion molecules, eo-stimulatory molecules and MHC 

class li molecules as well as to further induce cytokine production. The production of 

these cytokines and the response of the graft cells to stress will also be dependent of 

polymorphisrns within important genes such as the cytokines or transcription factors that 

regulate them. This creates high/low producers and differing responses in individuals. 
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This creates a balance of many factors in combination that will affect graft function. 

Further to this there many factors in the recipient to take into account, such as 

polymorphism and HLA matching. The inflammatory and stress responses are 

evolutionary conserved responses that have evolved as a protective response to stress. 

Therefore, elements of an inflammatory reaction may have a protective function. 

Conserved stress response mediators such as NFKB may therefore not be an ideal target 

for inhibition as binding sites are found in numerous genes (Pahl 1999). There is 

currently still debate as to whether it is pro- or anti-apoptotic and binding sites for both 

pro-inflammatory and anti-inflammatory proteins have been identified (Senftlebent & 

Karin 2002). 

The aim of studying the effects of ischaemia and reperfusion injury are therefore to try 

and identify markers of graft damage which could be used to determine the quality of an 

organ. By studying the molecular biology of stress, a better understanding of the effects 

occurring at a cellular level during organ procurement may lead to interventions which 

could improve the quality of organs by reducing the injury caused by retrieval and 

storage. 

In the shorter term, this information together with the increasing information from 

genetic associations with graft survival and rejection may lead to more tailored treatments 

for recipients. For example the amount of immunosuppression needed by a patient may 

be determined by his/her cytokine producer status, donors ischaemic times and cytokine 

genotypes in combination with information on the quality of the graft when it arrived for 

surgery. This would be of undoubted benefit to the patient as immunosuppression is 

associated with numerous long term and undesirable side-effects. 
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The ultimate aim would be to use non-invasive markers, such as IL-6 to gain information 

on the quality of organs to be able to predict graft outcome, tailor immunosuppression to 

the recipient or allow a wider organ pool by incorporating NHBD or marginal donors. 
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CELL SPECIFICTY 

Stress Proteins Apoptosis 
HSP' s 

Donor's Death 
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_____. 
Reperfusion Perfusion 
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Cytokines Adbesion Molecules MHC Class 11 Thrombotic proteins 
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Figure 8.1. A basic overview of events during donor organ preservation that may effect graft outcome. The 
balance between successful organ retrieval and the detrimental effects of cell stress is dependent of many 
variables. 
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8.1 Conclusions from this thesis 

NFKB is activated by hypothermic stress and the MAPK cascades ERK I I 2 and p38 are 

likely to be involved in this. ERK l /2 activation may be linked to IKBa phosphorylation. 

IL-6, IL-8 and TNFa are up-regulated during hypothermia and this can be reduced by 

inhibiting NFKB with an ODN. Hypothermia does not induce apoptosis in endothelial 

cells and cells maintain a high viability during hypothermia and reperfusion. 

Cytokines are measurable in renal preservation solutions collected from static stored 

kidneys. IL-6 levels are elevated in kidneys that have experienced greater than 30 

minutes warm ischaemia. Donors with the IL-6 high producer genotype have higher IL-6 

levels in preservation solutions after static storage, regardless of ischaemia times. 

Polymorphisms of the NAD(P)H oxidase phox22 subunit and NFKB CA(n) repeat 

polymorphism do not correlate with rejection or early graft function in donor kidneys. 

8.2 Future work arising from this thesis 

To collect a large number of preservation solutions from kidney grafts and to correlate 

protein levels of IL-6 with producer status. IL-6 may be a useful marker of graft injury, or 

predictor of rejection. 

To use NFKB inhibitors in preservation solutions. 

To further investigate the role ofMAPK cascades in transcription factor activation 

To determine why endothelial cells are resistant to hypothermic induced cell death and to 

determine if these survival pathways can be selectively switched on or off in other cell 

types to improve the longevity of cells during stress. 
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Date of Cold Warm HLA Primary/delayed rejection Creatinine 
sample ischaemic ischaemic match function episodes at 1 month 

time time 
10/10/00 19 hours 65 110 Primary 2 grade 2 207 

30 mins minutes vascular 
rejections 

02/03/01 13 hours 20 121 delayed Nephrectomy 
Durham 40 mins minutes due to renal 

artery 
thrombosis 

02/03/01 16 hours 20 212 delayed 2 episodes 752 
20 mins minutes treated. 

23/03/01 37 hours 22 110 primary Nil 110 
21 mins minutes 

02/05/01 15 hours 45 000 primary 2 episodes. 
minutes Nephrectomy 

due to severe 
vascular 
rejection 

18/05/01 21 hours 20 110 primary Nil 96 
36 mins minutes 

23/05/01 33 hours 58 110 delayed Nil 146 
27mins minutes 

24/05/01 18 hours 45 010 delayed Nil 135 
minutes 

31/05/01 20 hours 20 mins 110 delayed I grade 2 244 
20 mins rejection 

05/06/01 25 hours 7 20 mins 120 delayed Nil 186 
m ins 

03/07/01 23 hours 40 mins 110 primary Nil 118 
46 mins 

4/10/01 19 hours 45 mins 110 Primary Nil 119 

14/11/01 33 hours 58 mins 000 Primary Nil 
2 mins 

28/1110 I 18 hours 22 mins 000 Primary Nil 
30 mins 

20/12/01 14 hours 20 mins 110 Primary Nil 
40 mins 

22/12/01 18 hours 34 mins delayed Nil 
19 mins 

6/01/01 17 hours 39 mins 101 Primary Nil 
19 mins 

Appendix 1. Clinical details of donor kidneys from which preservation solutions were collected 
and subsequent graft function in the recipient. All donors and recipients were Caucasian. Empty 
boxes are where data was unavailable. 
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DONOR DONOR RECIPIENT DONOR RECIPIENT HLA No. OF 
AGE AGE GENDER GENDER MATCH REJECTION 

EPISODES 
I 40 38 F M 010 I 
2 22 24 F F 101 2 
3 72 41 F M Ill 4 
4 41 71 F M 020 I 
5 36 63/36 M M/M 110/110 0/0 
6 32 53 M M Ill 0 
7 42 27 M M Ill I 
8 37 37 F F 000 0 
9 63 39 M F 100 0 
10 55 68 F M 101 0 
11 17 26 M M 200 0 
12 27 56 F F 211 0 
13 Exported 
14 Exported 
15 Not used 
16 54 54 M M Ill I 
17 67 30 F F 100 0 
18 26 53 F M Ill 3 
19 50 51 F M 112 3 
20 Exported 
21 44 50 F M Ill I 
22 NA 20 M F 110 0 
23 22 39 M M 110 0 
24 NA 35/57 M F /M 121/121 2/0 
25 63 64· F M 011 2 
26 39 32 M M 221 Neph 
27 64 47 M F Ill I 
28 NA 41 M M 000 0 
29 NA 62 F F 110 Neph 
30 Not used F 
31 47 59 F M 220 I 
32 43 45 M F 000 I 
33 18 48 F F Ill 2 
34 67 52 F M 221 I 
35 65 63 M M 201 I 
36 42 45 M M 110 2 
37 52 58 M M 110 0 
38 68 59 F F 121 3 
39 NA 63 M M 110 0 
40 NA 63 F M 120 0 
41 NA 44 F M 000 I 
42 69 55 M M Ill I 
43 49 54/30 M F/M 110/120 I /3 
44 62 55 M F 011 2 
45 Exported 
46 67 37/49 F M/M 110/110 0 /I 
47 50 44/34 F MIF 011/011 2/1 
48 58 27 F F 000 I 
49 32 34/58 M M/M 110 I Ill 0 /I 
50 51 38 M M 220 0 

Appendix 2. Clinical details of the 50 donor DNA samples received for use in genetic 
studies. Two numbers are given for donors which both kidneys were harvested. Some 
kidneys were exported to other Hospitals or not used for technical reasons. These were 
excluded from the study as subsequent information was not available. Only one donor 
was non-Caucasoid. All recipients were Caucasian. 
Neph =Nephrectomy due to severe rejection. NA = Data not available. 
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Time Mean Optical Density Av Fold SE p Value 

Control 0.11, 0.11, 0.03, 0.01, 0.00 0.05 I 0.02 -
PMA 0.46, 0.79, 0.46, 0.23, 0.23 0.43 8.6 0.10 <0.01 

5mins 0.31, 0.46, 0.14, 0.14, 0.16 0.24 4.8 0.06 <0.05 

IOmins 0.19, 0.46, 0.16, 0.07, 0.09 0.19 3.8 0.06 -

15mins 0.13, 0.43, 0.13, 0.04, 0.06 0.15 3.0 0.06 -

30mins 0.28, 0.46, 0.14, 0.12, 0.15 0.23 4.6 0.06 <0.05 

1hr 0.17, 0.32, 0.09, 0.06, 0.07 0.14 2.8 0.04 -

2hr 0.17, 0.38, 0.11, 0.06, 0.07 0.15 3.0 0.05 -

4hr 0.14, 0.64, 0.28, 0.04, 0.06 0.23 4.6 0.11 -

6hr 0.29, 0.48, 0.14, 0.16, 0.17 0.24 4.8 0.06 <0.05 

12hr 0.18, 0.48, 0.07, 0.07, 0.11 0.18 3.6 0.07 -

24hr 0.39, 0.36, 0.20, 0.23, 0.26 0.28 5.6 0.03 <0.01 

48hr 0.30, 0.59, 0.15, 0.15, 0.19 0.27 5.4 0.08 <0.05 

72hr 0.16, 0.51, 0.26, 0.13, 0.17 0.24 4.8 0.04 <0.05 

Appendix 3 NFKB optical density data taken from image analyser (p value vs control 

cells). 
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Reperfusion 

30mins 

30+I5 

30+30 

30+60 

12hr 

I2+I5 

I2+30 

12+60 

Optical Density 

7.62, 8.96, I2.72 

I 1.38, I 0.58, I 4.68 

5.12, I 1.46, I2.28 

I I. 76, 8.93, I 6.30 

22.38, 6.19, 23. I 6 

22.87, 15.84, 23.88 

22. 78, 13 .13, 24.72 

22.35, 11.41, 28.31 

Average 

9.76 

12.2I 

9.62 

12.33 

I7.24 

I9.86 

20.2I 

20.69 

SE P value 

0.88 

0.72 ns 

1.30 ns 

1.23 ns 

3.19 

2.03 ns 

2.06 ns 

2.85 ns 

Appendix 4. NFKB reperfusion optical density data taken from image analyser (p 

value vs control cells). 
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Time Mean Optical Density Av Fold SE p Value 

Control 1.69,3.12 2.40 1 0.5 -

PMA 3.59, 5.55 4.57 1.9 0.69 ns 

5mins 1.22, 4.67 2.94 1.22 1.21 ns 

10mins 4.81, 2.65 3.73 1.55 0.76 ns 

15mins 5.45,4.13 4.79 1.99 0.46 ns 

30mins 3.37,4.13 3.75 1.56 0.26 ns 

1hr 5.32, 2.97 4.14 1.72 0.83 ns 

2hr 7.86, 1.86 4.86 2.02 2.12 ns 

4hr 6.30, 2.64 4.47 1.86 1.29 ns 

6hr 3.55, 3.38 3.46 1.49 0.06 ns 

12hr 3.95, 4.21 4.08 1.70 0.09 ns 

24hr 6.36, 3.64 5.0 2.08 0.96 ns 

48hr 2.98, 3.28 3.13 1.30 0.1 ns 

72hr 4.34, 2.07 3.20 1.33 0.8 ns 

Appendix 5 . IKBa optical density data taken from image analyser (p value vs control 

cells). 
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Time Mean Optical Density Av Fold SE p Value 

Control 3.65, 4.66 4.15 I 0.5 -

PMA 7.77, 10.09 8.93 2.15 1.16 -

5mins 6.57, 11.59 9.08 2.18 2.51 -
10mins 5.8, 7.43 6.61 1.59 0.81 -

15mins 6.78, 7.59 7.18 1.73 0.4 <0.05 

30mins 6.39, 6.62 6.5 1.56 0.11 -
1hr 6.62, 9.81 8.21 1.97 1.59 -

2hr 9.93, 7.25 8.59 2.06 1.34 -

4hr 11.98, 10.01 10.99 2.64 0.98 <0.05 

6hr 11.02, 7.46 9.24 2.22 1.78 -

12hr 16.37, 15.78 16.07 3.87 0.29 <0.01 

24hr 12.95, 9.9 11.42 2.75 1.53 -

48hr 11.99, 9.86 10.92 2.63 1.06 <0.05 

72hr 12.50, 17.57 15.03 3.62 2.53 -

Appendix 6 AP1 optical density data taken from image analyser (p value vs control 

cells). 
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Reperfusion 

30mins 

30+15 

30+30 

30+60 

12hr 

12+15 

12+30 

12+60 

Optical Density 

10.66, 11.96 

11.21,3.17 

7.0, 5.89 

7.21, 8.49 

14.76, 12.05 

12.69, 14.78 

20.01,9.12 

18.89, 17.12 

Average 

11.31 

7.19 

6.44 

7.85 

13.40 

13.73 

14.56 

18.00 

SE P value 

0.45 

2.84 ns 

0.39 ns 

0.45 ns 

0.38 

0.37 ns 

0.49 ns 

1.13 ns 

Appendix 7. APl reperfusion optical density data taken from image analyser 
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Control IL-6 pg/ml Average pg/m I SE P Value 

6hr 2.45, 15.71, 3.89 7.35 3.63 

12hr 9.47, 16.53, 5.21 10.40 2.85 

24hr 24.90, 18.99, 6.14 16.67 4.79 

48hr 18.34, 46.96, 4.58 23.29 I 0.80 -

72hr 29.65, 56.01, 6.62 30.76 12.35 -

Hypothermia 

6hr 25.58, 16.53, 16.35, 33.56 23.00 4.12 ns 

12hr 118.78, 209.38, 111.44, 216.54 164.03 28.3 <0.01 

24hr 18.51, 18.99, 15.25, 23.73 19.12 0.57 ns 

48hr 36.1, 46.98, 31.93, 56.01 42.75 0.18 ns 

72hr 40.85, 40.01, 41.69, 40.87 40.85 0.34 ns 

SNSO 

6hr 7.71, 15.7 11.70 2.82 ns 

12hr 7.81, 30.0 18.90 7.84 <0.05 

24hr I O.ot, 20.70 15.35 3.77 ns 

48hr 6.43, 25.70 16.06 6.81 ns 

72hr I 0.55, 85.30 47.92 26.42 ns 

Appendix 8 IL-6 ELISA data, during hypothermia and with SN50 inhibitor (p values 

vs control) 
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Reperfusion IL-6 pglml Average SE Pv alue 

30mins 17.60, 13.26, 18.82,16.46 16.S3 1.19 -

30+1S 273.SO, 380.60, 236.21, 306.83, 299.28 30.7 <0. 

30+30 202.94, 198.87, 176.93, 178.04, 173.00 6.81 <0. 

30+60 221.4S, 220.94, 203.24, 203.2S, 212.22 S.18 <0. 

12hr 118.78, 209.38, 111.44, 216.S4 164.03 28.32 ns 

12+1S 268.43, 94. 7S 181.56 61.40 ns 

12+30 340.83, 18S.96 263.0 S4.7S ns 

12+60 72S.I2, 224.86 474.0 88.43 ns 

Hypoxia 

6hr 211.60, 2S3.77, 194.43, 199.86 214.91 13.40 <0. 

12hr 244.13, 3S2.01,223.62, 246.S I 266.S6 28.94 <0. 

424hr 248.38, 312.SI,226.98, 270.41 264.S7 18.S4 <0. 

48hr 230.96, 29S. 72,207.43, 241.22 243.83 18.60 <0. 

72hr 118.4S, 123.29, 202.68, IS6.32 I S0.18 16.80 <0. 

Appendix 9 IL-6 raw data for reperfusion and hypoxia (*p value vs 30 mins 

hypothermia **pvalue vs control cells) 
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OS* 

OS* 

OS* 

01** 

01** 

01** 

01** 

01** 



Control IL-8 pg/ml Average pg/ml SE P Value 

6hr 0.00, 13.66 6.83 4.82 

12hr 4.53, 24.38 14.45 7.01 

24hr 64.73, 85.52 75.12 7.35 

48hr 180.48,41.50 110.90 49.13 -

72hr 92.88, 40.81 66.84 18.40 -

Hypothermia 

6hr 242.66, 138.10 190.30 36.96 <0.05 

12hr 409.39, 275.20 343.20 47.44 <0.05 

24hr 214.36, 151.50 182.92 22.22 <0.05 

48hr 276.78, 296.04 286.41 6.80 <0.05 

72hr 319.82,718.38 519.10 70.45 <0.05 

SNSO 

6hr 25.91' 86.02 55.96 21.25 ns 

12hr 46.02, 48.08 47.05 0.72 <0.05 

24hr 166.30,211.37 188.93 16.0 ns 

48hr 104.97, 98.54 101.75 2.27 ns 

72hr 766.80, 594.78 686.70 60.81 ns 

Appendix 10. IL-8 ELISA data during hypothermia and with SN50 inhibitor (p value 

Vs Control) 
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Reperfusion IL-6 pglml Average SE P val ue 

30mins 6.52, 14.09 10.30 2.67 ns 

30+15 4.56, 13.52 9.04 3.16 ns 

30+30 7.84, 16.79 12.31 3.16 ns 

30+60 10.32, 13.81 12.06 1.23 ns 

12hr 409.39, 275.20 342.29 47.44 ns 

12+15 400.81, 104.97 252.89 104.59 ns 

12+30 542.50, 766.80 654.65 79.30 ns 

12+60 1271.65, 891.33 1081.49 134.46 ns 

Hypoxia 

6hr 413.20, 542.50 477.85 45.70 <0.01 

12hr 636.24, 1271.65 953.84 224.6 <0.01 

24hr 691.20, 3380.58 2035.89 950.8 <0.01 

48hr 686.0, 5512.8 3099.40 1706.5 <0.01 

72hr 1006.7, 5602.48 3304.59 1624.8 <0.01 

Appendix ll. IL-8 reperfusion and hypoxia (p value vs control cells) 
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Control TNFa pg/ml Average pg/m I SE P Value 

6hr 6.58, 4.95, 3.90 5.14 0.67 

12hr 5.06, 7.18, 4.14 5.46 0.63 

24hr 5.06, 8.34, 4.14 5.84 0.90 

48hr 5.88, 6.75, 3.79 5.47 0.62 

72hr 3.71, 4.73, 3.90 4.11 0.22 

Hypothermia 

6hr 6.81, 7.87, 8.10 7.59 0.34 <0.05 

12hr 1 0.86, 8.34, 7.64 8.94 0.84 <0.05 

24hr 7.59, 8.24, 7.87 7.90 0.16 ns 

48hr 11.18, 7.61, 7.87 8.88 0.81 ns 

72hr 8.86, 7.87, 7.41 8.04 0.37 <0.01 

SN50 

6hr 8.10, 4.74 6.42 1.18 ns 

12hr 7.18, 5.27 6.22 0.67 ns 

24hr 7.18,5.67 6.42 0.53 ns 

48hr 6.95, 6.90 6.92 0.01 ns 

72hr 6.27, 6.08 6.17 0.06 <0.05 

Appendix 12. TNFa production during hypothermia and with SN50 inhibitor (p 

value Vs control). 
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Reperfusion TNFa. pglml Average SE P valu e 

30mins 1.36, 0.06 0.71 0.45 ns 

30+15 0.48, 0.09 0.28 0.13 ns 

30+30 1.25, 2.02 1.63 0.27 ns 

30+60 I. 72, 3.52 2.62 0.90 ns 

l2hr 27.35, 20.73 24.04 1.65 ns 

12+15 21.81, 13.68 17.74 2.87 ns 

12+30 30.73, 21.80 26.26 3.15 ns 

12+60 38.98, 35.20 37.09 1.33 ns 

Hypoxia 

6hr 413.20, 542.50 477.85 45.70 <0.01 

l2hr 636.24, 1271.65 953.84 224.6 <0.01 

24hr 691.20, 3380.58 2035.89 950.8 <0.01 

48hr 686.0, 5512.8 3099.40 1706.5 <0.01 

72hr I 006.7, 5602.48 3304.59 1624.8 <0.01 

Appendix 13. TNFa. reperfusion and hypoxia (p value Vs control cells) 
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Time 

Control 

Hypothermia 

6hr 

12hr 

24hr 

48hr 

72hr 

Hypoxia 

6hr 

12hr 

24hr 

48hr 

72hr 

Amount fJ.M 

22.5, 21.40, 21.80 

24.60, 20.36, 2l.l0 

24.60, 20.50, 21.50 

24.50, 20.83, 21.40 

24. 70, 21.40, 22.1 0 

23.60, 22.83, 22.70 

24.50 

24.30 

24.30 

24.50 

23.60 

Average 

21.90 

22.02 

22.20 

22.24 

22.73 

23.04 

Appendix 14. Hydrogen peroxide absorbances at 560nm 
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SE 

0.32 

1.30 

1.23 

1.14 

1.0 

0.28 



Time Amount mmol/1 Average SE p value 

Control 0.84, 0.91, 1.24 0.99 0.12 

Hypothermia 

6hr 2.00, 1.56, 2.97 2.17 0.41 

12hr 1.74, 1.66, 4.19 2.53 0.83 

24hr 3.58, 1. 74, 6.58 3.96 1.41 

48hr 6.42, 3.94, 8.61 6.32 1.38 

72hr 6.85, 4.45, 10.73 7.34 1.82 

Hypoxia 

6hr 4.71, 4.92 4.82 0.10 

12hr 8.40, 6.20 7.30 1.09 

24hr 5.57, 6.46 6.01 0.44 

48hr 6.35, 7.41 6.88 0.53 

72hr 5.47, 6.59 6.03 0.56 

Appendix 15 Lactate absorbances at 340nm 
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Time Mean Optical Density Av Fold SE p Value 

Control 44.0, 33.89, 8.24 28.71 1.0 6.14 -

5mins 5.6, 3.78, 2.96 4.11 0.14 0.45 ns 

10mins 10.2, 5.63, 3.40 6.41 0.22 1.15 ns 

15mins 14.81' 8.03, 1.92 8.25 0.28 2.14 ns 

30mins 44.41, 27.13, 0.41 23.98 0.83 7.38 ns 

1hr 54.55, 32.63, 2.82 30.0 1.04 8.65 ns 

2hr 69.98,46.97, 2.96 39.97 1.39 11.35 ns 

4hr 61.21, 34.15, 5.33 33.56 1.16 9.31 ns 

6hr 51.75, 26.29, 2.14 26.72 0.93 8.26 ns 

12hr 42.07, 19.43, 1.33 20.94 0.72 6.80 ns 

24hr 42.92, 19.0, 4.22 22.04 0.76 6.50 ns 

48hr 61.72, 27.16, 2.80 30.56 1.06 9.86 ns 

72hr 42.54, 23.83, 3.91 23.42 0.81 6.43 ns 

Appendix 16. HSF1 optical density data 
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Reperfusion 

30mins 

30+15 

30+30 

30+60 

12hr 

12+15 

12+30 

12+60 

Optical Density 

1.32, 15.03 

0.19, 17.78 

0.37, 17.09 

0.84, 17.60 

13.21, 13.23 

21.19, 15.56 

21.60, 12.56 

25.33, 18.70 

Average 

8.17 

8.98 

8.73 

9.22 

13.22 

18.37 

17.08 

22.01 

Appendix 17. HSF1 reperfusion optical density data 
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SE P value 

4.84 

6.22 ns 

5.91 ns 

5.92 ns 

0.007 -

1.99 ns 

3.19 ns 

2.34 ns 



Time Mean Optical Density Av Fold SE p Value 

Control 2.95, 0.48, 8.24 3.89 1.0 1.32 -

5mins 1.95, 1.66, 2.96 2.19 0.56 0.22 ns 

IOmins 3.04, 1.41, 3.40 2.61 0.67 0.35 ns 

15mins 2.17, 1.29, 1.92 1.79 0.46 0.15 ns 

30mins 0.96, 1.12, 0.41 0.83 0.21 0.12 ns 

lhr 3.31, 1.09, 2.82 2.40 0.61 0.38 ns 

2hr 2.79, 1.11, 2.96 2.28 0.58 0.34 ns 

4hr 2.84, 1.83, 5.33 3.33 0.85 0.60 ns 

6hr 1.54, 2.39, 2.14 2.02 0.51 0.14 ns 

12hr 0.70, 1.57, 1.33 1.20 0.30 0.14 ns 

24hr 1.63, 1.42, 4.22 2.42 0.62 0.51 ns 

48hr 1.08, I. 94, 2.8 1.94 0.49 0.28 ns 

72hr 1.0, 2.35, 3.91 2.42 0.62 0.48 ns 

Appendix 18. Hsp70 optical density data. 
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Time Mean Optical Density Av Fold SE p Value 

Control 0.33, 0.78, 0.09, 0.36 0.39 1 0.14 -

PMA 0.65, 1.20,0.17, 0.32 0.58 1.48 0.22 ns 

5mins 0.77, 0.06, 0.18, 0.48 0.37 0.90 0.15 ns 

10mins 0.51, 0.07, 0.22, 0.47 0.31 0.79 0.10 ns 

15mins 0.68, 0.60, 0.22, 0.44 0.48 1.23 0.10 ns 

30mins 0.81, 0.80, 0.23, 0.45 0.57 1.46 0.14 ns 

1hr 0.54, 0.80, 0.21, 0.44 0.49 1.25 0.12 ns 

2hr 0.56, 0.47, 0.31, 0.53 0.46 1.17 0.05 ns 

4hr 0.49, 1.01, 0.33, 0.51 0.58 1.48 0.14 ns 

6hr 0.93, 1.50, 0.30, 0.36 0.77 1.97 0.28 ns 

12hr 1.09, 1.52, 0.20, 0.35 0.79 2.02 0.31 ns 

24hr 1.11, 1.53, 0.1 0, 0.26 0.75 1.92 0.34 ns 

48hr 0.98, 1.29, 0.06, 0.12 0.61 1.56 0.30 ns 

72hr 0.65, 1.46, 0.11, 0.13 0.58 1.48 0.31 ns 

Appendix 19. BCL-2 optical density readings. 
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Time VWF IU/ml Av Fold SE p Value 

Control 0.034, 0.023, 0.022 0.026 I 0.003 -

PMA 1.044, 0.196, 0.113 0.451 17.3 0.257 ns 

5mins 0.262, 0.029, 0.015 0.102 3.9 0.06 ns 

10mins 0.125, 0.027, 0.015 0.05 1.9 0.02 ns 

15mins 0.1 03, 0.029,0.024 0.05 1.9 0.02 ns 

30mins 0.146,0.029, 0.017 0.06 2.3 0.03 ns 

1hr 0.087, 0.025, 0.02 0.04 1.53 0.01 ns 

2hr 0.017, 0.027, 0.019 0.02 0.76 0.002 ns 

4hr 0.15, 0.025, 0.019 0.06 2.3 0.03 ns 

6hr 0.036, 0.024, 0.017 0.02 0.76 0.004 ns 

12hr 0.004, 0.036, 0.016 0.01 0.38 0.008 ns 

24hr 0.017, 0.036, 0.022 0.02 0.76 0.004 ns 

48hr 0.014, 0.017, 0.022 0.01 0.38 0.002 ns 

72hr 0.016, 0.017, 0.025 0.01 0.38 0.002 ns 

Appendix 20. VWF ELISA levels during hypothermia 
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Time Optical Density Av Fold SE p Value 

Control 1.01, 1.03, 0.50 0.85 I 0 -

PMA 9.37, 11.10, 5.55 8.67 10.23 0.95 <0.05 

5mins 11.67, 15.66, 7.83 11.72 13.66 2.05 <0.05 

10mins 9.30, 10.84, 5.42 8.52 10.07 0.80 <0.05 

15mins 6.45, 6.84, 3.42 5.57 6.65 0.27 ns 

30mins 6.90, 7.52, 3.76 6.06 7.21 0.35 os 

1hr 5.15, 5.26, 2.63 434 5.20 0.10 ns 

2hr 6.45, 5.94, 2.97 5.12 6.19 0.20 ns 

4hr 4.94, 4.26, 2.13 3.77 4.60 0.30 ns 

6hr 3.47, 3.84, 1.92 3.07 3.60 0.20 ns 

12hr 3.78, 5.30, 2.65 3.91 4.50 0.75 ns 

24hr 5.17, 8.48, 4.24 5.96 6.80 1.65 ns 

48hr 4.12,9.62, 4.81 6.18 6.80 2.80 ns 

72hr 4.1 0, 1 0.44, 5.22 6.58 7.20 3.20 ns 

Appendix 20. p38 optical density readings (p value Vs control) 
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Reperfusion 

30mins 

30+15 

30+30 

30+60 

12hr 

12+15 

12+30 

12+60 

Optical Density 

13.16, 9.44 

9.29, 5.59 

9.87, 6.88 

8.98, 6.59 

5.47, 4.39 

5.24, 4.18 

6.25, 4.84 

9.60, 6.39 

Average 

11.30 

7.44 

8.37 

7.78 

4.93 

4.71 

5.54 

7.99 

Appendix 21. p38 reperfusion optical density readings 
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SE P value 

1.31 

1.30 ns 

1.05 ns 

0.84 ns 

0.38 

0.37 ns 

0.49 ns 

1.13 ns 



Time Optical Density Av Fold SE p Value 

Control 1.07, 1.25 1.16 1 0.06 -

PMA 1.04, 1.17 1.10 0.94 0.04 ns 

5mins 0.89, 1.12 1.00 0.86 0.08 ns 

10mins 0.82, 1.05 0.93 0.80 0.106 ns 

l5mins 0.74, 0.89 0.81 0.69 0.05 ns 

30mins 0.42, 0.57 0.49 0.42 0.05 ns 

lhr 0.76, 0.88 0.82 0.70 0.04 ns 

2hr 0.63, 0.89 0.76 0.65 0.09 ns 

4hr 1.53, 1.84 1.68 1.44 0.10 ns 

6hr 1.23, 1.56 1.39 1.19 0.11 ns 

12hr 0.96, 1.27 1.11 0.95 0.10 ns 

24hr 1.63, 1.71 1.67 1.43 0.02 ns 

48hr 1.49, 2.02 1.75 1.50 0.18 ns 

72hr 2.03, 2.45 2.24 1.93 0.14 ns 

Appendix 22. JNK optical density readings 
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Reperfusion 

30mins 

30+15 

30+30 

30+60 

12hr 

12+15 

12+30 

12+60 

Optical Density 

0.90, 0.91 

2.36, 2.53 

2.58, 2.75 

3.65, 4.51 

13.16, 8.57 

10.46, 7.56 

7.92, 6.34 

8.60, 5.67 

Average 

0.9 

2.44 

2.66 

4.08 

10.86 

9.01 

7.13 

7.13 

SE P value 

0.003 -

0.06 <0.05 

0.06 <0.05 

0.30 <0.05 

1.62 

1.02 ns 

0.55 ns 

1.03 ns 

Appendix 23. JNK reperfusion optical density readings (p value Vs 30 minutes 

hypothermia) 
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Time Optical Density Av Fold SE p Value 

Control 2.74, 3.26, 1.56 2.52 I 0.2I -

PMA 7.07, 8.38, 6.06 7.I7 2.99 0.4I <0.05 

5mins 7 .22, 9.I9, 4.58 6.99 2.79 0.08 <0.05 

IOmins 4.64, 2. 74, 0.2I 2.53 0.89 0.45 ns 

I5mins 9.65, 3.86, 1.62 5.04 1.90 0.79 ns 

30mins 8.86, 7.87, 3.66 6.79 2.96 0.3I ns 

Ihr 6.53, 6.6I, 3.35 5.49 2.18 O.IO ns 

2hr 8.50, 3.68, 2.66 4.94 1.97 0.58 <0.05 

4hr 9.65,5.65, 5.84 7.04 2.99 0.63 <0.05 

6hr 8.64,6.42, 6.61 7.22 3.II 0.65 <0.05 

I2hr 7.62,9.I8, 5.48 7.42 2.98 0.26 <0.05 

24hr 7.24, 6.94, 3.58 5.88 2.39 0.19 ns 

48hr 9.56,4.05, 4.81 6.14 2.90 0.68 ns 

72hr I O.II, 6.64, 6.36 7.70 3.26 0.62 <0.05 

Appendix 24. ERK I /2 optical density readings (p value Vs control) 
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Reperfusion 

30mins 

30+15 

30+30 

30+60 

12hr 

12+15 

12+30 

12+60 

Optical Density 

22.05, 18.39 

22.82, 13.68 

23.76,13.11 

16. 73, I 0.50 

10.34, 8.64 

15.62,9.17 

17.59, 11.34 

17.32, 18.14 

Average 

20.22 

18.25 

18.43 

13.61 

9.49 

12.39 

14.46 

17.73 

Appendix 25. ERK I /2 reperfusion optical density readings 
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SE P value 

1.29 

3.23 ns 

3.76 ns 

2.20 ns 

0.60 

2.28 ns 

2.20 ns 

0.14 ns 
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