Biochemistry: Production of recombinant Rh blood group antigens for detection of alloimmunisation

Mashael Alkhanbashi

Let us know how access to this document benefits you

Recommended Citation
This Thesis is brought to you for free and open access by the Faculty of Health Theses at PEARL. It has been accepted for inclusion in Other Faculty of Health Theses by an authorized administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.
Biochemistry: Production of recombinant Rh blood group antigens for detection of alloimmunisation

by

Mashael Ahmed Alkhanbashi

A thesis submitted to University of Plymouth in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Biomedical Sciences

July 2019
This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent.
Contents

List of Figures ... 7
List of Tables ... 11
Acknowledgements .. 12
Abstract ... 14
Author’s Declaration .. 16
Abbreviations ... 17
Amino Acids ... 20

1 Introduction ... 21
 1.1 Mammalian Red Blood Cells ... 22
 1.1.1 Major RBC Membrane Proteins 23
 1.1.1.1 Glycophorin ... 26
 1.1.1.2 Band 3 Complex .. 27
 1.1.1.3 Ankyrin ... 28
 1.1.1.4 Spectrins .. 28
 1.1.1.5 Protein 4.1 R ... 29
 1.1.1.6 CD47 .. 29
 1.2 Blood group antigens .. 31
 1.2.1 ABO System ... 35
 1.2.2 RH System ... 36
 1.2.3 Kell (KEL) System .. 36
 1.2.4 MNS Antigen System ... 37
 1.2.5 Gerbich System ... 38
 1.2.6 Duffy System .. 38
 1.2.7 Lutheran System .. 39
1.2.8 Kidd (JK) System 39
1.3 History of Rh Blood Group 41
1.4 Molecular Aspects of Rh 42
 1.4.1 Rh null Syndrome 46
1.5 Rh Proteins ... 48
1.6 RH polymorphisms 54
 1.6.1 D-epitopes Models 57
1.7 D-Variant Phenotypes 60
1.8 Rh in Various Species 62
 1.8.1 Escherichia coli (E.coli) 69
 1.8.2 Nitrosomonas europaea 71
1.9 The Immunogenicity of Rh Blood Group 74
 1.9.1 Haemolytic Transfusion Reactions 75
 1.9.2 Haemolytic Disease of the Foetus and Newborn 75
1.10 Aims and Objectives 79

2 Materials and Methods 82
2.1 Materials ... 83
 2.1.1 Primary Antibodies 83
 2.1.2 Custom Primary Antibodies 83
 2.1.3 Secondary Antibodies 86
 2.1.4 Plasmids and Bacterial Strains 86
 2.1.4.1 Plasmids and Expression vectors 86
 2.1.4.2 Bacterial Strains 87
 2.1.5 Erythrocyte samples 87
 2.1.6 Producing Luria Bertani Media (LB Media) 87
 2.1.7 Producing Luria Bertani Agar Plates (LB Agar) ... 88
2.2 Methods .. 89
 2.2.1 Alignment of Rh for different species 89
 2.2.2 Mapping of the Human RhD external loops and De-
 signing of the Recombinant Gene 89
2.2.3 Cloning .. 90
2.2.3.1 Cloning NeRh50"6 Construct in pESV2 vector 90
2.2.3.2 Enzymatic Digestion 92
2.2.3.3 Purification of Digested DNA 93
2.2.3.4 Molecular cloning into pESV2 94
2.2.3.5 Transforming in DH5α E. coli competent cells 96
2.2.3.6 Isolation and purification of plasmid DNA 98
2.2.3.7 Confirmation tests 99
2.2.3.8 Cloning NeRh50"6 Recombinant in pET expres-

sion vector .. 107
2.2.3.9 Purification of Digested DNA 108
2.2.3.10 Molecular cloning into the pET Expression Vector 109
2.2.3.11 Transforming in BL21(DE3) E.coli competent
cells ... 110
2.2.3.12 Isolation and purification of plasmid DNA 112
2.2.3.13 Confirmation tests 112
2.2.3.14 Protein Extraction 118
2.2.3.15 Sodium Dodecyl Sulphate-polyacrylamide Gel
Electrophoresis (SDS-PAGE) 121
2.2.3.16 Flow cytometry 125

3 Results ... 128
3.1 Introduction .. 129
3.1.1 Aim of the study .. 132
3.2 Constructing RH recombinant genes for expression in E.
coli membrane. .. 134
3.2.1 Mapping human RhD 6th external loop 134
3.2.2 Purifying DNA ... 153
3.2.3 PCR amplifying the NeRh50"6 153
3.3 Expression Vectors .. 155
3.3.1 pESV2 expression vector 155
3.3.1.1 Digestion of pESV2-NeRh50”6 155
3.3.1.2 Cloning of pESV2-NeRh50”6 Human RHD in
DH5α E. coli Competent Cells 157
3.3.1.3 Sequencing of pESV2 expression vector 159
3.3.2 pET-a9 expression vector 166
3.3.2.1 Cloning of pET- NeRh50/Human RhD external
loops in BL21 (DE3) Chemically Competent Cells 167
3.3.2.2 Sanger Sequencing of NeRh50” human RhD ex-
ternal loops ... 169
3.4 Three-Dimensional Protein Model 176
3.5 Confirming the presence of the Rh Recombinant proteins 180
3.5.1 Western Blot Results 181
3.5.1.1 Comparison of Bacterial Protein Extraction
Methods ... 181
3.5.1.2 Detection of human RhD external loop 4 by
2.2B9 antibody by western blotting 183
3.5.1.3 Detection of human RhD external loop 6 by 2A4
/ 5G9 antibodies by western blotting 185
3.5.1.4 Detection of human RhD external loops 4, 6 by
BIRMA-D6 antibody by western blotting: 188
3.5.1.5 Detection of human RhD external loops 3, 4, 6
by MS-26 antibody by western blotting: 190
3.5.1.6 Detection of NeRh50 external loop 1 and C-
terminus by 1918 antibody by western blotting: 192
3.5.1.7 Detection of NeRh50 external loop 1 by 1917
antibody by western blotting: 194
3.5.2 Flow cytometry Results 196
3.5.3 Transmission Electron Microscopy Results 205
3.6 Discussion .. 210
3.6.1 Generating constructs 210
3.6.2 Confirming the presence of constructs by testing for proteins expression .. 213

3.6.2.1 Western blot results .. 215
3.6.2.2 Flow cytometry results 219
3.6.2.3 TEM results .. 221

4 Discussion and Conclusion 223

4.1 General discussion .. 224
4.2 Expression of D-epitope in *E. coli* 229
4.3 Conclusions .. 232
4.4 Future Work ... 234

5 Appendices .. 261

5.1 Appendix A ... 262
5.2 Appendix B ... 268
5.3 Appendix C ... 274
5.4 Appendix D ... 281
5.5 Appendix E ... 288
5.6 Appendix F ... 295
5.7 Appendix G ... 302
5.8 Appendix H ... 309
5.9 Appendix I ... 316
List of Figures

Figure 1.1 Interaction between the Red Cell Membrane Components: 25
Figure 1.2 Red Cell Membrane Protein Components: 30
Figure 1.3 RHD and RHCE genomic structure in different status: 43
Figure 1.4 The predicted trimeric structure of the Rh complex: 50
Figure 1.5 Topology of the human RhD protein: 51
Figure 1.6 The 2-Dimensional structure of the human RhD and RhCE proteins: 53
Figure 1.7 Predictive models of D epitope configuration: 58
Figure 1.8 Secondary structure of RhCG protein: 65
Figure 1.9 Crystal structure of AmtB: 65
Figure 1.10 Sequence alignment of the Rh protein family members: 68
Figure 1.11 Topology structure of E. coli AmtB Channel: 70
Figure 1.12 The trimer structure of the Rh-like protein in Nitrosomonas europaea (NeRh50): 72
Figure 1.13 Topology structure of NeRh50 protein in N. europaea: 73
Figure 2.1 Cloning and Transformation: 97
Figure 2.2 Screening process: 101
Figure 3.1 Clustal X alignment of the Transmembrane Domain (TM) (11-12) region of 13 Rh proteins from different species: 135
Figure 3.2 Amino acid sequence of Human RhD external loop 6 and the corresponding nucleotide sequence based on E. coli codon usage: 137
Figure 3.3 Predicted membrane topology and amino acid sequence of NeRh50"6 construct. 139
Figure 3.4 pUC57 vector with the recombinant gene (NeRh50"6) circular sequence map. 141
Figure 3.5 pUC57 linear vector sequence with the recombinant gene (NeRh5026). 145
Figure 3.6 BamHI and XbaI digestion of pUC57-NeRh50"6. 146
Figure 3.7 Amino acid sequence of Human RhD external loop 2 and the corresponding nucleotide sequence based on E. coli codon usage. 148
Figure 3.8 Amino acid sequence of Human RhD external loop 3 and the corresponding nucleotide sequence based on E. coli codon usage. 148
Figure 3.9 Amino acid sequence of Human RhD external loop 4 and the corresponding nucleotide sequence based on E. coli codon usage. 148
Figure 3.10 Predicted membrane topology and amino acid sequence of NeRh50"4, 6 construct. 149
Figure 3.11 Predicted membrane topology and amino acid sequence of NeRh50"3, 4, 6 construct. 150
Figure 3.12 Predicted membrane topology and amino acid sequence of NeRh50"2, 3, 4, 6 construct. 151
Figure 3.13 pUC57 vector with the recombinant gene (NeRh50"2, 3, 4, 6) circular sequence map. 152
Figure 3.14 Amplicons of pUC57 plasmid - NeRh50"6* 154
Figure 3.15 BamHI / NdeI digestion of pESV2-NeRh50"6. 156
Figure 3.16 PCR screening of positive pESV2-NeRh50"6* plasmid colonies, which amplified with AD1 / AD2 primers. 158
Figure 3.17 pESV2 vector constructed process. 159
Figure 3.18 The report of single sequencing run of the original (pESV2) vector sample library 163
Figure 3.19 The report of single sequencing run of the pESV2-
NeRh50”6 sample library 164
Figure 3.20 pET-9a expression vector map showing all restriction
enzyme sites 166
Figure 3.21 Digested positive colonies of pET vector with the
NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, NeRh50”2,
3, 4, 6 constructs. 168
Figure 3.22 pET-NeRh50”2,3,4,6 vector map 171
Figure 3.23 Sanger sequencing data with electropherogram of all
constructs cDNAs against (F1) forward primer. 172
Figure 3.24 Sanger sequencing data with electropherogram of all
constructs cDNAs against (R1) reverse primer. 173
Figure 3.25 Sanger sequencing data with electropherogram of all
constructs cDNAs against (F7) forward primer. 174
Figure 3.26 Sanger sequencing data with electropherogram of all
constructs cDNAs against (R7) forward primer. 175
Figure 3.27 Predicted 3D protein model of NeRh50”2, 3, 4, 6. 177
Figure 3.28 Predicted 3D protein model of the human RhD wild
type .. 178
Figure 3.29 Predicted 3D protein model of NeRh50 wild type 179
Figure 3.30 Immunostaining of RBC membranes and E. coli pro-
tein extractions to detect human RhD external loop
4 by using 2.2B9 antibody. 184
Figure 3.31 Immunostaining of RBC membranes and E. coli pro-
tein extractions to detect human RhD external loop
6 by using 2A4 antibody. 186
Figure 3.32 Immunostaining of RBC membranes and E. coli pro-
tein extractions to detect human RhD external loop
6 by using 5G9 antibody. 187
Figure 3.33 Immunostaining of RBC membranes and E. coli protein extractions to detect human RhD external loops
4, 6 by using BIRMA-D6 antibody. 189
Figure 3.34 Immunostaining of RBC membranes and E. coli protein extractions to detect human RhD external loops
3, 4, 6 by using MS-26 antibody. 191
Figure 3.35 Immunostaining of RBC membranes and E. coli protein extractions to detect NeRh50 external loop 1
and C-terminus by using 1918 antibody. 193
Figure 3.36 Immunostaining of RBC membranes and E. coli protein extraction using 1917. 195
Figure 3.37 MFI values of several Anti-D against various NeRh50/human
RhD external loop constructs 200
Figure 3.38 MFI values of Anti-NeRh50 (1918) against various
NeRh50/human RhD external loop constructs 201
Figure 3.39 FITC fluorescence histogram of NeRh50 ”human
RhD external loops with Anti-D BIRMA-D10 (EpD8). 202
Figure 3.40 FITC fluorescence histogram of NeRh50 ”human
RhD external loops with Anti-D RUM-1 (EpD 6/7) . . 203
Figure 3.41 FITC fluorescence histogram of NeRh50 human RhD
external loops with Anti-D MAD-2 (EpD 19) 204
Figure 3.42 Transmission electron micrograph for a thin layer of
E. coli contains recombinant NeRh50 ”RhD by using
anti-D loop 4 2.2B9. 207
Figure 3.43 Transmission electron micrograph for a thin layer of
E. coli contains recombinant NeRh50 RhD by using
anti-D loop 6 2A4. 208
Figure 3.44 Transmission electron micrograph for a thin layer of
E. coli contains recombinant NeRh50 ”RhD by using
anti-NeRh50 loop 1 and C-terminus 1918. 209

10


List of Tables

1.1 Blood group systems as classified by the International Society of Blood Transfusion (ISBT). .. 34
1.2 The haplotype nomenclature of \textit{RHD} and \textit{RHCE} genes: 55

2.1 Polyclonal(P)/ monoclonal(M) Anti-D and Anti-\textit{NeRh50} antibodies ... 85
2.2 Primer sequences to add \textit{NdeI} enzyme restriction site in the recombinant gene \textit{NeRh50}”6. ... 91
2.3 Reaction Setup for Barcoded Libraries .. 105
2.4 Primer sequences to amplify regions in \textit{pET-NeRh50”2, 3, 4, 6} 114

3.1 List of human RhD external loops AA and \textit{E. coli} nucleotide codons of these AA. .. 138
3.2 Anti-D and Anti-\textit{NeRh50} antibodies list against different techniques. .. 180
3.3 Qubit protein quantitation results of three different colonies of \textit{pESV2-NeRh50”6} .. 182
3.4 Flow Cytometric Analysis of wild type RhD, wild type \textit{NeRh50} and 4 different constructs using Monoclonal Anti-D and Anti-\textit{NeRh50}. .. 198
Acknowledgements

First, I thank God for all blessings that enable me to complete this PhD project.

I would like to acknowledge and express sincere gratitude to the following people for their help during completion of my PhD; My director of studies, Dr. Tracey Madgett and my second supervisor Prof. Neil Avent and third supervisor Dr. Kris Jeremy for their devoted guidance, untiring patience, support- both inside and outside the lab, solicited and valued advice and their encouragement, without which this thesis would not be complete. We are grateful to Prof. Mike Merrick for providing (pESV2) plasmids.

A great thanks is also to Glenn Harper and Alexander Strachan Plymouth Electron Microscopy Centre (PEMC) where the electron microscopy preparation steps were done. I am also grateful to Paul Waines for his valuable help.

My husband and my colleague, Ibrahim Halawani, for his endless love, support and helpful discussions. It was impossible for me to finish this work without his support and encouragement. My family, my progeny Faisal and Wrd for their love, support, patience and understanding. Special thanks to my parents for their continued love, support and encouragement. I would like to thank all my friends and anyone who have been supporting me throughout my scholarship.
Finally, I would like to thank SACB for the fully scholarship, without which this thesis would not be complete.
Abstract

Due to the importance of the antigen/antibody reaction, all hospitals and blood banks worldwide rely on routine blood group phenotyping of samples. Using recombinant antigens removes the disadvantage of the current antibody screening when using the human red blood cells, which can complicate the detection of antibody in different cases: in the case of multi-transfused individuals and in the case of weak antigens. Although constructing recombinant antigens for some blood group antigens has been achieved successfully, such as; Kell, Duffy and Lutheran blood group antigens, no studies have been published describing successful production of RH recombinant antigens in a prokaryotic expression system. Rh proteins are conserved across many different species.

The aim was to construct a hybrid Rh protein comprised of a *Nitrosomonas europaea* (*N. europaea*) Rh50 backbone containing different external loops of the human RhD protein.

Human RhD external loop 6 was the most suitable candidate to start with due to its location between highly conserved domains of the protein. The hybrid gene for the *NeRH50human RHD* was sub-cloned into an expression vector (pET) and transformed in BL21 (DE3) competent *E. coli*. We constructed three other hybrid genes with RhD human external loops on a *NeRh50* backbone: loops 4, 6; loops 3, 4, 6 and loops 2, 3, 4, 6.
Hybrid recombinant constructs were successfully expressed in the \textit{E. coli} membrane as shown with western blot, flow cytometry, and transmission electron microscopy by the use of different commercial/ customized monoclonal and polyclonal antibodies against D epitopes in human RhD proteins and \textit{NeRh50} like protein. Due to a lack of time, testing human sera against the recombinant antigens was not possible. However, the approach utilised in this study may lead to a new diagnostic assay whereby the expression of human RhD external loops in \textit{E. coli} may be capable of detecting specific anti-Rh antibodies in patient serum.
AUTHOR’S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award without prior agreement of the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not formed part of any other degree either at the University of Plymouth or at another establishment.

Name: Mashael Ahmed Alkhanbashi

Signed:............................. Date:..........................

Word count of the thesis’s main body: 40,248 words
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.A</td>
<td>amino acid</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>BGG</td>
<td>blood group genotyping</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>cfDNA</td>
<td>cell-free DNA</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>FHM</td>
<td>feto-maternal haemorrhage</td>
</tr>
<tr>
<td>FUC</td>
<td>Fucose</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>Gal</td>
<td>galactosyl</td>
</tr>
<tr>
<td>GalNAc</td>
<td>N-acetyl- D-galactosamine</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
<tr>
<td>GDP-L-fucose</td>
<td>guanosine diphosphofucose</td>
</tr>
<tr>
<td>GTA</td>
<td>3--N-acetylgalactosaminyltransferase</td>
</tr>
<tr>
<td>GTB</td>
<td>3--galactosyltransferase</td>
</tr>
<tr>
<td>HDFN</td>
<td>haemolytic disease of the foetus and newborn</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HEA</td>
<td>human erythrocyte antigen</td>
</tr>
<tr>
<td>HTR</td>
<td>haemolytic transfusion reaction</td>
</tr>
<tr>
<td>IAT</td>
<td>indirect antiglobulin test</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>ISBT</td>
<td>International Society of Blood Transfusion</td>
</tr>
<tr>
<td>ISPs</td>
<td>ion sphere particles</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>LR-PCR</td>
<td>long-range polymerase chain reaction</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MFI</td>
<td>mean fluorescence intensity</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NGS</td>
<td>next-generation sequencing</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RBC(s)</td>
<td>red blood cell(s)</td>
</tr>
<tr>
<td>RFLP-PCR</td>
<td>restriction fragment length polymorphism- polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>real time PCR</td>
</tr>
<tr>
<td>SBT</td>
<td>sequencing-based typing</td>
</tr>
<tr>
<td>SCD</td>
<td>sickle cell disease</td>
</tr>
<tr>
<td>SNPs</td>
<td>single nucleotide polymorphisms</td>
</tr>
</tbody>
</table>
SNV single nucleotide variant

TEM Transmission Electron Microscopy

TM Transmembrane
Amino Acids List

Alanine Ala
Arginine Arg
Asparagine Asn
Aspartic acid ... Asp
Cysteine Cys
Glutamic acid Glu
Glutamine Gln
Glycine Gly
Histidine His
Isoleucine Ile
Leucine Leu
Lysine Lys
Methionine Met
Phenylalanine Phe
Proline Pro
Serine Ser
Threonine Thr
Tryptophan Trp
Tyrosine Tyr
Valine Val
Chapter 1

Introduction
1.1 Mammalian Red Blood Cells

Red blood cells (RBCs) are bright red, doughnut shaped, enucleated eukaryotic cells present in the peripheral circulation and circulate the body to supply oxygen (O$_2$) to the organs and transport carbon dioxide (CO$_2$) to the lungs, and are the most numerous cell type in the body. Moreover, RBCs able to transport nutrients, waste products, and hormones. RBCs are produced in the Bone Marrow (BM) and stay in the circulation for about 120 days (Yawata, 2003).

The plasma membrane or cell membrane of RBCs (erythrocytes), which is a thin semi-permeable membrane is easy to isolate and use as a model to study the membrane structure and to perform biochemical analyses for the membrane’s component, due to the lack of both nuclei and internal membranes (Gorter & Grendel, 1925).

The red cell membrane is highly dynamic and has a complicated structure. It is composed of an asymmetrical lipid bilayer, which makes 40% of the red cell membrane, almost 10% carbohydrates, and 50% are proteins both transmembrane proteins, and a filamentous meshwork of proteins, which forms a membrane skeleton along the entire cytoplasmic surface of the plasma membrane.

The 40% lipids of the red cell membrane are classified into phospholipids (PL) (60%), neutral lipids (30%) mainly cholesterol,
and glycolipids (10%). Phosphatidylcholine (PC) (31%) is the major phospholipid in the red cell membrane. However, phosphatidylethanolamine (PE) (29%), sphingomyelin (SM) (26%) and Phosphatidylserine (PS) (13%) are presented in the red cell membrane (Yawata, 2003).

The phospholipids play a role in the structure of the membrane and are thought to be important in the maintenance of red cell shape. The most important thing about phospholipids is that PS is located in the inner leaflet of the membrane in normal haemostasis, but it will switch to the outer leaflet of the membrane in non-healthy conditions such as aged, infected, or sensitised red cells (Pinder et al., 1978; Lang et al., 2012).

1.1.1 Major RBC Membrane Proteins

Due to the presence of the long twisted alpha and beta spectrin strands and actin filaments, the plasma membrane is linked to the RBC’s cytoskeleton (Pinder et al., 1978). Moreover, another link is provided by band 4.1, which binds to the junctions of spectrin and actin, as well as to glycophorin proteins.

The importance of the RBCs component interaction is to achieve the critical functions of the RBCs such as; transporting electrolytes from the RBCs to the plasma or vice-versa, and maintaining the RBCs shape and their elasticity and stability. There are two ways to show the interaction between the important
RBCs proteins component on the cell membrane: vertical interaction, which mediated by protein 4.1R that couples the junctional complex to Glycophorin C and horizontal interaction, which is mediated by ankyrin that couple spectrin to Band 3 (Figure 1.1).
Figure 1.1. Interaction between the Red Cell Membrane Components:

This figure shows how these proteins interact with each other to achieve the critical functions of the RBCs such as; transporting electrolytes from the RBCs to the plasma or vice-versa, and maintaining the RBCs shape and their elasticity and stability. There are two types of interaction within the Red cell membrane; a vertical interaction is the main reason for the extreme elasticity of the red cell membrane. This type of interaction occurs between Band 3, and the Rh core complex has interactions with Ankyrin. The other kind is the horizontal interactions where the spectrin dimers and protein 4.1R with phosphatidylinerine, a cytoplasmically localised phospholipid, also occur.
Adapted from Avent (2018).

To demonstrate the importance of the transmembrane proteins and the interactions within the plasma membrane and the cytoskeleton components, any defect or mutation in them will affect both the shape and the function of the RBCs and can lead to many disorders, such as anaemia.

RBCs membrane proteins are classified into three different categories based on their function. Firstly, integral proteins,
these proteins are firmly attached to the membrane and act as the main transport channel such as; Glycophorin and Band 3 protein.

Secondly, peripheral proteins, cortical cytoskeleton components, which lie underneath the membrane and form a meshwork all over the membrane and determines cell shape, the most abundant; spectrin. Other peripheral membrane proteins of red blood cells; actin, ankyrin, and band 4.1R.

Thirdly, the anchoring proteins, which maintain the membrane structure such as Ankyrin (Von Heijne, 2006) (Figure 1.2).

1.1.1.1 Glycophorin

Glycophorin is a small integral glycoprotein, consisting of 131 amino acids with a molecular weight of about 30,000. Glycophorins were one of the first identified transmembrane proteins, they play important roles in maintaining and stabilizing the membrane shape of RBCs. Moreover, glycophorin is rich of sialic acid which gives the surface of RBCs a polar charge that assists in the movement of RBCs. Glycophorins A and B are single transmembrane α helix of 23 amino acids, it is heavily glycosylated, with oligosaccharides, which exposed on the plasma cell surface, attached to 16 sites on the extracellular portion of the polypeptide chain. Glycophorin C (GPC) and glycophorin D (GPD) interact with
protein 4.1R, contributing stability to RBC membrane (Alloisio et al., 1993; Marfatia et al., 1994).

1.1.1.2 Band 3 Complex

Band 3 is a glycoprotein and considered the major integral protein in the membrane and it is known as anion exchanger (AE1), with a molecular mass of 100 kDa on SDS-PAGE. Band-3 is composed of 911 amino acids and the gene (EPB3), which is responsible for AE1, is located on chromosome 17. There are 1-2 million copies of AE1 per red blood cell membrane, it consists of three domains, an N-terminal domain, a short C-terminal domain, and membrane-spanning domain acts as a chloride/ bicarbonate exchange anion exchange channel (Bruce et al., 2003).

Band 3 carries out the one to one exchange of bicarbonate (HCO3⁻) for Chloride (Cl⁻) ions, transport of which can be reversed due to pH changes (Bohr shift). HCO3⁻ is transported into the red cell in metabolising tissues, and out of the red cell in the lungs.

However, the band 3 complex not only attaches to the lipid bilayer membrane, but also interacts with other major membrane protein such as Ankyrin, Spectrins, and Protein 4.1R to maintain the structure of RBCs.
1.1.1.3 Ankyrin

Ankyrin is one of the primary anchoring membrane proteins in the RBC membrane. There are 1.2 million copies in RBC. It has a molecular weight of 206 kDa on SDS-PAGE. Ankyrin is a polar protein and is involved in the local segregation of integral membrane proteins. It contains three domains; N-terminal domain that is connected to AE1 while the heavily phosphorylated central domain is connected to spectrins and an acidic C-terminal domain (Bennett & Baines., 2001).

Ankyrin plays an important role in linking the plasma membrane with the cytoskeleton by binding to both spectrin and band 3.

1.1.1.4 Spectrins

Spectrins are the largest proteins of the RBCs membrane skeleton, composing of 75% of the membrane skeletal proteins and present at a concentration of about 200,000 copies per red cell. Spectrins are composed of two subunits, α-Spectrin and β-Spectrin. Each one of the spectrins is located on a different chromosome and has a different gene. α-Spectrin gene is SPTA1 and located on chromosome 1 at position 1q22-q23 while β-Spectrin gene is SPTA2 and located on chromosome 14 at position 14q23-q24.2.

Spectrin proteins form the inner shell of the RBC membrane and are considered to be one of the major determinants of RBC
shape due to their flexibility, which can change the RBC membrane shape and so, any defect in this protein, leads to abnormal RBC membrane shape and some blood disorders.

1.1.1.5 Protein 4.1 R

Protein 4.1R is composed of 588 amino acids and is present at the concentration of approx. 200,000 copies per red cell. Protein 4.1R is an essential phosphoprotein within cell membranes. It has a molecular weight of 66 kDa, but on SDS-PAGE it migrates to 80 kDa. Protein 4.1R gene (*EPB41*) is located on chromosome 1p36.1 (Delaunay 1995; Yawata, 2003).

1.1.1.6 CD47

CD47 is also known as Integrin-associated protein (IAP). CD47 is a 47-52 kDa transmembrane receptor with five membrane spanning segments. It is a member of the immunoglobulin (Ig) superfamily and has a highly glycosylated extracellular immunoglobulin variable domain (IgV) at the N-terminus and five isoforms at the C-terminus. CD47 acts as a marker of self on the surface of RBCs to prevent phagocytosis by binding to Signal Regulatory Protein α (SIRPα). On senescent RBCs, CD47 levels drop and the immune system engulfs these cells and clears them from the circulation (Avice *et al.*, 2001).
Figure 1.2. Red Cell Membrane Protein Components:

This figure shows part of the important Red Cell membrane components and membrane skeleton. The major RBC membrane components are Band 3 and Glycophorin C (GPC) they appear to be in higher quantity (1,100,000 and 200,000 copies per red cell) respectively, than the other protein members. Next, the Rh trimer complex, which consists of two RhAG and one RhD or RhCE, this complex has approximately 100,000 copies per red cell.

Adapted from eClinPath.com, Cornell University, http://eclinpath.com/hematology/physiology/erythrocytes/f2-large/
1.2 Blood group antigens

In 1901, blood groups were identified by an Austrian scientist, called Karl Landsteiner. Moreover, he developed a blood group classification system based on the presence of agglutinin factors in the blood. This test was based on his observation of clump formation in the individual isolated plasma, which identified later as ‘agglutination’ in a paper titled as Agglutination phenomena of normal human blood, which led to identify three antigens of the ABO blood group system (A, B, and O). Later in 1902, a fourth antigen (AB) was discovered by Decastello and Sturli, respectively (Landsteiner, 1961, Levine, 1961, Schwarz and Dorner, 2003, Giangrande, 2000). Furthermore, in 1937, the blood transfusion patient’s death rate were reduced due to the discovery of Rhesus factor by Landsteiner and the help of another scientist, Alexander S. Wiener (Landsteiner & Wiener, 1940; Landsteiner & Wiener, 1941).

The blood group systems and their antigens are classified according to The International Society of Blood Transfusion (ISBT) nomenclature system. Currently, there are 39 blood group systems (Table 1.1).

Erythrocyte membrane components are critical in defining the blood group systems, each of the blood groups are characterised by specific antigens, which can be defined as inherited polymorphic markers present on the RBCs external membrane and can
be detected serologically by specific antibodies. These antigens can trigger an individual’s immune response by the synthesis of corresponding antibodies, which occur normally after the individual is exposed to antigens; either from the environment or alloimmunisation during blood transfusion or pregnancy for individuals who lack these antigens (Reid et al., 2012, Daniels, 2013).

These antigens are either protein or carbohydrate molecules attached to protein or lipid of the RBC membrane forming protein, glycoprotein, or glycolipid structures (Reid and Mohandas, 2004; Daniels, 2005). There are two major classifications in order to define blood groups according to their antigens. Firstly, the carbohydrate antigens, which are synthesised by glycosyltransferases enzymes that are responsible for transferring a monosaccharide moiety from an active nucleotide sugar, which is called a glycosyl donor to nucleophilic glycosyl acceptor molecule. Secondly, the protein antigens, where any alteration or changing the sequence or configuration of the protein or indeed the complete loss of RhD and Fy, which is the Duffy antigen, is critical and causes recognition as an antigenic determinant.

Five blood group systems are defined by carbohydrate structures (ABO, H, P1Pk, I, GLOB); two are obtained from the plasma (LE, CH RG). The remaining are characterised by the protein sequence of the RBC membrane proteins. Moreover, major pro-
teins are: (DI, RH, RHAG, MNS, GE, and CO) most of them are expressed, and their function is membrane transporters, except MNS and GE which function as sialic acid carriers and membrane receptors (Table 1.1).

In the following section some of the major and minor blood group antigens are discussed, given their importance in transfusion and haemolytic disease.
Figure has been removed due to Copyright restrictions.

Table 1.1. Blood group systems as classified by the International Society of Blood Transfusion (ISBT).
1.2.1 ABO System

The first blood group system discovered and the most important blood group in transfusion and transplantation. This system is based on the carbohydrate antigens (N-Acetylgalactosamine and galactose).

This system can be divided into four categories: A, B, AB, and O. The individuals with B group have antibodies against A present in their blood circulation, and individual’s with A group have antibodies against B present in their blood circulation. While people with group AB have both A and B antigens but no antibodies in their serum. Moreover O individuals have H antigens and have both antibodies in their blood circulation. These antigens can be expressed on the RBCs membrane additionally to some other cells (Anthea et al., 1993, Yamamoto, 2004, Storry and Olsson, 2009).

Anti-A and anti-B are produced in the early years of life. The first explanation of presence for these antibodies, is as a consequence of exposure to environmental substances, such as food, bacteria, and viruses and the production of these antibodies is due to the similarity of these environmental substance epitopes to A and B glycoprotein antigens. Moreover, the other possible explanation of the presence for anti-A and anti-B in individual’s serum is due to the presence of A and B antigens in human gut flora and, thus leading to the production of anti-A and anti-B (Carel, 2004).
Early 1980s, at the NewYork Blood Center, Goldstein and his colleagues successfully created a H group antigen from blood group A and B by using a specific exo-glycosidases capable of removing the immunodominant sugar residues. Thus, able them to reduce the mismatching error that happened after having an incompatible blood transfusion, which lead to fatal transfusion reactions, moreover, creating a universal blood supply.

In 2000, Kruskall and his colleagues were successfully utilizing a recombinant enzyme-converted group-B-to-group-O (ECO). They conclude that ECO RBCs were comparable to group O cells for safety and efficacy.

1.2.2 RH System

The RH system is the second most important blood group system after ABO system. It is based on protein antigens; most major antigen is D. It can cause Haemolytic disease of the fetus and newborn (HDFN) when the blood of the mother is incompatible with her fetus, and haemolytic transfusion reactions (HTR). In this thesis we will discuss this blood group system in more depth. See later in introduction.

1.2.3 Kell (KEL) System

In 1946, Kell blood group system was named after Mr. Kelleher, who was the first producer of its antibody (Coombs et al., 1946). Kell blood group system is considered to be the third most clin-
ically important blood group system and the sixth blood group system (006) according to the ISBT. The Kell glycoprotein is a transmembrane, single-pass protein with an enzymatic function that carries the Kell antigens. This system is highly polymorphic, it consists of 35 antigens, which all expressed on the surface of the Kell glycoprotein on the RBCs membrane, on haematopoietic tissue and some other tissues such as; brain, lymphoid organs, heart and skeletal muscle (Kaita et al., 1959; Russo et al., 2000; Daniels et al., 2007; Reid et al., 2012).

Anti-K (KEL1) causes severe HDFN and HTR (Vaughan et al., 1998; Daniels et al., 2003). Additionally to other antigens including; k (KEL2), Kpa (KEL3), Kpb (KEL4), Jsa (KEL6) and Jsb (KEL7), which have the ability to stimulate the production of haemolytic antibodies and causing HDFN (Daniels, 2002).

1.2.4 MNS Antigen System

In 1927, Landsteiner and Levine described the MNS Antigen system, which consists of 48 antigens. The responsible genes are: Glycophorin A and Glycophorin B. Anti-M and anti-N antibodies are usually IgM types and rarely associated with transfusion reactions.
1.2.5 Gerbich System

Glycophorin C (GPC), 128 amino acid residues and glycophorin D (GPD), 107 amino acid residues, which are both encoded by a single gene. GYP C, is the responsible protein to express the Gerbich blood group system with 11 antigens. The high dominance antigens are; Ge2, Ge3, Ge4, GEPL [Ge10*], GEAT [Ge11*], GETI [Ge12*] (Alloisio et al., 1993; Reid & Spring, 1994; Marfatia et al., 1994).

Gerbich antigens act as receptors for the malarial parasite Plasmodium falciparum. Anti-Ge2 and anti-Ge3 have caused hemolytic transfusion reactions, and anti-Ge3 has produced HDFN.

1.2.6 Duffy System

The Duffy System is also known as Fy glycoprotein, CD234. It presents and is expressed on the surface of RBCs and other tissues such as; kidney, lung, liver, spleen, brain (Iwamoto et al., 1996) and colon (Chaudhuri et al., 1997). Antigens Fy\(^a\) and Fy\(^b\), which are located on the Duffy glycoprotein, can result in four possible phenotypes, namely Fy\((a^+b^-)\), a Fy\((a^+b^+)\), Fy\((a^-b^+)\), and Fy\((a^-b^-)\). The antibodies against this system are predominantly IgG subtype (Tournamille et al., 1995).

The Duffy glycoprotein is a receptor for cytokines, which are chemicals that are secreted by white blood cells during inflam-
mation. Moreover, it acts as a receptor for *Plasmodium vivax*, a parasite causes malaria. RBCs with Duffy antigens deficiency are relatively resistant to invasion by *Plasmodium vivax.* Duffy blood group system antibodies can cause haemolytic transfusion reactions (Boyland *et al.*, 1982; Sosler *et al.*, 1989) and HDFN (Vescio *et al.*, 1987; Goodrick *et al.*, 1997).

Ridgwell *et al*, in 2007 successfully produced soluble recombinant blood group antigens; Duffy blood group antigen was one of them. In this study they prove that the soluble recombinant blood group antigens can mimic blood group antigens and react with human allogeneic antibodies.

1.2.7 Lutheran System

Lutheran (Lu, B-CAM, CD239) blood group antigens are carried by membrane glycoproteins (Campbell *et al.*, 1994), which are a member of the immunoglobulin gene superfamily (IgSF) (Parsons *et al.*, 1995). It is expressed in RBCs membrane and other tissues (Reid & Lomas-Francis, 2012).

Lutheran blood group antigens are involved in a mild type of haemolytic transfusion reactions (Daniels, 2002) and rarely involved in HDFN (Inderbitzen *et al.*, 1982).

1.2.8 Kidd (JK) System

Kidd antigens, which are also known as Jk antigen is a glyco-
protein. The Kidd protein is expressed on the RBCs membrane and kidney tissues and acts as a urea transporter in RBCs and renal endothelial cells. This system consists of 3 antigens: Jk\textsubscript{a}, Jk\textsubscript{b} and Jk3.

Although Kidd antibodies are rare, they can cause severe transfusion reactions.
1.3 History of Rh Blood Group

In 1939, the Rh system was clinically described in a historic paper written by Levine and Stetson for a case of miscarriage, where the fetus had been lost due to a haemolytic reaction after a blood transfusion from her husband. They assumed that the mother’s serum was immunised by her fetus, which had inherited this newly described antigen from their father.

In 1940, Rhesus red cell factor was described by Landsteiner and Wiener (Landsteiner & Wiener, 1940; Landsteiner & Wiener, 1941). It is considered as one of the most immunogenic and polymorphic blood grouping systems (Levine et al., 1941). In fact, Landsteiner & Wiener had described anti-LW which shows different degrees of reactivity against RhD positive and negative red cells.

The Rh system comprises 56 antigens, five of them are the most important; (D, E, e, C, c) (Conroy et al., 2005). The presence or absence of the D antigen from RBCs surface can distinguish between Rh positive (in the presence of D antigen) or Rh negative (in the absence of D antigen) (Colin et al., 1991). Moreover, the RHCE gene is related to C/c and E/e epitopes, and they represent other polymorphisms of the Rh complex.
1.4 Molecular Aspects of Rh

The Rh family includes three erythroid gene members: *RHD*, *RHCE*, and *RHAG* (Matassi *et al*., 1999) and two non-erythroid proteins RhBG and RhCG (Huang *et al*., 2000). The erythroid genes are involved in forming the essential complex of Rh antigen expression and red blood cell membrane integrity (Huang, 1998). *RHD* and *RHCE* are located at the *RH* locus on chromosome 1p34-1p36 (Cherif-Zahar *et al*., 1991; Matassi *et al*., 1999), while *RHAG* is present on chromosome 6p12-6p21 (Cherif-Zahar *et al*., 1991; Matassi *et al*., 1999).

Three genes are expressed in the erythroid lineages (Van Kim *et al*., 2006). *RHD* positive locus is composed of not only *RHD* but also the *RHCE* gene (Van Kim *et al*., 2006). Both *RHD* and *RHCE* genes have ten exons, share comparable exon/intron organisation, and can encode different proteins (Matassi *et al*., 1999; Westhoff, 2004).

The differences between *RHD* and *RHCE*, although they are located on the same chromosome, they are orientated in opposite directions (*RHD* 5’ to 3’, *RHCE* 3’ to 5’). They carry different antigens (D, CE), respectively (Van Kim *et al*., 2006) (Figure 1.3).

Moreover, Rh family include other two non-erythroid members, which are *RHBG* and *RHCG* which are mainly expressed in the liver and kidney, one of their functions is related to ammonia
genesis and excretion (Avent et al., 2006; Van Kim et al., 2006).

Figure 1.3. RHD and RHCE genomic structure in different status:

RHD and RHCE genes are located on chromosome 1p36.11, with 10 exons of each and opposed direction RHD 5’ to 3’ while RHCE is 3’ to 5’. A it shows both RHD and RHCE genes in the D positive individuals. In B the RHD pseudo-gene (RHD \(\psi \)) it shows a 37bp duplication insert between exon 3 and 4 of RHD. There are three missense mutations in exon 5 and a nonsense mutation in exon 6, which stop the protein being expressed. In this case, the individuals still have normal RHCE gene. In C, D-negative shown where there is a complete deletion of the RHD gene with normal RHCE gene. This case commonly appears in Caucasian.

Adapted from Avent, 2018
In 2000, Singleton et al. studied 98 blood samples from a mixed race of black African donors to screen for the \textit{RHD} pseudogene ($RHD\psi$) (Figure 1.3). Three samples out of the 98 samples were D-negative samples while the rest were D-positive samples. The screening results show 14 samples out of the total number of samples have the \textit{RHD ψ}. Finding the difference between the \textit{RHD} and $RHD\psi$, the exons and introns of both genes were sequenced.

The result of this sequencing of some D-negative Africans samples showed the existence of the \textit{RHD} gene, but no mRNA was produced due to an additional 37bp insertion, which causes a stop codon at position 210. This 37 bp is a duplication of a sequence spanning the intron3- exon 4 boundary.

Secondly, the sequencing of the \textit{RHD ψ} exons 1, 3-7, and 10 showed more alterations within the \textit{RHD} gene. For example exon 4 has a mutation from point G to A at nucleotide 609.

Thirdly, the sequencing showed some missense mutations in exons 3 and 5 encoding Met 218 Ile, Phe 223 Val, and Ser 225 Phe substitutions. Fourthly, in exon 6, the sequencing showed an alteration in the nucleotide 807 from T to G, which translates as a stop codon.

Finally, Singleton et al. concluded that the inactive \textit{RHD} gene would be referred to here as \textit{RHD ψ}. Moreover, there are more conclusions in this study such as; they found that about two-thirds of D-negative Africans have an inactive \textit{RHD} gene.
While the remaining third is divided into two groups; one characterised by homozygous RHD deletion and the other group is characterised by having the RHD-CE-Ds hybrid gene, which is capable of producing c, C, e but not D. Also, the D-negative African Americans and South African people of mixed race are having the same 3 genetic backgrounds, but with different percentage.

24% of African Americans have the RHD ψ, and 17% of South African donors of mixed race have RHD ψ, while 81% of South African donors of mixed race and 54% of African Americans, 81% of South African donors of mixed race have no RHD. Singleton et al., 2000 found that 66 percent of donors had the RHD ψ, 18% completely lacked the RHD, and 15 percent had the hybrid RHD-CE gene that is linked to the positive and negative phenotype.

Moreover, most RHD negative cases in Caucasians (Mourant et al., 1976; Tills et al., 1983) are caused by a deletion of the RHD gene with no molecular change in the RHCe gene (Colin et al., 1991; Faas et al., 1995; Avent et al., 1997).

In non-Caucasians, the individuals can have the RHD negative phenotype while they carry the entire RHD gene (Daniels et al., 1997; Okuda et al., 1997).
1.4.1 Rh\textsubscript{null} Syndrome

Rh\textsubscript{null} is an inherited haemolytic disease, where the RBCs look abnormal morphologically and are dysfunctional (Schmidt \textit{et al}., 1967; Schmidt\textdagger{}l \textit{et al}., 1969). Rh\textsubscript{null} can cause some degree of haemolytic anaemia due to the abnormality in the organisation of their RBCs membrane phospholipids (Kuypers \textit{et al}., 1984). Rh\textsubscript{null} RBCs membrane shows more cation permeability than the normal RBCs (Lauf \textit{et al}., 1976).

Rh\textsubscript{null} has two types; Amorph type and Regulator type; and it’s related to completely deficient in RhD and RhCE proteins. The deficiency caused by molecular changes (silencing mutations) in \textit{RHCE} associated with deletion of \textit{RHD}, which lead to the lack of Rh proteins expression (Chown \textit{et al}., 1972). However, \textit{RhAG} is still expressed in small amounts (Cherif-Zahar \textit{et al}., 1998; Huang \textit{et al}., 1998). Regulator type is related to a molecular defect in \textit{RHAG} gene (Chérif-Zahar \textit{et al}., 1996).

The importance of the\textit{RHAG} in the regulator type is the association of the presence of this gene with the expression of Rh antigens (Chérif-Zahar \textit{et al}., 1996; Avent \textit{et al}., 2000).

There is an interaction between the Rh protein complex and other protein members of the RBC membrane such as Glycophorin B (GPB), CD47 or integrin-associated protein (IAP), and Landsteiner-Wiener glycoprotein (ICAM-4)(LW) (Cartron \textit{et al}., 1994).

Both Rh\textsubscript{null} types have shown a reduction in GPB (Dahr \textit{et al}.,
1987; Avent et al., 1988), is considered as a major sialoglycoproteins RBCs membrane component can be linked to the MNS and SC blood groups respectively.

According to Von dem Borne et al. (1990), they noticed the different in the Rh glycoprotein N-glycan chains size between the normal RBCs and the Rh\textsubscript{null} RBCs by using anti-RhAG MoAb 2D10 with co-precipitation techniques. In normal RBCs that were GPB-deficient, the Rh glycoprotein N-glycan chains size were increased while the size of this chain was reduced in the Rh\textsubscript{null} RBCs. The molecular weight difference is due to faster moving of the Rh glycoprotein chain in the Rh\textsubscript{null} RBCs through intracellular membranes to the cell surface. Moreover, they confirmed that both GPB and the Rh30 polypeptides interact with the Rh glycoprotein during the biosynthesis of the Rh complex.

The RBC membrane of the Rh\textsubscript{null} individual has shown a the reduction of CD47 compared to healthy RBC membranes (Miller et al., 1987; Avent et al., 1988; Lindberg et al., 1994). The role of CD47 is associated with the prevention of phagocytosis of RBCs. It functions as a self-marker by binding to signal regulatory protein an alpha (SIRP a) on macrophages, to create a negative signal that can reduce the “eat me” signal and protect the RBCs from engulfment (Oldenborg et al., 2000).

According to some studies, in Rh\textsubscript{null} patients, NH\textsubscript{3} permeation cannot be measured directly from the RhD and RhCE due to the
absence of the RhAG; both RhD and RhCE cannot be expressed. Furthermore, there are two different experiments show the role of the RhAG in transporting the NH$_4^+$ (Westhoff, 2006).

1.5 Rh Proteins

The Rh protein family is divided into two main categories; non-glycosylated and glycosylated (Eyers et al., 1994).

Non-glycosylated protein group contains; RhD and RhCE with 417 amino acids (416 amino acid mature protein as the N-terminal methionine is cleaved), which associate with another protein located in the red blood cell membrane such as (RhAG) (Conroy et al., 2005).

The molecular weight of RhD and RhCE proteins is 30 kDa, while the (Rh-50) consist of RhAG glycoprotein which measured 40-100 kDa on SDS-PAGE with 409 amino acid residues (Eyers et al., 1994). RhCe and RhD are very homologous; they differ in just 35-36 amino acids (Avent et al., 1990; Cherif-Zahar et al., 1990).

The important region in the RhD protein, which has the conformational difference to the RhCE protein is, the predicted third, fourth and sixth external loops of the RhD polypeptide (Liu et al., 1999 a). The alteration on these amino acids will affect the creation of the D epitopes.

The Rh complex (RhD, RhCE, RhAG, and CD47) is located
embedded in the phospholipid bilayer of the RBCs membrane. Rhnull cases were studied in order knowing the location and the function of this complex (Cartron, 1999; Huang et al., 2000). Moreover, it shows that the Rh complex is connected to the actin-spectrin-based RBCs membrane skeleton, presumably via RhD, RhCcEe, RhAG and/or CD47 (Figure 1.1).

In 1994, Eyers’s group proposed that erythrocyte Rh assembly is a RhAG2 Rh-30 2 tetramer. The tetrameric model of Rh complex is created by the interacting of RBCs membrane glycoproteins components such as LW, CD47 and GPB (Cartron, 1994).

In 2005, Conroy et al., proposed a model of the human Rh proteins, RhD and RhAG by using one of the Escherichia coli ammonia channel AmtB proteins (ammonia transporters) in bacteria as a template. Moreover, they used the predicted tertiary structure of Rh proteins and the available biochemical data for the Rh proteins.

The conclusion of this study leads to suggest that the erythrocyte Rh complex is trimeric (Figure 1.4).

According to the model, they suggested that RhAG and the homologous non-erythrocyte Rh glycoproteins, RhBG and RhCG, have very similar channel architecture to AmtB.

According to Rh topology prediction, it is believed the Rh proteins have 12 transmembrane spanning domains with intracellular N and C-termini, unlike the AmtB member family, which has
This structure was predicted based on the *E. coli* AmtB and human RhCG crystal structures. It is composed of 2 molecules of RhAG and one molecule either RhD or RhCcEe. The dimension of each monomer is around 46 Å. The red residues show the critical amino acid in the epitope of external loop 4, while the purple residues show them in external loop 6. The transmembrane-α-helices are numbered from (M0 to M11).

Adapted from Callebaut *et al.*, (2006).

11 transmembrane domains (Cherif-Zahar *et al.*, 1990; Avent *et al.*, 1992) (Figure 1.5).
Figure 1.5. Topology of the human RhD protein:

Twelve transmembrane domains are shown with six external loops, the arrows show the 2, 4, 6 (left to right) external loops of the human RhD and their critical amino acid. The black coloured circle shows the equivalent residues to the His those present in the AmtB (Tyr173, Phe316). The red circle at position (353Gly) is representing the proteolytically susceptible area. The cyan coloured circles are related to the critical position residues in the channel. The yellow coloured circle is for the surface exposed (Cys). The orange, purple, green, and blue coloured circles show the epitopic residues. Adapted from Conroy et al.,(2005).

In RBCs, the most important probable function of RhAG is to detoxify the organs: such as the liver and the kidney by transporting NH$_3$ and/or NH$_4^+$. The role of RhAG in the non-erythroid tissues would be to regulate the acid-base balance (Van Kim et al., 2006). Comparing the Rh proteins models: the RhAG protein model has a central region occupied by histidine amino acids. Although, in both RhD and RhCE proteins, these histidines are replaced by other amino acids (tyrosine and phenylalanine); histidine number 185 is substituted with tyrosine and histidine number 344 is replaced
by phenylalanine (Javelle et al. 2006). (Figure 1.6).
The blood group active Rh proteins, RhD and RhCcEe both have 12 membrane spanning segments. It shows the similarity between them and the difference. Both of them comprise of 10 exons, and they share similar amino acid except for (35 or 36 depending on RhCE status) changes between RhD and RhCcEe. The yellow circles in RhCcEe protein show the critical amino acids, which can distinguish between the (Rh C and Rhc) / (RhE and RhE).

Adapted from Avent (2018).

The role of the first histidine pore is a prerequisite in transporting the methylammonium (Javelle et al., 2006). RhD and RhCE are not involved in ammonia transport but may be evolving a new function in the RBC membrane (Westhoff & Wylie, 2006).
1.6 *RH* polymorphisms

The Rh system has two related genes, the *RHD* gene that encodes the RhD protein, which expresses the D-antigen while the *RHCE* gene that encodes RhCE protein, which is carrying multiple specific (C, c, E, and e) antigens (Mouro *et al.*, 1993). All Rh system antigens arise from either RhD and RhCcEe polypeptides or hybrid molecules caused by an exchange between the *RHD* and *RHCE* genes.

There are two nomenclature systems for the Rh system: Fisher and Race developed the first one while Wiener developed the second one. Both systems were named after their discoverers, and they reflect the inheritance theories (Fisher & Race, 1944; Wiener 1949).

The Fisher-Race system is more frequently in use in blood banking, it is based on CDE nomenclature while the Wiener system uses the R, r nomenclature (Table 1.2).
Figure has been removed due to Copyright restrictions.

Table 1.2. The haplotype nomenclature of RHD and RHCE genes:

According to The Fisher-Race and Wiener systems and it shows the D positive nomenclature is shown in the first 4 lines and the D negative nomenclature is shown in the rest. Rosenfield et al., (1973)
The primary antigens in the Rh system are D, C or c, and E or e. They were written in alphabetical order (C, D, E) but recently they have changed the order to become (D, C, E) according to Fisher-Race system to reflect gene order. The \(RHD, RHCE \) haplotypes are shown in Table 1.2 with the corresponding letter from Wiener system. \(d \) is used to represent the D-negative genotype. They are also referred as R and r depending on D-antigen case if it is expressed or not, respectively (Rosenfield \textit{et al.}, 1973) (Table 1.2).
1.6.1 D-epitopes Models

There are two different predicting models for the D-epitopes called single footprint and the D epitope cluster model (Figure 1.7). In 1998, Chang and Siegel suggested the single footprint model to study the Rh (D) epitopes and the Rh D antibodies. They propose a model that reconciles the serological diversity between the anti-Rh (D) antibodies and the topological constraints imposed by the Rh (D) antigen. Their data were proven that there are a genetic homology between antibodies and D epitopes. It was based primarily on the sequence analysis of monoclonal anti-D.
This figure is comparing between the D epitope cluster model by Liu and the single footprints model by Chang and Siegel. In the first model it shows the external loops by cross-hatched rectangles, numbered circles indicate 12 domains and intracellular loops by black rectangles. This model is based on expression mutant’s Rh cE proteins with different combinations of RHD loops recombinant (3 + 4; 4 + 6, 6, and 3 + 4 + 6), which was generated by site-directed mutagenesis. Studying the D epitope they used specific antibodies, the results was that the loop 4 are the critical loop. The single footprint model of D epitope, it shows the external loops by cross-hatched rectangles, 12 domains are shown by numbered circles and intracellular loops by black rectangles. This model argued that D epitopes are close and similar to each other and the only difference is the number and arrangement of the amino acid residues that can be D-specific, which shows as black circles or D/CcEe common protein residues, which shows as white circles.

Adapted from Avent (1999).

Moreover, Rh (D) epitopes classically defined by panels of Rh (D) variant cells are not spatially discrete. The data showed that there is a wide genetic homology between antibodies against different Rh (D) epitopes. In spite of the specificity differences of the RhD epitopes, these antibodies, which share a high degree of structural relatedness and have the ability to inhibit the binding between each one of them (Chang& Siegel, 1998).
Furthermore, in 1999, Liu et al. suggested the second model, which is the D epitope cluster model. In this study, they suggested 6 clusters model for the D epitope. This study was based on replacing the external loops of RhCE by the external loops of RhD (loop3, loop4, and loop6) they have used each loop individually and then all loops simultaneously. At the end, they construct RhCE with external loops (3, 4, and 6) of RhD. They used the Site-directed mutagenesis (SDM) technique. A human myelogenous leukaemia cell line K562 cell was used to see the constructed gene expression; where RHD-derived amino acids were expressed on chimeric RhCcEe cDNAs. The purpose of these constructs was to study the expression of individual D epitopes, which led to the prediction of the external loop-loop interactions of the RhD protein and predicted the molecular topology of Rh antigen epitopes. Flow-cytometry was used with a total of 50 MAb anti-D to analyse the different expression pattern of D epitopes (Liu et al., 1999 a; Liu et al., 1999 b).

Each model was claiming about different points: the single footprints model was arguing that D epitopes are similar, and the only difference is about the number and the arrangement of the amino-acid in the paratope-epitope contact area or the common protein residues. Moreover, they believed that any RhD antibody could bind to the different D epitope at the same time regardless of the distance between these epitopes. Chang & Siegel
moreover did not sequence antibodies that react with the 6th exofacial loop of the RhD protein. While the D epitope cluster model was arguing about the distance between each loop, which must be at least 20Å apart, and therefore, the Rh D protein monomer is more than 50Å in diameter.

According to the X-ray crystallography of the antibody-antigen interaction it shows that the approximate diameter of the paratope is 20 Å. Commonly the paratopes make contact with a minimum of 15 to 20 amino acids in the corresponding epitope (Davies & Cohen, 1996). The distance between each external loop of the RBCs membrane protein is around 20-30 Å (Walz et al., 1997; Cheng et al., 1997).

Thus, the paratope of the antibody is capable of contacting with up to 3 external loops. Therefore, that lead to disagree with the footprint model because it is based on using the one antibody to react with all the different epitopes at the same time, which is impossible due to the distance. So, these models are conflicting with each other in the manner of the distance between each epitope and the number of epitopes that anti-D can bind to at any one time.

1.7 D-Variant Phenotypes

Although the phenotypes of *RHD* in most people are either D+ or D-, there are other two types of D-variants, which are known
as weak D and partial D.

There are two systems to classify the D-epitopes; one uses a nine-epitope model, and the other represents 30 different epitopes. Anti-D is present in the sera of D-positive individuals. Therefore, by using the same anti-D in the D-negative people and comparing the reactivity of the D-negative to D-positive sera, it was possible to determine the different D-variants (D II to DVII) (Tippett & Sanger, 1962, 1977).

Using a monoclonal anti RhD, demonstrated the variety of RhD epitopes due to the alteration of the RhD protein structure and defined those lacking on partial D phenotype red cells. The phenotypes of the partial D are DIIIb, DIIIc, D1Vb, D Va, D VI, DFR, and DBT (Flegel et al., 1996), but over 100 have now been described (http://www.rhesusbase.info/).

A loss of one or more of the nine D epitopes can lead to Partial-D phenotypes (Lomas et al., 1989, 1993). By discovering the other classification system for the D-epitope (30 epitopes system) the reason of having partial D-epitope was changed to be related to the loss of RHD exon and replaced it by RHCE exon (Jones et al., 1995) or point mutations in RHD affecting externalised regions of the molecule.

DNU and DII phenotypes are based on a single mutation in exon 7 on the RHD gene. DNU phenotype the amino acid residue number 353 on the RhD sequence substitute from Gly to Arg while in the DII phenotype an amino acid change in the RhD se-
quence in position 354 from Ala to Asp, which is responsible for the lacking of epD4 and epD9 (Avent et al., 1997). (Rhesus base website, http://www.uni-ulm.de/ fwagner/RH/RB http://www.uni-ulm.de/ fwagner/RH/RB) provides an up to date resource of all known partial and weak D phenotypes.

1.8 Rh in Various Species

Mammals appear the only species able to express RhD and RhCE proteins, while the RhAG- related protein seems to be present in different species, including marine sponges, insects, nematodes, slime moulds and fish (Huang & Liu, 2001). RhAG protein in RBCs shows to accelerate ammonium transport (Ripoche et al., 2004). Furthermore, it has the same function in yeast (Marini et al., 2000; Westhoff et al., 2004). Moreover, in Xenopus oocytes RhBG and RhCG both work to facilitate the ammonium transport (Bakouh et al., 2004; Ludewig, 2004).

The RhD and RhCE proteins are different functionally to RhAG, as they don’t transport ammonium (Westhoff et al., 2002; Ripoche et al., 2004).

The RhAG protein shows a similar structure and a similar three-dimension structure of other Rh proteins, and that’s attributable to the trans-membrane helix (TMH) regions (Liu et al., 2000; Conroy et al., 2004; Khademi et al., 2004; Zheng et al., 2004). Moreover, the RhD and RhCE proteins are identical to each
other with a tiny difference. The RhCG molecule (Figure 1.8) has been crystallised and shows similar topology to that predicted by Conroy et al., 2005. Furthermore, Rh proteins show sequence homology to ammonium transport proteins (Marini et al., 1997).

According to Conroy 2005, predicted topology model of human RhD and RhAG proteins (Figure 1.5) and Escherichia coli (E.coli) ammonia channel AmtB model (Figure 1.9) (Khademi et al., 2004; Zheng et al., 2004) with multiple sequence alignments of the unknown Rh family member. Also, using of the ClustalW2 Multiple Sequence Alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2/) (Thompson et al., 1997) as an alignment tool, Avent (unpublished data, 2015) aligned the 13 Rh proteins, including human RhD, RhCE, RhAG, RhCG, Murine RhAG, Murine RhBG, Murine RhCG, Geodia cydonium, Caenorhabditis elegans Rh 1, Caenorhabditis elegans Rh 2, and Nitrosomonas europaea NeRh50. Their accession numbers from the GenBank are: (ALM96707, ANT95300, AHY04440, NP_057405, NP_035399.1, NP_067350, NP_062773.2, C-AA73029, AAF97864.1, AAF97865.1 and WP_011111083) (Figure 1.10). These elements combined help in mapping the sequence of interest in this project.

All known Rh-related proteins from bacteria, plants, insects and animals that share an equivalent structure of the conserved regions, which are located in the central subunit pore. The most
important conserved regions are The Phenylalanine Gate, The Twin-His Motif, and ammonium transporter fold.
Figure 1.8. Secondary structure of RhCG protein.
Adapted from Gruwitz et al., (2010).

Figure has been removed due to Copyright restrictions.

Figure 1.9. Crystal structure of AmtB:
Adapted from Laganowsky et al., (2014).

Figure has been removed due to Copyright restrictions.
Figure 1.10. Sequence alignment of the Rh protein family members.

A total of 13 proteins from the Rh family is aligned using *ClustalW2 Multiple Sequence Alignment* (Thompson *et al.*, 1997). The green highlighted amino acids are referring to a Consensus Rh protein family Homology. The purple highlighted amino acids are referring to Human Rh glycoprotein vs. *G. Cydonium* /*C. Elegans* homology. The cyan highlighted amino acids are referring to Human Rh glycoprotein Vs. Human Rh polypeptide homology. The yellow highlighted amino acids are referring to differences, human Rhce vs. Rhd polypeptides.

Adapted from Avent (2015).
1.8.1 *Escherichia coli* (*E.* coli)

In 1885, *Escherichia coli* (*E.* coli) was discovered in a healthy individual’s feces by a German-Austrian paediatrician called Theodor Escherich, who firstly named it as Bacterium coli refer to presence place (colon) and he was able to determine the morphology features and the properties of this bacteria. Later in 1919, after Theodor Escherich passed a way the bacteria name was changed to reflect Theodor Escherich name.

E. coli is a rod shaped, anaerobic, Gram-negative bacterium, which is naturally found in the human body. Although most *E. coli* strains are harmless there are some harmful strains, which can cause a food poisoning to the host body. *E. coli* has a benefit to the human host by producing vitamin K2 (Bentley & Meganathan, 1982). Due to the simplicity of using, growing *E. coli* in the laboratory, it consider to use widely as a model or a host organism in biotechnology and microbiology specially when work with recombinant DNA (Lee, 1996; Makrides 1996).

E. coli is surrounded with lipopolysaccharide (LPS) layer, which forms the cell wall membrane. *E. coli* also surrounded with an outer membrane and work as a selective barrier to provide the *E. coli* with high protection against antibiotics such as penicillin (Raetz, 1996; Gerard, 2010).

E. coli is reliant on ammonium as a source for nitrogen (Kleiner, 1985) via ammonium transporter (AMT) family, which are integral membrane proteins (Von & Merrick, 2004). The *E. coli*
AmtB was the first Amt protein to be purified (Blakey, 2002). It has a stable homotrimer in the cytoplasmic membrane. Topology of *E. coli*’s AmtB shows to have 11 transmembrane domains with 5 external loops N-terminus out and C-terminus inside the cytoplasm (Thomas *et al.*, 2000; Berne’che *et al.*, 2004; Khademi *et al.*, 2004; Scanlon & Merrick, 2006). (Figure 1.11)

Figure has been removed due to Copyright restrictions.

Figure 1.11. Topology structure of *E. coli* AmtB Channel:

This figure shows the AmtB amino acid sequence arrangement within the membrane. It has 11 membrane domains label as M1-M11. These domains bind together to create 5 external loops facing preplasm side. Red circle residues contribute to the substrate contacting walls of the channel. Blue circle residues contribute to the inter-monomer contacts.

Adapted from Khademi *et al.*, 2004
1.8.2 *Nitrosomonas europaea*

Nitrosomonas europaea (*N. europaea*) are Gram-negative bacterium; their genome is a single circular chromosome of 2,812,094 bp. These bacteria exists in several places such as; soil, sewage (McTavish *et al.*, 1993). They can derive their energy from the oxidation of ammonia to nitrite by using a hydroxylamine oxidoreductase enzyme, which catalyses the oxidation of hydroxylamine to nitrite (Arp *et al.*, 2002).

Studies of the expression of the *NeRh50* protein on *Saccharomyces cerevisiae* Δ*mepl* bacteria strain proved the function of *NeRh50* protein (Figure 1.12). In this study, the Rh50 protein of *N. europaea* and *Nitrosospira multiformis* (*N. multiformis*) was used to replace the lack of *MEP* gene in the *Saccharomyces cerevisiae* Δ*mepl*, and to restore the NH$_4^+$ uptake, which is critical to bacterial growth. That indicates *NeRh50* proteins can replace Amt proteins to aid ammonium uptake. This process is not presently well understood, although Rh50 could potentially play a role (Marini *et al.*, 2000; Cherif-Zahar *et al.*, 2007; Weidinger *et al.*, 2007). Moreover, there were many studies done to explore the Rh proteins possible role in CO$_2$ transport, but the results of these studies were impeded by the lack of a reliable biochemical assays (Peng & Huang 2006).

According to the topology prediction of the Rh50 like protein, it shows that it has 12 membrane domains. The 1.85-Å resolution was used to determined this structure. Thus, choosing
this kind of bacteria to construct the hybrid recombinant gene was the similarity between the human Rh protein and the *N. europaea* in the topology aspect. Both proteins have 12 membrane domains.

Figure 1.12. The trimer structure of the Rh-like protein in *Nitrosomonas europaea* (*NeRh50*).

The yellow circle in the left monomer face surface structure shows the extracellular pore entry. At the right, ribbon representation it shows the side view.

Adapted from Lupo et al., (2007).
Figure 1.13. Topology structure of NeRh50 protein in *N. europaea*:

Figure has been removed due to Copyright restrictions.
1.9 The Immunogenicity of Rh Blood Group

Due to the clinical significance of an incompatible blood transfusion, which can lead to severe or even fatal cases of damaging organs and cells specifically RBCs, the importance of knowing the correct compatible blood and how to treat patients in case of any blood group mismatching was raised.

Transfusion reactions are caused by antibodies against blood group antigens. These antibodies may be naturally existing; for example, antibodies, mostly IgM, against the absent antigens of the ABO system are naturally present in blood. On the other hand, alloimmunisation with immunoglobulin G (IgG) antibodies occurs as a consequence of the exposure to blood group antigens absent in an individual, which generally occurs via transfusion or foeto-maternal haemorrhage during pregnancy. Antibodies (Abs) against RhD in the cases of D negative persons will not appear in their plasma. Unless this person has been exposed to D positive blood type, for example, in the case of a D-negative mother with a D-positive foetus as in HDFN (Mollison et al., 1987; Daniels, 2013). The Rh blood group system is clinically relevant, because antibodies against Rh antigens are involved in HDFN, HTR, and autoimmune haemolytic anaemia (Mollison et al., 1987; Eyers et al., 1994).
1.9.1 Haemolytic Transfusion Reactions

Haemolytic transfusion reactions (HTR) are relatively rare conditions due to incompatible blood transfusion. HTR is caused by alloimmunisation, which is an immune response to any foreign antigen from different cells or tissues. So it occurs in blood transfusion and organ transplantations. HTR happens due to the incompatible blood group between the donor and recipient (Sloand et al., 1994). The recipient immune system starts to attack the donor RBCs. This kind of reaction can happen during or after the transfusion.

The complications related to the transfer of an incompatible blood group are ranging from mild reactions to severe reaction due to the short lifespan of the transferred RBCs and thus lead to have high levels of bilirubin and lactate dehydrogenase. Milder reactions are; fever, chills and anaemia, while the severe reactions are; coagulation, renal failure and death (Eder & Chambers, 2007).

1.9.2 Haemolytic Disease of the Foetus and Newborn

The historical story of this disease was begun in 1609. It was firstly described by a midwife called Louise Bourgeois when she first saw the hydrops foetalis in a twin baby’s case (Bowman, 1988). Then, in 1939 Levine and Stetson found an antibody
that caused HDFN (Levine & Stetson, 1939). HDFN occurs in subsequent pregnancies of the RhD negative mother carries RhD positive foetus, which means, the foetal RBCs contain the D antigens while the mother’s RBCs have not. In this case, the mother must have been previously sensitised to RhD positive blood (Pollack et al., 1968; Bowman 1988). The sensitization happens when a woman with RhD negative blood is exposed to RhD positive blood, usually during a previous pregnancy during mainly delivery with a RhD positive baby. Blood exchange can occur between the foetus and the mother, which activates the mother’s immune system to form antibodies against this foreign D-antigen. The woman’s body responds to the D⁺ blood by producing antibodies that destroy the foreign blood cells (Urbaniak et al., 2000).

The woman’s immune system will have IgM against anti-D after the first sensitisation. Furthermore, if she is exposed to RhD positive blood again through a RhD positive foetus, her body will respond immediately by producing IgG antibodies, which are capable of crossing the placenta (Alberts et al., 2002). The antibodies can continue attacking the baby’s red blood cells for a few months after birth. The consequence of antibody crossing the placenta can cause jaundice in mild cases (Picchiassi et al., 2015) and may lead to foetal death in severe cases (Bowman, 1998; Anstee et al., 2010). The incidence of the mortality of the babies from this disease in the era between 1940 and 1970 has
shown a dramatic reduction, from 50% to 5–9% of all prenatal deaths (Bowman 1988). Over the next 20 years, HDFN deaths caused by immune anti-D were dropped from 46 per 100,000 pregnancies to 1.6 per 100,000 (Pilgrim et al., 2009).

In 1968, there was a clinical trial by Pollack et al., on the effective dose of the RhoGAM, Rh0 (D) Immune Globulin anti-D. This treatment was given to the pregnant women and administrated as intramuscular injection. In order to prevent the primary Rh-immunization of those pregnant mothers with an Rh-negative fetus, who had giving birth to ABO-compatible Rh-positive infants. The result of this clinical trial of intramuscularly administered RhoGAM in the maternal women showed the best dose of this treatment, which was 300 g and it, was given a great result against the Rh-immunization (Pollack et al., 1968).

The most efficient treatment is avoidance of the initial RhD alloimmunization by prophylactic administration of passive anti-D immunoglobulin. Prophylaxis is given against Rh-immunisation using anti-D Ig for pregnant Rh-negative mothers. These mothers should have anti-D prophylaxis injection during 28 to 30 weeks of her pregnancy and at birth. This treatment does not have a life-long effect, so, the mother with RHD negative needs to have this injection in each pregnancy (Urbaniak et al., 2000).

HDFN disease is uncommon in the UK because it can usually be prevented using injections of anti-D immunoglobulin. It is recommended that all maternal mothers have a blood test in the
early stage of their pregnancy to determine their blood type. Directly before delivering the baby, there is some necessary test has been done to the fetus such as; newborn blood group. Direct anti-globulin test and checking the haemoglobin concentration, should be taken from the cord blood. Moreover, bilirubin level should be monitored in the first days of the neonatal period.

All D-negative pregnant women have an antibody screen to detect anti-D and other clinically significant antibodies. Recombinant Rh antigens could readily be used in these cases.
1.10 Aims and Objectives

Currently, regular blood tests to define the blood phenotype of the patient are able to detect only the D and ABO antigens, but for identifying the other antigens further serological tests are required. Moreover, in cases such as alloimmunisation, extended serological testing to unknown antibodies is costly. To detect rare antibodies needs lots of reagents and rare red cells which may or may not be available to the serologist.

Recombinant DNA (rDNA) is based on joining DNA molecules from different sources to create a new DNA by using a molecular cloning technique. The importance of this approach is related to biotechnology, medicine and research purposes. This technique is advantageous due to the similarity in the chemical structure between all organisms (Watson 2007).

Recombinant Rh antigens may become an extensive protocol to use at the blood banks and laboratories because of the affordability, and the specificity of using bacterial cell membrane comparing to the human RBCs, which have a short shelf-life and low specificity especially in the case of multi-transfused patients. Therefore, the objective of this project was to develop Rh hybrid recombinant genes in bacteria, and it will be capable of detecting the D antigen with affordable price and much faster technique, and with unlimited supplies of antigens. Moreover, to generate the Rh-antigens in the bacterial membrane, these
cells will have no other human antigens on their surface, that means in the case of patients who have multiple antibodies we can use a mono-specific antigen to detect and to sort out which antibody they have.

The aims of this research were:

1- Constructing a hybrid *N. europaea*– human *RHD* gene by using the available synthetic cDNA of *N. europaea* will be the first step to achieve this goal, choosing the *E. coli* membrane to study the expression of the human RhD external loops (2, 3, 4, and 6), due to the simplicity of manipulating *E. coli* in the laboratory.

2- Cloning of these recombinant genes in the appropriate host will be confirmed by using several techniques such as synthetic cDNA, cloning, flow-cytometry and Western blotting to detect bacterial proteins. Moreover, to detect the expressing RhD protein in the *E. coli* membrane, specific antibodies will be obtained.

3- Generate a new, fast, and affordable diagnostic assay based on hybrid recombinant *N. europaea*– human *RHD* gene.

4- Demonstrate that the recombinant RhD protein can mimic the Rh blood group antigen (D) and be used to screen human sera for their antibodies. This diagnostic assay will be capable of detecting anti-D and other Rh antibodies in patient serum. By using human RhD loops (6, 4, 3 and 2), which may be expressed in the *E. coli* membrane and if successful in generating
D-epitopes, further recombinant Rh antigens may be produced.
5- This *E. coli* may be commercially available and could replace the use of red blood cells to detect patient antibodies. This *E. coli* will express just one Rh antigen and no others, although bacterial carbohydrate structures may mimic red cell antigens.
Chapter 2

Materials and Methods
2.1 Materials

2.1.1 Primary Antibodies

Tissue culture supernatant monoclonal antibody (mAb) anti-D 2.2B9, raised against a synthetic peptide corresponding to the fourth external domain of the human RhD protein (Skinner, Musherns & Avent, unpublished) and it was produced in conjunction with the International Blood Group Reference Laboratory (IBGRL), NHSBT, Bristol, U.K.

Tissue culture supernatant mAb anti-D MS-26, raised against a synthetic peptide corresponding to EpD23 of the RhD protein (Scott M, 1996). It was purchased from Plasmatec Company, Bridport, U.K.

Several purified anti-D mAb were purchased from IBGRL, NHSBT, Bristol, U.K.: BIRMA-D6, BIRMA-D10, BRAD-3, HAM-A, RUM-1, and MAD-2.

MAb anti-E. coli DH5α (HRP) was purchased from Biorbyt Company, Cambridge, U.K. (Table 2.1).

2.1.2 Custom Primary Antibodies

Several antibodies were customized in our lab and produced by Dundee Cell Products, Dundee, U.K.: mAb anti-D (2A4/5G9), raised against a synthetic peptide corresponding to the sixth external domain (NH2-CLVLDTVGAGNGMC-COOH) of the human RhD protein.
MAb Anti-*NeRh50* (1917), raised against a synthetic peptide corresponding to the first external domain (CSSWASAVAPAEEINEAR) of the *NeRh50* wild type.

Polyclonal antibody anti-*NeRh50* (1918), raised against synthetic peptides corresponding to the first external domain (CSSWASAVAPAEEINEAR) and C-terminus (CEFIHLAGPSED) domain of the *NeRh50* wild type protein.

For producing these antibodies there was a two phase procedure. Phase one included: synthesis of stable and water soluble peptides that were coupled to carrier proteins (KLH and BSA). Following this the quality of the peptide sequence was confirmed by mass spectrometry and HPLC analyses.

The second phase included: immunisation of four mice for six to eight weeks with 3-5 injections of 50 µg antigen based on their response to this antigen. After the cell-fusion of splenocytes and myeloma cells, which took around 9 weeks a screening test was performed for hybridomas to select the positive clones. Then, in week 11 propagation of hybridomas, cryopreservation and production of cell bank took place. Between weeks 11-13 positive clones were recloned and the Ig isotypes were characterized. Finally, in weeks 14 and 16 a cell bank and 25 ml of supernatant from each positive clone were produced (Table 2.1).
Table 2.1. Polyclonal(P)/ monoclonal(M) Anti-D and Anti-\textit{NeRh50} antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>M / P</th>
<th>Ig subclasses</th>
<th>Target Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2B9</td>
<td>M</td>
<td>IgG</td>
<td>Human RhD Loop 4</td>
</tr>
<tr>
<td>2A4</td>
<td>M</td>
<td>IgM, kappa</td>
<td>Human RhD Loop 6</td>
</tr>
<tr>
<td>5G9</td>
<td>M</td>
<td>IgM, kappa</td>
<td>Human RhD Loop 6</td>
</tr>
<tr>
<td>BIRMA-D6</td>
<td>M</td>
<td>IgG1</td>
<td>Human RhD Loops 4, 6</td>
</tr>
<tr>
<td>MS-26</td>
<td>M</td>
<td>IgG</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>BIRMA-D10</td>
<td>M</td>
<td>IgM</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>RUM-1</td>
<td>M</td>
<td>IgM</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>HAM-A</td>
<td>M</td>
<td>IgM</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>MAD-2</td>
<td>M</td>
<td>IgM</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>BRAD-3</td>
<td>M</td>
<td>IgG3</td>
<td>Human RhD Loops 3, 4, 6</td>
</tr>
<tr>
<td>1917</td>
<td>M</td>
<td>IgG</td>
<td>NeRh50 Loop1</td>
</tr>
<tr>
<td>1918</td>
<td>P</td>
<td>IgG</td>
<td>NeRh50 Loop1, C-Terminus</td>
</tr>
</tbody>
</table>

List shows polyclonal(P)/ monoclonal(M) antibodies with the target protein in the Human RhD external loops and the target proteins in the \textit{NeRh50} and their Ig subclasses, which were used in western blotting, flow cytometry and TEM techniques.
2.1.3 Secondary Antibodies

Horseradish peroxidase-conjugated rabbit anti-mouse secondary polyclonal antibody (1:1000) and horseradish peroxidase-conjugated swine anti-rabbit secondary polyclonal antibody (1:1000) catalogue numbers (P 0260; P 0399), respectively were purchased from Dako Agilent Pathology Solutions, U.K.

Goat Anti-Mouse IgG H&L (FITC) (ab6785) and Goat Anti-Rabbit IgG H&L (FITC) (ab6717) were purchased from Abcam, U.K. FITC Mouse Anti-Human CD43 1G10 (RUO) was purchased from BD Biosciences, U.K.

Goat anti-Mouse IgG (whole molecule)–Gold antibody and Goat anti-Rabbit IgG (whole molecule)–Gold antibody were purchased from Sigma-Aldrich, Gillingham, U.K.

2.1.4 Plasmids and Bacterial Strains

2.1.4.1 Plasmids and Expression vectors

pUC57 (GenScript, UK) was used as a carrier vector for the recombinant genes and was used for the initial cloning. Plasmids pESV2 was constructed at Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom by Mike Merrick et al., (Cherif-Zahar et al., 2007). pET-9a DNA - Novagen (Merck Millipore, UK) used for expressing the recombinant gene constructs.
2.1.4.2 Bacterial Strains

E. coli DH5α competent cells (Thermo Fisher Scientific, Paisley, U.K.) were used for cloning and _BL21(DE3)_ (New England Bio Labs, Hitchin, UK) were used for expressing the recombinant gene constructs.

2.1.5 Erythrocyte samples

Ethylendiaminetetraacetate acid (EDTA) tubes containing at least 5 ml of whole blood for IP experiments were obtained from random blood donors. All samples were with complete awareness of ethical donor consent form from National Health Service Blood and Transplant (NHSBT), Filton Bristol, UK. For each sample, serology information was provided. The blood was spun at 1500 rpm for 10 minutes, and the plasma was removed, and packed red blood cells were added to 1.5 mL Eppendorf tubes.

2.1.6 Producing Luria Bertani Media (LB Media)

The LB media (Sigma –Aldrich, U.K.) was produced according to the manufacture. Once dissolved the solution was autoclaved and kept at room temperature until needed. Filter sterilized ampicillin (AMP) (100 µg/ml) / kanamycin (Kn) (50 µg/ml) (Sigma-Aldrich, U.K) were added as needed.
2.1.7 Producing Luria Bertani Agar Plates (LB Agar)

LB Agar, (Sigma – Aldrich, U.K.) was prepared according to the manufacturer’s instructions. The solution was autoclaved and kept at room temperature until needed. In cases where the mixture had solidified before use it was reheated in a boiling water bath for 1 hour. Once the temperature of LB agar had reduced to 55°C, filter sterilized AMP (100 µg/ml) / Kn (50 µg/ml) (Sigma-Aldrich, U.K) were added as needed. Working near an opened Bunsen burner, 25 mL of the LB agar containing appropriate antibiotic was added per 10cm polystyrene Petri dish (25 plates in total/ 500 mL). Each plate was covered with a lid and left to cool for around 25-30 mins. Plates were stored at 4°C after solidified.
2.2 Methods

2.2.1 Alignment of Rh for different species

This step was started by comparison of the human RhD protein and 12 Rh proteins from different species. The amino acid sequences of 13 Rh proteins were aligned with *ClustalW2 Multiple Sequence Alignment* (http://www.ebi.ac.uk/Tools/msa/clustalw2/) (Figure 1.10). This alignment was done by Avent (unpublished data, 2015); it shows the regions of high homology between these proteins, and the different regions.

2.2.2 Mapping of the Human RhD external loops and Designing of the Recombinant Gene

Moreover, the alignment helps to predict the mapping the human RhD external loops and match it with the corresponding external loops of the Rh50 like protein *Nitrosomonas europaea* (*NeRh50*) in order to construct the hybrid recombinant gene of interest.

By comparison with Conroy et al., 2005, it was possible to identify each amino acid in the external loops of the human RhD protein through the predicted RhD protein model as shown in (Figure 1.5).

The aim was to create a hybrid sequence with the *NeRh50* backbone with the human RhD sixth external loop inserted. So, to do this, the codon usage table of *E. coli* (Table 3.1), Gen-
Script website (2002-2019) GenScript Codon Usage Frequency Table(Chart) Tool. [online] Available at: http://www.genscript.com/tools/codon-frequency-table [23-06-2019] was used to translate the amino acid sequence back to nucleotide level.

The final DNA sequence was sent to GenScript Company, USA to synthesise the cDNA of the Construct recombinant gene construct of *N. europaea* RH50 with a human *RHD* loop 6 (*NeRh50”6*).

2.2.3 Cloning

2.2.3.1 Cloning *NeRh50”6* Construct in pESV2 vector

2.2.3.1.1 Polymerase Chain Reaction (PCR)

2.2.3.1.1.1 Primers and Generation of *NeRh50”6* Recombinant amplicon

The primer sequences of AD1 and AD2 (Table 2.2), were obtained from Cherif-Zahar *et al.*, (2007), these HPLC primers were purchased from Eurofins Genomics, Germany. AD1 and AD2 were used to add new enzyme restriction sites in the *NeRh50”6* sequence to simplify the ligation with the pESV2 vector:
Table 2.2. Primer sequences to add *NdeI* enzyme restriction site in the recombinant gene *NeRh50*.

These primers were obtained from Cherif-Zahar *et al.*, (2007), these primers were purchased from Eurofins Genomics. The underlined parts of the primers indicate the restriction sites. In AD1 the first part of the primer indicate the *XbaI* restriction site while the second underlined section indicates the *NdeI* restriction site. In AD2, the first part of the underlying sequence of the primer (GGATCC) indicates the restriction site of *BamHI*.

2.2.3.1.2 PCR Amplification of the Recombinant Gene

Q5 Hot Start High-Fidelity 2x Master Mix (from Eurofins Genomics) was used for the 50 μL PCR reaction, the final concentrations were 1x Q5 Hot Start High Fidelity Master Mix and 0.5 μM forward primer and 0.5 μM reverse primer. Then, 5 μL of DNA and nuclease free water was added to complete the volume to 50 μL. After that, PCR were conducted as a Veriti Thermal Cycler (Thermo Fisher Scientific, U.K.), at the following conditions; 98 °C for 30 s (initial denaturation); 35 cycles of; 98 °C for 10 s (denaturation phase); 68 °C for 30 s (annealing phase); 72 °C for 60 s. Then, the 35 cycles were then followed by 2 minutes at 72 °C (extension phase) and a 72 °C.
2.2.3.1.3 Agarose Gel Electrophoresis

PCR amplicons were analysed using agarose gel electrophoresis. Samples were run on 1% (w/v) agarose gels, which were produced by mixing 1 x TAE buffer (40 mM Tris-acetate, 1 mM EDTA [pH 8.0]) with 1X GelRed Nucleic Acid Stain (Cambridge Bioscience, Cambridge, UK). 10 µL of the PCR Ranger 100bp and 5 µL of The Quick-Load® 1 kb Extend DNA Ladder (New England BioLabs, U.K.) DNA Ladder was purchased from Geneflow, United Kingdom suppliers of Molecular Biology Product, UK were loaded as a marker for the gel electrophoresis run.

Electrophoresis was carried out at 120V for 80 mins in 1 xTAE buffer. Following the run, gels were removed and placed in the EC3 imaging 104 system (UVP BioImaging system, Cambridge, UK) and results were analysed using the Launch Vision WorksLS program (Chemi Doc 410).

2.2.3.2 Enzymatic Digestion

0.5 µL of BamHI and NdeI (Promega Corporation, Southampton, UK.) restriction enzymes were used with pESV2 vector and with the recombinant amplicons PCR product following of NeRh50”6 with AD1/AD2 primers to create cohesive ends, which made the cloning into any pESV2 expression vector easier. The digestion step was 20 min at 37°C. Finally, inactivation of enzymes was achieved by heating to 70°C for 10 min.
2.2.3.3 Purification of Digested DNA

2.2.3.3.1 Desalting the Recombinant amplicon

In this step, the digested recombinant amplicons NeRh50”6*^ were purified without losing their DNA. One tenth volume of ammonium acetate and 2 volume 100% (v/v) cold ethanol. Samples were incubated in low-temperature condition −20°C for 30 min to precipitate the recombinant amplicons DNA. The DNA was resuspended in 40 µL nuclease-free water.

Finally, Nano-Drop 2000 UV-Vis Spectrophotometer (Thermos Scientific, UK.) was used to estimate the DNA concentration in these samples.

2.2.3.3.2 Gel Extraction of Digested pESV2 expression vector

In the previous step, the restriction enzymes (BamHI and NdeI) cut the expression vector (pESV2) to give two fragments. These were run on 1% (w/v) agarose gel and following separation, the fluorescent band of the DNA fragments of the pESV2 vector were excised from the agarose gel using a clean sharp scalpel on the EC3 imaging system (UVP BioImaging system) under UV light rays the gel slices were weighed and the DNA was purified using the QIAquick gel extraction protocol (QIAGEN, Hilden, UK) according to the manufacturer’s instructions, as detailed below.

Three volumes of buffer QG were added to one volume of gel
and the mix was incubated at 50°C for 10 mins, with vortexing every 2-3 mins until the gel was completely dissolved. Then, one gel volume of isopropanol was added to increase the concentration of the DNA. Samples were moved to QIAquick spin columns and centrifuged for 1 minute at maximum speed at room temperature. 500 µL of buffer QG was used to remove all traces of agarose and the samples were centrifuged for 1 minute at max. speed at room temperature. 750 µL of Buffer PE was added to the QIAquick column and centrifuged for 1 min at max. speed at room temperature. The flow through was discarded after each step. The QIAquick spin columns with a clean 1.5 mL microcentrifuge tube and the samples were eluted in 30 µL of Buffer EB (10 mM Tris-Cl, pH8.5). Finally, the DNA samples were quantified using the NanoDrop 2000 UV-V is Spectrophotometer (Thermos Scientific, UK.) and the purified DNA of pESV2 plasmid was stored at 4°C for later use in cloning step.

2.2.3.4 Molecular cloning into pESV2

The molecular cloning process was conducted near a Bunsen Burner. The purified digested pESV2 plasmid and purified digested recombinant amplicon NeRh50”6*” were used to create pESV2/ recombinant NeRh50”6 gene. LigaFast™ Rapid DNA Ligation system (Promega Corporation, UK) was used to ligate the pESV2 vector with the amplified digested recombinant gene NeRh50”6*”.
The following equation was used to calculate how many nanograms of the insert should be used, and from these numbers, the volumes that should be used can be determined.

\[
\text{ng of Insert} = \frac{\text{ng of vector} \times \text{Kb of Insert}}{\text{Kb of vector}} \times \frac{\text{Insert}}{\text{Vector}}
\]

The recombinant PCR product *NeRh50”6* (insert) to plasmid DNA pESV2 (vector) size is 5Kb, and the insert size is 1349 bp. The ratio of 2:1 and 5:1 (Insert: Vector) was used in the equation above.
The reaction mixture was then gently mixed, followed by incubation for 5 minutes at room temperature.

2.2.3.5 Transforming in \textit{DH5}\textsubscript{α} \textit{E. coli} competent cells

Following ligation, the plasmids were transformed in to \textit{DH5}\textsubscript{α} \textit{E. coli} competent cells. This step was conducted near a Bunsen Burner. The transformation was performed by adding the following reagents into a 0.5 mL sterilized eppendorf tube, in the indicated order: 100 μL of the thawed \textit{DH5}\textsubscript{α} \textit{E. coli} competent cells (Thermo Fisher Scientific, UK) was mixed gently with 6 μL of the cloning mixture. The mixture was incubated on ice for 30 minutes, then, the mixture was heat shocked at 42°C for 45 sec and then the mixture was immediately replaced on ice for 2 min.

Next, 0.9 mL of (Super Optimal Broth) S.O.C media (provided in the kit and equilibrated to room temperature) was carefully added to the mixture, which was then placed horizontally into a shaking (170 rpm) incubator at 37°C for 1 hour.

Finally, different volumes of the transformation mixture were spread over pre-warmed selective plates (LB plates containing 100 μg/ml with AMP). Plates were incubated overnight at 37°C. Next day, master plate (LB plate with AMP) was prepared by inoculating single colonies from the transformed plate. These plates were incubated at 37°C for overnight (see results sec-
Next day, a number of single colonies from the master plate were picked by sterilized plastic disposable loops and incubated individually in tubes containing 5mL medium (LB medium containing 100 µg/ml AMP) overnight at 37°C in shaking (170rpm) incubator.

Then, the cultured colonies with cloning expression vector (pESV2) and a recombinant DNA (NeRh6*”) were isolated and purified using the Wizard (R) Plus SV Minipreps DNA Purification System (Promega, UK) (Figure 2.1).

Figure 2.1. Cloning and Transformation.

Diagram shows transformation step, where the vector with the recombinant gene was transformed into the DH5α E. coli (host cells) by the heat shock process. Cloning step, where the transformed host cells were able to replicate. Amp resistance bacteria are selected and will only grow in the presence of the NeRh50”6*/pESV2 plasmid.
2.2.3.6 Isolation and purification of plasmid DNA

Wizard (R) Plus SV Minipreps DNA Purification System (Promega, UK) was used to isolate and purify the plasmid DNA. 5 mL LB-AMP overnight broth, was centrifuged at 4500 xg for 10 mins at room temperature, the supernatant was removed gently, without disturbing the pellet, and discarded.

The pellet was resuspended by adding 250 µL of Cell Resuspension Solution and pipetted to completely resuspend. Then, the mixture was moved to a sterilised eppendorf tube, followed by adding 250 µL of Cell Lysis Solution and mixed by inverting the tube 4 times. To inactivate endonucleases and other proteins released during bacterial cell lysis which can adversely affect the quality of the isolated DNA, 10 µL of Proteinase K was added to the mixture then mixed well by pipetting before incubation for 5 mins at room temperature. 350 µL of Neutralization Solution was added and immediately mixed by inverting the tube 4 times, followed with centrifugation of the mixture at 4500 xg for 10 mins at room temperature.

Clear solution were moved (around 800 µL each time) to the Spun Column, which was provided with the kit. The columns were spun at 4500 xg for 1 min at room temperature, the flow-through was discarded from the collection tube, and this process was continued until all the supernatant was centrifuged. Then, 750 µL of Column Wash Solution was added, followed by centrifuging the supernatant at 4500 xg for 1 min at room
temperature, and then the flow-through was discarded from the collection tube. Then, spun column was re-washed by 250 μL of column Wash Solution then centrifuged the spin column at 4500 xg for 2 mins at RT, the flow-through was discarded. The Spin Column was transferred to a new, sterile 1.5 mL microcentrifuge tube, followed by elution of the plasmid DNA by adding 30 μL of Nuclease-Free Water to the Spin Column. The plasmid DNA was eluted by spinning at maximum speed for 1 minute at room temperature. Finally, the eluted sample was stored at -20°C until required.

2 μL purified plasmid DNA was quantified using the Qubit® 2.0 Fluorometer and the Qubit® dsDNA Broad range (BR) assay Kit (Life Technologies, UK), according to the manufacturer’s instructions.

During this procedure, 500 μL of LB-culture broth was stored together with 50% (v/v) sterile glycerol at -80°C for future use.

2.2.3.7 Confirmation tests

2.2.3.7.1 PCR Screening

After 16 hours of incubation for the two different ratios of the ligation step (2:1 and 5:1), PCR screening was done to confirm if the recombinant gene (NeRh50*6*) was inserted correctly in the expression plasmid without contamination. Steps in (See 2.2.2.3.1) were followed with AD1 forward primer, and AD2 re-
In 0.2 mL sterilised nuclease free tubes (BIOplastics, Landgraaf, the Netherlands) 50 µL of PCR reaction mix were added. Using sterilized filter tips (Fisher Scientific, Loughborough, UK) single colonies from the transformation plate were picked and inoculated on a selective LB Agar master plate, which was divided by numbers (each number indicating a different single colony). Then, the same tip was moved into a PCR tube, which contained PCR master mix and was gently mixed, followed by brief spinning prior to thermo-cycling (Figure 2.2).
Using a sterilised tip to pick a single colony from the transformation plate (example colony number 11) move the tip to a divided agar plate with AMP and do a small line with each tip alone (inoculate). Then move the same tip to PCR tube, which contains the mixture of Q5 -Hot Start High-Fidelity 2x master mix, primers (AD1 forward and AD2 reverse), Use the tip just once with each colony.

The PCR tubes were run on Veriti Thermal Cycler (Thermo Fisher Scientific, U.K.) according to the conditions in (2.2.3.1.2). Gel visualisation was made by running these samples on 1% (w/v) Agarose gels to check the size of the PCR amplicons.
2.2.3.7.2 Sequencing of pESV2 gene by Next Generation Sequencing

Ion Xpress™ Plus gDNA Fragment Library Preparation (Thermo-fisher scientific, UK) was used for sequencing. In a 1.5 mL Eppendorf LoBind™ Tube the following reagents were added in the indicated order 100 ng of purified genomic plasmid DNA from both the original sample (pESV2-G1000) and the pESV2-(NeRh50”6*”), 5 µL of Ion Shear™ Plus 10X Reaction Buffer followed by adding Nuclease-free Water to increase the volume up to 40 µL. The mixture was by vortexed for 5 sec at room temperature.

10 µL of Ion Shear™ Plus Enzyme Mix II was added to the sample and immediately mixed by pipetting up and down. To fragment the DNA in 450 bp, samples were incubated in a heat block at 37°C for 5 mins and immediately following this 5 µL of Ion Shear™ Stop Buffer was added, and mixed thoroughly by vortex. The reaction tube was stored on ice.

To purify the fragmented DNA, 99 µL of Agencourt™ AMPure™ XP Reagent was added to the sample, then the mixture of sample and beads was mixed by pipetting up and down 5 times, then the mixture was incubated at room temperature for 5 mins. Tubes were spun and placed in a magnetic rack (Thermo Fisher Scientific, Paisley, UK) for 3 mins until the solution was clear of brown tint when viewed at an angle. The supernatant were removed and discarded carefully without disturbing the bead
pellet. 0.5 mL of 70% ethanol was freshly prepared and added to the tube whilst keeping the tube in the magnetic rack followed by incubation for 30 seconds and turning the tube around twice in the magnetic rack to move the beads around. Then, the supernatant was discarded without disturbing the pellet. The wash step was repeated twice.

The tube was spun and placed back in the magnetic rack and any remaining supernatant was carefully removed. This was to ensure all ethanol was removed without disturbing the pellet. The beads were air dried at room temperature for 5 mins whilst keeping the tube in the magnetic rack. Then, the tube was moved from the magnetic rack, 25 μL of Low TE was added directly to the pellet to disperse the beads and to elute the DNA. The suspension was mixed thoroughly by pipetting up and down 5 times, and then the sample was vortexed for 10 seconds. After that, the tube was pulse-spun and placed back in the magnetic rack until the solution was clear. The clear supernatant was moved into a sterilized 0.2 mL PCR tube, without disturbing the pellet. Agilent™ 2100 Bioanalyzer™ instrument and Agilent™ High Sensitivity DNA Kit were used to check the fragment size.

Next step was to ligate the adapters and to purify the ligated DNA. In a 0.2 mL sterilized PCR tube, the DNA and other
reagents were added according to Table 2.3 followed by pipetting up and down.
The tube was placed in a thermal cycler and run following these conditions; 25°C for 15 min, 72°C for 5 min then 4°C.

The mixture was moved to a new, sterilized 1.5-mL Eppendorf LoBind™ to achieve cleaning for the fragmented DNA, 120 µL of Agencourt™ AMPure™ XP Reagent was added to the mixture followed by pipetting the mixture of fragmented DNA and beads up and down 5 times.

Afterword, the tube was pulse-spun and incubated for 5 minutes at RT. The tube was placed in the magnetic rack until the solution was clear, the supernatant was carefully removed and discarded without disturbing the pellet.

0.5 mL of freshly prepared 70% ethanol was added to the tube whilst the tube was still in the magnetic rack followed by incubating the mixture for 30 seconds at RT with moving the tube in

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume by Input gDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>~25 µL</td>
</tr>
<tr>
<td>10X Ligase Buffer</td>
<td>10 µL</td>
</tr>
<tr>
<td>Ion P1 Adapter</td>
<td>2 µL</td>
</tr>
<tr>
<td>Ion Xpress™ Barcode</td>
<td>2 µL</td>
</tr>
<tr>
<td>dNTP Mix</td>
<td>2 µL</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>49 µL</td>
</tr>
<tr>
<td>DNA Ligase</td>
<td>2 µL</td>
</tr>
<tr>
<td>Nick Repair Polymerase</td>
<td>8 µL</td>
</tr>
<tr>
<td>Total</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

Table 2.3. Reaction Setup for Barcoded Libraries
the magnetic rack. Next the clear solution was discarded carefully without disturbing the pellet. This step was repeated for a second wash.

The beads in the tube were air dried by leaving the tube in the magnetic rack at RT for 5 mins. 20 µL of Low TE was added directly to resuspend the pellet and to elute the DNA, then, the mixture was mixed thoroughly by pipetting the suspension followed by vortexing the sample for 10 seconds. The tube was removed from the magnetic rack and pulse-spun then replaced in the magnetic rack until the solution was clear.

Clear supernatant was transferred to a new sterilized 1.5-mL Eppendorf LoBindr™ Tube without disturbing the pellet. Pippin Prep™ instrument manual for 100–300-base-read libraries was followed to run the size-select the library step.

To purify the size-selected DNA, 90 µL of Agencourt™ AMPure™ XP Reagent was added to the mixture followed by pipetting the mixture of fragmented DNA and beads up and down 5 times. Afterward, the tube was pulse-spun and incubated for 5 minutes at RT. Tube was placed in the magnetic rack until the solution was clear, the supernatant was carefully removed and discarded without disturbing the pellet.

Add 0.5 mL of freshly prepared 70% ethanol while the tube still in the magnetic rack followed with the same steps were done before. Air dry beads in the tube by leaving the tube in the magnetic rack at RT for 5 mins.
After that, the tube was removed from the magnetic rack and 0.5 mL of Platinum™ PCR SuperMix High Fidelity (black cap) and 2 µL of Equalizer™ Primers were added to the bead pellet followed by pipetting the mixture up and down. The tube was placed back on the magnetic rack for 2 mins, then carefully 50 µL of supernatant was transferred to a new, sterilized 0.2 mL PCR tube, without disturbing the pellet. The tube was sealed and placed in the thermal cycler, and run on the following program. Dr Michele Kiernan of the Genomics Facility Systems Biology Centre at the University of Plymouth conducted the chip loading and sequencing steps. Finally, De-novo assembly software was used to align results against bacterial genome.

2.2.3.8 Cloning NeRh50”6 Recombinant in pET expression vector

2.2.3.8.1 Enzymatic Digestion of pUC57-Recombinant gene

0.5 µL of BamHI and XbaI (Promega Corporation, UK.) restriction enzymes were used to cut the recombinant gene from pUC57 vector and to confirm if we have the right hybrid recombinant gene. Moreover, these restriction enzymes were used to cut the expression vector (pET) to create cohesive ends, which make the cloning into any expression vector easier (pET). Enzyme inactivation was done for 10 min at 70°C.
2.2.3.9 Purification of Digested DNA

2.2.3.9.1 Desalting the Digested pET Expression Vector

In this step, the digested pET expression vector was purified by adding 1/10 volume of ammonium acetate and 2 volumes of 100% (v/v) cold ethanol. The sample was incubated at −20°C for 30 min to precipitate the pET DNA. The DNA was resuspended in 40 μL nuclease-free water. Finally, Nano-Drop 2000 UV-Vis Spectrophotometer (Thermos Scientific, UK.) was used to estimate the DNA concentration in these samples.

2.2.3.9.2 Gel Extraction of Digested Hybrid Recombinant DNA

In the previous step, the restriction enzymes (BamHI and XbaI) cut the pUC57 vector containing the hybrid recombinant construct gene. These samples were run on a 1% (w/v) agarose gel. The DNA fragments for the hybrid recombinant construct gene (1275 bp) were excised from the agarose gel using a clean sharp scalpel on the EC3 imaging system (UVP BioImaging system) under UV light rays and then weighed. DNA was purified using the QIAquick gel extraction protocol (QIAGEN, Hilden, UK) according to manufacturer’s instructions. 2.2.2.3.3.2 for more information about gel extraction steps. Finally, DNA samples were quantified using the NanoDrop 2000 UV-V is Spectrophotometer (Thermos Scientific, UK.) and the
purified DNA of the hybrid recombinant construct was stored at 4°C for later use.

2.2.3.10 Molecular cloning into the pET Expression Vector

The molecular cloning process was conducted near a Bunsen Burner. The purified digested pET expression vector and the purified digested recombinant DNA *NeRh50”6* were used to create the pET/ recombinant *NeRh50”6* gene. Liga Fast™ Rapid DNA Ligation system (Promega Corporation, UK.) was used to ligate the pET expression vector with the digested recombinant gene *NeRh50”6“. Followed the same equation in 2.2.3.4.

The recombinant PCR product (insert) to plasmid DNA (vector) size is 3Kb, and the insert size is 1349 bp. The ratio of 2:1 and 5:1 (Insert: Vector) was used in the equation (2.2.3.4). The reaction mixture was then gently mixed, followed by incubation for 5 minutes at room temperature.

Using *BamHI* and *XbaI* restriction enzymes in the digestion step for the pET plasmid and constructs recombinant DNA was facilitating the ligation step.

Finally, the cloning reactants were transformed into *BL21(DE3)* *E. coli* competent cells.
2.2.3.11 Transforming in *BL21(DE3) E.coli* competent cells

This step was conducted near a Bunsen Burner. The reaction was performed by adding the following reagents into a 0.5 mL sterilized eppendorf tube, in the indicated order: 100 µL of the thawed *BL21(DE3) E. coli* competent cells (New England Biolabs, UK) was mixed gently with 6 µL of the cloning mixture. The mixture were incubated on ice for 30 minutes, then, the mixture was heat shocked at 42°C for 10 sec, followed by immediately, replacing the mixture on ice for 2 min.

Next, 0.9 mL of (Super Optimal Broth) S.O.C media (provided in the kit and equilibrated to room temperature) was carefully added to the mixture, which was then placed horizontally into a shaking (170 rpm) incubator at 37°C for 1 hour.

Finally, different volumes of the transformation mixture were spread over pre-warmed selective plates (LB plates containing 50 µg/ml Kn). Plates were incubated overnight at 37°C.

Next day, master plate (LB plate with Kn) was prepared by inoculating single colonies from the transformed plate. These plates were incubated at at 37°C for overnight (see results section).

Next day, a number of single colonies from the master plate were picked by sterilized plastic disposable loops and incubated individually in tubes containing 5mL medium (LB medium containing 100 µg/ml Kn) overnight at 37°C in shaking (170 rpm) incubator.
Then, the cultured colonies with cloning pET expression vector and a recombinant DNA (NeRh50”6”) were isolated and purified using the Wizard (R) Plus SV Minipreps DNA Purification System (Promega,UK).
2.2.3.12 Isolation and purification of plasmid DNA

See 2.2.3.6 section

All previous steps: See 2.2.3.8; 2.2.3.9; 2.2.3.10; and 2.2.3.11 were followed for the other constructs: NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6.

2.2.3.13 Confirmation tests

2.2.3.13.1 Sanger Sequencing

Purified plasmid DNA samples were sent to Eurofins Genomics (Ebersberg, Germany) for sequencing. Primer sets shown in Table 2.4, which were purchased from Eurofins Genomics were used to confirm: the human RhD external loops; NeRh50, and the pET expression vector were these primer sets cover the entire plasmid with the recombinant gene.

Samples were diluted to 10 ng/µL and then 15 µL of each diluted sample was added to 10 mM forward and reverse primers in separate serial numbers barcoded labelled tube followed by covering them with a yellow cap which was provided with Mix2Seq kit (Eurofins MWG Operon).

Results were analysed using CLC Genomics workbench 9 software for alignment against expected reference sequence.

2.2.3.13.1.1 Primer Design
Several software packages were utilised to design the oligonucleotide primers for \textit{RhD/NeRh50/ }\textit{pET} expression vector. Primer 3 software (http://primer3.ut.ee/) was initially used to design the primers; the NCBI BLAST database (http://www.ncbi.nlm.nih.gov/) was used to confirm the specificity of primers; the UCSC Genome Browser database 66 (http://genome.ucsc.edu) was also used to analyse the specificity of the primers. In addition, visualisation of the location of the amplicons within the genome was done using the in-silico PCR (virtual PCR). Primers were designed to cover the entire plasmid and each human RhD external loop to confirm the presence of all human RhD external loops. The primers were received as lyophilised from Eurofins Genomics (Ebersberg, Germany) in a High Performance Liquid Chromatography purity (HPLC), and were re-suspended by adding nuclease-free water (Ambion®, Applied Biosystems, Thermo Fisher Scientific, USA) as indicated by the manufacturer.
<table>
<thead>
<tr>
<th>Primer Label</th>
<th>Primer Sequences</th>
<th>Reverse complement</th>
<th>Cover</th>
<th>From-To</th>
<th>Primer Sequence Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>GGAGCCACTATCGACTACGC</td>
<td></td>
<td>PET before Ne loops</td>
<td>328-348</td>
<td>20</td>
</tr>
<tr>
<td>R1</td>
<td>CTGCTAAACAAAGCCCGAAG</td>
<td>CTTTCGGGCTTTGTAGCAG</td>
<td>PET before Ne loops</td>
<td>487-507</td>
<td>20</td>
</tr>
<tr>
<td>F2</td>
<td>GTTTAGCGAGCATCGCGC7GTTT</td>
<td></td>
<td>Ne/ Loop2/ Loop3</td>
<td>541-552</td>
<td>22</td>
</tr>
<tr>
<td>R2</td>
<td>GTGGCTGATAAACATTTTCGTTTC</td>
<td>GAACGAAATGGTATACAGAACC</td>
<td>Ne/ Loop2/Loop3</td>
<td>945-967</td>
<td>22</td>
</tr>
<tr>
<td>F3</td>
<td>TGACATCCCTGC7CGTTTTC</td>
<td></td>
<td>Loop2/Ne</td>
<td>761-781</td>
<td>20</td>
</tr>
<tr>
<td>R3</td>
<td>AAACCGCACAATAACACAGC</td>
<td>GCTGTTTATCTGTGGCCTT</td>
<td>Loop2/Ne</td>
<td>919-939</td>
<td>20</td>
</tr>
<tr>
<td>F4</td>
<td>ATGTGGCGGTTATCTGCT</td>
<td></td>
<td>Loop3/Ne</td>
<td>926-945</td>
<td>19</td>
</tr>
<tr>
<td>R4</td>
<td>GTTAAGGCTCGGCCAGAACAGA</td>
<td>GTTCTGGCGGGGCTATAAC</td>
<td>Loop3/Ne</td>
<td>1151-1171</td>
<td>20</td>
</tr>
<tr>
<td>F5</td>
<td>GTTCTGCGCCGCTTTAAACA</td>
<td></td>
<td>Loop4/Ne</td>
<td>1153-1172</td>
<td>20</td>
</tr>
<tr>
<td>R5</td>
<td>CGCCATAACACACATGTC7C</td>
<td>GAGCATTGTGGATGCGC</td>
<td>Loop4/Ne</td>
<td>1291-1309</td>
<td>18</td>
</tr>
<tr>
<td>F6</td>
<td>GAAAACCATTGACAC</td>
<td></td>
<td>Ne/Loop6</td>
<td>1452-1467</td>
<td>15</td>
</tr>
<tr>
<td>R6</td>
<td>ATGAATTGTGGCTGTC7CTC</td>
<td>GAGGACAGGACAGAATTACAT</td>
<td>Ne/Loop6</td>
<td>1648-1668</td>
<td>20</td>
</tr>
<tr>
<td>F7</td>
<td>CCTTCCTCATTGATTCCTT</td>
<td></td>
<td>PET after all loops</td>
<td>2471-2490</td>
<td>19</td>
</tr>
<tr>
<td>R7</td>
<td>AAGACCAATTCATGTTGTGC</td>
<td>GCAJ3CAACATGAAATGGTCTT</td>
<td>PET after all loops</td>
<td>3063-3082</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 2.4. Primer sequences to amplify regions in pET-NeRh50”2, 3, 4, 6
2.2.3.13.2 Enzymatic Digestion of pET-Recombinant gene plasmids

0.5 µL *BamHI* and *XbaI* (Promega Corporation, UK.) restriction enzymes were used at 37°C for 30 min to cut the recombinant gene from pET vector and to confirm if we have the right hybrid recombinant gene.

Enzyme inactivation step was achieved by heated up the sample to 70°C for 10 min. Then, the samples were run on a 1% (w/v) agarose gel to check the band sizes.
2.2.3.13.3 Electron Microscopy Imaging

Most of the sample preparation steps of this test was done with the help of Plymouth Electron Microscopy Centre (PEMC). In particular Dr. Alexander Strachan and Glenn Harper are thanked for their support and assistance in this work.

10 ml overnight LB broth with 50 µg/ml Kn at 37°C were harvested on a 4500 xg at room temperature for 10 min, then, the supernatant was discarded. Pellets were washed with 1 ml of 1x PBS. After that, samples were centrifuged at 2100 xg at room temperature for 2 min and the supernatant was discarded. This step was repeated two times.

After that, 500 µL mixture of fixation solution (2.5% (v/v) Glutaraldehyde and 4% (v/v) Formaldehyde in 0.1 M Phosphate buffer) was added to the samples to fix bacterial cells and to stabilize the protein structure.

Due to the fact that incident electrons need to penetrate through the sample, so that transmitted electron signals would be collected for imaging, the sample thickness needs to be limited (e.g. 50 to 250 nm for biological samples). Therefore specified sample preparation is necessary before staining them with antibodies. Steps include; cutting the specimen to fit the Gatan disc grinder by using ultrasonic disk-cutter. Then, low melting point wax was used to glue the specimen to the disc in order to have a plane view imaging. Next, these Grid were heated at 120°C to bind slices rigidly. Then, it was glued for a second
time. Followed by polishing the specimen with Silicon Carbide Grinding Paper (SiC) paper to fix the specimen on a rotating polishing machine.

The specimen thickness were adjusted by controlling knob of the grinder with 10 µm until the specimen is flush with the polishing surface followed with another glue step. Then, Precision Ion polishing System (PIPS) was used to create high-quality TEM specimens with a plane-view observation.

Then, the grid was submerged in a blocking buffer (1x PBS-Tween 20 and 5% (w/v) of bovine milk powder) were used to wash the grid membrane for an hour at room temperature. After that, the blocking buffer was washed off and the primary antibodies (2.2B9, 2A4, and 1918) were added either neat or diluted in the blocking buffer, to the grid membrane as the manufacturer’s instructions recommended. Then, it was stored at 4°C for overnight.

On the next day, three washes with 1x PBS-T has been done to the grid membrane each wash was 5 min long at room temperature. Then, secondary antibody: Goat anti-Mouse IgG (whole molecule)–Gold antibody and Goat anti-Rabbit IgG (whole molecule)–Gold antibody was prepared with a ratio of (1:20) according to manufacturer’s instructions. It was added to the grid membrane after discarding the 1x PBS-T solution. Next, grid membrane was incubated for 1 hour at RT followed by washing.
for three times with 1x PBS-T and then one wash with 1x PBS. Each wash was 5 min long at room temperature.
Finally, images from the grid membrane was taken with Transmission Electron Microscope (TEM) with a 0.38 nm resolution and Gatan Orius camera.

2.2.3.14 Protein Extraction

2.2.3.14.1 Bacterial Protein Extraction from Broth Media

This step was based on using BugBuster Master Mix protein extraction reagent (Merck Chemicals Limited) 1.5 ml of overnight broth culture was centrifuged at 45000 xg for 10 min at RT. All supernatant were discarded, then, 300 µL of BugBuster protein extraction reagent was mixed gently, prior to incubating these pESV2-NeRh50”6 samples for 10 min at RT in the shaking incubator. These samples were centrifuged at 45000 xg for 20 min at 4°C. The pellets and the supernatants were stored at −20°C for quantification test and stored at −80°C for long periods.

2.2.3.14.1.1 Qubit® Protein quantitation assay:
To estimate the concentration of the protein in the samples, quantification Qubit™ Protein Assay Kit (Thermo Fisher Scientific, UK) was used. First, the Qubit working solution was prepared at a ratio of 1:200. Three standards were prepared according to the manufacturer’s instructions, the recommended
ratio for each standard and each sample is 1:200. Next, standards and samples were incubated at room temperature for 15 mins.

Finally, the samples were measured by using Qubit® Fluorometer 2.0. To calculate the concentration of the protein this equation was followed:

\[
\text{conc} = \text{QF value} \times \frac{200}{(x)},
\]

where \((x)\) represent the number of \(\mu\text{L}\) from the sample that has been used.
2.2.3.14.2 Erythrocyte Ghost Membrane Preparation

Fresh red blood samples were centrifuged at 15000xg for 10 mins to get rid of plasma and the buffy coat and precipitate the red blood cells (RBCs). After that, 5 mL of the RBCs were incubated with 3mg/ml as a final concentration of bromelain at 37°C for 1 hr to cleave the 6th external loop of RhD protein on the RBC membranes.

Then, samples were washed three times with 0.15 M NaCl solution. 0.2 M Monobasic and 0.2 M Dibasic solution were prepared by dissolving NaH$_2$PO$_4$.2H$_2$O and anhydrous Na$_2$HPO$_4$ respectively in 1 L of distilled water. To prepare the stock solution of phosphate buffer (0.1M Na$_2$PO$_4$ pH8.0) monobasic and dibasic solutions were mixed together.

The samples were washed with 0.1M Na$_2$PO$_4$ pH8.0 until the supernatant was clear followed by incubating the pellet for 10 mins at 4°C. Samples were transferred into centrifuge tubes. Samples were mixed thoroughly and were incubated for 5 mins at 4°C with 5M 0.1M Na$_2$PO$_4$. After that, these samples were centrifuged at 16000xg at 4°C for 5 mins, the supernatant was removed. This step was repeated until the membranes were creamy pink. Membranes were transferred to 1mL Eppendorf tubes.

1 mL of 5 mM phosphate buffer was added and membranes were centrifuged at 22 xg for 10 mins. Clear supernatant was discarded followed by adding 100 µL 5mM phosphate along with 10
µL 2mM phenylmethylsulphonyl fluoride (Sigma-Aldrich, UK) to the membrane to prevent proteolysis of samples during long term storage. Samples were stored at −80°C until required.

2.2.3.15 Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-PAGE)

5 µg of the protein per sample from bacterial protein and 10 µg from the human ghost membrane samples were used. To prepare the samples in order to load them into a gel, samples were mixed with 4x loading sample buffer (50% (w/v) glycerol, 5% (w/v) lithium dodecyl sulphate, 5% (w/v) Tris(hydroxymethyl) aminomethane, 1.0% (v/v) hydrochloric acid) (BioRAD, U.K) by a ratio of 3:1, sample: loading dye. Then, 2 µL of XT reducing agent (BIO-RAD, UK) were added (BioRAD, U.K) to each sample. Next, the samples were heated in a hot block at 95°C for 5 mins prior loading them onto the gel. Samples were loaded into pre-cast gel XT Bis-Tris 4-12%, 12+2 well, 45 µL, Criterion Cell (BioRad, U.K). BluEye Marker (GeneFlow, U.K) and Precision Plus Protein™ WesternC™ Standards were used as a marker to determine the protein molecular weight. Then, 3-(N-morpholino)propanesulfonic acid running buffer 1x XTMOPS (BIO-RAD, UK) was prepared (1:20). Gels were run at 150V for 90 mins or until the dye went to the lowest point of the gels. Gels were either stained or immunoblot-
2.2.3.15.1 Instant Blue Staining

To test the quality control of the gel electrophoresis and to check the presence of the proteins in samples, the gel was immersed overnight at room temperature on a shaker in Instant Blue stain (Expedeon, U.K). Next day, the gel was washed and was imaged by a phone camera.
2.2.3.15.2 Western Blotting

Polyvinylidene fluoride (PVDF) membrane with 0.45 um pore size (Merck Millipore, U.K) was activated by submersing the membrane in Methanol for 20 sec followed by 2 min in dH$_2$O then in cold transfer buffer (190 mM glycine, 25 mM Tris base, and 20% (v/v) Methanol).

To prepare the sandwich of the membrane, layers of the sponge, filter paper, gel peice (which contain proteins and the marker), the prepared PVDF membrane, second filter paper, and finally the second sponge layer then this was placed into the cassette of the wet transfer blotting Bio-Rad system for 60 minutes at 100 V.

After the proteins were transferred from the gel to the PVDF membrane, this membrane was placed in sterilized plastic tray with lid, blocking solution (1x PBS-Tween 20 and 5% (w/v) of dried milk powder) was used to block the membrane for an hour at room temperature on the shaker. After that, the blocking buffer was discarded and the primary antibodies were added either neat or diluted in the blocking buffer with (1:6) ratio, to the membrane as the manufacturer’s instructions recommended. Then, it was stored on a shaker in the cold room for overnight.

On the next day, three washes with 1x PBS-T were to the PVDF membrane each wash was 10 min long at room temperature on a shaker. Secondary antibody was prepared with a ratio of 1:1000 according to manufacturer’s instructions. It was added to the membrane after discarding the 1x PBS-T solution. Next, PVDF
membrane was incubated for 1 hour at RT followed by washing three times with 1x PBS-T and then, one wash with 1x PBS; each wash was 10 min long at room temperature on a shaker. Finally, Pierce™ ECL Plus Western Blotting Substrate (Thermo Fisher, U.K) was prepared according to manufacturer’s instructions and added to the PVDF membrane before taking the images of the membrane by using PXi6 Imaging System (Syngene) to enhance the membrane chemiluminescent visualization. However, 10 µg of protein from ghost membrane with different Rh phenotypes and 5 µg of protein from all constructs and wild types samples were run using 1D gel electrophoresis prior to transfer them onto PVDF membrane. Moreover, cultural supernatant 2.2B9 were used at the concentration 1:6 as a primary antibody followed by rabbit anti-mouse horse radish peroxidase as a secondary antibody.
2.2.3.16 Flow cytometry

2.2.3.16.1 Flow cytometry for Blood Samples

RhD\(^+\), RhD\(^-\) blood samples were ordered from National Health Service (NHSBT) and were used as a control to test the efficiency of our Human antibodies; 2.2B9 which reacts against human RhD external loop 4, BIRMA-D6 which reacts against human RhD external loops 4, and 6, and MS-26, which reacts against human RhD external loops 3, 4, and 6.

Whole blood was washed in 30 ml of 1x PBS and it was centrifuged for 5 min at 15000 xg then the supernatant were discarded, this step was repeated three times. 20 \(\mu\)L of the final pellet from the blood samples was used and were diluted in 30 ml of 1x PBS. Then, 200 \(\mu\)L of this mixture was used to mix it with 100 \(\mu\)L of tissue culture supernatant human antibodies (2.2B9 and MS-26) and 10 \(\mu\)L of the purified human antibody(BIRMA-D6). These samples were incubated for 1 hour at 4\(^{\circ}\)C in dark. PBS were added followed by centrifuge samples for 5 min at 15000 xg at room temperature, this step was repeated for two times. Then, 200 \(\mu\)L of 1x PBS was used to resuspended the pellet. 10 \(\mu\)L of secondary FITC antibody was added and incubated with samples for 30 min at 4\(^{\circ}\)C in dark. Samples were washed with 1x PBS and centrifuged at 4\(^{\circ}\)C for two times at 15000 xg. 300 \(\mu\)L of 1x PBS was used to resuspend the samples. Finally, samples were transferred into FACS tubes and analysed by FACS ARIA II Flow cytometer/Cell Sorter (BD, U.K)
2.2.3.16.2 Flow cytometry for *E. coli* Broth

5 ml of LB broth with 50 µL Kn were grown overnight at 37°C at 200 rpm for the positive colonies from the last transformation of PET vector/*NeRh50* with human external loop (6/4,6/3,4,5/2,3,4,6). 5 ml LB broth with Kn for BL21 ED3 competent cells, 5 ml LB broth with Kn for *Nitrosomonas europaea* ATCC 19718 were used as a positive control.

All broth were harvested on 22000 xg at room temperature for 10 min, then, supernatant were discarded. Pellets were washed with 1 ml of cold 1x PBS. After that, samples were centrifuged at the maximum speed at room temperature for 10 min, the supernatant were discarded. This step was repeated for two times. 700 µL of resuspending mixture [5% (w/v) Triton X-100, 0.15 (v/v) NaCl, 10mM Tris-HCl, and 1mM EDTA pH 8.0] were used to resuspend pellets. 50 µL of 10 mg/ml of freshly prepared Lysozyme were added to the previous mixture and vortexed for sec. The final mixture were incubated for cell wall lysis step for 30 min at 37°C. Followed with spinning at 1500 xg at room temperature for 10 min, supernatant were discarded. Then, all pellets were resuspended with 1 ml of cold 1x PBS. This mixture were divided in to 4 main tubes; unstain sample, only secondary, only secondary with blocking buffer and primary Abs.
100 µL of culture supernatant Abs, 10 µL of purified Abs; Anti-D (2.2B9, BIRMA-D6, MS-26)/ Anti-NeRh50 (1918, 1755, 1917) and Anti- E. coli were added to the right tube. Then, these tubes were incubated in dark at 4°C for 45 min. Samples were centrifuged at the maximum speed at room temperature for 10 min, the supernatant were discarded. Pellets were washed with 1 ml of cold 1x PBS. This step was repeated two times.

500 µL of 1% BSA (blocking buffer) were added to the right tubes while 500 µL of cold 1x PBS were added to the other tubes. Then, these tubes were incubated in the dark on shaker at 4°C for 1hr. Samples were centrifuged at 22000 xg at room temperature for 10 min, supernatant were discarded. Pellets were washed with 1 ml of cold 1xPBS. This step was repeated two times.

10 µL of the suitable secondary- FITC conjugated Ab (Mouse anti human FITC, Goat anti mouse FITC, and Goat anti rabbit FITC) were added and incubated in dark at 4°C for 1hr then, washing step was repeated twice.

Finally, 1 ml of cold 1x PBS were used to resuspend pellets to prepare the sample to be read by BD FACS Aria II - Flow cytometer/Cell Sorter which was purchased from Beckman Coulter life sciences, UK.
Chapter 3

Results
3.1 Introduction

Blood groups were discovered in 1901 and there are plenty of studies in this area, reflecting the importance of this science in the Immuno-haematology field. The antigen/antibody reaction is one of the most significant features in serology. Due to the importance of this approach, all hospitals and blood banks worldwide rely on the phenotyping of blood groups as one of the routine blood tests.

The disadvantage of the current antibody screening and identification methods is the use of human red blood cells, as these can complicate the detection of antibody in different cases for example, if more than one antibody specificity is present, in the case of multi-transfused individuals and in the case of having weak antigens. Moreover, using human red blood cells, that have a limited shelf life, is another barrier to study rare blood phenotype cases.

Thus, to overcome the downsides of using human red cells, in this project, the aim was to construct recombinant Rh antigens. The concept was that if bacteria can express Rh antigens, they may reduce the need for human red cells in complicated cases. The principle of using blood group recombinant antigens to identify blood group antibodies in human serum is well affirmed, and has been achieved for many blood group systems but not for Rh blood group system (Ridgwell et al., 2007).
The Rh blood group system is the second most important blood group system in transfusion medicine (Westhoff, 2004). Anti-Rh system antibodies are major causes of transfusion reactions and haemolytic disease of the fetus and newborn (Van Kim et al., 2006). Despite the great importance of Rh blood group system, there has not been any successful production of recombinant Rh antigens in prokaryotic cells (Conroy et al., 2005, (Ridgwell et al., 2007).

Rh blood group system has five genes, the blood group active \textit{RHCE} and \textit{RHD}, the erythroid ammonium transporter \textit{RHAG} and two non-erythroid counterparts, \textit{RHBG} and \textit{RHCG}. Rh-related proteins are expressed in all animals, humans, bacteria (including AmtB) having a highly conserved membrane domain, termed the Ammonium transporter fold (Marini et al., 2000). The Rh recombinant antigens would produce a fast, lower bio-hazard, affordable technique depending on the expression of RhD protein in the bacterial membrane.

The recombinant gene is composed of \textit{NeRh50} backbone and multiple combinations of human RhD external loops. Firstly, we attempted proof of concept by designing a \textit{NeRh50”6} construct, with the location of loop 6 being between two highly conserved transmembrane domains (11-12), which increases the probability of this gene sequence being expressed on the \textit{E. coli} inner membrane.

Choosing to work with the external loops (6, 4, and 3) to cre-
ate the recombinant gene constructs was based on the successful work of (Liu et al., 1999 a, 1999 b). These studies achieved Rh expression by constructing the recombinant RHCE RHD cDNAs by replacing the human RHCE external loops 3, 4, and 6 with the corresponding human RHD external loops 3, 4, and 6 sequences to construct a cDNA expressing a hybrid form of Rh protein, which has a backbone of RhCE and external loops from human RhD. Besides these results, in 1997, there was another study by Avent et al., where they were able to determine the 9 critical amino acids (AA) for expression of the D epitopes, which are located on the predicted external loops 3, 4, and 6 of the RhD protein. These critical amino acid are: Met169, Metl70, Ile172, Phe223, Ala226, Glu233, Asp350, Gly353, and Ala354. Furthermore, in 2005, Conroy et al., have successfully constructed homology models of RhD and RhAG based on using the predicted secondary structure of Rh proteins (Figure 1.8) and the structure of E. coli AmtB (Figure 1.9) as a template. These models predicted the human RhD external loops, which assessed constructing the hybrid NeRh50”human RhD external loops (2, 3, 4, and 6). The entire Rh complex comprising one Rh protein monomer and two RhAG subunits form a trimer arranged in a cloverleaf configuration (Conroy et al., 2005; Callebaut et al., 2006).

Choosing the N. europaea Rh50 like protein to be the backbone of the constructed gene instead of another bacterial species such
as *E. coli* AmtB is due to the similar topology of the *NeRh50* like protein to human Rh proteins. *NeRh50* has 6 external domains with 12 membrane domains (Figure 1.13) like human Rh proteins, while *E. coli* AmtB protein has 5 external loops with 11 membrane domains (Figure 1.11). The similarity in the topology between human RhD and *N. europaea* Rh50 like protein is more likely to allow the human RhD epitopes to be expressed. Moreover, *N. europaea* was also chosen because it was a prokaryote, before this study no successful expression of eukaryote Rh cDNAs have been described in prokaryotic cells.

3.1.1 Aim of the study

Aims of this chapter will be divided in two main section based on the results of this project,

A) Aims for generating constructs:

- Map the human RhD external loops (2, 3, 4, and 6) with the corresponding domains in the *NeRh50* protein.
- Generate a recombinant gene composed of *NeRh50* backbone and human RhD external loops (2, 3, 4, and 6) to create; *NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6.*
- Clone these constructs in to a suitable expression vector.
- Produce these constructs in a prokaryotic expression system, which is *E. coli.*
- Confirm the presence of all constructs in the pET vector by enzymatic digestion.

B) Aims for confirming the presence of constructs and their efficiency by testing for proteins expression:

- Confirm the presence of the hybrid recombinant genes at the protein level by detecting their protein expression on the inner *E. coli* membrane.
- Use Several polyclonal and monoclonal antibodies (Table 2.1).
- Use different techniques; Western blot, Flow-cytometry, immunogold staining and Transmission electron microscopy (TEM) (Table 3.2) to assess the presence of the *NeRh50"human RhD external loops in the E. coli membrane.*

So for that, the aim of this project is to generate Rh recombinant antigens by constructing hybrid recombinant *N. europaea-human RH* genes in order to prove that the recombinant RhD proteins can mimic the Rh blood group antigen (D) as a novel approach.
3.2 Constructing \textit{RH} recombinant genes for expression in \textit{E. coli} membrane.

3.2.1 Mapping human RhD 6th external loop

Mapping and alignment of the various 13 Rh homologous proteins shows a high degree of variation between the 6th external loop sequence (Figure 3.1).
Figure 3.1. *Clustal X* alignment of the Transmembrane Domain (TM) (11-12) region of 13 Rh proteins from different species.

The yellow highlighted sequence shows the external loop 6, while the green highlighted AA residues are showing the consensus AA in the Rh protein family homology. This alignment shows that the transmembrane domain (11-12) is highly conserved between the Rh protein family in different species, while loop 6 has different AA sequences between these species.

This alignment shows a massive variation in loop 6 structure between different species, but the 6th loop, which is located between two highly conserved transmembrane domains; 11 and 12. Therefore, this doesn’t necessarily follow but as the TM domains are conserved, we had hoped the replacement of the loop part would not disrupt expression of hybrid Rh protein from NeRh50.
and human RhD loop 6 in *E. coli*.

GenScript Codon Usage Frequency Table (chart) Tool. [online] Available at: http://www.genscript.com/tools/codon-frequency-table [23-06-2019] was used to reverse translate the AA sequence of human RhD external loops; loop 6 [LVLDTVGAGNGM] (Figure 3.2), loop 2 [FPSGKVVIT] (Figure 3.7), loop 3 [NIFNTDYHMNMM] (Figure 3.8) and loop 4 [ALLRSPIERK] (Figure 3.9), back to the most likely nucleotide sequence.

Therefore, minimizing the mutation incidence in the bacteria by using the highest frequency codons, which will make the recombinant protein sequences more likely to be successfully expressed by the *E. coli* (Table 3.1).
The AA sequence of external loop 6 of the human RhD (Figure 3.2) was used to replace the corresponding loop 6 sequence in NeRh50 (Figure 1.13) to generate the predicted NeRh50”6 topology (Figure 3.3).

The loop 6 amino acid sequence was reverse translated to nucleotides by using the *E. coli* codon usage table website, GenScript. (2002-2019). GenScript Codon Usage Frequency Table(chart) Tool. [online] Available at: http://www.genscript.com/tools/codon-frequency-table [23-06-2019].

These nucleotides were added to the NeRh50 backbone. The nucleotide sequence was sent to GenScript Company, USA to synthesis the cDNA of the first construct: hybrid recombinant gene of *N. europaea Rh50* with a human *RhD* external loop 6 (*NeRh50”6*).

```
1  2  3  4  5  6  7  8  9 10 11 12
L  V  L  D  T  V  G  A  G  N  G  M
CTG GTG CTG GAT ACC GTT GGT GCC GGC AAC GGT ATG
```

Figure 3.2. Amino acid sequence of Human RhD external loop 6 and the corresponding nucleotide sequence based on *E. coli* codon usage.

Red numbers on the above show the order of this AA in the 6th loop of human RhD protein sequence. Bottom box shows the reverse translation of this AA sequence back to the nucleotide level based on the *E. coli* codon usage table.
Table 3.1. List of human RhD external loops AA and *E. coli* nucleotide codons of these AA.

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>3-letters Abbreviation</th>
<th>1-Letter Abbreviation</th>
<th>Codon</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
<td>CTG</td>
<td>52.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTA</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTC</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTT</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTG</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TTA</td>
<td>14.3</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>Asp</td>
<td>D</td>
<td>GAT</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAC</td>
<td>19.2</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
<td>ACA</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACG</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACC</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GTT</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GTC</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GTA</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGG</td>
<td>24.4</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
<td>GGT</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGA</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGC</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGG</td>
<td>11.3</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
<td>GCA</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCC</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGC</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCT</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCT</td>
<td>17.1</td>
</tr>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
<td>GCA</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCC</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCG</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GGC</td>
<td>5.9</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asa</td>
<td>N</td>
<td>GAG</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAA</td>
<td>20.6</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
<td>ATG</td>
<td>23.9</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
<td>TAT</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAC</td>
<td>12.2</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
<td>TTC</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCA</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCG</td>
<td>16.0</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
<td>AGA</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AGG</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGT</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGC</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGA</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGG</td>
<td>5.9</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
<td>AGT</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCT</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCC</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCA</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCG</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TGC</td>
<td>8.5</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
<td>CCT</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCC</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCA</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGG</td>
<td>20.9</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
<td>AAT</td>
<td>26.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATA</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATC</td>
<td>6.8</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu</td>
<td>E</td>
<td>GAA</td>
<td>39.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAG</td>
<td>18.7</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
<td>AAA</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AAG</td>
<td>12.4</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
<td>CAT</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAC</td>
<td>9.3</td>
</tr>
</tbody>
</table>

The yellow highlighted codons show the highest frequency and those were used to reverse translate the AA.
This figure depicts the hypothetical membrane orientation of the recombinant NeRh50"6 in which predicted externalized amino acids are numbered. The recombinant protein was derived initially from a cDNA of a wild type NeRh50 combined with a human RhD external loop 6 polypeptide sequence. The predicted extracellular loop of the human RhD amino acids [LVLDTVGAGNGM] are shown as solid circles with a blue single letter amino acid code inside each circle. The yellow arrow point to the external loop 6.
NeRh50′6 hybrid recombinant gene size was 1766 bp and it was inserted in the pUC57 vector (Figure 3.4). Thereafter, pUC57 plasmid-*NeRh50*′6 was transformed into DH5α *E. coli* competent cells.
Figure 3.4. pUC57 vector with the recombinant gene (NeRh50°6) circular sequence map.

Is a circular sequence of the full pUC57 vector with the recombinant gene (NeRh50°6), it shows all the restriction enzymes sites. By CLC Genomics Workbench 12.0 programme.
The sequence in Figure 3.5 was used to map the AD1/ AD2 primers and BamHI and XbaI restriction sites in the pUC57-recombinant gene (NeRh50"6) plasmid sequence. BamHI and XbaI restriction enzymes were used to digest the hybrid recombinant gene NeRh50"6 from the pUC57 vector. The digestion plasmid shows 2 bands (1.7 and 3 kb). The lower band (1.7 kb) is the correct size for our insertion (1766 bp) (Figure 3.6).
Figure 3.5. pUC57 linear vector sequence with the recombinant gene (NeRh5026).

A linear nucleotide sequence of part of the pUC57 vector with the recombinant gene (NeRh50”6). Blue highlighted nucleotides sequence refers to XbaI restriction site. Green highlighted nucleotides sequence refers to Nitrosomonas europaea Rh50. Red nucleotides sequence refers to human RhD loop 6. Red highlighted nucleotides sequence shows BamHI restriction site. Yellow highlighted nucleotides sequence is AD1 forward primer. Purple highlighted nucleotides sequence is an AD2 reverse primer.
Lane numbers (1, 3, and 5) are representing three colonies of transformed pUC57 plasmid with the recombinant gene *NeRh50*"6, (non-cut sample), which is the samples not treated with the *BamHI* and *XbaI* restriction enzymes. Lane numbers (2, 4, and 6) are representing the digested pUC57 plasmid (the cut sample) with restriction enzymes (*BamHI* and *XbaI*) cut the plasmid. Band sizes are 3 kb and 1.7 kb. The lower band (1.7 kb) represents the constructed recombinant gene. Products were run on a 1% (w/v) Agarose gel alongside a DNA marker (M). Shown to the right of the figure are marker sizes in base pairs.

Figure 3.6. *BamHI* and *XbaI* digestion of pUC57-*NeRh50*"6.
After testing \textit{NeRh50}’6, same steps were followed to replace other external loops of the \textit{NeRh50} wild type with human RhD corresponding external loops; human RhD loop 2 (Figure 3.7), human RhD external loop 3 (Figure 3.8), and human RhD external loop 4 (Figure 3.9) were used to replace the corresponding loop in wild type \textit{NeRh50} (Figure 1.13) to generate the other constructs of \textit{NeRh50} wild type backbone with different human RhD external loops topology; \textit{NeRh50}’4, 6 (Figure 3.10), \textit{NeRh50}’3, 4, 6 (Figure 3.11), \textit{NeRh50}’2, 3, 4, 6 (Figure 3.12). \textit{NeRh50}’4, 6, \textit{NeRh50}’3, 4, 6, and \textit{NeRh50}’2, 3, 4, 6 hybrid recombinant genes size were 1275 bp and they arrived inserted in the pUC57 vector from GenScript (Figure 3.13). Thereafter, all the constructs [pUC57 plasmid-\textit{NeRh50}’4, 6 / pUC57 plasmid-\textit{NeRh50}’3, 4, 6 / pUC57 plasmid-\textit{NeRh50}’2, 3, 4, 6] were transformed into \textit{DH5} α E. coli competent cells.
Figure 3.7. Amino acid sequence of Human RhD external loop 2 and the corresponding nucleotide sequence based on *E. coli* codon usage.

Red numbers on the above show the order of this AA in the 2nd loop of human RhD protein sequence. Bottom box shows the reverse translation of this AA sequence back to the nucleotide level based on the *E. coli* codon usage table.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>P</td>
<td>S</td>
<td>G</td>
<td>K</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>T</td>
</tr>
</tbody>
</table>

TTT CGG AGC GGC AAA GTG GTT ATC ACC

Figure 3.8. Amino acid sequence of Human RhD external loop 3 and the corresponding nucleotide sequence based on *E. coli* codon usage.

Red numbers on the above show the order of this AA in the 3rd loop of human RhD protein sequence. Bottom box shows the reverse translation of this AA sequence back to the nucleotide level based on the *E. coli* codon usage table.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>F</td>
<td>N</td>
<td>T</td>
<td>D</td>
<td>Y</td>
<td>H</td>
<td>M</td>
<td>N</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

AAC ATT TTC AAC ACC GAC TAC CAC ATG AAC ATG ATG

Figure 3.9. Amino acid sequence of Human RhD external loop 4 and the corresponding nucleotide sequence based on *E. coli* codon usage.

Red numbers on the above show the order of this AA in the 4th loop of human RhD protein sequence. Bottom box shows the reverse translation of this AA sequence back to the nucleotide level based on the *E. coli* codon usage table.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>S</td>
<td>P</td>
<td>I</td>
<td>E</td>
<td>R</td>
<td>K</td>
</tr>
</tbody>
</table>

GCC CTG CTG CTT AGC CGG ATG GAG CTT AAG
Figure 3.10. Predicted membrane topology and amino acid sequence of NeRh50''4, 6 construct.
This figure depicts the hypothetical membrane orientation of the recombinant NeRh50''4, 6 in which predicted externalized amino acids are numbered. The recombinant protein was derived initially from a cDNA of a wild type NeRh50 combined with a human RhD external loops 4 and 6 polypeptide sequences. The predicted extracellular loops of the human RhD amino acids loop 6 [LVLDTVGAGNGM] / loop 4 [ALLRSPIERK] are shown as solid circles with a blue single letter amino acid code inside each circle. The yellow arrows point to the external loop 4 and loop 6 respectively.
Figure 3.11. Predicted membrane topology and amino acid sequence of NeRh50”3, 4, 6 construct.

This figure depicts the hypothetical membrane orientation of the recombinant NeRh50”3, 4, 6 in which predicted externalized amino acids are numbered. The recombinant protein was derived initially from a cDNA of a wild type NeRh50 combined with a human RhD external loop 3, loops 4 and 6 polypeptide sequences. The predicted extracellular loops of the human RhD amino acids loop 6 [LVLDTVGAG-NGM]/ loop 4 [ALLRSPIERK]/ loop 3 [NIFNTDYHNMNM] are shown as solid circles with a blue single letter amino acid code inside each circle. The yellow arrows point to the external loops 3, 4 and loop 6 respectively.
Figure 3.12. Predicted membrane topology and amino acid sequence of *NeRh50*"2, 3, 4, 6 construct.

This figure depicts the hypothetical membrane orientation of the recombinant *NeRh50*"2, 3, 4, 6 in which predicted externalized amino acids are numbered. The recombinant protein was derived initially from a cDNA of a wild type *NeRh50* combined with a human RhD external loop 3, loops 4 and 6 polypeptide sequences. The predicted extracellular loops of the human RhD amino acids loop 6 [LVLDTV-GAGNGM]/ loop 4 [ALLRSPIERK]/ loop 3 [NIFNTDYHMNMM] and loop 2 [FPSGKVVIT] are shown as solid circles with a blue single letter amino acid code inside each circle. The yellow arrows point to the external loops 2, 3, 4 and loop 6 respectively.
Figure 3.13. pUC57 vector with the recombinant gene (NeRh50”2, 3, 4, 6) circular sequence map.

A circular sequence of the full pUC57 vector with the recombinant gene (NeRh50”2, 3, 4, 6), it shows all the restriction enzymes sites. By CLC Genomics Workbench 12.0 programme.
3.2.2 Purifying DNA

The pUC57 plasmid with NeRh50”6 DNA was purified using Wizard® Plus SV Minipreps DNA Purification System from Promega. The DNA concentration was assessed using NanoDrop 2000 UV-Vis Spectrophotometer (Thermos Scientific, UK).

3.2.3 PCR amplifying the NeRh50”6

The hybrid recombinant gene (NeRh50”6) was amplified using PCR in the presence of AD1 forward and AD2 reverse primers to generate NeRh50”6* (amplicon) with a new restriction site (BamHI/ NdeI) and an amplicon size of 1349 bp. These samples were run on a 1% (w/v) agarose gel to check the size of the recombinant gene NeRh50”6* (Figure 3.14).
Lane numbers (1 / 2) are representing 2 amplicons of the pUC57 plasmid - *NeRh50''6*, which were transformed in *DH5α E. coli*. Using AD1 forward/ AD2 reverse primers formed amplicons; the amplicon size is 1349 bp. Lane number (3) is representing the negative control of the PCR product (nuclease free water). Products were run on a 1% Agarose gel (w/v) alongside DNA markers [M1(1 Kb) and M2(100 bp)]. Shown to the right of the figure are marker sizes in base pairs.
3.3 Expression Vectors

3.3.1 pESV2 expression vector

pESV2 expression vector is the second vector used in this project after pUC57 plasmid because it is useful in downstream techniques to detect the recombinant protein \textit{NeRh50”RhD} human external loops expression on the \textit{E. coli}. pESV2 is an \textit{E. coli} expression vector which was used by Cherif-Zahar \textit{et al.}, 2007, it was used to study the expression of the \textit{NeRh50} protein in \textit{E. coli}.

3.3.1.1 Digestion of pESV2-\textit{NeRh50”6}

Following digestion of the pESV2-\textit{NeRh50”6} plasmid with restriction enzymes \textit{NdeI} and \textit{BamHI} (See 2.2.3.2), the products were run on a 1% (w/v) agarose gel and two bands were seen. The lower band (1.7 kb) represents the digested insertion \textit{NeRh50”6} and the upper band 3 kb represents the pESV2 plasmid (Figure 3.15).
Figure 3.15. *BamHI* / *NdeI* digestion of pESV2- NeRh50®6.

Lane (1) the digested pESV2 plasmid, which shows 2 bands where the 2 restriction enzymes (*BamHI* and *NdeI*) cut the plasmid. Bands size are 3 Kb represent the digested pESV2 plasmid and 1.7 Kb represents the insertion. Lane (2) the non-digested plasmid, which is the untreated sample with the (*BamHI* and *NdeI*) restriction enzymes shows many bands due to the multiple constructing processes that the pESV2 vector has been through (see 2.2.2.3.2). Products were run on a 1% (w/v) agarose gel alongside a DNA marker (M). Shown to the right of the figure are marker sizes in base pairs.
3.3.1.2 Cloning of pESV2-NeRh50”6 Human RHD in DH5α E. coli Competent Cells

Following the ligation of the mixture of purified pESV2 with the purified digested amplicon (NeRh50”6*) with two different ratio (see 2.2.3.4), the product was transformed in DH5α E. coli competent cells. After that, master plate was prepared. PCR screening for single colonies with different ligation ratio were run on a 1% (w/v) agarose gel. The 2:1 ratio (Figure 3.16) (A) showed a single band with high intensity around 1.3 kb in all colonies, which represent the right size of NeRh50”6* in pESV2 expression vector after amplified with AD1 / AD2 primers. The 5:1 ratio (B) showed lower band intensity than 2:1 and in some colonies it showed multiply bands.

The PCR screening was done to check if each colony contained the positive plasmid, which has the correct insertion while the master plate was done to keep a stock from each positive colony for later use.
Figure 3.16. PCR screening of positive pESV2-NeRh50"6* plasmid colonies, which amplified with AD1 / AD2 primers.

Amplicon samples of the single colonies: from the transformation plate of the pESV2 with cDNA (NeRh50"6]) with DH5 α E. coli competent cells with different ligation ratio. A) Lane (1-16) shows amplicon samples of [pESV2 with cDNA (NeRh50"6*)] transformed with DH5 α E. coli competent cells with (2:1) ligation ratio insert: vector. B) Lane (1-17) shows amplicon samples of [pESV2 with cDNA (NeRh50"6*)] transformed with DH5 α E. coli competent cells with (5:1) ligation ratio insert:vector. Products were run on a 1% (w/v) Agarose gel alongside DNA markers (M1 and M2). Shown to the right of figure are marker sizes in base pairs.
3.3.1.3 Sequencing of pESV2 expression vector

pESV2 vector was constructed from pACYC184 and pSU18 vectors and it was combined with sequence from other vectors (Figure 3.18) as described in Javelle et al., 2003.

Figure 3.17. pESV2 vector constructed process.
Javelle et al., 2003
The Snap Gene program was used to produce a pESV0 vector map, which is part of this process of constructing the pESV2. This vector contains the AmtB Shine Dalgarno sequence (5-AGGAGGU-3), which is a (6-8) base sequence located upstream of the start codon of the bacterial mRNA, that has an importance in ribosome alignment for efficient translation. Moreover, other critical sequences were placed in the promoter sequence of the vector to make sure that the vector will work in *E. coli*.

The problem was the unavailability of either the vector map or the sequence of some vectors (provided by Prof Mike Merrick), which were used to construct the pESV2 vector. Therefore, we sequenced one of the original samples from Prof. Merrick’s lab (Figure 3.18) and one of the clones, which has the vector from Prof. Merrick’s lab combined with *NeRh50”6* (Figure 3.19) by next generation sequencing (See 2.2.2.3.7.3). So, a total of 2 samples, were sequenced using Ion PGM™ in one run. The data was then processed, and a summary was produced by the Torrent Suite™ Software Version 4.4 (Figure 3.18 and 3.19).

The total reads produced from the original sample was 460,133, while the total reads from the vector combined with *NeRh50”6* was 397,704. In the first report (Figure 3.18), the Ion Sphere Particle (ISP) loading density was 90%, while 10% of the 314R chip wells were empty. Moreover, in the second report (Figure 3.19), the Ion Sphere Particle (ISP) loading density was 85%, while 15% of the 314R chip wells were empty. A brief sequencing
report of the original sample sequencing run is displayed in Figure 3.18. For downstream analysis, there were around 460,133 usable reads in total, which is 41% of the total reads. These reads were thoroughly processed by well classification and read filtering to ensure their quality. Clonal ISPs (in which single template fragments were amplified) made up 52% of the reads, while 48% were polyclonal ISPs. After filtering out 1% of test fragments and 22% of low-quality reads, the final percentage of the final library was 77% with a mean read length of 180 bp (Figure 3.18). Furthermore, Figure 3.19 shows a brief sequencing report for the sample containing the vector combined with NeRh50”6*. For downstream analysis, there were around 397,704 usable reads in total, which is 37% of the total reads. These reads were thoroughly processed by well classification and read filtering to ensure their quality. Clonal ISPs (in which single template fragments were amplified) was made up 51% of reads, while 49% were polyclonal ISPs. After filtering out 1% of test fragments and 27% of low-quality reads, the final percentage of the final library was 72% with a mean read length of 177 bp (Figure 3.19).

The outcome of the NGS work confirmed that; the original vector from Prof. Merrick’s lab was, pUC57 vector after the sequence were Blasted to vector databases (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) because there were no ref-
reference sequence to compare it with (see appendix A). The sequence from our NGS data (100%) similarity alignment of the nucleotides to the pUC57 vector sequence, provided by GenScript. Moreover, appendix B shows the alignment of the NeRh 50”6* sequence in pESV2 vector provided from Prof. Merrick’s lab to the NeRh50”6 sequence in pUC57 vector, provided by GenScript.
Run Summary

A) The percentage of ISP loading density of the ISP shown by the 314R chip wells was 90%. Different colours represent the loading percentage of ISP through the physical 314R chip plate surface (red is highest; blue is lowest).

B) The total number of usable reads is 460,133, after trimming and filtration from empty wells, non-templated and polyclonal reads. The percentage 41% is obtained by dividing these reads by the number of reads containing the library ISPs (1,138,496). The live/enrichment percentage is 100%, which indicates that ISPs contain a strong sequence signal from test fragment and library (templated).

C) Histogram shows a mean reading length of 180 bp. The read count is displayed in the y-axis, while the read length, in bp, is shown on the x-axis.

Figure 3.18. The report of single sequencing run of the original (pESV2) vector sample library
Run Summary

A) The percentage of ISP loading density of the ISP shown by the 314R chip wells was 85%. Different colours represent the loading percentage of ISP through the physical 314R chip plate surface (red is highest; blue is lowest).

B) The total number of usable reads is 397,704, after trimming and filtration from empty wells, non-templated and polyclonal reads. The percentage 37% is obtained by dividing these reads by the number of reads containing the library ISPs (1,079,309). The live/enrichment percentage is 100%, which indicates that ISPs contain a strong sequence signal from test fragment and library (templated).

C) Histogram shows a mean reading length of 177 bp. The read count is displayed in the y-axis, while the read length, in bp, is shown on the x-axis.

Figure 3.19. The report of single sequencing run of the pESV2- NeRh50°6 sample library
Therefore, due to the sequencing results of the vector provided from Merrick’s lab, which came as a pUC57 vector instead of pESV2 vector, it was no longer used and it was replaced with pET-a9 expression vector, which is widely used for expression work.
3.3.2 pET-a9 expression vector

pET-a9 expression vector (Figure 3.20) is a vector, which carries an N-terminal T7•Tag® sequence and *BamHI* cloning site. It is one of the best system for cloning and expressing recombinant proteins in *E. coli*.

Figure has been removed due to Copyright restrictions.

Figure 3.20. pET-9a expression vector map showing all restriction enzyme sites adapted from Novagen
3.3.2.1 Cloning of pET- \textit{NeRh50}/Human RhD external loops in BL21 (DE3) Chemically Competent Cells

BL21 (DE3) competent cells are chemically competent \textit{E. coli} cells used for high-level protein expression with T7 RNA polymerase-based expression systems, which is a derivative of T7 expression \textit{E. coli} strain.

The mixture of purified digested pET with the purified digested \textit{NeRh50}”human RhD external loops from ligation step (see 2.2.2.3.4) was transformed in BL21 (DE3) \textit{E. coli} chemically competent cells; it was incubated for 16 hours at 37°C. After that, master plate was prepared. Thereafter, an enzymatic digestion with \textit{BamHI} and \textit{XbaI} step was run on each single colony from the master plate to check the positive colony, which has the correct insertion (\textit{NeRh50}”human RhD external loops); \textit{NeRh50}”6 with 1766 bp, \textit{NeRh50}”4, 6 with 1275bp, \textit{NeRh50}”3, 4, 6 with 1275 bp, and \textit{NeRh50}”2, 3, 4, 6 with 1275 bp, as shown in Figure 3.21. Therefore, according to the band size (Figure 3.21) prove that the ligation step was successful and the insertion of \textit{NeRh50}”RHD with different constructs were successfully cloned in pET expression vector.
Figure 3.21. Digested positive colonies of pET vector with the *NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, NeRh50"2, 3, 4, 6* constructs.

Lane (1, 2) non-digested pET- *NeRh50"6* gene and pET- *NeRh50"4, 6* gene respectively, shows band around 5Kb. Lane(3) Digested pET- *NeRh50"4, 6*, which shows 2 bands where the 2 restriction enzymes (*BamHI* and *XbaI*) cut the plasmid. Bands size around 4 Kb and 1275 bp. Lane(4) Digested pET- *NeRh50"6*, which shows 2 bands where the 2 restriction enzymes (*BamHI* and *XbaI*) cut the plasmid. Bands size around 4 Kb and 1766 bp. Lane (5) non-digested pET- *NeRh50"2, 3, 4, 6* gene, shows band around 5Kb. Lane(6-8) Digested pET- *NeRh50"3, 4, 6*, which shows 2 bands where the 2 restriction enzymes (*BamHI* and *XbaI*) cut the plasmid. Lane(9-13) Digested pET- *NeRh50"2, 3, 4, 6*, which shows 2 bands where the 2 restriction enzymes (*BamHI* and *XbaI*). Bands size around 4 Kb and 1275 bp. Products were run on a 1% (w/v) agarose gel alongside a DNA marker (M). Shown to the right of figure are marker sizes in base pairs. Arrows point to the band of interest.
3.3.2.2 Sanger Sequencing of \textit{NeRh50}"human \textit{RhD} external loops
to confirm the presence of the human RhD external loops Sanger
sequencing was used to sequence cDNA clones of each construct:
\textit{NeRh50}"6, \textit{NeRh50}"4, 6, \textit{NeRh50}"3, 4, 6, and \textit{NeRh50}"2, 3, 4,
6, to confirm restriction digestion results (Figure 3.21) using spec-
cific primer sets (Table 2.4). Primers were designed to amplify
the sequences around each human RhD external loops, moreover,
two primer sets to amplify the region before and after the hybrid sequence \textit{NeRh50}" human RhD external loops in the pET expression vector sequence (Figure 3.22). The only
primer sets that worked were the sets around the hybrid gene
in the pET expression vector sequence (Figures 3.23, 3.24, 3.25,
and 3.26), while other primer sets gave unusable sequence or
some of them did not amplify at all (see Appendices C-I for full
alignment of all the constructs against each primer). However,
Sanger sequencing data were aligned against pET- \textit{NeRh50}"2,
3, 4, 6 sequence. F1 forward primer (Figure 3.23) and R1 re-
verse primer (Figure 3.24) which aligned with the sequence be-
fore the hybrid gene by using CLC Genomics Workbench 12.0
programme. Moreover, F7 forward primer (Figure 3.25) and R7
reverse primer (Figure 3.26) were used to amplify the region on
the pET expression vector after the insertion location. The se-
quence data confirmed that we have the pET expression vector
and the cloning process was successful, though the coverage of
these primers (F1, F7, R1, and R7) was not enough to read
entire hybrid recombinant sequence.
Figure 3.22. pET-NeRh50"2,3,4,6 vector map

pET-NeRh50"2,3,4,6 vector map showing all restriction enzyme sites and all primer sets(F1-F7) with green dots, (R1-R7) with red dots. Blue part shows recombinant NeRh50"2,3,4,6 DNA. by SnapGene.
Sanger sequencing data for all constructs: *NeRh50"6, NeRh50"6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6* were aligned by CLC Genomics Workbench 12.0 programme against: F1 forward primer which cover the sequence in the pET expression vector before insertion. Moreover, that were aligned against the reference sequence, which is pET-*NeRh50"2, 3, 4, 6*.

Figure 3.23. Sanger sequencing data with electropherogram of all constructs cDNAs against (F1) forward primer.
Figure 3.24. Sanger sequencing data with electropherogram of all constructs cDNAs against (R1) reverse primer.

Sanger sequencing data for all constructs: NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: R1 reverse primer, which cover the sequence in the pET expression vector before insertion.
Figure 3.25. Sanger sequencing data with electropherogram of all constructs cDNAs against (F7) forward primer.

Sanger sequencing data for all constructs: NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F7 forward primer which cover the sequence in the pET expression vector after insertion.
Figure 3.26. Sanger sequencing data with electropherogram of all constructs cDNAs against (R7) forward primer.

Sanger sequencing data for all constructs: NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: R7 forward primer which cover the sequence in the pET expression vector after insertion.
3.4 Three-Dimensional Protein Model

SWISS-MODEL is a fully automated protein structure homology-modelling server. The purpose of this server is to create protein models (https://swissmodel.expasy.org/). This program was used to create the 3-dimensional protein model for construct; *NeRh50*”2, 3, 4, 6 (Figure 3.30). Moreover, the software tool was used to compare the three-dimensional protein module for the construct to the human RhD wild type protein (Figure 3.28) and *NeRh50* wild type protein (Figure 3.29). The construct was compared to the external loops of the human RhD wild type protein and to the backbone of *NeRh50* wild type protein in order detecting changes in these aspects.

In the *NeRh50*”2, 3, 4, 6 (Figure 3.27) there are light blue circles which are present in the *NeRh50* wild type protein (Figure 3.29) that represent the backbone of the construct. Moreover, the dark blue circles represent human RhD external loop 2, orange circles represent human RhD external loop 3, green represent human RhD external loop 4, and cyan represent human RhD external loop 6 that have the same colour as the external loops in the human RhD wild type (Figure 3.28).
Predicted 3D protein model of *NeRh50*^2, 3, 4, 6. The colour (dark blue light blue green cyan orange red) represents the amino acid sequence. The arrows show the human RhD external loops (2, 3, 4, 6). Dark blue represents human RhD external loop 2, cyan represents human RhD external loop 6. Orange represents human RhD external loop 3, and green represents human RhD external loop 4. Arrows show external loops of the human RhD. By SWISS-MODEL
Predicted 3D protein model of human RhD wild type. The colour: (dark blue light blue green cyan orange red) represents the amino acid sequence. The arrows show the human RhD external loops (2, 3, 4, 6). Dark blue represents human RhD external loop 2, cyan represents human RhD external loop 6. Orange represents human RhD external loop 3, and green represents human RhD external loop 4. Arrows show external loops of the human RhD. By SWISS-MODEL.
Figure 3.29. Predicted 3D protein model of *NeRh50* wild type

By *SWISS-MODEL*
3.5 Confirming the presence of the Rh Recombinant proteins

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Western Blotting</th>
<th>Flow cytometry</th>
<th>TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2D9</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2A4</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>5G9</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BIRMA-D6</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-10</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BIRMA-D10</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KUM-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMA</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>MAD-2</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>BREAD-3</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>1917</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Table 3.2. Anti-D and Anti-NeRh50 antibodies list against different techniques.

List shows Anti-D and Anti-NeRh50 antibodies, which were used in western blot, flow-cytometry and TEM techniques. Asterisk mark used to show each antibody were used.
3.5.1 Western Blot Results

Seven antibodies (Table 2.1, 3.2) were tested against ghost membrane samples with (Rh+, Rh-) phenotypes, and the four different constructs expressed in \textit{E. coli}; \textit{NeRh50}”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6, human RhD30 wild type and \textit{NeRh50} wild type to confirm that these antibodies bind to the human RhD external loops and \textit{N.europaea} external loop 1 and C-terminus by western blot.

3.5.1.1 Comparison of Bacterial Protein Extraction Methods

Two different buffers were used; the lysis buffer and BugBuster master mix protein extraction reagent (see 2.2.4.7.1) to assess which resulted in a higher protein concentration for the samples. Following use of the Qubit assay for protein quantitation of these samples, it was shown that use of BugBuster master mix protein extraction reagent to have a higher protein concentration in the cell lysates (Table 3.3), also easier and faster than the lysis buffer.

Following this comparison, lysis buffer was no longer used and bacterial proteins for samples from all constructs were extracted by BugBuster master mix protein extraction reagent.
<table>
<thead>
<tr>
<th>Sample name</th>
<th>Protein concentration following use of lysis buffer</th>
<th>Protein concentration following use of Bug Buster</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeRh50_6 1 (A)</td>
<td>4.53</td>
<td>7.5</td>
</tr>
<tr>
<td>NeRh50_6 1 (B)</td>
<td>4.35</td>
<td>9.52</td>
</tr>
<tr>
<td>NeRh50_6 3 (A)</td>
<td>7.6</td>
<td>12.5</td>
</tr>
<tr>
<td>NeRh50_6 3 (B)</td>
<td>3.31</td>
<td>5.42</td>
</tr>
<tr>
<td>NeRh50_6 5 (A)</td>
<td>2.33</td>
<td>5.64</td>
</tr>
<tr>
<td>NeRh50_6 5 (B)</td>
<td>1.69</td>
<td>3.23</td>
</tr>
</tbody>
</table>

Table 3.3. Qubit protein quantitation results of three different colonies of pESV2-NeRh50“6
Qubit results of pESV2-NeRh50“6 colonies after lysing them with lysis buffer or Bug Buster protein extraction reagent. Protein concentrations were higher with the Bug-Buster Master Mix than with the lysis buffer. Moreover, A tube (the pellet samples) has shown much higher results than B tubes (supernatant samples) (see 2.2.2.4.7.1)
2.2B9 a monoclonal antibody (see 2.1.1) was used to detect the expression of human RhD external loop 4 in all constructs and control samples. It was raised against a synthetic peptide corresponding to the fourth external domain of the RhD protein (Figure 3.30) (Skinner, Mushens & Avent, unpublished).

NeRh50 wild type, which was used as a negative control for 2.2B9, shows an immunostaining band close to 37 kDa. A ghost membrane sample with an Rh\(^-\) phenotype, was used as a second negative control to 2.2B9, and shows only one faint band around 34 kDa.

On the other hand, a ghost membrane sample with an Rh\(^+\) phenotype, was used as a positive control to this antibody, and shows clear double band around 32-34 kDa. Moreover, human RhD30 wild type sample shows a clear double band around 32-34 kDa similar to the ghost membrane sample with Rh\(^+\) phenotype.

pET*NeRh50* sample, shows only one faint band around 37 kDa compared to other constructs; pET *NeRh50* 4, 6, pET *NeRh50* 3, 4, 6, and pET *NeRh50* 2, 3, 4, 6 all react similarly and show a clear double band around 37-36 kDa.

The lower band, which is the band of interest has a band size approximately 36 kDa (Figure 3.30).
Figure 3.30. Immunostaining of RBC membranes and *E. coli* protein extractions to detect human RhD external loop 4 by using 2.2B9 antibody.

Immunostaining of RBC membranes from different Rh phenotype erythrocytes and *E. coli* protein extractions using 2.2B9. Lane (1) is representing a bacterial recombinant protein extraction of *E. coli* NeRh50"2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extraction of *E. coli* NeRh50"3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extraction of *E. coli* NeRh50"2, 3, 4, 6 construct. Lane (4) is representing a bacterial recombinant protein extraction of *E. coli* NeRh50"6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lane (6) RhD30 wild type. Lane numbers (7) is representing RBC ghost membrane with Rh\(^+\) phenotype. Lane (8) is RBC ghost membrane with Rh\(^-\) phenotype. 10 µg of RBC membrane proteins and 5 µg of *E. coli* protein extractions were used in all samples under reducing conditions. Rh\(^+\) (lane 7) and the wild type human RhD (lane 6) samples show higher density bands of the human RhD external loop 4. Human RhD external loop 4 was observed around 32 kDa as a double bands, while in NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6 samples (lanes 3, 2, 1 respectively), showed a clear double bands around 37 kDa. Furthermore, NeRh50 wild type (lane 5) and NeRh50"6 lane (4) show a similar faint band around 37 kDa. Rh\(^-\) lane(8) shows a one band around 32 kDa. Products were run on a 4-12 % acrylamide gel alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. The primary antibody concentration was 1:6 and the secondary antibody was rabbit anti-mouse. Arrows are pointing to the bands of interest.
3.5.1.3 Detection of human RhD external loop 6 by 2A4 / 5G9 antibodies by western blotting

2A4 / 5G9 are two clones of a culture supernatant monoclonal antibody (see 2.1.1) and were used to detect the expression of human RhD external loop 6 in all constructs and control samples (Figure 3.31 and 3.32).

NeRh50 wild type, which was used as a negative control for both 2A4 and 5G9 antibodies, shows no obvious band. Ghost membrane sample with Rh- phenotype, which was used as a second negative control, shows no band.

On the other hand, ghost membrane sample with Rh+ phenotype, which was used as a positive control for this antibody, shows a faint band around 32 kDa.

Moreover, all constructs; pETNeRh50"6 sample, pET NeRh50"4, 6, pET NeRh50"3, 4, 6, and pET NeRh50"2, 3, 4, 6, react similar and show a clear band around 37 kDa (Figure 3.31 and 3.32).
Figure 3.31. Immunostaining of RBC membranes and *E. coli* protein extractions to detect human RhD external loop 6 by using 2A4 antibody.

Immunostaining of RBC membranes from different Rh phenotype erythrocytes and *E. coli* protein extractions using 2A4. Lane (1) is representing a bacterial recombinant protein extraction of *E. coli* NeRh50"2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50"3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50"4, 6 construct. Lane (4) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50"6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lanes (6), (7) is representing RBC ghost membrane with Rh\(^+\) phenotype and RBC ghost membrane with Rh\(^-\) phenotype respectively. 10 \(\mu\)g of RBC membrane proteins and 5 \(\mu\)g of *E. coli* protein extractions were used in all samples under reducing conditions. Rh\(^+\) lane (6) shows a faint band for the human RhD external loop 6. Human RhD external loop 6 was observed around 32 kDa as single band, while in NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6 samples (lanes 4, 3, 2, 1 respectively), showed a clear band around 37 kDa. Furthermore, NeRh50 wild type lane (5) showed no band. Rh\(^-\) lane (7) shows a no band. Products were run on a 4-12 % acrylamide gel alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. The primary antibody concentration was 1:10 and the secondary antibody was rabbit anti-mouse. Arrows are pointing to the interested bands.
Immunostaining of RBC membranes from different Rh phenotype erythrocytes and *E. coli* protein extractions using 5G9. Lane (1) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”4, 6 construct. Lane (4) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lanes (6), (7) is representing RBC ghost membrane with Rh+ phenotype and RBC ghost membrane with Rh- phenotype respectively. 10 µg of RBC membrane proteins and 5 µg of *E. coli* protein extractions were used in all samples under reducing conditions. Rh+ lane (6) shows a faint band for the human RhD external loop 6. Human RhD external loop 6 was observed around 32 kDa as a single band, while in NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 samples (lane 4, 3, 2, 1 respectively), showed a fade band around 37 kDa. Furthermore, NeRh50 wild type lane (5) shows no band. Rh- lane (7) shows no band. Products were run on a 4-12 % acrylamide gel alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. The primary antibody concentration was 1:10 and the secondary antibody was rabbit anti-mouse. Arrows are pointing to the interested bands.

<table>
<thead>
<tr>
<th>Lane</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NeRh50”2, 3, 4, 6</td>
</tr>
<tr>
<td>2</td>
<td>NeRh50”3, 4, 6</td>
</tr>
<tr>
<td>3</td>
<td>NeRh50”4, 6</td>
</tr>
<tr>
<td>4</td>
<td>NeRh50”6</td>
</tr>
<tr>
<td>5</td>
<td>Wild NeRh50</td>
</tr>
<tr>
<td>6</td>
<td>Ghost sample Rh+</td>
</tr>
<tr>
<td>7</td>
<td>Ghost sample Rh-</td>
</tr>
<tr>
<td>M</td>
<td>Marker</td>
</tr>
</tbody>
</table>

![Image of gel with bands](image-url)

Figure 3.32. Immunostaining of RBC membranes and *E. coli* protein extractions to detect human RhD external loop 6 by using 5G9 antibody.
3.5.1.4 Detection of human RhD external loops 4, 6 by BIRMA-D6 antibody by western blotting:

BIRMA-D6 is a purified monoclonal antibody (see 2.1.1), which was used to detect the expression of human RhD external loops 4, 6 in all constructs and control samples (Figure 3.33).

NeRh50 wild type, which was used as a negative control for BIRMA-D6, it shows no band. Ghost membrane sample with Rh⁻ phenotype, which was used as a second negative control for BIRMA-D6, shows no obvious band.

On the other hand, ghost membrane sample with Rh⁺ phenotype, which was used as a positive control to this antibody, shows a clear band around 32 kDa.

Furthermore, all constructs; pET*NeRh50”6*, pET *NeRh50”4, 6*, pET *NeRh50”3, 4, 6*, and pET *NeRh50”2, 3, 4, 6*, react similar and show a band around 37 kDa (Figure 3.33).
Immunostaining of RBC membranes from different Rh phenotypes erythrocytes and *E. coli* protein extractions using BIRMA-D6. Lane (1) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”4, 6 construct. Lane (4) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lanes (6), (7) is representing RBC ghost membrane with Rh$^+$ phenotype and RBC ghost membrane with Rh$^-$ phenotype respectively. 10 µg of RBC membrane proteins and 5 µg of *E. coli* protein extractions were used in all samples under reducing conditions. Rh$^+$ lane (6) shows a clear band for the human RhD external loop 6. Human RhD external loops 4, 6 were observed around 32 kDa as single band, while in NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 samples (lanes 4, 3, 2, 1 respectively), showed a clear band around 37 kDa. Furthermore, NeRh50 wild type lane (5) showed no band at the same size. Rh$^-$ lane (7) shows a no band. Products were run on a 4-12 % acrylamide gel alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. The primary antibody concentration was 1:2500 and the secondary antibody was goat anti-human. Arrows are pointing to the band of interest.
3.5.1.5 Detection of human RhD external loops 3, 4, 6 by MS-26 antibody by western blotting:

MS-26 is a culture supernatant monoclonal antibody (see 2.1.1) was used to detect the expression of human RhD external loops 3, 4, 6 in all constructs and control samples (Figure 3.34).

It was raised against a synthetic peptide corresponding to EpD23 of the RhD protein (Scott, 1996).

NeRh50 wild type, which was used as a negative control for MS-26, shows no band. Ghost membrane sample with Rh− phenotype, which was used as a second negative control to MS-26, shows no obvious band, reflecting that this MAb may recognise a conformation-dependent antibody, not detectable by western blotting. On the other hand, ghost membrane sample with Rh+ phenotype, and all constructs; pET*NeRh50”6*, pET *NeRh50”4*, 6, pET *NeRh50”3*, 4, 6, and pET *NeRh50”2*, 3, 4, 6, show no band at any size (Figure 3.34).
Figure 3.34. Immunostaining of RBC membranes and *E. coli* protein extractions to detect human RhD external loops 3, 4, 6 by using MS-26 antibody.

Immunostaining of RBC membranes from different Rh phenotypes erythrocytes and *E. coli* protein extractions using MS-26. Lane (1) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”4, 6 construct. Lane (4) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lanes (6), (7) is representing RBC ghost membrane with Rh⁺ phenotype and RBC ghost membrane with Rh⁻ phenotype respectively. Products were run on a 4-12 % acrylamide gel percentage alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. 10 µg of RBC membrane proteins and 5 µg of *E. coli* protein extractions were used in all samples under reducing conditions. All controls and constructs were shown no obvious bands. The primary antibody concentration was 1:2500 and the secondary antibody was Rabbit anti-mouse.
3.5.1.6 Detection of NeRh50 external loop 1 and C-terminus by 1918 antibody by western blotting:

1918 is a purified polyclonal antibody (see 2.1.1) was used to detect the expression of NeRh50 external loop 1 and C-terminus in all constructs and control samples. It was raised against a synthetic peptide corresponding to the first external loop and C-terminus domains of the NeRh50 protein (Figure 3.35). Ghost membrane samples with Rh$^{-}$ and Rh$^{+}$ phenotypes, which were used as a negative control to 1918 antibody, shows no obvious band.

By contrast, NeRh50 wild type, which used as a positive control to this antibody, shows a clear band around 37 kDa. Furthermore, all constructs; pETNeRh50"6, pET NeRh50"4, 6, pET NeRh50"3, 4, 6, and pET NeRh50"2, 3, 4, 6, react similar to the positive control NeRh50 wild type and show a band around 37 kDa (Figure 3.35).
Immunostaining of RBC membranes from different Rh phenotypes erythrocytes and *E. coli* protein extractions using 1918.

Lane (1) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”2, 3, 4, 6 construct. Lane (2) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”3, 4, 6 construct. Lane (3) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”4, 6 construct. Lane (4) is representing a bacterial recombinant protein extractions of *E. coli* NeRh50”6 construct. Lane (5) *E. coli* protein extractions for NeRh50 wild type. Lanes (6), (7) is representing RBC ghost membrane with Rh+ phenotype and RBC ghost membrane with Rh− phenotype respectively. 10 μg of RBC membrane proteins and 5 μg of *E. coli* protein extractions were used in all samples under reducing conditions. Rh+, Rh− lanes (6, 7) shows no band. NeRh50 external loop 1 and C-terminus were observed around 37 kDa as single band as appear in; NeRh50 wild type NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 samples (lanes 5, 4, 3, 2, 1 respectively), showed a clear band around 37 kDa. Products were run on a 4-12 % acrylamide gel percentage alongside a protein marker (M). Shown to the right of the figure are marker sizes in kDa. The primary antibody concentration was 1:2500 and the secondary antibody was swine anti-rabbit. Arrows are pointing to the band of interest.
3.5.1.7 Detection of NeRh50 external loop 1 by 1917 antibody by western blotting:

1917 is a purified monoclonal antibody (see 2.1.1) was used to detect the expression of NeRh50 external loop 1 in all constructs and control samples. It was raised against a synthetic peptide corresponding to the first external domains of the NeRh50 protein (Figure 3.36).

Ghost membrane samples with Rh⁻ and Rh⁺ phenotypes, which were used as a negative control to 1918 antibody, shows no obvious band.

By contrast, NeRh50 wild type, which used as a positive control for this antibody, shows a clear band around 37 kDa. Furthermore, all constructs; pETNeRh50”6, pET NeRh50”4, 6, pET NeRh50”3, 4, 6, and pET NeRh50”2, 3, 4, 6, react similar to the positive control NeRh50 wild type and show a band around 37 kDa (Figure 3.36). 1917 blots with wild type NeRh50/NeRh50”6/ NeRh50”4, 6/ NeRh50”3, 4, 6 / NeRh50”2, 3, 4, 6, samples, which showed a clear band around 37 kDa compared to Rh⁺, wild type human RhD samples and Rh⁻ sample, which shows nothing around the same size.
Figure 3.36. Immunostaining of RBC membranes and *E. coli* protein extraction using 1917.

Immunostaining of RBC membranes from different Rh phenotypes erythrocytes and *E. coli* protein extractions using 1917. Lane numbers (1-4) are *E. coli* protein extraction for constructs (NeRh50”2, 3, 4, 6 NeRh50”3, 4, 6/ NeRh50”4, 6 /NeRh50”6), lane(5) *E. coli* protein extraction for wild type NeRh50, which shows no band. Lane numbers (6, 7) are representing RBC membranes for Rh+, Rh− respectively. 10 µg of RBC membrane proteins and 5 µg of *E. coli* protein extractions were used in all samples under reducing conditions. Rh+, Rh− lanes (6, 7) shows no band. *NeRh50* external loop 1 and C-terminus were observed around 37 kDa as single band as appear in; *NeRh50* wild type *NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and *NeRh50”2, 3, 4, 6* samples (lanes 5, 4, 3, 2, 1 respectively), showed a clear band around 37 kDa. Products were run on an acrylamide gel 4-12% alongside a protein marker (M). Shown to the right of the figure are maker sizes in kDa. The primary antibody concentration was 1:2500 and the secondary antibody was rabbit anti-mouse. Arrows are pointing to the band of interest.
3.5.2 Flow cytometry Results

Flow cytometry was completed using a total of 11 different monoclonal anti-D and anti-NeRh50 antibodies shown in Table 2.1 and using the methods outlined (See 2.2.2.4.9) to analyse the different expression patterns of D epitopes and NeRh50 loop 1, C-terminus. These antibodies were used in conjunction with a FITC assay and a FACS ARIA II Flow cytometer/Cell Sorter device were used. Four different constructs; pETNeRh50”6, pET NeRh50”4, 6, pET NeRh50”3, 4, 6, pET NeRh50”2, 3, 4, 6, RhD30 wild type and NeRh50 wild type clones were transformed into BL21 (DE3) E. coli competent cells (see 2.2.2.4.4). Two types of negative control were used: non stained samples and samples used with secondary FITC-conjugated antibodies (See 2.2.2.4.9.2). Moreover, negative controls were used to assess the background fluorescence by comparing these reads to the reads from the samples treated with primary and secondary antibodies. Mean fluorescence intensity was used to measure the antibody binding. Table 3.4 shows average mean fluorescence intensity (MFI) values of screening the four different constructs; pETNeRh50”6, pET NeRh50”4, 6, pET NeRh50”3, 4, 6, pET NeRh50”2, 3, 4, 6, RhD30 wild type, and NeRh50 wild type. Distinct patterns of reactivity were observed, ranging from the complete absence of D epitope expression in the case of NeRh50 wild type sample to weak and strong reaction of constructs and RhD30 wild type to anti-D (Figure 3.39, 3.40, 3.41).
Human RhD30 wild type showed the highest expression when using the BRAD-3 monoclonal anti-D while shows low expression when it reacts with 1918, which is anti-NeRh50. In contrast, NeRh50 wild type sample showed the highest read with 1918 and lowest expression with HAM-A, which is a monoclonal anti-D EpD 11 (Scott, 1996).

Anti-NeRh50 1918 has the highest expression with NeRh50”4, 6 construct while it has the lowest expression with NeRh50”2, 3, 4, 6 construct.

Anti-D 2.2B9 shows the highest expression with NeRh50”2, 3, 4, 6 construct, however, it shows the lowest read with NeRh50”6. NeRh50”3, 4, 6 construct shows the lowest expression with all anti-D antibodies, while it shows moderate expression with anti-NeRh50 1918.

Figures 3.37 and 3.38 illustrate the mean Fluorescence intensity (MFI) values by three dimensional chart for anti-D antibodies against constructs of a recombinant protein NeRh50_human RhD external loops, RhD30 wild type and NeRh50 wild type. Moreover, comparing their reads to un-stained samples and samples treated with secondary antibodies only. In these charts the variation of the reaction of anti-D and anti-NeRh50 against control samples and constructs appear as different bar length.
<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Anti-EpD1-37</th>
<th>RhD30</th>
<th>NeRh50</th>
<th>NeRh50 6</th>
<th>NeRh50 4, 6</th>
<th>NeRh50 3, 4, 6</th>
<th>NeRh50 2, 3, 4, 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2B9</td>
<td>155</td>
<td>25</td>
<td>9</td>
<td>504</td>
<td>129</td>
<td>773</td>
<td></td>
</tr>
<tr>
<td>MS-26</td>
<td>EpD 23</td>
<td>627</td>
<td>67</td>
<td>224</td>
<td>353</td>
<td>103</td>
<td>1049</td>
</tr>
<tr>
<td>2A4</td>
<td>161</td>
<td>39</td>
<td>129</td>
<td>343</td>
<td>26</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>5G9</td>
<td>51</td>
<td>13</td>
<td>90</td>
<td>705</td>
<td>70</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>BIRMA-D6</td>
<td>EpD 23</td>
<td>1358</td>
<td>163</td>
<td>1683</td>
<td>613</td>
<td>388</td>
<td>1052</td>
</tr>
<tr>
<td>BIRMA-D10</td>
<td>EpD 8</td>
<td>569</td>
<td>15</td>
<td>580</td>
<td>81</td>
<td>73</td>
<td>873</td>
</tr>
<tr>
<td>BRAD-3</td>
<td>EpD 13</td>
<td>3668</td>
<td>15</td>
<td>2338</td>
<td>1552</td>
<td>935</td>
<td>1378</td>
</tr>
<tr>
<td>RUM-1</td>
<td>EpD 6/7</td>
<td>253</td>
<td>15</td>
<td>870</td>
<td>1554</td>
<td>94</td>
<td>696</td>
</tr>
<tr>
<td>HAM-A</td>
<td>EpD 11/5</td>
<td>476</td>
<td>4</td>
<td>621</td>
<td>879</td>
<td>199</td>
<td>845</td>
</tr>
<tr>
<td>MAD-2</td>
<td>EpD 19</td>
<td>547</td>
<td>10</td>
<td>317</td>
<td>697</td>
<td>35</td>
<td>860</td>
</tr>
<tr>
<td>1918</td>
<td>60</td>
<td>428</td>
<td>478</td>
<td>933</td>
<td>903</td>
<td>463</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4. Flow Cytometric Analysis of wild type RhD, wild type NeRh50 and 4 different constructs using Monoclonal Anti-D and Anti-NeRh50.

Table shows the average of triplicate mean fluorescence intensity (MFI) values of NeRh50/human RhD external loop constructs, RhD30 and NeRh50 wild type. The epitope specificity of each anti-D is shown using the 1-37 model (Scott, 1996).
Mean Value of 2.2B9 against human RhD external loop 4

Mean Value of 2A4 against human RhD external loop 6

Mean Value of 5G9 against human RhD external loop 6

Mean Value of BIRMA-D6 against human RhD external loops 4, 6

Mean Value of MS-26 against human RhD external loop 3, 4, 6

Mean Value of BIRMA-D10 against human RhD external loops 3, 4, 6
Figure 3.37. MFI values of several Anti-D against various NeRh50/human RhD external loop constructs

3-D clustered column chart shows the average reads of mean FITC Fluorescence value for different Anti-D (2.2B9, MS-26, 2A4, BIRMA-D6, 5G9, BRAD-3, HAM-A, RUM-1, BIRMA-D10, and MAD-2) against un stain E. coli cells work as a negative control. E. coli cells treated with only secondary-FITC conjugated antibody as a negative control. E. coli cell contain RhD30 wild type as a positive control. E. coli cell contain NeRh50 wild type as a negative control. compared to all Recombinant constructs E. coli cell contain; NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, NeRh50”2, 3, 4, 6.
Figure 3.38. MFI values of Anti-NeRh50 (1918) against various NeRh50/human RhD external loop constructs.

3-D clustered column chart shows the average reads of mean FITC Fluorescence value for of Anti-NeRh50 (1918) against un stain E. coli cells work as a negative control. E. coli cells treated with only secondary-FITC conjugated antibody as a negative control. E. coli cell contain RhD30 wild type as a negative control. E. coli cell contain NeRh50 wild type as a positive control. compared to all Recombinant constructs E. coli cell contain NeRh50^6, NeRh50^4, 6, NeRh50^3, 4, 6, NeRh50^2, 3, 4, 6.
Figure 3.39. FITC fluorescence histogram of NeRh50”human RhD external loops with Anti-D BIRMA-D10 (EpD8).
FITC fluorescence histogram of NeRh50”human RhD external loops in E. coli using Anti-D BIRMA-D10. A) Un-stain E. coli cells work as a negative control. B) E. coli cells work as a negative control by using only secondary antibody. C) E. coli contain NeRh50 wild type work as a negative control with Anti-D BIRMA-D10. D) E. coli contains RhD30 wild type work as a positive control with Anti-D BIRMA-D10. E) E. coli contain NeRh50”6. F) E. coli contains NeRh50”4, 6. G) E. coli contains NeRh50”3, 4, 6. H) E. coli contains NeRh50”2, 3, 4, 6.
FITC fluorescence histogram of NeRh50 human RhD external loops in *E. coli* using Anti-D RUM-1 (EpD 6/7)

FITC fluorescence histogram of NeRh50 human RhD external loops in *E. coli* using Anti-D RUM-1. A) Un-stain *E. coli* cells work as a negative control. B) *E. coli* cells work as a negative control by using only secondary antibody. C) *E. coli* contains NeRh50 wild type work as a negative control with Anti-D RUM-1. D) *E. coli* contains RhD30 wild type work as a positive control with Anti-D RUM-1. E) *E. coli* contains NeRh50*°*6. F) *E. coli* contains NeRh50*°*4, 6. G) *E. coli* contains NeRh50*°*3, 4, 6. H) *E. coli* contains NeRh50*°*2, 3, 4, 6.
FITC fluorescence histogram of NeRh50 human RhD external loops with Anti-D MAD-2 (EpD 19)

FITC fluorescence histogram of NeRh50 human RhD external loops in E. coli using Anti-D MAD-2. A) Un-stain E. coli cells work as a negative control. B) E. coli cells work as a negative control by using only secondary antibody. C) E. coli contain NeRh50 wild type work as a negative control with Anti-D MAD-2. D) E. coli contain RhD30 wild type work as a positive control with Anti-D MAD-2. E) E. coli contain NeRh50”6. F) E. coli contains NeRh50”4, 6. G) E. coli contains NeRh50”3, 4, 6. H) E. coli contains NeRh50”2, 3, 4, 6.
3.5.3 Transmission Electron Microscopy Results

Immuno-gold staining was also used to confirm the presence of the recombinant \(RHD \) gene in different constructs; pET\(NeRh50^{16} \), pET \(NeRh50^{14, 6} \), pET \(NeRh50^{3, 4, 6} \), and pET \(NeRh50^{2, 3, 4, 6} \), by detecting the expression of RhD on the \(E. coli \) membrane by using anti-D 2.2B9 against loop 4 and 2A4 against loop 6. Anti-\(NeRh50 \) 1918 against loop 1 and C-terminus was used to detect wild type \(NeRh50 \) protein. Furthermore, an anti \(E. coli \) antibody was used as a positive control. TEM was used to visualize and image the 10 nm (colloidal gold) trace, which was conjugated to the secondary antibodies.

There was a significant change in the level of expression between the antibodies; 2.2B9, which should detect human RhD external loop 4 showed no binding in \(NeRh50^{16} \) construct similar to the negative control image. While, 2.2B9 works with other constructs pET \(NeRh50^{14, 6} \), pET \(NeRh50^{3, 4, 6} \), and pET \(NeRh50^{2, 3, 4, 6} \) indicate the presence of human RhD external loop 4 in these constructs. pET \(NeRh50^{2, 3, 4, 6} \) construct shows the highest expression level for human RhD external loop 4, which appear as black dots of gold trace (Figure 3.42).

2A4, which is able to detect human RhD external loop 6 showed a high expression level in all constructs. Moreover, the \(E. coli \) protein showed high expression with anti- \(E. coli \) antibody in pET \(NeRh50 \) wild type sample, which was used as a positive control (Figure 3.43).
Figure 3.44, all constructs reacted at a moderate level with anti-
NeRh50 1918, which detects NeRh50 external loop 1 and C-
terminus. NeRh50”6 shows the lowest level of the expression
for NeRh50 external loop1 and C-terminus compared to other
constructs.

2.2B9 (Figure 3.42) shows low levels of expression for human
RhD external loop 4 compared to 2A4 for human RhD exter-
nal loop 6 (Figure 3.43), which consistently demonstrated high
levels of expression across all constructs. 1918 demonstrated a
lower level of binding than 2A4 but more than 2.2B9 (Figure
3.44).
Figure 3.42. Transmission electron micrograph for a thin layer of *E. coli* contains recombinant *NeRh50”RhD* by using anti-D loop 4 2.2B9.

TEM images of *E. coli* cells contain different constructs of *NeRh50”* human RhD external loops. Black dots are representing gold trace, which conjugated to the secondary antibody to show the protein presence in the *E. coli* membrane. A) *E. coli* cells work as a negative control by using only secondary antibody, which show no dots. B) *E. coli* contain *NeRh50* wild type with Anti.*E. coli*, which work as a positive control, it shows many black dots with different intensity. C) *E. coli* contains *NeRh50”*6, which shows no gold trace. D) *E. coli* contain *NeRh50”*4, 6, which shows gold trace. E) *E. coli* contain *NeRh50”*3, 4, 6. F) *E. coli* contain *NeRh50”*2, 3, 4, 6, which shows gold trace.
Figure 3.43. Transmission electron micrograph for a thin layer of *E. coli* contains recombinant *NeRh50*RhD by using anti-D loop 6 2A4. TEM images of *E. coli* cells contain different constructs of *NeRh50*”human RhD external loops. Black dots are representing gold trace, which conjugated to the secondary antibody to show the protein presence in the *E. coli* membrane. A) *E. coli* cells work as a negative control by using only secondary antibody, which show no dots. B) *E. coli* contain *NeRh50* wild type with Anti. *E. coli* work as a positive control, which shows many black dots with different intensity. C) *E. coli* contain *NeRh50*”6, which shows gold trace. D) *E. coli* contain *NeRh50*”4, 6, which shows gold trace. E) *E. coli* contain *NeRh50*”3, 4, 6. F) *E. coli* contain *NeRh50*”2, 3, 4, 6, which shows gold trace.
Figure 3.44. Transmission electron micrograph for a thin layer of *E. coli* contains recombinant NeRh50”RhD by using anti-NeRh50 loop 1 and C-terminus 1918.

TEM images of *E. coli* cells contain different constructs of NeRh50” human RhD external loops. Black dots are representing gold trace, which conjugated to the secondary antibody to show the protein presence in the *E. coli* membrane. A) *E. coli* cells work as a negative control by using only secondary antibody, which show no dots. B) *E. coli* contain NeRh50 wild type with Anti.*E. coli* work as a positive control, which shows many black dots with different intensity. C) *E. coli* contain NeRh50” 6, which shows gold trace. D) *E. coli* contain NeRh50” 4, 6, which shows gold trace. E) *E. coli* contain NeRh50” 3, 4, 6. F) *E. coli* contain NeRh50” 2, 3, 4, 6, which shows gold trace.
3.6 Discussion

3.6.1 Generating constructs

This chapter starts with describing the generation of different constructs based on the $NeRh50$ wild type sequence as a backbone and adding the human RhD external loops to create; $NeRh50”6$, $NeRh50”4, 6$, $NeRh50”3, 4, 6$, and $NeRh50”2, 3, 4, 6$.

The *E. coli* codon usage table was used to reverse translate the human RhD external loops to increase the chance of production of the recombinant proteins in *E. coli* and expression in the *E. coli* membrane. The codon usage in humans differs to the codon usage in *E. coli* and if human codon usage had been used it ran the risk of the recombinant proteins not being produced.

Due to the lack of vector map for the pESV2 expression vector provided by Prof Merrick’s lab, NGS was used to sequence the vector and plasmid constructs. The results showed that the pESV2 vector was not a pESV2 vector and hence the expression vector for the constructs was changed to be pET-9a.

Following enzymatic digestion with *BamHI* and *XbaI* for the recombinant constructs pET-$NeRh50”$ human RhD external loops (Figure 3.21), the band sizes of the inserts were correct and hence the correct constructs have been cloned; plasmid (pET expression vector) with a band size around 3 kb and the constructs in each plasmid; $NeRh50”6$ 1766 bp, $NeRh50”4, 6$ 1275
Moreover, Sanger sequencing data for the same colonies confirmed that the vector is, pET expression vector as expected by amplifying areas around the insertion; F1 forward primer (Figure 3.23), R1 reverse primer (Figure 3.24) to cover the region before the hybrid constructs and the alignment shows similarity between all constructs. Furthermore, F7 forward primer (Figure 3.25) and R7 reverse primer (Figure 3.26) were cover the region in the pET vector after the hybrid sequence. Although other primer sets shown in Table 2.4 were not able to amplify the interested region within the hybrid recombinant sequence (Appendix C-I).

This project was based on the successful result of SDM work by (Liu et al., 1999 a, b). They were able to express RHCE-RHD recombinant; the construct was based on RHCE as backbone and replacing its third, fourth and sixth external loop with the human RHD corresponding external loops. D epitopes successfully resulted from utilising the human RHCE backbone with the addition of human RHD external loops 3, 4 and 6. So, a simple change in the backbone lead to produce D-epitopes, which may prove that human RHD external predicted domains are responsible for the production of D-epitopes. As described above synthetic construction of NeRh50-human RhD external loops; pETNeRh50”6, pET NeRh50”4, 6, pET NeRh50”3, 4, 6, and pET NeRh50”2, 3, 4, 6 has been successfully cloned in to
the pET expression vector. In the next part, the expression of the recombinant proteins were confirmed using specific antibodies (Table 2.1) (Table 3.2), western blotting, Flow cytometry, and TEM.
3.6.2 Confirming the presence of constructs by testing for proteins expression

The principle of identifying blood group specific antibodies in human sera by using their soluble antigens was successfully established for several blood groups such as; ABO, Lewis, P and I (Spitalnik et al., 1983; Cowles & Blumberg, 1987; Daniels, 2002).

Recombinant proteins were successfully reported to express on cell membranes or as a soluble form and to exhibit blood-group-specific antigen activity. In 2007, there was a successful study by Ridgwell et al., on the activity of the soluble recombinant proteins with Kell, Duffy and Lutheran blood group antigens. Moreover, Knops, Cromer, Chido/Rodgers, Indian and JMH systems were shown to be antigenically active by haemagglutination inhibition (Williams et al., 1981; Telen et al., 1994; Moulds & Rowe, 1996; Daniels, 2002)

In spite of the clinical significance of the Rh antigens, no studies have been published describing successful production of recombinant antigens for it, due to the highly conformation-dependent structure of the human Rh antigens which make it is difficult to construct the recombinant Rh antigen for the Rh protein in vitro.

The recombinant RhD may be helpful to further investigate the molecular basis and function of human RhD protein and could be applicable for screening anti-D in patient serum. It may also
form the technical platform to express all Rh system antigens including uncommon variants to be capable of detecting these antibodies in patient serum.

Based on the successful result of SDM work on expressing the recombinant RhCE in the K562 cell line, constructing the recombinant RHCE gene by replacing the human RhCE external loops (3, 4, and 6) with the corresponding, human RhD external loops (3, 4, and 6) sequences to construct a recombinant form of Rh protein, which has a backbone of RhCE and external loops from human RhD by Liu et al., (1999 a, b) we have chosen the external loops (3, 4, and 6) of the human RhD protein to study. Furthermore, choosing the E. coli bacterial membrane to be the host of this experiment is because of the ease to grow it in the laboratory. Additionally, the topology similarities between the 12 membrane domains of the N. europaea Rh50 like protein (Figure 1.13) and the human Rh protein was the main reason for using this construct in this project to discover new information about Rh protein structures, and their antigens, unlike the E. coli AmtB protein (Figure 1.11), which has only 11 membrane domains. Thus, the NeRh50 like protein could be used as a template to express human Rh epitopes on the extracellular surface of E. coli. Rather than express the hybrid constructs in N. europaea they were expressed in E. coli for ease of use (Cherif-Zahar et al., 2007).

In this study NeRh50 was used as a backbone combined with
human \(RHD \) external loops to create recombinant constructs in order to produce D-epitopes. This is a fundamental difference compared to the work of Liu et al., (1999). Hence by using \(NeRh50 \) rather than RhCE as in Liu et al., (1999), we can determine how the recombinant protein gives rise to the D epitopes. The assembly and expression of the \(NeRh50 \) protein on the membrane does not require RHAG.

Furthermore, Liu et al., (1999) work was based on expressing the recombinant construct \(RHCE-RHD \) in the K562 cell line, which is a human myelogenous leukaemia cell line, so, in that study they worked with cell lines naturally expressing RhAG and that is another fundamental change because this study is based on using \(E. coli \), which have AmtB protein instead, to detect the expression of the recombinant gene \(NeRH50''RHD \) using specific Anti-D (Table 2.1). The advantage of using prokaryotic system (\(E. coli \)) over the eukaryotic system (K562 cell line) is, to express D-epitopes in system lacking of RHAG inorder to study the chance of being able to produce D-epitopes without the presence of this gene.

3.6.2.1 Western blot results

As part of this project, a custom antibody against human RhD external loop 6 (2A4/ 5G9) was produced from Dundee Cell Products. Moreover, confirming the presence of the recombinant gene \(NeRh50'' \)human RhD external loop 6 by detecting
the RhD external loop 6 protein expression on the *E. coli* membrane in; pET NeRh50”6, pET NeRh50”4, 6, pET NeRh50”3, 4, 6, and pET NeRh50”2, 3, 4, 6, constructs using the western-blot technique (Figure 3.31) (Figure 3.32).

Ghost membrane Rh⁺, Rh⁻ phenotypes, which were used as a control samples, they were not showing a direct reactivity with the peptides monoclonal anti-D loop 6 and to cover this issue, these samples were treated with the bromelain (Avent *et al.*, 1992) before run on the acrylamide gel to digest the external loop 6 and open it, which be easier to detect (see 2.2.2.4.7.2).

Moreover, (2A4 and 5G9) anti-D which are able to detect the human RhD external loop 6, was expressed in all recombinant constructs as all constructs has the human RhD external loop 6 (Figure 3.31) (Figure 3.32).

Ghost membrane Rh⁺ phenotype was showed a faint single band around 32 kDa, while all recombinant constructs showed a single band around 37 kDa. Ghost membrane Rh⁻ phenotype and NeRh50 wild type showed no band as expected due to the absence of the human RhD external loop 6.

Different band intensity between 2A4 and 5G9 shows that, 2A4 is a more effective clone of this anti-RhD loop 6 antibody than 5G9 and it is able to detect a higher expression of the human RhD external loop 6 in the ghost membrane Rh⁺ phenotype and in all constructs.
Anti-D loop 4 (2.2B9) was used to confirm the presence of the human RhD external fourth loop in recombinant constructs and control samples. It shows double bands with the positive samples: the upper band is a background band and it does not relate to RhD. The lower band, the band of interest, has a size approximately 32 kDa in ghost membrane Rh\(^+\) phenotype and the RhD30 wild type samples, while it has a size of 36 kDa in constructs samples (Figure 3.30). Furthermore, ghost membrane Rh\(^-\) phenotype showed a single band around 34 kDa, while NeRh50 wild type and NeRh50"6 showed a single band close to 37 kDa, which represent the background bands due to the absence of human RhD external loop 4.

NeRh50 wild type is a glycoprotein, which contains an oligosaccharide chain attached to the external loop 1 and this give it a higher molecular weight than human RhD, which does not contain the carbohydrate chain. The difference in protein structure between ghost membrane sample with an Rh\(^-\) phenotype vs NeRh50 wild type leads to the variation seen in band size when the 2.2B9 antibody was used for Western blotting. The difference between the 37 kDa band size for NeRh50 wild type and 34 kDa band size for the Rh\(^-\) ghost membrane sample is due to the additional oligosaccharide chain in the former protein.

Anti-D loop 3, 4, 6 (MS-26) (Figure 3.34), shows no reaction with all constructs or controls in the western blot technique. The lack of an obvious band reflects that this MAb may recognise
a conformation-dependent antibody, not detectable by western blotting.

Anti-NeRh50 (1918, and 1917) (figure 3.35) (figure 3.36) both of these antibodies gave negative results with human ghost membrane Rh\(^+\), Rh\(^-\) phenotyped samples due to the absence of the NeRh50 protein, while they show a clear band around 37 kDa for the NeRh50 wild type sample as well as in NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6. These results clearly demonstrate that the E. coli pET expression system works well and all constructs are successfully integrated into the E. coli inner membrane.

The variation between the positive band size between the human ghost membrane Rh\(^+\) phenotype sample (32 kDa) and all constructs (37 kDa) is due to the difference in protein structure backbone of the construct NeRh50 protein, a glycoprotein, which contains an oligosaccharide chain attached to the external loop 1 and this give it a higher molecular weight than human RhD, which does not contain the carbohydrate chain.

Furthermore, human RhD30 wild type and NeRh50 wild type samples were used as controls to detect NeRh50 external loop 1/ C-terminus and human RhD external loops.

According to Roudkenar et al., (2008) they successfully detected the expression of cord RhD with Human anti-Rh (D) polyclonal antibody (Immunodiagnostika, USA) around 35 kDa, which confirm the band size was shown with anti-D antibodies against
human RhD external loops 4 and 6 in the ghost membrane Rh⁺ phenotype and in four constructs.

According to Cherif-Zahar et al., (1991) they have His- tagged the C-terminus of NeRh50 protein to able to detect NeRh50 expression in the E. coli membrane with anti-His tag antibody by western blot at 37 kDa.

According to Apoil et al., (1997) they were successfully blot the RhD protein with 33 kDa band size by using LOR15C9 Mab, which is an important antibody to distinguish between RhD and RhCE proteins.

3.6.2.2 Flow cytometry results

In 1999 a, Liu et al., used monoclonal anti-D, anti-E, and anti-c antibodies, which were available through the Third International Workshop against human red blood cells and related antigens. Moreover, they successfully constructed a hybrid recombinant protein based on RhCE as a backbone and replaced the third, fourth, and sixth external loops with the corresponding external loops from the human RhD. Then, were able to screen the expression of all constructs with monoclonal anti-D, anti-E, and anti-c antibodies by the flow cytometry technique on the K562 cell line.

In this study, sample preparation and staining protocol took a long time and several repeat trials to optimize the correct modified method. Additionally, all construct samples were lysozyme
treated prior to staining them with the primary anti-D or anti-
NeRh50 antibodies (see 2.2.2.4.9.2) in order to make some holes
in the E. coli membrane, and this also required optimisation of
the centrifugation time (Soriano et al., 2002) moreover, assess
detecting the expression of the recombinant protein, which lo-
cated on the inner E. coli membrane.
Table 3.2 shows monoclonal anti-D antibodies were used to de-
tect the expression of human RhD external loops (2, 3, 4, and
6). Moreover, anti-NeRh50 antibody were used to detect the
expression of NeRh50 external loop 1 and C-terminus.
In this study, all constructs show variation in FITC fluorescence
values among different antibodies. The disadvantage of using
NeRh50 over human RhCE as a back bone in Liu et al., 1999,
is the difference in the expression pattern, it shows a higher ex-
pression pattern with using the human RhCE backbone.
NeRh50”3, 4, 6 construct (Table 4.3) showed the lowest expres-
sion with anti-D while it shows a moderate mean FITC fluo-
rescence value with the anti-NeRh50 comparing to control samples.
Anti-D BRAD-3, which is specific for EpD 13 shows the high-
est value with RhD30 wild type control. Furthermore, in Liu et
al., 1999 BIRMA-D6 gave the highest mean value with recombi-
nant RhCE protein with human RhD fourth and sixth external
loop, while in this study BIRMA-D6 show the highest value with
NeRh50”2, 3, 4, 6 construct.
3.6.2.3 TEM results

Thin layer of *E. coli* cells containing one of four constructs; pET*NeRh50”6*, pET *NeRh50”4, 6*, pET *NeRh50”3, 4, 6*, and pET *NeRh50”2, 3, 4, 6*, were used in immuno-gold staining technique. The human RhD external loop 4 and loop 6 expression were detected by anti-D (Table 3.2) 2.2B9 (Figure 3.42)/ 2A4 (Figure 3.43). There was a considerable change in the expression level between the antibodies used (Table 3.2); *NeRh50”6* construct showed no binding and no gold trace with anti-D 2.2B9 (Figure 3.42), due to the absence of human RhD external loop 4 in this construct.

Moreover, all constructs showed high expression level with anti-D loop 6 2A4 (Figure 3.43), as was expected because loop 6 was present in all constructs, similar to the expression on the sample was stained with anti- *E. coli* (positive control) and higher than the expression of the samples were stained with anti-D 2.2B9.

Furthermore, all constructs showed intermediate expression level anti-*NeRh50* 1918 (Figure 3.44) comparing to the positive control and to other anti-D antibodies.

Different dot size and intensity in images taken by TEM was due to the variation of the protein concentration in each sample: big and dark gold trace shows higher protein concentration.
To summarize this chapter, the recombinant $NeRh50^\text{RHD}$ gene was successfully cloned and expressed. The expected size of recombinant $NeRh50^\text{human RhD external loops}$ protein was detected and confirmed by western blot. Flow cytometry and TEM imaging confirmed the existence of the human RhD external loops in the recombinant protein $NeRh50^\text{human RhD external loops}$. RhD antibody reacted with recombinant RhD antigen as well as with RhD30 wild type.
Chapter 4

Discussion and Conclusion
4.1 General discussion

Early in 1901, blood groups were discovered (Landsteiner, 1901; Landsteiner & Levine, 1927; Anstee et al., 2010; Avent, 2016), and there have been considerable number of studies published in this field, reflecting the importance of this science in Immunohaematology. The difference in blood group phenotype remains a significant question and it is still attracting many researchers to study and discover more about different blood groups and their relationship to transfusion and/or transplantation rejection.

The principle of using the blood group antigens to identify blood group antibodies in human serum, is well established, although, this is limited by the rare occurrence of some blood group antigens. Blood group antigens can be replaced by recombinant forms replacing the requirement for the use of human cells, additionally it offers the ability to generate a rare blood group antigens. Furthermore, this has been achieved for many blood group systems: recombinant antigens were successfully produced for MNS blood group system by constructing a recombinant glycophorin A (GPA) carrying blood group M and N antigens, which were able to detect anti-GPA antibodies (Blackall et al., 1992; Blackall et al.,1994). In 2000, Yazdanbakhsh et al., were able to express Knops, Kell and Duffy blood group antigens in a mouse erythroleukaemic cell line (MEL) and used them to
detect and identify human antibodies. In 2002, Jaskiewicz et al., succeeded in expressing a recombinant Gerbich blood group antigen on the surface of wild type Chinese hamster ovary cells (CHO) and a monkey kidney cell line (COS 7) by using anti-GPC murine monoclonal antibodies.

Furthermore, Ridgwell et al., (2007) looked at the activity of soluble recombinant proteins with Kell, Duffy and Lutheran blood group antigens and concluded that the soluble recombinant proteins can mimic the blood group antigens, and these proteins can react with the human-specific antibodies. Moreover, these kinds of proteins can be used to develop solid-phase, high-throughput blood group antibody screening and identification platforms. The RH blood group system has a vital importance as the second most important blood group system in transfusion medicine (Levine et al., 1941; Avent, 2018). Anti-Rh system antibodies are major causes of transfusion reactions and haemolytic disease of the fetus and newborn (Landsteiner & Wiener, 1941; Race & Sanger, 1975; Mollison et al., 1987; Van Kim et al., 2006). The rapid detection of anti-Rh is of significant clinical relevance and is only performed using appropriate phenotyped red cells (Chang & Siegel, 1998). This has significant drawbacks in that certain Rh antigens are very rare and require the storage of a diminishing supply of red cells that must be stored in liquid nitrogen and are scarcely available (Chaudhari, 2007; Avent, 2018).
In spite of the clinical significant Rh antigens and the considerable knowledge of their proteins (Levine et al., 1941; Matassi et al., 1999; Avent et al., 2006; Van Kim et al., 2006; Avent et al., 2012; Mustafa et al., 2014) efforts to produce recombinant Rh antigens have to date been unsuccessful in prokaryotes (Huang & Peng, 2005), due to the highly conformation-dependent structure of the human Rh protein which makes it difficult to construct.

Liu et al., (1999 b), showed successful production of a human recombinant gene RHCE-RHD and a successful expression in the K562 cell line, a eukaryotic tissue culture system, taking into consideration the homology between RHCE and RHD, which are both are located on the same locus on chromosome 1p34-1p36 (Cherif-Zahar et al., 1991; Matassi et al., 1999). Both genes share comparable exon/intron organisation (Matassi et al., 1999; Westhoff, 2004) (Figure 1.3). This similarity raised the probability of these recombinant constructs to successfully produce human D-epitopes, moreover, they detected the expression of human recombinant gene RHCE-RHD on eukaryotic system which is able to express RhAG, which is not the case with using a prokaryotic expression system (Huang & Peng, 2005) and as previously mentioned that the expression of RhD/RHCE antigens is depend on the presence of RHAG (Chérif-Zahar et al., 1996; Avent et al., 2000).

However, the knowledge about Rh proteins would transform the
ability to test for particular rare Rh antigens (of which there are 50 known) (Conroy et al., 2005). Furthermore, a suitable expression system would yield significant new information regarding the topology of Rh epitopes (Mollison et al., 1987; Eyers et al., 1994). Recombinant Rh antigens could be used to rapidly and reliably detect anti-Rh in serum, and mono-specific antigens would greatly help resolve complex mixtures of antibodies in multi-transfused patients.

Therefore, the aim of the project was to construct a hybrid N. europaea-human RHD gene that is capable of being transcribed, translated and correctly inserted into the E. coli membrane, in order to develop novel diagnostic assays able to detect Rh antigens. N. europaea possesses an Rh50 protein which is similar in the transmembrane domain structure to human RhD and RhCE, with twelve transmembrane domains. Different regions of the human RhD and RhCE proteins were utilised to create these hybrids.

The topology similarities in membrane domains between the 12 transmembrane domains of the N. europaea Rh50 like protein (Figure 1.13) and the human Rh protein was the main reason of using this type of bacteria in this project to discover new information about Rh protein structures, and their antigens, unlike the E. coli AmtB protein (Figure 1.11), which only has 11 membrane domains. Thus the NeRh50 like protein was used as a backbone for the human Rh epitopes as NeRh50 can be

227
expressed in *E. coli* (Cherif-Zahar *et al.*, 2007).

Furthermore, the objective of this research was to use the NeRh50 human RhD external loops protein as a template to express human RhD epitopes on the bacterial membrane. Coupled with considerable knowledge regarding the predicted molecular topology of Rh antigen epitopes as defined by site directed mutagenesis (SDM) (Liu *et al.*, 1999 b), recombinant *Ne-human Rh* proteins may provide a suitable alternative to produce vast amounts of recombinant Rh antigens in a bacterial system.

Based on the successful result of SDM work in constructing the recombinant RHCE gene by Liu *et al.*, 1999 b, we chose the external loops (6, 4, and 3) of the human RhD protein to study. Loop 6 was chosen to start with because of its location between two highly conserved transmembrane domains (11-12), which increased the probability of this sequence being expressed successfully by *N. europaea*. Following working with loop 6, loops 2, 3, and 4 were also chosen.

Using recombinant antigens to detect the anti-D in patient serum will be a useful tool in cases such as, pregnant women carrying an RhD positive fetus, in multi-transfused patient, in individuals with partial D and or weak D.

Moreover, it possible to follow the same method and construct a hybrids mimicking partial D in order to accurately phenotype individuals carrying variant antibodies and hence reduce mismatching. Although the importance of this approach, there are
some limitations such as the possibility of the carbohydrate parts of *E. coli* membrane could copy human A/ B antigens, which can show some false positive results. This limitation can be solved by using the L-form bacteria (Kujau *et al*., 1998; Rippmann *et al*., 1998; Errington, 2017). Moreover, other limitation is having a variation in the expression pattern of different batches by using flow-cytometry.

4.2 Expression of D-epitope in *E. coli*

E. coli was used as the expression system due to the simplicity of using *E. coli* in the laboratory and it is widely used as a model and host organism in biotechnology and microbiology, especially when working with recombinant DNA (Lee, 1996; Makrides 1996).

In this study, the idea was that the bacteria express just one Rh-D antigen, which has many epitopes, although bacterial carbohydrate structures may mimic red cell antigens. Thus, the need of having recombinant antigen was developed in this field to cover these problems.

The recombinant *NeRH50”RHD* gene with different human RhD external loops (2, 3, 4, 6) to create: *NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6*, and *NeRh50”2, 3, 4, 6*, were successfully cloned in to the pET expression vector and D epitope was successfully
expressed in *E. coli*. Western blotting, flow cytometry analysis, and TEM techniques were used to determine the expression of human D-epitopes in the *E. coli* membrane by using anti-D and anti-*NeRh50* antibodies (Table 2.1).

The expected size of recombinant *NeRh50*”human RhD external loops protein was 32-37 kDa. According to some studies on human RhD, they were able to detect it by western blotting at 30-35 kDa using monoclonal anti-D (Moore *et al.*, 1982; Gahmberg, 1982, 1983). That concludes, D-epitopes in the recombinant protein have been successfully detected and confirmed by western blotting by use the anti-D in this study (Figure 3.30 - 3.36).

The expected size range of recombinant *NeRh50*”human RhD protein was higher than 30-35 kDa, which is the range of human D-epitope. This was due to the backbone of the recombinant protein used in this study being *NeRh50* wild type is a glycoprotein, which contains an oligosaccharide chain attached to the external loop 1 and this gives it a higher molecular weight than human RhD, which does not contain the carbohydrate chain.

Different FITC- Fluorescence flow cytometry mean values analysis, and TEM imaging confirmed the existence of the human RhD external loops in the recombinant protein (*NeRh50*”human RhD external loops). RhD antibody reacted with recombinant *NeRh50*”RhD antigen as well as with RhD30 wild type, confirming the presence of the D-epitopes in the recombinant protein. Furthermore, a specific antibody raised against the ex-
ternal loop1 and C-terminus peptides of *NeRh50* protein was ordered from Dundee Cell Product. This antibody was used to confirm the existence of the *NeRh50* protein in *E. coli*.

This project has a significantly advanced from the Liu *et al.*, 1999a and b studies. In their study they used the human *RHCE* as a backbone, while in this study *NeRH50* was used to be the backbone of the recombinant construct. Moreover, this study showed successful detection of D-epitopes from the recombinant protein *NeRh50*”human RhD external loops, which proves that the recombinant protein expresses D epitopes even though only the second, third, fourth, and sixth human RhD external domains have been added to the *NeRh50* backbone.

RhD was successfully expressed in K562 cell line (Yan *et al.*, 2005) moreover, recombinants *RHCE-RHD* were expressed in K562 cell line (Liu *et al.*, 1999). The K562 cell line is a eukaryote expression system and dependent on the presence of RhAG. Although the prokaryotic expression system represented in *E. coli* does not require the presence of RhAG, it successfully expressed D-epitopes from the recombinant *NeRh50*”human RhD external loops.

Finally, so far, no study has been published describing a successful expression of a recombinant RhD in a bacterial system and this project seems to be the first one. Furthermore, the antigenicity of the recombinant protein *NeRh50*”human RhD external loops was confirmed by western blotting, flow cytometry
analysis and TEM by using anti-D and anti-NeRh50 antibodies. Moreover, this study proved some points; firstly, D-epitope expression does not require the presence of RhAG and the external predicted domains on the RhD protein can alone be responsible for expression. Secondly, using the correct expression system, Rh antigens can be expressed. A false positive and/or a false negative reaction could be seen from using a recombinant antigens with human sera and for that many trials and modification should be required.

Moreover, using a recombinant of the bacterial membrane domains coupled with humanized extracellular regions will help to discover new features about RhD protein and to investigate the molecular basis of RhD protein also to discover the main function of this protein.

4.3 Conclusions

In this project different techniques, western blots, flow cytometry and transmission electron microscopy have been used to detect expression of recombinant constructs of NeRh50”human RhD external loops in the E. coli inner membrane combined with the using of different antibodies (Table 3.2).

2.2B9 which is a mAb used to detect the expression of human RhD external loop 4, has been used in all techniques and it shows negative results with the recombinant NeRh50”6 as ex-
pected, as this construct is missing the human 4th external loop. Moreover, this mAb showed positive results with the other recombinant constructs.

2A4 is a mAb used to detect the expression of human RhD external loop 6 showed positive results with all constructs in three techniques. Moreover, it shows the highest number of black dots comparing to other antibodies with all constructs. MS26 is a mAb used to detect the expression of human RhD external loop 3, 4, 6. Although it was not able to detect any expression in either constructs or control samples by western blots but it was showed different expression pattern with flow cytometry.
4.4 Future Work

Firstly, the sequence of the human RhD external loops needs to be confirmed by designing new primer sets and resequencing all constructs using Sanger sequencing or NGS.

Secondly, it would be valuable to generate a custom antibody against human RhD second external loop. There have been no studies working with this loop before and the antibody would help to detect the second loop and distinguish between the recombinant constructs; \textit{NeRh50}"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6.

Thirdly, grow a stable L-form \textit{E. coli} cell strains, which are a wall-less, or wall deficient cells (Kujau \textit{et al.}, 1998; Rippmann \textit{et al.}, 1998; Errington, 2017) to use as an expression system for the recombinant gene (\textit{NeRh50}"RhD) and that is because Rh antigens are expressed on the \textit{E.coli} inner membrane, and thus any recombinant antigen system would need to remove \textit{E. coli} external membrane.

Knocking down the AmtB gene in the L-form \textit{E. coli} and put the recombinant construct and try to grow them with the expression from the recombinant protein, thus will able to investigate more about the RhD function.

There are over 100 monoclonal anti-D and some of them are commercially available. Some of them have been used in this study (Table 2.1) to detect the human D-antigens and so, more
anti-D need to be used to screen all colonies to confirm the presence of D-epitopes in each construct. Furthermore, LOR-15C9 human mAbs anti-D (Zhu et al., 1999), which is a loop 6 dependent Ab and can distinguish between RhD and RhCE, could be used to confirm if the RhD and RhCE proteins are expressed successfully on the *E. coli* membrane. Furthermore, wild type RhD30 clone would be used as a reference in the expression pattern because this clone should express all D-epitopes.

After the successful work in expressing recombinant Rh antigens in this project, which were confirmed with Western blotting, flow cytometry analysis, and TEM techniques; it extends the possibility of having more mutant Rh clones by using CE-epitopes and try to express Rh (C, c, E, e) antigens in prokaryotic system, using anti-E and anti-C antibodies. Moreover, testing these recombinants in human sera will be one of the most practical procedures to investigate the efficiency of these recombinants.

Finally, enzyme-linked immunoassays (ELISA) technique could be used to assess the antigenicity of the expressed recombinant protein. Moreover, make it possible to detect anti-D in patient serum by immobilized *E. coli* membrane, which contain Rh antigens on a solid surface, then add the patient serum to detect their Rh antibodies. The most important element of the detection strategy is a highly specific antibody-antigen interaction.

Recently, there are progression and improvement in the genetic tools that lead to more understanding of the *E. coli* organism,
which leads to raise the importance of using *E. coli* as expression system of complex eukaryotic proteins. Moreover, it increases the ability to express and purify the desired recombinant protein without the need for animal models (Rosano & Ceccarelli, 2014).
References list

Avent, N. D., Madgett, T. E., Lee, Z. E., Head, D. J., Mad-

Bhutani, V. K., Zipursky, A., Blencowe, H., Khanna, R.,

Colin, Y., Chérif-Zahar, B., Le Van Kim, C., Raynal, V.,

Lauf, P. K., Joiner, C. H. (1976). Increased potassium trans-
port and ouabain binding in human Rhn\textsubscript{null} red blood cells, Blood, 48, 457-68.

6.

7.

Lomas, C., McColl, K., & Tippett, P. (1993). Further com-
plexities of the Rh antigen D disclosed by testing category D-II cells with monoclonal anti-D. Transfusion Medicine, 3, 67-69.

primary structure of the human blood group RhD polypeptide.

Proc Natl Acad Sci USA; 89:10925–10929.

http://doi.org/10.1007/PL00006453.

Mustafa, M. H. I., Elmisbah, T. E., Salim, A.-M. M., &

Pasini EM1,

Rippmann, J. F., Klein, M., Hoischen, C., Brocks, B., Rettig, W. J., Gumpert, J., Pfizenmaier, K., Mattes, R., Moosmayer, D.

FEMS Microbiol Lett 258:114–120.

erythrocyte precursors and Rhnull red cells, British Journal of Haematology, 75, 254-61.

Chapter 5

Appendices
Alignment of linear nucleotides sequence of the original plasmid provided from Prof. Merrick’s lab against plasmid pUC57-NeRh50”6 from GenScript. It was aligned (100%) with the nucleotides sequence of pUC57-NeRh50”6 provided by GenScript. Sequences were aligned by CLC Genomics Workbench 12.0 programme.
5.2 Appendix B

Alignment of linear nucleotides sequence of the pESV2- NeRh50-6 against plasmid pUC57-NeRh50”6 from GenScript. It was aligned (100%) with the nucleotides sequence of pUC57-NeRh50”6 provided by GenScript. Sequences were aligned by CLC Genomics Workbench 12.0 programme.
5.3 Appendix C

Sanger sequencing data with electropherogram of all constructs cDNAs: NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F1 forward primer/ R1 reverse primer which cover the sequence in the pET expression vector before insertion.
5.4 Appendix D

Sanger sequencing data with electropherogram of all constructs cDNAs: *NeRh50*”6, *NeRh50*”4, 6, *NeRh50*”3, 4, 6, and *NeRh50*”2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F2 forward primer/ R2 reverse primer which cover the sequence in the pET expression vector within the insertion.
5.5 Appendix E

Sanger sequencing data with electropherogram of all constructs cDNAs: \textit{NeRh50}"6, \textit{NeRh50}"4, 6, \textit{NeRh50}"3, 4, 6, and \textit{NeRh50}"2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F3 forward primer/ R3 reverse primer which cover the sequence in the pET expression vector within the insertion.
5.6 Appendix F

Sanger sequencing data with electropherogram of all constructs cDNAs: NeRh50"6, NeRh50"4, 6, NeRh50"3, 4, 6, and NeRh50"2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F4 forward primer/ R4 reverse primer which cover the sequence in the pET expression vector within the insertion.
5.7 Appendix G

Sanger sequencing data with electropherogram of all constructs cDNAs: NeRh50”6, NeRh50”4, 6, NeRh50”3, 4, 6, and NeRh50”2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F5 forward primer/ R5 reverse primer which cover the sequence in the pET expression vector within the insertion.
5.8 Appendix H

Sanger sequencing data with electropherogram of all constructs cDNAs: \textit{NeRh50”6}, \textit{NeRh50”4}, 6, \textit{NeRh50”3}, 4, 6, and \textit{NeRh50”2}, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F6 forward primer/ R6 reverse primer which cover the sequence in the pET expression vector within the insertion.
5.9 Appendix I

Sanger sequencing data with electropherogram of all constructs cDNAs: *NeRh50*”6, *NeRh50*”4, 6, *NeRh50*”3, 4, 6, and *NeRh50*”2, 3, 4, 6 were aligned by CLC Genomics Workbench 12.0 programme against: F7 forward primer/ R7 reverse primer which cover the sequence in the pET expression vector after the insertion.