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Jodie Margaret Roberta Hunter  

 

Developing early algebraic reasoning in a mathematical community of inquiry  

 

This study explores the development of early algebraic reasoning in mathematical 

communities of inquiry. Under consideration is the different pathways teachers take as 

they develop their own understanding of early algebra and then enact changes in their 

classroom to facilitate algebraic reasoning opportunities. 

 

Teachers participated in a professional development intervention which focused on 

understanding of early algebraic concepts, task development, modification, and 

enactment, and classroom and mathematical practices.  

 

Design research was employed to investigate both teaching and learning in the 

naturalistic setting of the schools and classrooms. The design approach supported the 

development of a model of professional development and the framework of teacher 

actions to facilitate algebraic reasoning. Data collection over the school year included 

participant observations, video recorded observations, documents, teacher interviews, 

and photo elicitation interviews with students. Retrospective data analysis drew the 

results together to be presented as cases of two teachers, their classrooms, and students.  

 

The findings show that the integration of algebraic reasoning into classroom 

mathematical activity is a gradual process. It requires teachers to develop their own 

understanding of algebraic concepts which includes understanding of student reasoning, 

progression, and potential misconceptions. Task implementation and design, shifts in 

pedagogical actions, and the facilitation of new classroom and mathematical practices 

were also key elements of change. The important role which students have in the 

development of classrooms where algebraic reasoning is a focus was also highlighted.   

 

These findings have significant implications for how teachers can be supported to 

develop their understanding of early algebra and use this understanding in their own 

classrooms to facilitate early algebraic reasoning.  
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CHAPTER ONE 

INTRODUCTION TO THE STUDY 

 

1.1  INTRODUCTION 

 

Important changes have been proposed for mathematics classrooms in recent years. These have 

been in response to a consideration of how mathematics education can best meet the needs of 

students in the 21st century and support them to participate in our developing “knowledge 

society”. One aspect of the proposed changes is an increased emphasis on algebraic reasoning in 

primary school classrooms (Bastable & Schifter, 2008; Blanton & Kaput, 2005a; Carpenter, 

Franke, & Levi, 2003; National Mathematics Advisory Panel (NAEP), 2008). Within this frame, 

algebra is re-characterised as a strand which permeates through all levels of schooling and has 

links to a wide range of mathematical content areas. Developing such classrooms requires shifts 

both in the teachers’ and learners’ actions, engagement, and participation. This study, 

Developing early algebraic reasoning in a mathematical community of inquiry, was developed 

to investigate how such changes could be achieved in the United Kingdom and the British Isles. 

The main purpose of this study was to investigate how primary teachers can develop “algebra 

ears and eyes” (Blanton & Kaput, 2003) and then use this developing understanding to facilitate 

algebraic reasoning in their classroom.  

 

This chapter identifies the central aim of this study. The background context outlines the 

international call for change in regards to teaching of early algebra and highlights the need for 

change within the context of the United Kingdom and the British Isles. Finally, the significance 
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of this study and the initial stimulus for the development of the research project are both 

addressed.  

 

1.2  RESEARCH AIM 

 

This study aims to explore how teachers develop their students’ early algebraic reasoning in a 

mathematical community of inquiry. The focus of the exploration is on the pathways teachers 

take as they develop their own algebra ears and eyes and then enact changes in their classroom 

to facilitate algebraic reasoning opportunities. The term algebra ears and eyes was coined by 

Blanton and Kaput (2003). Similar to their work, in this study algebra ears and eyes refers to 

teachers being able to recognise opportunities for algebraic reasoning in tasks when planning 

and also recognise and utilise spontaneous opportunities for algebraic reasoning during lessons. 

The study specifically investigates how teachers develop and implement tasks which involve 

opportunities to engage in early algebraic reasoning. It also seeks to understand the key 

pedagogical strategies and classroom and mathematical practices which teachers can use to 

facilitate algebraic reasoning. A final focus of the study is the implications of this type of change 

for student participation and engagement in classroom activity.  

 

1.3 BACKGROUND CONTEXT OF THE STUDY 

 

Significant changes have been proposed for Western mathematics classrooms of the 21
st
 century 

in order to meet the needs of a “knowledge society”. Developing learning communities where all 

students have opportunities to engage in mathematical practices which underlie algebraic 

reasoning has been an increasing focus in both national and international research and curricula 



3 

 

reforms (e.g., Blanton & Kaput, 2003; National Council of Teachers of Mathematics (NCTM), 

2000; Watson, 2009; National Mathematics Advisory Panel, 2008). Mason (2008) argues that 

learning algebra is an essential type of thinking for “participation in a democratic society” (p. 

79). An important aspect of developing algebraic reasoning is the need to develop links to 

algebra in primary classrooms. Through expanding and integrating early algebraic reasoning into 

primary classrooms, Kaput (2008, p. 6) argues that four major goals will be achieved: 

1) To add a degree of coherence, depth, and power typically missing in K-8 mathematics. 

2) To ameliorate, if not eliminate the most pernicious and alienating curricular element of 

today’s school mathematics: late, abrupt, isolated, and superficial high school algebra 

courses. 

3) To democratise access to powerful ideas by transforming algebra from an inadvertent engine 

of inequity to a deliberate engine of mathematical power. 

4) To build conceptual and institutional capacity and open curricular space for new 21
st
 century 

mathematics desperately needed at the secondary level, space locked up by the 19
th 

century 

high school curriculum now in place.  

 

A major stimulus for the increasing emphasis on algebra is the growing acknowledgment of the 

insufficient algebraic understandings students develop during schooling and the way in which 

this denies them access to potential educational and employment prospects (Knuth, Stephens, 

McNeil, & Alibabi, 2006). Historically within Western schooling algebra has been situated as a 

gate-keeper—reserved for higher achieving students and introduced independently after a 

curriculum with a strong emphasis on computation and arithmetic (Kaput, 2008). The prevalent 

treatment and view of algebra in such school settings is as an abstract subject area characterised 

by symbolic manipulations (Chazan, 1996; Kaput, 2008; Stacey & Chick, 2004). Smith and 

Thompson (2008) link this narrow view of algebra with a fundamental problem in mathematics 

teaching and learning. They argue that for many teachers and their students, mathematics bears 
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little useful relationship to their world. Initially, mathematics is a world of numbers and 

numerical procedures which then develops into a world of symbols and symbolic procedures. 

Consequently they argue that one aim of mathematics education should be to develop links 

between numbers and symbols with situations and problems.  

 

In the context of the United Kingdom (UK), reports demonstrate that students have on-going 

difficulties with algebra. The 2007 Trends in International Mathematics and Science study 

(TIMMS) reported that the mathematical content area with the largest level of weakness for 

English students aged 13-years to 14-years old was algebra (Sturman et al., 2008). This finding 

was affirmed in a recent study by Hodgen, Kuchemann, Brown, and Coe (2009), who found that 

when comparing students aged 13-years to 14-years old understanding of algebra to results from 

30 years ago there had been little change. These findings raise concerns for students’ on-going 

participation in mathematics at higher levels.  

 

In the UK and British Isles, both in primary and secondary schools, algebra is not delineated as a 

strand to be taught separately from other mathematical content areas. Number and algebra 

appear as a linked content area of mathematics in the national curriculum from Key Stage Two 

(Department for Education and Skills (DfES), 1999). This approach means that there are 

opportunities for integration of algebra across mathematics and for arithmetic to be seen as 

“particular instances of algebraic structures which have the added feature that they can be 

calculated” (Watson, 2009, p. 9). Integration of algebra with other mathematical content areas 

should begin at primary school, however this requires teacher understanding of the links 

between algebra, arithmetic, and other mathematical content areas.  

 

This study considers how primary teachers can develop their algebra ears and eyes and use this 

understanding to more fully integrate early algebra into their mathematics lessons. As discussed 
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in the following chapters, developing algebraic reasoning is more than acquiring knowledge of 

algebraic content areas or using algebraic tasks in the classroom. To effectively facilitate 

algebraic reasoning opportunities, teachers need to develop their own pedagogical content 

knowledge of algebra including an understanding of the development of student reasoning and 

potential misconceptions. Within the classroom, attention needs to be paid to task design and 

implementation and also the classroom and mathematical practices which support engagement in 

algebraic reasoning.  As Watson (2009) argues with reference to a range of international 

research studies “the development of algebraic reasoning can happen in deliberately designed 

educational contexts” (p. 16). It is timely to explore how within the context of the UK and 

British Isles, teachers and researchers can collaborate to deliberately design primary classrooms 

which support student engagement with early algebra.  

 

1.4 RATIONALE FOR THE STUDY 

 

Many international studies (e.g., Bastable & Schifter, 2008; Blanton & Kaput, 2005a; Carpenter 

et al., 2003; Carraher, Schliemann, Brizuela, & Earnest, 2006) illustrate how primary teachers 

can develop aspects of algebraic reasoning in their classrooms. There are also some studies (e.g., 

Bills, Wilson, & Ainley, 2005; Brown & Coles, 1999; Hewitt, 2012; Jones, 2008; Jones & Pratt, 

2012) based in the UK which investigate the development of specific areas of algebraic 

reasoning particularly with upper primary and lower secondary school students. However, we 

have a limited quantity of research directed towards exploring and examining how primary 

teachers in the UK and British Isles might develop algebraic reasoning through everyday 

mathematics lessons in their classrooms.  

 



6 

 

Watson (2009) calls for studies which address the experiences and educational environments 

that facilitate learners to shift from arithmetical to algebraic reasoning. As highlighted in the 

previous paragraph, there is a range of studies which focus on the development of early 

algebraic reasoning. Often these studies address an aspect of early algebra such as a particular 

content area or task development.  

 

There are also many studies (e.g., Boaler & Brodie, 2004; Fosnot & Jacob, 2009; Kazemi, 1998; 

Khisty & Chval, 2002; McCrone, 2005; Monaghan, 2005; Schifter, 2009; Stein, Engle, Smith, & 

Hughes, 2008) which address productive classroom and mathematical practices in the 

mathematics classroom. However, there are few studies which specifically attend to algebraic 

content, task development and enactment, and the classroom and mathematical practices which 

facilitate primary students to engage in early algebraic reasoning. Understanding how these 

elements can be used as a focus both in professional development and within the classroom to 

facilitate algebraic reasoning is appropriate at this time.  

 

For primary teachers to develop algebraic reasoning in their classrooms, it is essential that they 

have sound understanding of early algebra. A report by Ofsted (2008) identifies that many 

primary teachers in the United Kingdom have little experience with mathematics beyond what 

they studied within schooling; their view of mathematics and subsequent teaching is strongly 

influenced by this earlier learning and their own schooling experiences. A recommendation 

made in the Ofsted report is that an exploration is undertaken of approaches through which the 

subject expertise of teachers of mathematics can be developed. This is particularly pertinent for 

early algebra—a content area with which many teachers have had limited educational experience 

(Blanton & Kaput, 2005a) combined with limited exposure to research about teaching and 

learning algebra (Watson, 2009).  



7 

 

 

There are a number of international studies (e.g., Blanton & Kaput, 2003; Franke, Carpenter, & 

Battey, 2008; Koellner, Jacobs, Borko, Roberts, & Schneider, 2011; Warren, 2009) which 

address the professional development of teachers in the area of early algebra. Many of these 

studies focus on teacher participation during professional development or successful cases of 

teacher change in the classroom. It is timely to have a study which focuses on teacher 

development of algebra ears and eyes and examines potential shifts in classroom practice and 

pedagogical actions.  

 

In recent years there has been increasing attention to ensuring all research participants including 

children can act as active participants in the research process and communicate their own views 

(Einarsdottir, 2007). This includes a growing range of studies (e.g., Boaler, Wiliam, & 

Zevenbergen, 2000; Cobb, Gresalfi, & Hodge, 2009; Franke & Carey, 2009; Hunter & Anthony, 

2011; Pratt, 2006; Young-Loveridge, 2005) which investigate student perspectives in the 

mathematics classroom. However, there is limited research literature which addresses student 

perspectives in classrooms where early algebra is a focus or which attends to how students 

themselves may develop their own algebra ears and eyes. A direct focus is needed on student 

perspectives and shifts in their participation and engagement as algebraic reasoning is introduced 

into their classrooms.  

 

1.5 STIMULUS FOR THIS STUDY 

 

In 2008/2009 I undertook an observational research project which focused on teacher enactment 

of curriculum material from the Mathematics Enhancement Programme (MEP). The 

Mathematics Enhancement Programme was developed in order to improve mathematics 
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teaching and learning in the United Kingdom by drawing on findings from the Kassel project 

(Burghes, 2004). This project investigated styles of teaching and attainment in mathematics 

teaching and learning internationally. Curriculum material was developed for MEP including 

resources (e.g., lesson plans, workbooks and online interactive resources). Many of the tasks in 

the curriculum material have implicit opportunities to facilitate students to engage in algebraic 

reasoning due to their structural basis. However, during the initial observational project, I noted 

that many of the opportunities for algebraic reasoning were missed due to the way in which the 

tasks were implemented and enacted in the classroom. Consequently a proposal for the current 

study was developed.  

 

1.6 OVERVIEW OF THE THESIS 

 

The thesis is presented in eight chapters. This chapter has provided the background and rationale 

for the study. The relevant research literature is reviewed in Chapters Two to Four. Chapter Two 

reviews research on the teaching and learning of early algebraic reasoning. Chapter Three 

examines elements of learning environments which support engagement in early algebra. This 

includes the types of tasks and their implementation, classroom practices, and mathematical 

practices. Chapter Four discusses how teachers may be supported to develop algebra ears and 

eyes and the implications of change in the classroom on student perspective and identity. 

Chapter Five outlines the use of a qualitative design approach and discusses the methods used to 

collect and analyse the data. Chapters Six and Seven present the results of the teachers’ 

involvement in the professional development. Drawing on two cases, the findings are presented 

to illustrate how algebra was integrated into the classroom. Analysis of the teachers’ developing 

classroom culture and student perspectives are discussed in relation to the literature. Chapter 
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Eight concludes the thesis with a discussion of the differing pathways the two teachers took. The 

conclusions and implications and recommendations for future research are presented.      
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CHAPTER TWO 

THE BACKGROUND RESEARCH ON THE TEACHING 

AND LEARNING OF EARLY ALGEBRAIC REASONING 
 

2.1  INTRODUCTION 

 

The previous chapter outlined the call for change to place greater emphasis on algebraic 

reasoning in primary classrooms. For this reason, a close examination will be given in this 

chapter to research literature concerning student learning of algebraic concepts.   

 

Section 2.2 provides a description of early algebraic reasoning. It outlines the historical 

treatment of algebra and its traditional role within the secondary school sector. Explanations are 

offered of the changing perspective with moves to re-define algebra and re-characterise it as a 

strand which permeates through all levels of schooling. This wider definition of algebraic 

reasoning includes both content and process.   

 

Section 2.3 describes how early algebraic reasoning can be taught through generalised 

arithmetic. It examines those key areas which have links to early algebra: 

 Equivalence, relational reasoning, and solving, using and representing equations. 

 Understanding the properties of operations: The commutative, associative, and 

distributive properties 

 Exploring ideas about operations and their relationships.  

 Understanding the properties and relationships of numbers: Odd and even numbers, zero 

and one.   
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Key difficulties in each area are identified and a review of research studies which have 

addressed the teaching and learning of different aspects of early algebra are provided. 

 

Section 2.4 describes how early algebraic reasoning can be taught through functional thinking. It 

provides a definition of functional thinking and research studies are drawn upon to illustrate how 

rich functional thinking can be developed with younger students.  

 

Section 2.5 outlines the key role of tools and representations in facilitating students to engage in 

early algebraic reasoning. The support that can be offered by representational structures such as 

drawings, diagrams, and tables is described. Also highlighted is how notation such as variables 

allows students to work at a higher level of generality and examines how these may be 

introduced to young students.  

 

2.2 DEFINING EARLY ALGEBRAIC REASONING 

 

The perception and view of mathematics as a subject inclusive of notions of algebra, influences 

the ways in which it is presented and taught in classrooms. Historically, algebra was introduced 

in secondary school following on from a strong focus in primary schools on a computational 

curriculum. The exclusivity of algebra to the secondary sector was justified in terms of 

developmental theories. Younger students viewed as developmentally constrained by learning 

capability and cognitive development were considered unable to work algebraically. In 

particular, it was argued that young students were not ready to represent or operate on unknowns 

(Carraher et al., 2006). Similarly, research in this field during the 1980s had a strong emphasis 

on student errors and limitations to learning were often attributed to developmental constraints 

(Kaput, 2008; MacGregor & Stacey, 1997; Schliemann, Carraher, & Brizuela, 2007a). The 



13 

 

dominant treatment of algebra in this context was as a narrow syntactical area of mathematics 

focused on abstract symbol manipulation (Chazan, 1996; Kaput, 2008; Stacey & Chick, 2004).  

 

In recent years the view that student difficulties with algebra are related to cognitive 

development has been challenged. Links have been made with the specific difficulties attributed 

to the traditional approach of teaching computational arithmetic followed by abstract algebra 

when facilitating the development of algebraic understanding (Bills et al., 2005; Kaput, 2008; 

Smith & Thompson, 2008, Schliemann et al., 2007a). For example, Schliemann et al. (2007a) 

argue that children’s difficulties stem largely from three key aspects: reliance on limited 

problem sets in early arithmetic, restricted use of notation to register computation rather than 

describing the known attributes of a problem, and a focus on computing sets of values rather 

than the relations across sets.  

 

Advocates of mathematics curriculum reform (e.g., Blanton & Kaput, 2005a; Carpenter, Levi, 

Berman, & Pligge, 2005a; Warren & Cooper, 2001) have called for a move to re-characterise the 

nature of algebra and algebraic reasoning. They propose a wider definition of algebraic 

reasoning that includes both content and process and shares dual aspects with mathematics 

including a focus on generalising, expressing generalisations, and using symbols to reason with 

generalisations (Kaput, Blanton, & Moreno, 2008a; Mason, 2008; Watanabe, 2008). The 

definition of algebraic reasoning that is used in this study draws on the work of many 

researchers (e.g., Blanton & Kaput, 2005a; Ferrucci, Kaur, Carter, & Yeap, 2008; Smith & 

Thompson, 2008; Warren & Cooper, 2008). Algebraic reasoning is defined as thinking that is 

focused on identifying patterns and underlying mathematical relationships, establishing 

generalisations through the discourse of argumentation, and expressing these relationships and 

generalisations in age appropriate language and notational systems in ways that allow the 
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relationship to become apparent. Within this definition, algebraic reasoning takes varying forms 

including: 

(a) the use of arithmetic as a domain for expressing and formalising generalisations (generalised 

arithmetic); (b) generalising numerical patterns to describe functional relationships (functional 

thinking); (c) modelling as a domain for expressing and formalising  generalisations; and (d) 

generalising about mathematical systems abstracted from computations and relations. (Blanton & 

Kaput, 2005a, p. 413)   

 

Shifting from arithmetic to algebraic reasoning is an important transition in mathematical 

reasoning. However, it is often a major hurdle for many students (Chazan, 1996; Stacey & 

Chick, 2004). A growing body of international research studies (e.g., Bastable & Schifter, 2008; 

Blanton & Kaput, 2005a; Carpenter et al., 2003; Carraher et al., 2006; Schifter, Bastable, 

Russell, Seyferth, & Riddle, 2008a) have investigated how early algebraic reasoning is fostered. 

Key findings of these studies include the importance of the content areas within the existing 

curriculum with which early algebra has connections, a focus on student thinking and reasoning 

including misconceptions, and the use of tasks and tools to promote algebraic reasoning.  

 

The following sections address important concepts in students’ learning of early algebra and 

provide a review of research studies in this area.  

 

2.3 EARLY ALGEBRAIC REASONING AS GENERALISED 

ARITHMETIC 
 

Development of algebraic reasoning occurs over a long period of time and has inter-related 

connections with other strands of mathematics, particularly arithmetic (Blanton & Kaput, 

2005a). However, algebraic reasoning is differentiated from arithmetic which proceeds from the 

known to the unknown because algebraic reasoning begins by acknowledging the unknown and 

involves reasoning about unknown quantities or variables (Mason, 2008; van Ameron, 2003). 

Another difference is the use of letters which in arithmetic are often used as abbreviations while 
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in algebra they are used to represent unknown numbers and variables (van Ameron, 2003). In 

order for students to think algebraically there is a need to develop a structural perspective 

focused on operations on mathematical objects rather than a procedural approach focused on 

operations on numbers and producing an outcome (Carpenter, Levi, Franke, & Zeringue, 2005b; 

Ferrucci et al., 2008; van Ameron, 2003).  

 

Supporting primary students to develop ways of thinking about arithmetic which also support 

the development of algebraic reasoning has a dual outcome in both enhancing arithmetical and 

algebraic reasoning. In a classroom setting where there is a focus on algebraic reasoning 

students are supported to make sense of arithmetic rather than performing arithmetic 

instrumentally. This sense-making provides a bridge for developing conceptual understanding of 

algebra in later years (Blanton, 2008; Blanton & Kaput, 2005a; Carpenter et al., 2003; Lins & 

Kaput, 2004; Mason, 2008). For example, a New Zealand study by Irwin and Britt (2005) with 

students aged 11-years to 15-years old found that students who were encouraged to use a 

“flexible array of skills for manipulating arithmetical relations in ways that exhibit number sense 

as well as operational sense” (p. 182) developed foundations for their understanding of 

secondary school algebra. 

 

Examination of the research literature reveals a range of areas within generalised arithmetic 

which are important in developing early algebraic reasoning. The following section highlights 

key findings of research studies related to the students’ learning of algebraic reasoning within 

the following areas: 

 Equivalence, relational reasoning, and solving, using and representing equations. 

 Understanding the properties of operations: The commutative, associative, and 

distributive properties 
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 Exploring ideas about operations and their relationships.  

 Understanding the properties and relationships of numbers: Odd and even numbers, zero 

and one.   

2.3.1 Equivalence, relational reasoning, and solving, using and representing equations 

 

Developing understanding of equality is a concept fundamental to algebraic reasoning (Jones, 

2008; Knuth et al., 2006; Linsell & Tozer, 2010). The seminal research of Kieran (1981) 

illustrated that students often have an inadequate understanding of the equals sign. Recent 

studies (e.g., Carpenter et al., 2003; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Knuth et 

al., 2006; McNeil & Alibabi, 2005; Warren, 2003a) continue to provide evidence that many 

primary and middle school students lack deep understanding of the equals sign and that student 

understanding of the equals sign does not necessarily improve as students advance in year levels. 

Students with an inadequate understanding view the equals sign as an indicator of an operator 

rather than a symbol of a mathematically equivalent operation. This operational view equates the 

equals sign with a need to find a ‘sum’ or ‘answer’ or a left to right action of adding all the 

numbers to the left of the equals sign (Carpenter et al., 2005b; Knuth et al., 2006; McNeil & 

Alibabi, 2005).  

 

Researchers have analysed errors made by students when solving open number equivalence 

problems in terms of the students’ understanding of the equals sign. Freiman and Lee (2004) 

demonstrated that open number sentence problems in the form of a + b = d + c involving a 

blank in the last two positions consistently caused difficulties across year levels. Carpenter et al. 

(2003) argue that students’ errors in solving open number sentence problems are errors of 

syntax. Students erroneously interpret the rules for how the equals sign is utilised. For example, 

when solving 9 + 6 = __ + 5, students may put 15 in the blank space considering that the equals 

sign is an indication to put an answer. Alternatively other students who over-generalise the 
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property of addition and assume the sequence of symbols in the number sentence is unimportant 

may put 20 in the blank space.  

 

A limited understanding of the equals sign impedes students’ mathematical development. It 

leads to a high computational burden with links to latter difficulties in solving symbolic 

expressions and equations (Jones, 2008; Kieran, 1981; Knuth et el., 2006). In contrast, 

understanding of the equals sign supports students to generate and interpret equations 

meaningfully and to operate on them (Jones, 2008; Linsell & Tozer, 2010). For example, 

younger students with sound understanding of the equals sign will be able to use either 

computational or relational forms of thinking to solve open number sentence equivalence 

problems such as 8 + 4 = __ + 5 successfully (Falkner, Levi, & Carpenter, 1999).  

 

Relational reasoning has been identified as a foundation for developing algebraic reasoning 

(Carpenter et al., 2005b; Irwin & Britt, 2005; Stephens & Xu, 2009). Carpenter et al. (2005b) 

characterise this as the ability to examine expressions and equations in their entirety rather than 

as a set of procedural steps to be carried out. Using relational reasoning to solve problems 

requires that one is “able to see and use possibilities of variation between numbers in a number 

sentence” (Stephens, 2006, p. 479). Students who are able to use relational thinking to solve 

open number sentence problems invoke the fundamental properties of numbers and operations to 

consider the structure of the number sentence. They are able to solve the problem by using the 

relation between both expressions and by identifying the direction in which the missing number 

will change in order to maintain equivalence. In contrast, students who use computational 

thinking view the numbers on each side of the equals sign as representing separate calculations 

and depend on calculation to solve open number sentence problems (Carpenter et al., 2003; 

Molina, Castro, & Mason, 2008; Stephens, 2006; Stephens & Xu, 2009).  
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Facilitating understanding of equivalence and relational reasoning requires that students are 

provided with learning situations that enrich and expand their understanding of the equals sign 

and equations (Molina, Castro, & Castro, 2009). Findings of an interview based study with 

Brazilian students aged between 7-years to 11-years old carried out by Schliemann, Lessa, Lima, 

and Siqueira (2007b) indicated that students were able to understand the principle that an 

equation remained true if the same number was added or subtracted to each side. However, they 

noted that their results were dependent on the way the problem was presented. Similarly, a 

United States of America (USA) based study by NcNeil et al. (2006) investigated how the 

context within text-books affected student interpretation of the equals sign with students aged 

11-years to 14-years old. These researchers found that when students were presented with non-

standard representations more relational explanations were provided. Therefore they concluded 

that it was beneficial for students to see the equals sign in contexts with operations on both sides.  

 

Findings from classroom research studies (e.g., Blanton & Kaput, 2005a; Warren & Cooper, 

2003) suggest how a deeper understanding of the equals sign may be achieved. One approach 

advocated is the use of a balance scale model. This approach emphasises the need to consider 

the equation in its entirety and does not indicate a particular direction. In using the balance scale 

model with students aged 7-years to 8-years old, Warren and Cooper (2003) first began by 

developing links to language which represented equality (same) and inequality (different). 

Following this, the students applied the terms to kitchen objects before the formal equality and 

inequality symbols were introduced. Students were also encouraged to make links between 

physical quantities and number operations and then represent these using a balance scale. 

Finally, the students categorised the quantities as equal or not equal and recorded a 

representative number sentence (e.g., 4 + 3 = 6 + 1). The researchers concluded that key 
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elements in the success of the pedagogical approach were the development of a language 

framework centred upon the meaning of equivalent and non-equivalent situations and the 

utilisation of a physical model of balance. Blanton and Kaput (2005a) also describe a teacher 

working with students aged 8-years to 9-years old successfully using a balance scale to explore 

the notion of equivalence. However, Schliemann et al. (2007b) maintain that while balance scale 

models provide a meaningful context for students to develop initial understandings of equations, 

there are some challenges with this in providing a complete model. These researchers highlight 

the difficulties in representing subtraction as a relation rather than as an action on a scale and the 

difficulty in representing the concepts of multiplication, division, and variables on a balance 

scale model. Therefore it is also important to link equivalence with a range of alternative models 

such as comparisons between numbers of counters, verbal problems, and written equations.  

 

An alternative approach to supporting student understanding of the equals sign is the use of true 

and false and open number sentences (e.g., Carpenter et al., 2005; Falkner et al., 1999; Molina et 

al., 2008). Falkner et al. (1999) describe an 18-month intervention with a class of students aged 

6-years to 8-years old in the USA. In the initial assessment task most students gave incorrect 

responses to open number sentences indicative of understanding the equals sign as an operator or 

syntactic indicator. The teacher facilitated discussion of the equals sign by presenting the 

students with true and false number sentences, some of which were directly designed to confront 

misconceptions for example 8 + 2 = 10 + 4. Representational material in the form of unifix 

cubes was also used to link the number sentences with a physical representation. In the 

following year, assessment for their understanding of the equals sign indicated that many of the 

students were able to solve the number sentence problems correctly. Similarly, in a year-long 

intervention with students aged 11-years to 12-years old Carpenter et al. (2005a) found that 
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relational understanding of the equals sign was developed by 84% of the students following 

classroom work with true and false number sentences.  

 

Open number sentences involving a single value can be used to introduce students to finding 

unknown numbers; however, it is also important to extend beyond single-value open number 

sentences. Fujii and Stephens (2008) maintain that an emphasis on missing number sentences 

with a single unknown (invariable numbers) can create difficulties later when students are asked 

to solve problems involving variable quantities. Recent research studies (e.g., Blanton & Kaput, 

2005a; Carpenter et al., 2003; Fujii & Stephens, 2008) involving open number sentence 

activities include situations with equations with several variables and single equations involving 

multiple repeated variables. Carpenter et al. (2003) suggest using word problems as a context to 

introduce multiple variables. In an example they provide from a classroom with students aged 7-

years to 8-years old, a word problem was used which had the mathematical goal of showing all 

the possible ways that seven could be split into two groups of positive whole numbers. This 

supported students to think about generating combinations in an organised way, justifying they 

have all the solutions, and expressing the situation with notation. Similarly, these researchers 

and others (e.g., Blanton & Kaput, 2005a; Carpenter et al., 2003; Fujii & Stephens, 2008) have 

illustrated how number sentences involving two variables (e.g., B + H = 9) or repeated variables 

(e.g., A + A + A = 21) can be introduced and used with students to develop their understanding 

of solving equations involving varying or similar quantities. This provides opportunities for 

deepening relational reasoning.   
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2.3.2 Understanding the properties of operations: The commutative, associative, and 

distributive properties 

 

The properties of operations, in particular, the commutative, associative, and distributive 

properties provide a critical foundation for school mathematics and for students to work with 

equations (Ding & Li, 2010). As students develop their own solution strategies for solving 

arithmetic problems they implicitly draw on the fundamental properties of arithmetic within 

their solutions. However, in many classrooms these properties remain implicit—they are not 

explicitly identified or examined (Carpenter et al., 2005a). In contrast, explicit exploration of 

number properties provides opportunities for students to engage in the practices of formulating, 

testing, and justifying generalisations (Ding & Li, 2010; Schifter et al., 2008a).  

 

Commutative property 

From a young age, many students will implicitly use the commutative property to support them 

to solve problems involving addition and multiplication. For example, Fosnot and Jacob (2010) 

describe an episode from a classroom with students aged 7-years to 8-years old in the USA 

where students were asked to solve an equivalence problem: 13 + 8 = 5 + 9 + 13 – 6. One 

student’s response was to change the problem to begin with the nine and take the six away the 

leaving him with 13 + 8 = 8 + 13 which he justified through use of the commutative property 

stating, “I know that is equals because the numbers can be turned around” (p. 88). Similarly, in a 

New Zealand based study with students aged 8-years to 10-years old, Hunter (2010) describes 

how students were able to recognise quickly that number sentences such as 15 + 3 = 3 + 15 were 

true through use of the commutative property. 

 

Although students may use the commutative property to solve mathematics problems, results 

from research studies (e.g., Anthony & Walshaw, 2002; Warren, 2001a; 2001b) indicate that 
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many students lack deep understanding of this operational law. One difficulty which students 

may experience is the assumption that the commutative and associative properties are 

interchangeable (Schifter, Monk, Russell, & Bastable, 2008b; Tent, 2006). This confusion arises 

as often the commutative and associative properties are used at the same time when solving 

equations. Another difficulty identified by Schifter et al. (2008b) is attributed to the form of 

written equations and students’ lack of understanding of the equals sign. These researchers 

provide a vignette from a classroom episode where the students recognised the commutative 

property of addition however when the teacher asked whether 13 + 23 = 23 + 13 was true, many 

of the students disagreed stating that there was no answer. Schifter et al. (2008b) attribute this 

response to the students’ interpretation of the equals sign.  

 

Another common obstacle identified in research studies is the over-generalisation of the 

commutative property across different operations. Three studies, Anthony and Walshaw’s 

(2002) study with students aged 7-years to 8-years old and older students aged 12-years to 13-

years old and two Australian based studies by Warren (2001a; 2001b) involving students aged 8-

years to 9-years old and 12-years to 14-years old demonstrated that while students recognised 

the commutative nature of addition and multiplication; many also thought that subtraction and 

division were also commutative. Schifter et al. (2008b) also report on an episode from a USA 

classroom study with students aged 8-years to 9-years old. The teacher engaged the students in a 

discussion of the commutative nature of addition which they termed the ‘switch-around rule’. 

Following the discussion, when the students were asked to write reflections and give examples 

of when the rule applied it was evident many of the students over-generalised the commutative 

principle to include subtraction and division. These studies reflect that while students may 

superficially appear to understand the commutative property, deep generalised understanding is 

more difficult to achieve. This is particularly evident in the findings of Anthony and Walshaw 
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(2002) who asked students to use cubes to illustrate their conjectures about the commutative 

property. None offered generalised statements and few students were able to use materials to 

develop models of their conjectures.  

 

Understanding of when the commutative property is applicable can be deepened through 

exploration involving making conjectures, justification, and generalisation.  Opportunities for 

exploration can be utilised through carefully listening to student explanations and highlighting 

their explicit remarks about the regularities in the number system (Schifter, Russell, & Bastable, 

2009). In an example provided by Bastable and Schifter (2008) from a classroom with students 

aged 8-years to 9-years old, students were asked to calculate a range of different amounts of 

money and share their solution strategies. From this task and the associated solution strategies, 

the question of whether the order of addends mattered arose and the teacher noted that a number 

of students were unsure whether if you added the amounts in a different order you would 

maintain the same sum. Using these observations, the teacher then planned further tasks which 

engaged the students in adding different amounts and discussing their solution strategies and 

observations of the commutative property. In reflective statements which the students wrote 

following the lesson it was evident that the additional activities supported the students to 

generalise the commutative property of addition.   

 

Tasks may be specifically structured or sequenced to draw student attention to regularities such 

as the commutative property (Carpenter et al., 2005b; Schifter et al., 2009). For example, 

presenting students with a number sentence such as 47 + 56 = 56 + 47 commonly leads to 

explanations that the sentence is true because only the numbers have been swapped around. This 

can then be developed further into a discussion of whether this is true for all numbers and for 

different operations. Hunter’s (2010) study with students aged 8-years to 11-years old used true 
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and false number sentences to focus student attention on the correct application of the 

commutative property. The introduction of true and false number sentences involving 

subtraction and division caused conflict for many students and resulted in the development of 

clearer explanations of the non-commutative nature of subtraction and division.  

 

Use of representational material to investigate conjectures and establish generalisations can also 

support students to develop further understanding of the commutative property (Schifter et al., 

2009). Carpenter and Levi (2000) describe an instance from a lesson with students aged 8-years 

to 10-years old where they were asked to justify the generalisation of the commutative property 

of multiplication. Students initially began by calculating a lot of examples; however, following 

teacher questioning, a pair of students used linking cubes to illustrate a specific example. After 

some discussion, the students were then able to use the model to provide concrete justification 

and demonstrate how when rotated the product would remain the same. Similarly, Hunter (2010) 

provides examples of how students aged 8-years to 11-years old developed concrete forms of 

justification of the commutative property of multiplication through building arrays with 

counters. In this study the development of understandings of the commutative property of 

addition and multiplication provided a foundation for students to develop explanations of why 

the commutative property did not work for subtraction and division. However, it should be noted 

that a number of students continued to over-generalise the commutative property following the 

classroom work indicating the need for students to be provided with multiple opportunities to 

explore the properties of operations over an extended period of time.  

 

Associative property 

Developing understanding of the associative property and how this may be applied to 

multiplication supports students to work flexibly with the number system. However, Schifter et 



25 

 

al. (2008b) argue that there are less frequent opportunities to explore this property than the 

commutative property in primary classrooms as students are often asked to only solve 

multiplication problems involving two factors rather than three or more factors. This is 

supported by an Australian study by Warren (2003b) with students aged 12-years to 14-years old 

which reported that many of the students found the associative property more difficult to 

recognise than the commutative property. While the majority of students correctly recognised 

the commutative nature of addition and multiplication, fewer correctly identified addition and 

multiplication number sentences involving the associative law as correct. Warren argues that this 

may also be due to the increased complexity of number sentences involving brackets.  

 

Informal multiplication strategies such as doubling and halving or using base-ten strategies draw 

on the associative property (Schifter et al., 2008b). A study by Baek (2008) used problem-

solving interviews to examine the varying multiplication strategies used by students aged 8-

years to 11-years old. The results from the initial stage of the study demonstrated that students 

maintained informal understandings of the distributive and associative properties and were able 

to use these to construct efficient strategies for multi-digit multiplication. In an example 

provided from the study, a student aged 9-years old was asked to solve a word problem which 

involved finding the product of 30 multiplied by 40. The student directly modelled the problem 

using base ten blocks and was quickly able to apply the associative property to simplify the 

problem to 400 multiplied by three and solve it. This informal strategy use provides 

opportunities to deepen student understanding of the associative property through pressing 

students to explore factors and use representations of multiplication to justify their reasoning.  

 

As noted in the previous example, facilitating classroom experiences where students investigate 

factors and varying representations of multiplication can support examination of the associative 
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property of multiplication. Schifter et al. (2008b) provide classroom based examples from a 

class of students aged 8-years to 9-years old where a student generated investigation explored 

whether factors of a factor were also factors of the original number. A pair of students used an 

array model to demonstrate that eight was a factor of 120 and then by re-distributing the 

columns of eight into four, two and one, they developed a concrete form of proof to show that 

these were also factors of 120. Another classroom based example from these researchers 

demonstrated how students engaged in an investigation of the factors of different hundreds 

numbers (e.g., 100, 200, 300, 400...) and developed varying justification strategies for their 

observations of patterns. For example, one group of students proved that the factors of 200 were 

double the factors of 100 through using a rectangular area model. These examples show students 

using representations of multiplication to investigate the relationships within multiplication. 

Schifter et al. argue that these types of activities support students to attach meaning to the formal 

algebraic expression of the associative property when it is introduced in later years.  

 

Distributive property 

Developing understanding of the distributive property is fundamental in building both 

conceptual understanding of multiplication and for algebraic reasoning. Common errors in 

adding variables (e.g., 6f + 7k = 13fk) occur for students who have not developed a deep 

understanding of the distributive property (Carpenter et al., 2003; Li & Ding, 2010). While 

students may implicitly draw on the distributive property within their solution strategies, it is 

often challenging for students to explicitly generalise and formalise their reasoning (Chick, 

2009; Schifter et al., 2008b). An Australian based study by Chick (2009) examining secondary 

teachers’ pedagogical content knowledge for teaching the distributive property found that a 

common approach was to use multiple numerical examples and link these to mental computation 

in order to facilitate students to generalise the distributive property.  However, Quinlan (1994) 
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maintains that students have difficulty in forming generalisations about the distributive property 

when taught with only arithmetical examples. Her study with Australian students aged 12-years 

to 13-years old compared student learning of the distributive property when taught either using 

arithmetic examples leading to generalisation or through an approach which drew on a concrete 

model. She found that those students whose lessons involved the concrete model performed 

better on items involving the distributive property in the post-test.  

 

Deep understanding and application of the distributive property requires that students develop 

understanding of multiple models of multiplication. Results from an Australian study by Norton 

and Irvin (2007) involving students aged 14-years to 15-years old found that many of the 

students were unable to utilise understanding of the distributive property to successfully expand 

an expression with a variable in front. These researchers argue that this was due to a limited 

conception of multiplication as repeated addition. They maintain that these results reflect the 

need to facilitate students’ understanding of arithmetic structures in early number learning 

experiences to develop algebraic reasoning.   

 

Classroom based studies (e.g., Baek, 2008; Schifter et al., 2008b) with primary age students 

have investigated how tasks involving carefully structured multiplication problems can promote 

students to partition factors therefore drawing on the distributive property. The teachers involved 

in the study by Baek (2008) introduced word problems involving several related multiplication 

problems which the students were able to solve through using the relationships of the numbers in 

each problem. This facilitated the students to investigate and develop strategies based on the 

distributive property.  
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Using representations is one way of facilitating students to examine their use of the distributive 

property in informal solution strategies (Baek, 2008; Schifter et al., 2008b; Quinlan, 1994). 

Visual representations in the form of concrete models focus student attention on how the factors 

are split and regrouped through use of the distributive property (Ding & Li, 2010). For example, 

when finding the product of multiplication equations involving two digit numbers an array or 

grid model (see Figure 1) can be used to support students to find the solution strategy and as a 

form of justification.  

 

 

Figure 1. Representation of two-digit multiplication 

 

Representations to support understanding of the distributive property may also include number 

sentences. In Baek’s (2008) study, after observing students aged 8-years to 9-years old using 

solution strategies which involved partitioning, one of the teachers began recording their 

strategies in number sentences which explicitly represented the distributive and associative 

properties which they were drawing upon. These formal representations were later appropriated 

by the students and used to represent their partitioning strategies in such a way that the use of 

distributive property was highlighted. Teacher introduced representations of equivalent 

equations was also a feature in the classroom study of Schifter et al. (2008b). For example, after 

a student verbalised her solution strategy for 12 × 6 in which she grouped the twelve into 3 pairs 
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the teacher recorded 12 × 6 = (12 × 2) + (12 × 2) + (12 × 2) and asked the students to analyse 

and justify whether this was a true statement. This provided the students with a clear method of 

representing their equivalent statements which re-grouped the factors from the initial equation 

through use of the distributive property.  

 

Use of carefully structured true and false and open number sentences has also been found to 

support students to examine and generalise the distributive property. Baek (2008) maintains that 

the use of number sentences facilitates students to focus on the properties within the number 

sentences and shifts attention away from procedures for computation or the answer. In his study, 

when presented with true and false number sentences the students were able to recognise the 

equivalence of number sentences such as 4 x 8 = (2 x 8) + (2 x 8) and justify the distributivity 

through use of partial products. Similarly, Carpenter et al. (2005b) describe a USA based 

interview study with students aged 8-years to 9-years old where the teacher utilised a series of 

carefully structured true and false number sentences to scaffold student understanding of the 

distributive property as related to multiplication facts. The initial examples used with students 

exemplified a model of multiplication as repeated addition, however further examples drew 

implicitly on the distributive property and explored different ways of representing multiplication 

facts. This facilitated the students to notice relations between the number facts and draw on these 

to solve unknown facts. Student provided explanations drew on relational reasoning and 

indicated an understanding of multiplication which drew on the distributive property.  

 

2.3.4 Exploring ideas about operations and their relationships 

 

Developing understanding of inverse relationships between operations supports students to 

develop flexible computation strategies. Opportunities to focus specifically on inverse 
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relationships arise when students learn their basic number facts. Understanding the relationship 

between operations can support students to develop robust number fact knowledge more easily 

(Carpenter et al., 2003; Vance, 1998). Vance (1998) uses the example of 3 + 2 = 5 and 5 – 2 = 3 

in which subtracting two is “a way to undo the result of adding two” (p. 284). Engaging students 

in investigating such relations can equip them to understand how expressions can be 

manipulated and equations solved in later years.   

 

The use of word problems provides opportunities to provoke examination of the inverse 

relationship between operations. Often when students are asked to use an equation to represent 

and solve a word problem, their solutions utilise the inverse relationship. Facilitating the 

students to share their varying solution strategies during large group or whole class discussions 

can provide a context for discussing the relationships between operations (Bastable & Schifter, 

2008; Carpenter et al., 2003). Specific teacher actions can also focus student attention on 

exploring inverse relationships. For example, Carpenter et al. (2003) provide a vignette from a 

classroom with students aged 8-years to 9-years old where the teacher noticed students solving a 

word problem using both subtraction and addition. She specifically structured the students to 

make a conjecture about the relationship between addition and subtraction and then provided 

them with a framework of ‘if...then’ to show that the conjecture would always work.  

 

In addition to exploring the inverse relationships of operations, students should also be given 

opportunities to investigate the relationship between addition and multiplication and division 

and subtraction (Vance, 1998). Similar to investigating inverse relationships, this supports 

students in learning number facts as well as deepening their understanding of operations. 

Students will intuitively use their knowledge of addition to solve multiplication facts, for 

instance using knowledge of doubles to solve facts which involve multiplying by two. Carpenter 
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et al. (2005b) provide an example from an interview study with a student aged 9-years old who 

was asked whether 3 × 7 = 7 + 7 + 7 was a true number sentence. The student response drew on 

her understanding of the relationship between addition and multiplication. Such tasks afford 

opportunities for students to deepen their understanding of the relationships between operations.    

 

2.3.5 Understanding the properties of numbers: Odd and even numbers, zero and one 

 

Odd and even numbers 

Exploration of the structure of odd and even numbers provides a context which can support the 

development of early algebraic reasoning. Exploring and forming definitions of odd and even 

numbers and using representational material deepens student understanding of the structure of 

odd and even numbers and allows them to engage in learning to make and test conjectures and 

generalisations (Ball, 1993; Blanton & Kaput, 2005a; Carpenter et al., 2003; Hunter, 2010; 

Schifter et al., 2008a). Classroom research studies (e.g., Ball, 1993; Carpenter et al., 2003; 

Hunter, 2010) provide examples of how odd and even numbers can be used as a context for 

exploration. Ball (1993) describes a student developing an explanation of even numbers as 

having groups of two in them and odd numbers as having groups of two and one left over. In 

both Carpenter et al.’s (2003) study and the study by Hunter (2010) representational material 

along with the definitions of odd and even numbers supported the students to develop concrete 

justification of their conjectures.    

 

Quasi-variables have been successfully used to support students’ developing understanding of 

the structure of odd and even numbers. For example, Blanton and Kaput (2005a) illustrated how 

the introduction of large numbers as quasi-variables focused student attention on the structural 

features of odd and even numbers. Students were then able to draw on these structural features 

to connect arithmetic concepts in algebraic ways to justify their conjectures. Quasi-variables, 
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also utilised in Hunter’s (2010) study, facilitated the students to engage in mathematical 

argumentation which supported their developing understanding of the structure of the numbers. 

Some of the students in this study initially demonstrated difficulty in establishing which digit 

determined whether the numbers were odd or even, however, prolonged discussion and 

argumentation supported them to develop the understanding that the oddness or evenness of a 

number depended on the final digit. In subsequent lessons, the teacher was also able to press 

students to use their previously justified conjectures to determine whether sums would be odd or 

even.  

 

Developing deep understanding of the structure of odd and even numbers also provides students 

with a means to justify their reasoning and conjectures about other mathematical areas. Schifter 

et al. (2009) describe an episode from a classroom with students aged 8-years to 9-years old 

where the students engaged in a discussion of factors. When the teacher questioned whether two 

was a factor of 156, a student began to provide reasoning based on a previously explored 

generalisation that the sum of two even numbers is even. She then recognised that the 

generalisation needed to be extended to include three even numbers and provided verbal 

justification for this. Another student then built on the reasoning through referring to the 

structure of even numbers and evoking a visual image as justification.  

 

Properties of zero and one  

The properties of zero and one are potentially rich areas for pressing students to develop and 

investigate conjectures and generalisations. By carefully structuring tasks, young students can be 

supported to make generalisations. For example, Carpenter et al. (2005a) provide an example 

from a case study with students aged 7-years to 8-years old. The students were initially provided 

with a false number sentence (e.g., 78 – 49 = 78) which provoked an in-depth discussion of the 
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property of zero in relation to subtraction. The teacher introduced number sentences involving 

addition and subtraction with large numbers (e.g., 789 564 – 0 = 789 564 and 0 + 5869 = 5869) 

to press the students to articulate generalisations about the properties of zero in addition and 

subtraction. Student responses to the tasks and during the discussion demonstrated that they 

were able to determine whether number sentences were true through the application of 

generalisations.  

 

2.4 EARLY ALGEBRAIC REASONING AS FUNCTIONAL THINKING  
 

Functional thinking is described as “representational thinking that focuses on the relationship 

between two (or more) varying quantities, specifically the kinds of thinking that lead from 

specific relationships (individual incidences) to generalisations for that relationship across 

instances” (Smith, 2008, p. 143). Blanton and Kaput (2005b) maintain that definitions of 

functional reasoning should also include using diverse linguistic and representational tools to 

model and generalise both patterns and relationships. Using tasks which involve functional 

reasoning in primary classrooms provide further opportunities to integrate algebra into the 

existing curriculum and develop young learners’ early algebraic reasoning (Blanton & Kaput, 

2005a; Carraher et al., 2006).  

 

Research studies (e.g., Barbosa, 2011; Lee, 1996; Schliemann et al., 2007a) highlight a range of 

difficulties that students may encounter when engaging with functional reasoning tasks. An 

initial difficulty is while students may easily notice patterns in sets of data these patterns may 

not always be useful or relevant or extend to other cases. Also, without specific teacher 

intervention many students use recursive strategies which are less sophisticated and a limited 

form of generalisation (Barbosa, 2011; Lannin, Barker, & Townsend, 2006).  
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Other difficulties are linked to representational forms such as tables of data. These are an 

important tool for recording functional patterns however, when examining number patterns in 

tabular forms students often focus on recursive relationships among the consecutive values or 

complete the tables of data without specifically focusing on the relations among the values 

(Bishop, 2000; McNab, 2006; Schliemann et al., 2007a). Other researchers (e.g., Barbosa, 2011; 

Beatty & Moss, 2006; Becker & Rivera, 2006) have highlighted further difficulties which are 

caused by students relying on numeric strategies. Findings of these studies indicate the 

importance of facilitating students to focus on the visual structure of the sequence or pattern to 

support them to move beyond pattern-spotting to generalising specific cases.  

 

Evidence is provided in a range of research studies (e.g., Beatty & Moss, 2006; Blanton & 

Kaput, 2005a; Blanton & Kaput, 2005b; McNab, 2006) that young students are capable of 

engaging in functional thinking. Despite the difficulties outlined previously, tasks which involve 

working with functions provide students with opportunities to observe and describe patterns, 

develop rules and generalisations, interpret and test rules and formula, and develop their 

understanding of notation (Hunter, 2010; Lobato & Ellis, 2002; MacGregor & Stacey, 1997). Of 

key importance is the provision of opportunities for students to identify and develop verbal 

descriptions of numeric and geometric patterns and relationships which can then be used to 

scaffold symbolic representations of functional patterns (Bishop, 2000; Blanton & Kaput, 

2005a). For younger students, providing solution strategies in everyday language gives the 

teacher an opportunity to act as a facilitator and ‘translate’ the students’ solution strategies into 

symbolic forms which represent their method (Bishop, 2000).  

 

Using tasks which are carefully structured to facilitate students to use and connect a variety of 

representational forms to describe both numeric and geometric patterns support the 
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communication, generalisation, and justification of functional rules (Beatty & Moss, 2006; 

Blanton & Kaput, 2005b; McNab, 2006). For example, McNab (2006) reports on a Canadian 

teaching intervention with students aged 7-years to 8-years old where students were facilitated to 

integrate different representations. For the initial tasks that included visual and spatial 

representations the integration of numeric data was encouraged by the placement of an ordinal 

position number under the pattern which was linked to the position of the pattern. Function 

machines with the results recorded on T-charts (see Figure 2) were then introduced to encourage 

exploration of numeric representations.  

 

 

 

 

 

Figure 2. T-chart 

 

To avoid positioning students to focus on recursive patterns the use of non-sequential examples 

were used to ensure that student attention was drawn to the horizontal relationship or functional 

rule. The final tasks supported students to integrate all the aspects of the previous activities by 

developing their own geometric patterns and related secret rules. Assessment following the 

intervention indicated that many of the students were able to recognise functional rules and 

express these in multiple forms. Similarly, results from another Canadian study by Beatty and 

Moss (2006) with students aged 10-years to 11-years old found that students who integrated the 

use of representational context and numeric strategies to solve problems had more robust 

understanding of functions and were able to fluently use representations, including symbolic 

notation, for problem solving.   

 

Number of tables Number of people 

1 5 

2 8 

3 11 

4 14 

 



36 

 

2.5 TOOLS AND REPRESENTATIONS TO SUPPORT EARLY 

ALGEBRAIC REASONING 
 

Tools and representations play an important role in developing early algebraic reasoning. Both 

informal and formal representational forms can be used to support the development of early 

algebraic reasoning (Blanton & Kaput, 2005a; Carraher, Schliemann, & Schwartz, 2008). These 

may include drawings, diagrams, tables of data, and notation which support students to organise 

their reasoning as well as develop and express mathematical arguments and justification 

(Blanton & Kaput, 2005a). Often teachers need initially to encourage and scaffold student use of 

tools and representational forms, however, research studies (e.g., Blanton & Kaput, 2005a; 

Carraher et al., 2008) provide evidence that following teacher led introduction of 

representations, students can adopt and use tools for their own purposes without teacher 

prompting.  

 

2.5.1 T-charts and tables of data 

 

Introducing students to T-charts and tables of data can support them to organise the data within a 

problem situation. Moreover, they can facilitate the recognition of patterns and relationships in 

the data (Blanton & Kaput, 2005a; 2005b; Schliemann et al., 2007a). In their work with 

functional relationships, Blanton and Kaput (2005b) found that introduction of T-charts built an 

early representational infrastructure that supported algebraic reasoning. Tables of data may also 

be used to facilitate students to generalise patterns and interrelations among sets. For example, 

Carraher et al. (2008) used a table of data to scaffold students to recognise valid answers within 

two interrelated sets and to highlight the invariant features of the valid answers. Similarly, 

Blanton and Kaput (2005b) outline a classroom episode where a student developed a reasoned 

argument using a t-chart to refute the symbolic relationship her classmate had proposed.  
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2.5.2 Drawings and diagrams  

 

One means of developing younger students’ use of representational forms is to encourage the 

use of drawings to represent problem situations. Facilitating students’ representation of their 

thinking and reasoning through drawings supports the students to develop informal 

representations which can later be bridged with more formal conventional representational forms 

(Carraher et al., 2008). It can also provide a means for teachers to investigate student thinking 

and understanding of problem situations. For example, Carraher et al. (2008) report on a two 

year teaching intervention with students aged 8-years to 10-years old where students were 

consistently asked to use drawings and explanations to demonstrate their understanding of 

mathematical problems. Towards the beginning of the intervention, students were asked to 

represent what they knew about a story problem involving unknown quantities through drawing. 

This provided the teacher with insight into student thinking which revealed two distinct foci: 

assigning the unknown quantity a specific value, or leaving the amount as indeterminate. The 

teacher was then able to use this to guide the lesson and as a means of introducing new 

notational forms. Later in the teaching intervention, the researchers demonstrate how students 

had begun to use drawings in a different role to convey general, algebraic representations of 

problem situations.  

 

2.5.3 Algebraic notation and variables 

 

One of the goals of early algebra is to support students to develop understanding of algebraic 

symbolisation. The notational system of algebra is a powerful tool which can allow students to 

work at a higher level of generality. However, without deep understanding many learners engage 

in meaningless symbol manipulation (Bastable & Schifter, 2008; Kaput et al., 2008a). Research 
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studies (e.g., MacGregor & Stacey, 1997; Weinburg et al., 2004) illustrate that many young 

students have limited classroom experiences in exploring notation. MacGregor and Stacey’s 

(1997) large-scale study using a pen and paper test with students aged 12-years to 16-years old  

found that the reason students often viewed letters as abbreviated words was due to 

inappropriate teaching methods where letters were used to represent objects. The lack of 

classroom opportunities to use and explore notation also led students to base their interpretation 

of notation on intuition, guessing, and false analogies. Another study by Weinburg et al. (2004) 

used a written assessment and semi-structured interviews to investigate students aged 12-years 

to 14-years old interpretation of algebraic notation. Their findings highlighted two common 

misconceptions among students, the notion that a single letter variable can only stand for a 

single number and that variables represented by different letters could not be the same number.  

 

In primary classrooms focused on developing early algebraic reasoning students often begin 

expressing conjectures and generalisations with natural language. However, at times it can be 

difficult to state conjectures verbally in a precise, unambiguous way (Bastable & Schifter, 2008; 

Carpenter et al., 2003). Introducing algebraic notation to younger students provides them with 

opportunities both to explore notation and develop their understanding of the concept of 

variables as well as learn to express conjectures more precisely (Carpenter et al., 2003; Carraher 

et al., 2006; Schliemann et al., 2007). However, researchers note that it is important that formal 

notation is introduced gradually and students are provided with ample opportunity to develop, 

extend, and adjust their understanding (Carraher et al., 2008). Results of an interview based 

study carried out with students aged 8-years to 9-years old by Schliemann et al. (2007a) found 

that the students could develop consistent notations such as circles or shapes to “represent 

elements and relationships in problems involving known and unknown quantities” (p. 59). 

Provision of such classroom experiences where students develop their own symbolic 
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representations can provide students with a scaffold for the introduction of more formal 

representations.  

 

Research studies involving classroom interventions provide further evidence of young students’ 

capability to use notation as a tool to understand and express arithmetical and functional 

relationships. Findings of research studies (e.g., Carpenter et al., 2003; Carpenter et al., 2005a) 

involving work with true and false and open number sentences indicate that these can provide 

students with an accessible notation to express generalisations with variables. Carpenter et al. 

(2005a) provide an example from a year-long classroom intervention with students aged 6-years 

to 8-years old. During one lesson students were asked to write an open number sentence that was 

true for any number. Following prolonged whole class discussion and teacher scaffolding, 

students were able to formulate generalisations with open number sentences such as 0 + m = m. 

At the end of the year-long intervention the majority of students could use symbols to represent 

generalisations. These researchers replicated this work across the primary grades and in two 

other case studies they found that 80% of students aged 9-years to 12-years old were able to use 

variables to express generalisations.  

 

Classroom work involving functional relationships provides students with opportunities to 

construct notations and to extend their understanding of variables. Students can also be 

facilitated to make sense of notation through connecting imagery and concrete experiences with 

symbolic notation (Blanton & Kaput, 2005b). For example, Hunter and Anthony (2008) report 

on a New Zealand based study with students aged 8-years to 11-years old where a pair of student 

specifically linked their symbolically represented notation to the geometric model to convince 

the other group members of their argument. The representation of functional rules also provides 

opportunities to deepen student understanding of the conventions of algebraic notation.  
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2.6 SUMMARY 

 

This review provides research evidence to challenge the view that younger children constrained 

by cognitive ability cannot engage in algebraic reasoning. It highlights the difficulties caused by 

the artificial divide between arithmetic and algebra and gives a wider definition of early 

algebraic reasoning to include both content and process.  

 

In order to make the opportunities to develop algebraic reasoning in primary classrooms explicit, 

a close examination of the key content areas which may be utilised to develop early algebraic 

reasoning was undertaken. The review recognises the complexity of developing rich algebraic 

understanding and offers examples of international classroom based case studies which highlight 

appropriate tasks and activities for engaging primary students in algebra. These studies provide 

exemplars of how the foundations may be developed for students to be prepared to learn formal 

algebra in later years. However, as outlined in Chapter One, there does appear to be a scarcity of 

primary classroom research studies situated within the UK which explicitly examine how early 

algebraic reasoning can be developed. The current study is designed to address this gap by 

investigating how teachers can support students within the primary schooling system in the UK 

and British Isles to develop rich forms of algebraic reasoning.  

 

The development of algebraic reasoning goes beyond content areas and also requires specifically 

designed learning environments. Chapter Three will examine the aspects of the learning 

environment that support algebraic reasoning. The importance of task design and 

implementation will be explained. An analysis will be undertaken of the key classroom practices 

which support development of algebraic reasoning and the mathematical practices which are 

linked to this.   
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CHAPTER THREE 

DEVELOPING LEARNING ENVIRONMENTS WHICH 

SUPPORT EARLY ALGEBRAIC REASONING 
 

3.1  INTRODUCTION 

 

In the previous chapter attention was drawn to the key mathematical content areas which offer 

opportunities for primary students to engage in algebraic reasoning. Critical aspects of early 

algebra reform include the ‘what’ and the ‘how’ teachers teach. This chapter examines those 

aspects of the learning environment that support engagement in early algebraic reasoning.  

 

Section 3.2 discusses the importance of task design and implementation in developing early 

algebraic reasoning, focusing on those factors within task design and implementation which 

potentially offer greater affordances for algebraic activity.  

 

Section 3.3 reviews research literature that describes the key classroom practices that support 

engagement with algebraic reasoning. It begins by identifying the importance of re-visiting 

algebraic concepts on multiple occasions and highlights how this facilitates students both to 

explore concepts deeply and reason in more complex ways. It then argues that specific types of 

discourse focused on using rich, conceptually embedded mathematical talk can support student 

construction of early algebraic reasoning. An overview is provided of how pedagogical actions 

can be used during small group work and whole class discussions to promote productive 

mathematical discourse. Illustrating how instruction focused on student thinking and reasoning 

can support early algebraic reasoning, the section highlights the changing ways that teachers 
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must prepare and undertake their lessons. This section concludes with a discussion of the 

important role of the classroom practice of questioning for the development of the classroom 

environment. The argument is developed that through teacher modelling and scaffolding, 

students can themselves generate the types of questions which support engagement with 

algebraic reasoning 

 

Section 3.4 outlines the key mathematical practices which are linked to the development of 

algebraic reasoning. It highlights the importance of supporting students to develop their use of 

mathematical language and construct reasoned mathematical explanations which are responsive 

to the listening audience. Research literature is drawn upon which illustrates how teachers can 

exploit opportunities in the classroom to engage students in the mathematical practices of 

justification and proof. Finally, the important role of the mathematical practice of making 

conjectures and developing these into generalisations is examined.  

 

3.2  TASK DESIGN  

 

The use of tasks is an important factor in developing early algebraic reasoning. As outlined in 

Chapter Two, there are a range of research studies which illustrate how early algebra can be 

taught through tasks involving generalised arithmetic and functional reasoning. However, 

research studies also highlight some general factors within task design which potentially provide 

greater affordances for algebraic activity. These factors will be outlined in the following section.  

Facilitating algebraic reasoning can be accomplished through variation of the task parameters. 

Here the openness of the task, achieved by extending the number of answers from a closed 

single answer to multiple solutions, shifts the purpose of the task from computation to 

examining patterns or relationships (Blanton & Kaput, 2005b; Kaput & Blanton, 2005; Smith & 
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Thompson, 2008; Soares, Blanton & Kaput, 2005). For example, Blanton and Kaput (2005b) 

describe how the task parameters could be extended to develop what they term an ‘algebrafied’ 

problem by changing the single solution problem: How many telephone calls could be made 

among 5 friends if each person spoke with each friend exactly once on the telephone? to a 

sequential set of problems:  How many telephone calls would there be if there were 6 friends? 

Seven friends? Eight friends? Twenty friends? One hundred friends? Organize your data in a 

table. Describe any relationship you see between the number of phone calls and the number of 

friends in the group. How many phone calls would there be for n friends? This set of problems 

provides opportunities for students to examine patterns and relationships. It also facilitates 

engagement with the mathematical practices of developing conjectures, justifying, using 

representations, and generalising.  

 

Similarly, designing tasks which involve series of number sentences offer opportunities to 

engage students in algebraic reasoning (Carpenter et al., 2005b; Kaput & Blanton, 2005). 

Examples from research studies (e.g., Baek, 2008; Carpenter et al., 2005a; Carpenter et al., 

2005b; Hunter, 2010) provided in Chapter Two showed how students could develop conjectures 

and generalisations from carefully chosen sequences of number sentences which illustrated 

patterns. When students were encouraged to examine sequences of unexecuted sums without 

computing answers, they began to engage in the types of structural analysis which supported 

early algebraic reasoning (Kaput & Blanton, 2005; Smith & Thompson, 2008).  

 

Another method of facilitating students to attend to structure and generality is through tasks that 

require students to generate more problems of the same type (Mason, 2008; Soares et al., 2005). 

For example, students could be asked to offer solutions for the following question: Nineteen 

divided by two equals nine with a remainder of one, what other numbers share this property? In 
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this way an arithmetic task can be developed into a task focused on generalisation. Also, asking 

students to generate more problems of a similar type can be used as a formative assessment task. 

For example, Carpenter et al. (2003) advocate asking students to generate their own true and 

false number sentences to provide an indication of their thinking about equality, relations, and 

other important mathematical ideas.  

 

Another factor in designing or adapting tasks to facilitate algebraic reasoning is the use of 

contextual support within word problems to support sense-making of abstract concepts (Ding & 

Li, 2010; Koedinger & Nathan, 2004; Smith & Thompson, 2008). Ding and Li’s (2010) study of 

text-books’ presentation of the distributive property found that contextual support of word 

problems within USA text-books was limited when compared with Chinese text-books. For 

example, within the Chinese text-book the structure of the problem concerning finding the cost 

of 102 t-shirts priced at 32 yuan allowed students to make sense of distributive property by 

splitting 102 into 100 and 2 and then relating this to the context of the problem with 102 viewed 

as 100 t-shirts and 2 t-shirts. Careful construction of word problems allows students to solve 

problems through use of informal strategies and to make sense of different concepts within 

algebra (Carraher et al., 2008; Ding & Li, 2010; Koedinger & Nathan, 2004). 

 

Tasks which offer students the opportunity to use multiple representations can also facilitate 

algebraic reasoning. Research studies (e.g., Beatty & Moss, 2006; Kaput & Blanton, 2005; 

McNab, 2006) demonstrate how tasks that offer opportunities for multiple representations can 

cultivate the practice of students using different forms of representation to communicate 

reasoning and to justify thinking. For example, Beatty and Moss (2006) describe the use of a 

problem where students were required to generate a functional rule that predicted the number of 

chairs that would fit around any number of tables. This required the students to use concrete 
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materials, verbal explanations, and tables of data. Such tasks also support students to develop the 

ability to access different forms of representation including symbolic forms and move between 

these forms flexibly utilising the representation which provides the greatest affordance for the 

task (Schoenfeld, 2008).  

 

A further design principle in developing tasks that support algebraic reasoning involves the 

utilisation of connections between different mathematical content areas. Tasks which exploit the 

connections within mathematics provide learners with opportunities to think about content in 

new ways.  Also, a foundation is laid for the meaningful use of algebraic tools. For example, 

Schoenfeld (2008) describes how a rate and ratio problem could be extended through the 

introduction of a graphical representation. This then shifts the problem to include ideas about 

functional relationships. Extending tasks in this way supports students to view the connections 

within mathematics and algebra. It also allows students to be introduced to new representations 

in a way which links their interpretations with a meaningful context.  

 

The careful design or extension of tasks within different mathematical areas to include algebra 

allows algebraic reasoning to become an everyday part of mathematics lessons (Kaput & 

Blanton, 2005; Schoenfeld, 2008). For example, Kaput and Blanton (2005) illustrate how a 

teacher with a class of students aged 6-years to 7-years old in adapting a combinatoric problem 

involving combinations of outfits of pants and shirts was able to support her students to build 

generalisations. The task was enacted in the classroom with students using coloured cut-outs of 

the pants and shirts and recording information onto chart paper. These researchers argue that 

many tasks can be extended and ‘algebrafied’ across the mathematics curriculum thereby 

allowing algebraic reasoning to permeate mathematics instruction.  
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It is necessary also to consider factors which support or inhibit successful task implementation. 

While the use of carefully designed algebraic tasks is important, there are also a range of 

classroom factors which may influence engagement with the task. Research studies (e.g., 

Henningsen & Stein, 1997; Sullivan, Mousley, & Zevenbergen, 2006) have investigated how to 

successfully maintain the cognitive demand of challenging tasks such as those used to develop 

algebraic reasoning with heterogeneous classes. Two of the key findings from Henningsen and 

Stein’s (1997) study were the importance of how the task was implemented by the teacher and 

appropriate allocation of time to the task. They provide examples of teachers reducing the 

complexity of the task during the implementation phase by providing explicit procedures or 

solving the more difficult aspects of the task themselves. The demand of the task was also 

hindered by a shift towards a fast pace and focus on correct answers rather than meaning and 

understanding. Alternatively at other times, students were provided with too much time and the 

focus on mathematics was lost. Another factor identified by Sullivan et al. (2006) is the need for 

teachers to develop enabling prompts which facilitate all students to access high level tasks and 

extending prompts which can be used to extend thinking. Both of these studies highlight the 

need to move beyond task design to also consider how algebraic tasks are implemented within 

the classroom. 

 

3.3  CLASSROOM PRACTICES TO SUPPORT ENGAGEMENT IN 

ALGEBRAIC REASONING  
 

The previous section highlighted principles for designing tasks which support the facilitation of 

algebraic reasoning. However, the introduction of appropriate tasks alone does not necessitate 

student development of early algebraic reasoning. It is critical to establish a learning 

environment which supports children to engage in early algebra (Blanton, 2008; Schoenfeld, 

2008; Smith & Thompson, 2008). Teachers have an important role in establishing the learning 
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environment; ways of working which are valued and promoted by the teacher facilitate both the 

classroom environment and its ethos (Mason, 2008; Smith & Thompson, 2008). Studies provide 

evidence for the existence of a range of classroom practices that although not limited to early 

algebra afford opportunities for students to engage in algebraic reasoning. The following section 

will outline some of the key classroom practices which are identified in the research literature. 

These include: re-visiting key concepts; facilitating productive discourse; focusing on student 

thinking and reasoning; and developing questioning. 

 

3.3.1 Re-visiting concepts  

 

A key practice in developing early algebraic reasoning is creating a learning environment where 

students are re-exposed to important algebraic concepts on multiple occasions (Bastable & 

Schifter, 2008; Blanton, 2008; Ding & Li, 2010). A number of classroom research studies (e.g., 

Blanton & Kaput, 2005a; Falkner et al., 1999) demonstrate how teachers can integrate key 

concepts of early algebra effectively into their lessons. For example, Blanton and Kaput (2005a) 

reporting on the effective practices used by a teacher from their professional development group 

signalled that the practice of spiralling particular algebraic themes into lessons and re-visiting 

these over the school year was key. Similarly, the classroom based study by Falkner et al. (1999) 

investigating students aged 6-years to 8-years old understanding of the equals sign affirmed the 

need to re-visit the concepts of equality continually. In this study, the teacher integrated 

discussions of equality into the classroom over the whole school year through the use of open 

and true and false number sentences. As a result, the students were facilitated to build their 

understanding and reflect on the meaning of the equals sign. Both of these studies demonstrate 

how re-visiting key concepts results in students undertaking in-depth exploration of ideas and 

developing their ability to reason in more complex ways. 
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3.3.2 Facilitating productive discourse 

 

Engaging in rich conceptually embedded mathematical talk is a critical component of 

classrooms with a focus on early algebra (Blanton, 2008). However, it is well-documented 

within research literature (e.g., Fisher, Frey, & Lapp, 2011; Mehan, 1979; Pape et al., 2010; 

Wood, Williams, & McNeal, 2006) that within traditional mathematics classrooms a typical 

pattern of classroom discourse follows a structure of IRE: initiate-respond-evaluate. In this type 

of discourse, the teacher initiates an interaction, often through questions which gather 

information and require immediate responses; the subsequent student response is then evaluated 

by the teacher. Consequently the teacher takes the role of the person who both holds and 

dispenses knowledge while the students receive the knowledge (Bell & Pape, 2012). Criticisms 

of this discourse pattern include that it lowers student engagement and offers limited 

opportunities for students to verbalise ideas, construct knowledge, and develop a sense of 

agency (Bell & Pape, 2012; Fisher et al., 2011; Nathan, Kim, & Grant, 2009).  

 

Developing a learning community where students have the opportunity to engage in the type of 

mathematical discourse which underlies algebraic reasoning optimises students’ engagement 

with early algebra. However, developing classroom communities which promote interactive 

mathematical talk is challenging for many teachers and their students, particularly because they 

may not have previously experienced learning and teaching in such classrooms (McCrone, 2005; 

Sherin, 2002a; Stein, 2007). This inexperience extends to environments which explicitly 

promote the type of discourse which supports student construction of early algebraic reasoning 

(Blanton, 2008). This section will outline how productive discourse can be facilitated during 

small group work and whole class discussions.  
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Teachers take a significant role in guiding the development of mathematical discourse in the 

classroom and ensuring active engagement by all students. Engagement in collaborative 

interaction necessitates a shift away from the more traditional role of students as passive 

receivers of instruction to active and constructively critical participants within the classroom 

community. Specific pedagogical practices can to support such a shift. For example, McCrone 

(2005) illustrated how a teacher in a classroom with students aged 10-years to 11-years old 

shifted students’ participation in discourse from parallel conversations characterised by a lack of 

active listening to that of critical active participants through pedagogical actions such as 

modelling active listening and reflecting on the ideas of others. The teacher also initiated explicit 

discussions to emphasise the importance of active reflection and participation in mathematical 

discussions. Similarly, Reid and Zack (2009) described a classroom in which the students were 

expected to express their thinking and engage in analysing the reasoning of others. Changes in 

expectations by the teacher were accompanied by greater student awareness of how their peers 

could contribute to their understanding and how they could extend and reshape the ideas of 

others. Both of these studies demonstrate how teacher expectations and specific pedagogical 

actions can support the development of a classroom community where students’ mathematical 

reasoning is facilitated through productive discourse.   

 

To position students in interactive dialogue, teachers may also use key pedagogical tools—often 

referred to as talk moves (Chapin & O’Connor, 2007)—of rephrasing, repeating, and revoicing 

(O’Connor & Michaels, 1996; Stein, 2007). Through teacher revoicing, students learn to take a 

specific stance in the dialogue and develop the skills of inquiry and mathematical argumentation 

as they defend or challenge ideas (O’Connor & Michaels, 1996). Revoicing can also be used to 

build on student thinking, clarify reasoning, highlight specific aspects of the mathematical 
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thinking, or extend, rephrase, and further develop it (Chapin & O’Connor, 2007; Lampert & 

Cobb, 2003; Stein, 2007). An example by Schifter et al. (2009) is shown in the vignette below. 

In this classroom episode, the teacher used revoicing to support the students to develop 

connections between their ideas and to facilitate them to take a specific stance in developing 

their generalisation.  

 

Using revoicing to develop connections and position students to take a stance 

Alice Royden’s classroom of students aged between 8-years to 9-years old were investigating 

conjectures about the sum of even numbers. She had asked them to discuss whether the sum 

of even numbers would be even. A student begins by providing an explanation based on a 

previously agreed upon generalisation:  

 

Catherine: It’s because even plus even equals even, and that even plus another even will 

equal even, and then you could just go on and on and on.  

 

To encourage the students to hear different perspectives the teacher asked another student to 

present her way of understanding the idea.  

 

Lark:  I’m thinking maybe it’s because of that two, because every even number is 

made up of twos.  

 

The teacher then revoiced the student’s idea as a question. In doing so she supported the 

class to develop the connections between Catherine and Lark’s explanations. She also 

positioned Lark to clarify her generalisation and take a stance.  

 

Teacher:  Are you saying that another way of looking at Catherine’s idea is to think of it 

as some count of two plus some other count of two plus, and so on, is always 

going to equal a number that has some count of two?  
 

Lark then provided a further argument for the generalisation drawing on the definition the 

class had formulated of even numbers as a count of two.   

 

Lark:  So, since every even number is a count of two and I’m adding an even plus an 

even, what I’m doing is adding like three counts of two plus two counts of 

two. I’m always going to end up with some count of two, and I’m always 

adding a count of two together. And since counts of two plus counts of two 

always equal counts of two, it will always equal an even number, a count of 

two.  

 

From Schifter, Russell, & Bastable (2009) 
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In this vignette, the teacher used revoicing to support the students in developing generalisations. 

By rephrasing the explanation into a question, she positioned the students to take a stance and 

develop more specific explanations and arguments.  

 

Many reform mathematics environments, including those which focus on early algebraic 

reasoning, feature the use of small group (2-4 children) mathematical activity followed by whole 

class discussions. During small group work learning opportunities arise from collaborative 

dialogue and the resolution of differing points of view (Whitenack & Yackel, 2002). Small 

group discussions can also provide opportunities for students to rehearse their explanations, 

justification, and analysis of their solution strategies (Hunter, 2009). But as in whole class 

discussion, explicit teacher scaffolding is important to structure small group interactions. 

Research studies (e.g., Hunter, 2009; Monaghan, 2005; Rojas-Drummond & Zapata, 2004) show 

how careful guidance can be provided by the teacher so that students can learn appropriate ways 

to work and talk within a group. These researchers built on the seminal work of Mercer (2000). 

Mercer outlined how young students use three different forms of talk—exploratory, 

disputational, and cumulative—during small group interaction. The three forms of talk involve 

different levels of engagement in the reasoning of peers. Mercer described disputational talk as 

characterised by students focusing on self-defence and holding control rather than trying to 

reach joint agreement. In using cumulative talk, students avoid questions and argument which 

results in a lack of evaluative examination of reasoning. These are both largely unproductive 

forms of talk. Exploratory talk in contrast is a productive form of talk in which the students 

explore and critically examine the shared reasoning. In many different studies Mercer et al. (e.g., 

Littleton et al., 2005; Mercer, Littleton, & Wegerif, 2004; Mercer & Sams, 2006) showed that 

constructing group interactions which use exploratory talk requires deliberate teacher attention, 

intervention, and scaffolding of group talk. 
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The use of whole class discussions extends mathematical reasoning beyond that of small groups. 

To develop algebraic reasoning, it is important that students are positioned to listen actively and 

make sense of a range of mathematical explanations. A range of research studies (e.g., Bastable 

& Schifter, 2008; Carraher et al., 2008; Fosnot & Jacob, 2009; Reid & Zack, 2009) have 

demonstrated how teachers are able to structure whole class discussions successfully to develop 

young students’ algebraic reasoning. In these studies the teacher takes a central position in 

orchestrating and facilitating productive whole class discussions by leading shifts in the 

discussion to ensure that it is conceptually focused and reflective (Lampert & Cobb, 2003). 

Kazemi (1998) illustrated how discourse promoting conceptual reasoning was achieved through 

the use of specific pedagogical actions. These included questioning in sustained exchanges, 

pressing students to provide conceptually focused justification for mathematical actions, and 

facilitating student examination of similarities and differences across multiple strategies.  

 

3.3.3 Focusing on student thinking and reasoning 

 

Utilising student thinking and reasoning as a central element of instruction is key in classrooms 

with a focus on algebraic reasoning. In a role as facilitator the teacher can extend students’ 

thinking into an exploration of generality (Bastable & Schifter, 2008; Blanton & Kaput, 2005b). 

As highlighted in the earlier section, developing early algebraic reasoning requires the use of 

well-structured instructional tasks which have varying solution pathways. However, this creates 

challenges for teachers, particularly because students may approach tasks in different and 

sometimes unanticipated ways (Sherin, 2002a; Stein et al., 2008). It is important that teachers 

are able to listen carefully and interpret student thinking (Blanton, 2008; Stein et al., 2008).  
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A key challenge described by Stein et al. (2008) is for teachers to use students’ reasoning and 

responses to tasks in a way that advances the mathematical learning of the whole class. Stein et 

al. propose a model of five practices to successfully manage whole-class discussions where 

student reasoning is at the centre. These practices are: anticipating likely student responses; 

monitoring students’ responses to the tasks; selecting particular students to present their 

mathematical responses; purposefully sequencing the student responses, and supporting students 

to make mathematical connections between different responses and key ideas.  

 

Anticipating student responses involves thinking about the possibilities of both correct and 

incorrect strategies that students may use and how these relate to concepts, procedures, and 

representations (Stein et al., 2008). In the context of creating a classroom environment which 

focuses on early algebra this requires teachers to recognise both the opportunities for algebra 

within a task and student responses which demonstrate an algebraic way of thinking (Blanton & 

Kaput, 2003; Franke et al., 2008). For example, Franke et al. (2008) describe observing a lesson 

where students aged 8-years to 9-years old solved the problem: If 6 cows have 4 legs each, how 

many legs are there altogether? In this study the four different solution strategies that were 

elicited from the students by the teacher were not related in any productive ways to a discussion 

of commutativity. The researchers hypothesised that had the teacher anticipated potential 

responses and opportunities for early algebra within the task, more space may have been created 

for the integration of algebraic reasoning into lessons.  

 

In Stein et al. (2008) five practices model, monitoring student responses while they are working 

on tasks allows teachers to assess and make sense of students’ mathematical thinking. This can 

be achieved by carefully listening to student discussions and asking probing questions if 

necessary. Monitoring also provides opportunities to consider the solution strategies and 
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representations which will be important to share during the whole class discussion (Stein et al., 

2008). For example, Fosnot and Jacob (2009) describe an episode from a classroom with 

students aged 10-years to 11-years old where students were asked to solve a problem: MT 

decides to hold a jumping contest. The three contestants are Cal, Sunny, and Legs. In this 

contest, all frog steps are the same size. Also when a frog jumps, he always travels the same 

distance. Your problem is to find out which frog has the biggest jump. When Cal jumps three 

times and takes six steps forward he lands in the same place if he jumps four times and takes two 

steps backwards. When Sunny jumps four times and takes 11 steps forward he lands in the same 

place if he jumps five times and takes four steps forward. When Legs jumps two times and takes 

13 steps forward he lands in the same place if he jumps four times and take five steps 

backwards. Solving this problem involved “cancellation of equivalent amounts with variables” 

(p. 113) using an open number line diagram as a tool. Careful monitoring of the students while 

they worked on the investigation revealed that a number of students were using arithmetic, many 

students had difficulty comparing the quantities due to the way in which they attempted to use 

the number lines, and some were beginning to make sense of how cancellation could be used to 

solve the problem. By monitoring these responses, the organisation of the subsequent discussion 

was able to be shaped effectively to enhance learning. 

 

Careful monitoring of student observations and questions can also support the development of a 

‘conjecturing atmosphere’ (Bastable & Schifter, 2008; Blanton, 2008; Mason, 2008). The 

generalisations that children engage with while explaining their reasoning during small group 

work can be identified and then explored during whole class discussions. An example of this is 

presented in a study by Schifter et al. (2008b) in which students aged 7-years to 8-years old were 

working to generate ways to make ten. As the teacher observed the students working, she noted 

that many of them were utilising the commutative principle which they had informally termed 
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‘turn arounds’. Noting also that some students were making statements such as: turn arounds 

always work prompted the teacher to use this to lead a whole group discussion and probe the 

students’ understanding of additive commutativity.  

 

In addition to selecting and sequencing the student responses purposefully to advance particular 

mathematical concepts or focus on important mathematical ideas, the teacher can also ensure 

that common misconceptions are explored and examined or specific solution strategies 

introduced (Stein et al., 2008). For example, in the lesson described previously from the study 

by Fosnot and Jacob (2009), three students were selected purposefully to share their solution 

strategies during the whole class discussion. The first student selected had struggled but was 

beginning to make sense of cancellation through use of a diagram. This diagram was easily 

accessible for the other students and supported them to understand her reasoning. The second 

student was more confident in her explanation and also used a solution strategy which utilised a 

diagram. Finally, the third student presented a solution strategy to the class using a diagram and 

equations. His work included what could be considered a generalisation of the cancellation 

strategy. The selection and sequencing of the shared reasoning supported all the students to 

develop their understanding of cancellation strategies. The example provided shows how by 

carefully selecting and sequencing student responses, teachers are able to guide whole class 

discussions to advance the instructional agenda.  

 

A key goal in orchestrating discussions advanced by Stein et al.. (2008) is that the teacher 

supports and facilitates students to draw mathematical connections between the strategies and 

representations that are shared. This may involve asking students to analyse the differences or 

similarities between solution strategies and assessing the efficiency of differing approaches 

(Kazemi, 1998) or to connect and analyse the types of representations, operations, or concepts 
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that were used. For example, in the classroom episode reported by Fosnot and Jacob (2009), 

students were asked to analyse the first two strategies which were presented and discuss how 

they were similar and different. This led to the students connecting the similarities between the 

representations used and identifying that both solution strategies took away the unknown 

equivalent jumps. This was then used to promote reflection on the use of cancellation strategies 

with students being asked why equivalent jumps could be taken away and whether it mattered if 

the size of the jumps were unknown when they were taken away. When the third solution 

strategy was shared, the student was asked to connect his equation with the representational 

diagram he used and then the class was asked to analyse whether he also used the same rules as 

the previous solution strategies. This example showed the class working as a community to 

develop their understanding of the cancellation of equal amounts of an unknown. As illustrated, 

developing mathematical connections between different solution strategies and representations 

facilitated students to reflect on other students’ ideas and the efficiency of their solution 

strategies. This also supports students to evaluate and revise their own ideas (Stein et al.., 2008).  

 

The classroom practice of putting student reasoning at the centre of instruction gives students’ 

authority over their mathematical work. However, students’ work and reasoning must also be 

held accountable to the discipline of mathematics. An important role for the teacher is to 

facilitate students collectively to develop a set of ideas and processes which are accepted as 

worthwhile and important in mathematics. Through using the five practices described above, 

Stein et al. (2008) argue that accountability to the discipline may be maintained without 

undermining students’ mathematical authority.   
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3.3.4 Developing questioning  

 

Questioning takes an important role in the development of the classroom environment and ways 

in which students approach tasks. However, evidence from research studies (e.g., Boaler & 

Brodie, 2004, Graesser & Person, 1994; Hiebert & Wearne, 1993) highlights that the majority of 

teacher questions used in classrooms consist of low level questions which elicit short answer 

responses consisting of the recollection of facts, rules, and procedures. Other studies (e.g., 

Franke et al., 2009; Wood, 1998; Wood, Cobb, & Yackel, 1991) have illustrated how teacher 

questioning may be classified as leading or funnelling questions which direct students to 

complete a task in a specified way or to ensure correct answers. In this case, the teacher 

undertakes the mathematical thinking and the questioning relates to a teacher selected solution 

strategy rather than the students’ mathematical thinking (Franke et al., 2009). The following 

vignette is used by Franke, Turrou, and Webb (2011) to illustrate how questions can be 

structured to focus students on the next step rather than elicit student reasoning.  

 

Teacher questioning to lead students to a teacher selected solution strategy 

Ms Gomez asked her students to solve the following number sentence:  

14 ÷ 2 = 3 × __ + 1. While the students are working in pairs, she steps in to help two 

students:  

 

Miguel: Three times one…  

 

The teacher uses a leading question to direct the students towards her approach of 

solving one side.  

Ms Gomez: Ok, but you are working on number one…So remember, we always ask  

ourselves, which of the two sides is complete. The left side or the right 

side?   

Miguel:  Left side. (pointing on paper with pencil) 

 

The teacher again uses leading questions to facilitate the students to complete the task 

in her chosen approach.  

Ms Gomez:  Ok, so can you solve the one that’s complete? (Miguel nods) So, do you  

think that’s a good idea if you solve that first? (Miguel nods) Ok. 

(Miguel looks up at the teacher) So what does that tell you?  

Miguel:  That fourteen divided by two equals, is the same as seven?  
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Ms Gomez:     Ok, very well read. Now so, if this side equals seven, what does this  

side… Oh my, you’ve already solved it.  

 

From Franke, Turrou, and Webb, (2011) 

 

 

In this vignette, the teacher used questioning to lead the student towards using her approach to 

solve the problem correctly. She did not elicit the student’s understanding of the problem or 

provide opportunities for him to develop his understanding of what the task was asking him to 

do. As Franke et al. (2009) argue these types of questions can limit opportunities for students to 

build and develop their own mathematic understanding. 

 

Transforming the types of questions asked in the classroom supports a shift in the classroom 

culture given that student provided explanations and reasoning are strongly influenced by the 

types of questions posed by the teacher (Blanton, 2008; Franke et al., 2009; Martino & Maher, 

1999; Smith & Thompson, 2008). Specific questioning can be used both to focus student 

attention on the relationships and patterns within a task and to facilitate and scaffold students to 

approach tasks in different ways. In investigating the shift from arithmetic to algebraic 

reasoning, Smith and Thompson (2008) maintain that students are too frequently asked 

conceptually simple questions which focus on finding a single quantity from the given values of 

other quantities instead of questions which focus on the range of values, patterns, and 

relationships between the values. Furthermore, the types of questions asked can lead to students 

engaging in justification of their ideas (Blanton, 2008; Martino & Maher, 1999; Wood & 

McNeal, 2003). Through teacher modelling of questioning and scaffolding students to ask 

questions themselves, students can also be supported to begin generating the types of questions 

which support engagement with algebraic reasoning. 
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Developing algebraic reasoning requires students to approach tasks in a different way than 

arithmetical reasoning. As described above, there is a need to shift student attention from 

calculating answers towards developing a structural perspective which focuses on operations on 

mathematical objects—relational thinking (Carpenter et al., 2005b; Empson, Levi, & Carpenter, 

2011; Ferrucci et al., 2008; Fosnot & Jacob, 2009). Examples of questioning that attends to 

relational thinking are particularly evident in research studies (e.g., Carpenter et al., 2003; 

Fosnot & Jacob, 2009) which focus on developing student understanding of equivalence. In 

Fosnot and Jacob’s (2009) study, students aged 7-years to 8-years old working in pairs were 

asked to establish whether they had an equivalent amount of coins to each other. One pair began 

to complete the task procedurally by calculating the amounts to compare. However, when the 

teacher stepped in and asked ‘is there another way to tell without adding it all up’ (p. 104) there 

was evidence of one of the students beginning to compare the relations between the amounts to 

establish equivalence. Similarly, in the study by Carpenter et al. (2003), students aged 9-years to 

10-years old were solving true and false number sentences. The teacher used questions such as 

‘can you do this without all the adding and subtracting?’ (p. 32). These questions prompted the 

students to begin justifying their responses through relational rather than calculational reasoning. 

Both examples provide evidence of how teacher questioning can facilitate algebraic reasoning.  

 

Teacher questioning can also be used to scaffold students to utilise representations and their 

underlying structure when enacting a task. The following classroom vignette offered by Bastable 

and Schifter (2008) illustrates how teacher questioning facilitated the students to draw on 

understanding of the structure of square numbers in developing their generalisations.   

 

Teacher questioning to focus student attention on structural aspects 

Jenny Richards has asked her students aged 11-years to 12-years old to work on the following 

task: Yesterday we started a great debate about square numbers. We are thinking about 3 × 3 

and 9 × 9 and 4 × 4 and 179 × 179. They create perfect squares on graph paper. Then we 
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wondered about 0 x 0. Hmmm... what does that mean? A student begins by providing an 

explanation: 

 

Lindsay: Zero times zero is zero. You can’t make anything with it. You have to imagine 

it in your head and when I do that I imagine a square.  

 

The teacher directs the students to think of the meaning of each expression rather than 

focusing on the answer. She uses a further question to facilitate them to visualise the 

representation.  

Richards: What does this mean? Four times four. I don’t want the answer. I want to 

know what it means.... What would it look like? 

 

The student provided explanations draw on the visual representation of square numbers. 

Carolyn:  Four rows with four in each row 

Richards:  And nine times nine? 

Chris:   Nine rows with nine in each row.  

 

The teacher again directs students to refer to the visual representation and structure of the 

expression. 

Richards:  And if you drew it on graph paper, you would get a perfect square? What does 

this mean, “zero times zero”?  

Lesley:  Zero rows with zero in each row.  

 

From Bastable and Schifter (2008) 

 

In this vignette, teacher questioning prompted students to use representations in their 

explanatory talk. This focus on using representations to support their explanations appeared to 

support further development of their understanding of the structure of square numbers.   

 

Teacher questioning can also play an important role in supporting students to develop 

mathematical explanations (Franke et al., 2009; Franke et al., 2011; Wood, 1998). Franke et al. 

(2009) found that teacher questioning was a significant factor in whether students elaborated on 

the initial explanation provided. However, it is important to note that teacher questioning did not 

always lead to further elaboration of student thinking. Interestingly, these researchers found that 

sequences of specific questions led to students providing elaboration on their initial explanation. 

Specific questions alone or general questions not directly related to the explanation led to further 

elaboration in some instances. However, leading questions used to guide students towards a 
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particular answer or strategy often did not lead to further elaboration. A key finding of this study 

was that teacher questioning in the form of multiple specific questions related to the initial 

explanation was necessary to press students to make their thinking explicit and to support 

connections between the explanation and the mathematics that was a focus of the task. These 

researchers argue that probing sequences of specific questions benefit all the students within the 

class. Firstly they help the student being questioned to “clarify, solidify, and correct his or her 

own thinking” (p. 390) but they also help the listening students to “connect their own thinking to 

what was being said, potentially enabling them to correct their own misconceptions” (p. 390).  

 

Teacher questioning also facilitates the shift from students explaining their mathematical 

solution strategies to justifying and defending solution strategies within collaborative dialogue 

(Bell & Pape, 2012; Blanton, 2008; Franke et al., 2008; Martino & Maher, 2009; Wood & 

McNeal, 2003; Wood et al., 2006). Questioning can also be used to reposition all participants in 

the classroom to analyse shared solution strategies regardless of whether they are correct or not. 

Students can then use mathematical evidence to validate their agreement or disagreement (Bell 

& Pape, 2012; Martino & Maher, 2009). The following vignette by Bell and Pape (2012) shows 

how a teacher used questioning to press for explanation and justification and to engage her class 

in collective examination of a shared solution strategy. 

 

Teacher questioning to press for explanation and justification 

Without indicating whether it is correct or not Mrs Brenner asks her class to examine an 

incorrect response provided by a student:  

 

Mrs Brenner: What I’d like to discuss is this right here. I’m actually glad that someone 

answered this. Is this correct? Is the absolute value of 16, negative 16.  

 

The teacher explicitly asks for justification of mathematical ideas.  

Mrs Brenner: And I need some justification. I want to hear what you’ve got to say.  

Lakina.  

Lakina:  No 

Mrs Brenner:  Why?… 
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Lakina:  I said when…if a number is positive, I mean negative, it comes out as a 

positive.   

 

The teacher continues to press for justification and develops wider student involvement by 

asking for participation from other students.  

Mrs Brenner:  Why is that, though? Why is that? [pause] Romero.  

Romero:  Because absolute value is the number of the counted spaces from zero to that 

number. So it should always be positive.  

Lakina:  Yeah, it always should.  

 

From Bell & Pape (2012) 

 

In this vignette, the teacher pressed for students to justify and defend their explanations. This led 

to the students collectively analysing the initial response and then building a mathematical 

justification by further developing each other’s comments.  

 

In classrooms with a focus on developing mathematical inquiry and algebraic reasoning, an 

important aim is for the responsibility of developing understanding to be spread across all 

participants. This necessitates that students begin to ask questions to support their own 

developing understanding and also to require justification from each other. Often in classrooms 

the role of questioning is taken by the teacher with only infrequent questioning by students 

(Franke et al., 2009; Graesser & Person, 1994; Martino & Maher, 1999). Research studies (e.g., 

Boaler & Brodie, 2009; Wood & McNeal, 2003) provide examples of how a specific teacher 

focus on questioning for understanding can support students to develop their questioning skills. 

Additionally they illustrate how teacher prompts for justification can be appropriated by students 

within the classroom community. In their study, Boaler and Brodie (2009) demonstrated a link 

between the growth in conceptual questions asked by the teacher and students beginning to ask 

conceptual questions themselves. They also found that in classrooms where conceptual and 

probing questions were used by the teacher that students were able to use these as a scaffold to 

challenge reasoning and prompt the construction of explanatory justification for the 

mathematical solution strategy during small group work. For example, in one instance the 
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researchers overheard the students saying “She’s going to ask us where we got the eight, where 

did we get it?” (p. 780). This demonstrates the link between teacher questioning and developing 

student questioning.  

 

3.4  MATHEMATICAL PRACTICES TO SUPPORT ENGAGEMENT IN 

ALGEBRAIC REASONING  
 

Many researchers (e.g., Bastable & Schifter, 2008; Carpenter et al., 2003; Kaput & Blanton, 

2005a; 2005b; Mason, 2008; Schoenfeld, 2008; Smith & Thompson, 2008) maintain that 

optimal algebraic reasoning opportunities occur within classroom contexts which facilitate 

students to engage in mathematical practices linked to the development of algebraic reasoning. 

Construction of conceptual algebraic reasoning requires that students build understanding of key 

mathematical ideas and the connections between these and develop mathematical ways of 

thinking. This is achieved when students are provided with opportunities to engage in the 

process of “generating [mathematical] ideas, deciding how to express them …justifying that 

they are true, and in using them to justify the mathematical procedures they are learning” 

(Carpenter et al., 2003, p. 6). Moreover, as Kaput and Blanton (2005a) argue, frequent viable 

algebraic reasoning opportunities occur within classroom contexts where students are supported 

to make purposeful conjectures, construct mathematical arguments, justify, and generalise their 

ideas.   

 

The following section highlights three key mathematical practices identified in the research 

literature which are linked to the development of early algebraic reasoning. These practices are: 

(1) developing mathematical explanations and using mathematical language; (2) justifying ideas 

and developing age appropriate proof; and (3) making conjectures and generalising. Discussion 
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of the use of representations, another key mathematical practice linked to early algebra is 

integrated into each section.    

 

3.4.1 Mathematical explanations and mathematical language  

 

Engaging in the practice of developing mathematical explanations is an important foundation for 

early algebraic reasoning. Whilst using mathematical language is a central aspect of providing 

clear verbal explanations, students often begin by using informal or invented language to 

describe their observations which then become part of the shared language of the classroom 

community (Smith & Thompson, 2008). This invented terminology can draw on the 

characteristics of a representation (Fosnot & Jacob, 2009). For example, Schifter et al. (2008b) 

present a case in which students aged 7-years to 8-years old described the commutative nature of 

addition number sentences as ‘turn-arounds’. A similar example is provided in Fosnot and 

Jacob’s (2009) study. Students in this study were presented with the equation 13 + 8 = 5 + 9 + 

13 – 6 represented on a double line. A student referring to the commutative relationship 

following cancellation stated “it’s like a mirror on the number line ... like the symmetry we did” 

(p. 107). With this type of informal or invented language use, the meaning and explanations are 

often clear for the listening audience. Further use of mathematical language can evolve through 

discussions and teacher modelling.  

 

During discussions within the classroom community, invented terminology may evolve and 

become a shared language between the participants which reflects their understanding of tasks. 

For example, in the Fosnot and Jacob (2009) study, students aged 10-years to 11-years old 

developed notions of a cancellation rule while using a double number line. A student provided a 

diagram to support her solution strategy which used a line to separate the quantities. This was 
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described by another student as a ‘separator’. In the ensuing discussion other students drew on 

this invented terminology using the ‘separator’ line to break the problem into two parts and to 

ignore the equivalent amounts which were unnecessary to solve the problem. Despite the teacher 

introducing terms such as ‘ignore’ and ‘remove’, the students showed a preference for the 

terminology introduced by their peers and used this in their explanations. It appeared that use of 

these types of invented terms supported the students’ early understanding of cancellation more 

than formal terminology such as the cancellation law.  

 

Teacher revoicing and modelling of mathematical language can facilitate students to develop 

their use of correct mathematical terminology and induct them into the specialised discourse of 

mathematics and algebra (Reid & Zack, 2009). Khisty and Chval (2002) present a case study of 

a teacher working with students aged 10-years to 11-years old from a predominantly Latino 

background. They describe her frequent modelling and use of mathematical terms which were 

then used by the students in their written and oral discourse. Teacher revoicing was another 

feature of the classroom which supported student use of mathematical terms. For example, in 

one lesson a student referred to the relationship between multiplication and division as opposite. 

The teacher responded to this by saying: One is the inverse of the other, the opposite of the other 

(p. 159). By attending to the mathematical discourse and populating her lessons with 

mathematical terminology, the teacher successfully facilitated her students to develop 

appropriate academic and mathematical discourse. Similarly, Reid and Zack (2009) present an 

example to illustrate the important role of the teacher in supporting students to connect their 

informal language with standard conventions. In this example, a student erroneously used the 

term square root instead of square number during her explanation. The teacher responded by 

repeating the explanation and then revoicing using the correct terminology before instigating a 

discussion of the terminology, concept, and notation associated with square numbers. Both of 
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these examples illustrate the important role of the teacher in facilitating students’ use of 

mathematical language.   

 

The teacher also takes a significant role in facilitating students to provide clear explanations for 

others who are listening. The clarity of explanations can be developed through using verbal and 

written/drawn representations that are responsive to the listening audience (Bell & Pape, 2012). 

This entails clarifying and refining ideas if necessary and responding to the questions of those 

who are listening (Smith & Thompson, 2008). The following vignette is used by Bastable and 

Schifter (2008) as an example of students reconsidering generalisations about whole numbers 

when asked to reflect on operations in relation to rational numbers. It provides an example of 

how students can construct mathematical explanations which are responsive to the listening 

audience and their questions. It also illustrates the role of the teacher in facilitating students to 

give reasoned explanations and creating space for agreement and disagreement. 

 

Developing mathematical explanations during a whole class discussion 

Joanne Moynahan has asked her class of students aged 11-years to 12-years old to solve 

a problem involving fractions: The Davis family attended a picnic. Their family made 

up 1/3 of the 15 people at the picnic. How many Davises were at the picnic? The 

students are provided with time to work on the problem in pairs. Following the paired 

work and subsequent discussion, the teacher asks the students to consider which 

operation was involved in the problem. A student begins by stating which operation she 

thinks is appropriate: 

 

Mary: I think we should put division in there.  

 

The teacher asks for further explanation of this and the student draws on her use of a 

concrete representation to support her argument. 

 Teacher: Why? 

Mary: Well, the problem said 1/3 of the people were Davises. I drew a circle 

and divided the circle into three parts—then I put the people in.  

Jeff:   I agree. We divided our cubes into three groups... 

 

The teacher then opens the discussion up to agreement and disagreement from the rest 

of the class. She also directs them to reflect on their understanding of division. 

Teacher: Does everyone agree? Should I erase the “of” and put in “÷”? Think  

about what you know about division. 
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At this point, another student disagrees with the initial explanation and provides a 

reasoned argument which draws on the meaning of division 

Rebecca: I don’t think divide is right. 

Teacher: Why do you think divide won’t work?  

Rebecca: (comes to the board and writes 1/3 ÷ 15 = 5) This (points to the 15) 

means how many 15s are in 1/3. I know that’s not right. There aren’t 

any! 

 

The other students test whether the situation is represented by division and agree that it 

does not work. Rebecca then proposes an alternative argument and develops an 

explanation which draws on a symbolic representation but does not link to the context 

of the word problem. 

Rebecca:  I think it’s times (comes to the board and writes a row of 1/3s). That’s  

1/3 fifteen times. Now add them up.  

 

Rebecca is aware that her argument has not convinced her classmates. She provides a 

second explanation which begins to refer to the context of the word problem.  

Rebecca: I didn’t multiply. I’m just trying to prove that you can. I divided the 15 

people. She (points to Mary) says divide and I’m trying to show that 

multiply works.  

 

At this point the class ends, however, the following day the teacher asks the students to 

again reflect on the previous discussion. After testing whether addition or subtraction 

would work for the problem, a student provides an argument which draws on the 

inverse relationship of multiplication and division.  

Mary:  Division is the opposite of multiplication. Take 12 × 2 = 24. Then 24 ÷ 2 

= 12. So ... If 1/3 × 15 = 5, then 5 ÷ 15 = 1/3. Does that work?  

Teacher:  How many 15s are in 5? 

Mark: There aren’t any. You can’t make any 15s if you only have 5. Wait. You 

could make part of a 15.  

Jeff: I got it! You would have 1/3 of 15! It does work. Rebecca was right—it 

is multiply! 

 

From Bastable and Schifter (2008) 

 

In this vignette, the teacher maintained a consistent expectation that students will provide 

reasoned explanations. As a result, the students drew on varying representations to support their 

explanations and respond to the listening audience. Space was also created by the teacher for the 

students to agree or disagree and from this space students began engaging in mathematical 

argumentation.   
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3.4.2 Justification and proof 

 

Developing mathematical explanations into sound, convincing arguments is an important 

mathematical practice related to algebraic reasoning (Stylianou, Blanton, & Knuth, 2009). 

Engaging in justifying mathematical ideas and developing age appropriate proof are key aspects 

of the generalisation process. However, a number of research studies (e.g., Bieda, Holden, & 

Knuth, 2006; Callingham, Falle, & Clark, 2004; Healy & Hoyles, 2000; Knuth, Choppin, & 

Bieda, 2009; Lannin, 2005; Maher, Powell, Weber, & Stohl Lee, 2006) document student 

difficulties with developing adequate justification and proof. These challenges have been 

attributed largely to a lack of understanding of generality along with difficulties with 

mathematical language and symbolism and a lack of problem-solving skills necessary to 

construct an argument.  In order to support students to develop mathematical practices of 

justification and proof it is important that teachers create opportunities to engage students in 

justification and proof related activities appropriate to their age.  

 

For primary students developing conceptions of appropriate justification for mathematical 

statements and reasoning is an important precursor to the development of proof in later years 

(Callingham et al., 2004). Research studies (e.g., Carpenter et al., 2003; Knuth et al., 2009; 

Schifter, 2009) which have investigated primary students’ attempts to justify mathematical 

statements as true characterise these justifications into three broad categories: appeal to 

authority, justification by example, and generalisable arguments using representations. In the 

first case, students refer to an authority such as a teacher or parent or text-book to avoid having 

to provide a justification. An example is provided by Schifter (2009) whereupon a student in her 

study accepted the claim that the sum of two even numbers would be even because her older 

sister had told her this. The second category—justification by example—is well-documented in 
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research studies (e.g., Bieda et al., 2006; Carpenter et al., 2005a; Healy & Hoyles, 2000; Lannin, 

2005; Schifter, 2009). In this case, students perceive that providing specific examples or trying a 

number of cases is valid justification. The process of looking for examples and counter-

examples is an important aspect of learning to justify and generalise. However, students require 

encouragement to develop these skills further and begin to use more refined techniques to justify 

(Mason, 2008; Schifter, 2009). There is a large body of research (e.g., Bieda et al., 2006; 

Carpenter et al., 2005a; Healy & Hoyles, 2000; Knuth et al., 2009) which shows that many 

students continue to use empirical methods to attempt to justify and prove throughout primary 

school, secondary school, and even tertiary studies unless specific attention is paid to facilitating 

their understanding of generality. In the third category, students use representations to develop 

reasoned general arguments. Although the representation may involve specific numbers, the 

argument is supported by the structure of the representation rather than the specifics of the 

instance which is used (Carpenter et al., 2003; Schifter, 2009). Through explicitly encouraging 

students to use this type of reasoning and justification, their work with proof in later years may 

be enhanced (Carpenter et al., 2003; Carpenter et al., 2005a; Schifter, 2009).   

 

Supporting students to justify generalisations using arguments which are precursors of 

mathematical proof is challenging (Carpenter et al., 2005a). An initial step in developing 

students’ use of justification strategies is to facilitate students to reflect on the adequacy of 

relying on empirical methods of justification. Both Carpenter et al. (2003) and Schifter (2009) 

provide examples of teachers using questioning to prompt reflection on the notion that empirical 

justification is sufficient to prove a claim is true for all numbers. A key challenge which was 

used by teachers in both studies was how the students could show the claim would be true for 

any number. Carpenter et al. (2003) provide a vignette where a student responded to this 

challenge by arguing that you could try different numbers. In this case, the teacher continued to 
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prompt reflection by asking whether you could try all the numbers. Facilitating students to 

engage in this type of reflection can prompt them to begin thinking about forms of arguments 

which draw on representations.  

 

Using concrete materials and representations to develop arguments is an accessible way in 

which students can establish general claims in primary classrooms (Blanton, 2008; Carpenter et 

al., 2003; Schifter, 2009). Schifter (2009) argues that when students justify general claims 

through the use of representation-based proofs, the following criteria needs to be met “(1) the 

meaning of the operation(s) involved is represented in diagrams, manipulatives, or story 

contexts; (2) the representation can accommodate a class of instances (for example, all whole 

numbers); and (3) the conclusion of the claim follows from the structure of the representation” 

(p. 76). As an example, students aged 8-years to 9-years old in Bastable and Schifter’s (2008) 

study built arrays using unifix cubes to convince their classmates of the generality of the 

commutative principle for multiplication. Further examples are provided in research studies 

(e.g., Carpenter et al., 2003; Schifter, 2009; Schifter et al., 2008) which demonstrate how 

students can justify conjectures about operations involving odd and even numbers. In these 

studies, students represented even and odd number using blocks, cubes, or drawings. They 

showed the meaning of the operation (addition) through joining the sets which represented all 

even or odd numbers and were able to use the structure of the representation to show the claim 

would always work. Through engaging students in this type of process, they begin to privilege 

reasoning based on representations over appealing to an authority or example based justification 

(Schifter, 2009).  

 

Within the classroom community, justification and proof may also draw on previously justified 

conjectures and generalisations (Carpenter et al., 2003; Fosnot & Jacob, 2009). In this way the 
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process of justification can lead to claims being accepted as truths that can then be used to 

justify other conjectures or as a form of proof when solving tasks. For example, toward the end 

of Fosnot and Jacob’s (2009) six month intervention with students aged 7-years to 8-years old, 

the students were asked to provide written proof for equations such as N + 17 + 5 = 15 + 7 + N. 

In response, students provided sequential arguments which drew on the previously justified 

generalisations which had become accepted truths within their classroom community. One 

student wrote: “There are two Ns so those are out. If I switch the seven from the 17 and put in 

the five, then I have 15 + 7 = 15 + 7” (Fosnot & Jacob, 2009, p. 110). This example and the 

others provided previously show how primary students may engage in the processes of 

justification and proof.   

 

3.4.3 Generalisation 

 

Making conjectures and developing these into generalisations are key mathematical practices 

linked to the development of early algebraic reasoning (Bastable & Schifter, 2008; Blanton, 

2008; Dooley, 2011; Mason, 2008; Yeap & Kaur, 2008). However, Mason (2008) maintains that 

too often it is the teacher who provides the examples, cases, and methods during mathematics—

a practice which constrains the space for students to generalise. He argues for the need to 

develop classroom cultures where the expectation is that generalisations will be expressed and 

treated as conjectures and then justified. Creating a classroom culture which focuses on 

generalisation is not an easy task, particularly due to the difficulties students may encounter in 

both constructing and justifying generalisations. This is demonstrated in a number of 

international studies (e.g., Anthony & Walshaw, 2001; Chick, 2009; Schifter et al., 2008b; 

Warren, 2001a; 2003b).  
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However, there are a series of recent studies (e.g., Bastable & Schifter, 2008; Blanton & Kaput, 

2005a; 2005b; Carpenter et al., 2003; Fosnot & Jacob, 2010; Reid & Zack, 2009; Russell, 

Schifter, & Bastable, 2011) that provide insights into how such a classroom culture may be 

created. As described in the earlier section of this chapter, the teacher takes an important role in 

facilitating students to generalise through choosing appropriate tasks and guiding the 

establishment of the key classroom practices such as focusing on student thinking and reasoning 

and developing questioning. Blanton (2008) proposes a model which characterises the five 

components of building a generalisation in the classroom. These include facilitating students to 

(1) explore a mathematical situation; (2) develop a conjecture or mathematical statement; (3) test 

the conjecture; (4) revise the conjecture if it is not true; and (5) develop the conjecture into a 

generalisation if there is sufficient evidence to show it is true. The role of the teacher in the 

initial phase is to develop an appropriate task for exploration and to facilitate the students 

through questioning. During this phase students need to be given time to explore mathematical 

ideas and then decide how to represent or model their reasoning. The development of a 

conjecture may occur incidentally while students are exploring the task (e.g., Bastable & 

Schifter, 2008). Alternatively tasks may specifically be designed to elicit conjectures from 

students (e.g., Carpenter et al., 2003). Following the development of conjectures, students need 

to engage in testing the conjectures to investigate whether they are true. It is important for 

students to have experiences in testing both true and false conjectures (Blanton, 2008). For 

example, Russell et al. (2011) describe a teacher asking her students aged 8-years to 9-years old 

to consider a general claim they had previously developed about addition in relation to 

subtraction: “when you’re adding two numbers together, you can take some amount from one 

number and give it to the other, and if you add those up, it will still equal the same thing” (p. 51-

52). In this case, the teacher did not evaluate the conjecture but asked the students to take a 

position to agree or disagree in response and provide convincing evidence. This increased 
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student awareness of the need for justification and provided an opportunity for the conjecture to 

be revised by the students. After conjectures have been revised, and sufficient evidence has been 

provided, conjectures may be developed into generalisations. For example, following the 

discussion of the incorrect conjecture in the study by Russell et al., the students then developed a 

correct conjecture which was verbally developed into a generalisation about subtraction.  

 

3.4  SUMMARY 

 

This literature review identified that early algebra reform includes both what and how 

mathematics is taught. An examination was undertaken of the key elements in the learning 

environment which support students to engage in early algebraic reasoning. Exploration of 

factors within task design which offer the greatest affordances for engagement with early 

algebra provided the starting point to engage students in opportunities to develop algebraic 

reasoning. However, it was clear that more is needed than simply designing appropriate tasks. A 

review of key research literature identified the critical role of the teacher in developing the 

learning environment and classroom practices. It also highlighted the challenges for teachers 

when developing a learning environment which facilitates engagement with early algebra. 

Finally, the key mathematical practices which optimise algebraic reasoning opportunities in the 

classroom were reviewed.  

 

The pedagogical practices and associated learning environment advocated in this chapter were 

derived from a review of a range of research studies that successfully engaged students in 

algebraic reasoning and led to desirable learning outcomes in early algebra. However, the review 

has also highlighted that there is a paucity of studies in the research literature which specifically 

address the interconnections between the role of task design, classroom practices, and 



74 

 

mathematical practices in developing early algebraic reasoning. Whilst many studies have 

focused on the specific topic areas of early algebra, there appears to be less of an emphasis on 

the elements of the learning environment which support engagement with early algebra. The 

current study aims to integrate the focus on developing early algebraic reasoning both through 

content areas and the learning environment. 

 

In both this chapter and Chapter Two, the important role of both the teacher and learner was 

made evident. The following chapter will examine ways in which teachers can develop their 

algebra ears and eyes which can then be used to support early algebraic reasoning in their 

classrooms. The implications of this type of change for students’ perspectives and identity will 

also be addressed.  
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CHAPTER FOUR 

DEVELOPING TEACHERS’ AND LEARNERS’ 

ALGEBRA EARS AND EYES 
 

4.1  INTRODUCTION 

 

Chapters Two and Three highlighted how algebraic reasoning can be developed through content 

areas and classroom and mathematical practices. An important aspect of these chapters was the 

key role of the teacher and learners. This chapter examines how teachers can be supported to 

develop algebra ears and eyes which can then be used to facilitate algebraic reasoning in their 

classrooms. Another important consideration is the implications of integrating algebra into the 

classroom on student participation and identity.  

 

Reviewing the literature base, Section 4.2 identifies elements of professional development 

programs which are critical to supporting teachers to cultivate early algebraic reasoning within 

their classrooms. Two elements emerge as significant: (i) the development of a professional 

learning community and (ii) facilitating teachers to re-conceptualise their understanding of 

algebra.  

 

Drawing on a group of key classroom studies focused on student perspectives and engagement 

in the mathematics classroom, Section 4.3 explores the role of students within the classroom 

community. It examines the impact of introducing new ways of working mathematically on 

students’ beliefs, identities, and roles within the classroom.  

 

 



76 

 

4.2 DEVELOPING TEACHERS’ ALGEBRA EARS AND EYES 
 

Advocates of teaching early algebraic reasoning in primary classrooms emphasise the 

importance of early algebra as a strand which “tightly interweaves existing topics of early 

mathematics” (Carraher et al., 2008, p. 237). Within this frame, early algebra is not a new topic 

to be added to the curriculum but an area which already exists within the current curriculum and 

emerges as teachers and learners focus on the algebraic nature of mathematics. Creating a 

classroom environment with a focus on developing algebraic reasoning requires that teachers 

develop their algebra eyes and ears. They need to be able to recognise opportunities for both 

planned and spontaneous instances when algebraic reasoning can be facilitated in the classroom 

(Blanton & Kaput, 2003; Blanton & Kaput, 2005a). There is also a need for teachers to be aware 

of the classroom practices and pedagogical actions which can be utilised to support student 

engagement with algebraic reasoning (Blanton, 2008; Blanton & Kaput, 2005a; Franke et al., 

2008).  

 

Teachers take a critical role in reforming classroom practice. However, many teachers 

themselves have had little experience with the rich, connected types of algebra that support 

student development of algebraic reasoning (Blanton & Kaput, 2005a; Franke et al., 2008). 

Research studies (e.g., Even, 1993; Franke et al., 2008; McCrory, Floden, Ferrini-Mundy, 

Reckase, & Senk, 2012) report that many teachers have inadequate understanding of how to 

teach algebra successfully. For example, Franke et al. (2008) reported teacher difficulties with 

content knowledge when they worked with teachers on professional development focused on 

algebraic reasoning. These researchers contend that the stance both teachers and students take 

towards algebra is influenced by their conceptualisation of algebra and ideas about what it 

means to be doing mathematics.  For example, they explain that often being good at 

mathematics is associated with providing quick answers or knowing rules and procedures. 
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Algebra is viewed as inaccessible and only appropriate for ‘smart’ students. These kinds of 

beliefs can lead to high levels of anxiety for teachers when they engage with work associated 

with algebra.  

 

It is important to cultivate professional development experiences which both re-conceptualise 

algebraic reasoning for teachers and also support them to engage with the types of algebraic 

reasoning experiences which are relevant to primary school students (Franke et al., 2008). 

Effective professional learning is situated in practice. Ghousseini and Sleep (2011) note 

“learning in and from practice requires being able to see, hear and understand the many details 

of classrooms (e.g., the content, the students and the work of the teacher) and use this knowledge 

to analyse and improve one’s own teaching” (p. 148). These researchers maintain that effective 

practice based professional development uses representations which engage learners (the 

teachers) with a particular representation of practice, for example developing algebraic 

reasoning, and then supports the teachers as learners to become a deliberate user of this practice.  

 

The findings of research studies which have investigated effective professional development 

(e.g., Back, De Geest, Hirst, & Joubert, 2009; Borko, 2004; Earley & Porritt, 2009; Wilson & 

Berne, 1999) and those studies which have specifically investigated teacher development 

programs focused on algebraic reasoning (e.g., Billings, 2008; Blanton & Kaput, 2003; Franke et 

al., 2008; Herbel-Eisenmann & Phillips, 2008; Koellner, Jacobs, Borko, Roberts, & Schneider, 

2011; Schifter et al., 2008a) provide us with insight into the important elements of effective 

practice based professional development. These studies highlight the key indicators of effective 

continuing professional development to support the development of algebraic reasoning as: (1) 

opportunities to develop learning communities; (2) a focus on student learning and 

understanding; and (3) the facilitation of reflection on teaching practice. 
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4.2.1  Development of a professional learning community  

 

A key aspect of effective professional development is offering teachers the opportunity and 

space to collaborate and build a strong professional community (Back et al., 2009; Earley & 

Porritt, 2009; Franke et al., 2008; Koellner et al., 2011). Within a professional learning 

community such as used to promote early algebra, the theoretical frameworks of communities of 

practice (Lave & Wenger, 1991; Wenger, 1998) and communities of inquiry (Jaworski, 2004; 

2006) offer useful constructs.   

 

Within the frame of Lave and Wenger’s (1991) communities of practice there is a strong focus 

on the concepts of practice and identity and the relationship between these. The process of 

learning is viewed as developing participation in practice. This involves investigating how the 

participants learn to participate in the practices of the community and develop an identity within 

the community. Applying a community of practice approach to the analysis of teachers’ 

professional development enables the exploration of how participants may identify themselves 

in multiple ways, in the service of more than one (social) purpose.  This approach was used in 

Blanton and Kaput’s (2008) depiction of teachers engaged in professional development focused 

on linking early algebra into the mathematics they taught. They claimed that some of the 

teachers positioned themselves as participants in the community and engaged with ‘social’ work 

associated with facilitating algebraic reasoning. This supported them to develop their 

professional identities within the group. However, other teachers remained isolated within the 

group exhibiting anxiety with demands to engage with algebraic reasoning. Blanton and Kaput 

maintain that this isolation meant these teachers found it difficult to develop their own algebraic 

understanding and integrate early algebra into their classrooms.   
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The notion of communities of practice (Lave & Wenger, 1991; Wenger, 1998) applied to 

professional learning is developed further by Jaworski (2006; 2008). She describes teaching as a 

social process in which teachers are practitioners. Teacher learning is conceptualised as the 

development of their identity as teachers through participation in a community of practice. 

Importantly, Jaworski notes that development does not necessitate change and may instead 

perpetuate similar practice within a group of teachers which conforms to existing classroom 

practices. For example, Franke, Carpenter, and Battey (2008) describe working with a group of 

teachers who had limited experience of eliciting student thinking within the classroom. They 

found that this meant their existing practices did not lend themselves to engaging in 

conversations about the ideas of algebraic reasoning. Franke et al. explain how an activity used 

with the group involving the equals sign and true and false number sentences was appropriated 

by the teachers and turned into a worksheet, an artifact of their already existing practice. In this 

way, the teachers used an existing practice which did not challenge student understanding of the 

equals sign or promote discussion of it.  

 

For improved learning opportunities for students to occur, teachers need to have opportunities 

and reasons to question their practice through intentional inquiry (Ghousseini & Sleep, 2011; 

Jaworksi, 2006; 2008). The use of inquiry as a tool within a community can enable teachers and 

educators to explore key questions and issues in practice (Jaworski, 2008). However, it is 

through engagement in ‘critical alignment’ of practice, whereupon teachers seek “to develop, 

improve or enhance the status quo” (Jaworski, 2006, p. 191) that the move can be made from a 

community of practice to a community of inquiry. The use of inquiry then shifts from being a 

tool to becoming a ‘way of being’ through which the participants in a community develop their 

practice (Jaworski, 2006; 2008). Examples of how a community of inquiry can be developed are 

evident in research studies (e.g., Blanton & Kaput, 2008; Franke et al., 2008, Jacobs et al., 2007; 
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Koellner et al., 2011) that report on the principles of effective professional development in early 

algebra. Common features of these successful case studies are the facilitation of reflection on 

mathematical understandings, student thinking, and instructional practices.   

  

4.2.2 Reconceptualising teacher understanding of algebraic reasoning 

 

This section provides a review of studies which highlight the key aspects of professional 

development specifically focused on introducing algebraic reasoning into primary classrooms. 

Much of the research drawn upon within this section is from the USA. It is important to note that 

the scarcity of research studies which investigate teacher learning in the area of early algebra 

within the UK context.  

 

A key feature of the reviewed studies is the act of engaging teachers in reconceptualising their 

understanding of algebraic reasoning. This requires that teachers themselves both make sense of 

algebraic ideas and further their understanding of students’ thinking about algebraic ideas 

(Franke et al., 2008). The literature highlights three primary ways of achieving this. These are 

engaging teachers in: (i) solving, analysing, and adapting tasks, (ii) anticipating and examining 

student responses to tasks, and (iii) reflecting on teaching practice.  

 

Solving, analysing and adapting tasks 

Teacher knowledge is recognised as key to effective teaching, both within early algebra and in a 

wider context (Anthony & Walshaw, 2009; Askew, Brown, Rhodes, Johnson, & Wiliam, 1997; 

Warren, 2009). Engaging teachers in solving authentic mathematical tasks is a useful way to 

provide them with opportunities to develop content knowledge and make sense of important 

algebraic ideas (Blanton & Kaput, 2008; Jacobs et al., 2007; Warren, 2009). A number of 

research studies (e.g., Franke et al., 2008; Jacobs et al., 2007; Koellner et al., 2011; Ruopp, 
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Cuoco, Rasala, & Kelemanik, 1997; Schifter et al., 2008; Stephens, Grandau, Asquith, Knuth, & 

Alibali, 2004) highlight how the key or ‘big’ mathematical ideas within early algebra can be 

explored by developing sets of tasks for professional development in order for teachers to 

explore algebraic ideas collaboratively.  

 

The use of tasks gives teachers opportunities to engage with a common mathematical and 

pedagogical experience. This can give a structure for the development of a supportive 

community of inquiry (Koellner et al., 2011). This is important as often mathematics, and in 

particular algebra, can be a source of anxiety for primary teachers who may not view themselves 

as strong mathematically (Blanton & Kaput, 2005a; Franke et al., 2008; Jacobs et al., 2007). 

Within professional development, teachers can be supported to work through the problems and 

the processes that will be used with students (Jacobs et al., 2007). For example, Franke et al. 

(2008) report on an aspect of their professional development where teachers worked 

collaboratively to create a written conjecture about commutativity, edit, and justify it. By 

working through the process of justification, teachers were both able to consider the arguments 

that students may use but also reflect on their own proof schemes.  

 

Solving and analysing tasks during professional development offers teachers the opportunity to 

develop pedagogical and specialised content knowledge required for teaching. A number of 

research studies (e.g., Franke et al., 2008; Koellner et al., 2011; Ruopp et al., 1997; Stephens et 

al., 2004) highlight the benefits of teachers collaboratively solving problems, discussing solution 

strategies, and making connections between these. For example, teachers involved in this kind of 

work are able to develop links between mathematical thinking at different grade levels and 

analyse how tasks may be adapted for students working at diverse levels (Blanton & Kaput, 

2008; Ruopp et al., 1997). Other outcomes include teachers being able to make connections 
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between differing solution strategies, representations, and mathematical ideas (e.g., Franke et al., 

2008; Koellner et al., 2011; Ruopp et al., 1997; Stephens et al., 2004). Solving tasks can prompt 

reflection on how different types of thinking can be elicited, student progress supported, and 

how tasks may be effectively sequenced (Franke et al., 2008). For example, Stephens et al. 

(2004) report on a professional development initiative where teachers were asked to solve a task 

related to variables. They then shared their representation and discussed how the task related to 

student understanding of variables and potential misconceptions. Following this, the task was 

used by the teachers with their classes. Two specific examples are provided of teachers enacting 

the task in a way that facilitated students to think deeply about variables and their 

representations and develop connections. Stephens et al. contend that the teachers’ recognition 

of the algebraic opportunities offered by the task shaped how it was enacted in the classroom.  

 

The use of tasks during professional development also offers opportunities for teachers to 

understand how to develop aspects of algebraic reasoning (Billings, 2008; Stephens et al., 2004). 

For example, Billings (2008) used tasks involving pictorial growth patterns with teachers in 

order to encourage them to think algebraically and construct an image of how algebraic 

reasoning could be integrated into the existing curriculum. Teachers developed generalisations 

using a variety of tools including the physical representations, symbols, and an analysis of 

change in the pattern. The repeated problem-solving experiences and reflection on the 

mathematical concepts and tools inherent in solving the problem supported the teachers to 

develop understanding of how different tasks develop aspects of algebraic reasoning.  

 

During professional development designed tasks and curricular material may be used as 

exemplars for teachers to analyse and adapt for their classrooms. This can support teachers to 

explore opportunities for algebra in current curricular material as well as prompt teachers to 
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adapt tasks or design their own. For example, Stephens et al. (2004) engaged teachers with 

examining curriculum materials to find opportunities for algebra. The teachers were also asked 

to take a lesson from a ‘non-algebra’ strand, ‘algebrafy it’, teach it, and then discuss it with the 

group. Following professional development using designed tasks Blanton and Kaput (2003; 

2008) reported growth in the teachers’ practice from using only the resources the researchers 

supplied to both developing their own resources and identifying those which were apparent in 

the existing curricula. Franke et al. (2008) also worked with teachers during professional 

development to support them to begin developing their own tasks. Through facilitating teachers 

to develop a set of index cards of true and false number sentences, these researchers reported a 

shift in teachers’ focus from correct answers to how to sequence tasks and develop productive 

conversations. A feature of all of these studies is that in the process of analysing tasks and 

transforming curriculum material, the teachers begin to see how early algebra can be integrated 

into everyday mathematics lessons. A habit of mind was formed which allowed the teachers to 

view the existing opportunities for algebra in the mathematics they taught (Blanton & Kaput, 

2008).  

 

Examining and anticipating student thinking and reasoning 

The reviewed studies suggest that a focus on student thinking and reasoning during professional 

development can facilitate teacher learning. Researchers claim that this teacher learning is a key 

driver in supporting productive changes in pedagogical practice (Blanton & Kaput, 2008). 

Additionally Jacobs et al. (2007) argue that through a focus on student thinking, professional 

development becomes sustainable with teacher learning continuing after the development has 

finished. Research studies (e.g., Blanton & Kaput, 2008; Franke et al., 2008; Herbel-Eisenmann 

& Phillips, 2008; Jacobs et al., 2007; Jacobs, Lamb, & Phillip, 2010; Koellner et al., 2011; 

Stephens et al., 2004; Warren, 2009) provide insight into the range of ways that professional 
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development can be structured to include a focus on examining and anticipating student thinking 

and reasoning. These include: specifically designed assessment; development of frameworks of 

student thinking; analysing video episodes or examples of students’ written work; sharing and 

discussing anecdotes about classroom interactions; and trialling tasks in the classroom and 

sharing the results. These studies provide evidence that these strategies, individually or 

collectively implemented, have enhanced both teachers’ mathematical and pedagogical 

understanding and support a focus on students’ algebraic reasoning. 

 

Building teacher knowledge of how children develop early algebraic reasoning including 

expected progression and potential misconceptions is another important component for teachers’ 

development of algebra ears and eyes (Watson, 2009). Using assessment tasks to analyse student 

reasoning is one way in which teachers may increase understanding of students’ algebraic 

reasoning and misconceptions. Studies by Stephens et al. (2004) and Franke et al. (2008) 

involved researchers undertaking initial assessments with students and then sharing the results 

with the teachers. For example, Stephens et al. asked students to solve problems involving 

variables and then presented the research data to the teachers to motivate teacher inquiry into 

student reasoning and solution strategies. Similarly, Franke et al. began the professional 

development experiences by sharing data on how students aged 6-years to 12-years old solved 

number sentences such as 8 + 5 = __ + 9. These researchers also created a mid-year assessment 

which could be used by the teachers to gain an understanding of their students’ ability to engage 

with algebraic reasoning.  While this facilitated teacher knowledge of student reasoning, it also 

helped them to generate possible next steps for instruction and begin to develop a structure to 

make sense of students’ algebraic reasoning.  
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Developing teachers’ insight of student reasoning may also be supported through the 

examination of artefacts such as students’ written work and anecdotes or cases from classrooms. 

The use of artefacts has been a central feature of a number of successful professional learning 

studies involving early algebraic reasoning. In the study by Herbel-Eisenmann and Phillips 

(2008), teachers examined a set of work by students aged 13-years to 14-years old on an algebra 

problem which explored linear, exponential, and quadratic patterns of change. Discussion about 

the student thinking apparent in the solution and justification supported reflections on what 

student work showed about their understanding and the pedagogical actions which could be used 

to extend algebraic understanding further. Other studies (e.g., Blanton & Kaput, 2008; Jacobs et 

al., 2007; Schifter et al., 2008; Stephens et al., 2004) required the teacher participants to 

implement specified tasks in their own classrooms and then bring the student responses to a 

meeting for analysis and discussion. In Schifter et al.’s (2008) study analysing the tasks prior to 

using them with their own students encouraged the teachers to predict their student responses 

and misconceptions. Following this, the task was used in the classroom and the teachers wrote a 

case study including examples of student thinking, the representations used, and the student 

constructed solution strategies. This was then shared and discussed with others in the 

professional development community. These studies show that examining artefacts of student 

work provides teachers with insight into student thinking and opportunities for reflection on 

initial predictions.  

 

Learning to notice and develop understanding of different aspects of student thinking can also be 

supported by the use of videoed episodes from classrooms. A range of research studies (e.g., 

Franke et al., 2008; Jacobs et al., 2010; Koellner et al., 2011; Warren, 2009) demonstrate how 

video excerpts can be used to develop teacher understanding of student reasoning and to prompt 

reflection. For example, Warren (2009) contends that the video observations which were shared 
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during professional development sessions in her study facilitated the discussion of content and 

pedagogical knowledge and provided visual examples of student learning. As an alternative or in 

addition to video observations, research studies (Jacobs et al., 2007; Warren, 2009) have 

involved teachers and researchers working collaboratively in the classroom. In the study by 

Jacobs et al. (2007), on-site visits were used to support teachers to identify relational thinking by 

students. In Warren’s (2009) study, along with the use of video excerpts, the researcher 

supported teacher development by initially modelling what the teaching of patterns and algebra 

may look like within a junior primary classroom. Following this, the teachers worked in pairs to 

plan and teach lessons with support via email from the researcher. In these studies, working with 

authentic classroom exemplars facilitated teachers to notice different types of student thinking as 

well as the opportunities for algebra which were present in the classroom and student 

conversations.  

 

Supporting teachers to organise their ways of understanding student reasoning and thinking is 

important to the mathematical goal. An integral aspect of noticing and responding to students’ 

thinking is to be able to connect their reasoning to key mathematical ideas and tasks. Research 

studies (e.g., Jacobs et al., 2007; Smith & Thompson, 2008; Stephens et al., 2004) suggest that a 

way of achieving this is to ask teachers to generate possible responses to a task and describe 

what the responses show about student understanding. Jacobs et al. (2007) provide an example 

of this type of work from a professional development workshop in which the teachers were 

asked to predict the possible student responses to 8 + 4 = __ + 5. Their responses included not 

only incorrect solutions but also a range of ways in which the correct response could be 

generated. Undertaking this type of work supports teachers in developing their understanding of 

student reasoning. It can also aid teachers to think about the pedagogical moves which will 
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support students and plan appropriate questions to facilitate a productive class discussion (Smith 

& Thompson, 2008; Stein et al., 2008). 

 

Reflecting on teaching practice 

A key element of professional learning which facilitates change such as the cultivation of early 

algebraic reasoning in the classroom is teacher reflection on practice (Back et al., 2009; 

Ghousseini & Sleep, 2011; Jacobs et al., 2010; Sherin, 2002b). The first essential step in 

developing the capacity to reflect on practice is that of noticing. As Jacobs et al. note “noticing 

is a common act of teaching” (p. 169). However, to develop expertise within a profession it is 

important to learn to notice relevant phenomena in a particular way (Jacobs et al., 2010; Mason, 

2002). This process of learning to notice is only developed through engaging with the act of 

noticing. It requires both knowledge of the relevant aspects to notice within a situation and the 

ability to be aware of them and respond appropriately while engaged in the act of teaching 

(Franke et al., 2008; Jacob et al., 2010; Sherin & van Es, 2003). Within the context of early 

algebra, professional development activities need to facilitate teachers to develop their 

understanding of the pedagogies they are using, and as outlined previously the mathematical 

content involved, and the ways in which students make sense of algebra. Furthermore, teachers 

also need to develop a disposition of inquiry and reflect how their own practices are aligned or 

are in contrast with the ideas of pedagogies from research into early algebra which they are 

seeking to adopt (Ghousseini & Sleep, 2011).  

 

Developing reflection on practice is an integral aspect of a number of studies (e.g., Blanton & 

Kaput, 2008; Franke et al., 2008) which examine professional development to support the 

teaching of early algebra. Reflecting on practice involves teachers developing their tools and 

skills for noticing relevant aspects of practice. Researchers and those involved in professional 
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development can support this by providing teachers with a lens for viewing (Franke et al., 2008; 

Ghousseini & Sleep, 2011). This can take the form of specific questions or frameworks. For 

example, Jacobs et al. (2007) focused on supporting teachers to develop their understanding of 

how to facilitate student participation in the types of mathematical conversations which support 

algebraic reasoning. Prior to watching examples of classroom conversation on video, they 

discussed with the teachers what to notice and asked them to make note of productive questions 

that moved classroom conversations forward. Another example is provided by Blanton and 

Kaput (2005a) who worked with teachers to reflect on whether a culture of inquiry was 

developing within their classroom. Focused on the classroom norms for argumentation and 

student questioning and justification, teachers successfully used a framework to support them to 

notice both relevant aspects and the more complex, subtle features of practice. 

 

Developing a disposition of inquiry is a critical element of reflecting on practice. This involves 

“being curious about and open to alternative explanations while maintaining a critical stance” 

(Ghousseini & Sleep, 2011, p. 155). In professional development, the growth of a disposition of 

inquiry may be encouraged by eliciting multiple conjectures and alternative explanations about 

classroom practice and the impact of instruction decisions, cultivating opportunities to critique, 

and by pressing participants to make claims and support these with specific examples and 

evidence (Ghousseini & Sleep, 2011). For example, Franke et al. (2008) asked teachers in their 

professional development group to reflect upon and discuss an example they had observed in 

one of the classrooms where the teacher had missed an opportunity to facilitate a discussion of 

commutativity. The ensuing discussion enabled the teachers to analyse the variety of options and 

why they may or may not be pursued within the classroom.  
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Reflecting on practice and developing a disposition of inquiry is necessary for long-term 

changes in practice (Blanton & Kaput, 2005a). Koellner et al. (2011) provide an example where 

following professional development a teacher participant reflected on the need for a change in 

his practice and to develop a critical perspective of his actions in the classroom. Analysis of 

videoed lessons in the following year illustrated changes in his practice which supported his 

students to engage with algebra. Similarly, Blanton and Kaput (2005a) present a significant case 

study of the instructional practices of a teacher who successfully developed a culture of 

algebraic reasoning in her classroom following professional development focused on reflection 

and inquiry. 

 

4.3 STUDENT ROLE AND PERSPECTIVES 
 

 

The teacher has an important role in reforming classroom contexts to include opportunities for 

engagement in algebraic reasoning. However, it is also important to acknowledge the student 

role within the classroom. A number of studies (e.g., Boaler, Wiliam, & Zevenbergen, 2000; 

Cobb, Gresalfi, & Hodge, 2009; Franke & Carey, 1997; Pratt, 2006; Young-Loveridge, 2005; 

Young-Loveridge, Taylor, Sharma, & Hawera, 2006) have recognised and advocated for the 

need to consider student perspectives and acknowledge their voice when researching changes to 

practice in the mathematics classroom. There is, however, limited research literature which 

addresses student perspectives and identity within classrooms where the focus of reform is 

algebraic reasoning. Therefore the following review will draw on findings from general studies 

which have investigated student beliefs and perspectives about mathematics in changing 

classroom cultures.  
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Bringing about significant change in classrooms has on-going consequences for both students’ 

learning of mathematical ideas, the development of their mathematical identity, and their 

epistemological beliefs of mathematics (Cobb et al., 2009; Franke & Carey, 1997; Hodge, 2008; 

Mason & Scrviani, 2004; Star & Hoffman, 2005). Drawing on a community of practice 

approach (Lave & Wenger, 1991; Wenger, 1998), identity is developed by an individual as they 

engage in the everyday activities within a community of practice (for example, the mathematics 

classroom). As an individual participates, they learn the ways of thinking and acting which are 

valued by the community and thereby develop both a sense of what it means to be a member of a 

specific community and a sense of self in relation to the community (Boaler et al., 2000; Hodge, 

2008). From this perspective, identity is a function of participating in different communities; it is 

dynamic and situated rather than stable and consistent. For different students, there can be a 

greater or lesser sense of belonging in relation to the community. This is related to how students 

come to understand what it means to do mathematics in the classroom and to what extent they 

identify with this (Boaler et al., 2000; Cobb et al., 2009). Cobb et al. (2009) contend that there 

are generally three outcomes with students identifying with the classroom mathematics activity, 

merely cooperating with the teacher, or resisting engagement with the classroom activities and 

developing oppositional identities. These researchers call for the need to develop interpretive 

schemes which focus on the relationship between the microculture developed in the classroom 

and the identities students are developing in the classroom. They argue that this interpretive 

scheme needs to attend to the “nature of mathematical activity as it is realized in the classroom; 

to what the students come to think it means to know and do mathematics in the classroom; and 

to whether and why they come to identify with, merely comply or resist engaging in classroom 

mathematical activity” (p. 41). 
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Views of mathematics are shifting and dynamic and both the teacher and classroom environment 

influence how students view the subject of mathematics and what they think it means to do 

mathematics in the classroom. Reform classrooms advocated by research studies which focus on 

bringing early algebra into primary classrooms (e.g. Blanton & Kaput, 2005a; Carpenter et al., 

2005a; Koellner et al., 2011; Schifter et al., 2008a) promote epistemological conceptions of 

mathematics that differ from traditional classrooms. A typical view of students from traditional 

classrooms is to conceive mathematics as a static body of knowledge which consists of rules and 

procedures (Boaler et al., 2000; Franke & Carey, 1997). For example, studies by Young-

Loveridge et al. (2006) and by Cheeseman (2008) report that many students perceived 

mathematics as a body of knowledge to be learned or equated learning mathematics to 

remembering numbers. These epistemological beliefs can affect performance (Boaler et al., 

2000; Colby, 2007; Franke & Carey, 1997; Mason & Scrivani, 2004; Star & Hoffman, 2005; 

Young-Loveridge et al., 2006). For instance, students who view mathematics as a set of isolated 

facts may have difficulty in developing relational reasoning or in making sense of others’ 

solution strategies.  In contrast, studies which investigate student beliefs about mathematics from 

reformed learning environments (e.g., Boaler et al., 2000; Franke & Carey, 1997; Mason & 

Scrivani, 2004; Star & Hoffman, 2005) report that students who have experienced different 

forms of mathematics teaching have different epistemological conceptions of mathematics. For 

example, the studies by Mason and Scrivani (2004) and by Star and Hoffman (2005) show the 

positive impact that innovative instruction had on students’ mathematical beliefs and the 

sophistication of their conceptions of mathematics. Franke and Carey’s (1997) interviews with 

students aged 6-years to 7-years old who had been taught mathematics in a problem-solving 

environment, likewise, revealed students’ sophisticated conceptions of mathematics. Students in 

this study associated doing mathematics with solving problems, using materials, communicating 
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ideas, using more than one solution strategy, and extended engagement with specific 

mathematical problems.  

 

Students’ views of their role are an important factor when considering change within the 

mathematics classroom. Pratt (2006) argues that there is a need for learners to understand their 

role, particularly in relation to social interactions such as talking, listening, and group work. His 

study used video stimulated reflective recall to investigate students aged 8-years to 11-years old 

perceptions of interactive whole class mathematics teaching in the UK. The findings showed that 

the students appeared to understand their own role in developing their mathematical 

understanding through listening to others. However, listening appeared to be privileged over 

talking as a form of meaning making. Another study from the UK by Edward and Jones (2003) 

investigated student attitudes towards collaborative group work. Interviews with students for 

whom collaborative group work was common practice indicated that students for the most part 

held positive beliefs about collaborative group-work. Responses included the benefits of 

working together, listening to others and respecting their ideas, sharing knowledge, confidence 

building, and motivation. An important aspect noted by these researchers was the need to teach 

students the skills to work productively in collaborative groups.  

 

For students who are inducted into reform classroom communities, there are shifts in their role 

as a learner. Students begin to engage in ways of learning that privilege different forms of 

knowledge and participation (Hodge, 2008; Hunter & Anthony, 2011). For example, Cheeseman 

(2007) found that in classrooms where there was an expectation that mathematical thinking 

would be explicitly described, a high number (85%) of students were able to describe their 

mathematical thinking explicitly in post-interviews using video stimulated recall. Another study 

by Hodge (2008) investigated students aged 6-years to 8-years old perceptions in regards to their 
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role and mathematical competence in two classrooms with significant differences in the forms of 

instruction. The students in the study had spent the first year in a classroom with reform inquiry 

based instruction methods before moving to more traditionally orientated instruction in the 

second year. These students gave markedly different responses in regards to what it meant to be 

a good mathematics student in each class. In the classroom with inquiry based practices, 

competence focused on talking, thinking and listening. In contrast, within the traditionally 

orientated classroom success was associated with steps and answers. A further study by Cobb et 

al. (2009) with students aged 13-years to 14-years old investigated perspectives of students from 

a traditionally taught algebra class and a reform oriented statistical investigation class. The 

students’ descriptions of their obligations and roles within each class were significantly 

different. In the traditional algebra class the student role during discussion was to listen to the 

teacher and use her method. This contrasted with the statistical investigation class where the 

students reported an obligation during discussion to explain their own analyses and ask 

questions to help themselves understand the analyses of others. Researchers use this as evidence 

to illustrate the different roles which students are required to take within different classroom 

contexts.  

 

4.4 SUMMARY 
 

This review has highlighted the importance of facilitating teachers to recognise opportunities for 

early algebra within their classrooms. A range of studies were examined to identify key aspects 

of professional development which have been found to support teachers to develop algebra ears 

and eyes. Developing a professional learning community was described as an integral factor. 

The review highlights how teachers can be facilitated to reconceptualise their understanding of 

algebra. Three key elements of successful professional development were identified as engaging 

teachers in solving, analysing and adapting tasks, examining and anticipating student reasoning, 
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and reflecting on practice. This review also highlights the scarcity of studies from the UK on 

professional development in algebraic reasoning for primary teachers.  

 

Acknowledgement is made of the need to consider students’ roles and perspectives when 

instigating and investigating change within the classroom. A review of studies investigating 

student role and perspective in regards to mathematical reform shows how changes in the 

classroom can influence student beliefs, identity, and their role and obligations within the 

classroom. However, the literature search also highlights the limited number of studies which 

have looked at the student perspective in relation to the introduction of early algebra.   

 

The following chapter describes the methodology of design research which is used in the current 

study. This was selected as appropriate to the theoretical framework and the overall aim of 

developing a learning environment promoted by current theory as productive but not yet 

common practice (Design Based Research Collective (DBRC), 2003). 



95 

 

 

CHAPTER FIVE 

METHODOLOGY 

 

5.1 INTRODUCTION 

 

This study aims to investigate how teachers develop algebraic reasoning in a mathematical 

community of inquiry. Innovative in nature, the project set within the school setting employed 

design research and case study methodology.  

 

Following a recap of the research questions, Section 5.3 overviews the qualitative research 

approach to the study. In Section 5.4 an explanation is given of design research and justification 

for its use within this study. The professional development model for the teacher development is 

discussed. Section 5.5 provides a description of the case study approach employed within this 

study and the reasons for its use.  

 

Section 5.6 outlines how the initial participation from the schools and teachers was established. 

It then provides details of the research setting including the context of the two schools, study 

group participants, and the two case study teachers. In Section 5.7 the ethical considerations 

concerning collaborative research in a school based setting such as the current study are 

discussed. 

 

Section 5.8 outlines the multiple methods of data collection used in this study. Section 5.9 

overviews the data analysis process both in the field and the retrospective analysis after data 

collection was complete. Finally, Section 5.10 describes how the findings are presented.  
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5.2 RESEARCH QUESTIONS 

 

This study addresses the key question:  

How can teachers develop early algebraic reasoning in a classroom community of mathematical 

inquiry?  

 

To address this key overall question, the study focuses on three smaller research questions: 

 How do teachers develop algebra ears and eyes?  

 What pedagogical strategies and classroom practices support student engagement in early 

algebraic reasoning? 

 What shifts occur in the way students engage in classroom activity as early algebraic 

reasoning is integrated into the everyday mathematics lessons?  

 

These questions acknowledge the key role which the teacher takes in leading change within the 

classroom and the role of the students in engaging with this change. The focus of the exploration 

is on the different routes which teachers may take while developing their algebra eyes and ears. 

Specifically, the study focuses on how teachers adopt and adapt key pedagogical strategies and 

classroom practices in their collaborative and personal inquiry into ways to support students to 

engage in algebraic reasoning. Implicit in the final research question is the understanding that 

student engagement may change when new practices and foci are introduced into the classroom. 

In particular, this study seeks to examine how student engagement in classroom activity changes 

as algebraic reasoning is integrated into the everyday mathematics lessons.  
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5.3 THE QUALITATIVE RESEARCH PARADIGM 

 

This research study is grounded in a sociocultural perspective and draws upon a qualitative, 

interpretive research paradigm (Bogdan & Biklen, 2003; Cohen, Manion & Morrison, 2007). 

This type of research is contextual, has a practical interest, and is conducted within a naturalistic 

setting (Bogdan & Biklen, 2003; Cohen et al., 2007; Denzin & Lincoln, 2005). Therefore it was 

appropriate to apply a qualitative, interpretive approach to this study which was situated within 

classrooms at two different schools.  

 

Qualitative, interpretive research is described by Cohen et al. (2007) as focusing on micro-

concepts. These they identify as “individual perspectives, constructs, negotiated meanings, 

definitions of situations” (p. 42). Through the use of multiple methods, descriptive data is 

collected and used to generate a rich description of the social world. Within this world, 

acknowledgement is made of participants’ multiple realities and differing ways of understanding 

a situation (Denzin & Lincoln, 2005). In this study both the ‘lived’ experiences of teachers and 

their students are drawn on as they develop algebra ears and eyes and shift their ways of 

participating within the mathematics classroom.   

 

A key feature of qualitative, interpretive studies is that the researcher is personally involved in 

designing, implementing, and interpreting the research. This complements design research 

where practitioners and researcher work in concert to introduce innovative practice and develop 

change in the context of practice (DBRC, 2003). Within this frame, close relationships exist 

between those being researched and the researcher (Cohen et al., 2007; Denscombe, 2003; 

Denzin & Lincoln, 2003). In this study I drew on design-based methodology as described by 

Fishman et al. (2004), to work alongside both teachers and their students to design, develop, 
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implement, and evaluate an innovation which focused on early algebra within the classrooms. 

As such, design research offered opportunities to develop learning environments which have 

been promoted by current theory as productive yet may not be common practice.  

 

5.4 DESIGN RESEARCH 

 

Design-based research is highly interventionist (Cobb et al., 2003) and is identified as a way to 

“create and extend knowledge about developing, enacting and sustaining innovative learning 

environments” (DBRC, 2003, p. 5).    Both the type and scope of design experiments can vary 

according to the purpose and setting (Barab & Squire, 2004; Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003; Gorard, Roberts, & Taylor, 2004; Zhao & Cobb, 2006).  

 

Design research methodology has been increasingly used in recent years in mathematics 

education to investigate innovations in teaching and learning in a wide range of naturalistic 

settings including pre-service education, in-service development, classrooms, schools, and 

school districts. The use of a naturalistic setting means that this type of research is intertwined 

with practice while also a means to account for the complex influence of context on teaching and 

learning (Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004).  

 

Participants in design research studies are regarded as co-participants in the design and at times 

the analysis (Barab & Squire, 2004, DBRC, 2003; Gorard et al., 2004). In order for the study to 

investigate how teachers can develop early algebraic reasoning in a mathematical community of 

inquiry, it was necessary to address teacher understanding of teaching which focused on and 

promoted students’ understandings of early algebra concepts. To achieve this, a design similar to 

that described by Zhao and Cobb (2006) was used where activities were used in one setting—
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professional development sessions—to support the overarching goal that the teachers would 

reorganise their activity in a different setting—the classroom. This included developing teacher 

understanding of types of tasks, pedagogical actions, classroom norms, and mathematical 

practices which support students to engage in early algebraic reasoning. A second layer of 

design research involved teacher collaboration as co-researchers and designers within their 

classroom to investigate how algebraic reasoning could be developed with their students.   

 

Design research involves a strong relationship between theoretical research and practice. Theory 

is used as the basis for designing systems which use specifically planned teaching methods to 

facilitate learning (Walker, 2006). Gravemeijer and Cobb (2006) describe the necessity of 

researchers developing local instruction theories. These are formulated by drawing on existing 

research literature and then making conjectures about the trajectory of the possible learning 

process and how this learning process can be supported through tasks and activities, the 

development of a learning community, and the role of the instructor.  

 

An iterative process of continuous cycles used within design research allows the design to be 

adapted and modified as necessary (Barab & Squire, 2004; Cobb et al., 2003; Walker, 2006). As 

the design is enacted, the researcher analyses participation and learning and uses this to assess 

the validity of the conjectures which form the local instruction theory and revise specific aspects 

of the design. In a professional learning design study this requires the researcher to observe 

lessons and undertake debriefing sessions with the teacher so a shared interpretation of lessons 

and changes being made may be developed (Gravemeijer & Cobb, 2006; Zhao & Cobb, 2006). 

In this way the extended nature of design research requires researchers to maintain on-going 

relationships with practitioners (Cobb et al., 2003).  
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Educational settings are complex and messy interacting systems. Many researchers (e.g., Barab 

& Squire, 2004; Cobb et al., 2003; Gravemeijer & Cobb, 2006) argue that design research is a 

means to address the complexity and messiness of educational settings. Gorard et al. (2004) 

extend the argument explaining that this type of methodology is also messier than traditional 

forms of research because it is required to “monitor many dependent variables, characterise the 

situation ethnographically, revise the procedures at will, allow participants to interact, develop 

profiles rather than hypotheses, involve users and practitioners in the design and generate 

copious amounts of data” (p. 580). As a result, design research requires specific use of 

interpretative frameworks to translate observations and the data collected into scientific 

interpretations (Gravemeijer & Cobb, 2006).  

 

The overall model drawn upon in this thesis is shown in Figure 3. This model draws together the 

key elements which are proposed as critical if teachers are to support their students to construct 

early algebra concepts in mathematics classrooms. The model was developed as a result of a 

number of factors. The elements of classroom practices and mathematical practices were 

identified in part from a previous research study in a classroom (Hunter, 2007). This study 

examined the development of a classroom culture which provided opportunities for children to 

engage in algebraic reasoning. All four elements were supported from the review of the 

literature which is described in Chapter Two and Three. The element of tasks and enactment 

drew on the literature but the importance of enactment became more strongly apparent as the 

study progressed.  
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Figure 3. Key elements of developing early algebra in primary classrooms 

 

5.4.1 Developing the professional development model 

 

In the first instance the professional development model drew on findings from the literature 

chapters. The initial focus was placed on investigating teacher perceptions of early algebra and 

then to widen their understanding of this area by the introduction of an overview of early algebra 

concepts. The subsequent and on-going re-design of the model for professional development 

drew on researcher observations from the classrooms. For example, it was observed that the 

teachers needed professional development in facilitating students to generate and explore 

conjectures. In response, a task was designed to enable the teachers to explore possible 

conjectures which students would make and how these could be justified. The study group 

meetings, teacher interviews, and discussions also provided further information regarding the 

need for professional development activities. For example, both during study group meetings 

and interviews the teachers requested support in how to facilitate students to ask questions. 

Consequently in the following study group meetings research articles were used as the basis for 
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a discussion on facilitating student questions. The focus for professional learning within the 

model comprised four separate but related components: 

 Understanding of early algebraic concepts. 

 Task development, modification, and enactment.  

 Classroom practices.  

 Mathematical practices 

These foci of teacher learning/inquiry when combined with phases reflecting the possible 

trajectory of foci formed the conjectured framework of professional development as shown in 

Table 1. This was termed a conjectured framework because the focus of the study did not 

analyse whether each of the professional development activities was effective in regards to 

teacher development of algebra ears and eyes.   

 

 

 

 

Table 1  

Conjectured Framework of Professional Development to Develop Teachers’ Algebra Ears and 

Eyes 

 

 Understanding of 

early algebraic 

concepts 

Task development, 

modification, and 

enactment 

Classroom practices  Mathematical 

practices 

P
H

A
S

E
 O

N
E

 

Concept map of early 

algebra. 

Teacher analysis of 

student reasoning 

(task based interview 

results). 

Teacher examination 

of  

- Equals sign.  

- Relational reasoning 

- Commutative 

property. 

Overview of early 

algebra concepts. 

Examination of 

MEP curriculum 

material for links to 

early algebra 

concepts. 

 Classroom development of  

- - Collaborative discourse. 

- - Mathematical explanations. 

Used framework to reflect on current 

classroom practice and set goals. 
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P
H

A
S

E
 T

W
O

 

Used framework and classroom video-recorded lessons as reflective tools with a focus on  

- Developing collaborative group work.  - Developing whole class discussions. 

- Strategies to integrate early algebra. 

 Developed new 

concept map of early 

algebra. Compared 

and contrasted 

previous 

understanding. 

 Examined a case of 

student reasoning to 

build understanding 

of relational 

reasoning. 

Examination of 

common errors when 

using variables. 

 Used task to predict 

and plan for student 

responses.  

 Identified and 

adapted MEP tasks to 

develop algebraic 

reasoning. 

 Wrote number 

sentences using 

different numbers or 

properties which 

drew on relationships. 

 

 Orchestrating a productive whole class 

discussion. 

 

 Classroom development of making conjectures and justification 

- Generate possible student conjectures. 

- Predict student justification of a conjecture.  

- Justify a conjecture in three ways (using representational material, a 

verbal explanation, and symbolic form). 

P
H

A
S

E
 T

H
R

E
E

 

 Collaborative lesson 

planning. 
Developed overarching aim for the learning 

community. 

 Lesson study post-lesson observation reflective meeting. Focus on 

- Pedagogical strategies.     - Student responses. 

- Task design. 

  Collaborative lesson 

planning. 

Identified and 

adapted MEP tasks to 

develop algebraic 

reasoning. 

 Classroom development of generalisation. 

Used framework to reflect on current 

classroom practice and set goals. 

 Reflective discussion. Focus on 

- Understanding of early algebra.    - Task design.  

- Pedagogical strategies to support early algebra. - Student reasoning and participation. 

 Lesson study post-lesson observation reflective meeting. Focus on 

- Pedagogical strategies.                 - Student responses. 

- Task design. 

  

 

Initial instructional activities included in the professional development were selected to explore 

and challenge teachers’ existing understanding and beliefs about early algebra. For example, an 

opening activity involved teachers drawing a concept map of their understanding of early 

algebra. This activity supported both the teachers and the researcher to reflect on their current 

understandings of early algebra. In subsequent meetings, it provided further opportunities for the 
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teachers and researcher to continue reflecting on their developing understanding of early 

algebra.  

 

Research articles were used as multi-purpose tools in the professional development. A range of 

articles and excerpts from research texts
1
 were shared with the teachers during the study group 

meetings. These were used to extend teacher understanding of early algebra, to provide models 

of classrooms which would support early algebraic reasoning, and to promote reflection on 

current practice. Discussions held after reading each article required the teachers to respond to 

questions such as “what did you find interesting?” or “are there any ideas that you could bring to 

your classroom after reading that?” The articles also served the purpose of developing links 

between research and classroom practice as advocated by Watson (2009).  

 

The selection, design, and enactment of tasks were a central focus for professional development. 

The current study built on previous studies (e.g., Blanton & Kaput, 2008; Franke et al., 2008; 

Jacobs et al., 2007; Schifter et al., 2008; Stephens et al., 2004) that successfully used 

mathematical tasks to engage teachers in reconceptualising their understanding of algebra. In 

these studies the use of algebra tasks provided teachers with multiple opportunities to reflect on 

their own understanding of algebraic concepts and the mathematical practices which support 

students’ learning of early algebra. For example, in the current study the teachers were asked to 

                                                 
1
  

Monaghan, F. (2005). Don’t think it in your head, think aloud: ICT and exploratory talk in the primary 

mathematics classroom. Research in Mathematics Education, 7, 83-100. 

Kazemi, E. (1998). Discourse that promotes conceptual understanding. Teaching Children Mathematics, 

4(7), 410-414.  

Carpenter, T. P., Levi, L., & Farnsworth, V. (2000). Building a foundation for learning algebra in the 

elementary grades. In Brief, 1(2), 1-8. 

Carpenter, T., Franke, M., & Levi L. (2003). Thinking mathematically: Integrating arithmetic and 

algebra in elementary school. Portsmouth: Heinemann. 

Smith, M. S., Hughes, E. K., Engle, R. A., & Stein, M. K. (2009). Orchestrating discussions. 

Mathematics Teaching in the Middle School, 14(9), 548 – 556.   
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solve number sentences involving variables, develop their own number sentences, and at another 

time asked to develop different forms of justification for a conjecture. Specific tasks from the 

MEP curriculum material were used to provide ways for the teachers to identify opportunities 

for algebraic reasoning and also to investigate ways of modifying and further developing 

existing tasks.  

 

Other research studies (e.g., Blanton & Kaput, 2008; Franke et al., 2008; Herbel-Eisenmann & 

Phillips, 2008; Jacobs et al., 2007; Koellner et al., 2011; Stephens et al., 2004) that highlight the 

usefulness of a focus on student thinking and reasoning to facilitate changes in practice also 

influenced the design of the professional development.  In addition to designing and critiquing 

tasks, teachers in this study were encouraged to predict responses that students would give to 

algebraic tasks. They also engaged in activities which investigated student responses from task-

based interviews conducted by the researcher and undertaken at the beginning and end of the 

study. 

 

Prompting reflection on practice was a key element of the professional development. This 

required that the teachers were able to develop tools and skills for noticing relevant aspects of 

their practice (Franke et al., 2008; Ghousseini & Sleep, 2011). To support the teachers in this 

study to reflect on their own practice, they were provided with an adapted framework (see 

Appendix A) from Hunter (2009) which detailed classroom and mathematical practices linked to 

the development of algebraic reasoning. The framework provided the teachers with an objective 

lens to use when viewing video records from their own classrooms. It was also a useful tool to 

support them to reflect on their practices and set future goals.  
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As the study progressed, teachers had opportunities to engage in a lesson study cycle which 

drew different elements of the professional development together. Lesson study is based on a 

Japanese model of teacher development which emphasises student learning and reflection on 

practice (Lewis, 1995; Stigler & Hiebert, 1999). It aims to increase teachers’ knowledge about 

mathematics, ways of teaching mathematics, and ways in which learners engage with and make 

sense of mathematics (Fernandez & Yoshida, 2004). Although a superficial view of lesson study 

is that it is focused on developing the ‘perfect’ lesson, the deeper intention of the lesson study 

cycle is to support teachers to engage with the processes of teaching and learning. Participating 

in a lesson study cycle can prompt teachers to reflect on their own approaches to the processes 

of teaching and learning and develop practices in ways which are meaningful within their 

working contexts (Burghes & Robinson, 2010; Stepanek & Appel, 2007).      

 

In the lesson study process used in this study, each group of teachers worked as a community 

within their own school. The initial step involved the establishment of an over-arching aim 

which was relevant to each school. This collaboratively agreed goal established that the teachers 

wanted to develop creative and flexible problem-solvers. Following this, the teachers planned an 

area of focus for the study lessons. The foci corresponded to mathematical concepts their 

students had difficulties with or those which the teachers felt less confident about teaching. For 

example, at Hillview school the teachers wanted to address how their students over-generalised 

the commutative property to include subtraction and division. A lesson study cycle was devised 

which included lessons designed to facilitate student understanding and justification of the 

commutative property with a focus on the use of representations to model conjectures and justify 

reasoning. At Beaumont school the study lesson cycles aimed to develop student skill at solving 

multi-step word problems and part of the focus was placed on the equal sign. Through 

collaborative activity the ‘study lessons’ were planned and taught by one of the teachers and 
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observed by the others. Teacher reflection was prompted from observation during the study 

lessons and the post discussion prompted by key questions (see Appendix B). The lesson was 

then re-planned and further developed on the basis of the student responses and consequently re-

taught to a different group of students in another classroom while being observed by the other 

teachers and discussed again in a meeting following the observation.  

 

5.5 CASE STUDY  
 

 

Qualitative case studies are commonly used in educational research (Merriam, 1998). This is a 

holistic form of research methodology which uses multiple sources and methods of data 

collection to provide rich and detailed descriptions to illustrate findings and support theoretical 

conclusions (Cohen et al., 2007; Denscombe, 2003). Case studies may focus on a single case or 

involve multiple cases or sites. When examining multiple cases, the use of a comparative case 

study approach is used to develop understanding of both the unique and common factors 

between each case (Merriam, 1998). By undertaking a detailed examination of the site and group 

within the natural environment, the aim is to develop understanding and expand the range of 

interpretations (Scott & Usher, 1999).  

 

Case study methodology was employed in this study due to the bounded nature of the schools, 

teachers, and students. The study included an in-depth examination of two distinct sites and 

groups within their natural environment and utilised multiple sources of data collection. A 

comparative case study approach was chosen as appropriate to investigate the development of 

two teacher’s algebra ears and eyes and the differing ways in which they used their developing 

understanding to implement changes within their classrooms. A detailed description of the 

reasons for the selection of the two case study teachers is provided in Section 5.6.2.   
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5.6 RESEARCH SETTING AND BACKGROUND TO THE STUDY 
 

As outlined in Chapter One, this research was initiated as a follow-up to a previous 

observational research project focusing on teacher enactment of the Mathematics Enhancement 

Project (MEP). When the initial observational research project was completed, separate 

meetings were held with the senior management at Beaumont School and Hillview School
2
 to 

discuss the possibility of staff participating in a collaborative research project focused on 

developing algebraic reasoning. An outline of the proposed research project was given to the 

teachers during a staff meeting and an invitation was made to those who wished to participate. 

Following this, three teachers from each school who were previously involved in the 

observational research project agreed to participate in the project.  

 

In design-based research such as used in this study, teachers and researchers collaborate to 

develop meaningful changes (DBRC, 2003). Previous involvement with both schools meant that 

the foundation for future collaboration with the teachers was established. Moreover, my earlier 

role in the school as a researcher observer established my role as an ‘adopted’ staff member and 

enhanced both staff members and students’ acceptance of my presence within the classrooms.    

 

5.6.1 Description of the schools  

 

Beaumont School is a primary school in the British Isles. All classes are mixed ability and 

students have the same classroom teacher throughout the day. At the time of the study, it was the 

third year in which the school had been using the MEP curriculum material. Students at this 

school generally come from middle to high socio-economic home backgrounds. Most of the 

                                                 
2
 The names of both schools have been changed. 
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students are of white British ethnicity although a number of students also come from other 

ethnic backgrounds including African and Caribbean British descent, Asian, Polish, and 

Portuguese.  

 

Hillview School is a primary school situated in a suburban area on the outskirts of London. 

Students in Key Stage Two are taught their daily mathematics lesson in ability groups with a 

lower and higher set for each year group. At the time of the study, it was the fourth year in 

which the school had been using the MEP curriculum material. Like Beaumont School, students 

at Hillview School generally come from middle to high socio-economic home backgrounds. 

Most of the students are of white British ethnicity although a number of students also come from 

other ethnic backgrounds including African and Caribbean British descent, Asian, and Indian 

descent. 

 

5.6.2 Participants in the study groups 

 

At both schools each study group had three teachers who had chosen to participate in the 

study—at Beaumont School a Year Two teacher and two Year Three teachers and at Hillview 

School two Year Three teachers and a Year Five teacher. The two Year Three teachers at 

Hillview School shared a class and all teachers in this study group taught the upper set 

mathematics class. All participant teachers had 6 to 18 years teaching experience. In Chapter Six 

and Seven, one teacher from Beaumont School and one teacher from Hillview School are 

featured as cases. These two teachers were selected due to the distinctly different pathways they 

took in developing their algebra ears and eyes and facilitating algebraic reasoning in their 

everyday mathematics lessons. Whilst both teachers had engaged in similar activity during the 

study group meetings they developed differing understanding of early algebra and at the end of 
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the project there were distinct differences in opportunities available to the students in their 

respective classrooms for the development of algebraic reasoning. These two case teachers and 

the composition of their classes are described in the following section.  

 

5.6.3 The case teachers and their students 

 

To preserve the anonymity of the teachers and students involved in the two cases featured in the 

findings chapters, it is suffice to say that both teachers, each with at least 10 years of teaching 

were regarded as experienced classroom teachers. Both classrooms involved 25 students of 

mainly white British ethnic origin. Mrs Stuart
3
 from Beaumont School (case reported in Chapter 

Six) taught Year Three students working at achievement levels between Level One and Level 

Four on the Primary National Curriculum (Department for Education and Skills (DfES), 1999). 

Mrs Willis
4
  from Hillview School (case reported in Chapter Seven) taught upper set Year Five 

students working at achievement levels between Level Three and Level Five on the Primary 

National Curriculum (DfES, 1999).  

 

5.7  ETHICAL CONSIDERATIONS 

 

An important aspect of social research is ethical considerations. This study was designed and 

conducted in accord with Plymouth University’s ethics guidelines and ethical approval was 

sought and obtained prior to data collection. It also built on guidance from the British 

Educational Research Association (BERA, 2011) which outlines the underlying ethical 

principles which guide the activity of educational researchers as including informed consent, 

                                                 
3
 A pseudonym  

4
 A pseudonym 
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openness, protection from harm, confidentiality, and privacy. The following section outlines 

how these principles were considered for this study.  

 

5.7.1 Informed consent 

 

Informed consent is regarded as an important principle of ethical research (Heath, Charles, 

Crow, & Wiles, 2007). Ethical guidelines from BERA (2011) provide a definition of informed 

consent as “the condition in which participants understand and agree to their participation 

without any duress, prior to the research getting underway” (p. 5). This requires that 

participation is voluntary and that individuals are provided with appropriate information to make 

a reasoned judgement about participation. In this project there were a number of reasons that it 

was important that the teachers had a thorough understanding of the research process. These 

included the lengthy on-going nature of the project, the collaborative aspects, and the significant 

time commitment involved in planning meetings, reflective interviews, and activities undertaken 

by the study group.   

 

Due to the collaborative nature of this research informed consent was a key part of this study. 

However, in contexts such as primary schools, significant challenges may be faced in gaining 

informed consent. Heath et al. (2007) highlight these challenges as “inequalities in status 

between gate-keepers, researchers, and participants” (p. 404). For this study, discussions held 

with each of the teacher participants prior to the project included a detailed outline of the 

project, an overview of what participating would entail, and the opportunity for individuals to 

ask any questions. Prior to the discussions, areas which were identified as having the potential 

for harm were considered by the researcher so they could be discussed with the participants. 

These included embarrassment or discomfort from being observed both by the researcher and 
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members of the study group, video-taping of classroom episodes and study group meetings, and 

reviewing video footage both individually and collectively within the study group. In accord 

with recommendations (e.g., David, Edwards, & Alldred, 2001; Valentine, 1999) that emphasise 

the need for consent to be re-negotiated throughout collaborative research designs, these areas 

were re-visited and discussed throughout the study. The benefits of being involved in the study 

were also highlighted to allow the teachers to consider both the risks and potential outcomes.  

 

Following the initial discussions, the teacher participants were provided with information sheets 

about the project (see Appendix C). The information sheets re-iterated the right to refuse to 

answer particular questions, to ask for recording devices to be turned off and comments 

excluded, and the right to withdraw from the study at any time during the data collection phase. 

Teacher participants were asked to complete written consent forms after reading the information 

sheet.  

 

Informed consent is also an important consideration when undertaking research with children. 

BERA (2011) advocates that children should be “facilitated to give fully informed consent” (p. 

6) in collaboration with the approval of those who act in guardianship. Valentine (1999) 

describes the importance of both verbal and written information being provided to children and 

highlights asking children to sign a consent form as a means of giving them control, autonomy, 

and privacy.  In this study, the project was first discussed with the students in their classroom 

including an opportunity for the students to ask any questions. They were then provided with 

parent and student information sheets and consent forms (see Appendix D). To maintain 

informed consent through the research project, students were always asked for verbal consent 

prior to any interviews and were also advised that they could choose whether to answer the 

questions or ask for the recording device to be turned off.  
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5.7.2 Anonymity and confidentiality 

 

A norm within social and educational research is for participants to be given anonymity and data 

collected to be treated confidentially (BERA, 2011). However, anonymity between teacher 

participants and within the classroom was impossible as the participants were known to each 

other and the wider school community knew who was involved in the project. Participants were 

advised of this difficulty both verbally and on the information sheet prior to the beginning of the 

study. Participant schools, teacher, and student participants were assigned pseudonyms to ensure 

anonymity within the wider dissemination of the project. In order to preserve the anonymity 

further, only relevant information has been provided about the schools, the case teachers, and 

their students.  

 

Confidentiality and anonymity are related to each other as they are both concerned with privacy 

of the participants. Tickle (2001) defines anonymity as preventing the identity of individuals 

being released and confidentiality as guaranteeing data will not be shared with others in any 

form. This means that confidentiality ensures specific contributions to the research data cannot 

be identified.  In this study, although the study group participants both observed lessons, and 

video footage (selected by the teacher participants of their own practice), discussed instances 

from lessons, and engaged in focus group interviews, this involved no-one beyond the study 

group and teacher participants. Additionally, reflective interviews were held with individual 

participants to ensure that confidentiality was maintained.  
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5.8 DATA COLLECTION 

 

The following section describes the timeline for data collection and the range of data collection 

methods used within the study. These included observational field-notes from the participant 

observations, video recorded observations, documents, teacher interviews, and photo elicitation 

interviews with students. 

 

Table 2 and Table 3 outline the research programme during the course of the study from the 

initial observations to the point of withdrawal from each school. The schedule of observations 

and study group meetings are detailed.  

Table 2  

A Time-line of Data Collection from Beaumont School 

 

2009    Term 3 

April -May  Observations prior to professional development at Beaumont school   

2009    Term 1  

Week 4 

 

Week 6 

 

Week 9 

 

Week 12 

 

 

 

Meeting with Senior management to discuss proposed research.  

Invitation to teachers to join the research project. 

Information sheets and consent forms provided for senior management and 

teachers. 

Teacher participation reconfirmed. Information sheets and consent forms 

provided for students and caregivers. 

Task-based interviews and semi-structured interviews with the students. 

Initial study group meeting. 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

2010 Term 2  

Week 7 

 

 

Week 11 

 

Study group meeting. 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Study group meeting. 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Lesson study observation and reflective meeting. 

2010 Term 3 

Week 4 

 

 

Study group meeting.  

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  
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Week 6 

 

 

Week 8  

 

 

 

Week 12 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Lesson study observation and reflective meeting. 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Lesson study observation and reflective meeting. 

Task-based interviews and semi-structured interviews with the students. 

Lesson study observation and reflective meeting. 

 

Table 3  

A Time-line of Data Collection from Hillview School 

 

2009    Term 3 

June   

July  

Observations prior to professional development at Hillview school  

Meeting with Senior management to discuss proposed research.  

Invitation to teachers to join the research project.  

2009    Term 1  

Week 2 

 

Week 3 

 

Week 5 

Week 6  

Week 7 

 

Week 10  

 

 

Week 13 

 

Information sheets and consent forms provided for senior management 

and teachers. 

Teacher participation reconfirmed. Information sheets and consent forms 

provided for students and caregivers. 

Task-based interviews and semi-structured interviews with the students. 

Initial study group meeting. 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Study group meeting 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Data collection in classrooms. Photo-elicitation interviews with the 

students. 

2010 Term 2  

Week 5 

 

 

Week 9 

 

Study group meeting 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Lesson study observation and reflective meeting. 

2010 Term 3 

Week 2 

 

 

 

Week 5 

 

Week 9  

 

 

Study group meeting  

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Lesson study observation and reflective meeting 

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Data collection in classrooms. Photo-elicitation interviews with the 

students. Semi-structured interviews with the teachers.  

Task-based interviews and semi-structured interviews with the students. 
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5.8.1 Participant observation 

 

Observation is a frequently used method of data collection in classroom studies. It can be 

classified broadly into two categories: systematic observation and participant observation. The 

observational methods used within these two categories differ and involve varying levels of 

structure from tightly formed observation schedules to less structured observation notes which 

emphasis depth rather than breadth of data (Cohen et al., 2007; Denscombe, 2003). In this 

research, I took the role of participant observer similar to that which is described by Clarke 

(1996) as a “participant in the actions, events and contexts being studied” (p. 4). Within this role, 

the degree of immersion in the research varied—from comprehensive involvement to complete 

detachment. During the study group meetings the role which I took was central in leading all 

activity and discussions. In contrast, the role which I took in the classrooms was largely as a 

passive observer. At no times did I intervene during the lesson or engage with the students 

unless requested by the teacher. At the same time, I acknowledge my presence within the 

classroom may have influenced some of the teacher and student actions during the observations. 

The role which was taken aligns with the role other researchers have taken while working with 

teachers and in classrooms in design-based research (e.g., Falkner et al., 1999; Franke et al., 

2008; Jacobs et al., 2007; Koellner et al., 2011; Zhao & Cobb, 2006). 

 

Undertaking a participant observational study over an extended period of time allows the 

researcher to develop a “holistic understanding of the phenomena under study” (DeWalt & 

DeWalt, 2002, p. 92). Sustained involvement and observations help to develop better 

understanding of the dynamics of a situation, the context, and the phenomenon under study 

(Cohen et al., 2007). Participant observation was an important element of this research as it 

helped to guide and define the relationships with the participants whilst also supporting the 
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researcher to develop an understanding of the organisation of the mathematics classrooms and 

lessons. This included the relationships between the teacher participants as a learning 

community during the study group meetings, the teacher and student participants within the 

classroom, and what both the teacher and student participants valued as important related to 

mathematics teaching and learning and more specifically the developing algebraic nature of the 

classroom. 

  

5.8.2 Video recorded observations 

 

The opportunity that video recordings offer for close documentation and observation in 

naturalistic settings such as the classroom or teacher professional development is evident in their 

increasing utilisation in education research for teacher development and classroom design 

experiments (Clarke, 1996; Derry et al., 2010; Pirie, 1996; Powell, Francisco, & Maher, 2003). 

Video records offer both permanence and opportunities to re-visit and re-examine data that has 

been recorded.   

 

The use of video-recording as a tool offers researchers the flexibility to gain detailed accounts of 

behaviour and interactions (Barron, Pea, & Engle, 2013; Powell et al., 2003). Derry et al. (2010) 

use the analogy of the camera as a microscope which increases the amount of interactional data 

that can be collected. An advantage of video recorded observations is that all that is in view of 

the eye of the camera is recorded and unlike participant observations this is not a selective 

process in regards to what is recorded (Rosenstein, 2002). However, as a number of researchers 

(e.g., Derry et al., 2010; Pirie, 1996; Powell et al., 2003; Rosenstein, 2002) highlight, video 

recordings are selective in regards to the positioning of the camera and the breadth of the lens. 

An initial challenge for researchers is to identify the aspect of the complex environment that 
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they wish to record. In this study, each study group meeting was video-recorded with one 

camera placed in the corner of the room to capture the participants sitting around a table. 

Mathematics lesson observations were also recorded with one camera. Lessons were recorded in 

their entirety including the introduction of each task, group work, and the whole class 

discussion. The camera was placed to focus on the front of the classroom and whiteboards which 

were used both by the teacher and students during the task implementation and whole class 

discussion.  

 

Video-recorded observations are a valuable tool for data-gathering; however there are also key 

methodological challenges in its use (Derry et al., 2010; Powell et al., 2003; Rosenstein, 2002). 

Issues of accurate representativeness can be raised when introducing video cameras to 

naturalistic environments. Both Roschelle (2000) and Rosenstein (2002) note that in front of a 

camera; individuals may change their behaviour and ways of interacting. This was addressed in 

the current study by explaining the purpose of taping the lessons to the students, by the teacher 

modelling natural behaviour, and by familiarising students with having a camera in their 

classroom with practice runs and also by its use regularly over a prolonged period.  

 

The large amount of data captured in a video record creates its own challenges for analysis. 

Derry et al. (2010) note that for researchers to extract data and meaning from video records they 

need to use theoretical frameworks and research questions as a way to focus. However, one 

needs to be aware that one’s use of theoretical interests to influence selection and focus can 

“both constrain and shape later analyses and presentation of results” (Powell et al., 2003, p. 

408). Powell et al. (2003) argue that to develop more complete accounts, it is necessary to 

augment and triangulate video records with other forms of data. In this study the analysis drew 

on multiple data sources. 



119 

 

5.8.3 Documents 

 

Documents support the development of a rich account of an event and in design research they 

may be used to track changes and also provide sources of information about how learning was 

generated and supported (Cobb et al., 2003; Cohen et al., 2007). In this study, documents 

gathered from the professional development included both the teacher participants’ responses to 

activities undertaken during the study group meeting (e.g., concept maps, predictions of student 

responses, written and diagrammatic justification of conjectures, annotated lesson plans, and 

teacher reflections and goal setting annotations). Documents collected from the classroom work 

included work samples, tasks, lesson plans, and photographs from the lessons of small group 

work or student recorded solution strategies on the whiteboard.            

 

5.8.4 Interviews with teachers 

 

Interviewing can be used to develop insight into multiple perspectives and to gain deeper 

understanding of alternative meanings (Denscombe, 2003; Scott & Usher, 1999). While there 

appears to be many similarities between a conversation and an interview, Denscombe (2003) 

takes care to highlight that interviews are more than simply conversations. Described as an 

“interchange of views between two or more people on a topic of mutual interest” (Kvale, 1996, 

p. 14), a key consideration is that participants have the security to talk freely (Cohen et al., 

2007). This was important in this study, as during the interviews I sought to develop my 

understanding of the perspectives of the teachers in regards to how they were developing their 

own understanding of early algebra and also how they were facilitating algebraic reasoning in 

their classrooms. Although I took an active role in developing and facilitating the study group 
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activities, during the interviews I needed to empower the teacher participants as experts on their 

own developing practice.  

 

The current study used two forms of recorded teacher interviews: semi-structured individual 

interviews and group interviews. During each school visit informal semi-structured individual 

interviews were held post the lesson observation. During these interviews the teacher and I 

briefly discussed the lesson including the tasks, student participation, and the development of 

algebraic reasoning. This was used both to promote reflection on practice and also as a way to 

support the development of future tasks.  

 

In addition to post-lesson interviews each teacher participated in two formal semi-structured 

interviews with the researcher. The first interview, held in the second phase (approximately mid-

way) of the study, explored the changes the teacher participants were noticing in their teaching 

and student engagement, pedagogical strategies that they were using to facilitate the 

development of algebraic reasoning, challenges they were facing, and the areas that they were 

planning to focus on in future lessons. The second interview, held towards the end of the study, 

investigated the teacher participants’ reflections on their engagement in the research study. This 

included teacher reflections on task development and implementation, changes in the classroom 

and mathematical practices, and personal understanding of early algebra.  

 

Records of group discussions that occurred during the study group meetings and the lesson study 

cycle were used to gain reflective data from the teacher participants on involvement in the 

research study and the perceived changes in their classrooms and teaching.   
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5.8.5 Photo elicitation interviews with students  

 

Visual methods have been increasingly used in educational research to support interviewing 

children and provide insight into their worlds (e.g., Cappello, 2005; Clark-Ibanez, 2004; Meo, 

2010). Using traditional interviews when working with children has been identified as 

problematic due to a number of factors including: level of linguistic communication, cognitive 

development, power relationships between adults and children, and the question and answer 

format (Cappello, 2005; Clark, 1999; Clark-Ibanez, 2004).  

 

Photo elicitation interviews (PEI) are a form of research interview that involves the use of 

photographs. Images in PEI can be used in different ways as visual inventories, depictions of 

events or to document dimensions of the social (Harper, 2002). Use of photographs in interviews 

can help develop rapport between the child participant and researcher and also ease the 

awkwardness of the interview situation (Clark-Ibanez, 2004; Meo, 2010). In this research, I took 

photographs to capture images that depicted classroom events. Acting as “medium of 

communication between researcher and participant” (Clark-Ibanez, 2004 p. 1512) these images 

were used to provoke a participants’ memory and prompt discussion.  

 

A methodological issue when using PEI is who takes the photographs and what should be 

photographed to prompt reflection on an experience (Clark-Ibanez, 2004; Harper, 2002). In the 

current study, the researcher took photographs depicting instances during the whole class 

discussion featuring students sharing their solution strategies. For each of the lessons involved, 

between four to six students were selected on the basis of ensuring that all students participated 

in an approximately equal number of interviews spaced over the school year. The students were 

approached prior to the lesson to seek agreement for the post-lesson interview. In the post-lesson 

interview, students were shown between three to four photographs and asked to describe what 
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was happening from their perspective and what they were thinking. This included asking them to 

recall solution strategies and explanations provided by their peers along with their own 

mathematical reasoning. They were also asked to respond to questions which focused on the 

newly developing classroom practices and mathematical practices such as engaging in 

collaboration with their peers, talking about their mathematical ideas, and listening to others 

share their responses (see Appendix E for the schedule of interview questions).  

 

5.9 DATA ANALYSIS 

 

A characteristic of both qualitative research and design research methodology is the close 

relationship between data collection and data analysis with each informing the other while the 

study is in progress (Cobb et al., 2003; Cresswell, 1994).  

 

5.9.1 Data analysis in the field  

 

To ensure that the design of the study was informed by evidence from the field, data collection 

and data analysis occurred simultaneously. With regards to the professional development the 

researcher watched the videos of the study group meetings after each session and wrote 

reflections which were used to assess assumptions about the study group activities. During 

observations in the classroom the researcher wrote reflective notes that were then used to test 

and inform the conjectures developed about teacher learning and to develop further conjectures 

which informed the design of the study group activity. They were also used to inform and shape 

the subsequent design of the framework of teacher actions to develop early algebraic reasoning 

(see Chapter Six) including feedback on whether aspects of the framework needed to be revised 

or extended.  
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5.9.2 Retrospective data analysis 

 

Qualitative data is rich, complex, and messy. Analysing such data is a time-consuming process 

which requires the researcher to reduce a large amount of information to patterns and categories 

and then re-interpret this through the use of a schema. Characteristically, data analysis begins 

with the wide use of many different categories and with continual coding and review the major 

themes become apparent (Cresswell, 1994).  

 

For large data collections, Derry et al. (2010) suggest that beginning with a set of guiding 

questions while also expecting unanticipated findings supports the initial data analysis process. 

They highlight that this does not exclude discovery oriented work. Similarly, Engle, Conant, and 

Greeno (2007) describe an approach which they refer to as progressive refinement of 

hypotheses. In this approach a general question is formed and data collected in response. After 

viewing the recorded data, hypotheses are formed. These are then examined in relation to other 

aspects of the data set and further evaluated and refined through multiple iterations of hypothesis 

generation and evaluation.  

 

In this study, the research questions were used as guiding questions for the initial data analysis. 

Video observations were repeatedly viewed in their entirety and the transcripts were iteratively 

revised to ensure a reliable record was created (Barron et al., 2013; Derry et al., 2010). Coding 

began by examining the data collected from one teacher and her classroom. The initial codes 

were developed from a variety of sources including research literature, the initial viewing of the 

video records, and the observational and reflective field notes. Repeated viewing of the videos 

and re-reading of the transcripts and field notes confirmed or refuted the initial hypotheses and 

codes and other hypotheses and codes were developed as necessary. Multi-levels of coding were 
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used to analyse the classroom video data through the use of QSR International’s NVivo 10 

qualitative software programme (2012). The first level of coding generated four codes (parent 

nodes): algebraic content, task design, teacher actions, and student actions. The derivation of 

sub-codes (child nodes) will be explained in the following section.    

 

In the first instance, the video recorded observations from the classroom were divided into 

events (Derry et al., 2010). Each event segment consisted of the teacher implementing a task, 

students working on the task, and the subsequent whole class discussion. Those events that 

included algebraic content were further coded according to the nature of the content focus (see 

Table 4).  

Table 4  

Child Nodes for Algebraic Content 

 

Associative property 

Commutative property 

Distributive property 

Equivalence  

Functions 

Generalising a mathematical process 

Inverse relationships 

Odd and even numbers 

Properties of rational numbers 

Properties of zero and one 

Relational reasoning 

Using and solving equations 

Using variables 

 

 

Additionally all the event segments were analysed and coded if they contained a missed 

opportunity for algebraic reasoning. At times this included events which had an algebraic 

element when the implementation of the task or enactment resulted in a missed opportunity for 

algebraic reasoning for students.  
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The next iteration of coding focused on the task design as a parent node. Initially, event 

segments which had an algebraic element were classified as planned algebraic tasks or 

spontaneous algebraic tasks. Other elements of the task design were also coded and at the 

conclusion of this iteration, after testing, re-testing, discarding and confirming, there were five 

additional elements of task design coding (see Table 5). 

Table 5  

Child Nodes for Task Design 

 

Independently developed task 

Modified task from MEP curriculum 

Open-ended task 

Task focused on generalisation 

Task involving misconception 

 

 

Another level of coding focused on teacher actions. There were eight child nodes identified (see 

Table 6).  

Table 6 

Child Nodes for Teacher Actions 

 

Developing classroom norms 

Responding to errors 

Facilitating productive discourse 

Focusing on student thinking and reasoning 

Developing generalisations 

Supporting mathematical explanations 

Use of questioning 

Use of representations 

 

 

Where appropriate, sub-codes were derived for some of the child nodes. For example, 

questioning was refined to include sub-codes listed in Table 7. 
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Table 7  

Examples of Sub-codes for Use of Questioning 

 

Models questioning 

Provides space for students to ask questions 

Probes or uses questioning to gain further reasoning from students 

Uses questioning to position student 

Establishing context 

Exploring mathematical meaning or relationships 

Facilitating generalisation 

Gathering information or leading students through a procedure 

Inserting terminology 

Orienting focus 

Linking and applying 

 

The final parent code, student actions, included six child nodes (see Table 8).   

Table 8  

Examples of Child Nodes for Student Actions 

 

Discourse 

Errors 

Questioning 

Mathematical explanations and language 

Generalisation 

Justification and proof 

 

Again many of these child nodes were further refined to include sub-nodes. For example, the 

coding for the child node student discourse is shown on Table 9. 
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Table 9  

Sub-codes for Student Discourse 

 

Provides mathematical reasoning 

Provides answer with no reasoning 

No response  

Describes procedure  

Gives answer as a question 

Analyses other students’ reasoning 

Agrees with mathematical reasoning 

Disagrees with mathematical reasoning 

Revoices peers’ reasoning or explanation 

Unable to revoice peers’ reasoning or explanation 

Recognises peers’ error during explanation 

 

 

A portion of a transcript with coding through the use of Nvivo (2012) is shown in Appendix F. 

Examination of classroom artefacts, transcripts of teacher and student interviews, and the 

observation and reflective field-notes were used to triangulate the data analysis. 

 

To augment the detailed analysis by codes, quantitative analysis was also completed (Barron et 

al., 2013). In the first instance, a table was created which examined the use of different types of 

algebra in each lesson and the task design through both the percentage of time and number of 

instances for each code for each teacher. Data analysis tables and graphs were also used to 

examine the teacher and student actions through quantification (see Appendix G for examples) 

and identify overarching patterns. Following this, close examination was undertaken of 

examples from within the codes. The identified patterns and themes were used to develop an 

understanding of how task development and enactment and teacher actions facilitated early 

algebra in the classroom and students’ engagement with algebraic reasoning. 
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5.10 DATA PRESENTATION 

 

The findings of the data analysis are illustrated through two cases of teachers engaged in 

professional development, their mathematics teaching within their classrooms, and their 

students’ participation in the lessons. The cases provide a detailed and thick description (Barab 

& Squire, 2004; Gravemeijer & Cobb, 2006) of how each of these teachers developed algebra 

ears and eyes and then how effectively they facilitated algebraic reasoning in their classrooms. 

Direct quotations from the teachers are used in the findings from the study group meetings and 

interview data. The use of teacher voice provided a means to develop an understanding of their 

focus and reasoning as they worked to develop their own algebra ears and eyes and algebraic 

reasoning in their classroom. The discussion also draws on the teachers’ task design and 

implementation and use of pedagogical strategies. Vignettes and examples from the classroom 

are provided to illustrate the actions of the teachers and students. Findings pertaining to 

corresponding shifts in student engagement and participation within each of the classrooms are 

also included with data sourced from classroom videos and photo elicitation interviews. 

 

The findings are reported in four distinct phases beginning with an overview of classroom 

observations in the school year prior to the professional development. The following phases 

report on the findings at the beginning, middle, and end of the study.  

 

5.10.1 Ecological validity, generalizability, and trustworthiness  

 

A key aim of design research is to achieve ecological validity, that is “the results should provide 

a basis for adaptation to other situations” (Gravemeijer & Cobb, 2006, p. 46). In this way 

innovative instruction which is developed in the course of design research can then be used by 
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others to support student learning productively in different classroom contexts. This is similar to 

how Barab and Squire (2004) describe generalisability within the context of design-based 

research with the findings from one study being able to be replicated to other contexts. Use of 

thick description is highlighted as a means of making replication possible and also supporting 

teachers and outsiders to think how the instructional design could be adjusted to their context 

appropriately (Barab & Squire, 2004; Gravemeijer & Cobb, 2006; McKenney, Nieveen & van 

den Akker, 2006). The reporting of this study aims to provide a comprehensive description of all 

elements of the research. The cases include insight into teacher participants’ involvement in the 

professional development activities and a rich description of the teaching and learning context 

based on observation and participants’ (teachers and learners) perspectives. Furthermore, the 

inclusion of teacher participants’ feedback to develop and modify the framework of teacher 

actions (see Chapter Six) to facilitate algebraic reasoning significantly strengthens the ecological 

validity of the study (Gravemeijer & Cobb, 2006).  

 

Trustworthiness and credibility are important elements of design research and may be seen as 

akin to notions of reliability and validity (Barab & Squire, 2004; Cobb et al., 2003). With the 

large amount of data generated in the course of a design experiment it is central that the resulting 

claims are trustworthy. Therefore there is strong link between trustworthiness and the credibility 

of the analysis. Cobb et al. (2003) argue that by explicitly describing the criteria and types of 

evidence used for inferences, other researchers can then “understand, monitor and critique the 

analysis” (p. 13). In the current study, a systematic approach was used to code the large amount 

of data generated through video records, interviews, and field-notes. There is a detailed 

description of the varied forms of data collection and also of the data analysis and coding given 

in this chapter.  
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The credibility and trustworthiness of a research study can also be enhanced through 

triangulation of different data sources. This is based on the premise that by using multiple data 

sources, weakness in a single data source is counterbalanced by strengths in another (Barron et 

al., 2013; McKenney et al., 2006). The current study drew on multiple sources of data including 

interviews, documents, and field-notes to triangulate the primary video data source. Extended 

engagement by the researcher with participants in the field also enhances credibility and 

trustworthiness of analysis and can reduce observer effects (McKenney et al., 2006). A key 

feature of this study was the sustained engagement with the teacher participants acting as co-

researchers and the students in their classrooms over the duration of the study.  

 

5.11 SUMMARY 

 

This chapter outlined the key research question and guiding sub-questions for the study. 

Justification was provided for the selection of the qualitative research paradigm and use of 

design research methodology. A summary of the key characteristics of the design research and 

case study methodology was given 

 

Rich descriptions were given of the research setting and data collection methods. It was shown 

how the data collection drew on multiple sources which provided opportunities to investigate 

perspectives from different participants. The study was shown to be cyclic and iterative and the 

complementary role of data collection and analysis was highlighted. Detailed descriptions of the 

multiple levels of coding were given which supported the development of the case studies.  

 

Findings presented in the following chapters are based on two cases. Each case details a 

participant teacher’s experiences during the professional development programme. They serve to 
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illustrate the different pathways teachers take in developing algebra ears and eyes. They 

highlight the complex factors which are involved in facilitating algebraic reasoning in the 

classroom including task development and implementation and the development of classroom 

and mathematical practices which support engagement in early algebra. Subsequent shifts in 

student engagement and participation are documented.  
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CHAPTER SIX 

DEVELOPING ALGEBRAIC REASONING IN A 

MATHEMATICAL COMMUNITY OF INQUIRY: MRS 

STUART 
 

6.1 INTRODUCTION 

 

Within this chapter, the case study is organised in four distinct phases which relate to when data 

collection occurred. The first section reports on the classroom context prior to the beginning of 

the professional development. Each of the following sections reports on involvement in the 

professional development; how algebra was integrated into the classroom; then the developing 

classroom culture; and finally the student perspectives. A commentary that links the changes in 

the classroom to the literature accompanies each section.     

 

Section 6.2 describes the classroom context in Mrs Stuart’s classroom prior to the professional 

development commencing. Section 6.3 highlights the initial steps to introduce algebraic 

reasoning. It begins by outlining Mrs Stuart’s active participation within the study group and her 

early reflection on practice. It shows how Mrs Stuart began to plan for algebraic reasoning 

opportunities although this was not supported by her existing classroom practices. Finally it 

portrays the implementation of changes to the classroom community and students’ engagement 

with these.  

 

Section 6.4 shows the continuing development towards integrating algebraic reasoning in the 

classroom. Focusing on task implementation, it describes how Mrs Stuart shifted to using 

inquiry as “a way of being” (Jaworksi, 2006; 2008). It also demonstrates the emergence of 
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teacher requirement for collaborative interaction and shifts in students’ learnt ways of thinking 

and acting mathematically.  

 

Section 6.5 outlines the actions to embed algebraic reasoning in the classroom further. It details 

Mrs Stuart’s re-conceptualisation of her understanding of algebra. It shows how this supported 

her to design and implement tasks which provided greater affordances for algebraic reasoning. 

Finally it illustrates the changing practices in the classroom and shifts in student roles.  

 

6.2 PRIOR TO THE PROFESSIONAL DEVELOPMENT  

 

6.2.1 Algebraic reasoning, classroom and mathematical practices, and student 

participation  

 

Classroom observations prior to the professional development provided evidence that Mrs Stuart 

had some understanding of the links between arithmetic and algebra. Instantiations of the 

following types of algebra were evident during the five observed lessons: commutative property, 

functions, properties of zero and one, associative property, equivalence, inverse relationships, 

and odd and even numbers. However, Mrs Stuart did not facilitate the students to examine 

explicitly the properties of operations and numbers. For example, in a lesson involving the 

commutative property students were asked to share responses related to the following task (see 

Figure 4):  

 

 

 

 

 



135 

 

 

 

 

 

 

 

Figure 4. Multiplication problem. From MEP practice book Y2b (p. 107), by S. Hajdu, 1999, 

Budapest: Muszaki Publishing House.  

 

The student constructed equations (e.g., 2 x 4 = 8 and 4 x 2 = 8) implicitly drew on the 

commutative property; however, there was no further examination of this. In a later lesson, Mrs 

Stuart began by asking the students what they noticed about the two alternative solutions that 

she had recorded on the whiteboard and then offered a brief explanation of the commutative 

property herself:  

 Mrs Stuart: What do you notice, Otto? 

 Otto:  It’s the other way around?  

 Mrs Stuart: What do you mean by it’s the other way around?  

 Otto:  It’s, it’s the same but it’s just changed around 

 Mrs Stuart: And that’s one of the really important things in multiplication,  

isn’t it? It doesn’t matter if we do two times five or five times two.  

 (Week Two, Term Three, 2008/2009) 

 

The tasks used by Mrs Stuart with her students were taken directly from the MEP curriculum. 

Aside from one instance in the fifth lesson, the tasks were not modified.   

 

Mrs Stuart spent a significant portion (between 16% and 27%) of the lessons introducing or 

orienting the students to the task. This involved students being carefully guided through the 

steps necessary to complete the task with a focus on a fast pace.  

 

For almost half of the whole class discussions prior to task completion, Mrs Stuart used 

questioning characterised as leading or funnelling students towards correct responses or teacher 

chosen solution strategies.  
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An example of Mrs Stuart’s task implementation prior to the professional development is 

provided in the following vignette where Mrs Stuart is introducing her class to a functional 

reasoning task (see Figure 5):  

 

 

 

 

 

 

 

 

Figure 5. Functional reasoning task. From MEP practice book Y2b (p. 107), by S. Hajdu, 1999, 

Budapest: Muszaki Publishing House.  

 

Implementing a functional reasoning task 

Mrs Stuart begins to introduce the students to the task by asking them the numbers of legs for 

each animal. She then asks them whether they think they could complete the table and most 

of the class put their hand up. She continues to carefully guide them through the completion 

of the first boxes on the table by acting each scenario out: 
 

Mrs Stuart We’ll do one or two together and then we’ll see altogether, so first 

column…how many of each animal are we talking about? Gabriel? 

Gabriel Zero 

Mrs Stuart Zero, so here we go. Watch I’ve bought them in especially for you today. 

Ready. Here you are, zero chickens (Mrs Stuart lifts imaginary chickens in her 

hands). How many legs on my zero amount of chickens Lorenzo?  

Lorenzo Two. 

Mrs Stuart How many legs can you see on this chicken? 

Lorenzo Two. 

Mrs Stuart Really?  

Class  Zero. 

Mrs Stuart How many chickens are here?  

Lorenzo Zero. 

Mrs Stuart So how many legs are here? 

Lorenzo Zero 

Mrs Stuart Fill that in in the table…Right and here is my (lifts imaginary cat) how many 

cats am I holding?  
 

She continues to lead them through filling in the table until the first three columns are 

completed. Then she asks if they think they can complete the table in a minute. After they 

have worked on the task for one minute she stops them.  
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Mrs Stuart Okay, who managed to do some of the table? If you haven’t done all of it, 

we’ll fill it in as we go. So what do you notice about the middle row? What are 

those numbers called?  

Aaron     Even. 

Mrs Stuart They’re even numbers, good boy. What else are they, Elijah? 

Elijah  They’re multiples of two. 

Mrs Stuart They’re multiples of two. So, are you ready?…Off we go…  

Elijah     Zero, two, four, six, eight, ten, 12, 14, 16, 18, 20. 

Mrs Stuart Excellent. Well done. Now if you didn’t do them all you can pop those in now. 

Can you see they’re multiples of two?  

 

Week Two, Term Three, 2008/2009 

 

At this stage the questioning did not focus student attention on the relationships within tasks, and 

frequently guided them towards using computation to complete the table rather than to reason 

algebraically. Whole class discussions after the students had worked independently on a task 

were used to check that they had correct answers or to direct them to write the correct answer in 

their work book.  

 

Mrs Stuart regularly used representational forms in her teaching. She drew on representations 

suggested in the MEP material including tables and concrete materials. Often she directly 

modelled how to use a representation to solve a problem. She also frequently asked students to 

use equations to show how they had solved a problem. However, the use of representation was 

typically limited to a single representational form.  

 

Paired work was a feature of Mrs Stuart’s lessons. After a task had been introduced, the students 

were requested to work with a partner. While some pairs worked cooperatively on the task, 

others simply sat next to each other rather than working together. Rather than complete tasks 

collaboratively, the partnerships appeared to be more used as a support mechanism when the 

students were stuck. As noted by Patrick, from the focus group discussion, having a partner 

helped him: because if you don’t know what to do, you have someone right there and the other 
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person might know. The expectation that students would record their work individually in their 

books matched the lack of expectation for students to use collaborative paired work to develop 

shared understanding of a joint solution strategy.  

 

The teacher domination of discourse patterns during the whole class discussion limited 

opportunities for student engagement in mathematical reasoning. Frequently students gave 

answers with no mathematical reasoning or responded with an answer phrased as a question, for 

example: is it nine? There were no complete correct mathematical explanations provided by the 

students, however Mrs Stuart provided mathematical explanations at least twice and as many as 

seven times in a lesson. Often if a student provided a response with no reasoning, she would 

revoice it and provide a mathematical explanation herself.  

 

The students perceived Mrs Stuart’s role as giving them mathematical knowledge. For example, 

in a focus group interview when asked what their teacher did to help them, they stated: 

Geoff:  She explains it for you 

Researcher: How does she explain it for you?  

Geoff:  Because in your book it says fill in the missing numbers and then if you want to 

do it with your partner she lets you and then you put your hand up if you don’t 

and she explains it for you.  

 

When asked what it takes to be successful in the mathematics class, they responded: 

Lorenzo To listen 

Researcher: To listen. Why does that help you? 

Lorenzo: Because you’ll learn every single maths.  

Researcher: By listening? 

Lorenzo: Yeah 

Geoff: If you listen then she sometimes gives you sneaky information, if you listen 

carefully.  

 

These responses illustrate that the students privileged listening to the teacher over talking as a 

way of participating in the mathematics classroom.  
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6.2.2 Analysis of opportunities for algebraic reasoning, classroom and mathematical 

practices, and student participation prior to professional development  

 

There was no explicit identification or examination of the properties of numbers or operations 

during lessons. This meant that for students, the properties remained implicit and they were not 

provided with opportunities to develop deep generalised understanding as advocated by many 

researchers (e.g., Anthony & Walshaw, 2002; Carpenter et al., 2003; Schifter et al., 2008b). Nor 

were they supported to develop algebraic reasoning through effectively utilising links between 

arithmetic and algebra. Blanton and Kaput (2005a) and Carpenter et al. (2003) contend that this 

is essential to develop early algebraic reasoning. Although Mrs Stuart showed some evidence of 

her own understanding of these links, her classroom practices did not support students to 

develop rich algebraic reasoning. As a result, lessons before the project began were 

characterised by missed opportunities.  

 

The types of questions used limited the opportunities for the students to make sense of what the 

task was asking them to do or to develop their own mathematical understanding. Frequently, the 

task implementation guided the students through the necessary steps—all they had to do was fill 

in the answers on a table.  As Henningsen and Stein (1997) explain, this results in reduced 

cognitive demands for students. Classroom discourse followed a structure of IRE with a focus 

on correct answers rather than student reasoning. This is a pattern of discourse within traditional 

classrooms where the teacher is the authority (Fisher et al., 2011; Mehan, 1979; Pape et al., 

2010). While paired work was a feature of instruction in the classroom, the teacher scaffolding 

described by Monaghan (2005) and Rojas-Drummond and Zapata (2004) to structure productive 

small group interactions was not present.  
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Although tasks within the MEP curriculum offered opportunities for students to use multiple 

representational forms, students were often asked only for one representation. This limited their 

opportunities to make connections between different representations or to use these to 

communicate and justify (Beatty & Moss, 2006).  

 

Classroom discourse patterns offered students limited opportunities to verbalise their ideas or to 

develop a sense of agency (Bell & Pape, 2012; Fisher et al., 2011; Nathan et al., 2009). Student 

perception of the teacher role was consistent with what Bell and Pape (2012) report as common 

in traditional mathematics classrooms with an IRE pattern of discourse. They viewed the teacher 

as the source of mathematical knowledge whose role was to transmit it to them.  

 

6.3 PHASE ONE: INTRODUCING EARLY ALGEBRA 

 

6.3.1 Teacher learning 

 

From the onset of the project Mrs Stuart was an active member of the study group. She freely 

and confidently shared ideas with the group. Mrs Stuart drew a concept map (see Figure 6) to 

show what she considered early algebra was when enacted in a primary classroom.  
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Figure 6. Mrs Stuart’s concept map of early algebra at the start of the project 

 

Her concept map suggested awareness of some aspects of the learning environment which can 

support students to engage in algebraic reasoning including discourse, mathematical language, 

and moving towards generalisations. She had begun the project with some understanding of the 

links between arithmetic and algebra but her pedagogical content knowledge of algebra did not 

readily extend to the expected progression of student learning or the potential misconceptions 

that her students may exhibit. Although she included on the concept map: developing an 

understanding of equality, her knowledge of potential student responses to open number 

sentences was incomplete and required researcher scaffolding. When asked to predict potential 

student responses to an open number sentence (e.g., 8 + 6 = __ + 5) her initial response drew on 

a previously taught correct computational strategy:  

Mrs Stuart: My class would look at the left hand side and the right hand side and then would 

say we will start with the left hand side because we could work that out and they 

would put the 14 above there and then write the 14 above that and work it out.   
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Following extended discussion she identified a possible misconception related to the equal sign: 

they might add them all. Again after further pressing (by the researcher) she identified a possible 

relational solution: (indicating each part of the equation) So six and the five and then make that 

nine. She indicated strong interest in her students’ responses to the task and on viewing student 

interview data she engaged in a prolonged analytical discussion with the researcher to 

understand what the varying responses indicated about her students’ reasoning.   

 

Research articles were introduced to the teachers to develop links between theory and practice. 

These were used as a tool by Mrs Stuart to begin reflecting on her existing practice. She noted 

her emphasis on listening rather than talking: I have always spent a lot of time teaching children 

how to listen and what a good listener looks like, body language and eye contact but I don’t 

think I have ever taught them the skills of talking. Linked to this she recognised a need to shift 

the pattern of the classroom discourse including developing awareness of the need for an 

equitable classroom community: It’s getting those less able children to contribute too so that 

they can feel like they are part of the whole problem-solving thing. She also noted the need to 

shift from an emphasis on teaching mathematics in a fun and exciting way to a focus on the 

deeper ideas: they had the classroom community thing which we have been pushing and pushing 

but the really deep thing wasn’t making everything fun and exciting, you know that is not 

enough, it is getting deeper into the ideas.  

 

Mrs Stuart’s reflection on practice in the first meeting extended to her monitoring of student 

reasoning. Taking a critical stance she recognised that her emphasis while students worked 

independently was on supporting children identified as lower-achieving: [I’ll] go in and support 

those children who need that little bit extra so you are really focused on them but you are not 

tuning in, you are just aware that everybody else is busy and getting on. Reflectively she stated 
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that a key goal for her was to listen to students: I am very aware of the need to be tuning in and 

listening to the children. She also recognised that changing her practice and classroom norms 

would be an on-going process that required continual reflection: it will be that reflective thing 

afterwards and that ‘oh I could have done that’ or thinking of a different way.  

 

6.3.2 Analysis of teacher learning 

 

Mrs Stuart positioned herself as an active participant in the developing community of practice. 

Blanton and Kaput (2008) maintain that engaging with ‘social’ work related to facilitating 

algebraic reasoning and developing a professional identity within the group are important factors 

in developing links to algebra in classroom practice. Her responses during the study group 

meeting indicated that she was beginning to question her own practice and use inquiry as a tool. 

Similar to the findings of Jaworski (2008), this supported Mrs Stuart to explore key questions 

and issues in practice. 

 

Initially Mrs Stuart showed limited insight into student thinking. She needed opportunities to 

develop a structure to make sense of students’ algebraic reasoning. Teacher knowledge of 

expected student progressions and potential misconceptions are important factors in developing 

classrooms with a focus on early algebra (Franke et al., 2008; Watson, 2009). As previously 

illustrated in research studies (e.g., Franke et al., 2008; Jacobs et al., 2007; Smith & Thompson, 

2008; Stephens et al., 2004), predicting student responses and using student assessment data to 

analyse reasoning proved useful to support Mrs Stuart to focus on students’ algebraic reasoning 

and enhance her pedagogical understanding.   
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Additionally Mrs Stuart used research articles focused on classroom practices as a lens to view, 

notice, and reflect on her practice. Her reflections show her development of skills to notice 

relevant aspects of practice and thus develop a disposition of inquiry as described by Ghousseini 

and Sleep (2011).  

 

6.3.3 Task design and implementation, integration of algebra, and development of the 

classroom community  

 

An immediate change that Mrs Stuart made in the classroom involved her implementation of 

tasks as problem-solving opportunities. This included emphasising student effort to approach 

and complete cognitively challenging tasks. Mrs Stuart shifted student attention away from 

recording answers through implementing a new requirement that students first talk about the 

task with a partner. Initially the withdrawal of teacher guidance/instruction resulted in some 

students incorrectly approaching tasks or not completing within the time allocated. Commenting 

after a particularly challenging lesson, Mrs Stuart said: last year I probably thought it was more 

successful but actually it wasn’t…we were very much whole class together and it was very 

controlled, there were probably an awful lot of them who were sitting looking like learners but 

weren’t actually engaging.  

 

In this phase Mrs Stuart, in line with design research, began intentionally developing and 

trialling ways of adapting her planning to integrate algebraic reasoning into her lessons. She 

examined MEP lesson plans and rather than asking students to complete the whole task, she 

presented them with parts of the task which focused their attention on an algebraic concept. 

However, as illustrated in the following vignette she did not notice or use opportunities for the 

spontaneous integration of algebra based on student responses, nor emphasise a deeper 

investigation of algebraic concepts. In this vignette Mrs Stuart planned to use a task (see Figure 
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7) to focus student attention explicitly on the inverse relationship between multiplication and 

division:  

 

 

 

 

 

 

 

 

 

 

Figure 7. Inverse relationship between multiplication and division. From MEP practice book 

Y2b (p. 100), by S. Hajdu, 1999, Budapest: Muszaki Publishing House.  

 

Developing links between arithmetic and algebra 

Mrs Stuart asks the students to complete the first example on the task. After asking students 

to share their responses she records 3 × 2 = 6 and 6 ÷ 3 = 2 on the whiteboard: 
 

Mrs Stuart Let’s have a look at those did anyone notice anything?  Three times two  

  equals six and six divided by three equals two.  With your partner, what  

  do you notice about those please? 

 

The students talk with their partner, then she asks a student to say what he noticed:  
 

Tristan  They’re just the other way around.  
 

Mrs Stuart asks Tristan to clarify his response:  
 

Tristan Because the three is in the middle and the six is at the beginning and at the 

end.  
 

She revoices the  response and directs the students to examine related equations where the 

position of the numerals has changed:  
 

Mrs Stuart So it’s the same digits.  Would it work if I put them in any order?  If I did this 

(writes on 2 ÷ 3 = 6 on the board) two divided by three equals six because 

I’ve got the same numbers. Just talk that one through with your partner or 

what about this one, three divided by six equals two, is that true? Or six 

divided by three equals two (writes the different equations on the board) Are 

any of those true? 
 

This was followed by further whole class discussion and the use of individual students 

modelling whether each equation is true through the use of magnetic counters on the 

whiteboard. Following this, she models writing the equation as a × b = c. She then states her 

conjecture and asks them to generate equations for it: 
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Mrs Stuart I have this theory that for every pair of factors and a product I can make two 

multiplications and two divisions let’s see if that’s right.  With your partner at 

Planet X can you see if you can come up with equations for that? 

 

Week 12, Term One, 2009/2010 

 

Here we see how Ms Stuart’s initial questioning focused student attention on the general 

relationship between multiplication and division. However further questioning, shifting the focus 

to specific equations, limited the opportunities for students to explore the relationship. Then by 

asking the students to use magnetic counters to solve each equation, she shifted their attention 

specifically to calculating answers, thus the focus on the inverse relationship was lost. As 

shown, concrete material was introduced as a tool to solve the task rather than as a means of 

developing an argument and proving or justifying. Opportunities for the students to develop and 

explore their own conjectures and prove and justify their reasoning were missed by Mrs Stuart 

telling the students the conjecture that she had developed and then guiding them towards simply 

generating equations to match the conjecture.  

 

To develop student participation, Mrs Stuart identified the need to focus student attention on 

developing new forms of productive talk. She drew on ideas from research articles introduced 

during the study group meetings and facilitated a discussion of how to talk together successfully 

and invited students to generate a set of rules.  Agreed rules included the need for active 

participation, individual responsibility to listen to others, and also group responsibility to ensure 

that all class members understood. We see in the following vignette how Mrs Stuart affirmed 

productive shared discourse norms during paired or small group work:  

Shaping ways to talk and work in a group 

Mrs Stuart drew attention to how a group ensured all participants understood their 

explanation and could explain it.   
 

Mrs Stuart:  Zanthe said to everybody ‘do you get it?’ And everyone nodded, but you 

didn’t get it, did you?  How did you know that Calvin hadn’t got it? 

Zanthe: He nodded but he wasn’t sure 
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Mrs Stuart: How did you know he wasn’t sure?...What did you ask him to do? 

Zanthe: I asked him to explain it. 

 

Week 12, Term One, 2009/2010 

 

The facilitation of discourse required constant and deliberate actions in this phase. In the next 

vignette, we see how Mrs Stuart facilitated students to explain and clarify their ideas. She used 

revoicing and questioning to introduce them to mathematical language. She also supported 

students to reflect on their peers’ ideas through asking them whether they thought a response 

was correct. However, on this occasion she did not probe for further reasoning. She began 

developing an expectation that students analyse and make sense of reasoning by explicitly 

providing space for them to question their peers about their solution strategy and to agree or 

disagree. This practice of highlighting models of good practice was trialled extensively in this 

phase:   

 

Developing collaborative interaction 

Mrs Stuart asks the students to generate different two factor equations using the digits two, 

three and five. A student begins to provide her solution strategy: 
 

Esme:  We think we should work out two times two first, then two times three and 

two times five.  

Mrs Stuart:   Does anyone want to ask her a question?   

Caleb: If you were to do that, how would you be able to know whether you’d done 

the two and five, or two and three, or two and two, how would you know? 

Mrs Stuart: Do you think you would know Esme?  Would you like to show us? 

Esme:  (records 2 × 2=, 2 × 3=, 3 × 2=, 2 × 5= and 5 × 2=) 
 
Mrs Stuart asks the rest of the class to reflect on whether there are equations recorded that are 

not needed.  

Alexis:   She doesn’t need the ones that are the other way around. 

Mrs Stuart: Can you remember what it was called when it was the other way around?   

Alexis:   The commutative law. 

Mrs Stuart: The commutative law.  So which ones shall she rub out then Juliana?   

Juliana:  The three times two and the five times two. 

 

Week 12, Term One, 2009/2010 
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As a result of the shift in teacher focus and her introduction of different pedagogical actions 

which she tested and refined during lessons, the students’ ways of participating changed. While 

many responses continued to lack reasoning, there was a shift towards students giving responses 

which included some mathematical reasoning. The data shows that mathematical explanations 

within discussions continued to originate mainly from Mrs Stuart (between four and seven times 

per lesson). Students were, however, beginning to develop some mathematical explanations (one 

to two provided in each lesson).  

 

Most of the students indicated a positive disposition towards collaborative work during the 

photo elicitation interviews. An emphasis was placed on everyone having a go and sharing their 

different ideas. They viewed working with a partner as a way of helping them when they got 

stuck. However, it was clear in Phase One, that many students did not view the whole class 

discussion as favourably. Often in the photo elicitation interviews the students were unable to 

recall the explanation provided or their own mathematical thinking. Student recollections 

focused largely on either a description of the tasks or their own or others’ actions. For example: 

Esme was writing on the board or: we arranged the counters into groups of three. Some 

perceived student explanations as aimed only at the teacher: she was telling the teacher what it 

was. Interactions between Mrs Stuart and an explaining student were seen as individual 

exchanges: the teacher wrote some more on the board for her to understand. Mrs Stuart was 

viewed as taking a central role in guiding the students towards a correct response: that was when 

the teacher was showing us about thirds.   

 

6.3.4 Analysis of task design and implementation, integration of algebra, and 

development of the classroom community  

 

Shifting the way in which tasks were implemented in the classroom resulted in higher cognitive 
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demands being placed on the students than evidenced prior to the professional development. 

Ensuring that the high level tasks remained accessible to all students required that Mrs Stuart 

develop appropriate scaffolding such as the prompts described by Sullivan et al. (2006).   

  

Mrs Stuart had begun to recognise existing opportunities within curricular material for algebraic 

reasoning but at this stage did not identify and use spontaneous opportunities during lessons. 

Carraher et al. (2008) argue the importance of teachers recognising the existing algebraic nature 

of primary mathematics rather than viewing early algebra as a new and additional topic. 

However, as Blanton and Kaput (2005a) note spontaneously integrating algebraic reasoning 

opportunities into lessons is key to developing classroom practices which characterise algebraic 

reasoning.  

 

Mrs Stuart had begun to plan for algebraic reasoning but some existing classroom practices 

continued to limit opportunities for engagement with algebraic content. For example, her 

questioning focused on calculation of answers rather than attending to the general relationships, 

this limited opportunities to develop the structural perspectives which researchers (e.g., 

Carpenter et al., 2005b; Ferrucci et al., 2008; Fosnot & Jacob, 2009) argue are important aspects 

of algebraic reasoning.  

 

Key mathematical practices such as making conjectures, developing generalisations, justification 

and proof (Bastable & Schifter, 2008; Carpenter et al., 2003; Kaput & Blanton, 2005a; Mason, 

2008) were not established within the classroom during this phase. Mrs Stuart’s practice of 

seeking examples and cases was promising, but her propensity to offer conjectures potentially 

reduced student opportunity to generalise (Mason, 2008).  
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Shifting discourse patterns is a lengthy and challenging process (McCrone, 2005; Reid & Zack, 

2009). Leading the students in developing new shared discourse norms, the use of revoicing, 

questioning, and modelling are similar to pedagogical practices described by McCrone (2005) 

and Reid and Zack (2009) which their teachers used to develop collaborative interaction within 

the classroom. However, the new emphasis on trialling and developing different patterns of 

discourse resulted in some tensions for Mrs Stuart. In the post lesson discussions, she expressed 

concern about balancing coverage of lessons while focusing on student reasoning and discourse: 

I was trying to get them talking more so we didn’t get through as much of the lesson as 

expected…we perhaps should have moved on more quickly but I just wanted to see where they 

were. She also noted frustration at what she perceived as a lack of engagement from the students 

at times and a shift to a lesson format which she described as: question and answer.   

 

As Mrs Stuart initiated changes in the classroom, the students were required to participate 

differently, however at this stage many students did not understand the new role which was 

required. Most students were unable to describe their mathematical reasoning or the reasoning of 

others explicitly.  While students viewed group work positively, they associated it with turn-

taking which frequently resulted in non-productive cumulative talk (Mercer, 2000).  

 

In summary, teacher actions evident in this section are illustrated below in Stage One of the 

Framework of Teacher Actions to Facilitate Algebraic Reasoning.  
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Table 10  

Stage One of the Framework of Teacher Actions to Facilitate Algebraic Reasoning: Mrs Stuart 

 
STAGE ONE 

Algebraic concepts Address the following concepts in the classroom: understand 

the equal sign as representing equivalence; relational 

reasoning including whole numbers and rational numbers; 

commutative property; inverse relationships; odd and even 

numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using 

and solving equations; function 

Teacher actions to develop 

and modify tasks and enact 

them in ways which facilitate 

algebraic reasoning 

Implement tasks as problem-solving opportunities  

Emphasise student effort to approach and complete 

cognitively challenging tasks 

Extend or enact tasks to include opportunities for 

generalisation 

Interrogate tasks for opportunities to highlight structure and 

relationships 

Teacher actions to develop 

classroom practices which 

provide opportunities for 

engagement in algebraic 

reasoning 

Lead explicit discussion about classroom and discourse 

practices 

Ask students to apply their own reasoning to the reasoning of 

someone else 

Require students working in pairs or small groups to develop 

a collaborative solution strategy which all can explain 

Teacher actions to develop 

mathematical practices which 

support the development of 

algebraic reasoning 

Require students to explain their reasoning 

 

 

6.4 PHASE TWO: DEVELOPING ALGEBRAIC REASONING 

 

6.4.1 Teacher learning 

  

Throughout this phase, Mrs Stuart actively sought further opportunities for her and the group to 

investigate their practice and develop their professional learning. After a study group meeting 

where the group had watched and discussed videos of their teaching she proposed that she 

approach the head teacher to arrange further viewing to reflect on how they related to research 
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articles. Similarly, in another study group meeting she requested a copy of her original concept 

map of early algebra to support her analysis of her new one and her changes in thinking.  

 

In line with design research Mrs Stuart used the time between researcher visits to further her 

professional learning and embed practices which aligned with early algebra in her classroom. 

For example in a study group meeting, she shared a video clip from her classroom which 

exemplified her intentional task adaption to focus student understanding on the equal sign. She 

described how she reviewed class data from the student task based interviews in which many 

students gave incorrect responses related to operational understanding of the equal sign. In 

another study group meeting as the group worked on developing and proving conjectures, she 

again volunteered information about how she was embedding the suggested new and innovative 

practices: Duncan had one like that, it’s like the odd and even thing…I have always got them to 

explore that just by finding lots of examples to sort of support it whereas this time we actually 

proved it because we got two little piles of two unifix and little piles of one and realised visually 

that if you were adding an even number to an even number you will always get an even number 

because you will not get any of the individuals so that was taking it on board to proof because 

you could visually see it. In this meeting, she also noted the value of using physical 

representations as tools to facilitate students’ understanding of structure and properties of 

numbers: those ones are very powerful (points to a diagram in Figure 8) because we counted in 

twos, so two, four, six, eight so with the twos you can just keep going and how to make it odd, 

you can just put one in.  

 

 

 

 

Figure 8. Odd and even numbers diagram 
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These activities in combination with those of the study group meetings collectively supported 

Mrs Stuart’s understanding of early algebra. While engaged in an activity focused on making 

and proving conjectures during a study group meeting, she readily provided a range of 

conjectures which she had noticed her students making during mathematics lessons. Her 

expanding understanding of early algebra is shown in the concept map (see Figure 9) drawn 

during a meeting.  

 

 

Figure 9. Mrs Stuart’s concept map of early algebra in the second phase 

 

This concept map signalled her growing awareness of a wider range of elements which support 

students to engage in algebraic reasoning. These include areas of content, the use of notation and 

representations to model problem situations, and classroom practices including explaining 

thinking, and important mathematical practices.   
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Reflecting and critiquing her practice was an important aspect of Mrs Stuart’s professional 

learning. She identified key changes in her focus as noticing and understanding student 

reasoning and adapting her teaching in response:   

 

Reflecting on changes to practice 

Changes in task implementation  
 

Mrs Stuart: I have been trying to coach them a bit less, I suppose in that they have an 

opportunity to think about it and talk it through with their partner before we 

bring it together whereas I think I gave them steps, steps, steps before and then 

let them do  
 

Week 7, Term Two, 2009/2010 

Changes in her task implementation  
 

Mrs Stuart: A big shift that’s been a very conscious shift…the coaching and over coaching 

them. I think I did very much spoon feed them through and give them a lot of 

scaffolding until they got there. 

 

Week 11, Term Two 2009/2010  

Monitoring student reasoning:  
 

Mrs Stuart:  Before I was trying to be competitive and see who could do this in a minute 

and who couldn’t but now I just give them a sheet and then rather than being 

worried about how much they do I am going around picking up issues. Before 

I would have said ‘miss one out if you can’t do it’, now I want to work out 

why they can’t do it. 

 

Week 7, Term Two, 2009/2010    

Monitoring student reasoning and intervening: 
 

Mrs Stuart:  Trying more to listen into their conversations as I’m going around and not take 

to intervening necessarily. Sometimes you need to intervene obviously but it’s 

how I’m intervening with them…I think I’m trying to step back a little more. I 

don’t think I’ve got it sorted yet because I talk too much but I think I’m trying 

to step back a little more and get them to talk and get me to listen a bit more.  

 

Week 7, Term Two, 2009/2010 

Noticing and adapting in response to student reasoning:   
 

Mrs Stuart: Now I make more conscious decisions about which bits to go with and which 

bits to say I’ll come back to you…Like today, Paul’s idea was that dividing by 

four is the same as finding a quarter so I thought well I’ll get the counters out 

and see if we can make that link…So that’s been the shift because we 

wouldn’t have done that in the past. We’d have talked about it and then I 

would have said ‘dividing by four is the same as finding a quarter’.  

 

Week 11, Term Two 2009/2010 
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Mrs Stuart embraced reflective change as an on-going collaborative process. She actively sought 

potential areas to focus on via suggestions from the researcher and other study group members 

drawing on support from the learning community: I just don’t seem to be making any headway 

so I would like some input because I keep trying “could you ask any questions?” and then they 

are not getting it. I can’t get my head around how to get them to ask the type of questions that I 

want them to. She watched other member’s videos and discussed the difficulties: It’s hard isn’t 

it, because you’re so used to doing the questioning. It’s sort of mentally having to stop yourself. 

Similarly, she commented critically on her own practice as the group watched an excerpt from 

her classroom in which a student recorded an incorrect response on the whiteboard and she 

stated: I’m still coaching, aren’t I?  

 

In Phase Two Mrs Stuart explicitly focused on facilitating students to develop their questioning 

skills. She trialled different strategies and carefully monitored their development as illustrated in 

a post lesson interview: It’s really been about getting them questioning each other and 

explaining their reasoning and it started off with the do you agree, do you disagree…Then 

getting them to explain and that was quite hard, there was a lot of yes, no, and then trying to get 

them to model for other people how to ask questions. So I used the more confident children, 

rather than saying can you ask a question so you can understand, to ask a question so that if 

anybody else didn’t understand it would help them to understand. Because the likes of Hazel and 

that didn’t have the questioning skills to actually be able to focus on what they needed. So 

putting it into, “imagine you didn’t understand, what sort of question would you have to ask?” 

Then they really got into asking questions and then you suddenly become aware that they’re just 

getting into that ‘how did you get that?’ type generic question, which actually for Hazel is okay. 

They are all asking questions now even if they get it so now I can move on to getting them if you 

don’t get it, or which part, if somebody wasn’t getting it. 
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6.4.2 Analysis of teacher learning  

 

Opportunities to develop, improve, and enhance current practice were actively sought by Mrs 

Stuart. Noticing and reflecting on practice were important aspects of Mrs Stuart’s professional 

learning which enabled her to clearly identify the shifts she was making in her classroom 

practices. She had begun to develop what Ghousseini and Sleep (2011) term a disposition of 

inquiry; an ability to reflect on how her practices aligned or contrasted with the pedagogies that 

she was seeking to adopt. Jaworski (2006; 2008) identifies this as a hallmark in the shift of 

inquiry from being a tool to becoming a ‘way of being’. 

 

However, at this stage of the process it is important to recognise that Mrs Stuart identified the 

process of change as challenging and one in which she needed to question her own practice 

continually: It’s hard, isn’t it to change a pattern? I’ve tried and I’m not too sure if I’m doing it. 

I’m reflecting more on what I’m doing and becoming a little bit more critical and that can be 

quite anxiety, raising your anxiety level higher because you think am I, you’re almost over 

thinking what you’re doing. And I think I’m doing that. You’re thinking is this right or is this not 

right? 

 

6.4.3 Task design and implementation, integration of algebra, and development of the 

classroom community  

 

The trialling and refinement of ways of task implementation continued to be a focus of 

development for Mrs Stuart. She no longer guided students through task procedures but instead 

used prompts to enable all the students to make sense of it. In the following vignette we see how 

Ms Stuart maintains the cognitive demands as the students work together to draw out the 

requirements of a task (see Figure 10):  
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Figure 10. Shapes and sides problem. From MEP practice book Y2b (p. 126), by S. Hajdu, 1999, 

Budapest: Muszaki Publishing House.  

 

Scaffolding student understanding of task requirements 

Mrs Stuart begins by asking the students to discuss the diagram in pairs. She then gives them 

the related chart and asks them to talk about it in pairs. 
 

Mrs Stuart:   Right what do you think this means? Those of you who haven’t got a clue 

what it means yet, you listen very carefully and if you don’t understand what 

someone is saying put your hand up and ask them a question.  Jasia, what do 

you reckon it’s all about?  Instead of looking at Jasia look at your chart while 

she’s talking. 

Jasia:   It’s like counting in threes, like times-ing three because number two we can’t 

do. 

Mrs Stuart:   What do you mean by number two? 

Jasia:    Like three times two equals six and under that we can say six. 

Mrs Stuart:   Okay so when you’ve filled it in you might think that, but just looking at it as 

it is at the moment without filling it in. Can somebody help to explain it to 

somebody who maybe can’t work out what’s happening and how to fill it in?  

Esme? 

Esme:   It says, because it says we have on the top row it has the number zero... 

Mrs Stuart:   What does that zero mean? 

Esme:   Zero of the shapes 

Mrs Stuart:   Zero of these {points at the board}, okay, none of these.  Good. 

Erin:   And then so if you have none of the triangles…so if you have zero triangles 

there won’t be any sides and if you have zero of those there won’t be any sides 

Mrs Stuart:   So that first column is all zeros because if, this is what she is saying Martin, if 

you didn’t have any of these on the board at all how many triangles would you 

have? 

Class:    None. 

 

Week 7, Term Two, 2009/2010 

 

Shifts in task implementation also included progression towards use of questioning which 

oriented students to use a structural focus. With regard to patterning tasks, the MEP teaching 
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guide material suggested asking students to calculate answers and then examine patterns at the 

end of the task. Mrs Stuart instead supported her students to develop structural perspectives by 

focusing their attention on the patterns and relationships within the task. For example, she 

introduced a task (see Figure 11) then said: look at those questions and see if there is a pattern 

please, don’t work out the answers yet, just have a look at it. 

 

 

 

 

 

 

 

 

Figure 11. Number sentence problems. From MEP practice book Y2b (p. 126), by S. Hajdu, 

1999, Budapest: Muszaki Publishing House.  

 

After the students had talked, she asked them to share what they had noticed with the class. Then 

she drew their attention to patterns in the answers by asking: as there is a pattern in the 

questions, do you think there might be a pattern in the answers? Key to this shift was her asking 

the students to talk about what they noticed in the task rather than writing anything down. 

Reflectively she noted: If they’d just worked out the answers for the first one, question one first 

of all, they’d have just said ‘oh look it’s the nine times table’ but I think that the fact that we 

focused it in, are there any patterns in the questions, made it more explicit that if there are 

patterns in the question, there are likely to be, that is the reason why there are patterns in the 

answers.  

 

During Phase Two, Mrs Stuart continued to seek opportunities to develop and extend her 

planning to include early algebra in lessons. She worked collaboratively with the researcher to 
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explore, modify, and adapt tasks within the curricular material so that they focused more clearly 

on aspects of algebra. For example, the researcher highlighted an activity (see Figure 12) which 

could be used to focus attention on relational reasoning.  

 

 

 

 

 

 

 

 

Figure 12. Mental calculation problems. From MEP lesson plans, by S. Hajdu, 1999, retrieved 

from http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2blp_2.pdf  

 

Mrs Stuart then independently modified the suggested equations as shown in Figure 13 so that 

the students could more readily solve them relationally.  

 

 

 

 

 

Figure 13. Mrs Stuarts’ adaptation of number sentences to involve relational reasoning.  

 

However, while her growth in understanding different types of algebraic reasoning led to Mrs 

Stuart developing awareness to notice when students provided responses related to algebraic 

reasoning, this still did not extend to using responses to engage students spontaneously in a 

deeper investigation of an aspect of algebra. For example, when the students referred to odd and 

even numbers or other patterns they had noticed, she heard them but did not develop them 

further. In another example, two students shared a solution strategy for a word problem: six girls 

have seven apples each, how many apples do they have altogether?  One recorded 6 × 7 = 42 

17 + 18 + 30 =  5 x 4 ÷ 2 =   81 – 30 + 17 = 

81 – 30 + 7 =   17 + 8 + 40 =   4 ÷ 4 x 9 =  

6 x 6 ÷ 3 =   82 – 6 – 20 =   6 x 12 ÷ 6 =  

9 ÷ 9 x 9 =   72 – 6 – 10 =   12 ÷ 6 x 5 =  

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2blp_2.pdf
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and the other recorded 7 × 6 = 42. A student said: It’s the commutative law like it’s just the other 

way around. Later Mrs Stuart commented: I was really impressed that they retained things from 

last term. You know Julio was like ‘oh that’s the commutative law’. Although she noticed the 

statement, on this occasion she did not use the opportunity to engage students spontaneously in 

further investigation. 

 

Mrs Stuart’s developing understanding of early algebra included a greater awareness of potential 

student misconceptions. She was able to use this understanding to investigate how 

misconceptions could be more readily addressed through modification of the lessons. For 

example, in a lesson in which Mrs Stuart had asked the students to solve 36 – 6 = __ + 20 it 

became evident that some children had written 30. Drawing on her growing understanding of 

student misconceptions of the equal sign Mrs Stuart engaged the class in prolonged discussion of 

the open number sentence. She drew their attention to the need to have a balance on both sides 

of the equal sign. She then adapted the lesson and used scenarios involving fictional students to 

engage the students further in examining the equal sign. She began by asking the students to 

solve 24 + 4 = __ - 2. After they had successfully solved this, she said: Somebody else came 

along and they put this answer in (writes 24 + 4 = 28 – 2). They’re wrong.  Can you work out 

why they’re wrong and what they’ve done? While modifications were aimed to support students’ 

understanding of the equal sign, one could argue that in this lesson potential opportunities for 

students to use relational reasoning were hindered by the structure of the number sentences as 

they did not clearly exemplify relationships between each side.   

 

In subsequent observations in March, Mrs Stuart began to recognise when spontaneous 

opportunities for algebra were present within enacted mathematical tasks. In the following 
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vignette we see how Mrs Stuart began to trial the use of such opportunities to engage her 

students in algebra:  

 

Integrating spontaneous opportunities for algebra into mathematics lessons 

Mrs Stuart asked the students to use twelve counters and write number sentences related to 

these. She recorded two related number sentences (½ of 12 = 6 and 12 ÷ 2 = 6) on the board 

and asked the students what they noticed. A student (Paul) made a conjecture that to find a 

half you can divide by two. He then changed this to say that you could divide by two or 

divide by half. Mrs Stuart revoices this and asks the students to discuss it:  
 

After the students have talked to their partners, Mrs Stuart then facilitates a discussion.  
 

Mrs Stuart:   Is Paul right there? Who agrees with Paul that if we divide by two it’s like 

doing a half of something? Okay, who’s not sure? Okay so what I’m going to 

put down here, that big idea, conjecture, Paul reckons that by dividing by two 

is like finding a half of something. Is that right Paul? And then he reckons we 

can just swap it into the equation. Caleb, what did you want to say? 

Caleb:   If you are dividing 12 by a half then you are dividing 12 by half of one. 

Mrs Stuart:   Right so let’s have a think about that. That’s like saying how many halves are 

in 12. Look at your counters. Now if I gave you an incredibly sharp knife and 

you divided your 12 counters into halves, you’d have to cut them all up 

wouldn’t you? What would you end up with? How many bits of counter would 

you end up with? Talk that one through with your partner. 
 

After the students talked with their partners, Mrs Stuarts asks a student to share their answer.  
 

Willow:   Twenty-four. 

Mrs Stuart:   Twenty-four, oh, what do you notice about 12 and 24?   

Alec:  If you times it by two it would be 24.  

Mrs Stuart: Wow, we are discovering things I hadn’t planned this morning! So dividing by 

a half isn’t the same as dividing by two Paul.   

Caleb:  It’s the same as timesing. 

Mrs Stuart: It’s the same as timesing by two, dividing by a half is the same as multiplying 

by two...The idea is that dividing by a half didn’t give us the same answer as 

dividing by two because 12 divided by two equals six...but didn’t it give us the 

same answer as multiplying by two? I wonder if that works for everything, 

that is conjecture number two really, isn’t it? If we divide by a half is that the 

same as multiplying by two? (writes the conjecture on the board) So let’s just 

explore this first one for today.  

 

Week 11, Term Two, 2009/2010 

 

Throughout this phase, Mrs Stuart maintained her focus on facilitating students to develop an 

ethos and expectation of talking and working together so that the diverse students in her class 

learnt to think mathematically. In particular, she wanted her students to develop shared 
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understanding of a jointly constructed solution strategy. During a lesson she observed the 

students working in pairs and small groups and then told the class: some people are still at the 

stage where they don’t trust their partner and they think they’ve got to write themselves. In 

another example in the same lesson, Mrs Stuart asked a pair of students to share their response. 

After Jasia said that she had written the equation by herself, she said: No, you were working as a 

two so it shouldn’t be ‘I’ve got one. It should be we’ve got one’.  

 

To help build the discourse practices Mrs Stuart also engaged students in reflecting on the ways 

in which they were working. She asked them to think about what went well or what they could 

improve on in terms of group interactions. She explained in a reflective interview that she saw 

this as a useful way both to convince students of the benefit of working together and to make her 

expectations clear. Shown in the vignette below is how Mrs Stuart highlighted productive ways 

in which students had collectively approached tasks:  

Reflecting on group work 

After the class had worked on an algebraic task involving unknowns, Mrs Stuart asked them 

to consider the ways their groups had approached the problem.  
 

Jacqueline:   First we tried to do add and then we found out that it wasn’t add. 

Mrs Stuart:   Okay so somebody had a theory, an idea, and they just didn’t accept it…Caleb 

had an idea, “I think it’s addition”. Somebody else had an idea before then 

though, what did we think about all the little circles and the letters and things?  

Zanthe? 

Zanthe:   Same letter same number. 

Mrs Stuart:   Same letter same number…So same letter, same number and somebody else 

said the answer in the middle is the answer and the bits around the outside 

help us get to that answer. So those were important ways in. Caleb had a 

theory and he could have gone completely wrong.  I overheard his theory and I 

thought ‘they’re going off on the wrong tangent’, but you went to the next 

logical place where there was still only one unknown and you proved it.   
 

Week 11, Term Two, 2009/2010 

 

Expectation of collaborative interaction extended into whole class discussions. Building on links 

between theory and practice, Mrs Stuart drew on pedagogical actions from research articles and 

the reflective framework outlined in Appendix A which were introduced during study group 
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meetings and tested these actions in the classroom. She positioned students to listen actively to 

their peers’ reasoning and explanations and make sense of these. During whole class discussions 

she intervened to provide space for other students to ask questions or modelled how to ask a 

question herself. Other pedagogical actions that supported collaborative participation included 

asking students to apply their own reasoning to the reasoning of their peers and then provide 

reasoned agreement or disagreement, asking students to add on and provide alternative solution 

strategies, and asking the class to analyse whether they were the same or different. Mrs Stuart 

regarded an important aspect of the collaborative process as: looking at the ways that children 

represent it differently and making that more explicit. The vignette below provides examples of 

the pedagogical actions that Mrs Stuart employed to develop collaborative interaction during 

whole class discussions:   

  

Developing collaborative interaction during whole class discussions 

Students were asked to work together to represent and solve a word problem: Each of 4 

children has 3 matchboxes and each matchbox contains 3 marbles.  How many marbles do 

they have altogether? After students had worked on the problem in pairs, Mrs Stuart asked 

two students to share their solution strategy:  
 

Erin:   (writes 3 + 3 + 3 + 3 = 12) Three add three add three add three equals 12 

because if you count in threes and you do four threes you will get 12.  

Mrs Stuart:   So is your answer that they’ve got 12 marbles altogether?…Who agrees with 

them? Who disagrees with them? Okay right, would anyone like to ask them a 

question to try and get them to understand why you disagree with them? Okay, 

Esme?  

Esme:   I disagree with you because they all had three boxes each so one person had 

three and another person had three and another person had three and another 

person had three so all of them had 12.  
 

After further discussion a child says: 

Erin:    They are the match-boxes that each child has got. 
 

Mrs Stuart models with counters to represent Erin’s explanation and revoices it. After further 

exploration she asks for other strategy solutions:  
 

Caleb:   (records 12 × 3 =) Twelve times three. 

Mrs Stuart:   Because, come on convince us. 

Caleb:   Times three because there’s three marbles in each matchbox and there’s 12 

matchboxes so you times the amount of matchboxes by the amount of marbles 

and you get 36. 

Mrs Stuart:   Thirty-six. Who agrees that it’s 36? {hands go up}  Okay, there are probably 
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different ways that you got to that answer. Did anyone do it a different way? 

Alec? 

Alec:    We did nine times four. 

Mrs Stuart:  You did nine times four…Why did you do nine times four? Come up here and 

tell us.  

Tobias:   Because there’s three, umm (pause) (Alec writes 4) there is four children and 

they’ve got three matchboxes each so umm (pause) and there is… 

Mrs Stuart:   So the children and they’ve each got three matchboxes each (draws three 

match-boxes). 

Tobias:   And there’s three in each, (Alec writes 3 in each box Mrs Stuart has drawn) so 

and three threes are nine, and so we said that equals nine and so that is four 

times nine. 

 Alec:   (writes 4 × 9 = 36) 

Mrs Stuart:   Four times nine is 36, did anyone else work it out that way? Okay did anyone 

have a different way of writing it? Esme and Jacqueline? So is there only one 

way of representing something with an equation or can we show it in different 

ways and get the same answer? 

Esme:   Well we started off with doing four people (draws four people) and 3 

matchboxes (draws arrows from each person to three matchboxes). 

Mrs Stuart: Stand to one side so everyone can see your picture.  

Esme: And they each had three marbles, (draws the marbles into the matchboxes) and 

so we did, we did, three times (pause) three add three add three is nine (points 

to the marbles in the matchboxes and writes 9), nine add nine add nine add 

nine (writes 9 + 9 + 9 + 9 =) and we got (pause) added nine add nine add nine 

add nine and we got the answer (writes 36 at the end of the equation). 

Mrs Stuart:   Is that the same way as doing it as Alec, or a different way?  Talk to the 

person next to you. 
 

After further  partner talk, Mrs Stuart asked a student to share their idea:  

Misty:  Because there is nine...there’s four nines, and it says, and he said four times 

nine, and so she had four nines and he had four times nine so it’s basically the 

same. 

Mrs Stuart:   Yeah that’s where he got the nines from isn’t it? 

 

Week 7, Term Two, 2009/2010 

 

Use of representations was an important part of the developing classroom practices. For 

example, in the vignette above after a student shared a strategy solution where they had drawn 

pictures to help them solve it Mrs Stuart said: you drew the pictures which were great. I 

remember when I was doing some maths that was quite tricky whenever it’s too hard I always 

draw a picture because it really helps me see it. Mrs Stuart encouraged her students to use 

representations to access the structure of number sentences and understand how they could be 

solved relationally. In an interview, she was able to recall an example readily from a lesson 
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where a student had made up a true/false number sentence (e.g., 38 + 4 + 4 = 38 + 8) for the 

class to solve. She had asked students to visualise the number sentence as two jars of marbles 

and she said she had asked: if I add four to that jar and another four to that jar, is that the same 

as adding eight to that jar?  

 

Mrs Stuart also promoted use of different representations (e.g., verbal, concrete materials such 

as counters and unifix cubes, and written such as words, equations, pictures) as a way of 

developing the clarity of explanations. Initially, she asked the students to share different 

equations to show how they had worked out the solution. As shown in the vignette below, she 

then began to ask the students to use equations to represent a problem situation and then relate 

this to the problem context supporting them to learn to explain and justify solution strategies by 

making connections between tasks and representations:      

 

Using equations to represent and justify a word problem through making connections 

between the problem and the representation 

Mrs Stuart had asked the students to work with a partner to develop a representation for a 

word problem: A farmer’s wife had eight eggs. The farmer brought her nine boxes of eggs, 

six eggs in each box. How many eggs did the farmer’s wife have then? Hazel recorded 8 + 9 

× 6 = on the board.  
 

Mrs Stuart:  Why should she write down eight? Convince us. 

Paul:  Because it says there are eight eggs. 

Mrs Stuart: So the farmer’s wife had eight eggs…Then along came the farmer…and he 

brought her nine boxes. Now that’s really interesting. Why has she written an 

add sign? 

Calvin: Ah because, ah because ah, first they have to add eight and then it says what 

do you have altogether. 

Mrs Stuart: You know Calvin, I can see you’re thinking about what’s coming up next but 

why is this add sign here? You were half explaining it for me. Why is this add 

sign here?…Think about it. She had eight eggs then along came the farmer 

and brought along nine boxes. Why is this the add sign, Jasia? 

Jasia:  Because he brought her nine boxes. 

Mrs Stuart: So what Calvin was saying, they’re altogether, she had these nine boxes add 

the eight eggs. Right, what was special about the nine boxes? 

Students: They had six eggs. 

Mrs Stuart: They had six eggs each.  

 

Week 7, Term Two, 2009/2010 
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During this phase, a key shift for Mrs Stuart was her emphasis on facilitating student 

development of mathematical explanations rather than continuing to provide the majority of 

explanations herself. To achieve this, Mrs Stuart trialled the use of prompts such as: I also want 

you to think because I’m sitting here and I’m dead confused, how you could explain it to me.  So 

I’m not just interested in your answer, I’m interested in you explaining it. The following vignette 

illustrates Ms Stuart’s expectation for students to convince others in the classroom community:  

 

Pressing students to develop a convincing explanation 

After students had worked on functional problem (see Figure 10) Mrs Stuart asked a student 

to share what they had noticed:  
 

Alec:    You count in threes, sixes, and nines. 

Mrs Stuart:   What do you mean you count in threes, sixes, and nines? 

Alec:   So at the start where the last one goes (pause) where it goes zero, one, and at 

the bottom it goes three, six, nine, and we reckon we’re counting in threes, 

sixes, and nines. 

Mrs Stuart:   Right I’m going to play confused here. I do know what you’re saying but I’m 

going to play confused. Can anyone ask Alec a question to help me 

understand? Okay get him to explain it again. Right Duncan can you ask him a 

question? 

Duncan:   I don’t understand it. How can you say threes, sixes, and nines? It’s not 

enough for me to understand. 

Mrs Stuart:   Okay so you’ve got to convince us…Who knows what Alec’s talking about 

when he says it’s going in threes, sixes, and nines? Right here’s a challenge, 

convince Duncan and I, what do you mean it’s going in threes, sixes, and 

nines? Talk to each other how’re you going to convince us? 

 

Week 7, Term Two, 2009/2010 

 

Another shift in Mrs Stuart’s classroom involved the introduction of the mathematical practices 

of generalisation, justification, and proof. Mrs Stuart purposefully planned an investigation of 

zero with the aim of students developing conjectures, justifying and generalising their thinking. 

She first drew student attention to a number sentence which had been constructed to reach the 

target number of 20 (e.g., 20 + 0 = 20) and asked them to discuss what they noticed. Then she 

directed them to conjecture and find examples which illustrated the conjecture. Following this, 
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she pressed them beyond the use of examples as justification by requiring that they prove their 

conjectures using a range of concrete materials (e.g., acting out the scenario and using counters) 

before she asked them to symbolise it. These practices were new and so she requested researcher 

support. After the lesson she reflected: I got a bit floundered to start with as to sort of thinking 

which way shall I take this and how far shall it go? I think I was over thinking it. Interestingly, 

during the enactment of this task she reverted to using more leading and funnelling questions 

and did not probe students for their reasoning.   

 

From these tentative beginnings, subsequent classroom observations toward the end of Phase 

Two revealed that students made conjectures more readily about the patterns they noticed. In the 

following vignette, we see how Mrs Stuart drew on these and then led them through the 

mathematical practices of generalisation, justification and proof.  

 

Developing mathematical practices of generalisation  

A student had conjectured that dividing by two was the same as finding half of a set. 

Mrs Stuart asked her students to work in pairs to explore what happened when twelve 

counters were divided into different fractional parts including thirds and quarters.  

 

Jasia:   It is because one third is three and there is three here and you have 

divided them all by the same so the same as 12 and 12 divided by three 

equals four. 

Mrs Stuart:   …Jasia’s saying that the three there which is one third is that divided by 

three there (points the different parts of the equation as she speaks). So 

on this one Willow, there’s the twelve, there’s the sixes, divided by two 

there, and that two is part of the half in there. Okay so it looks like there 

is a pattern there as well, doesn’t it? Paul wanted to know, his idea was: 

is dividing by two the same as finding a half. This time we’ve divided by 

three is that the same as finding a third?…Coming back to Paul’s idea, 

dividing by two is the same as finding a half. Can anyone think what 

dividing by n would be the same as? Think that one through with your 

partner. 

 

After further discussion Mrs Stuart returned to Paul.  

Mrs Stuart:   Any ideas? Is dividing by n the same as dividing by what do you reckon  

Paul? 

Paul:    Finding an nth. 
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Week 11, Term Two, 2009/2010 

 

A notable feature of this phase was the students’ growing recognition of the benefits of 

collaborative work including support for their own mathematical understanding and learning 

different strategies. Many indicated that they developed solution strategies by talking and 

listening with others. Importantly, questioning was beginning to be viewed as a way of 

supporting peers: if they don’t understand, you could ask them questions and it will help them 

figure it out. 

In the latter part of phase two students remarked:  

Justin: It’s okay to disagree because if something’s wrong, someone has got to know.  

 

Other students referred to the necessity of convincing others.  

Zanthe: When somebody gets it wrong, we have to talk them into the right thing (…) 

because if you know it and your partner doesn’t, you have to convince them to 

kind of say its right.  

 

Data from the photo elicitation interviews in this phase of the study confirmed that many of the 

students were now able to re-construct their peers’ explanations and reasoning from whole class 

discussions. This included identifying their peers’ errors and why the thinking was incorrect. 

Students were also able to recollect similarities between their peers’ solutions strategies and 

explain this. For example, in the vignette example shown earlier in this chapter, students shared 

their solution strategies for the word problem: Each of 4 children has 3 matchboxes and each 

matchbox contains 3 marbles. How many marbles do they have altogether? In photo elicitation 

interviews undertaken after this lesson the students identified the addition and multiplication 

strategies as the same: because nine add nine add nine add nine is the same as nine times four.  

 

Students were now beginning to describe explicitly their own mathematical thinking during the 

photo elicitation interviews. They referred to relational strategies which they used or patterns 
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they noticed in tasks. At this stage most students were unable to provide justification for their 

thinking following the lesson. Many of the students were able to revoice conjectures that had 

been investigated in the classroom. However, some questioned whether these would always be 

true. Most students referred to specific examples to justify conjectures and were unable to relate 

them to different forms of representations.  

 

6.4.4 Analysis of task design and implementation, integration of algebra, and 

development of the classroom community 

 

During the second phase of the study there were two notable shifts in regards to task 

implementation. Firstly, enabling prompts as described by Sullivan et al. (2006) were used by 

Mrs Stuart to ensure the diverse range of students could successfully approach tasks. Secondly, a 

change in her use of questioning focused student attention on the structure of the task rather than 

on calculating answers.   

 

Mrs Stuart continued to recognise opportunities within the curricular material to integrate 

algebra. This now also extended to noticing spontaneous opportunities to develop algebraic 

reasoning during lessons and in the later observations during this phase Mrs Stuart was able to 

realise the possibilities within enacted tasks to integrate algebraic reasoning spontaneously into 

her lessons. This indicates that she was now beginning to develop pedagogical moves described 

by Smith and Thompson (2008) and Blanton and Kaput (2005a) to develop algebraic reasoning.  

 

Mrs Stuart’s developing ability to notice student reasoning and understand different aspects of 

student thinking encompassed an awareness of misconceptions connected to algebra such as the 

misunderstanding of the equals sign described by Carpenter et al. (2005b) and Knuth et al. 

(2006). Mrs Stuart attended to student misconceptions in the moment and re-designed her 
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lessons to address these by supporting students to reflect on their understanding of the equals 

sign. However the numbers and structures she used encouraged use of computational strategies 

rather than also addressing relational reasoning. Relational reasoning is described by a range of 

researchers (Carpenter et al. 2005b; Irwin & Britt, 2005; Stephens & Xu, 2009) as a foundation 

for developing algebraic reasoning.  

 

In this phase there was now a strong focus within Mrs Stuart’s classroom on promoting 

interactive mathematical talk within the learning community. As other researchers (e.g., Kazemi, 

1998; McCrone, 2005; Reid & Zack, 2009) have shown, specific pedagogical actions were 

required to support a shift in student participation so they became critical participants within the 

classroom community.  Collectively, the vignettes highlighted teacher actions that promoted: 

engaging students in explicit discussions about the need for collaboration and asking them to 

reflect on their ways of working; positioning students to listen actively; and asking students to 

agree and disagree using mathematical reasoning and examine similarity and difference across 

solution strategies. However, within this phase, although students were supported to make 

mathematical connections between different responses Mrs Stuart was not yet confident in the 

process of monitoring their responses or purposefully sequencing them. This resulted in what 

Stein et al. (2008) describe as missed opportunities to advance specific mathematical concepts or 

focus on important mathematical ideas. 

  

What was particularly noticeable across this phase was the changing role of representations. 

Acting as important tools in the classroom, a range of informal and formal representational 

forms were introduced as a way of organising and exploring, explaining, and justifying 

reasoning. Similar to Blanton and Kaput (2005a) and Carraher et al. (2008), Mrs Stuart initially 

needed to encourage and scaffold student use of these tools. 
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Embedded within these changes was an expectation that students would consistently provide 

mathematical reasoning for their solution strategies and develop mathematical explanations. 

Like the teachers in Franke, Turrou, and Webb’s (2011) study, Mrs Stuart used follow-up 

questions which required students to provide further explanation of their ideas. She drew on 

specific instances of student noticing of patterns to engage the whole class in developing 

reasoned explanations. Alongside mathematical explanations Mrs Stuart initiated a growing 

expectation that generalisations would be expressed and treated as conjectures. In doing this, 

Mrs Stuart facilitated a ‘conjecturing atmosphere’ such as described by Mason (2008). 

Exploration of properties of zero was a rich area to scaffold students to develop and investigate 

conjectures and generalisations. The richness of this context is recognised also by Carpenter et 

al. (2003; 2005a). These researchers and Schifter (2009) note that providing students with 

opportunities to use concrete materials and representations as a means to develop an argument 

and establish a general claim is an important aspect of learning to justify algebraic reasoning.   

 

Initially, enacting these new mathematical practices in the classroom caused uncertainty and 

anxiety for Mrs Stuart and on occasions she was observed to fold back to more teacher directive 

practices. Franke, Carpenter, and Battey (2008) explain how teachers may appropriate an 

activity and develop it into an artefact resembling their current practice when unfamiliar with a 

new practice.   

 

Similar to the findings of Edwards and Jones (2003), students in Mrs Stuart’s class increasingly 

were able to identify a range of positive outcomes of collaborative group-work. Students 

privileged both talking and listening as forms of learning mathematics. Questioning, disagreeing, 

and developing convincing explanations were noted as important aspects of collaborative work. 
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As Mercer (2000) describes, these practices support students to explore and critically examine 

shared reasoning through exploratory talk.  

 

As the students participated in the changing practices of the classroom, they learnt the ways of 

thinking and acting which were valued in the community. Boaler et al. (2000) and Hodge (2008) 

explain that this helps develop a sense of what it means to be a member of a specific community. 

There was a significant shift in students’ participation and their understanding of their role as a 

learner. With the increased emphasis on describing mathematical thinking, students developed 

competence at explicitly describing their thinking after lessons.  

 

In summary, teacher actions evident in this section are illustrated below in Stage Two of the 

Framework of Teacher Actions to Facilitate Algebraic Reasoning.  

 Table 11 

Stage Two of the Framework of Teacher Actions to Facilitate Algebraic Reasoning: Mrs Stuart  

 
STAGE TWO 

Algebraic concepts Address the following concepts in the classroom: understand 

the equal sign as representing equivalence; relational 

reasoning including whole numbers and rational numbers; 

commutative property; inverse relationships; odd and even 

numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using 

and solving equations; function 

Teacher actions to develop 

and modify tasks and enact 

them in ways which facilitate 

algebraic reasoning 

Adapt tasks to highlight structure and relationships. This may 

include changing numbers or extending to multiple solutions 

Structure tasks to address potential misconceptions 

Use enabling prompts to facilitate all students to access tasks 

Implement tasks by focusing attention on patterns and 

structure  

Recognise and use spontaneous opportunities for algebraic 

reasoning during task enactment 

Teacher actions to develop 

classroom practices which 

provide opportunities for 

engagement in algebraic 

reasoning 

Require that students indicate agreement or disagreement 

with part of an explanation or a whole explanation and 

provide mathematical reasons for this 

Lead explicit discussions about ways of reasoning 

Provide space for students to ask questions for clarification 
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Request students to add on to a previous contribution 

Ask students to repeat previous contributions 

Use student reasoning as the basis of the lesson 

Facilitate students to examine solution strategies for 

similarities or differences 

Teacher actions to develop 

mathematical practices which 

support the development of 

algebraic reasoning 

Require students to develop mathematical explanations 

which refer to the task and its context 

Facilitate students to use representations to develop 

understanding of algebraic concepts 

Ask students to develop connections between tasks and 

representations 

Provide opportunities for students to formulate conjectures 

and generalisations in natural language. Leads students in 

examining and refining these conjectures and generalisations 

Listen for conjectures during discussions. Facilitates students 

to examine these 

Require students to use different representations to develop 

the clarity of their explanation 

 

6.5 PHASE THREE: EMBEDDING ALGEBRAIC REASONING 
 

6.5.1 Teacher learning 

 

During the last phase of the professional development research project Mrs Stuart continued to 

identify opportunities for collaboration and discussion within the study group as important 

elements for her development. In the group meetings the teachers began to plan a lesson study 

cycle. First they developed an overarching aim collaboratively through focused discussion on 

developing norms for effective mathematics teaching. The following vignette captures the 

shared understanding of what they valued as a group.  

 

Study group reflection on shifts in focus of effective mathematics teaching 

The study group is discussing and writing an overarching aim for their lesson study cycles.  

 

Rebecca:  To have a positive attitude, to challenge and extend their own and others. You 

see that’s what’s different now... 

Michelle: Yeah it is. 

Rebecca: Is getting those others thinking. 
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Michelle: It’s good. We’ve changed quite a lot haven’t we, when you look at that? 

Rebecca: You see the reflective we would have had before, the actively engaged we 

would have had before. 

Michelle: But that’s not enough without the other. 

Rebecca: That’s not enough without the other, and it’s the other that we’ve missed. The 

challenge and extend.  

 

Week 4, Term Three, 2009/2010 

 

Within this collegial community, Mrs Stuart identified conversations about classroom culture as 

a significant driver of changes in her classroom practice. In the final meeting she linked changes 

in practice to: the amount of time we’ve had working together as a three, because it’s been 

sustained over the year and it’s been backed up with the reading and the on-going discussion 

between the three of us for the year.  

 

Reflection had become a core practice for Mrs Stuart. In this phase she identified the challenge 

of closely monitoring and selecting student responses as they worked collaboratively for later 

inclusion in whole class discussion. She described how her fascination with how students 

worked together meant she sometimes missed opportunities to know what other students were 

doing. This resulted in a need for her: tune in on what to pick out to move the class forward.  

 

In this phase Mrs Stuart was able to identify how the pedagogical content knowledge she was 

developing related to early algebra. In particular, she recognised the growth in her understanding 

of relational reasoning. At the same time, she knew her growth was on-going because she told 

the group that while confident with addition type problems, she still found using relational 

reasoning to solve number sentences involving subtraction challenging. To solve these she had 

either to draw a picture or think about concrete material.   
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In planning the lesson study, Mrs Stuart used her developing pedagogical content knowledge to 

critique the structure of tasks planned to develop algebraic reasoning. For example, a task was 

designed which aimed to develop student understanding of the equals sign by asking students to 

record equations for a target number (e.g., 27 = 10 + 10 + 7 = 40 – 13 = 27 + 5 – 5). Following 

this, in another task students were asked to solve true or false number sentences. While solving 

the true and false number sentences it was evident that some students still did not view the 

equals sign as representing equivalence. After the lesson Mrs Stuart critiqued the tasks telling 

the group: I think maybe because we historically present children with a lot of things with the 

answer just being one box that sort of one where they had to look maybe provoked that thinking 

a little bit more. You know at the beginning where they said something, something equals and 

then the next child does equals, I don’t know, when I look at it now I think it is a fantastic 

activity and a fantastic assessment...but maybe they are just seeing and the next one, and the 

next one, and now it’s my turn and they don’t actually see the equal sign whereas this question 

here and that one here in particular really made them think about the idea of balance. 

 

Shifts in Mrs Stuart’s understanding included changes to the way in which she viewed algebra 

and mathematics in general. She described viewing mathematics for most of her teaching career 

as being: little pockets of knowledge and viewing algebra as: the missing number and shoving in 

an X here. She related to the group that her school experiences of mathematics had focused on 

computation and procedures. She spoke of encountering algebra at teachers college: I got to the 

first maths tutorial in the first week and it was that little problem, you know how many moves to 

get those three people and they all have to swap places. My maths lady said ‘why does that 

work? Show me with algebra’ and I was like ‘oh my god I’m on the wrong course’. In contrast, 

Mrs Stuart stated in the final interview that she now viewed algebra as much bigger than she 

previously perceived: it’s the way they think and it’s the way they take something and can take it 
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to a wider context, and the opportunities for them to really discover things and make them their 

own. She described how she now viewed mathematics as a creative endeavour and saw her 

students making connections across big ideas within mathematics. She also showed her 

understanding about the way in which mathematics is a process of on-going construction when 

she said: keep being cyclical with all our teaching…don’t assume that they’ve got it and then 

leave it. Keep dipping in so they don’t lose it.  

 

Within this broadening perspective it was clear that Mrs Stuart’s perception of algebra had also 

expanded and she now viewed facilitating algebra in the classroom as encompassing more than 

just content. She described her greater awareness of what she viewed as social constructs in the 

classroom including ways in which students collaborated and talked together and she attributed 

these to her deliberate pedagogical actions which focused on explanations, questioning, and 

discussion. Her own lack of experience with algebra during schooling was her motivation to 

ensure her students engaged in mathematical practices related to algebra and her increasing 

expectation that students would explain and justify was a personal response: if he doesn’t learn 

to explain and justify, he will be like me in his first tutorial and think nobody has ever asked me 

to justify that before.  

 

Mrs Stuart identified changes in how her students worked within the classroom. This included 

significant shifts in the way they talked and worked together and how they engaged in making 

conjectures and generalising and the key role she took in developing these practices. Now she 

identified differences between traditional classrooms and where she had taken her classroom to 

in noting concerns over their next transition in a different classroom.  

 

Reflecting on the shifts in the way students work 
 

Mrs Stuart:  They talk more mathematically, they come up with conjectures, but if they 



177 

 

weren’t asked the same sort of questions, you know if the language of 

conjecture and generalisation suddenly stops then that’s going to filter further 

away from them and I want them to be able to build on what they’ve got 

because…they see things algebraically…We’re using the word algebra, we’re 

talking about relationships and they’re just taking it in their stride…At least 

they are being exposed to what maths really is, rather than a series of 

calculations so I’m really excited about it.  

 

Week 4, Term Three, 2009/2010 

 

 

6.5.2 Analysis of teacher learning 

 

Blanton and Kaput (2008) describe how the way teachers position themselves when participating 

within a community can influence the development of a professional identity. Mrs Stuart 

positioned herself as an active participant within the study group and in this way developed her 

professional identity. Similar to the findings from other successful case studies in early algebra 

(e.g., Blanton & Kaput, 2005a; Franke et al., Jacobs et al., 2007) involvement in the community 

of inquiry facilitated Mrs Stuart to reflect on mathematical understandings, student thinking, and 

instructional practices. Her developing disposition of inquiry led to changes in her instructional 

practices.  

 

An important factor in the shift in Mrs Stuart’s understanding and practice was the re-

conceptualisation of her understanding of algebra. Within the professional development, 

activities which facilitated engagement in mathematical practices such as generalisation and 

justification led to Mrs Stuart widening her conceptualisation of algebra. This was evidenced in 

the opportunities and support for students to engage in these mathematical practices. As shown 

in other studies (e.g., Blanton & Kaput, 2008; Franke et al., 2008; Jacobs et al., 2007; Koellner 

et al., 2011; Ruopp et al., 1997; Stephens et al., 2004; Warren, 2009) solving and analysing a 

range of tasks during professional development supported Mrs Stuart to develop her own 
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personal knowledge and make sense of mathematical ideas. This meant that she began to be able 

to critique tasks, consider effective sequencing, and reflect on how different types of algebraic 

reasoning are elicited.  

 

6.5.3 Task design and implementation, integration of algebra, and development of the 

classroom community 

 

Mrs Stuart continued to use enabling prompts and collaborative work to ensure that her students 

could approach challenging tasks without their cognitive load being reduced. She also affirmed 

the requirement/expectation that students listen to their peers’ strategy solutions during whole 

class discussions and reflect on how they had used information from the task to develop a 

solution strategy.  

 

Shifts in the way that Mrs Stuart implemented tasks led to changes in the ways students 

approached them. She provided an example of when her students were working in a more logical 

manner when solving a puzzle involving missing numbers as follows: this group had all gone 

down the line of assuming that it was addition but had taken it to a point where they’d worked 

out that it couldn’t be addition because such and such didn’t become the sum. So they were 

explaining; they were able to fold it back for the class as to how they knew it wasn’t addition. 

These new ways of participating in mathematics learning, Mrs Stuart claimed, meant that 

students were more independent: less likely to think what is it she wants us to do? But more what 

do I have to do with the maths? We see evidence of this in the following vignette based on a task 

(see Figure 14) which was presented as a closed problem in the MEP material. Rather than 

coaching students through it she gave it to them in their groups. 
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Figure 14. Missing number puzzle. From MEP copy masters, by S. Hajdu, 1999, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2bcm_3.pdf  

 

Students approaching a closed task as an open-ended problem 

Mrs Stuart asks a group that she had noted as recording multiple solution strategies to share 

their response with the class.  
 

Mrs Stuart: What did you write in here Erin? 

Erin:    Six.  

Mrs Stuart:   …You also had something else here didn’t you? 

Erin:    Yes, twenty.  

Mrs Stuart:   (records 6/20) Come to the front and talk me through why you did this and 

then where you went from there?  Anyone else think why they did that?… 

Juliana:   We put the six and the four there to make 24 but then we thought that it could 

be addition or multiplication so we thought it could be six times four equals 24 

or 20 add four 

Mrs Stuart:   So where did you go from there?  Do you see what they did there?...  

Juliana: Then we decided to think of the six and try and fill in the box and then we 

used 20 to see if that worked as well. 

Mrs Stuart:   Have you tried both of them? 

Tobias: No, we tried one. 

Mrs Stuart: Which one have you tried?   

Erin:   Six.  

Mrs Stuart: Six. So if they were using the six, and looking round quite a few of you were 

using the six there.  What are you saying that 24 is?   

Juliana: The product. 

Mrs Stuart:   So they’re saying 24 is the product of the two numbers underneath it. So if 

we’re following that rule for our pyramid, what two numbers are going to go 

there?  Do we have a choice again?  What could we have there?  The rule is 

that the number on top is the product of those.  

Juliana: Two times two or one times four.  

Mrs Stuart: You could have two times two, or we could have one times four.  What about 

six, what’s going to happen there?   

Juliana: One times six.  
 

Mrs Stuart records the different solution strategies in the pyramid and then asks the students 

to try the other rule and see if it works for addition.  
 

Week 6, Term Three, 2009/2010 

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2bcm_3.pdf
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In a post lesson interview, Mrs Stuart stated that students had developed: a natural 

understanding that there is more than one way to go about a problem…They opened it up and 

they had different solutions and they were buzzing with natural curiosity about it.  

 

Mrs Stuart now planned classroom activities in a way which focused on opportunities for early 

algebra. She described previous planning as looking through activities to make sense of them 

and decide which she would cover or leave out due to time constraints. In contrast, her current 

planning involved careful consideration of how to enact tasks, and deliberate thinking about 

grouping and opportunities for discussion, as well as identifying areas of content with links to 

algebra and which types of representations could be used. She described herself thinking as she 

planned about how to: draw out the commutative law from this one, or this could be a great 

discussion point for, like the other week when we were doing timesing by one, or dividing by 

zero, get them to come out with conjectures. These changes resulted in a clear focus on algebraic 

reasoning integrated into all lessons and included coverage of a broad range of algebraic 

concepts. 

 

A point of difference in this phase was Mrs Stuart’s propensity to engage in anticipating the 

outcomes of the task enactment. She continued to develop her use of monitoring, noticing and 

sequencing student responses which could be used to further investigate algebraic concepts. 

There were now two to three instances in each lesson when she spontaneously integrated 

algebraic reasoning. The following vignette features Mrs Stuart using a student response to 

integrate algebra spontaneously into the lesson:  

 

Integrating spontaneous opportunities for algebraic reasoning 

Mrs Stuart asked her students to think about an efficient method to solve 26 – 8 =  

 

Misty:  You could break it down into six and two 
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Mrs Stuart: Break what down into six and two?   

Misty:   Eight. 

Mrs Stuart: Why have you chosen to break eight down into six and two? Not one and 

seven or four and four? 

Misty:  Because then it makes it easy to do 26 and it is not 27.  

Mrs Stuart: Did anyone else do it that way?  Well done.  Okay does everyone understand 

what she was doing?  Does anyone want to ask her a question?…Let’s just go 

off track a bit, if you were doing 34 take away seven, with your partner can 

you just talk about how Misty and the other children would tackle that?  

 

Week 12, Term Three 2009/2010 

 

With the changes in the classroom, students were observed to engage more frequently with 

algebraic reasoning. When asked to write number sentences to make a certain number, they used 

relational patterns.  They drew on relational reasoning to justify how they knew the number 

sentence was true: It is true because you just put two on the 21 and then take it off again. The 

following vignette illustrates how students independently used structural aspects and patterns to 

help them solve a task (see Figure 15). 

 

 

 

 

 

 

 

 

 

Figure 15. Train and carriage problem. From MEP practice book Y2b (p. 149), by S. Hajdu, 

1999, Budapest: Muszaki Publishing House. 

 

Using patterns to solve tasks 

During whole class discussion Zanthe shared a solution strategy for the task (if there were 25 

children). She drew a box with six written in it then drew an extra line to show how she 

would solve the task. Mrs Stuart asked her to show how to solve it for 26 children and 27 

children. For each of these Zanthe drew another line.  

 

Mrs Stuart:   Now this is like Duncan and Ferdinand you were using some kind of pattern to 
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do yours weren’t you?  Right 28 children (Zanthe draws another stick figure). 

Why has Zanthe carried on drawing stick men instead of drawing a carriage 

with a number six in it?  Why is that working?  She’s up to 28 children in the 

class now and every time she just draws a stick man why doesn’t she draw a 

carriage?  Talk to your partner please. 

 

After the students talk to their partners, Mrs Stuart asks them to share their ideas.  

 

Mrs Stuart:   Okay Sabrina can you explain to me why she’s just drawing stick men and not 

another carriage? 

Sabrina:   Because you would have to have another six before they go in a carriage 

Mrs Stuart:   So what’s the next number when she’s going to stop drawing stick men?  

Sabrina: Thirty 

Mrs Stuart It’ll be 30, because 30 is, what’s special about 30?  

Sabrina: It’s a multiple of six.  

 

Week 4, Term Three, 2009/2010 

 

Increasingly discourse was highlighted as a way of learning. Students were expected to explain 

their reasoning and an emphasis on developing collaborative explanations was maintained. A 

consistent expectation was established that students would work as a collaborative community. 

When students explained their strategy solutions during whole class discussions, Mrs Stuart 

emphasised that their partners or group needed to listen carefully and support them when 

necessary. She made the speaker aware of peer support and facilitated the rest of the class to 

listen to the explanation and make sense of it while supporting everyone in the class to 

understand it. The vignette below shows the range of prompts which Mrs Stuart developed and 

trialled to further facilitate collaboration of the students in her classroom:  

 

Developing a collaborative classroom community 

After students have developed solution strategies for the first part of a functional reasoning 

task (see Figure 15). Mrs Stuart then asks them to develop an explanation for the next part.  

 

Mrs Stuart: Can you think of a way to explain that on the board?  Practise with your 

partner please.  Now I’ve got 25 children and I end up with four carriages and 

one left over.  Practise it with your partner. 

 

After the students have talked with their partners, Mrs Stuart calls upon Jasmine to explain. 

 

Mrs Stuart: Saffron, are you watching very carefully because she is your partner and you 
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can help her out if you need to. Think of a way that makes sense to you.  Talk 

us through as you go Jasmine. 

Jasmine:   Twenty-five 

Mrs Stuart:   Why 25?   

Jasmine Because there are 25 children in the class. 

Mrs Stuart Because there are 25 children in the class this time. Are you listening, Jasia? 

Because she might need some support.  

 

Following Jasmine’s explanation, Mrs Stuart then asks another student to develop an 

explanation using a picture as a representation.  

 

Mrs Stuart:   Right, Zanthe talk us through as you go.  What have you drawn us? 

Zanthe:   A box. 

Mrs Stuart:   And what’s the box meant to be? 

Zanthe:   A carriage. 

Mrs Stuart:   A carriage, okay, and what’s going to happen with that carriage? 

Zanthe:   It’s going to have six people in it 

Mrs Stuart:   Well I’m asking all the questions, see if you can ask some questions to help 

Zanthe.  Keep going, and if you wobble they’re ready, they’re listening, and 

they’re ready to ask you a question to help you through it. 

 

Week 4, Term Three, 2009/2010 

  

Although an emphasis was placed on developing a collaborative community, Mrs Stuart 

continued to use pedagogical actions to ensure that students did not view this as always needing 

to agree with their peers. She emphasised mathematical argumentation when working with 

partners saying: I was really impressed with the discussion that was going on when you didn’t 

agree with your partner. This focus led to students attending both to their own thinking and the 

thinking of others and using mathematical reasoning to agree or disagree. The vignette below 

illustrates how students had begun to use questioning to clarify ideas and increasingly to probe 

for justification for reasoning:  

 

Using questioning to probe for clarification and justification 

Mrs Stuart had asked the students to find two sixths of twelve. Two students share their 

solution strategy. They begin by separating 12 counters into six piles of two.  

 

Tristan: We made it into six piles and in each there were two and then we pointed at 

two of them and it made four. 

Mrs Stuart: Okay, there seems to be lots of hands up, Jacqueline, what would you like to 

say? 
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Jacqueline: Why did you divide them into two?  

Tristan: Because then it made six groups.  

Mrs Stuart: Any other questions, Willow?  

Willow: Why did you have to get 12 altogether?  

Tristan: Because it says 12, two sixths of 12 so we had to get twelve counters.  

 

Week 8, Term Three, 2009/2010 

 

Another important shift during this phase was students’ recognition of erroneous explanations. 

As the vignette below shows, students now questioned or challenged errors which supported the 

student explaining to reflect upon their thinking and re-construct this if necessary:  

 

Challenging explanations 

Mrs Stuart has asked her class to examine a set of number sentences to establish which 

are true or false. A student is sharing her response to 12 – 8 ÷ 4 = 1. She begins by 

identifying that the division needs to be completed first but then records:  

 

Zanthe:  [12 – 8 = 4] Twelve take away eight equals four. 

Mrs Stuart: Lots of hands are popping up. Julio? 

Julio:  Zanthe just did eight divided by four, and she did now twelve take away  

eight. 

Mrs Stuart: What are you saying then Julio?  

Zanthe: I know. 

Mrs Stuart: Has he helped you to think?  Well done Julio.  Keep going then Zanthe. 

 

Week 12, Term Three, 2009/2010 

 

Mrs Stuart continued to encourage student use of multiple representations. But more than just 

using a selected representation, she now developed an expectation that the students would 

translate between different representations. Shown in the vignette is how this included both 

asking students to draw on multiple representations in relation to a task (see Figure 16) and to 

listen to explanations by their peers and then to use an alternative representation for the 

explanation. This meant that students readily drew on a range of representations to support their 

explanations.  
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Figure 16. Word problem. From MEP lesson plans, by S. Hajdu, 1999, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2blp_3.pdf  

 

Using representations to support an explanation  

Students have been working on a task. Mrs Stuart asks a pair to share their explanation.  

 

Tobias: One third of 12 equals four [records ⅓ of 12 = 4 and 4 + 12 = 16] 

because if you get three fours that equals 12 and four add twelve equals 

16.  

Juliana: [arranges 12 counters into three groups of four].  

 

Mrs Stuart asks the class for questions. A student asks them to explain about the one 

third.   

  

Tobias: Because in the story it said that there is one third of (pause) well it said 

that there are 12…soft toys [points to the 12] and it said there was a third 

as many rattles.  

Mrs Stuart: Does that help you? Is it the third of 12 that you don't understand or is it 

how they got the answer four which you don't understand? 

Ferdinand: How they got the answer four 

Tobias: Because if you are thinking about your four times table, it goes four, 

eight, 12 so that is three fours equals 12.  

Mrs Stuart: Juliana, what have you been doing with the counters there? 

Juliana: Well I got 12 counters and divided them into three groups and then we 

got them in fours and then that one is one third (covers one group of 

four) so that is one third of twelve. 

  

Mrs Stuart asks for further questions.  

 

Jacqueline: Why did you add twelve to four?  

Tobias: Because it said how many toys were there altogether so there is 12 soft  

toys like there [points to the 12 in 12 + 4 = 16] and four rattles [points to 

the four] so you add it to get 16.  

 

Week 8, Term 3, 2009/2010 

 

Mrs Stuart maintained the expectation that conjectures would be expressed and proved while 

facilitating a consistent expectation for generalisation. She used questioning such as: would it 

work for different numbers? Or: can I change that into something that would work for any 

number? She was able to seamlessly use student reasoning to focus on generalisations. As the 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y2blp_3.pdf


186 

 

vignette displays she noted a student response to a fraction task (see Figure 17) and used this as 

an opportunity to engage the students in generalising: 

 

 

 

 

Figure 17. Finding fractions of a set (independently developed by Mrs Stuart) 

  

Pressing for generalisation 

As students were solving fraction tasks, Mrs Stuart noted that some students recorded this as 

15 ÷ 5 × 3 = 9.  
 

Mrs Stuart: Is three fifths of 15 the same as doing 15 divided by five times three?  
 

Then she asked them to use a similar division strategy to find one eighth of 16 before she 

asked them to generalise: 
 

Mrs Stuart: What if I wanted to write one nth of 715. How could I write that as a division?  

 

After students talked with their partners, she asked a student to share: 

 

Alec:  Seven hundred and fifteen divided by n equals x.  

Mrs Stuart: Can I change that into something that would work for any number? 

 

After students worked with their partners, she asked them to share:  

 

Hazel:  One hth of x (long pause) 

Mrs Stuart: Come on Ferdinand, you’re her partner.  

Ferdinand: [writes x ÷ h =] For one hth of x, you can do x divided by h. 

 

Week 8, Term Three, 2009/2010 

 

Increasingly, representations were introduced as a way of providing a concrete justification for 

conjectures and generalisations. Mrs Stuart built on the earlier norms which she had developed 

and expected the students to justify their conjectures by using concrete material. For example, a 

student made a conjecture about dividing by one: it’s just like you’re getting one group and 

dividing it by one group so you have already done it. If you’ve got a number and you divide it by 

one, it ends up that number. Mrs Stuart responded by asking: show what you mean with counters 

on the board. As the students gained more experience in justification, they more readily drew on 

1) What is one fifth of 15?  
2) What is three fifths of 15?  
3) What is one eighth of 16? 
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material to prove their reasoning. In the vignette below, Mrs Stuart facilitates the students to 

draw on representations to justify their reasoning regarding a task (see Figure 18) involving the 

distributive property: 

 

 

 

 

Figure 18. Number sentence problems. From MEP practice book Y2b (p. 158), by S. Hajdu, 

1999, Budapest: Muszaki Publishing House. 

 

Drawing on representations to justify reasoning 

Over a number of lessons, students had been investigating how relational reasoning could be 

used to solve tasks involving the distributive property. Many students began to generalise the 

distributive property to solve the tasks. Mrs Stuart asks a student to share her explanation: 

Misty:   Seven add seven is 14 [notates an arrow from each seven and writes 14 

underneath] and there is a 14 there [indicates 14 on the left-hand side] and 

they are both times nine so you have got 14 times nine and 14 times nine. 

 

Mrs Stuart then asks the students to work in pairs using Misty’s reasoning to prove whether 9 

× 6 = 9 × 3 + 9 × 3. A student begins by building an array to represent 9 × 6, Misty then 

develops this further.  

Misty:  Because there is three there [indicates splitting the six rows into three by 

drawing a line]. There is three rows there and three rows there and that is just 

the same as those [points to 3 × 9 + 3 × 9 in the equation] and then it is times 

nine [points across the rows].  

 

Week 8, Term Three, 2009/2010 

 

The consistent focus on the mathematical practices of justification, generalisation, and proof also 

led to students drawing on previously examined conjectures and generalisations in their 

explanations. For example, Mrs Stuart asked the students to investigate what numbers would 

have a remainder of one when you divided them by two. Juliana drew on her understanding of 

odd and even numbers from previous discussions: fifteen because if you divided it into twos and 

it is an odd number so you have one left over. Similarly, in a later lesson many students used a 
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generalisation from an earlier lesson that anything multiplied by zero was zero to argue that 6 × 

0 + 5 = 7 + 4 was a false number sentence. This illustrated the development of student awareness 

that one can draw on ones’ own thinking.  

 

During this phase it was evident from the photo elicitation interviews that for students in this 

classroom, collaboration with peers had come to be viewed as an important aspect of 

mathematical learning. During group work the students explored and investigated each other’s 

perspectives while also reflecting on their own. Misty described: once you’ve got all the ideas, 

you test one of the ideas then use the other idea if it doesn’t work. Explaining ideas to partners 

was viewed as beneficial both in supporting personal understanding and understanding of peers. 

Students were also able to identify clearly how they reflected on different solution strategies 

than their own.  

Juliana: We tried the half and we got it right, but someone else got it right in a different 

way so then we tried to think it through on the next one. 

 

They also described how they used their peers’ ideas from previous lessons.  

Paul: I used Caleb’s ideas from yesterday for the hedgehogs, to use the double bit. 

 

Both talking and listening were emphasised as key tools. Discussing mathematical ideas was 

highlighted as a way of approaching challenging tasks. Students described how if a task was less 

challenging, they only talked a little but if it was difficult they talked a lot. Talking about how 

they were going to do it was identified as making it easier.  Clear links were made to the 

reciprocal nature of talking and listening. Students explained how both explaining your ideas 

and listening to explanations were reflective tools. For example, the researcher asked whether 

talking helps to learn mathematics. 

Jacqueline:  It helps me because by teaching other people, it will make yourself get it more. 
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Similarly, another student described how listening to explanations during whole class 

discussions was helpful. 

Jasia:   It helps me learn because I’m saying is that right and then I’m thinking it in my 

brain.  

 

Students had developed an understanding of the role which was required within the interactive 

nature of their classroom. For example, Juliana described listening to Alec’s erroneous solution 

strategy and stated: I was a bit confused and I should have thought it through and asked a 

question. 

 

In contrast to the students’ classroom participation practices in Phase One, in the photo 

elicitation interviews the students were now able to describe their own mathematical reasoning 

explicitly and re-explain solution strategies provided by their peers. Often they justified these 

explanations by referring to the context of the problem. For example, the students gave 

explanations of strategy solutions from the whole class discussions and compared this with their 

own.  

Juliana:  She said that they had 28 apples and they divided it into four baskets for each 

child and then they did four, counted in fours and they had seven fours so they 

worked out that the answer was seven. 

Researcher: Is that the same as what your group did or did your group do it differently? 

Juliana: We did it the same way but instead of doing it in baskets we did it in, well we just 

drew the 28 apples and then we drew the four children and we just wrote an 

equation about 28 divided by four equals seven. 

 

Also in the photo elicitation interviews, the students were able to describe clearly patterns which 

they used to solve problems, how they identified these, and provide justification for the pattern. 

Often they explained how the pattern would be true for all numbers and generalised this to a 

different example: because no matter what you take away, even if it's a really high number you 

can still add it on again and you equal the same. Other times they drew on known number 
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properties to justify verbally a specific case: in multiplication you have commutative law so you 

can swap them round either way and five lots of three is the same as three lots of five.  

 

6.5.4 Analysis of task design and implementation, integration of algebra, and 

development of the classroom community 

 

As outlined in the section above, Mrs Stuart reconceptualised her understanding of algebra. 

Using Blanton and Kaput’s (2003) term, she had developed her algebra ears and eyes. She was 

increasingly able to recognise opportunities for algebra in the classroom including both planned 

and spontaneous instances.  

 

As discussed in the literature review (see Section 3.2) specific factors in task design and 

implementation lead to greater affordances for algebraic activity. Drawing on learning from the 

professional development, Mrs Stuart carefully planned tasks to include opportunities for 

algebra. As Kaput and Blanton (2005) contend this meant that algebraic reasoning became an 

everyday part of the mathematics classroom.  

 

With shifts in the classroom in the way that the tasks were implemented and the focus on 

algebraic reasoning there were resulting shifts in how the students engaged in the classroom 

mathematics activity. Along with Mrs Stuart, the students had also developed their own algebra 

ears and eyes and more readily drew upon algebraic reasoning, using structural aspects and 

patterns to solve tasks. Similar to what has been described by a number of researchers (e.g., 

Blanton & Kaput, 2005a; Cobb et al., 2009; Hodge, 2008) following reform in mathematics 

classrooms, Mrs Stuart described the new roles that her students were taking which included a 

different understanding of their obligations within the classroom.  
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As Mason (2008) and Smith and Thompson (2008) highlight through the teacher valuing and 

promoting specific ways of working, the classroom environment and its ethos is shaped. In Mrs 

Stuart’s classroom, the emphasis was placed on developing mathematical discourse and 

collaborative interaction. During small group work, she emphasised the learning opportunities 

that arose from resolving different points of view. Similar to other research studies (e.g., 

Bastable & Schifter, 2008; Carraher et al., 2008; Fosnot & Jacob, 2009; Reid & Zack, 2009), 

Mrs Stuart structured the whole class discussion in a way that developed her young students’ 

algebraic reasoning. She achieved this by positioning the students to listen actively and make 

sense of a range of explanations. As developing understanding became a shared responsibility 

there was evidence that students cultivated new questioning skills. They asked questions both to 

support their own developing understanding but also to probe for justification from their peers. 

This extends previous work by Boaler and Brodie (2009). 

 

As shown in other research studies (e.g., Beatty & Moss, 2006; McNab, 2006) the use of tasks 

which involved multiple representations provided students with opportunities to use different 

forms to communicate reasoning and justify thinking. Mrs Stuart required the students to move 

between different forms of representation flexibly. As Schoenfeld (2008) contends, this 

supported students to begin utilising the representation which allowed the greatest affordance for 

the task. The focus on using representations led to the students consistently drawing on these to 

support their explanations. 

 

By carefully monitoring and using student reasoning, Mrs Stuart developed a ‘conjecturing 

atmosphere’ as advocated by a number of researchers (e.g., Bastable & Schifter, 2008; Blanton, 

2008; Mason, 2008). Using a similar model to the one that Blanton (2008) describes, Mrs Stuart 

engaged her students in building generalisations in the classroom. She achieved this through 
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noting the conjectures that students made and then facilitating the whole class to investigate 

these. This involved testing and revising the conjecture and developing it into a generalisation.  

 

A new expectation that was developed was that students would justify their conjectures using 

concrete materials. In this way, the students began to use representations to develop reasoned, 

general arguments. Schifter (2009) outlines specific criteria for student justification of general 

claims through the use of representation-based proofs. Examples from the current study meet 

Schifter’s criteria as the meaning of the operation (e.g., multiplication) was represented in the 

manipulative and structure used and showed that the claim (e.g., distributive nature of 

multiplication) would work for all cases. A number of researchers (e.g., Carpenter et al., 2003; 

Carpenter et al., 2005a; Schifter) argue that facilitating students to use concrete material to 

justify conjectures and explanations enhances students’ work with proof in later years.  

 

Students in this classroom were able to describe clearly their different roles and obligations 

within this classroom. As Cobb et al. (2009) propose they developed identities which were 

related to micro-culture developed in the classroom. Their descriptions of collaborative 

discourse were aligned with what Mercer (2000) describes as exploratory talk. Similar to the 

students in Franke and Carey’s (1997) study, these students now perceived doing mathematics as 

testing ideas, communicating thinking, and using differing solution strategies.  

 

In summary, teacher actions evident in this section are illustrated below in Stage Three of the 

Framework of Teacher Actions to Facilitate Algebraic Reasoning.  
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Table 12 

Stage Three of the Framework of Teacher Actions to Facilitate Algebraic Reasoning: Mrs Stuart  

 
STAGE THREE 

Algebraic concepts Address the following concepts in the classroom: understand 

the equal sign as representing equivalence; relational 

reasoning including whole numbers and rational numbers; 

commutative property; inverse relationships; odd and even 

numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using 

and solving equations; function 

Teacher actions to develop 

and modify tasks and enact 

them in ways which facilitate 

algebraic reasoning 

Recognise and use links to algebra in tasks across 

mathematical areas 

Implement tasks as open-ended problems 

Anticipate student responses which could provide 

opportunities for algebra 

Recognise and use spontaneous opportunities for algebraic 

reasoning from student responses 

Teacher actions to develop 

classroom practices which 

provide opportunities for 

engagement in algebraic 

reasoning 

Sequence solution strategies to advance mathematical 

thinking and reasoning 

Provide space for students to question for justification 

Teacher actions to develop 

mathematical practices which 

support the development of 

algebraic reasoning 

Lead explicit discussion about mathematical practices 

Listen for implicit use of number or operational properties. 

Uses these as a platform for students to make conjectures and 

generalise 

Facilitate students to represent conjectures and 

generalisations in number sentences using symbols 

Ask students to consider if the rule or solution strategy they 

have used will work for other numbers. Consider if they can 

use the same process for a more general case 

Promote use of concrete forms of justification 

Require students to translate between different 

representations 

 

6.6 SUMMARY 

 

This chapter has documented the journey that Mrs Stuart took as she developed her algebra ears 

and eyes and used this learning to facilitate algebraic reasoning in a mathematical community of 

inquiry. The development of Mrs Stuarts’ understanding of early algebra was supported by the 

professional development tool (see Table 1). The learning culture of her classroom was 
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transformed as she used the actions described in the Framework of Teacher Actions to Facilitate 

Algebraic Reasoning (see Table 10, 11, 12).  

 

Initially algebra was not a part of the everyday mathematics lessons and many of the classroom 

practices were aligned with what is commonly described from studies of traditional mathematics 

classrooms (e.g., Bell & Pape, 2012; Fisher et al., 2011; Mehan, 1979; Pape et al., 2010). 

Classroom observations from Phase One provide evidence of the shifts in task implementation 

and the way Mrs Stuart began consciously to plan to integrate algebra into lessons. At this point 

some of the existing classroom practices limited opportunities for engagement with algebra. 

Evidence of Mrs Stuart’s professional learning is shown in Phase Two and Three both during 

study group meetings and researcher visits. It was clear that she viewed her development as a 

personal responsibility and for her inquiry became a way of being (Jaworksi, 2006; 2008). In the 

classroom, shifts in task implementation saw students being facilitated to draw on mathematical 

structure and relationships to approach tasks. Mrs Stuart continued to extend her planning for 

algebraic reasoning and also began to notice and respond to spontaneous opportunities during 

the task enactment. Increasingly, the classroom practices and mathematical practices supported 

the students to engage with algebraic reasoning. These changes meant that not only did Mrs 

Stuart develop her algebra ears and eyes but the students in her class also increasingly 

approached tasks in an algebraic way and engaged in the key mathematical practices which are 

linked with algebra.    

 

The following chapter describes a contrasting case of a second teacher Mrs Willis. Description is 

provided of the challenges that this teacher faced in developing her own algebra ears and eyes 

and instigating changes in her classroom.  
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CHAPTER SEVEN 

CHALLENGES IN DEVELOPING ALGEBRAIC 

REASONING AND A MATHEMATICAL COMMUNITY 

OF INQUIRY: MRS WILLIS 
 

 

7.1 INTRODUCTION 

 

The previous chapter described the transformation of a classroom learning environment into one 

which focused on developing early algebraic reasoning within a mathematical community of 

inquiry. This chapter documents the contrasting case of change within Mrs Willis’s classroom 

where although the teacher engaged in some change this became largely absorbed into her 

previous forms of practice. This meant that the creation of algebraic reasoning opportunities was 

not supported in the classroom.  

 

Section 7.2 describes the Mrs Willis’s classroom context prior to professional development 

commencing. Section 7.3 highlights the initial steps taken to introduce algebraic reasoning. 

Within the constraints of Mrs Willis’s limited understanding of algebra, the discussion outlines 

the difficulties she had in planning and integrating algebraic reasoning opportunities. Finally, it 

highlights the small shifts that did take place and the main obstacles to the initial implementation 

of changes to the classroom community.  

 

Section 7.4 describes the continuing challenges in developing algebraic reasoning in this 

classroom. It shows how anxiety about subject knowledge led to Mrs Willis positioning herself 

as a peripheral member of the study group. Drawing on classroom episodes it illustrates the 
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missed opportunities for engagement with algebra due to obstacles in task implementation, 

attempts to develop collaborative work, and a lack of student understanding of the new role they 

were being expected to take.   

 

Section 7.5 outlines Mrs Willis’s shift in practice and the return of the classroom back to earlier 

forms of instruction. It shows that for Mrs Willis reflection on practice and the use of inquiry did 

not become a part of her everyday practice. Tasks, enacted with a computational focus, meant 

that students did not engage in investigation of structure and relationships.  

 

7.2 PRIOR TO THE PROFESSIONAL DEVELOPMENT  
 

7.2.1 Algebraic reasoning, classroom and mathematical practices, and student 

participation 

 

Prior to the beginning of the research project, it appeared that there was limited integration of 

arithmetic and algebra within Mrs Willis’s classroom. Aside from tasks involving algebra taken 

directly from the MEP curriculum, there were no types of algebra evident in the three lessons 

observed prior to the project. Enactment of the algebra tasks from the MEP curriculum involved 

a procedural and calculational focus. This is shown in the vignette below where the students 

were asked to solve a series of number sentences (see Figure 19): 

 

 

 

 

 

 

 

Figure 19. Number sentences. From MEP practice book Y5b (p. 126), by T. Szalontai, 2003, 

Budapest: Muszaki Publishing House. 

 

 



197 

 

 

Enacting a relational reasoning task 

Students were asked to solve number sentences which drew on a relational structure. Mrs 

Willis asked the students to share their answers and then provided them with an explanation 

of the process.  
 

Mrs Willis: We started off with 36 divided by nine. Daniella, 36 divided by nine is… 

Daniella: Four. 

Mrs Willis: Four. What, therefore, is three point six divided by nine, Mandy? 

Mandy: Three point six divided by nine is zero point four. 

Mrs Willis: Is zero point four. We start off with, started with 36, we had our multiplication 

which is ten times smaller. We divide 36 by ten, so our answer is also going to 

be divided by ten as well. Ten times smaller. This time we’ve got zero point 

three six divided by nine, Albert, which is what? 

Albert:  Zero point, zero four.  

Mrs Willis: Zero point, zero four. Again, our zero point three six is ten times smaller than 

three point six, our answer will be ten times smaller as well.  
 

Week Seven, Term Three, 2008/2009 

 

Whole class discussions were used to check or correct student answers. When students gave 

erroneous responses Mrs Willis would try to use questioning to lead them to a correct response. 

Alternatively, she would correct the response herself or ask another student in an attempt to get 

the correct answer.     

Mrs Willis: What’s my remainder when I divide one by two? So I’ve decided there are no 

twos go into one, but my remainder is… 

Mandy: Five? 

Mrs Willis: If I divided one by two. Twos into one don’t go at all. What’s left over? 

Mandy: Half? 

Mrs Willis: (Laughs) 

Mandy: Two. 

Mrs Willis: What did you say to me before? I’m just confusing you here. Anyone help her 

out? 

Mandy: Zero point five 

Mrs Willis: What is my remainder? If I’m dividing two by one I get nothing. What’s left over? 

Meredith? 

Meredith: Uh, one whole? 

 

On this occasion, Mrs Willis then continued to use directive questions to funnel the students to a 

correct response.  
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In the lesson observations, Mrs Willis was regularly seen to make tasks easy for her students to 

avoid any confusion. For example students had attempted to explain how to solve a division task 

(see Figure 20) using an informal strategy.  

 

 

 

 

Figure 20. Word problem developed by Mrs Willis 

 

Mrs Willis interrupted the explanation stating: I think I’m going to leave that now, because I 

think you’re just getting more and more confused. We will go and do it straight into the long 

division which I think will be much, much easier. An overall expectation in the class was that not 

all students could successfully solve the tasks or access explanations. Often students did not 

respond to questions posed or provided an incorrect answer. In response Mrs Willis would ask 

an alternate student for a response. 

 

There was limited use of representations in the lessons. For the most part students were directed 

to use equations to illustrate their thinking.  

 

Collaborative or paired work was infrequently used. Most of the lessons were in a whole class 

format with Mrs Willis predominantly using funnelling questions and calling on individual 

students to answer. When students worked independently on tasks, they worked individually 

with an emphasis on a fast pace and correct answer. For example, Jaime said she liked working 

by herself because: I can work quicker when I am by myself. Talking with those sitting in close 

proximity was viewed as a way ensuring a correct answer: you can talk with the people next to 

you to check if you got the same answers and you can change them so there is more chance of 

getting them right. 

I have 81 pounds and 70 pence. I want to divide that 

money between five lucky children. How much 

money does each child get? 
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At the start of the project the discourse patterns in this classroom were similar to what is 

described in Chapter Six in Mrs Stuart’s classroom. They were largely teacher dominated and as 

shown in the examples student responses were generally limited to one word answers or answers 

phased as questions. Mrs Willis spent a significant portion of the lessons restating student 

responses and adding an explanation or justification for the students’ reasoning. During the three 

lessons observations there were no complete, clear explanations provided by students.  

 

The students perceived Mrs Willis as the mathematical authority in the classroom. They 

described how she explained what they were going to do. They stated that: when we are doing 

the answers, she does the method so I know what to do. However, contrary to this norm, a desire 

to construct their own understanding was expressed by some students. For example, they 

referred to liking maths more when: we can actually come up to the board and do stuff without 

the teacher just telling us what it is. Overall, they viewed listening to the teacher, practice, tests, 

and homework as important ways to learn mathematics and succeed in the subject.  

 

7.2.2 Analysis of algebraic reasoning, classroom and mathematical practices, and student 

participation 

 

Opportunities to engage students in algebraic reasoning were not recognised or used by Mrs 

Willis. An emphasis in this classroom was on a fast pace, generating correct answers, and 

avoiding challenge or confusion for students. To achieve this, the majority of teacher 

questioning consisted of low level, funnelling questions. As highlighted in a range of research 

studies (e.g., Boaler & Brodie, 2004, Franke et al., 2009; Graesser & Person, 1994; Hiebert & 

Wearne, 1993; Wood, 1998; Wood et al., 1991) these types of questions aim to elicit correct 

short answer responses. The cognitive demand of tasks was lowered by Mrs Willis providing 
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explicit procedures and solving more difficult aspects herself. This is similar to that described by 

Henningsen and Stein (1997).  

 

Discourse in this classroom followed a traditional IRE pattern as described within research 

literature (e.g., Fisher et al., 2011; Mehan, 1979; Pape et al., 2010). This limited the 

opportunities that students had to construct understanding and to develop a sense of agency. 

Similar to the role Cobb et al. (2009) describe of students in a traditionally taught algebra class, 

Mrs Willis’s students described their obligations within the context of listening to the teacher 

and using her method. As a range of researchers (e.g., Colby, 2007; Franke & Carey, 1997; 

Mason & Scrivani, 2004; Star & Hoffman, 2005) show epistemological beliefs can affect 

mathematical performance. These students viewed mathematics as a body of knowledge which 

was learnt through teacher directed instruction, tests, practice, and homework.  

 

7.3 PHASE ONE: INTRODUCING EARLY ALGEBRA 

 

7.3.1 Teacher learning 

 

At the start of the project although Mrs Willis shared her thoughts and ideas freely, she was a 

quieter member of the study group. Her expressed view that she did not have a clear idea of 

what early algebra was matched her concept map contribution depicting the use of formula and 

equations involving unknowns (Figure 21).  
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Figure 21. Mrs Willis’s concept map of early algebraic reasoning at the start of the project 

 

Although Mrs Willis felt she had a limited understanding of algebra, she was able to identify 

potential incorrect responses to open number sentences. Her prediction for a possible student 

response to an open number sentence (e.g., 8 + 6 = __ + 5) was 14. She also described 

observations from her classroom of students recording incorrectly when they were asked to 

solve number sentence problems (e.g., 7 + 3 + 2 =): initially they would do seven plus two equals 

nine plus three [records 7 + 3 + 2 = 7 + 2 = 9 + 3 = 12] and I keep saying to them ‘but does 

seven plus two equal nine plus three?’ Interestingly, although Mrs Willis explained how she had 

tried to address this misconception, many of her students (68%) provided responses in the initial 

task-based interview which reflected their continued misunderstanding of the equals sign. While 

Mrs Willis was able to identify errors related to the equals sign, this did not extend to potential 

use of relational strategies to solve open number sentences.  

 

Similar to Mrs Stuart (see Chapter Six), Mrs Willis used a research article by Monaghan (2005) 

to reflect on her own practice. This prompted her to begin to question whether she guided 

students too much: I think maybe we do too much from the front and direct it too much rather 

than giving every pair a chance to discuss things first. She also considered her role when 

students made an error: I wonder…how much I sort of say “no that is not right” rather than 
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letting them work it through themselves and it can just become a discussion between the teacher 

and one or two children leaving out the rest.  

 

Mrs Willis’s reflection on practice led to her identifying specific areas in which she wanted to 

develop her practice. Important areas of focus included: facilitating students to question each 

other; providing students with time for paired discussions; and strategies to ensure her students 

actively listened when another student explained their reasoning to the class.   

 

7.3.2 Analysis of teacher learning 

 

Mrs Willis’s narrow view of algebra as abstract symbol manipulation is a common perception 

described by a range of researchers (e.g., Chazan, 1996; Kaput, 2008; Stacey & Chick, 2004). 

She expressed some anxiety over what she perceived as her lack of understanding and 

knowledge of early algebra. As Blanton and Kaput (2008) highlight, such anxiety can lead to 

teachers remaining isolated within a community of practice. Despite this, Mrs Willis was able to 

anticipate some student reasoning in the area of early algebra and shared her recognition that 

many students had inadequate understanding of the equals sign such as described by research 

studies (e.g., Carpenter et al., 2005b; Knuth et al., 2006; McNeil & Alibabi, 2005).  

 

Similar to Mrs Stuart research articles were used by Mrs Willis to begin questioning and 

reflecting on her own practice. As highlighted by Ghousseini and Sleep (2011) and Koellner et 

al (2011) taking a critical view of actions within the classroom can lead to changes in 

instructional practice.  
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7.3.3 Task design and implementation, integration of algebra and development of the 

classroom community  

 

Initially Mrs Willis implemented the tasks from the MEP curriculum by carefully guiding her 

students through the steps necessary to complete them. Her use of funnelling questions typically 

elicited short answer responses. She expressed to the researcher her unfamiliarity with 

implementing tasks differently and asked for support as to how to introduce curriculum material 

in a way which led to students independently solving problems in pairs or small groups. 

Following discussion with the researcher she gradually trialled the introduction of some small 

changes. In the first instance she began to ask her students to continue to work on tasks in pairs 

or groups after her whole-class introduction.  

 

During this initial phase Mrs Willis either used tasks as presented in the MEP material or with 

researcher support adapted tasks based on curricular material. For the initial lessons Mrs Willis, 

with the intent of supporting students to make generalisations about fractions, adapted the 

implementation of a task (see Figure 22) involving students comparing improper fractions to one 

whole. 
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Figure 22. Comparison with one fraction task. From MEP lesson plans, by T. Szalontai, 2003, 

retrieved from http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_1.pdf  

 

Mrs Willis introduced this by stating: I'd like you to tell me what you can tell about the fractions 

comparing the numerator and the denominator and I want you in your groups to come up with 

statements that you can make about these fractions. In other examples, she asked students to 

generalise what fractions would be equivalent to one whole and the process of finding equivalent 

fractions.  

 

While Mrs Willis used fraction tasks as a basis for the students to develop conjectures about 

fractions the discussion focused on specific examples. The vignette below illustrates how Mrs 

Willis missed an opportunity to shift a discussion of a conjecture to a generalisation and instead 

focused on specific examples which were examined procedurally.  

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_1.pdf
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Missed opportunity to develop a generalisation 
 

A student provides a diagram to illustrate the conjecture that a fraction with the same 

numerator and denominator would equal one whole 

 

Maggie: (draws a long rectangular shape and shades in five fifths) At the start I only 

shaded in two fifths because, well, but that didn't equal five fifths and the five 

fifths would be the whole of that.  

Mrs Willis:  Okay so you divided it up into five equal parts and you then have to shade in 

five of those five equal parts which gives you the same numerator and 

denominator (notates 5/5). Okay thank you. What does this fraction mean? 

(points to 5/5). What is it telling us to do? Heera? 

Heera:  You have five pieces and you have to divide them by five. 

Mrs Willis: So five out of five means that you are looking at the numerator five and you 

divide it by five okay (writes 5 ÷ 5). What does five divided by five give us? 

What is five divided by five, Terence? (pause) If I had five sweets and I had to 

divide them among five children what would they each get? 

Terence: One. 

Mrs Willis: They would get one each (notates 5/5 = 5 ÷ 5 = 1). Well done. So five fifths is 

equivalent to one whole unit - does that work for every number? (pause) If we 

had seven sevenths (writes 7/7) - what is that telling us to do, Todd? 

Todd:  Divide the whole unit by seven. 

Mrs Willis: Okay and then how many parts of that unit are we looking at? 

Todd:  Seven. 

 

Week Seven, Term One, 200/2010 

 

In the example above, Mrs Willis missed an opportunity to highlight a diagram as a form of 

concrete justification. Instead she used it as a specific example. While she did ask students 

whether the pattern would be true for every number, she then validated use of examples by using 

a specific example.   

 

Although Mrs Willis attempted to adapt task activity to include algebra, a number of other 

factors inhibited student engagement with algebraic reasoning. In the first instance, Mrs Willis 

did not anticipate the integration of any algebraic activity within the adaptations. For example, 

she described the focus of these lessons as: getting them used to fractions that was the main 

focus, to really establish what a fraction is and so they understand what the denominator and 

numerator is. Lack of a clear focus meant that at times the purpose of the activity was unclear 

and often it shifted to a procedural focus. Linked to this limitation in planning, was the evidence 
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that Mrs Willis did not reflect on possible student responses. This meant that she was frequently 

confronted with an unexpected response and found it difficult to appropriately respond as seen in 

the following vignette where students were examining fractions of shapes (see Figure 23). 

 

 

 

 

 

Figure 23. Fractions of shapes. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_1.pdf  

 

Challenges in engaging students in algebraic reasoning 

After examining fractions of shapes and identifying possible equivalent fractions, a 

student made a conjecture that you would need to divide the numerator and the 

denominator by the same number to maintain equivalence. He followed this up by 

giving an example of in-equivalence stating that if you had six sixths and only divided 

the numerator by two it would not be equivalent as the result would be three sixths.  

Mrs Willis asked another student to re-explain this.  

 

Amber: Because say if you did (pause) three (pause) 

Mrs Willis: Why would you have to divide six sixths by two over two to get a 

simplified fraction? 

Amber: Because otherwise you wouldn't get an answer. 

Mrs Willis: Well you would get an answer, I have got an answer here but it is not 

correct. It is not an equivalent fraction because I have got my unit 

divided up into (draws rectangle divided into six) six parts, I should have 

shaded in the whole thing and that would give me six sixths but I am 

only going to do one sixth now so it is not the same size as the whole 

shape. 

Amber: Because if you (pause) well that would be one (pause) it wouldn’t be one 

sixth because (pause). 

Mrs Willis: Try again, try again, why do I need to divide by a numerator and the 

denominator that are the same? Why am I dividing six by two and 

dividing six by two on the bottom as well? Why am I dividing by two 

over two? What is two over two equivalent to? Jasmine what is two over 

two equivalent to? 

Jasmine: One whole. 

Mrs Willis: One whole, it is equivalent to one whole. If I divide any number by one 

whole what does that give me, Maggie? 

Maggie: The number that you were dividing by. 

Mrs Willis: If I divide any number by one, what does that leave me with? If I had 24 

and I divided by one what would I end up with? 

Maggie: Twenty-four.  

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_1.pdf
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Mrs Willis continued to ask different students in the class to divide different numbers 

by one. She then returns to the original student who she had asked to explain.  

 

Amber: Because it is a whole number and you can't divide a fraction by a whole 

number. 

Mrs Willis: How do you mean? 

Amber: Well if you just had a plain six and you divided it by six it would be six 

but if you had six sixths divided by six (pause) it would be one whole.  

Mrs Willis: I don't quite follow, I'm not sure if I am following. Could you explain 

again? Come up to the board and write what you are trying to explain to 

see if we can get it clear because I am not following maybe as well as I 

should be. 

Amber: (writes 6/6 ÷ 6 = 1) Well if you had six sixths and you divided it by six, 

it will give you one (pauses and looks at Mrs Willis). 

Mrs Willis: Why would it give you one? 

Amber: Because (pause) if you do six divided by six you will get one (pause). 

 

Mrs Willis then uses funnelling questioning to lead the student to a correct response.  

  

Mrs Willis: Are you dividing both the numerator and the denominator by six? Is that 

what you are saying to do? 

Amber: Yeah. 

Mrs Willis: So effectively what we're doing is dividing six over six by six over six 

(writes 6/6 ÷ 6/6) so why can we divide it by six over six, what are we 

actually dividing by? 

Amber: (long pause) One.  

Mrs Willis: We’re dividing by one, fantastic, well done. You did know what you 

were talking about and I was just not following you.   
 

Week Seven, Term One, 200/2010 

 

 

Referring to this exchange during a reflective interview Mrs Willis described herself as 

panicking in the moment. Although she felt that: it’s quite a straightforward concept she 

described herself as getting: all muddled in it and I think that by the time I got Amber up there at 

the board, I felt, gosh, where am I going with this and I lost track. I think I got bogged down in 

other things rather than actually having that clear focus. She noted that if she repeated the 

lesson: I would think more clearly about what I was wanting from them, because I don’t think I 

did. I don’t think I thought about it clearly enough. I was just thinking ‘how can I do this one 

and how can I change that bit around?’  
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Listening to and building on student reasoning proved challenging for Mrs Willis. As shown in 

the vignette above, she was frequently unable to make sense of and revoice student reasoning. 

Due to this difficulty Mrs Willis expressed some doubt during interviews with the researcher 

about the efficiency of having students explain their reasoning: I suddenly lose my thread when 

they’re starting to explain, I think well what was our focus and I find that I lose my way. I 

wonder if that doesn’t really help the children. Despite these doubts she could identify some 

positive aspects of using student reasoning: their explanations are completely different from how 

I would have explained it and I think that’s actually something quite important to hold on to 

that, that there is no one explanation that is correct and you can explain things at different 

levels.  

 

Before the project began collaborative work was an uncommon practice within Mrs Willis’s 

classroom. In the initial lessons in Phase One Mrs Willis organised the students into groups and 

then asked them to complete tasks. However, she did not address group norms nor did she 

engage the students in discussion about the new expectations. Mrs Willis’s observations in the 

post lesson interviews were: it was very much one person doing it and then not listening to any 

of the others. This was also evident in the large group discussion. For example, when Mrs Willis 

asked a student to share back what his group had discussed he responded: Well Amber was the 

one who pretty much discussed it all. These observations led Mrs Willis to consider how to 

further develop collaborative work.  

 

It was evident that the lack of established norms for collaborative work extended into whole 

class discussion. Within this classroom the students frequently recorded their ideas on the 

whiteboard and shared responses with the class during discussions. However, when students 

came to the board to share, they would speak facing the whiteboard with their back to other 



209 

 

students or alternatively they would direct their responses solely to Mrs Willis. After researcher 

input Mrs Willis began to address this by asking students to turn around and speak to the class 

when explaining their ideas.  

 

To encourage more productive student participation during whole class discussions, Mrs Willis 

drew on design research and began to trial ideas and test and refine these during lessons. She 

first emphasised new expectations involving explanation of reasoning rather than just provision 

of answers. She began to ask listening students to participate more actively. This included asking 

them to add on to ideas, agree or disagree with reasons, and ask questions. Initially students 

were hesitant to ask their peers questions about their solution strategies. By increasing the 

expectation for all students to revoice the shared solution strategy, Mrs Willis began to develop 

space for listening students to question: I am going to ask any one of you to explain what Brad 

has just explained so if you don't understand you need to question him now. This was 

particularly important in these early lessons as students were generally unable to revoice or 

repeat mathematical reasoning provided by their peers.  

 

Some students were hesitant to provide their thinking and reasoning. At other times, as shown in 

the vignette above, Mrs Willis had difficulty following their reasoning. She would respond by 

asking other students to explain the idea rather than expecting the original student to further 

develop their reasoning. Often the students she chose to take over the explanation were those 

who Mrs Willis identified in discussion with the researcher as: very bright and capable. For 

example after a student had attempted to explain his reasoning she said: I think you are doing the 

same thing as Todd but I am not quite following how you worked it out but I can see exactly how 

Todd did. So Todd can you come up to the front? Similarly, in another lesson she asked a student 
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to agree or disagree with an explanation and provide her reasoning for this as illustrated in the 

example below.   

 

Mrs Willis:  Okay right, Brittany can you say why you agree with her? 

Brittany: Because if you have three quarters of, or if you have two and you add one more. 

(Pause) 

Mrs Willis: How do you find, how do you find just one quarter? 

Brittany: (pauses and does not respond) 

Mrs Willis: Haileigh, how does she find one quarter? 

Haileigh: Ummmm (pause) 

Mrs Willis: …I want to know why you drew it, you drew the line that long there must have 

been a reason that you drew it. Todd why did you draw it? 

 

Selecting another student to complete the explanation had the consequence of positioning 

students as less or more competent within the classroom.    

 

Students continued to predominantly provide answers with no reasoning. However, with 

increased pressing from Mrs Willis they did begin to provide reasoning for some of their 

responses. However these typically lacked clarity—no complete, clear explanations were 

provided in these lessons.  

 

During Phase One a notable change was observed in the nature of collaboration during whole 

class discussions. For the first time there were instances where students agreed or disagreed with 

justification with a peer’s reasoning. They also began to ask their peers questions for 

clarification.  

 

Working together in a group was commented on positively by the students. However, during the 

photo elicitation interviews the students did not refer to any mathematical benefits of group 

work, instead they made statements such as: it was kind of fun because we could all talk or: it 

was alright…we all just had a bit of a laugh. Comments which referred to specific benefits 
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mainly focused on other people helping them. Likewise, students did not view the whole class 

discussion as a way of developing their understanding. In contrast they referred to difficulties 

they had in listening to and understanding their peers’ solution strategies. Many of these 

difficulties could be attributed to the lack of established norms for large group discussion. 

Students made statements which indicated that they had difficulty hearing what the explainer 

was saying or that the person explaining was talking too fast. Interestingly, in the photo 

elicitation interviews after Amber incorrectly stated that six sixths divided by six was equal to 

one whole, more than half of the six interviewed students thought that this was correct. For 

example, Millie stated: six sixths divided by six sixths is just the same as doing six sixths divided 

by six. Rather than being viewed as opportunities to learn, for those students who recognised the 

error in Amber’s explanation, this was identified as a negative event for Amber. For example 

Haileigh described herself as thinking: Oh my god, you got it wrong.  

 

7.3.4 Analysis of task design and implementation, integration of algebra and 

development of the classroom community  

 

A range of researchers (e.g., Anthony & Walshaw, 2009; Askew et al., 1997; Warren, 2009) 

highlight the role of sound teacher knowledge to develop effective teaching of mathematics 

including early algebra. Specifically, Franke et al. (2008) highlight the importance of teachers 

making sense of algebraic ideas and furthering their understanding of student reasoning about 

algebra. Mrs Willis was unable to draw on a sound understanding of algebra to identify algebraic 

concepts clearly within a lesson. She did not anticipate student reasoning or potential areas of 

difficulty which meant that she was unable to generate possible next steps for instruction as the 

tasks were enacted.  
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Research studies (e.g., McCrone, 2005; Reid & Zack, 2009) highlight the significant role which 

teachers take in guiding the development of active classroom discourse. The findings of this 

study support Mercer et al. (2004) and Edward and Jones (2003) contention that productive 

group interactions require teacher intervention and scaffolding. In initiating change within the 

classroom and trying to shift discourse away from an IRE pattern, Mrs Willis attempted to move 

away from a role which Bell and Pape (2012) describe as the mathematical authority. However, 

in some instances she positioned her students as less or more competent. Thus although student 

reasoning was beginning to be more of a focus, this was only the case for some students. 

Therefore in contrast to what is described by Stein et al. (2008), many of her students were not 

given authority over their mathematical work. 

  

Hodge (2008) highlights the shifts in students’ role as learners when there are changes in the 

classroom. Although Mrs Willis began to initiate change within the classroom for most students 

the new practices contrasted with their prior experiences of what it means to do mathematics in 

the classroom. Students in change as Cobb et al. (2009) note may choose to either co-operate or 

resist engagement with the classroom activities.  

 

In summary, Mrs Willis did not follow the same trajectory as Mrs Stuart in her use of teacher 

actions to facilitate algebraic reasoning. Teacher actions evident in Phase One for Mrs Willis are 

those highlighted below (Table 13) in Stage One of the Framework of Teacher Actions to 

Facilitate Algebraic Reasoning. Those actions which she consistently used successfully are 

highlighted in yellow. Other actions which she took but only implemented partially are 

highlighted in blue. Those actions not shaded indicate productive instructional strategies that 

were evident in Mrs Stuart’s classroom (see Table 10) but not so in Mrs Willis class during the 

similar time period.  
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 Table 13  

Stage One of the Framework of Teacher Actions to Facilitate Algebraic Reasoning: Mrs Willis  

 
STAGE ONE 

Algebraic concepts Address the following concepts in the classroom: understand 

the equals sign as representing equivalence; relational 

reasoning including whole numbers and rational numbers; 

commutative property; inverse relationships; odd and even 

numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using 

and solving equations; function 

Teacher actions to develop 

and modify tasks and enact 

them in ways which facilitate 

algebraic reasoning 

Implement tasks as problem-solving opportunities  

Emphasise student effort to approach and complete 

cognitively challenging tasks 

Extend or enact tasks to include opportunities for 

generalisation 

Interrogate tasks for opportunities to highlight structure and 

relationships 

Teacher actions to develop 

classroom practices which 

provide opportunities for 

engagement in algebraic 

reasoning 

Lead explicit discussion about classroom and discourse 

practices 

Ask students to apply their own reasoning to the reasoning of 

someone else 

Require students working in pairs or small groups to develop 

a collaborative solution strategy which all can explain 

Teacher actions to develop 

mathematical practices which 

support the development of 

algebraic reasoning 

Require students to explain their reasoning 

 

7.4 PHASE TWO: CHALLENGES IN DEVELOPING ALGEBRAIC 

REASONING 
 

7.4.1 Teacher learning 

 

As the project continued Mrs Willis remained a more reticent member of the study group. While 

she shared ideas and examples in meetings this was to a lesser degree than the other two 

members of the study group. Additionally, in between research meetings, she frequently did not 

reply to emails from the researcher. She remained anxious about her personal understanding of 

early algebra. For example, in a study group meeting the teachers were asked to bring lesson 
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plans from the MEP curriculum which could be used or modified to include early algebra. She 

expressed that she found it difficult to identify relevant material and described herself prior to 

the meeting as skimming through the material: a bit in a panic like help what can I do that’s 

going to be relevant?    

 

This anxiety was also reflected in Mrs Willis’s reaction to some of the activities during the study 

group meeting. When the study group worked on justifying the conjecture that two odd numbers 

added together resulted in an even number, she was most comfortable using specific examples as 

a form of justification. The researcher then asked the teachers to experiment with forms of 

concrete justification. Mrs Willis stated: it’s quite difficult though using a diagram for odd 

numbers, am I being really thick here? In another example the researcher asked the teachers to 

consider possible solutions for the number sentence: a + b = 10. She then asked whether both a 

and b could be five. Mrs Willis argued: they couldn’t both be five…logically they can’t be 

because they have to look the same to be the same. In the subsequent discussion of this Mrs 

Willis described herself and another teacher as: we both failed.  

 

It appeared that Mrs Willis maintained a largely procedural, rule oriented understanding of 

mathematics.  For example, in a study group meeting the teachers constructed a range of 

possible true or false conjectures that students may generate during lessons. One possible 

conjecture provided was: if you multiply by ten you can just stick a zero or add a zero to the end.  

In the ensuing discussion Mrs Willis argued that this conjecture was true aside from when 

decimal numbers were involved. This procedural, rule-oriented view appeared to influence her 

mathematics teaching. She described how she favoured teaching traditional algorithms such as 

long multiplication arguing that they were preferable because students experienced difficulties 

when using methods that involved number properties: when we’re doing multiplication, they still 
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can’t necessarily see that 49 is the same as 40 and a nine and you’re multiplying both sides 

by…five.  

 

Despite her on-going anxiety about her knowledge Mrs Willis noted improvements in her 

understanding of early algebra. Her concept map (see Figure 24) illustrates an extended view of 

algebraic concepts including equivalence and relationships.  

 

Figure 24. Mrs Willis’s concept map of early algebra in the second phase 

 

Moreover, her concept map now included both classroom practices and mathematical practices 

including justification of ideas, generalisation, and the use of proof.   

 

During the study group meetings Mrs Willis continued to be able to make predictions of possible 

student responses to tasks. For example, she was able to identify and describe a range of 

conjectures which she had heard students make in the classroom. These included conjectures 

about the properties of zero and one and extended to other areas such as measurement and area. 

In another example during a meeting the study group was asked to predict student responses to a 

task (see Figure 25). Mrs Willis was able to suggest a range of incorrect and correct solution 

strategies.   
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Figure 25. Runners word problem. From MEP practice book Y5b (p. 154), by T. Szalontai, 

2003, Budapest: Muszaki Publishing House. 

 

In study group meetings and interviews with the researcher Mrs Willis identified shifts in the 

way her students participated in the classroom. She could also describe pedagogical actions that 

she was testing and refining to facilitate these shifts. Key shifts included the way in which 

students worked in collaborative small groups, their explanations during whole class 

discussions, and how the rest of the class participated during an explanation. She attributed 

improvements in their small group work to increased opportunities to work in this way but also: 

I’m trying to let them actually think it through more for themselves which I think has actually 

made quite a difference rather than being reliant on me they have to be much more reliant on 

themselves. She also noted that her students were more confident to explain their ideas to the 

class: rather than to explain to me. In facilitating changes in student focus she remarked that: I 

think it helps if I’m standing at the back as well because then they, rather than…directing their 

explanation to me, they are then addressing the whole class. Mrs Willis also highlighted her 

realisation of the need to facilitate students to question for understanding when they were 

listening to their peers’ explanations. Through focusing on this she described how students had 

become: very good at saying “no, I don’t follow you”. She described her longer term aim as 

scaffolding students to identify the specific part of the explanation which they did not 

understand. 
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Although Mrs Willis highlighted these changes following the initial research visits, these 

changes were not sustained between later research visits. It appeared that Mrs Willis viewed 

these ways of working as only appropriate for some types of mathematical work. Therefore, in 

interviews during the end of the second phase she explained to the researcher that because they 

had been doing geometry: it hasn’t been structured in quite the same way…They haven’t been 

working in groups.  

 

7.4.2 Analysis of teacher learning 

 

While Mrs Willis participated to some degree in the emerging community of practice it appeared 

that anxiety over her mathematical understanding led her to position herself as a weaker, 

peripheral member of the community. This contrasts with Mrs Stuart who positioned herself as 

engaged with ‘social’ work associated with facilitating algebraic reasoning.  

 

Despite improvements in algebraic understanding Mrs Willis was aware of the limitations 

concerning her own mathematical understanding. For example, during a study group meeting 

she recounted an example from a lesson where she accidentally gave the students a problem to 

solve which was 2 × __ = 1: A lot of them said that’s impossible, you can’t do it and yet there 

were the rational ones who said ‘well just think about it, how does a number become smaller if 

you are multiplying?’…I found myself saying ‘well but if you multiply two numbers together they 

always get bigger’ but I thought well actually, no they don’t, well what do I do now?  

 

Despite these challenges Mrs Willis was beginning to reconceptualise her understanding of 

algebraic reasoning. She was beginning to think about the types of pedagogy that she used in the 

classroom and learning to notice elements of her practice and reflect on the strategies which she 
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used that led to shifts in classroom practices. As a range of researchers highlight (Blanton & 

Kaput, 2008; Franke et al., 2008; Jacobs et al., 2007; Koellner et al., 2011; Schifter et al., 2008) 

these are important aspects of professional learning which support the teaching of early algebra.  

 

7.4.3 Task design and implementation, integration of algebra, and development of the 

classroom community  

 

Engaging students with cognitively challenging tasks was an unfamiliar practice for Mrs Willis. 

During a study group meeting she described her reaction when she came to what she perceived 

as a challenging task in the curriculum material: I don’t do that with the children because some 

of them picked it up straight away but the ones who didn’t, it just threw them completely so I just 

avoid it.  

 

Following the initial study group meetings there was evidence that Mrs Willis had begun to 

question her previous practice of carefully guiding the students through tasks and teaching by 

telling. During her mathematics lessons in Phase Two of the study she further trialed new ways 

of task implementation. She began to read the task to students and then ask them to solve it in 

pairs or small groups. This shift in task implementation meant that many students were 

increasingly challenged by the tasks. Mrs Willis referred to this in an interview after a lesson 

stating: they struggled a lot more than I thought they would and I find it quite frustrating 

because I feel, if I jumped in, but I didn’t want to jump in, I wanted them to really think it 

through for themselves. She continued on to critique her previous method of task 

implementation of telling the students what to do: where’s the learning in that? They just follow 

and what you’ve said, some will remember and the majority won’t.  
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As Mrs Willis moved away from carefully guiding the whole class through each task step, she 

had new challenges in regards to evaluating the time required to complete a task. She struggled 

to assess the appropriate amount of time for students to complete tasks and described: I get a bit 

bogged down. Aiming to ensure that each group reached a correct solution meant that other 

groups had longer on the task than they required. She acknowledged that often she gave students 

too much time on one task and then would have limited time for other tasks she had planned: we 

ended up spending a lot more time, I think I shouldn’t have…I think I carried on with it for too 

long…We then didn’t have enough time to go through the other problem properly.  

 

Mrs Willis continued to attempt to integrate algebra into her lessons by using the MEP 

curriculum tasks as a basis for students to develop and investigate conjectures.  For example, in 

December after asking students to complete the task (see Figure 26), she then asked them to 

develop division statements drawing on inverse relationships.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Multiples 1. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_3.pdf  

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_3.pdf
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Following this, students were asked to develop if and then statements (e.g., If 2 × 3 = 6 then 6 ÷ 

2 = 3 or 6 ÷ 3 = 2), test whether this always worked, and develop if and then statements using 

variables. Research visit lessons also included existing algebraic tasks from the curriculum and 

some algebraic tasks which she had developed with support from the researcher based from what 

she had learnt during the study group meetings.  

 

However although there was some integration of algebra into lessons there were several 

observed instances where Mrs Willis did not change or adapt tasks to optimise algebraic 

reasoning opportunities. For example, in November, she used the following tasks (see Figure 27) 

without taking the opportunities to include algebra through variation of the task parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 27. Combinatorics problems. From MEP lesson plans, by T. Szalontai, 2003, retrieved 

from http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_2.pdf  

 

Likewise, in other tasks within the MEP curriculum that included patterns and associated 

relationships between these patterns observations revealed frequent missed opportunities to 

focus student attention on structural features of the task. This meant that tasks which could have 

potentially been used to develop algebraic reasoning stayed within a computational context. An 

example is provided in the vignette below where a task (see Figure 28) had relational patterns: 

 

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_2.pdf
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Figure 28. Number puzzle. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_3.pdf  

 

Missed opportunity to develop relational reasoning 

Mrs Willis provides her students with a task with links to relational patterns 

 

Mrs Willis: Right, you have got five connecting numbers. We have 200, 50, 500. We have 

two circles which are blank. You need to write in two more numbers so that 

the total of the numbers is 1000. Take 20 seconds to have a think about how 

you will work it out. Look carefully, without discussion, you are thinking. No 

pencils, just thinking. Okay work with your partner. You’ve got 30 seconds. 

 

Mrs Willis asks a student to share their response.  

 

Haileigh:  Fifty add 50 makes 100, 200 and 500 make 700 so add 100…Add them all 

together so far, it would make 800. Add 200 will make 1000. 

Mrs Willis: Fantastic. So why did you add 50 first of all?  

Haileigh: Because then it would make 100. 

Mrs Willis: Excellent. So you’d already spotted, to make it up to 100, you’ve got a 50, you 

would need to add another 50 on. So then you added them up together, gave 

you 800. 

Haileigh: And then add 200 equals 1000. 

 

Mrs Willis asks for students to share their different answers.  

 

Jacinda: I did 500 add 200 is 700, then 50 equals 750. 

 

Mrs Willis asks another student to repeat this and then asks Jacinda to explain what she did 

next.  

 

Jacinda: Um, then 250 

Mrs Willis: Why do you need 250?  

Jacinda: Because it makes 1000. 

Mrs Willis: Okay so we had 750 plus something equals 1000. Thank you. And then so you 

knew that there had to be 250… So how did you decide 150 and 100? 

Jacinda: Um, cause 150 plus 100 equals 250. 

 

Mrs Willis asks for other different answers and continues to ask students to share their 

calculations with the class.  

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_3.pdf
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Week Five, Term Two, 200/2010 

 

Here we see that missed opportunities to focus attention on relationships within the task resulted 

in discussion limited to computational strategies. During this phase there were no observed 

instances when Mrs Willis drew on a spontaneous opportunity during a lesson to integrate 

algebraic reasoning.  

 

Missed opportunities for developing students’ algebraic reasoning also occurred during group 

work. A lack of careful monitoring of student responses during paired or small group work 

meant that Mrs Willis was unable to sequence student responses purposefully in a way that 

promoted algebraic reasoning. For example, in the following vignette students were chosen 

randomly to share. This meant their strategy solutions did not move the whole class discussion 

towards the goal of using relational reasoning. Also students in this classroom did not readily 

draw upon structural aspects or algebraic reasoning to solve tasks. This in turn limited 

opportunities that Mrs Willis had to integrate algebra into lessons spontaneously. 

 

Attempting to develop relational reasoning 

Mrs Willis asks her class to solve 83 + 77 = 103 + __ using a relational strategy. 

 

Mrs Willis: I don’t want you to work out what 83 and 77 equal together. You need to think 

about the relationship between the numbers on the left hand side of the 

equation with the relationship of the numbers on the right hand side of the 

equation. Talk to your partners and see if you can work out what the missing 

number would be. Talk to your partner, talk to your partner. 

 

Mrs Willis asks a student to share their strategy solution with the class.  

 

Terence:  I did 83 add seven to 90 and then did 80 add 70 which gives 160. So basically 

you can find out with 57 plus 103 equals 160. 

 

Mrs Willis revoices the strategy solution and records this on the board. She then asks another 

student to share her strategy solution with the class.  

 

Millie: What we did was, we realised that in the above equation, we did 83 add 77 

which was 160. So we used the method up there. And then I knew that um the, 
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if you add 50 to 153, you would get, if you added 50 to 103, you’d get 153, 

then you add the seven which would give you 160. 

Mrs Willis: So in effect, you’ve done a similar thing to Terence, haven’t you? You’ve 

added the two together so you know one side of the equation here gives you 

160, the other side of the equation added gives you 160. Okay, anybody do it 

differently? Elsie, can you come on up and show us what you’ve done?  

Elsie: That and 160, the difference would by fif- no it wouldn’t. The difference 

would be a hu- 30… 

Mrs Willis: What, the difference between, 103 and 83 is 30? Are you sure? 

Elsie:  No, 20. 

Mrs Willis: Twenty. Okay. Fantastic. So you looked to see what the difference was 

between 83 and 103. The difference is 20, well done. So what did you have to 

do next?  

Elsie:  Well, add the difference of 77 and 160. 

 

Students begin to raise their hands to ask Elsie a question. Elsie is unable to answer. 

Although Mrs Willis asks Elsie to re-explain Elsie is unable to complete her explanation.  

 

Week Five, Term Two, 200/2010 

 

Mrs Willis recognised the need to facilitate students to work collaboratively in pairs or small 

groups. In the first instance she addressed this by introducing new group norms to the class and 

providing them with specific roles to take on during collaborative work. For example, in 

November she began the lesson by stating: I need one person in the group to be leading the 

discussion, to be using the pencil and to be making notes. Others can chip in, others can say if 

they don't understand or if they disagree then you are going to put your point of view across but 

I want one person to be doing the leading of the team. We will swap over according to which 

tasks we are doing. Remember also when you feed back with your ideas, everybody in the group 

needs to be able to explain their thinking, the whole group needs to be able to explain how to do 

everything so if you are not sure when somebody is explaining in your group, you need to ask, 

you need to take responsibility so you know what you as a group are doing.  

 

Establishing the expectation and capacity that all group members could explain and justify their 

group strategy required on-going teacher support. However as the vignette below illustrates 

students were not always able to reach group understanding of the task in hand.  
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Sharing a group solution strategy 

Mrs Willis had asked her students to solve the equations below during paired work: 

If 83 + 77 = 160  

Then 73 + __ = 160  

And __ + 75 = 160 

She asks a student to share their solution for the third equation.  

 

Brittany: (writes 85 in the blank space) Um, we got 85 but I don’t know why because I 

asked Heera why it was and I couldn’t understand. 

Mrs Willis: Right, I’d like to see if you can work it out. Think about what we did 

previously. We added, if we look at this one. What Sarah did, she added ten to 

77 to get her 87 and so she needed to balance it out by taking away ten from 

73. So what have you done here to your 87 to give you 85?  

Brittany:  Um, take away two. 

Mrs Willis:  Okay so if you’ve taken away two from 87 to give you 85, how do you still 

keep this equation balanced? 

Brittany:  You add two. 

Mrs Willis: And you told me you didn’t know what to do. You are brilliant. Exactly right. 

Well done.  

 

Week Five, Term Two, 200/2010 

 

Moreover, Mrs Willis use of questioning to lead the student towards using relational reasoning 

to demonstrate why the answer was correct did not maintain the expectation that a collaborative 

strategy would be developed during paired work. Instead she directed the student towards a 

solution and then praised her for this. The example highlights the on-going need to require 

collaboration consistently.   

 

The emphasis on collaboration that Mrs Willis hoped to achieve also extended to developing a 

collaborative classroom community. In line with design research, Mrs Willis developed and 

tested strategies in the classroom to enhance collaboration. There were two key aspects to this 

related to responsibilities when explaining a solution strategy and conversely listening to an 

explanation. She now frequently probed students to provide mathematical reasoning for their 

solution strategies. When sharing their reasoning students were expected to be aware of the 
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listening audience and in particular questions that they may have. Secondly, while listening to an 

explanation there was a new expectation that students would take responsibility for making 

sense of their peers’ reasoning. This included students revoicing explanations by others, 

questioning for understanding, and agreeing or disagreeing using mathematical reasoning. The 

vignette below illustrates how Mrs Willis both placed responsibility on the explaining student to 

share their reasoning about a task (see Figure 29) in a clear way but also emphasised the 

responsibility of the listening audience to make sense of the explanation.  

 

 

 

 

 

 

Figure 29. Envelopes and pencils problem. From MEP lesson plans, by T. Szalontai, 2003, 

retrieved from http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_2.pdf  

 

Developing a collaborative community during a whole class discussion 

Mrs Willis asked her students to work in groups to solve a task. After some time she 

recognises that many groups are struggling with the task. She stops them and asks a student 

to share his groups’ solution strategy.  

  

Marlon: Well um we took, we took one envelope and one pencil from each side. And 

um that was three pencils on the left side um and four, uh, five envelopes on 

the other side. 

Mrs Willis: …Remember if you’ve got any questions, you put your hands up so that he 

knows that there are some of you who don’t understand what he’s done and 

why he’s done it.  

Marlon: Um well, well um (long pause) if we, if we took um one pencil and one 

envelope from each side, yeah um it equalled three pencils on this side and 

just five envelopes on this side.  

 

Mrs Willis asks the listening students whether they understand his explanation.  

 

Shreya: I don’t understand. 

Mrs Willis: Tell him what you’re not happy about. 

Shreya: I don’t understand. 

Mrs Willis: What don’t you understand? Tell me a bit more, what exactly is it you’re 

struggling with?  

Shreya: Um, the whole part that he just did. 

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5alp_2.pdf
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Marlon: Well um, if there’s four um pencils and one envelope on the left, and one 

pencil and six envelopes on the right, um, if you take something away from 

one side, you have to take the same away from the other. And because there’s 

only one pencil on the right side, that’s all we can take. So we took one pencil 

and one envelope from each side…and one, that envelope, one. So that’s it. 

Then it left us with three pencils and five envelopes.  

Mrs Willis: Are you happy? 

Shreya: Yep. 

Mrs Willis: …Okay, right. Alan are you happy with it? 

Alan:  Yeah. 

Mrs Willis: Can you explain where, or how he ended up with three pencils equalling five 

envelopes? 

Alan:  No. 

Mrs Willis: So what aren’t you happy about then? 

Alan:  I don’t really understand what he’s done. 

Mrs Willis: Tell me what you don’t understand with what he’s done so that he can explain 

himself. 

Alan:  I don’t get how he can just cancel those um envelopes and pencils out. 

Marlon: Because um you can cancel, you can cancel anything out as long as it’s the 

same each side because it would be equal the same. So I cancelled out the 

same on each side.  

Mrs Willis: You happy? Yeah? Alan, how about you? 

Alan:  Um, yeah? 

Mrs Willis: You don’t sound convinced. Explain to me then, what’s Marlon done and how 

has he been able to do it? 

Alan:  I don’t know. 

Mrs Willis: Then you need to ask Marlon, don’t you? 

Alan:  I still don’t get it. 

Mrs Willis: Then you need to explain to him what you don’t understand so that he can 

explain… 

Alan:  The same thing, I still don’t understand why he can cancel it.  

Marlon: Well because um you can just cancel the same amount from each side if you 

have enough, so it basically equals the same. 

 

Week Ten, Term One, 2009/2010 

 

The vignette highlights a range of pedagogical strategies Mrs Willis used to develop a 

collaborative community within her classroom. She ensured that the explaining student 

developed a clear explanation for the class which was supported by use of representations. She 

also positioned this student to be aware of questions from the listening audience. Space was 

created during discussion for questions and students were directed to question each other for 

understanding. There was a further expectation to identify particular areas of the explanation 

which were difficult to understand and develop specific questions focused on this.  
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During whole class discussions students who were explaining continued to need to be reminded 

to face the class when speaking. They also most commonly provided answers with no reasoning 

and often phrased answers as questions. However, they increasingly provided reasoning when 

probed and also began to develop mathematical explanations. The more significant shifts were 

when the students listened to an explanation as shown in the vignette above. Frequently students 

would now recognise if their peer made an error and would question or challenge this. They 

would use mathematical reasoning to agree or disagree with a solution strategy. They also began 

independently to ask questions of the explaining student. These questions were mainly used to 

clarify an explanation, however, some questions were also used to request justification.  

 

In this phase another notable change was the increased use of representations as a way of 

making explanations clearer. Initially Mrs Willis modelled how to represent a student provided 

solution strategy for a task (e.g., 4 × x + 40 = 200) which involved solving an equation with an 

unknown. 

Mrs Willis:  One way that might make things a little bit clearer is if you think about what 

happens to your equation each time. If we start off with four multiplied by X plus 

40 equals 200 (writes 4 × X + 40 = 200) then the first thing that Lydia did was to 

take away 40 that gives us four times X take away that 40 equals 200 minus 40 

(re-writes 4 × X = 200 – 40). Therefore four times X equals 160 (writes 4 × X = 

160) then we go on to do exactly the same as Lydia has done. She divided both 

sides of the equation by four (writes ÷ 4 underneath) if we divide four times X by 

four it leaves us with X, divide 160 by four, it leaves us with X equals 40 (writes X 

= 40).  

 

She also began to ask the students to support their explanations with a written representation. 

For example, after a student gave a verbal explanation Mrs Willis said: Can you show us on the 

board because I’m not sure whether everybody follows that? Can you write up on the board 

what you’ve done? However as in Phase One, the use of representations was largely limited to a 

single representation, generally an equation. Students were not encouraged to make use of 

multiple forms of representation or make connections between representations.  
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As shown in the previous section Mrs Willis attempted to facilitate her students to engage in 

algebraic reasoning through extending tasks to support the development of conjectures. Initially 

students relied on specific examples to show the validity of conjectures they developed. In 

response Mrs Willis facilitated students to reflect on using specific cases to test a conjecture or 

as proof. For example, Mrs Willis asked students whether they agreed that you could always 

change multiplication and division equations by drawing on the inverse property.  

Elsie:   I worked out that it does work for every number because I did a really big one.  

Mrs Willis:  Have you written down every single number to see if it works? Every single 

number? 

Elsie:  Not every single number but I did a really massive one. 

Mrs Willis: …The way you’ve tried to prove it is you’ve looked at lots and lots of different 

numbers, haven’t you? Some very large numbers, some very small numbers and 

each time you found out that it works, is that right?…Can you actually prove 

something by looking at every single number? Talk to your partner… 

Jasmine: No, because numbers never stop, because there’s an infinite amount of numbers, 

it would take you…a while. An infinite… 

Mrs Willis:  It would take you more than a while. It would take an infinite amount of time. So 

we couldn’t prove it that way but we can see a general trend and we can make an 

assumption from that general trend. That would be our proof until it is disproved. 

Until we can show categorically that it is wrong, then we can assume that, that 

the proof is there.  

 

Later in the lesson she asked her students to develop diagrams to prove or disprove conjectures. 

However this was not emphasised as a concrete form of justification but instead as another way 

to show specific examples which the students had generated. Following the lesson, the four 

interviewed students maintained the thinking that conjectures could be proven by use of specific 

cases. None of these students were able to describe any alternative forms of justification which 

could be used.  

 

For students there was a mixed reaction to new expectations of collaborative group work. In the 

photo elicitation interviews in November a number of students expressed negative dispositions 

to group work. This was mainly attributed to other group members being disruptive and failing 
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to contribute ideas or listen to those who were speaking. Other students stated that they preferred 

to work by themselves as they could work quicker. There was also evidence that some children 

were being positioned as the mathematical authority within the group. For example, Maggie 

stated: In our group Jasmine is clever and she wrote it down for all of us and then we all 

understood it. In later photo elicitation interviews in December and February, the students had 

shifted to mainly positive dispositions towards group work. However, as in Phase One, the 

students provided a limited range of benefits of group work. Their responses mainly referred to 

benefits of having someone else to help you and explain things to you while others referred to 

their peers giving them answers or correcting errors. For example, Peyton stated: Alan helped me 

a lot…firstly I did this bit and then when I was trying to work out that one he gave me the 

answer and he’s helped me. These responses indicated that they did not necessarily view group 

work as a collaborative activity.   

 

Moving from the initial state where most students found it difficult to describe their own 

mathematical thinking in the photo elicitation interviews, half of the students could now recall 

their own solution strategies and mathematical thinking during these interviews. Students also 

often recalled errors in their own thinking and how their peers helped them to resolve these. 

However, the ability to re-construct explanations given by their peers during whole class 

discussions remained undeveloped unless the person explaining had used a similar strategy to 

their own. In such instances they often described the task that they had been asked to solve 

rather than recalling the solution strategy or mathematical reasoning for this.  
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7.4.4 Analysis of task design and implementation, integration of algebra, and 

development of the classroom community  

 

In this phase Mrs Willis made a deliberate effort to reduce her provision of explicit guidance 

about how to solve the task. As Henningsen and Stein (1997) illustrate, this can support greater 

maintenance of cognitive demands of tasks. However in Mrs Willis’s classroom this also 

resulted in some students having difficulty in accessing the tasks. Mrs Willis responded to this 

by attempting to provide enough time to ensure all groups solved the tasks correctly. This meant 

that for some students too much time was provided and as described by Henningsen and Stein, 

they lost their focus on mathematics. 

 

While Mrs Willis attempted to integrate algebraic reasoning into her lessons through the use of 

number sentences and some task extensions to facilitate development of conjectures, she 

continued to have difficulty identifying opportunities for algebra in the curriculum material. This 

meant that unlike the examples provided in a range of research studies (e.g., Blanton & Kaput, 

2005b; Kaput & Blanton, 2005; Smith & Thompson, 2008; Soares, Blanton & Kaput, 2005), she 

did not modify tasks to offer greater affordances for algebraic activity nor recognise spontaneous 

instances which could be used as opportunities for algebraic reasoning.  

 

Everyday activities in the mathematics classroom influence how students understand what it 

means to do mathematics (Boaler et al., 2000; Hodge, 2008). As a number of researchers (e.g., 

Boaler et al., 2000; Colby, 2007; Franke & Carey; Mason & Scrivani, 2004; Star & Hoffman, 

2005; Young-Loveridge et al., 2006) have highlighted epistemological beliefs can affect how 

students approach tasks and perform in the classroom. Students in this classroom continued to 

draw on their computational experiences to solve problems and were not developing their own 

algebra ears and eyes.   



231 

 

 

Mrs Willis began addressing how her students engaged in collaborative work within the small 

groups. Reid and Zack (2009) describe how teacher expectations shape participation in the 

classroom. Mrs Willis began by sharing her new expectations for group work with her students. 

However these expectations were not clearly maintained and there was no further focus on 

developing appropriate ways to work and talk in a group.   

 

Pedagogical strategies were used by Mrs Willis to develop collaborative interaction during 

whole class discussions. Teacher questioning is highlighted by Franke et al. (2009) as an 

important aspect of supporting students to develop mathematical explanations. Mrs Willis both 

probed the explaining student for reasoning and also positioned other students in the class to also 

probe for clarification and reasoning. Despite Mrs Willis using pedagogical strategies to try and 

support collaborative interaction during whole class discussions, her students did not appear to 

understand the new role required when explaining. They only infrequently provided reasoning 

unless prompted and continued to phrase questions as answers.  

 

Mrs Willis facilitated students to link their explanations with written representations. She first 

modelled their use, then in later lessons asked students to support their verbal explanation with a 

written representation. As Fosnot and Jacob (2009) and Yackel and Cobb (1996) explain written 

representations can help develop the clarity of an explanation. However, as the use of 

representations was generally limited to a single representation usually in the form of an 

equation, there were missed opportunities for students to use multiple representations. As a 

range of researchers (e.g., Beatty & Moss, 2006; McNab, 2006; Schoenfeld, 2008) show the use 

of different forms of representations can support students to communicate reasoning and also 

move between forms flexibly.  
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Despite an increase focus on tasks that would support student to develop conjectures the students 

in this classroom did not readily express conjectures or make generalisations. In testing those 

conjectures that were developed, students would frequently try a number of cases. Schifter 

(2009) and Mason (2008) both describe looking for examples and counter-examples as an 

important part of learning to justify. However these researchers also note that students need to be 

encouraged to develop more refined skills to justify. Similar to the teacher in Carpenter et al.’s 

(2003) study, Mrs Willis attempted to engage her students in reflecting on how you could show 

a claim is true for any numbers. She also introduced the use of diagrams to justify, however her 

use of these was not structured in a way such as Schifter (2009) describes where representational 

based proof justifies a general claim through encapsulating the meaning of an operation, 

accommodating a class of instances and having the conclusion of the claim following from the 

structure of the representation.  

 

Students initially had negative dispositions towards group work and their responses reflected the 

need for specific teacher scaffolding to structure effective small group interactions. This is 

highlighted in a range of research studies (e.g., Edward & Jones, 2003; Monaghan, 2005; Rojas-

Drummond & Zapata, 2004). While students shifted to more positive dispositions towards group 

work they were only able to identify limited benefits of such work.  

 

In summary, the teacher actions evident in Phase Two for Mrs Willis are those highlighted 

below in Stage One and Stage Two of the Framework of Teacher Actions to Facilitate Algebraic 

Reasoning. As detailed earlier, Mrs Willis followed a differing trajectory than Mrs Stuart (see 

Table 11) which meant that some teacher actions from Stage One were introduced during Phase 

Two. Those actions which she consistently used successfully are highlighted in yellow. Other 

actions which she took but only implemented partially are highlighted in blue. 
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Table 14  

Stage One and Two of the Framework of Teacher Actions to Facilitate Algebraic Reasoning: 

Mrs Willis 

 

 STAGE ONE STAGE TWO 
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Address the following concepts in the classroom: understand the equal sign 

as representing equivalence; relational reasoning including whole numbers 

and rational numbers; commutative property; inverse relationships; odd 

and even numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using and solving 

equations; function 

 STAGE ONE STAGE TWO 
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Implement tasks as problem-solving opportunities  

Emphasise student effort to approach and complete cognitively challenging 

tasks 

Extend or enact tasks to include opportunities for generalisation 

Interrogate tasks for opportunities to highlight structure and relationships 

 Adapt tasks to highlight structure and 

relationships. This may include 

changing numbers or extending to 

multiple solutions 

 Structure tasks to address potential 

misconceptions 

 Use enabling prompts to facilitate all 

students to access tasks 

 Implement tasks by focusing attention 

on patterns and structure 

 Recognise and use spontaneous 

opportunities for algebraic reasoning 

during task enactment 

 STAGE ONE STAGE TWO 
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Lead explicit discussion about classroom and discourse practices 

Ask students to apply their own reasoning to the reasoning of someone else 

Require students working in pairs or small groups to develop a 

collaborative solution strategy which all can explain 

 Require that students indicate 

agreement or disagreement with part 

of an explanation or a whole 

explanation and provide mathematical 

reasons for this 

 Lead explicit discussions about ways 

of reasoning 

 Provide space for students to ask 

questions for clarification 

 Request students to add on to a 

previous contribution 

 Ask students to repeat previous 

contributions 
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 Use student reasoning as the basis of 

the lesson 

 Facilitate students to examine 

solution strategies for similarities or 

differences 

STAGE ONE STAGE TWO 
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Require students to explain their reasoning 

 Require students to develop 

mathematical explanations which 

refer to the task and its context 

 Facilitate students to use 

representations to develop 

understanding of algebraic concepts 

 Ask students to develop connections 

between tasks and representations 

 Provide opportunities for students to 

formulate conjectures and 

generalisations in natural language. 

Leads students in examining and 

refining these conjectures and 

generalisations 

 Listen for conjectures during 

discussions. Facilitates students to 

examine these 

 Require students to use different 

representations to develop the clarity 

of their explanation 

 Model and support the use of 

questions which lead to 

generalisations like ‘Does it always 

work?’, ‘ Can you see any patterns?’, 

Would that work with all numbers’ 

 

7.5 PHASE THREE: CONTINUED CHALLENGES IN DEVELOPING 

ALGEBRAIC REASONING 
 

7.5.1 Teacher learning 

 

Collaboration with other teachers in the group was identified by Mrs Willis as a useful means to 

develop further her reflection on teaching and learning mathematics. In the study group meetings 

in this phase, the teachers were involved in undertaking a lesson study cycle. For both Mrs 

Willis and the other teachers at Hillview School being involved in collaboratively planning and 
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then observing a lesson was a new experience. In contrast to her previous experiences of being 

observed for appraisal purposes Mrs Willis described collaboration in the lesson study cycle as: 

much more valuable because we are all working together to try and help each other and that is 

the main thing rather than me being judged. In particular, Mrs Willis highlighted the usefulness 

of the collaborative planning process. She outlined how the group often came to what she 

described as: brick walls where they had difficulty in agreeing on a suitable activity to meet the 

lesson objective. However, she viewed these as useful as: it made us really focus on what we 

were trying to look at.  

 

Mrs Willis highlighted the value of observation activity during the lesson study cycle: we could 

take a step back and look at what somebody else is doing…I think that then makes you reflect on 

what you are doing yourself. She also noted the usefulness of using resources and concrete 

representations to support learning. For example, with reference to a pair of students who were 

unsure of whether division would be commutative she observed: when they had the pegs in front 

of them they could argue it but they couldn’t argue it just on paper. They needed to be able to 

see the five pegs and they can’t divide them amongst ten people. Reflecting on her current 

utilisation of resources, she developed a goal which she shared with the group to allow her 

students access to: supplies of resources which the children could then choose to use.  

 

The process of lesson observation also led her to engage in critiquing practice regarding whole-

class discussion. For example, in observing a lesson focused on the commutative property Mrs 

Willis challenged Mrs Magri’s selection of students who had focused on the inverse relationship 

between addition and subtraction to share their ideas. Mrs Willis said she thought it would be 

better to avoid this and instead select students who were investigating the commutative law.  
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Similarly, Mrs Willis described the process of being observed herself as also facilitating her to 

reflect on her practice. After she taught the study lesson, she stated: when other people are 

watching you then you have to reflect on what you are doing… I know I will look back and say 

“I should have done this and I should have done this” and then I will take that thought before I 

do something else at another time and then taking on board the views of other people as well. 

The vignettes below show the key aspects of her own practice which she critiqued.  

 

Reflecting on the shifts in the way students work 

Developing the pace of lessons.  

 

Mrs Willis: I spent far too long on the first section which they knew…I think they could 

tell what the commutative law was for addition, it wasn’t a problem and I 

should have just cut that bit short much more quickly.  

 

Week 2, Term Three, 2009/2010 

Monitoring small group work. 

 

Mrs Willis: I think my aim is to go around and get a good idea of what they are all doing 

but then I still just get drawn in and I have got to make more of an effort to 

avoid that.  

 

Week 2, Term Three, 2009/2010 

Sequencing and connecting student responses during a whole class discussion.  

 

Mrs Willis: When we came to reviewing it all, I didn’t do it in a logical way at all and it 

would have helped if we had gone through systematically but I didn’t do that. 

They didn’t delve as deeply as I thought they would have done, some children 

went to negative numbers and were working with those but I didn’t, I suppose 

I didn’t really push them either and I think that’s what was limited…I am not 

sure that they were all clear on the justification. They found that harder, again 

I don’t think I followed it through well enough and because the way I 

reviewed it with them was all muddled up and we didn’t go through 

systematically.  

 

Week 2, Term Three, 2009/2010 

 

Anticipating possible student responses was not a practice which Mrs Willis regularly engaged 

in prior to lessons. She noted: you don’t really think about the problems that are going to arise 

which is why then suddenly a child will say something and you think “do I go off in that 



237 

 

direction or not?” Following the first lesson study cycle, she described herself realising: the 

importance of thinking about what could happen and what tangents you might be presented with 

and whether they are worth going off on or not. However, in the subsequent group meeting 

when the group began to re-plan the lesson to be taught in her classroom, Mrs Willis shared that 

she still found it difficult to anticipate what the potential difficulties or misconceptions might 

arise. Previously she had observed and noted students’ difficulties in using representations to 

justify: they were using the blocks to try and create the numbers. However in the later planning 

she did not draw on this observation to anticipate that her students may have similar difficulties. 

Following the lesson Mrs Willis described her observation of a student attempting to use 

counters to show that multiplication was commutative: she was doing three times four and she 

did a group of three and another group of four alongside it…and I hadn’t expected that at all. 

Rather than considering pedagogical actions which could be used to facilitate students to use 

equipment appropriately she instead took the stance that the physical material hindered student 

learning: because of the way some of them were working with it…like when they tried to do 

arrays and they weren’t actually managing and they weren’t using the equipment in a way that 

actually illuminated what they were trying to say, I think it actually hindered them.  

 

Mrs Willis used the framework (see Appendix A) provided in the study group meetings to 

reflect on her own practice. In the first instance she identified that she did not: put enough 

emphasis on them finding different ways to explain what they’re doing. They tend to have… right 

this is my explanation and I can’t veer from it…I need to start trying to wheedle it out, a bit 

more…how they can explain things in different ways. She also recognised the need to develop 

further the collaborative norms. She stated: when I’ve got somebody explaining at the front, I 

don’t get them to go back to their group and get the group to help in the justification and I think 

I need to do more of that so it’s more of a collaborative effort…It’s very much that child in 
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isolation so when there are other children who don’t understand then I should be getting that 

child to go back to the group to help them explain.  

 

Although Mrs Willis identified pedagogical actions to further develop collaborative group work 

in the whole class context, she did not recognise the need for specific teacher actions during the 

small group work time. In reference to the continuing difficulties many of her students had in 

working collaboratively—I keep finding every combination has a problem…I’m trying to get 

some people more involved…but they just won’t—her over-riding perception was that some 

children were unable to ever work collaboratively: I know obviously people are still, like 

Genevievie who won’t ever function in a group. Rather than addressing the group norms, her 

strategy was to: keep changing the groups around trying to find the appropriate groups for them 

to work in and some groups work well and others I don’t think ever will.  

 

What became evident toward the latter part of Phase Three was that although Mrs Willis 

reflected on her practice and identified areas of improvement within the study group meetings, 

these were not being enacted with effect in her classroom. For example, following the initial 

study lesson Mrs Willis stated that a goal for her was to incorporate the use of physical 

representations and equipment into her teaching and classroom. However it was evident in both 

classroom observations and in the second study lesson that this had not been accomplished. In 

response to another teacher’s observation of difficulties she observed with the Mrs Willis’s 

students using representations to develop concrete justification, Mrs Willis responded: I think it 

is partly that it is a novelty in that they don’t use material much.  

 

In Phase Three, it was evident that there continued to be limitations in Mrs Willis’s 

understanding of algebra and the practices underlying it. For example, in the second study lesson 
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a student attempted to prove that multiplication was commutative by referring to colours: red 

times blue equals purple and blue times red equals purple. Mrs Willis accepted this example 

without further discussion. In the reflective discussion following the lesson she did not recognise 

it as a non-mathematical example.  Similarly Mrs Willis herself provided non-mathematical 

reasons for her choice of the equipment (e.g., plastic teddy bears and flat people shaped figures) 

given to the students to use to justify in this lesson. This equipment did not necessarily easily 

lend itself to justification of the commutative nature of multiplication. When questioned about 

this Mrs Willis responded by saying that if she did the lesson again she would use the people: no 

question, I would have taken the people because they were tactile. In this case, the reason for the 

choice of the representation was not linked to the mathematical purpose of the lesson.   

 

During the study group meetings in Phase Three, the teachers engaged in discussion related to 

their changing perceptions of algebra. Mrs Willis remained largely silent during these 

discussions. She also did not respond to group email questions investigating participants’ 

changed perceptions of algebra. Her view of algebra appeared to be similar to what was reported 

in the previous section (see 7.4.1). In discussion of what changes the teachers noted in regards to 

the way their classes worked algebraically, Mrs Willis noted only that she thought her students 

now made connections between different solution strategies.  

 

Although Mrs Willis did not clearly identify changes related specifically to algebraic reasoning, 

she did identify a number of changes within her practice. She described the overall change in her 

teaching as looking at much smaller areas in her lessons rather than trying to cover everything in 

the MEP lesson plan: I am only picking out a few things to focus on which before I wasn’t. She 

also described some changes the way her students worked. These were linked to the students 

having greater confidence mathematically and also to being more open to different solution 
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strategies: they understand that they are going to get there, one way or another and their method 

might be very different from someone else’s but it’s equally valid…They’re much more 

accepting of other children’s ideas than they were previously and they’re much more open to 

listening to others and also for putting their own point of view even if it conflicts with other 

people which I think can be quite hard. She also described how her students would now question 

others when they explained their ideas. While she was able to identify these changes, she was 

unable to identify specific pedagogical strategies which she used to facilitate these. For example, 

when she was asked how she facilitated the students to question each other, she stated: it’s just 

been encouraging them to do it.  

 

7.5.2 Analysis of teacher learning 

 

During the study group meetings, Mrs Willis engaged in reflecting upon and questioning her 

practice. However, for the most part the goals that she set from this reflection process were not 

maintained in-between the meetings. While Mrs Willis did engage in some reflection on 

practice, it did not appear that the use of inquiry shifted to become a ‘way of being’ through 

which practice was continually developed (Jaworski, 2006; 2008).  

 

Mrs Willis’s overall understanding of early algebra appeared to remain limited. She developed 

her understanding of some of the classroom practices and pedagogical actions described by 

Blanton and Kaput (2005a) and Franke et al. (2008) to support student engagement with 

algebraic reasoning. However in many cases she did not recognise the need for specific teacher 

actions to sustain or continue to facilitate change.  
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7.5.3 Task design and implementation, integration of algebra, and development of the 

classroom community 

 

For a significant portion of lessons observed in Phase Three of the study there was a shift back 

to Mrs Willis’s previous form of task implementation. That is, she used a whole class approach 

whereupon she would read the task to the students and then they would systematically complete 

the answers. Students were provided with limited time to think about their responses or talk to 

their peers. The vignette below shows an example of the shift back to this type of task 

implementation.   

 

Task implementation 

Mrs Willis began by telling her class the scenario that there are eight boys and 12 girls. She 

asks the students to solve a series of ratio problems by going through each question and 

answer with the class.   

 

Mrs Willis: What is the ratio of girls to boys?…Have you got it, Maria? Peyton, have you 

written the answer down?…Right and…Maria, what is the ratio of girls to 

boys?  

Maria: Eight to 12. 

Mrs Willis: Okay, we had for every 12 girls, there are eight boys. I think that’s the way it 

should be written, don’t you? For every 12 girls there should be eight boys and 

what can I do with this ratio? What do you notice about it? What do you 

notice, Brittany, about the ratio? 12 to eight. 

Brittany: Um, it’s more than, um, it’s the other way around? 

Mrs Willis: It’s the correct way around because we’ve got, we’re looking at the number of 

girls in relation to the number of boys. So there are for every 12 girls, there are 

eight boys. What can we do with our ratio though? What can we do with it, 

Lydia? 

Lydia:  Um… 

Mrs Willis: Think about what we did previously. We had, we had eight to 12… 

Lydia:  Divide it by two? 

Mrs Willis: Okay which gives us a ratio of… 

Lydia:  Six colon four. 

Mrs Willis: So for every six girls there are four boys. Are we happy with that? Or can we 

do anything else with it? 

Lydia:  And… divide it again? 

Mrs Willis: We can divide it again which gives us… 

Lydia:  Three… 

Mrs Willis: Sorry I didn’t hear the second… 

Lydia:  Two. 

Mrs Willis: Three colon two. So for every three girls there are two boys.  
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Week 9, Term 3, 2009/2010 

 

As the vignette highlights, Mrs Willis used questioning to provide the students with procedures 

to approach the task. Students often responded with short answers which were phrased as 

questions and did not readily provide reasoning for their responses.  

 

When Mrs Willis did ask her students to work on tasks in small groups she would read the 

problem to the class and then ask them to solve it in a group. However enabling prompts were 

not used to ensure all students could access the tasks. This meant that not all members of the 

group were able to access the task or solution strategy. After the groups had completed their task 

the whole class discussion was used as a way of checking and correcting individual answers. 

This pattern of instruction and participation meant that there were missed opportunities for 

recording and connecting a series of answers. Furthermore, the links and patterns which could be 

made across the whole task were not apparent.   

 

There were few links made to algebra during these lessons. All lessons aside from that planned 

by the study group for the lesson study cycle used tasks taken directly from the MEP curriculum. 

No modifications or extensions to these tasks to develop links with algebra were evident. When 

tasks did have existing links to algebra often their implementation was structured in such a way 

that these links were not evident or highlighted. Furthermore, pedagogical actions used during 

task implementation did not facilitate the students to approach tasks algebraically. For example, 

a lesson began with a sequence task (see Figure 30) which was linked to functional reasoning.  
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Figure 30. Sequence problem. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf  

 

Mrs Willis read out the first three terms, she then asked the students individually to say the next 

numbers. If they gave an incorrect response she told them to sit down and asked someone else. 

None of the responses were recorded. After a number of responses had been given, she then 

asked one child to explain what they had been doing. He stated that they were doubling and 

there was no further discussion of this. In this example the task remained a computation task; the 

patterns were not explicitly examined and students were not facilitated to engage in 

generalisation.   

 

Although algebraic themes were a feature of earlier lessons in Phase Two, there were few 

connections made between these and the tasks in the current lessons. For example, in Section 

7.3.3 we saw how some tasks involving fractions were extended to facilitate conjectures and 

generalisations. In a later lesson in Phase Three students were asked to find equivalent fractions 

which included fractions that were equal to one whole. Rather than linking this to a conjecture 

the students had previously explored (e.g., a/a = 1), Mrs Willis instead led them procedurally 

through simplifying a fraction.  

Mrs Willis:  So what about six sixths? 

Amber: You can make it into one whole. 

Mrs Willis: Into one whole. What would you do to both the numerator and the denominator to 

get it to one whole? What’s a factor of both six and six? 

Amber: Six? 

Mrs Willis: Six. We divide by six. 

 

This meant that there were missed opportunities for students to revisit algebraic concepts and 

further develop their reasoning.   

1.2, 2.4, 4.8 

What are the next numbers in the sequence? 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf


244 

 

Mrs Willis continued to use pedagogical actions which she had trialled and introduced in Phase 

One and Two to shape how her students participated during whole class discussions. These 

included asking students to share alternative solution strategies, providing space for those 

listening to question the person explaining, and facilitating students to apply their own reasoning 

to the reasoning of others. For example, before a student explained their solution strategy she 

stated: I’d like the rest of you to be checking that he is correct in the way that he has done it. If 

you’re not sure what he’s done, make sure to put your hands up and ask him. Other actions 

included asking students to repeat contributions by other students with an emphasis on 

understanding each other’s reasoning. For example, a pair of students explained their solution 

strategy for finding two thirds of 100. After they had completed their explanation Mrs Willis 

said: I just want to go back the beginning, because I’m still not convinced that everybody 

understands why they divided 100 by three and then multiplied by two. What were they actually 

trying to find, Alan? Mrs Willis also continued to probe her students to provide mathematical 

reasoning for their answers; however this happened to a lesser extent in the final lessons.  

 

Although Mrs Willis used pedagogical actions to shape student participation in whole class 

discussions, it was apparent that norms for these discussions were not clearly established. 

Students continued to face the board and speak with their back facing the class. Alternatively, 

they would direct their explanation to Mrs Willis. The vignette below highlights a typical 

example of a student sharing their solution strategy for a task (see Figure 31) after small group 

work.  

 

 

 

Figure 31. Word problem. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf  

 

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf
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Task implementation 

Following group work on a task, Mrs Willis asks a student to share her groups’ solution 

strategy.    

                                                                        ____ 

Rachel: (goes to whiteboard writes 6 ) 240  and begins to speak with her back to the 

class and reading from her) We did six into 240. 

Mrs Willis: Rachel, turn around. There are still other hands up, it’s not just Amber’s hand.  

Millie:  Why have you got 240 there? 

Rachel: Um… (long pause) 

Mrs Willis: You need to explain a little bit more because you’re right. Explain it a little 

more. 

Rachel: (turns to speak to Mrs Willis) Two fifths equals 40.  

Mrs Willis: Equal to 40? Equal to 40 what? 40 chickens? 

Rachel: Forty pence. 

Mrs Willis Okay so one kg would cost 40 pence. Thank you, Rachel.  

 

Week 2, Term 3, 2009/2010 

 

As shown in the vignette, Mrs Willis needed to remind Rachel to speak to the class rather than 

facing the board or directing the solution strategy at her. Similarly although Mrs Willis was seen 

in the lesson observations asking students to repeat their peers’ contributions, her students 

consistently had difficulty in achieving this.  

                                                                        

As the previous section highlighted, Mrs Willis now used a mixture of small group work in 

combination with implementing tasks through a whole class approach. When tasks were 

implemented using a whole class approach the interaction patterns frequently followed an IRE 

pattern with students giving a short response which Mrs Willis evaluated. When students 

provided incorrect responses (or responses she perceived to be incorrect as in the following 

episode), she would ask other students to try and elicit a correct response or attempt to correct 

the response herself. For example, Mrs Willis asked a student to turn the ratio for circles to 

squares (see Figure 32) into a fraction.  

 

 

Figure 32. Ratio problem. From MEP lesson plans, by T. Szalontai, 2003, retrieved from 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf  

 

http://www.cimt.plymouth.ac.uk/projects/mepres/primary/y5blp_2.pdf
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Genevieve: Three eighths to five eighths. 

Mrs Willis: No, nice try, but it’s not correct. Elsie? 

Elsie:  Three fifteenths to five fifteenths? 

Mrs Willis: Nope. Our ratio is three to five so for every three circles we have five squares. 

What do you think the ratio would be as a fraction?…It would actually be three 

fifths.  

 

In the example above Mrs Willis’s response reflected her difficulties with subject knowledge. 

Although the researcher was aware of these errors, they were not addressed in discussion with 

Mrs Willis due to two reasons. Firstly the focus of the study was on developing understanding of 

early algebra; therefore addressing content knowledge beyond this was not within the remit of 

the study. Secondly, the researcher wished to maintain a positive relationship with the teacher 

participant throughout the duration of the study and it was viewed that highlighting Mrs Willis’s 

difficulties with subject knowledge may threaten the established relationship. 

 

In Phase Three, Mrs Willis continued to revoice and re-state student responses. The vignette 

examples below highlight how she used revoicing to correct answers, provide mathematical 

reasoning or to evaluate responses:  

 

Use of revoicing 

Revoicing to correct a response.  

 

Mrs Willis: Ninety-one thirteenths. Can you explain why, what it is equal to and why it is 

equal?… 

Alan: Um, because it’s, the numerator is bigger than the denominator so that’s equal 

to one whole? 

Mrs Willis: Okay so numerator is bigger than the denominator. This improper fraction is 

more than one whole.  

 

Week 2, Term Three, 2009/2010 

Revoicing to show a correct response had been given. Mrs Willis asks her students the ratio 

of squares to circles. 

 

Peyton: Five thirds. 

Mrs Willis: It would be five thirds. Well done. For every five squares we have, there are 

three circles. What would that be as a ratio with a colon in the centre? How 
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would we write it down as a ratio? Millie. 

Millie:  Five colon three. 

Mrs Willis: Brilliant, fantastic, five colon three.  

 

Week 9, Term 3, 2009/2010 

 

As shown in the vignettes throughout this section, students most commonly continued to provide 

answers with no reasoning or phrase their responses as questions. When students did attempt to 

construct mathematical explanations these were often unclear, based on procedural 

understanding or incomplete. For example, a student attempted to explain why they had thought 

that addition would not be commutative with negative numbers.  

Maggie: Um, well we thought that if we had it the two minuses would come together and 

make a plus sign, it would make um the amount different but it didn’t really work. 

Mrs Willis: Can you give me an example? 

Maggie: Um say if you were to add minus three um add minus three, add um three, um we 

thought that ummm would be zero. 

 

Furthermore students frequently did not respond to questions from Mrs Willis or their peers. 

Overall shifts in student participation by the end of the project were those related to how they 

participated when listening to explanations. As described in the previous section, they would ask 

questions for clarification and less frequently justification. They would also use mathematical 

reasoning to disagree with a peers’ explanation. 

 

The mathematical practices of making conjectures, generalising, and justifying were not 

observed in any of the Phase Three lessons aside from the study lesson for the lesson study 

cycle. During this lesson Mrs Willis used similar practices to those outlined in the earlier 

sections. The students mainly attempted to justify by the use of examples and Mrs Willis 

frequently shifted their attention from the general to the specific. In Phase Three there were no 

shifts in the use of representations with these being largely limited to the use of equations. 
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Student perceptions of small group work reported in the photo elicitation interviews continued to 

be mixed depending largely on whether the group had worked successfully together. Some 

students continued to engage in off-task behaviour during group work. For example, Maggie 

described her group interaction as: no one was listening to others’ ideas and everyone kept 

talking about other stuff, not maths. In other instances students referred positively to group-work 

stating that everyone was working together or describing it as an opportunity to get help from 

others. Some students continued to position others as more mathematically competent and 

attribute positive experiences with group work to this. For example, Jason described small group 

work during the lesson as positive because: I was working with Sarah and Marlon who are very 

good at maths. I wouldn’t say I’m good at maths.   

 

In the photo elicitation interviews when asked to recall explanations given during the whole 

class discussion, a growing number of students were able to recall the solution strategy that was 

used by the explaining student. However they were often not able to link the solution strategy to 

mathematical reasoning. Many students continued to either describe the task, student actions, or 

were only able to recall a solution strategy if it was the same as their own. For example, Peyton 

stated that he could not recall an explanation because: they’d done something different to our 

group so I can’t remember. Students more easily recalled their own groups’ solution strategy 

and some could also provide mathematical reasoning for this.  

 

Talking about mathematical ideas was viewed positively by students. Discussing ideas in a small 

group was valued as a way of gaining confidence. Other students described how talking helped 

you explain your answers and reflect on your ideas. For example, Maggie stated: they might 

have another idea and you can learn more from the partner because like you can bounce ideas 

off each other. Many also referred to how talking about your ideas allowed others in the class 
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could help you. However some students in the class viewed talking about your ideas as only 

helpful if you had an incorrect answer or did not know what to do. For example, Jasmine stated 

that talking about your ideas was only helpful: when you have a wrong answer and then your 

partner has a right answer, you learn something from that. 

 

Listening to others explaining their ideas was also described positively by the students. They 

predominantly described listening to explanations as a way of supporting them to find different 

ways to solve problems. Others described student provided explanations as showing them what 

to do. Many of the students viewed listening to an explanation helpful if you were unsure of 

what to do, didn’t know the answer or were wrong. For example, Marlon stated: say I had a 

different answer to someone else at the board, if I didn’t get it I’d put my hand up and ask them 

to explain it again and then I’d be able to know the right answer to do it next time the right way.     

 

7.5.4 Analysis of task design and implementation, integration of algebra, and 

development of the classroom community 

 

Both task design and implementation are highlighted as factors that can provide greater 

affordances for algebraic activity by a range of researchers (e.g., Bastable & Schifter, 2008; 

Blanton & Kaput, 2005b; Carpenter et al., 2005b; Carraher et al., 2008; Mason, 2008). In this 

phase, however, there was limited evidence that Mrs Willis designed, extended, or implemented 

tasks in a way that intentionally facilitated algebraic reasoning opportunities. Links between 

particular algebraic concepts which were a focus of earlier lessons were not drawn on. Mrs 

Willis shifted back to her previous practice of implementing tasks with a focus on correct 

answers. Tasks were enacted with a computational focus and students focused on calculating 

answers rather than investigating structure and relationships.  
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Although small changes were evident in how students participated in group work and whole 

class discussions the change process appeared to have stalled. The newly introduced norms and 

practices did not appear to be consistently maintained and therefore they had not become 

habitual. Data from the classroom indicated that whilst Mrs Willis had appropriated some 

practices to develop productive discourse and collaborative interaction at this stage of the project 

their effectiveness was diluted due to the reemergence of previous less effective communication 

and participation practices. Most notably, during whole class discussions there was a shift back 

to an IRE pattern. As a range of researchers (e.g., Bell & Pape, 2012; Fisher, Frey, & Lapp, 

2011; Nathan, Kim & Grant, 2009) explain this lowers students’ engagement and opportunities 

to verbalise ideas and construct knowledge.  

 

Similarly, mathematical practices were not introduced into the classroom in a way that assured 

they would became part of the everyday classroom context. Research studies (e.g., Bastable & 

Schifter, 2008; Carpenter et al., 2003; Kaput & Blanton, 2005a; 2005b; Mason, 2008; 

Schoenfeld, 2008; Smith & Thompson, 2008) highlight that rich algebraic reasoning 

opportunities occur within classroom contexts which facilitate students to engage in 

mathematical practices linked to the development of algebraic reasoning. The students in this 

classroom were not facilitated to view representations as important tools which could be used to 

explain and justify reasoning. In the final phase of the study, attention was not drawn to students 

generating conjectures and there was a continued lack of pressing of students to move beyond 

exploring conjectures through specific examples. This limited opportunities for student 

engagement in mathematical practices associated with algebraic reasoning.  

 

Some shifts in students’ role as learners were noted. Pratt (2006) contends that it is important 

students understand their role in the classroom and there was evidence that many of these 
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students did develop some understanding of the importance of both speaking and listening to 

develop their mathematical understanding. However, this appreciation of discourse centred on 

individual learning and knowledge acquisition rather than views about doing and learning 

mathematics as part of a community of learners. These students did not appear to develop 

epistemological conceptions of mathematics that would support them to be active agents is 

developing and using algebraic reasoning within their mathematics activity.  

 

In summary the teacher actions evident in Phase Three for Mrs Willis are those highlighted 

below in Stage One, Stage Two and Stage Three of the Framework of Teacher Actions to 

Facilitate Algebraic Reasoning. Those actions which she consistently used successfully are 

highlighted in yellow. Other actions which she took but only implemented partially are 

highlighted in blue. The lack of instances in Stage 3, compared to Mrs Stuart’s trajectory of 

actions (see Table 12), serve to highlight the different trajectories of teacher actions evidenced in 

the two teachers’ classrooms.   

 

 

 

 

 

Table 15  

Stage One, Two and Three of the Framework of Teacher Actions to Facilitate Algebraic 

Reasoning: Mrs Willis 

 

 STAGE ONE STAGE TWO STAGE THREE 

A
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ra

ic
 

co
n
ce

p
ts

 

Address the following concepts in the classroom: understand the equal sign 

as representing equivalence; relational reasoning including whole numbers 

and rational numbers; commutative property; inverse relationships; odd 

and even numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using and solving 

equations; function 
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Implement tasks as problem-solving opportunities  

Emphasise student effort to approach and complete cognitively challenging 

tasks 

Extend or enact tasks to include opportunities for generalisation 

Interrogate tasks for opportunities to highlight structure and relationships 

 Adapt tasks to highlight structure and 

relationships. This may include changing 

numbers or extending to multiple solutions 

 Structure tasks to address potential 

misconceptions 

 Use enabling prompts to facilitate all students 

to access tasks 

 Implement tasks by focusing attention on 

patterns and structure 

 Recognise and use spontaneous opportunities 

for algebraic reasoning during task enactment 

  Recognise and use 

links to algebra in 

tasks across 

mathematical areas 

  Implement tasks as 

open-ended problems 

  Anticipate student 

responses which could 

provide opportunities 

for algebra 

 

 

 

 

 Recognise and use 

spontaneous 

opportunities for 

algebraic reasoning 

from student responses 
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 STAGE ONE STAGE TWO STAGE THREE 
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Lead explicit discussion about classroom and discourse practices 

Ask students to apply their own reasoning to the reasoning of someone else 

Require students working in pairs or small groups to develop a 

collaborative solution strategy which all can explain 

 Require that students indicate agreement or 

disagreement with part of an explanation or a 

whole explanation and provide mathematical 

reasons for this 

 Lead explicit discussions about ways of 

reasoning 

 Provide space for students to ask questions for 

clarification 

 Request students to add on to a previous 

contribution 

 Ask students to repeat previous contributions 

 Use student reasoning as the basis of the 

lesson 

 Facilitate students to examine solution 

strategies for similarities or differences 

  Lead explicit 

discussion about 

mathematical practices 

  Sequence solution 

strategies to advance 

mathematical thinking 

and reasoning 

 

 

 Provide space for 

students to question 

for justification 
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Require students to explain their reasoning 

 Require students to develop mathematical 

explanations which refer to the task and its 

context 

 Facilitate students to use representations to 

develop understanding of algebraic concepts 

 Ask students to develop connections between 

tasks and representations 

 Provide opportunities for students to 

formulate conjectures and generalisations in 

natural language. Leads students in examining 

and refining these conjectures and 

generalisations 

 Listen for conjectures during discussions. 

Facilitates students to examine these 

 Require students to use different 

representations to develop the clarity of their 
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explanation 

 Model and support the use of questions which 

lead to generalisations like ‘Does it always 

work?’, ‘ Can you see any patterns?’, Would 

that work with all numbers’ 

     Listen for implicit use 

of number or 

operational properties. 

Uses these as a 

platform for students 

to make conjectures 

and generalise 

  Facilitate students to 

represent conjectures 

and generalisations in 

number sentences 

using symbols 

  Ask students to 

consider if the rule or 

solution strategy they 

have used will work 

for other numbers. 

Consider if they can 

use the same process 

for a more general 

case 

  Promote use of 

concrete forms of 

justification 

  Require students to 

translate between 

different 

representations 

 

7.6 SUMMARY 

 

This chapter has mapped out the challenges that can be encountered when attempting to develop 

teachers’ algebra ears and eyes and instigate pedagogical changes to develop algebraic reasoning 

in a mathematical community of inquiry. The initial classroom culture described did not support 

student engagement with algebraic reasoning. Professional development activities were used to 

attempt to support Mrs Willis to develop algebra ears and eyes. However, for Mrs Willis, the 

professional development activities did not appear to challenge her beliefs about algebra and 
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mathematics in general. Her participation in the study was associated with continued anxiety and 

at times self-doubt and importantly there was limited engagement with new practices between 

research visits.  

 

In Phase One, classroom observations provide evidence of shifts in task implementation and 

integration of algebra with researcher support. However, in later phases Mrs Willis faced 

difficulties in clearly identifying algebraic concepts which were a focus of the lesson and 

adapting material appropriately. Integration of algebra into lessons throughout the different 

phases of the study was not consistent and there were many missed opportunities when tasks 

were not adapted or implemented in a way which highlighted structure or relationships. This 

also meant that students themselves did not readily draw upon structure or relationships which in 

turn limited the spontaneous opportunities available to engage in early algebraic reasoning. 

 

In Phase One and Two there were small shifts in the development of the classroom community. 

However, by Phase Three it was evident that many of these shifts did not become embedded 

practices and instead were absorbed into her previous ways of practice.  

 

The following chapter draws together the findings from this chapter and Chapter Six. It will 

address the initial research questions and will highlight the different journeys which the two 

teachers took and suggest possible reasons for this. It will examine the contributions that this 

research makes to the field and the limitations and implications of the study.  
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CHAPTER EIGHT 

 

CONCLUSIONS AND IMPLICATIONS 
 

8.1 INTRODUCTION 
 

The purpose of this thesis was to gain insight into how teachers can develop early algebraic 

reasoning in a classroom community of mathematical inquiry. The literature review drew 

together three important elements when considering how early algebraic reasoning can be 

developed within a classroom community of mathematical inquiry. These were: (1) student 

learning of algebraic concepts; (2) aspects of the learning environment which support 

engagement with algebraic reasoning; and (3) how teachers can be supported to develop 

instructional practices to support algebraic reasoning and implications of this type of change for 

student participation within their classrooms.  

 

Teacher change and enactment of changes within the classroom is a complex and challenging 

process. The methodology of design research was chosen as a means to create and extend 

understandings of how innovative learning environments such as those focused on developing 

early algebraic reasoning can be developed, enacted, and maintained (DBRC, 2003).  

 

The findings presented in this thesis concern two contrasting cases detailing teacher engagement 

in professional development, the subsequent shifts within the teachers’ classrooms, and changes 

in their students’ participation in mathematical activity. In both cases, the integration of 

algebraic reasoning into classroom mathematical activity was a gradual process. It involved 

changes to task implementation and design, shifts in pedagogical actions and the facilitation of 
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new classroom and mathematical practices. These two cases illuminated significant differences 

in how the respective teachers engaged in the professional development and subsequently 

enacted changes in their classrooms.  

 

This research had an overall focus on how teachers can develop early algebraic reasoning in 

classroom communities of mathematical inquiry. To address this wider focus, there were three 

key research questions: 

 How do teachers develop algebra ears and eyes?  

 What pedagogical strategies and classroom and mathematical practices support student 

engagement in early algebraic reasoning? 

 What shifts occur in the way students engage in classroom activity as early algebraic 

reasoning is integrated into the everyday mathematics lessons?  

 

Section 8.2 begins by summarising the journey the two case teachers in this study took in 

developing their algebra ears and eyes. It then examines the pedagogical strategies and 

classroom and mathematical practices which supported student engagement in algebraic 

reasoning in their classrooms and the shifts that occurred in their students’ participation as the 

changes were implemented.  

 

Section 8.3 examines the limitations of the study. In Section 8.4 and 8.5 the contributions this 

research has made to the research field are presented along with the implications of the study 

and suggestions for further research. Section 8.6 provides a final conclusion to this research.  
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8.2 DEVELOPING EARLY ALGEBRAIC REASONING IN 

CLASSROOM COMMUNITIES OF MATHEMATICAL INQUIRY 
 

This research documented the journeys two teachers took to develop early algebraic reasoning 

with their students. Within the research study both the teachers were provided with the same 

professional development activities and resources. The findings presented in Chapter Six and 

Seven, however, illustrate that each travelled a unique pathway as they strove to develop their 

own understanding of algebra, facilitate their students’ understanding and integrate algebra into 

their everyday mathematics lessons. Initially there were many similarities in their understanding 

of algebra, use of tasks, and the pedagogical strategies they used in their classrooms. At the end 

of the research study there were significant differences in the teachers’ development in regards 

to both their own thinking and their pedagogical and classroom practices. There were also 

notable differences in both the level and nature of student participation during mathematics 

lessons in the two classrooms. 

 

8.2.1 Teacher development of algebra ears and eyes 

 

At the beginning of the study, both the teachers had a limited understanding of algebra and the 

links between algebra and other mathematical content areas. This is similar to what is reported in 

many previous studies investigating teacher understanding of how to teach algebra successfully 

(e.g., Even, 1993; Franke et al., 2008; McCrory et al., 2012). For these two teachers their 

mathematical and pedagogical content knowledge did not extend to a deep understanding of the 

progression in student learning related to algebraic concepts or how to address common 

misconceptions. As the project progressed it was evident that the two teachers took differing 

pathways and approaches in developing their understanding.  
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Mrs Stuart used her interest in understanding student reasoning to develop her knowledge of the 

expected progression in student understanding and become aware of potential common 

misconceptions. Throughout the project there were two key ways in which she continued to 

build her understanding of student reasoning and develop her pedagogical content knowledge. 

Firstly within the classroom, she took care to listen to student responses and used these to further 

her understanding. Secondly in the final phase of the study, using what she had learnt from 

listening to her students, she began to explicitly anticipate possible student responses prior to 

lessons. This, in turn, deepened her understanding of student reasoning. 

 

Throughout the project Mrs Willis demonstrated anxiety over her mathematical content 

knowledge. At times this anxiety appeared to inhibit her growth of understanding of early 

algebra. Teacher anxiety in regards to algebraic reasoning and its negative effect on engagement 

in professional development is also reported in studies by Franke et al. (2008) and Blanton and 

Kaput (2008). During the study meetings, Mrs Willis engaged in activities that involved 

anticipating student responses, however she did not translate these practices to extend her 

planning prior to classroom lessons. In the classroom, evidence of Mrs Willis’s engagement with 

students’ thinking was sporadic. During small group work she frequently intervened to attempt 

to lead students to a correct solution strategy. This meant that she had difficulty following and 

understanding student reasoning during the whole class discussions and resulted in missed 

opportunities for her to extend her understanding of student reasoning. This also reduced her 

ability to further develop pedagogical content knowledge.  

 

An indication of teacher development of algebra ears and eyes is their ability to draw on 

spontaneous opportunities to integrate algebra within lessons (Blanton & Kaput, 2005a). In this 

study planning for algebraic opportunities was an important factor in the teachers’ development 
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and there were notable shifts in the way algebra was integrated into the mathematics lessons 

over the duration of the research project. Initially both teachers worked with the researcher or 

independently to recognise opportunities to plan to integrate algebra into lessons. Of key 

importance was for the teachers to recognise the inherent algebraic structure of number. In the 

first instance Mrs Stuart selected and used only parts of the tasks from the MEP curriculum to 

focus on algebra. She developed rich understandings of different types of algebraic reasoning 

through her engagement in study group activities as she investigated and critiqued tasks. She 

also carefully listened and reflected on her students’ reasoning. Although initially student 

statements were not used to engage students in spontaneous investigation, as the study 

progressed she demonstrated a clear shift in her ability to use the spontaneous opportunities 

arising from student responses to engage all students in algebraic investigation. She was able to 

draw on her classroom interactions with students to exemplify areas of development of both her 

content knowledge and pedagogical content knowledge related to algebra.  

 

Initially Mrs Willis was keen to modify and extend existing tasks in ways that would engage her 

students in making conjectures and generalising. She utilised support from the researcher and 

also independently developed tasks based on activities from the study group meeting. However, 

as the study progressed and researcher support was withdrawn, Mrs Willis did not continue to 

adapt or modify existing tasks from the MEP curriculum to facilitate algebraic reasoning. In 

addition, her attempts to integrate algebra into lessons were inhibited by a lack of clear focus on 

the lesson goals or algebraic purpose as well as a lack of anticipation of student responses. In 

turn, this meant that Mrs Willis’s own understanding of early algebra was not extended in any 

significant depth.  
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Understanding of the classroom and mathematical practices which link to the development of 

algebraic reasoning are key to teachers’ development of algebra ears and eyes. Initially both 

teachers lacked sound understanding of the processes of generalising and justifying. Lack of 

understanding of these mathematical practices resulted in them shifting student focus from 

general cases to specific examples. Representational material was used to support students to 

solve tasks rather than as a tool to support concrete justification. Mrs Stuart developed her 

understanding of how to facilitate students to engage in the practices of generalisation and 

justification through actively engaging in activities during the study group meeting. She also 

used opportunities to develop her understanding of these practices further during her lessons. 

Her active inquiry into her own practice resulted in a new appreciation of the value of physical 

representations as tools to facilitate student understanding of the structure and properties of 

numbers and to develop forms of proof. During the professional development activities focused 

on generalisation and justification, Mrs Willis restricted her participation. For example, as 

shown in Section 7.4.1 she chose to use specific examples to illustrate conjectures about odd and 

even numbers and displayed vocal anxiety when asked to experiment with other forms of 

justification.  

 

Research studies which focus on effective professional development (e.g., Back et al., 2009; 

Earley & Porritt, 2009; Franke et al., 2008) note the importance of teachers having time and 

space to collaborate. This was also important in the development of teachers’ algebra ears and 

eyes. Both teachers viewed engagement in the lesson study cycle as an important opportunity to 

collaborate with colleagues and engage in reflection. However, they took contrasting roles 

during study group meetings. Mrs Stuart keenly participated in all meetings. She actively sought 

opportunities to investigate her practice and develop her professional learning both during the 

professional development and beyond. She pushed for the activities of the group (for example, 
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watching and reflecting on videoed classroom episodes) to be extended beyond the meetings. An 

example of this was when she arranged for the group to meet in addition to the set meeting time. 

She used the time between researcher visits to explore ideas in her lessons and further embed 

algebra into her practice. Her actions illustrated that she viewed change as an on-going 

collaborative process as she sought feedback from both the researcher and other study group 

members. Mrs Stuart identified the collegiality established through working collaboratively over 

a long period of time as a significant factor in the changes in her practice. In contrast, Mrs Willis 

was a quiet participant and frequently positioned herself as a weaker member of the group. From 

her reflective comments, it appeared that she viewed her obligations to engage in the project as 

largely confined to the study group meetings and researcher visits. Beyond her initial trialling of 

some tasks in the early stages of the project, she did not engage in further activity between the 

meetings and changes which she initiated during the research visits were not sustained between 

visits.  

 

Facilitating the development of algebra ears and eyes and promoting change to pedagogical and 

classroom practices required reflection on practice and for the teachers to engage in a cycle of 

inquiry. Common tools which both teachers used to prompt and support reflection on their 

pedagogical and classroom practice included research articles, frameworks of teaching, video 

recorded classroom episodes, and observation of lessons. Some of these tools (e.g., frameworks, 

video and classroom observations) have also been identified as useful tools in in other studies 

(e.g., Blanton & Kaput, 2005a; Jacobs et al., 2007) investigating teacher learning of early 

algebra. Mrs Stuart recognised the need for reflection to be an on-going process to develop 

change. She consistently critiqued her own practice and trialled different strategies in her 

classroom. She clearly identified shifts in her classroom practice and the pedagogical strategies 

she used to support such shifts. For her, reflection had become a core tool which she used to 
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analyse practice and identify areas to focus on. Her actions highlight the importance of teachers 

questioning their own practice to facilitate change and engaging in a continual cycle of inquiry 

so that it becomes a way of being. Mrs Willis engaged in reflective activity during the meetings; 

but this did not appear to extend beyond these meetings as an on-going, continual process. When 

prompted in workshop discussions and research interviews she was able to identify some shifts 

in her classroom and the pedagogical actions she used to facilitate change. However, when 

confronted with difficulties in making shifts in her classroom practice, rather than critique her 

current pedagogical strategies or reflect on alternative strategies, she fell back to a position 

where she raised doubts about the efficacy of the changes she was attempting to initiate.  

 

An integral part of the development of algebra ears and eyes is the way in which teachers view 

both algebra and mathematics overall. During the study, Mrs Stuart shifted from a view of 

mathematics which focused on computation and procedures to viewing it as a creative 

endeavour which required a process of on-going construction. Similarly, her view of algebra 

widened from perceiving algebra as simply about content to encompass classroom culture and 

mathematical practices as well. Mrs Stuart was motivated by her own lack of experience with 

rich connected types of algebra during her schooling to facilitate her own students to have 

different experiences of algebra. Mrs Willis’s perception of algebra was extended to include a 

wider range of content areas and some classroom and mathematical practices. However, 

engagement in the study did not appear to challenge Mrs Willis’s view of mathematics which 

was largely procedural and rule oriented.  

 

In summary, teachers develop their algebra ears and eyes through engagement in professional 

development activities which challenges their conceptions of both algebra and mathematics. It is 

important that teachers view algebra as encompassing classroom culture. This means that both 
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pedagogical content knowledge of algebra and a focus on classroom and mathematical practices 

which facilitate algebraic reasoning opportunities needs to be incorporated into professional 

learning and development. Of importance is that teachers view their professional learning as a 

personal responsibility which is not confined to professional development or researcher visits. 

This includes engaging teachers in learning beyond the study group meetings to include the 

classroom setting. It is important for teachers to inquire actively and reflect on their own practice 

and the developing classroom and mathematical practices. Carefully listening to student 

responses is a key factor in both developing pedagogical content knowledge and extending 

understanding of student reasoning. In providing opportunities to learn and practise algebraic 

reasoning, teachers need to be able to adapt existing tasks to include algebra. Enacting the task 

successfully also requires that they identify the focus of the task, the purpose of the adaptation, 

and anticipate the possibilities which may happen in the task enactment.  

 

8.2.2  Pedagogical strategies and classroom and mathematical practices to support 

student engagement in early algebraic reasoning 

 

Before the professional development started, the two teachers used similar pedagogical 

strategies and there were similarities in their established classroom practices. In both classrooms, 

task implementation involved the students being carefully guided through the procedures 

required to complete the task successfully with the teachers taking the role of mathematical 

authority and dominating the classroom discourse. Whole class discussions were used to check 

answers and the teachers used leading and funnelling questions to guide the students to reach 

correct answers. A range of studies (e.g., Bell & Pape, 2012; Fisher et al., 2011; Mehan, 1979; 

Pape et al., 2010; Wood et al., 2006) report these types of pedagogical actions and classroom 

practices as common within traditional classrooms and associated with lowered student 

engagement and development of agency. Additionally, in both classrooms there was limited use 
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of representations and associated productive mathematical practices. The pedagogical strategies 

used and the classroom practices did not support student engagement in early algebraic 

reasoning and the lessons were characterised by missed opportunities for algebra. 

 

Developing new methods of task implementation was an important pedagogical strategy to 

facilitate algebraic reasoning in the classroom. In both classrooms withdrawing step-by-step 

teacher guidance when implementing tasks resulted in students initially approaching tasks 

incorrectly. As part of efforts to change their practice and support their students to approach 

tasks independently, both teachers asked students to work in pairs. Mrs Stuart took a structured 

approach to this and facilitated her students to discuss the task requirements with a partner. She 

successfully scaffolded students to access the tasks, without lowering the cognitive demand, 

through the use of enabling prompts such as described by Sullivan et al. (2006). Further changes 

to task implementation were achieved through her use of questioning which focused student 

attention on patterns and relationships within tasks. A key aspect of this was asking students to 

talk about what they noticed rather than recording answers. In contrast, enabling prompts were 

not a feature of Mrs Willis’s practice and she continued to face challenges both with her students 

accessing cognitively challenging tasks and in evaluating an appropriate amount of time to 

complete the tasks.  As a result, in the latter part of the study, Mrs Willis had largely reverted to 

her previous form of task implementation. The lack of focused questioning or introduction of 

tasks in a manner which highlighted structural features meant that tasks remained in a 

computational context.  

 

To support student engagement in algebraic reasoning it was also necessary to address the ways 

in which students worked collaboratively and the forms of talk which were used in the 

classroom. Mrs Stuart explicitly discussed with her students how to successfully talk together 
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and facilitated them to generate rules for productive talk. She drew on student models to develop 

understanding of the new expectations in the classroom. This included the important new 

expectation that students would explain and clarify their ideas and reasoning. Key to shifting and 

embedding these participation practices was engaging students in reflecting on their 

participation. Throughout the study, Mrs Stuart continued to increase the expectation on her 

students to talk and work collaboratively. This collaborative work included developing shared 

understanding of a jointly constructed solution strategy. A final key emphasis in Mrs Stuart’s 

classroom was on student development of mathematical explanations.  

 

Mrs Willis’s change began by organising her students into groups and asking them to complete 

tasks together. However, at this stage she did not address group norms with the class and this 

meant that although they worked in a group they did not collaborate. In later lessons, she 

introduced new expectations for group work but there was some inconsistency between her 

voiced expectations for collaboration and her teacher actions (see Section 7.4.2). This meant that 

students were not consistently encouraged to collaborate in group situations.  

 

To advance all students’ opportunities to engage in algebraic reasoning it was important to 

extend collaboration to whole class discussions and structure these in a productive way. Initially, 

in both classrooms, the students did not perceive whole class discussions as a way of collectively 

developing understanding. To effect change, both teachers needed to emphasise to their students 

the requirement to explain their reasoning rather than simply providing answers during whole 

class discussions. They also needed to facilitate students to be aware of the listening audience. 

These norms did not become established in Mrs Willis’s classroom; her students did not 

habitually provide reasoning and often spoke with their backs to the other students.  
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The teachers also addressed student participation during discussions and there were a number of 

common pedagogical strategies which they used to achieve this. These included making space 

for student questioning during explanations, facilitating students to apply their own reasoning to 

the reasoning of others and to agree or disagree with mathematical reasoning. Other key aspects 

of practice to develop collaborative interaction were to position students to actively listen and 

sense-make while others explained their reasoning and developed explanations. Pedagogical 

actions which focused on developing interactive mathematical talk shifted students in Mrs 

Stuart’s classroom to become critical, active participants within the classroom community. 

Although Mrs Willis used similar pedagogical actions, there were fewer shifts in her students’ 

ways of participating. Without a consistent expectation for them to provide reasoning both Mrs 

Wills and her students were unable to access and build on each other’s thinking – knowledge 

building therefore, remained largely the responsibility of the individual with the authority 

continuing to reside with the teacher.  

 

The introduction of key mathematical practices associated with algebraic reasoning were 

important aspects to support student engagement with algebraic reasoning. Both teachers 

introduced students to the mathematical practice of using representations and expected them to 

support their explanations with a representation. Mrs Stuart further facilitated her students’ use 

of representations as a key way for them to support their own reasoning and to access the 

structure of tasks and develop understanding. She also asked students to draw on and connect 

different representations and this helped them to develop explanations, link both tasks and 

representational forms, and to engage in concrete justification. Both teachers attempted to 

introduce their students to the mathematical practices of generalisation, justification, and proof. 

Mrs Stuart began by purposefully planning an investigation of the properties of zero. This 

familiarised students with the processes of making conjectures and finding examples to illustrate 
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these. In latter lessons, representations were introduced as a powerful form of concrete 

justification and Mrs Stuart readily drew on conjectures she heard her students making. She then 

used these to engage them in mathematical practices of generalisation, justification and proof. In 

contrast, when Mrs Willis extended tasks to include opportunities for generalisations, she 

frequently shifted the discussion from a general context back to specific examples. Failure to use 

concrete forms of justification hindered student engagement with the mathematical practices.  

 

In summary, there are a number of key pedagogical strategies and classroom and mathematical 

practices that support student engagement in algebraic reasoning. The first pedagogical strategy 

which requires attention is implementing tasks in ways which focus on structural and relational 

aspects. This may be achieved by shifting student attention from getting an answer towards 

identifying useful patterns and relationships. Also of importance is addressing collaboration and 

forms of productive talk which facilitate algebraic reasoning. While teachers lead the 

introduction of new classroom practices, students also need to be part of the development of the 

new expectations and also develop their own understanding of why it is important to engage in 

the new practices. This also includes understanding the requirements of the differing roles when 

explaining or listening. Finally attention also needs to be given to the development of key 

mathematical practices. Teachers need to draw on student generated conjectures and use these to 

engage their students in justifying and generalising. Regarded as thinking tools (Anthony & 

Walshaw, 2007), representations should be introduced as a way of supporting an explanation but 

also as a form of concrete justification.  

 

8.2.3  Shifts in student engagement in classroom activity  

 

Before the professional development there was minimal evidence of students engaging in 

algebraic reasoning in either of the classrooms. Student attention focused on using 
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computational strategies to find answers rather than drawing on the relationships within tasks. 

Although some students worked cooperatively with a partner, most worked individually unless 

they were stuck on a task and needed help. During whole class discussions students took a 

passive role and frequently provided answers with no reasoning.  

 

Classroom practices and pedagogical actions influenced whether students engaged in classroom 

activity in a way which developed their algebraic reasoning. Initially the practices in both 

classrooms limited student opportunities to develop structural perspectives. In Mrs Stuart’s 

classroom a shift in the type of teacher questioning focused student attention on patterns and 

relationships within tasks which supported them to approach tasks structurally. In Mrs Willis’s 

class a continuing use of funnelling questions and a procedural focus meant that students were 

not provided with rich opportunities to develop algebraic perspectives. The lack of emphasis on 

relationships and structure meant that students continued to use computation to solve tasks 

instead of utilising relationships. Therefore they were not developing their algebra ears and eyes.  

 

Early in the project changes to Mrs Stuart’s task implementation involved a move from 

providing specific directions to using enabling prompts and scaffolds. This led to her students 

becoming more independent when approaching tasks, taking a more logical approach, and also 

developing an understanding that there is more than one way to solve a problem. As the study 

progressed, students in Mrs Stuart’s class engaged more readily with algebraic reasoning and 

began to recognise and use structural aspects and patterns independently to solve tasks.  

 

Student engagement and use of mathematical practices shifted with changes in the classroom. 

Initially in both classrooms students did not regularly use representations nor did they engage in 

generalisation and justification. In Mrs Stuart’s classroom attention to engaging students in 
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mathematical practices such as making conjectures, justifying, and generalising led to students 

more readily making conjectures about patterns which they noticed. Mrs Stuart also increasingly 

expected her students to use representations. They began to draw on different representations to 

support their explanations and also began to translate between the representations that either 

they had used or those used by their peers. As the project progressed Mrs Stuart introduced 

representations as a way of providing concrete justification when generalising. With further 

classroom experiences focused on justification, students more readily drew on material to prove 

reasoning. They also began to refer to conjectures and generalisations which had been 

previously examined in their explanations. 

 

Mrs Willis supported her students to develop conjectures by extending already existing tasks 

(see Section 7.3.2). Investigation of these conjectures mostly focused on developing specific 

examples rather than the development of a generalised claim. Hence, a ‘conjecturing 

atmosphere’ (Mason, 2008) where students would readily express conjectures was not 

forthcoming. While Mrs Willis also required her students to support their explanations with a 

representation, this was limited to the use of a single representation, most often an equation. 

Moreover students were not facilitated to reflect on alternative ways of justifying beyond use of 

specific examples. This meant that they were not engaged in developing a range of more refined 

justification skills.  

 

In both classrooms the introduction of pedagogical actions focused on developing productive 

talk led to shifts in student participation. Similar to the findings of other studies (e.g., McCrone, 

2005; Reid & Zack, 2009) the changes in the ways students participated took time to develop. 

Initially in both classrooms during whole class discussions the students continued mainly to 

provide answers with no reasoning. However with both teachers increasingly emphasising the 
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need to provide reasoning, the frequency of responses with reasoning and attempts to develop 

mathematical explanations increased. Mrs Stuart’s consistent and explicit expectations that 

mathematical reasoning would be provided supported students’ on-going development of 

reasoned explanations. In contrast, in Mrs Willis’s classroom the expectation for reasoning was 

not consistently sustained. As the study progressed, it was evident that norms for the whole class 

discussion had not been firmly established; students consistently faced the board when speaking 

unless reminded to turn around and they did not habitually provide reasoning. They also 

frequently phrased their answers as questions and did not respond to questions both from their 

peers or the teacher.  

 

The focus on collaborative interaction during whole class discussions led to shifts in student 

participation. Initially whole class discussions were not viewed by students as an opportunity to 

develop understanding in either classroom. This meant that they were unable to recall their 

peers’ explanations or explain their own mathematical thinking. For both teachers the use of 

pedagogical actions which focused on interactive mathematics talk shifted students to become 

more active participants who asked questions to clarify ideas and agree and disagree with their 

peers’ ideas. In both classrooms the students would recognise erroneous explanations and 

question or challenge these.  

 

Mrs Stuart further facilitated her students to analyse and attend to both their own thinking and 

the thinking of others. As a result, her students increasingly used questioning to probe for 

justification and used mathematical reasoning to agree or disagree. They were now able to re-

construct their peers’ explanations and reasoning from whole class discussions both during and 

after the lesson. They also began to describe explicitly their own mathematical thinking although 

at this point this did not extend to justification for their thinking. Her continuing focus on 
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interactive talk meant that towards the end of the study, students had begun to justify both their 

own and their peers explanations by referring to the context of the problem. 

 

Mrs Willis continued to engage her students in questioning for understanding; however she did 

not require them to provide reasoning for agreement and disagreement. Initially, her students 

were unable to reconstruct their peers’ explanations following the lessons and also had difficulty 

in describing their own mathematical thinking. With further facilitation from Mrs Willis for 

active participation while listening to the reasoning of others, the students began to ask questions 

for clarification more frequently and use mathematical reasoning to disagree. They were now 

able to recall their own solution strategies and a growing number could recall their peers’ 

solution strategies although this did not extend to the reasoning which supported this. 

 

Collaborative interaction during small-group work was another teacher focus which led to 

changes in the way students participated. In both classrooms, students initially had a positive 

view of group work. However, their emphasis was on turn-taking or assistance when stuck rather 

than collaborating to construct understanding jointly. Mrs Stuart worked with her class to 

develop a set of group norms. Importantly, she also engaged her students in reflection on the 

ways in which they were working; this supported them to gain understanding of the benefits of 

collaboration beyond the emphasis on turn-taking. Mrs Stuart’s students maintained a positive 

disposition to group-work throughout the study with their emphasis moving from co-operating to 

collaborating and developing joint solution strategies. They identified ways of supporting 

collaboration such as questioning, disagreeing with reasoning, and convincing others. 

Collaborating with others and both talking and listening were identified by the students as key 

reflective tools for learning.  
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Although Mrs Willis asked her students to work in groups and shared some group rules with 

them, there was also some inconsistency in Mrs Willis’s requirement for collaboration. The 

students did not work with Mrs Willis to develop these rules for group work or to reflect on the 

benefits of working in such a way. The students reported mixed feelings about group-work. 

Whilst many students regarded both talking about mathematical ideas and listening to others as 

beneficial to their mathematical learning, benefits concerned getting answers or help rather than 

collaboration. Negative reports could be attributed to the lack of developed group norms (see 

Section 7.4.3 and 7.4.5).  

 

In summary, there are a number of key shifts that occur in the way students engage in classroom 

activity as early algebraic reasoning is successfully integrated into the everyday mathematics 

lessons. An important shift is for students themselves to develop their algebra ears and eyes. 

This means that they approach tasks in algebraic ways through drawing on structure, 

relationships, and patterns. As tasks are enacted students will readily make conjectures about 

patterns which they notice and then draw on materials both to prove and justify their reasoning. 

Another important change in student participation is the shift to view whole class discussions as 

a way of developing both personal and collective mathematical thinking and understanding. 

Developing an appreciation of the collective will enhance students’ sense of obligation to 

provide mathematical reasoning, develop explanations, and justification for all members of the 

classroom (both other students and the teacher). 

 

 8.3 LIMITATIONS OF THE STUDY 

 

This study contributes new knowledge and findings to the field in a number of ways. However it 

is also important to acknowledge that any research has potential limitations. This research 
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involved the empirical analysis of a small sample of teachers and students from two schools in 

the UK and the British Isles. The generalisability of the findings for teachers in different 

contexts and classroom settings may be limited. However inclusion of the conjectured 

framework of professional development (see Table 1), the Framework of Teacher Actions to 

Facilitate Algebraic Reasoning (see Table 16), and the detailed descriptions of both the teacher 

learning and pedagogical practices provides opportunities for others to trial a similar study.    

 

Due to the complex nature of teacher learning, schools, and classrooms, interpretation of the 

results of this study can only provide an emerging understanding of how teachers develop 

algebra ears and eyes and then use their developing understanding to facilitate algebraic 

reasoning in their classrooms. Although a range of triangulation methods were used, 

consideration should be given to the possibility of bias in the results as the findings are based on 

one researcher’s interpretation of the data and other interpretations are possible. Although the 

interpretation in this study was strengthened by the use of wide range of data sources and the 

multiple iterations of coding, the findings need to be read in terms of the educational and 

cultural context in which they were situated. Although there are widespread international calls 

for increased focus on algebra in primary classrooms, not all countries would recognise the 

forms of discourse-based teaching promoted within the professional development model as 

aligned to their educational values (Clarke, 2013).  

 

8.4 CONTRIBUTION TO THE RESEARCH FIELD 

 

Within this study clear implications are provided for thinking about ways in which early 

algebraic reasoning can be integrated into primary mathematics classrooms. It adds to the 

research field with its broad perspective of algebra to include both areas of content and 
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classroom and mathematical practices which support student engagement in algebraic reasoning. 

This study is unique within the UK with its simultaneous focus on how primary teachers develop 

algebra ears and eyes and the changes within the classroom community and student engagement 

as algebra is integrated within everyday mathematics lessons. The focus on primary students’ 

perspectives in classrooms where algebra is being facilitated provides a significant addition to 

the research literature.  

 

The Framework of Teacher Actions to Facilitate Algebraic Reasoning (see Table 16 below) is 

offered as contribution to the field. Importantly this framework integrates four separate, 

interlinked components which this study identifies as key to the development of early algebraic 

reasoning. These include: 

 Teacher awareness of and a purposeful focus on algebraic concepts; 

 Teacher actions to develop and modify tasks and enact them in ways which facilitate 

algebraic reasoning; 

 Teacher actions to develop classroom practices which provide opportunities for 

engagement in algebraic reasoning; and 

 Teacher actions to develop mathematical practices which support the development of 

algebraic reasoning. 
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Table 16  

Framework of Teacher Actions to Facilitate Algebraic Reasoning 

 

 STAGE ONE STAGE TWO STAGE THREE 

A
lg

eb
ra

ic
 

co
n
ce

p
ts

 

Address the following concepts in the classroom: understand the equal sign 

as representing equivalence; relational reasoning including whole numbers 

and rational numbers; commutative property; inverse relationships; odd 

and even numbers; properties of zero and one; distributive property; 

associative property; properties of rational numbers; using and solving 

equations; function 

 STAGE ONE STAGE TWO STAGE THREE 

T
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n
s 
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 d
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Implement tasks as problem-solving opportunities  

Emphasise student effort to approach and complete cognitively challenging 

tasks 

Extend or enact tasks to include opportunities for generalisation 

Interrogate tasks for opportunities to highlight structure and relationships 

 Adapt tasks to highlight structure and 

relationships. This may include changing 

numbers or extending to multiple solutions 

 Structure tasks to address potential 

misconceptions 

 Use enabling prompts to facilitate all students 

to access tasks 

 Implement tasks by focusing attention on 

patterns and structure 

 Recognise and use spontaneous opportunities 

for algebraic reasoning during task enactment 

  Recognise and use 

links to algebra in 

tasks across 

mathematical areas 

  Implement tasks as 

open-ended problems 

  Anticipate student 

responses which could 

provide opportunities 

for algebra 

 

 

 

 

 Recognise and use 

spontaneous 

opportunities for 

algebraic reasoning 

from student responses 
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 STAGE ONE STAGE TWO STAGE THREE 
T
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Lead explicit discussion about classroom and discourse practices 

Ask students to apply their own reasoning to the reasoning of someone else 

Require students working in pairs or small groups to develop a 

collaborative solution strategy which all can explain 

 Require that students indicate agreement or 

disagreement with part of an explanation or a 

whole explanation and provide mathematical 

reasons for this 

 Lead explicit discussions about ways of 

reasoning 

 Provide space for students to ask questions for 

clarification 

 Request students to add on to a previous 

contribution 

 Ask students to repeat previous contributions 

 Use student reasoning as the basis of the 

lesson 

 Facilitate students to examine solution 

strategies for similarities or differences 

  Lead explicit 

discussion about 

mathematical practices 

  Sequence solution 

strategies to advance 

mathematical thinking 

and reasoning 

 

 

 Provide space for 

students to question 

for justification 

 

 STAGE ONE STAGE TWO STAGE THREE 
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Require students to explain their reasoning 

 Require students to develop mathematical 

explanations which refer to the task and its 

context 

 Facilitate students to use representations to 

develop understanding of algebraic concepts 

 Ask students to develop connections between 

tasks and representations 

 Provide opportunities for students to 

formulate conjectures and generalisations in 

natural language. Leads students in examining 

and refining these conjectures and 

generalisations 

 Listen for conjectures during discussions. 

Facilitates students to examine these 

 Require students to use different 

representations to develop the clarity of their 
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explanation 

 Model and support the use of questions which 

lead to generalisations like ‘Does it always 

work?’, ‘ Can you see any patterns?’, Would 

that work with all numbers’ 

     Listen for implicit use 

of number or 

operational properties. 

Uses these as a 

platform for students 

to make conjectures 

and generalise 

  Facilitate students to 

represent conjectures 

and generalisations in 

number sentences 

using symbols 

  Ask students to 

consider if the rule or 

solution strategy they 

have used will work 

for other numbers. 

Consider if they can 

use the same process 

for a more general 

case 

  Promote use of 

concrete forms of 

justification 

  Require students to 

translate between 

different 

representations 

 

Each of the four key aspects integrated within the framework have been linked with specific 

supportive teacher actions. Based on evidence of ‘what works’ in terms of teacher practice, this 

is an important contribution that will enhance professional learning and development 

opportunities to build capacity to enact reforms in early algebra teaching and learning.  

 

The significant role which students have in the development of classrooms where algebraic 

reasoning is a focus is a key finding of the study. Findings affirm the importance of developing a 

learning community which embraces both teacher and the students’ learning simultaneously. 
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Many previous studies have focused on teachers’ learning to develop algebra ears or eyes or 

using pedagogical actions to develop algebraic reasoning in the classroom. This study extends 

work in this field by providing insight into the contribution that students make. In responding to 

the opportunities afforded by the teacher’s algebra eyes and ears students contribute their own 

algebraic reasoning, and in the process develop their own algebra ears and eyes and strengthen 

the collective algebra ears and eyes of the community.  

 

8.5 IMPLICATIONS AND FURTHER RESEARCH 

 

This study was undertaken in two different schools where students were generally white British 

with only a few in each class from different ethnic groupings. They came from mainly middle to 

high socio-economic backgrounds. Teachers who participated in the study were experienced 

teachers from white British backgrounds. Further studies which extended this research beyond 

these contexts would be useful. In particular, it would be beneficial to extend understanding to 

how algebra ears and eyes can be developed with teachers of different ethnic backgrounds and 

levels of experience, in different types of schools in varying locations. It would also be useful to 

investigate how algebraic reasoning can be integrated into everyday mathematics lessons with 

students from varying year levels, different ethnic groupings and socio-economic backgrounds 

within the UK.   

 

It is evident that it is the teacher who makes the integration of algebraic reasoning into the 

learning community possible and the study highlights the key role which the teacher takes in 

implementing and leading change within the classroom. Initially the teachers in this study held 

understandings of algebra which were grounded in their own schooling experiences. This 

involved more traditional approaches where computational arithmetic was taught in primary 
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school followed by the introduction of abstract algebra in secondary school. They appeared to 

lack experience with the rich, connected types of algebra which support the development of 

early algebraic reasoning. Teacher knowledge was an important aspect of the study; however 

this study did not specifically assess content or pedagogical content knowledge of the 

participating teachers in relation to early algebra. Further research is needed in the UK which 

investigates the pedagogical content knowledge of primary teachers in relation to early algebra 

and how to further develop teachers’ pedagogical content knowledge effectively.  

 

Within research literature continuing difficulties which primary students have with specific 

algebraic concepts such as the equals sign or over-generalising the commutative property are 

well documented (e.g., Davis, 1984; Kieran, 1981). However, these findings were not known by 

the teachers in this study. Therefore an important implication of this study is to consider how 

research findings can be communicated to teachers through pre-service education or professional 

development experiences.   

 

An unintended focus which resulted from the research study was how we can account for 

differences in change between teachers. For example, it became evident in the data analysis that 

while there were similarities in the nature and depth of teachers understanding of algebra at the 

onset of the study, a key difference that appeared as the study progressed was in how they 

sought to develop their understanding further. Similar to working in classrooms with students, 

working with teachers to develop their algebra ears and eyes held many challenges. Further 

research which captures the teachers’ learning and perspectives as participants in professional 

development would be useful. It would also be productive to examine more fully how research-

based tools and activities provide opportunities for teacher learning.  
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Related to the previous paragraph, teacher disposition and attitudes and belief were not a focus 

of the current study, however it appears that they were a significant factor in whether the 

teachers developed their own algebra ears and eyes and facilitated the development of early 

algebraic reasoning in a classroom of mathematical inquiry. Further research is needed in the 

UK to explore specific attitudes and beliefs teachers hold towards the value of early algebra and 

the use of classroom and mathematical practices which support students to develop algebraic 

reasoning. Further trialling of interventions such as those used in this study need to be 

undertaken to assess factors which are successful in shifting teachers’ attitudes and beliefs.  

 

Whilst professional development activities to support teachers to develop algebra ears and eyes 

were a key part of this study design, the research focus did not include explicit evaluation of 

their effectiveness. Evaluation in terms of movement within the design framework was more to 

do with the placement of activities in relation to teachers’ learning/change. However, it was 

clear in the analysis of the respective teachers’ journey (Chapter Six and Seven) that 

professional learning/change was influenced by more than the provision of activities. Some 

important factors appeared to be the sustained focus over the school year, opportunities to 

collaborate with other teachers, the facilitation of reflection through observation, watching video 

recordings, using frameworks of effective teaching, and access to relevant research material. 

These findings have implications for the way in which professional development for teachers 

may be advanced. Further investigation is required into the effectiveness of particular activities 

to develop pedagogical content knowledge in the area of early algebra. 
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8.6  FINAL THOUGHTS 

 

Algebra has been recognised as a gatekeeper and there is widespread acknowledgement of how 

insufficient development of algebraic understanding during schooling denies individuals access 

to potential educational and employment opportunities (Cai & Knuth, 2011; Chazan, 1996; 

Kaput, 2008). The key focus of this research was to investigate how teachers can develop early 

algebraic reasoning in classroom communities of mathematical inquiry. Teacher development of 

algebra eyes and ears through active engagement in professional development and implementing 

what they were learning in the classroom was shown to be an important factor in whether 

algebra was successfully integrated into the classroom. A key finding of the study was that the 

integration of algebra into everyday lessons within the mathematics classroom required more 

than the introduction of algebraic concepts. It was necessary for the teachers to also attend to the 

development of the classroom community and to facilitate the growth of classroom practices and 

mathematical practices which supported collective student participation and engagement with 

algebraic reasoning.    

 

This design study methodology generated a significantly rich data set concerning teacher 

learning and change in practice. The two contrasting cases exemplify the complexities and the 

challenges for both teachers and students to develop algebra ears and eyes. Evidence from the 

research study shows that despite the complex challenges teachers such as Mrs Stuart can 

facilitate early algebraic reasoning. Key to the success is the development of a community of 

mathematical inquiry in which all participants, both the teacher and students, are able to co-

construct a range of mathematical practices and participatory practices that explicitly enhance 

algebraic ways of thinking and reasoning.  
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It is hoped that the findings of this research provide a productive model for researchers and 

designers of professional development to use to develop algebraic reasoning with primary 

teachers. However, we need to be mindful in using the model with teachers to develop early 

algebraic reasoning with students in primary classrooms that “changing teaching is risky and 

that risk taking means trusting that the outcomes will be worth the risk” (Askew, 2012, p. 138). 

In this case, having students develop algebra eyes and ears.  
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APPENDICES 

APPENDIX A: ADAPTED FRAMEWORK FROM HUNTER (2009) 
 

Developing conceptual explanations (includes using the problem context to make 

explanations experientially real) 

Model providing 

a mathematical 

explanation. Use 

the context of 

the problem not 

just the 

numbers. 

Re-voice, and 

extend an 

explanation 

using the 

problem 

context. Expect 

mathematical 

reasons (e.g., 

19+7=20+6  

because 7-1=6 

and 19+1=20)   

Question to 

scaffold students 

to extend their 

explanations to 

include the 

problem context 

and what they did 

to the numbers 

mathematically.   

Model and support the use of 

questions which clarify an 

explanation. What do you mean 

by? What did you do in that bit? 

Can you show us what you mean 

by? Could you draw a picture of 

what you are thinking?  

Have the 

students develop 

two or more 

ways to explain 

a strategy 

solution which 

may include 

using materials 

Have students 

examine their 

explanation, 

predict the 

questions they 

will be asked 

and prepare 

explanations.   

Have the students 

read the question 

as a pair or group, 

and discuss, 

interpret and 

reinterpret 

problems 

collectively.  

Have students describe their 

different starting points when 

solving a problem. Reinforce 

acceptability of multiple ways. 

Support them to make 

connections to other or previous 

problems.  

 

Active listening and questioning for sense-making of an explanation. 

Discuss and 

role-play active 

listening. 

Use inclusive 

language “show 

us”, “we want to 

know”, “tell us”.  

Structure the 

students 

explaining and 

sense making 

section by 

section.  

Emphasise need 

for individual 

responsibility for 

sense-making 

Provide space 

in explanations 

for thinking and 

questioning 

Affirm models 

of students 

actively 

engaged and 

questioning to 

clarify sections 

or gain further 

information 

Collaborative support and responsibility for the reasoning of all group members 

Provide students 

with problem 

and think-time 

then discussion 

and sharing 

before recording 

Establish use of 

one piece of 

paper and one 

pen.  

Establish an 

expectation that 

students will agree 

on the 

construction of 

one solution 

strategy that all 

members can 

explain.  

Have students examine their 

explanation, predict the questions 

they will be asked and prepare 

explanations.   

 



305 

 

 

Developing justification and mathematical argumentation 

Require that 

students 

indicate 

agreement or 

disagreement 

with part of an 

explanation or a 

whole 

explanation 

Ask the 

students to 

provide 

mathematical 

reasons for 

agreeing or 

disagreeing 

with an 

explanation.  

Model ways to 

justify an 

explanation  

“I know 3 + 4 

= 7 because 3 

+ 3 = 6 and 

one more is 

7”. 

 Model and 

support the use 

of questions 

which lead to 

justification 

like ‘How do 

you know it 

works?’, ‘Can 

you convince 

us’. 

Provide range 

of materials for 

students to use 

to justify their 

explanations 

and 

conjectures. 

Ask the 

students to be 

prepared to 

justify sections 

of their solution 

strategy in 

response to 

questions.  

Expect that 

pairs/group 

members will 

support each 

other when 

explaining 

and 

justifying to 

a larger 

group 

 Require that 

the students 

prepare ways 

to re-explain 

in a different 

way an 

explanation to 

justify it. 

Provide wait 

time to allow 

students to 

prepare 

questions 

which lead to 

justification 

Encourage the 

use of ‘so if’, 

‘then’, 

‘because’ to 

make 

justifications. 

Use this format 

to validate an 

explanation   

Developing representations of reasoning 

Expect the use of a range of 

representations including 

acting it out, drawing a 

picture or diagram, 

visualising, making a model, 

using symbols, verbalising or 

putting into words, using 

materials.   

  

Expect the 

students to explain 

and justify using 

the representation 

as actions on 

quantities not 

manipulation of 

symbols (use 

context) 

Require that the 

students compare 

and contrast 

representations and 

evaluate for 

efficiency  

Ask students to 

re-represent their 

thinking in 

different forms in 

response to 

questions or for 

clarification 

Developing generalisations 

Model and support 

the use of questions 

which lead to 

generalisations like 

‘Does it always 

work?’,‘ Can you 

see any patterns?’ 

Would that work 

with all numbers’. 

Ask the students to 

consider if the rule 

or solution strategy 

they have used will 

work for other 

numbers. Consider if 

they can use the 

same process for a 

more general case. 

(e.g. what happens if 

you multiply any 

number by 2) 

Listen for 

implicit use of 

number or 

operational 

rules. Encourage 

the explicit 

description of 

these as a 

platform for 

students to make 

conjectures and 

generalise. 

Facilitate students 

to represent 

conjectures and 

generalisations 

written in natural 

language in open 

number sentences 

using symbols they 

are comfortable 

with and linking 

this back to the 

written form. 

Provide opportunities for students to formulate conjectures and generalisations in their 

own natural language. Have the class examine the recorded conjectures and 

generalisations and collectively refine these. 
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APPENDIX B: LESSON STUDY REFLECTION QUESTIONS 

 

Clear objectives to enhance students’ learning: 

Did the planned lesson activities support the children in reaching the learning objectives? How? 

 

Did the lesson build on prior learning?  

 

Did the lesson activities provoke disagreement and mathematical argument? How? If not how 

could that have been achieved? 

 

Did the students understand why the topic/concepts/activity was important mathematically? 

Tasks and learning aids that help students accomplish learning objectives: 

Was the degree of challenge appropriate for the students at the time? How? If not how could it 

have been made more challenging? 

 

Were there any unanticipated responses? 

 

Were the students given opportunities to express mathematical ideas individually, in a group, in 

pairs, in whole class discussion? 

 

What changes could be made to promote more exchanges of mathematical ideas? 

 

Did the lesson incorporate appropriate use of visual and communicative tools? 

 

Did the lesson provide students with opportunities to extend or secure their knowledge 

understanding or skills? 

Teacher questioning and support for student learning 

How did (teacher’s and peers) questions and guidance enhance students’ learning? 

 

Which questions from peers or teacher appear to facilitate the students’ learning? 

 

How were students provided with appropriate support to overcome misconceptions or 

misunderstanding? 

 

How were students supported in making use of the resources available for the lesson? 

How was grouping used to maximise student learning? 

 

Effective integration of assessment 

How was formative assessment used in decisions to modify or adjust the plan? 

 

Did the students accomplish the learning objectives? What evidence do you have of this? 
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APPENDIX C: TEACHER INFORMATION SHEET AND CONSENT 

FORM  
 

 

ETHICS PROTOCOL 
Facilitating the development of early algebraic reasoning 

 

1. Who I am 

My name is Jodie Hunter. I am a Research Fellow in Mathematics and Statistics at the 

University of Plymouth.  

 

2. What this research is about 

This study aims to investigate how the classroom environment and instructional tasks can 

support children in developing early algebraic reasoning. It will also investigate student and 

teacher perspectives of classroom events during mathematics lessons.   

 

I will be investigating and exploring:  

 How professional development meetings can support teachers to facilitate early algebraic 

reasoning opportunities in their classrooms.   

 Classroom organisation and practice of teachers participating in this study.  

 Teacher views of student learning and participation in mathematics lessons.  

 Student views of their learning and participation in mathematics lessons.  

 Student achievement in early algebra in classrooms in this study.  

I am inviting you to be part of a collaborative design experiment research process in which 

we will look at some of the ways children construct algebraic understanding as they 

participate in mathematical activity in classroom. We will also examine how the 

instructional environment and tasks support children to develop early algebraic 

understandings.  

 

I anticipate that the project will yield findings that will lead to conference papers and 

research papers submitted for publication. Some excerpts from the recordings made during 

interviews or in the classroom may be used as part of conference presentations.   

 

 

3. Data Collection  

Permission to participate in the study will be sought from both the parents of the pupils in 

your class and the pupils themselves. The pupils and their parents/caregivers will be given 

full information and consent will be requested in due course. 

 

During the study I plan to:  

 

 Conduct interviews with you which will be audio-recorded. 

 Audio record six professional development and planning meetings over the school year.  
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 Assess student learning of early algebraic concepts through the use of individual task 

based assessment.  

 Interview your students to gain their perspectives on the learning of algebra.  

 Observe classroom mathematics lessons including the use of audio and video recording 

and still photography. Collect examples of student work from the lessons. Conduct 

follow-up interviews involving video and photo stimulated recall to gain both teacher 

and student perspectives on the mathematical learning during the lesson.   

 Collect an audio-recorded reflective log from you.   

Your involvement in this project is entirely voluntary. If you are willing to be involved, the 

interview and classroom observations will involve the use of video and audio recording. 

During the interview or classroom mathematics activities you may ask at any time that the 

audio or video recorder be turned off and any comments you have made be excluded from 

the study. All project data will be stored in a locked drawer at the University of Plymouth, 

with no public access and used only for this research and any publications arising from this 

research. After completion of ten years, all data pertaining to this study will be destroyed in a 

secure manner. 

 

4. Confidentiality  

All efforts will be taken to maximize confidentiality and anonymity for participants. The 

school name and names of all participants will be assigned pseudonyms to support their 

anonymity. However complete anonymity cannot be guaranteed due to the nature of this 

study as classroom and school based. At the end of the study a summary will be provided to 

the school and teachers involved. 

 

5. Consent and your rights 

Please note you have the following rights in response to my request for you to participate in 

this study. To: 

 refuse to participate in the study 

 decline to answer any particular question; 

 withdraw from the study at any time;  

 ask any questions about the study at any time during participation; 

 provide information on the understanding that your name will not be used unless you 

give permission to the researcher; 

 ask for the audio or video recorder to be turned off and any comments you have made be 

excluded from the study; 

 be given access to a summary of the project findings when it  is concluded. 

 

If you have further questions about this project you are welcome to discuss them with me 

personally:  

 

Jodie Hunter  

Phone: 01752 585347  email: jodie.hunter@plymouth.ac.uk   

 

 

 

mailto:jodie.hunter@plymouth.ac.uk
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Developing early algebraic reasoning 
 

CONSENT FORM: TEACHER PARTICIPANTS 

 

THIS CONSENT FORM WILL BE HELD FOR A PERIOD OF TEN (10) YEARS 

 

I have read the Information Sheet and have had the details of the study explained.  My questions have been 

answered to my satisfaction, and I understand that I may ask further questions at any time or withdraw completely 

or in part from the research. 

I agree/do not agree to being audio-taped 

 I agree/do not agree to being videotaped  

I agree/do not agree to participating in this study under the conditions set out in the Information Sheet. 

Signature:  Date:  

 

Full Name - printed  
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APPENDIX D: STUDENT AND CAREGIVER INFORMATION SHEET 

AND CONSENT FORM  
 

ETHICS PROTOCOL 
Developing early algebraic reasoning with primary school students 

 

6. Who I am 

My name is Jodie Hunter. I am a Research Fellow in Mathematics and Statistics at the 

University of Plymouth.  

 

7. What this research is about 

I am interested in finding out how children can develop their number and algebra 

understandings. I would like to find out: 

 How you learn algebra in your classroom?  

 What do you think about learning algebra?  

 

Your teacher has agreed to participate in this study. I would like to invite you with your 

parent's permission to be involved in this study.  I plan to write conference papers and 

research papers from the information that I find out, but I will not mention your name or the 

school in anything that is published. Some excerpts from the recordings made during 

interviews or in the classroom may be used as part of conference presentations.  

 

8. Data Collection  

If you agree to be involved, I will interview you about your number and algebra knowledge 

and your teacher and I will use this to plan activities to be used in the classroom. The 

interview will be tape-recorded and you may ask at any time that the tape recorder be turned 

off. If you change your mind or are not happy about what you said, you can request that any 

comments you have made are not used in the study.  

 

Some of the normal mathematics lessons that are taught in your classroom will be audio and 

video recorded and photographed. During classroom mathematics activities you may at any 

time ask that the audio or video recorder be turned off.  If you change your mind or are not 

happy about what you said, you can request that any comments you have made are not used 

in the study. With your permission sometimes I might collect copies of your mathematics 

written work. You have the right to refuse to allow the copies to be taken and it will not 

count against you in any way. Following the mathematics lessons, I may ask you to talk 

about your learning during the lesson and this will be audio-recorded.  
 

The mathematics activities you do in class will be the same whether you agree to be in the 

study or not. The interview and observations will take place in the classroom and be part of 

the normal mathematics programme. It is possible that talking about your learning may help 

you clarify what you know about number and algebra and what you need to know next. 
  

 

 

9. Confidentiality 
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All the information gathered will be stored in a locked drawer at the University of Plymouth 

and used only for this research. After completion of ten years all the information will be 

destroyed. All efforts will be taken to maximise your confidentiality and anonymity which 

means that your name will not be used in this study and only non-identifying information 

will be used in reporting. However total anonymity cannot be guaranteed due to the research 

taking place in a classroom and school where others may overhear. 

 

10. Consent and your rights 

I ask that you discuss all the information in this letter fully with your parents before you give 

your consent to participate. 

Please note that you have the following rights: 

 To say you do not want to participate in the study 

 To refuse to answer any questions that have been asked 

 To withdraw from the study at any time 

 To ask for any comments you have made to be excluded from the study 

 To refuse to allow copies of your written work to be taken  

 To ask questions about the study at any time 

 To participate knowing that you will not intentionally be identified at any time 

 To be given a summary of what is found at the end of the study 

 

If you have further questions about this project you are welcome to discuss them with me 

personally:  

 

Jodie Hunter  

Phone: 01752 585347  email: jodie.hunter@plymouth.ac.uk   

mailto:jodie.hunter@plymouth.ac.uk
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Developing early algebraic reasoning 
 

CONSENT FORM: STUDENT PARTICIPANTS 

 

THIS CONSENT FORM WILL BE HELD FOR A PERIOD OF TEN (10) YEARS 

 

I have read the Information Sheet and have had the details of the study explained.  My questions have been 

answered to my satisfaction, and I understand that I may ask further questions at any time or withdraw completely 

or in part from the research. 

I agree/do not agree to being audio-taped 

 I agree/do not agree to being videotaped  

I agree/do not agree to participating in this study under the conditions set out in the Information Sheet. 

Child’s Signature:  Date:  

 

Full Name - printed  

 

 
CONSENT FORM: PARENT/CAREGIVERS OF STUDENT PARTICIPANTS 

 

THIS CONSENT FORM WILL BE HELD FOR A PERIOD OF TEN (10) YEARS 

 

I have read the Information Sheet and have had the details of the study explained.  My questions have been 

answered to my satisfaction, and I understand that I may ask further questions at any time or withdraw my child 

completely or in part from the research. 

I agree/do not agree to_______________________________________ being audio-taped 

I agree/do not agree to_______________________________________ being videotaped  

I agree to ____________________________________________________ participating in this study under the 

conditions set out in the Information Sheet. 

Parent/Caregivers 

Signature: 

 Date:  

 

Full Name - printed  
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APPENDIX E: SCHEDULE OF STUDENT INTERVIEW QUESTIONS 
 

Questions which were asked throughout the duration of the research study 

 

- What were you learning about in maths today?  

- As each photo was shown - What was happening in that part of the lesson?  

- You were working with a partner and in a group today, how did that go for you?  

- Did anybody help you or did you learn anything from anybody today? 

 

Additional questions asked during Phase One interviews 

 

- Is it important for you to be able to explain your ideas in maths? Why or why not?  

- Is it important for you to listen to other children explain or talk about how they solved 

problems in maths? Why or why not?  

 

Additional questions during Phase Three interviews 

 

- When you explain your ideas or talk about them with other people in the class does it 

help you? Why or why not?  

- When people talk about their ideas or give explanations does that help you learn maths? 

Why or why not? 
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APPENDIX F: EXAMPLE OF TRANSCRIPT OF CODING FROM NVIVO 
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APPENDIX G: EXAMPLES OF DATA ANALYSIS GRAPHS 
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Developing Teacher Understanding of Early Algebraic Concepts 

Using Lesson Study 
 

Jodie Hunter 
Massey University 

<j.hunter1@massey.ac.nz> 
 

 

This paper reports on the use of lesson study as a professional development tool. In particular 

the paper focuses on the way in which the teachers increased their understanding of how 

tasks, classroom activity and teacher actions scaffolded student learning of early algebraic 

reasoning of equivalence and the commutative principle. Teacher voice is used to illustrate 

how lesson study cycles caused the teachers to reflect and review their own understandings 

of early algebraic concepts and how their students considered the concepts. 
 

 

Introduction 
 

Algebra is often provided as a reason for both the difficulties individuals encounter 

learning and making sense of mathematics, and the disaffection many people hold towards 

it. Given the position algebra holds in the educational and economical future of all 

individuals, Knuth and his colleagues (Knuth, Stephens, McNeil, & Alibabi, 2006) describe 

a growing consensus between researchers and educators that algebra be introduced at a 

much younger age with a focus on the integration of teaching and learning arithmetic and 

algebra in classrooms. This emphasis is confirmed in policy documents which describe a 

unified curricula strand (e.g., Department for Education and Employment, 1999; National 

Council of Teachers of Mathematics 2000). Teachers, within this changing context are 

required to find ways to make algebra accessible to all their students, through the use of rich 

learning tasks in environments which provide all students opportunities to learn algebra with 

rich, conceptual understanding (Chazan, 1996). The focus of this paper is on how a group of 

teachers used lesson study to explore how some designed tasks could be used to better 

support student development of key early algebraic concepts. 

Teachers have a key role in reforming classroom practice and activities which integrate 

arithmetic and algebra. But, we know that for many this poses considerable challenges; they 

may not have understandings of how to make links between arithmetic and algebra, nor may 

they have had experience constructing and using rich connected types of integrated 

(arithmetic/algebra) problems. As Blanton and Kaput (2003) suggest, they may not have 

developed their algebra ‘ears and eyes’ when working with the patterns and relationship in 

number which promote rich connected conceptual understandings. Blanton and Kaput 

suggest a remedy for this situation could be a form of professional development in which 

opportunities are structured so teachers identify numerical patterns and relationships which 

connect to early algebraic reasoning. In this paper lesson study was used as a form of 

professional development to facilitate a group of teachers enhanced algebraic ‘eyes and 

ears’. The aim of this paper is to explore how professional development in the form of 

lesson study supported the teachers to ‘notice’ opportunities for developing student’s early 

algebraic reasoning. The questions asked in this study were: How did the use of lesson study 

support teachers to comprehend how their students understood the key concepts of 

equivalence and the commutative principle, and; how did the repeated cycles in lesson study  
In J. Dindyal, L. P. Cheng & S. F. Ng (Eds.), Mathematics education: Expanding horizons (Proceedings of the 35th annual 

conference of the Mathematics Education Research Group of Australasia). Singapore: MERGA.© Mathematics Education 

Research Group of Australasia Inc. 2012 
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facilitate  the  teachers  to  identify  the  challenges  involved  in  students’ constructing 

conceptual understandings of equivalence and the commutative principle. 

 

Lesson study, developed in Japan, is one form of professional development which aims 

to increase teachers’ knowledge about mathematics, knowledge about ways of teaching 

mathematics, and knowledge about the ways in which learners engage with and make sense 

of  mathematics  (Fernandez  &  Yoshida,  2004).  In  the  lesson  study  format  a  group  of 

teachers collaboratively plan a lesson (termed the ‘study lesson’) over a series of meetings. 

A cycle is developed. The ‘study lesson’ is taught by a team member, observed by other 

members with particular focus on student responses. Then in subsequent meetings the 

observed ‘study lesson’ is discussed, analyzed, reconstructed in line with student responses, 

then re-taught to a different group of students. This cycle may be repeated or different 

lessons developed. In this paper lesson study was used as a form of continuing professional 

development (CPD), which focused on enhancing specific aspects of teacher knowledge but 

with a particular emphasis on student learning. 
 

Developing Early Algebraic Reasoning 
 

Students constructing rich conceptual understandings of algebraic reasoning takes a long 

time and requires that their attention is placed on the inter-related connections across all 

other types of mathematics, and particularly arithmetic (Blanton & Kaput, 2005). The 

students’ intuitive knowledge of patterns and numerical reasoning are used to provide a 

foundation for transition to early algebraic thinking (Carpenter, Franke, & Levi 2003). 

Carpenter and his colleagues explain that for students to justify, and generalise their 

mathematical reasoning about the properties of numbers they also need to be provided with 

opportunities to make conjectures in the classroom environment. Research studies 

investigating young children’s development of early algebraic reasoning covers a wide field 

including those which focus on classroom practices which scaffold student justification and 

generalisations. However, in this paper to explore how lesson study supported a group of 

teachers  to  develop  understanding  of  how  their  students  constructed  early  algebraic 

reasoning the focus is narrowed to two areas of early algebra, equivalence (equality) and the 

commutative principle. The next section makes a brief examination of the literature related 

to equivalence, the commutative property and lesson study as a professional development 

process. 
 

Equivalence 
 

Developing understanding of equality is a concept fundamental to algebraic reasoning. 

Kieran (1981) in her seminal studies illustrated that many elementary school students have 

an inadequate understanding of the equal sign. Other studies (e.g., Carpenter et al., 2003; 

Knuth et al., 2006) concur. The difficulties these students encounter are caused because they 

view the equal sign as an indicator of an operator rather than a symbol of a mathematically 

equivalent operation. This limits the strategies they have available to solve equivalence 

problems and in later years symbolic equations (Knuth et al.). To address this problem, 

teachers need to be aware of how many students view the equal sign and construct and use 

activities in the classroom which expand student understandings of the equal sign and 

ensure  that  the  misconceptions  are  identified  and  addressed.  A  range  of  successful 

classroom interventions (e.g., Carpenter, et al., 2005; Molina, Castro, & Castro, 2009) 

which enriched student understanding of equivalence have included non-standard 

representations such as true and false number sentences and balance scale representations. 



348 

Commutative Principle  

 

 

Opportunities  to  explore  the  properties  of  numbers  and  operations  provide  a  rich 

platform for developing algebraic reasoning. However, many exploratory studies (e.g., 

Anthony & Walshaw 2002, Warren 2001) illustrate that elementary students often have 

limited classroom experiences in exploring the properties of numbers and operations. As a 

result the students lack understanding of the operational laws and are unable to construct 

correct generalisations of the commutativity principle. Anthony and Walshaw illustrated 

that many students generalised the commutative nature of addition and multiplication, but 

over-generalised the relationship to include subtraction and division. They showed that 

while some students could explain the commutative property they could not construct 

generalised statements nor use materials to model their conjectures. However, studies by 

Blanton and Kaput (2003) and Carpenter and his colleagues (2003) provided clear evidence 

that when young children are provided with opportunities in the classroom they learn to 

construct and justify generalisations about the fundamental structure and properties of 

numbers. Importantly, these studies demonstrated that when classroom activity targeted 

students’ numerical reasoning they explored, constructed and validated conjectures using 

appropriate generalisations and justifications 
 

Theoretical Framework 
 

The theoretical framing of this paper is based within a socio-cultural perspective. In this 

view the processes of teaching and learning hold a reciprocal relationship. The teaching is 

integrally connected to student learning as manifested through the changing competencies 

and  disposition  of  the  students.  In  turn,  the  teachers’  professional  development  is 

interrelated and identified through evidence of their actions in the classroom, and changes in 

their professional competencies and attitudes. 
 

Methodology 
 

This paper reports on episodes drawn from a larger study which involved a year-long 

continuing   professional   development   classroom-based   intervention.   The   participants 

included two separate groups of elementary teachers (one group from England the other 

from the Channel Islands). The sample was an opportunistic one of teachers who wanted to 

extend understandings of ways to facilitate young students’ development of early algebraic 

reasoning. This paper specifically reports on one section of the larger study. In this section 

the teachers engaged in lesson study for the first time although the Beaumont School 

teachers had engaged in a paired collaborative observation approach the previous school 

year, teachers at Hillview School had no experience using collaborative approaches to 

planning or teaching. The schools were a mixture of rural and suburban contexts and the 

students came from a range of socio-economic and ethnic backgrounds. The teachers had 

varying levels of experience. 

In the lesson study process used in this study each group of teachers worked as a 

professional learning community within their own school. Over-arching aims relevant to 

each school were established immediately. These collaboratively agreed goals broadly 

established that the teachers wanted to develop creative and flexible problem solvers. Then 

all members of the research team (the teacher groups and researchers) planned an area of 

focus for the study lessons. The foci corresponded to mathematical concepts their students 

had difficulties with or those which the teachers felt less confident about teaching. Through 

collaborative  activity  ‘study  lessons’  were  planned  and  taught  in  one  classroom  and 

observed by the research group In-depth analysis and discussion followed observations of 
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the study lesson and subsequent iterations as it was re-planned, re-taught and re-observed in 

different classrooms as part of the lesson study cycle. 

The lesson study cycles in the two settings differed. At Hillview the teachers wanted to 

address   how   their   students   over-generalised   the   commutative   principle   to   include 

subtraction and division. A lesson study cycle was devised which included lessons designed 

to facilitate student understanding and justification of the commutative property with a 

focus on the use of representations to model conjectures and justify reasoning. The students 

were given the following statement made by a student in an earlier lesson: ‘If you have two 

numbers and you are adding them it does not matter which number you add first the answer 

will still be the same.’ The students worked in small groups of four and explored with 

equipment whether the statement held when applied to the different operations.  They were 

required to model their reasoning with equipment, as well as represent it verbally, 

symbolically and solve problems which involved multiple operations. At Beaumont the 

study lesson cycles aimed to develop students’ skill at solving multi-step word problems and 

part of the focus was placed on the equal sign. The students were asked to make a specific 

number using a number sentence which was then represented as equivalent to another 

number sentence (for example 45 = 20 x 2 + 5 = 20 + 25 = 45 – 0) and included some 

incorrect multi-step equations. 

Data gathering included detailed field notes, video and audio records of the planning 

meetings and classroom lessons and artefacts. The video and audio recordings were wholly 

transcribed  and  through  an  iterative  process  using  a  grounded  approach,  patterns,  and 

themes were identified. The on-going and retrospective data analysis supported the 

development and construction of case studies of the two study groups. Evidence was 

triangulated using classroom observations, artefacts and analytical discussion. 
 

Findings 
 

The first section outlines how the use of the lesson study process facilitated the teachers 

to notice key aspects of early algebraic reasoning and included both planned opportunities 

for student learning and spontaneous opportunities which arose as tasks were enacted in 

classrooms. 
 

Developing Understanding of Student Approaches to the Tasks 
 

Discussion and analysis of student responses in the study group illustrated that 

opportunities to closely observe student responses during the lesson provided a foundation 

for the teachers to build understandings of how students approach tasks which challenge 

their understandings of the commutative principle. The teachers expressed surprise that 

many students began with the use of counter-examples to show that the commutative 

property did not apply to subtraction. For example Ellen commented: 
 

Iris and her partner were looking at subtraction without even being prompted to do it because they 

said straight away “it doesn't work for subtraction but it is working for addition. 
 

Similarly, in further discussion another teacher noted that the students initiated their 

investigation with the development of a counter-example: 
 

They were doing it with the subtraction. They did four minus one equals three and one minus four 

and Lauren said ‘”so that is subtraction done then, that doesn't work” and she did it for one, if it 

doesn't work, it doesn't work whereas she then said “actually five times three and three times five 

works hmm”. Then they did something with twos and then she said “does it only work with twos 

though”. So then they tried with a different number. That was Lauren who said that so she had got the 
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idea that if with one it didn't work, she just discarded that straight away and went straight onto the 

next one. 
 

Through their observations in the lesson study they had observed how the students 

intuitively realised that a counter-example disproved the conjecture. However, the students 

would explore further with other numbers if the conjecture appeared to be correct; in that 

situation they were not satisfied that one example proved a conjecture. 
 

Developing Understanding of the Role of Materials in Sense-making 
 

Lesson study provided opportunities to develop teacher knowledge of how students 

could justify their conjectures using materials. For example, in a study group discussion it 

was evident that a teacher lacked understanding of how the children could justify their 

conjectures through use of an array. During the observed lesson two groups of students 

justified an explanation that multiplication was commutative through use of an array. The 

teacher did not use their explanation to extend the other students’ reasoning. Then when 

another student had difficulties articulating the same concept the teacher stopped her 

explanation. In the post lesson discussion the researcher stated what the student was 

explaining: 
 

Researcher: What Andrea was trying to say but she couldn't quite articulate it was if you just kept 

making it longer it could be any number because you could just keep adding on and it is still the same 

amount multiplied by the same amount. 
 

Monica: I was conscious of the time, the bell was going to go and I wasn't sure of what she was 

trying to say from where I was standing. 
 

The teacher’s response illustrates that she did not understand how an array supported the 

explanation  nor  could  she  build  on  and  extend  the  students’  explanations  of  the 

commutative property. This was reiterated during further analysis in the follow-up 

discussion. As the other teachers explained and analyzed the student responses the teacher 

clarified her own actions: 
 

Monica: I didn't know what he was saying about the two numbers. 

Melissa: He was moving the rows. 

Ellen: Yes, he was saying to turn them around. 
 

Melissa: He moved the rows, he said look you don’t have to… 
 

The teacher explains from her own point of confusion her response: 
 

Monica: I thought actually that might have confused everybody else. 

Ellen: But he knew what he meant so he could explain it the other way. 

At this point Monica acknowledged that because she was confused by what the 

representation showed she assumed many students would also be. 

The teachers also became aware of how important it is that students have access to 

equipment to scaffold their understanding. After observing that a group of students 

encountered difficulties investigating whether division was commutative Ellen commented: 
 

When they had the pegs in front of them then they could argue it but they couldn't argue it just on 

paper. They needed to be able to see the five pegs and they can’t divide them amongst the ten people 

and quite a few groups were like that. 
 

The teachers also observed the way in which the students used equipment to link to real- 

life situations to model their reasoning: 
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I think it was Iris and Andrea, they were talking about the objects and they suddenly became sweets, 

“if we have got three sweets we can't divide them between seven people” so they were then jumping 

ahead and moving that relationship on, that was good. I think it was the resources that prompted that. 
 

During  further  discussion  the  teachers  illustrated  how  they  now  understood  how 

physical representations supported students to work at higher levels of generality: 
 

Monica: I think even with John if he hadn't seen it on the grid [referring to an array constructed on a 

pegboard] he probably wouldn't have got it as quickly as he did. 
 

Melissa: Because he had really got it in his head, hadn't he? Because he wasn't even really sure if six 

times four what it equaled, he just knew that it was the same. 
 

Monica: Originally he was convinced that it didn't work so it was only after Sridatta disagreed and 

showed him it on the grid. 
 

Melissa: The fascinating part is he didn't even work out what the answer was. It didn't matter, it was 

irrelevant [indicates turning array with hands]. 
 

However, the teachers were surprised at the difficulties students had using equipment to 

model and justify conjectures. During the first lesson cycle their attention was drawn to how 

the procedural use of symbols dominated how the students responded to tasks: 
 

Melissa: The thing is them trying to use them as symbols and they got fixated on the idea, like that 

group over, they even had the scissors as an equals sign 
 

Ellen: And using the blocks to try and create the numbers... I think making it explicit that the objects 

are representative of a proper number and that they are not to then start creating equations out of 

them. We don't want to see them as numbers but as objects. 
 

Again the next lesson cycle drew their attention to the student attempts to use materials 

as symbols: 
 

Melissa: I think that’s the same thing again, they wanted to start putting in the signs and symbols...so 

they had three colours then a white peg, then one peg and then a white peg and then four pegs and she 

said “we’ve put that peg to mean add” so they were doing the same thing. It’s like they need to have 

the symbols there rather than just having like their array as a justification. 

 

Developing Knowledge of How Understanding of the Commutative and Equal Sign is 

Constructed Over Time and through Specific Teacher Actions 
 

The study group discussion provided many opportunities for the teachers to reflect on 

what happened in the study lessons and identify missed teaching opportunities. For example 

in  one  section  of  a  lesson  the  discussion  focused  on  examining  the  structure  of 

multiplication operations and the teacher shifted the children from the general to the specific 

by guiding them to solve the equations to show the answers were the same. In the analytical 

discussion with colleagues she recognized that by directing the students towards answers 

rather than the general structure of multiplication some students became focused on specific 

equations rather than generalized understandings of the commutative nature of 

multiplication: 
 

Monica: I shot myself in the foot because I did that because I knew that some of them hadn't got it so 

I wanted to show them that actually you know you could tell if you worked them out separately. You 

could ascertain they had the same answer but then it kind of made other people get stuck at that stage. 
 

In the continuing conversation she saw how her actions caused many students to use 

procedural rather than conceptual understandings. 

The lesson cycles also provided a foundation for the teachers to recognise the need to 

press students beyond specific examples to generalised reasoning. After a second lesson 

cycle a teacher observed: 
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Melissa: It is almost as though because they had chosen numbers that were simple enough that they 

knew that two times four made eight so they weren’t looking at them as an array, they were looking 

at them as if that is the numbers that we are dealing with. 
 

This statement led to further discussion in the group, of actions they could use to 

scaffold the students towards more generalised reasoning. 

The post-lesson discussions also provided evidence of the teachers’ growing ability to 

notice student misconceptions of early algebraic reasoning beyond that of the lesson foci. 

One example occurred when the teachers discussed the difficulties the students had in 

representing the commutative principle as a number sentence (for example 6 + 5 = 5 + 6). 
 

Ellen: They seem to find it really hard to write one continuous number sentence. 
 

In response Monica drew the groups’ attention to the on-going difficulties the students 

had with the equal sign as a concept of equivalence: 
 

They are still not understanding the proper meaning of the equal sign or perhaps they are but when it 

comes to applying it in a context then they’re not. 
 

In the teacher discussions evidence was provided that they became aware that 

constructing understanding of equivalence is a lengthy and difficult process which requires 

a press from the teacher and a lot of student discussion and exploration: 
 

Zara: We still had to keep coming back to that, that the two sides of the equation had to balance. How 

much time we have done that, and even given that they had done that in the first part of the lesson. 

They don't seem to see that as the same. 
 

Within  this  discussion  on-going  analysis  of  the  observation  and  how  the  activities 

caused  students  to  think  about  equivalence  led  to  further  analysis  and  reflection  from 

another teacher. 
 

Rebecca: I think maybe because we historically present children with a lot of things with the answer 

just being one box that sort of one where they had to look maybe provoked that thinking a little bit 

more. You know at the beginning where they said something, something equals and then the next 

child does equals, I don’t know, when I look at it now I think it is a fantastic activity and a fantastic 

assessment...but maybe they are just seeing and the next one, and the next one, and now it’s my turn 

and they don’t actually see the equal sign whereas this question here and that one here in particular 

really made them think about the idea of balance. 
 

In this statement the teacher has voiced her growing awareness of why students develop 

misconceptions  around  the  equal  sign  and  the  importance  of  considering  how  teacher 

actions coupled with rich tasks structure how students make links between arithmetical and 

algebraic reasoning. 
 

Discussion and Conclusions 
 

The use of teacher voice in the study group discussions sheds light on the many learning 

opportunities the teachers encountered as they observed and listened to student activity 

during the lesson study. Clearly they observed the pivotal role the teacher had, in the study 

lessons, in making links between the early arithmetical and algebraic reasoning and pressing 

the students towards situations of generality. Their algebra ‘eyes and ears’ (Blanton & 

Kaput, 2003) became more attuned to recognizing common misconceptions as the teachers 

worked together in the lesson cycles. They also developed cognizance of the need to better 

match their actions to the classroom discussions and activity. 

Of importance in this study was the teachers’ recognition of the many challenges they 

face in developing students’ rich connected learning about equivalence and the commutative 

principle. As previous researchers (e.g., Carpenter et al., 2003; Blanton & Kaput, 2005) 
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note, students have common misconceptions but for the teachers recognition of these caused reflective 

and analytic discussions. The findings of this paper suggest that lesson study has considerable  

promise  as  a  learning  tool  for  teachers  to  support  them  reforming  their practices to integrate 

arithmetic and algebra. 
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Developing sustainable professional development which facilitates teachers of 
mathematics to develop effective mathematics pedagogy has been a key aim in recent 
years. This paper examines how lesson study can be used with networks of teachers 
as a vehicle to promote and sustain professional development. Drawing on findings 
from a year-long study involving four schools, the paper highlights how through the 
process of collaboratively planning a lesson, observing and discussing it, teachers 
were facilitated to adopt approaches to mathematics teaching that are aligned with 
the factors identified as effective mathematics pedagogy. It also illustrates how lesson 
study can support teachers to engage in a collaborative network, develop their 
professional knowledge, and reflect on their teaching practice. 

 
A key aim of professional development in recent years both in the United 
Kingdom and internationally has been to develop sustainable networks of 
teachers of mathematics who engage in developing effective mathematics 
pedagogy (Askew & Burns, 2005; Jaworski, 2006; Muir & Beswick, 2007). 
According to the findings of the report by Back, De Geest, Hirst, and Joubert 
(2009), some key indicators of the effectiveness of continuing professional 
development are opportunities to develop networks, a focus on student learning, 
and the facilitation of reflection on teaching practice. This paper considers the 
essential elements of lesson study as a vehicle for sustainable professional 
development with networks of teachers. It addresses the ways in which the post- 
teaching discussion draws on classroom observations of teaching practices and 
evidence of student learning. It illustrates how the ongoing relationships 
developed in the networks support the participants in sustaining their 
development as expert users of effective pedagogical practices in teaching 
mathematics. The specific questions addressed in this paper are: does 
involvement in the process of lesson study sustain professional development? 
How does that involvement sustain professional development? 

 

Background and Theoretical Framework 

The theoretical framing of this paper is based within a socio-cultural perspective 
on the processes of teaching and learning. In this perspective teaching and 
learning have a reciprocal relationship with effective teaching identified through 
evidence of the response to it in terms of student learning. This learning can be 
manifested through the changing identities, dispositions and competencies of the 
students involved. In addition, teachers’ professional development can be 
identified through evidence of changes in professional identity, attitudes, and 
their actions in their classrooms. 
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There are four important elements that underlie the research described in 

this paper and underpin the theoretical stance. These elements are the process of 
lesson study, the notion of professional learning communities, the nature of 
effective mathematics pedagogy, and reflection on practice. The first three key 
elements are addressed in turn before the fourth section highlights how 
reflection on practice may be facilitated through the process of lesson study 
which integrates both professional learning communities and an examination of 
effective mathematics pedagogy. 

 

Lesson Study 
 

The research study reported in this paper involved groups of teachers 
participating in communities of inquiry with the methodology known as lesson 
study as their foci. A brief account of the lesson study process and its use as a 
vehicle for professional development are provided in the following section. 

The process of lesson study is complex consisting of many variations. As a 
form of professional development, it pays attention to the key aspects of 
teachers’ mathematical knowledge for teaching identified in the literature 
(Joubert & Sutherland, 2008). These key aspects include: knowledge about 
mathematics, knowledge about ways of teaching mathematics, and knowledge 
about the ways in which learners engage with and make sense of mathematics. 

Lesson study as a form of continuing professional development (CPD) is to 
a greater or lesser degree based on Japanese models of development (Burghes & 
Robinson, 2010; Fernandez & Yoshida, 2004; Lewis, 1995) that particularly 
emphasise student learning. The process of lesson study involves a group of 
teachers in collaboratively planning a lesson called the ‘study lesson’ over a 
series of meetings. This lesson is then taught by one of the teachers in the group 
and videoed or observed by the whole team, with a particular emphasis on the 
student responses to the lesson. The observed lesson is then discussed at a 
meeting of the group where it is further developed on the basis of the student 
responses and consequently re-taught to a different group of students. This may 
then be repeated or a different lesson developed. The size of a lesson study group 
can vary considerably but generally involves up to five teachers with a minimum 
of three. In Japan, lesson study is the main form of professional development for 
teachers and each teacher would expect to be involved in several lesson study 
cycles during the course of an academic year. 

A superficial view of lesson study is that it is a process centred on 
developing the ‘perfect’ lesson on a particular topic for students of a specific age; 
however, this is not the intention of the process. In contrast, a number of subtle 
aspects support the development of a process in which teachers are led to a deep 
engagement with the processes of teaching and learning. Consequently, 
engaging in a lesson study cycle prompts teachers to reflect on their own 
approaches to the processes of teaching and learning and to develop their own 
practices in ways that are meaningful to them in their working contexts. A key 
aspect  of  lesson  study  identified  by  Stepanek  and  Appel  (2007)  is  the 
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identification of an overarching aim. This aim should be closely aligned with the 
broad aims and intentions of the school and may be linked to mission statements 
or plans for improvement. An example might be: ‘Our students will become 
independent thinkers (learners) who enjoy working together to produce creative 
solutions in unfamiliar situations’. This over-arching aim would then be evident 
in each study lesson that the group collaboratively develops with all of the 
lessons contributing to its achievement in some way. In a wider sense, this may 
influence other lessons that are taught and therefore can lead to a wider adoption 
of the strategies and approaches developed for the study lesson. Another key 
aspect of lesson study is the development of a lesson which makes the students’ 
learning visible to the observers (Burghes & Robinson, 2010). This can be 
described as an ‘open approach’ and involves developing tasks for the students 
which stimulate responses that reveal their engagement with the problem 
presented and their thinking as they present their solutions. Typically these open 
tasks may provoke a range of responses and the teacher will observe the 
students’ responses during the course of the lesson and build an appropriate 
sequence in which they can be presented to the class. During the course of the 
presentation of the responses, the students are expected to interrogate their 
fellow students’ work and to validate its mathematical integrity and truth. 

This summary of lesson study constitutes the basic pattern of the approach; 
however, there are many variations on this both in Japan and in other contexts. 
These variations result in different levels of engagement with the principles 
underpinning lesson study. Engagement with the principles of lesson study is 
neither straightforward nor easy, and learning and change through engaging 
with this process takes prolonged time periods. 

 

Participating in professional learning communities 
 

To consider the nature of the professional learning community in which 
participants were involved through the process of engaging with lesson study, 
the theoretical frameworks of communities of practice developed by Wenger 
(1998) and communities of inquiry developed by Jaworski (2004, 2006) are used. 
Wenger ’s notion of communities of practice focuses on the concepts of practice 
and identity and the interrelationships between them. Learning is seen as 
developing participation in practice and involves investigating how the 
participants learn to participate in the practices of the community. Application of 
a community of practice approach to the analysis of teachers’ professional 
development allows exploration of the possibility that any one participant might 
aim to identify himself or herself in multiple ways, in the service of more than 
one (social) purpose. Teachers engaged in professional development within a 
lesson study group are involved in positioning themselves as a participant in the 
lesson study community in which they are engaged with social ‘work’ associated 
with developing the study lesson and developing their professional identities 
within the group. Use of this framework does not imply that participants are 
consciously aware of this work as it may be entirely tacit and embodied in the act 
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of participation itself. Instead, it involves the teachers in positioning themselves 
‘as’  someone  in  the  lesson  study  group  which  can  be  conceived  of  as  a 
community of practice. Wenger, from a sociocultural perspective, notes that 
practice “is a process by which we can experience the world and our engagement 
with it as meaningful” (1998, p. 51). From this perspective, in the case of the 
teachers in the study, the focus of their participation in lesson study was on the 
practice of lesson study as a vehicle for developing their practice as effective 
teachers of mathematics. They were seeking to develop their practice as teachers 
of  mathematics  and  develop  meaningful  approaches  to  that  practice  that 
increasingly  developed  their  identities  as  users  of  effective  mathematics 
pedagogies. 

Jaworski (2004, 2006) develops Wenger ’s (1998) notion of communities of 
practice and applies it to professional development work with teachers. She sees 
teaching as a social process in which teachers are practitioners and in which their 
learning is conceptualised as developing their identities as teachers through their 
participation in a community of practice. In addition, Jaworski suggests that this 
development can perpetuate the status quo of practice within a group of teachers 
that settles down to conformity with classroom practices that are essentially 
harmonious  but  which  are  ‘not  necessarily  providing  effective  learning 
opportunities  for  all  students’  (p.  190).  Jaworski  argues  that  for  practice  to 
develop  in  ways  that  offer  improved  learning  opportunities  for  students, 
teachers  need  to  be  viewed  as  learning  in  practice  or  “learning-to-develop- 
learning” (2006, p. 191). This involves a conception of teachers being engaged in 
‘critical  alignment’  of  practice  in  which  they  seek  “to  develop,  improve  or 
enhance the status quo” (2006, p. 191) through their involvement in a community 
of inquiry. Therefore, inquiry can develop from being used as a tool to enable 
teachers  and  educators  to  explore  key  questions  and  issues  in  practice  to 
becoming a ‘way of being’ through which participants in a community develop 
their practice (Jaworski, 2006). 

 

Effective Mathematics Pedagogy 
 

Mathematics holds a key role both in terms of individuals’ abilities to function in 
society and in the future educational and employment opportunities which are 
available for them (Ernest, 2010). However, many students continue both to 
struggle and become disaffected with mathematics. Therefore in recent years, 
both in the United Kingdom and internationally, research has sought to define 
the pedagogical practices which lead to effective mathematical learning. A large 
scale study by Askew and his colleagues (1997) based in the UK identified and 
investigated different aspects of effective teachers of numeracy. The study aimed 
to understand effective teachers by developing a model of their classroom 
practices, individual beliefs and knowledge of mathematics and mathematics 
pedagogy. Data were gathered through questionnaires, observations and 
interviews. Askew et al. identified three types of mathematics teaching and 
characterised ‘connectionist’ teaching as the most effective. 
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Another model for effective mathematics pedagogy was developed by Swan 

(2006) in conjunction with a design research project that sought to improve 
learning in mathematics for students at tertiary colleges who had a history of 
finding success in mathematics problematic. Within this study, Swan developed 
a professional development course for teachers which supported them in 
developing pedagogies valued by their students. Other research (e.g., Anthony 
& Walshaw, 2009; Hiebert & Grouws, 2007) on effective mathematics pedagogy 
includes research syntheses that draw together the findings of international 
research studies to develop a rich knowledge base of pedagogical practices that 
contribute to positive outcomes for students. Anthony and Walshaw use their 
findings from the synthesis to develop a framework including ten principles of 
effective mathematics pedagogy. These different explorations of effective 
mathematics pedagogy reveal some commonalities and these are used as a 
theoretical base for this study. The following section summarises these 
commonalities. 

An important aspect of effective mathematics teaching is developing tasks 
and classroom activities which focus on key mathematical ideas (Anthony & 
Walshaw, 2009; Askew et al., 1997). In particular, tasks should be designed to 
engage students in furthering their understanding of important mathematical 
concepts and relationships. It is also important that tasks are posed in such a way 
that learners are able to access their prior learning and make connections 
between their previous experiences and important mathematical ideas (Anthony 
& Walshaw, 2009; Askew et al., 1997; Swan, 2006). In such a way, instruction 
builds on the learners’ thinking, and misconceptions and mistakes are addressed 
and used as learning opportunities. Providing opportunities for students to 
explore the connections between mathematical ideas, differing strategy solutions 
and multiple representations also supports effective mathematics learning 
(Anthony & Walshaw, 2009; Askew et al., 1997; Muir, 2006; Swan, 2006). 

Effective mathematics pedagogy requires both a focus on developing 
learners’ mathematical knowledge and the development of an effective 
classroom community (Anthony & Walshaw, 2009; Hunter, 2009; Muir, 2006). 
This involves developing a learning community which is responsive to the 
learners’ needs. Anthony and Walshaw highlight factors such as carefully 
structured mixed attainment grouping, providing opportunities for individual, 
paired and group work, and the provision of a supportive environment that 
develops student autonomy. Classroom discourse also has an important role in 
effective mathematics pedagogy. This includes the facilitation of purposeful 
discussion which challenges children’s thinking and a focus on developing 
student use of explanatory justification (Anthony & Walshaw, 2009; Askew et al., 
1997; Muir, 2006). Children also need opportunities to learn how to agree and 
disagree and how to question their peers to make sense of student provided 
explanations during small group work and whole class discussions (Hunter, 
2009). 

A critical factor in developing effective mathematics pedagogy is teacher 
knowledge and learning. As Anthony and Walshaw (2009) state, “how teachers 
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organize classroom instruction is very much dependent on what they know and 
believe about mathematics and on what they understand about mathematics 
teaching and learning” (p. 157). Sound mathematical subject knowledge is a key 
factor in supporting teachers in identifying the connections between different 
areas of mathematics. This in turn supports the teachers in assessing students’ 
understanding of mathematical topics (Anthony & Walshaw, 2009; Askew et al., 
1997; Muir, 2006). Also important is knowledge of how students learn mathe- 
matics including their expected progression and an understanding of potential 
obstacles to learning or misconceptions. This supports teachers to make sense of 
student explanations and use questioning to facilitate learning (Anthony & 
Walshaw, 2009; Askew et al., 1997). Another key aspect of teacher knowledge is 
the knowledge of teaching approaches that support students to develop rich 
conceptual understanding of mathematics (Askew et al., 1997). These three key 
factors – mathematical subject knowledge, knowledge of the ways in which students 
make sense of mathematics, and knowledge of ways of teaching mathematics – 
have also been identified in the literature as central to effective professional 
development for teachers of mathematics (Joubert & Sutherland, 2008). 

 

Developing Reflective Practice 
 

Developing reflection on practice is a key component of sustainable professional 
development (Back et al., 2009). This section draws together the three elements 
described above as central to effective professional development and examines 
how they may support teachers to reflect on their practice. In developing the 
capacity to reflect on practice the first and essential step is that of noticing and 
being aware of relevant phenomena. This process of noticing only develops 
through engaging with it and involves both knowledge of relevant aspects of a 
given situation and also an increasing ability to be aware of them and reflect on 
them in the immediate context of the classroom. In developing reflection on 
aspects of teaching and learning mathematics, teachers in a lesson study group 
need to develop understanding of the pedagogies that they are using, to have 
knowledge of the mathematics involved and to be aware of the ways in which 
the children make sense of the mathematics. Furthermore, they also need to 
notice how their practices resonate with, or are in conflict with, the ideas of 
effective mathematics pedagogies which they are seeking to adopt. This idea of 
noticing is captured in John Mason, Leone Burton, and Kaye Stacey’s (2010) 
seminal text on developing mathematical thinking now in its second edition: 

 

None of the processes or activities I have mentioned is unusual or new. They 
happen spontaneously inside everyone to varying degrees, often below the 
level of awareness. By becoming aware of them, and seeing how effective they 
can be in appropriate circumstances, they should begin to happen more 
frequently and more intensely than before. (p. 106) 

 

These authors equate the process of noticing thinking as similar to developing an 
internalised tutor who monitors that thinking for you. Involvement in the lesson 
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study process, in particular the reflective discussion with colleagues about the 
study lessons, can work in a similar way for the teachers. 

To summarise, this paper draws on research literature to examine how 
engaging in lesson study may facilitate sustainable professional development 
through the development of learning communities in which both awareness of 
effective mathematics pedagogy and reflection on practice are promoted. 

 
 
 

Research Context 

Methodology 

 

The overarching aims of the project were to investigate and evaluate whether 
lesson study could be used with teachers as a form of research-based 
professional development and as a form of classroom-based research. The study 
involved four groups of primary teachers within England and the Channel 
Islands who were interested in implementing the lesson study process within 
their schools during the 2009/2010  school year. All schools and participants 
involved in the study were assigned pseudonyms to ensure anonymity. The 
schools included a mixture of urban, rural and suburban contexts with students 
from a range of socio-economic and ethnic backgrounds, and the teachers had 
varying levels of experience. Specific details of the participants from each school 
are shown in Table 1. 

 
Table 1 
Schools and teachers at each year level 

 

 EY R Y1 Y2 Y3 Y4 Y5 Y6 HT 

Beaumont    1 2     
Hillview     2  1   
Kingsland     2 2 2 1  
Hamilton 1   1 2  1  1 

 

 

The sample was an opportunistic one of willing schools drawn from the group 
of schools with which the research team was involved in research and 
development activities. 

The lesson study approach had not been used previously at any of the 
schools; however, two of the schools had some degree of experience in using 
models of collaborative practice. The teachers at Beaumont School had engaged 
in a paired collaborative observation approach during the previous school year. 
Additionally, the teachers from Hamilton School had previously worked 
collaboratively and across year groups in a variety of subject areas. At the other 
two schools, Hillview School and Kingsland School, collaborative approaches to 
planning or teaching had not been previously used. 

Within the study, during the lesson study process each group of teachers 
worked as a professional learning community within their own school. The 
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initial step for each group was to agree on an over-arching aim which was 
relevant to their school context. Developing this aim was a goal of the first 
meeting and collaborative agreement from the group was sought. Following the 
initial meeting the teachers decided on an area of focus for the study lessons. This 
area was chosen typically as either an area in which the children at the school had 
difficulties, or alternatively an area which the teachers felt less confident about 
teaching. The group then collaboratively planned the study lesson. Following 
this, the lesson was taught in one classroom while the rest of the group and 
researchers observed. The group then engaged in an in-depth analysis and 
discussion of the study lesson and consequently the lesson was re-planned based 
on the observations from the lesson and re-taught and observed in a different 
classroom. The second lesson was then the subject of another in-depth analysis 
and discussion and the overall engagement of the teachers in the lesson study 
process was reflected on by them. Members of the research team were present at 
the majority of the planning meetings, the presentation of the study lessons, and 
the follow-up meetings. 

Evidence of the practice that formed the focus of the study was gathered 
through observations of the meetings held and the study lessons taught by the 
teachers involved. Data were collected through field-notes and video and audio 
recordings. The findings of the case studies were developed through on-going 
and retrospective data analysis. The video and audio recordings were wholly 
transcribed and through an iterative process using a grounded approach, 
patterns and themes were identified. 

The findings are presented as accounts of the learning and development in 
collaboration with the teachers involved and their personal reports of changes in 
their attitudes, identities and actions in their classrooms. Evidence of this has 
been triangulated from both our observations of lessons they have taught and 
developed and the discussion following the study lesson. 

 

Findings and Discussion 

In this section, a description of how engaging in the lesson study process is 
facilitated the teachers to notice key aspects of mathematics pedagogy is 
provided. Analysis of the data revealed five central themes that relate to the 
development of effective mathematics pedagogy. These were: key mathematical 
ideas; prior learning and misconceptions; developing connections; facilitating an 
effective learning community; and classroom discourse. These themes are 
presented as three sections in the findings due to their interwoven nature. For 
example, the discussions which focused on the key mathematical idea of the 
equal sign as equivalence were also linked to discussion of children’s prior 
learning and misconceptions. The findings are presented in relation to the inter- 
linked five themes. 
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Focusing on Key Mathematical Ideas, Prior Learning and 
Misconceptions 

During the post-lesson discussion it was evident that the in-depth observation of 
the students’ responses to the classroom activity facilitated the teachers to reflect 
on student understanding of key mathematical ideas. During some of the 
discussions, the key mathematical ideas that were highlighted had been the 
specific focus of the lesson. For example, at Hillview School the lessons were 
designed to facilitate student understanding and justification of the commutative 
property. Following the first lesson with children aged seven and eight years, the 
teachers provided detailed observations of the children’s responses to the task: 

 

Ellen: Iris and her partner were looking at subtraction without even being 
prompted to do it because they said straightaway ‘it doesn't work for 
subtraction but it is working for addition’. They were very confident 
in the addition and less confident with the division. This group in 
particular were happy with the multiplying but they couldn't then..., 
they weren't so comfortable with the division. 

 

Melissa also offered a specific example of how a group of students responded to 
the task focusing on the key mathematical idea of the commutative principle: 

 

Athena, Christopher and Lauren, they were doing it with the subtraction. They 
did four minus one equals three and one minus four [puts hand up to indicate 
question mark] and then they said, and Lauren said ‘so that is subtraction done 
then, that doesn't work’ and she did it for one, if it doesn't work, it doesn't work 
whereas she then said ‘actually five times three and three times five works 
hmm’ and then they did something with twos and then she said ‘does it only 
work with twos though?’ So then they tried with a different number, that was 
Lauren who said that so she had got the idea that if with one it didn't work 
[indicates throwing something away] she just discarded that straightaway and 
went straight on to the, on to the next one. 

 

In other instances during the discussions, the key mathematical ideas were not 
the specific focus of the lesson but were perceived by the teachers to be 
influencing the children’s learning. During the discussion, there was also 
evidence of the teachers’ developing ability to notice children’s misconceptions. 
For example, in the second study lesson at Hillview in a class of nine and ten year 
olds, the teachers commented on the difficulties the children had in representing 
the commutative principle as a number sentence (for example, 6 + 5 = 5 + 6) due 
to their limited understanding of the equal sign. Ellen stated: 

 

They seem to find it really hard to write one continuous number sentence. 
 

Monica further explored this commenting: 
 

They are still not understanding the proper meaning of the equal sign, I would 
say, or perhaps they are but when it comes to applying it in a context then 
they’re not. 
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In some instances the discussions of children’s learning of key mathematical 
ideas supported the teachers to reflect on how tasks could be structured to 
promote better learning. This also included reflection on the reasons for 
children’s misconceptions related to classroom activity. At Beaumont School the 
study lessons were focused on developing children’s ability to solve multi-step 
word problems. However, two activities again highlighted children’s 
understanding of the equal sign. During the first activity, students were asked to 
make a specific number using a number sentence which was then represented as 
equivalent to another number sentence (for example, 45 = 20 x 2 + 5 = 20 + 25 = 
45 – 0). The second activity prompted the children to correct incorrect multi-step 
equations some of which included balance equations (for example, 8 + 9 = 7 +     ). 
The teachers observed the students’ initial difficulties in correcting the balance 
equations and subsequent discussion between the students that arose. Early in 
the post study-lesson discussion, Zara highlighted the activities, both of which 
were related to understanding the equal sign: 

 

We still had to keep coming back to that, that the two sides of the equation had 
to balance, how much time we have done that, and even given that they had 
done that in the first part of the lesson [referring to the first activity]. They don't 
seem to see that as the same as being presented with one, you know because 
that first activity is doing the same thing, isn't it, and they see it there but they 
don't seem to see if you write it down for them but I think they got some good 
discussions out of all the correcting the mistakes. 

 

This initial analysis of how the activities were structured to facilitate children’s 
thinking about the key mathematical idea of equivalence led to further analysis 
and reflection from a different member of the group. 

 

Rebecca:   I think maybe because we historically present children with a lot of 
things with the answer just being one box that sort of one where they 
had to look maybe provoked that thinking a little bit more. You know 
at the beginning where they said something, something equals and 
then the next child does equals, I don’t know, when I look at it now I 
think it is a fantastic activity and a fantastic assessment thing to see 
where they are coming from (...) but maybe they are just seeing and 
the next one, and the next one, and the next one and now it’s my turn 
and it’s my turn and they don’t actually see the equal sign whereas 
this question here and that one here in particular really made them 
think about the idea of balance. 

 

These discussions highlight how observing children’s responses to tasks through 
the lesson study process supported the teachers to notice aspects of effective 
mathematics pedagogy such as key mathematical ideas, the role of prior 
learning, and misconceptions. 
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Developing Connections 

The teachers in this study were supported in noticing the connections between 
mathematical ideas, differing strategy solutions and multiple representations 
through the lesson study process. A common feature across all the lesson study 
groups was the identified need to facilitate children to make connections 
between physical representations or concrete materials and mathematical ideas. 
For example, Mark commented: 

 

They  need  lots  of  different  representations  and  practical  experiences  of 
concepts. 

 

The connections which the children developed between the concrete materials 
and mathematical ideas were also highlighted as supporting and deepening the 
children’s understanding. For example, in discussion of the children’s 
developing understanding of the commutative principle, specific examples were 
provided of the physical representations supporting the children’s 
understanding: 

 

Ellen: I think it was Iris and Andrea, they were talking about the objects and 
they suddenly became sweets, if we have got three sweets we can't 
divide them between seven people so they were then jumping ahead 
and moving that relationship on, that was good. 

 

Melissa: That is really good. 
 

Ellen: I think it was the resources that prompted that. 
 

Monica: I think even with John if he hadn't seen it on the grid [referring to an 
array], he probably wouldn't have got it as quickly as he did. 

 

Close observation of the students by the teachers during the study lesson also 
supported them to notice varying connections in student provided solution 
strategies. For example, in one lesson during the whole class discussion a student 
provided a correct solution; however, the representation and method was not 
linked to the problem context. This was identified by the teacher and she 
prompted the student to reflect on this. Another teacher in the group highlighted 
this as an example of good practice in terms of facilitating student learning: 

 

Rebecca:   Afonso, you know he had done it a different way than to the actual 
problem because you could have just said ‘yeah that is great well 
done’ but you said ‘but does that actually model what the problem 
was about?’ 

 

Similarly, missed opportunities in developing connections between student- 
provided solution strategies were also a feature of the discussions. For example, 
a student provided a solution that involved drawing individual flowers to solve 
a division problem which was critiqued by another student as inefficient. During 
the following discussion between the teachers this was highlighted as a possible 
learning opportunity: 
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Rebecca:   Bethany when she said ‘oh that took ages’, it would be nice to sort of 

pick up on that so you have got the halfway house, you know 
because it is a very inefficient method really. It’s something they go 
through but maybe they just realise that they can just write five in 
each box rather than drawing each thing because that would have 
been a nice opportunity to pick up on what Bethany said. You know 
maybe some sort of race I put here, where you have someone 
drawing and someone finding a quicker way. 

 

These examples suggest that through involvement in the lesson study process, 
teachers can be supported to notice a range of connections within the 
mathematics classroom. 

 

Facilitating an Effective Learning Community and Focusing on 
Classroom Discourse 

Discussions of effective grouping strategies were a common feature across the 
lesson study groups. However, there were differing levels of engagement with 
ideas about how to group children effectively. For example, at Hillview School 
the discussion touched on grouping but did not engage deeply with how 
children could be facilitated to work effectively within a group: 

 

Ellen: We keep changing the groups around trying to find the appropriate 
groups for them to work in and some groups work well and others I 
don't think will. 

 

Monica: Some  people  never  work  well  in  a  group  anyway,  do  they?  So 
whichever group you put them in, they are always going to struggle. 

 

In contrast, at Beaumont School the discussion involved consideration of how to 
facilitate the children to work effectively in their groups. For example, Michelle 
described her inclination to put the higher attaining children in a group together 
although she was unsure of this in terms of inclusion: 

 

I would be so tempted to put, because there is four in there who really do get it, 
to put them in one group, but I know that that really wouldn't spread it then. 

 

Rebecca responded to this comment by suggesting pedagogical actions to 
support effective group work using mixed attainment groupings: 

 

It is how you train those other children to question, the more able so they are 
drawing the learning out of the less able child and that is tricky. 

 

This was followed by an exchange which focused on how social norms could be 
developed for collaboration during group work and class discussions: 

 

Rebecca:   I think it is trying to get everybody having that chance in terms of the 
discussion and to try and get your brighter ones, because you have 
got a lot of bright ones there, and how do you train them to get 
everybody in their group responding so you shift their role which 
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broadens them wider because then they have to think okay how do I 
explain this in a different way? So they are trying to get others in the 
group of four, say Harper, to explain it and they are trying to work 
out what is going on in her head so they can ask the questions to 
draw out her explanation and giving them that as ‘oh it is not sitting 
back and waiting for the slow person to do it’ but giving them that 
important role. 

 

Michelle:  You can see within the whole class, it is Shaun and it is Fraser, and 
they are there because they are just full of it and they just want to but 
it is just trying to get them to hold back. 

 

Rebecca:  It is ‘I know you know the answer but how can you get them to 
explain it really clearly, so you have to listen really carefully and 
work out what they are doing’ so you are sort of shifting the 
emphasis. 

 

This exchange exemplifies how engaging with the lesson study process can 
support teachers in considering factors of effective mathematics pedagogy such 
as carefully structuring mixed attainment grouping and facilitating the 
development of social norms for effective group work. 

Another significant aspect during the teachers’ discussion was the focus on 
students’ developing questioning skills. The teachers’ observations included 
questioning both during small group work and in whole class discussions. For 
example, Ellen identified an instance where questioning was used during small 
group work to resolve a mathematical disagreement: 

 

With Alan’s group and they were working with the negative numbers, they got 
their addition wrong which then provoked, it certainly provoked the argument 
between them, well does it actually work? Does it not work? And they had to 
really delve deeply to work out whether it was an exception or whether it was 
the norm. 

 

As the teachers were working in groups across year levels, another discussion 
centred on the development in questioning skills across the age groups. For 
example, Melissa contrasted the use of questioning from her younger seven and 
eight-year-old students with the questioning she observed in the class of nine 
and ten-year-old children during a whole-class discussion: 

 

When Julia was talking some of the others put their hands up and they 
questioned her directly and she explained her thinking back to them. I think 
that worked really well. (…) A number of them did that and I don't think ours 
have got that language, sometimes they need a bit more modelling and 
structuring of how to question the person who is explaining because they do 
sometimes say ‘I don't understand’ rather than asking them a specific question. 

 

The excerpt highlights how the teachers were able to use the observations during 
the study lesson to reflect on their own classroom practice and further analyse 
how specific areas could be developed. 
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Another area of significance, which the teachers focused on during the post 

study lesson discussion, was the structuring of explanations to develop an 
effective whole-class discussion. This meant that the teacher had to listen 
carefully to children’s responses during small group work and carefully select 
the groups to contribute to the discussion so that it would be structured in a 
logical manner in order to develop the children’s mathematical reasoning and 
thinking. Through engaging in the lesson study process the teachers analysed 
how the whole-class discussion facilitated the children’s development of 
mathematical concepts. For example, Ellen critiqued the choice of a group to 
share during the whole-class discussion as the group had concentrated on the 
inverse property rather than the focus of the lesson which was the commutative 
property: 

 

I think avoiding the inverse could be something to do next time so to be specific 
when the example came up with the group from the front there, they weren’t 
investigating the commutative law, and they were investigating the inverse and 
I think what I would have tried to have done is just said that's fine and try to 
direct them but not bring them up to the front to make their explanation. 

 

This also led to the teachers considering the need to think of children’s possible 
responses to tasks in order to best facilitate a whole class discussion. 

Discussion of the choice of children to share during the whole-class 
discussion was also an opportunity to examine how the discussion might be 
used to scaffold all the learners’ understanding. Examination by the teachers of 
who was selected to share during a whole-class discussion and the reason behind 
this also provided opportunities to share the pedagogical actions that were used 
to develop inclusion and student autonomy. For example, Zara highlighted her 
selection of a lower attaining student to share a solution strategy and how she 
supported her to rehearse prior to explaining to the whole class: 

 

Rebecca:   There is still an awful lot of them doing ding, ding, ding [indicates 
counting on fingers]. 

 

Zara: But then that is also why I brought out Madeira because she did the 
five, ten, fifteen. 

 

Rebecca:   Yes and how confident was Madeira because she was one of the ones 
who used to need a lot of support, didn't she? It was excellent. 

 

Zara: Yes and she still does. We rehearsed that in her place because I caught 
her doing it and said ‘oh I want to share with everyone what you 
have just done’. 

 

Michelle:  So you were rehearsing it to give her the confidence? 
 

In this way, engaging in the lesson study process offered opportunities for the 
teachers to notice pedagogical actions that developed a classroom environment 
which was inclusive and responsive to children working at different attainment 
levels. 
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Developing Reflection on Practice and Professional Knowledge 

In this section, a description is provided of the teachers’ awareness of their 
professional development as users of effective mathematics pedagogies through 
the process of involvement with their lesson study group. Analysis of the data 
revealed two central themes: firstly the teachers commented on how lesson study 
supported them in working collegially and reflectively and secondly they 
identified ways in which their professional knowledge had developed. The 
findings are presented in relation to these two themes. 

 

Collegiality and Reflection 

Teachers from all the groups commented on how the process of lesson study 
gave them opportunities to work together with other teachers. This broadened 
their insights into the topic, its teaching, and the sense that children might make 
of the learning opportunities involved. For instance, Monica commented: 

 

I think it gave me an insight as well and I think, you know when you are 
planning a lesson on your own and it is all in your head, it is one thing but when 
you are verbalizing it in a group and discussing it, there is so much. It gives you 
a depth that I don’t feel I achieve when I am planning a lesson on my own 
necessarily. 

 

And also: 
 

Michelle:  We are also having more of an understanding of the development of 
learning these concepts which has been good, it has been great to see 
that development today and it can only be beneficial. 

 

Zara: It shows you more of that journey and you are picking up things 
from other people which you think I could take that, I could adapt 
that, and that is another way of doing what I am doing or it’s another 
idea of something I have not tried. 

 

These features of collaboration often led them to reflect on their own teaching as 
Zara is beginning to say in the quote above. Once again, all the groups made 
reference to how involvement in the lesson study process facilitated them to 
reflect on their own teaching. For example: 

 

Orla: I think it definitely makes you look at other aspects of maths, not just 
fractions [the topic of the study lesson] and it has made me think 
every time I’ve planned lessons since like how could I do this 
differently this time, like look into different ways of exploring a 
lesson that I’ve done before so again maybe looking into research 
based on that concept. 

 

Similarly, one of the teachers from Hillview commented: 
 

Ellen: We are constantly analysing what we do anyway and I think it has 
just given more of a focus for that because Melissa and me we could 
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take a step back and look at what somebody else is doing. I think that 
always then makes you reflect on what you are doing yourself. 

 

Other comments indicated that the reflective process facilitated by engagement 
in the lesson study prompted the teachers to engage in deep reflection on their 
practice and begin to develop teaching practices which align more closely with 
effective mathematics pedagogy: 

 

Monica: It has made me think about my practice, I have to say and it has made 
me more aware of what I can improve and it has made me more 
aware of what I need to be including in my lessons and kind of 
working within a broader structure. Whereas I was always good at 
questioning and pitching different questions to different children 
and whereas now I think I am doing it in a deeper and broader way. 
It has kind of widened out a lot and I am much more receiving, 
although I always wanted to get things out of the children but now it 
is a bit more different. Whereas before I saw things as right or wrong, 
I am much more focused on the process now rather than whether it 
is right or wrong. 

 

This shows a teacher who is giving considerable thought to her practice and 
ways in which to change it in order to support her students to learn mathematics. 

 

Professional Knowledge 

As previously stated, the literature identifies three aspects of professional 
knowledge that support teachers in their endeavour to teach mathematics 
effectively. These are the teachers’ own knowledge of mathematics as a subject, 
their knowledge of ways of teaching mathematics, and their knowledge of the 
ways in which children make sense of mathematics (Joubert & Sutherland, 2008). 
All three aspects are crucial to effective mathematics pedagogies and all three 
were mentioned by the teachers in the course of their discussions after the 
lessons they observed. 

Teachers’ knowledge of mathematics is not dealt with directly in the lesson 
study approach to professional development; nonetheless, each of the groups 
mentioned how much they felt they had learnt about the mathematics through 
the process of their engagement. As one of the teachers said: 

 

Judith: It certainly raises your awareness about the importance of mathe- 
matical subject knowledge and relevant terminology and how much 
you should be using and what you should be using and why. It means 
that instead of making some glib comment about something that you 
think is mathematically correct, you would take the time to make 
sure and get your maths dictionaries out, check those, build that in. 

 

This was supported further on in the discussion by another member of the group 
who said: 

 

Mark: It’s raising your awareness that you might not know, there are things 
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you don’t know that you don’t know, that you might teach without 
even knowing you’re teaching them which means you can teach 
misconceptions which can be tricky … so if you’ve got a different 
attitude to think maybe I don’t know then that immediately opens it 
up. 

 

The focus of lesson study on the teaching of a specific lesson on a specific topic 
results in an in-depth consideration of the ways of teaching mathematics. This 
was an aspect highlighted and discussed by all the groups within the study in 
relation to their developing professional knowledge. In many cases this led them 
to more general discussion about how to teach mathematics. For example, Ellen 
reached some general principles about using resources to support the teaching 
and learning of mathematics from her group’s use of resources in the study 
lesson: 

 

How much the resources are very useful and how I don’t generally think I use 
them enough. … I would like to have supplies of resources which the children 
could then choose to use, not to impose them on them but to at least have access. 

 

In another group, one of the teachers became interested in the connections that 
were being made between the work they did with the children on fractions and 
other mathematical topics, especially measures. As she said: 

 

Judith: And it shows you more of that journey and you are picking up things 
from other people which you think I could take that, I could adapt 
that, and that is another way of doing what I am doing or it’s another 
idea of something I have not tried. For me making sure that we had 
a range… that we looked at grams, that we looked at millilitres and 
we looked at centimetres and so we were trying to draw together lots 
of areas of mathematics to build on the previous knowledge, to really 
think about the application, … skills that are notoriously quite 
difficult and our children find most challenging. 

 

This statement is also linked to developing teacher knowledge of how children 
make sense of mathematics. This was also a feature that was apparent across the 
groups during the discussions. As the groups of teachers were involved in 
teaching children of different age groups, this led to some discussion about the 
progression of understanding of mathematical concepts. This is illustrated by the 
following excerpt which looks at the differences in understandings of 
multiplication between a class of 7-year-old children and another class of 9-year- 
old children: 

 

Melissa: I  think  I  would  discuss  with  them  what  they  actually  thought 
multiplication was to get them to go right back and kind of … 

 

Monica:    Going back to ‘lots of’… 
 

Melissa: Seeing it as lots of and seeing it as repeated addition and spending a 
little bit of time looking and representing multiplication in different 
ways. 
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Monica: I think there is a bit of a similar problem as Ellen’s class that they 

probably at some level have an understanding that it’s ‘lots of’ and 
at some level because we have done arrays and they can see it 
somehow but when it comes to applying it at an everyday level, it’s 
not secure enough to solve the problems that they need to solve. 

 

However, this was most evident in the teachers’ focus on predicting the 
children’s responses to the learning opportunities that were offered in the study 
lessons. As Melissa said: 

 

Melissa: We spent some time trying to predict how the children were going to 
perform and true to form they always perform. You know we did 
anticipate a lot of it but there is always something that you haven’t 
anticipated which then you have to think on your feet and look 
through and change your original plan. For me it was just fascinating 
to see somebody else do it. 

 

In addition to predicting the children’s responses to the tasks, the teachers 
developed knowledge of the learners from in-depth observation of the children’s 
work on the mathematical tasks during the study lessons. Another common 
feature highlighted by each group during the discussion was the value of 
observing the learners. As Ruth said: 

 

The thing with observing which is really helpful is that you kind of put yourself 
in the position of the child whereas when you’re teaching, yeah, you are 
thinking about their learning but you’ve also got to think about what you’re 
doing and how you’re sort of delivering it. With observing you listen to the 
teacher as if you were that child and so you really see how they are learning. 

 

Ruth also commented on the value of having other teachers as observers when 
she taught the study lesson: 

 

It’s useful though having people at the tables listening because you obviously 
can’t listen to every single child and then having that feedback, I mean that 
amazing talk in your classroom to learn from. 

 

In response to this, Mark added: 
 

Very useful I know. You’ve got one person in every group, no child can escape, 
the ideas they have are going to be captured which is fantastic. 

 

In several of the groups this level of observation proved very encouraging to the 
teachers who were impressed by the focus of the children’s talk on the 
mathematics of the lesson. 

This section has illustrated how through the process of engaging with lesson 
study, teachers are provided with opportunities to work collegially to reflect on 
their own practice and develop their professional knowledge. 
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Conclusion and Implications 

 

The results discussed in this paper support the argument that engaging teachers 
in lesson study is an effective way to support them in sustaining their 
professional development through facilitating awareness of effective 
mathematical pedagogies and the teachers’ use of these pedagogies in their 
teaching practice. Research studies (Anthony & Walshaw, 2009; Askew et al., 
1997; Swan, 2006) investigating effective mathematics pedagogy highlight the 
key factors of tasks which: focus on important mathematical ideas; link to prior 
learning and draw out misconceptions; develop connections; focus on effective 
discourse; and establish a learning community which is responsive to learners’ 
needs. The teachers in this study demonstrated increasing understanding of 
strategies that supported their students’ learning of mathematics, both in the 
lessons that they prepared as a group and in their reflections on the lessons that 
they taught and observed. The discussion that formed an important part of the 
lesson study process gave the teachers opportunities to articulate their 
observations about these issues and so helped them to notice relevant 
phenomena. They became the drivers of their own development as they 
increasingly sought to adopt strategies that encouraged more of their pupils to 
engage meaningfully with mathematics. This led them to try to engage all the 
children with mathematics whatever their attainment levels and to adopt 
strategies that encouraged discussion and mathematical reasoning. In this way, 
they began to adopt more approaches to their mathematics teaching that 
reflected the common attributes identified in the literature as effective 
mathematics pedagogies. 

A key indicator of effective sustainable professional development is the 
development of networks of teachers that focus on student learning and facilitate 
reflection on practice (Back et al., 2009). Evidence from the study indicates that 
engaging in the lesson study process supported the teachers to work in a 
collegial manner through developing the lesson plan, observing the lesson and 
engaging in in-depth discussion which followed the study lesson. This 
collaboration also supported them to reflect on their own teaching practice. In 
this way, as Jaworski (2006) argues, inquiry developed from being used as a tool 
to enable the teachers and educators to explore key questions and issues in 
practice to being a ‘way of being’ through which participants in a community 
developed their practice. As the communities of practitioners engaged in lesson 
study through the process of developing the study lesson and its following 
evaluation, the members of the community addressed: issues related to the 
mathematics involved in the lesson; ways of teaching mathematics; ways of 
developing their practices; and ways of developing their identities as 
mathematics teachers in order to address the issues they had identified. 
Therefore, as the teachers engaged with the practice of lesson study in order to 
develop the meaning of the processes of teaching and learning mathematics, they 
also developed their own identities as teachers of mathematics and members of 
a community of inquiry engaged with lesson study. 
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Engaging with the process of lesson study is time intensive and requires signif- 

icant contribution from the teachers involved in the groups. However, the findings 
of this study indicate the potential benefits of engaging in lesson study through 
the facilitation of awareness of effective mathematics pedagogy and the develop- 
ment of professional knowledge and reflection on teaching practice. Analysis of 
further cases of teachers engaged in the lesson study process would support 
further investigation into its potential as a vehicle for professional development. 
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