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Abstract 

 

Southern Anatolia is a highly significant area within the Mediterranean, particularly in terms 

of understanding how agriculture moved into Europe from neighbouring regions. This study 

uses pollen, palaeoclimate and archaeological evidence to investigate the relationships 

between demography and vegetation change, and to explore how the development of 

agriculture varied spatially. Data from 21 fossil pollen records have been transformed into 

forested, parkland and open vegetation types using cluster analysis. Patterns of change have 

been explored using non-metric multidimensional scaling (nMDS) and through analysis of 

indicator groups, such as an Anthropogenic Pollen Index, and Simpson’s Diversity. 

Settlement data, which indicate population densities, and summed radiocarbon dates for 

archaeological sites have been used as a proxy for demographic change. The pollen and 

archaeological records confirm that farming can be detected earlier (around 7000 cal. yr. BP) 

in Anatolia in comparison with other parts of the Mediterranean. Dynamics of change in 

grazing indicators and the OJCV (Olea, Juglans, Castanea, and Vitis) index for cultivated 

trees appear to match cycles of population expansion and decline. Vegetation and land use 

change is also influenced by other factors, such as climate change. Investigating the early 

impacts of anthropogenic activities (e.g. woodcutting, animal herding, the use of fire and 

agriculture) is key to understanding how societies have modified the environment since the 

mid-late Holocene, despite the capacity of ecological systems to absorb recurrent 

disturbances. The results of this study suggest that shifting human population dynamics 

played an important role in shaping land cover in central and southern Anatolia.   

 

Keywords 

Anatolia; Archaeology; Pollen; Demography; Land cover; Vegetation 

 

 

Introduction 

 

The vegetation history of Anatolia  

 

Southern Anatolia can be broadly divided into three main sub-regions, namely the coastal 

zone, the Taurus Mountains with intramontane lake basins, and the inner Anatolian plateau 

(Iyigun et al., 2013). The modern landscape of Anatolia has developed over many millennia 
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as a result of complex interactions between climate, human land use, natural and 

anthropogenic fire, and other factors, such as competition and species interactions. The late-

Pleistocene landscape of inner Anatolia was characterised by species-rich savannah-type 

grassland, which was replaced in the early Holocene by Quercus-dominated parklands and 

wood pastures of lower diversity (Asouti and Kabukcu, 2014) in to the mid-Holocene. In the 

wetter uplands of southwest Turkey, mixed conifer-deciduous forests replaced the Artemisia-

chenopod steppe of the last glacial period (van Zeist and Bottema, 1991).  

 

Archaeobotanical and archaeozoological evidence demonstrates that plant and animal 

domestication developed earlier in Southwest Asia than in Europe, in particular within the 

Levant, showing that this was an important centre of agricultural origins (Colledge et al., 

2004; Fuller et al., 2012). The first major human impact on ecosystem dynamics in southern 

Anatolia is not, however, detectable in pollen records until later in the Holocene (e.g. 

Eastwood et al., 1998). The so-called Beyşehir Occupation Phase (BOP) (van Zeist et al., 

1975; Bottema et al., 1986; 1990; Eastwood et al., 1998; Roberts, 2018), which developed 

most extensively between 3500 and 1300 cal. yr. BP with varied start dates detected between 

regions, is distinguished as a period of pronounced anthropogenic land-cover change. This 

phase began in the second and first millennia BC (~3000 ± 800 cal. yr. BP) with declining 

forest cover and increasing pasture land, cereals and cultivated trees, such as olive and walnut 

(Eastwood et al., 1998; Roberts et al., 2018b). In southwest Turkey, Eastwood et al. (2007) 

identified that increased humidity coincided with pollen evidence for increasing human 

impact and intensification of agriculture during the BOP. Vegetation changes into the 

Hellenistic, Roman and early Byzantine periods (Table 1: based on Allcock, 2017) reflected 

increasing evidence of human activity as documented in numerous studies. For example, 

Vermoere et al. (2002) identified synchronous periods of late Holocene deforestation and 

cultivation within pollen records from Turkey, although this was accompanied by 

dissimilarities in the timing of agricultural phases. The BOP was followed by a period of land 

abandonment after AD 650 (1300 cal. yr. BP) and re-forestation, notably during the Arab-

Byzantine wars of the 7th-10th centuries AD (England et al., 2008; Izdebski, 2013; Roberts et 

al., 2018a; Roberts et al. 2018a). 

  

Cultural and demographic change in Anatolia  
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Human demographic change and associated land use has played a key role in shaping 

Holocene landscape alterations in central and southern Anatolia (Allcock and Roberts, 2014; 

Allcock, 2017; Roberts et al., 2018a; 2018b). There is evidence of a break in settlement in 

central Anatolia during the Younger Dryas (Baird et al., 2018), which suggests that 

populations reacted more slowly to the improved climate that permitted the development of 

agricultural activity in the early Holocene in surrounding areas, such as the Levant (Roberts 

et al., 2018b; Palmisano et al., this volume). The Neolithic and related social changes during 

the early Holocene were associated with periods of population growth (Roberts et al., 2018b). 

In an assessment of long-term socio-environmental dynamics in central Turkey, Allcock 

(2017) identified human settlement changes that reflect the transformation of society from 

rural communities during the Neolithic to complex centralised polities, such as the Hittite, 

Persian and Roman Empires (Table 1), which builds upon a body of existing literature (e.g. 

Dalfes et al., 1997; Izdebski et al., 2016). She also highlighted how some periods of social 

change were associated with climatic or environmental instability, supporting earlier research 

(e.g. Wilkinson, 1997; McIntosh et al., 2000; Marro and Kuzucuoglu, 2007; Kuzucuoglu, 

2015).  

 

The four major settlement cycles described by Allcock (2017) roughly correspond to the 

Neolithic, Bronze Age, Iron Age-Classical, and Medieval-Modern periods. The most intense 

period of human occupation in Cappadocia occurred during Late Roman times (4th to 7th 

centuries AD) with evidence of decreased settlement continuity from the mid-7th century 

(Roberts et al., 2018a). Between Hellenistic and Late Roman times the numerous cities of 

southern Anatolia were surrounded by agricultural land (Izdebski, 2013). However, a major 

demographic decline was identified between AD 650 and 900 in central and southwestern 

Anatolia associated with social and climatic changes. In the pollen record, this corresponded 

with a decline in the production of cereal and tree crops, and pastoral activity marking the 

end of the BOP (Roberts et al., 2018a). This was followed by regional differentiation in land 

use, such as agro-pastoralism in central Anatolia and cultivation of olives and other tree crops 

in western Anatolia.  

  

Cultural change and climate 

 

Climate trends in semi-arid regions, specifically variability in precipitation patterns, play an 

important role in socio-economic and cultural change, as water is a limited resource (Jones et 
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al., 2006; Dean et al., 2015; Berger et al., 2016). The adoption of agriculture has been linked 

to the onset of the favourable early Holocene climate, and subsequent periods of drought 

throughout the Holocene are reflected in archaeological records with evidence of social 

adaptations to reduced rainfall for crop production (e.g. Staubwasser and Weiss, 2006). A 

shift in seasonal climate was identified by Lewis et al. (2017), which could be linked to solar-

forced climate change beginning ~8600 cal. yr. BP. They describe changing water balance as 

an important factor influencing observed cultural changes at the Çatalhöyük archaeological 

site (located in south-central Turkey) in the Late Neolithic/Early Chalcolithic period and 

provide evidence for wet winter/early spring conditions during the Early Holocene, reduced 

seasonality and possibly reduced local summer evaporation after 8300 cal. yr. BP (Lewis et 

al., 2017). Discontinuity in settlement patterns is often correlated with shortage of water, 

which would have left settlements vulnerable to any changes in climate (Lewis et al., 2017; 

Roberts, 2018a). The climate of southern Anatolia has altered significantly throughout the 

Holocene with many studies demonstrating periods of prolonged drought and significant 

shifts between wet and dry conditions (e.g. Woodbridge et al., 2011; Dean et al., 2015). Three 

lake sediment oxygen isotope (δ18O) records derived from carbonates and diatoms (Nar Gölü 

only) provide an independent framework for Holocene hydro-climatic change, namely 

Gölhisar in southwest Turkey (Eastwood et al., 2007) and Nar Gölü and Eski Acıgöl in 

central Anatolia (Dean et al., 2015; Roberts et al., 2001). Similarly to the trends described by 

Lewis et al. (2017) these records indicate a wetter early Holocene climate.   

 

This study examines vegetation dynamics and human population change across south-central 

and southwest Anatolia during the last eleven millennia, and addresses two key research 

questions: 1) what role have changing human populations and past climate trends played in 

shaping long-term land cover change in southern Anatolia?, and 2) what can be learnt about 

the impacts of past landscape management through understanding past demographic and 

vegetation change? 

 

Methods 

 

Pollen-inferred vegetation change 

 

Fossil pollen datasets from 21 records across 14 sites within southern Anatolia have been 

analysed (Fig. 1 and Table 2) and different approaches employed to identify key patterns of 
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vegetation change. Most of these records are from the intermontane “lake district” of 

southwest Turkey, with three from central Anatolia, and only one from the coastal zone. This 

spatial bias means that human landscape changes in the fertile coastal plains of Pamphylia 

(around modern Antalya) and Cilicia (around modern Adana) are not registered in regional 

pollen data. Published pollen records also cover different timespans, with only a few sites 

spanning the whole Holocene. The limited number of early Holocene pollen records means 

that regional syntheses of vegetation clusters may not be representative of the case study 

area’s predominantly intermontane landscape ecology prior to 7000 cal. yr. BP; however, as 

previously mentioned, major landscape alterations as a result of human activity are typically 

not detectable until the later Holocene in Anatolia. Cluster analysis and community 

classification, which involved calculating the median and interquartile range of all pollen taxa 

within samples that fall into each cluster group (Perez et al., 2015) were used to identify 

major vegetation groups in Mediterranean-wide modern and fossil pollen datasets (Davis et 

al., 2013; Leydet et al., 2007-2017). This paper focuses on a sub-set of these sites from 

Anatolia for continuous 200-year time windows throughout the Holocene. The pollen-based 

methods employed are described in detail in Woodbridge et al. (in press) and Fyfe et al. 

(2018), which also involved most of the indices described here. Simpson’s index and non-

metric multidimensional scaling (nMDS) have been used to explore patterns of diversity 

change and major variation in the datasets along with the percentage of Arboreal Pollen 

(AP%). nMDS is an unconstrained ordination technique providing insights into high-

dimensional datasets, and is explained in detail in Legendre and Legendre (1983) and 

McCune and Grace (2002). When applying nMDS the number of axes are chosen before 

analysis, which avoids hidden axes of variation unlike other ordination techniques. In this 

study a two dimensional ordination was chosen and Bray-Curtis dissimilarity was used to 

calculate the distance matrix for ordination. Simpson’s index has been calculated for each 

pollen sample using pollen percentage data. This index takes both species richness and 

evenness into account and is often used to explore diversity change in pollen datasets (e.g. 

Morris et al., 2014; Woodbridge et al., in press). An API (Anthropogenic Pollen Index: 

Artemisia, Centaurea, Cichorioideae, Plantago, cereals, Urtica and Trifolium type) (Mercuri 

et al., 2013a), an indicator group for cultivated trees (OJC: Olea, Juglans, Castanea) 

(Mercuri et al., 2013b) with the addition of Vitis (OJCV), and a group of pastoral land use 

indicators (Artemisia, Chenopodiaceae, Plantago lanceolata and Plantago major/media, 

Asteroideae, Cichorioideae, Cirsium-type, Galium-type, Ranunculaceae and Potentilla-type) 

(adapted from Mazier et al., 2006) and grazing indicators (Plantago lanceolata, Rumex 
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acetosa-type and Sanguisorba) (Roberts et al., 2018a) were also calculated to explore 

changes in the pollen data in relation to human land use. Oleaceae undiff. was grouped with 

Olea within the OJCV index as this taxon is most likely to represent degraded Olea grains, 

and other taxa within the Oleaceae family are routinely differentiated (e.g. Fraxinus, 

Phillyrea). Although many of these indicator groups are based on published literature that 

describe the taxa as ‘anthropogenic indicators’, many of these taxa are not only associated 

with anthropogenic activity, such as Chenopodiaceae Asteroideae and Cichorioideae, which 

indicate natural steppe vegetation. The pastoral indicator group was developed using pollen 

sites in France, so is less informative about landscape change in Anatolia, but has been 

included to aid comparisons between case study regions within a Mediterranean-wide 

synthesis (Roberts et al., this volume).   

 

Archaeologically-inferred demographic change  

 

Archaeological data have been obtained for a total of 1426 sites and 3804 excavated or 

surveyed settlements (occupation periods) (Fig. 1) to construct records of past demographic 

change using established methods (Palmisano et al. 2017). Archaeological sites have been 

recorded, where possible, as georeferenced points per time-slice (unprojected WGS84). For 

the purposes of this paper, we have chosen to deal exclusively with those places identified as 

human habitation sites or possible habitations, and hereafter then we use the terms ‘site’ and 

‘settlement’ interchangeably to refer to this subset. The settlement data covers the time period 

9900 to 1100 cal. yr. BP and summed radiocarbon dates extend from 11000 to 6100 cal. yr. 

BP, as there are no data available covering times prior to or more recent than these periods. A 

spatial database of archaeological sites has been created through a comprehensive review, 

standardisation, and synthesis of settlement data from reports and gazetteers relating to 52 

archaeological surveys carried out throughout all three sub-regions of southern Anatolia, 

although there are some notable geographical gaps, such as the Pamphylian coastal plain (see 

SI 3 for a complete list of references). Although the archaeological surveys carried out in 

Anatolia show a spatially variable intensity of investigation, most of them fall within the 

“extensive” category (0.4 to 5 sites per km sq.). Topographic variability is another issue to be 

considered in the Anatolian context as mountainous fringes and areas with rugged topography 

are marginal zones that have not commonly received as detailed archaeological attention as 

lowland areas for a series of practical reasons, such as difficult terrain and dense vegetation 

cover. Another issue is represented by the gap of the Middle Chalcolithic occupation in 
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southwest Anatolia and the Burdur plain due to recognition and visibility problems related to 

either a poor knowledge of Middle Chalcolithic pottery assemblages or colluvium deposits 

covering floodplain sites (see Vandam, 2015). A major caveat is represented by the estimated 

size of settlements that in most cases indicate only the overall extent of mounds, but neither 

the size for a particular chronological phase nor the extent of the surrounding lower town. 

Therefore, the results derived from the analyses of the estimated settlement sizes have to be 

interpreted cautiously, as constituting evidence only about the patterns exhibited by relatively 

large, sedentary farming communities. The methods used in this paper to infer demographic 

trends from radiocarbon dates and archaeological settlement data build largely on previous 

works that seek to address issues such as “wealth-bias” of particular site phases (Timpson et 

al., 2014),  the artefacts in SPD plots due to radiocarbon calibration curves (Williams, 2012; 

Weninger et al., 2015), and temporal uncertainty in archaeological site-phases and periods 

(see Crema, 2012; Palmisano et al., 2017).  

 

Within the analyses of the archaeolgical data, the ‘site count’ was calculated and the 

estimated ‘site sizes’ were summed for 200 year-time steps in order to assess how population 

changes across time every 200 years. Bearing in mind that archaeological cultures result in 

larger or shorter time spans according to the dating precision of archaeological artefacts, we 

applied a probabilistic approach known as aoristic analysis to deal with the temporal 

uncertainty of occupation periods (Crema, 2012; Palmisano et al., 2017). In addition, to 

mitigate the discrepancy between wide chronological uncertainties and narrower likely site 

durations, we applied Monte Carlo methods to generate ‘randomised start of occupation’ 

periods for sites with low-resolution information (Crema, 2012; Palmisano et al. 2017). The 

resulting probabilistic distributions of site frequencies through time, based on the aoristic 

sums and Monte Carlo simulations, provide useful comparisons with the raw site frequency 

data and the summed settlement sizes. Consequently, the SPD of radiocarbon dates are 

binned into 200-year time slices to match the time windows used in the analysis of pollen 

sequences. We also calculated the median of the envelope of the randomised start date of 

sites, which is the result of a 1,000 randomised start occupation date for sites, and binned this 

into 200-year time slices.  

 

Palaeoclimate datasets 
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The palaeoclimate datasets (Fig. 1 and Table 2) derive from lakes in central and southern 

Anatolia and provide records of δ18O inferred hydroclimate (Nar Gölü: Dean et al., 2015, 

Eski Acıgöl: Roberts et al., 2001 and Gölhisar Gölü: Eastwood et al., 2007). The records have 

been resampled to the same temporal resolution and converted to z-scores to allow inter-site 

comparisons and calculation of an average z-score for the region (see Finné et al., this 

volume, for further details).  

 

Results 

 

Vegetation, climate and demographic trends  

 

The patterns of vegetation cluster group change (Fig. 2) indicate an increase in sclerophyllous 

parkland (cluster 1.1) and pine steppe (cluster 5.2) after around 8000 cal. yr. BP, which 

coincides with a decline in deciduous oak parkland (cluster 6.2). However, the limited 

number of pollen sites in the earlier Holocene make interpretations more restricted for these 

vegetation cluster groups. One of the most striking trends in the pollen cluster group results is 

the increase and decline in pasture/wetland (cluster 3.0) between 4500 and 1300 cal. yr. BP. 

This cluster is dominated by Cyperaceae pollen, and probably reflects a combination of 

increased upland grazing land, as indicated by the abundance of grass and grazing indicators 

in this cluster group, and local wetland sedge communities. In the last ~1800 years, there has 

been a significant expansion in pine woodland (cluster 5.1). The archaeological demographic 

proxy record indicates that population started increasing in the Early Chalcolithic (~8000 – 

7500 cal. yr. BP) and grew substantially during the Bronze Age (~5000 – 3100 cal. yr. BP), 

which was punctuated by cycles of ‘boom and busts’ throughout the Bronze Age (see Fig. 3). 

A dramatic increase in population then occurred in the Hellenistic and Roman periods (see 

Table 1 for a summary of Anatolian archaeological periods).   

   

Pollen indicator groups offer a useful approach to explore key changes in vegetation 

community dynamics over time in line with cultural shifts. Fig. 4 shows that arboreal pollen 

(AP%) has varied between 30 and 70% throughout the Holocene with a steady decline from 

9000 to 2400 cal. yr. BP and an increase after this time. There is a marked rise in cultivated 

trees between ~5000 and ~1500 cal. yr. BP demonstrated in the OJCV index. The API 

indicates an increase in anthropogenic activity from 6500 cal. yr. BP, while grazing pollen 

indicators steadily increased from 8500 cal. yr. BP and declined in the most recent 1500 
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years. Simpson’s index suggests that diversity increased in the early Holocene with consistent 

values throughout the records and a recent decline since 1500 cal. yr. BP. Statistically 

significant relationships between the pollen and archaeological datasets (Table 3) are 

demonstrated most clearly for the pasture/wetland vegetation cluster (3.0), which shows a 

strong positive relationship with the demographic proxies, and significant negative 

relationships between AP% and demographic change, indicating that larger populations were 

associated with increased pasture/wetland vegetation and a decline in the abundance of trees. 

A decrease in AP% could lead to decreased evaporation from vegetation and potentially 

higher run-off. Nevertheless, the Cyperaceae increase suggests lower lake levels, which could 

indicate drier climatic conditions or possibly human interference with catchment hydrology. 

There are also highly positive and significant relationships between the demographic proxies 

and the OJC / OJCV and API indices and grazing indicators, which reflect human land use. 

nMDS axis scores summarise major variation in the pollen datasets and indicate periods of 

greater change around 6000 and 2000 cal. yr. BP (Fig. 4). The nMDS scores are significantly 

correlated (p-value <0.05) with the demographic proxies (Table 3) indicating that major 

change in the pollen data corresponds with demographic shifts. 

 

When patterns within individual pollen records are examined in more detail, variability 

between sites is clearly identifiable. The results of two separate analyses are presented in Fig. 

5 (sites ordered from left to right reflecting SW to NE location): AP% (shown on the x axis 

for each site), which indicates how open or closed the landscape is, and the cluster analysis 

derived ‘vegetation clusters’ are presented as symbols. Sites on the Anatolian plateau indicate 

greater abundance of grassland/parkland (1.4) throughout the Holocene (e.g. Eski Acıgöl) 

while those in the southwest Anatolian Lake District indicate that sclerophyllous parkland 

(1.1) or woodland dominated the landscape (e.g. Karamık, Beyșehir and Ağlasun). Similar 

vegetation shifts are shown between records, such as pine woods (5.1) moving to pine steppe 

(5.2), and several records indicate an increase in pasture/wetland (3.0) from ~4000 cal. yr. BP 

(e.g. Gölhisar, Ovagöl, Bereket and Pınarbașı). Grass was abundant in the pollen records 

during the early Holocene; however, there is no clear relationship between grass abundance 

and the summed probability distribution (SPD) of radiocarbon dates for this period (Fig. 6). 

During the Beyşehir Occupation Phase (BOP) there was a clear increase in the OJCV index 

across most sites from 3500 to 1500 cal. yr. BP, which is also reflected by peaks in the 

demographic proxies around these times (Fig. 7). The increase in the OJCV index began 

earliest in the one pollen record available from the coastal zone (Ovagöl).  
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Within the palaeoclimate datasets (Fig. 4) higher (more positive) z-scores indicate wetter 

climatic conditions, while lower (more negative) values relate to drier climate. The average z-

scores across all three sites show wetter conditions in the early to mid-Holocene (until ~5000 

cal. yr. BP), which is followed by drier conditions until ~1500 cal. yr. BP. Values then 

increase again indicating a shift to wetter climate during Medieval times and then decline 

signifying a more recent drying phase in the last ~500 years, corresponding to the Little Ice 

Age. Spearman’s rank correlations between the pollen, archaeological and palaeoclimate 

datasets indicate strong statistically significant negative relationships between all of the 

climate records and the demographic proxies with r-values up to -0.78 (Table 3). The clearest 

significant relationships between the climate and pollen datasets are with the pasture/wetland 

cluster (3.0), which shows a negative relationship indicating that pasture/wetland was more 

abundant when climate was drier. There are also significant relationships with a number of 

the pollen indicator groups, such as OJCV, API and grazing indicators, which are all 

negatively correlated with climate (Table 3). Pollen nMDS scores are significantly correlated 

with the climate records indicating that major patterns in the pollen datasets reflect climate 

trends.   

 

Discussion 

 
Demographic change, cultural transitions and landscape dynamics    

 

Although efforts have been made to define a study region with good data coverage and 

congruence of datasets (pollen, archaeology and climate) the records from different data 

types may be clustered within some areas and not represented in others. Consequently, 

patterns are likely to be influenced by sub-regional dissimilarities in climatic, geographic, 

social and cultural history. The influence of these dissimilarities on the results and 

interpretations has been taken into account when interpreting patterns within and between the 

datasets, and sites are also shown individually in addition to the regional synthesis to 

illustrate site level differences and characteristics (Figs. 5-7). The results presented here have 

allowed a broad scale comparison of long-term demographic and vegetation change, and they 

suggest that shifting human population dynamics played an important role in shaping land 

cover in central and southern Anatolia, as evidenced by the significant positive relationships 

between anthropogenic pollen indicator groups (API, OJCV and grazing indicators) and 
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population increases (Fig. 4 and Table 3). Abundance of vegetation cluster 1.4 

(parkland/grassland) is evident during the early Holocene (Fig. 3), which coincides with 

increased burning in the landscape of southern Anatolia, as demonstrated by Turner et al. 

(2010). The individual pollen records also indicate that grassland cover reached a maximum 

during the early Holocene (Fig. 6). This early grassland phase could have resulted from a 

combination of climate change and the influence of human land use, but most studies do not 

detect clear human impacts on vegetation until the later Holocene in Anatolia. Natural and 

anthropogenic use of fire, which is restricted by the availability of biomass for burning in 

drier sites on the Anatolian plateau, could have maintained grasslands, with climate appearing 

to act as a pacemaker for burning (Turner et al., 2008); however, these relationships require 

further investigation. 

 

Archaeological trends for the early Holocene inferred from radiocarbon date densities 

(Roberts et al., 2018b) show a likely increase in population around 10300 cal. yr. BP 

continuing until ~7500 cal. yr. BP (Fig. 6). This corresponds to the Neolithic and early 

Chalcolithic periods, when farming and sedentary village life were adopted in this region 

(Table 1). Previous studies also demonstrate evidence of abundant Pistacia in the early 

Holocene particularly in dry, high elevation areas, which is clearly demonstrated at site Eski 

Acıgöl (SI 1), and also demonstrated in archaeological charcoal records of burned pistachio 

wood (Asouti and Kabukcu, 2014). The trends identified by Allcock (2017) for Cappadocia 

match the wider regional population trajectories identified in the archaeological site survey 

data (Fig. 3). The Early Bronze Age and Classical (Hellenistic-Roman-Early Byzantine) 

population peaks are clearly visible in the settlement density data shown in Figs. 3 and 4. 

 

The grassland phase was followed by the development of open oak parkland (~8500 cal. yr. 

BP) that may have been managed by people (Figs. 4 and 5). According to Asouti and 

Kabukcu (2014) these semi-arid oak woodlands, associated with increasing abundance of 

deciduous oak parkland (cluster 6.2), represent one of the earliest anthropogenic vegetation 

types in Southwest Asia as a consequence of prehistoric landscape practices and was not 

simply part of the ‘natural’ Anatolian vegetation. Therefore, this could imply that a pre-

Neolithic base-line vegetation was absent in this region; by contrast, Holocene forest cover 

was much more extensively developed in the uplands of southwest Anatolia. However, the 

increase in oak parkland also reflects climatic changes and whether or not human populations 
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would have been large enough to initiate detectable impacts on woodland cover at this time 

remains a matter of debate.  

 

Throughout the Holocene different vegetation types emerge (Fig. 3), which can be interpreted 

in relation to changes in land use practices, such as increased sclerophyllous parkland (cluster 

1.1) from 8400 cal. yr. BP. Evidence of early farming activity has also been identified in 

pollen records from archaeological sites, for example, Eastwood et al. (in review) identified 

very high percentage of Cerealia pollen grains deposited over a short time period (~300 

years) during the Early Chalcolithic at Çatalhöyük in Anatolia. This early Holocene phase 

was followed by dominance of clusters 1.1 (sclerophyllous parkland) and 6.2 (deciduous oak 

parkland) until 4500 cal. yr. BP, and was then followed by an increase in Cyperaceae (shown 

in cluster 3.0: pasture/wetland) and tree crops indicated by the OJCV index (Fig. 4) from 

~5000 cal. yr. BP. Lakes became shallower and dried out during periods of climatic 

desiccation (Fig. 4) leading to increased Cyperaceae marshland. Cyperaceae also increased 

due to upland grazing at this time. The increase in the OJCV index that occurred earliest in 

the one pollen record available from the coastal zone (Ovagöl) suggests that systematic 

cultivation of tree crops, such as olive, started in the Eu-Mediterranean zone, and only later 

moved into the interior Oro-Mediterranean zone.  

 

Demographic changes coincide with some, but not all, of the vegetation changes identified in 

the pollen records. The SPD of radiocarbon dates from archaeological sites only covers the 

early to mid-Holocene and indicates a steady increase in population between 10400 and 7800 

cal. yr. BP, followed by declining population (Fig. 6). Asouti (2017) highlighted a myriad of 

factors that contributed to land use strategies in Southwest Asia during the early Holocene 

including natural agencies, such as climatic seasonality, and human factors, such as the 

experiences, community behaviours and mobility of people. Human land use could be 

reflected by the increase in parkland/grassland (cluster 1.4) in central Anatolia during this 

time (Fig. 3), although, the delayed reestablishment of forests in the early Holocene in 

Turkey has also been attributed to climatic factors (Bottema et al., 1990; van Zeist and 

Bottema, 1991; Djamali et al., 2010). The relationships between demographic trends, human 

land use behaviours and vegetation changes are not straightforward and it is uncertain 

whether human impacts by pre-Neolithic and Neolithic communities were large enough to 

cause widespread changes in the natural vegetation. Although detectable at an individual site 

level, such settlements and populations may have been too sparse and low in number to affect 
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the region-wide landscape and other factors will also have influenced landscape change, such 

as seasonality of precipitation (Djamali et al., 2010; Lewis et al., 2017).   

 

Oak parkland was maintained in central Anatolia until about 4000 cal. yr. BP, after which 

time it was largely replaced by pastureland and by tree and cereal crops (Roberts, 2018b). 

This is demonstrated by the grazing indicator curve and OJCV index, which provides a 

simple anthropogenic signal, but which can also be influenced by taxa not associated with 

human land use, such as wild olive (Fig. 4). The Anthropogenic Pollen Index (API) is more 

difficult to interpret, since the ruderal plant taxa that contribute to this index would have 

responded to natural (e.g. climatic) as well as human disturbance in this region. Both south-

central and southwest Anatolia experienced the Beyşehir Occupation Phase (BOP) of 

agrarian land use, which also involved arboricultural practice and increases after around 5000 

cal. yr. BP before declining again at 1500 cal. yr. BP, indicating that tree crop cultivation, 

although spatially variable, was most significant during this period.  

 

Initial human impact on regional vegetation in the uplands of southwest Anatolia is 

detectable somewhat later than on the plateau, most notably in late Chalcolithic times. At 

Ağlasun, in particular, a decline in deciduous oak woodland and an increase in anthropogenic 

pollen taxa at around 6000 cal. yr. BP (Fig. 5) has been attributed by Bakker et al. (2012) to 

clearance by early farming communities. The BOP, most extensively developed between 

3500 and 1300 cal. yr. BP, represents the clearest example of human-induced land cover 

change in southern Anatolia during the Holocene. This phase was followed by a period in 

many pollen records that indicates ‘rewilding’ of the landscape with an increase in pine trees. 

This is reflected in the vegetation summary diagram (Fig. 3) showing an increase in pine and 

mixed woods and decline in open/parkland vegetation. The pine forest and pine woods cluster 

groups are frequently represented in individual pollen sequences since the mid and late 

Holocene (e.g. Gölhisar, Gravgaz, and Sogut) in the south-west of the case study region and 

are also represented in the higher elevation sites (e.g. Beyşehir and Hoyran) towards the 

north-east of the case study area.   Roberts et al. (2018a) concluded that in Cappadocia 

(central Anatolia) the post-disturbance trajectory also took the regional socio-ecological 

system to a new and different state, rather than returning to a previous one, in this region 

dominated by agro-pastoralism (England et al., 2008). 
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Many previous studies have focussed on shorter time periods (e.g. Izdebski et al., 2015), 

small scale (i.e. site specific) comparisons between pollen and archaeological records, and 

identified similar timing in evidence of human occupation and the presence of land use pollen 

indicators (England et al., 2008). Within the current study there are distinct differences 

between the pollen sites in the southwest and those on the central Anatolian plateau. The 

southwest is more mountainous and forested whereas the plateau is drier. During the late 

Holocene a marked increase in AP% is evident, mainly in the last 1500 years, particularly 

involving pine woods/forests, which indicates reforestation of areas previously used for 

agricultural land use. This is also shown in the cluster results (4.0, 5.1 and 5.2: Fig. 3). A 

decline in population coincides with times of turbulence caused by conflict on the eastern 

frontier of the Byzantine Empire when much of southern and central Anatolia was 

deliberately de-populated and militarised (England et al., 2008; Izdebski, 2013; Haldon, 

2016).  

 

Significant relationships have been identified between the climate records and the 

demographic trends (settlement proxy), however, these relationships are complex and reflect 

many natural and cultural factors. The negative relationship between pasture/wetland and 

climate implies that when climate is drier, lake levels are lower and more habitats are created 

that support wetland plants (e.g. Cyperaceae). The synthesised pollen datasets analysed in 

this study do not appear to show any clear changes during the 9.3 and 8.2 ka climatic events, 

although they can be recognised in proxy-climate records from sites such as Nar Gölü (Dean 

et al., 2015). The 4.2 and 3.2 ka climatic events (e.g. Kaniewski et al., 2008) have been linked 

to societal collapse with centennial-scale drought intervals identified in palaeoclimate records 

during these periods (e.g. Dean et al., 2015; Massa and Şahoğlu, 2015). Population dynamics 

drawn from archaeological data seem to corroborate this picture in addition to the strong 

negative correlations (r = ~ -0.70) between palaeoclimate and demographic proxies (Table 3). 

The fact that some pollen taxa reflect both anthropogenic and non-anthropogenic factors 

complicates the interpretation of the indicator groups. Flohr et al. (2016) predicted four 

different potential societal ‘responses’ to sudden climatic change: collapse/decline of 

societies; long distance migration; adaptation; and no impact. The significant relationships 

between the OJCV index, API and grazing indicators and the climate records indicate that 

people may have adapted to long-term climatic shifts, for example, through diversification of 

subsistence practices. Flohr et al. (2016) suggested that the lack of a large-scale, severe 

impact that can be detected on Southwest Asian societies can be explained by the existence of 
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such adaptation strategies and/or by the resilience of early farming communities. In more 

recent historical periods (the last two thousand years), a number of studies demonstrated that 

the impact of climatic changes on societal and landscape transformations was relatively 

limited. Adverse changes in climate conditions did not coincide with major transformations 

in the landscape and society (Izdebski 2013; Haldon et al. 2014; Izdebski et al. 2016). Rather, 

a major landscape change, marking the end of the BOP, which took place in southern 

Anatolia around the 7th century AD has been linked to the collapse of the Eastern Roman 

(early Byzantine) political and socio-economic system, which required adaptation of social 

practices and landscapes across Anatolia and much of the eastern Mediterranean. Similar 

studies of the later historical periods reported lack of clear connections between climatic 

instability and socio-economic factors as well as landscape change during the Medieval 

Climate Anomaly (Xoplaki et al., 2016). However, a severe multi-year drought that occurred 

in Anatolia in the 1590s (AD) led to a prolonged social crisis and expansion of steppe 

pastures (White, 2011). Several episodes of ‘social crises’ occurred through this and the 

following century as a consequence of a complex combination of social and cultural factors. 

The increase in cluster 3.0 (pasture/wetland) between 4500 and 1300 cal. yr. BP is likely to 

have been due both to climatic desiccation (including the 4.2 and 3.2 ka dry events), and to 

population rise and the development of pastoralism during Bronze Age to Classical times.  

 

Other factors may also have influenced vegetation patterns, such as geomorphological 

changes (Kuzucuoğlu et al., 2018) and the impacts of long-term human impact and extreme 

climatic conditions upon soil properties and thus site-conditions for vegetation growth (e.g. 

Van Loo et al., 2017, who identified that soil erosion was driven by anthropogenic activities 

rather than climate change in southwest Turkey). Soil exhaustion in the past may have caused 

changes in vegetation composition not directly related to human impacts or climate. 

Furthermore, vegetation recovery following human impact or climate change may be delayed 

or even halted when specific ‘tipping points’ are not crossed. This might be related to site 

specific environmental conditions making some sites more resilient than others and resulting 

in new equilibrium vegetation composition. For example, Kaniewski et al. (2007) stress how 

contemporary land cover shows strong legacy effects of past human impact. 

 

Landscape management 
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Understanding past demographic and vegetation change may provide useful information 

about the impacts of landscape management. Asouti and Kabukcu (2014) highlight how 

information about the origin and evolution of the Anatolian semi-arid oak woodlands is 

potentially of importance for reconstructing the changing ecologies and geographical 

distributions of domesticated crop species. Land use strategies that encourage the 

establishment and spread of deciduous oaks include sheep herding, controlling competing 

arboreal vegetation and woodland management (Asouti and Kabukcu, 2014). These practices 

could have affected landscapes in the mid-Holocene when, as our regional pollen synthesis 

shows, deciduous oak parkland (cluster 6.2) was more abundant in the landscape; this 

vegetation type is still abundant in Cappadocia at present. In central Anatolia, this parkland 

ecosystem also includes economically important tree taxa, such as almond and wild fruit trees 

that are poorly represented in pollen diagrams (Woldring and Cappers, 2001). According to 

Gross (2012), poorly-considered development projects are threatening biodiversity in Turkey 

and wildlife corridors provide opportunity to support conservation progress. Restoring 

biodiversity to its condition in, for example, earlier stages of the Holocene depends not only 

on reducing livestock grazing and wood-fuel cutting, but also on incorporating these into a 

more sustainable system of socio-ecological management such as existed prior to the Iron 

Age. 

 

Pollen records from Anatolia show clear evidence of environmental recovery following 

disturbance, most obviously in the post-BOP period. At Nar Gölü in Cappadocia, this 

included a significant re-expansion of oak woodland and decline in soil erosion after ~1300 

cal. yr. BP (England et al., 2008; Roberts et al., in review). In the uplands of southwest 

Anatolia, the re-wilding process favoured expansion of pine trees rather than the mixed 

conifer-broad leaf forests of the mid-Holocene (Fig. 3) (see Richardson (2000) for a review 

of the ecology and biogeography of Pinus). The recent dominance of pine has probably been 

due to a combination of factors including soil loss during and after the BOP, along with 

continued grazing/browsing pressure from transhumant livestock herding, although open 

Juniperus woodland is also favoured by grazing. The relationships between population, land 

use and vegetation change are complex and understanding regional trajectories of change can 

provide information about the characteristics of vegetation resulting from different 

management practices and changing demographic pressures over time.   

 

Conclusion  
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This study has highlighted the long-standing human transformation of vegetation in southern 

Anatolia. The early emergence of Neolithic agriculture meant that the oak parkland 

ecosystem of central Anatolia co-evolved as a consequence of natural and anthropogenic 

factors, including burning, grazing and wood cutting, and which may therefore have been 

maintained as a semi-natural agro-ecosystem. While changing human populations clearly 

influenced vegetation patterns, they did so in combination with other external controls, such 

as climate change. Hence the increase in sedge pollen (cluster 3.0: pasture/wetland) between 

4500 and 1300 cal. yr. BP is likely to have been due both to climatic desiccation, including 

the 4.2 and 3.2 dry events, and demographic increase and the creation of upland pastureland 

during Bronze Age to Classical times. The precise timing of shifts in population and impacts 

on vegetation patterns do not show regular repetitive patterns over time. Pollen indicator 

groups such as cultivated trees (OJCV) and grazing indicators display significant positive 

relationships with demographic trends, especially during the BOP, and highlight how greater 

production of food would have been required for larger populations. Modern land 

management could benefit from improved understanding of the regional relationships 

between land use and vegetation change, and knowledge of how past land use practices 

promoted the resilience and potential for recovery of certain vegetation types, such as 

deciduous oak parkland.  
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Fig 1 Locations of modern pollen (grey) and fossil pollen (green) sites, archaeological (blue) 

and radiocarbon sites (red) and palaeoclimate records (black triangles). The topographic map 

is shown for the region of south-central Anatolia analysed within this study. Site numbers are 

provided with the fossil sites (see Table 2 for further information).  

 

Fig 2 Pollen-inferred vegetation cluster groups presented as percentage of pollen samples 

(time windows) assigned to each vegetation cluster group for sites in south-central Anatolia, 

and archaeological datasets (11000 cal. yr. BP – modern). The summary diagram shows 

amalgamated values of broad cluster groups and the grey area highlights a period of low 

pollen site numbers.   

 

Fig 3 Normalised demographic trends for south-central Turkey based on settlement data (raw 

count, total area, aoristic weight and randomised start date) for the period 10000-1000 cal. yr. 

BP with key archaeological periods highlighted.  

 

Fig 4 Pollen indicator groups: arboreal pollen (%AP), sum of Olea, Juglans, Castanea and 

Vitis (OJCV), anthropogenic pollen index (API), summed grazing indicators, non-metric 

multidimensional scaling (nMDS) axis scores, and Simpson’s diversity index averaged for all 

sites in the study area (11000 cal. yr. BP to modern). Archaeological demographic proxies 

from settlement data: total estimated area of sites and number of sites (randomised start date) 

(9900 to 1100 cal. yr. BP). Normalised (z-scores) δ18O hydroclimate (palaeoclimate) proxy 

records with average and standard deviation. 

 

Fig 5 Sum of Arboreal Pollen (%AP) for each fossil pollen site plotted with vegetation cluster 

groups (symbols) (11000 cal. yr. BP to present). Sites 1 to 18 are located in southwest 

Anatolia and sites 19 to 22 are located on the Anatolian Plateau.  

 

Fig 6 Poaceae (grass) % for pollen sites covering the early Holocene presented with summed 

probability distribution (SPD) (11000 to 6000 cal. yr. BP). 

 

Fig 7 OJC (Olea, Juglans and Castanea) index for the period 6000 cal. yr. BP to present for 

each pollen record presented with archaeological demographic proxies from settlement data: 

total estimated area of sites and number of sites (randomised duration) (6000 to 1100 cal. yr. 

BP). 
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Supplementary Information 1 Percentage of a) Cerealia (cereal) pollen types and b) Pistacia 

(pistachio) pollen for each pollen record for the period 11000 cal. yr. BP to present. 

 

Supplementary Information 2 a) Anthropogenic Pollen Index (API) and b) grazing indicators 

(Plantago lanceolata, Rumex acetosa-type, Sanguisorba) for each pollen record for the 

period 11000 cal. yr. BP to present. 

 

Supplementary Information 3 Archaeological datasets and references for settlement data used 
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Table 1 Archaeological periods in central and southwest Anatolia (based on Allcock, 2017). 
The Beyşehir Occupation Phase (BOP) most extensively covers the period from 3500 until 
1300 BP.  

Age BP BC / AD Period 
900 - present AD 1050 - present Medieval (Islamic) to 

modern 
1600 - 900 AD 350 - 900 Byzantine 

~2000-1600 ~50 BC - AD 350 Roman 
~2300 - 2000 ~350 - 50 BC Hellenistic 
3100 - 2300 1150 - 350 BC Iron Age (including 

Persian) 
3400 - 3100 1450 - 1150 BC Late Bronze Age 

(Hittite Empire) 
4000 - 3400 2050 - 1450 BC Middle Bronze Age 

(including Old Hittite) 
5000 - 4000 3050 - 2050 BC Early Bronze Age 
8000 - 5000 6050 - 3050 BC Chalcolithic 

10,300 - 8000 8350 - 6050 BC Neolithic 
>10,300 >8350 BC Pre-Neolithic 



Table 2 Metadata for pollen and climate records from sites in southern Anatolia 

Code Site Name Latitude Longitude Elevation Contributor Site type Proxy 
type 

Start and 
end date 

N. time
windows

Reference 

1 OVAGOLU Ova Gölü 36.26667 29.3 20 EPD small 
marsh in 
drained 
lake 

Pollen 7400-
1000 

30 European Pollen Database 

2 GOLHISAR1 Gölhisar 37.13333 29.6 951 Eastwood lake Pollen 
and 
climate 

10600-
200 

21 Eastwood W et al. (1999) Quaternary 
Science Reviews, 18: 671-695. 

3 GOLHISH Gölhisar 
Gölü 

37.13333 29.6 951 EPD lake Pollen 8800-
1200 

11 European Pollen Database 

4 GHC Gölhisar 
Gölü 

37.13333 29.6 951 Eastwood lake Pollen 2600-
1000 

6 

5 SOGUT Sögüt 
Gölü 

36.9975 29.89833 1400 EPD drained 
lake 

Pollen 8400-0 20 van Zeist WH et al. (1975) 
Palaeohistoria, 17: 53-144. 

6 BEREKET1 Bereket1 37.54518 30.29506 1410 Kaniewski marsh Pollen 2200-0 11 Kaniewski D et al. (2007) Quaternary 
Science Reviews 26, 2201-2218. 

7 BEREKET2 Bereket2 37.54518 30.29512 1410 Izdebski marsh Pollen 1400-
1200 

2 Bakker J et al. (2012) Vegetation 
History and Archaeobotany, 21: 249-
266.  

8 PINARBAS Pinarbasi 37.46667 30.05 970 EPD lake Pollen 4600-
800 

11 European Pollen Database 

9 GRAVGAZ Gravgaz 37.58425 30.40358 1215 Izdebski marsh Pollen 1800-0 9 Bakker J et al. (2012) Vegetation 
History and Archaeobotany, 21: 249-
266. 

10 GRAVGAZ96 Gravgaz96 37.58425 30.40358 1215 Broothaerts marsh Pollen 3000-0 16 Vermoere M et al. (2002) The Holocene 
12: 569-584. 

11 GRAVGAZ99 Gravgaz99 37.58425 30.40358 1215 Broothaerts marsh Pollen 2400-0 13 Bakker J et al. (2013) Climate of the 
Past 9: 57-87. 

12 AGLASUN06 Aglasun06 37.64157 30.52029 1140 Broothaerts stream Pollen 8600-
200 

22 Vermoere M (2004) In: Waelkens M. 
Studies in eastern Mediterranean 
archaeology (SEMA 6). Turnhout: 
Brepols, 1-347. 

13 AGLASUN12 Aglasun12 37.64058 30.5225 1140 Broothaerts stream Pollen 7600-0 27 Vermoere M (2004) In: Waelkens M. 
Studies in eastern Mediterranean 
archaeology (SEMA 6). Turnhout: 
Brepols, 1-347. 



14 AGLASUN13 Aglasun13 37.64258 30.52009 1140 Broothaerts stream Pollen 7800-0 32 Vermoere M (2004) In: Waelkens M 
Studies in eastern Mediterranean 
archaeology (SEMA 6). Turnhout: 
Brepols, 1-347. 

15 BEYSEHIR Beysehir 
Gölü I 

37.54167 31.5 1120 EPD lake Pollen 7400-0 22 European Pollen Database 

16 BEYSEHIR1 Beysehir 
77 II III 

37.54167 31.5 1120 Woldring lake Pollen 4600-
1600 

22 

17 HOYRAN Hoyran 
Gölü 

38.275 30.875 920 EPD lake 
shore, 
marsh 

Pollen 5800-0 14 European Pollen Database 

18 KARAMIK Kararmik 
Batakligi 

38.425 30.8 1000 EPD marsh, 
partly 
open 
water 

Pollen 9800-0 7 van Zeist W et al. (1975) Palaeohistoria, 
17: 53-144. 

19 AKGOL Akgöl 
Adabag 

37.5 33.73333 999 EPD lake Pollen 10400-
1800 

8 Bottema S (1987) Pages 295-310 in 
Aurenche O et al. eds. Chronologies in 
the Near East. Oxford, United Kingdom. 

20 NAR Nar Gölü 38.3403 34.45671 1363 Eastwood lake Pollen 
and 
climate 

1600-0 9 England A et al. (2008) Holocene, 18: 
1229-1245.  
Roberts N et al. (2016) Journal of 
Quaternary Science. 31: 348-362. 

21 ESKI Eski Acigol 38.55028 34.54472 1270 Woldring lake Pollen 
and 
climate 

10800-
200 

44 Woldring H & Bottema S (2001/2) 
Palaeohistoria, 43/44.  



Table 3 a) Spearman’s Rho correlations between the pollen and archaeological datasets (upper 
value within each cell: r-value and lower value: p-value) (significant correlations are shaded grey) 
(9900-1100 BP) 

Raw count of 
sites 

Total 
estimated area 

of sites 

Aoristic sum of 
sites 

Number of 
sites 

1.1: Sclerophyllous parkland 0.255 0.263 0.223 0.164 
0.091 0.081 0.141 0.281 

4.0: Pine forest -0.304 -0.296 -0.208 -0.19
0.042 0.048 0.17 0.212

5.1: Pine woods 0.303 0.276 0.272 0.23 
0.043 0.067 0.07 0.128 

1.3: Steppe parkland -0.3 -0.3 -0.292 -0.283
0.045 0.045 0.052 0.059

1.2: Evergreen shrubland (Oleaceae) 0.095 0.065 -0.003 -0.077
0.534 0.672 0.987 0.613

5.2: Pine steppe -0.005 0.017 -0.052 -0.031
0.973 0.91 0.732 0.839

3.0: Pasture/wetland 0.664 0.693 0.73 0.731 
0 0 0 0 

6.1: Deciduous oak woods -0.1 -0.135 -0.099 -0.069
0.514 0.375 0.519 0.653

1.4: Parkland/grassland -0.3 -0.288 -0.302 -0.224
0.045 0.055 0.044 0.139

6.2: Deciduous oak parkland -0.396 -0.4 -0.408 -0.396
0.007 0.006 0.005 0.007

Arboreal Pollen -0.408 -0.423 -0.455 -0.439
0.005 0.004 0.002 0.003

Non-arboreal Pollen 0.443 0.451 0.5 0.478 
0.002 0.002 0 0.001 

Oleaceae 0.783 0.784 0.791 0.807 
0 0 0 0 

OJC 0.855 0.853 0.863 0.854 
0 0 0 0 

OJCV 0.85 0.847 0.857 0.851 
0 0 0 0 

API 0.478 0.454 0.474 0.461 
0.001 0.002 0.001 0.001 

Grazing indicators 0.663 
0 

0.656 
0 

0.67 
0 

0.691 
0 

Regional pastoral indicators 0.29 0.267 0.242 0.228 
0.054 0.076 0.109 0.133 

Simpson's diversity index -0.039 -0.039 -0.035 -0.025
0.798 0.801 0.821 0.869

nMDS axis 1 0.473 0.48 0.511 0.49 
0.001 0.001 0 0.001 

nMDS axis 2 -0.552 -0.553 -0.491 -0.46
0 0 0.001 0.001



Table 3 b) Spearman’s Rho correlations between the pollen, archaeological and palaeoclimate z-
score datasets (upper value within each cell: r-value and lower value: p-value) (significant 
correlations are shaded grey) (for corresponding time periods) 

Gölhisar Nar Gölü Eski Acıgöl Average z-
score 

1.1: Schlerophyllous parkland -0.16 -0.281 -0.138 -0.204
0.272 0.083 0.39 0.154

4.0: Pine forest 0.073 0.281 0.341 0.28 
0.617 0.083 0.029 0.049 

5.1: Pine woods -0.279 0.018 -0.023 -0.093
0.052 0.913 0.886 0.519

1.3: Steppe parkland 0.183 0.159 0.288 0.246 
0.209 0.332 0.068 0.086 

1.2: Evergreen shrubland (Oleaceae) 0.128 -0.202 -0.141 0.017 
0.38 0.218 0.378 0.908 

5.2: Pine steppe -0.034 0.043 0.143 0.155 
0.817 0.797 0.374 0.283 

3.0: Pasture/wetland -0.183 -0.73 -0.779 -0.677
0.209 0 0 0 

6.1: Deciduous oak woods 0.005 0.13 0.163 0.176 
0.971 0.431 0.308 0.222 

1.4: Parkland/grassland 0.25 0.319 0.343 0.396 
0.083 0.048 0.028 0.004 

6.2: Deciduous oak parkland 0.146 0.267 0.452 0.39 
0.317 0.1 0.003 0.005 

Arboreal Pollen 0.086 0.451 0.484 0.391 
0.559 0.004 0.001 0.005 

Non-arboreal Pollen -0.108 -0.481 -0.474 -0.403
0.459 0.002 0.002 0.004

Oleaceae -0.175 -0.737 -0.644 -0.571
0.23 0 0 0 

OJC -0.301 -0.719 -0.752 -0.692
0.036 0 0 0 

OJCV -0.3 -0.725 -0.752 -0.693
0.036 0 0 0 

API -0.353 -0.528 -0.219 -0.355
0.013 0.001 0.169 0.011

Grazing indicators -0.306
0.033

-0.596
0 

-0.604
0 

-0.645
0 

Regional pastoral indicators -0.332 -0.392 -0.01 -0.205
0.02 0.014 0.952 0.154

Simpson's diversity index -0.179
0.218

-0.122
0.46

0.036 
0.824 

-0.153
0.288

nMDS axis 1 -0.091
0.536

-0.524
0.001

-0.53
0 

-0.415
0.003

nMDS axis 2 0.372 
0.009 

0.268 
0.099 

0.406 
0.008 

0.41 
0.003 

Raw count of sites -0.473 -0.754 -0.743 -0.778
0.001 0 0 0 

Total estimated area of sites -0.46 -0.696 -0.756 -0.758
0.001 0 0 0 

Aoristic sum of sites -0.415 -0.714 -0.798 -0.775
0.005 0 0 0 

Number of sites -0.486 -0.662 -0.729 -0.7
0.001 0 0 0
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Supplementary Information 3 Archaeological datasets and references for settlement data used 
in this study.  

Reference Season N. sites
Abay 2011 2003-2009 79 
Bahar 1997 1995 22 
Bahar 1998 1997 1 
Bahar 1999 1997 11 
Bahar 2001 1998-1999 21 
Bahar 2002 2000 13 
Bahar 2003 2001 5 
Bahar 2004 2002 3 
Bahar 2008 2006 38 
Bahar 2009 2007 24 
Bahar 2014 2012 18 
Baird 2004 1995-96 85 
Baird 2005 1995-99 19 
Balci and Çakan 2016 2015 10 
D’Alfonso 2010 2006-2009 31 
Dökü 2013 2012 2 
Dökü and Baytak 2015 2013-2014 12 
Dökü and Baytak 2016 2015 11 
Erbil 2016 2015 16 
Erbil et al. 2015 2014 11 
French 1965 1963-64 10 
French 1970 1958 62 
Gülçür 1995 1993 13 
Kontani 2012 2011 18 
Kontani 2013 2012 16 
Kulakoğlu et al. 2010 2008 2 
Kulakoğlu et al. 2011 2009 13 
Kulakoğlu et al. 2012 2010 21 
Harmanşah and Johnson 2012a 2010 9 
Harmanşah and Johnson 2012b 2012 15 
Harmanşah and Johnson 2013a 2011 21 
Harmanşah and Johnson 2013b 2013 3 
Harmanşah and Johnson 2015 2014 8 
Harmanşah and Johnson 2016 2015 2 
Maner 2014 2013 13 
Maner 2015 2014 25 
Maner 2016 2015 8 
Mellaart 1963 1951-1958 104 
Omura 1993 1991 7 
Omura 1995 1993 31 
Omura 1997 1995 33 
Omura 1998 1996 23 
Omura 2000 1999 62 
Omura 2001 2000 9 



Omura 2003 2002 9 
Omura 2008 2003-2006 156 
Özsait 2003 2001 17 
Özsait and Özsait. 2013 2011 7 
Poblome et al. 2015 2014 9 
Senyurt 1999 1997 11 
Seton-Williams 1954 1951 143 
Vanhaverbeke and Waelkens 2003 1993-96 131 
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