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Abstract 
 

 Paraskevi Mandalou. 

 Molecular mechanisms of protection from HCV infection. 

Hepatitis C virus (HCV) infection is a major global health burden affecting 1-2% 

of the world’s population. The majority of infected individuals will develop 

chronic infection and are at risk of cirrhosis and hepatocellular carcinoma. 

There is currently no preventative vaccine available for HCV. In the developed 

world, the highest HCV incidence and prevalence rate is amongst intravenous 

drug users (IDU). The duration, frequency of IDU, and sharing of drug injecting 

equipment contribute to particularly high rates of HCV infection in this 

population. Individuals at high risk of recurrent exposure to HCV infection from 

long term IDU have been recruited in Plymouth, UK, from 2003 onwards and if 

they remain negative for HCV infection are termed exposed uninfected (EU). 

Understanding the factors that prevent HCV infection in this cohort could give 

valuable insight into the mechanisms of natural resistance to HCV infection. 

The EU cohort was previously shown to have characteristics attributable to the 

activation of both the adaptive and the innate arms of the immune system with 

no known dominant, immune or non- immune, mechanism of HCV protection. 

The aim of this thesis was to attempt and identify this mechanism and for that 

purpose a comparative transcriptional profile study was initially performed 

between 3 groups: EU, individuals who spontaneously cleared HCV infection 

(SR) and patients with chronic HCV infection (CHCV). Of the differentially 

regulated genes, the association with resistance to HCV was strongest for 

Interleukin-27 (IL-27) which was significantly upregulated in EU compared to the  
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2 other groups  and C X C motif chemokine 7 (CXCL7) which was significantly 

upregulated in EU relative to the CHCV group. The CD28 mediated T-helper 

cell signalling pathway was significantly upregulated in SR relative to the 2 other 

groups. 

We attempted to corroborate the above findings and we demonstrated that IL-

27 is overexpressed in EU, compared to SR and CHCV. The possible role of IL-

27 in natural protection from HCV infection remains to be elucidated and 

requires further study. 
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1 Chapter 1 Introduction                              

1.1 Clinical and virological features of HCV infection 

 Hepatitis C virus constitutes a significant health burden worldwide 1.1.1

Hepatitis C virus (HCV) is an RNA virus that primarily infects the liver, affects 

130 to 150 million people worldwide and can cause both acute and chronic 

infection. Acute HCV infection is usually asymptomatic, and is very rarely 

associated with life-threatening disease. About 15-45% of the infected persons 

will spontaneously clear the virus within 6 months, whilst the remaining 55-85% 

will develop chronic HCV infection. Chronic HCV hepatitis often results in 

progression to liver fibrosis and ultimately cirrhosis, with the risk of developing 

liver failure and hepatocellular carcinoma. As a consequence, HCV is the most 

common indication for liver transplantation in developed countries (Thomas 

2013). The standard of care for HCV infection has changed rapidly over the 

past couple of years and the new direct antiviral drugs can cure 90% of the 

people infected with HCV. However, due the high cost of these drugs, access to 

them is limited even in high income countries (WHO fact sheet No 164, July 

2015). 

The main strategies for prevention of HCV focus on reduction of the risk of 

exposure in high risk populations, since a vaccine is currently unavailable. 

Thus, ongoing research on understanding the immunological mechanisms of 

natural and treatment induced clearance of HCV is of importance to reach this 

aim. 

This chapter will outline the virological and clinical features of HCV infection. 

Furthermore, it will focus on current understanding of the immunological factors 
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that determine the outcomes of HCV infection which might correlate with 

mechanisms of natural protection from HCV in the high risk population of 

intravenous drug users (IDU). 

 HCV virology 1.1.2

Hepatitis C virus (HCV) is a hepatotropic RNA virus of the genus Hepacivirus in 

the Flaviviridae family, originally cloned in 1989 as the causative agent of non-

A, non-B hepatitis (Choo et al. 1989). 

The HCV genome is a single-stranded RNA molecule. It contains a single open 

reading frame encoding a polyprotein of about 3,000 amino acids. The open 

reading frame is flanked by 5’ and 3’ untranslated regions (UTR) of 341 and 

approximately 230 nucleotides in length, respectively. Both 5’ and 3’ UTR bear 

highly conserved RNA structures essential for polyprotein translation and 

genome replication. The 5’ UTR contains an internal ribosome entry site that 

binds the 40S ribosomal subunit and initiates polyprotein translation. The 

polyprotein precursor is co-translationally and post-translationally processed by 

both cellular and viral proteases at the level of the endoplasmic reticulum 

membrane to yield 10 mature proteins. They are divided into structural (Core, 

E1, E2) and non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and 

NS5) (Lindenbach & Rice 2013) (figure 1-1). 

The structural proteins include the core (C), which forms the viral nucleocapsid, 

and the envelope glycoproteins E1 and E2. They are released by host-cell 

signal peptidases. The two envelope glycoproteins, E1 and E2, are thought to 

play pivotal roles at different steps of HCV replicative cycle (Bartosch et al. 

2003). There is strong evidence that they are essential for host-cell entry, by 

binding to receptor(s) and inducing fusion with a host-cell membrane. Both E1 
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and E2 trans- membrane domains are composed of two short stretches of 

hydrophobic amino acids with the second hydrophobic stretch acting as an 

internal signal peptide for the downstream protein. After cleavage by a host 

signal peptidase, the signal-like sequence is reoriented toward the cytosol 

(Cocquerel et al. 2002). Hypervariable regions have been identified in the E2 

envelope glycoprotein sequence. These amino acid stretches differ by up to 

80% among HCV genotypes, and even among subtypes of the same genotype 

(Weiner et al. 1991; Kato 2001). 

The non structural proteins NS2 to NS5B are involved in polyprotein processing 

and viral replication. The proteolytic processing of NS polyprotein part is 

complex and requires two distinct proteinases: the NS2- NS3 zinc-dependent 

metalloproteinase, and the NS3 serine proteinase located in the N-terminal 

region of NS3. The NS2-NS3 proteinase appears to be dedicated solely to 

cleavage at the NS2/NS3 site that occurs rapidly and by a conformation-

dependent, autocatalytic mechanism. The remaining NS proteins are released 

by the NS3 proteinase associated with its cofactor, NS4A. The C-terminal 

region of NS3 protein includes RNA helicase and NTPase activities, so it is 

important for organization of replicated RNA by unwinding of single and double 

stranded RNA (Brass et al. 2006). The roles of p2 and NS2 in viral replication 

remain unclear (Pavlović et al. 2003; Steinmann & Pietschmann 2010). 

NS4B is an integral membrane protein, thought to play a role in the formation of 

the membranous web, which is necessary for the latter stages of viral 

replication and virion assembly (Egger et al. 2002). NS5A is a poly-

phosphorylated protein involved in viral replication. NS5B is an RNA-dependent 

RNA polymerase which is important for HCV replication via the synthesis of a 
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complementary plus-strand RNA, from a complementary minus-strand RNA 

using the genome as template. Variability in sub genomic regions such as E1, 

NS4 and NS5 are responsible for the last HCV heterogeneity with 7 recognised 

distinct major genotypes with genetic variability of 30-50% and more than 100 

sub-types (Simmonds 1995; Smith et al. 2014). 
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Figure 1-1 The content has been removed due to copyright restrictions. 
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 HCV cell entry and life cycle 1.1.3

HCV particles are 50-80 nm that can be found in various forms in the serum of 

the infected host, including (i) virions bound to very low density lipoproteins 

(VLDL) or low density lipoproteins (LDL) which appear to represent the 

infectious fraction; (ii) virions bound to immunoglobulins; and (iii) free 

(Thomssen et al. 1993; André et al. 2002). The interaction with lipoproteins 

could contribute to the shielding of HCV glycoproteins from the host immune 

response and explain the poor detection or availability of HCV glycoproteins at 

the virion surface, but more importantly, they may play a role in HCV cell entry. 

Initial attachment of HCV particles onto hepatocytes is mediated by the heparan 

sulfate proteoglycan syndecan-1 or syndecan-4 (Shi et al. 2013; Lefèvre et al. 

2014) or by the scavenger receptor B1 (SRB1) (Dao Thi et al. 2012). It was 

initially thought that HCV glycoproteins are responsible for virion binding to 

heparan sulfate proteoglycans or SRB1, however, more recent data suggest 

that apolipoprotein E (Apo-E), rather than HCV glycoproteins themselves, could 

be involved in this initial contact (Jiang et al. 2013). After the initial attachment 

to the cell surface, cell entry is facilitated by the coordinated action of at least 

four out six major cellular factors. They include SRB1, tetraspanin, CD81, tight-

junction proteins claudin-1 (CLDN1), occludin (OCLN) and epidermal growth 

factor receptor (EGFR). CD81 and OCLN determine the tropism of HCV for 

human cells (Pileri 1998; Scarselli et al. 2002; Evans et al. 2007; Ploss et al. 

2009). Finally, since the HCV virion is rich in cholesterol, the role of the 

cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) was investigated and 

NPC1L1 identified as an additional entry factor (Sainz et al. 2012). Transferrin 

receptor 1 (TfR1) has also been reported to be involved in HCV entry, however, 

the precise roles of these additional factors in HCV entry remain to be 
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determined (Martin & Uprichard 2013). HCV is known to be endocytosed by a 

clathrin-dependent process and after internalization, the virion is transported to 

endosomes, where fusion takes place (Blanchard et al. 2006) (figure 1-2). 
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Figure 1-2 HCV entry. 

The HCV virion is tightly associated with lipoproteins to form a complex particle 
that has been called lipoviroparticle. It initiates its life cycle by binding to 
glycosaminoglycans (GAGs) and scravenger receptor B1 (SRB1). Then the 
virus follows a complex multistep process, involving a series of specific cellular 
entry factors, which include SRB1, CD81, tight-junction proteins, claudin-1 
(CLDN1) and occludin (OCLN), epidermal growth factor receptor (EGFR), 
transferrin receptor (TfR) and Niemann-Pick C1-like 1 (NPC1L1). After binding 
to several components of the host cell, HCV particle is internalized by clathrin-
mediated endocytosis and fusion takes place in endosomes. 

 

Adapted from Journal of Hepatology 2014 vol. 61 j S3–S13 S5. 

https://doi.org/10.1016/j.jhep.2014.06.031 
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RNA translation is initiated with the help of cellular factors (Brodin et al. 2015). 

The 5 UTR contains an internal ribosomal entry site, which initiates translation 

of the HCV genome into a single polyprotein. Viral and host encoded proteases 

process the viral polyprotein into the 10 mature proteins (figure 1-1). After 

translation, the HCV proteins are associated with membranes derived from the 

endoplasmic reticulum. Together, NS3/4A, NS4B, NS5A, and NS5B constitute 

the viral proteins of the replication machinery, which replicates the positive 

sense RNA genome through a negative strand intermediate. To replicate its 

genome, HCV induces massive rearrangements of intracellular membranes to 

create in the cytoplasm a microenvironment, called the ‘‘membranous web’’. 

After assembly at the endoplasmic reticulum, the new particles are then 

released by budding at the cell membrane. HCV virion biogenesis is closely 

related to VLDL assembly pathway and there is a consensus about the 

involvement of apolipoprotein E (Apo-E) in HCV morphogenesis (Jiang & Luo 

2009).  

 HCV transmission  1.1.4

HCV is a blood borne virus and early studies found a significant association 

between disease acquisition and a history six months prior to illness of blood 

transfusions, IDU, health care employment with frequent exposure to blood, 

personal contact with others who had hepatitis, multiple sexual partners or low 

socioeconomic status (Alter et al. 1982; Alter et al. 1989). Today, HCV is rarely 

transmitted by blood transfusion or transplantation of organs due to thorough 

screening of the blood supply for the presence of the virus and inactivation 

procedures that destroy blood borne viruses. These techniques have lowered 
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the risk of acquiring HCV via transfused blood products to 1 in 2 million 

(Stramer et al. 2004). 

Injection drug use has been the principal mode of transmission of HCV since 

the 1970's. In comparison to other viral infections, HCV is the most prevalent in 

individuals who have injected for one year or less (Garfein et al. 1996).  

The presence of tattoos has been independently associated with an increased 

risk of HCV infection. Other potential modes of unapparent blood contact 

include skin piercing and folk medicine (Ko et al. 1992; Kiyosawa et al. 1994). 

Traditionally, in the healthcare setting, occupational needle stick injuries, use 

and reuse of non-sterile needles, syringes and haemodialysis can be routes of 

transmission of the virus (Lanphear et al. 1994; Frank et al. 2000). However, the 

overall risk of HCV acquisition in the modern health care settings is not higher 

than the rest of the population (Thorburn et al. 2001).  

HCV is rarely transmitted by monogamous heterosexual intercourse, but the 

risk is increased in those with high risk sexual behaviour (0.4 to 1.8% per year), 

such as men who have sex with men or those with multiple sexual partners 

(Wyld et al. 1997). Vertical transmission is uncommon and it is estimated that 

1150 pregnancies annually in the UK would involve a woman infected with 

HCV, leading to approximately 70 infected infants being born each year (Ades 

et al. 2000). Household contact HCV transmission has been reported but the 

incidence is low  and overall in 20% of cases the route of transmission is 

unknown (MacDonald et al. 1996). 
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 HCV epidemiology 1.1.5

According to a recent review of the global epidemiology and genotype 

distribution of HCV infection (Gower et al. 2014) the results are as follows: 

• The total global prevalence of HCV is estimated to be 1.6% (1.3-2.1%), 

corresponding to 115 (92-149) million past viraemic infections. 

• The majority of these infections, 104 (87-124) million, are among adults 

(defined as those older than 15 years old) with an anti-HCV infection rate of 

2.0% (1.7-2.3%). 

• The viraemic (RNA positive) prevalence is forecasted to be 1.1% (0.9-1.4%), 

corresponding to 80 (64-103) million viraemic infections. 

•Most of these viraemic infections are among adults who account for 75 (62-89) 

million viraemic infections or a viraemic prevalence of 1.4% (1.2-1.7%). 

• Globally, genotype 1 is the most common, accounting for 46% of all infections, 

followed by genotypes 3 (22%), and genotypes 2 and 4 (13% each). Subtype 1b 

accounts for 22% of all infections at the global level. 

• There are significant variations across regions with genotype 1 dominating in 

Australasia, Europe, Latin America and North America (53-71% of all cases) 

and genotype 3 accounts for 40% of all infections in Asia. 

• Genotype 4 is the most common (71%) in North and West Africa and the 

Middle East, but when Egypt is excluded, it accounts for 34%, while genotype 1 

accounts for 46% of infections across the same region. 

A map of global HCV genotype distribution is shown in figure 1-3. 
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Figure 1-3 Map of global HCV genotype distribution. 

Relative prevalence of each HCV genotype by geographical burden of disease  
region. The size of pie charts is proportional to the number of seroprevalent 
cases. 

 

Adapted from Hepatology.2015 Jan 61(1):77-87. 

https://doi.org/10.1002/hep.27259  
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In the UK a conservative estimate is that there 214.000 individuals chronically 

infected with HCV. Worldwide, the highest HCV incidence and prevalence rate 

is amongst IDU and it is estimated that 10 million active IDUs have been 

exposed to HCV and 8 million have chronic infection (Grebely & Dore 2011). 

Data from the Unlinked Anonymous Monitoring survey of people who inject 

drugs in the UK suggest that levels of infection in this group remain high in 2013 

(50% in England, 32% in Northern Ireland and 47% in Wales). 

Factors associated with HCV acquisition include recent initiation to injecting, 

unstable housing, female gender, ethnicity, survival sex work, frequent injecting 

cocaine use, imprisonment, having a partner who injects, injecting networks, 

requiring help injecting, and borrowing injecting equipment (Patrick et al. 2001; 

Miller et al. 2002; Roy et al. 2007; Shannon et al. 2010; Hellard et al. 2014).  

The duration of IDU and frequency of drug use appear to influence the risk of 

transmission. Those with daily injecting, and injecting of crack/cocaine, 

compared to heroin, are at the highest risk of acquiring HCV. The highest risk of 

acquiring HCV is within the first 2 years of commencing IDU, with prevalence 

rates rising progressively to more than 90% in some reports in those who had 

injected for more than 10 years (Thomas et al. 1995; Garfein et al. 1996; 

Lorvick et al. 2001). 

 Natural history of HCV 1.1.6

The average time from HCV exposure to seroconversion is 5-12 weeks, whilst 

HCV RNA is detectable within 2 weeks (Puoti et al. 1992). This stage precedes 

the elevation of ALT by approximately 1-3 weeks. The acute infection is usually 

asymptomatic, however approximately one third of the affected individuals 
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might develop non -specific flu like symptoms. More specific symptoms of viral 

hepatitis can be encountered in a minority of individuals: jaundice, dark urine, 

anorexia, aversion to smoking among smokers and abdominal discomfort may 

occur. Physical findings are usually minimal, apart from jaundice in a third of 

patients. 15-40% of the affected individuals will clear the virus  and the factors 

affecting this include host genetics, gender, mode of acquisition, the severity of 

the acute illness, presentation with jaundice, a poorly defined weak immune 

response, immunosuppression and HIV co-infection (Westbrook & Dusheiko 

2014). Chronic HCV infection is defined by detectable HCV RNA in the serum of 

affected individuals for more than 6 months. Late spontaneous seroconversion 

can occur, but is rare and estimated at 0.5% per person per year (Watanabe et 

al. 2003). Those who clear the infection will have detectable HCV antibodies, 

however the titres tend to wane 18-20 years after the infection (Takaki et al. 

2000). 

Chronic HCV infection will lead to fibrosis and cirrhosis in 5-25% of the affected 

individuals within 20 years (Di Bisceglie 1998; Seeff 2002). Risk factors for 

progression to cirrhosis include age more than 40 years, male gender, alcohol 

consumption of more than 30g/day, human immunodeficiency virus (HIV) and 

/or hepatitis B virus (HBV) co-infection, severity of liver fibrosis at the time of 

diagnosis and the presence of co morbid conditions (Poynard et al. 1997; 

Lesens et al. 1999; Harris et al. 2001; Ryder et al. 2004). Once cirrhosis is 

established, the rates of decompensated chronic liver disease and 

hepatocellular carcinoma (HCC) are ∼2%–4%/year and 1%–7%/year, 

respectively (Tsukuma et al. 1993; Fattovich et al. 1997).  
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1.2 Testing and treatment of HCV 

Established chronic infection requires the detection of HCV antibodies and HCV 

RNA in the serum of the affected individuals. Spontaneous or treatment 

resolution of HCV infection is defined by the presence of HCV antibodies but 

absence of HCV RNA. 

HCV antibodies are currently identified by 3rd generation enzyme 

immunonoassay (EIA) that detects antibody reactivity to core, NS3, NS4 and 

NS5 proteins of the virus. It has a sensitivity of 98.1% (95% confidence interval, 

92.6 to 99.7) and specificity of 99.8% (95% confidence interval, 99.2 to 99.9). 

Due to high sensitivity and specificity of the detection assays, previous 

additional confirmatory tests used are now obsolete (Abdel-Hamid et al. 2002).  

HCV RNA is currently detected by quantitative reverse transcriptase–

polymerase chain reaction. Apart from diagnosing chronic HCV infection it is 

also useful in treatment monitoring. In order to achieve standardization across 

the available quantification assays, the viral load is currently expressed in 

international units (IU) /ml of serum and there is a conversion factor, which is 

assay dependent, that is used to calculate the corresponding viral copies/ml of 

serum. There are a number of commercially available highly sensitive and 

reliable assays for HCV RNA that are able to quantify HCV viral concentration 

at a level as low as 10-20 IU / ml (Cobas v2.0, Roche Molecular Systems). Up 

until 2011, recombinant pegylated-interferon-α and ribavirin were the standard 

of treatment for HCV infection. Successful outcome is defined as undetectable 

HCV RNA 6 months following completion of treatment and is termed sustained 

virological response (SVR). This combination resulted in an SVR rate of 40-45% 

in genotype 1 patients with 48 weeks of treatment, and 75% with 24 weeks of 
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treatment in genotypes 2 or 3 and was frequently associated with intolerable 

side effects (Fried et al. 2002; Hadziyannis et al. 2004). 

The treatment of HCV has been revolutionised over the past 4 years with the 

introduction of a variety of drugs able to directly inhibit HCV viral proteins 

(direct-acting antiviral agents or DAA), by targeting NS5A, NS5B or NS3/4A and 

have resulted in cure rates of up to 95% after a 12 week treatment (Zeuzem et 

al. 2015). The first generation of DAA, the NS3/4A inhibitors, were co-

administered with pegylated interferon and ribavirin, thereby adding to the side 

effect burden (Jacobson et al. 2011), whereas subsequent DAAs, used in 

combination, can be administered without pegylated interferon and are more 

efficacious with shorter duration of treatment. However, various polymorphisms 

in the targeted viral proteins (resistance-associated variants), identified, mainly 

in the new generation NS5A DAA, can reduce the SVR rates (Wells et al. 2015). 

The main issue related to the use of DAA for HCV treatment is their cost. The 

incremental cost-effectiveness ratio ranges from $35,000 to $410,548 per 

quality-adjusted life-year gained, making affordability a huge limitation in their 

use. Taking into account that the population mainly affected by HCV is IDU (see 

1.1.5), whose compliance to treatment is lower compared to non-IDU (Hellard et 

al. 2009), a preventative as well as a curative approach to HCV infection 

remains an important goal. 

1.3 The discovery of HCV 

 Animal models 1.3.1

Chimpanzees, studies on which led to the discovery oh HCV virus, are the only 

animal models (Houghton 2009) that can be used to completely study HCV 

infection. They can be infected with isolates of the 6 epidemiologically important 



38 
 

genotypes and have innate and adaptive immune responses similar to those 

observed in infected humans (Bukh 2004).They are, however, rare and 

expensive. 

T- and B-cell deficient mice (severe combined immunodeficiency mice), grafted 

with human hepatocytes, are the only small animals that can be robustly 

infected with HCV. However, because these mice are immune-deficient, they 

have impaired utility for studies of adaptive immunity (Mercer et al. 2001). 

There have been reports of HCV infection in New and Old World monkeys, but 

most evidence indicates that these primates are not susceptible to HCV 

infection (Bukh et al. 2001). Tree shrews (Tupaia belangeri, non-rodent small 

mammals that are easy to maintain and reproduce) have been proposed as a 

model for HCV infection. Even though these animals can apparently be infected 

with HCV (Xie et al. 1998), they have not found widespread use. The low and 

variable infection rates and HCV titres are problematic. The reported 

development of persistent infection and evidence for chronic liver disease are, 

however, attractive features of this model. 

 In vitro models 1.3.2

Initial attempts to study the establishment of HCV infection used primary cells 

from humans and chimpanzees. Primary human foetal hepatocytes infected 

with HCV-containing sera detected the positive strand of virus but the 

replication was low (Iacovacci et al. 1997). Due to short passage life and 

contamination problems in primary hepatocytes, scientists tried to develop 

immortalized human hepatoma cell lines. Many cell lines supported HCV 

infection and replication in-vitro such as human T-lymphocyte cell lines, human 

fibroblast cells (VH3), peripheral blood mononuclear cells (PBMC) and 
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hepatocytes. A human hepatocyte cell line, PH5CH, which is immortalised with 

simian virus 40 large antigen, was extensively studied. Although found to be 

more susceptible to HCV infection than others, the system was still inefficient 

(Kato et al. 1996). Studies looking at hepatoma cell lines HepG2 and HuH-7 

produced poor results in the past even though conditions were changed 

extensively to try to optimise the approach (Mizutani et al. 1996; Seipp et al. 

1997). 

The HCV replicon system replicates a modified HCV genome to high levels in 

human hepatoma (Huh-7) cells (Lohmann et al. 1999). Replicons are either 

sub-genomic (containing only the non-structural proteins for RNA replication) or 

genomic in length (contains the entire HCV genome). Both types of replicons 

contain the neomycin phosphotransferase gene for selection. The 

encephalomyelitis virus (EMCV) internal ribosomal entry site (IRES) sequence 

facilitates translation of the non-structural proteins in-vitro. All genes are driven 

by a T7 promoter. Following transcription with T7 RNA polymerase, replicon 

RNA is transfected into Huh-7 human hepatoma cells. Subsequent adaptive 

mutations, acquired by unknown mechanism, in NS3 and NS5A strongly 

increased RNA replication (Bartenschlager 2002). 

Wakita developed a genotype 2a full length replicon (JFH-1) which was isolated 

from a Japanese patient with fulminant hepatitis. This HCV full length genome 

replicates efficiently and produces virus particle (HCVpp) in Huh- 7 (Wakita et 

al. 2005). Further refinements have led to the development of Huh7 derived cell 

lines (Huh7.5.1) which result in increase of the viral titre to 104–105 infectious 

units per ml of culture supernatant and these cell lines are highly permissive to 

JFH-1 virus infection. An important limitation of this replicon is that HCV 
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particles are based on genotype 2 which is not the dominant genotype in the 

world. Based on these findings, the infectious hepatitis C virus (HCV) cell 

culture system (HCVcc) was developed. It is a robust HCV cell culture infection 

system based on the HCV JFH-1 molecular clone and Huh-7-derived cell lines 

that allows the production of virus that can be efficiently propagated in tissue 

culture (Zhong et al. 2005). 

HCV pseudo particles (HCV pp) were produced to study the early stages of viral 

life cycle. HCVpp were produced by transfecting the three vectors in Human 

embryo kidney cells (293T). The first vector encodes retroviral Gag and Pol 

proteins which are responsible for particle budding at the plasma membrane 

and RNA encapsidation. The second vector encodes a reporter protein 

(Luciferase). The third vector encodes HCV glycoproteins E1 and E2, which are 

necessary for viral tropism and fusion of HCV pp with the target cell membrane. 

293T cells secrete virus pseudo particle ( on average 105 particles/ml) which 

can be used to infect Huh 7 cells and infectivity is evaluated by quantification of 

the amount of luciferase expressed in Huh-7 cells (Bartosch et al. 2003). These 

virus like particles can be neutralized with monoclonal antibody against the viral 

glycoprotein E1, E2 and sera of HCV infected patient  and are a powerful tool to 

identify inhibitors which block HCV entry (Hsu et al. 2003). 

 Evolving molecular methods for the study of HCV infection 1.3.3

The development of the HCVcc cell line mentioned above, allowed studying of 

the entire virus infectious cycle and its effect on cellular gene and protein 

expression. 

Traditionally differential gene expression in cells infected with HCV has been 

studied following microarray analyses of gene transcriptional profile. RNA is 
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extracted from a cell or tissue of interest and is then hybridized to the tethered 

probe DNA sequences corresponding to specific genes that have been affixed, 

in a known configuration, onto a solid matrix. This information is then captured 

and the comparison of hybridization patterns enables the identification of 

mRNAs that differ in abundance in two or more target samples. Issues with 

microarrays include cross-hybridization artefacts, poor quantification of genes 

with low expression and the need of prior knowledge of the target sequence. 

RNA sequencing (RNA-Seq) is a relatively novel technique that will probably 

substitute microarray analyses in the future. In general, a population of RNA is 

converted to a library of cDNA fragments with adaptors attached to one or both 

ends. Each molecule, with or without amplification, is then sequenced in a high-

throughput manner (Holt & Jones 2008) to obtain short sequences from one 

end (single-end sequencing) or both ends (pair-end sequencing). Following 

sequencing, the resulting reads are either aligned to a reference genome or 

reference transcripts, or assembled de novo without the genomic sequence to 

produce a genome-scale transcription library that consists of both the 

transcriptional structure and/or level of expression for each gene. This makes 

RNA-Seq particularly attractive for non-model organisms with genomic 

sequences that are yet to be determined (Z. Wang et al. 2009). 

Woodhouse et al have recently published data on the first full-genome RNA-

Seq analysis in a host cell to analyse HCV infected and non-infected cells, and 

compared this to microarray and proteomic analyses. This combined approach 

has led to the identification of canonical pathways (see 3.2) and biological 

functions associated with HCV infection that have not been previously reported. 

These include pregnane X receptor/retinoic acid receptor activation as a 
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potential host antiviral response, and integrin-linked kinase signalling as an 

entry factor. Additionally, it was highlighted that HCV infection had a broad 

effect on cellular metabolism, leading to an increase in cellular cholesterol and 

free fatty acid levels, that is associated with a profound decrease in cellular 

glucose levels. The limitations of the technique are the requirements for large 

quantities of high-quality RNA, the current cost and requirement for specialist 

sequencing equipment, and management of a significant data load (Woodhouse 

et al. 2010). However, it allows a non- hypothesis driven transcriptional profiling 

study and could be useful in identifying the molecular mechanisms of natural 

protection from HCV in the future.  

1.4 Outcome of HCV infection; Non immune determinants 

Accurate studies of the time course for clearance of acute hepatitis C are 

difficult to carry out because of the silent onset of the acute disease. Studies to 

determine the rate of persistence are few and may be biased by the mode of 

ascertainment. They frequently involve the prospective study of symptomatic 

individuals who are more likely to clear the virus. Various host characteristics 

have been associated with spontaneous clearance of HCV (also mentioned in 

1.1.6.) and the strongest association is with female gender (Alric et al. 2000; 

Grebely et al. 2014). Icteric and symptomatic clinical presentation as well as low 

peak viral titres also favour viral clearance (Villano et al. 1999). Ethnicity 

influences outcome as Caucasians are more likely to clear the virus compared 

to Afro Caribbeans (Villano et al. 1999; Piasecki et al. 2004). Viral co-infection 

with either HIV or HBV and immunosuppression favour HCV chronicity, possibly 

related to reduced CD4+ cell counts (Thomas et al. 2000; Grebely et al. 2014). 

The likelihood of spontaneous HCV resolution is, also, associated with several 

genetic factors, including IL28b inheritance and the DQB1∗0301 allele of the 
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major histocompatibility complex class (Alric et al. 1997; Cramp et al. 1998; 

Thomas et al. 2009). Albeit the observation is lacking consensus (Santantonio 

et al. 2003; Wietzke-Braun et al. 2007), it has been suggested that infection with 

HCV genotypes 1 &3 favours spontaneous clearance (Lehmann et al. 2004; 

Harris et al. 2007). 

1.5 HCV outcomes; Immune determinants 

 Chronic HCV infection results from either the ability of the virus to escape the 

host’s immune responses or, conversely, from the inability of the host to mount 

appropriate immune responses to clear the virus. The following chapters 

discuss elements of the innate and adaptive immunity that may influence the 

outcome of HCV infection. 

 Innate immunity 1.5.1

1.5.1.1 HCV recognition and signalling pathways 

Innate immune responses are the first line of defence against viral infections. 

During the viral replication process HCV is sensed as non-self by pathogen 

recognition receptors (PRRs) in the host cell that identify and bind to pathogen 

associated molecular pattern (PAMP) motifs within viral products, leading to 

coordinated activation of the innate immune response. A variety of PRRs sense 

viruses as foreign invaders within the host cell through specific PAMP 

recognition to activate innate immune signalling. The RIG-I-like receptors 

(RLRs), retinoic acid inducible gene-I (RIG-I) and melanoma differentiation 

antigen 5 (MDA5), are cytosolic PRRs that sense RNA viruses. Toll-like 

receptors (TLRs) mediate virus sensing from within endosomal compartments 

to signal innate defences, while Nod-like receptors (NLRs) serve to sense 

cytosolic viral products or viral metabolites to drive inflammatory responses. 
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HCV is recognized by RIG-I within hours of infection and activates downstream 

signalling prior to extensive viral protein synthesis (Loo et al. 2006). RIG-I 

signalling during HCV infection is initiated upon its binding of PAMP RNA that 

includes an exposed 5’ triphosphate and the 3’ non-translated region of the 

HCV genome RNA rich in poly U/UC ribonucleotides (Uzri & Gehrke 2009). 

HCV RNA binding induces a RIG-I conformational change that promotes 

oligomerisation and translocation from the cytosol into intracellular membranes. 

This process requires interactions with the chaperone protein 14-3-3ε and the 

E3 ubiquitin ligase TRIM25, which together with RIG-I comprise a translocon 

that facilitates the interaction of RIG-I with the mitochondrial antiviral signalling 

protein (Gack et al. 2007). The RIG-I/MAVS interaction promotes the formation 

of a MAVS signalosome that propagates activation of downstream effector 

molecules, including the transcription factors interferon regulatory factor (IRF-3) 

and NF-κB and a variety of pro inflammatory cytokines (Loo & Gale 2011). 

TLR3 has also been implicated as a PRR that senses HCV, although its role in 

HCV detection and immunity is still not fully understood. TLR3 is an endosomal 

sensor of dsRNA expressed in a number of cell types within the liver, including 

hepatocytes and the liver resident macrophage Kupffer cells. TLR3 signals are 

transmitted through the adaptor protein TIR (Toll/interleukin-1 receptor) domain-

containing adaptor protein inducing interferon beta ( TRIF), which activates IRF-

3 and NF-κB for the production of type I IFN, pro inflammatory cytokines, and 

chemokines, as well as for apoptotic signalling (Takeuchi & Akira 2009). 

Whereas synthetic dsRNA ligands of TLR3 can induce IRF-3 dependent 

signalling in cells expressing ectopic TLR3 within 24 hours, HCV infection  

triggers this response 3-4 days after the infection (N. Wang et al. 2009). 
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Protein kinase R (PKR) is a dsRNA binding protein PRR, whose kinase activity 

can lead to IFN production, mainly by suppressing host, but not HCV, mRNA 

translation (Arnaud et al. 2011). It is also known that PKR binding to HCV 

dsRNA  activates a kinase-independent signal transduction cascade that drives 

induction of specific interferon inducible genes and IFN-β production by 

signalling through MAVS, TNF receptor associated factor 3 (TRAF3), IRFs, and 

NF-κB, all prior to RIG-I activation (Kumar et al. 1997; McAllister & Samuel 

2009; Arnaud et al. 2011)  

1.5.1.2 Mechanisms of HCV evasion of innate immunity and the role of 

type I interferons  

 Interferons are a family of cytokines grouped in 3 classes: type I, II and III. 

Type I interferons are encoded by a variety of genes, mainly including IFN-α, 

IFN-β, IFN-ε, IFN-κ. In humans, IFN-α and IFN-β fight viral infections either 

directly or indirectly by activation of the innate immune system. Type II IFN, 

mainly IFN-γ, is produced by NK cells and activated T-cells. Type III IFN include  

IFN-λ1 (IL-29), IFN-λ2 (IL-28α ) and IFN-λ3 (IL-28β) and are also activated in 

the context of viral infections (Randall & Goodbourn 2008; Levy et al. 2011). 

Type I interferons are produced by the liver both in acute and chronic HCV 

infection and IFN- α2 has been, up until recently, widely used in the treatment of 

HCV. They up regulate the major histocompatibility complex (MHC) class-I and 

class II expression and activate natural killer, dendritic and Kuppfer cells (Bigger 

et al. 2001; Rehermann 2013). Type I interferons bind the heterodimeric 

transmembrane receptor IFN-AR1/IFNA-R2 leading to activation of the 

receptor-associated protein tyrosine kinases Janus kinase 1 (JAK1) and 

tyrosine kinase 2 (TYK2), which phosphorylate the signal transducers and 
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activators of transcription (STAT) 1 and 2. Following translocation to the 

nucleus they bind to interferon response factor 9 (IRF9) to form the interferon 

stimulatory gene factor 3 (ISGF3), which subsequently binds to IFN-stimulated 

response elements (ISRES) leading to transcription of ISGs. The ISG-encoded 

proteins inhibit, through a variety of mechanisms, viral transcription, translation 

and replication (Levy & Darnell 2002; Schoggins et al. 2011; MacMicking 2012; 

Stark & Darnell 2012).  

Despite the fact that HCV induces the production of type I interferons, HCV 

manages to escape its immunomodulatory effects via a variety of mechanisms.  

HCV core protein induces the synthesis of suppressor cytokine signaling 3 

(SOCS3) which inhibits STAT 1 phosphorylation and suppresses JAK-STAT 

(Bode et al. 2003). The HCV NS3/4A protease cleaves MAVS and TRIF and 

leads to suppression of IFN production and the expression of interferon 

inducible genes (Li et al. 2005; Loo et al. 2006). NS5A inhibits the activation of 

PKR (Gale et al. 1997) and the interferon inducible gene 2-5 oligoadenylate 

synthetase (Taguchi et al. 2004). Thus whilst increased therapeutic levels of 

IFN-a can result in HCV clearance, albeit with high relapse rates (Pawlotsky 

2011), endogenous IFN-a does not seem to influence the outcome of HCV 

infection (Bigger et al. 2001). 

1.5.1.3 The role of Dendritic cells in the outcome of HCV infection 

Dendritic cells (DC) are very efficient inducers and regulators of all immune 

responses. They are derived from bone marrow and they circulate in the 

peripheral blood as either mature or immature forms. Based on their origin, 

antigen presenting characteristics and function, DCs are differentiated in 

plasmatoid (PDC) and myeloid (MDC) (Kadowaki 2009). As immature cells they 
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express low levels of MHC Class I and II antigens but following maturation, after 

detection of pathogen or upon contact with pro-inflammatory cytokines, they 

increase the MHC expression and enhance their ability to present antigens to T 

cells, activate NK cells and produce IFN, therefore linking the innate with the 

adaptive immunity (Adema 2009). MDC express high levels of MHC Class II 

and are able to interact with T cells and produce high levels of IL-2 and IL-10, 

whereas PDC express high levels of MCH Class I and secrete type I IFN.  

It has been suggested that the inability of individuals infected with HCV to clear 

the infection is associated with HCV induced DC functional impairment but the 

findings are controversial. A variety of DC defects have been reported in 

patients with HCV including reduced number of circulating DC, deficiency in co-

stimulatory molecules, decreased T-cell stimulatory capacity, decreased 

production of IL-15 and over production of IL-10 (Kanto et al. 2004; Averill et al. 

2007; Della Bella et al. 2007; Dolganiuc et al. 2008; Saito et al. 2008; Mengshol 

et al. 2009), however these findings have not been confirmed in all of the 

published studies (Rollier et al. 2003; Longman et al. 2004; Piccioli et al. 2005). 

Such discrepancies more likely represent difference in patient cohorts, 

assessment of non-human primate models of HCV infection, different 

experimental approaches  (Szabo & Dolganiuc 2008). 

1.5.1.4 The role of Natural Killer cells in the outcome of HCV infection 

Natural killer (NK) cells account for 5-20% of the peripheral blood mononuclear 

cells but represent 30-50% of lymphocytes in the liver (Corado et al. 1997). 

They are able to directly lyse cells infected by viruses or tumours and unlike 

classic cytotoxic T cells they do not require the presence of MHC class I for 

target cell recognition (Kärre et al. 1986).  
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NK cells are rapidly activated by cytokine stimulation (IL-1, IL-10, IL-12, IL-15 

and IL-18) and their function is amplified by IFN-α release by virally infected and 

dendritic cells (Reiter 1993; Corado et al. 1997). NK cell function is regulated by 

a combination of regulatory receptors with inhibitory or stimulatory effect which 

interact with MHC-I alleles and other ligands on a variety of cells with viral 

infections or tumours. The net balance of signals will determine the threshold at 

which NK cells will be activated. This receptor/ligand interaction provides a 

mechanism of self tolerance and inhibition of NK cell autoreactivity. Activating 

receptors include C- type lectin like NKG2D and CD94:NKG2C/E, natural 

cytotoxicity receptors NKp44, NKp30, NKp46, and CD16 (FC-γ-RIII) (Table1-1).  
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Function Family Receptor Ligand 

Activating 

C-type lectin 
receptor 

 NKG2D 

 CD94:NKG2C 

 CD94:NKG2E 

 MIC-A/B, ULBPs 

 HLA-E 

Natural 
cytotoxicity 
receptor 

 NKp30 

 NKp44 

 NKp46 

 BAT-3, B7-H6, 
CMV pp65 

 Viral 
haemagglutinin 

  Viral 
haemagglutinin 

Killer cell 
immunoglobulin 
receptor 

 3DS1  HLA-Bw4 

Others  CD16  IgG 

 

 Toll-like 
receptors 

 Pathogen-
associated 
molecular 
patterns 
(PAMPs) 

Inhibitory 

Killer cell 
immunoglobulin 
receptor 

 2DL1 

 2DL2/3 

 Group 2 HLA-C 

 Group 1 HLA-C 

C-type lectin 
receptor 

 CD94:NKG2A  HLA-E 

 

Table 1-1 Key receptors for Natural Killer Cells. 

Adapted from Gut 2011;60:268-278. 
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Key inhibitory receptors (KIR) are the killer cell immunoglobulin-like receptors  

and the CD94:NKG2A heterodimer. Once the signal from the activating 

receptors exceeds that of the inhibitory receptors their functions are initiated 

(Cheent & Khakoo 2009). Target cell killing is facilitated by degranulation of 

cytotoxic granules such as perforin and granzyme B and by the expression of 

death receptors Fas ligand (FasL) and TNF-related apoptosis-inducing ligand 

(TRAIL). Additionally NK cell activation leads to priming of the adaptive arm of 

the immune response by secretion of the Th1 cytokines IFN-γ and TNF-α (figure 

1-4).  

NK cell subsets include the NK-CD56dim  and NK-CD56bright  depending on the 

absence of the pan-lymphocytic CD3 and the presence of CD56 which is of no 

functional relevance. CD56dim express a moderate level of CD56 and represent 

90% of the circulating NK cells. CD56bright  express high levels of CD56 and are 

considered more immature cells that can potentially differentiate into mature. 

CD56bright  NK cells under the influence of cytokines, especially IL-15 (Cooper 

et al. 2001). CD56dim express higher levels of CD16 and perforin and are more 

potent cytotoxic cells. The role of CD56bright  is the production of cytokines at 

the site of inflammation but can also be cytotoxic through the expression of 

TRAIL (Stegmann et al. 2010). In the liver, compared to peripheral blood and 

spleen, NK cells exist in a hypo responsive state, are less cytotoxic and 

produce lower levels of INF-γ and higher levels of IL-10, features that might 

contribute to the development of chronic hepatotropic viral infections (Dunn et 

al. 2009). Additionally hepatic NK cells can contribute to reduction in liver 

fibrosis  by inhibiting hepatic stellate cells (Baroni et al. 1996). 
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Figure 1-4 The content has been removed due to copyright restrictions. 
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Natural killer T cells (NKT) are a subset of lymphocytes that possess both NK 

markers and CD1d-restricted T cell receptor (TCR). NKT cells recognise lipids 

derived from pathogens, tumours or allergens that are presented to them by 

CD1d, a non-classical MHC class I molecule. Ligation of the NKT cell TCR 

leads to rapid and copious secretion of Th1 and Th2 cytokines. Additionally, 

they express cytotoxic granules that contain granzyme and perforin and are, 

therefore, able to kill target cells (Cianferoni 2013).  

The original implication of NK cells in the outcome of HCV infection was 

associated with the KIR genes and their human leucocyte antigen-C (HLA-C) 

ligands. KIR genes and their MHC class I ligands are highly polymorphic, 

therefore certain combinations are protective from HCV infection. Khakoo et al 

showed that genes encoding the inhibitory NK cell receptor KIR2DL3 and its 

human leukocyte antigen C group1 (HLA-C1) ligand directly influence resolution 

of hepatitis C virus (HCV) infection. This protective effect, however, was only 

evident in patients infected by low volume inoculum (S. Khakoo et al. 2004). 

Several studies have also shown increased expression of NKG2A on NK cells 

in chronic HCV infection (Jinushi et al. 2004; J Nattermann et al. 2006) causing 

reduction in NK cell cytotoxicity and mediated dendritic cell activation. NK cells 

are also inhibited by the heterodimeric receptor CD94:NKG2A, which has the 

oligomorphic MHC class I molecule HLA-E as is its ligand. An allelic variant of 

HLA-E, HLA-ER was shown to be protective from chronic HCV infection 

genotypes 2&3 possibly due to its reduced affinity and less inhibitory potential 

(Strong et al. 2003; Schulte et al. 2009).  

There is a definite role of NK cells in controlling acute HCV infection, even 

though due to the asymptomatic nature of the disease information of the NK cell 
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function at the early stages has been difficult to study. It has been demonstrated 

that the proportion of CD56dim compared to CD56bright increases and the levels 

of CD56bright   do not return to baseline until 1-3 months in individuals who 

spontaneously cleared HCV compared to healthy controls and patient who 

develop chronic HCV infection. The levels of activating receptor NKG2D are 

also elevated in the acute phase of the HCV infection as well as IFN-γ 

production and NK cell degranulation, especially in individuals who express 

HLA-C1 specific KIR receptors. Pelletier et al observed decreased expression 

of the inhibitory NKG2A receptor in NK cells in IDU who spontaneously clear 

HCV infection compared to those who develop chronic HCV and those who are 

exposed to the virus but remain uninfected. Additionally they were able to 

correlate NK with T-cell responses and show that NK cell degranulation 

correlated with the magnitude of HCV-specific T cells, suggesting  a co 

ordinated adaptive and innate immune system activation in acute HCV infection 

(Pelletier et al. 2010). 

The frequency, phenotype and function of NK cells have been easier to study in 

the context of chronic HCV infection. NK cell absolute number and percentage 

of total lymphocytic population are reduced in patients with chronic HCV 

infection compared to the healthy population, but this might be either a 

contributing factor or a consequence. Some studies support the latter showing 

reduced frequencies and depressed function of NK cells in chronic HCV 

infection which recover after treatment (Corado et al. 1997; Pár et al. 2002; 

Dessouki et al. 2010), whereas others demonstrated normal NK cell function in 

patients with chronic HCV infection (Morishima et al. 2006). A number of studies 

have shown a skewed subset distribution, with a relative increase of CD56bright  

compared to CD56dim  in the peripheral circulation in chronic HCV compared to 
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spontaneous resolvers and healthy controls and this effect is not associated 

with sequestration of CD56dim in the liver (Morishima et al. 2006; Bonorino et al. 

2009). CD56- CD16+ is a NK cells subset that is defective in perforin 

expression, interaction with dendritic cells and production of IFN-γ and TNF-α. 

CD56- CD16+  NK cells expand in many patients with chronic HCV infection and 

there is a skewing away from the CD56bright – CD16+ subset, which is the main 

cytotoxic subset of NK cells (Mavilio et al. 2006; Gonzalez et al. 2009). There’s 

conflicting data with regards to alterations in NK cell receptor phenotypes but 

the most consistent finding is an increase in expression of NKG2A on NK cells 

in chronic HCV infection (J Nattermann et al. 2006; De Maria et al. 2007). Even 

though NK cell cytotoxicity is preserved in chronic HCV there seems to be a 

change in the cytokine profile that favours viral persistence. IFN-γ, which blocks 

HCV replication, production is reduced and IL-10 production from Th2 cells is 

increased contributing to maturation arrest of CD56bright NK (Crotta et al. 2010; 

Dessouki et al. 2010). In chronic HCV infection the normal pattern of DC 

interaction with NK cells is altered and this can dampen the innate immune 

response to the virus. One of the main causes is reduced IL-15 production by 

dendritic cells, which is critical to NK cell maturation and activation. 

Reciprocally, NK cells of patients with chronic HCV infection have a reduced 

ability to activate DD, due to NK cell inhibition by the CD94:NKG2A receptor, 

the ligand of which (HLA-E) is upregulated in HCV. The result is an increase in 

IL-10 production which promotes Th2 as opposed to Th1 differentiation, an 

effect that can be restored following inhibition of NKG2A (Jinushi et al. 2004; De 

Maria et al. 2007). 

HCV has a number of strategies through which it can evade NK cell activity. 

HCV-core can upregulate HLA-E leading to leading to CD94:NKG2A mediated 
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inhibition of NK cells (Nattermann et al. 2005). Earlier studies had demonstrated 

the ability of HCV-E2 to reduce IFN-γ production by linking to CD-81 on NK 

cells. In these studies high concentration of plate bound HCV- E2 was used as 

opposed to complete infectious particles that became available later. 

Subsequent studies utilising the latter challenged this theory by showing that 

when HCV-E2 is part of a soluble infectious particle it is unable to bind to CD-

81. Taking into account the fact that NK cells are activated in chronic HCV, this 

hypothesis in vivo is unlikely to be of significance. (Crotta et al. 2002; Yoon et 

al. 2009). 

Our understanding of NK cell function in the context of HCV is still emerging, 

but there seems to be a difference in NK cell number, activation and cytokine 

profile between acute and chronic HCV. The small size of the cohorts with acute 

HCV that have been studied does not allow us to draw safe conclusions so 

further work is required in order to underpin the role of NK cells in natural 

protection from HCV. 

 Adaptive immunity 1.5.2

The adaptive immune response to HCV consists of an antibody and CD4+ and 

CD8+ HCV specific T cell responses. T cell responses appear within 7-10 

weeks after detection of the virus and coincide with a reduction of viral load, 

indicating the important role of the adaptive response in viral clearance (F. 

Lechner et al. 2000; Thimme et al. 2001). Humoral responses are detectable 8-

12 weeks after infection and even though all the infected individuals will develop 

antibodies this does not correlate with viral clearance (Chen et al. 1999).  

Individuals who spontaneously resolve HCV infection develop broad, high 

amplitude CD4+ and CD+8 HCV specific T cell responses that are sustained 
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over time, whereas various mechanisms of T-cell failure will lead to viral 

persistence (Diepolder et al. 1996; Lechmann et al. 1996; Missale et al. 1996; 

Cramp et al. 1999; Thimme et al. 2002). 

1.5.2.1 The role T cell responses in successful outcome of HCV infection 

T cell activation requires two signals: peptide in the context of the major 

histocompatibility complex (MHC) interacting with the T cell receptor (TCR), and 

a co-stimulatory signal (Lafferty & Cunningham 1975). CD4+ (also known as T 

helper cells) & CD+8 T cells recognise antigens that are presented to TCR by 

the MHC class II & I molecules on the surface of antigen presenting cells (APC) 

respectively.  

Naïve CD4+ T cells, following activation, and depending on the cytokine milieu 

of the microenvironment, further differentiate into a variety of lineages of 

effector cells. T helper 1 cells (Th1) produce IFN-γ and IFN-2 and leads to 

activation of macrophages, promote proliferation and activation of CD4+ and 

CD8+ cells and foster the development of cytotoxic lymphocytes (cytotoxic T 

lymphocytes (CTL) & NK cells) that are responsible for the cell-mediated 

immune response against viruses and tumour cells. Th2 cells secrete a variety 

of cytokines that promote B cell activation, proliferation and antibody production 

and limit Th1 response (Moser & Murphy 2000). CD8+T cells, in a cytokine 

dependent manner, are mainly cytolytic, however they can also secrete IFN-γ 

and TNF-α. In HCV infection, naïve Th and CD8+ cells are primed in the lymph 

nodes by dendritic cells and migrate to the liver where they destroy infected 

cells by cytolytic and non -cytolytic mechanisms (figure 1-5). 
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Figure 1-5 HCV specific adaptive immune response. 

Naïve CD4+ and CD+8 cells are primed in the lymph nodes by antigen 
presenting dendritic cells following engagement of the TCR receptor with MHC 
class I or II. Once activated, they become effector cells and migrate to the 
infected liver tissue. Primed Th1 cells secrete Th1 cytokines and allow 
activation of specific cytotoxic T cells (CTL) therefore destroying cells in a non-
cytolytic as well as a cytolytic manner (by secretion of perforin and granzyme-
B). Th2 cells promote B cell proliferation and differentiation towards the 
production of HCV specific antigen. 

 

Adapted from World J Gastroenterol. 2014 April 7; 20(13):3418-3430. 

doi: 10.3748/wjg.v20.i13.3418 
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Studies in chimpanzees that had previously cleared HCV and were re 

challenged, showed that viral clearance was achieved within weeks and 

correlated with strong peripheral memory T cell responses and intrahepatic IFN-

γ production (Bassett et al. 2001; Major et al. 2002). 

Initial studies of acute HCV infection showed that rapid and strong CD4+ T cell 

responses are essential for HCV clearance (Diepolder et al. 1996; Missale et al. 

1996). In order to be effective, these responses should also be targeted to 

multiple non structural HCV proteins, such as NS3, NS4 and NS5 and often 

target the same immunodominant  epitopes in NS3 (Hoffmann et al. 1995; 

Diepolder et al. 1997). Additionally, CD4+ T cell responses need to be 

sustained over time, alternatively viraemia can recur and viral escape mutations 

in MHC class I epitopes can emerge (Gerlach et al. 1999; Grakoui 2003). 

Takaki et al had shown that effective CD4+ T cell responses persist for up to 2 

decades after HCV clearance, whereas humoral responses decrease (Takaki et 

al. 2000). Subsequent studies elucidated the important role of CD+8 T cells in 

HCV clearance and showed that mounting vigorous and multispecific CD+8 T 

cell responses are important to achieve a self-limited course of the disease 

(Grüner et al. 2000; F Lechner et al. 2000). HCV specific CD8+ T cells have 

also been shown to inhibit the replication of HCV in the replicon model (Liu et al. 

2003) Of importance though, is that at the onset of the disease HCV specific 

CD+8 cells emerge, but might not be always associated with a substantial 

decrease in viral load and are unable to produce IFN-γ, a property known as 

“stunned”. Only in those whose CD+8 T cells recover and produce IFN-γ,at later 

stages of the disease, achieve viral clearance (F Lechner et al. 2000). 
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Both DC4+ and CD8+ T cell responses play a significant role in HCV clearance, 

but in comparison, CD4+ T cell responses are pivotal. Antibody mediated CD4+ 

T cell depletion in chimpanzees with previous HCV infection  resulted in 

recurrence of viraemia despite the presence of strong intrahepatic CD+8 cell 

responses (Grakoui 2003). Additionally memory CD4+ T cells and to a lesser 

extent memory CD8+  cells are the subset of T cells that contribute to immunity 

(Takaki et al. 2000; Wertheimer et al. 2003). 

1.5.2.2 Failure of T cell responses to HCV infection 

Various mechanisms have been suggested to explain T cell failure to control 

HCV infection. 

As mentioned in 1.5.2.1, several studies have demonstrated that weak, oligo 

specific, non virus specific and non sustained CD4+ and CD+8 T cell responses 

in the acute phase of infection lead to chronic viraemia. It is often difficult to 

differentiate between primary T cell failure and early T cell exhaustion following 

initial priming (Thimme et al. 2001) and the precise mechanisms are so far 

unclear. The data regarding impaired antigen presentation of dendritic cells are 

conflicting (Sarobe et al. 2002; Longman et al. 2004), but HCV has the ability to 

up-regulate negative co-stimulatory receptors on HCV specific CTL in order to 

provoke an anergic status. Up-regulation of programmed death-1 (PD-1) 

receptor that causes apoptosis has been suggested as a key molecule in this 

process and blockage of its signalling results in restoration of functional CD8+ T 

cell responses in chronic HCV infection (Golden-Mason et al. 2007; Radziewicz 

et al. 2007). On top of PD-1 there’s a list of other negative co-stimulatory 

molecules (Golden-Mason et al. 2009; Nakamoto et al. 2009; Schlaphoff et al. 

2011) (figure 1-6), blockage of which contributes to a restoration of a CD127+ 
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phenotype in CD8+ T cells with positivity for IL-7. The latter are responsible for 

conferring protective CD8+ T cell immunity in chimpanzees (Grakoui 2003). 

Viral escape mutations can also contribute to T cell response failure. As 

previously mentioned HCV RNA replicates by its RNA dependent polymerase 

that lacks proof reading and natural selection leads to evolution of variants 

resistant to cellular and humoral responses. In studies both in chimpanzees and 

humans it has been shown that substitution of amino acids that inhibit CD4+ 

and CD8+ T cell recognition is associated with the development of chronic HCV 

infection (Weiner et al. 1995; Chang et al. 1997; Tsai et al. 1998). However, 

viral escape occurs typically in the presence of a CTL response that is focused 

on a single viral epitope and this type of T cell response is unusual in acute 

HCV infection and  the loss of a single epitope would probably not be sufficient 

for the survival of viral escape mutants (Neumann-Haefelin et al. 2005). 

Regulatory T cells (Treg) are responsible for keeping a balance between the 

inflammatory response and viral control. In case of excessive host damage they 

can induce immune tolerance in viral epitopes. They express CD4+, CD25+ 

,FoxP3+ and inhibit antigen presenting cell maturation and T-cell activation. In 

chronic HCV higher titres of Treg have been observed and in vitro depletion of 

CD25+ leads to enhanced responses of the HCV specific T cells (Boettler et al. 

2005; Rushbrook et al. 2005) Interestingly, PD-1 mediated inhibition inhibits the 

expansion of Treg (Franceschini et al. 2009). 

The main mechanisms through which HCV escapes T cell mediated immunity 

are summarised in figure 1-6. 
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Figure 1-6 Hepatitis C virus strategies to escape from hepatitis C virus-
specific cytotoxic T cells control. 

Chronic HCV is mainly the result of an imbalance between negative and 
positive co stimulatory receptors on CTL, Treg and Th responses and the 
development of escape mutations. PD-1: Programmed cell death protein 1; 
CTLA-4: Cytotoxic T-lymphocyte antigen 4; BTLA: B- and T-lymphocyte 
attenuator; Tim-3: T-cell immunoglobulin domain and mucin domain 3; ICOS: 
Inducible T-cell Co stimulator; GITR: Glucocorticoid induced tumor necrosis 
factor receptor family related gene; (-) inhibition; (+) induction. 

 

Adapted from World J Gastroenterol. 2014 April 7;20(13):3418-3430. 

doi:10.3748/wjg.v20.i13.3418 
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1.5.2.3 The role of humoral immunity in the outcome of HCV infection 

Earlier studies had shown that HCV specific antibodies appear between 8-12 

weeks of infection, are of low titre, restricted to the IgG1 isotype and do not 

affect the outcome of the infection (Chen et al. 1999). Similarly, in chimpanzees 

who had cleared HCV and were re challenged with the same or different HCV 

strain, antibody  responses did not seem to confer protection from re infection 

(Farci et al. 1992). 

There is growing evidence that the early production of broad, neutralising 

antibodies may have a role in spontaneous clearance of infection when targeted 

on epitopes within the envelope glycoproteins E1 and E2 or the E1E2 

heterodimer (Osburn et al. 2010; Giang et al. 2012; Osburn et al. 2014). It has 

also been suggested that spontaneous clearance of chronic HCV infection is 

associated with the appearance of neutralising antibodies and reversal of T cell 

exhaustion (Raghuraman et al. 2012). There is, also, limited data to suggest 

that individuals with apparent resistance to HCV infection can produce 

neutralizing anti‐envelope antibodies in addition to adaptive humoral immune 

responses to HCV envelope proteins, but whether these antibodies contribute to 

host immunity is yet to be determined (Swann et al. 2016). 

Most of the neutralising antibodies target epitopes in the hyper variable region 

of E2. Even though neutralisation of HCV infection by antibodies targeting E1 

and E2 envelope glycoproteins is demonstrable in vitro (Pestka et al. 2007), in 

vivo this antibody response lags behind due to the development of emerging 

glycoprotein sequences and quasispecies (von Hahn et al. 2007). The virus has 

a variety of other strategies to evade humoral immune response the most 
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important of which include: (1) glycosylation shielding of epitopes targeted by 

neutralising antibodies (Helle et al. 2007), (2) lipid shielding of epitopes targeted 

by neutralising antibodies by being part of a lipoviroparticle (Nielsen et al. 

2006), (3) induction of non neutralising virous specific antibodies interfering with 

neutralising antibodies (Zhang et al. 2007), (4) cell to cell spreading, therefore 

bypassing extracellular fluids and avoiding contact with the circulating 

antibodies.  

In conclusion and to date, there is no robust evidence that HCV specific 

antibody responses can confer protection from the development of chronic 

infection or prevent re infection. 

 The role of cytokines in the outcome of HCV infection. 1.5.3

Cytokines are small soluble proteins that are secreted by the immune and other 

cells and act locally, in an autocrine or paracrine fashion, facilitating intercellular 

communication that will determine the nature of immune response. Although 

they play a significant role in viral clearance, they can also induce tissue 

damage (Steinke & Borish 2006). 

More than 100 cytokines have been identified and can be roughly classified 

according to either main function or source, albeit strict classification is 

challenging as they frequently have multiple and overlapping actions and cells 

of origin. 

1.5.3.1 T helper cytokines and HCV infection 

HCV can prime naive CD4+ T lymphocytes to secrete either Th1 or Th2 

cytokines. 
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Th1 mainly release IL-2, IL-12 and IFN-γ, which, as mentioned in detail in 1.4.2 

leads to strong and polyclonal CD4+ and CD8+ T cells responses that are 

associated with HCV clearance. Release of IL-4, IL-5, IL-10, and IL-13 leads to 

a Th2 response that promotes B-cell activation and proliferation as well as 

production of HCV specific antibodies.  

A Th1/Th2 skewed balance has been postulated to be contributing to the 

outcome of infection, including HCV, and has been studied by a few groups with 

conflicting data. A skewed Th1 phenotype has been shown in a few studies to 

be inversely associated with HCV viral load and progression to chronic infection 

(Cramp et al. 1999; Rosen et al. 2002). This observation has been made in both 

the peripheral and intrahepatic lymphocytes of patients with limited and chronic 

HCV infection (Sarih et al. 2000; Gramenzi et al. 2005; Bertoletti et al. 1997). 

Findings from other studies do not support this theory (Hempel et al. 2001; 

Sofian et al. 2012) and have even shown lower levels of IFN-γ in patients with 

chronic HCV versus (vs) normal controls (Osna et al. 1997; Abayli et al. 2003). 

It has also been suggested that a skewed Th1/Th2 response might only reflect 

the degree of inflammation and histological liver damage (Napoli et al. 1996). 

The discrepancy between these studies may be due to epidemiological and 

geographic variations such as small sample sizes, ethnic differences, comorbid 

conditions and composition of the study populations. 

Findings regarding a skewed Th2 phenotype in chronic HCV viraemia are more 

consistent and have been described by a few (Osna et al. 1997; X G Fan et al. 

1998; Chen et al. 2007). Furthermore, treatment with IFN-γ diminishes the Th2  

cytokine response (Cacciarelli et al. 1996).  
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The mechanism through which polarization of Th2 cells in chronic HCV infection 

occurs is unclear, but dendritic cell function has been shown to have the 

profound ability to prime IL-10-producing T cells in the context of viral infection 

(Kadowaki et al. 2000; Kanto et al. 2004). 

1.5.3.2 Innate cytokines and HCV infection 

Type I interferons are the main innate cytokines released by hepatocytes early 

in HCV infection and the ability of HCV to evade their action has been described 

in 1.5.1.2. 

Type III interferons (also known as IFN-λ) include IFN-λ1 (IL-29), IFN-λ2 (IL-28α 

) IFN-λ3 (IL-28β) and IFN-λ4 are also activated in the context of viral infections 

(Randall & Goodbourn 2008; Levy et al. 2011). Even though they share their 

antiviral effect with type I interferons, they are different in the receptor tissue 

expression and their activation pathway which contribute to a different effector 

profile. IFN-λ receptor consists of 2 subunits, the alpha-subunit IFN-λR1 and the 

beta-subunit IL10RB. The former is IFN-λ specific whereas the latter is shared 

with adaptive cytokines. Restricted expression of the IFNLR1 subunit, such as 

in liver tissue, leads to a tissue specific response to IFN-λ (Kotenko et al. 2003; 

Sommereyns et al. 2008; Miknis et al. 2010). IFN-λ initially binds to IFN-λR1, an 

action that induces the recruitment of IL-10RB and activation of the JAK-STAT 

pathway. The IFN-λ stimulated induction of ISG, is released in a slower but 

more sustained manner than the ones induced by type I interferons (Bolen et al. 

2014). Humans chronically infected with HCV exhibit increased levels of IFN-λ 

expression (Dolganiuc et al. 2012). IFN-λ responses in HCV infection have 

been studied both in vivo and vitro and most of the observations indicate a clear 

correlation between IFN-λ induction and HCV attenuation (Doyle et al. 2006; 
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Marcello et al. 2006; Anggakusuma et al. 2015). Single nucleotide 

polymorphisms upstream of the IL28B gene are found in both treatment induced 

and spontaneous clearance of HCV (Doyle et al. 2006; Nattermann et al. 2011) 

and will be discussed in more detail in 1.5.5. 

IL-6, a pro-inflammatory cytokine, is overexpressed and exhibits pleiotropic 

effects in patients with HCV infection (Malaguarnera et al. 1997). The receptor 

complex mediating the biological activities of IL-6 consists of the 

transmembrane glycoproteins gp80 and gp130. Receptors for IL-6 have been 

identified in many immune and non -immune cells, including hepatocytes. Upon 

ligation, signal transduction involves the activation of JAK/STAT and mitogen-

activated protein kinases (MAPK ) cascades (Kamimura et al. 2003). This 

results in production of IL-6 stimulated genes, the expression of which is 

important in apoptosis, cell differentiation, cell proliferation, cell recruitment and 

the acute phase response. There is good evidence to suggest that IL-6 plays an 

important role in transition from innate to adaptive immunity. In the initial phase 

of the immune response IL-6 attracts neutrophils, but subsequently switches 

from neutrophil to monocyte recruitment and skews their differentiation towards 

macrophages. Additionally, IL-6 is necessary for T cell recruitment and plays a 

crucial role in T and B cell differentiation and antibody production (Hirano et al. 

1985; Chomarat et al. 2000; McLoughlin et al. 2005). IL-6 contributes to 

resistance from viruses and its dysregulation has been associated with chronic 

inflammatory conditions such as Crohn’s disease and rheumatoid arthritis 

(Paludan 2001; Xia et al. 2015). IL-6 induces growth and proliferation of 

hepatocytes and has a protective role in liver injury (Xia et al. 2015). The levels 

of IL-6 have been  associated with treatment outcomes of HCV (Malaguarnera 

et al. 1997; Ueyama et al. 2011) as well as the development of HCV related  
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liver fibrosis and HCC (Nakagawa et al. 2009; Giannitrapani et al. 2013).Various 

polymorphisms related to IL-6 gene have been reported to be associated with 

different outcomes of HCV infection and will be discussed in 1.5.5.  

 The role of chemokines in the outcome of HCV infection 1.5.4

An effective immune response to HCV infection requires, as discussed in 1.5.2, 

a vigorous intra hepatic activation of T cells. Due to the liver’s tolerogenic 

environment, it has been postulated that the activation of T cells mainly occurs 

in secondary lymphoid tissues following activation of dendritic cells. T cells 

subsequently migrate into the liver in order to facilitate viral clearance under the 

influence of activated dendritic cells (Bowen et al. 2005).  

Chemokines are chemoattractant cytokines that regulate the trafficking of 

leukocytes and their recruitment to sites of inflammation. They consist of 4 

conserved cysteine residues that form 2 disulfide bonds, pairing the first with 

the third and the second with the fourth cysteines. The classification into C-X-C 

motif (CXC), C-C motif (CC), (X)-C motif ((X)C) and C-X3-C motif (CX3C) sub 

families is determined by the presence of one amino acid between the first 2 

cysteines in the CXC group. According to function, chemokines can be sub 

divided in several other groups (Moser et al. 2004). Inflammatory chemokines 

facilitate recruitment of leukocytes to inflamed tissues, whereas homeostatic 

chemokines are constantly expressed in lymphoid organs and mediate 

migration of various cells, including lymphocytes. However, there’s a degree of 

functional overlap amongst chemokines and some have dual function. 

Chemokines exert their effect by binding to seven-transmembrane spanning 

receptors and homeostatic chemokines receptors bind only one or two 

chemokines, whereas receptors that recruit cells to inflammatory sites often 
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have several ligands. A list of human chemokines that act on immune cells that 

infiltrate the liver tissue (Heydtmann & Adams 2009) is shown in table 1-2.  
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Table 1-2 List of chemokines that act on liver infiltrating immune cells. 

Note: CCL, chemokine (C-C motif) ligand; CCR, chemokine (C-C motif) 
receptor; CXCL, chemokine (C-X-C motif) ligand; CXCR, chemokine (C-X-C 
motif) receptor; CX3CL, chemokine (C-X3-C motif) ligand; CX3CR, chemokine 
(C-X3-C motif) receptor; NK, natural killer; NKT, natural killer T cell. 

Chemokine ligand Chemokine receptors Intrahepatic effector cells 

CXCL9 CXCR3 NKT, CD4+, CD8+ 

CXCL10 CXCR3 NKT, CD4+, CD8+ 

CXCL11 CXCR3 NKT, CD4+, CD8+ 

CXCL12 CXCR4 NKT, CD4+, CD8+ 

CXCL16 CXCR6 NKT, NK, CD4+, CD8+ 

CCL2 CCR2 NK, CD4+, CD8+ 

CCL3 CCR1, CCR5 CD4+ 

CCL4 CCR2, CCR5 NK, CD4+, CD8+ 

CCL5 CCR1, CCR5 NKT, NK, CD4+, CD8+ 

CCL19 CCR7 CD8+ 

CCL20 CCR6 CD4+ 

CCL21 CCR7 CD8+ 

CCL22 CCR6 CD4+ 

CX3CL1 CX3CR1 CD4+ 
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Chemokines are excreted early in HCV infection and recruit immune cells that 

contain chemokine receptors such as neutrophils, monocytes, NK, NKT and DC 

to amplify secretion of type I interferons and ISG (figure 1-7). CXCL8, CXCL16, 

CXCL2 and CXCL3 are the main cytokines responsible for this effect. CXCL8 

also increases the expression of the death-inducing receptor tumour necrosis 

factor–related apoptosis-inducing ligand R2 (TRAIL-R2) which renders 

hepatocytes sensitive to the effect of CTL (Dunn et al. 2007).  

PDC in the liver secrete TNF-α, CCL3,CCL4, and CXCL10 and induce CCL2 

secretion by other cell types that enhances leukocyte recruitment (Decalf et al. 

2007). The expression of CXCR3 and its ligands, CXCL9, CXCL10 and CXCL1, 

is strongly associated with Th1 function. It has been demonstrated that 

successful HCV treatment is associated with an increase in CD8+ T cells and a 

reduction in CXCL9 and CXCL10. DC also increase the expression of 

chemokine 7 receptor, CCR7, and promote migration to lymph nodes. CCR7 is 

also expressed on naïve T and B cells, which, in the presence of CCL19 and 

CCL21 in lymphatics and lymph nodes respectively, subsequently interact with 

DC for immune activation (Förster et al. 2008).  

CCR2 and CCR5 are characteristically found on memory T cells and CD+8 T 

cells expressing these receptors and are abundant in the liver (Kunkel et al. 

2002)(Leroy et al. 2003). CXCL12 and CX3CL1 are expressed on inflamed bile 

ducts and their receptors are expressed in Th1 and NK and might help 

recruitment of these cells at the site of inflammation (Efsen et al. 2002; Wald et 

al. 2004). 
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Figure 1-7 The content has been removed due to copyright restrictions. 
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Even though the role of chemokines as potent leucocyte chemoattractant is 

significant, certain chemokines have been implicated in HCV evasion of the 

immune response. CXCL8 has been shown to inhibit IFN-α activity and 

suppress ISG (Polyak et al. 2001). Additionally, HCV induced secretion of CCL5 

has been shown to attract immature DC cells to the liver which are 

unresponsive to CCR7 ligand as a result of HCV-E2 and CD81 interaction. This 

effect delays the activation of T cells and the establishment of an effective 

immune response (Jacob Nattermann et al. 2006). HCV-E2 antigen attracts 

CD8+ T cells that co express CCR5 and the inhibitory natural killer group 2A 

(NKG2A) receptor. The latter leads to their inactivation and this is another 

example of how HCV can evade chemokine mediated immune response 

(Nattermann et al. 2008). 

In the context of chronic HCV infection, chemokine action will eventually lead to 

the accumulation of effector cells that cause liver damage without facilitating 

viral clearance. They contribute, through various mechanisms, to the 

accumulation of Th2 cytokines, that are pro fibrotic, suggesting an indirect role 

in fibrogenesis (Wynn 2008). However, they also have a direct role in liver 

fibrogenesis due to their effect on hepatic stellate cells. The latter secrete CCL2 

that recruit CCR2+ macrophages and T cells that are associated with 

fibrogenesis (Marra et al. 1999). Hepatic stellate cells proliferate in response to 

chemokine effect, further contributing to liver scarring (Bonacchi et al. 2001). A 

few studies have also associated chemokines with the development of HCC in 

HCV mainly due to increased angiogenesis and migration of tumour cells (Akiba 

et al. 2001; Chu H1, Zhou H, Liu Y, Liu X, Hu Y 2007; Li et al. 2007). 



73 
 

 The role of immunogenetics in the outcome of HCV infection 1.5.5

1.5.5.1 The role of major histocompatibility complex genes in the 

outcome of HCV infection 

The major histocompatibility complex (MHC) genes regulate both innate and 

adaptive immunity in response to HCV infection. They are located in 

chromosome 6 and are amongst the most polymorphic in the human genome. 

The encoded human leucocyte antigens (HLA) class I and II form complexes 

with foreign peptides which they subsequently present to the TCR of T cells for 

recognition. HLA class II present HCV antigens to CD4+ T cells whereas HLA 

class I present HCV antigens to CD8+ T cells.  

Various HLA polymorphisms have been demonstrated to influence the outcome 

of HCV infection and have been studied by a few groups. Taking into account 

limitations in study sizes and the presence of control groups the HLA alleles that 

are either strongly associated (OR>0.3) with HCV outcome or present in 2 or 

more studies (Kuniholm et al. 2010) are included in table 1-3. 
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HLA allele Outcome of HCV infection 

DQB1*0301 Clearance 

DRB1*0101 Clearance 

DRB1*0301 Persistence 

DRB1*0401 Clearance 

DRB1*1101 Clearance 

DRB1*1501 Clearance 

HLA-A*1101 Clearance 

B*18 Persistence 

B*27 Clearance 

B*57 Clearance 

Cw*0102 Clearance 

Cw*04 Persistence 

 

Table 1-3 HLA alleles and the outcome of HCV infection. 

Association of HLA alleles with persistence or clearance of HCV infection.  
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The HLA alleles most frequently associated with spontaneous HCV clearance in 

the literature are DQB1*0301 and DRB1*1101 which might be positively 

influencing the presentation of immune-dominant HCV viral epitopes to T cells 

(Cramp et al. 1998; Minton et al. 1998; Yee 2004). This observation is 

consistent, irrespective of HCV genotype and ethnic background of study 

subjects (Alric et al. 2000; Yoon et al. 2005). 

There is less data reporting polymorphisms of HLA class I, as opposed to class 

II, alleles in the outcome of HCV infection demonstrating both positive and 

negative associations with HCV clearance. Thio et al molecularly typed 231 

individuals with well-documented clearance of HCV infection and 444 matched 

persistently infected individuals. HLA-A*1101, HLA-B* 57 and HLA-Cw*0102 

were associated with viral clearance, whereas HLA-Cw*04 was associated with 

viral persistence (Thio et al. 2002). HLA-B*27 has been shown to be associated 

with viral clearance in females infected with genotype 1b from a single source 

(McKiernan et al. 2004). High resolution HLA class I and II genotyping was 

performed by Kuniholm et al in a large multi-racial cohort of US women with 

high prevalence of HCV and HIV infection. B*57 and CW*01 were associated 

with HCV clearance (Kuniholm et al. 2010). Interestingly, previously known 

associations of HLA polymorphisms such as DRB1*1101 were not observed in 

this study despite their high prior probability of association based on earlier 

reports, which may be related to host characteristics. There was no significant 

association between HLA alleles and persistence of HCV viraemia in this 

cohort, which is a finding previously reported by other groups (Verdon et al. 

1994; Congia et al. 1996). However, it needs to be mentioned that despite the 

fact that the cohort of this study was large, it was restricted to specific 

ethnicities. 
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The role of NK cells in the outcome of HCV infection has been described in 

1.5.1.4. NK cell function is regulated by a combination of regulatory receptors 

with inhibitory or stimulatory effect which interact with MHC-I alleles and other 

ligands on a variety of cells with viral infections or tumours. The net balance of 

signals will determine the threshold at which NK cells will be activated and 

contribute to HCV clearance. Khakoo et al studied polymorphisms of the KIR 

receptors of the NK cells, which are amongst the most polymorphic NK 

receptors, and their corresponding HLA in 685 individuals with chronic HCV and 

352 who spontaneously resolved HCV infection. The KIR alleles examined 

included KIRs 2DL1, 2DL2, and 2DL3, of which the latter two are alleles of each 

other. These KIR alleles bind to HLA alleles, so HLA-C1 alleles bind 

KIR2DL2/2DL3 and the HLA-C2 alleles bind KIR2DL1. The former has the 

strongest and the latter the weakest inhibitory signal in NK cell activation. 

Homozygosity for the KIR2DL3 and HLA-C1 was associated with resolution of 

HCV infection and interestingly there was no association with the compound 

KIR2DL2/HLA-C1 genotype. This effect was, however, only shown in individuals 

that acquired HCV infection through small inoculums of HCV, such as high risk 

IDU, as opposed to individuals that acquired HCV through blood transfusion, 

suggesting a low threshold for HCV to evade this immune defence mechanism 

(Khakoo et al. 2004). 

Knapp et al validated the KIR and HLA-C protective in individuals achieving 

sustained virological response after treatment for HCV and individuals 

spontaneously clearing HCV infection. They demonstrated that KIR2DL3-HLA-

Cw*03 was associated with SVR and KIR2DL3/KIR2DL3-HLA-Cw*03 was 

associated with spontaneous resolution of HCV infection (Knapp et al. 2010). 
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1.5.5.2 The role of cytokine gene polymorphisms in the outcome of HCV 

infection 

Cytokine and chemokine gene polymorphisms can influence the level of their 

production and alter disease outcome. Several gene polymorphisms have been 

studied in association with HCV clearance, progression and response to 

treatment. 

Il-10 is produced by macrophages, monocytes and T cells and promotes B cell 

activation, proliferation and antibody production and limits Th1 response. The 

responsible gene is in chromosome 1 and variations in the promoter region in 

relation to HCV outcome have been shown in a few studies. The G/G genotype 

(in position -1082) is known to be related to increased IL-10 production and is 

associated with a high risk of HCV persistence and resistance to interferon 

based therapy (Oleksyk et al. 2005; Paladino et al. 2006). However, this result 

might be gender or ethnicity specific and has not been confirmed in other 

studies (Constantini et al. 2002; Paladino et al. 2006). 

IL-12 is important in generating Th1 responses which favour HCV clearance. 

Gene polymorphisms in the IL-12 promoter have been associated with different 

outcomes of HCV infection. The single nucleotide polymorphisms (SNP) -1188 

A/A and A/C have been shown to be decreased and increased in spontaneous 

resolution of HCV infection respectively and the A/A genotype is more frequent 

in patients with chronic HCV infection (Yin et al. 2004; A. Houldsworth et al. 

2005).  
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 TNF-a gene polymorphisms have also been studied but, overall, failed to 

produce a robust association with any outcomes of HCV infection (Constantini 

et al. 2002). 

Often, cytokine gene expression is a complex process and cannot be explained 

by a single SNP, and IL-6 gene polymorphisms are the prime example of this 

phenomenon. The IL-6 gene is located on chromosome 7 and more than 150 

different gene polymorphisms have been identified. The presence of SNPs in 

the promoter region at position -174 with regards to the outcome of HCV 

infection has been extensively studied with controversial results. Two 

phenotypes have been characterised; the G/G and G/C which are associated 

with the high IL-6 circulating levels and the C/C which is associated with low 

circulating levels of IL-6. Barret et al compared various SNPs between 

individuals with spontaneous HCV clearance and patients with chronic HCV 

infection and found that the low IL-6 circulating levels phenotype was 

associated with SVR, whereas the presence of the G/G and G/C SNPs were 

associated with persistent infection which became more apparent when 

combined (Barrett et al. 2003). Nattermann et al studied IL-6 gene 

polymorphisms in a group of HCV and HIV co-infected patients compared to 

HCV and HIV mono- infected patients and healthy controls. He found that the 

high IL-6 circulating levels phenotype was associated with higher SVR rates 

compared to the CC genotype (Nattermann et al. 2007). Yee et al showed that 

SVR rates are associated with specific haplotypes, which are constructed by a 

combination of SNPs, but did not comment on whether there’s correlation with 

the levels of IL-6 produced (Yee et al. 2009). 
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1.5.5.3 The role of chemokine gene polymorphisms in the outcome of 

HCV infection 

The importance of CXCR3 and CXCR5 and their ligands in the pathogenesis of 

HCV has been described in detail in 1.5.4. The polymorphism −599del5 of the 

Interferon-inducible T-cell alpha chemoattractant (I-TAC) promoter, which is a 

Th1 chemoattractant and CXCR3 ligand, is more frequent in chronic HCV 

patients than normal controls (Helbig et al. 2005). Gene association studies 

have reported that CRCR5 or CXCL5 polymorphisms are associated with HCV 

chronicity but the data are controversial (Woitas et al. 2002). In a cohort of Irish 

women with blood transfusion associated HCV showed that a specific mutation 

was associated with SVR in those with specific HLA types (Goulding et al. 

2005). 

The immunogenetic studies with the most robust association with the outcomes 

of HCV are related to IL-28B polymorphisms. IL-28 (IFN-λ3) belongs to the IFN-

λ family and their role in the pathogenesis of HCV has been discussed in 

1.5.3.2. The gene for IL-28B is located on chromosome 19. Wide genome 

association studies, which enable studying of thousands of SNPs in the entire 

human genome with regards to a disease outcome, have shown consistent 

findings regarding the presence of certain polymorphisms in close proximity to 

the IL-28B gene and favourable outcome of HCV infection. Ge et al & Tanaka et 

al were the first to report such findings in patients receiving IFN-based 

treatment for HCV. In a large cohort of patients, at rs2979860, the CC genotype 

that favours HCV clearance was associated with a 2 fold increase in treatment 

response compared to TT genotype. The fact that the CC genotype is more 

common in Europeans vs Africans than the latter, explains the difference in 

response rates between patients of different ancestry (Ge et al. 2009). Two 
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further SNPs close to the IL-28B, rs129080275 and rs8099917 and on further 

fine mapping of the region 5 were more  associated with SVR in a Japanese 

cohort (Tanaka et al. 2009). Subsequently, the rs2979860 polymorphisms were 

examined in a cohort of 388 patients who spontaneously cleared HCV infection 

and 620 patients with persistent infection. Strong association of the CC 

genotype with spontaneous clearance was shown, confirming the findings of the 

previous studies (Thomas et al. 2009).  

1.6 HCV vaccines 

To date, no prophylactic vaccine has been generated that is licenced for use in 

humans and this field of ongoing research. 

The reasons that have made effective vaccination against HCV a huge 

challenge are related to a variety of factors that have been highlighted earlier in 

chapter 1 and will be summarised below. The biggest issue is the 

characteristics of the virus itself and its genetic variability. Due to the virus’s 

error prone RNA polymerase, 7 HCV genotypes have been identified with 30-

50% inter variability and over 100 subtypes. The HVR1 in E2 envelope 

glycoprotein offers the greater variability. Additionally, re infection with a 

different genotype after successful clearance is possible and the virus has 

multiple mechanisms through which it can evade immune response. Despite the 

discovery of neutralising antibodies especially targeted to confrontational 

epitopes on E2, humoral responses have not been shown to confer long term 

protection from HCV. The cardinal feature of effective immune response to HCV 

is rapid and polyclonal T cell production and activation but findings with regards 

to the factors that influence this outcome have been controversial. Additionally, 

the breadth and magnitude of T cell responses in patients who are protected 
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from HCV infection have also been shown in some patients who eventually 

develop chronic HCV. Even if these T cell responses are generated and are 

protective, they wane over time and have been shown to last up to 2 decades. 

Lastly there’s no small animal model available for conducting HCV vaccine trials 

and the inclusion of chimpanzees in the studies is associated with ethical and 

financial constraints. 

Current strategies in HCV vaccination include the use of recombinant proteins, 

synthetic peptides, DNA plasmids, live vectors, dendritic cells and prime-boost 

strategies (Garcia et al. 2014; Swadling et al. 2013). 

The recombinant protein technique vaccines utilised the purified protein derived 

from genes encoding for HCV proteins isolated and cloned in yeasts, bacteria 

and mammalian cells. The benefit is that they do not contain pathogenic 

material and do not require cultivation of the organism. Despite some promising 

outcomes, quick decline of the produced antibody titres and technical 

challenges in the manufacture of recombinant E1E2 protein has hampered their 

use (Frey et al. 2010; Verstrepen et al. 2011). 

Synthetic HCV peptides have been used to induce both T and B cell immunity. 

Due to the fact that they are HLA specific multiple epitope studies have been 

conducted and some showed to produce CD4+ and CD8+ HCV specific 

responses which were either weak or evident in only a percentage of the cases 

studied (Firbas et al. 2010; Huang et al. 2013). 

DNA vaccines utilise the injection of recombinant plasmids that express HCV 

proteins and can induce a CTL response. Plasmids encoding HCV NS3/4a 

(ChronVac-c) have shown to be effective as therapeutic vaccines in mice and 
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humans, but clinical data on their effectiveness as prophylactic vaccines is yet 

to be reported (Ahlén et al. 2005; Alvarez-Lajonchere et al. 2009). 

Viral vectors can express foreign antigens in mammalian cells, mimic the 

properties of a native virions, and they are non- pathogenic (Andreas Bråve et 

al. 2006). Alphaviruses, adenovirus, canary pox virus and paramyxovirus have 

been used for that purpose, to mention but a few (Lemmonier et al. 2002; 

Pancholi et al. 2003; Lin et al. 2008). It has been shown that viral vector 

vaccines can induce HCV specific T cell responses as well as neutralising 

antibodies (Elmowalid et al. 2007; Chmielewska et al. 2014). Adenoviruses are 

commonly used viral particles but a major limitation in its use is the fact that pre 

existing immunity can lead to its clearance before a response to the presented 

genes is elicited. Therapeutic trials of adenovirus based vaccines in 

chimpanzees induced protective T cell responses and a phase I trial in humans 

using an adenoviral vector to deliver NS3-NS5B proteins has produced 

promising results (Folgori et al. 2006; Barnes et al. 2012). 

Dendritic cell vaccines studies have only been reported in mice. Their efficacy is 

highly dependent on antigen loading of DCs but they have been shown to be 

superior to DNA vaccines in mice that were immunised with NS5a protein (Yu et 

al. 2008). Multi epitope DC vaccines induce broad and strong T cell response in 

mice, but data on human trials on this type of vaccine have not yet been 

published.  

As mentioned in 1.1., over the last few years HCV treatment has been 

revolutionised due to the development of direct antiviral agents that offer cure 

rates up to 95% in some genotypes. However, they pose a huge financial 

burden and are not affordable worldwide, and the issue of compliance and re 
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infection in high risk population, such as IDU is not addressed. Therefore, a 

preventative as opposed to a curative approach in HCV is still a pressing need 

that a vaccine would meet. The aim of a successful vaccine would be the 

production of lasting broad cellular and humoral immune responses with, 

possibly, the use of vectors that elicit an innate immune response that is key to 

the enhancement of adaptive immunity.  

1.7 Protective immunity to HCV infection 

 Protection from HCV re infection 1.7.1

Initial studies in chimpanzees that developed recurrent episodes of acute 

hepatitis following repeated exposure to heterologous and homologous strains 

of the HCV virus, showed that re infection was associated with reduced periods 

on viraemia but there was no association  with humoral immune responses 

(Farci et al. 1992; Prince et al. 1992). Later studies in the same models, showed 

that re infected animals had lower peak HCV RNA and alanine 

aminotransferase (ALT), IFN-γ and TNF-α (Bassett et al. 2001; Major et al. 

2002). HCV clearance was associated with strong CD4+ and CD8+ T cell 

responses (Nascimbeni et al. 2003), a finding confirmed by CD4+ and CD8+ T 

cells depletion studies (Weiner et al. 1995; Grakoui 2003; Shoukry et al. 2003).  

In humans, it has been suggested that individuals who have previously cleared 

HCV infection are less likely to develop a new infection. A cohort of 164 IDU 

who had no evidence of previous HCV infection and a cohort of 98 individuals 

who had been previously cleared HCV were compared for the incidence and 

persistence of HCV viraemia over a 2 year period. People previously infected, 

had half the chance of developing a new infection even after accounting for high 

risk behaviour (Mehta et al. 2002). Other studies in similar cohorts have failed to 
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show reduced HCV re infection rates but showed that spontaneous clearance 

rates were higher amongst individuals that had previously cleared HCV infection 

and was associated with broad T cell responses and generation of cross-

reactive humoral responses (Micaleff et al. 2003; Osburn et al. 2010). 

Nevertheless, the previous data, albeit controversial, suggest that the immune 

system is able to generate immune responses to HCV virus that are at least 

partially protective and the constituents of the immune system that confer this 

protection warrant further study. 

 Natural protection from HCV infection 1.7.2

Established chronic HCV infection requires the presence of HCV antibodies and 

HCV RNA in the serum of the affected individuals. Spontaneous or treatment 

resolution of HCV infection is defined by the presence of HCV antibodies but 

absence of HCV RNA. 

Several studies of natural HCV protection have focused on “seronegative 

immune” individuals, who despite being at risk of HCV infection have developed 

cellular immunity in the absence of established HCV infection (HCV ab and 

HCV RNA negative). 

A study of uninfected spouses of patients chronically infected with HCV 

demonstrated that 20% exhibited CD4+ T cell proliferation in response to 

recombinant HCV proteins, particularly NS3, and this finding was consistent in 

subsequent testing a year later (Bronowicki et al. 1997). A similar percentage of 

seronegative family members of patients with chronic HCV infection were found 

to have low level CTL responses against multiple HCV epitopes (Scognamiglio 

et al. 1999). Immunological correlates of HCV clearance or resistance of the 

sexual partners of 52 health-care workers who developed HCV infection as a 



85 
 

result of a needlestick injury has been the subject of another study. They were 

followed up for 48 weeks following their partner’s exposure and out of the 44 

seronegative partners, 32% had detectable HCV specific cellular immune 

responses to recombinant proteins, of lower or higher magnitude, compared to 

the individuals in the cohort who spontaneously cleared or developed chronic 

HCV respectively (Kamal et al. 2004). In support of previous findings, HCV-

specific CD4+ T cell responses were observed in 71% of children born from 

chronically HCV infected mothers. HCV specific DC4+ T cell proliferation was 

more frequent and vigorous in children than in their mothers and upon 

stimulation with HCV peptides lymphocytes from children produced lower levels 

of IL-10 compared to their mothers, observations that might contribute to the 

low level of vertical HCV transmission (Kamal et al. 2004).  

As discussed in 1.1.5, incidence and prevalence of HCV is  far higher in IDU 

compared to all other populations at risk and the duration of IDU and frequency 

of drug use appears to influence the risk of infection (Crofts et al. 1997; Villano 

et al. 1997). The highest risk of acquiring HCV is within the first 2 years of 

commencing IDU, with prevalence rates rising progressively to more than 90% 

in some reports in those who had injected for more than 10 years (Lorvick et al. 

2001; Tseng et al. 2007). However, there’s a small percentage of IDU who 

despite a long history of IDU, frequent sharing of IDU paraphernalia, and 

evidence of exposure to other blood borne viruses, remain HCV antibody and 

RNA negative (Thomas et al. 1995). Individuals with the latter characteristics 

have been studied by a few groups as their immune mechanisms of resistance 

to HCV infection would provide valuable insight into potentially protective 

immune responses to the virus, which is what work in this thesis intended to 

determine.  
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1.7.2.1 Natural protection from HCV infection in IDU and Exposed 

Uninfected (EU) 

Freeman et al reported the presence of HCV specific T cell responses in 38 

high risk EU recruited in Sydney, who had a median 7 year duration of injecting 

drug use, and of whom half reported sharing of injecting apparatus and half had 

serological markers of natural exposure to HBV. IFN-γ Enzyme-Linked 

ImmunoSpot (ELISPOT) responses were identified in 76% of EU and were 

associated with high risk behaviour. For 92% of the subjects, results of 

recombinant immunoblot assays demonstrated faint bands against non 

structural proteins (Freeman et al. 2004). 

Mizukoshi et al studied 66 IDU, including patients with chronic HCV infection, 

SR and EU, who had been injecting drugs for more than 10 years in San 

Francisco. The 29 EU recruited in this study were, on average, 6.5 years 

younger , had a 15 year shorter duration of IDU and were predominantly male. 

IFN-γ ELISPOT responses, directed to multiple HCV proteins, were identified in 

46% of the 28 EU identified in the cohort (Mizukoshi et al. 2008). 

Zeremski et al studied a large cohort of IDU recruited in NewYork and selected 

26 EU who were followed up for a median period of 2 years and had tested 

negative for HCV infection on multiple occasion during this period. Therefore 

individuals with episodes of brief viraemia without seroconversion or with rapid 

seroconversion could be identified and excluded from the study. 46% of EU had 

positive IFN-γ ELISPOT responses using 429 overlapping HCV peptides pooled 

in 21 mixes. Strong responses were noted for antigen combinations that 

correspond to the C-terminal of the HCV E1 glycoprotein and the N-terminal of 

the E2 glycoprotein as well as NS4B, NS5A and NS5B, suggesting definite 
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exposure and immune response to HCV. The comparison groups included SR 

and healthy controls and no positive HCV specific T cell responses were 

identified in the latter. The group also reported that high risk drug injecting 

behaviour, such as frequency of IDU episode, sharing of drug injection 

paraphernalia, assistance with injection from an individual more than 30 years 

old and injection of crack positive correlated with detection of IFN-γ HCV T cell 

responses in the EU studied (Zeremski et al. 2009). 

 Thurairajah et.al characterised a cohort of IDU in 2005 in Plymouth, UK, with a 

9.3 median duration of injecting drug use and frequent sharing of drug injection 

equipment who remained HCV ab and HCV RNA negative. Recruitment of 

these individuals has been on going until the current date and it is the cohort 

studied in this thesis. They were termed exposed uninfected (EU) and were 

recruited from a variety of sources, including a local prison and various needle 

exchange and drug rehabilitation centres in Plymouth. Comparison groups 

included healthy controls, patients with chronic HCV infection and SR. In the 40 

EU studied, HCV specific T-cell ELISPOT responses were seen in 58% of the 

cohort and they were weaker than those seen in SR making EU a distinct 

group. Nonspecific IFN-γ production was eliminated by subtracting the count 

obtained in negative controls and a response was deemed positive only if IFN-γ 

production, was greater than the mean plus 2 standard deviations of healthy 

controls. The responses included multiple epitopes and the strongest were seen 

to non-structural antigens, NS3, NS4 and NS5, confirming immunological 

response to a replicating virus (Thurairajah et al. 2008). Whether these 

responses confer protection or represent a foot print of exposure to HCV is yet 

to be determined. The same group later showed that initial T cell reactivity seen 

in the EU cohort wanes over time following cessation of IDU. Since the HCV 
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inoculum in this mode of exposure is small, it is likely that priming of the positive 

responses via continuous exposure to HCV is required for their maintenance 

(Thurairajah et al. 2011). 

The possibility of occult HCV infection, defined as infection in the absence of 

antibody or viremia (Castillo et al. 2004), or rapid loss of HCV antibody in the 

seronegative aviraemic cohorts, described above, has been considered by most 

of the groups. The duration and intensity of follow up with consistent lack of 

viraemia or seroconversion makes this hypothesis unlikely and typically HCV ab 

responses can last up to 2 decades following a single exposure as discussed in 

1.5.2.1. As occult HCV infection requires the presence of HCV RNA positivity 

from liver tissue, performing liver biopsies in asymptomatic and healthy 

individuals is unethical and the risk involved unjustifiable. Furthermore it is 

debatable whether this entity actually exists, since no viral particles or viral 

proteins have been isolated from the cases described and there has been no 

evidence of transmission of HCV from patients described as having occult 

infection.  

1.7.2.2 Natural protection from HCV; what are the mechanisms? 

HIV bears a homology with HCV virus, as they are both RNA viruses with 

similar immuno- pathogenic characteristics and frequency of escape mutations. 

Studies in HIV exposed but aviraemic individuals precede those related to HCV 

infection. HCV specific cellular immune responses have been identified in high 

risk aviraemic individuals, such as partners of HIV infected patients and babies 

born from infected mothers (Clerici et al. 1993; Langlade-Demoyen et al. 1994). 

The strongest evidence comes from a study of sex workers in Nairobi, who 

despite having frequently unprotected intercourse and working in areas 
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endemic for HIV remained uninfected. Furthermore the incidence of HIV-1 

seroconversion decreased with increasing duration of exposure, which suggests 

either intrinsic lack of susceptibility to HIV infection or acquired immunity 

(Fowke et al. 1996). A variety of protective mechanisms have been suggested, 

including polarisation to Th1 phenotype (Clerici et al. 1992; Fowke et al. 2000), 

strong specific CTL responses (Rowland-Jones et al. 1993; R Kaul et al. 2001), 

the presence of specific HLA polymorphisms (MacDonald et al. 2000) and 

reduced expression of chemokines essential for viral entry (Alvarez et al. 1998). 

In a subsequent study by Kaul et al, studying the same cohort of Kenyan sex 

workers, 9% of the original cohort exhibited late seroconversion and that was 

associated with waning of the CTL responses following interruption of sex work, 

and this suggests that the responses require priming with frequent antigenic 

exposure (Rupert Kaul et al. 2001). 

Similar to HIV, HCV specific T cell responses have been demonstrated in a 

number of seronegative and aviraemic cohorts, such as spouses or household 

contacts of individuals chronically infected with HCV, individuals with 

occupational exposure due to needle stick injuries, as well as IDU (Bronowicki 

et al. 1997; Freeman et al. 2004; Kamal et al. 2004; Al-Sherbiny et al. 2005; 

Mizukoshi et al. 2008; Thurairajah et al. 2008; Zeremski et al. 2009). As 

discussed in 1.7.2 and 1.7.2.1, the latter cohort is at higher risk of HCV 

exposure than the previous ones and the presence of specific T cell response 

could merely represent a marker of exposure as opposed to protective immunity 

to HCV infection.  

Following on from the initial findings by Thurairajah et al, further studies of 

immune mechanisms of HCV protection in the Plymouth EU cohort, studied in 



90 
 

this thesis, revealed further findings. Hegazy et al examined IL-12B 

polymorphisms in EU vs healthy controls, SR and patients with chronic HCV 

infection. IL-12, as previously mentioned is a Th1 cytokine and the variant C 

allele of the 1188A/C polymorphism has been associated with enhanced IL-12 

production (Seegers et al. 2002) .This study demonstrated that the CC 

genotype is associated with higher levels of IL-12 in EU compared to both 

healthy controls and individuals with chronic HCV. Associations with IL-28B 

polymorphisms, strongly effecting HCV infection outcome, have not been 

demonstrated in EU, but further distinguish them from SR (Knapp et al. 2011). 

In parallel to the generation of the work presented in this thesis, and in 

collaboration with the centre of virus research in Glasgow, UK, we investigated 

the presence of anti-HCV-envelope antibody responses in EU, compared to 

healthy controls and patients with chronic HCV infection. Purified IgG from sera 

was tested by enzyme-linked immunosorbent assay (ELISA) for binding to 

genotype 1a and 3a envelope glycoproteins E1E2 with further testing for IgG 

and IgM reactivity against soluble E2. Virus-neutralizing activity was assessed 

using an HCV pseudoparticle system. EU subjects demonstrated significantly 

greater IgG and IgM reactivity to envelope glycoproteins than healthy controls 

with IgG from a small proportion of those individuals additionally showing 

significant neutralisation. This study is the first to describe humoral 

immunological responses targeting the HCV envelope, important for viral 

neutralization, in EU (Swann et al. 2016). Cellular or humoral immunity are, 

however, not the only immunological mechanisms of protection demonstrated in 

the EU cohort. Activation of cellular and humoral immunity lag behind activation 

of innate immunity by weeks, and not all EU have exhibited cellular and humoral 

responses in the aforementioned studies. Knapp et al presented results from 
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the study of 48 EU vs 257 patients with chronic HCV infection and 

demonstrated that the KIR2DL3/HLA-C1 compound genotype, associated with 

favourable outcomes to HCV infection, was found at a greater proportions in EU 

compared to patients with chronic HCV infection (Knapp et al. 2010). Warshow 

et al studied 22 EU individuals for the expression of a range of cytokines and 

chemokines, and compared them to 16 patients with chronic HCV, 16 SR and 

10 healthy controls. The innate IL-6 and IL-8 cytokines were significantly 

upregulated in EU compared to comparison groups. Additionally, higher levels 

of TNF-α were seen in EU and the level of adaptive cytokines was no different 

between the comparison groups (Warshow et al. 2012). 

Association of natural protection from HCV with non- immunological host factors 

has also been described.Claudin-1 is a co-receptor for HCV, required for late-

stage binding of the virus. A whole gene association study was conducted by 

Bekker et al in IDU who had injected drugs for more than 10 years, compared to 

SR to examine whether CLDN1 genetic variants were associated with the risk of 

HCV infection or with viral clearance. The EU cases were largely recruited from 

an IDU cohort earlier studied and previously discussed in 1.7.2.1. (Zeremski et 

al. 2009). The presence or absence of specific claudin-1 haplotypes were 

associated with natural protection from HCV, whereas there was no association 

with SNP haplotypes and HCV clearance. The lack of functional correlation of 

these SNPs with claudin-1 production is a major limitation of this study (Bekker 

et al. 2010). 

1.8 Aims 

The conclusion from what has been earlier discussed regarding the mechanism 

that confers natural protection from HCV in well characterised cohorts of IDU at 
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high risk of exposure to the virus is that it is either multifactorial, involving 

activation of all aspects of the immune response, or/and driven by a single, 

immune or non-immune, factor which has not been identified yet.  

The aim of this thesis was to attempt to provide an answer the above query. As 

an initial step, we undertook a transcriptional profile comparison study between 

EU, SR and patients with chronic HCV infection. Based on the findings of this 

analysis, we further characterised the aims of this thesis as described in detail 

in chapter 3.  
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2 Chapter 2 Materials and methods 

2.1 Exposed Uninfected (EU) cohort  

 Ethical approval 2.1.1

Recruitment of this cohort commenced in 2003 and received approval by the 

local research ethics committee. The recruitment was ongoing until the 

completion of the studies described in this thesis with regular updates and 

feedback to the research ethics committee on the study’s progression, short 

and long term aims, and possible completion dates. Up until the completion of 

my studies we had received written confirmation of renewal of ethical approval. 

The participants provided with verbal and written informed consent (Appendix 

2), the signed hard copies of which, are kept at the John Bull building of 

Peninsula College of Medicine and Dentistry in Plymouth, UK.  

 Inclusion criteria 2.1.2

Exposed Uninfected to HCV (EU) individuals were identified based on their 

apparent resistance to HCV infection, despite a high probability to frequent 

exposure to HCV inoculums. As described in previous studies, in order to be 

included in the cohort, EU should fulfil the following criteria (Thurairajah et al. 

2008; Warshow et al. 2012): 

1. Age over 18  

2. A history of previous and current injection drug use.  

3. A history of sharing of drug injecting paraphernalia.  

4. Negative HCV Ab and HCV RNA status as tested by commercially available 

assays, described in 1.2. 
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Recruitment of this cohort, and in line with the experiences of my predecessors, 

has been one of the most challenging projects I have co- ordinated so far in my 

career. By definition, EU individuals exhibit a chaotic lifestyle and drug injecting 

behaviour, not enabling a smooth process of recruitment and follow up. The use 

of a structured questionnaire, detailing the current and previous drug injection 

habits and risk factors for others routes of HCV transmission was fundamental 

in this process and is attached in Appendix 3.  

 Sources of EU recruitment 2.1.3

From 2003 until 2007, EU were recruited mainly from the local prisons 

(Dartmoor prison, near Plymouth, and Channings Wood prison, near Torbay, 

UK), needle exchange centres and long term drug rehabilitation centres in the 

urban areas of Plymouth, England (Thurairajah et al. 2008). From 2009 until the 

end of the work in this thesis, in order to allow identification of IDU who were 

still currently injecting and had contemporary on-going risk behaviour, EU 

recruitment included needle exchanges, drop-in homeless centres and short 

term homeless hostels, excluding prisons, where intermittent or temporary 

cessation of recent drug use would make quantification of risk behaviour 

challenging. For similar reasons, recruitment from long term rehabilitation 

centres was avoided.  

 EU identification 2.1.4

According to data available from the Sweep 7 public health report, the South 

West region is among the areas of high prevalence (3.29/1000) of injecting drug 

use in the 15-64 population in England.  

Multiple methods were utilised in order to identify subjects suitable for inclusion 

in the EU cohort and are listed below: 
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-Addiction liaisons, social workers, pharmacists and staff working in needle 

exchange centres, were informed regarding the purpose of the study and the 

inclusion criteria. Information leaflets (Appendix 4) with details regarding the 

study were provided to all sites, as well as posters notifying of ongoing 

recruitment for the study. Additionally, a flyer containing the same information 

was included in needle exchange packs at various needle exchange centres. 

Both the poster and the flyer included the team’s contact details.  

- The blood borne virus community specialist nurse assisted in identification of 

suitable study subjects. She was responsible for testing high risk groups for 

blood borne viruses and providing vaccination for HBV in the community. She 

was contacted and visited regularly in order to identify individuals eligible for 

recruitment. 

-Frequently during the week, recruitment centres were visited with an aim to 

identify any tenants or visitors that where eligible to take part in the study. 

Potential candidates would be then briefly interviewed and provided with the 

study information leaflet (Appendix 4) and the team’s contact details. If 

agreeable to be recruited, an appointment would be made to meet at the 

“Harbour” centre in Plymouth, UK, at a mutually convenient place and time.   

-Potential candidates also contacted the team directly from information provided 

by either staff at the recruitment sites, or on the posters and flyers. After 

conducting a brief interview, information regarding the study would be provided 

over the phone. Subsequently, an appointment would be made to meet at the 

“Harbour” centre in Plymouth, UK, at a mutually convenient place and time at 

which stage a hard copy of the study information leaflet would be provided. 
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-Social workers and drug liaisons from the recruitment centres would often 

notify the team of individuals suitable for recruitment and provided us with their 

contact details having obtained verbal consent for us to contact them. The rest 

of the process was as described above. 

-A detailed presentation of the study’s previous findings and future aims, with a 

view to boost EU recruitment, was delivered to local general practitioners, 

addiction liaisons and social workers at the Guildhall manor in Plymouth, UK, in 

06/2014.  

In order to arrange for a recruitment appointment with EU subjects, they would 

have to report current injecting drug use for at least a year’s duration, along with 

a history of sharing drug injection paraphernalia, including syringes, spoons, 

filters, etc., during the brief screening interview. Some of them had a known 

negative HCV status, but they would always be tested for HCV antibodies at the 

time of recruitment. The same process would also apply if follow up recruitment 

time points were arranged with an individual. 

 EU recruitment  2.1.5

The recruitment appointment was always arranged at the Harbour rehabilitation 

centre in Plymouth, UK, which provides with a separate area with clinical 

facilities. EU subjects would then be provided with a written copy of the study’s 

information, if not already provided, and were asked to complete a written 

consent from that can be found in Appendix 2. They would subsequently be 

asked to complete a confidential questionnaire containing detailed information 

about the duration and frequency of IDU, frequency and type of drug equipment 

sharing, and other risk behaviours associated with high risk of HCV exposure. 

The 2009 amendment of the questionnaire, used during the period of my 
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recruitment, can be found in Appendix 3. Information on significant additional co 

morbidities, as co infection with other hepatotropic viruses or malignancy was 

additionally sought for and documented if of relevance.  

Venesection was subsequently performed and up to 40mls of blood was 

obtained and stored in EDTA, sodium- heparin and serum tubes (Fischer 

Scientific). The blood would be subsequently processed to be used in a variety 

of assays as described in chapters 3-6. The EU often had very poor peripheral 

venous access with pedal and femoral phlebotomy sites frequently used as 

opposed to the standard upper limbs sites. Issues regarding drug injection sites 

requiring medical attention were often identified and flagged up and information 

on prevention of HCV transmission via IDU route was always provided, as well 

as advice for cessation of IDU.  

A unique sequential study number, starting with the prefix “SW” was assigned to 

the each of the individuals recruited to ensure confidentiality. The 

questionnaires, consent forms and blood samples were subsequently 

transferred to the John Bull building of Peninsula College of Medicine and 

Dentistry (PCMD), Plymouth, UK, where they were safely stored in the manual 

and electronic databases and the laboratory facilities respectively. Testing for 

HCV antibodies, with commercial assays described in 1.2 was performed at the 

laboratories of Derriford hospital, Plymouth, UK, and only the HCV ab negative 

individuals were included in the EU cohort. The positive HCV ab and/or HCV 

RNA individuals identified with similar drug injection characteristics were 

included in one of the comparison groups described in 2.1.7. Testing of 

hepatotropic viruses other than HCV was not covered by the ethics approval of 
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this study and was, therefore, not routinely performed, but individuals previously 

tested positive for HBV or HIV viruses were not recruited.  

 EU demographics and characteristics 2.1.6

During my studies I recruited 45 EU, but the subjects included in my study are a 

mixture of some of the cases I recruited, in addition to previously recruited EU 

since 2003, whose samples were stored as described in 2.1.5. The 

demographics of the EU, samples of whom were included in the experiments 

described in this thesis, are detailed separately in chapters 3-6 under the 

“Results” section. In total, samples of 23 EU were used in the studies of this 

thesis. In summary, they were all Caucasian, predominantly male, with no 

additional significant co morbidities and at high risk of HCV exposure. Based on 

their current IDU status at the time of recruitment, the frequency of intravenous 

drug use and sharing of drug use equipment, the demographics of the EU 

included in this study were comparable to the ones of EU included in other 

studies of this cohort (Thurairajah et al. 2008; Warshow et al. 2012; Swann et 

al. 2016). In terms of non IDU routes risks of transmission, the most frequent 

was tattoo/body piercing, found in 61%. Although, and as previously described, 

the risk of HCV transmission through sexual intercourse is low, 28.5% reported 

having unprotected intercourse with HCV positive individuals. HCV mucous 

membrane transmission routes including sharing of all non intravenous drug 

equipment was 100%. 

2.2 Comparison groups 

Three comparison groups were studied in this thesis: 

(1) IDU that spontaneously cleared HCV infection, termed SR (HCV ab 

positive, HCV RNA negative). 
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(2) IDU with chronic HCV infection, termed CHCV (HCV ab and RNA 

positive). 

(3) Healthy individuals/normal controls, with no history of IDU, termed NC 

(HCV ab and RNA negative). 

The first 2 groups were recruited via the process described for the EU cohort in 

2.1. The third group consisted of aged matched individuals from staff of the 

PCMD and the outpatients’ department of Derriford hospital who provided with 

verbal consent for inclusion in the study. As a non IDU group completion of 

questionnaire, assignment of a SW number and HCV testing was not deemed 

necessary. Approximately 40 ml of blood was obtained from each normal 

control in designated clinical areas which was safely stored in the PCMD 

laboratory and used for the experiments detailed in chapters 4-6.  

Detailed demographics of the SR, CHCV and NC, samples of whom were used 

in the experiments of this thesis, can be found in the “Results” sections of 

chapters 3-6. 

2.3 PBMC isolation, freezing and thawing 

 Reagents and materials 2.3.1

Royal Park Memorial Institute (RPMI) 1640 culture medium and sterile 

phosphate buffered saline (PBS) were purchased from Lonza Biowhittaker 

(Lonza, USA).  

Supplemented RPMI 1640 (sRPMI) was made by the addition of the following to 

500mls of RPMI 1640: 

 (1) 12.5ml of 1M HEPES buffer (Lonza).  
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(2) 3ml of 1M NaOH.  

(3) 1% Benzyl Penicillin/Streptomycin, (Invitrogen, Paisley, Scotland). 

 (4) 1% L-Glutamine (Sigma, Poole, Dorset, UK). sRPMI was stored at 4 0C and 

was made fresh every month.  

Human AB serum and foetal calf serum (FCS) were purchased from PAA labs 

(Yeovil, UK). These were aliquoted, stored at -20ºC and thawed prior to use. 

Histopaque-1077 used for PBMC isolation and dimethylsulfoxide (DMSO) were 

purchased from Sigma. 

The cell counting solution was made up of 1:50 1M acetic acid and 1:500 0.4% 

Trypan blue solution (Sigma) to a volume of 250mls with distilled water. Tryptan 

blue stains non -viable PBMC blue under light microscopy allowing for the 

distinction of viable to non-viable cells. 

 PBMC isolation from whole peripheral blood 2.3.2

15 ml of blood contained into sodium-heparin tubes was diluted in 1:1 with 

sterile PBS in a 50ml Polypropylene Falcon tube (Greiner Bio One, UK) and 

was layered on top of 15 ml histopaque-1077 (Sigma), using a Pasteur pipette 

(Fisher Scientific). Care was taken to avoid disrupting the surface interface of 

the histopaque. The tube was then centrifuged for 30 min at 750g with no brake 

applied (Heraeus labofuge centrifuge 400R, UK). The resultant centrifugation 

sample contained 3 layers, the top of which was serum which was discarded 

into 5% Virkon, whilst the second layer was isolated with a Pasteur pipette in to 

a 30ml universal container (Greiner Bio-One). The supernatant was then 

washed with 10ml of sRPMI medium and centrifuged at 750g for 10 min with the 
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brake activated. This process was repeated twice more. The pellet following the 

third wash was then re suspended in 1.5 ml of supplemented FCS and counted.  

 PBMC cell viability and counting 2.3.3

Freshly separated PBMCs were counted using a counting solution containing 

1M Acetate and 0.4% trypan blue (as described in 2.3.1). The PBMC 

suspension was diluted to 1:20 with counting solution (475μL counting solution 

25μl of PBMC cell suspension) and dispersed into the Neaubaeur 

haemocytometer filing chamber with cover slip for assessment of cell counting 

and viability. Using a light microscope (AE 2000, Motic) at x100 magnification all 

cells within the 4 quadrants containing 16 grid squares were counted with a 

hand tally counter. This corresponded to number of cells in 10-4 ml. The number 

of cells in 1ml was thus calculated based on a dilution factor of 1:20. The 

percentage of viable cells was calculated as the number of viable cells divided 

by the total of the number of non-viable and viable cells multiplied by 100. 

 Freezing and storage of freshly isolated PBMC 2.3.4

Freezing mix, consisting of 3 parts of RPMI and 2 parts DMSO was prepared at 

least 10 min before use. Roughly, 106 cells were re suspended in 1.5ml FBS 

and were divided into to 2 cryovials (Starstedt, UK), 0.75 ml each, with the 

addition of 250µl of the freezing mix to each tube. Stored cells were kept in -80 

degrees freezer for 18-24 hours and then transferred to liquid nitrogen (BOC 

cryospeed/CRY/00809/APUK/0205/7.5 M). 

 Thawing of frozen PBMC stored in liquid nitrogen 2.3.5

The cryovial from liquid nitrogen, containing frozen PBMC, was transferred at 

room temperature, to a 37 0C water bath until there was a small piece of ice 

visible.10 ml of warm 20% FCS / sRPMI (2 parts FCS: 8 parts sRPMI), was 
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prepared in the interim and was instilled into the cells in a 30 ml universal 

container. Initially, 1 ml of warm medium was added, drop by drop, whilst the 

mixture was shaken. Subsequently 2 ml of the warn medium were added whilst 

the mixture was shaken and lastly 6 ml of the warm medium were subsequently 

added whilst the mixture was shaken. The final mixture was left in the water 

bath for 20 min and was centrifuged at 750g for 10 minutes with the brake 

activated. The pellet was then gently re suspended in 1ml of sRPMI/10% 

human AB serum. A counting solution of 160μl of sRPMI to 40μl of 0.4 % 

Trypan blue (1:4 Trypan blue: sRPMI) was then used. 190μl of counting solution 

and 10μl of PBMC suspension was added to a 500μl Eppendorf tube 

(Eppendorf UK, Stevenage, UK) and mixed by pipetting. 10μl were loaded onto 

a Neubauer haemocytometer with cover slip. Cells numbers and viability were 

expressed as described in 2.3.3. Acceptable cell viability was set at greater than 

98% and any thawed PBMC alliquots that did not meet this target were not used 

for the experimental assays. 

2.4 Serum isolation from whole peripheral blood and thawing of stored 

serum 

Serum tubes containing whole peripheral blood were centrifuged at 1000g for 

10 minutes with the brake applied (Heraeus labofuge centrifuge 400R, UK). The 

resultant supernatant was aspirated and aliquoted in 300 to 500μl of samples in 

Eppendorf tubes. The serum was stored in -200 C.  

Thawing of stored serum was performed by placement of the serum containing 

Eppendorf tubes in a 370 C water bath. Samples from previous stages of 

recruitment, aliquoted in larger volumes, would then be re frozen after use, but 
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caution was exercised in avoiding repeated freezing-thawing cycles of the same 

sample.  

2.5 RNA extraction, purification and conversion to complimentary DNA 

(cDNA) 

 RNA extraction from PBMC 2.5.1

This technique was based on the use of the TRI Reagent® solution 

(ThermoFischer Scientific, UK).  

Thawing of PBMC frozen aliquots of up to 7x10 6 cells was performed as per 

2.3.5. Subsequently the suspended mixture was centrifuged at 750g for 10 min 

and the isolated pellet was then transferred on ice where most of the next steps 

of this experiment were performed. RNAase free Eppendorf tubes and pipette 

tips were used throughout this process (ThermoFischer Scientific, UK).  

1ml of the TRI Reagent was subsequently added on to cell pellet and pipetted 

until full lysis of the pellet was achieved. The cell- reagent mix was then 

transferred to a new Eppendorf tube and was incubated for 5 minutes. 100μ of 

chloroform were added and the mixture was shaken vigorously for 15 seconds 

and incubated for further 5 min. Following micro centrifugation at 11.500 rpm, at 

40 C for 15 min, the aqueous (top) phase was transferred to a new Eppendorf 

tube, 50-100μl at a time, avoiding the interface layer. 500μl isopropanol was 

subsequently added to the RNA solution, the tube was inverted several times to 

allow thorough mixture and the mixture was incubated for 10 min. The 

supernatant would then be poured off and the pellet was washed by adding 1% 

ethanol and centrifuging at 9.500 rpm, at 40 C for 15 min. The supernatant 

would then be poured off and the tube was inverted to allow drying of pellet at 
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room temperature. The pellet was then suspended in 30-100μl of RNAse free 

water (ThermoFischer Scientific, UK) and stored in -800 C.  

 Purification of RNA extracted from PBMC with the TRI Reagent® 2.5.2

The RNA samples required for the microarray study, described in chapter 3, 

had to be of high quality, so RNA purification, extracted as described in 2.4.1, 

was performed with the use of “RNeasy® MinElute® Cleanup Kit” (Qiagen, 

Germany). The principal of this method, as advised by the manufacturer, 

combines the selective binding properties of a silica based membrane with the 

speed of micro spin technology. Guanidine thiocyanate–containing lysis buffer 

(RLT) and ethanol are added to the sample to promote selective binding of RNA 

to the silica membrane of the RNeasy MinElute spin column. The sample is 

then applied to the RNeasy MinElute spin column. RNA binds to the silica 

membrane, contaminants are efficiently washed away, and high-quality RNA is 

eluted in RNase-free water. All RNA molecules, longer than 200 nucleotides, 

are purified and the procedure leads to an enrichment for mRNA since most 

RNAs <200, comprise 15–20% of total RNA, are selectively excluded.  

RNA purification was performed as per manufacturer’s protocol listed below: 

- 4 volumes of ethanol (96–100%) were added to RPE buffer concentrate. 

- 10 μl β-mercaptoethanol( β-ME) were added per 1 ml RLT buffer. 

- Samples were adjusted to 100μl volume with RNase-free water (provided) and 

then 350 of RLT buffer was added. 

- 250 μl of 96–100% ethanol was added to the diluted RNA, and the sample 

was then mixed well. 
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- The sample (700 μl) was transferred to an RNeasy MinElute spin column 

placed in a 2 ml collection tube (supplied). Following centrifugation for 15 s at 

>8000 x g (>10,000 rpm), the flow through was discarded. 

- The RNeasy MinElute spin column was then placed in a new 2 ml collection 

tube (supplied) and 500 μl RPE buffer was added to the spin column. 

Centrifugation at for 15 s at >8000 x g (>10,000 rpm) was then performed and 

the flow through was discarded. 

- 500 μl of 80% ethanol was then added to the RNeasy MinElute spin column. 

Following centrifugation for 2 min at >8000 x g (>10,000 rpm), the follow 

through and the collection tubes were discarded. 

- The RNeasy MinElute spin column was then placed in a new 2 ml collection 

tube (supplied).Following centrifugation at full speed for 5 min, the follow 

through and the collection tunes were discarded.  

- The RNeasy MinElute spin column was then placed in a new 1.5 ml collection 

tube (supplied). 14 μl RNase-free water were added to the centre of the spin 

column membrane. Following centrifugation at full speed for 1 min RNA was 

eluted at a total volume of approximately 10μl and the samples were stored in -

800 C.  

2.5.2.1 RNA quality control 

RNA concentration was measured by spectrophotometry absorbance at 260nm, 

using NanoDrop™ 2000 (Thermo Fisher Scientific) spectophotometry with the 

use of 1μl of RNA following calibration with 1μl of RNAse free water. The 

A260/A280 ratio of RNA is an indication of its purity and the optimal ratio is 

within the 1.8-2.2 range. The RNA samples sent for the microarray analysis 
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detailed in chapter 3 all had an A260/A280 ratio of more than 2.0. The highly 

concentrated and purified RNA was also confirmed, commercially, by 

microfluidic analysis using the Agilent 2100 bioanalyzer. 

 cDNA isolation from purified RNA extracted from PBMC 2.5.3

This experiment was performed with the use of the “High Capacity RNA-to-

CDNA Kit (ThermoFisher Scientifics, UK), as per manufacturer’s protocol, 

briefly listed below: 

0.5 μg of total RNA, counted on Nanodrop 2000, as previously described, was 

used per 20μL reaction. 

-The kit components were allowed to thaw on ice. 

-For every reverse transcription (RT) reaction, 10.0 μl of 2x RT buffer, 20x 

enzyme mix, up to 9μl of RNA sample, and RNAase free water were added to a 

total volume of 20μl. The samples were briefly centrifuged and incubated at 370 

C for 60 min in a thermal cycler (G-Storm, labtech, G51, ThermoFischer 

Scientific, UK).  

-The samples were stored in -200 C. 

2.6 Quantitative reverse transcriptase polymerase chain reaction (qPCR) 

 Reverse transcriptase polymerase chain reaction (RT-PCR) 2.6.1

IL-27 (Hs00377366_m1), PPBP (CXCL7) (Hs00234077_m1), IL-16 

(Hs00189606_m1), PI3K (Hs00192399_m1), Akt1(Hs00920503_m1) , ZAP70 

(Hs00896345_m1) and ribosomal protein S17 (Hs00734303_g1) commercially 

available TaqMan® gene expression assays (Life technologies, Thermo Fischer 

Scientific, UK) were used for qPCR, with the latter assay serving as an 

endogenous control. 
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For each of the genes of study, samples and endogenous control were 

prepared in duplicates and subsequently transferred in a 96 well sealed reaction 

plate (Roche, Sussex, UK). The qPCR reaction mix contained 50ng of cDNA 

(2μl of the samples prepared in 2.4.3), 1μl of the TaqMan® gene expression 

assay, 10μl of the TaqMan® Gene Expression Master Mix (Applied 

Biosystems), and RNAse free water to a total volume of 20μl. 2 control wells, 

containing TaqMan® Gene Expression Master Mix and RNAse free water to a 

volume of 20μl were also prepared in every plate and served as negative 

controls.  

The reaction plate was then placed in to LightCycler ® Real-Time PCR 

instrument (Roche) with the following instructions:  

1. Hold at 500 C for 2 minutes. 

2. Hold at 950 C for 10 minutes. 

3. 40 PCR cycles. Each cycle run at 950 C for 15 seconds and 600 C 

for 1 minute. 

PCR is a cyclic DNA amplification process allowing the amplification of a target 

DNA sequence that is too small for further examination, and follows the steps 

shown in figure 2-1. Theoretically, if optimal reaction conditions exist, every 

cycle of PCR process doubles the amount of the desired DNA sequences 

available, resulting in exponential product accumulation.  
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Step 2: Annealing 

 

Step 1: Denaturation 

 

Step 3: Extension 

 
Figure 2-1 The PCR process. 

During the first step DNA is separated, by heating, into 2 separate strands. PCR 
copies only a very specific sequence of the genetic code, targeted by the PCR 
primers, which are oligonucleotides that bind, or anneal, only to sequences on 
the complementary side (3’ or 5’) of the target DNA region. Two primers are 
used in step 2; one for each of the newly separated single DNA strands. The 
primers bind to the beginning of the sequence that will then be copied, marking 
off the sequence for step three. In the third phase, and beginning at the regions 
marked by the primers, nucleotides are added to the annealed primers by the 
DNA polymerase to create a new strand of DNA complementary to each of the 
single template strands. After completing the extension, two identical copies of 
the original DNA have been made. 
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Many real-time fluorescent PCR chemistries exist and one of the most widely 

used is the 5ʹ nuclease assay, conventionally referred to as TaqMan® or 

hydrolysis probes. The 5ʹ nuclease domain has the ability to degrade DNA 

bound to the template, downstream of DNA synthesis. A second key element in 

the 5ʹ nuclease assay is a phenomenon called fluorescence resonance energy 

transfer (FRET). In FRET, the emissions of a fluorescent dye can be strongly 

reduced by the presence of another dye, often called the quencher, in close 

proximity. The TaqMan® probe contains 2 components, a fluorescent reporter 

and a fluorescent quencher, in close proximity to each other. When the probe is 

intact, the quencher is close enough to the reporter to suppress fluorescent 

signal. During PCR, the 5ʹ nuclease activity of the polymerase cleaves the 

hydrolysis probe, separating the reporter and quencher. In the cleaved probe, 

the reporter is no longer quenched and can emit a fluorescence signal when 

excited. TaqMan® probes have higher specificity and reproducibility compared 

to other PCR fluorescent detection formats. 

If enough molecules have been newly synthesized and detected by means of 

fluorescent dyes, amplification curves are visible and consist of an early 

background phase, the middle exponential and the late plateau phase. The 

PCR cycle at which the fluorescence signal first exceeds the background noise, 

represents the onset of the exponential phase of the curve and is termed 

crossing point (CP) or cycle threshold (CT). At this point approximately 1010 to 

1012 amplified molecules have been produced and can be absolutely or 

relatively quantified.  

 Background noise in our study was automatically adjusted using the system’s 

“second derivative maximum method” with no user input. The latter means that 
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the CT value was determined by identifying the first maximum of the second 

derivative of the amplification curve (Roche). 

 Relative quantification of the RT-PCR  2.6.2

There is a correlation between CT and nucleid acid concentration: the higher 

the concentration of the target nucleid acid in the starting material, the sooner a 

significant increase in the fluorescent signal will be observed, yielding a lower 

CT. Relative quantification allows the comparison of the levels of 2 different 

targets to a reference gene, known as endogenous control, which is found in 

constant copy numbers under all tested conditions. The relative amount of a 

target gene in an unknown sample can then be compared to another, using the 

2-ΔΔCT method (Livak & Schmittgen 2001). This method of relative quantification, 

assumes an optimal doubling of the target cDNA during each performed real-

time PCR cycle. Expression differences were calculated as per the next 

formula: 

1. ΔCT for each sample: CT sample (mean of 2 wells)-Ct endogenous control 

(mean of 2 wells). 

2. The ΔCT mean of each group was calculated. 

3. ΔΔCT of 2 groups: ΔCT mean group1-ΔCT mean group2. 

4. 2-ΔΔCT expresses the difference in gene expression between two comparison 

groups as fold change. 

The CT is determined from a log–linear plot of the PCR signal versus the cycle 

number. Any statistical presentation using the CT values should be avoided and 

leads to erroneous results according to Livac and Schmittgen. The only 

statistical parameter that can only be, possibly, calculated is the standard 
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deviation (SD) or the coefficient of variation (CV) of the 2-CT values of the 

samples in order to examine intra sample variation.  

2.7 Enzyme-linked immunosorbent assay (ELISA) 

 Principles of the assay 2.7.1

Sandwich ELISA assays were used for the detection and quantification of IL-27, 

CXCL7 and IL-16.  

The sandwich ELISA quantifies antigens between two layers of antibodies (i.e. 

capture and detection antibody). The advantage over other forms of ELISA is 

higher sensitivity and the lack of need of sample purification. The principle for 

the assays used in this study is as follows: (1) Plate is coated with a capture 

antibody; (2) sample and standards of known concentration are added, and any 

antigen present binds to capture antibody; (3) biotinylated (containing biotin) 

detector antibody is added, and binds to antigen; (4) enzyme-linked secondary 

antibody (streptavidin- horseradish peroxidase (HRP)) is added. Streptavidin 

binds to biotin and the conjugated HRP provides enzyme activity for detection 

using an appropriate substrate system; (5) Tetramethylbenzidine (TMB) 

substrate is added to detect HRP activity. (6) Stop solution(sulphuric acid) is 

lastly added that results in colour change from yellow to blue, the absorbance of 

which can be measured at 450 nm wavelength in a spectophotometer (figure 2-

2) 
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Figure 2-2 The content has been removed due to copyright restrictions. 
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 IL-27 Sandwich ELISA assay 2.7.2

The ab83695-IL-279 (Interleukin-27) Human ELISA Kit (Abcam, Cambridge, 

UK), was used for this assay, which was performed according to the 

manufacturer’s instructions. Materials included in the kit, as well as reagents,  

and their preparation can be found at ab83695-IL-279 (Interleukin-27) Human 

ELISA Kit instruction manual, version 1, last updated 17 July 2013 (Abcam).  

All materials were equilibrated to room temperature before use. Immediately 

prior to use serial dilution of standards were prepared. Standard 1, contained, in 

tube1, had an IL-27 concentration of 1000 pg/ml. For the preparation of the rest 

of the standards 100μl of diluent buffer was initially added to tubes 2-6. 

Standard 2 was prepared by adding 100 μl of Standard 1 to tube 2. Standard 3 

was prepared by adding 100 μl of Standard 2 to tube 3. Standard 4 was 

prepared by adding 100μL of Standard 3 to tube 4. Standard 5 was prepared by 

adding 100μl of standard 4 to tube 5 and standard 6 was prepared by adding 

100μl of standard 5 to tube 6.  

100μl of serum samples, standards and negative controls, consisting of diluting 

buffer, were added to an IL-27 pre-coated plate in duplicates. The plate was 

covered and incubated for 2 hours at room temperature. The liquid was 

subsequently aspirated from each well using a multi-channel pipette and 300μl 

of washing buffer. The liquid was aspirated from each well as before, and the 

same washing process was repeated twice more. 50μl of biotinylated anti-IL27 

were, then, added to all wells and the plate was covered and incubated for 1 

hour at room temperature. Washes were subsequently performed as described 

in previous step. 100μl of 1x streptavidin-HRP was added to all wells and the 

plate was covered and incubated for 30 minutes at room temperature.100μl 
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TMB were subsequently added into the wells and incubated in the dark for 10-

20 minutes .100μ stop reagent were lastly added to the wells and the 

absorbance was immediately read at 450nm wavelength (Tecan Multiplate 

Reader, Switzerland). 

The absorbance readings for each sample were then inserted into an Excel® 

2010 sheet (Microsoft Office, USA). The mean blank absorbance was 

subtracted from the mean absorbance of the sample duplicates. A scatter plot 

of the standard values was created by plotting the mean absorbance (x axis) 

against the protein concentration (y axis). A trendline, the best fit linear curve 

through the points in the graph was then created, and was accepted only if the 

R2 coefficient of determination value was above 0.97. Based on the linear 

regression model, an equation was produced that was used for calculation of 

each sample’s mean concentration from mean absorbance of its duplicates 

minus mean blank absorbance. 

 CXCL7 Sandwich ELISA assay 2.7.3

The ab100613-CXCL7 Human Elisa Kit (Abcam) was used for this assay, which 

was performed according to the manufacturer’s instructions. Materials included 

in the kit, as well as reagents, and their preparation can be found at ab83695-

CXCL7 Human ELISA Kit instruction manual, version 2, last updated 09 

September 2013 (Abcam).  

All materials were equilibrated to room temperature before use. Immediately 

prior to use serial dilution of standards were prepared is a similar manner 

described for the production of the standards used in the IL-27 assay and 

described in 2.7.2.  
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Serum samples were diluted with dilution buffer to 1:1000 prior to use. 100μl of 

serum samples, standards and negative controls, consisting of dilution buffer, 

were added to a CXCL7 pre-coated plate in duplicates. The plate was covered 

well and incubated for 2.5 hours at room temperature. Following incubation the 

solution was then discarded and the wells were washed by adding 300μl of 

wash solution using a multi-channel pipette. The liquid was completely removed 

and the plate was then inverted and blotted against clean towels. This process 

was repeated another 3 times. 100μl of biotinylated CXCL7 were subsequently 

added to the wells and the plate was incubated for 1 hour at room temperature 

with gentle shaking. Following incubation the solution was discarded and 

washes were repeated as described above. 100 μl of 1X HRP-Streptavidin 

solution were added to each well and the plate was incubated for 45 minutes 

with gentle shaking. Following incubation the solution was discarded and the 

washes were repeated as per previous steps. 100μl of TBC substrate were 

added to each well and the plate was incubated for 30 minutes at room 

temperature in the dark with gentle shaking. 50μl of stop solution were lastly 

added to the wells was lastly added to the wells and the absorbance was 

immediately read at 450nm wavelength. 

Calculation of the mean absorbance of the samples was performed as 

described for the IL-27 sandwich ELISA assay in 2.7.2 taking into account a 

serum dilution factor of 1000. 

 IL-16 Sandwich ELISA assay 2.7.4

The ab100555-IL-16 (Interleukin-16) Human Elisa Kit (Abcam) was used for this 

assay, which was performed according to the manufacturer’s instructions. 

Materials included in the kit, as well as reagents, and their preparation can be 
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found at ab100555- IL-16 (Interleukin-16) Human Elisa Kit (Abcam) instruction 

manual, version 2, last updated 09 September 2013 (Abcam). 

All materials were equilibrated to room temperature before use. Immediately 

prior to use serial dilution of standards were prepared is a similar manner 

described for the production of the standards used in the IL-27 and CXCL  

assays and described in 2.7.2.and 2.7.3.  

 100μl of serum samples, standards and negative controls, consisting of dilution 

buffer, were added to a IL-16 pre-coated plate in duplicates. The plate was 

covered well and incubated for 2.5 hours at room temperature. Following 

incubation the solution was then discarded and the wells were washed by 

adding 300μl of wash solution using a multi-channel pipette. The liquid was 

completely removed and the plate was then inverted and blotted against clean 

towels. This process was repeated another 3 times. 100μl of biotinylated IL-16 

were subsequently added to the wells and the plate was incubated for 1 hour at 

room temperature with gentle shaking. Following incubation the solution was 

discarded and washes were repeated as described above. 100 μL of 1X HRP-

Streptavidin solution were added to each well and the plate was incubated for 

45 minutes with gentle shaking. Following incubation the solution was discarded 

and the washes were repeated as per previous steps. 100μl of TBC substrate 

were added to each well and the plate was incubated for 30 minutes at room 

temperature in the dark with gentle shaking. 50μl of stop solution were lastly 

added to the wells was lastly added to the wells and the absorbance was 

immediately read at 450nm wavelength. 

Calculation of the mean absorbance of the samples was performed as 

described for the IL-27 sandwich ELISA assay in 2.7.2. 
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2.8 Western blotting 

 Western blotting principles and workflow 2.8.1

Western blotting, also known as immunoblotting, is a well-established and 

widely used technique for the detection and quantification of proteins. Western 

blotting protocols may vary from application to application; however they all 

follow some basic steps, also used in this thesis, and are listed below: 

-Sample preparation. 

-Gel electrophoresis. 

-Transfer. 

-Antibody probing. 

-Detection. 

-Imaging. 

-Analysis. 

The sample of interest must usually undergo some degree of preliminary 

treatment before continuing to separation by electrophoresis. Gel 

electrophoresis is applied to the sample for protein separation and the proteins 

are then immobilized on a membrane following electro transfer from the gel. 

Areas on the membrane where no binding of protein has occurred are blocked 

to prevent nonspecific binding of primary antibodies in the next step. The 

membrane is incubated with a primary antibody that specifically binds to the 

protein of interest. Unbound antibodies are removed by washing and a 

secondary antibody conjugated to an enzyme is used for detection. The 
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detected signal from the protein:antibody:antibody complex is proportional to 

the amount of protein on the membrane. 

The most commonly used method for detection, also used in this study, is 

chemiluminescence, based on secondary antibodies conjugated with 

horseradish peroxidase enzyme. On the addition of a peroxide-based reagent, 

the enzyme catalyses the oxidation of luminol resulting in the emission of light. 

The light signal can be captured by exposure to X-ray film. 

 Sample preparation 2.8.2

2.8.2.1 Preparation of reagents and materials 

-RadioImmunoPrecipitation (RIPA) buffer consisted of: 

50 mM tris (hydroxymethyl) aminomethane (Tris) HCl pH 8.0, 150 mM NaCl 1% 

NP-40 (Nonidet-P40) 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate  

(SDS), 0.5 M ethylenediaminetetraacetic acid  (EDTA), pH 8.0 (Sigma-Aldrich). 

-1% Protease/Phosphatase inhibitor cocktail tablet –Halt ™(Pierce, Thermo 

Fischer Scientific). 

2.8.2.2 Cell lysis and protein extraction 

Detergent lysis is the most frequent method of choice for the lysis of 

mammalian cells. RIPA buffer contains the ionic detergent sodium deoxycholate 

as an active constituent and is particularly used for nuclear membrane 

disruption.  

PBMCs were thawed and counted as per 2.3.5 and subsequently centrifuged at 

750g for 10 minutes. For every cell pellet derived of 106 suspended cells, 500ul 

cold RIPA buffer was used for lysis with mix inhibitor cocktail added in straight 

prior to use. The lysate was incubated on ice for 5-15 minutes with periodical 
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pipetting and ultra -sonicated for 30 seconds at 25 kHerz. (Vibra-Cell™, 

Sonics). The lysate was centrifuged at 13.500g for 10 min to pellet cell debris 

and the supernartant was transferred in different Eppendorf tubes and stored at 

-200 C. 

2.8.2.3 Protein quantification 

Pierce® BCA Protein Assay Kit − Reducing Agent Compatible (Pierce, Thermo 

Scientific) was used for quantification of the extracted proteins. Standards, 

samples and blanks were prepared according to the manufacturer’s 

instructions. The protein standards used (A-I) were prepared by serial dilutions 

of bovine serum albumin (BSA) at an initial concentration of 2000 μg/ml. The 

concentrations and dilution volumes can be found in table 2-1.. 
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Table 2-1 Preparation of diluted albumin (BSA) standards and their final 
concentration. 

The standards were prepared from stock solutions and subsequently serial 
dilutions to the concentrations shown above. 

 

 

 

 

Standard name Volume of Diluent (μl) Volume (μl) and 

source of BSA  

Concentration 

(μg/ml) 

A  0  300 of Stock  2000  

B  125  375 of Stock  1500  

C  325  325 of Stock  1000  

D  175  175 of vial B dilution  750  

E  325  325 of vial C dilution  500  

F  325  325 of vial E dilution  250  

G  325  325 of vial F dilution  125  

H  400  100 of vial G dilution  25  

I  400  0  0 = Blank  
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10μl of the standards and unknown concentration samples in duplicates were 

loaded in a 96 well microplate (Pierce, Thermo Scientific) and 200μL of the 

working reagent were subsequently added to each well. The plate was 

thoroughly mixed on a plate shaker for 30 seconds and then incubated for 30 

min at 370C. After incubation the plate was cooled to room temperature and 

was read at 562nm wavelength (Tecan Multiplate Reader). The absorbance 

readings for each sample were then inserted into an Excel® 2010 sheet 

(Microsoft Office, USA). The mean blank absorbance was subtracted from the 

mean absorbance of the sample duplicates. A scatter plot of the standard 

values was created by plotting the mean absorbance (x axis) against the protein 

concentration (y axis). A trendline, the best fit linear curve through the points in 

the graph was then created, and was accepted only if the R2 coefficient of 

determination value was above 0.97. Based on the linear regression model, an 

equation was produced that was used for calculation of each sample’s mean 

concentration from the mean absorbance of its duplicates minus mean blank 

absorbance.  

 Gel electrophoresis 2.8.3

2.8.3.1 Preparation of reagents and materials 

-1.5 M Tris-HCL buffer contained: 12.11g Tris base, 80ml deionized H2O 

(diH2O) adjusted to pH 8.8 with HCL. 

-0.5M Tris-HCL buffer contained: 6.06g Tris base adjusted to Ph 6.8 with HCL  

-10XSDS running buffer contained: 30.30 g Tris base, 144.10 g glycine 10.00 g 

SDS and diH20 to 1 litre (Thermo Fischer Scientific). 
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Components Volume for 10 ml resolving solution (2 mini 
gels) 

 For 8% gel For 10% gel For 12% gel 

diH2O 4.73 ml 4.13 ml 3.43 ml 

30% acrylamide/bisacrylamide 2.7 ml 3.3 ml 4.0 ml 

1.5 M Tris-HCL, pH 8.8 with 
0.4% SDS 

2.5 ml 2.5 ml 2.5 ml 

10% APS 60μl 60μl 60μl 

Tetramethylethylenediamine 

(TEMED) 

(Thermo Fisher Scientific) 

13μl 13μl 13μl 

 

Table 2-2 Resolving gel preparation.  

The components of the resolving gel are shown above. 

 

 

Components Volume: 5ml stacking gel solution ( 
for 2 mini gels) 

diH2O 3.0 ml 

30% acrylamide/bisacrylamide 700μl 

0.5 M Tris-HCL, Ph 6.8 with 0.45 SDS 1.25 ml 

10% APS 25μl 

TEMED 20μl 

 

Table 2-3 Stacking gel preparation. 

The components of the stacking gel are shown above. 
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2.8.3.2 Method principal and protocol 

Electrophoresis is a separation technique based on the mobility of charged 

molecules in an electric field. It is used mainly for the analysis and purification of 

proteins and nucleic acids. Electrophoresis is carried out by loading a sample 

containing the protein of interest into a well in a porous matrix to which certain 

voltage is then applied. Differently sized, shaped, and charged molecules in the 

sample move through the matrix at different velocities. At the end of the 

separation, the molecules are detected as bands at different positions in the 

matrix. The matrix used in this study is gels made of polyacrylamide. The pore 

sizes in these gels are similar to the molecular radius of many proteins. As 

molecules are forced through the gel in an electric field, larger molecules are 

retarded by the gel more than smaller molecules. A typical gel consists of two 

sections of different densities, cast between two glass plates. The first section 

to be cast is known as the resolving or separating gel and the second as the 

stacking gel. The stacking gel facilitates rapid concentration of proteins in to a 

thin layered zone and they can be subsequently separated according to size in 

the resolving gel. The density (pore size) of the latter is an important factor 

affecting the separation profile of proteins and when separation of proteins of a 

wide molecular weight is required, higher density gels should be used. For the 

studies in this thesis, a 10% acrylamide gel concentration was used, targeting 

proteins with molecular weight between 14 to 205 kDa.  

The glass casting stand and glass frame were assembled as per manufacturer’s 

instructions (Mini-PROTEAN ® Tetra Cell, BIO-RAD, Watford, UK) and the 

resolving solution as described in table 2-2. The solution was then poured 

between the glass plates with a pipette leaving about ¼ of the space free for the 

stacking gel. The top of the resolving gel was covered with diH2O and the gel 
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was left for approximately 30 min to polymerize. When polymerization was 

complete a clear line appeared between the gel surface and the solution on top. 

The water was then discarded and the stacking gel (prepared as per table 2-3) 

inserted and the gel was then left to polymerize for approximately 60 minutes.  

Two gel casts at a time were placed and secured in the Mini-PROTEAN ® Tetra 

Cell electrophoresis module (BIO-RAD)  and were covered with 700ml of 

10XSDS running buffer. The samples, prepared as described in 2.8.2.2 were 

thawed on ice and 20μl of each sample were transferred into an Eppendorf 

tube. 10μl of Laemmli buffer (Sigma-Aldrich), that breaks disulphide bonds, 

assists in protein separation according to size and serves as a dye front that 

runs ahead of the proteins, were subsequently added to each tube and the 

samples were heated in 700 C for 5 minutes in a heating plate (Dri-Block ® DB-

2D, Techne). They were, then, micro centrifuged at 14000 rpm for 1 min. 10μl of 

rainbow molecular weight marker (Precision Plus Protein™ Dual Color 

Standards, BIO-RAD) and samples were subsequently loaded in to the wells 

and electrophoresis was performed at 200 Volt for 35 minutes. 

 Transfer 2.8.4

2.8.4.1 Preparation of reagents and materials 

- 10x Transfer buffer contained: 30.3 g Tris base (Sigma-Aldrich), 144.1 g 

lysine and diH2O to 1 litre. Stored at 40 C. 

 Method principal and protocol 2.8.5

On completion of the separation of proteins by polyacrylamide gel 

electrophoresis, the next step is to transfer the proteins from the gel to a solid 

support membrane, usually made of either nitrocellulose (Amersham Protran 

Premium Sandwich 0.45µm nitrocellulose, GE health care life sciences, UK) or 



125 
 

or polyvinylidene fluoride (PVDF) (Hybond®-P polyvinylidene difluoride 

membranes, Sigma-Aldrich), both of which were used in the studies of this 

thesis. The main advantage of nitrocellulose membranes is the low background, 

whereas PVDF membranes have higher protein binding capacity and 

mechanical strength. PVDF membranes are highly hydrophobic and were pre 

wetted in 100% methanol for 1 minute before use to be compatible with 

aqueous solutions.  

The proteins transferred from the gels were immobilized at their relative 

migration positions at the time point when the electric current of the gel run was 

stopped. The gel, membrane, blotting paper (Thick Blot Filter Paper, Precut, 7.5 

x 10 cm, BIO-RAD) and electrodes were assembled in a “sandwich” so that 

proteins move from the negative charged anode, (where the gel is placed) to 

the positively charged cathode (where the membrane is placed). Essentially, 

this process results in proteins moving from gel, where they were initially 

captured, to the membrane in a pattern that perfectly mirrors their migration 

position in the gel. There are various modes of transfer, but the wet, used in the 

studies of this thesis, is ideal for large proteins and is important to obtain blots 

of the highest quality in terms of distinct, sharp bands. It requires full immersion 

of gel and membrane in cool transfer buffer and a constant current applied in 

the direction of the gel to the membrane. 

Following completion of gel electrophoresis, the gel was removed from the 

casts and placed in to cool 1x transfer buffer where it was allowed to rest for 5-

10 minutes. Subsequently, the gel/membrane/electrode “sandwich” was 

prepared and placed in the Mini Trans-Blot® Electrophoretic Transfer Cell 

apparatus (BioRad, Watford, UK), fully covered by cool 1x transfer buffer, along 
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with an addition of an icepack, with constant 350 m Ampere running conditions 

for 1 hour (figure 2-3).  
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Figure 2-3 The content has been removed due to copyright restrictions. 
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 Antibody probing 2.8.6

2.8.6.1 Preparation of reagents and materials 

-Tris buffered saline (TBS) 10X contained:  24.23 g Trizma HCL, 80.06 g NACL, 

mixed in 800 ml diH2O. pH adjusted to 7.6 with pure HCL and topped up to 1 

litre with diH2O. 

-TBS-T contained: 100ml of TBS 10X +900ml diH2O + 1ml Tween®20 (Sigma-

Aldrich). 

-Semi skimmed milk (Tesco, UK) /Tween-20 contained: 5% dried milk in PBS 

and 0.1% Tween-20. 

2.8.6.2 Method principal and protocol 

Western blotting involves the immobilization of biomolecules on a membrane 

via hydrophobic interactions. As nonspecific binding of antibodies to the 

membrane can occur, it is important to "block" spaces not already occupied by 

proteins. The blocking agent used should have greater affinity for the 

membrane than the antibodies used and should fill unoccupied spaces on the 

membrane without interrupting binding of the proteins to the membrane.  

Following the blocking step, the protein of interest can be detected using 

antibodies. The primary antibodies can be labelled or unlabelled, monoclonal or 

polyclonal, and the secondary antibody is usually alkaline phosphatase or 

horseradish peroxidase (HRP) labelled to allow detection of the 

protein:antibody:antibody complex. Optimisation of the incubation duration and 

temperature is important for sensitivity improvement with no increase in 

background. Sometimes it is necessary to detect more one than proteins on the 

same membrane, so stripping and re-probing might be required.  
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The blocking agents used in this thesis were dry semi skimmed milk (Tesco 

everyday value semi skimmed milk) and bovine serum albumin (BSA) (Sigma-

Aldrich) when probing with antibodies to phosphorylated proteins. 

The list of primary antibodies used and their basic characteristics are listed in 

table 2-4. b-aktin served as the endogenous (loading) control. 

The secondary antibody was polyclonal anti-rabbit IgG (whole molecule)–

Peroxidase antibody produced in goat (Sigma-Aldrich).  

The membrane (prepared fresh on every Western Blot performed in the studies 

of this thesis, with no stripping or re-probing) was placed in a tray containing 1x 

TBS-T and 5% semi skimmed milk or 3% BSA and was incubated for either one 

hour at room temperature or overnight at 40C with gentle shaking. For the 

experiments including phosphorylated proteins the membranes were incubated 

in BSA and overnight at 40C with gentle shaking.  

The membrane was briefly rinsed with 2 changes of TBS-T and was 

subsequently placed in a tray covered in TBS-T and various dilutions of primary 

antibodies. The membrane was then incubated either for 1 hour in room 

temperature or overnight at 40C with gentle shaking. Following incubation the 

membrane was washed 6 times in TBS-T for 5 minutes each, at room 

temperature and with gentle shaking. The membrane was then incubated in 

TBS-T with 1:20000 secondary antibody for 1 hour at room temperature with 

gentle shaking. Following incubation, washes were performed as per previous 

step. 
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Antibody Molecular 

weight (kDa) 

Polyclonal/ 

monoclonal 

Cross-

reactivity 

Dilution 

PI3K p110δ 110 Polyclonal No 1:500 

Pan Akt 60 Monoclonal No 1:1000 

Phospho-Akt(Ser 

473) 

60 Polyclonal Yes 1:1000 

Phospho-Akt (Thr 

308) 

60 Polyclonal No 1:1000 

b-aktin 40 Polyclonal Yes 1:2000 

 

Table 2-4 Primary antibodies used in Western blotting and their 
characteristics. 

PI3K p110δ antibody was purchased from Santa Cruz biotechnology, USA; 
Pan-Akt, Phospho-Akt ( Ser473) and Phospho-Akt (Thr308) antibodies were 
purchased from Cell Signaling Technology, USA; b-aktin antibody was 
purchased from Thermo Fisher Scientific, UK. 
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 Detection and imaging 2.8.7

The most commonly used enzymatic detection system is chemiluminescence, 

also used in the studies of this thesis. The HRP-conjugated secondary antibody 

binds to the primary antibody, specifically bound to the target protein on the 

membrane. After the addition of a luminol peroxide detection reagent, the HRP 

enzyme catalyzes the oxidation of luminol in a multistep reaction. The reaction 

is accompanied by the emission of low intensity light at 428 nm but in the 

presence of certain chemicals, it is enhanced up to 1000-fold, making it easier 

to detect, and thus increasing the sensitivity of the reaction in a process known 

as enhanced chemiluminescence (ECL). One of the most effective enhancers is 

p-iodophenol; it increases HRP turnover rate and assists in the transfer of 

electrons from luminol to the enzyme. The intensity of signal is a result of the 

number of reacting enzyme molecules and is, therefore, proportional to the 

amount of antibody and protein on the blot. The light can be then captured 

either on an X-ray film or a charge-coupled device camera. X-ray films provide 

high sensitivity and flexible exposure times, needed for detection of very weak 

signals, but high-intensity signals tend to saturate making protein quantification 

challenging.  

Amersham™ ECL™ Prime Western Blotting Detection Reagent (GE Healthcare 

Life Sciences) was used for signal detection in the studies of this thesis. The 

solutions included in this assay were allowed to equilibrate in room temperature 

for 20 minutes. Luminol and peroxide were mixed in 1:1 working solution and a 

volume of 1ml/cm2 membrane of detection reagent was prepared and used 

immediately. The membrane was drained from excess wash buffer and it was 

placed protein side up on a plastic wrap. The detection reagent was added onto 

the membrane until it was completely covered. The membrane was then 
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incubated for 5 minutes at room temperature. Following drainage of the excess 

detection reagent the membrane was placed in a fresh plastic wrap and in an 

autoradiography cassette (GE Healthcare Amersham™ Hypercassette™ 

Autoradiography Cassette, Fisher Scientific). X-ray film (GE Healthcare 

Amersham™ Hyperfilm™ ECL, Fisher Scientific0 was placed on top of the 

membrane, the cassette was closed and exposure time ranged from seconds to 

30 minutes depending on the signal intensity. The film was then developed in 

an X-ray automatic processor (Xograph compact, UK). 

 Analysis 2.8.8

Detection of signals, in any mode including X-ray films, results in one or more 

visible protein bands on the membrane image. The molecular weight of the 

protein can be estimated by comparison with marker proteins and the amount of 

protein can be determined as this is related to band intensity. Quantification can 

be performed in a relative or absolute manner. Various factors affect this 

analysis and are briefly listed below: 

-Sensitivity is the minimum amount of protein that can be detected using 

available detection systems. It can be affected by many factors, such as 

antibody quality, antibody concentration, and exposure times. 

- The linear dynamic range is that over which signal intensity is proportional to 

the protein quantity on a blot, therefore allowing precise quantitation throughout 

that range. Excessive amounts of protein or high concentrations of antibodies, 

but also prolonged exposure times, can lead to saturated signals that are no 

longer proportional to protein concentration and can skew results. 

-Signal stability. It is advantageous to use a detection system with high signal 

stability, as this will impact on the linear dynamic range. With a stable signal 
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detection reagent, the time window for reaching high sensitivity is longer. This 

allows multiple exposures and the possibility to detect weak bands that might be 

missed in a brief, single exposure. 

-In-lane normalisation. The levels of the protein of interest should be normalized 

to an internal reference to allow corrections of loading errors or different protein 

concentrations in the samples used. The “endogenous control” protein is one 

that is expressed at a relatively constant rate and is required for the 

maintenance of basic cellular functions. 

- The presence of a protein on a blot or gel gives rise to a signal of a certain 

intensity that is recorded and analysed. To properly quantitate the protein, 

however, it is essential to consider the specific signal, as well as background 

due to cross-reactivity or system-generated signals. A signal peak corresponds 

to a protein band and the volume under that peak, but above the background 

level, is directly proportional to the quantity of protein. 

Various analysis softwares have been developed and can be used to absolutely 

or relatively quantify protein levels obtained from Western Blotting, taking into 

account the above factors. For the studies of this thesis Image J (1.50b; Java 

1.8.0_60 (64 bit), which is an open source Java image processing program, has 

been used for protein quantification. The analysis process is briefly outlined 

below: following scanning of the films and loading onto the software, brightness 

and contrast were adjusted to allow accurate viewing of the bands. A rectangle 

was then drawn around a lane and subsequently the lanes were plotted and the 

protein concentrations re- presented as peak of a curve. Background noise was 

eliminated by drawing a line at the base of the peak. Once all peaks had been 

highlighted then the signal was analysed and the software provided with a 
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density value for each. The density of the signal was then expressed as a 

percentage of the total size of all of the highlighted peaks. The adjusted density 

for every peak, was calculated as the ratio of the percentage of the peak to the 

mean peak percentage. This process was repeated for both samples and 

corresponding loading controls. The adjusted relative density was calculated as 

the ratio of the relative densities of the target protein and their corresponding 

loading controls. The result represents expression fold change of the target 

protein of a sample compared to the mean expression level of the protein of all 

the samples tested. A calculation example is shown in table 2-5. The mean or 

median of the adjusted relative densities of the individuals in the groups tested 

were subsequently compared and analyzed.   
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Table 2-5 Example of adjusted relative density calculation for a given 
sample. 

The adjusted relative density, calculated as above, expresses a fold change of 
a sample’s protein expression to the mean expression level of the protein in all 
the samples tested, normalised for loading errors.  

     

 

 

 

 

            

Density Percentage Relative density Adjusted relative 
density 

Raw data Sample density/total 
density of all samples 

Percentage of 
sample/mean sample 
percentage 

Relative density of 
sample/relative 
density of 
corresponding 
loading control 

Density Sample1 Density sample 
1/density sum of  
samples 1+2+3 

Percentage 1/mean 
percentage of samples 
1+2+3 

Relative density 
1/relative density of 
loading control 1 

Density Sample 2 Density sample 
2/density sum of 
samples 1+2+3 

Percentage 2/mean 
percentage of samples 
1+2+3 

Relative density 
2/relative density of 
loading control 2 

Density Sample 3 Density sample 
3/density sum of 
samples 1+2+3 

Percentage 3/mean 
percentage of samples 
1+2+3 

Relative density 
3/relative density of 
loading control 3 
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2.9 Microarray data analysis 

This method is described in detail in 3.2. 

2.10 Statistical analysis 

GraphPad Prism version 5 (GraphPad Software, California, USA) and Excel® 

2010 (Microsoft Office, USA) were used for data analysis. 

 For continuous variables from more than 2 groups were compared using the 

non-parametric Kruskall- Wallis test. Mann-Whitney U test was used for 

comparison of 2 groups of continuous variables where appropriate. Coefficient 

of determination (R2) was used to denote the linear association between 2 

variables with a cut off value of >0.97 for inclusion in the study.  

Statistical significance was defined by p value <0.05. 
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3 Chapter 3 A comparative gene expression study 

between individuals with apparent resistance, 

spontaneous clearance, or chronic infection from 

HCV 

3.1 Background 

Incidence and prevalence rates of HCV can be as high as 90% amongst IDU 

populations (Lorvick et al. 2001). IDU cohorts at high risk of HCV exposure who 

remain HCV uninfected by conventional testing (HCV RNA and HCV ab 

negative) are well documented and are described in detail in 1.7.2.1 (Mizukoshi 

et al. 2008; Thurairajah et al. 2008; Zeremski et al. 2009). These individuals 

share certain demographic characteristics, as they regularly inject illicit drugs for 

long periods and share drug injecting paraphernalia, and are within the highest 

risk group for HCV exposure. Individuals within this very high risk group, who 

show no serological evidence of past or current infection, might have different 

mechanisms of viral resistance to individuals who have spontaneously cleared 

the virus or have become chronically infected and this is what the studies of this 

thesis were set out to determine.  

As part of the earlier studies of the cohort in this thesis, Thurairajah et al, 

characterized a cohort of IDU in the urban areas of Plymouth, UK, who despite 

a median injection history of 9.3 years and significant sharing of drug injecting 

equipment remained negative for HCV Ab and HCV RNA when tested by 

commercial assays and they were termed exposed uninfected (EU). In these 40 

EU, T-cell ELISPOT positive responses were seen in 58% (Thurairajah et al. 

2008), which weaned off with cessation of IDU and were weaker than those 
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seen in SR, suggesting that they serve more as an immunological marker of 

exposure to HCV (Thurairajah et al. 2011). This initial cohort was followed up 

and maintained by continuous recruitment. Further studies on the 

immunological characteristics of the Plymouth EU have been discussed in 

1.7.2.2. To summarise, early findings showed that they lack the IL28B 

polymorphism that favours HCV clearance (Knapp et al. 2011) but are 

homozygous for the 1188 C/C polymorphism of IL-12B that leads to enhanced 

production of IL-12 (Hegazy et al. 2008).However, subsequent work favours 

activation of the innate, as opposed to adaptive immune system, as the most 

likely mechanism of natural protection from HCV. Cytokine profiling 

demonstrated raised  levels of the pro-inflammatory innate immune cytokines 

and chemokines IL-6 and IL-8 in the EU cohort (Warshow et al. 2012), who also 

overexpresses the KIR2DL3 polymorphism in combination with group 1 HLA-C 

allotypes suggestive of enhanced NK cell activity (Knapp et al. 2010) . Indicative 

of the diversity and complexity of mechanisms that appear to confer apparent 

resistance in EU is a recent finding that suggests the presence of humoral 

responses against envelope glycoproteins with neutralisation properties (Swann 

et al. 2016). 

As evident by the summary of EU immunological characteristics discussed 

above, the exact and complete immunological mechanism of natural protection 

from HCV in the EU Plymouth cohort (recruitment of which is described in detail 

in 2.1) remains unclear and the aim of this study was to try and elucidate this, 

by comparing their transcriptional profile to individuals who have spontaneously 

cleared HCV (SR) or are chronically infected with HCV (CHCV). 
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3.2 Methods 

Agilent GE1_107_Sep09 single-channel microarray was performed 

commercially at “Universitätsklinikum” in Regensburg, Germany, and the raw 

data were extracted in text files (Microsoft) using “Agilent Feature Extraction 

10.7.3.1” (Agilent technologies). Quantile normalization and further statistical 

process of the extracted data was performed with the help of the biostatistics 

department of university of Plymouth, England, using “Limma in R, 2.13” 

software (Bioconductor). In total, 45000 probes were used, including positive 

and negative controls and included 41925 probe sets. The microarray was 

performed from RNA extracted (detailed method described in 2.4) from 6 EU, 6 

SR and 6 CHCV. The differential gene expression between CHCV vs EU, 

CHCV vs SR and SR vs EU was expressed as a log2 fold change of the groups’ 

mean, compared pairwise. Please note that the groups’ comparison order is 

important for data interpretation in 3.3 

The statistically significant (adjusted p value to account for the variables 

tested<0.05) differentially expressed genes from the 3 groups with a log2 fold 

change of more than 0.5 (i.e. more than 40% absolute fold change) were 

subsequently processed using “Ingenuity Pathway Analysis Spring 2013 

release” (IPA) software(Qiagen), filtered for human species. IPA is a web-based 

software application for the analysis, integration, and interpretation of data 

derived from ‘omics’ experiments, such as microarrays, RNA sequencing, 

metabolomics, proteomics, and small scale experiments that generate gene and 

chemical lists. Data analysis and interpretation with IPA builds on the manually 

curated content of the Ingenuity Knowledge Base (Ingenuity, Qiagen) which is 

the one of the largest databases available worldwide. Various algorithms 

identify regulators, relationships, mechanisms, functions, and pathways relevant 
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to changes observed in an analysed dataset. The core analysis in IPA identifies 

relationships, mechanisms, functions, and pathways relevant to a dataset. 

Upstream regulator analysis identifies molecules, including transcription factors, 

which may be causing observed gene expression changes, whereas 

downstream effects analysis predicts downstream biological processes that are 

increased or decreased based on the analysed data (alternatively known as 

“heat maps”). Integrating results about potential regulators and effects, the 

regulator effects tool highlights connections to create hypotheses about 

upstream triggers responsible for downstream phenotypic or functional 

outcomes. Furthermore, IPA enables the interrogation of subnetworks and 

canonical pathways by selecting a molecule of interest, indicating up or down 

regulation, and simulating directional consequences on downstream molecules 

and the inferred activity upstream in the examined network or pathway. 

Networks are generated de novo based upon input genes, proteins, or 

chemicals. Canonical Pathways are generated prior to data input, based on the 

literature and do not change upon data input. The p value of a canonical 

pathway is determined by Fischer’s exact test (IPA datasheet, Qiagen, see 

Appendix 1). 
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3.3 Results 

 Study subjects included in the microarray 3.3.1

 

Characteristic EU 

 (n=6) 

SR  

(n=6) 

CHCV  

(n=6) 

Mean age 37.0 41.0 43.3 

Male gender (%) 100.0 50.0 80.0 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

HCV Genotype N/A N/A 3 

Mean life time injecting 
episodes (rounded in 
hundreds) 

4800 4400 2700 

EU HCV specific T cell 
responses (%) 

67 Non 
applicable 

Non 
applicable 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 66 50 66 

Sharing drug injection 
equipment (%) 

100 100 100 

Additional co morbidities No No No 

 

Table 3-1 Demographics of the individuals included in the microarray. 

Note: HCV specific T-cell responses in EU were discussed in 1.7.2.1, 1.7.2.2 
and 3.1. 
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 Summary of microarray findings 3.3.2

In total, 33,831 genes were studied for differential expression in CHCV, EU and 

SR. 1465 genes between the CHCV and EU group, 4377 between the CHCV 

and SR group and 4510 between the SR and EU group were significantly 

(p<0.05) up or down regulated. From this point onwards and for the rest of this 

thesis, a positive log2 fold change of a gene expression between 2 groups, 

denotes upregulation in the first or down regulation in the second and a 

negative log2 fold change between 2 groups, denotes down regulation in the 

first or up regulation in the second. The total amount of genes exhibiting a 

positive or negative log2 fold change between CHCV vs EU, CHCV vs SR and 

SR vs EU are shown in figures 3-1 and 3-2. This summary is of no particular 

biological significance, but supported by the downstream effects analysis 

depicted in figures 3-3, 3-4 and 3-5, suggests that the majority of differentially 

expressed genes involve the SR group. 
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Figure 3-1 Venn diagram of the total amount of genes with a positive log2 
fold change in the first versus second group in a pairwise comparison of 
EU, CHCV and SR. 

Note: CHCV-EU=CHCV vs EU, CHCV-SR=CHCV vs SR and SR-EU=SR vs 
EU. CHCV (patient with CHCV infection), SR (Spontaneous Resolver), EU 
(Exposed Uninfected). 

  

 

 

Figure 3-2 Venn diagram of the total amount of genes with a negative log2 
fold change in the first versus the second group in a pairwise comparison 
of EU, CHCV and SR. 

Note: CHCV-EU=CHCV vs EU, CHCV-SR=CHCV vs SR and SR-EU=SR vs 
EU. CHCV (patient with CHCV infection), SR (Spontaneous Resolver), 
EU(Exposed Uninfected). 

 

 

CHCV-EU CHCV-SR 

 

CHCV-EU CHCV-SR 
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Figure 3-3 Downstream effects analysis (“heat map”) of the CHCV vs EU 
groups. 

Note colour coding: grey=no change, orange=upregulated in CHCV or 
downregulated in EU, blue=down regulated in CHCV or upregulated in EU. 

Adapted,with licence, from IPA (Ingenuity, Qiagen). 

 

 

 

Figure 3-4 Downstream effects analysis (“heat map”) of the CHCV vs SR 
groups. 

Note colour coding: grey=no change, orange=upregulated in CHCV or 
downregulated in SR, blue=down regulated in CHCV or upregulated in SR. 

Adapted, with licence, from IPA (Ingenuity, Qiagen). 
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Figure 3-5 Downstream effects analysis (“heat map”) of the SR vs EU 
groups. 

Note colour coding: grey=no change, orange=upregulated in SR or 
downregulated in EU, blue=down regulated in SR or upregulated in EU. 

Adapted, with licence, from IPA (Ingenuity, Qiagen). 
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 Microarray findings in EU 3.3.3

As mentioned in 3.3.2, the differential gene expression was least prominent in 

the EU and CHCV groups, compared to SR and we could not readily identify 

any networks or canonical pathways in EU, relevant to HCV infection, that were 

up or down regulated in the EU group compared to CHCV or SR. We, therefore, 

looked for a list of genes that are upregulated in EU vs CHCV and SR or 

downregulated in CHCV and SR vs EU.18 genes fulfilled this criterion, one of 

which was Interleukin-27 (IL-27). It was also noted that the IL-17 (suppressed 

by IL-27, see 4.4.2) receptor activity (RA) was either upregulated in EU or down 

regulated in the two other groups and the IL-27 receptor activity was either 

upregulated in EU or down regulated in SR (table 3-2).Fluorescence intensity 

following normalisation, but with no further statistical analysis, for IL-27 between 

EU, CHCV and SR is shown in figure 3-6.  

C X C motif chemokine 7 (CXCL7) was the gene that exhibited the highest log2 

fold change between groups (EU vs CHCV) amongst any others identified in 

this microarray, and also exhibited a negative log2 fold change in CHCV vs SR 

(table 3-2). The log2 fold change of CXCL7 was higher in EU compared to 

CHCV and SR, albeit not more than 0.5 (table 3-2). Fluorescence intensity 

following normalisation, but with no further statistical analysis, for CXCL7 

between EU, CHCV and SR is shown in figure 3-7. 
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Table 3-2 Log2 fold changes and p values in IL-27, IL-27 RA, IL-17 RA and 
CXCL7 between EU, CHCV and SR. 

Note: CHCV (patient with CHCV infection), SR (Spontaneous resolver), EU 
(Exposed Uninfected). Cytokines listed in the table were selected according to 
log fold change between groups and biological relevance to the studies of this 
thesis, details of which can be found in chapters 4-6.  

                       

 

Characteristic Log2 fold 

change (and p 

value) in EU  vs 

CHCV   

Log2 fold 

change (and p 

value) in SR  vs 

CHCV 

Log2 fold change 

(and p value) in 

EU vs SR 

IL-27 +0.947 (p value: 

2.00E-02) 

-0.796 (p value: 

0.046) 

+1.943 (p value: 

1.72E-04) 

IL-27 RA No change No change or 

<0.5 

+0.38 (p value: 

4.90E-02) 

IL-17 RA -0.504 (p value: 

2.30E-02) 

No change or 

<0.5 

-0.796 ( p value: 

4.59E02) 

CXCL7 +2.359 (p value: 

6.04E-03) 

+1.89 (p value: 

1.283 E-03) 

No change or <0.5 

(p value 0.46) 
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Figure 3-6 Fluorescence intensity of IL-27 between EU, CHCV and SR 
groups. 

Note: Fluorescence intensity following normalisation but without further 
statistical analysis.  CHCV (patient with CHCV infection), SR (spontaneous 
resolver), EU (Exposed Uninfected). The bars represent the group’s mean. 
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Figure 3-7 Fluorescence intensity of CXCL7 between EU, CHCV and SR. 

Note: Fluorescence intensity following normalisation but without further 
statistical analysis. CHCV (patient with CHCV infection), SR (spontaneous 
resolver), EU (Exposed Uninfected). The bars represent the group’s mean.  
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 Microarray findings in SR 3.3.4

The vast majority of changes related to differential gene expression between 

EU vs CHCV, CHCV vs SR and SR vs EU involved the SR group (see 3.3.2). 

Canonical pathways related to activation of T lymphocytes were significantly 

over expressed in this groups compared to EU and CHCV. The CD28 mediated 

T cell signalling pathway (for detailed analysis see 6.1) was significantly 

upregulated in SR (upstream regulators affected >30%, p=2.77E-05). Out of the 

differentially expressed molecules that are important in the pathway’s outcome, 

the CD28 activation dependant  phosphatidyl-inositol 3-kinase (PI3K) and 

lymphocyte-specific protein tyrosine kinase (Lck), as well as the resulting 

activated Zeta-chain-associated protein kinase 70 (ZAP 70), were significantly 

upregulated in SR compared to EU and CHCV. Additionally, Akt1, which is one 

of the pathways outcomes, was significantly upregulated in SR compared to the 

2 other groups. 

Interleukin 16 (IL-16) log2 fold change was +0.752 (p value: 1.56E-02) in SR vs 

CHCV and +0.736 (p value: 2.72E-02) in SR vs EU, with no or less than 0.5 

change between the CHCV vs EU group. Fluorescence intensity following 

normalisation, but with no further statistical analysis for IL-16 between EU, 

CHCV and SR is shown in figure 3-7. 
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Figure 3-8  Fluorescence intensity of CXCL7 between EU, CHCV and SR. 

Note: Fluorescence intensity following normalisation but without further 
statistical analysis. CHCV (patient with CHCV infection), SR (spontaneous 
resolver), EU (Exposed Uninfected). The bars represent the group’s mean. 
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3.4 Discussion 

In the literature, the cut-off log2 fold threshold for significantly differentiated 

gene expression is arbitrary, disease related, and usually between 1.5 to 2, 

depending on p value. Overall, the majority of Log2 fold changes in our study 

did not exceed -2 or +2 and lay within the -1.5 to +1.5 range, which was not a 

surprising observation as the microarray was performed from RNA isolated from 

blood peripheral mononuclear cells (PBMC) as opposed to hepatocytes. We, 

therefore, decided to review changes of any amplitude above the set cut off of 

0.5, especially when involving transcription genes, that could be associated with 

protection or clearance of HCV infection. 

In the EU group, we did not identify any upstream regulators, networks or 

canonical pathways associated with immunological protection from HCV, so we 

looked into all the genes whose expression is up regulated in EU vs CHCV and 

SR or downregulated in CHCV and SR vs EU. Out of the 18 that fulfilled this 

criterion the most significant, due to either log2 fold change (table 3-2)  or 

relevant biological function (see 4.4.2 &4.4.3), was Interleukin-27 (IL-27), which 

was either upregulated  in EU compared to SR and CHCV or downregulated in 

CHCV and SR compared to EU. It was also noted that the IL-17 (which is 

supressed by IL-27, see 4.4.2) receptor activity (RA) was either upregulated in 

EU or down regulated in the two other groups and the IL-27 receptor activity 

was either upregulated in EU or down regulated in SR (table 3-2), suggesting 

IL-27 activity.  

CXCL7 was the gene with the highest log2 fold change amongst groups (EU vs 

CHCV) and it was shown to be either upregulated in EU and SR vs CHCV or 

down regulated in CHCV vs EU and SR. The differential expression between 
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EU and SR was lower than the set threshold of 0.5. CXCL7 has diverse 

biological functions (see 4.4.4), so we assumed that it might of relevance to the 

purpose of this study. 

The SR was not the cohort our work initially focused on, but we could not ignore 

that it was involved in the vast majority of differential gene expression amongst 

the 3 groups. These changes mainly affected the activation of T lymphocytes 

which is a known mechanism of HCV clearance (see 5.1). We identified that the 

CD28 signalling system in T lymphocytes, a co-stimulator of T-cell activation 

(see 6.1) is either up regulated in SR compared to EU and CHCV, which could 

be of biological significance, or down regulated in EU and CHCV compared to 

SR.  

IL-16 is an antiviral cytokine (see 5.4.1) which, according to the microarray 

findings could be either up regulated in SR compared to EU and CHCV or down 

regulated in EU and CHCV compared to SR.  

Based on the above, we have attempted to corroborate the microarray findings  

by investigating as follows: 

-To study whether IL-27 and CXCL7 are over expressed in EU compared to 

CHCV and SR. 

-To study whether IL-16 is over expressed in SR compared to EU and CHCV. 

-To study whether the CD28 signalling system in T lymphocytes is over 

expressed in SR compared to EU and CHCV. 
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4 Chapter 4 IL -27 and CXCL7 expression in Exposed 

Uninfected 

4.1 Background 

Cytokines and chemokines are redundant secreted proteins with growth, 

differentiation and activation functions that are central in regulating and 

determining the nature of immune responses to viral infections (Steinke & 

Borish 2006).  

It is well established that the presence of anti HCV-Th1 cell responses favours 

HCV clearance (Diepolder et al. 1996; Missale et al. 1996; Cramp et al. 1999; 

Thimme et al. 2001), as opposed to anti HCV-Th2 responses that are 

associated with viral persistence (X. G. Fan et al. 1998; Lechmann et al. 1999; 

Gramenzi et al. 2005). Th1 cells primarily secrete IFN-γ, IL-2 and IL-12, 

whereas Th2 cells primarily secrete IL-4, IL-5, IL-10 and IL-13. 

 The activation of the innate immune system may result in IL-6, IL-12 TNF-α, 

IFN-α and IFN-λ secretion and NK cell function is, in general, amplified greatly 

by IFN-α released by dendritic and virally infected cells. IFN-α, as described in 

1.5.1.2 inhibits HCV replication via the induction of genes encoding antiviral 

proteins, such as double-stranded RNA-dependent kinase, 2’, 5’oligoadenylate 

synthetase and MxA (Pestka et al. 1987; Samuel 2001; Langer et al. 2004; 

Galligan et al. 2006) and had been the mainstay of treatment of CHCV infection 

up until fairly recently.  

Various polymorphisms in cytokine genes have been associated, in a variety of 

studies, with favourable outcome of HCV infection either spontaneously or after 
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treatment, including IL-12B (Yin et al. 2004; Annwyne Houldsworth et al. 2005), 

IL-10 (Mangia et al. 2004) and IL-28B (IFN-λ3) (Ge et al. 2009; Tanaka et al. 

2009; Thomas et al. 2009). In a recent smaller study it has been suggested that 

the SNP c.-964A>G (rs153109) of the IL-27p28 gene is present in non 

responders and relapsers compared to patients who achieved  SVR after 

treatment (Zicca et al. 2014). 

As mentioned in 3.1, in our EU cohort HCV specific IFN-γ ELISPOT responses 

have been identified in up to 50% of the subjects, but of weaker strength 

compared to those of individuals who spontaneously clear HCV and tend to 

wane only months after cessation of IDU. (Thurairajah et al. 2008). It has also 

been shown that the 1128 CC polymorphism of IL-12B gene is overexpressed 

in EU compared to healthy controls and patients with CHCV infection (Hegazy 

et al. 2008). However, in a wide cytokine profiling study, the two cytokines that 

appeared to be raised in EU compared to healthy controls, SR and patients with 

CHCV infection were the innate IL-6 and IL-8 as opposed to the adaptive 

cytokines. IFN-α was also elevated in EU and all groups exposed to HCV 

compared to healthy controls. Our previous findings indicate that the 

mechanism of natural resistance to our EU cohort is complex and might involve 

components of both the innate and adaptive immunity. 

The aim of the following study was to ascertain whether Interleukin-27 (IL-27) 

cytokine and C X C motif chemokine 7 (CXCL7) with various 

immunomodulatory functions, are overexpressed in individuals with natural 

resistance to HCV (EU), compared to patients with chronic HCV infection 

(CHCV), individuals who have spontaneously cleared HCV (SR) and normal 

controls with no risk factors of HCV exposure (NC). 
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4.2 Methods 

The micro array results for IL-27 and CXCL7 were validated in two steps both 

for IL-27 and CXCL7. In the first step, relative gene expression in the individuals 

included in the micro array (demographics described in chapter 3) was 

measured by quantitative reverse transcriptase–polymerase chain reaction (RT-

PCR). Comparative basic relative quantification was performed in each group 

and the differential gene expression between 2 groups was calculated using the 

2-ΔΔCT method of the mean ΔCT of each group. Coefficient variation (CV) of the 

2-ΔCT values within a group was calculated as an indicator of intra sample 

variability. Details on the recruitment of the pre mentioned groups, the 

laboratory technique and the analysis methods are described in detail in chapter 

2. 

In the second step, IL-27 and CXCL7 concentration was measured by sandwich 

Enzyme linked-immunosorbent assay (ELISA), detailed description of which can 

be found in chapter 2 .Levels in EU (HCV Ab and HCV RNA negative) were 

compared with levels found in (1) patients who spontaneously resolved HCV 

infection (HCV Ab positive and HCV RNA negative) ; (2) treatment-naïve 

chronic HCV patients (HCV Ab positive and HCV RNA positive); (3) normal 

controls with no risk factors of HCV exposure that ,due to resource constraints 

,were only included in the IL-27 study. The details of recruitment of these 

groups are discussed in chapter 2. 
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4.3  Results 

 Study subjects for quantitative reverse transcriptase polymerase 4.3.1

chain reaction (qPCR) 

Quantitative reverse transcriptase polymerase chain reaction for IL-27 and 

CXCL7  RNA concentration was performed in the 18 individuals included in the 

micro array study, details of which can be found in chapter 3. They consisted of 

6 EU, 6 SR and 6 treatment naïve patients with CHCV. The demographics for 

the group in this part are summarised in Table 3.1. 

  Study subjects for cytokine and chemokine testing 4.3.2

IL-27 concentration was measured in 49 individuals in total, consisting of 13 EU, 

14 SR, 14 treatment naïve patients with CHCV infection of various genotypes 

and 8 normal controls with no risk factors of HCV exposure. The demographics 

for the group in this part is summarised in Table 4.1. 

CXCL7 concentration was measured in 24 individuals in total, including 8 EU, 8 

SR and 8 treatment naïve patients with CHCV infection of various genotypes. 

The demographics for the group in this part is summarised in Table 4.2. 
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Characteristic EU 
(n=13) 

SR 
(n=14) 

CHCV 
(n=14) 

NC 
(n=8) 

Mean age 31.0 41.6 36.0 33.75 

Male gender (%) 84.6 61.5 80.0 62.5 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ -/- 

HCV Genotype N/A N/A Any N/A 

Mean life time injecting 
episodes (rounded in 
hundreds) 

4200 4200 1800 0 

IDU at time of recruitment Yes Yes Yes No 

Sharing needles (%) 61 57 57 0 

Sharing any drug injection 
equipment 

100 100 100 0 

Additional co morbidities No No No No 

 

Table 4-1 Demographics of individuals included in the IL-27 study. 

Note: n=number; N/A; non-applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection; 
NC=normal control. 
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Characteristic EU(n=8) SR(n=8) CHCV(n=8) 

Mean age 30.6 38.3 34.1 

Male gender (%) 75.0 62.5 87.5 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

HCV Genotype N/A N/A Any 

Life time injecting episodes 
(rounded in hundreds) 

3300 3200 2200 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 75 50 50 

Sharing any drug injection 
equipment (%) 

100 100 100 

Additional co morbidities No No No 

 

Table 4-2 Demographics of the individuals included in the CXCL7 study. 

Note: n=number; N/A=non -applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. 
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  Quantitative reverse transcriptase polymerase chain reaction 4.3.3

results for IL-27 and CXCL7 were comparable to the micro array 

results  
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Figure 4-1 IL-27 qPCR in comparison groups.  

Note: y axis represents absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. The bars 
represent IL-27 expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT  values within each group was 16.1% for 
EU, 10.2% for SR and 13.3% for CHCV. 
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Figure 4-2 CXCL7 qPCR in comparison groups. 

Note: y axis represents absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. The bars 
represent CXCL7 expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT  values within each group was 17.2% for 
EU, 14.2% for SR and 15.3% for CHCV. 
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 IL-27 concentration is elevated in EU compared to all other groups 4.3.4

IL-27 was elevated in 9 out of the 13 (69.2%) EU tested, of whom only 2 were 

included in the micro array study. The cut off value of a positive result was 

arbitrary set above the lowest concentration above 0 pg/ml seen in any group 

(4.38pg/ml). The maximum concentration measured in the EU group was 

643.77pg/ml. Out of the rest groups, 4 individuals in total (1 SR, 3 CHCV and 1 

NC) were found to have elevated IL-27 levels with a maximum concentration of 

39.39 pg/ml.  

The difference in the median concentration of IL-27 in the EU group (Figure 4.3) 

was statistically significant compared to all other groups (Kruskal-Wallis; 

p=0.005).  



162 
 

 

 

 

E
U

S
R

C
H
C
V

N
C

0

50

100

150

400

600

800

Group

IL
-2

7
 c

o
n

c
e

n
tr

a
ti

o
n

 (
p

g
/m

l)

 

Figure 4-3 Scatterplot of IL-27 in EU, CHCV, SR and NC. 

Note: Broken y axis. Horizontal line represents the median IL-27 concentration 
of the group. EU=exposed uninfected; SR=spontaneous resolver; 
CHCV=patient with chronic HCV infection. 
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 CXCL7 concentration is elevated in EU compared to patients with 4.3.5

CHCV infection 

The median CXCL7 concentration was higher in the EU group, compared to the 

SR and CHCV ones (Figure 4.4), however the difference reached statistical 

significance only between the EU and CHCV group (Mann -Whitney; p=0.028). 
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Figure 4-4 Scatterplot of CXCL7 concentration in EU, CHCV and SR. 

Note: horizontal line represents the median CXCL7 concentration of the group. 
EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with chronic 
HCV infection. 
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4.4  Discussion 

 Prologue 4.4.1

IL-27 appeared to be over secreted in the serum of individuals with apparent 

resistance to HCV in comparison with patients with chronic CHCV infection, 

individuals who spontaneously cleared HCV and normal controls with no risk 

factors of HCV exposure. 

CXCL7 appears to be over excreted in the serum of individuals with apparent 

resistance to HCV compared to patients with chronic CHCV infection, but its 

levels are not significantly different between the former group and individuals 

who have spontaneously cleared HCV.  

 IL-27 overview 4.4.2

IL-27 is a member of the IL-12 family cytokines that consists of p28 and 

Epstein-Barr virus-induced gene 3 (EBI3) (Pflanz et al. 2002; Kastelein et al. 

2007). The p28 chain is related to a subunit of IL-12 (IL-12p35) and has a 

classical cytokine structure, while the EBI3 is related with IL-12p40 and 

structurally resembles the soluble IL-6 receptor α chain. Thus, it is recognised 

that there is a high degree of subunit promiscuity between these cytokines and 

it was originally thought that they would have similar function. However, whilst 

there is a degree of overlap in certain aspects of their bioactivity, there are also 

many distinct roles for each individual cytokine of this superfamily. Activated 

antigen presenting cells are the main source of IL-27, however, other cell types 

including endothelial cells, neutrophils, NKT cells and astrocytes can also 

produce IL-27(Smits et al. 2004; Sonobe et al. 2005; Fujita et al. 2009). Many 

TLR signalling pathways induce IL-27 expression including TLR2, TLR3, TLR4 

and TLR9 and at the transcriptional level, binding sites for NF-kB and interferon 
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regulatory factor 3 (IRF3) have been identified in the p28 promoter (Pflanz et al. 

2002; Schuetze et al. 2005; Wirtz et al. 2005; Liu et al. 2007; Molle et al. 2007). 

IL-27 binds to its receptor (IL-27R), which is composed of ligand-specific chain, 

IL-27 receptor α chain (IL-27Rα), and of gp130, a signal-transducing molecule 

shared with other cytokines, IL-6, IL-11, oncostatin M, and leukaemia inhibitory 

factor. IL-27 is capable of binding to IL-27Rα in the absence of gp130; however, 

the co-expression of both receptor subunits is required to induce signal (Pflanz 

et al. 2004; Kastelein et al. 2007). IL-27R is expressed on a range of cell types 

including T cells, monocytes, DC, mast cells, hepatocytes, endothelial cells, 

neurons, B and NK cells(Pflanz et al. 2004; Bender et al. 2009) and upon ligand 

binding phosphorylation of the signal transducers and activators of transcription 

protein(STAT) -1, -2, -3, -4, or -5 occurs (Hibbert et al. 2003; Kamiya et al. 

2004; Batten & Ghilardi 2007).  

Much of the research on IL-27 has focused on its function in adaptive immunity 

and in particular, its effect on Th cells. In conjunction with IL-12 and via the 

induction of the transcription factor T-bet, it induces proliferation and  

development  of naïve Th1, increasing IFN-γ production (Pflanz et al. 2002; 

Hibbert et al. 2003). In the later phases of inflammatory response it can also 

exert an inhibitory effect on Th1 activation (Yoshimura et al. 2006) and 

suppress INF-γ production. The initial boost and later dampen of this 

inflammatory response can be partially be explained by the expansion of IL-10 

(a potent anti-inflammatory cytokine) producing Th1 cells by IL-27 (Fitzgerald et 

al. 2007; Stumhofer et al. 2007). In contrast to the paradoxical effects of IL-27 

on Th1 responses, the inhibitory effect of IL-27 on other Th cell subsets is 

clearer. IL-27 abrogates Th2 and Th17 development by blocking the 

transcription factors GATA-3 and RΟRγt/RORα in a STAT-1 mediated manner 
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(Yoshimura et al. 2006; El-behi et al. 2009; Diveu et al. 2009). Various groups 

have, also, demonstrated that IL-27 suppresses the development of Treg cells 

(Neufert et al. 2007; Huber et al. 2008).  

IL-27 has also exhibited enhanced NK cell cytotoxicity, mainly in the context of 

various cancers (Matsui et al. 2009; Chen et al. 2012), but additionally it has 

been shown  to increase NK survival , albeit not cytotoxicity, in normal controls 

(Laroni et al. 2011).  

 IL-27 in viral infection 4.4.3

IL-27 has shown antiviral properties against a range of viruses and has, 

extensively, been explored as a potential therapeutic adjunct for the treatment 

of HIV. It has been shown to inhibit HIV in vitro in PBMCs, macrophages, 

dendritic cells and CD+4 cells via a variety of mechanisms. It, primarily, 

upregulates the expression of IFN- inducible genes both in an IFN-α dependent 

and independent manner. Additionally, it modulates host restriction factors such 

as the APOBEC proteins and inhibits HIV in macrophages by down -regulation 

of a b-spectrin gene that disrupts HIV viral cycle .(Fakruddin et al. 2007; 

Imamichi et al. 2008; Greenwell-Wild et al. 2009; Chen et al. 2013; Dai et al. 

2013). Due to the inhibitory effects of IL-27 on HIV viral replication, there has 

been emerging interest on the possible role of this cytokine in the treatment of 

chronic HCV and HBV infections. Existing, albeit limited, evidence suggests that 

HCV and HBV can be suppressed in vitro with IL-27 acting as a type I IFN 

(Frank et al. 2010; Cao et al. 2014). Elevated levels of Treg cells, which IL-27 

suppresses, are associated with HCV viral persistence and antibody depletion 

of these cells are associated with an in vitro enhancement of functional HCV-

specific CD8+ T cell responses (Cabrera et al. 2004). 
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 CXCL7 overview 4.4.4

CXCL7 (synonym to platelet basic protein; PPB) belongs to the family of CXC –

ELR+ chemokines. By post translational cleavage, it gives rise to connective 

tissue-activating peptide-III (CTAP-III), neutrophil activating peptide-2 (NAP-2), 

β-thromboglobulin (β-TG) and two variants of thrombocidin (TC-1 &TC-2) (figure 

4-5). Peptidases, some of which are derived from monocytes and granulocytes 

play a role in the post-transcriptional processing of CXCL7 (Castor et al. 1983; 

Walz & Baggiolini 1989; Brandt et al. 1991; Car et al. 1991; Krijgsveld et al. 

2000). CXCL7 is known as a major granular protein of platelets, but it can also 

be produced by inflammatory cells and cancers of different origin (El-Gedaily et 

al. 2004; Cunningham et al. 2010; Grépin et al. 2014; Desurmont et al. 2015). 

CXCL7 G protein coupled receptors CXCR1 and CXCR2 are expressed on 

neutrophils, monocytes, lymphocytes, macrophages, NK, endothelial and 

tumour cells (Chuntharapai et al. 1994; Gerszten et al. 1999; Wang et al. 2006; 

Ginestier et al. 2010; Unver et al. 2015). CXCL7and its derivatives exhibit 

diverse biological functions that have mainly been studied in the setting of 

bacterial infections and tumours. Please note that in the literature the term 

CXCL7 has many synonyms, but for the purpose of this thesis it denotes 

platelet basic protein (PBP) and all its isoforms. 
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Figure 4-5  Amino acid sequences of CXCL7 derivatives. 

CXCL7(PBP) ,by post translational cleavage,  gives rise to connective tissue-
activating peptide-III (CTAP-III), β-thromboglobulin (β-TG) and neutrophil 
activating peptide-2 (NAP-2). 

 

Adapted from Journal of Haematology and Oncology 2013, 6:42. 

https://doi.org/10.1186/1756-8722-6-42.  
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Most of the isoforms, but primarily NAP2 are potent neutrophil chemoattractants 

(Walz et al. 1989) and exhibit bacteriocidal and antifungal properties (Tang et 

al. 2002; González-Cortés et al. 2012). CXCL7 has also be shown to induce 

macrophage chemotaxis and activate histamine release from basophils 

(Proudfoot et al. 1997; Unver et al. 2015). 

CTPA-III stimulates angiogenesis (Strieter et al. 1995) as well as DNA, 

proteoglycan and glucosaminoglycan synthesis, playing an important role in the 

homeostasis of the extracellular matrix (ECM) (Castor et al. 1983). The ECM 

represents a non-cellular component in tissues and organs that is primarily 

composed of water, proteins, and proteoglycans. It forms an intricate network 

that provides a physical scaffold for cells as well as structural support, strength 

and elasticity in all tissues and organs (Frantz et al. 2010). Besides its 

mechanical and biochemical properties, it helps maintain hydration and 

homeostasis and by interacting with cell-surface receptors and matrix 

components it regulates cell differentiation, adhesion, proliferation, migration, 

and survival (Hynes 2009; Järveläinen et al. 2009) .The ECM also binds and 

secretes growth factors and cytokines that drive morphogenesis, cell function, 

and metabolism . Thus, the ECM creates a complex microenvironment that is 

particularly dynamic in nature and which undergoes continuous remodelling not 

only during development but also throughout differentiation and wound healing. 

Accordingly, well-coordinated regulation of ECM remodelling is essential to 

maintain homeostasis and to prevent disease onset and progression(Daley et 

al. 2008). In HCV infection, the initial virion entry onto hepatocytes is mediated 

by binding to glycosaminoglycans (see 1.1.3).  
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Additionally, CXCL7 inhibits megacaryopoeisis, has heparinise activity and can 

induce adhesion of endothelial progenitor cells after vascular injury (Han et al. 

1990; Hoogewerf et al. 1995; Hristov et al. 2007). 

 Conclusions 4.4.5

Based on the above, higher levels of endogenous IL-27 in our EU cohort could 

be a contributing factor to their natural resistance to HCV and a plausible 

explanation of the difference in its levels noted between the groups. It remains 

to be elucidated which arm on the immune system it augments in our cohort, 

but based on previous findings related to EU immunological characteristics, it is 

possible that it functions primarily as a type I IFN and activator of NK cells, 

albeit additional activation of the Th1 and CD28+ cells by IL-27 cannot be 

excluded. Further work could focus on identifying the level of expression of IFN-

inducible genes in our cohort compared with normal controls and patients with 

CHCV, NK cell cytotoxicity assays in CHCV in the presence of IL27, Treg levels 

in EU compared to CHCV and other control groups, as well as the presence of 

IL-27 SNPs in EU that are associated with favourable outcome of CHCV 

infection, such as rs153109. Detailed suggestions for further studies can be 

found in chapter 7. 

The possibility that the result is a consequence of trauma or infection, other 

than HCV, has been considered. However, given the fact that none of the 

subjects included had known additional co morbidities and with the exception of 

normal controls all subjects shared common risk factors in terms of IDU, this 

hypothesis is considered unlikely. 

In terms of the findings related to CXCL7, due to limited resources and the 

technical challenges of the ELISA assays, we were not able to expand our 
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study in more than 8 individuals from each group and include normal controls. 

Therefore, there is always a chance that the lack of statistical significance is 

related to the sample sizes. However, given the diverse functions of CXCL7, its 

elevated concentration in the serum of EU vs CHCV, could merely reflect a 

difference in the frequency and timing of IDU of the individuals included. In 

order to make a safe conclusion we need to measure concentration of CXCL7 

in more individuals including normal controls. 
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5 Chapter 5 IL-16 expression in Spontaneous 

Resolvers 

5.1  Background 

The adaptive immune response to HCV consists of an antibody and CD4+ and 

CD8+ HCV specific T cell responses and is discussed in detail in 1.5.2. T cell 

responses appear within 7-10 weeks after detection of the virus and coincide 

with a reduction of viral load, indicating the vital role of the adaptive response  in 

viral clearance (F. Lechner et al. 2000; Thimme et al. 2001).  

CD4+ cell responses are critical to both the generation and maintenance of 

immunity to viruses, as they produce cytokines that promote CD8+ cell cytolytic 

function and trigger the production of antibodies. In both chimpanzee and 

human models, clearance of HCV is associated with a rapid, strong, polyclonal 

and sustained HCV specific CD4+ T-cell responses and inability to mount 

these, results in chronic viraemia (Diepolder et al. 1996; Lechmann et al. 1996; 

Missale et al. 1996; Tsai et al. 1997; Shata et al. 2002; Thimme et al. 2002). 

Responses directed against multiple HCV proteins of Th1 (IFN-γ) type were 

found to persist for decades after spontaneous clearance of HCV (Takaki et al. 

2000) and their loss within the first months of infection is associated with 

relapse of viraemia (Gerlach et al. 1999). As mentioned in various other 

paragraphs of this thesis, to date, in the EU cohort, there is no robust evidence 

that adaptive immunity contributes significantly to their natural resistance to 

HCV and previously shown HCV specific IFN-γ responses are weaker than 

those seen in SR.  

 



173 
 

The hypothesis tested was that endogenous IL-16, a potent CD4+ cell 

chemoattractant, is overexpressed in individuals that spontaneously clear HCV 

(SR) compared to patients with chronic HCV infection (CHCV) and individuals 

with natural resistance to HCV (EU). 

5.2  Methods 

IL-16 relative expression was measured  by quantitative reverse transcriptase–

polymerase chain reaction (RT-PCR) in (1) patients who spontaneously 

resolved HCV infection (HCV Ab positive and HCV RNA negative), ;(2) 

treatment-naïve chronic HCV patients (HCV Ab positive and HCV RNA 

positive), and; (3) individuals with apparent resistance to HCV (HCV ab and 

HCV RNA negative). Comparative basic relative quantification was performed in 

each group and the differential gene expression between 2 groups was 

calculated using the 2-ΔΔCT method of the mean 2-ΔCT of each group. Coefficient 

variation of the 2-ΔCT values within a group was calculated as an indicator of 

intra sample variability. Details on the recruitment of the pre mentioned groups, 

the laboratory technique and the analysis methods are described in detail in 

chapter 2. 

IL-16 concentration was measured, in subjects of the groups mentioned above, 

by sandwich enzyme linked-immunosorbant assay (ELISA), detailed description 

of which can be found in chapter 2 .7.4.  
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5.3  Results 

  Study subjects for quantitative reverse transcriptase polymerase 5.3.1

chain reaction and cytokine testing 

Quantitative reverse transcriptase polymerase chain reaction for IL-16 was 

performed in 18 individuals in total, consisting of 6 EU, 6 SR and 6 CHCV. Due 

to limitations related to cell availability, we were only able to include 4 (2 EU and 

2 SR) of those subjects included in the micro array. The demographics for this 

part of the study are summarised in table 5.1.  

IL-16 concentration was measured in the serum of 26 individuals in total, 

consisting of 10 EU, 10 SR and 6 patients with CHCV of various genotypes. 

The demographics for this part of the study are summarised in table 5.2. 
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Characteristic EU (n=6) SR(n=6) CVCH(n=6) 

Mean age 32.7 40.2 38.0 

Male gender % 83.3 66.7 83.3 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

Mean life time injecting episodes 
(rounded in hundreds) 

4800 4600 2000 

HCV genotype N/A N/A Any 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 50 50 50 

Sharing any drug injection 
equipment (%) 

100 100 100 

Additional co morbidities No No No 

 

Table 5-1 Demographics of subjects included in IL-16 q-PCR study. 

Note: n=number; N/A=non -applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. 
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Characteristic EU(n=10) SR(n=10) CHCV(n=6) 

Mean age 35.6 41.5 39.2 

Male gender % 80.0 60.0 83.3 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

Mean life time injecting episodes 
(rounded in hundreds) 

4900 4800 2900 

HCV genotype N/A N/A Any 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 50 40 50 

Sharing any drug injection 
equipment (%) 

100 100 100 

Additional co morbidities No No No 

 

Table 5-2 Demographics of individuals included in IL-16 ELISA study. 

Note: n=number; N/A=non -applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. 
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  Quantitative reverse transcriptase polymerase chain reaction 5.3.2

results for IL-16 show no difference in gene expression between the 

groups 
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Figure 5-1 IL-16 qPCR in comparison groups. 

Note: y axis expresses absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV. The bars 
represent IL-16 expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT  values within each group was 13.6% for 
EU, 24.2% for SR and 5.1% for CHCV. 
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  IL-16 levels are not different between SR, EU and CHCV 5.3.3

There was no statistically significant difference in the median of IL-16 

concentration (Figure 5.4) between the groups in comparison (Kruskal-Wallis). 
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Figure 5-2 Scatterplot of IL-16 concentration in SR, CHCV and EU. 

Note: horizontal line represents the median concentration of the group. 
EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with chronic 
HCV. 
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5.4  Discussion 

 IL-16 overview  5.4.1

IL-16 is generated in lymphocytes and bronchial cells  as pro-IL-16, which is 

enzymatically cleaved by caspase 3, (which plays an essential role in cell 

apoptosis), at a serine residue (S511) after stimulation with T cell mitogens or IL-

9, respectively, resulting in the secretion of a peptide consisting of the carboxy-

terminal 121 amino acids (Baier et al. 1997; Zhang et al. 1998). Although there 

might be a correlation between cell apoptosis and IL-16 release, the exact 

mechanism has not been elucidated yet (Wu et al. 1999). CD4 serves as a 

signal-transducing receptor for IL-16 and is required for mediating IL-16 

functions (Liu et al. 1999; Nicoll et al. 1999). Sources of IL-16 include epithelial 

cells, mast cells, lymphocytes, macrophages, synovial fibroblasts, and 

eosinophils. IL-16 mRNA is constitutively expressed in both CD4+ and CD8+ 

cells, however, synthesis is induced in T lymphocytes upon exposure to antigen 

or mitogen (Laberge et al. 1995; Kaser et al. 1999; Wu et al. 1999). 

A variety of CD4+ target cells for IL-16 stimulation have been identified. 

Although initially characterized as a chemoattractant specifically for CD4+ T 

cells , it was later determined that IL-16 is also a potent chemoattractant for all 

peripheral immune cells expressing CD4, including CD4+ monocytes , 

eosinophils and dendritic cells (Berman et al. 1985; Cruikshank et al. 1987; 

Rand et al. 1991; Kaser et al. 1999). In addition to cell migration, IL-16 is a 

competent growth factor. Stimulation with IL-16 results in cell cycle progression 

in CD4+ T lymphocytes and in combination with other cytokines it may help to 

influence Th1 cell development (Cruikshank et al. 1987; Parada et al. 1998). 

Although functions for IL-16 have largely been attributable only to the secreted 
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form, the vast majority of detectable IL-16 protein in lymphoid cell lines exists 

intracellurarly, as pro-IL16, but its role has not been fully elucidated yet. 

(Cruikshank et al. 2000).  

 IL-16 in viral infection 5.4.2

One of the most intriguing functions identified for IL-16 is as suppressor of HIV-

1 (Berman et al. 1985; Idziorek et al. 1998). Although both IL-16 and HIV-1 use 

CD4 as a receptor, studies have shown that they do not share a common 

binding site. The mechanism of HIV suppression by IL-16, therefore, does not 

involve steric inhibition of viral binding to CD4 as is the case with several CC 

chemokines (i.e., RANTES, macrophage inflammatory protein (MIP-1a), and 

MIP-1 beta(Liu et al. 1999). The inhibitory effect is direct and a result of the 

suppression of HIV-1 promoter activity (Maciaszek et al. 1997) and viral mRNA 

expression (Zhou et al. 1997). In dendritic cells, IL-16 reportedly not only 

inhibits viral replication, but also prevents viral entry when added to cell cultures 

during the infection period (Truong et al. 1999). Additionally, it has been shown 

that IL-16 can prime CD4+ T cells for IL-2 responsiveness, and therefore may 

be a useful adjunct to IL-2 therapy for therapeutic conditions resulting in CD4+ 

T cell depletion (Parada et al. 1998).Serum IL-16 levels are increased in 

subjects with non-progressive HIV infection compared to patients with AIDS 

(Scala et al. 1997) and rise dramatically in HIV infected individuals after 

treatment (Bisset et al. 1997).  

There’s little association, so far, of IL-16 to HCV infection outcomes but it has 

been suggested that allograft TNFbeta and IL16 polymorphisms influence HCV 

recurrence and severity after liver transplantation (Kimball et al. 2006). 
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 Conclusion 5.4.3

We hypothesized that elevated endogenous levels of IL-16 might contribute to 

spontaneous clearance of HCV. Admittedly, the log fold change in IL-16 gene 

expression between SR vs CHCV and SR vs EU groups, based on the micro 

array results (see 3.3), was of lower amplitude compared to the cytokines and 

chemokines discussed in chapter 4. However, given the biological functions of 

IL-16 outlined earlier, we felt that any change, especially if directed to a 

transcriptional level, might be relevant. 

In the cases we studied, IL-16 levels have not been shown to be different 

between EU, SR and CHCV groups either at the transcriptional or translational 

level. Therefore, this hypothesis based on the microarray findings, whilst 

plausible has not been supported by the confirmatory tests. This could be due 

to the relatively small sample size or because IL-16 is not a major factor 

contributing to spontaneous clearance of HCV infection. 
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6  Chapter 6 The CD28 signalling in T helper cells 

pathway expression in Spontaneous Resolvers 

6.1  Background 

Adaptive immunity and in particular CD4+ T cell activation is essential for 

clearance of HCV as mentioned in paragraph 5.1. 

T cell activation requires two signals: peptide in the context of MHC interacting 

with TCR, and a co-stimulatory signal (Lafferty & Cunningham 1975). 

Engagement of the TCR by peptide loaded MHC in the absence of other signals 

is insufficient to activate the T cell, and may render it unresponsive to further 

antigenic stimulation, a condition termed anergy (Quill & Schwartz 1987; 

Mueller et al. 1989). 

One of the most well studied co-stimulatory molecules expressed by T cells is 

called CD28 (Rudd & Schneider 2003; Miller et al. 2009; Paterson et al. 2009; 

Sharpe 2009). In humans, CD28 is expressed on approximately 80% ofCD4+T 

cells and 50% of CD8+ T cells (Lee et al. 1990) and ligation on the former has 

profound and diverse consequences. CD28 signalling is essential for multiple 

facets of CD4+ T cell activation, including proliferation, survival, glucose 

metabolism and migration (Harding et al. 1992; Boise et al. 1995; Frauwirth et 

al. 2002; Marelli-Berg et al. 2007) .CD28 signalling increases the sensitivity of 

the T cell to antigen receptor engagement and increases the production of IL-2 

by 50-fold (Damle et al. 1988; Lindstein et al. 1989). 

The extracellular domain of CD28 binds to B7 proteins using a MYPPPY motif 

and this interaction initiates the costimulatory signal transduction cascade.CD28 

has a highly conserved, relatively short cytoplasmic tail, consisting of 4 amino 
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acids, that has no intrinsic enzymatic activity. However, several motifs have 

been identified including: four tyrosine residues, four serine and two threonine 

residues, two PxxP motifs, and two lysine residues each of which may be 

important in function (Freeman et al. 1989; Rudd & Schneider 2003; Rudd et al. 

2009). Ligation of CD28 to CD80 or CD86 expressed on APC, initiates signal 

transduction cascades dependent on specific association of proteins with its 

cytoplasmic tail. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

antagonizes this effect, by providing a negative co-stimulatory signal. 

PI3K, one of the enzymes in this pathway that CD28 mainly activates, is 

composed of p85 and p110 subunits. P85 lacks PI3K activity and acts as an 

adapter, coupling p110 to activated protein tyrosine kinase. There are various 

isoforms of p110 with p110δ expression specific to white blood cells. The 

proximal YMNM motif of CD28 binds directly to p85 subunit of phosphatidyl-

inositol 3-kinase (PI3K) (Pagès et al. 1994) and initiates the major PI3K 

dependent signalling pathway, whereas the distal, PYAP motif binds to and 

activates a variety of other proteins, amongst them the lymphocyte-specific 

protein tyrosine kinase (Lck), interleukin-2-inducible T cell kinase (Itk),filamin-A, 

proto-oncogene tyrosine-protein kinase Fyn and growth factor receptor-bound 

protein 2 (Grb2) (August & Dupont 1994; King et al. 1997; Okkenhaug et al. 

2001; Salojin et al. 1999) initiating the adaptive immune response (figure 6-1). 
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Figure 6-1 The content has been removed due to copyright restrictions. 
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 Upon activation, PI3K induces the production of the D3-lipids, 

phosphatidylinositol (3,4)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-

triphosphate (PIP3) where PIP3 is the main TCR/CD28 induced D3-lipid. 

(Sasaki 2000). These D3-lipids recruit pleckstrin homology (PH) domain 

containing proteins including phosphoinositide-dependent kinase 1 (PDK1), 

protein kinase B (PKB)/Akt and possibly guanine-nucleotide exchange factor 

Vav. (Parry et al. 1997; Costello et al. 2002; Harriague & Bismuth 2002).PKD1 

mediated phosphorylation of PKB/Akt at Threonine 308 leads to a regulation of 

downstream targets (figure6-2), that increase the transcriptional regulation of 

the nuclear factor of activated T-cells (NFAT) and activates nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFkB). PKB /Akt is also 

phosphorylated at Ser 473, the regulation of which is not fully understood, but 

may be influenced by auto phosphorylation following Thr308 

phosphorylation.(Vanhaesebroeck & ALessi 2000; Osaki et al. 2004; Hemmings 

& Restuccia 2012). 
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Figure 6-2 The content has been removed due to copyright restrictions. 
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 Grb2 can also bind to the proximal motif may subsequently bind Vav, activation 

of which leads to cytoskeletal re- arrangement and through mitogen-activated 

protein kinases (MAPK) activation, to the induction of formation of the activator 

protein-1 transcription (AP-1) complex (Collins et al. 1997; Su et al. 1994). 

CD28 can also activate ZAP70, that phosphorylates  Vav and can lead to AP-1 

complex formation in a Grb2 independent manner (Salojin et al. 1999). Vav also 

binds to the linker for activation of T cells (LAT) that ultimately leads to 

calcineurin  and  protein kinase C-θ (PCKΘ) activation. Calcineurin activation 

allows the nuclear translocation  of NFAT and PKCθ activation leads to the 

formation of a multi-protein complex that induces NF-κB  transcriptional 

activation (Fraser et al. 1991).  

The IL-2 promoter has binding elements for members of the NFAT, NF-κB, and 

AP-1 (c-fos/c-Jun), therefore CD-28 activation leads to increased gene 

transcription. There is also evidence that it contributes to post-transcriptional 

stabilization of mRNA by inactivating specific AUUA sequences in the 3΄ 

untranslated region that destabilise the message (Lindstein et al. 1989; Granelli-

Piperno & Nolan 1991; Bohjanen et al. 1992; Shapiro et al. 1997). Further to the 

role of CD28 signalling in enhancement of IL-2 production, it enhances T-cell 

survival (Boise et al. 1995; Noel et al. 1996; Radvanyi et al. 1996) and regulates 

T-cell subtype development and differentiation (mainly Th2) (King et al. 1995; 

Rulifson et al. 1997). 

We hypothesized that the CD28 signalling pathway in T lymphocytes is 

overexpressed in individuals who spontaneously cleared HCV infection (SR), 

compared to patients with chronic hepatitis C infection (CHCV) and individuals 

with natural resistance to HCV (EU). 
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6.2 Methods 

PI3K, Akt1, and ZAP70 relative expression were measured by quantitative 

reverse transcriptase–polymerase chain reaction (RT-PCR) in (1) patients who 

spontaneously resolved HCV infection (HCV Ab positive and HCV RNA 

negative); (2) treatment-naïve chronic HCV patients (HCV Ab positive and HCV 

RNA positive); and (3) individuals with apparent resistance to HCV (HCV ab 

and HCV RNA negative). Comparative basic relative quantification was 

performed in each group and the differential gene expression between 2 groups 

was calculated using the 2-ΔΔCT method by the mean 2-ΔCT of each group. 

Coefficient variation of the 2-ΔCT values within a group was calculated as an 

indicator of intra sample variability. Details on the recruitment of the 3 groups, 

laboratory technique and the analysis methods are described in detail in 2.6.2. 

PI3K p110δ, Pan Akt and Phospho-Akt (pSer473 &pThr308) protein levels were 

compared between individuals in each of the above groups using Western blot 

and semi quantification analysis using “ImageJ” software. The results are 

expressed as the mean of the adjusted relative density of each group. The 

methods are described in detail in chapter 2.  
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6.3 Results 

 Study subjects for quantitative reverse transcriptase polymerase 6.3.1

chain reaction and Western Blot analysis 

Quantitative reverse transcriptase polymerase chain reaction for PI3K, Akt1 and 

ZAP70 was performed in a total number of 18 individuals, including 6 EU, 6SR 

and 6 CHCV-genotype 3, none of whom were included in the micro array. The 

demographics of the individuals included in the Akt1, PI3K and ZAP70 studies 

are summarised in table 6.1.  

Western blot analysis and protein quantification for PI3K p110δ, Pan Akt and 

Phospho-Akt (pThr308) was performed in the same individuals listed above. 

Due to limitations in cell availability, Phospho-Akt (pSer473) Western Blot 

analysis and protein quantification studies were performed in similar groups, but 

some of the individuals included were different to the ones described in table 

6.1, so their demographics are summarised in table 6.2. 
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Characteristic EU(n=6) SR(n=6) CHCV(n=6) 

Mean age 30.8 41.3 37.4 

Male gender (%) 83.3 50 66.7 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

Mean life time injecting 
episodes (rounded in hundreds) 

4900 4700 3900 

HCV Genotype N/A N/A 3 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 83 50 67 

Sharing any drug injection 
equipment (%) 

100 100 100 

Additional co morbidities No No No 

 

Table 6-1 Demographics of individuals included in Akt1, PI3K and ZAP70 
q-PCR and phospho-Akt (pThr308) and PI3K p110δ, Pan Akt Western 
Blots. 

Note: n=number; N/A; non-applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. 
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Characteristic EU(n=6) SR(n=6) CHCV(n=6) 

Mean age 34.1 45.2 36.5 

Male gender (%) 83.3 50 66.7 

Serology (HCV Ab/HCV RNA) -/- +/- +/+ 

Mean life time injecting 
episodes (rounded in 
hundreds) 

5100 4200 3900 

HCV Genotype N/A N/A 3 

IDU at time of recruitment Yes Yes Yes 

Sharing needles (%) 66 50 66 

Sharing any drug injection 
equipment (%) 

100 100 100 

Additional co comorbidities No No No 

 

Table 6-2 Demographics of individuals included in phospho-Akt (pSer473) 
Western Blot. 

Note: Note: n=number; N/A; non-applicable; EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. 
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 Quantitative reverse transcriptase polymerase chain reaction 6.3.2

results for PI3K, Akt1 and ZAP70 show no significant difference 

between the groups 

Relative PI3K, Akt1 (Akt serine/threonine kinase 1) & ZAP70 gene expression 

was not elevated in individuals who spontaneously cleared HCV (SR) compared 

to treatment naïve patients with CHCV –genotype 3 (CHCV) and individuals 

with natural resistance to HCV (EU). Further supported by the Western blot 

study results discussed in 6.3.3., it was felt that CD86, CD80 and CD28 q-PCR 

were not required for completion of this part of the study.  
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Figure 6-3 PI3K qPCR in comparison groups. 

Note: y axis represents absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. The bars 
represent PI3K expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT values within each group was 9.1% for 
EU, 6.2% for SR and 9.3% for CHCV. 
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Figure 6-4 Akt1 qPCR in comparison groups.  

Note: y axis represents absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. The bars 
represent Akt1 expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT values within each group was 16.8% for 
EU, 9.2% for SR and 6.3% for CHCV. 
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Figure 6-5 ZAP70 qPCR in comparison groups. 

Note: y axis represents absolute fold change. EU=exposed uninfected; 
SR=spontaneous resolver; CHCV=patient with chronic HCV infection. The bars 
represent ZAP70 expression fold change between the mean of 2 groups. 
Coefficient variation (CV) of the 2-ΔCT values within each group was 4.8% for 
EU, 5.6% for SR and 11.8% for CHCV. 
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 Protein semi-quantification shows that PI3K p110δ, Pan Akt, 6.3.3

Phospho-Akt (pSer473 &pThr308) levels are not elevated in SR 

compared to both EU and CHCV     

PI3K p110δ, Pan Akt, Phospho-Akt (pSer&pThr308) levels are not elevated in 

individuals who spontaneously cleared HCV (SR) compared to treatment naïve 

patients with chronic hepatitis C (CHCV) –genotype 3 (CHCV) and individuals 

with natural resistance to HCV (EU). Due to findings that do not confirm our 

initial hypothesis, ZAP70 Western blot was not performed. The mean level of 

proteins studied seemed to be higher in the CHCV group compared to the 

others, but not all group comparisons reached statistical significance. 
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  EU1   EU2    EU3  EU4 EU5  EU6 CHCV1 CHCV2 CHCV3      

         

 

 CHCV4  CHC5     CHCV6  SR1  SR2   SR3  SR4  SR5  SR6 

 

Figure 6-6 Loading control for PI3K p110δ, Pan Akt and Phospho-Akt 
(pThr308) Western blots. 

Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 

        

 

 

 

   EU1     EU2    EU3    EU4    EU5   EU6  CHCV1 CHCV2 CHCV3 

 

CHCV4 CHCV5      CHCV6    SR1     SR2     SR3   SR4  SR5   SR6 

Figure 6-7 Pan-Akt Western blot.  

Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 
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Figure 6-8 Pan-Akt adjusted mean relative density between EU, CHCV and 
SR. 

The mean adjusted relative density for Pan-Akt, corresponding to the mean 
amount of Pan-Akt in each group, was higher in in patients with CHCV infection 
(CHCV), compared to individuals who are exposed to HCV but remain 
uninfected ( EU) or have spontaneously cleared HCV (SR); Kruskal-Wallis, 
p=0.03.The EU group has the lowest levels of Pan-Akt. The bars represent 
standard error of the mean. 

 

   EU1    EU2     EU43 EU4   EU5  EU6 CHCV1 CHCV2 CHCV3 

 

 CHCV4 CHCV5      CHCV6 SR1 SR2 SR3 SR4  SR5    SR6 

 

Figure 6-9 PI3K-p110δ Western blot. 

 Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 
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Figure 6-10 PI3K-p110δ mean adjusted relative density between EU, CHCV 
and SR. 

The mean adjusted relative density, corresponding to the mean amount of PI3K 
in each group is not elevated in individuals who are exposed to HCV but remain 
uninfected (EU), compared to patients with CHCV infection or individuals who 
are exposed to HCV but remain uninfected ( EU); Compared pairwise, CHCV 
have statistically significant higher median PI3K levels compared to EU only 
;Mann-Whitney, p=0.02 The EU group has the lowest levels of PI3K-p110δ. The 
bars represent standard error of the mean. 

 

 

EU1   EU2   EU3  EU4  EU5  EU6   CHCV1 CHCV2 CHCV3 

 

 

CHCV4 CHCV5   CHCV6 SR1 SR2 SR3 SR4 SR5 SR6 

 

Figure 6-11 Phospho-Akt (pThr308) Western blot. 

Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 
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Figure 6-12 Phospho-Akt (pThr308) mean adjusted relative density 
between EU, CHCV and SR. 

The mean adjusted relative density of phospho -Akt (pThr308), corresponding 
to the mean amount of phosphor-Akt (pThr308) in each group, is not higher in 
individuals who spontaneously cleared HCV infection (SR), compared to 
individuals who are exposed to HCV but remain uninfected (EU) or patients with 
chronic hepatitis C infection (CHCV). The median level of phospho -Akt 
(pThr308) is higher in the CHCV group compared to EU and SR but this 
difference did not reach statistical significance (Mann-Whitney; p=0.23 and 
p=0.31 respectively). The bars represent standard error of the mean. 

 

 

CHCV4  CHCV5          CHCV6  SR7   SR8   SR3    SR4     SR5   SR6 

 

 

EU6            EU7       EU8          EU1      EU2     EU3      CHCV1  CHCH2 CHCV7 

Figure 6-13 Loading control for Phospho-Akt (pSer473). 

Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 
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CHCV4  CHCV5       CHCV6  SR7   SR8  SR3  SR4 SR5  SR6 

 

EU6      EU7    EU8    EU1   EU2   EU3 CHCV1  CHCH2 CHCV7 

 

Figure 6-14 Phospho-Akt (pSer473) Western blot. 

Note: EU=exposed uninfected; SR=spontaneous resolver; CHCV=patient with 
chronic HCV infection. 
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Figure 6-15 Phospho-Akt (pSer 473) mean adjusted relative density 
between EU, CHCV and SR. 

The mean adjusted relative density of phospho-Akt (pSer473), corresponding to 
the mean amount of phosphor-Akt (pSer-473) in each group, is not higher 
higher in individuals who have spontaneously cleared HCV (SR), compared to 
individuals who are exposed to HCV but remain uninfected ( EU) or patients 
with chronic HCV infection. The EU group has the lowest levels of Phospho-Akt 
(p Ser473). The CHCV group has higher median levels of phospho-Akt 
(pSer473) compared to the 2 other groups, but this observation was statistically 
significant only between the EU and HCV group; Mann-Whitney, p=0.02). The 
bars represent standard error of the mean. 
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6.4 Discussion 

As mentioned in 6.1, the CD 28 signalling system in T helper lymphocytes is 

one of the most important and well studied T-cell stimulatory pathways, 

activation of which leads to enhanced production of IL-2 and T-cell survival. 

CTLA-4 antagonizes this effect and down regulates T-cell function by providing 

a negative co- stimulatory effect. Certain CTLA-4 SNPs have been associated 

with persistent HCV viraemia (Danilovic et al. 2012) and response to treatment 

with ribavirin and interferon (Yee et al. 2003). Gender-dependent association of 

CTLA-4 SNPs are, also, associated with spontaneous resolution of HCV 

infection (Schott et al. 2007). As a result, and based on the micro array findings, 

we hypothesized that  CD28 signalling system in T helper lymphocytes is up 

regulated in individuals who spontaneously cleared HCV compared to patients 

with chronic HCV infection and individuals with apparent resistance to HCV. 

The q-PCR and western blot results are not supportive of this hypothesis and 

that could be explained due to a variety of factors, mainly related to host 

variability. However, the gene and protein expression of the studied molecules 

is, by and large, lower in EU cohort compared to the others, suggesting that 

activation of the adaptive immune system is unlikely to be the only mechanism 

of natural protection from HCV and distinguishes them further from SR. 

Due to constraints related to cell availability, none of the individuals included in 

the micro array took part in these studies. There is significant  inter individual 

CD4+ cell variability in the healthy general population, most marked for cytokine 

transcripts, that follows patterns more complex than Th cell partition and 

includes 39 genetic loci(Ye et al. 2014).Studies of the immune system in 

monozygotic twins, have shown that homeostatic cytokine responses are 

largely heritable, whereas most other immune cell responses are highly non-
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heritable (Brodin et al. 2015) .A single non inheritable factor can affect more 

than 50% of all immune cell subsets and serum proteins with Cytomegalovirus 

(CMV) infection having the broadest influence and affecting more than 10% of T 

cells (Sylwester 2005).Additionally, highly variable factors in an individual, such 

as stress, are negatively related to the number of T helper cells at a given time 

(Herbert & Cohen 1993). It is, therefore, possible, that the suggested hypothesis 

in this chapter is only true for the individuals that were included in the micro 

array. 

The major limitation in this study, related to the available cells of the individuals 

included, is that it did not allow separation of T cell subsets from PBMCs, so we 

have, essentially,  measured the total (B and T lymphocyte) Akt, Phospho-Akt 

(pThr308 &pSer473) and PI3K that can lead to an erroneous result. The nature 

of the cohorts recruited, described in detail in 2.1, is such that obtaining large 

number of cells from each individual is difficult so that further detailed study will 

always be very challenging. As a result we felt that the experimental conditions 

could not be, realistically, further optimized and refined within the time available 

for this thesis.  
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7 Chapter 7 Discussion 

7.1 Summary  

The studies of this thesis were aimed to further elucidate the immune 

mechanisms of natural protection from HCV infection. The work in this thesis 

focused on studying the transcriptional gene profile of a well characterised 

cohort of IDU with apparent resistance to HCV infection (EU), whose immune 

mechanisms of HCV protection remain, to date, unclear. This aim 

notwithstanding, we also attempted to validate findings in a comparison group, 

individuals who spontaneously cleared HCV infection (SR), whose mechanisms 

of viral clearance have been better characterised. This attempt would not only 

provide new insight into the mechanisms of spontaneous clearance of HCV 

infection, but also highlight similarities or differences between EU and SR. The 

latter is important to further differentiate the EU from the SR group in addition to 

what has been previously described. 

The EU have, so far, demonstrated immune characteristics involving the 

activation of both the innate and the adaptive arms of the immune system that 

can contribute to protection from HCV infection. We, therefore, performed a 

microarray analysis on RNA extracted from PBMC of EU, SR and patients with 

chronic HCV infection of the same genotype, all of whom were active IDU at the 

time of recruitment. The changes in differential gene expression were less 

prominent in EU compared to SR and CHCV, which is expected given the fact 

that EU are healthy individuals with no evidence of previous or established HCV 

infection. Since the RNA was extracted from PBMC as opposed to hepatocytes, 

we appreciated changes of any magnitude, if of relevance to the aims of the 

study. 
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We found that IL-27 is overexpressed in EU, compared to SR, CHCV and 

normal controls. This pleiotropic cytokine has a wide range of actions in both 

the innate and the adaptive immune system and could serve as a link between 

the two. However, its role in natural protection from HCV infection is yet to be 

elucidated. 

The gene with the highest fold change between the EU and the other groups 

was CXCL7 that could contribute, amongst other things, to the prevention of 

viral entry prevention. Albeit the levels of CXCL7 were elevated in EU compared 

to SR and CHCV, the result reached statistical significance only between the 

EU and CHCV groups. Limitations in resources and technical challenges in the 

assays used, allowed testing of a limited number of subjects which might have 

affected the outcome. 

The change in the differential expression in the genes tested in SR, were of 

lower magnitude but could be closely linked to HCV clearance. IL-16, a cytokine 

with proven direct antiviral properties, and the CD28 T cell co stimulatory 

signalling system did not seem to be overexpressed in SR compared to EU and 

HCV. Study design and resource availability could, again, have affected the 

outcome and these hypotheses cannot be safely rejected. 

This is the first study that has examined the transcriptional profile of individuals 

with apparent resistance to HCV infection and has yielded interesting findings 

that can trigger further studies in immune factors related to protection from HCV 

infection. Interestingly, it has failed to demonstrate differential expression in 

genes related to previous findings regarding the immune characteristics of EU, 

which, again, highlights limitations in the sensitivity of an assay performed on 

PBMC, as opposed to hepatocyte, RNA.  
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As the studies in this thesis, as well as previous studies on the EU cohort, were 

performed in a cross sectional design, it is difficult to ascertain whether any 

changes are activated in a transient or temporary manner. Taking into account 

the difficulties in obtaining longitudinal samples from a large number of the 

same EU individuals, this question will probably remain unanswered.  

Given the fact that HCV has the ability to evade immune response in a variety 

of ways, it is highly unlikely that a single protective strategy is responsible for 

conferring resistance and future work should focus on how genetic, innate and 

adaptive immune factors combine to provide a protective phenotype. 

7.2 Areas of future work in immune mechanisms of HCV protection 

The work of this thesis has focused primarily on a cohort, characterised since 

2005, of IDU whose susceptibility to HCV infection is low. It was initially shown, 

that this cohort had an immunological footprint of exposure to HCV infection but 

no evidence of established HCV infection as evidenced by the presence of 

weak, HCV specific, T cell responses, but the absence of HCV RNA and ab 

positivity. On- going recruitment of EU individuals was based on identification of 

demographic factors, comparable to the ones so far described, that pose an 

IDU at high risk of HCV exposure. These factors are, however, self- reported 

and the need for further characterisation of this cohort, based on unique genetic 

and functional attributes, is of paramount importance and has, also, been 

previously suggested. The main issue arising from the current risk stratification 

is mislabelling an SR, with loss of HCV ab reactivity over time, as an EU. It is 

well established, and also suggested in the studies of this thesis, that the 

mechanisms of spontaneous resolution of HCV infection in SR are related to the 

activation of the adaptive immune system, so the presence of low level HCV 
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specific T cell reactivity, lack of HCV ab reactivity and favourable IL-28B related 

polymorphisms in EU could distinguish them from this group. 

Resistance in this cohort is not absolute and can be overcome by the inoculum 

size. Therefore obtaining blood samples from individuals before and after they 

become infected would provide a valuable control group. As previously 

mentioned in this thesis, recruitment of these individuals and follow up is an 

extremely challenging process and in order to achieve longitudinal follow up 

recruitment has to be uninterrupted and in close liaison with the services that 

these individuals access at needle exchanges, drug rehabilitation centres and 

drop in centres. 

IL-27 has been shown to be overexpressed in the EU cohort, a finding validated 

both at transcriptional and translational level. As previously discussed, IL-27 

can act as a type I IFN in the context of viral infection which would be a 

plausible mechanism of action in the EU group. IFN-a inducible genes were not 

upregulated in EU compared to other groups based on the microarray analysis 

but this is an area that requires further study. Enhancement of NK cell 

cytotoxicity, that has previously been shown to contribute to the cohort’s viral 

resistance, is another possible role of IL-27 in immune protection from HCV. 

Elevated levels of Treg cells, which IL-27 suppresses, are associated with HCV 

viral persistence and antibody depletion of these cells are associated with an in 

vitro enhancement of functional HCV-specific CD8+ T cell responses, so 

comparison of Treg levels in EU vs CHCV vs SR would be beneficial. As IL-27 

primarily enhances Th1 development and function, measurement of HCV 

specific T cell responses in all the EU individuals would further elucidate the 

role of adaptive immunity in protection from HCV infection. Studying the 
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absence of the SNP c.-964A>G (rs153109) of the IL-27p28 gene in EU, which 

is associated with treatment relapse or non -response, would also be 

informative. 

CXCL7 levels need to be measured in larger numbers of EU, CHCV and SR in 

order to reach a conclusion about its role, if any, in HCV protective immunity. 

This study aimed to determine the correlation of genetic and functional factors 

in protection from HCV and this work should be ongoing. New developments, 

such as RNA-Seq technology that is more sensitive to microarray and provides 

information regarding the transcriptome in a non hypothesis driven manner may 

be informative in the EU cohort. The effect of environmental factors in functional 

correlates should also be taken into consideration and continued testing over 

time might provide the answer to this question. 

Hepatitis C virus is a global health burden and continued study of the EU cohort 

will possibly provide valuable insight in protective mechanisms that will aid the 

development of a preventative vaccine as well as the identification of new 

therapeutic targets in the future.  
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8 Appendices 

8.1 IPA factsheet 

 

IPA – Ingenuity Pathway Analysis from QIAGEN (USA)  

Date: last updated August 2016  

For the interpretation of ´Omics (Proteomics & Genomics) data.  

(IPA is updated on a weekly basis and has four releases per year.).  

The “IPA-Core Analysis” quickly explores (in circa 7 minutes) relationships, 
mechanism, functions, and pathways which are relevant for a dataset. The 
regulator analysis surfaces molecules as Bio-Profilers identify molecules which 
are causally necessary to a disease or phenotype. Observations of upstream- 
and downstream effects of biological processes in IPA, support to create new 
scientific analyses of genes.  

Special graphical features and evaluated literature:  

- The Ingenuity Knowledge Base database contains around 5.5 million findings.  

(context-based results, spring 2016) e.g. for specifies, diseases, mutation types 
and relationships.  

-Findings from 3600 journals (abstracts) had been reviewed and included; more 
than 300 known full text journals were curated manually, including tables and 
figures. Publications were included from 1954 till today.  

- “Core Analysis”: In a first step Identifiers (like genes, proteins and RNA 
sequences) are generated as genes. Furthermore each gene is supplemented 
with a description, location, family and related drugs.  

- In a second step IPA determines the p-value(s), (means probability-value) of 
the most known canonical pathways, up- and downstream regulators (down= 
arrow in red, up= arrow in green) and diseases/biological functions.  

- Graphic representation:  

Features & tools of the pathways visualize direct (designed as line) or indirect 
(designed as broken line) interactions or the increase or decrease of biological 
functions with different colors and create an interactive gene view.  

Species-specific identifiers for:  

- Mammalia: Human, Mouse and Rat.  

- New: Dog, Zebrafish, Arabidopsis, Nematode, Fruitfly.  

 

Choice of reference sets of the “IPA-Core Analysis”:  
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- Ingenuity Knowledge Base (Endogenous Chemicals only).  

- Ingenuity Knowledge Base (Genes only).  

- (User Dataset).  

- Affymetrix.  

- Agilent.  

- Code Link.  

- Illumina.  

- Life Technologies (Applied Biosystems).  

Other Analysis options to Core Analysis:  

- Tox Analysis.  

- Metabolomics Analysis.  

- Biomarker Filter.  

- Filter Dataset.  

- microRNA Target Filter.  

- IsoProfiler Beta.  

 

Formats for data-analysis:  

- A dataset can be quickly uploaded as excel-file or text-file.  

- Data can be explored tab delimited as text-format or as excel-file.  

- A summary sheet of the analysis can be explored as pdf.  

- The generated images can be produced in jpg-format which is available for 
print in 300/600 dpi as for publications or for presentations in 96 dpi; in case of 
publication please cite IPA!.  

 

General upload raw dataset:  

- Only one column may be designated as the ID column. A gene/protein ID is a 
unique public or vendor identifier that represents a gene or protein. IPA takes 
items found in the Gene/Protein ID column and attempts to map them to genes 
that exist in the Ingenuity Pathways Knowledge Base.  

- Observation 1 to (…) is matched to the one and same ID; so that each 
observation must have the same number, type and order of expression value 
columns.  

- A maximum of 20 observations in a single file may be uploaded into IPA.  
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- Only one header raw is allowed (except for metadata rows).  

- “Networks” can only be composed in case of scores.  

 

Markup languages for uploading the Users imported pathway workflows:  

- SBML (all versions and levels).  

- BioPax (all versions and levels).  

- SIF.  

- XGMML.  

- PSI-M.  

The IPA-user can import his own created pathways. Furthermore the user can 
also modify his pathways by adding molecules or generating new pathways’ 
interactions. The graphic representation tool allows it to visualize these 
connections.  

With the “compare”-Function the user can compare results of different analysis 
and visualize as list intersections. 

E. Schlagberger – Scientific Information Services f. t. Biomedical-Section of the 
Max-Planck Society, April 2016.  
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8.2 EU consent form 

 

 

Why are some people susceptible to hepatitis C and not 
others? A study of innate and immunological mechanisms 
of protection. 

 
 
 

The participant should complete the whole of this sheet 
himself/herself. 

 
1. Have you read the participant information sheet? 

(please take a copy home with you to keep) YES/NO 
 

2. Have you had an opportunity to discuss this study and ask 
any questions? YES/NO 

 
3. Have you had satisfactory answers to all of your questions?  

YES/NO 
 

4. Have you received enough information about the study?
YES/NO 

 
5. Who has given you an explanation of the study? 

……………………………………………………………………………….
.... 

 
6. Do you understand that you are free to withdraw from the study: 

 At any time? 

 Without having to give a reason? 

 Without affecting your future medical care or drug treatment 
program?
YES/NO 

 
7. Do you agree to your GP being informed?

YES/NO 
 

8. Have you had sufficient time to come to your decision?
YES/NO 

 
9. Do you agree to having some of your blood taken and 

kept so we can study factors affecting susceptibility to 
infection 

with hepatitis C virus? YES/NO 
 

10. Do you agree to take part in this study?
YES/NO 
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Surname ………………………………………………………………………………  

First Name …………………………………………………………………………….  

Address ………………………………………………………………………………..  

…………………………………………………………………………………………..  

D.o.B. …………………………………. Hospital Number …………………………… 

 

Participant  

Signature ………………………………………………………………………………  

Name (CAPITAL LETTERS) ………………………………………………………..  

Date …………………………………………………………………………………… 

 

 

 

I have explained the study to the above participant and he/she has indicated 
his/her willingness to take part.  

Investigator  

Signature ………………………………………………………………………………  

Name (CAPITAL LETTERS) ………………………………………………………..  

Date …………………………………………………………………………………… 
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8.3 The EU questionnaire 

Questionnaire Version 4. February 2015.           

                                                                           

  

 

Why are some people susceptible to hepatitis C and not others? 

A study of innate and immunological mechanisms of protection. 

 

Questionnaire 

 

Date:    Trial No: 

 

Initials:   Date of Birth:   Age: 

 

1. How old were you when you first used drugs IV?  ……………………….. 

 

2. Did anyone else teach/ help you with your first injection? YES/NO 

 

3. Roughly how old was the person who injected for you?.......................... 

 

4. How long were you being injected before you could to do it yourself? 

………………………………………………………………………………..... 

 

5. How many years have you been/were you injecting drugs? ……………. 

 

6. At the most, how often were you injecting during that time? 

Less than once a month  □  About once a month  □ 

2 – 3 times a month   □  About once a week   □ 

2 – 3 times a week   □  Most days    □ 
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1 – 3 times a day   □  4 – 6 times a day   □ 

More than 6 times a day  □ 

 

7. Which drug(s) did you mainly inject? 

Heroin    □ 

Crack    □  

Cocaine   □ 

Amphetamines (speed) □ 

Other…………………………………………………………………………… 

 

8. Do you still use drugs IV?      YES/NO 

 

If not, when did you stop?  ………………………………………………….. 

 

If yes, how often do you inject at the moment? 

Less than once a month □  About once a month  □ 

2 – 3 times a month  □  About once a week  □ 

2 – 3 times a week  □  Most days   □ 

1 – 3 times a day  □  4 – 6 times a day  □ 

More than 6 times a day □ 

 

9. Are you on a maintenance script?  (methadone)   
 YES/NO    

10. Which drugs have you injected in the last 3 months? 

Heroin    □ 

Crack    □ 

Cocaine   □ 

Amphetamines (speed) □ 

Other…………………………………………………………………………… 

 

11. Do/have you ever injected with others around?   YES/NO 
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If yes, roughly how often do you inject around others? 

Every time  □  

About half the time □ 

Most times  □ 

Rarely   □ 

 

12. Where is the most common place you inject with others? 

Home     □ 

Friend’s house   □ 

Shooting gallery/ Sorter house □ 

Outside/ Public areas  □ 

Other place    □ 

Please specify…………………………………………………. 

 

13. Have you ever shared a needle (pin) with anyone else (using  

it either before OR after them)?     YES/NO 

 

If yes, roughly how many times?  

Once   □   Rarely  □ 

About half the time □   Most times □ 

Every time  □ 

 

If yes, when was the last time? …………………………………………….. 

 

14. Have you ever shared a syringe (barrel) with anyone else  

(using it either before OR after them)?    YES/NO 

 

If yes, roughly how many times?  

Once   □   Rarely   □ 
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About half the time □   Most times □ 

Every time  □ 

 

If yes, when was the last time? …………………………………………….. 

 

15. Have you ever shared a spoon/ water container/ filter with  

anyone else (using it either before OR after them)?   YES/NO 

 

If yes, roughly how many times?  

Once   □   Rarely   □ 

About half the time □   Most times □ 

Every time  □ 

If yes, when was the last time? …………………………………………… 

 

16. Have you ever shared ANY injecting items with someone you  

KNOW has hepatitis C (using it before OR after them)? YES/NO 

 

If yes, what did you share? …………………………………………………. 

 

If yes, roughly how many times have you shared with someone you know has 
hepatitis C?  

Once   □   2 – 10 times  □ 

More than 10 times □   Every time □ 

 

When was the last time?........................................................................ 

 

17. Have you ever snorted drugs?     YES/NO 

 

If yes, did you share the straw/banknote etc with anyone else  

(using it either before OR after them)?    YES/NO 
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18. Have you ever shared a crack pipe with anyone else 

(using it before OR after them)?     YES/NO 

 

19. Have you ever received a blood transfusion or blood products? 
       YES/NO/DON’T KNOW 

 

If yes, in which year/years? ………………………………………………… 

 

20. Do you have tattoos?      YES/NO 

 

If yes, how many? …………………………………………………………… 

 

If yes, where did you get these done? 

Professional parlour  □  Friend did it  □  

Did it yourself  □  In Prison  □  

Other (please state) …............................................................................. 

 

21. Have you ever had any part of your body pierced?  YES/NO 

 

If yes, how many? …………………………………………………………… 

 

If yes, where did you get this done? 

Professional parlour  □  Friend did it  □  

Did it yourself  □  In Prison  □  

Other (please state) …............................................................................. 

 

22. Have you ever had acupuncture?     YES/NO 

 

If yes, where? ………………………………………………………………… 

 

23. Do you know if anyone you’ve ever had sex with has/had  
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hepatitis C?      YES/NO/DON’T KNOW 

 

If yes, did you use a condom?      YES/NO 

 

24. Does anyone else that you live with inject drugs?  YES/NO 

 

25. Have you ever been in Prison?     YES/NO 

 

 

 

Thank you. 
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8.4 Appendix 4 Study information sheet 

 

 

Study Title 

 

Why are some people susceptible to 
hepatitis C and not others. 

 

 
What is the purpose of the study? 
Hepatitis C virus (HCV) currently infects 200,00 to 400,000 people in the United 

Kingdom. Many people have become infected through injection drug use and up to 75% 

of people who have injected drugs for 6 months or more will have hepatitis C virus 

infection. However, some people who have injected drugs for years or shared injecting 

equipment with people known to have hepatitis C do not become infected and test 

negative for both antibody and virus. It is these people we are interested in for this 

study. We wish to understand what can make some people resistant to infection with 

hepatitis C virus.  

The aim of this project is to identify immunological and / or inherited factors 

responsible for protection from HCV infection. There is still a large gap in our 

understanding of how this may happen, but information gained from this study has the 

potential to be of great importance in the development of new treatments and possibly 

design of a vaccine.  

 

Why have I been chosen? 
You have been potentially exposed to hepatitis C through injection drug use, however 

your results show no sign of hepatitis C virus infection. It may be that your immune 

system has protected you against hepatitis C virus, or it may be that you have inherited 

some factor that makes you resistant to this infection.  

We wish to study your blood for immune responses and genetic factors that may have 

protected you. We are hoping to study about 50 patients in a similar situation. 

 

 

 

Who is organising the study? 
Dr Matthew Cramp, Consultant Hepatologist and Honorary Senior Lecturer in Medicine 

is running this research project with the help of NHS Research and Development money 

at Derriford Hospital, Plymouth. The research will take place at Derriford Hospital, 

Plymouth and at Plymouth Postgraduate Medical School.  
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What will happen to me if I take part? 
If you agree to take part in our study  

 We will ask you to fill in a questionnaire detailing your injection drug usage to 

assess the duration and degree of your exposure to hepatitis C virus infection.   

 We will ask your permission to take about 40 mls of your blood (two 

tablespoonfulls). Your blood will be tested for hepatitis C once again and will be 

used to study immune responses and genetic factors that may have protected you 

from infection. 

 With your permission, we will store some of your blood for testing in the future 

when additional genetic factors likely to influence susceptibility to hepatitis C have 

been identified.  

 We may ask you to return at specific time intervals in the future for further 

blood tests.  

 

 

Are there any disadvantages in taking part in this study? 

There may be some soreness and bruising after having the blood sample taken. 

We will be testing you on several occasions for any evidence of hepatitis C virus 

infection and it is possible that you will be found to have hepatitis C virus infection by 

highly sensitive modern tests. If this is the case then you will be informed of the result 

and you will be referred to our hepatitis clinic for further information and assessment.   

 

What are the possible benefits of taking part? 

There are no direct benefits to you from participating in this study. However, 

information learnt from you may help towards our understanding of this disease and 

will be a step closer towards developing a vaccine for hepatitis C.   

 

Is my doctor being paid for including me in the study? 

No.         

 

Are there any restrictions on what I might eat or do? 
No.  

 

What if something goes wrong? 
If taking part in this study harms you, there are no special compensation arrangements. 

If you are harmed due to someone's negligence, then you may have grounds for legal 

action. Regardless of this, if you have any cause to complain about any aspect of the 

way you have been approached or treated during the course of this study, the normal 

National Health Service complaints mechanisms are available to you. 

 

Confidentiality – who will know I am taking part in the study? 
The information will be shared with doctors and nurses involved in the study only. The 

questionnaire you fill in will be identified by a number only and will be kept securely. 
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GP Notification 
With your permission your GP will be informed that you are taking part in this study.  

 

What will happen to the results of the study? 
The results of this study will be presented during national and international specialist 

meetings. Results will be published in national and international peer review journals. 

No information identifying you as an individual will be published or presented.  

 

Contact for further information 
If you have any problems, concerns, complaints or other questions about this study you 

should Dr. Matthew Cramp on 01752 792725.  Alternatively, you may contact the 

Consumer Affairs Department, Derriford Hospital on 01752 792648.  

 

Thank you for taking time to consider entering this study. 
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