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Model Fit Diagnostics for Hidden Markov Models

Safaa K. Kadhem

Abstract

Hidden Markov models (HMMs) are an efficient tool to describe and model the underlying

behaviour of many phenomena. HMMs assume that the observed data are generated

independently from a parametric distribution, conditional on an unobserved process that

satisfies the Markov property. The model selection or determining the number of hidden states

for these models is an important issue which represents the main interest of this thesis.

Applying likelihood-based criteria for HMMs is a challenging task as the likelihood function

of these models is not available in a closed form. Using the data augmentation approach, we

derive two forms of the likelihood function of a HMM in closed form, namely the observed

and the conditional likelihoods. Subsequently, we develop several modified versions of the

Akaike information criterion (AIC) and Bayesian information criterion (BIC) approximated

under the Bayesian principle. We also develop several versions for the deviance information

criterion (DIC). These proposed versions are based on the type of likelihood, i.e. conditional

or observed likelihood, and also on whether the hidden states are dealt with as missing data or

additional parameters in the model. This latter point is referred to as the concept of focus.

Finally, we consider model selection from a predictive viewpoint. To this end, we develop the

so-called widely applicable information criterion (WAIC). We assess the performance of these

various proposed criteria via simulation studies and real-data applications.

In this thesis, we apply Poisson HMMs to model the spatial dependence analysis in count data

via an application to traffic safety crashes for three highways in the UK. The ultimate interest

is in identifying highway segments which have distinctly higher crash rates. Selecting an

optimal number of states is an important part of the interpretation. For this purpose, we

employ model selection criteria to determine the optimal number of states. We also use several

goodness-of-fit checks to assess the model fitted to the data. We implement an MCMC

algorithm and check its convergence. We examine the sensitivity of the results to the prior

specification, a potential problem given small sample sizes. The Poisson HMMs adopted can

provide a different model for analysing spatial dependence on networks. It is possible to

identify segments with a higher posterior probability of classification in a high risk state, a task

that could prioritise management action.
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Chapter 1

Introduction

This chapter includes a brief overview of relevant Bayesian theory and the aims and structure

of the thesis. In Section 1.1, we present the general concepts of Bayesian inference and some

related topics such as the prior and posterior specification as well as the use of the sampling

MCMC algorithms for simulation based inference. In Section 1.2 we summarize the aims and

the outline of this thesis.

1.1 Bayesian inference

This section reviews the basic principle of the Bayesian approach and also Bayes law. It also

considers computational methods which make a Bayesian approach possible. We consider the

Markov Chain Monte Carlo (MCMC) approach, the most widely used procedure in Bayesian

sampling. In addition, the section considers how to diagnose convergence of an MCMC

sampler.

1.1.1 Basics of Bayesian analysis

In general, statistical inference is the process of drawing conclusions about populations or

scientific truths from data, y. To conduct statistical inference, we specify a statistical model,

characterized by model parameter(s), θ , that explains the data according to a probability

distribution. For example, for a single data point, yt , we may assume

yt ∼ Pr(yt |θ), (1.1)

where Pr(yt |θ) = L(θ ;yt) is a function of an unknown parameter(s) θ , which is also called the

“likelihood” function. Given a sequence of observations, denoted by the vector

y = (y1,y2, ...,yT ), the likelihood function of the entire sequence of observations can be

defined as:

L(θ ;y) = Pr(y|θ) =
T

∏
t=1

Pr(yt |θ). (1.2)
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For example, if we assume that observation yt has been generated from a Normal distribution

with parameters θ = (µ,σ2) as

Pr(yt |θ) = φ(µ,σ2) =
1√

2πσ2
exp
{
− 1

2σ2 (yt −µ)2
}
, (1.3)

the likelihood of the entire independent and identically distributed (iid) sample, Pr(y|θ) =

Pr (y1,y2, ...,yT |θ), is

L(θ ;y) =
T

∏
t=1

Pr(yt |θ) =
(

1√
2πσ2

)T

exp

{
− 1

2σ2

T

∑
t=1

(yt −µ)2

}
. (1.4)

Note that the concept of likelihood function in the Bayesian approach has a different meaning

from that in the frequentist approach. In Bayesian approach, the likelihood, Pr(y|θ), is viewed

as a conditional probability function that varies with data y at fixed values of θ , whereas in the

frequentist approach the likelihood, L(θ ;y), is a mathematical function of the parameter θ for

fixed data, y (Kroese and Chan, 2014, p.228).

Suppose we are interested in making inferences about an unknown quantity, θ . This can be

performed using either the frequentist or the Bayesian approach. In a Maximum Likelihood

(ML) approach, this is achieved by finding a value θ = θ ∗ that maximizes the likelihood of y

with respect to θ , as follows:
∂L(θ ;y)

∂θ
= 0,

which satisfies
∂ 2L(θ ;y)

∂ 2θ
|θ=θ ∗ < 0. (1.5)

Alternatively, the inference about θ can be implemented using the Bayesian approach, when

θ is treated as a random variable represented by a probability distribution. This involves the

specification of a prior distribution:

θ ∼ Pr(θ).

According to the Bayes’ theorem, by combining information from the prior distribution and

information about the observed data from the likelihood, we can obtain

Pr(θ |y) = Pr(y|θ)Pr(θ)
Pr(y)

∝ Pr(y|θ)Pr(θ), (1.6)

where Pr(θ |y), which represents the probability statement about the unknown parameters

given the data, is known as the posterior distribution and forms the core of Bayesian inference
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(Gelman et al., 2014, p.7). Note that the term Pr(y) = ∑θ Pr(θ)Pr(y|θ) for discrete or

Pr(y) =
∫

θ
Pr(θ)Pr(y|θ)dθ in the case of continuous θ , can be viewed as the marginal

probability of observing the data. It behaves as a normalizing constant which ensures that the

posterior distribution is a probability distribution and thus integrates of 1 over all values of θ .

The normalizing constant, Pr(y), in Equation (1.6) is generally not of interest as it does not

depend on the parameter θ , and thus it can be ignored during parameter estimation.

Many efficient procedures have been proposed for approximating the posterior in Equation

(1.6). One of which is known as the Markov chain Monte Carlo (MCMC) method (Geyer,

2011).

1.1.2 The prior distributions

As discussed in Section (1.1.1), the posterior distribution is based on two main components,

the likelihood model and the prior distribution. However, the functional form of the prior

distribution is often unknown. In this case, the choice of prior is commonly based on

assumptions (Carlin and Louis, 2009; Gelman et al., 2014). Such assumptions are often based

on various factors such as physical considerations, degree of knowledge and, more

controversially, mathematical convenience. The choice of prior distribution is an essential part

in Bayesian analysis in view of its ability in simplifying the posterior manipulations.

Prior distributions can be classified as informative and non-informative priors. Informative

priors are used when prior knowledge is available. On the other hand, the non-informative

priors are used when no a priori knowledge is available. Such priors have a minimal effect on

inference as they provide little prior information for the unknown parameters of the model.

Hence, the data will be mostly responsible for the posterior distribution, or as described by

(Gelman et al., 2014) “to let the data speak for themselves”, so that inference is not affected by

external information. Examples of priors intended to be non-informative are flat priors (e.g.

that a parameter is uniformly distributed between −∞ and +∞, or between 0 and +∞),

reference priors (Berger and Bernardo, 1989) and Jeffreys’s prior (Jeffreys, 1961) which is

expressed as

Pr(θ)∝|I(θ)|
1
2 , where I(θ) =−E

{
−∂ 2 log f (y|θ)

∂θ ′∂θ

}
.

The term I(θ) is called Fisher’s information matrix and the expectation is taken with respect to

the sampling distribution of y. The Jeffreys’ prior gives an automated method for finding a
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non-informative prior for any parametric model. Also, it is known that the Jeffreys’s prior is

invariant to transformation.

It is said that the prior is a conjugate prior if the posterior distribution follows the same

distribution family as the chosen prior. A common class of distributions that all their members

have conjugate priors is the exponential family. The exponential family of distributions can be

written as:

Pr(yt |θ) = f (yt)g(θ)exp
{

φ(θ)′u(yt)
}
. (1.7)

In general, the factors φ(θ) and u(yt) are vectors of the same dimension as θ . The factor φ(θ)

is called the natural parameter of the exponential family. The likelihood of the whole sequence

of iid variables, a function of θ , can be then written as

Pr(y|θ) =

(
n

∏
t=1

f (yt)

)
g(θ)T exp

{
φ(θ)′

T

∑
t=1

u(yt)

}
, (1.8)

which has a fixed form

Pr(y|θ)∝ g(θ)T exp
{

φ(θ)′h(y)
}
, (1.9)

where h(y) =∑
n
t=1 u(yt) denotes a sufficient statistic for θ , because the likelihood for θ depends

on the data y only through the value of h(y). If the prior density is specified as:

Pr(θ)∝ g(θ)η exp
{

φ(θ)′v
}
, (1.10)

then the posterior distribution is

Pr(θ |y)∝ g(θ)η+T exp
{

φ(θ)′(v+h(y))
}
, (1.11)

which shows that this choice of prior density is conjugate. For the Normal distribution, where

variance parameter σ2 is known while the mean parameter µ is unknown, the conjugate prior

of the unknown mean parameter can take the form of a Normal distribution as

µ ∼ N(µ0,σ
2
0 ), (1.12)
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which leads to the posterior distribution

Pr(µ|y,σ2,µ0,σ
2
0 )∝ exp

{
−1

2

(
1

σ2
0
+

T
σ2

)(
µ−

σ2
0 T ȳ+µσ2

σ2
0 σ2

)2
}
,

∼ N
(

σ2
0 T ȳ+µσ2

σ2
0 σ2 ,

σ2
0 σ2

σ2
0 +σ2

)
, (1.13)

where T denotes the sample size. In addition to the Normal distribution, there are many widely

used distributions that belong to the exponential family, for example, the Poisson, Gamma,

Beta, Dirichlet, binomial and Multinomial distributions (Gelman et al., 2014).

1.1.3 Markov Chain Monte Carlo method

The main aim of Bayesian inference is to approximate the posterior distribution, Pr(θ |y), in

Equation (1.6), as a function of θ . However, in high–dimensional models, where θ is a

multi–dimensional vector, we may often face the problem of obtaining the marginal posterior

distribution for a single given parameter such as θi (where 1 < θi < k). In principle, the

marginal posterior density of θi is the integral of the joint posterior density of all elements of θ

except θi. In practice, evaluating such integrals is analytically difficult. It is possible to

evaluate these integrals numerically using Markov Chain Monte Carlo (MCMC) methods, in

which a Markov chain is used to sample from the posterior distribution. The main idea behind

the MCMC method is that it provides an approximation to the posterior distribution by

generating sequentially sampled values, where the posterior distribution depends on its

previous sampled value for each unknown parameter (Gelman et al., 2014). The MCMC

approach is based on two key aspects, namely, the Markov chain and Monte Carlo integration.

So, to understand more about the MCMC methods, it is useful to have a look at these two

concepts.

1.1.3.1 Markov chains

The MCMC method works by creating a Markov chain that represents the posterior

distribution of interest. A Markov chain can be defined as a particular type of discrete time

Markov process,
{

X (t); t ≥ 0
}

, with state space S =
{

s j; j = 1,2, ...,K
}

, K 6 ∞. A sequence

X0,X1,X2... of random variables is a Markov chain if the conditional distribution of Xt+1 given

X0, ...,Xt depends only on Xt (Geyer, 2011). We can write this as

Pr(Xt+1 = s j|Xt = si,Xt−1 = sit−1 , ...) = Pr(Xt+1 = s j|Xt = si), (1.14)
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for all s j,si,sit−1 , ... ∈ S and t = 0,1,2, .... In other words, the future and past states are

independent, given the current state. This property is called the Markov property. The

probability

pi j = Pr(Xt+1 = s j|Xt = si); si,s j,∈ S, (1.15)

is called the transition probability from state si to state s j. If there are K possible states, then

P = pi j; i, j = 1,2, ...,K, (1.16)

represents the transition matrix of dimension K×K that provides the various probabilities of all

possible moves among these states for every i, ∑
K
j=1 pi j = 1. Let π j(t) = Pr(Xt = s j) denote the

probability that the chain is in state s j at time t, and π(t) = {π1(t),π2(t), ...,πK(t)} denote the

K-length vector of these state probabilities at time t. The probability that the chain is in state s j

at time (step) t +1 is given by

π j(t +1) = Pr(Xt+1 = s j),

= ∑
i

Pr(Xt+1 = s j|Xt = si)Pr(Xt = si),

= ∑
i

pi jπi(t), (1.17)

where Equation (1.17) describes the evolution of the chain using a number of successive

iterations. Using matrix notation, Equation (1.17) can be written as

π(t+1) = π(t)P. (1.18)

It follows that

π(t) = π0P(t). (1.19)

The n-step transition probability, p(n)i j , is the probability that the chain is in the state s j given

that n steps earlier it was in the state si, i.e.,

p(n)i j = Pr(Xt+n = s j|Xt = si), (1.20)
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where p(n)i j is just the i, jth element of P(n). A Markov chain is said to be irreducible if there

exists a positive integer ni j such that pni j
i j > 0, for all i, j = 1,2, ...,K. That is, one can move

from any state to any other state in S possible states in a finite number of steps.

A state in a Markov chain is classified as absorbing, transient, or recurrent to characterize how

often the state is visited or the time between visits. Let f (n)i j denote the probability that the chain

first visits the state s j at step n, when it started in the state si at step 0, i.e.,

f (n)i j = Pr(X1 6= s j,X2 6= s j, ...,Xn−1 6= s j,Xn 6= s j|X0 = si), (1.21)

with f (0)ii = 1 and f (0)i j = 0 for j 6= i. Further, define the sum of probabilities of the first visiting

times being n = 1,2, ...,

fi j =
∞

∑
n=1

f (n)i j , (1.22)

which is the probability that the chain visits state s j in finite time if it starts in state si. In

particular, fii is the probability of returning to the starting state si in finite time. A state s j is said

to be: transient if f j j < 1, recurrent if f j j = 1, and absorbing if p j j = 1. If state s j is recurrent,

then it is said to be positive recurrent if the mean time between revisits is finite, i.e.,

∞

∑
n=1

n f (n)j j < ∞. (1.23)

Otherwise, it is said to be null recurrent. If one state in an irreducible Markov chain is positive

recurrent, then all the states are positive recurrent. The period of a state s j is defined as

d j = gcd
{

n≥ 1|p(n)j j > 0
}
, (1.24)

where d j denotes the greatest common divisor (gcd) of all integers n≥ 1. It can be shown that

for an irreducible Markov chain, d j = d, ∀ j. If d > 1, the chain is said to be periodic with period

d. If d = 1, then the chain is said to be aperiodic, which means that the chain is not forced into

some cycle of fixed length between certain states. It can be seen that if P has no eigenvalues

equal to 1 the chain is aperiodic. The limiting probability limn→∞ p(n)j j may or may not converge.

For a transient or null recurrent state s j, limn→∞ p(n)j j = 0, i.e., the probability of the chain being

in state s j eventually goes to zero. If state s j is positive recurrent and periodic, then limn→∞ p(n)j j

will not converge. If s j is positive recurrent and aperiodic, then limn→∞ p(n)j j will converge to a

steady state probability π j > 0. A positive recurrent and aperiodic Markov chain approaches a
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stationary distribution π, where the vector of probabilities of being in any particular given state

is independent of the initial condition π(0). The stationary distribution satisfies

π = πP. (1.25)

A sufficient condition for a unique stationary distribution is that the detailed balance or time

reversibility condition, namely,

πi pi j = π j p ji; ∀i, j, (1.26)

is satisfied. Indeed, reversibility of a Markov chain for a desired distribution π implies that

the Markov chain has π as its stationary distribution. Given a Markov chain X1, X2, ..., the

transition probability distribution is said to be reversible regarding an initial distribution if the

distribution of pairs (Xt ,Xt+1) is exchangeable. Reversible Markov chain plays a main role

in MCMC methods (Fan and Sisson, 2011). Given a reversible Markov chain Xm with the

stationary distribution π, it follows that

1
M

M

∑
m=1

h(Xm)−→
∫

h(x)π(x)dx, as M −→ ∞, (1.27)

which links Markov chains to Monte Carlo methods, where m = 1,2, ...,M, is a desired period

of iterations. Now, it is easy to calculate the posterior quantities using Equation (1.27) because

the stationary distribution π is equal to the posterior density Pr(θ |y).

1.1.3.2 Monte Carlo integration

In practice, inference usually requires the integration of posterior distribution over the

parameter space. However, for complicated models, such integration is difficult or impossible

to be achieved analytically. For this reason, Monte Carlo integration is often utilized to

approximate such integrals (Rizzo, 2008).

For example, assume one is interested in computing the expectation of some function h of a

random variable Y that has probability density function fY (y):

E [h(Y )] =
∫

h(y)d fY =
∫

h(y) fY (y)dy. (1.28)
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Hence, an approximation to this integral can be computed by estimating the sample average of

random variables y1,y2, ...,yT drawn from the distribution of Y as follows

ĥ(y) =
1
T

T

∑
t=1

h(yt). (1.29)

It follows that the estimate ĥ(y) is a strongly consistent estimate of E [h(Y )], such that ĥ(y)−→

E [h(Y )] as the sample size T −→∞. Consequently, it can be said that ĥ(y) converges to E [h(Y )]

with probability 1 as T −→ ∞. Also, according to the Central Limit Theorem,

ĥ(y)−E [h(Y )]
σ/
√

T
−→ φ(0,1) as T −→ ∞, (1.30)

where σ/
√

T is the standard error of estimate ĥ(y) and σ2 =Var(h(Y )) is variance of sample.

The main idea of applying the Monte Carlo approach is obtaining the solution of integrals which

involve the posterior distribution Pr(θ |y) mentioned earlier in Equation (1.6).

1.1.4 MCMC sampling techniques

Markov chain Monte Carlo (MCMC) methods are a framework that involves many techniques

introduced by Metropolis et al. (1953) and Hastings (1970) for Monte Carlo integration. In this

section, we review the well-known Metropolis-Hastings and Gibbs algorithms.

1.1.4.1 The Metropolis-Hastings algorithms

Metropolis-Hastings algorithms (M-H) are a class of Markov Chain Monte Carlo (MCMC)

methods. M-H algorithms include many special algorithms such as: the Metropolis Sampler,

the independent sampler, the random walk sampler and the Gibbs sampler. The main idea here is

to generate a Markov chain {Xt ; t = 0,1,2, ...}, such that its stationary distribution is the target

distribution. This chain must satisfy the regularity conditions discussed in the previous section,

i.e. irreducibility, positive recurrence and aperiodicity. In general, the algorithm must specify

how to generate the next state Xt+1, given state Xt . The M-H algorithms assume candidate

values Y that can be generated from some proposal distribution g(.|Xt). If the candidate point is

accepted, the chain moves to state Y at time t+1 and Xt+1 =Y ; otherwise the chain stays in state

Xt and Xt+1 = Xt . The choice of proposal distribution is very flexible, but, the chain selected

must meet the regularity conditions. Choosing proposal distributions with the same support

set as the target distribution will usually satisfy those the regularity conditions (Rizzo, 2008).

A Metropolis-Hastings algorithm associated with target density f and conditional density g
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produces a Markov chain, X (t); see algorithm (1). The conditional distribution g is called the

Algorithm 1 : Metropolis-Hastings algorithm

Given x(t),

1. Generate Yt ∼ g(y,x(t)).

2. Take

X (t+1) =

{
Yt with probability a(x(t),Yt)

x(t) with probability 1−a(x(t),Yt).

where;

a(x,y) = min
{

1,
f (y)
f (x)

g(x|y)
g(y|x)

}
.

3. Stop when convergence is achieved.

proposal density, the ratio a(x,y) is called the Hastings ratio or acceptance probability and the

step (2) in the algorithm is called Metropolis rejection. This algorithm always accepts values yt

such that the ratio
f (yt)

g(yt |x(t))
is increased, compared with the previous value

f (x(t))
g(x(t)|yt)

. In this

algorithm, the chain convergence largely depends on the proposal density. A proposal density

with large jumps to places far from the support of the posterior has low acceptance rate and

causes the Markov chain to stand still most of the time. On the other hand, a proposal density

with small jumps and high acceptance rate may cause the chain to move slowly and to get

stuck in one state. Also, in multi-dimensional cases, the M-H algorithm as described above

might require a proposal density for the whole vector, which is extremely difficult when the

dimension is high (Casella and Robert, 2004).

1.1.4.2 The Gibbs sampler

Gibbs sampler is a special case of the M-H algorithm. Sampling using the Gibbs sampler was

proposed by Geman and Geman (1984). This sampler is often applied when the target

distribution is multivariate. It regards that all the univariate conditional densities in a

multivariate distribution can be specified and that they are easy to sample from. The chain is

generated by successively sampling from the conditional distributions of the target distribution

(Rizzo, 2008, p.263).

A Gibbs sampler generates a sample from the distribution of each parameter or variable

conditioning on the current values of the other parameters or variables. As a simplified

example, given an multivariate probability distribution, θ = (θ1, ...,θd), we define the d− 1
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dimension random vectors

θ(− j) = (θ1, ...,θ j−1,θ j+1, ...,θd), (1.31)

and denote the corresponding univariate conditional density of θ j given θ− j by f (θ j|θ− j). The

Gibbs sampler generates the chain by sampling from each of the densities f (θ j|θ− j). Algorithm

(2) summarizes the steps of sampling using Gibbs sampler (Marin and Robert, 2014, p.90).

Algorithm 2 : General Gibbs Algorithm

I- Initialization: Start with an arbitrary value θ(0) = (θ
(0)
1 , ...,θ

(0)
d ).

II- Iteration t: Given (θ
(t−1)
1 , ...,θ

(t−1)
d ), generate:

1- θ
(t)
1 according to f1(θ1|θ (t−1)

2 , ...,θ
(t−1)
d ),

2- θ
(t)
2 according to f2(θ2|θ (t)

1 ,θ
(t−1)
3 , ...,θ

(t−1)
d ),

...

d- θ
(t)
d according to fd(θd |θ

(t)
1 ,θ

(t)
2 , ...,θ

(t)
d−1)

1.1.5 Convergence of MCMC methods

MCMC methods have to be carefully implemented. It is important to check that the algorithm

explore the posterior distribution fully and that the simulation converges the posterior

distribution (Gelman et al., 2014). Some specific implementations are used to check the

algorithm include the deciding when to stop sampling or the required length of sampling, the

length of burn-in sample that should be discarded and whether a Markov chain has mixed

sufficiently. Indeed, there is no single test or diagnostic tool that correctly checks convergence

(Gelman et al., 2014). Consequently, many different techniques have been developed, each

with a range of advantages and disadvantages, as tools to check convergence. Some of those

techniques are claimed to perform well with the M-H algorithm, others are claimed to perform

well with the Gibbs sampler (Cowles and Carlin, 1996). Convergence can be diagnosed based

on visual methods, including trace density, trace mean, and autocorrelation plots, or using test

statistics such as Gelman and Rubin (1992), Geweke (1992) and Raftery and Lewis (1992).

We will consider the following convergence tools.
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Gelman-Rubin statistic (R̂, (Gelman and Rubin, 1992)):

The Gelman-Rubin statistic is based on running multiple chains with different over-dispersed

starting points. These chains are then compared by calculating the within chain variance W and

between chain variance B. Given W and B, the estimated marginal posterior variance of θ is

computed as

V̂ar = (1− 1
n
)W +(

1
n

B),

where n is the number of samples drawn. The statistic assesses whether W and B are different

enough to worry about convergence. We then compute the estimated scale reduction using

R̂ =

√
V̂ar
W

.

Both V̂ar and W are expected to converge to the true marginal posterior variance. Hence, values

of R̂ close to 1 (and often less than 1.1) are considered as an evidence that the chains have

converged (Gelman and Hill, 2007, p.358).

Geweke statistic proposed by Geweke (1992):

This statistic is based on a single chain. After discarding a desired burn-in period, Geweke’s

statistic depends on comparing the difference between the means of the first 10% and 50% of

chain over a Z statistic that follows asymptotically a standard-normal distribution:

Z =
θ̂ A− θ̂ B√

SA
θ

TA
+

SB
θ

TB

,

where θ̂ A and θ̂ B denote the means of first and second sample means, respectively, SA
θ

and SB
θ

denote the sample variance corresponding to the first and second part of chain, respectively, and

TA and TB represent the sizes of first and second part of chain, respectively. A value Z within the

interval [−2,2] denotes no a notable difference between two samples, and hence, convergence

is achieved, and vice versa.

Autocorrelation function (ACF):

Because the samples produced by MCMC methods are moving at random small steps which

may be correlated, these methods may not be an efficient to represent independent samples of

the target distribution (Cowles and Carlin, 1996). Convergence diagnostics can additionally

be monitored graphically using the autocorrelation function (ACF) (Ntzoufras, 2009; Gelman
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et al., 2014). Given a chain of samples, xm : m = 1,2, ...,M, generated from an MCMC method,

the ACF describes the correlation between successive elements xm and xm+1 of the chain at a

different sampling lags l. The ACF is defined as

ρ(l) =
Cov(xm,xm+1)

Var(xm)
,

=
∑

M−1
m=1 (xm− x̄)(xm+1− x̄)

∑
M
m=1(xm− x̄)2

.

If ACF drops to zero at lag 1, it implies that there is no correlation between successive

samples. The ACF is not a convergence diagnostic tool, but can be helpful indirectly to assess

convergence of the MCMC algorithms. The MCMC algorithms produce Markov chains of

correlated consecutive samples. These correlated samples are then used to summarize many

features, e.g. means, variances and percentiles, which assume to be approximated features to

the target distribution. However, these approximations are often less accurate than if they were

produced from independent samples (Ntzoufras, 2009; Gelman et al., 2014). In practice, this

autocorrelation between samples is often reduced using the so-called thinning technique. The

thinning method is based on keeping only every mth samples after a pre-specified burn-in

period is discarded from the posterior distribution. Thus, inference will be adopted mainly on

those thinned chains (Ntzoufras, 2009; Gelman et al., 2014).

1.2 The aims and outlines of the thesis

The main aim of this thesis is to develop Bayesian diagnostic tools for the model selection

issue in a Hidden Markov model context. Under the Bayesian perspective, we develop

likelihood-based criteria from the AIC, BIC and DIC for HMMs. We extend the original

definition of the DIC taking into account the concept of focus and the availability of closed

form of the likelihood of HMMs. We also contribute in developing Bayesian modified versions

of the AIC and BIC which approximated at the posterior distribution of the model parameters.

We also examine the WAIC (Watanabe, 2010), based on the predictive pointwise density.

We also develop a Poisson hidden Markov model (PHMM) to spatially model the traffic crash

data. Our methodology is illustrated by application involving the crashes which occurred on

several motorways in the UK. We are interested in identifying highway segments which have

distinct crash rates (distinct states) of the relative safety process. Selecting an optimal number

of states is an important part of the interpretation.
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The structure of this thesis is organized as follows:

In Chapter 2 we present briefly the concept of mixture models to give a better understanding of

hidden Markov models.

In Chapter 3 we include the fundamental definitions and notations of the HMMs. In addition,

we introduce the idea of presenting the HMM as a generative model. We develop an algorithm

to explain the mechanism of generating data from a parametric HMM. Furthermore, this

chapter presents the concept of forward-backward algorithm, as well as the estimation of the

model parameters using the EM approach.

Chapter 4 discusses the inference technique for the unknown parameters of hidden Markov

models within the Bayesian framework. We set out a theory of hidden state models and

develop the necessary MCMC algorithm. We discuss the problem of estimation of the hidden

state sequence of a HMM. In addition, this chapter discusses the problem of label switching.

We review the literature relevant to this problem and also its solutions.

In chapter 5 we consider the model selection issue of HMMs. We derive several forms of the

likelihood function of a HMM, namely, the observed, complete and conditional likelihood. We

develop several conditional and observed likelihood-based versions for the Deviance

information criterion (DIC; Spiegelhalter et al., 2002). In addition, we propose several

modified versions of the Akaike information criterion (AIC; Akaike, 1973) and the Bayesian

information criterion (BIC; Schwarz, 1978) approximated from a Bayesian perspective. Also,

this chapter introduces a criterion based on assessing the predictive ability of a HMM, the

widely applicable information criterion (WAIC; Watanabe, 2009).

In chapter 6, we introduce simulation studies based on synthetic and real data application to

assess the model selection criteria proposed in chapter 5.

in Chapter 7 we presents an application involving the traffic crash data. In this chapter we

model the spatial dependency, rather than the temporal dependency, on a highway segment

using a Poisson hidden Markov model (PHMM). We apply our methodology to identify the

highway segments that have distinct crash rates (distinct states) of the relative safety process.

This chapter also includes the process of estimation and model selection taking into account

the sensitivity analysis of some priors chosen for the state-specific crash rates.

Finally, chapter 8 dedicated to summarize the work of this thesis and introduce some proposed

ideas for future research of HMMs.
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Chapter 2

Finite Mixture Models

2.1 Introduction

Hidden Markov models can be considered as an extension of mixture models where the

observations are generated independently from some distribution depending on a state or

component follows an unobserved Markov process (Cappé et al., 2005). In order to understand

the theoretical structure of hidden Markov models, we devote this chapter for reviewing briefly

some fundamentals of mixture models. This thesis mainly concentrates on HMMs with a

discrete and finite state space.

Mixture models have been developed as a flexible tool to model data with an unobserved

heterogeneity, for example, different types of data can form clusters or groups. A finite

mixture model (FMM) is generally used when an observation belongs to one of K groups

(components) that have distinct features and can be described by different probability

distributions (Marin and Robert, 2014). In other words, these models are a weighted average of

a finite number of distributions (mixing components). In real life, FMMs may be a finite

mixture of distributions such as Gaussian or Poisson distributions (McLachlan and Peel, 2000;

Frühwirth-Schnatter, 2006).

Interest in FMMs has increased over the last decades. They can be used for cluster analysis,

latent class analysis, discriminant analysis, image analysis, survival analysis, disease mapping

and meta analysis. There are many textbooks which have focused in detail on finite mixture

models such as McLachlan and Peel (2000); Frühwirth-Schnatter (2006); Schlattmann (2009);

Marin and Robert (2014).

Bayesian methods to model these mixtures of distributions have been used widely for

inference. The extensive use of these distributions led to the rapid development in posterior

simulation techniques such as MCMC methods (McLachlan and Peel, 2000, p.5). Therefore,

MCMC procedures have been used to handle the difficulties in the estimation processes of

parameters of FMM such as the number of k components (Richardson and Green, 1997), and
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the effect of label switching (Stephens, 2000; Jasra et al., 2005). Moreover, the Bayesian

framework has been employed to simplify these complicated structures by classifying them

into a set of simple structures using hidden or latent variables (Marin and Robert, 2014).

2.2 Definition of the finite mixture model

One way of conceptualizing the FMM would be to assume that the data arise from a mixture

of pre-specified number of sub-populations in different proportions instead of one population.

Let y = (y1,y2, ...,yT ) denote a sample of observed data with length T , the probability density

function (pdf) of a mixture model can be defined as a combination of K component pdfs

Pr(y|Θ) =
K

∑
k=1

πk Prk(y|θk), (2.1)

where Prk(y|θk) denotes the pdf of the kth component, πk is the weight of the population k such

that

0≤ πk ≤ 1, and
K

∑
k=1

πk = 1,

Θ = (π;θθ) = (π1,π2, ...,πk;θ1,θ2, ...,θk) denotes a set of all unknown weights and parameters

of a mixture model. In many applications, a family of distributions having the density in

Equation (2.1) can be called a K-component finite mixture model.

The main idea of mixture model is that the observations y are generated from K distinct

random processes, so that each process is modelled by the density Prk(y|θk), and πk represents

the corresponding proportion of observations from this process. For example, consider a FMM

where Pr(y|Θ) is constituted from densities which are all Normal distributions. For

simplification, assume a mixture of two univariate Normal components with common variance

σ2 and means µ1 and µ2 in proportions π1 and π2, so that

φ(yt ;Θ) =
2

∑
k=1

πk φk(yt ;θk) =
2

∑
k=1

πk φk(yt ; µk,σ
2)

= π1 φ1(yt ; µ1,σ
2)+π2 φ2(yt ; µ2,σ

2), (2.2)

where Θ = (θk,πk) = (µ1,µ2,σ
2;π1,π2) denotes all unknown parameters of a two-component

Normal mixture model, and

φ(yt ; µ,σ2) = (2π)−
1
2 σ
−1 exp

{
−1

2
(yt −µ)2/σ

2
}
, (2.3)
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denotes a univariate Normal density with mean µ and variance σ2. If the two Normal densities

are sufficiently divergent, then the mixture density f (yt) forms a bimodal density. Figure (2.1)

shows a Normal mixture model for various values of µ2 where µ1 = 0 and σ2
1 = σ2

2 = 1 with

equal weight proportions (π1 = π2 = 0.5). It can be seen that when values of µ2 increase, the

shape of mixture density f (yt) changes from unimodal to bimodal.
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Figure 2.1: Plot of a mixture density of two univariate Normal components with equal weight
proportions, common variance σ2 = 1, and a fixed mean for the first component,
µ1 = 0, and different values for the mean of second component, µ2 = i, namely;
(a) i=1; (b) i=2; (c) i=3; (d) i=4.

2.3 Mixture model estimation

Given an iid random sample, y = (y1,y2, ...yT ), generated from a K-component mixture model

defined in Equation (2.1), the likelihood function of these observations, assuming that yt is

independently distributed, can be written as

Pr(y|Θ) = L(Θ|y) =
T

∏
t=1
{π1Pr1(yt ;θ1)+π2Pr2(yt ;θ2)+ ...+πKPrK(yt ;θk)}

=
T

∏
t=1

K

∑
k=1

πk Prk(yt |θk). (2.4)
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The maximum likelihood estimator of Θ is defined to be

Θ̂ = argmax
Θ

L(Θ|y). (2.5)

The main task is to find the parameter vector Θ that maximizes L(Θ|y). However, the function

in Equation (2.4) is difficult to maximize directly as it involves a summation inside the logarithm

operator. Additionally, it is not clear which component of the mixture generated each data point

and thus which parameters require adjusting to fit that data point. Consequently, a number

of methods have been developed for maximizing the log-likelihood function either using the

expectation-maximization (EM) or Bayesian methods.

2.3.1 Expectation-Maximization algorithm (EM) of FMMs

One common approach to estimate the parameters Θ = (π,θθ) with respect to the observed data

y is by maximizing the likelihood function using Expectation Maximization (EM) algorithm

(Dempster et al., 1977). The EM procedure has been used to maximize the likelihood function

when there are missing values or latent variables. The key idea of the EM algorithm is the

data augmentation procedure (Tanner and Wong, 1987). In the mixture model context, the

missing data is represented by a set of random discrete indicators z = (z1,z2, ...,zT ), where zt ∈

{1, ...,K} indicates which mixture component generated the observation yt . Mathematically,

given z = (z1,z2, ...,zT ), the complete-data log-likelihood, Lc(.), can be written as

Lc(Θ|y,z) = Pr(y,z|Θ) = Pr(y|z,Θ)Pr(z|Θ),

=
T

∏
t=1

K

∏
k=1
{πkPrk(yt |θk)}I(zt=1) ,

=
T

∏
t=1

K

∏
k=1

π
I(zt=1)
k Prk(yt |θk)

I(zt=1), (2.6)

where I(zt = 1) = 1 if zt = k holds, where k = 1,2, ...,K, and I(zt = 1) = 0 otherwise. The

complete log-likelihood, `c(.), as

`c(Θ|y,z) =
T

∑
t=1

K

∑
k=1

zkt log[πk f (yt ;θk)],

=
T

∑
t=1

K

∑
k=1

zkt logπk +
T

∑
t=1

K

∑
k=1

zkt log f (yt ,θk). (2.7)

The key idea behind the EM algorithm is to set an upper bound function Q−function on the

negative log-likelihood of the observed variables by introducing distributions over the latent
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variables. The EM algorithm involves two steps to maximize the above log-likelihood which

are: Expectation step (E-step) and maximization step (M-step). E-step includes the finding the

expectation with respect to the conditional distribution of latent variables z given data points y

and the current estimation of parameters Θ(m):

Q(Θ|Θ(m)) = Ez |(y,Θ(m))[`c(Θ|y,z)]. (2.8)

In M-step, a new Θ = Θ(m+1) is computed, which maximizes the Q-function that is obtained in

E-step:

Θ
(m+1) = argmax

Θ

Q(Θ|Θ(m)). (2.9)

Initially, the M-step requires the maximization of Q(Θ;Θ(0)) with respect to Θ over the

parameter space. This implies choosing Θ(1) such that

Q(Θ(1);Θ
(0))> Q(Θ;Θ

(0)). (2.10)

The E-step and the M-step are then implemented again with Θ(0) replaced by the current fit

Θ(1). On the (m+ 1)th iteration the E-step and the M-step are alternated repeatedly until the

changes in the log-likelihood values are less than some specified threshold, (McLachlan and

Peel, 2000, p.24). The EM algorithm is numerically stable with each EM iteration increasing

the likelihood value as

Q(Θ(m+1))> Q(Θ(m)). (2.11)

Before that, we need to define the posterior probability of latent variable zkt . The E-step of the

EM algorithm is carried out by replacing the zkt by their expected values given the data y and

current estimate of the model parameters Θ(m). According to the Bayes theorem (McLachlan

and Peel, 2000), we obtain

E(zkt |y,Θm) = Pr(zkt = 1|yt ,Θ
m) =

Pr(yt |zkt = 1)Pr(zkt = 1)
∑l Pr(yt |zlt = 1)Pr(zlt = 1)

=
πk f (yt ,θk)

∑l πl f (yt ,θl)
= wkt .

(2.12)
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By substituting zkt by wkt in Equation (2.7), the E-step of the EM algorithm is then given as

Q(Θ;Θ
(m)) = E

Θ(m) {`c(Θ|y,z)} , (2.13)

=
T

∑
t=1

K

∑
k=1

wkt logπk +
T

∑
t=1

K

∑
k=1

wkt log f (yt ,θk). (2.14)

The M-step involves maximization of the current expected complete data likelihood. Since πk

appears only in the first term, and θk only in the second term, we can maximize the two terms

separately. To maximize the expression for πk, we introduce the Lagrange multiplier L with the

constraint that ∑
K
k=1 πk = 1, and solve the following equation (Bilmes, 1998):

∂

∂πk

[
T

∑
t=1

K

∑
k=1

wkt logπk +L(∑
k

πk−1)

]
= 0 (2.15)

or

T

∑
t=1

1
πk

wkt +L = 0. (2.16)

Summing both sides over k, we get that L =−T resulting in:

π
(m+1)
k =

1
T

T

∑
t=1

wkt , (2.17)

where wkt =
πk f (yt ,θk)

∑l πl f (yt ,θl)
. If the component parameters are unknown, they are estimated by

finding the maximum likelihood estimator for the second sum of the expected complete data

likelihood:

θ
(m+1)
k =

∑
T
t=1 wkt yt

∑
T
t=1 wkt

. (2.18)

For instance, in the case of a Poisson mixture model, Equation (2.18) can be written as

λ
(m+1)
k =

∑
T
t=1 wkt yt

∑
T
t=1 wkt

, (2.19)

whereas, in the case of a Normal mixture model, for the parameters µ , the M-step can be written

as

µ
(m+1)
k =

∑
T
t=1 wkt yt

∑
T
t=1 wkt

, (2.20)

and for σ

σ
(m+1)
k =

∑
T
t=1 wkt (yt −µ

(m+1)
k )

∑
T
t=1 wkt

. (2.21)

42



2.3. MIXTURE MODEL ESTIMATION

To illustrate the process of parameter estimation for a FMM via the EM algorithm, we

implemented a fitting process, with threshold = 0.000001, to a two-component Normal mixture

model with weights π1 = 0.3 and π2 = 0.7, equal variances σ2
1 = σ2

2 = 1 and different means,

µ1 = 2 and µ2 = 5. Both Table (2.1) and Figure (2.2) show results of the estimation process

using the EM procedure.

Parameter π1 µ1 µ2 σ2
1 σ2

2
True 0.3 2 5 1 1

Estimated 0.291 1.928 4.948 0.902 1.012

Table 2.1: The true and estimated values of a two-component Normal mixture model using
EM algorithm for a simulated sample of 1000 observations.
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Figure 2.2: Fitting a two-component Normal mixture model using the EM algorithm.

2.3.2 The Bayesian estimation of FMMs

In the FMM in Equation (2.1), the unknown parameter vector Θ = (π;θθ) needs to be

estimated. In order to obtain the posterior distribution of Θ, we need to combine the

data-dependent likelihood function L(Θ;y) of the mixture model and the prior distribution of

the unknown parameters Θ = (π;θθ). By assuming the independence of the prior distributions

of the model parameters; θθ and π , the posterior distribution Pr(Θ|y) can be given as

Pr(Θ|y)∝ L(θθ,π;y)Pr(π)Pr(θθ), (2.22)
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where L(θθ,π;y) = ∏
T
t=1 Pr(yt |θθ,π) = ∏

T
t=1{∑K

k=1 πk f (yt |θk)} is the likelihood, and

Pr(θθ,π) = Pr(π)Pr(θθ) is the joint prior distribution of θθ and π .

An efficient method to simplify the sampling from the posterior distribution is the data

augmentation method proposed by Tanner and Wong (1987). The principle of this technique is

based on sampling from the complete data posterior distribution Pr(Θ,z|y) rather than

Pr(Θ|y) by proposing auxiliary variables, called z, also referred as latent indicator variables. If

we know y and z, then the analysis will be straightforward.

We assume that there are discrete latent indicators, z = {zkt}, associated with each observation

of the vector y = (y1,y2, ...,yT ). Since these indicators in real life are unknown parameters, the

inference about a mixture model requires estimating two unknown quantities: the component

indicators, z, and the component parameters, Θ = (π,θθ). In the Bayesian perspective, in order

to obtain those quantities, these can be sampled from the following complete data posterior

Pr(z,π,θ |y)∝ Lc(θθ,π;y,z)Pr(π)Pr(θθ), (2.23)

where Lc(θθ,π;y,z) is the complete data likelihood of a finite mixture model, Pr(θθ) and Pr(π)

are independent prior distributions of the parameter θθ and of the components weights π

respectively.

The complete-data likelihood can be written as

Lc(θθ,π;y,z) =
T

∏
t=1

πzt Pr(yt |θzt )

=
K

∏
k=1

∏
t: zt=k

πkPr(yt |θk)

=
K

∏
k=1

π
∑

T
t=1 I(zt=k)

k ∏
t: zt=k

Pr(yt |θk). (2.24)

To complete the Bayesian specification of the model, we need to specify priors for the unknown

parameters of the model: π and θ . The prior on the component weights is represented by a

Dirichlet distribution as

Pr(π) =
K

∏
k=1

πk ∝
K

∏
k=1

π
δk−1
k = Dir(δ1,δ2, ...,δK), (2.25)

where δk, k = 1,2, ...,K are the positive (δk > 0) hyper-parameters of the Dirichlet

distribution. The prior on the component-specific parameter, θ , based on the form of the

parametric distribution assumed for observations, y. As a general case for representing the
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prior on the component-specific parameter, θ , we can write the following expression

θ ∼ Pr(θ |ϕ), (2.26)

where ϕ is referred to a collection of the hyper-parameters governing the shape of the prior

distribution of θ . Common MCMC approaches can be employed. We use the Gibbs sampler to

simulate from the full conditional posterior distributions of the FMM.

2.3.2.1 Estimation using the Gibbs sampler

The posterior distribution in Equation (2.23) involves three full conditional distributions which

can be written as

z∼ Pr(z|y,π,θθ),

π ∼ Pr(π|y,z),

θθ ∼ Pr(θθ |y,z).

(2.27)

It is easy to implement the Gibbs sampler to sample from those distributions. In Bayesian

inference for FMMs, the mixing proportion {π1,π2, ...,πk} can be viewed as the prior

distribution that one observation belongs to sub-population k. Given the observations, yt , the

full conditional posterior distribution of zt can be obtained as

Pr(zt = k|yt ,π,θ)∝ πkPr(yt |θk)

=
πk Pr(yt |θk)

∑
K
l=1 πl Pr(yt |θl)

. (2.28)

From Equation (2.28), the marginal distribution of the zt is a multinomial distribution

zt ∼Multi{Pr(zt = 1),Pr(zt = 2), ...,Pr(zt = K)}. (2.29)
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Given component indicators z, the full conditional posterior of the component weights, π , can

be sampled as follows

Pr(π|y,z,δ )∝ Lc(θθ,π;y,z)Pr(π|δ )

∝
K

∏
k=1

π
∑

T
t=1 I(zt=k)

k ∏
t: zt=k

Pr(yt |θk)
K

∏
k=1

π
δk−1
k

∝
K

∏
k=1

π
∑

T
t=1 I(zt=k)+δk−1

k

π ∼ Dir(n1 +δ1,n2 +δ2, ...,nK +δK), (2.30)

where nk = ∑
T
l=1 Izl=k, k = 1,2, ...,K, denote the allocation sizes. Given component indicators

z and observation y, the posterior of θθ is

Pr(θθ|y,z)∝ Lc(θθ,π;y,z)Pr(θθ)

∼ Pr(θθ) ∏
t:zt=k

Pr(yt |θk).
(2.31)

Algorithm (3) provided by Marin and Robert (2014, p.183) describes the steps of sampling

from the full conditional posterior distributions of a mixture model. Note that according to

Algorithm 3 : Gibbs Sampler for a K-component finite mixture model

Initialization: Choose π(0) and θθ(0) arbitrarily
Iteration m (m > 1):

1- Generate z(m)
t (t = 1, ...,T ) from

Pr(z(m)
t = k|π(m−1)

k ,θ
(m−1)
k ,yt) ∝ π

(m−1)
k f (yt |θ (m−1)

k ); k = 1,2, ...,K.

2- Generate π(m) from Pr(π|z(m)),

3- Generate θθ(m) from Pr(θθ|z(m),yt).

the posterior given in Equation (2.31), if density f (yt |θk) belongs to an exponential family of

standard form,

f (y|θk) = h(y)exp{θk R(y)−Ψ(θk)}, (2.32)

we can use a conjugate prior on each θk,

Pr(θk)∝ exp{θkηk−ζkΨ(θk)}. (2.33)
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The θk
′s are then independent of one another, given z and y, with respective distributions

Pr(θk|y,z)∝ exp

{
θk

[
ηk +

T

∑
t=1

Izt=kR(yt)

]
−Ψ(θk)(nk +ζk)

}
, (2.34)

which are available in closed form by the virtue of conjugacy.

2.3.3 Label switching

When the Bayesian approach is applied to estimate the parameters of mixture models, a so-

called label switching or non identifiability problem may occur (Stephens, 2000). In the mixture

model context, this problem arises because of the invariance of the likelihoods with respect to

the permutations of the component labels. In Bayesian analysis, this occurs when the prior

distribution does not distinguish the components. Hence, the resulting posterior distribution

will be invariant in the permutations of the labels, where it will be proportional to the product

of a symmetric likelihood with a symmetric prior distribution (Stephens, 2000; Jasra et al.,

2005; Papastamoulis and Iliopoulos, 2010). To explain this problem, let y = (y1,y2, ...,yT ) be

independent observations from a finite mixture density with k of known components. Then

L(Θ;y) = L(π,θθ;y) = π1 f (yt ;θ1)+π2 f (yt ;θ1)+ ...+πk f (yt ;θk). (2.35)

Let ρk be the set of permutations of the component indices {1,2, ...,k}, and define

ρ(π,θθ) = (πρ1 ,πρ2 , ...,πρk ,θρ1 ,θρ2 , ...,θρk). (2.36)

We can obtain a mixture model with permutations,

L(Θ;y) = L(π,θθ;y) = πρ1 f (yt ;θρ1)+πρ2 f (yt ;θρ2)+ ...+πρk f (yt ;θρk),

= L(ρ(π,θθ);y). (2.37)

When the prior distributions are exchangeable, then Pr(π,θθ) = Pr(ρ(π,θθ)) and thus the

posterior distribution is Pr(π,θθ|y) = Pr(ρ(π,θθ)|y). Consequently, when implementing the

simulation process, the sampler may encounter a symmetry of the posterior distribution and

the ergodic averages of estimating the weights. Hence, the component-specific parameters will

lead to unreasonable results because they will be identical. In order to handle this problem,

either an alternative prior modelling or a more tailored sophisticated approach are required

(Marin and Robert, 2014).
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The label switching issue has been addressed in the literature such as Diebolt and Robert

(1994); Richardson and Green (1997); Stephens (2000); Celeux et al. (2000);

Frühwirth-Schnatter (2001); Hurn et al. (2003) and Marin and Robert (2014).

In our study, we used the Identifiability Constraints (IC) method introduced by Diebolt and

Robert (1994) where a constraint is imposed on one of the parameters of the mixture model.

2.3.4 Gibbs sampler for fitting a finite mixture of Normal distributions

In this section we evaluate the performance of Gibbs sampler. For this purpose, we carry out a

simulation study to examine the behaviour of the sampler by fitting a finite mixture of Normal

distributions using synthetic and real data.

2.3.4.1 A simulation study on synthetic data

In this sub-section, we check the our sampler by fitting independently six models with two

components to six synthetic data sets, each one with length T = 500 observations. The six data

sets have been generated according to the following model:

2

∑
k=1

πkN(µk,σ
2
k ).

Each data set was generated under different mixing weights but with fixed means, (µ1,µ2) =

(4,8), and variances, (σ2
1 ,σ

2
2 ) = (0.2,1). The model can then be written as

π1N(4,0.2)+π1N(8,1).

The proposed six weights are shown in the Table (2.2) which also includes the parameters

estimates of the six fitted models. Similarly, the parameters of each model are given conjugate

priors as follows

σ
2
j ∼ InvGamma(a j,b j), µ j|σ2

j ∼ N(η j,σ
2
j |ζ j), π j ∼ Dir(δ j),

where η j,ζ j,a j,b j and δ j are known hyper-parameters, j = 1,2. The hyper-parameters need to

be specified or endowed with hyper-priors when they cannot be specified (Marin et al., 2005).

These hyper-parameters are commonly given non-informative hyper-priors or flat values

(Gelman et al., 2014). For instance, the inverse Gamma with parameters a = 0.001 and

b = 0.001 and thus a mean of a/b = 1 and a variance of a/b2 = 1000 can give diffuse values

of this form. The prior of the mean parameter can be assigned flat values from a Normal
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distribution with a shape parameter, η = 0, and a scale parameter, ζ = 0.001, which has a

large variance equal to 1000. The weight parameter, π , is given a Dirichlet prior with

non-informative value, δk = 1, k = 1,2. Given the above parametrization on the

hyper-parameters of the priors distributions, we follow algorithm (4), given by Marin et al.

(2005), to implement the sampling process.

Algorithm 4 : Gibbs Sampler for a two-component Normal mixture model with conjugate
priors

1. Initialization: Choose π
(0)
k and θ

(0)
k ,k = 1,2.

2. Iteration: for m = 1,2, ...,M

(a) Generate z(m)
t ; t = 1, ...,T from (k = 1,2)

Pr(z(m)
t = 1) = 1−Pr(z(m)

t = 2) ∝
π
(m−1)
k

σ
(m−1)
k

exp
(
− (yt−µ

(m−1)
k )2

2(σ2
k )

(m−1)

)
.

Compute: n(m)
k = ∑

n
l=1 Iz(m)

l =k
and sy

k
(m)

= ∑
n
l=1 Iz(m)

l =k
yl.

(b) Update π
(m)
k from Dir(δ1 +n(m)

1 ,δ2 +n(m)
2 ).

(c) Generate µ
(m)
k ; k = 1,2 from

N

(
ηkζk + sy

k
(m)

ζk +(nk)(m)
,

σ2
k
(m−1)

ζk +(nk)(m)

)
.

Compute: sν
k
(m) = ∑

n
t=1 Iz(m)

l =k
(yt −µ

(m)
k )2.

(d) Generate σ2
k
(m); k = 1,2 from

InvGamma(ak +0.5(n(m)
k +1), bk +0.5ζk(µ

(m)
k −ηk)

2 +0.5(sν
k
(m))).

2.3.4.2 Results using synthetic data

We run separately the Gibbs sampler for 12000 iterations for each model. We adopted the

last 10000 iterations for inference and discarded 2000 iterations as a burn-in period. We used

the artificial constraint on the means parameters (µ1 < µ2) to overcome the label switching

problem. Table (2.2) shows the resulting posterior estimates of six models; it also provides 95%

credible intervals with (2.5%-97.5%) quantiles for each parameter of each model. In addition,

we also provide the trace-plots, histograms and autocorrelation function (ACF) for each each

parameter of each model as displayed in Figures (2.3-2.8). For each of these figures, the first

column involves the trace plots of all model parameters, where the grey colour refers to the
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produced samples and the dashed black colour refers to the posterior mean, whereas the bold

green colour represents the burn-in period. The second column represents the histograms of

all samples in grey. The bold dashed red line refers to the posterior means. The last column

represents all ACF plots of all model parameters. As can be seen from the results in Table (2.2)

and Figures (2.3-2.8), the sampler performs well in estimating the true parameters of all six

models. The sampler has a good sampling mixing within the provided credible intervals and

also has a rapid behaviour to reach the targeted posterior by very few iterations. Moreover, the

ACF plots suggest that there is no correlation between the samples produced by the sampler,

except in one case, concerning the sixth model in Figure (2.8). More specifically, for both the

mean and variance parameter of the second component there appear to be a slight correlation

at the first lag and then began to fade quickly. This can be easily treated by increasing the

burn-in period. Finally, we provide the plots of predictive densities of all models fitted under

different mixing weights. Figure (2.9) compares fitting each model with the histogram of each

corresponding data set.
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Figure 2.3: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.7 and π2 = 0.3.
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Figure 2.4: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.4 and π2 = 0.6.
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Figure 2.5: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.6 and π2 = 0.4.
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Figure 2.6: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.7 and π2 = 0.3.
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Figure 2.7: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.8 and π2 = 0.2.
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Figure 2.8: Trace-plots, histograms and ACF functions of all posterior parameters of the model
with the weights: π1 = 0.9 and π2 = 0.1.
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Figure 2.9: Fitting of predictive density of all model to synthetic sets of length 500 observation
based on the two-component Normal mixture with true weights as labelled in the
title each figure.
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2.3.4.3 Fitting a finite mixture model to real data

In this section, we also perform the Gibbs sampler using a real application involving the

Acidity data. We fitted a two-component Normal mixture model to these data. The acidity data

(ȳ = 5.1051 and s = 1.0384) consist of 155 acidity measurements made on lakes in

North-central Wisconsin. These data were analysed by many researchers. For example,

Crawford (1994) used these data to fit a Normal mixture model on the log-scale. Richardson

and Green (1997) analysed these data with unknown number of components using reversible

jump MCMC. McLachlan and Peel (2000) fitted a mixture of two unrestricted Normal

components for these data using the bootstrap method. Figure 2.10 shows the histogram of

acidity data and a plot of the predictive density fitted to those data.

We follow the same information used with the synthetic data in sub-section (2.3.4.1) with

respect to the prior specification of the model parameters. We also ran the sampler for 12000

iterations as an original sample and kept the last 10000 iterations (the first 2000 iterations were

discarded as a burn-in period) for summarizing the results. We summarize the parameter

estimates of the model in Table (2.3), which shows almost % 60 of and % 40 of data are

concentrated in the first and second component respectively. Figure (2.10) show the model fit.

Estimated Parameters Values

µ̂ (4.3237, 6.2141)
σ̂ (0.1379, 0.3229)
π̂ (0.5848, 0.4151)

Table 2.3: Parameter estimates for two-component Normal mixture model fitted to the Acidity
data.
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Figure 2.10: A two-component Normal mixture model fitted to the Acidity data.

2.4 Summary

In this chapter, we provided a general definition for FMMs with known number of

components. We presented two methods for estimating the parameters of FMMs, the

Expectation Maximization (EM) method as well as MCMC methods using the Gibbs sampler.

This has allowed us to set out core ideas such as label switching. We implemented a simulation

study to fit a two-component Normal mixture model. In this study, we introduced six models

with different weights to evaluate the performance of the Gibbs sampler. Also, the sampler

was employed to fit a two-component Normal mixture using a real application involving the

Acidity data.
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Chapter 3

Hidden Markov Models

3.1 Introduction

There are many phenomena and systems that involve sequentially correlated data. Thus, the

mixture models described in the previous chapter, where data are assumed independent of each

other, do not take into account this serial dependency between observations. Alternatively,

hidden Markov models (HMMs) are described as a more powerful tool to account for such

dependency. Therefore, the HMMs are considered as a generalization of mixture models. The

serial dependence between the data can be described using an unobserved process, the so called

the Markov process, which can be thought to explain another observed process. In this thesis,

we consider mainly discrete-time and finite state space HMMs, where the unobserved process

is discrete in both time and state space.

In this chapter, we review some relevant literature on the applications of HMMs. This chapter

also provides the basic definitions of hidden Markov models. We also review the estimation of

HMM parameters using the so called Baum-Welch algorithm.

3.2 Literature review

A theory of HMMs was introduced in the late 1960s through a series of papers published by

Baum and Petrie (1966); Baum and Eagon (1967); Baum et al. (1970). This class of models

has been successfully used for modelling and classifying dynamic behaviours. HMMs may be

applied for different types of data: discrete, continuous, univariate, multivariate, mixed and

mixture data. Consequently, they have been widely used in many fields, such as;

econometrics (Hamilton, 1989; Billio et al., 1999); finance (Bhar and Hamori, 2006); speech

recognition, image analysis, and time series prediction (Derrode et al., 2006; Rabiner, 1989);

and psychology (Raijmakers and Molenaar, 2004; Visser et al., 2002). We next give some

examples of applications for these models.

There are several challenges in psychology and medicine concerning the diagnosis and
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determining the real behaviour of patients. These challenges arise because of population

heterogeneity, cohabitation of different patients and medical diseases, and diagnostic

uncertainty. Hence, it is not easy to measure behavioural indicators of those phenomena where

we are interested in the behaviour of a particular disease or of a patient. Therefore, HMMs are

more appropriate models in these cases due to their flexibility in the presence of unobservable

behaviour.

For HMMs applications, Jackson et al. (2003) proposed a Multi-stage Markov Model to

describe aortic aneurysm patients. Sometimes the process of checking patients is not without

mistakes and misclassification problems. Hence, HMMs were suggested to estimate

transmission averages and likelihoods of state misclassification. A generalized regression

model was used to model explanatory variables for transitions between statuses and

probabilities of misclassification. In order to reduce uncertainty, Jackson et al. (2003)

introduced Hazard Models to link transitions with the age variable for detecting whether there

is an age effect. The findings proved that HMM models were sensitive to the assumptions of

the study and suggested that the older adults are at increased risk of aortic aneurysm compared

to younger adults. The Weibull distribution was proposed as an alternative for the exponential

distribution in the estimation process of the sojourn states (Jackson et al., 2003).

Visser et al. (2002) used HMMs for psychological studies. The model was used to quantify

knowledge that subjects express in an implicit learning task. The suggested procedure for

comparing models with different constrains imposed on their parameters was the Maximum

Likelihood method. They introduced a discrete-time HMM model instead of a continuous time

HMM model due to the former being more convenient. Simulation experiments were

implemented for the evaluation and model selection. Several candidate criteria were

introduced for selecting the best model. They suggested, in addition of the standard criteria:

AIC and BIC, two criteria which are the Adjusted Akaike Information Criterion (A-AIC) and

Adjusted Bayesian Information Criterion (A-BIC). Their results proved that AIC and BIC are

inappropriate in evaluating large models. After having chosen a final model, they used a

prediction error measure to test the validity of chosen model (Visser et al., 2002).

Nevertheless, these criteria; A-AIC and A-BIC will not be considered in this thesis as do not

take into account the uncertainty about the model parameters.

Wall and Li (2009) performed a study to describe unobserved behaviour. They referred to two

types of models to describe the effects of some of the unobserved variables on alcoholism

addiction: the Multiple Indicator Hidden Markov Model and the Univariate Hidden Markov
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Model. They determined two variables; “healthy” and “unhealthy” which were associated

with each case (patient) as latent variables. The study used two kinds of data; longitudinal data

that were classified depending on type of patient (Alcohol Specific, Alcohol Chronic, Alcohol

Acute, and Not Alcohol), and monthly total data. Since the observations are monthly counts of

medical visits, they proposed a two-state Poisson hidden Markov model (HMM). The purpose

of the study was to investigate whether medical care reduces the probability of entry to

unhealthy state that is identified by the medical visits (Wall and Li, 2009).

Furthermore, Hidden Markov Models have been used to analyse clustering and longitudinal

data in describing some diseases. Scott et al. (2005) introduced a hidden Markov model for

investigating the effect of an anti-psychotic drug and clozapine for schizophrenia patients. The

univariate analysis for complicated medical diseases is not suitable for revealing detailed

characteristics about the disease under study because of the presence of heterogeneity. This

heterogeneity can be interpreted as the different features among patients. Hence, a longitudinal

multivariate analysis is more suitable to describe the disease. A clustering method has been

used as it is suitable for identifying complicated relationships among medical cases. However,

there are some obstacles related to the nature of the data, and the procedure followed in

estimating the parameters. Scott et al. (2005) offered a HMM to address those issues because

of its ability in dealing with temporal data when estimating model parameters and classifying

observations. HMMs in turn have some problems regarding time-homogeneity. Sometimes

hypotheses of time-homogeneity may not be valid, particularly since there are unequal

temporally intervals during treatment process. Therefore, the authors proposed a

non-homogeneous HMM for this purpose. The findings of the study suggest that the clozapine

is more effective than haloperidol in antipsychotic therapy.

Various studies have considered Hidden Markov Models as an accurate early-warning system.

Rafei et al. (2012) used a Hidden Markov Model to identify the abnormal cases of a

pulmonary disease, rampant tuberculosis, in Iran over the period 2005-2011. The study sample

was based on data gathered weekly from sputum smear of patients. The model’s parameters

were estimated using maximum likelihood estimation and the Bayesian framework. The data

were presented as a weekly bivariate discrete sequence. The usual phase represented what was

expected in the diagnosis process of the disease, and the abnormal phase represented what

exceeds the normal phase. Since the data were discrete, Rafei et al. (2012) proposed a Poisson

mixture model to fit the data, and introduced two methods for estimating the model parameter

(λ ); one without seasonal trends, and one with seasonal trends. HMMs were applied for both
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methods. The basic idea of the study was based on the abnormal increase in counts of patients

that exceeds normal diagnosis phase. The authors relied on multiple regression models

proposed by Serfling (1963), derived from Fourier Equations. The two models below represent

a function of the model parameters:

λ1t = E (Yt |St = 1) = β0 +β1t +β2 sin
(

2πt
r

)
+β3 cos

(
2πt

r

)
.

λ2t = E (Yt |St = 2) = (β0 +βe)+β1t +β2 sin
(

2πt
r

)
+β3 cos

(
2πt

r

)
.

The Bayesian Information Criterion (BIC) and adjusted R-squared were proposed by the

authors as criteria to select the best model. Finally, Rafei et al. (2012) concluded from their

findings that the results using either criterion suggested that the HMM model with seasonal

trend was better than the model without seasonal trend.

HMMs have also been used in epidemiology. Cooper and Lipsitch (2004) used HMMs to

analyse hospital infection data. They presented a new method for parameter estimation of

structured hidden Markov models for hospital infections data compared to an unstructured

(standard) HMM and used their model to evaluate their method. They analysed monthly

infection counts that followed a Poisson distribution. They found that both methods can offer

considerable improvements over currently used approaches when hospital infection spread is

important. Compared to the standard hidden Markov model, the new approach is more

biologically plausible, and allows key epidemiological parameters to be estimated.

3.3 Definition of hidden Markov models

The hidden Markov model (HMM) is a statistical model that involves two stochastic processes.

The first process (Zt ; t = 1,2, ...,T ) is an unobserved or hidden process (state process),

satisfying the Markov property, where z = (z1,z2, ...,zT ) denotes its corresponding

realizations. The second process (Yt ; t = 1,2, ...,T ) is an observed process (state-dependent

process) and y = (y1,y2, ...,yT ) represents one possible realization. When Zt is known, the

distribution of Yt can be determined based only on Zt (Zucchini and MacDonald, 2009). The

dependency between Markovian hidden states and observed state can be illustrated in the

directed graph in Figure (3.1).

We can summarize the relationship between those two processes under the following

assumptions:
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Unobserved Process 

Observed Process 

Figure 3.1: Graphical representation of the dependence structure of a discrete-time finite state-
space HMM.

1. Markov assumption:

Pr(Zt = zt |Zt−1 = zt−1,Zt−2 = zt−2, ...,Z1 = z1) = Pr(Zt = zt |Zt−1 = zt−1); (3.1)

2. Conditional independence:

Pr(Yt = yt |Yt−1 = yt−1,Yt−2 = yt−2, ...,Y1 = y1,Zt = zt) = Pr(Yt = yt |Zt = zt).

(3.2)

HMMs can be described as homogeneous in the sense that the Markov chain {Zt} and the

conditional independence of Yt given Zt both are homogeneous and do not depend on t either.

There are several theoretical texts on HMMs, for instance Cappé et al. (2005);

Frühwirth-Schnatter (2006); Zucchini and MacDonald (2009); Visser (2011); Dymarski

(2011).

We are interested in the parametric HMMs, where the observed process follows a parametric

distribution (state-dependent distribution), given an unobserved process. In order to specify a

HMM completely, the following elements have to be given:

1. The number of states in the model, K. We denote the individual states as:

k = (1,2, ...,K); (3.3)

where the hidden state chain, Zt = zt , can take values from the set of all possible states in
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Equation (3.3) at any time.

2. The state transition probability distribution, A = {a jk}, where

a jk = Pr{zt = k|zt−1 = j}; 1≤ j,k ≤ K, (3.4)

is the probability that the state at time t is k, given that the state at time t− 1 is j. The

matrix of all transition probabilities of order K×K can expressed as

A =


a1,1 a1,2 · · · a1,K

a2,1 a2,2 · · · a2,K
...

...
. . .

...

aK,1 aK,2 · · · aK,K



3. The initial state distribution π = {πk} where πk is the probability that the model is in state

k at the time t = 1 with

πk = Pr{z1 = k} 1≤ k ≤ K. (3.5)

4. The state-specific distribution, where observations can be modelled as a sequence of the

random variables, that either take a discrete or continuous nature and follows some

distribution that is parametrized by the parameter θk (Cappé et al., 2005; Zucchini and

MacDonald, 2009). In this case, the model will be called a parametric HMM and its

parameters will be referred to as Θ = (π,A,θ). The parameter θ here accounts for a

generic parameter that can be a single parameter, or a vector of the model’s parameters.

For a discrete case, the observations can be modelled, for example, by the Poisson

distribution with a probability mass function (pmf) as

p(y|θk) =
e−λk λ

y
k

y!
, y ∈ N, (3.6)

where θk = λk denotes the state-specific mean parameter of Poisson distribution. In the

continuous case, the observations can follow the probability density function (pdf) of, for

example, Normal or Gaussian distribution

f (yt ;θk) =
1√

2πσ2
k

exp
{
−(yt −µk)

2

2σ2
k

}
, (3.7)
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where θk = (µk,σ
2
k ); k = 1,2, ...,K. Note that we replaced the general notation of the

observed process, Pr(.), in Equation (3.2) by the pmf and pdf for the examples given

above.

3.4 HMM as a generative model

In this section we develop an algorithm to generate a sequence of observations from some

parametric HMM. The motivation behind this subsection is first, to give a wider understanding

to how the mechanism of HMM works and secondly, to provide synthetic databases that can be

used, for analysis and inference, for HMMs when real data are difficult to obtain. In addition,

some literature have been only concentrated on generating a sequence of symbols from non-

parametric HMMs, see for instance Rabiner (1989); Bishop (2006), in which each symbol is

simulated according to an emission probabilities matrix.

We explain the data generating mechanism from a parametric HMM as follows. Consider a

sequence of observations, y = (y1,y2, ...,yT ), generated from a parametric distribution with

parameter θ , underlying to the sequence of hidden states z = (z1,z2, ...,zT ), as

yt ∼ yt |θzt=k,

where yt |θzt=k represents the distribution of observation yt at time t, given the parameter θ

characterized by the underlying state k at time t. As the states that emit the observations are

assumed to be unobserved in reality and are hence unknown, appending those states in the

generating of observations here is merely for illustration of how an observation is emitted from

a hidden behavior of some phenomenon. Given a HMM with parameters Θ = (π,A,θ) and K

hidden states, we first choose an initial hidden variable at t = 1, z1, with probability governed

by the parameter πk and then sample the corresponding observation y1. After that, we choose

the next hidden state variable z2 according to the transition probability Pr(z2|z1) using the

value that has already determined to z1. Thus, suppose that the sample for z1 corresponds to

state j. Then we choose the state k of z2 with probabilities a jk for k = 1, ...,K. Once z2 is

known, one can draw a sample for y2, sample the next hidden variable z3 and so on. We

developed the algorithm provided in Rabiner (1989) by replacing the emission probability

matrix by the state-specific distribution θk. Algorithm (5) illustrates the generating process of a

sequence of observations from a parametric HMM. This algorithm illustrates the dependence

structure in Figure (3.1) between the states, and states and observations. In this case, we can

see that the distribution functions of the observed process Yt are not deterministic functions,
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Algorithm 5 : Generate observations sequence from a parametric HMM

1. Suppose initial parameters of a HMM, Θ = (π,A,θ).

2. Set t=1.

a. Choose an initial state, z1, based on the initial state distribution π .

b. Generate y1 based on state z1.

3. For t = 2,3, ...,T .

a. Choose a next state, zt , based on row a{zt−1,.}.

b. Generate an observation, yt , based on the current state, zt .

c. Increment t.

d. If t < T , return to step 3 , otherwise stop.

but rather probability density functions. In other words, when yt |θk is a deterministic

one-to-one function, mapping states Zt into observations Yt , the process Zt becomes observed

rather than hidden, and hence the model reduces from a HMM to a Markov model (Visser,

2011).

Figures (3.2 - 3.5) display a sequence of length T = 200 of the observations and states

generated from a 2- and 3- Normal and Poisson HMMs, respectively, given the following

parameterization:

yt ∼ N(Θ2); Θ2 =

π =

0.4

0.6

 ,A =

0.6 0.4

0.1 0.9

 ,µ =

10

20

 ,σ2

0.7

1.6

 ,

yt ∼ N(Θ3); Θ3 =

π =


0.2

0.6

0.2

 ,A =


0.6 0.3 0.1

0.1 0.8 0.1

0.1 0.3 0.6

 ,µ =


5

10

20

 ,σ2


1

0.7

1.6


 ,

yt ∼ Poi(Θ2); Θ2 =

π =

0.4

0.6

 ,A =

0.6 0.4

0.1 0.9

 ,λ =

1.5

4

 ,
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yt ∼ Poi(Θ3); Θ3 =

π =


0.2

0.6

0.2

 ,A =


0.6 0.3 0.1

0.1 0.8 0.1

0.1 0.3 0.6

 ,λ =


1.5

4

9


 .

Note that the observations generated from the Poisson HMM were plotted by a stepped line to

refer to discrete observations.
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Figure 3.2: A sequence of observations, of length (T = 200), generated from 2-state Normal
HMM in the top and the corresponding sequence of hidden states with the same
length in the bottom.
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Figure 3.3: A sequence of observations, of length (T = 200), generated from 3-state Normal
HMM in the top and the corresponding sequence of hidden states with the same
length in the bottom.
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Figure 3.4: A sequence of observations, of length (T = 200), generated from 2-state Poisson
HMM in the top and the corresponding sequence of hidden states with the same
length in the bottom.
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Figure 3.5: A sequence of observations, of length (T = 200), generated from 3-state Poisson
HMM in the top and the corresponding sequence of hidden states with the same
length in the bottom.

3.5 Problems in HMMs

It has been said that HMMs are associated with three basic problems (Rabiner, 1989). Solving

these problems effectively means that we can obtain an adequate model to represent sequences

of observations.

• The evaluation problem: Given a sequence of observations and a model, what is the

probability that this observation sequence was produced by that model?

• The decoding problem: Given a sequence of observations and a model, what is the most

likely state sequence that can meaningfully explain the observations?

• The estimation problem: Given a sequence of observations and a model, what should

the model parameters be so that the model has a high probability of generating the

observations?

The first problem requires that we obtain a solution for the likelihood function of a HMM.

The last two problems concerning the estimation of hidden states, z, and all model parameters,

Θ = (π,A,θ), will be further developed in Chapter 4.
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3.6 Likelihood function for the hidden Markov model

In this section we concentrate on the evaluation of the likelihood function of a HMM. Given

a sequence of observations, y = (y1,y2, ...yT ), generated from a HMM with parameters Θ =

(π,A,θ), the probability of this sequence of observations can be expressed as the observed

likelihood function, L(Θ;y). The calculation of L(Θ;y), or so-called the evaluation problem

for a HMM is fairly difficult task (Bishop, 2006, pp. 616-634). A solution for this problem

can be achieved via so-called the augmentation data strategy (Tanner and Wong, 1987). The

concept behind this strategy involves expanding the parameter space by adding auxiliary or

“missing data”. The HMMs can be viewed as a missing data problem. Hence, the technique of

augmentation data can facilitate the evaluation process of the likelihood of HMMs. This can be

made via summing or integrating out the missing data so that the likelihood function becomes

tractable. Assume that we extent the parameter space Θ by adding a sequence of missing data

(hidden states), the likelihood function of a HMM can be then given as

L(Θ;y)∝ Pr(y|Θ)

= ∑
∀z

Pr(y,z|Θ)

= ∑
∀z

Pr(y|z,Θ)Pr(z|Θ)

= ∑
∀z

Pr(y|z,θ)Pr(z|π,A)

= ∑
∀z

Lc(Θ,z|y)

(3.8)

where the term Lc(Θ,z|y) in Equation (3.8) is called the complete data likelihood, whereas the

first term, Pr(y|z,Θ), represents the conditional likelihood multiplied by the probability density

of hidden states, Pr(z|Θ). Note that the complete data likelihood, Lc(Θ,z|y), can be written in a

way so that the observed part can be distinguished from the hidden part of HMM. Note also that

we write the observed part as Pr(y|z,θ) due to the fact that the observed process is only inferred

directly by the state-specific parameter, θ , given hidden states z which it is in turn only inferred

by the parameters of the hidden part, π and A. Therefore, it is convenient to separate between

these two kind of parameters, i.e., the parameter of the observed part θ and the parameters of

unobserved part π and A (Pr(z|π,A)). According to the definition of HMM, we can define
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separately the hidden part, Pr(z|π,A), as

Pr(z|π,A) = Pr(zt ,zt−1, ...,z1;A,π)

= Pr(zt |zt−1,zt−2, ...,z1;A)Pr(zt−1|zt−2, ...,z1;A), ...Pr(z1|z0;π).

Based on the Markov property, we obtain

Pr(z|π,A) = Pr(zt |zt−1;A)Pr(zt−1|zt−2;A), ...Pr(z2|z1;A)Pr(z1|z0;π)

= Pr(z1|π)
T

∏
t=2

Pr(zt |zt−1;A). (3.9)

The observed process, given hidden states, can be given as

Pr(y|z,θ) = Pr(y1|θz1)×Pr(y2|θz2)× ...×Pr(yT |θzT )

=
T

∏
t=1

Pr(yt |θzt ). (3.10)

As mentioned earlier that the observed process can follow a parametric distribution. For

convenience, we will refer to the state-depended observed process in general as fzt (y|θzt ), to

distinguish from the unobserved process. The complete data likelihood can be then given as

Lc(Θ;z,y) = Pr(z1|π)
T

∏
t=2

Pr(zt |zt−1;A)
T

∏
t=1

fzt (yt |θzt ). (3.11)

The observed data likelihood of a HMM can then be obtained by summing all possible hidden

states in the complete data likelihood given in Equation (3.11), i.e.,

L(Θ;y) = ∑
∀z

Lc(Θ;z,y) = ∑
∀z

[
p(z1|π)

T

∏
t=2

p(zt |zt−1,A)
T

∏
t=1

fzt (y|θzt )

]
. (3.12)

A solution to the likelihood in Equation (3.12) is analytically infeasible or computationally

expensive, as it requires the summing over high-dimensional sequences of hidden states z

(Rabiner, 1989). In other words, it involves a total of 2T KT calculations, since at every

t = 1,2, ...,T , there are K possible states (i.e. KT possible state sequences) which can be

reached, and for each such state sequence about 2T calculations are required for each term in

the sum of Equation (3.12). Hence, the calculation is impractical even for small values of K

and T . For example, for a model with K=5 states and T =100 observations, it takes

2× 100× 5100 ≈ 1072 computational operations. Therefore, the calculation of likelihood,
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L(Θ;y), for a HMM requires more efficient methods. The high-dimensional summations can

be readily computed with the minimum number of computational operations by using the

so-called the forward recursion proposed by Rabiner (1989). The forward recursion is part of a

full algorithm, the forward-backward algorithm. Next, we briefly review the

forward-backward algorithm and mainly concentrate on the forward recursion to evaluate the

likelihood function.

3.6.1 Forward-Backward algorithm

The forward-backward, or Baum-Welch algorithm (Baum, 1972) is a standard algorithm used

for HMMs training which is considered a special case of the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) developed to calculate the likelihood function. This

algorithm is based on two steps. In the first step, named the forward recursion, the algorithm

computes a set of forward probabilities which give the probability of ending up in any

particular state, given a partial observation sequence, i.e. Pr(y1,y2, ...,yt ,zt |Θ). In the second

step, the algorithm computes a set of backward probabilities which provide the probability of

observing the remaining observations, given any starting point, i.e. Pr(yt+1,yt+2, ...,yT |zt ,Θ).

Given a sequence of observations, y = (y1,y2, ...,yT ), the parameters of the model,

Θ = (π,A,θ), and a sequence of hidden states z = (z1,z2, ...,zT ), the forward variable αt( j) is

defined as

αt( j) = Pr(y1,y2, ...,yt ,zt = j|π,A,θ). (3.13)

Recursively, the αt( j) can be computed as follows:

1. Initialization:

α1( j) = π j f j(y1|θ j); 1≤ j ≤ K. (3.14)

2. Induction:

αt(k) = Pr(y1,y2, ...,yt ,zt = j|π,A,θ)

=
K

∑
j=1

[
αt−1( j)a jk

]
fk(yt |θk); t = 2,3, ...,T, 1≤ k ≤ K. (3.15)
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3. Termination:

L(Θ;y) =
K

∑
j=1

αT ( j). (3.16)

Step (1) initializes the forward probabilities as the product of the initial state probability of

state j and the observation probability of y1 at state j. The induction step (2) computes αt(k)

by summing over all K possible states j at time t− 1 that are reachable to state k at time t via

state transitions, and then multiplying the resulting sum by the observation probability

fk(yt |θk). The termination step (3) gives the desired computation of L(Θ;y) as the sum of

terminal forward variables αT ( j). Note that the resulting calculations from the forward

algorithm have computational complexity of O(K2T ). Figure (3.6) shows the computational

operations required for computing the forward variables.

On the other hand, the backward variable, denoted as βt( j), can be defined as the probability

of partial observation sequence from t +1 to the end, given the state j at time t and the model

parameters, Θ, (Rabiner, 1989):

βt( j) = Pr(yt+1,yt+2, ...,yT , |zt = j,π,A,θ). (3.17)

The backward variable βt( j) can recursively be computed as follows:

1. Initialization:

βT ( j) = 1; 1≤ j ≤ K. (3.18)

2. Induction:

βt( j) = Pr(y1,y2, ...,yT |zt = j,π,A,θ),

=
K

∑
k=1

a jk fk(yt+1|θk)βt+1(k); t = T −1,T −2, ...,1, 1≤ j ≤ K. (3.19)
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3. Termination:

L(Θ;y) =
K

∑
j=1

Pr(z = j,y1,y2, ...,yT |π,A,θ),

=
K

∑
j=1

π j f j(y1|θ j).Pr(y2,y3, ...,yT |z = j,π,A,θ),

=
K

∑
j=1

π j f j(y1|θ j)β1( j). (3.20)

In the initialization step (1), all the backward probabilities arbitrarily initialize to 1 at t = T . The

induction step (2) shows that in order to have been in the state j at time t, and to account for the

observation sequence from time t +1 on, one has to consider all possible states k at time t +1,

accounting for the transition from j to k (the a jk term), as well as the observation yt+1 in the

state k (the fk(yt+1|θ j) term). Then we need to account for the remaining partial observations

sequence from state j (the βt+1( j) term). The termination step (3) gives the desired computation

of L(Θ;y) as the summation of multiplying the initial backward variables at time t = 1, β1( j),

by the quantity π j f j(y1|θ j). Note that the resulting calculations from the backward algorithm

also have computational complexity equal to O(K2T ). Figure (3.7) shows the computational

operations required for computing the backward variables.

. 

. 

. 

Figure 3.6: The computational operations required for computing the forward variable αt( j).
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. 

. 

. 

Figure 3.7: The computational operations required for computing the backward variable βt( j).

3.6.2 Scaling procedure

As pointed out by Rabiner (1989), the α and β require to be scaled in the case of the long

sequences of observations since the product of probabilities quickly tends to zero, resulting in

underflow issues. For example, with size T > 100 the probability that sequence will exceed the

precision range of essentially any machine even in double precision (Rabiner, 1989). Beginning

with the forward variables, the scaling technique involves the multiplication of the forward

variable αt( j) by a scaling factor ct at each time index t. Thus, the recursion used to compute

the probability of forward variables in Equations (3.14) and (3.15) is replaced by a recursion of

scaled variables. Here the unscaled forward variable is denoted by αt( j) and α̂t( j) denotes the

scaled variables, that would be proportional to αt( j) and sum to 1 over all possible states. That

is
K

∑
j=1

α̂t( j) = 1.

From initialization (Equation (3.14)), we have

α1( j) = π j f j(y1|θ j), j = 1,2, ...,K, (3.21)
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and the scaling factor ct can be defined as

c1 =
1

∑
K
j=1 α1( j)

(3.22)

α̂1( j) =
α1( j)

∑
K
j=1 α1( j)

= c1α1( j), j = 1,2, ...,K. (3.23)

αt(k) =

[
K

∑
j=1

α̂t−1( j)a jk

]
fk(yt |θ j), t = 2,3, ...,T, k = 1,2, ...,K. (3.24)

ct =
1

∑
K
j=1 αt( j)

, (3.25)

α̂t( j) = ctαt( j), j = 1,2, ...,K, (3.26)

and by induction we obtain

α̂t( j) = c1c2...ctαt( j). (3.27)

For t = T , and taking the sum over states gives:

K

∑
j=1

α̂T ( j) =

[
T

∏
t=1

ct

]
K

∑
j=1

αT ( j). (3.28)

However, ∑
K
i=1 α̂T ( j) = 1 according to the definition of the scaling coefficients, and

∑
K
j=1 αT ( j) = L(Θ;y) according to Equation (3.16). Thus, we have

T

∏
t=1

ctL(Θ;y) = 1. (3.29)

As a result, the likelihood can be written as

L(Θ;y) =
1

∏
T
t=1 ct

. (3.30)
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By taking the logarithm of Equation (3.30), we obtain

`rec(Θ|y) = logL(Θ;y) =−
T

∑
t=1

logct , (3.31)

where `rec(Θ|y) represents the recursive log-likelihood function.

Rabiner (1989) uses the same scaling factors, ct , used with forward variables to define the scaled

backward variables, i.e. the induction step of the recursion of backward variables mentioned in

the Equation (3.19) is given as

β̂t( j) = ctβt( j) =
βt( j)

∑
K
j=1 αt( j)

, (3.32)

where β̂t( j) represents the scaled backward variable and ct =
1

∑
K
j=1 αt( j)

, represents the

scaling factor used with the forward variables. However, Equation (3.32) gives values outside

the probability range of the definition of the scaled variables (i.e. ∑
K
j=1 β̂t( j) 6= 1,∀t ∈ T ).

Rabiner (1989) justifies the use of the same of scaling factors to scale the backward variables

that it is an effective way of keeping the computation within reasonable bounds. Rahimi

(2000) confirmed that this the equation is not correct and used an independent scaling factor,

Dt , that can be obtained from the backward values itself. We also denote the scaled backward

variable as β̂ . We can then define the scaling factor concerning the backward variables as

Dt =
1

∑
K
j=1 βt( j)

, (3.33)

where

β̂T ( j) =
βT ( j)

∑
K
j=1 βT ( j)

βt( j) =
K

∑
k=1

a jk fk(yt+1|θk)β̂t+1(k)

β̂t( j) = Dtβt( j) =
βt( j)

∑
K
j=1 βt( j)

. (3.34)

3.7 Maximum likelihood estimation

One of common methods for estimating the HMM parameters is the Maximum Likelihood

estimation (MLE) using the Expectation Maximization algorithm (EM). In general, given a

sequence of observations, y, generated from some model with likelihood function L(Θ;y), the
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ML estimator of the model parameter Θ can be given as

Θ̂ = argmax
Θ

L(Θ;y). (3.35)

3.7.1 HMM parameter estimation using the EM algorithm

In the case of HMMs, the EM algorithm is called as the Baum-Welch algorithm (Baum et al.,

1970). The Baum-Welch algorithm is the first version of the EM algorithm used in HMMs. It

was published by Baum et al. (1970) before it was generalised by Dempster et al. (1977).

Baum et al. (1970) and his co-workers investigated the asymptotic properties of EM algorithm

with respect to HMMs. It is used for maximizing the likelihood function when some data is

missing which corresponds to the hidden states in the context of HMMs.

This is based on two main steps, namely, the E-step and M-step. The E-step includes the

computation of conditional expectation of the hidden states z, given the data y and the model

parameters Θ. This step is done by using the forward-backward algorithm. The M-step

maximizes the expectation of the logarithm of the complete data likelihood function, given the

data, y, and the expected states.

Before formulating the EM algorithm, we need to define first the complete data log-likelihood

function, denoted as `c(Θ), by taking the logarithm of compete data likelihood in Equation

(3.11):

`c(Θ) = logLc(Θ;z,y) = log

[
πz1

T

∏
t=2

azt |zt−1

T

∏
t=1

f (yt ;θzt )

]
. (3.36)

The EM procedure considers the HMMs as a missing data problem. That means, the hidden

states of Markov chain, z1,z2, ...,zT , are treated as missing data. So, we need to replace them

by indicator variables defined as

γ j(t) =

 1 if zt = j

0 if zt 6= j
(3.37)

ξ jk(t) =

 1 if zt−1 = j and zt = k

0 if zt−1 6= j or zt 6= k
(3.38)
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Consequently, the complete data log-likelihood function can be written as

`c(Θ) = log

[
K

∏
j=1

π
γ j(1)
j

T

∏
t=2

K

∏
j=1

K

∏
k=1

aξ jk(t)
jk

T

∏
t=1

K

∏
j=1

( f (yt ;θ j))
γ j(t)

]

=
K

∑
j=1

γ j(1) logπ j +
T

∑
t=2

K

∑
j=1

K

∑
k=1

ξ jk(t) loga jk +
T

∑
t=1

K

∑
k=1

γ j(t) log f (yt ;θ j). (3.39)

According to the E-step, the conditional expectation is taken for the complete data

log-likelihood function `c(Θ), given the observations, y, and the current estimate of the model

parameter, Θ(m). Thus, we obtain

Q(Θ,Θ(m)) = E
[
`c(Θ)|y,Θ(m)

]
=

K

∑
j=1

E[γ j(1)|y,Θ(m)] logπ j +
T

∑
t=2

K

∑
j=1

K

∑
k=1

E[ξ jk(t)|y,Θ(m)] loga jk

+
T

∑
t=1

K

∑
k=1

E[γ j(t)|y,Θ(m)] log f (yt ;θ j). (3.40)

Based on the forward-backward recursion, we obtain the expected hidden states as

γ̂ j(t) = E[γ j(t)|y,Θ(m)] = Pr(zt = j|y,Θ(m)) =
α
(m)
t ( j)β (m)

t ( j)

∑
K
j=1 α

(m)
t ( j)β (m)

t ( j)
, (3.41)

and

ξ̂ jk(t) = E[ξ jk(t)|y,Θ(m)] = Pr(zt = j,zt+1 = k|y,Θ(m))

=
α
(m)
t ( j)(m)a(m)

jk f (m)(yt+1)β
(m)
t+1( j)(m)

∑
K
j=1 ∑

K
k=1 α

(m)
t ( j)(m)a(m)

jk f (m)(yt+1)β
(m)
t+1( j)

. (3.42)

Hence, the Q(Θ,Θ(m)) is given as

Q(Θ,Θ(m)) =
K

∑
j=1

γ̂
(m)
j (1) logπ j +

T

∑
t=2

K

∑
j=1

K

∑
k=1

ξ̂
(m)
jk (t) loga jk +

T

∑
t=1

K

∑
k=1

γ̂
(m)
j (t) log f (yt ;θ j).

(3.43)

The derivation of variables γ j(t) and ξ jk(t) is provided in the Appendix A.

The M-step maximizes Q(Θ,Θ(m)) with respect to the model parameters Θ, i.e.

Θ
(m) = argmax

Θ

Q(Θ,Θ(m)). (3.44)
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Note that Equation (3.43) involves three terms, each of which includes one of the model

parameters of interesting; π , A and θ . In order to obtain an estimate for each parameter of the

model, we need to maximize each term separately.

For updating the initial state parameter π , we need to compute the partial derivative of

Q(Θ,Θ(m)) with respect to π j under the constraint ∑
K
l=1 πl = 1:

0 =
∂

∂π j

[
Q(Θ,Θ(m))−L

(
K

∑
l=1

πl−1

)]

=
1
π j

.Pr(zt = 1,y|Θ(m))−L
(3.45)

where L is the Lagrange multiplier. Multiplying Equation (3.45) by π j and summing over j, we

obtain

L = Pr(y|Θ(m))∝ L(Θ(m);y). (3.46)

By inserting Equation (3.46) into Equation (3.45), we can obtain the updated probability for

state j at time t = 1 as

0 =
1
π j

.Pr(zt = j,y|Θ(m))−Pr(y|Θ(m))

π
(m+1)
j =

Pr(zt = j,y|Θ(m))

Pr(y|Θ(m))
= γ̂

(m)
j (1).

(3.47)

Updating for the transition probabilities, A =
{

a jk
}

can be also obtained by taking the partial

derivative of Q(Θ,Θ(m)) with respect to a jk under the constraint ∑
K
l=1 a jl = 1:

0 =
∂

∂a jk

[
Q(Θ,Θ(m))−L

(
K

∑
l=1

a jl−1

)]

=
1

a jk

T−1

∑
t=1

Pr(zt = j,zt+1 = k,y|Θ(m))−L

(3.48)

Multiplying Equation (3.48) by a jk and summing over k, we obtain

L =
T−1

∑
t=1

Pr(zt = j,y|Θ(m)). (3.49)
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By inserting Equation (3.49) into Equation (3.48), we can obtain a new update to the transition

probabilities:

0 =
1

a jk

T

∑
t=2

Pr(zt = j,zt+1 = k,y|Θ(m))−
T−1

∑
t=1

Pr(zt = j,y|Θ(m))

a(m+1)
jk =

∑
T−1
t=1 Pr(zt = j,zt+1 = k,y|Θ(m))

∑
T−1
t=1 Pr(zt = j,y|Θ(m))

=
∑

T−1
t=1 ξ̂

(m)
jk (t)

∑
T−1
t=1 γ̂

(m)
j (t)

(3.50)

The estimate of a jk above is product of dividing the expected number of transitions from state

j to state k on the expected number of transitions from state j.

The maximization of third term of the complete-data log-likelihood in Equation (3.40) is based

on the nature of the state-dependent distribution θ j. This requires a solution to the equation:

∂Q(Θ,Θ(m))

∂θ j
=

∂

∂θ j

[
T

∑
t=1

γ̂
(m)
j (t) log f (yt ;θ j)

]
= 0, for j = 1,2, ...,K. (3.51)

In the case of Normal HMM where

f (yt ;θ j) =
1√

2πσ2
k

exp
{
−(yt −µk)

2

2σ2
k

}
, θ j = (µ j,σ

2
j ), (3.52)

the parameters of the state-specific distribution are updated as

∂Q(Θ,Θ(m))

∂θ j
=

∂

∂ µ j∂σ2
j

 T

∑
t=1

K

∑
j=1

γ̂
(m)
j (t) log

 1√
2πσ2

j

exp

{
−
(yt −µ j)

2

2σ2
j

}
=

∂

∂ µ j∂σ2
j

[
T

∑
t=1

K

∑
j=1

γ̂
(m)
j (t)(−1

2
log2πσ

2
j −

1
2σ2

j
(yt −µ j)

2)

]
= 0

(3.53)

For the mean parameter, we obtain

∂Q(Θ,Θ(m))

∂ µ j
=

T

∑
t=1

γ̂
(m)
j (t)(yt −µ j) = 0 (3.54)

The yields a new update for the state-dependent mean parameter:

µ̂ j
(m+1) =

∑
T
t=1 γ̂

(m)
j (t)yt

∑
T
t=1 γ̂

(m)
j (t)

. (3.55)
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For the variance parameter

∂Q(Θ,Θ(m))

∂σ2
j

=
T

∑
t=1

γ̂
(m)
j (t)(− 1

2σ2
j
+

1
2(σ2

j )
2 (yt −µ j)

2) = 0 (3.56)

which leads to:

σ̂2
j
(m+1)

=
∑

T
t=1 γ̂

(m)
j (t)(yt − µ̂ j

(m+1))2

∑
T
t=1 γ̂

(m)
j (t)

. (3.57)

In case of a Poisson distribution, where

Pr(yt ;λ j) =
e−λ j λ

yt
j

yt!
, (3.58)

the ME estimate of the state-dependent mean parameters λ j, can be obtained as:

∂Q(Θ,Θ(m))

∂θ j
=

∂

∂λ j

[
T

∑
t=1

K

∑
j=1

γ̂
(m)
j (t) log

(
e−λ j λ

yt
j

yt!

)]

=
∂

∂λ j

[
T

∑
t=1

K

∑
j=1

γ̂
(m)
j (t)(yt logλ j− log(yt!)−λ j)

]
= 0

(3.59)

and leads to

∂Q(Θ,Θ(m))

∂λ j
=

1
λ j

T

∑
t=1

γ̂
(m)
j (t)(yt −λ j). (3.60)

Hence, a new value for the λ j is obtain as

λ̂ j
(m+1)

=
∑

T
t=1 γ̂

(m)
j (t)yt

γ̂
(m)
j (t)

. (3.61)

Given the new parameter estimates of the model, we use them again in the E-step and repeat the

algorithm until some convergence criterion has been achieved, e.g. until the resulting change in

Θ is less than some threshold

‖Θ
(m+1)−Θ

(m) ‖< ε

where ε > 0 is a per-specified value and ‖ . ‖ is the Euclidean distance.

The EM algorithm has some limitations. It is slow to converge. Furthermore, it is very

sensitive to the starting points as the likelihood values tend to have multiple local maxima, and
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does not provide any guarantee about the convergence to a global maximum of the likelihood

function (Cappé et al., 2005; Zucchini and MacDonald, 2009). It may converge to a global

maximum depending on the ways of selection the starting values Θ(l) (Baum et al., 1970). This

requires to choose carefully starting points.

One possible advantage of using the Bayesian theory is the reduction of risk of obtaining

spurious modes in cases where the EM algorithm leads to degenerate solutions

(Frühwirth-Schnatter, 2006). In Chapter (4), we will introduce Bayesian inference for

parameter estimation of HMMs using MCMC algorithms.

3.8 Summary

In this chapter, we have given some definitions and provided notation for Hidden Markov

Models. Additionally, we have reviewed some relevant literature on the applications of

HMMs.

We have mainly concentrated on the issue of the computation of the likelihood function of a

HMM due to its importance for model selection problem that will be introduced later in the

Chapter 5. We have illustrated the computation of the likelihood of a HMM based on the

forward recursion. Finally, we have reviewed the estimation of HMM parameters using the

Baum-Welch algorithm as a spacial case of the Expectation-maximization (EM) algorithm.
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Chapter 4

Bayesian Estimation of Hidden Markov

Models

4.1 Introduction

The general aim of this chapter is to explain the implementation of Bayesian estimation of

Hidden Markov models (HMMs).

In section 4.2, we describe the Bayesian HMM and specify prior and posterior distributions.

Section 4.3 demonstrates the estimation of model parameters using the Gibbs sampler. In

section 4.4 we present the estimation methods of hidden states. Section 4.5 develops sampling

algorithms for parametric HMMs such as the Normal and Poisson HMMs. In section 4.6 we

discuss the label switching problem. In section 4.7 we conduct a simulation study to assess the

Gibbs sampler. In section 4.8, the sampler is also assessed using real application data

involving the waiting time of Old Faithful geyser data.

4.2 The Bayesian HMM

Before implementing Bayesian analysis for HMMs, let us begin by defining the Bayesian

model. The posterior distribution for the model parameters according to Bayes Theorem can

be written as

Pr(Θ|y)∝ L(Θ;y)Pr(Θ). (4.1)

where L(Θ;y) as defined before is the observed data likelihood. The complexity of this the

posterior distribution may preclude the possibility of obtaining a fully analytical solution.

Therefore, MCMC methods are used to generate samples from the posterior distribution. The

so-called data augmentation procedure (Tanner and Wong, 1987) is often used with MCMC

methods in Bayesian analysis of HMMs where extra or auxiliary variables are added to the

models in order to facilitate the estimation process of the parameters of the model
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(Frühwirth-Schnatter, 2006). In other words, the hidden states are introduced as "missing data"

and augmented to the parameter space of the sampler. This allows posterior inference for the

model parameters Θ to be obtained by averaging over the distribution of the hidden states, z.

Thus, the process of sampling from the posterior distribution will be more flexible by writing

the posterior in Equation (4.1) as

Pr(Θ,z|y)∝ Lc(Θ;y,z)Pr(Θ),

∝ Pr(y|z,Θ)Pr(z|Θ)Pr(Θ), (4.2)

where the term Lc(Θ;y,z) = Pr(y,z|Θ) represents the complete data likelihood which can be

written according to Bayes’ rules as Pr(y|z,Θ)Pr(z|Θ) and Pr(Θ) represents a prior distribution

on Θ. The joint or complete data posterior above represents a Bayesian model for the HMM

that needs to be sampled using a particular MCMC sampler. In the next section, a Bayesian

HMM is introduced.

4.2.1 Specification of the model and priors

In order to construct the model, we have to understand the role of each parameter in the model.

The parameters of the model Θ = (π,A,θ) can be classified into two parts. The first part

includes the parameters related to the underlying unobserved process, z, which are the initial

and transition probability parameters, π and A respectively. On the other hand, the second part

involves the parameters that are related to the observed process, y, which are called the state-

dependent parameters, θ , in which these parameters are allocated according to a given hidden

state.

According to the Bayesian theory, the model parameters π,A, and θ are unknown quantities

and need to be estimated. Hence, priors should be specified for these quantities. As explained

by Cappé et al. (2005, p.475), we assume that the initial state, z1, is random and its distribution

π does not depend on A. In this case, the distribution π is unknown and therefore regarded

as another parameter about which inference is to be made. A natural choice of prior on the

initial state distribution π and transition matrix A is the Dirichlet distribution. The Dirichlet

distribution, denoted by Dir(δ ), is a continuous distribution with the density function for the

vector u = (u1,u2, ...,uK) given by

f (u;δ ) =
1

B(δ )

K

∏
k=1

uδk−1
k ∝

K

∏
k=1

uδk−1
k , (4.3)
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subject to ∑
K
k=1 uk = 1; 0 < uk < 1, and δk > 0. Note that the normalizing constant B(δ ) is a

multinomial Beta function and can be expressed in terms of the Gamma function as

B(δ ) =
∏

K
j=1 Γ(δ j)

Γ(∑K
j=1 δ j)

, δ = (δ1,δ2, ...,δK), (4.4)

with a hyperparameter δ . The initial distribution π, given a Dirichlet prior, is

Pr(π) =
K

∏
k=1

πk ∝
K

∏
k=1

π
δk−1
k = Dir(δ1,δ2, ...,δK), where δk = 1 ∀ k = 1,2, ...,K. (4.5)

Regarding the transition matrix A, each row of A,
{

a j.
}

, is independently given a Dirichlet

prior

Pr(A) =
K

∏
j=1

a j. ∝
K

∏
j=1

aδ j−1
j. = Dir(δ1,δ2, ...,δK); j,k = 1,2, ...,K. (4.6)

The hyper-parameter δ , used either with the initial state distribution or rows of transition matrix,

can be considered as a prior number of staying or transiting between states respectively.

Regarding the state-dependent parameter θ , we choose priors for θ , expressed by Pr(θ |ϕ), to

be conjugate, i.e. to have the same parametric distributions for the priors and the likelihood, and

hence the posterior. ϕ refers to collectively as the hyper-parameters governing the shape of the

prior distribution of θ . Figure (4.1) shows the parameters of the HMM and all their associated

priors and hyper-parameters.

Figure 4.1: A Graphical model of the prior distributions and hyper-parameters relevant to the
main parameters of a Bayesian HMM.
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According to Bayes’ theorem, we can simply specify from Figure (4.1) the joint posterior

distribution of hidden states, z, and all parameters of the model, Θ = {π,A,θ}. Given the

likelihood function in Equation (4.2), priors and hyper-parameters, and by assuming a priori

independence between the priors related to the hidden states (i.e. π, A) and those concerning

to observed data, θ , the joint posterior distribution of the HMM can be written as

Pr(Θ,z|y) ∝ Pr(y|z,Θ)Pr(z|Θ)Pr(Θ),

= Pr(y|z,θ)Pr(z|π,A)Pr(π)Pr(A)Pr(θ)

= Pr(y|z,θ)Pr(z|π,A)×Dir(π|δ )
K

∏
j=1

Dir(a j.|δ )Pr(θ |ϕ). (4.7)

4.3 Sampling the posterior using MCMC

A full Bayesian analysis can be obtained by sampling the joint posterior distribution (4.7)

using a MCMC method called the Gibbs sampling. This requires partitioning the joint

posterior into blocks (conditional distributions), and thus the sampling process will be simpler

(Geman and Geman, 1984).

The hidden states z and all parameters Θ of the HMM can be estimated using the Gibbs

sampler by sampling from their conditional distributions instead from their joint distribution.

Thus, the parameter space is broken into individual blocks and a two-stage Gibbs sampler is

introduced as a sampling strategy for HMMs. The Gibbs sampler is then implemented by

alternating between drawing z from the conditional posterior distribution Pr(z|Θ,y) (data

augmentation) and drawing Θ from the conditional posterior distribution Pr(Θ|z,y) (Casella

and Robert, 2004). The general form of the two-stage Gibbs sampler is outlined in algorithm

(6).

Algorithm 6 : Sampling from the joint posterior for (Θ,z) using the two-stage Gibbs sampling

1. Start with initial samples z(0) and Θ(0):

2. For m = 1,2, ...,M iterations:

(a) Generate z(m) ∼ Pr(z|y,Θ(m−1));

(b) Generate Θ(m) ∼ Pr(Θ|y,z(m)).

From algorithm (6), it can be seen that sampling from Θ is simplified via integrating the hidden
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states out, where the hidden states in this stage are treated as missing data

Θ
(m) ∼ Pr(Θ|y) = ∑

z
Pr(Θ,z|y). (4.8)

As pointed out by Casella and Robert (2004), the joint sampling from (Θ(m),z(m)) forms a

Markov chain, of which the transition kernel (K) over the joint variables,

K((Θ
′
,z
′
)|(Θ,z)) = Pr(Θ

′ |z′ ,y)Pr(z
′ |Θ,y), (4.9)

has a stationary distribution of Pr(Θ,z|y), and sampling from their conditional distributions,

i.e. Θ(m) and z(m), is also a Markov chain. For example, the sub-chain Θ(m) can be produced

with the transition kernel

K(Θ
′ |Θ) = ∑

z
Pr(Θ

′ |z′ ,y)Pr(z
′ |Θ,y). (4.10)

Analogously, the sequence z(m) is also a Markov chain (Albert and Chib, 1993), with transition

kernel density, i.e. the conditional density of z(m) = z′ given z(m−1) = z is,

K(z
′ |z) =

∫
Θ

Pr(Θ|z,y)Pr(z
′ |Θ,y)dΘ. (4.11)

A good review for the derivation and properties of the Gibbs sampler can be found in Casella

and Robert (2004, Ch. 9).

Particularly, step (b) in algorithm (6) can be broken into several conditional distributions with

respect to the HMM parameters, i.e.

π ∼ Pr(π|z,y),

A∼ Pr(A|y,π,z), (4.12)

and the state-dependent parameter

θ ∼ Pr(θ |z,y). (4.13)

The hidden states in step (a) in algorithm (6) can be given by

z∼ Pr(z|y,π,A,θ). (4.14)
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4.4 State sequence estimation

Sampling from the conditional posterior of hidden states, Pr(z|y,π,A,θ), mentioned in

Equation (4.14), is often achieved using one of two common methods, namely, the Direct

Gibbs (DG) algorithm or local updating of hidden states (Robert et al., 1993) and the so-called

global updating or the forward-backward Gibbs (FBG) algorithm (Chib, 1996). In this regard,

Cappé et al. (2005, p.484) commented that:

" It is thus difficult to make a firm recommendation on which updating scheme

to use. One may start by running local updating, and if its mixing behavior is poor,

try global updating as well. "

The above comment was based on results reported by Robert et al. (1999) who implemented

a comparison study to check the convergence of the two methods. They concluded there is no

evidence in favour of the global compared to the local method. The only difference, which can

be in favor of the DG sampler, is that the FBG sampler uses the forward-backward recursion,

which requires longer time than that is consumed in the DG sampler (Robert et al., 1993). We

therefore use the DG sampler to sample the hidden states of the model.

4.4.1 Sampling the hidden states using the direct Gibbs sampler

Sampling the hidden states using the direct Gibbs (DG) sampler was firstly proposed by Robert

et al. (1993) and it has since been widely used by many authors, for example, Albert and Chib

(1993), Chib (1996), Robert and Titterington (1998), Robert et al. (1999).

According to Chib (1996), We describe the sampling hidden states using DG sampler. Consider

a sequence of discrete hidden states, zt ∈ {1,2, ...,K}, which evolves according to a Markov

chain of first order:

zt |zt−1 ∼Markov(π1,A), (4.15)

where A =
{

a jk
}

is the one-step transition probability matrix of the chain, and π1 is the initial

state distribution at t. At each observation point t, a realization of the state occurs. Then, given

that zt = k, the observation yt is drawn from the population given by the conditional density

yt |yt−1,θk ∼ f (yt |yt−1,θk); k = 1,2, ...,K, (4.16)
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where yt−1 = (y1,y2, ...,yt−1), f (.|yt−1,θk) is a density (or mass) function with respect to the

finite measure σ , and θk is the state-specific parameter of the kth state. Thus, the observation at

time t is generated according to a finite mixture distribution

f (yt |yt−1,zt−1,θ) =

∑
K
k=1 f (yt |yt−1,θk)π1(z1 = k), t = 1

∑
K
k=1 f (yt |yt−1,θk)Pr(zt = k|zt−1), t ≥ 2.

(4.17)

The sampling process is implemented using the sampler by simulating the states one by one

from their full conditional distributions. Hence, the joint posterior of hidden states z in Equation

(4.14) can be written as

Pr(z|y,θ ,A) = Pr(zT |y,θ ,A)× ...×Pr(z2|z3, ...,zT ,y,θ ,A)Pr(z1|z2, ...,zT ,y,θ ,A). (4.18)

Consequently, the simulation of the hidden state sequence requires the calculation of the

probability mass function of each state, i.e., the Gibbs sampler is implemented with T

univariate component blocks. In other words, the hidden states are sampled sequentially from

their full conditional distributions Pr(zt |z−t ,y,Θ) for t = 1,2, ...,T , where

z−t = (z1, ...,zt−1,zt+1, ...,zT ) denotes the whole state chain of z except the state zt . According

to the conditional independence and Markov property assumptions shown from the graphical

representation of the dependence structure of a HMM in Figure (4.1), the conditional posterior

probability distribution Pr(zt |z−t ,y,Θ) is precisely obtained using:

Pr(zt |z−t ,y,Θ)∝ Pr(zt = k|zt+1,zt−1,yt ,A,θ)

∝ Pr(zt = k|zt−1,A)Pr(zt+1|zt = k,A)Pr(yt |zt = k,θ)

∝ azt−1kakzt+1 f (yt |θk), (4.19)

that is, for 2 < t < T the full conditional distribution of zt is

Pr(zt |...,zt−1,zt+1, ...,y,Θ) =
azt−1kakzt+1 f (yt |θk)

∑
K
l=1 azt−1lalzt+1 f (yt |θl)

, (4.20)

while at time t = 1 and t = T , the full conditional distributions of state z1 and the state zT

respectively can be obtained using

Pr(z1|z2, ...,y,Θ) =
πkakz2 f (y1|θk)

∑
K
l=1 πlalz2 f (y1|θl)

, (4.21)
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and

Pr(zT |...zT−1,y,Θ) =
azT−1,k f (yT |θk)

∑
K
l=1 azT−1l f (yT |θl)

. (4.22)

Practically, the DG algorithm is initialized by choosing at random a sequence of hidden states

z(0) with a desired length, T , and initial values for the model parameters,

Θ(0) = (π(0),A(0),θ (0)). Then new hidden states z(m)
t ;m = 1,2, ...,M, are sampled one by one

from a nominal distribution, given the allocation probabilities corresponding to each

observation point yt .

We summarize the sampling process of hidden states using the DG sampler in algorithm (7).

Algorithm 7 : Sampling hidden states using the direct method
Initialization: Start with initial samples at m = 0: z(0),Θ(0) = (π(0),A(0),θ (0)):
For m = 1,2, ...,M iterations:

1. For t = 1, k = 1,2, ...,K;

(a) Compute

P(m)
k1 = Pr(z(m)

1 = k|z(m−1)
2 ,π(m−1),A(m−1),θ (m−1),y)∝

π
(m−1)
k a(m−1)

kz2
f (y1|θ (m−1)

k )

∑
K
l=1 π

(m−1)
l a(m−1)

lz2
f (y1|θ (m−1)

l )
,

(b) Sample z(m)
1 ∼Multi

{
Pr(z(m)

1 = k)
}

.

2. For t = 2,3, ...,T −1, k = 1,2, ...,K;

(a) Compute

P(m)
kt = Pr(z(m)

t = k|z(m−1)
t+1 ,z(m)

t−1,π
(m−1),A(m−1),θ (m−1),y)∝

a(m)
zt−1ka(m−1)

kzt+1
f (yt |θ (m−1)

k )

∑
K
l=1 a(m)

zt−1la
(m−1)
lzt+1

f (yt |θ (m−1)
l )

;

(b) Sample z(m)
t ∼Multi

{
Pr(z(m)

t = k)
}

.

3. For t = T, k = 1,2, ...,K;

(a) Compute

P(m)
kT = Pr(z(m)

T = k|z(m)
T ,π(m−1),A(m−1),θ (m−1),y)∝

a(m)
zT−1k f (yT |θ (m−1)

k )

∑
K
l=1 a(m)

zT−1l f (yT |θ (m−1)
l )

;

(b) Sample z(m)
T ∼Multi

{
Pr(z(m)

T = k)
}

.

4. Increment m.

From above algorithm, the allocation probabilities can be stored in a matrix of dimension (K×

T ), called P, where its rows represent the number of states K and its columns represent the
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length of data, T . The first hidden state, z1, will be sampled given the first column of the

matrix P. For t = 2,3, ...,T − 1, hidden states will be successively sampled one by one given

the columns from t = 2 until t = T −1. Finally the last hidden state zT , is sampled based on the

last column in the matrix of allocation probabilities P.

After an MCMC run, it is possible to obtain a marginal estimate for each hidden state using

P̂r(zt = k|y) = 1
M

M

∑
m=1

I(z(m)
t = k); m = 1,2, ...,M. (4.23)

These probabilities are essentially averages that are obtained by dividing the frequency of each

state k over the number of iterations M.

4.4.2 The most likely state sequence

To estimate the optimal hidden state sequence, the maximum a posteriori (MAP) estimator is

usually applied. This estimator can be obtained using an effective approach called the Viterbi

algorithm (Viterbi, 1967) which is essentially based on the forward-backward computations.

This algorithm is based on maximizing the conditional posterior distribution, Pr(z|y,π,A,θ),

given in Equation (4.14):

ẑ = argmax
z

Pr(z|y,Θ).

However, this approach suffers from the same stability issues as the forward-backward

recursions. Furthermore, it does not fully take into account the uncertainty in the model

parameters. A better method that includes estimating the hidden state sequence marginally

over the model parameters:

Pr(z|y) =
∫

Pr(z|y,Θ)Pr(Θ)dΘ≈ 1
M

M

∑
m=1

Pr(z|y,Θ(m)),

where Θ(m);m = 1,2, ...,M, is a sequence of sampled model parameters from Markov chain.

Scott (2002) pointed out that such an approach, averaging over Θ, result in destroying the

Markov structure of the model. He also added that maximizing Pr(z|y) rather than Pr(z|y,Θ),

using Viterbi algorithm, is still difficult. A simple solution is to compute the most frequent

state at time t of each of the drawn hidden states sequences zt over an MCMC run, where

zt = (zt
1, ...,z

t
M) for t = 1,2, ...,T .
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4.5 Bayesian parametric distributions-based HMMs

In this section we describe HMMs when the state-dependent distribution can take each of the

two most widely used exponential family distributions, namely, the Normal and Poisson

distributions.

4.5.1 Bayesian Normal HMM

Consider a K-state Normal HMM, that involves conditionally independent Normal variables,

yt ; t = 1,2, ...,T , whose parameters (µk,σ
2
k ), depend on a hidden state zt such that

z = (z1,z2, ...,zT ) is a Markov chain defined on the state-space {1,2, ...,K}. The Markov chain

zt ; t = 1,2, ...,T, is modelled with a transition matrix A =
{

a jk
}

, and an initial state

distribution πk where j,k = 1,2, ...,K, are such that

zt ∼ Pr(π j); t = 1

zt |zt−1 ∼ Pr(azt−1 .); t = 2,3, ...,T,

and

yt |zt = k,µk,σ
2
k ∼ φk(yt |µk,σ

2
k ),

where φk(yt |µk,σ
2
k ) represent the kth state-dependent probability density function of the Normal

distribution

φk(yt |µk,σ
2
k ) =

1√
2πσ2

k

exp

{
−(yt −µk)

2

2σ2
k

}
.

To simplify of the notation, we parametrize the Normal distribution using the precision

parameter τ rather than the variance, i.e. σ2 =
1
τ

, such that

φk(yt |µk,τ
−1
k ) =

√
τk√
2π

exp

{
−τk (yt −µk)

2

2

}
. (4.24)

Sampling from the Normal HMM requires specification of priors on the parameters

Θ = (π,A,µ,τ−1). Beginning with the initial state distribution π and the matrix of probability

transitions A, we assume that the initial state distribution π and each row a j. in A, where

A =
{

a jk
}

; j,k = 1,2, ...,K, follows independently a Dirichlet distribution with parameter
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δ = (δ1,δ2, ...,δK),

π ∼ Dir(δ1,δ2, ...,δK),{
a j.
}
∼ Dir(δ1,δ2, ...,δK), for j = 1,2, ...,K. (4.25)

For the parameters of the Normal distribution µ and τ−1, we assume a conjugate Normal prior

for each µk with mean η and variance ζ−1, i.e.

µk ∼ N(η ,ζ−1), (4.26)

and a Gamma prior for each precision τ
−1
k with parameters κ and ν , i.e.

τ
−1
k ∼ Gamma(κ,ν), independently ∀ k = 1,2, ...,K, (4.27)

where η ,ζ ,κ and ν are hyper-parameters. To alleviate the influence on the resulting inference,

values or hyper-priors on those hyper-parameters are often given non-informative priors (Cappé

et al., 2005, p.474). The priors can then be introduced as

Pr(π|δ )∝
K

∏
k=1

π
δk−1
k . (4.28)

Pr(A|δ )∝
K

∏
j=1

K

∏
k=1

a jk
δk−1. (4.29)

Pr(µk|ζ ,η)∝ exp
{
−ζ (µk−η)2

2

}
. (4.30)

Pr(τk|κ,ν)∝ τ
κ−1
k exp{−ντk} . (4.31)

Given a sequence of hidden states z, the observed likelihood of Normal HMM with K-states is

defined as

Lc(π,A,µ,τ;z,y) = πz1φz1(y1|µz1 ,τz1)az1z2φz2(y2|µz2 ,τz2), ...,azT−1zT φzT (yT |µzT ,τzT )

=
K

∏
k=1

π
Nk
k

K

∏
k=1

K

∏
j=1

aN jk
jk

K

∏
k=1

T

∏
t:zt=k

φk(yt |µk,τk), (4.32)

where Nk = ∑
T
t=1 I(zt=k) denotes the number of transitions from state k at time t and

N jk = ∑
T−1
t=1 I(zt=k,zt−1= j) denotes the number of transitions from state j at time t−1 into the

state k at time t. Note that the first two terms in Equation (4.32), ∏
K
k=1 π

Nk
k and ∏

K
k=1 ∏

K
j=1 aN jk

jk ,
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are used for making inference about the hidden part of the model, whereas the last,

∏
K
k=1 ∏

T
t:zt=k φk(yt |µk,τk), is used for inference about the state-dependent Normal distribution.

The joint distribution for all parameters of a Normal HMM can then be written as

Pr(π,A,µk,τk)∝
K

∏
k=1

π
Nk
k

K

∏
k=1

K

∏
j=1

aN jk
jk

K

∏
k=1

T

∏
t:zt=k

√
τk exp

{
−τk(yt −µk)

2

2

}
×

K

∏
k=1

π
δk−1

K

∏
k=1

K

∏
j=1

aδk−1
jk × exp

{
−ζ (µk−η)2

2

}
× τ

κ−1
k exp{−ντk} . (4.33)

Using the Gibbs sampler, the joint distribution in Equation (4.33) can be decomposed into full

conditional posterior distributions, independently for each k ∈ {1,2, ...,K}, of the parameters of

the model as follows

Pr(πk|y,z,µ,τ)∝
K

∏
k=1

π
Nk+δk−1 = Dir(Nk +δk), (4.34)

Pr(A|y,z,µ,τ)∝
K

∏
j=1

K

∏
k=1

a jk
N jk+δk−1 = Dir(N j.+δk), (4.35)

Pr(µk|y,z,τ,A) = N
{

ηζ + τk ∑t:zt=k yt

Tkτk +η
,

1
Tkτk +η

}
, (4.36)

where Tk = ∑
T
t=1 I(zt=k) denotes the number of observations generated from the state k and

∑t:zt=k yt denotes the summation of observations at state k. The full conditional posterior of the

precision parameter is

Pr(τk|y,z,µ,A) = Gamma
{

κ +0.5Tk,ν +0.5s2(v)
}
, (4.37)

where s2(v) = ∑
T
t=1 I(zt=k)(yt − µk)

2; k = 1,2, ...,K. For more details about deriving the full

conditional posterior distribution of Normal HMM, see Appendix (A).

By following algorithm (7), a sequence of hidden states z of a Normal HMM can be locally

drawn using the DG sampler as follows

Pr(z1|z2, ...,y,π,A,µ,τ−1) =
πkakz2φ(y1|µk,τ

−1
k )

∑
K
l=1 πlalz2φ(y1|µl,τ

−1
l )

, for t = 1, (4.38)

for 2 < t < T the full conditional distribution of zt is

Pr(zt |...,zt−1,zt+1, ...,y,A,µ,τ−1) =
azt−1kakzt+1φ(yt |µk,τ

−1
k )

∑
K
l=1 azt−1lalzt+1φ(yt |µl,τ

−1
l )

, (4.39)
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and for t = T

Pr(zT |...zT−1,y,A,µ,τ−1) =
azT−1kφ(yT |µk,τ

−1
k )

∑
K
l=1 azT−1lφ(yT |µl,τ

−1
l )

. (4.40)

We extended algorithm (6) described in section (4.3) to involve the sampling process of full

conditional distributions of the parameters of K-state Normal HMM: π, A,µ , and τ . Algorithm

(8) illustrates the full Gibbs sampling process of the parameters of a Normal HMM with K

states.

Algorithm 8 : The full Gibbs sampling of K-state Normal HMM.
Initialization: Start with initial samples at m = 0: z(0),Θ(0) = (π(0),A(0),µ(0),τ(0)):
For m = 1,2, ...,M iterations:

1. Compute the sufficient statistics required;
Tk = ∑

T
t=1 I(z(m−1)

t =k)
, ∑t:z(m−1)

t =k
yt = ∑

T
t=1 I(z(m−1)

t =k)
yt , and ,

2. update µ
(m)
k from Equation (4.36).

3. Compute s(v)k

(m)
= ∑

T
t=1 I(z(m−1)

t =k)
(yt −µ

(m)
k )2; k = 1,2, ...,K, and

4. update τk
(m) from Equation (4.37).

5. Compute the transition counts N(m)
j , N(m)

jk , and,

6. update π(m) and A(m) from Equations (4.34) and (4.35) respectively.

7. Sample the hidden states z using algorithm (7).

8. Increment m.

4.5.2 Bayesian Poisson HMM

In this section, we describe a Bayesian HMM, in which the observed process follows a state-

specific Poisson distribution. As with the Bayesian Normal HMM, we can construct a Bayesian

PHMM. The priors and posteriors of the parameters π and A are the same for both models. The

only difference is in deriving the likelihood and posterior of the state-based distribution of the

PHMM.

To specify the model, assume y=(y1,y2, ...,yT ) are realizations (counts) of an observed process

Y defined on the observed discrete space, N, where N denotes non-negative integer values. The

resulting realizations yt , with parameter of interest λ , can follow a Poisson distribution as

yt ∼ Poi(λ ); λ > 0. (4.41)
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The probability mass function of the observed count yt is then given by

Pr(yt |λ )∼
e−λ λ yt

yt!
; y≥ 0. (4.42)

In the PHMMs context, the observed process at any time is Poisson with a mean parameter λ ,

which depends only on an underlying hidden state, zt , which in turn follows a Markov property

and takes discrete values k defined on the state space {1,2, ..,K}. Thus, the standard density in

Equation (4.42) can be modified by defining the state-dependent probability density, given by

Pr(yt |zt = k,λt) =
e−λzt λ

yt
zt

yt!
; j = 1,2, ...,K. (4.43)

A Bayesian PHMM is given by

Pr(π,A,λ |y,z)∝ Lc(π,A,λ ;y,z)Pr(π,A,λ ),

∝ Pr(y|z,λ )Pr(z|π,A)Pr(π)Pr(A)Pr(λ ).
(4.44)

where Lc(π,A,λ ;y,z) represents the complete likelihood function of the model. As with the

Bayesian Normal HMM derived earlier, the priors of both π and A are given a Dirichlet

distribution with parameter δ. For the state-based parameter λ , we assume a Gamma

distribution as a conjugate prior on the parameter λ (Gelman and Hill, 2007, p.52), such that

λ ∼ Gamma(κ,ν),

where κ and ν are hyper-parameters. Thus,

Pr(λ )∝ λ
κ−1
k e−νλk . (4.45)

The Bayesian PHMM can be then given by

Pr(π,A,λ |y,z)∝
K

∏
k=1

π
Nk
k

K

∏
k=1

K

∏
j=1

aN jk
jk

K

∏
k=1

T

∏
t:zt=k

e−λzt λ
yt
zt
×

K

∏
k=1

π
δk−1

K

∏
k=1

K

∏
j=1

aδk−1
jk λ

κ−1
k e−νλk .

(4.46)
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The full conditional posterior of λk, independently for each k ∈ {1,2, ...,K}, is given by

Pr(λk|y,z) ∝

T

∏
t=1

Pr(yt |λk)Pr(λk),

∝

T

∏
t=1

[
e(−λk)(λk)

yt
]
×
[
λ

κ−1
k e−νλk

]
,

= λ
∑t:zt=k yt+κ−1
k e−(ν+∑t:zt=k Tk)λk ,

= Gamma(κ + ∑
t:zt=k

yt ,ν + ∑
t:zt=k

Tk),

(4.47)

where Tk is the state-based observations size and ∑t:zt=k yt is the sum of the observations

generated, given state k. The full conditional posteriors of π and A used with PHMM are the

same as those used with Normal HMM (Equations (4.34-4.35)). For more details about

deriving the full conditional posterior distribution of a Poisson HMM, see Appendix (A).

A local updating for the sequence of hidden states z of the PHMM can be introduced as

follows (Robert and Titterington, 1998):

Pr(z1 = j|z2, ...,y,π,A,λ ) =
π ja jz2λ

y1
j .e−λ j

∑
K
l=1 πlalz2λ

y1
l .e−λl

, for t = 1, (4.48)

for 2 < t < T the full conditional distribution of zt is

Pr(zt = j|...,zt−1,zt+1, ...,y,A,λ ) =
azt−1 ja jzt+1λ

yt
l .e−λ j

∑
K
l=1 azt−1lalzt+1λ

yt
l .e−λl

, (4.49)

and for t = T

Pr(zT = j|...zT−1,y,A,λ ) =
azT−1 jλ

yT−1
j .e−λ j

∑
K
l=1 azT−1lλ

yT−1
l .e−λl

. (4.50)

Algorithm (9) shows the full Gibbs sampling for the parameters and hidden states of PHMM

with K states.
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Algorithm 9 : The full Gibbs sampling of K-state PHMM.
Initialization: Start with initial samples at m = 0: z(0),Θ(0) = (π(0),A(0),λ (0)):
For m = 1,2, ...,M iterations:

1. Compute the sufficient statistics required;
Tk = ∑

T
t=1 I(z(m−1)

t =k)
, ∑t:z(m−1)

t =k
yt = ∑

T
t=1 I(z(m−1)

t =k)
yt , and

2. update λ
(m)
k from Equation (4.47).

3. Compute the counts N(m)
j , N(m)

jk , and,

4. update π(m) and A(m) from Equations (4.34) and (4.35) respectively.

5. Sample the hidden states z using Equations (4.48-4.50).

6. Increment m.

4.6 Label switching

A problem that substantially affects the MCMC outputs, where the marginal posterior

distributions of all components or state-specific parameters are identical, is label switching or

non-identifiability (Stephens, 2000; Jasra et al., 2005; Papastamoulis and Iliopoulos, 2010). In

the HMMs context, the main reason for this problem is that the likelihood of these models

L(Θ;y) = ∑
∀z

Lc(Θ;y,z),

is invariant under arbitrary permutations of labels of hidden state zt . In other words, let Pk be

the set of k! permutations of the state labels {1, ...,k}, where zt = k ∀t ∈ T , and ρ ∈Pk is some

arbitrary permutation, then the observed likelihood

L(ρ(Θ);y) = ∑
∀z

Lc(Θ;y,ρ(z))

= ∑
∀z

Lc(ρ(Θ);y,z)

= L(θρ(1), ...,θρ(k),aρ(1),., ...,aρ(k),.,πρ(1), ...,πρ(k);y); k = 1,2, ...,K,

= L(Θ;y), (4.51)

will stay invariant under any other relabelling of the states. It follows that if the parameters for

two states are exchangeable in their prior distribution, then the resulting posterior distribution

will be identical for all k (Jasra et al., 2005; Papastamoulis and Iliopoulos, 2010).

Figure (4.2) illustrates the consequence of the non-identifiability of the posterior distribution

of a Normal HMM with 6-states fitted to the Galaxy data. It can observe, especially, that
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the middle four marginal posterior distributions for the state-specific mean parameters, µk, are

subject to label switching, induced by random permutations of the hidden state labels occur

over an MCMC run.
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Figure 4.2: Label switching of Galaxy data fitted to 6-state Normal HMM using the
unconstrained DG sampler.

A simple way that is introduced by Diebolt and Robert (1994) is to re-order the posteriors

of the parameters by imposing artificial identifiability constraints (IC) on one or more of the

parameters, which aims at breaking the symmetry in the prior and thus the posterior distribution.

We adopt this method throughout this thesis. For example, we impose a constraint on the state-

specific mean parameter of the Normal HMM fitted to the Galaxy data

µ1 < µ2 < ... < µk.

Figure (4.3) shows the solution of label switching problem, given above the constraint on µk.
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Figure 4.3: Using the IC method to solve the label switching for a Normal HMM with six
states fitted to the Galaxy data.

4.7 A simulation study

In this section, we carry out a simulation study to assess our sampler using a synthetic data set

of length T = 300 generated from a 3-state Normal HMM with parameters

Θ =

π =


0.2

0.6

0.2

 ,A =


0.6 0.3 0.1

0.1 0.8 0.1

0.1 0.3 0.6

 ,µ=


5

10

20

 ,σ2 =


1

0.7

1.6


 ,

in which we observe Normal variables yt ∼ N(µk,σ
2
k ); k = 1,2,3, whose parameters (µk,σ

2
k )

depend on a hidden state zt such that z1,z2, ...,zT is a Markov chain. These values of the model

parameters were made to reflect real life situations where the three components have variances

that makes distinguishing them difficult. The histogram of the synthetic data set is displayed in

Figure (4.4). By following algorithm (8), we then fit a 3-state Normal HMM to the synthetic

data set simulated from the above model. We specify non-informative priors for the model

parameters. We set a Gamma distribution with parameterization: Gamma(0.001,0.001), on the

precision parameter, τ , and a Normal distribution with parameterization: N(0,0.001) on the

mean parameter, µ. Regarding the initial state, π and transition distribution A, we assign a

Dirichlet prior with hyper-parameter δ with a value equal to 1. We use identifiability constrains

on the mean parameters so that µ1 < µ2 < ... < µk to treat the occurrence of the label switching
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problem.
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Figure 4.4: A histogram of the synthetic data generated from a Normal HMM with 3 states.

Case I:

We run 10 parallel chains, with different dispersed starting points, of length 1000 iterations each,

for each parameter. To monitor the behaviour of produced chains from the sampler, we present

all 1000 iterations, without burn-in or thinning. The 3-state Normal HMM adopted in this study

includes 18 parameters; 3 for the initial state distribution, 9 for the transition distribution, 3

for mean parameter and 3 for variance parameter. Therefore, 10× 18 = 180 chains will be

generated.

4.7.1 Results of Case I

Figures (4.5-4.8) display trace-plots of 10 parallel chains generated using the DG sampler of

all 18 parameters; πk, a jk, µk and σk, where j,k = 1,2,3, respectively. Using visual inspection,

we can see from the trace-plots concerning the DG sampler that all the posteriors of the model

parameters traversed rapidly their target distributions with very few steps and were not

influenced by the high dispersed starting points. In addition, they do not show any particular

pattern and appear to mix well. It can be noted that the sampler has reached its target

distribution almost at the 50th iteration. As a result, one can adopt the first 10% of the total of

iterations as a burn-in period, i.e. the first 100 iterations. To carefully examine convergence,

we calculated the Gelman-Rubin statistic, R̂, from the last 900 iterations. It can be seen from
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Tables (4.1-4.4) that all values of Gelman-Rubin statistic, R̂, were less than 1.1 for all 18

posterior of the model parameters. This would give another indicator of convergence of the

chains to their posterior distributions.

Mean Parameter
Method µ1 µ2 µ3
DG 0.999 0.999 1.001

Table 4.1: Gelman and Rubin’s statistics, R, for the mean parameters obtained using DG
algorithm. Value less than 1.1 suggests that we could assume the convergence of
the MCMC chains.

Variance Parameter
Method σ2

1 σ2
2 σ2

3
DG 0.999 1.004 0.999

Table 4.2: Gelman and Rubin’s statistics, R, for the variance parameters obtained using DG
algorithm. Value less than 1.1 suggests that we could assume the convergence of
the MCMC chains.

Initial Parameter
Method π1 π2 π3
DG 1.000 1.000 0.999

Table 4.3: Gelman and Rubin’s statistics, R, for the initial parameters obtained using DG
algorithm. Value less than 1.1 suggests that we could assume the convergence of
the MCMC chains.

Transition Parameter
Method a11 a12 a13 a21 a22 a23 a31 a32 a33
DG 0.999 0.999 0.999 0.999 1.005 0.999 0.999 0.999 1.001

Table 4.4: Gelman and Rubin’s statistics, R, for the transition parameters obtained using DG
algorithm. Value less than 1.1 suggests that we could assume the convergence of
the MCMC chains.
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Figure 4.5: Trace-plots of 10 parallel MCMC runs of the mean parameter, µ j; j = 1,2,3.
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Figure 4.6: Trace-plots of 10 parallel MCMC runs of the variance parameter, σ2
j ; j = 1,2,3.
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Figure 4.7: Trace-plots of 10 parallel MCMC runs of the initial distribution parameter, π j; j =
1,2,3.
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Figure 4.8: Trace-plots of 10 parallel MCMC runs of the probability transition parameters, a jk; j,k = 1,2,3.
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Case II:

In the Case II we continue to assess the sampler using the synthetic data of the previous

subsection, but inference for the model parameters will be implemented using a larger number

of iterations. Thus, we adopt the same information provided in the preceding sub-section with

respect to the priors on the model parameters. We also follow algorithm (8) for sampling from

a Bayesian Normal HMM, mentioned in subsection (4.5.1). In the previous sub-section, we

ran 10 chains, each one with 1000 iterations. Here, we run only one long chain and summarize

the results based on that chain. We run the sampler for an iterative period of length M=10000

iterations (without thinning). We discard the first 1000 iterations from the original iterations as

a burn-in period; the last 9000 iterations will be adopted to summarize the posterior results.

We calculate the posterior means of the model parameters and also their corresponding 95%

credible intervals. We apply the IC method on the mean parameter, µk to treat the

non-identifiability problem. We provide the trace-plots of posterior distributions of all model

parameters. We also provide the plots of the ACF functions for all parameters to check

whether there is inherent correlation in the resulting posterior samples.

4.7.2 Results of Case II

For all model parameters, we display the results of posterior means and their corresponding

95% CIs as shown in Tables (4.5-4.8). Figure (4.9) displays visually only the estimation results

of the mean parameter µ. It can be seen that the trace-plots of µ j; j = 1,2,3, induced by the

DG sampler were faster to reach their target distributions using only very few steps. Also, the

sampler has good mixing along marginal chains. Figure (4.10) shows the fitting results of 3-

state NHMM to the synthetic data.

The summaries of posterior estimates in Tables (4.5-4.8) suggest a close consistency between

the estimated parameters and data generating mechanism for the most parameters. Note that the

estimates of the mean parameter, µ̂ j; j = 1,2,3, were somewhat consistent with the parameters

of the data generating mechanism. However, this was at the cost of the variance parameter, e.g.

σ̂2
3 =1.296 that was far from the true parameter (1.6). The same thing can be observed for the

π̂3=0.108 and â33=0.514. Nevertheless, they were all within the range of parameter space.
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Parameter µ̂1 µ̂2 µ̂3

True 5 10 20
Estimated 4.883 9.951 19.595
95%CI (4.679, 5.088) (9.847, 10.054) (19.137, 20.052)

Table 4.5: Results of the estimation of mean parameter µk; k = 1,2,3, with 95% CI.

Parameter σ̂2
1 σ̂2

2 σ̂2
3

True 1 0.7 1.6
Estimated 0.8875 0.7377 1.2956
95%CI (0.739, 1.035) (0.664, 0.811) (0.957, 1.634)

Table 4.6: Results of the estimation of variance parameter σ2
k ; k = 1,2,3, with 95% CI.

Parameter π̂1 π̂2 π̂3

True 0.2 0.6 0.2
Estimated 0.244 0.647 0.108
95%CI (0.196,0.292) (0.593, 0.701) (0.074, 0.144)

Table 4.7: Results of the estimation of initial state parameter πk; k = 1,2,3, with 95% CI.

Parameter â11 â12 â13

True 0.6 0.3 0.1
Estimated 0.696 0.277 0.026
95%CI (0.594, 0.799) (0.177, 0.376) (0.009, 0.062)
Parameter â21 â22 â23

True 0.1 0.8 0.1
Estimated 0.086 0.842 0.071
95%CI (0.046, 0.125) (0.791, 0.894) (0.034, 0.107)
Parameter â31 â32 â33

True 0.1 0.3 0.6
Estimated 0.171 0.314 0.514
95%CI (0.049, 0.292) (0.162, 0.466) (0.351, 0.678)

Table 4.8: Results of the estimation of transition parameters a jk; j,k = 1,2,3, with 95% CI.
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Figure 4.9: The graphs show simulations from the posterior distribution of the mean parameter
µk; k = 1,2,3, of 3-state Normal HMM. The graphs in the first column represent
the trace-plots of the mean parameters (µ1− µ3). The vertical green line in the
trace-plots separates the burned-in samples (M=1000) from those used for the
future inference (M=9000), and the horizontal black dashed line shows the true
parameter. The graphs in the second column show the histograms of the densities
of the mean parameters (µ1− µ3). The black solid and red dashed vertical lines
show the true parameter and posterior mean respectively. The graphs in the third
column show the autocorrelation functions of the mean parameters (µ1−µ3).
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Figure 4.10: Fitting the densities of a Normal HMM with 3 states to the synthetic data using
the DG sampler.

4.8 Application to real data

In this section we assess the performance of the sampler using a real application involving the

waiting times of the Old Faithful geyser. These data consist of 299 observations which

represent the waiting time, in minutes, between two successive eruptions. Old Faithful is a

geyser in the Yellowstone National Park in Wyoming, USA (Hardle, 1991). These data have

been fitted using Normal HMMs with a different number of states and also using different

estimation methods. For instance, Robert and Titterington (1998) used the Bayesian

framework to estimate the parameters of model fitted to those data. On the other hand,

Zucchini and MacDonald (2009) used the frequentist framework for the same purpose. Figure

(4.11) displays the trace-plot of a sequence of the waiting times between eruptions of the Old

Faithful geyser. From Figure (4.11), it can note that the sequence appears a high heterogeneity

among observations. In addition, these data have a strong serial dependence in the behaviour

of the waiting times as shown from the sample autocorrelation function in Figure (4.12).
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Figure 4.11: The waiting times between successive eruptions of the Old Faithful geyser.
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Figure 4.12: Sample ACF of the waiting times of the Old Faithful geyser data.

We consider the same information for the prior distributions on the initial state distribution π,

the rows of transition matrix A, and on the state-dependent Normal parameters, µ and σ2 as

in the previous simulation study. We also run three parallel chains, each of which of 10000

iterations. We discard the first 1000 iterations as a burn-in period and adopt the last 9000

iterations for inference. We apply identifiability constraints on the mean parameter, µk, to

address the label-switching problem.
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4.8.1 Results

We display the results of posterior means with 95% CIs and also the values of Gelman-Rubin

statistic, R̂, for all model parameters as shown in Table (4.9). For comparison purposes, we

also include in the same table the estimation results obtained from the previous studies on

these data. We also present only the trace-plots of state-specific mean parameter,

µ j; j = 1,2,3, as shown in Figure (4.13).

It can be noted that the Gelman-Rubin statistic, R̂, provides values less than 1.1 for all model

parameters. This may reflect the fact that convergence has been achieved. The results of the

parameter estimates obtained from the sampler were somewhat consistent with the results

obtained by and Robert and Titterington (1998) as shown from Table (4.9). The results

introduced by Zucchini and MacDonald (2009) were obtained using the frequentist approach,

whereas those obtained by Robert and Titterington (1998) were using the Bayesian approach.

Although the estimates introduced by Zucchini and MacDonald (2009) do not take into

account the uncertainty about the model parameters, this consistency in results may be due to

the fact that we used more non-informative priors. Hence, the results obtained by the Bayesian

approach can be closer to those obtained using the classic approach.
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Figure 4.13: Trace-plots of the mean parameter, µ j, of 3-state Normal HMM fitted to the
waiting times of the Old Faithful geyser data.

Figure (4.14) displays state-specific means of the waiting times (at the bottom), plotted
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according to the most likely state sequence (at the top) which interprets the hidden pattern of

eruptions. The figure reveals high levels of eruptions occur at the state1 (µ̂1 = 55.305) and

state 3 (µ̂3 = 84.942), whereas a low level of eruptions occurs at the state 2 (µ̂2 = 75.418).
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Method π̂ Â µ̂ σ̂

DG


0.341(0.284,0.398)

R̂ = 1.006
0.265(0.193,0.336)

R̂ = 1.008
0.393(0.325,0.461)

R̂ = 0.999




0.009(0.007,0.028) 0.034(0.019,0.097) 0.956(0.889,1.022)

R̂ = 0.999 R̂ = 0.999 R̂ = 0.999
0.293(0.165,0.422) 0.557(0.401,0.714) 0.148(0.009,0.287)

R̂ = 0.999 R̂ = 0.999 R̂ = 0.999
0.669(0.574,0.764) 0.266(0.170,0.362) 0.064(0.005,0.122)

R̂ = 0.999 R̂ = 0.999 R̂ = 1.991




55.305(53.926,56.684)

R̂ = 1.002
75.418(74.144,76.692)

R̂ = 1.004
84.942(83.780,86.104)

R̂ = 1.001




5.899(4.837,6.962)

R̂ = 1.006
4.008(2.695,5.322)

R̂ = 1.008
5.516(4.748,6.284)

R̂ = 0.999



Robert and Titterington (1998) —

0.004 0.001 0.995
0.271 0.667 0.062
0.571 0.306 0.123

 55.400
75.400
84.900

 5.983
3.794
5.468



Zucchini and MacDonald (2009)

0.342
0.259
0.399

 0.000 0.000 1.000
0.298 0.575 0.127
0.662 0.276 0.062

 55.300
75.300
84.930

 5.809
3.808
5.433


Table 4.9: The results of the parameter estimates of 3-state Normal HMM using the DG sampler on the waiting times of the Old Faithful geyser data. The last

two rows display the results obtained from previous studies. The numbers in brackets represent the corresponding 95% CIs.
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Figure 4.14: Trace-plot of the most frequent hidden state sequence (Top). State-dependent means (dashed horizontal points) vs. observations, depicted by the
most likely state sequence (Bottom).
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4.9 Summary

In this chapter, we have introduced a parametric HMM from a Bayesian viewpoint. We have

specified the priors and full conditional distributions of all parameters of the model. We have

developed Bayesian HMMs where observations, conditioned on hidden states, follow a

parametric distribution such as a Normal or a Poisson. We have developed the special

sampling algorithms of these models. We have also introduced the issue of sampling the

hidden state sequences, which was implemented using the Direct Gibbs (DG) sampler or the

so-called local updating. In addition, we have illustrated how obtaining the most likely state

sequence, given several state sequences sampled over an MCMC run. This would allows us

observing the more frequent state sequence over time as well understanding the structural

nature of the data. We have assessed the sampler using simulated and real application data.

The performance of the sampler was examined based on the trace-plots of all model

parameters. We also used the Gelman-Rubin statistics to check convergence of the posterior

chains produced from the sampler. The results have shown that the sampler provides

satisfactory convergence results and it has a good mixing.
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Chapter 5

Bayesian Selection Criteria for HMMs

5.1 Introduction

This chapter develops our contribution towards model selection for HMMs. There are a variety

of ways of thinking about HMMs. We will expand on this idea in the next chapter, where we

seek to find a model with an optimal number of hidden states.

In this aspect, our contribution involves the introduction of three groups of model selection

criteria. The first group includes two of the most commonly used criteria which are the Akaike

information criterion (AIC) (Akaike, 1973) and the Bayesian information criterion (BIC)

(Schwarz, 1978). More specifically, we contribute in developing several versions for AIC and

BIC that are modified using the Bayesian principle as a new application in the HMMs context.

Basically, such an idea was first proposed by Brooks (2002) who applied it to autoregressive

models. The second group includes the more popular Bayesian metric which is the deviance

information criterion (DIC) (Spiegelhalter et al., 2002). We use some versions of this criterion

as proposed by Celeux et al. (2006), who examined them on mixture models, for the HMM

selection. In addition, we contribute in developing new versions for the same criterion in the

HMM context. Finally, the third group addresses the model selection issue from a predictive

perspective. In this context, our contribution is based on applying a fully Bayesian criterion

called the widely applicable information (WAIC) (Watanabe, 2009) for HMMs. To our

knowledge, the use of WAIC for HMMs has not been applied till writing this thesis.

In many applications of HMMs, the number of hidden states may be assumed known a priori,

either from the context of the application or according to a scientific insight (Scott, 2002). For

example, in an attempt to analyse the behavior of the Gross National Product (GNP) of U.S.,

Hamilton (1989) used Gaussian Markov-switching models to explain the recession status of

GNP. He wished to consider two states of recession, namely, “Contraction” and “Expansion”,

and estimated these by assuming a hidden Markov chain. Albert (1991) used two states to

model a series of counts of myoclonic seizures suffered by one patient on 204 consecutive
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days. The high or low seizure activity states of the patient were modelled using a two-state

Poisson HMM. Using Poisson HMMs, Leroux and Puterman (1992) used data on counts of

movements in five-second intervals of one fetal lamb (240 intervals). They classified the

physiological state of the fetal lamb into two states; a relaxed state and an excited state.

Conversely, some applications may assume that the number of underlying states is unknown

and regard this quantity as a random variable to be estimated along with the other parameters

of the model. For example, the reversible jump MCMC method was designed by Richardson

and Green (1997) to estimate the number of components in independent mixtures and has been

extended by Robert et al. (2000) to HMMs. We will not consider this method further. It is

often computationally intensive. It also requires some caution when designing moves to ensure

that Markov chains mix well both within model spaces (same number of states, different

parameters) and amongst model spaces (different number of states). In addition, it may have

some convergence problems. Furthermore, this method imposes challenges on the prior

selection for the number of hidden states K (Fan and Sisson, 2011).

However, for our purposes, whilst we do not wish to made strong a priori assumptions about

the number of states, the applications in the next chapter assume that we have to interpret the

model in relation to a fixed number of states. Therefore, this thesis takes into account the issue

of model selection in the HMM context by assuming a fixed but unknown number of hidden

states, K ∈ (1,2, ...,Kmax). Consequently, we choose an appropriate maximum number of

hidden states for an HMM, fit several models with increasing numbers of states and then select

the best model according to a proposed model selection criterion.

Several methods for model selection have been proposed. For instance, the Bayes factors

method (BF; Kass and Raftery, 1995) has been introduced as a tool for model selection. The

BF approach is based on computing the ratio of the marginal likelihoods of the data for two

models under comparison. The evaluation of marginal density can be unsatisfactory for

models that include high-dimensional integrals over the parameter space (Han and Carlin,

2011) and BF can be sensitive to the priors specified for the parameters of two models (Ando,

2010; Gelman et al., 2014).

In a frequentist context, the AIC and BIC have been used by Zucchini and MacDonald (2009)

to determine the best HMM in many applications. However, these criteria can suffer from

irregular behavior of the likelihood function that may cause under-fitting or over-fitting, where

the number of hidden states that are analyzed is smaller or greater than the true number of

states (Johnson, 2007). Furthermore, assessing the models based only on point estimates of
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parameters using the above criteria does not naturally incorporate our uncertainty pertaining to

those quantities. One of the key advantages of Bayesian inference is its ability to account for

various sources of uncertainty. On this basis, Brooks (2002, p. 617) proposed the possibility of

developing criteria such as AIC and BIC from a Bayesian viewpoint. He pointed out through

his comments on the paper published by Spiegelhalter et al. (2002) that one can use the

likelihood or deviance evaluated at the posterior distribution of the model parameters and plug

it into the AIC and BIC. Such a proposal was also presented by Ntzoufras (2009, pp.426-428),

Carlin and Louis (2009, p.211) and Congdon (2014, p.36). In this chapter, we exploit this

proposal and introduce several modified versions for the AIC and BIC developed from

Bayesian principles for HMMs.

As an extended Bayesian version of the AIC, the DIC has been developed by Spiegelhalter

et al. (2002) to consider the posterior distribution of the log likelihood. Similar to the AIC,

DIC trades off a measure of model fit against a penalty for complexity. The popularity of this

criterion stems from the ease of computing the posterior distribution of the log-likelihood or

deviance and also its implementation in standard software such as WinBUGS. Consequently, it

has been applied to a wide range of statistical models. However, applying this criterion to

latent variables models is problematic as the likelihood function of these models is not

available in a closed form (Celeux et al., 2006). For Bayesian modelling using the data

augmentation principle (Tanner and Wong, 1987), the process of likelihood estimation for such

models can be simplified. In other words, this strategy, whereby the parameter space is

augmented by adding latent or missing data, facilitates the MCMC computation of the

posterior distributions of those models.

Nevertheless, the DIC remains difficult to apply. As mentioned by Spiegelhalter et al. (2002)

the DIC depends on a concept of focus that it is not always easily chosen in practice. In the

context of latent variable models, Celeux et al. (2006) introduced several possible alternatives

to the original DIC, taking into account the nature of inferential focus. They showed how focus

can be on the main parameter of a model, or on the latent variables. They also showed that

focus changes depending on whether these variables are considered as missing data or extra

parameters. Finally, they showed that the focus can depend on the nature of the likelihood used

specifically whether it is the observed, complete or a conditional likelihood.

Developing model selection criteria for HMMs requires the availability of the closed form of

likelihood of those models (Celeux et al., 2006). This can be achieved by using the data

augmentation technique which leads to different forms to the likelihood function of those
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models as defined by Celeux et al. (2006). We then extend the original definition of the DIC,

taking into account the definitions given by Celeux et al. (2006) in a HMM context. We

introduce several versions of this criterion based on different definitions of the observed and

conditional likelihood of a HMM. Despite using the augmented data, the observed likelihood

of a HMM is computationally challenging as it requires integrating out high-dimensional

vectors of hidden states. We therefore use an efficient method of evaluation called the forward

algorithm (Rabiner, 1989), which reduces the dimensionality in the computation of the

likelihood. In contrast, the computation of the conditional likelihood is easier as it is directly

applied, given a chosen focus.

Model choice can also be addressed from a predictive viewpoint in terms of selecting the best

predictive performance compared with other competing models (Vehtari and Ojanen, 2012;

Gelman et al., 2014). Under a Bayesian perspective, several criteria that take the predictive

performance into account as a measure for comparing models have been proposed. One

criterion is the posterior predictive distribution (PPD) of Laud and Ibrahim (1995), Gelman

et al. (1996) and Gelfand and Ghosh (1998). This approach is useful for revealing

inconsistency between the model and data. Meng (1994) prefers the use of PPD provided that

its use is limited only for measuring the discrepancy between the model and the data and not

for model comparison and inference (Carlin and Louis, 2009, p. 87).

In order to avoid the double use of the data, one alternative approach is to assess the predictive

ability of the model on out-of-sample data. Out-of-sample data are observations that are not

used to fit the model but are used to form predictions from the model. Cross-validation (CV)

methods for model assessment and comparison are well established (Stone, 1974; Geisser,

1975; Geisser and Eddy, 1979; Gelfand and Dey, 1994; Gelfand and Ghosh, 1998). The key

idea in the cross-validation strategy is to split the full set of data y into k subsets (k-fold

cross-validation). Consider k = 2 for 2-fold cross-validation where we have two data subsets,

(yT1 ,yT2) such that T1∪T2 = T . The first set (training sample), yT1 , is used to fit the model and

estimate the posterior distributions of interest, while the remaining observations (test sample),

yT2 , are used for model evaluation and checking by calculating the cross-validation predictive

density. The leave-one-out cross-validation (LOO-CV) is a special variant of k-fold

cross-validation, when k = T , where each data point is successively excluded from the full data

set, a model is fitted using MCMC methods without the excluded point, and then the predictive

distribution for the omitted observation is found. This procedure is repeated with each

observation as an excluded point.
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Overall, the CV methods can be computationally expensive, since the repeated exclusion of

observations each time and fitting the model on the remaining data requires a long time that

increases exponentially as the sample size increases (Vehtari and Ojanen, 2012).

In the HMM context, Celeux and Durand (2008) used a CV method on HMMs to determine

the number of hidden states. They adopted two ways to approximate the cross validated

likelihood; a half-sampling and an EM procedure. Their results were based on a comparative

study with various versions of the cross-validated likelihood criterion such as the AIC, BIC,

the integrated completed likelihood criterion (ICL) proposed by Biernacki et al. (2001) and the

penalized marginal likelihood criterion proposed and studied in Gassiat and Keribin (2000).

However, their procedures did not take into account any uncertainty about the parameters of

the model. In addition, the high computational cost of this approach requires a long time.

Recently, the WAIC was proposed by Watanabe (2009), which is claimed to be a good

alternative to the LOO-CV. Watanabe (2010) has shown that the WAIC can be viewed as an

asymptotic version of the LOO-CV and can be used to approximate the out-of-sample

predictive ability. The WAIC is based on point-wise calculations to approximate the predictive

densities of future observations. The main advantage of this criterion, compared with the

LOO-CV, is that it has less computational cost as all predictive densities for observations are

evaluated at one-time from only one MCMC run (Gelman et al., 2014).

5.2 Likelihood-based criteria

In this section we introduce the general definitions of three likelihood-based criteria, namely,

AIC, BIC and DIC, which will be developed later for the HMMs in this thesis.

5.2.1 AIC and BIC

The Akaike information criterion (AIC) was introduced by Akaike (1973) as an approximation

to the expected Kullback-Leibler (KL) distance (Kullback and Leibler, 1951) between a true

but unknown model and an estimated model. This criterion was originally based on a point

estimate, θ̃ , obtained by maximizing the likelihood function and then measuring the deviation

of the estimated model from the true model using the KL information function, defined as

I
[

f (y),g(y, θ̃)
]
=
∫

Ω

f (y) log
{

f (y)
g(y, θ̃)

}
dy, (5.1)

where I [.] denotes the loss function called the KL discrepancy that expresses the amount of

information lost when the estimated model g(y, θ̃) is used to approximate the true model f (y)
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(Burnham and Anderson, 2002). θ̃ ∈ Ω denotes a maximum likelihood estimator given the

data. Given k candidate models being fitted to data set, y, where k = 1,2, ...,K, the aim is to

find the model that minimizes the distance I [.] compared to other candidate models (Burnham

and Anderson, 2002). In other words, the KL divergence serves as a criterion to measure the

lost information induced from using the estimated model g(y, θ̃) to approximate f (y).

Conceptually, the best model will be the one that loses the least information and corresponds

to the smallest KL distance. However, it cannot be used directly as a criterion for model

selection, as the true model f (y) is an unknown, as are the estimates, θ̃ , in g(y, θ̃). To solve

this problem, one has to look at the relative KL distance between the estimated and true model.

By writing the Equation (5.1) as

I
[

f (y),g(y, θ̃)
]
=
∫

f (y) log{ f (y)}dy−
∫

f (y) log
{

g(y, θ̃)
}

dy, (5.2)

both terms in the right of Equation (5.2) can be viewed as statistical expectations taken over

the true model f (y). Hence, the KL distance can be thought as a difference between two

expectations

I
[

f (y),g(y, θ̃)
]
= E f (y) [log{ f (y)}]−E f (y)

[
log
{

g(y, θ̃)
}]

. (5.3)

The first term in Equation (5.3) is a constant which depends only on the unknown real

distribution of data and does not include the parameter θ (Burnham and Anderson, 2002). The

second term, E f (y)
[
log
{

g(y, θ̃)
}]

, in Equation (5.3) is called the relative KL discrepancy from

approximating the model g(y, θ̃) with f (y). Akaike (1973) showed that the quantity

E f (y)
[
log
{

g(y, θ̃)
}]

cannot be evaluated, but found that one can estimate its expectation as

E f (y)E f (y)
[
log
{

g(y, θ̃)
}]

which he called the relative expected KL distance. Based on the

empirical log-likelihood function, `(θ̃ |y), Akaike (1973) provided an approach to estimate the

relative expected KL distance. He concluded that the value of the maximized log-likelihood,

`(θ̃ |y), was a biased estimate of the relative expected KL distance and showed that this bias is

approximately equal to h, where h denotes a penalty term equal to the number of estimated

parameters used in the approximation process of model g(y, θ̃) (Burnham and Anderson,

2002, 2004);

relative Ê(KL) = `(θ̃ |y)−h. (5.4)
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Hence, the selected model will have the highest value for the quantity `(θ̃ |y)− h, i.e. the best

penalized log-likelihood. For historical reasons, Akaike (1973) proposed to multiply Equation

(5.4) by -2 and obtain the minimum value of (−2`(θ̃ |y) plus twice the penalty term) instead.

Given k candidate models, k = 1,2, ...,K, each one with h parameters being estimated, Akaike

(1973) introduced his criterion as follows

AICk =−2`k(θ̃ |y)+2hk; k = 1,2, ...,K, (5.5)

where `k(θ̃ |y) denotes the kth log-likelihood of the kth model fitted to data set, y, given a point

estimate, e.g. θ̃ = θ̂mle, where θ̂mle is the maximum likelihood estimate (MLE) of θ , and hk

represents the number of free parameters of the kth model. The first term is a measure of fit,

and decreases with increasing the order of the model, k. The second term is a penalty term

which increases with increasing k. Generally, smaller values of the AIC refer to a better model.

Another well-known model selection criterion is the Bayesian information criterion

(BIC) (Schwarz, 1978). Unlike the AIC, the BIC is not an estimator of relative KL. It arises

from a Bayesian standpoint by assuming an equal prior probability for each model with flat

priors on the model parameters (Raftery, 1995; Burnham and Anderson, 2002, 2004).

Consider k competing models, k = 1,2, ...,K, and assume that each model k is characterized by

a parametric distribution gk(y|θk) with prior distribution Prk(θk). Given a sequence of

observations y = (y1,y2, ...,yT ), the marginal distribution or probability of y for the kth model

is given by (Konishi and Kitagawa, 2008)

Prk(y) =
∫

gk(y|θk)Prk(θk)dθk, (5.6)

where the quantity Prk(y) can be considered as the likelihood of the kth model and is referred

to as the marginal likelihood of the data. Based on Bayes’ rule, if we assume that the prior

probability of the kth model is Pr(k), then the posterior probability of the kth model is given by

Pr(k|y) = Prk(y)Pr(k)

∑
K
l=1 Prl(y)Pr(l)

; l,k = 1,2, ...,K, (5.7)

which indicates the probability of the data being generated from the kth model when the data set

y are observed. Consequently, the model which has the largest posterior probability will be the

preferred model. When assuming the same priors for all models, then the model that maximizes

the marginal likelihood Prk(y) of the data set must be selected. So, if an approximation to the
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marginal likelihood, expressed in terms of an integral in (5.6), can readily be obtained, then the

need to compute the integral on a problem-by-problem basis will fade, thus making the BIC

usable as a suitable criterion for model selection (Konishi and Kitagawa, 2008). The BIC can

be then defined as the natural logarithm of the integral in Equation (5.6) multiplied by -2, i.e.,

BIC =−2logPrk(y) =−2log
{∫

gk(y|θk)Prk(θk)dθk

}
,

≈−2loggk(y|θ̃k)+hk log(T ), (5.8)

where θ̃k is a point MLE estimate, i.e. θ̃k = θ̂mle, hk is the number of the kth model parameters

and log(T ) is the natural logarithm of sample size T . As with the AIC, a smaller BIC value

refers to a better model. It can be noted that the AIC and the BIC have the same quantity in

the first term which is based on the maximization of the likelihood. However, they differ in the

second term (the model complexity), as the BIC likely depends on the sample size T . The BIC

is more likely to favour smaller or more parsimonious models than AIC when T is increased

(Burnham and Anderson, 2002).

Overall, a generic formula representing information criteria (IC); AIC and BIC, can be given as

(Ntzoufras, 2009)

IC(k) = D(θ̃k)+hkF, (5.9)

where F refers to as a penalty or complexity term imposed on the deviance that increases as

more parameters for the model are added. When F = 2 we obtain the AIC, and when F =

log(T ), we obtain the BIC. For comparing two models, for instance k1 and k2, one can select

the model that has the lowest value of IC, and can also use the corresponding difference ∆IC12

between the IC values of two compared models as

∆IC12 = D(θ̃1)−D(θ̃2)− (h1−h2)F. (5.10)

By assuming that h1 < h2, the model k1 is selected when the difference ∆IC12 < 0, otherwise,

i.e. when ∆IC12 > 0, the model k2 is selected.

We note that both the AIC and BIC require specification of the number of free parameters

(model complexity term) of the model. In contrast, as we will see later, this penalty term, called

the effective number of the parameters, will be estimated along with the model fit term when

using the DIC (Spiegelhalter et al., 2002). These criteria require the availability of a closed form

128



5.2. LIKELIHOOD-BASED CRITERIA

of the likelihood. Therefore, we shall later develop these criteria for HMMs, given a closed form

of the likelihood of these models. Next we consider the related DIC.

5.2.2 Deviance information criterion

The deviance information criterion (DIC) was introduced by Spiegelhalter et al. (2002) as a

developed version of the AIC from a Bayesian perspective. It is used to measure both the

goodness of fit of the model and penalise the model complexity. Spiegelhalter et al. (2002)

developed this criterion by introducing the theoretical justification for the concept of effective

number of parameters as a measure of the complexity of a model. This criterion is based on the

concept of deviance. The DIC, as given by Spiegelhalter et al. (2002), can be defined as

DIC = D(θ)+ pDIC,

where, D(θ), is used as a measure of the goodness of fit and is summarized by the posterior

expectation of the deviance,

D(θ) = Eθ |y {D(θ)}= Eθ |y {−2logPr(y|θ)} ,

where Pr(y|θ) represents the likelihood of y, given the model parameter θ . The effective

number of parameters, pDIC, is used as a measure for model complexity and was originally

defined as the difference between the posterior mean of deviance minus the deviance of posterior

means, i.e.

pDIC = Eθ |y {D(θ)}−D
{

Eθ |y(θ)
}
= D(θ)−D(θ̃),

where θ̃ refers to some generic point estimator of θ which can be one of the justified estimators

such as posterior mean, median or mode (Spiegelhalter et al., 2002; Celeux et al., 2006). The

DIC can be rewritten as

DIC = D(θ)+ pDIC = D(θ)+
[
D(θ)−D(θ̃)

]
,

= 2D(θ)−D(θ̃),

= 2
[
Eθ |y {−2logPr(y|θ)}

]
−
[
−2logPr(y|θ̃)

]
,

=−4Eθ |y [logPr(y|θ)]+2logPr(y|θ̃), (5.11)
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where its the effective number of parameters is

pDIC =−2Eθ |y [logPr(y|θ)]+2logPr(y|θ̃). (5.12)

Given a set of competing models, a smaller DIC value indicates a good model fit. Unlike AIC

and BIC, the penalty term known as the effective number of parameters, pDIC, is estimated by

the definition D(θ̃). Using non-informative priors on the model parameters, Spiegelhalter et al.

(2002) concluded that the effective number of parameters, pDIC, can be nearly the same as the

actual number of parameters, h, in the AIC.

Based on Spiegelhalter et al. (2002) and Celeux et al. (2006), development of this criterion

for latent variable models requires knowing about the focus related to the presence of latent

variables z, as well as the availability of the likelihood of these models. Accordingly, we shall

later develop this criterion for HMMs. Next we first consider the concept of focus and the

likelihood in the context of HMMs .

5.3 The concept of focus and likelihood of HMMs

In order to develop our criteria, this section considers two key aspects. The first aspect is the

form of the likelihood and the second aspect relates to the definition of the focus used with

each form of the likelihood. For latent variable models such as mixture and hidden Markov

models, we must define the meaning of missing data introduced in such models. The missing

or augmented data can be considered as random variables that can take the form of the

component membership (independent) or the states (dependent) in mixture and hidden Markov

models respectively and thus facilitate the model construction (Frühwirth-Schnatter, 2006). As

explained in Chapter (4), the principle of data augmentation (Tanner and Wong, 1987) makes

MCMC estimation for HMMs easier by introducing the hidden Markov chain, z, as missing

data. Thus, the missing data play two roles in HMMs. They can be considered as missing data

from a Bayesian modelling viewpoint, and at the same time as hidden states (parameters)

inferred through the observational process according to the definition of HMMs. We define the

likelihood function of a HMM in Figure (5.1) as a graphical structure, where the hidden states

z, are obtained given the parameters related to the unobserved part of the model, namely, π

and A.
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Figure 5.1: The graphical representation of the parameters of HMM.

Conditioning on z, the probability distribution of the observed sequence, y, is obtained given

the state-dependent parameter θ . In order to use the DIC for HMMs, the missing data can be

dealt with as parameters in focus, along with other model parameters, and these missing data

here are named as hidden states. Alternatively, they are treated as missing values being

integrated out.

By following the augmented data strategy, a closed form of the likelihood function of HMMs

can be obtained as follows. Given a model with parameters Θ = (π,A,θ) and a sequence of

observed data, y = (y1,y2, ...,yT ), augmented with a sequence of missing data,

z = (z1,z2, ...,zT ), the joint or complete data distribution can be written as:

Lc(Θ;y,z) = Pr(y,z|Θ) =
Pr(y,z,Θ)

Pr(Θ)
, (5.13)

and

Pr(y,z,Θ)

Pr(Θ)
=

Pr(y,z,Θ)

Pr(z,Θ)
.
Pr(z,Θ)

Pr(Θ)
= Pr(y|z,Θ)Pr(z|Θ), (5.14)

hence,

Pr(y,z|Θ) = Pr(y|z,Θ)Pr(z|Θ), (5.15)
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where Pr(y,z|Θ) denotes the complete data likelihood and Pr(y|z,Θ) denotes the conditional

likelihood multiplied by the density function of hidden variables, Pr(z|Θ). The observed or

integrated likelihood function of observations, Pr(y|Θ) = L(Θ;y), is obtained by summing all

possible hidden state sequences, in the complete data likelihood,

Pr(y|Θ) = ∑
∀z

Pr(y,z|π,A,θ),

= ∑
∀z

Pr(y|z,θ)Pr(z|π,A),

= ∑
∀z

[
Pr(z1|π)

T

∏
t=2

Pr(zt |zt−1;A)
T

∏
t=1

f (yt |zt ,θ)

]
. (5.16)

Note that in the second line of Equation (5.16), the model parameters were separated. This is

due to the fact that the state-specific parameter, θ , does not directly depend on the parameters

of the hidden part of the model, π and A, but, is affected explicitly by the hidden states

(dependence structure), z, that are essentially based on π and A as shown in Figure 5.1.

According to this graphical representation of the model parameters (Figure 5.1), a HMM can

be viewed as a hierarchical model. This leads to different versions for the DIC which also take

into account different aspects concerning the focus such as whether the hidden state are

included, or the availability of the likelihood of the models in closed form. All these

considerations will be addressed in the preparation of the proposed criteria in this thesis.

5.4 Modification to AIC and BIC

In conventional HMMs, the AIC and BIC are typically based on the log-likelihood function,

`(Θ̂), the deviance D; D = −2(`(Θ̂)), evaluated at a point estimate, Θ̂, obtained from

maximizing the likelihood function using the EM algorithm (Dempster et al., 1977). In this

section, we introduce several versions of the AIC and BIC that are based on the observed and

conditional log-likelihoods approximated from a Bayesian perspective which considers a new

idea in the HMMs context. Developing such expressions are inspired by Brooks (2002, p. 617)

who pointed out, in his comments on the article published by Spiegelhalter et al. (2002), that it

is possible to obtain approximate estimates for the AIC and BIC based on a deviance evaluated

at the posterior draws. Brooks (2002) proposed that the term of model fit in both criteria can be

the expected deviance, D(Θ), which is approximated over posterior draws.

In addition to such a proposal, we develop, further, other versions of those criteria for HMMs

by evaluating their log-likelihoods at the posterior draws summarized from an MCMC
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sampling.

As mentioned earlier, these criteria require specification of the number of free parameters or

the penalty term. In order to employ such criteria for HMM with different model complexity,

we need to determine the number of free parameters, h, of the model. The number of free

parameters, h, of a HMM with parameters Θ = (π,A,θ), is given as (Zucchini and

MacDonald, 2009)

h = K2 + sK−1, (5.17)

where K refers to the number of states and s is a single numeric value representing the number

of parameters of the underlying distribution of the observation process. For example, s = 2 for

the Normal distribution (µ and σ2) and s = 1 for the Poisson distribution (λ ) (Zucchini and

MacDonald, 2009).

5.4.1 Recursive observed likelihood-based AIC and BIC

In this section, we provide modified versions of the AIC and BIC for HMMs based on a

recursive or observed likelihood approximated from a Bayesian perspective. By introducing

the recursive log-likelihood in closed form into the general definitions of the AIC and BIC

provided in the previous section (5.2.1), we introduce three different cases of modified

versions of the AIC and BIC. These are referred as AICrec and BICrec, respectively, as follows:

Case I

AICrec1 = EΘ|y [Drec(Θ|y)]+2h,

=−2EΘ|y [logPr(y|π,A,θ)]+2h,

=−2
∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ +2h, (5.18)

BICrec1 = EΘ|y [Drec(Θ|y)]+h log(T ),

=−2EΘ|y [logPr(y|π,A,θ)]+h log(T ),

=−2
∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ +h log(T ), (5.19)

where EΘ|y [Drec(Θ|y)] = −2EΘ|y [logPr(y|π,A,θ)] in the above two versions is the expected

recursive deviance evaluated at draws from the posterior distribution of all model parameters,

Pr(π,A,θ |y), observed over an MCMC run.
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Case II

AICrec2 = Drec(EΘ|y(Θ|y))+2h,

=−2logPr(y|Eπ,A,θ [π,A,θ |y,z])+2h,

=−2
∫
π

∫
A

∫
θ

logPr(y|π̄, Ā, θ̄)Pr(π,A,θ |y,z)dπdAdθ +2h, (5.20)

BICrec2 = Drec(EΘ|y(Θ|y))+h log(T ),

=−2logPr(y|Eπ,A,θ [π,A,θ |y,z])+h log(T ),

=−2
∫
π

∫
A

∫
θ

logPr(y|π̄, Ā, θ̄)Pr(π,A,θ |y,z)dπdAdθ +h log(T ), (5.21)

where EΘ|y [Drec(Θ|y)] = −2EΘ|y [logPr(y|π,A,θ)] in the above two versions is the expected

recursive deviance evaluated at the posterior means of all model parameters summarized from

the posterior distribution Pr(π,A,θ |y). These posterior means are marginally approximated

from the Gibbs sampler as follows:

π̄ ≈ 1
M

M

∑
m=1

π
(m)
j , Ā≈ ā jk =

1
M

M

∑
m=1

a(m)
jk and θ̄ ≈ 1

M

M

∑
m=1

θ
(m)
j , for j,k = 1,2, ...,K.

Case III

AICrec3 = ED̂rec(.)
[Drec(Θ)]+2h,

=−2El̂ogPr(.) [logPr(y|π,A,θ)]+2h,

=−2
∫
π

∫
A

∫
θ

[
l̂ogPr(y|π,A,θ)

]
Pr(π,A,θ |y,z)dπdAdθ +2h, (5.22)

BICrec3 = ED̂rec(.)
[Drec(Θ)]+h log(T ),

=−2El̂ogPr(.) [logPr(y|π,A,θ)]+h log(T ),

=−2
∫
π

∫
A

∫
θ

[
l̂ogPr(y|π,A,θ)

]
Pr(π,A,θ |y,z)dπdAdθ +h log(T ), (5.23)

where ED̂rec(.)
[Drec(Θ)] = −2El̂ogPr(.) [logPr(y|π,A,θ)] in both criteria is a minimum

expected recursive deviance, D̂rec(.), evaluated at draws from the posterior distribution of all

model parameters, Pr(π,A,θ |y), observed over an MCMC run.
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We define these three cases. In case I, the model fit term in both AICrec1 and BICrec1 ,

represents the posterior mean of the recursive deviance. This case is as the same what is

proposed by Brooks (2002) for autoregressive models. Furthermore, we contribute in

developing the last two versions defined in the cases II and III as follows. In case II, we

assume that the model fit term for both versions, AICrec2 and BICrec2 , represents the recursive

deviance evaluated at the plugged-in estimates of the posterior distribution, namely, the

posterior means, whereas in the case III, the proposed model fit term is inspired by the

observed DIC3 introduced by Celeux et al. (2006) who proposed that the model fit term to be a

functional estimator (a minimum deviance, or equivalently maximum log-likelihood). Celeux

et al. (2006) pointed out that this such an estimator provides more stable evaluations.

Furthermore, its density is easily approximated by an MCMC evaluation. This estimator, i.e. a

minimum deviance, was also proposed by Richardson (2002) in her discussion of Spiegelhalter

et al. (2002). Accordingly, we define the model fit term in both AICrec3 and BICrec3 as a

minimum recursive deviance observed over an MCMC run.

Further details of the MC approximations for all these versions are provided at the appendix of

this chapter.

5.4.2 Conditional likelihood-based AIC and BIC

Given a conditional log-likelihood, it is possible to derive several versions of the fit term of

the AIC and BIC. The conditional likelihood-based AIC and BIC will be referred to as AICcon

and BICcon, respectively. Analogous to criteria based on the recursive observed likelihood, i.e.

AICsrec and BICsrec, we also introduce three classes of versions of these criteria as follows:

Case I

AICcon1 = Eθ ,z [Dcon(θ ,z)]+2h,

=−2Eθ ,z [logPr(y|θ ,z)]+2h,

=−2
∫

z

∫
θ

[logPr(y|θ ,z)]Pr(θ ,z|y)dzdθ +2h, (5.24)

BICcon1 = Eθ ,z [Dcon(θ ,z)]+h log(T ),

=−2Eθ ,z [logPr(y|θ ,z)]+h log(T ),

=−2
∫

z

∫
θ

[logPr(y|θ ,z)]Pr(θ ,z|y)dzdθ +h log(T ), (5.25)
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where Eθ ,z [Dcon(θ ,z)] = −2Eθ ,z [logPr(y|θ ,z)] in both criteria is the expected conditional

deviance evaluated given draws from the posterior distribution, Pr(θ ,z|y), of the

stale-dependent parameter θ and hidden states z.

Case II

AICcon2 = Eθ ,z
[
Dcon(θ̂ , ẑ)

]
+2h,

=−2Eθ ,z
[
logPr(y|ẑ, θ̂)

]
+2h,

=−2
∫

z

∫
θ

[
logPr(y|ẑ, θ̂)

]
Pr(θ ,z|y)dzdθ +2h, (5.26)

BICcon2 = Eθ ,z
[
Dcon(θ̂ , ẑ)

]
+h log(T ),

=−2Eθ ,z
[
logPr(y|ẑ, θ̂)

]
+h log(T ),

=−2
∫

z

∫
θ

[
logPr(y|ẑ, θ̂)

]
Pr(θ ,z|y)dzdθ +h log(T ), (5.27)

where Eθ ,z
[
Dcon(θ̂ , ẑ)

]
= −2Eθ ,z

[
logPr(y|ẑ, θ̂)

]
in both criteria is the expected conditional

deviance, given a joint Maximum a posteriori (MAP) estimator (ẑ, θ̂) summarized from the

posterior distribution, Pr(θ ,z|y), of the state-dependent parameters θ and hidden states z. This

joint MAP estimator can be approximated by using the best pair among the posterior draws, i.e.,

the pair that has the highest value of

(
ẑ, θ̂
)
= argmax

z,Θ
Pr(y,z|θ)Pr(z|π,A)Pr(θ).

Case III

AICcon3 = ED̂con(.)
[Dcon(θ ,z)]+2h,

=−2El̂ogPr(.) [logPr(y|θ ,z)]+2h,

=−2
∫

z

∫
θ

[
l̂ogPr(y|θ ,z)

]
Pr(θ ,z|y)dzdθ +2h, (5.28)

BICcon3 = ED̂con(.)
[Dcon(θ ,z)]+h log(T ),

=−2El̂ogPr(.) [logPr(y|θ ,z)]+h log(T ),

=−2
∫

z

∫
θ

[
l̂ogPr(y|θ ,z)

]
Pr(θ ,z|y)dzdθ +h log(T ), (5.29)
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where ED̂con(.)
[Dcon(θ ,z)] = −2El̂ogPr(.) [logPr(y|θ ,z)] is a minimum expected conditional

deviance, evaluated at draws from the posterior distribution Pr(θ ,z|y), observed over an

MCMC run.

Note that in case I we use the expected conditional deviance evaluated over the state-specific

parameter, θ , and hidden state, z, as a model fit term of the AICcon1 and BICcon1 . In case II we

use the conditional deviance evaluated at a plugged joint Bayesian estimator: (ẑ, θ̂) which can

be joint maximum a posteriori (MAP) estimators of (z,θ). In case III, both model fit terms in

the AICcon3 and BICcon3 are given a function estimator that represents the minimum

conditional deviance value obtained through an MCMC run, given posterior draws of the

state-dependent parameter, θ , and hidden states, z. This latter case is based on the same as the

idea introduced in the case III with respect to the AIC and BIC based on the recursive

deviance (sub-section (5.4.1)).

At the end this chapter, we provide all the MC approximations of these versions.

5.5 DIC for HMMs

We now develop several versions of the DIC for HMMs. Specifically, we concentrate mainly

on some criteria based on the work of Celeux et al. (2006). Based on the type of the likelihood

used, Celeux et al. (2006) introduce three groups of the DIC:

1. The observed DIC which includes three versions, namely the DIC1, DIC2 and DIC3.

2. The complete DIC which includes three versions, namely the DIC4, DIC5 and DIC6.

3. The conditional DIC which involves two versions: DIC7 and DIC8.

We will not investigate here the DIC versions based on the complete likelihood; DIC4, DIC5

and DIC6 as they are logically incoherent with respect to the focus (Li et al., 2015). Celeux

et al. (2006) impose different focuses with respect to the latent variables in these versions. In

other words, they consider these latent variables as parameters in the first term and at the same

time as missing data in the second term for the same criterion. This is also true for the DIC8,

where these latent variables are treated as parameters in the first term and at the same time as

missing data in the second term in this criterion. Thus, the DIC8 will not be investigated in our

work either. Therefore, our work concerns only in investigation the DICs based on observed

likelihood as well as the DIC7 as a conditional likelihood-based criterion. In addition, we

develop a new conditional version based on a function estimator as an idea inspired by that used

with the observed likelihood-based DIC (DIC3).
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5.5.1 Recursive DIC

We first define some variations of the observed DIC for HMMs. Given the observed likelihood,

Pr(y|Θ), in closed form, we can define the DIC1, or DICrec1 , for a HMM as follows

DICrec1 =−4EΘ [logPr(y|Θ)]+2logPr(y|EΘ [Θ|y,z]),

=−4Eπ,A,θ [logPr(y|π,A,θ)]+2logPr(y|Eπ,A,θ [π,A,θ |y,z]),

=−4
∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ

+2
∫
π

∫
A

∫
θ

logPr(y|π̄, Ā, θ̄)Pr(π,A,θ |y,z)dπdAdθ , (5.30)

where Pr(π,A,θ |y,z) is the joint posterior distribution for all parameters in the HMM, given

complete data (y,z). This can be easily broken into marginal posteriors for each parameter of

the model as follows:

π ∼ Pr(π|y,z),

A∼ Pr(A|y,z),

and the state-dependent parameter as

θ ∼ Pr(θ |y,z).

Posterior draws from these full conditional distributions above can be obtained using MCMC

methods such as the Gibbs sampler adopted in this thesis. The joint expectation, Eπ,A,θ [.], can

be partitioned as

EΘ [π|y,z] =
∫

z
Pr(π|y,z)dz,

EΘ [A|y,z] =
∫

z
Pr(A|y,z)dz,

EΘ [θ |y,z] =
∫

z
Pr(θ |y,z)dz,

which can be approximated by averaging their corresponding full conditional posterior

distributions obtained from the Gibbs sampler as follows:

π̄ ≈ 1
M

M

∑
m=1

π
(m)
j , Ā≈ ā jk =

1
M

M

∑
m=1

a(m)
jk and θ̄ ≈ 1

M

M

∑
m=1

θ
(m)
j , for j,k = 1,2, ...,K.
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The corresponding effective number of parameters of this version, pDICrec1
can be then given by

pDICrec1
=−2

∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ ,

+2
∫
π

∫
A

∫
θ

logPr(y|π̄, Ā, θ̄)Pr(π,A,θ |y,z)dπdAdθ . (5.31)

Despite the poor results for DIC1 as claimed by Celeux et al. (2006), subsequently thought to

be due to use of a plugged-in posterior mean, we include this representation of the observed

DIC to check its behaviour in the HMM setting.

The DIC2, as introduced by Celeux et al. (2006) is based on the definition of posterior mode.

This version provides unsatisfactory results with respect to its effective number of parameters.

We will not include this criterion in this Chapter.

For the DIC3, Celeux et al. (2006) propose that the focus can be a functional estimator, f̂ (y).

He pointed out that the functional estimator is the expectation of the mixture density, Pr(y|θ),

approximated by an MCMC run:

f̂ (y)≈ Eθ |y [Pr(y|θ)] ,

and the DIC3 and its pDIC3 , therefore, can be given by

DIC3 =−4Eθ |y [logPr(y|θ)]+2log
{

Eθ |y [Pr(y|θ)]
}
,

pDIC3 =−2Eθ |y [logPr(y|θ)]+2log
{

Eθ |y [Pr(y|θ)]
}
,

where the first term is the same as in the DICrec1 . This version of the DIC was also preferred

by Richardson (2002) as the functional estimator, f̂ (y), is stable under permutation of the

component labels in mixture models. In addition, such an estimator was also used by Gelman

et al. (2014) to develop criteria such as the AIC, DIC and WAIC from a predictive perspective.

We expand the version DIC3, introduced by Celeux et al. (2006), by assuming that the

functional estimator is a minimum recursive deviance or equivalently as minus two the

recursive maximum log-likelihood obtained at the posterior draws of model parameters. Given
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that, another observed DIC, therefore, can be developed, denoted by DICrec2 , as follows

DICrec2 =−4EΘ [logPr(y|Θ)]+2El̂ogPr(.) [logPr(y|Θ)] ,

=−4Eπ,A,θ [logPr(y|π,A,θ)]+2El̂ogPr(.) [logPr(y|π,A,θ)] ,

=−4
∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ ,

+2
∫
π

∫
A

∫
θ

[
l̂ogPr(y|π,A,θ)

]
Pr(π,A,θ |y,z)dπdAdθ . (5.32)

The first term of this version is similar to the first term in the DICrec1 . The second term, El̂ogPr(.),

can be readily approximated as a maximum log-likelihood value obtained through an MCMC

run, given posterior draws of the model parameters; π, A and θ . The corresponding effective

number of parameters, pDICrec2
, can be given by

pDICrec2
=−2EΘ [logPr(y|Θ)]+2El̂ogPr(.) [logPr(y|Θ)] ,

=−2Eπ,A,θ [logPr(y|π,A,θ)]+2El̂ogPr(.) [logPr(y|π,A,θ)] ,

=−2
∫
π

∫
A

∫
θ

[logPr(y|π,A,θ)]Pr(π,A,θ |y,z)dπdAdθ ,

+2
∫
π

∫
A

∫
θ

[
l̂ogPr(y|π,A,θ)

]
Pr(π,A,θ |y,z)dπdAdθ . (5.33)

Note that the focus in both versions above is on all model parameters, (π,A,θ), and the

hidden states are dealt with as missing data. We compute these versions by using the forward

recursion by summing all possible states, given posterior draws of the model parameters. The

MC approximations of these two representations are appended at the end of this chapter.

5.5.2 Conditional DIC

We also develop versions of the DIC based on the conditional likelihood, Pr(y|z,Θ), for a

HMM, where the observations y are evaluated by conditioning on the hidden states, z, and model

parameters, Θ = (π,A,θ). However, as explained earlier from the graphical representation

of HMM parameters shown in Figure (5.1), the state-specific parameter, θ , does not directly

depend on the parameters of the hidden part of the model; π and A, but, is affected explicitly

by the hidden states (dependence structure), z, that are essentially obtained via integrating out
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the π and A:

z1 ∼
∫

Pr(z1|π)dπ,

zt ∼
∫

Pr(zt |zt−1,A)dA.

Consequently, the conditional likelihood of a HMM can be written as Pr(y|z,θ). Given this,

we can develop conditional likelihood-based DICs for HMMs. We consider version DIC7

introduced by Celeux et al. (2006) because it is more coherent in terms of considering the

latent variables as additional parameters in both its terms. This version, as explained by Carlin

(2006), considers the latent variables as additional parameters in both terms. Moreover, this

version is essentially implemented by WinBUGS as a model selection criterion for models

with latent variables.

The DIC7, as defined by Celeux et al. (2006), is given by

DIC7 =−4Eθ ,z [logPr(y|z,θ)]+2logPr(y|ẑ, θ̂), (5.34)

and its pDIC7 as

pDIC7 =−2Eθ ,z [logPr(y|z,θ)]+2logPr(y|ẑ, θ̂), (5.35)

where the first term is the expected conditional deviance evaluated over the state-specific

parameter, θ , and hidden state, z, whereas the second term is based on a plugged-in joint

Bayesian estimator: (ẑ, θ̂), which can be the joint maximum a posteriori (MAP) estimators of

(z,θ). However, the MAP estimates, generally, for latent variable models may not be available

in closed form and are often approximated by using the best pair among the posterior draws,

i.e., the pair that has the highest value of Pr(y|z,θ)Pr(z|θ)Pr(θ) (Celeux et al., 2006). Thus,

the joint MAP estimator for the state-specific parameter, θ̂ , and hidden states, ẑ, of HMM can

be approximated by

(
ẑ, θ̂
)
= argmax

z,θ
Pr(z,Θ|y) = argmax

z,θ
Pr(y|z,θ)Pr(z|π,A)Pr(θ). (5.36)
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Accordingly, the first conditional deviance-based version developed for HMMs, and will

referred to as DICcon1 , can be then approximated as

DICcon1 =−4Eθ ,z [logPr(y|z,θ)]+2logPr(y|ẑ, θ̂),

=−4
∫

z

∫
θ

[logPr(y|z,θ)]Pr(θ ,z|y)dzdθ +2
∫

z

∫
θ

[
logPr(y|ẑ, θ̂)

]
Pr(θ ,z|y)dzdθ ,

(5.37)

and,

pDICcon1
=−2Eθ ,z [logPr(y|z,θ)]+2logPr(y|ẑ, θ̂),

=−2
∫

z

∫
θ

[logPr(y|z,θ)]Pr(θ ,z|y)dzdθ +2
∫

z

∫
θ

[
logPr(y|ẑ, θ̂)

]
Pr(θ ,z|y)dzdθ ,

(5.38)

where Pr(θ ,z|y) is the joint posterior distribution of the state-specific parameter, θ , and hidden

sates, z. We also use a modified version of the DIC7, which we call DICcon2 , based on a

functional estimator. It is similar to that used with the DICrec2 , but, based on a conditional

log-likelihood-based functional estimator. Given that, we can define the DICcon2 as

DICcon2 =−4Ez,θ [logPr(y|z,θ)]+2El̂ogPr(.) [logPr(y|z,θ)] ,

=−4
∫

z

∫
θ

[logPr(y|z,θ)]Pr(θ ,z|y)dzdθ +2
∫

z

∫
θ

[
l̂ogPr(y|z,θ)

]
Pr(θ ,z|y)dzdθ .

(5.39)

The first term in Equation (5.39) is the same as the first term in the DICcon1 . The second term,

El̂ogPr(.), can be readily approximated as a minimum conditional deviance or equivalently as a

maximum conditional log-likelihood value obtained through an MCMC run, given posterior

draws of the state-specific parameter θ , and hidden states, z. The effective number of

parameters, pDICcon2
, can be then defined as follows

pDICcon2
=−2Ez,θ [logPr(y|z,θ)]+2El̂ogPr(.) [logPr(y|z,θ)] ,

=−2
∫

z

∫
θ

[logPr(y|z,θ)]Pr(θ ,z|y)dzdθ +2
∫

z

∫
θ

[
l̂ogPr(y|z,θ)

]
Pr(θ ,z|y)dzdθ ,

(5.40)

where the first term of this version is the same as the first term used with the DICcon1 . We

provide all MC approximations of both criteria above at the end of this chapter.
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5.6 Widely applicable information criterion (WAIC)

We finally consider the issue of model choice from a predictive viewpoint. Numerous model

selection procedures based on the predictive ability of a model are available. We have

examined these procedures. One criterion that emerges is the WAIC (widely applicable

information criterion), initially proposed by Watanabe (2009). The characteristics of this

criterion have not yet been verified in the context of HMMs. We apply this criterion to our

model selection problem.

In the next section we will introduce the basic definition of this criterion.

5.6.1 Basic definition of the WAIC

We first define the pointwise predictive density. Consider a sequence of out-of-sample or

future data, ỹ = (ỹ1, ỹ2, ..., ỹT ), that have been generated from some predictive distribution.

The out-of-sample log-predictive density for a single future observation, as given by Gelman

et al. (2014), can be defined as:

log ppost(ỹt) = logEpost [Pr(ỹt |θ)] = log
∫

Pr(ỹt |θ)ppost(θ |y)dθ . (5.41)

The second term ppost(θ |y) on the right-hand side of Equation (5.41) denotes the posterior

distribution and log ppost(ỹt) represents the log-predictive density of future point ỹt induced by

the posterior distribution ppost(θ |y).

From Equation (5.41) we obtain the expected values of future points ỹt ; t = 1,2, ...,T . We define

the expected log predictive density (elpd) as follows:

elpd = E f
[
log ppost(ỹt)

]
=
∫ [

log ppost(ỹt)
]

f (ỹt)dỹ, (5.42)

where f (.) denotes some data distribution. Gelman et al. (2014) noted that the posterior

distribution Prpost(.) is known, but the real data distribution f (.) is unknown and suggested a

plugged in estimate for f (.). They define the measure of predictive accuracy for T data points

taken one at a time, by summing the expectations in Equation (5.42), as follows:

elppdỹ =
T

∑
t=1

E f [logPr(ỹt |θ)] , (5.43)

where elppdỹ is called the expected log pointwise predictive density of out-of-sample predictive

data, ỹ. As explained by Gelman et al. (2014), the quantity elppdỹ in Equation (5.43) cannot
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be computed directly as the true distribution f (.) is unknown. However, the within-sample

data with a bias correction term can be used as an approximation to the elppdỹ. The log-

pointwise predictive density (lppdy) based on available within-sample data y is therefore defined

as follows:

l̂ppdy = log
T

∏
t=1

ppost(yt) =
T

∑
t=1

logEθ [Pr(yt |θ)] ,

=
T

∑
t=1

log
∫

Pr(yt |θ)Pr(θ |y)dθ , (5.44)

where the integral above can be approximated by integrating out the posterior samples, θ (m);

m = 1,2, ..,M of the posterior Pr(θ |y) from an MCMC run.

The WAIC is an approximation to the out-of-sample expectation given in Equation (5.43)

based on the log-pointwise posterior predictive density given in Equation (5.44) after adding

an effective number of parameters, or as Gelman et al. (2014) called it, the bias correction, to

adjust for overfitting. Gelman et al. (2014) give two definitions of the bias correction, pWAIC

based on pointwise calculations. The first definition is given by

pWAIC1 = 2
T

∑
t=1
{log [Eθ Pr(yt |θ)]−Eθ [logPr(yt |θ)]} , (5.45)

and the second by

pWAIC2 =
T

∑
t=1

Vθ [logPr(yt |θ)] , (5.46)

where Vθ is the variance of individual terms in the log-predictive density summed over the T

data points. Gelman et al. (2014) preferred the second version pWAIC2 as it was found to be

more stable. We therefore adopt this version in our calculations. The quantity elppdỹ in (5.43)

can be then written as the difference between the log pointwise predictive density (lppdy) given

in Equation (5.44) and one of the effective numbers of parameters defined in Equations (5.45)

and (5.46), i.e.

êlppdWAIC = l̂ppdy− pWAIC j ; j = 1,2. (5.47)
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The WAIC is then defined as

WAIC =−2l̂ppdy +2pWAIC j ,

=−2
T

∑
t=1

logEθ [Pr(yt |θ)]+2pWAIC j ; j = 1,2, (5.48)

and is thus on the same scale as the information criteria. Next, we develop the WAIC for

HMMs by first integrating out the hidden states to obtain the so-called integrated log pointwise

predictive density.

5.6.2 The WAIC for HMMs

We now define the integrated pointwise predictive density (ilppd) and WAIC for a HMM. Given

a data set, y = (y1,y2, ...,yT ), generated from a HMM with parameters Θ = (π,A,θ) and a

sequence of hidden states z = (z1,z2, ...,zT ), the ilppd can be given by

îlppdy = log
T

∏
t=1

ppost(yt) =
T

∑
t=1

logEz,θ [Pr(yt |z,θ)|y] ,

=
T

∑
t=1

log
∫

z

∫
θ

Pr(yt |zt ,θ)Pr(z,θ |y)dzdθ , (5.49)

which is obtained by integrating out the state-dependent parameter, θ , and hidden states, z. In

Equation (5.49), Pr(yt |z,θ), represents the pointwise predictive density of point data, yt , given

the hidden states zt and state-specific parameter, θ , weighted by the joint posterior distribution,

Pr(z,θ |y), of the model parameters. Hence, by integrating individually over each hidden state

zt and the parameter θ , we can obtain the integrated pointwise predictive density of each data

point, yt . It can be noted that the focus here is on the state-specific parameter, θ , and the

hidden states, z. As explained earlier, through the graphical representation of HMM

parameters (Figure 5.1), the observations, y, do not depend directly on the parameters of the

hidden part: π and A, but, they depend instead on the hidden states, z, that are essentially

obtained from those parameters. The integrated log-pointwise predictive density in Equation

(5.49) can be approximated by the posterior samples of the model parameters over an MCMC

run. As mentioned earlier, we adopt the second version of the effective number of parameters,

pWAIC2 . We will refer to it here as pWAICvar , defined as

pWAICvar =
T

∑
t=1

Vz,θ [logPr(yt |z,θ)] , (5.50)
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where Vz,θ is the variance of individual terms in the integrated log predictive pointwise density

summed over the T data points. We can thus define the WAIC for a HMM as

WAIC =−2îlppdy +2pWAICvar ,

=−2
T

∑
t=1

logEz,θ [Pr(yt |z,θ)]+2pWAICvar . (5.51)

We provide MC approximations of the ilppd, pWAIC and WAIC at the appendix of this chapter.

5.7 Sampling variability in selection criteria

Since the criteria developed in this chapter are based on the output of an MCMC sampling, they

will be subject to simulation variability. Therefore, we measure the variability of these criteria

by following the idea proposed by Zhu and Carlin (2000). This is a "brute force" approach to

check the stability of the DIC via computing the variance of DIC, var(DIC), which it is estimated

by its sample variance

s2(DIC) =
1

L−1

L

∑
l=1

(DICl−DIC)2,

where L denotes the number of independent MCMC runs. Nevertheless, this approach is

computationally expensive as it requires several runs. We also apply this approach for all

criteria considered in this chapter.
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5.8 Summary

In this chapter we have introduced well-known likelihood-based criteria, namely the AIC, BIC

and DIC, for model selection in a HMM context, assuming an application requiring a fixed

but unknown number of the states. We have used the data augmentation approach, where the

parameter space is extended by adding hidden data for the unknown states. This provides several

closed forms of the likelihood for the HMM, namely, the recursive (observed), complete data

and conditional likelihood. Hence, it gave rise to define several versions of those criteria. More

specifically, we have extended the original definitions of AIC and BIC, which use traditionally

the classical approach, using the Bayesian principle, given two types of likelihood functions,

namely the conditional and recursive likelihood. We introduced three cases for each criterion.

In the first case, we introduced two versions that are called the AICrec1 and BICrec1 , where the

term of model fit for both criteria is the expected recursive deviance evaluated at the posterior

samples of the model parameters. These versions are inspired by Brooks (2002), who applied

such versions to autoregressive models. The second and third cases of each criterion are new

applications in the HMMs context. In the second case, they are called as the AICrec2 and BICrec2 ,

we proposed that the term of model fit of these two criteria is the recursive deviance evaluated at

the posterior means of the model parameters. In the last case, they are called as the AICrec3 and

BICrec3 , we proposed that such versions are based on a minimum recursive deviance observed

through an MCMC run. Given the conditional likelihood in the closed form, we also introduced

three versions of the AIC and BIC. In the first case, we denoted these criteria as the AICcon1 and

BICcon1 , the term of model fit is the expected conditional deviance evaluated at the posterior

draws of the model parameters. These two versions are based on the same as the idea proposed

by Brooks (2002). The second and third cases of each criterion are new applications in the

HMMs context. In the second case, the criteria are referred to as the AICcon2 and BICcon2 , we

proposed that the term of model fit of these two criteria is the expected conditional deviance,

given a joint Maximum a posteriori (MAP) estimator of the state-dependent parameters θ and

hidden states z. In the third case, they are denoted as the AICcon3 and BICcon3 , we proposed that

such versions are based on a minimum conditional deviance observed through an MCMC run.

In addition, we have introduced several versions of the original DIC. We have constructed these

versions based on the type of likelihood and the concept of focus as proposed by Celeux et al.

(2006). Firstly, we introduced two versions of the DIC based on the recursive deviance, namely,

the DICrec1 and DICrec2 . The first version, DICrec1 based on the posterior recursive deviance

mean, is the same as the observed DIC1 proposed by Celeux et al. (2006). The second version,
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DICrec2 , is a new modified version of the observed DIC3 introduced by Celeux et al. (2006).

In this latter version, we proposed that the focus is based on a minimum recursive deviance

observed through an MCMC run, as a function estimator that differs from what is introduced

by Celeux et al. (2006) which was the expected density function. On the other hand, given

a conditional deviance obtained through an MCMC run, we also introduced two versions of

the DIC based on the conditional deviance, namely, the DICcon1 and DICcon2 . The first version,

DICcon1 , is the same as the conditional version DIC7 proposed by Celeux et al. (2006), where the

focus is the joint MAP estimator approximated using the best vector of state-specific parameters

and hidden states of the model. The second version, DICcon2 , is a new modified version of the

DIC7, where the focus is based on a functional estimator that is a minimum conditional deviance

observed through an MCMC run.

Finally, we have considered the model selection issue from a predictive perspective. In this

aspect, we contributed in applying a new criterion in the HMMs context, the so-called widely

applicable information (WAIC) (Watanabe, 2009) which considers, for our knowledge, a new

application for the HMMs till writing this thesis.
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Appendix

5.9 Approximations of the model selection criteria

5.9.1 Approximations of the recursive likelihood-based criteria: AICsrec, BICsrec

and DICsrec

Given posterior draws{(
π
(m)
k ,A(m) =

{
a(m)

jk

}
,µ

(m)
k ,σ2

k
(m)
)

; m = 1,2, ...,M; j,k = 1,2, ...,K
}

simulated from the

joint posterior distribution, Pr(z,π,A,µ,σ2|y), of K-state Normal HMM, the integrals for the

criteria: AICsrec, BICsrec and DICsrec, can be approximated as follows

DICrec1 :

The first term is approximated as

Eπ,A,θ [logPr(y|π,A,θ)]≈ 1
M

M

∑
m=1

logPr(y|π(m),A(m),µ(m),σ2(m)
),

≈ 1
M

M

∑
m=1

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
(5.52)

where the quantity in bracket, {.}, represents the mth recursive log-likelihood values computed

using the forward algorithm. Given the marginal posterior means of the model parameters,

π̄, Ā, µ̄ and σ̄2, summarized from their full conditional distributions

π̄ = EΘ [π|y,z]≈ 1
M

M

∑
m=1

π
(m)
j ,

Ā = EΘ [A|y,z] = ā jk ≈
1
M

M

∑
m=1

a(m)
jk ,

µ̄ = EΘ [µ|y,z]≈ 1
M

M

∑
m=1

µ
(m)
j ,

σ̄
2 = EΘ [σ |y,z]≈ 1

M

M

∑
m=1

σ
2
j
(m)

, for j,k = 1,2, ...,K,

the second term of DICrec1 is given by

logPr(y|Eπ,A,θ [π,A,θ |y,z]) = logPr(y|π̄, Ā, µ̄, σ̄2),

= log∑
∀z

[
Pr(z1|π̄)

T

∏
t=2

Pr(zt |zt−1; Ā)
T

∏
t=1

φ(yt |zt , µ̄, σ̄
2)

]
,
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which requires only one recursive step using the forward algorithm. As a result, the DICrec1 can

be written as

DICrec1 =
−4
M

M

∑
m=1

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}

+2log∑
∀z

[
Pr(z1|π̄)

T

∏
t=2

Pr(zt |zt−1; Ā)
T

∏
t=1

φ(yt |zt , µ̄, σ̄
2)

]
. (5.53)

DICrec2 :

The first term of the DICrec2 is the same as in DICrec1 , whereas the second term can be

approximated as the maximum recursive log-likelihood obtained across M iterations in an

MCMC run as follows

Êlog p(.) [logPr(y|π,A,θ)] = argmax
`(π(m),A(m),µ(m),σ 2(m))

{
log∑∀z

[
Pr(z1|π(m))∏

T
t=2 Pr(zt |zt−1;A(m))∏

T
t=1 φ(yt |zt ,µ

(m),σ2(m)
)
]}

,

where

`(π(m),A(m),µ(m),σ2(m)
) = log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]
,

is the mth log-likelihood evaluated recursively of the K-state Normal HMM. Hence, the DICrec2

can be written as follows:

DICrec2 =
−4
M

M

∑
m=1

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}

+2 argmax
`(π(m),A(m),µ(m),σ2(m)

)

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
.

(5.54)

AICsrec and BICsrec:

The recursive likelihood based AIC and BIC, namely, AICrec1 , BICrec1 , AICrec2 , BICrec2 ,

AICrec3 , BICrec3 , can be easily approximated as their fit model terms are already approximated

in the DICrec1 and DICrec2 . Given the number of free parameters, h, which for a K-state

Normal HMM is computed as: h = K2 + 2K− 1, the versions of the AICsrec and BICsrec can
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be written as follows:

AICrec1 =−2Eπ,A,θ [logPr(y|π,A,θ)]+2h,

=
−2
M

M

∑
m=1

logPr(y|π(m),A(m),µ(m),σ2(m)
)+2h,

=
−2
M

M

∑
m=1

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
+2h,

(5.55)

and

BICrec1 =−2Eπ,A,θ [logPr(y|π,A,θ)]+h log(T ),

=
−2
M

M

∑
m=1

logPr(y|π(m),A(m),µ(m),σ2(m)
)+h log(T ),

=
−2
M

M

∑
m=1

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
+h log(T ),

(5.56)

where the fit model term in both versions above is the same as first term in the DICrec1 . On the

other hand, the AICrec2 and BICrec2 , respectively, are based on a conditional deviance evaluated

at posterior point estimates of the model parameters π̄, Ā, µ̄ and σ̄2, summarized from their full

conditional distributions. Thus, these versions are then approximated as

AICrec2 =−2logPr(y|Eπ,A,θ [π,A,θ |y,z])+2h,

=−2logPr(y|π̄, Ā, µ̄, σ̄2)+2h,

≈−2log∑
∀z

[
Pr(z1|π̄)

T

∏
t=2

Pr(zt |zt−1; Ā)
T

∏
t=1

φ(yt |zt , µ̄, σ̄
2)

]
+2h, (5.57)

and

BICrec2 =−2logPr(y|Eπ,A,θ [π,A,θ |y,z])+h log(T ),

=−2logPr(y|π̄, Ā, µ̄, σ̄2)+h log(T ),

≈−2log∑
∀z

[
Pr(z1|π̄)

T

∏
t=2

Pr(zt |zt−1; Ā)
T

∏
t=1

φ(yt |zt , µ̄, σ̄
2)

]
+h log(T ). (5.58)

This common fit model term of the version above is similar to the second term of the DICrec1 .

The last two versions of AIC and BIC, namely, AICrec3 and BICrec3 have a fit model term
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approximated as maximum recursive log-likelihood obtained across M iteration of the Gibbs

sampler. This approximation is the same as the second term of DICrec2 defined earlier. As a

result, the AICrec3 and BICrec3 can then be written, respectively, as follows:

AICrec3 =−2Êlog p(.) [logPr(y|π,A,θ)]+2h,

≈−2 argmax
`(π(m),A(m),µ(m),σ2(m)

)

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
+2h.

BICrec3 =−2Êlog p(.) [logPr(y|π,A,θ)]+h log(T ),

≈−2 argmax
`(π(m),A(m),µ(m),σ2(m)

)

{
log∑

∀z

[
Pr(z1|π(m))

T

∏
t=2

Pr(zt |zt−1;A(m))
T

∏
t=1

φ(yt |zt ,µ
(m),σ2(m)

)

]}
+h log(T ).

5.9.2 Approximations of the conditional likelihood-based criteria: AICscon,

BICscon and DICscon

Given posterior draws of hidden states, z(m) = (z(m)
1 ,z(m)

2 , ...,z(m)
T ) and state-specific model

parameters
(

µ
(m)
k ,σ2

k
(m)
)

; m = 1,2, ...,M; k = 1,2, ...,K, simulated from the joint posterior

distribution, Pr(z,µ,σ2|y), of K-state Normal HMM, MC approximations of the integrals

concerning the criteria: AICscon, BICscon and DICscon, are given as follows:

DICcon1 :

The first term of this version can be approximated, where hidden states are expressed as

integer parameters, (z1,z2, ...,zT ), sampled from a multinomial distribution, as

Dcon(z,µ,σ2) =−2Ez,θ
[
logPr(y|z,µ,σ2)

]
≈ −2

M

M

∑
m=1

T

∑
t=1

logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
). (5.59)

The second term of DICcon1 is based on a plugged-in estimator, ({ẑ} ,{µ̂} ,
{

σ̂2
}
), that is the

joint MAP of vector ({z} ,{µ} ,
{

σ2
}
), which can be approximated as the vector corresponding

to the maximum posterior density, i.e.,

({ẑ} ,{µ̂} ,
{

σ̂
2}) = argmax

z,µ,σ2
Pr(y,z|µ,σ2)Pr(z|π,A)Pr(π)Pr(A)Pr(µ)Pr(σ2),

where Pr(µ) and Pr(σ2) are priors on the mean and variance of the model, respectively,

whereas the Pr(π) and Pr(A) are priors on the hidden part, z. In post-processing, we compute

the highest posterior density at each iteration, given the posterior sample of the model
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parameters. We then select the index of highest density among all highest posterior densities

computed above. Hence, the joint MAP estimator is approximated using the best vector

(ẑ, µ̂, σ̂2) corresponding to the index of highest posterior density.

The second term then is given by

Ez,θ
[
logφ(y|ẑ, µ̂, σ̂2)

]
=

T

∑
t=1

logφ(yt |µ̂ẑt , σ̂
2
ẑt
),

where θ = (µ,σ2). The DICcon1 can then be written as

DICcon1 ≈
−4
M

M

∑
m=1

T

∑
t=1

logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)+2

T

∑
t=1

logφ(yt |µ̂ẑt , σ̂
2
ẑt
). (5.60)

DICcon2 :

The first term to this criterion is the same as the first term approximated in the DICcon2 . In

contrast, the second term is approximated as the maximum conditional log-likelihood evaluated

at the posterior draws of the hidden states, z, and state-specific mean and variance, µzt ,σ
2
zt

, as

follows

Elog p(.) [logφ(y|z,θ)]≈ argmax
̂logPr(.)

[
logφ(y|µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)

]
.

Hence, the DICcon2 can be written as

DICcon2 ≈
−4
M

M

∑
m=1

T

∑
t=1

logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)+2argmax

̂logPr(.)

[
logPr(y|µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)

]
(5.61)

AICscon and BICscon:

The versions of conditional likelihood-based AIC and BIC, namely, AICcon1 , BICcon1 , AICcon2 ,

BICcon2 , AICcon3 , BICcon3 , can also be easily approximated as they include fit model terms

which are similar to those approximated in the DICcon1 and DICcon2 . Given the number of free

parameters, h = K2 + 2K− 1, of a K-state Normal HMM, the approximated versions of both

criteria can be given, respectively, by

AICcon1 =−2Ez,θ
[
logPr(y|z,µ,σ2)

]
+2h,

≈ −2
M

M

∑
m=1

T

∑
t=1

logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)+2h, (5.62)
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and

BICcon1 =−2Ez,θ
[
logPr(y|z,µ,σ2)

]
+h log(T ),

≈ −2
M

M

∑
m=1

T

∑
t=1

logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)+h log(T ), (5.63)

where the fit model term in both criteria above is the same as the first term of the DICcon1 . The

AICcon2 and BICcon2 approximated below include a fit model term which is the same as the

second term of the DICcon1 . Thus, the AICcon2 and BICcon2 can be written as

AICcon2 =−2Ez,θ
[
logPr(y|ẑ, µ̂, σ̂2)

]
+2h,

=−2
T

∑
t=1

logφ(yt |µ̂ẑt , σ̂
2
ẑt
)+2h, (5.64)

BICcon2 =−2Ez,θ
[
logPr(y|ẑ, µ̂, σ̂2)

]
+h log(T ),

=−2
T

∑
t=1

logφ(yt |µ̂ẑt , σ̂
2
ẑt
)+h log(T ), (5.65)

where ({ẑ} ,{µ̂} ,
{

σ̂2
}
), is the joint MAP estimator of vector ({z} ,{µ} ,

{
σ2
}
) which has

already been used in approximating the second term of the the DICcon1 . The versions of AIC

and BIC, namely, AICcon3 and BICcon3 are based on the fit model term which is the same as the

second term in the DICcon2 . Thus, these versions can be written, respectively, as follows:

AICcon3 =−2Elog p(.) [logPr(y|z,θ)]+2h,

≈−2argmax
̂logPr(.)

[
logPr(y|µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)

]
+2h, (5.66)

and

BICcon3 =−2Elog p(.) [logPr(y|z,θ)]+h log(T ),

≈−2argmax
̂logPr(.)

[
logφ(y|µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)

]
+h log(T ). (5.67)
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5.9.3 Approximations of the ilppd, pWAIC and WAIC

Given the posterior draws of hidden states, z(m) = (z(m)
1 ,z(m)

2 , ...,z(m)
T ) and the state-specific

model parameters
(

µ
(m)
k ,σ2

k
(m)
)

; m = 1,2, ...,M; k = 1,2, ...,K, simulated from the joint

posterior distribution, Pr(z,µ,σ2|y), of K-state Normal HMM, the integrated log-pointwise

predictive density, the effective number of parameters and WAIC can be approximated as

follows:

îlppdy =
T

∑
t=1

logEz,µ,σ2

[
φ(yt |z,µ,σ2)|y

]
,

≈
T

∑
t=1

log

(
1
M

M

∑
m=1

Pr(yy|µ(m)

z(m)
t
,σ2

z(m)
t

(m)
)

)
. (5.68)

The effective numbers of parameters, pWAICvar , can be given by

pWAICvar =
T

∑
t=1

Vz,µ,σ2

[
logφ(yt |z,µ,σ2)

]
,

≈
T

∑
t=1

V M
m=1 logφ(yt |µ(m)

z(m)
t
,σ2

z(m)
t

(m)
), (5.69)

where V M
m=1 denotes the sample variance, V M

m=1xm =
1

M−1
∑

M
m=1(xm − x̄)2. The WAIC,

therefore, can be given by

WAIC =−2
T

∑
t=1

logEz,θ
[
φ(yt |z,µ,σ2)|y

]
+2pWAICvar ,

≈−2
T

∑
t=1

log

(
1
M

M

∑
m=1

φ(y|µ(tm)

z(m)
t

,σ2
z(m)

t

(tm)
)

)
+2pWAICvar . (5.70)

5.10 Computational relationships between proposed criteria; AIC, BIC

and DIC

As the proposed criteria in this chapter are based on some similarly parameterized deviances,

some computational asymptotic relationships between those criteria can be explained.

5.10.1 Computational relations between the recursive likelihood-based criteria:

AICsrec, BICsrec and DICsrec

By looking at the fit terms of all proposed versions of AICsrec and BICsrec, we can clearly see

that these terms form the main components of the DICrec1 and DICrec2 . As the penalty terms,
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2h, of the AICsrec and also, h log(T ) of the BICsrec, where h=K2+sK+1, are fixed and known

a priori, let

H1 = 2h, (5.71)

and

H2 = h log(T ). (5.72)

Thus, the fit terms of all versions of the AICsrec and BICsrec can be obtained as

AICrec1 = Drec(Θ)+H1←→ Drec(Θ) = AICrec1−H1.

BICrec1 = Drec(Θ)+H2←→ Drec(Θ) = BICrec1−H2.
(5.73)

AICrec2 = Drec(Θ̄)+H1←→ Drec(Θ̄) = AICrec2−H1.

BICrec2 = Drec(Θ̄)+H2←→ Drec(Θ̄) = BICrec2−H2.
(5.74)

AICrec3 = D̂rec(Θ)+H1←→ D̂rec(Θ) = AICrec2−H1.

BICrec3 = D̂rec(Θ)+H2←→ D̂rec(Θ) = BICrec2−H2.
(5.75)

From Equations (5.73) and (5.74), and according to the definition of DICrec1 and its

corresponding effective number of parameters, pDICrec1
, given in subsection (5.5.1), we

conclude that the DICrec1 and pDICrec1
can be computationally obtained by either

DICrec1 = 2Drec(Θ)−Drec(Θ̄),

= 2(AICrec1−H1)− (AICrec2−H1),

= 2AICrec1−AICrec2−H1, (5.76)

pDICrec1
= Drec(Θ)−Drec(Θ̄),

= (AICrec1−H1)− (AICrec2−H1),

= AICrec1−AICrec2 , (5.77)
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or,

DICrec1 = 2Drec(Θ)−Drec(Θ̄),

= 2(BICrec1−H2)− (BICrec2−H2),

= 2BICrec1−BICrec2−H2, (5.78)

pDICrec1
= Drec(Θ)−Drec(Θ̄),

= (BICrec1−H2)− (BICrec2−H2),

= BICrec1−BICrec2 , (5.79)

On the other hand, the DICrec2 is also obtained, in particular, based on the AICrec1 , BICrec1 ,

AICrec2 and BICrec2 . Given the fit terms of the obtained in Equations (5.73) and (5.75), and

according to the definitions of DICrec2 and pDICrec2
given in section (5.5.1), we can write the

computational relationship between these criteria as follows

DICrec2 = 2Drec(Θ)− D̂rec(Θ),

= 2(AICrec1−H1)− (AICrec3−H1),

= 2AICrec1−AICrec3−H1, (5.80)

pDICrec2
= Drec(Θ)− D̂rec(Θ),

= (AICrec1−H1)− (AICrec3−H1),

= AICrec1−AICrec3 , (5.81)

or based on BICrec1 and BICrec3 , as

DICrec2 = 2Drec(Θ)− D̂rec(Θ),

= 2(BICrec1−H2)− (BICrec3−H2),

= 2BICrec1−BICrec3−H2, (5.82)

pDICrec2
= Drec(Θ)− D̂rec(Θ),

= (BICrec1−H2)− (BICrec3−H2),

= BICrec1−BICrec3 , (5.83)
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5.10.2 Computational relations between the conditional likelihood-based

criteria: AICscon, BICscon and DICscon

Similarly, we can explore the computational relationship between the conditional log likelihood-

based AIC, BIC and DIC. First, we rewrite the fit terms of all versions of the AICscon and

BICscon as

AICcon1 ≈ Dcon(z,θ)+H1←→ Dcon(z,θ)≈ AICcon1−H1,

BICcon1 ≈ Dcon(z,θ)+H2←→ Dcon(z,θ)≈ BICcon1−H2,
(5.84)

AICcon2 ≈ Dcon(ẑ, θ̂)+H1←→ Dcon(ẑ, θ̂)≈ AICcon2−H1,

BICcon2 ≈ Dcon(ẑ, θ̂)+H2←→ Dcon(ẑ, θ̂)≈ BICcon2−H2,
(5.85)

AICcon3 ≈ D̂con(z,θ)+H1←→ D̂con(z,θ)≈ AICcon2−H1,

BICcon3 ≈ D̂con(z,θ)+H2←→ D̂con(z,θ)≈ BICcon2−H2,
(5.86)

where H1 and H2 are the same as those defined with AICsrec and BICsrec in subsection (5.10.1).

Now, using Equations (5.84 - 5.86), it can be noted that these fit model terms represent the

components of DICscon and its corresponding effective number of parameters, pDICcon , defined

in subsection (5.5.2). Hence, we can rewrite the DICcon1 and pDICcon1
as, either

DICcon1 = 2Dcon(z,θ)−Dcon(ẑ, θ̂),

= 2(AICcon1−H1)− (AICcon2−H1),

= 2AICcon1−AICcon2−H1, (5.87)

pDICcon1
= Dcon(z,θ)−Dcon(ẑ, θ̂),

= (AICcon1−H1)− (AICcon2−H1),

= AICcon1−AICcon2 , (5.88)
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or,

DICcon1 = 2Dcon(z,θ)−Dcon(ẑ, θ̂),

= 2(BICcon1−H2)− (BICcon2−H2),

= 2BICcon1−BICcon2−H2, (5.89)

pDICcon1
= Dcon(z,θ)−Dcon(ẑ, θ̂),

= (BICcon1−H2)− (BICcon2−H2),

= BICcon1−BICcon2 , (5.90)

respectively. The DICcon2 defined in subsection (5.5.2), can be rewritten based on the AICcon1

and AICcon3 , or the BICcon1 and BICcon3 . That is,

DICcon2 = 2Dcon(z,θ)− D̂con(z,θ),

= 2(AICcon1−H1)− (AICcon3−H1),

= 2AICcon1−AICcon3−H1, (5.91)

pDICcon2
= Dcon(z,θ)− D̂con(z,θ),

= (AICcon1−H1)− (AICcon3−H1),

= AICcon1−AICcon3 , (5.92)

or,

DICcon2 = 2Dcon(z,θ)− D̂con(z,θ),

= 2(BICcon1−H2)− (BICcon3−H2),

= 2BICcon1−BICcon3−H2, (5.93)

pDICcon2
= Dcon(z,θ)− D̂con(z,θ),

= (BICcon1−H2)− (BICcon3−H2),

= BICcon1−BICcon3 . (5.94)
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Chapter 6

Evaluation of model selection criteria

6.1 Introduction

In this chapter, we implement simulation studies to assess the performance of the model

selection criteria introduced in Chapter 5.

These criteria will be assessed on the basis of many synthetic data sets simulated from data

generating mechanisms with different complexity, K. The aim is to check the ability of these

criteria in selecting the correct model, given different data generating mechanisms.

Furthermore, the same criteria will be evaluated on an application of real data involving the

waiting time of Faithful Old geyser data.

6.2 Simulation study

In this section, we design a simulation study aimed at comparing the performance of the

following model selection criteria introduced in Chapter 5:

• Recursive deviance-based criteria: AICrec1 , BICrec1 , AICrec2 , BICrec2 , AICrec3 , BICrec3 ,

DICrec1 , DICrec2 ;

• Conditional deviance-based criteria: AICcon1 , BICcon1 , AICcon2 , BICcon2 , AICcon3 ,

BICcon3 , DICcon1 , DICcon2 ;

• Predictive ability-based criterion: WAIC.

6.2.1 Generating simulated data

We evaluate the model selection criteria under four groups of normally distributed data with

the assumption of equality of variance, with 500 observations each, simulated from four

data-generating mechanisms, with different complexities as follows:

2-states model
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π =

0.4

0.6

 , A =

0.9 0.1

0.3 0.7

 , µ =

10

20

 ,
with equal variances σ2

1 = σ2
2 = 1.

3-states model

π =


0.4

0.3

0.3

 , A =


0.8 0.1 0.1

0.1 0.7 0.2

0.1 0.1 0.8

 , µ =


2

12

19

 ,
with equal variances σ2

1 = σ2
2 = σ2

3 = 1.

5-states model

π =



0.3

0.3

0.2

0.1

0.1


, A =



0.5 0.2 0.1 0.1 0.1

0.2 0.5 0.1 0.1 0.1

0.1 0.2 0.5 0.1 0.1

0.1 0.1 0.2 0.5 0.1

0.1 0.1 0.1 0.2 0.5


, µ =



4

6

12

16

20


,

with equal variances σ2
1 = ...= σ2

5 = 1.

7-states model

π =



0.2

0.2

0.2

0.1

0.1

0.1

0.1


, A =



0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.4 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.1 0.1 0.1 0.1

0.2 0.1 0.2 0.2 0.1 0.1 0.1

0.2 0.1 0.1 0.2 0.2 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.4 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.4


, µ =



4

8

12

16

20

22

24


,

with equal variances σ2
1 = ...= σ2

7 = 1.

From each model, we simulate 200 data sets. Figures (6.1–6.4) show 200 data sets simulated

from each considered generating data model, of 500 observations each, plotted on the same

picture. In what follows, for each case, we refer to the model from which the data are

generated as K0. The aim of this simulation study is to evaluate the model selection ability of

each criterion, given increased model complexity.
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Figure 6.1: Simulated data from 200 Normal HMMs of length 500 with K0 = 2.
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Figure 6.2: Simulated data from 200 Normal HMMs of length 500 with K0 = 3.
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Figure 6.3: Simulated data from 200 Normal HMMs of length 500 with K0 = 5.

0 100 200 300 400 500

0

5

10

15

20

25

Figure 6.4: Simulated data from 200 Normal HMMs of length 500 with K0 = 7.
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6.2.2 Fitting competing models

We fit several competing models for each data set being simulated from each of the generating

data models defined earlier. We assume a different number of competing models fitted for

each data set. We fit competing models with the number of hidden states K varying between

K=2 and K=5 for the first two datasets (i.e. for the generating data models with K0 = 2 and

K0 = 3 states, respectively), whereas we fit competing models with the number of hidden states

K allowed to vary between K=3 and K=7 for the generating model with K0 = 5 states. For

the data sets simulated from the model with K0 = 7 states, we allow K to vary between K=5

and K=9. For each competing model being fitted to each data set, we run the Gibbs sampler

for 20000 iterations and discarded the first 5000 iterations as burn-in period. We assume non-

informative priors on all parameters of all competing models. For the state-specific parameters,

µ and σ2, we assume the Normal and Gamma distribution priors respectively, so that:

µ j
ind.∼ N(0,1000),

σ
−2
j

ind.∼ Γ(0.001,0.001), ∀ j,

where j is an index that refers to each component in the model fitted to each data set. For

the state initial distribution, π, and each row,
{

a j.
}

, of the transition matrix, A, we assume

independently a Dirichlet prior with a hyper parameter δk = 1, ∀ j,k, for each fitted model K,

so that:

{
a j.
}

and π
ind.∼ Dir(1,1, ...,1k).

The k is also the index of each model’s size being fitted for each simulated data set. In what

follows, we show the results of model selection of each considered criterion under various

scenarios. Since all considered criteria here are based on the output of an MCMC sampling, they

are most likely to be subjected to simulation variability. Therefore, we measure the variability of

these criteria by computing the numerical standard error of each criterion, to report the criteria

accuracy.

6.2.3 Simulation results

Among the 200 simulated datasets, Tables (6.1-6.4) report the percentage of the number of

times each model is selected by one of the considered criteria, given four data-generating
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schemes, respectively. These tables include also the numerical standard errors computed over

200 replications.

In the case of the generating data model with K0 =2 states, it can be seen that all versions of

the criteria AIC, BIC and DIC, based on recursive deviances, except the DICrec1 , perform well

in selecting the correct model as shown in Table (6.1). The DICrec1 has a satisfactory selection

percentage for the correct model (43.00% at K = 2 compared with other values of K), but it

has a marked tendency to overestimate the number of states K. From the same table, it can be

noted that the criteria AIC, BIC and DIC based on conditional deviances, as well as the WAIC,

have a different behavior. Among these criteria, the versions: BICcon1 , BICcon2 and DICcon2

seems to have the most satisfactory performance. However, they have a tendency to

over-penalize the complexity of the model with a slight percentages. In contrast, the versions

AICcon1 , AICcon2 , AICcon3 , BICcon3 DICcon1 and also WAIC do not select the correct model and

all have a high tendency to choose a more complicated model (K = 5).

With respect to the results of the generating model with K0 = 3 states shown in Table (6.2), it

can be seen that all versions of criteria AIC, BIC and DIC based on recursive deviances still

select the right model, indicating their reliability. Except for the DICrec1 , they all have almost

the same percentage of selecting the correct model. It is worth noting that the DICrec1 has the

same behaviour as that observed in the previous case concerning the generating model with

K0 = 2 states (Table (6.1)), where it has the smallest selection percentage (81.50%) compared

with other criteria. In contrast, we can see from the same table that some criteria based on

conditional deviances again have satisfactory behavior. For example, the BICcon1 , BICcon2 and

DICcon2 , and this time the AICcon2 , all select the correct generating model (K0 = 3). Note that

the AICcon2 , despite its satisfactory performance here, it behaves differently compared to the

case of the generating model with K0 = 2 states (Table (6.1)), indicating its invalidity, whereas

the BICcon1 , BICcon2 and DICcon2 have similar performance with respect to selecting the

correct model, suggesting their validity. From the same table, it can be seen that the remaining

versions: AICcon1 , AICcon3 , BICcon3 , DICcon1 and WAIC have the same poor behaviour as the

one observed in the case of the generating model with K0 = 2 states (Table (6.1)), where they

have a high tendency to select the most complicated model (K = 5).

Regarding the generating model with K0 = 5 states, there are different choices of the criteria as

reported in Table (6.3). It can be seen that all versions of recursive deviance-based criteria:

AIC, BIC and the second version of DIC, DICrec2), behave differently and tend to pick an

under-fit model with K = 4 states as a representation of the data, which seems a sensible
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choice as suggested by Figure (6.3). Specifically, the observed process produced by this

generating HMM offers some overlapping for some modes of the model due to the existence of

state-dependent means very closed each other, e.g. µ1 = 2 and µ2 = 4. It appears that the

DICrec1 has the most satisfactory performance with respect to selecting the correct model, but

it has a tendency to overestimate the number of states K in about 41% of cases. In contrast, it

can be noted that among the criteria based on conditional deviances that only the version

AICcon2 selects the correct model and has a high tendency to over-penalise the model in about

43% of cases. The versions BICcon1 and BICcon1 behave in the same way as the majority of the

recursive deviance-based criteria above, which favour the model with K = 4, a reasonable

solution as indicated by Figure (6.3). Both versions have a somewhat similar tendency to

underestimate the number of states K in almost 33% of cases. The AICcon1 and WAIC both

have the same performance as in the two previous cases (i.e. K0 = 2 and K0 = 3), where they

select the most complex model, K = 7. Regarding the versions: AICcon3 , BICcon3 and DICcon1 ,

they have the same behaviour as the AICcon1 and WAIC, where they also select an overfitting

model, but with lower complexity (K = 6).

Finally, it appears from the results concerning the generating model with K0 = 7, in Table

(6.4), that all versions of the AIC and BIC have very high orientation to under-penalize the

model complexity, a behaviour similar to the previous case (the case of K0 = 5), where they

select the smallest model, K = 5, for the data. This latter selection, made by the above criteria,

seems also a reasonable solution according to the observed pattern of the data in Figure (6.4).

It seems that they take into account the overlapping in the data, where it is difficult, for

example, to diagnose the existence of 7 states. More clearly, the state-specific means: µ5 = 20,

µ6 = 22 and µ7 = 24 are very close to each other and can form a single mode. This highlights

that these criteria appear to be sensitive to the real representation of observed process produced

by the HMM. The DICrec1 has similar performance as that observed in the cases K0 = 2,

K0 = 3 and K0 = 5, and it tends to choose the real number of generating data model

(K = K0 = 7). On the other hand, the version DICrec2 behaves in the same way as the recursive

deviance-based versions of the AIC and BIC, where it tends to select the model with fewest

parameters (K = 5). From the same table, it can be noted that the BICcon1 and BICcon2 also

select the smaller model, K = 5, to the data. It can see that the AICcon1 , AICcon2 , BICcon3 and

WAIC behave differently from their poor performance in the previous three cases, as this time

they select the correct model. This can indicate that such criteria may be appropriate in

evaluating large models. The DICcon2 has a tendency to underestimate the real number of
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hidden states. Note that the versions AICcon3 and DICcon1 still have a poor performance, where

they select more complicated model for the data with K = 8 and K = 9, respectively.

It should be noted that all criteria based on the recursive likelihood: the AIC, BIC and DIC

provide generally lower standard errors, as shown in brackets in all tables, compared with

those based on the conditional likelihood and also the WAIC, indicating better accuracy. This

high variability in the latter criteria may be because of the MCMC sampling includes high

dimensional vectors of hidden state along with the model parameters, which would affect the

variability of MC approximations of those criteria.
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Fitted models
K0 Criterion 2 3 4 5

Percentage (%) of times selected

AICrec1 99.5% 0.50% 0.00 0.00
(3.351) (3.332) (3.344) (3.315)

BICrec1 99.5 0.50 0.00% 0.00
(3.351) (3.357) (3.344) (3.335)

AICrec2 99.5% 0.50% 0.00% 0.00%
(3.350) (3.339) (3.312) (3.329)

2 BICrec2 99.5% 0.50% 0.00% 0.00%
(3.350) (3.333) (3.312) (3.352)

AICrec3 94.50% 5.50% 0.00% 0.00%
(3.351) (3.385) (3.373) (3.347)

BICrec3 100.00% 0.00% 0.00% 0.00%
(3.351) (3.385) (3.373) (3.347)

DICrec1 43.00% 28.50% 15.00% 13.50%
(3.352) (3.337) (3.425) (3.354)

DICrec2 94.00% 6.00% 0.00% 0.00%
(3.351) (3.424) (3.325) (3.302)

AICcon1 0.50% 2.50% 18.00% 79.00%
(3.213) (8.898) (8.607) (14.217)

BICcon1 55.00% 15.50% 14.00% 15.50%
(3.213) (8.923) (8.607) (14.305)

AICcon2 13.00% 10.50% 21.50% 55.00%
(4.212) (6.703) (8.756) (13.732)

BICcon2 87.50% 6.50% 3.50% 2.50%
(4.212) (6.714) (8.359) (13.735)

2 AICcon3 0.50% 3.50% 21.50% 74.50%
(3.212) (5.802) (9.198) (8.088)

BICcon3 0.50% 9.50% 32.00% 58.00%
(3.212) (5.802) (9.198) (8.002)

DICcon1 0.50% 0.00% 7.50% 92.00%
(3.213) (5.185) (8.513) (14.918)

DICcon2 95.00% 1.00% 1.50% 2.50%
(3.213) (5.450) (9.885) (15.168)

2 WAIC 0.50% 0.50% 6.50% 92.50%
(3.212) (7.377) (6.560) (9.808)

Table 6.1: Percentage of the number of times in which the models with 2–5 states are chosen by
each criterion over 200 independent simulation data sets, each of which of length
500 observations, generated from a HMM with K0 = 2 states. The numbers in
brackets indicate numerical standard errors.
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Fitted models
K0 Criterion 2 3 4 5

Percentage (%) of times selected

AICrec1 0.00% 94.00% 6.00% 0.00%
(3.319) (3.291) (6.497) (9.782)

BICrec1 0.00% 94.00% 6.00% 0.00%
(3.319) (3.291) (6.497) (9.782)

AICrec2 0.00 94.00 6.00 0.00%
(3.322) (3.251) (6.497) (9.848)

3 BICrec2 0.00% 94.00% 6.00% 0.00%
(3.322) (3.251) (6.497) (9.848)

AICrec3 0.00% 94.00% 6.00% 0.00%
(3.342) (3.352) (6.497) (9.779)

BICrec3 0.00% 94.00% 6.00% 0.00%
(3.342) (3.352) (6.497) (9.779)

DICrec1 0.00% 81.50% 17.00% 1.50%
(3.361) (3.376) (6.498) (9.715)

DICrec2 0.00% 93.50% 6.50% 0.00%
(3.301) (3.242) (6.498) (9.784)

AICcon1 0.00% 5.50% 28.50% 66.00%
(3.674) (4.799) (6.211) (13.623)

BICcon1 0.00% 83.00% 16.00% 1.00%
(3.674) (4.799) (6.211) (13.623)

AICcon2 0.00% 48.00% 33.00% 19.00%
(4.058) (3.618) (6.219) (13.908)

BICcon2 0.00% 90.50% 9.50% 0.00%
(4.058) (3.618) (6.219) (13.908)

3 AICcon3 0.00% 0.00% 9.50% 90.50%
(3.320) (3.586) (5.446) (11.821)

BICcon3 0.00% 0.00% 41.00% 59.00%
(3.320) (3.586) (5.446) (11.821)

DICcon1 0.00% 0.00% 4.50% 95.50%
(4.208) (3.913) (6.202) (13.338)

DICcon2 0.00% 86.00% 9.00% 6.00%
(3.108) (3.497) (7.153) (15.453)

3 WAIC 0.00% 1.00% 10.00% 89.00%
(4.491) (4.561) (8.101) (14.382)

Table 6.2: Percentage of the number of times in which the models with 2–5 states are chosen by
each criterion over 200 independent simulation data sets, each of which of length
500 observations, generated from a HMM with K0 = 3 states. The numbers in
brackets indicate numerical standard errors.
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Fitted models
K0 Criterion 3 4 5 6 7

Percentage (%) of times selected

AICrec1 0.00% 82.00% 17.5% 0.50% 0.00%
(2.981) (3.319) (2.998) (2.915) (2.759)

BICrec1 21.50% 78.00% 0.50% 0.00% 0.00%
(2.981) (3.319) (2.998) (2.915) (2.759)

AICrec2 0.00% 80.00% 19.00% 1.00% 0.00%
(2.988) (3.554) (3.303) (3.653) (3.622)

5 BICrec2 18.00% 81.50% 0.50% 0.00% 0.00%
(2.988) (3.554) (3.303) (3.653) (3.622)

AICrec3 0.00% 76.50% 22.50% 1.00% 0.00%
(2.982) (3.302) (3.003) (2.963) (2.840)

BICrec3 15.50% 82.00% 2.50% 0.00% 0.00%
(2.982) (3.302) (3.003) (2.963) (2.840)

DICrec1 0.00% 19.00% 39.50% 21.50% 21.00%
(2.981) (3.293) (3.112) (3.097) (3.561)

DICrec2 0.00% 64.50% 32.00% 3.50% 0.00%
(2.982) (3.347) (3.003) (2.888) (2.703)

AICcon1 0.00% 3.50% 22.50% 25.50% 48.50%
(4.970) (5.648) (5.422) (5.385) (4.907)

BICcon1 0.00% 39.00% 34.50% 20.00% 6.50%
(4.970) (5.648) (5.422) (5.385) (4.907)

AICcon2 0.00% 24.50% 33.00% 22.50% 20.00%
(5.488) (8.046) (9.488) (13.966) (15.557)

BICcon2 0.00% 55.00% 33.00% 9.50% 2.50%
(5.488) (8.046) (9.488) (13.966) (15.557)

5 AICcon3 0.00% 0.00% 1.50% 18.00% 80.50%
(3.805) (3.773) (4.720) (5.461) (4.938)

BICcon3 0.00% 0.00% 25.00% 35.50% 39.50%
(3.805) (3.773) (4.720) (5.461) (4.938)

DICcon1 0.00% 0.00% 3.00% 15.50% 81.50%
(5.062) (6.435) (7.558) (12.113) (15.113)

DICcon2 0.00% 23.00% 28.00% 20.00% 29.00%
(6.246) (7.733) (6.539) (6.112) (5.984)

5 WAIC 0.00% 6.00% 18.50 20.00% 55.50%
(6.317) (8.190) (5.242) (4.855) (4.696)

Table 6.3: Percentage of the number of times in which the models with 3–7 states are chosen by
each criterion over 200 independent simulation data sets, each of which of length
500 observations, generated from a HMM with K0 = 5 states. The numbers in
brackets indicate numerical standard errors.
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Fitted models
K0 Criterion 5 6 7 8 9

Percentage (%) of times selected

AICrec1 96.00% 4.00% 0.00% 0.00% 0.00%
(3.246) (3.073) (3.095) (2.995) (2.966)

BICrec1 100.00% 0.00% 0.00% 0.00% 0.00%
(3.246) (3.073) (3.095) (2.995) (2.966)

AICrec2 89.00% 11.00% 0.00% 0.00% 0.00%
(3.328) (4.019) (3.909) (4.010) (3.669)

7 BICrec2 100.00% 0.00% 0.00% 0.00% 0.00%
(3.328) (4.019) (3.909) (4.010) (3.669)

AICrec3 92.00% 8.00% 0.00% 0.00% 0.00%
(3.224) (3.074) (3.117) (3.070) (3.006)

BICrec3 100.00% 0.00% 0.00% 0.00% 0.00%
(3.224) (3.074) (3.117) (3.070) (3.006)

DICrec1 8.50% 22.00% 36.00% 20.00% 13.50%
(3.199) (3.489) (3.118) (3.309) (3.275)

DICrec2 42.50% 40.00% 16.00% 1.50% 0.00%
(3.290) (3.101) (3.116) (2.981) (2.979)

AICcon1 4.50% 18.50% 51.00% 19.00% 7.00%
(7.717) (6.980) (7.542) (7.176) (7.283)

BICcon1 47.00% 38.50% 14.00% 0.50% 0.00%
(7.717) (6.980) (7.542) (7.176) (7.283)

AICcon2 16.50% 32.00% 44.50% 6.00% 1.00%
(10.152) (16.958) (14.638) (15.215) (13.708)

BICcon2 52.50% 37.50% 10.00% 0.00% 0.00%
(10.152) (16.958) (14.638) (15.215) (13.708)

7 AICcon3 0.00% 0.50% 15.00% 41.50% 42.50%
(4.071) (3.943) (5.745) (6.615) (7.639)

BICcon3 2.50% 25.00% 53.50% 17.00% 2.00%
(4.071) (3.943) (5.745) (6.615) (7.639)

DICcon1 0.00% 2.00% 2.50% 18.00% 77.50%
(6.576) (13.838) (10.948) (14.370) (11.780)

DICcon2 20.00% 30.50% 29.00% 12.00% 8.50%
(12.154) (10.927) (10.238) (9.690) (8.735)

7 WAIC 7.00% 16.50% 40.50% 20.50% 15.50%
(10.626) (8.134) (8.402) (8.312) (8.379)

Table 6.4: Percentage of the number of times in which the models with 5–9 states are chosen by
each criterion over 200 independent simulation data sets, each of which of length
500 observations, generated from a HMM with K0 = 7 states. The numbers in
brackets indicate numerical standard errors.
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6.3 Application to real data

In this section we assess the performance of our criteria using a real application involving the

waiting times of the Old Faithful geyser data. These data were used in Chapter 4 to examine the

MCMC sampler employed in model estimation. The waiting times of the Old Faithful geyser

data consist of 299 observations. These data have been used by many authors to address the

model selection issue in HMMs. For example, based on the frequentist framework using the

EM approach, Zucchini and MacDonald (2009) used the AIC and BIC to select the best Normal

HMM of those data. They concluded that the best model to adequately fit these data is the

model with K = 3 according to the BIC, whereas the model with K = 4 is selected based on

the AIC. Robert and Titterington (1998) graphically proposed, without using a named criterion,

that K = 3 states are adequate for fitting those data. A study introduced by McGillivray and

Khalili (2014), based on the frequentist framework, concluded that the Normal HMMs with

K = 2 and K = 3 states are the best according to the BIC and AIC respectively. We display the

histogram of these 299 observations in Figure (6.5) which also includes plots of the probability

densities of several competing models fitted to these observations. We put an upper bound,

Kmax = 7 on the number of competing models, K, fitted to those data, where K = 2,3, ...,Kmax.

We use the same procedure followed in the simulation study in section (6.2.2) with respect to

the prior specification. For each test model, we run the Gibbs sampler for 20000 iterations

and discard the first 5000 iterations as a burn-in period. To avoid the label switching issue,

we impose identifiability constraints on the mean parameter, µ, of each test model so that:

µ1 < µ2 < ... < µk.

6.3.1 Results

Tables (6.5- 6.7) show results for all proposed criteria: the AIC, BIC, DIC and the WAIC,

respectively. We display the graphical estimation results of the models fitted in Figure (6.5).

Table (6.5) shows that all modified versions for the AIC and BIC, based on the recursive

deviances, choose the model with K = 3 as the best model for the waiting times between two

successive eruptions. Similarly, the second version of DIC, DICrec2 behaves in the same

pattern as the AICsrec and BICsrec, where it selects the model with K = 3 states. Note also that

the effective number of parameters of DICrec2 gives values that increase as expected until

K = 4. At the next states, K = 5,6 and 7, the effective number of parameters increases slightly,

indicating that the additional states do not considerably contribute to the model’s deviance.

This can be also noted from the models fitting observed in Figure (6.5) where there is no
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marked improvement after K = 4. In contrast, the first version, DICrec1 , has a different

behaviour and chooses a more complicated model for these data, K = 7. Note that the effective

number of parameters of the DICrec1 has an unsatisfactory behavior after K = 5, as it

decreases at K = 6 and then increases at K = 7.

On the other hand, Table (6.6) shows different choices are made by the conditional

deviance-based criteria. For instance, the BICcon1 selects the more parsimonious model which

is K = 4. Similarly, both versions of DIC based on conditional deviance: DICcon1 and DICcon2

choose the same model, K = 4. It can be seen that the DICcon1 provides non-increasing and

highly fluctuating pDICs. On the other hand, the DICcon2 gives increased pDICs with too large

values. This may be the result of including the hidden cases as additional parameters in the

model. Note that, despite the large values of pDICcon2
, the DICcon2 has a similar behavior to the

DICrec2 , where the former has a slight increase in pDICcon2
after K = 5. This pattern may be

attributed to both versions defined based on plugged-in functional estimators. For other

versions of the conditional deviance-based AIC and BIC, it can be seen that both the AICcon2

and the AICcon3 select the more complicated model K = 6, whereas both versions of BIC:

BICcon2 and BICcon3 tend to select a less complicated model, K = 5.

Table (6.7) shows that the WAIC provides effective dimensions that increase with increasing

K. However, it tends to select the most complicated model for these data, K = 7.

It is interesting to note that the model choice with K = 4, made by BICcon1 and also the

DICcon1 and DICcon2 can be a plausible selection for these data, as a marked improvement in

model fitting with K = 3 through the model with K = 4 is observed, whereas is only a slight

improvement after the model with K = 4 as shown in Figure (6.5).
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K Deviance AICrec1 BICrec1 AICrec2 BICrec2 AICrec3 BICrec3 DICrec1 pDICrec1
DICrec2 pDICrec2

Drec(Θ) Drec(Θ̄) D̂rec(Θ)

2 2194.582 2189.569 2186.798 2208.582 2234.485 2203.569 2229.472 2200.798 2226.702 2199.596 5.013 2202.366 7.784
3 2122.987 2114.158 2108.885 2150.987 2202.794 2142.158 2193.964 2136.885 2188.691 2131.817 8.829 2137.091 14.103
4 2121.108 2109.455 2102.309 2167.108 2252.218 2155.455 2240.565 2148.309 2233.419 2132.761 11.653 2139.907 18.799
5 2120.616 2108.057 2099.334 2188.616 2314.431 2176.057 2301.872 2167.334 2293.149 2133.175 12.559 2141.898 21.282
6 2118.113 2107.141 2096.115 2212.133 2386.013 2201.141 2375.041 2190.195 2364.015 2129.085 10.972 2140.071 21.938
7 2117.039 2105.663 2094.184 2241.039 2470.439 2229.663 2459.063 2218.184 2447.584 2128.415 11.376 2139.894 22.855

Table 6.5: Results of the proposed criteria, based on recursive deviances, for the waiting time of Old Faithful geyser data.

K Deviance AICcon1 BICcon1 AICcon2 BICcon2 AICcon3 BICcon3 DICcon1 pDICcon1
DICcon2 pDICcon2

Dcon(z,θ) Dcon(ẑ, θ̂) D̂con(z,θ)
2 2051.746 2044.062 2011.382 2065.746 2091.649 2058.062 2083.965 2025.382 2051.285 2059.431 7.684 2090.618 39.618
3 1825.760 1822.704 1781.642 1853.760 1905.566 1850.704 1902.510 1809.642 1861.448 1828.816 3.056 1869.877 44.117
4 1752.659 1742.693 1661.090 1798.659 1883.769 1788.693 1873.804 1707.090 1792.201 1762.624 9.965 1844.228 91.568
5 1731.827 1669.454 1582.849 1799.827 1925.643 1737.454 1863.269 1650.849 1776.665 1794.201 62.373 1880.805 148.977
6 1688.982 1612.221 1535.904 1782.982 1956.903 1706.221 1880.142 1625.904 1799.825 1842.504 76.761 1955.138 153.078
7 1662.665 1594.349 1506.884 1784.665 2016.092 1716.349 1947.776 1628.884 1860.311 1799.297 68.316 1974.227 155.781

Table 6.6: Results of the proposed criteria, based on conditional deviances, for the waiting time of Old Faithful geyser data.
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K ilppd WAICvar pWAICvar

2 -1012.608 2101.489 38.135
3 -897.214 1893.996 49.784
4 -845.430 1858.040 83.590
5 -821.5745 1861.909 109.380
6 -790.1925 1837.593 128.604
7 -757.084 1790.206 138.019

Table 6.7: Results of the WAIC and the effective number of parameters, based on the integrated
log-pointwise predictive density, applied for the waiting time of Old Faithful geyser
data.
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Figure 6.5: Histograms of the densities for several Normal HMMs, with different states, fitted
to the waiting time of Old Faithful geyser data.
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6.4 Summary and discussion

In this chapter, we have investigated the model selection issue in the HMMs context using

several criteria proposed in Chapter 5 of this thesis. We have assessed those criteria using

simulated data sets generated from models with different complexities. In addition, we have

evaluated those criteria based on an application to real data. The conclusions of this study can

be summarised the following.

1. In terms of the recursive deviance-based criteria, it was noted that all versions of the AIC

and BIC, and also the second version of the DIC, DICrec2 that is based on a functional

estimator (minimum recursive deviance evaluated at the posterior draws), seem to have

a satisfactory performance towards selecting the correct model. In the simulation study

designed on the basis of assuming different generating models with vary complexities K0,

all versions of those criteria selected the correct model in the case of the less complicated

models (K0 = 2 and K0 = 3). In the case of the more complex models, K0 = 5 and K0 = 7,

these criteria behave reasonably, as they tended to underestimate the number of hidden

states, which match to the real representation of the observed process produced by the

generating-data HMMs as displayed in Figures (6.3) and (6.4). The same above criteria

also seem to perform well in the real data application, where they selected a reasonable

solution to represent the data. It was noted that the effective number of parameters of

DICrec2 gives values that increase up to K = 4. At the next states, K = 5,6 and 7, there is

only a slight increase in the effective number of parameters, indicating that the additional

states do not considerably contribute to the model’s deviance. This can explain the model

fitting observed in Figure (6.5), where there is no marked improvement after K = 4. On

the other hand, the first version of the DIC, DICrec1 , selected the correct model in all

cases considered in this study, and it seems to prefer no overlapping solutions, but has

a tendency to overestimate the number of hidden states in the model. In contrast, this

criterion had a poor performance in the real data example, where it preferred the most

overfit model. Also, it provides arbitrary values of pDICrec1
which do not agree with the

principle of increasing the effective number of the parameters as the model complexity

increases. This may be due to the unsatisfactory estimation of the plugged-in estimator

Drec(Θ̄) of this criterion.

2. For the conditional deviance-based criteria, some of them had a satisfactory

performance. For instance, the two versions of the BIC: BICcon1 and BICcon2 had the
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same behaviour as the AIC and BIC based on recursive deviance, where they also select

the right model in the less complicated generating models, and under-fit model in the

case of more complexity generating models. Is seems that these two criteria are also

sensitive to the overlapping observed in data. In the real data example, the BICcon1

selects the more parsimonious model, whereas the BICcon2 favors a lager model. In the

simulation example, the AICcon1 and BICcon3 , except in the case K0 = 7 which they

selected the correct models, act symmetrically and both prefer the most overfitting

models when K0 = 2, K0 = 3 and K0 = 5 states, suggesting that they are not reliable.

Moreover, both versions prefer the large models in the real data application. Conversely,

the AICcon2 , except the case K0 = 2 which it chooses the most complicated model,

picked up the correct number of hidden states in cases K0 = 3, K0 = 4 and K0 = 5 states.

Nevertheless, it also tends to select the more complicated model for the real data. The

DICcon1 had the worse performance, as it selects the most overfitting model for all cases

in the simulation study. However, it selects a reasonable solution for the real data and

also introduces increased values of pDICcon1
, but large. The DICcon2 performed well for

the first two simulated models, K0 = 2 and K0 = 3, and then tends to highly

underestimate the number of states K in the main part of cases. This criteria also

selected a sensible solution for the waiting time data example and provides pDICcon1
with

increased and large values.

3. The WAIC had an unsatisfactory behaviour, similarly to the versions AICcon1 and BICcon3 ,

as it also tends to favour the most overfitting model for the first three cases (i.e. K0 =

2, K0 = 3 and K0 = 5), and selects the correct model for the case K0 = 7 with a high

overestimate of K. Moreover, it tends to choose very complicated model for the the Old

Faithful data. This can give an indicator that this criterion is not appropriated for HMMs.

4. It was noted that all criteria based on the recursive likelihood: the AIC, BIC and DIC

provide generally lower MC standard errors than those based on the conditional

likelihood and also the WAIC, indicating their accuracy. This high variability in the

latter criteria may be because of the MCMC sampling includes high dimensional vectors

of hidden state along with the model parameters, which would affect the variability of

MC approximations of those criteria.
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Chapter 7

Modeling and diagnosing of traffic crash

rates using Poisson hidden Markov

models

7.1 Introduction

This chapter presents an application of the HMM to traffic crash data. We use the HMM to

model the spatial rather than the temporal dependency on a highway segment. We assume that

crash counts can be considered as realizations of a Poisson random variable. The assumption of

a standard Poisson distribution to describe such counts is often violated in applications due to

the presence of over-dispersion (McCullagh and Nelder, 1989) in non-dependent data. This can

be accommodated using alternatives such as the Negative Binomial distribution or by assuming

components that are defined by independent (hidden) latent variables (McLachlan and Peel,

2000). However, these latter solutions assume independence between the latent variables and

do not take into account the possibility of serial dependence in the data. We describe the PHMM

as an alternative that allows both for over-dispersion and a specific form of serial correlation in

the data. PHMMs have been used before for modelling over-dispersed series of count data. For

example, Leroux and Puterman (1992) fitted a PHMM to a data set of movement counts by fetal

lambs observed through ultrasound. Albert (1991) used such models to model the daily counts

of epileptic patients seizures. Under a frequentist framework, Zucchini and MacDonald (2009)

also used PHMMs to model the series of annual counts of earthquakes (i.e. magnitude of 7 or

greater in the Richter scale) for the years 1900-2006. In epidemiological studies, the PHMM has

also been used for modelling spatially structured heterogeneity (Green and Richardson, 2002)

by means of a Pott’s model. To illustrate the potential of our method we consider several data

sets involving crashes counts which occurred in the UK over a 5-year period (2010-2014). We

model the number of police reported crashes on individual segments relative to traffic volume.

Our interest is to identify highway segments which have distinctly higher crash risk, and this
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classification problem is well suited to a HMM. In order to do this, we first need to select an

optimal number of states.

7.2 Description and data preparation

We now describe the substantive application of this chapter, which involves traffic accidents

occurring on the highway network in the UK. The crashes data considered in this study were

obtained from the Department for Transport in Great Britain. Every road crash on the highway

network is recorded on a STATS19 report form by police officers in the Department for

Transport. This form provides detailed information about the time, location at the segment

level, road condition, behaviour of the driver and the vehicles that were caused the accident.

The accidents are recorded at a road-segment level that are labelled by references, measured as

points, that refer to the locations of accidents (the easting and northing coordinates in a local

British National Grid Coordinate system). The road network model is constructed from

individual sections of road, that are segmented correctly in junction to junction link for

management purposes, with different lengths. The accidents may be more likely near

junctions. However, the available crash data are provided as a point process for each segment

over a time period. Given the nature of the data available to us, we are compelled to work with

network-constrained point data, which have been aggregated by road segments.

We consider reported road injury crashes over a 5-year period (2010-2014) in three motorways

in the UK: the M5, M6 and M42 (Figure (7.1)). The M5 which links Exeter with Birmingham

consists of 52 segments, the M6 which links Coventry with Carlisle city involves 90 segments

and the M42 motorway which passes through the South East of Birmingham consists of 21

segments. The data needed in this study involve two formats. The first form involves data on

the number of crashes, y, at the road segment level for every year, obtained from the

Department for Transport as an Open Government Archive (OGA, 2016) file. The second form

provides information on the some traffic safety characteristics such as the length of segment, L,

and the “Annual Average Daily Traffic flow” (AADT). AADT as defined by FHWA (2011)

represents the officially estimated total annual average traffic flow on each segment. This

second form of data is also obtained from the Department for Transport as an Open Data (OD,

2016) file. This latter allows us to derive a measure of exposure.

From this, we derive a measure of exposure which is akin to the population at risk used in

epidemiology. This is the “Vehicle Miles Travelled” (VMT), which is simply the product of
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the segment length, Lt , and the segment AADTt , so that (FHWA, 2011)

V MT t = AADT t ×Lt . (7.1)

For computational convenience, we then compute the expected crash frequencies at segment

level ot by dividing the exposure of each segment (VMTt) by the total exposure (VMT) and

multiplying this by the total number of crashes, y (Li et al., 2007). Thus,

ot =
V MT t

∑
T
t=1V MTt

×
T

∑
t=1

yt . (7.2)

In other words, we follow a conventional idea in epidemiology around modelling variations in

the Standardized Morbidity Ratio (SMR), although in our case we model the “Observed Crash

Rate ”(OCR) defined as:

OCRt =
yt

ot
; t = 1,2, ...,Ti, (7.3)

where Ti refers to the number of road segments of the ith motorway, and i= M5, M6 and M42.

Figures (7.2-7.4) present the observed crash counts and the observed crash rates (OCR) at

segment level of each motorway, respectively, which we wish to model using a Poisson HMM,

as described in the next sections.
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Figure 7.1: Plots of the M5, M6 and M42 motorways in the UK.
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Figure 7.2: Plot of observed crash counts and rates at the segment level of the M5 highway.
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Figure 7.3: Plot of observed crash counts and rates at the segment level of the M6 highway.
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Figure 7.4: Plot of observed crash counts and rates at the segment level of the M42 highway.

7.3 Bayesian PHMM

We now need to construct a PHMM under the Bayesian framework. Obtaining the posterior

distributions of a Bayesian PHMM is similar to the procedure for a Normal HMM presented in

Chapter 4. The main difference is that the state-dependent distribution of the observed process

Y follows a Poisson distribution Y ∈ N, where N denotes non-negative integer values, with a

rate parameter λ , depending only on a particular hidden state evolving over the state space.

The motivation of using PHMMs is that they allow to model the unobserved heterogeneity and

the serial dependency in crash rates among segments. We assume spatial dependency among

segments through allowing each segment to be switched spatially according to a Markov state.

7.3.1 Model construction

Given a road segment t; t = 1,2, ...,T , and reported crashes, Yt , we seek to model

Yt ∼ Poi(otλt); λt > 0, (7.4)

where ot ; t = 1,2, ...,T , refers to the expected number of crashes given the length and traffic

volume of segment t, explained earlier in Equation (7.2) and λt is an unknown crash rate

parameter that can be viewed as the theoretical value of the OCRt computed in Equation (7.3).
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The probability mass function of the observed count of crashes is given by

Pr(Yt = yt |otλt)∼
e−ot λt (otλt)

yt

yt!
; yt = 0,1,2, ... (7.5)

Now we model the unobserved heterogeneity in λt ; t = 1,2, ...,T, and the serial dependence

using a PHMM. This assumes an underlying hidden state, zt ; t = 1,2, ...,T , which follows a

Markov process and takes values j in {1,2, ..,K}. Thus, the standard probability mass function

in Equation (7.5) can be modified to take into account the state-specific heterogeneity, λzt ,

between road segments, by defining the state-dependent probability mass as follows

Pr(Yt = yt |otλzt ) =
e−ot λzt (otλzt )

yt

yt!
; λzt > 0. (7.6)

In order to fit the model, we follow the data augmentation approach (Tanner and Wong, 1987)

and write the complete likelihood function as

Lc(π,A,oλ ;y,z) = πz1Pr(Y1 = y1|o1λz1)az1z2Pr(Y2 = y2|o2λz2)... azT−1zT Pr(YT = yT |oT λzT )

= (πz1)(az1z2 ...azT−1zT )(Pr(Y1 = y1|o1λz1)Pr(Y2 = y2|o2λz2)... Pr(YT = yT |oT λzT ))

=
K

∏
j=1

π
N j
j

K

∏
j=1

K

∏
k=1

(a jk)
N jk

K

∏
j=1

T

∏
t:zt= j

Pr(Yt = yt |otλ j)

=
K

∏
j=1

π
N j
j

K

∏
j=1

K

∏
k=1

(a jk)
N jk

K

∏
j=1

T

∏
t:zt= j

e−ot λ j(otλ j)
yt , (7.7)

where N j = ∑
T
t=1 I(zt= j) denotes the number of transitions from state j at spatial segment t and

N jk = ∑
T−1
t=1 I(zt=k,zt−1= j) denotes the number of transitions from state j at spatial segment t−1

into the state k at spatial segment t. Hence, a Bayesian PHMM is given by

Pr(π,A,λ |y,z,o) = Lc(π,A,oλ ;y,z)Pr(π,A,λ )

= Lc(π,A,oλ ;y,z)Pr(π)Pr(A)Pr(λ ).
(7.8)

By assuming independence of the priors of the model parameters, the joint prior distribution of

all model parameters, Pr(π,A,λ ), in the first line of Equation (7.8) can be written as the product

of the prior of the individual parameters as shown in the second line of the same equation.

To complete our model specification, we need to assign priors for π, A and λ . As with the

Bayesian Normal HMM derived in Chapter (4), the priors of both π and each row of A are

given independently; these are Dirichlet distributions with hyper-parameter δ . For the state-
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based rate parameter, λ , we assume independently a Gamma distribution, as a conjugate prior

(Carlin and Louis, 2009), on each distinct rate, λzt ≡ λ j, such that

Pr(λ j|α,β )∼ Gamma(α,b),

= λ
a−1
j e−βλ j β

α/Γ(α), λ j > 0; α > 0, β > 0,

where α and β are hyper-parameters which represent the shape and rate or inverse scale

parameters of the Gamma distribution respectively. The Gamma prior density above has mean

α/β and variance α/β 2.

The Bayesian PHMM in Equation (7.8) can be rewritten as

Pr(π,A,λ |y,z,o) =
K

∏
j=1

π
N j
j

K

∏
j=1

π
δ j−1
j

K

∏
j=1

K

∏
k=1

(a jk)
N jk

K

∏
j=1

K

∏
k=1

(a jk)
δ j−1 (7.9)

×
K

∏
j=1

T

∏
t:zt= j

e−ot λ j(otλ j)
yt

K

∏
j=1

λ
a−1
j e−βλ j .

A closed-form expression for the posterior distribution in Equation (7.9) is not available. We

thus use the Gibbs sampler to simulate the posterior using the full conditional distribution of

the model parameters.

7.3.2 Developing an MCMC algorithm

The joint distribution in Equation (7.9) above can be decomposed into full conditional

distributions for the parameters. The full conditional distributions of the initial state vector, π,

and each row in the transition probability matrix, a j., are the same as those derived earlier with

Normal HMM (Appendix A) which can be rewritten, respectively, as

Pr(π j|y,z)∝
K

∏
j=1

π
N j+δ j−1 = Dir(N j +δ j), (7.10)

Pr(a j.|y,z)∝
K

∏
j=1

a j.
N j.+δ j−1 = Dir(N j.+δ j), (7.11)
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whereas the full conditional posterior distribution for each λ j is given by

Pr(λ j|y,o,z) ∝

T

∏
t=1

Pr(yt |otλ j)Pr(λ j|α,β ),

∝

T

∏
t=1

[
e(−ot λ j)(otλ j)

yt
]
×
[
λ

α−1
j e−βλ j

]
,

= λ
∑t:zt= j yt+α−1
j e−λ j(β+∑t:zt= j ot),

(7.12)

where the latter represents the kernel of a Gamma density, Gamma(α+∑t:zt= j yt ,β +∑t:zt= j ot).

Sampling from the full conditional distribution of hidden states, z, can be done by using the so-

called Direct Gibbs (DG) sampler (Chib, 1996) as follows: For t = 1,

Pr(z1 = j|z2, ...,y,o,π,A,λ ) =
π ja jz2λ

y1
j e−o1λ j

∑
K
l=1 πlalz2λ

y1
l e−o1λl

= P1 j, (7.13)

for 2 < t < T the full conditional distribution of zt is

Pr(zt = j|...,zt−1,zt+1, ...,y,o,A,λ ) =
azt−1 ja jzt+1λ

yt
j e−ot λ j

∑
K
l=1 azt−1lalzt+1λ

yt
j e−ot λ j

= Pt j, (7.14)

and for t = T

Pr(zT = j|...zT ,y,o,A,λ ) =
azT−1 jλ

yT
j e−oT λ j

∑
K
l=1 azT−1lλ

yT
j e−oT λ j

= PT j, (7.15)

where P represents the posterior allocation matrix, of dimension (T ×K) which summarizes all

posterior probabilities of hidden states. Given P, a sequence of discrete values of the hidden

states of length T can be locally drawn from a multinomial distribution as

z1 = j ∼Multinomial(P1.),

zt = j ∼Multinomial(Pt .), (7.16)

zT = j ∼Multinomial(PT .), for j = 1,2, ...,K.

Given a Poisson HMM to model the safety traffic crashes, we obtain the posterior classification

probabilities for each segment t to belong to a hidden state j. This can be accomplished

implicitly via calculating the posterior marginal distribution of each state j from Equation

(7.16), i.e. the number of states j visited by the segment t. Given m; m = 1,2, ...,M of MCMC
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iterations, this can be equivalently written as

P̂r(zt = j) =
1
M

M

∑
m=1

I(z(m)
t = j), ∀ j = 1,2, ...,K. (7.17)

The hidden states estimated marginally in Equation (7.17) can allow interpretation of the state-

distinct expected crash rate at segment level and identification of the segment(s) with potentially

higher crash rate(s) than others.

7.3.3 Prior specification

As before, a natural prior distribution for the parameters of the hidden part of the model, initial

state, π, and transition probabilities matrix, A, is the Dirichlet distribution. We assume that the

π and each row in the matrix A =
{

a j.
}

are each assigned independently a Dirichlet prior with

a hyper-parameter δ equal to 1, i.e. δ j = 1,∀ j ∈ {1,2, ...,K} (Cappé et al., 2005; Rydén, 2008).

We use a conjugate gamma prior for the rate parameter λ . We conduct a sensitivity analysis to

check the effects of changing the values of α and β , the hyper-priors for the crash rate, so that

we consider a range of priors shown in Table (7.1).

Priors mean Variance

Gamma(0.1,0.1) 1 10
Gamma(0.01,0.01) 1 100
Gamma(0.001,0.001) 1 1000
Gamma(0.0001,0.0001) 1 10000

Table 7.1: Four proposed gamma priors with different parameterizations.

7.4 Model selection and assessment

For our intended application, we need to select the "best" model in terms of the number of

states in order to provide a readily understood estimate of the probability of a particular state

belonging to the highest risk category. Particularly, we conduct the process of model selection

by employing the criteria: AICrec1 , BICrec1 , AICrec2 , BICrec2 , AICrec3 , BICrec3 , DICrec2 , BICcon1

and BICcon2 which were found to work well as introduced in Chapter 5.

Besides using model selection criteria to select the best model, we assess the adequacy of the

model using a variety of goodness-of-fit testing tools. One approach is to plot the posterior

predictive distribution (PPD, Gelman et al. (1996)). Here we take a sequence of replicated or
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predictive observations, y∗t ; t = 1,2, ...,T, so that the PPD for a PHMM can be written as

Pr(y∗t |y) =
∫ ∫

Pr(y∗t |oλ ,z)ppost(oλ ,z|y)dzdoλ , (7.18)

where ppost(oλ ,z|y) represents the joint posterior distribution of the observed process, oλ , and

the unobserved process, z. Given samples of the crash rate parameter, λ (m), and hidden states,

z(m), drawn from an MCMC run, the predictive data of a PHMM can be approximated as

Y ∗t
(m) ∼ Poi(otλ

(m)

z(m)
t
); t = 1,2, ...,T. (7.19)

The model adequacy can be then checked based on the its predictive ability by the visual

checking to the degree the closeness or discrepancy between the mean of posterior predictive

distribution, Ȳ ∗t , accounted for by the center of predictive interval, and the observed crash

count, yt , at level each segment t.

We also adopt a method proposed by Zucchini and MacDonald (2009) and use

pseudo-residuals. Zucchini and MacDonald (2009) introduced two kinds of pseudo-residuals.

For discrete observations, the ordinary pseudo-residuals can be defined as line segments[
r+t ;r∗t

]
, where

r−t = Φ
−1(u−1

t ),

and

r+t = Φ
−1(u+1

t ),

where Φ−1 denotes the inverse distribution function of a standard Normal-distributed random

variable, and by following the notation in Zucchini and MacDonald (2009),

u−t = Pr(Xt < xt |X(−t) = x(−t)), (7.20)

and

u+t = Pr(Xt ≤ xt |X(−t) = x(−t)). (7.21)
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For continuous observations, the ordinary pseudo-residuals are defined as

ut = Pr(Xt ≤ xt |X(−t) = x(−t)), (7.22)

where x(−t) denotes the vector of all data except xt , i.e. x(−t) = (x1,x2, ...,xt−1,xt+1, ...,xT ).

We extend the idea of pseudo-residuals from a Bayesian viewpoint. Given M replicated data

Y ∗t ; t = 1,2, ...,T , simulated from the PPD in Equation (7.19), we can rewrite the probabilities

in Equation (7.22) as follows

ut = Pr(Y∗t ≤ yt |Y∗(−t) = y(−t),z,oλ ), (7.23)

which can be approximated over an MCMC run by

ūt =
1
M

M

∑
m=1

I(Y∗t
(m) ≤ yt |z(m),oλ

(m)). (7.24)

We are interested in comparing the proportion of each segment’s predictions with the observed

counts. These predictive proportions, ū, are obtained by averaging predictions over M iterations

as shown in Equation (7.24) which are no longer discrete. When ordinary pseudo-residuals

follow a standard Normal distribution, this can be considered as an indicator of model adequacy

(Zucchini and MacDonald, 2009). Therefore, the validation of the fitted model can be assessed

graphically using tools such as a QQ-plot.

7.5 Model fitting

In this section, we first fit a certain number of competing models for each dataset of the three

highways; M5, M6 and M42 adopted in this study. The aim is to select the best model for each

data set. As before, we set an upper bound, Kmax, on the number of competing models. Care is

taken here given the small sample sizes (Gelman et al., 2014). Zucchini and MacDonald (2009)

also pointed out that a reasonable upper bound on the number of states should be selected that

is suitable for the number of observations. This may lead to unsatisfactory behaviour of the

likelihood and possibly invalid model selection criteria.

We set Kmax(42) = 4 states as an upper bound on the number of competing models that are being

fitted to the dataset of the M42 motorway (T = 21). We set Kmax(M5) = 5 on the number of

competing models that are being fitted to the dataset reported from the M5 motorway (T = 52).

Finally, we set Kmax(M6) = 6 on those reported from the M6 motorway (T = 90).
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7.6. RESULTS AND DISCUSSION

At the same time, for each candidate model being fitted to each data set, using a certain number

of MCMC iterations, we investigate the effect of the priors chosen on the resulting posterior

distributions of the crash rate parameter, λ . We are interested in checking the sensitivity of the

crash rate parameter, λ , to the prior choice, due to the small size of datasets considered in this

study. The results are discussed based on convergence diagnostics.

7.5.1 MCMC sampling

For each competing model fitted to each dataset considered in this study, we use the Gibbs

sampler to obtain the posterior distributions of all model parameters.

For each study, we ran the Gibbs sampler taking into account the following sampling

information. We sampled 104000 iterations, as main samples, and discarded the first 4000

iterations as a burn-in period. To avoid the possibility of obtaining correlated samples, we

thinned the remaining 100000 iterations by keeping every 100th iteration to obtain 1000

thinned samples. We used the Gelman-Rubin statistics R̂, (Gelman and Rubin, 1992) and the

Geweke’s diagnostic Ĝ, (Geweke, 1992) to check convergence. The Gelman-Rubin statistic is

based on running multiple sequences; we use three chains with highly dispersed starting

points.

7.6 Results and discussion

7.6.1 The M5 motorway data

7.6.1.1 Convergence results of the M5 motorway data

In this section, we display the convergence results of each crash rate parameter, λ , from the

models (K=2,3,4 and 5) fitted to the M5 motorway data (T = 52), given four proposed priors.

Figures (7.5-7.8) display the ACF plots of each crash rate parameter of those models, given

chosen priors, which suggest no indication of autocorrelation. Values of the Gelman-Rubin

statistic, R̂, were less than 1.1 for all crash rate parameters of considered models under all

chosen priors (see Tables (7.2-7.5)). Conversely, the Geweke statistic, Ĝ, provided some

values that lie outside the interval [−2, 2] for some models, given highly diffused priors such

as Gamma(0.001,0.001) and Gamma(0.0001,0.0001), indicating that convergence is not

achieved. The problem of convergence results from different diagnostics is noted in the

literature (Cowles and Carlin, 1996).

In Figure (7.9), we display only the trace-plots of the full posterior distributions, produced

from running three chains, each of which begins from different starting points, of each
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state-specific crash rate parameter, λ j; j = 1,2,3, sampled from a 3-state PHMM, given the

prior Gamma(0.1,0.1).
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Figure 7.5: The plots of ACF functions of the crash rate parameter λ j of a 2-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).
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Figure 7.6: The plots of ACF functions of the crash rate parameter λ j of a 3-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).
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Figure 7.7: The plots of ACF functions of the crash rate parameter λ j of a 4-state
PHMM with priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).
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Figure 7.9: Trace plots for the thinned samples of state-dependent crash rate parameters,
λ j; j = 1,2,3, sampled from a 3-state PHMM under a Gamma(0.1,0.1) prior.
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7.6.1.2 Results of the estimation of the crash rate parameter of the M5 motorway data

Tables (7.2-7.5) and Figures (7.10-7.13) present the estimation results of each crash rate

parameter, λ j, as well as 95% credible intervals from models fitted to the M5 motorway data,

given four prior choices. We can see that the model with K = 2 provides very similar

estimates. The same situation is noted in relation to the model with K = 3, where the posterior

estimates of the state-specific crash rate parameters and their corresponding credible intervals

were all somewhat similar as shown in Table (7.3) and Figure (7.11). This may suggest that the

parameter estimates of these models are not sensitive to the choice of priors. However, as we

increase the model’s size, the models with states K = 4 and K = 5, some posterior estimates of

λ were sensitive when using non-informative priors, as shown in Tables (7.4-7.5) and the

box-plots in Figures (7.12-7.13), respectively.

Estimation and convergence findings have shown that when the fitted model’s size was

increased, its parameters were more sensitive to the prior choice and possibly fail to converge.

This could be due to the small size of data.

Priors λ̂k Mean 95% CI R̂ Ĝ
2.5% Median 97.5%

Gamma(0.1,0.1) λ̂1 0.495 0.423 0.494 0.573 0.999 0.257
Gamma(0.01,0.01) λ̂1 0.496 0.422 0.495 0.576 0.999 -0.595

Gamma(0.001,0.001) λ̂1 0.495 0.421 0.495 0.573 1.000 -0.090
Gamma(0.0001,0.0001) λ̂1 0.496 0.422 0.495 0.575 1.001 1.373

Gamma(0.1,0.1) λ̂2 2.085 1.858 2.081 2.336 0.999 0.027
Gamma(0.01,0.01) λ̂2 2.086 1.856 2.084 2.336 1.000 -1.159

Gamma(0.001,0.001) λ̂2 2.088 1.857 2.085 2.347 0.999 0.253
Gamma(0.0001,0.0001) λ̂2 2.087 1.862 2.084 2.340 0.999 -0.033

Table 7.2: Results of the estimation and convergence of the rate parameter of a 2-state PHMM,
given four gamma priors. The third column provides the ergodic posterior means
of the rate parameter. The fourth column provides the median and 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.10: Box-plots of the estimates of the crash rate parameter λ j for a 2-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).

Priors λ̂k Mean 95% CI R̂ Ĝ
2.5% Median 97.5%

Gamma(0.1,0.1) λ̂1 0.336 0.186 0.348 0.459 1.001 1.426
Gamma(0.01,0.01) λ̂1 0.335 0.183 0.349 0.462 0.999 0.379

Gamma(0.001,0.001) λ̂1 0.334 0.171 0.348 0.465 1.000 0.775
Gamma(0.0001,0.0001) λ̂1 0.326 0.154 0.344 0.457 1.000 -3.072

Gamma(0.1,0.1) λ̂2 1.065 0.811 1.067 1.363 1.001 1.295
Gamma(0.01,0.01) λ̂2 1.068 0.817 1.066 1.369 0.999 0.821

Gamma(0.001,0.001) λ̂2 1.066 0.803 1.065 1.404 1.000 0.908
Gamma(0.0001,0.0001) λ̂2 1.050 0.783 1.055 1.358 0.999 -2.835

Gamma(0.1,0.1) λ̂3 3.057 2.628 3.019 3.649 0.999 0.478
Gamma(0.01,0.01) λ̂3 3.081 2.631 3.032 3.682 1.000 -1.623

Gamma(0.001,0.001) λ̂3 3.197 2.573 3.025 3.197 1.000 0.472
Gamma(0.0001,0.0001) λ̂3 3.037 2.489 3.016 3.037 0.999 -2.454

Table 7.3: Results of the estimation and convergence of the rate parameter of a 3-state PHMM,
given four gamma priors. The third column provides the ergodic posterior means
of the rate parameter. The fourth column provides the median and 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.11: Box-plots of the estimates of the crash rate parameter λ j for a 3-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).

200



7.6. RESULTS AND DISCUSSION

Priors λ̂k Mean 95% CI R̂ Ĝ
2.5% Median 97.5%

Gamma(0.1,0.1) λ̂1 0.251 0.154 0.242 0.396 1.001 -1.903
Gamma(0.01,0.01) λ̂1 0.249 0.153 0.238 0.403 0.999 0.279

Gamma(0.001,0.001) λ̂1 0.254 0.141 0.242 0.413 1.005 1.683
Gamma(0.0001,0.0001) λ̂1 0.248 0.147 0.240 0.404 1.001 0.408

Gamma(0.1,0.1) λ̂2 0.711 0.493 0.658 1.173 1.000 1.128
Gamma(0.01,0.01) λ̂2 0.721 0.498 0.665 1.164 1.003 -1.192

Gamma(0.001,0.001) λ̂2 0.758 0.478 0.691 1.212 1.029 6.242
Gamma(0.0001,0.0001) λ̂2 0.718 0.482 0.661 1.172 1.010 -0.814

Gamma(0.1,0.1) λ̂3 1.596 1.045 1.337 2.865 1.001 -1.825
Gamma(0.01,0.01) λ̂3 1.654 1.049 1.361 2.883 1.004 -2.494

Gamma(0.001,0.001) λ̂3 1.801 1.041 1.469 2.918 1.036 7.143
Gamma(0.0001,0.0001) λ̂3 1.649 1.054 1.352 2.856 1.014 -0.450

Gamma(0.1,0.1) λ̂4 4.505 2.672 3.177 10.953 1.000 -1.520
Gamma(0.01,0.01) λ̂4 4.839 2.686 3.216 11.401 1.002 -1.816

Gamma(0.001,0.001) λ̂4 5.577 2.707 3.419 11.725 1.038 7.465
Gamma(0.0001,0.0001) λ̂4 4.846 2.701 3.222 11.568 1.014 -0.188

Table 7.4: Results of the estimation and convergence of the rate parameter of a 4-state PHMM,
given four gamma priors. The third column provides the ergodic posterior means
of the rate parameter. The fourth column provides the median and 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.12: Box-plots of the estimates of the crash rate parameter λ j for a 4-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).
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Priors λ̂k Mean 95% CI R̂ Ĝ
2.5% Median 97.5%

Gamma(0.1,0.1) λ̂1 0.227 0.144 0.225 0.324 0.999 1.261
Gamma(0.01,0.01) λ̂1 0.215 0.001 0.222 0.325 1.000 0.882

Gamma(0.001,0.001) λ̂1 0.190 0.001 0.215 0.319 1.015 0.455
Gamma(0.0001,0.0001) λ̂1 0.177 0.001 0.209 0.315 1.021 -1.526

Gamma(0.1,0.1) λ̂2 0.602 0.398 0.607 0.758 0.999 -0.056
Gamma(0.01,0.01) λ̂2 0.594 0.244 0.610 0.769 0.999 -0.115

Gamma(0.001,0.001) λ̂2 0.551 0.192 0.594 0.753 1.014 1.331
Gamma(0.0001,0.0001) λ̂2 0.533 0.181 0.588 0.751 1.019 -1.218

Gamma(0.1,0.1) λ̂3 1.203 0.680 1.218 1.547 1.000 0.447
Gamma(0.01,0.01) λ̂3 1.187 0.624 1.213 1.538 0.999 -0.062

Gamma(0.001,0.001) λ̂3 1.140 0.568 1.195 1.512 1.015 1.335
Gamma(0.0001,0.0001) λ̂3 1.105 0.544 1.176 1.508 1.024 -1.583

Gamma(0.1,0.1) λ̂4 2.661 2.270 2.659 3.073 1.001 0.817
Gamma(0.01,0.01) λ̂4 2.513 1.233 2.606 3.054 1.000 -0.927

Gamma(0.001,0.001) λ̂4 2.438 1.163 2.592 3.090 1.021 1.687
Gamma(0.0001,0.0001) λ̂4 2.371 1.131 2.569 3.059 1.030 -0.977

Gamma(0.1,0.1) λ̂5 9.154 5.741 9.096 12.599 1.002 1.600
Gamma(0.01,0.01) λ̂5 8.234 2.921 8.600 12.307 0.999 -0.997

Gamma(0.001,0.001) λ̂5 8.437 2.856 8.689 12.785 1.000 1.956
Gamma(0.0001,0.0001) λ̂5 7.874 2.854 8.472 12.361 1.015 -1.119

Table 7.5: Results of the estimation and convergence of the rate parameter of a 5-state PHMM,
given four gamma priors. The third column provides the ergodic posterior means
of the rate parameter. The fourth column provides the median and 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.13: Box-plots of the estimates of the crash rate parameter λ j for a 5-state
PHMM given priors: (A): Gamma(0.1,0.1), (B): Gamma(0.01,0.01), (C):
Gamma(0.001,0.001), (D): Gamma(0.0001,0.0001).

7.6.1.3 Results of model selection and assessment of the M5 motorway data

We show the results of model selection of the M5 motorway data using criteria: the AICrec1 ,

BICrec1 , AICrec2 , BICrec2 , AICrec3 , BICrec3 , DICrec2 , BICcon1 and BICcon2 which were found to

work well as introduced in Chapter 5, given chosen priors. We also include the results of model
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assessment using the posterior predictive distribution plots (Gelman et al., 1996) and the QQ

plot of normal pseudo-residuals (Zucchini and MacDonald, 2009).

7.6.1.3.1 Results of model selection criteria of the M5 motorway data

Table (7.6) displays the model-selection results, given four chosen priors.

It can be seen that the criteria: BICrec1 , BICrec2 , BICrec3 and BICcon1 have a fixed behaviour in

selecting the model, suggesting not affected by the assumed prior, and select the model with

fewer parameters, K = 3, as the best model for the M5 highway. The same behaviour is

observed for the AICrec1 and AICrec3 , but with larger size models, where the former chooses a

model with K = 4 states, and the latter favors the most complicated model, K = 5. In contrast,

it can be seen that the AICrec2 , DICrec2 , BICcon2 have variable performance, indicating their

effect by the prior. The AICrec2 selects a large model with K = 5, given the more diffuse

priors: Gamma(0.001,0.001) and Gamma(0.0001,0.0001), whereas it tends to choose a

model with more fewer parameters, K = 3, given less diffuse priors: Gamma(0.01,0.01) and

Gamma(0.1,0.1). The DICrec2 tends to select the model with K = 5, given the priors:

Gamma(0.01,0.01), Gamma(0.001,0.001) and Gamma(0.0001,0.0001), and then chooses the

model K = 4, given a less diffuse prior, Gamma(0.1,0.1). The BICcon2 chooses a complicated

model with K = 4 states given more diffuse priors: Gamma(0.001,0.001) and

Gamma(0.0001,0.0001) and then tends to choose a model with more fewer parameters, K = 3,

given less diffuse priors: Gamma(0.01,0.01) and Gamma(0.1,0.1). The tendency for these

three criteria, to select the models with smaller size when less diffuse priors are assumed, is

agreement with the results of model estimation and convergence diagnostics discussed earlier,

which have suggested that the large size models are more sensitive when using more diffuse

priors and they improve whenever less diffuse priors are used. Accordingly, the model

selection results with a less diffuse prior can be more reliable.

In practice, more adequate fits to the data can be likely obtained from more complex models.

However, this case is not often favoured in applications as the large number of parameters can

result in high variance in parameter estimates and overfitting. As a result, we prefer the more

parsimonious model, K = 3, selected by the most criteria: the BICrec1 , AICrec2 , BICrec2 ,

BICrec3 , DICcon2 , BICcon1 and BICcon2 .
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Gamma(α = 0.1,β = 0.1)
K Drec(Θ) Drec(Θ̄) D̂rec(Θ) AICrec1 BICrec1 AICrec2 BICrec2 AICrec3 BICrec3 pDICrec2

DICrec2 Dcon(z,λ ) Dcon(ẑ, λ̂ ) BICcon1 BICcon2

2 439.096 435.093 434.823 449.096 458.852 445.093 454.849 444.823 454.580 4.272 443.369 380.355 381.377 400.111 401.133
3 389.202 383.138 381.324 411.202 432.666 405.138 426.601 403.324 424.788 7.878 397.081 314.674 317.109 358.137 360.573
4 370.643 372.995 354.888 408.643 445.717 410.995 448.068 392.888 429.962 15.754 386.398 288.876 285.525 363.949 360.599
5 358.749 356.136 331.027 416.749 473.335 414.136 470.722 389.027 445.613 27.721 386.471 267.425 280.099 382.011 394.685

Gamma(α = 0.01,β = 0.01)
K Drec(Θ) Drec(Θ̄) D̂rec(Θ) AICrec1 BICrec1 AICrec2 BICrec2 AICrec3 BICrec3 pDICrec2

DICrec2 Dcon(z,λ ) Dcon(ẑ, λ̂ ) BICcon1 BICcon2

2 438.997 435.111 434.794 448.997 458.753 445.111 454.867 444.794 454.550 4.203 443.200 380.608 382.366 400.364 402.122
3 389.520 383.122 381.715 411.520 432.983 405.122 426.585 403.715 425.179 7.804 397.324 314.542 321.848 358.006 365.312
4 370.902 373.199 353.970 408.902 445.976 411.199 448.273 391.970 429.044 16.932 387.834 287.955 290.669 363.029 365.743
5 358.058 352.730 331.785 416.058 472.644 410.730 467.316 389.785 446.371 26.273 384.332 261.282 288.246 375.868 402.832

Gamma(α = 0.001,β = 0.001)
K Drec(Θ) Drec(Θ̄) D̂rec(Θ) AICrec1 BICrec1 AICrec2 BICrec2 AICrec3 BICrec3 pDICrec2

DICrec2 Dcon(z,λ ) Dcon(ẑ, λ̂ ) BICcon1 BICcon2

2 439.061 435.083 435.003 449.061 458.818 445.083 454.839 445.003 454.759 4.058 443.120 380.329 377.977 400.086 397.733
3 389.459 383.382 381.211 411.459 432.923 405.382 426.846 403.211 424.674 8.248 397.708 314.928 328.532 358.392 371.995
4 370.176 373.252 353.804 408.176 445.249 411.252 448.325 391.804 428.878 16.371 386.548 289.526 295.034 364.600 370.108
5 353.873 341.950 328.621 411.873 468.459 399.950 456.536 386.621 443.207 25.252 379.125 266.586 293.184 381.172 407.770

Gamma(α = 0.0001,β = 0.0001)
K Drec(Θ) Drec(Θ̄) D̂rec(Θ) AICrec1 BICrec1 AICrec2 BICrec2 AICrec3 BICrec3 pDICrec2

DICrec2 Dcon(z,λ ) Dcon(ẑ, λ̂ ) BICcon1 BICcon2

2 439.219 435.097 434.985 449.219 458.976 445.097 454.854 444.985 454.742 4.234 443.453 380.480 373.374 400.236 393.130
3 389.483 383.046 382.237 411.483 432.947 405.046 426.509 404.237 425.701 7.245 396.729 314.875 317.155 358.338 360.618
4 370.139 372.250 353.287 408.139 445.213 410.250 447.323 391.287 428.361 16.852 386.992 287.960 281.026 363.033 356.099
5 351.230 339.850 330.711 409.230 465.816 397.850 454.436 388.711 445.298 20.518 371.748 258.854 283.843 373.440 398.429

Table 7.6: Results of the model selection criteria for several PHMMs with K = 2, ...,5 fitted to the M5 highway data under four prior choices: Gamma(0.1,0.1),
Gamma(0.01,0.01), Gamma(0.001,0.001) and Gamma(0.0001,0.0001).
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7.6.1.3.2 Model assessment of the M5 motorway data

Figures (7.14 - 7.17) display 95% predictive intervals constructed from the posterior predictive

distributions simulated from a PHMM with K= 2, 3, 4 and 5 respectively, against the observed

crash counts, where the centers of these intervals account for the means of the posterior

predictive distributions. Figure (7.14) shows the inadequacy of the model with K = 2 due to its

poor predictive performance, since it provides predictive means that are far from the observed

crash counts. Also, the QQ-plot of pseudo-residuals shows a clear deviation from normality in

Figure (7.18), which supports that the model with K = 2 does not give a good fit to the data. In

contrast, our preferred model, K = 3, and the models with, K = 4 and K = 5 show a better

performance, and are thus more suitable as shown in Figures (7.15-7.17) and Figure (7.18),

respectively.
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Figure 7.18: Normal QQ-plots of ordinary pseudo-residuals for crashes data under 2, 3, 4 and
5-state PHMM (M5 data).
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7.6.2 The M6 motorway data

Work for the M6 motorway (T = 90) was carried out as for the M5. We display all results

of the convergence, estimation, selection and assessment of each model is being fitted to these

data, given less diffuse prior, Gamma(0.1,0.1), obtained from MCMC sampling with 104000

iterations (thin=100, burn-in=4000).

7.6.2.1 Convergence results of the M6 motorway data

Figure (7.19) shows the ACF plots of the posterior samples of the state-specific crash rate

parameters, λ j, of a PHMM with K = 2, ...,6 fitted to the M6 motorway data. All ACF plots

suggest that there is no autocorrelation in the samples. Moreover, the Gelman-Rubin statistics,

R̂, and the Geweke statistics, Ĝ, provided in the Table (7.7) suggest there is no lack in

convergence.

7.6.2.2 Results of the estimation of the crash rate parameter of the M6 motorway data

Table (7.7) shows the estimation results of state-specific crash rate parameters, λ j. Figure (7.20)

shows the box-plots of the posterior distributions of state-specific crash rate parameters sampled

from a PHMM with K = 2, ...,6 fitted to the data.
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Model λ̂k Mean 95% CI R̂ Geweke
2.5% Median 97.5%

2
λ̂1 0.577 0.528 0.576 0.626 0.999 -1.258
λ̂2 2.579 2.371 2.580 2.786 0.999 -0.860

3
λ̂1 0.354 0.261 0.342 0.549 1.037 -1.591
λ̂2 1.252 1.038 1.218 1.848 1.041 -1.644
λ̂3 5.275 3.902 5.172 6.932 1.006 -1.593

4

λ̂1 0.253 0.195 0.2529 0.314 1.000 -0.069
λ̂2 0.809 0.723 0.809 0.900 1.000 0.961
λ̂3 1.972 1.773 1.971 2.190 0.999 0.116
λ̂4 6.471 5.571 6.450 7.522 1.001 1.304

5

λ̂1 0.150 0.078 0.142 0.270 1.004 0.527
λ̂2 0.486 0.347 0.464 0.805 1.008 1.068
λ̂3 0.940 0.772 0.881 1.788 1.010 1.710
λ̂4 2.068 1.782 1.993 2.931 1.005 1.204
λ̂5 6.536 5.604 6.501 7.697 1.000 -0.688

6

λ̂1 0.143 0.078 0.138 0.223 1.001 1.302
λ̂2 0.443 0.272 0.444 0.603 1.009 1.757
λ̂4 0.791 0.476 0.820 0.970 1.019 1.973
λ̂4 1.350 0.809 1.406 2.032 1.030 -1.922
λ̂5 2.473 1.842 2.158 5.582 1.016 1.507
λ̂6 6.746 5.663 6.678 8.182 1.005 1.258

Table 7.7: Results of the estimation and convergence of the crash rate parameter, λ , of a
PHMM with K = 2, ...,6, given a less diffuse prior, Gamma(0.1,0.1), fitted to the
M6 motorway data. The third column provides the ergodic posterior means of the
rate parameter. The fourth column provides the corresponding 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.20: Box-plots of the posterior distributions of state-specific crash rate parameters of
a PHMM with K = 2, ...,6, fitted to the M6 motorway data.

7.6.2.3 Results of model selection and assessment of the M6 motorway data

This section displays the results of model selection criteria for PHMMs with states K = 2, ...,6,

fitted to the M6 motorway data as shown in Table (7.8), given a less diffuse prior. We can see

that all criteria select the model with K = 4.
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Figures (7.21 - 7.25) display 95% predictive intervals constructed from the posterior predictive

distributions simulated from a PHMM with K = 2, ...,6, respectively. Figure (7.21) provides

posterior predictive means, centers of predictive intervals, that are far from the observed crash

counts. This indicates the inadequacy of the model with K = 2 compared with other competing

models. The QQ-plot of pseudo-residuals also appears a clear deviation from normality in

Figure (7.26). On the other hand, it can be seen that the models with K = 3, K = 4, K = 5

and K = 6 appear to have adequate predictive performance in Figures (7.22-7.25), respectively.

According to QQ-plots in Figure (7.26), it can be seen that the selected model, K = 4, has a

good predictive performance.
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Figure 7.26: Normal QQ-plots of ordinary pseudo-residuals for crashes data under a PHMM
with K = 2, ...,6 (M6 data).
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7.6.3 The M42 motorway data

As for the first two motorways, we display results of the convergence, estimation, selection and

assessment of each model fitted to the M42 motorway data (T = 21).

7.6.3.1 Convergence results of the M42 motorway data

Figure (7.27) shows the ACF plots of the thinned posterior samples of the crash rate parameter,

λ , which gives no concerns about autocorrelation. Also, the Gelman-Rubin and the Geweke

statistics suggest convergence may have been achieved, as they provide values less than 1.1

and within the interval [−2,2], respectively, as shown in Table (7.9).
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Figure 7.27: The ACF plots of the crash rate parameter, λ , of a PHMM with K = 2,3 and 4,
given a less diffuse prior, Gamma(0.1,0.1), fitted to the M42 motorway data.
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7.6.3.2 Results of the estimation of the crash rate parameter of the M42 motorway data

Table (7.9) and Figure (7.28) show the estimation results of the crash rate parameters, λ j, for

each model fitted to the crash data of M42 motorway.

Model λ̂k Mean 95% CI R̂ Ĝ
2.5% Median 97.5%

2
λ̂1 0.762 0.603 0.759 0.937 0.999 1.580
λ̂2 1.792 1.306 1.772 2.413 0.999 0.367

3
λ̂1 0.585 0.032 0.632 0.858 0.999 1.053
λ̂2 0.934 0.670 0.880 1.550 0.999 -0.660
λ̂3 1.924 1.351 1.849 2.829 0.999 -0.078

4

λ̂1 0.447 0.011 0.525 0.800 0.999 -0.865
λ̂2 0.761 0.389 0.760 1.081 0.999 -1.706
λ̂3 1.131 0.724 1.029 2.001 0.999 -1.800
λ̂4 2.169 1.421 1.961 4.223 1.001 -1.221

Table 7.9: Results of the estimation and convergence of the crash rate parameter, λ , of a
PHMM with K = 2,3 and 4, given a less diffuse prior, Gamma(0.1,0.1), fitted to
the M42 motorway data. The third column provides the ergodic posterior means of
the rate parameter. The fourth column provides the corresponding 95% CI. The last
two columns include the values of the Gelman-Rubin statistic, R̂, and the Geweke
statistic, Ĝ, respectively.
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Figure 7.28: Box-plots of the posterior distributions of state-specific crash rate parameters of
a PHMM with K = 2,3 and 4, fitted to the M42 motorway data.
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7.6.3.3 Results of model selection and assessment of the M42 motorway data

Table (7.10) shows the results of model selection for the M42 motorway data. All criteria

suggest that these data can be sufficiently modelled by only two states. The results of posterior

predictive distributions shown in Figure (7.29) also suggest that the model with K = 2 is

adequate. We can see that the all models provide somewhat similar normal pseudo-residuals as

shown in Figure (7.30). Given that, the M42 motorway data can be represented by only two

states.
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Figure 7.29: The posterior predictive distribution with 95% predictive intervals simulated from
a PHMM with states K=2, 3 and 4 vs observed crash counts.
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Figure 7.30: Normal QQ-plots of ordinary pseudo-residuals obtained from a PHMM with
K=2, 3 and 4 of the M42 motorway data.

7.6.4 Estimation results of selected models

Table (7.11) summarizes the estimates: the initial state probability, π̂ , transition probabilities,

Â, and state-dependent crash parameter, λ̂ , of the selected models for all traffic crashes datasets

presented in this Chapter. The results indicate that each highway demonstrates different spatial

dependence. Figures (7.31–7.33) represent the posterior classification probabilities for each

segment belonging to a given state. In each case, the bottom plot of each figure represents the

highest risk state.

In addition, we display the state-specific means of crash rates for each motorway, depicted by

the most likely state sequence, as show in Figures (7.34–7.36).

Given the context, it is informative to examine these results on a map. We plotted and mapped

these probabilities using the Arc Geographic Information System (ArcGIS, 2014) as displayed

in Figures (7.37-7.39).

231



7.6. RESULTS AND DISCUSSION

Motorway Model Crash rate λ̂ j Initial state π̂ j Transition probabilities Â

M5 3

0.336
1.065
3.057

 0.319
0.399
0.282

 0.134 0.538 0.327
0.322 0.406 0.271
0.530 0.176 0.293



M6 4


0.253
0.809
1.972
6.471




0.194
0.324
0.271
0.211




0.386 0.389 0.083 0.141
0.216 0.291 0.252 0.239
0.059 0.353 0.295 0.291
0.160 0.226 0.436 0.176


M42 2

[
0.762
1.792

] [
0.655
0.345

] [
0.688 0.312
0.761 0.239

]

Table 7.11: Results of the selected models for the highways crash data: M5, M6, and M42.
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Figure 7.31: Trace-plots of the posterior probabilities of hidden states for the 3-state Poisson
HMM for the M5 motorway.
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Figure 7.32: Trace-plots of the posterior probabilities of hidden states for the 4-state Poisson
HMM for the M6 motorway.
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Figure 7.33: Trace-plots of the posterior probabilities of hidden states for the 2-state Poisson
HMM for the M42 motorway.
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Figure 7.34: Trace-plot of the most frequent hidden state sequence (Top). State-dependent
crash rates of each segment (dashed line) of the M5 motorway, depicted by the
most likely state sequence (Bottom).
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Figure 7.35: Trace-plot of the most frequent hidden state sequence (Top). State-dependent
crash rates of each segment (dashed line) of the M6 motorway, depicted by the
most likely state sequence (Bottom).
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Figure 7.36: Trace-plot of the most frequent hidden state sequence (Top). State-dependent
crash rates of each segment (dashed line) of the M42 motorway, depicted by the
most likely state sequence (Bottom).

7.6.4.1 The selected model for M5 highway data

Based on the estimation results and the mapped classification probabilities of the model

identified for M5 motorway data, we classify the estimated state-specific crash rate means, λ̂zt ,

of the selected model into 3 levels. We refer to state 1 (λ̂1 = 0.336) as a low-risk state, state 2

(λ̂2 = 1.065) as a moderate-risk state and state 3 (λ̂3 = 3.057) as a high- risk state.

The moderate-risk case (a22 = 0.406) represents the general traffic safety case of the M5
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motorway. According to the results in Figures (7.31) and (7.37), the segments: 2, 6, 17, 22, 23,

24, 25, 35, 37, 39 and 42 which represent the intersections on the M5 motorway have the

highest risk.
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Figure 7.37: The spatial results mapped at segment level for the M5 motorway.
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7.6.4.2 The selected model for M6 highway data

Based on the results of the selected model for the M6 highway data, we can characterize the

traffic safety case of this highway as: state 1 (λ̂1 = 0.253) as a very low-risk case, state 2 as a

low-risk case (λ̂2 = 0.809), state 3 as a high-risk (λ̂3 = 1.972) case and state 4 as a very high-

risk case (λ̂4 = 6.471). As shown from the posterior transition probabilities in Table (7.11), the

general behavior of the M6 highway seems similar to the M5 motorway in terms of the traffic

safety, where the low-risk segments are more common. However, it reveals a different spatial

dependency in the data as shown from its posterior transition probabilities.

According to the posterior allocation probabilities shown in Figure (7.32) and mapped in Figure

(7.38), the segments: 2, 3, 12, 17, 22, 23, 26, 28, 34, 39, 44, 49, 52, 53, 66 and 70 form the

highest risk segments which are mostly the intersections on this highway.
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Figure 7.38: The spatial results mapped at segment level for the M6 motorway.
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7.6.4.3 The selected model for M42 highway data

We selected a two-state model for the M42 highway. State 1 can be characterized as a low-

risk (λ̂1 = 0.762), whereas state 2 as a high-risk (λ̂2 = 1.792) state. Based on the posterior

allocation probabilities displayed in Figure (7.33), the segments of M42 highway that have high

risk associated with them (zt = 2) are only 6, 12 and 14, as also mapped in Figure (7.39).
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Figure 7.39: The spatial results mapped at segment level for the M42 motorway.

7.7 Summary and discussion

Under a Bayesian framework, we have introduced a spatial modelling approach for traffic

crashes using a Poisson hidden Markov model (PHMM). Models of this class are able to

accommodate the heterogeneity and serial dependence in count data simultaneously.

Our methodology was demonstrated using an application involving traffic crash data. We have

introduced the idea of modelling the spatial dependence at segment level. The application

included three different crash datasets from three highways in the UK, the M5, M6 and M42.

We have considered a series of models with increasing complexity. Due to the small size of the

three datasets considered in this study, we have carefully investigated each model. We have

performed a sensitivity analysis by conducting numerical and visual inference on the

state-specific crash rate parameter, λzt , under chosen priors. These proposed prior choices

varied from very highly non-informative towards less diffuse priors. We have used the

Gelman-Rubin statistic, the Geweke statistic, the ACF and trace plots for convergence

monitoring of the posterior distributions of the state-specific crash rates parameters of each

model.

In general, the results revealed that a lack in convergence may reflect problems in model
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identifiability using highly non-informative priors with relatively large models. This could be

due to the small size of the available data sets. The process of model choice was implemented

by using the criteria that were found to work well in Chapter 6. Overall, the findings of model

selection and assessment have suggested that some road safety datasets considered in this

chapter were described by a small number of states. The PHMMs have provided a different

way for analyzing spatial dependence on networks susceptible to road crashes.

The univariate PHMM employed in this chapter can be considered as an approach for a simple

preliminary analysis of the traffic safety situation of a certain highway with different levels of

road crash risk (e.g. very low, low, high, etc.). This can assist highway authorities to arrange

their priorities in road treatment. As an extension, in future work, we could develop a

multivariate Poisson HMM to consider the severity and type of crashes at the individual level

at each segment.
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Chapter 8

Conclusion

8.1 Summary

This thesis contributes in introducing new ideas for Bayesian model selection criteria to

determine the number of states, K, in a hidden Markov model. Chapter 1 provided a brief

review of Bayesian theory and MCMC methods used to estimate model parameters. Chapter 2

discussed finite mixture models in which the discrete latent variables are assumed to be

independent, a special and simplified case of HMMs. Chapter 3 introduced the fundamental

definitions of the HMM. We briefly reviewed the problems inherent in HMMs: the likelihood

function and parameter estimation of a HMM. In Chapter 4 we introduced a Bayesian

approach to HMMs. We concentrated on the sampling process of the hidden state sequence of

a HMM. We adopted the Direct Gibbs (DG) sampler, also called the local updating approach,

to sample the hidden states. In addition, this chapter discussed the problem of label switching.

In Chapter 5, we introduced the most common used likelihood-based model selection criteria:

AIC, BIC and DIC in a HMM context. All those criteria have been built using the Bayesian

framework in the sense that they are assessed over the posterior distribution. The construction

of such criteria requires the availability of the likelihood function in closed form which is a

challenge here. This is solved by using the data augmentation approach (Tanner and Wong,

1987). Based on the work of Celeux et al. (2006), we have considered the concept of focus in

formulating our criteria. Accordingly, we have introduced several conditional and observed

likelihood-based versions for our information criteria. In addition, the model selection issue

was also discussed from a predictive viewpoint using a more recent criterion called the widely

applicable information criterion (WAIC; Watanabe, 2009) which is a asymptotically equivalent

to the leave one-out cross validated predictive density.
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Chapter 6 was dedicated to assess the model selection criteria introduced in Chapter 5 where

we investigated the performance of those criteria using simulation studies and also using an

application to real data, by assuming a fixed and unknown number of hidden states, K. From

those studies, our aim was to understand and uncover the performance of those criteria, given

different several scenarios involving a generating data procedure, with different complexities,

differ from the assumed structure. The results of model selection criteria assessment explained

the following:

Firstly, for the simulation studies implemented on synthetic datasets, it was noted that all the

versions of the recursive deviance-based AIC and BIC, and also the second version of the DIC,

DICrec2 , had a satisfactory performance. More specifically, those criteria behaved well in

selecting the correct model when assuming data that are generated from models with less

complexities. On the other hand, the same criteria had a tendency to underestimate the real

number of hidden states when generating data models with large sizes. It is worth noting that

this latter behaviour of those criteria was reasonable, where matches to the real representation

of the observed process produced by the generating data HMMs. More specifically, those

criteria were more sensitive to the overlapping that appeared in the data which could lead to

underestimating some redundant states in the model. The same above criteria also seem to

perform well in the real data application, where they selected reasonable solutions to represent

the data. On the other hand, the first version of the DIC, DICrec1 , selected the correct model

among all the generating models considered, and it prefers no overlapping solutions, but has a

tendency to overestimate the number of hidden states in the model. In contrast, this criterion

had a poor performance in the real data example, where it preferred the most overfit model.

Also, it provides arbitrary values of pDICrec1
which conflict with the principle of increasing the

effective number of the parameters as the model complexity increases. This may be due to the

unsatisfactory estimation of the plugged-in estimator Drec(Θ̄) of this criterion.

Secondly, for the conditional deviance-based criteria, two versions of the BIC: BICcon1 and

BICcon2 had the same behaviour as the AIC and BIC based on recursive deviance, which also

select the right model in the less complicated generating models, and under-penalise the model

in the case of more complexity generating models, indicating their sensitivity to the

overlapping observed in the data. In the real data example, the BICcon1 selects the more

parsimonious model, whereas the BICcon2 favors a lager model. In the simulation example, the

AICcon1 and BICcon3 preferred the most overfitting models, suggesting it is not a reliable

criterion. Moreover, both versions tended to select the large models in the real data
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application. The AICcon2 , picked up the correct number of hidden states in the most cases.

Nevertheless, it also tends to select the more complicated model for the real data. The DICcon1

had the worse performance, and favored the most overfitting model for all cases in the

simulation study. However, it selects a reasonable solution for the real data and also introduces

increased but too large values of pDICcon1
. The DICcon2 performed well in the case of less

complicated models, but highly underestimated the number of states K in the main part of

cases. This criterion also selected a sensible solution for the waiting time data example and

provides pDICcon1
with increased and large values.

Thirdly, the WAIC, based on predictive pointwise calculations, had a worst performance, as it

always tends to favour the most overfitting model in all examples considered in this thesis.

This can indicate that this criterion is not appropriated for HMMs.

Finally, all versions of the AIC, BIC and DIC based on recursive deviances have provided a

lower level of variability compared with the versions of AIC, BIC and DIC based on

conditional deviances as well as the WAIC, indicating their accuracy. The reason might be that

the conditional deviance-based versions involve high-dimensional vectors of hidden states

which are treated as an additional focus along with the state-specific parameters. This would

lead to large variations in Monte Carlo simulations. In contrast, the hidden states are dealt with

as missing data in the recursive deviance-based versions, where we sum all possible hidden

states when computing the observed likelihood. This may contribute in reducing the variability

in Monte Carlo simulations.

In Chapter 7 we presented a Bayesian modelling framework to capture the spatial dependence

in count data using the PHMM. Our methodology has been illustrated via an application to

traffic safety crashes for three highways in the UK. Our interest was in identifying highway

segments which have distinctly higher crash rates of the safety process. Selecting an optimal

number of states is an important part of the interpretation required by highways managers. As

a result, we have used model-selection criteria to determine the optimal number of states. We

have also used several goodness-of-fit checks to assess each model fitted to the data.

We implemented an MCMC algorithm and checked convergence. We have used tools such as

the Gelman-Rubin statistic, the Geweke statistic, the ACF plots and trace plots for convergence

monitoring of the posterior distributions of the state-specific crash rates parameters of each

model. We explored a range of priors to check for prior sensitivity, a potential problem given

small sample sizes. We saw a lack of convergence when fitting models that may reflect
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problems in model identifiability due to over-fitting when using highly non-informative priors.

The posterior distribution of the crash rate parameters of models with large sizes were usually

more sensitive to highly non-informative priors, and may have provided unrealistic estimates.

Some criteria for the high-dimensional models had unsatisfactory performance for all chosen

priors. This may be due to the lack of identifiability of the parameter estimates.

Overall, we believe that model selection and assessment have suggested that the datasets

considered in this chapter could be well described by a small number of states. The PHMMs

have provided a different model analyzing spatial dependence on networks susceptible to road

crashes. It is possible to identify segments with a higher posterior probability of classification

in a high risk state, a finding that would prioritise management action.

8.2 Future work

There are several interesting extensions of the work done in this thesis, some of which are

summarised below.

There may be more efficient samplers. We have used the DG sampler which required extensive

thinning. It would be good to use more computationally efficient samplers such as FBG or

Hamiltonian Monte Carlo (HMC; Neal (2011)) algorithm.

In general, the problem of the estimation of the penalty term, pDIC, of the DIC or the bias

correction term (Gelman et al., 2014) in the WAIC can be due to the mischoice of focus in the

model that have to be carefully selected. This need further attention.

In Chapter 7, we introduced a univariate PHMM to model and diagnose the spatial

heterogeneity represented by the crash rates on highways. As explained, such a model can be

considered as an approach that introduces a simple preliminary analysis for the traffic safety

situation to a certain highway. As an extension, in future work, we could develop a

multivariate Poisson HMM to consider the severity and type of crashes of the considered

datasets of highways: M5, M6 and M42. Such a model would potentially enable inside on

other interesting aspects for the safety authorities, such as the injury types following a crash at

the individual level at each segment, so that

Yitr = yitr|ztr,λitr ∼ Poisson(otrλiztrr),

ztr ∼Markov(π,A),
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where

yitr: refers to a discrete outcome of the crash injury type i (for instance, no-injury, injury and

fatality) observed at the tth segment of the rth highway, given a fixed time period.

otr: is the expected number of crashes of the tth segment of the rth highway which is derived

based on some traffic safety variables such the length and traffic volume of a certain segment.

λiztrr: is the state-specific crash rate of the crash injured type i of the tth segment of the rth

highway.
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Appendix A

Derivations

A.1 The full conditional posteriors of Normal HMM and Poisson HMM

A.1.1 The Normal HMM

The posterior distribution of a Normal HMM can be derived as follows:

1- Likelihood

L(µ,τ,A;y,z) = πz1φz1(y1|µz1 ,τz1)az1z2φz2(y2|µz2 ,τz2)...azT−1zT φzT (yT |µzT ,τzT )

= (πz1)(az1z2 ...azT−1zT )(φz1(y1|µz1 ,τz1)...φzT (yT |µzT ,τzT ))

=
K

∏
k=1

π
Nk
j

K

∏
j=1

K

∏
k=1

(a jk)
N jk

K

∏
j=1

Tj

∏
t:zt= j

φ j(yt |µ j,τ j)

=
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∏
k=1

π
N j
k

K

∏
j=1

K

∏
k=1

(a jk)
N jk

K

∏
j=1

Tj

∏
t:zt= j

√
τ j

2π
exp
(
−

τ j

2
(yt −µ j)

2
)
. (A.1)

2- Prior distributions of the π, A =
{

a jk
}
,µ and τ respectively

Pr(π|δ ) =
K

∏
k=1

Pr(πk) =
K

∏
k=1

π
δk−1
k . (A.2)

Pr(a j.|δ ) =
K

∏
j=1

Pr(a j.|δ ) =
K

∏
j=1

K

∏
k=1

{
a j.
}δk−1

. (A.3)

Pr(µ j|ξ ,η) =
K

∏
j=1

Pr(µ j)∝
K

∏
j=1

exp
(
−η

2
(µ j−ξ )2

)
= exp

(
η

2

K

∑
j=1

(µ j−ξ )2

)
(A.4)
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Pr(τ j|κ,ν) =
K

∏
j=1

Pr(τ j)∝
K

∏
j=1

τ
κ−1
j exp(−ντ j) (A.5)

3- Joint Posterior distributions

Pr(µ,τ,A,π|y,z) =
K

∏
k=1
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∏
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∏
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(A.6)

4- Full Conditionals of the π, A =
{

a jk
}
,µ and τ respectively

Pr(π | y,z,µ,τ) =
K

∏
k=1

Pr(πk)
Nk

K

∏
k=1

π
δk−1
k ,

∝
K

∏
k=1

Pr(πk)
Nk+δk−1,

= Dir(Nk +δk). (A.7)

Pr(a j.|y,z,µ,τ)∝
K

∏
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∏
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∏
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. (A.9)

If we use σ2 instead of τ , the formula of the full conditional distribution of µ in Equation (A.9)

becomes

Pr(µ j | y,z,τ,A) = Normal


∑

Tj
t:zt= j yt

σ2
j

+ηζ

Tj

σ2
j
+η

,
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 ,
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j
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,
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j
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)
. (A.10)
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Pr(τ j | y,z,µ,A)∝ τ
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The product of Equation (A.11) is Gamma distribution with mean κ/ν and variance κ/ν2.

Consequently, the full conditional distribution of variance parameter σ2 can be obtained as

Pr(σ2
j |y,z,µ,A) =

1
Pr(τ j | y,z,µ,A)

,

≡ InvGamma

(
κ +0.5Tj,ν +0.5

Tj
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2

)
. (A.12)

A.1.2 The Poisson HMM

The prior and posterior distributions of the π and A are the same as those derived in the Normal

HMM in subsection (A.1.1). We introduce here only the the prior and posterior of the state-

dependent parameter of PHMM, λ , as well as the likelihood.

1- Likelihood:

L(λ ,A,π;y,z) =
K

∏
j=1

π
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∏
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∏
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2- Priors for λ :

Pr(λ ) =
K

∏
j=1

(λ j|κ,ν)

∝
K

∏
j=1

λ
κ−1
j exp(−νλ j). (A.14)
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3- Joint Posterior

Pr(λ ,A,π | y,z) =
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4- Full Conditional of λ
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A.2 The derivation of variables γ j(t) and ξ jk(t)

The ξ jk(t) can be defined as the posterior joint probability of being in state j at time t, and state

k at time t +1, given the model, Θ, and observation sequence y, i.e.

ξ jk(t) = p(zt = j,zt+1 = k|y,Θ),

which can be calculated from the ’α’ and ’β ’ variables as follows

ξ jk(t) = Pr(zt = j,zt+1 = k|y,Θ),

=
Pr(zt = j,zt+1 = k,y|Θ)

L(Θ|y)
,

=
Pr(y1,y2, ...,yt ,zt = j|Θ)a jk fk(yt+1)Pr(yt+1,yt+2, ...,yT |zt = j,Θ)

L(Θ|y)
,

=
αt( j)a jk fk(yt+1)βt+1(k)
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,

=
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∑
K
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K
k=1 αt( j)a jk fk(yt+1)βt+1(k)

. (A.17)

The variable γ j(t) is a posteriori probability variable and can be defined as

γ j(t) = Pr(zt = j|y,Θ), (A.18)
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i.e., the probability of being in state j at time t, given the observation sequence y and model Θ.

We can compute γ j(t) from the forward and backward variables as follows

γ j(t) = Pr(zt = j|y,Θ),

=
Pr(y,zt = j|Θ)

L(Θ|y)
,

=
Pr(y,zt = j|Θ)

∑
K
j=1 Pr(y,zt = j|Θ)

,

=
Pr(y1,y2, ...,yt ,zt = j|Θ)Pr(yt+1,yt+2, ...,yT |zt = j,Θ)

∑
K
j=1 Pr(y1,y2, ...,yt ,zt = j|Θ)Pr(yt+1,yt+2, ...,yT |zt = j,Θ)

,

=
αt( j)βt( j)

∑
K
j=1 αt( j)βt( j)

. (A.19)
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Python Codes

B.1 Generating observations from Normal and Poisson HMMs

1 " " " A f u n c t i o n t o sample from t h e M u l t i n o m i a l d i s t r i b u t i o n " " "

2 def M u l t i n o m i a l ( p r o b a b i l i t y ) :

3 p r o b a b i l i t y [ np . i s n a n ( np . a r r a y ( p r o b a b i l i t y ) ) ] = 0

4 re turn np . where ( np . random . m u l t i n o m i a l ( 1 , p r o b a b i l i t y ) = = 1 ) [ 0 ] [ 0 ]

5
6 " " "A f u n c t i o n t o s i m u l a t e c o n t i n u o u s d a t a s e t o f l e n g t h T from Normal d i s t r i b u t i o n " " "

7 def norm_obs (mu , s i g ) :

8 re turn np . random . normal (mu , s i g )

9
10 " " "A f u n c t i o n t o s i m u l a t e d i s c r e t e d a t a s e t o f l e n g t h T from P o i s s o n d i s t r i b u t i o n " " "

11 def p o i s _ o b s ( lambda_ ) :

12 np . random . p o i s s o n ( lambda_ )

13
14 " " " S i m u l a t e d a t a s e t from K−s t a t e Normal HMM" " "

15 def Normal_K_HMM ( T , pi , A, Mu, S ig ) :

16 Hidden=np . z e r o s ( [ T ] , i n t )

17 Obs=np . z e r o s ( [ T ] )

18 Hidden [ 0 ] = M u l t i n o m i a l ( p i )

19 Obs [ 0 ] = norm_obs (Mu[ Hidden [ 0 ] ] , np . s q r t ( S ig [ Hidden [ 0 ] ] ) )

20 f o r t in r a n g e ( 1 , T ) :

21 Hidden [ t ]= M u l t i n o m i a l (A[ Hidden [ t −1] ] )

22 Obs [ t ]= norm_obs (Mu[ Hidden [ t ] ] , np . s q r t ( S ig [ Hidden [ t ] ] ) )

23 re turn Obs , Hidden

24
25 " " " S i m u l a t e d a t a from K−s t a t e Normal HMM" " "

26 def Poisson_K_HMM ( T , pi , A, lambda ) :

27 Hidden=np . z e r o s ( [ T ] , i n t )

28 Obs=np . z e r o s ( [ T ] )

29 Hidden [ 0 ] = M u l t i n o m i a l ( p i )

30 Obs [ 0 ] = p o i s _ o b s ( lambda [ Hidden [ 0 ] ] )

31 f o r t in r a n g e ( 1 , T ) :

32 Hidden [ t ]= M u l t i n o m i a l (A[ Hidden [ t −1] ] )

33 Obs [ t ]= p o i s _ o b s ( lambda [ Hidden [ t ] ] )

34 re turn Obs , Hidden

35 #### I n p u t s

36 T=T # l e n g t h o f t h e r e q u i r e d s e q u e n c e

37 p i = p i # i n i t i a l d i s t r i b u t i o n v e c t o r o f d imens ion (1∗K)

38 A=A # t r a i n t i o n m a t r i x o f d imens ion (K∗K)

39 Mu=Mu # v e c t o r o f means o f d imens ion (1∗K)

40 Sig = Sig # v e c t o r o f v a r i a n c e s o f d imens ion (1∗K)

41 lambda=lambda # v e c t o r o f lambda ’ s o f d imens ion (1∗K)

B.2 Estimation, convergence checking, model selection of Normal HMMs

1 from _ _ f u t u r e _ _ import d i v i s i o n

2 import numpy as np
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3 import m a t p l o t l i b . p y p l o t as p l

4 from numpy . random import normal , gamma , m u l t i n o m i a l

5 from s c i p y . s t a t s import norm , p o i s s o n

6 from s c i p y . s t a t s . d i s t r i b u t i o n s import invgamma

7
8 " " "A f u n c t i o n t o s i m u l a t e c o n t i n u o u s d a t a s e t o f l e n g t h T from Normal d i s t r i b u t i o n " " "

9 def norm_obs (mu , s i g ) :

10 re turn np . random . normal (mu , s i g )

11
12 " " "A f u n c t i o n t o compute t h e p r o b a b i l i t y d e n s i t y o f Normal d i s t r i b u t i o n " " "

13 def norm_pdf ( da t a , mu , s igma ) :

14 re turn norm . pdf ( da t a , mu , s igma )

15
16 " " "A f u n c t i o n t o s i m u l a t e d i s c r e t e d a t a s e t o f l e n g t h T from P o i s s o n d i s t r i b u t i o n " " "

17 def p o i s _ o b s ( lambda_ ) :

18 np . random . p o i s s o n ( lambda_ )

19
20 " " " De f i ne t h e D i r i c h l e t f u n c t i o n . Th i s f u n c t i o n r e t u r n samples ( p r o b a b i l i t i e s ) from D i r i c h l e t

21 d i s t r i b u t i o n t h a t use t o d e f i n e t h e f u l l c o n d i t i o n a l p o s t e r i o r and p r i o r d i s t r i b u t i o n s

22 f o r t h e mixing w e i g h t s . d e l t a i s a v e c t o r o f h y p e r p a r a m e t e r s , which i s assumed =1 f o r

23 k =1 ,2 , . . . , K . d e l t e =np . ones ( ( k ) ) r e t u r n ( 1 , 1 , . . . . , 1 _K ) " " "

24 def D i r i c h l e t _ ( d e l t a , x ) :

25 re turn np . random . d i r i c h l e t ( d e l t a +( x ) , 1 ) [ 0 ]

26
27 " " " A f u n c t i o n t o sample from t h e M u l t i n o m i a l d i s t r i b u t i o n " " "

28 def M u l t i n o m i a l ( p r o b a b i l i t y ) :

29 p r o b a b i l i t y [ np . i s n a n ( np . a r r a y ( p r o b a b i l i t y ) ) ] = 0

30 re turn np . where ( np . random . m u l t i n o m i a l ( 1 , p r o b a b i l i t y ) = = 1 ) [ 0 ] [ 0 ]

31
32 " " " A f u n c t i o n t o compute a l l s u f f i c i e n t s t a t i s t i c s r e q u i r e d which a r e :

33 1− sum of o b s e r v a t i o n s t h a t a r e g e n e r a t e d from s t a t e j .

34 2− number o f o b s e r v a t i o n s t h a t a r e g e n e r a t e d from s t a t e j .

35 3− a v e r a g e o f o b s e r v a t i o n t h a t a r e a l l o c a t e d t o t h e s t a t e j .

36 4− sum of s q u a r e o f o b s e r v a t i o n s t h a t a r e g e n e r a t e d from s t a t e j . " " "

37 def S u f f i c i e n t _ S t a t i s t i c s ( o b s e r v a t i o n , h idden , k ) :

38 sum_obs_j=np . z e r o s ( ( k ) )

39 num_obs_j=np . z e r o s ( ( k ) )

40 f o r j in r a n g e ( k ) :

41 sum_obs_j [ j ]= np . sum ( ( h id de n == j )∗ o b s e r v a t i o n )

42 num_obs_j [ j ]= np . sum ( h id de n == j )

43 re turn sum_obs_j , num_obs_j

44
45 " " " Th i s f u n c t i o n i s s p e c i f i e d f o r c o u n t i n g t h e t h e number o f t r a n s i t i o n s from t h e s t a t e

46 j , d e n o t e d by a v e c t o r N_j o f d imens ion 1∗K. N_j : sum up from t =1 u n t i l t =T . " " "

47 def C o u n t i n g _ I i n i t i a l ( h idden , k ) :

48 N u m b e r _ i n i t i a l _ s t a t e =np . z e r o s ( ( k ) )

49 f o r j in r a n g e ( k ) :

50 N u m b e r _ i n i t i a l _ s t a t e [ j ]= np . sum ( h id de n == j )

51 re turn N u m b e r _ i n i t i a l _ s t a t e

52
53 " " " Th i s f u n c t i o n i s s p e c i f i e d f o r c o u n t i n g t h e number o f t r a n s i t i o n s from j i n t o k ,

54 d e n o t e d by a m a t r i x N_jk o f d imens ion K∗K. N_jk : sum up from t =1 u n t i l t =T−1" " "

55 def C o u n t i n g _ T r a n s i t i o n ( o b s e r v a t i o n , h idden , k ) :

56 N u m b e r _ t r a n s i t i o n _ s t a t e =np . z e r o s ( ( k , k ) )

57 f o r t in r a n g e ( l e n ( o b s e r v a t i o n )−1) :

58 N u m b e r _ t r a n s i t i o n _ s t a t e [ h id de n [ t ] , h id de n [ t + 1 ] ] = N u m b e r _ t r a n s i t i o n _ s t a t e [ h i dd en [ t ] , h i dd en [ t +1] ]+ 1

59 re turn N u m b e r _ t r a n s i t i o n _ s t a t e

60
61 " " " Update t h e t r a n s i t i o n m a t r i x p r o b a b i l i t i e s and i n i t i a l s t a t e p r o b a b i l i t y from

62 c o r r e s p o n d i n g c o u n t s . T r a n s i : a m a t r i x o f d imens ion K∗K, i t s rows and t h e

63 v e c t o r I n i t i a l a r e i n d e p e n d e n t l y u p d a t e d from D i r i c h l e t d i s t r i b u t i o n . " " "

64 def U p d a t e _ T r a n s i t i o n ( d e l t a , N u m b e r _ t r a n s i t i o n _ s t a t e , k ) :

65 T r a n s i =np . z e r o s ( ( k , k ) )

66 f o r j in r a n g e ( k ) :
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67 T r a n s i [ j , : ] = D i r i c h l e t _ ( d e l t a , N u m b e r _ t r a n s i t i o n _ s t a t e [ j , : ] )

68 re turn T r a n s i

69
70 " " " Update t h e t r a n s i t i o n m a t r i x p r o b a b i l i t i e s and i n i t i a l s t a t e p r o b a b i l i t y from

71 c o r r e s p o n d i n g c o u n t s . T r a n s i : a m a t r i x o f d imens ion K∗K, i t s rows and t h e v e c t o r

72 I n i t i a l a r e i n d e p e n d e n t l y u p d a t e d from D i r i c h l e t d i s t r i b u t i o n . " " "

73 def U p d a t e _ I n i t i a l ( d e l t a , N u m b e r _ i n i t i a l _ s t a t e ) :

74 re turn D i r i c h l e t _ ( d e l t a , N u m b e r _ i n i t i a l _ s t a t e )

75
76 " " " Code f o r comput ing t h e r e c u r s i v e log− l i k e l i h o o d " " "

77 def R e c u r s i v e _ l o g l i k e l i h o o d ( k , o b s e r v a t i o n , p i ,AAA, mu , s igma ) :

78 # we c r e a t e a f u n c t i o n t o compute t h e r e c u r s i v e log− l i k e l i h o o d .

79 # Th i s f u n c t i o n r e t u r n s t h e log− l i k e l i h o o d based on − sum t h e

80 # l o g a r i t h m of t h e s c a l i n g f a c t o r s C .

81 T= l e n ( o b s e r v a t i o n )

82 l l = [ ] # log− l i k e l i h o o d

83 a l p h a _ s t a r =np . z e r o s ( ( k , T ) ) # f o r w a r d u n s c a l e d

84 a l p h a _ h a t =np . z e r o s ( ( k , T ) ) # f o r w a r d s c a l e d

85 C=np . z e r o s ( [ T ] ) # s c a l i n g f a c t o r s

86 f o r s in r a n g e ( k ) :

87 a l p h a _ h a t [ s , 0 ] = p i [ s ]∗ norm_pdf ( o b s e r v a t i o n [ 0 ] , mu[ s ] , s igma [ s ] )

88 C [ 0 ] = 1 . / ( np . sum ( a l p h a _ h a t [ : , 0 ] ) )

89 a l p h a _ s t a r [ : , 0 ] = C[0]∗ a l p h a _ h a t [ : , 0 ]

90 f o r t in r a n g e ( 1 , T ) :

91 f o r j in r a n g e ( k ) :

92 f o r i in r a n g e ( k ) :

93 a l p h a _ h a t [ j , t ] += a l p h a _ s t a r [ i , t −1]∗AAA[ i , j ] ∗norm_pdf ( o b s e r v a t i o n [ t ] , mu[ j ] , s igma [ j ] )

94 C[ t ] = 1 . / ( np . sum ( a l p h a _ h a t [ : , t ] ) )

95 a l p h a _ s t a r [ : , t ]=C[ t ]∗ a l p h a _ h a t [ : , t ]

96 l l =−np . sum ( np . l o g (C ) )

97 re turn l l , a l p h a _ h a t , a l p h a _ s t a r

98
99 " " " Code f o r u p d a t i n g t h e h id de n s t a t e l o c a l l y " " "

100 def L o c a l _ u p d a t i n g ( k , o b s e r v a t i o n , p i ,AAA, mu , sigma , h idd en ) :

101 # A f u n c t i o n t o u p d a t e t h e h id de n s t a t e l o c a l l y .

102 # Loca l u p d a t i n g method assumes t h e r e i s a g i v e n h id de n s t a t e s e q u e n c e . We

103 # d e n o t e d i t as ’ h idden ’ and t h e u p d a t i n g i s done in t h e new s e q u e n c e . We

104 # d e n o t e d i t as ’ hidden_new ’ .

105 T= l e n ( o b s e r v a t i o n )

106 a l l o c _ n o n _ n o r m l i z e d =np . z e r o s ( ( k , T ) )

107 a l l o c _ n o r m l i z e d =np . z e r o s ( ( k , T ) )

108 hidden_new=np . z e r o s ( [ T ] , d t y p e = i n t )# new h i dde n s t a t e v e c t o r

109 f o r i in r a n g e ( k ) :

110 a l l o c _ n o n _ n o r m l i z e d [ i , 0 ] = p i [ i ]∗AAA[ i , h i dd en [ 1 ] ]∗ norm_pdf ( o b s e r v a t i o n [ 0 ] , mu[ i ] , s igma [ i ] )

111 a l l o c _ n o r m l i z e d [ : , 0 ] = a l l o c _ n o n _ n o r m l i z e d [ : , 0 ]∗ 1 . 0 / ( np . sum ( a l l o c _ n o n _ n o r m l i z e d [ : , 0 ] ) )

112 hidden_new [ 0 ] = M u l t i n o m i a l ( a l l o c _ n o r m l i z e d [ : , 0 ] )

113 f o r t in r a n g e ( 1 , T−1):

114 f o r i in r a n g e ( k ) :

115 a l l o c _ n o n _ n o r m l i z e d [ i , t ]=AAA[ hidden_new [ t −1] , i ]∗ ( norm_pdf ( o b s e r v a t i o n [ t ] , mu[ i ] , s igma [ i ] ) )

116 ∗AAA[ i , h i dd en [ t + 1 ] ]

117 a l l o c _ n o r m l i z e d [ : , t ]= a l l o c _ n o n _ n o r m l i z e d [ : , t ]∗ 1 . 0 / ( np . sum ( a l l o c _ n o n _ n o r m l i z e d [ : , t ] ) )

118 hidden_new [ t ]= M u l t i n o m i a l ( a l l o c _ n o r m l i z e d [ : , t ] )

119 f o r i in r a n g e ( k ) :

120 a l l o c _ n o n _ n o r m l i z e d [ i , T−1]=AAA[ hidden_new [ T−2] , i ]∗ norm_pdf ( o b s e r v a t i o n [ T−1] ,mu[ i ] , s igma [ i ] )

121 a l l o c _ n o r m l i z e d [ : , T−1]= a l l o c _ n o n _ n o r m l i z e d [ : , T−1 ]∗1 . 0 / ( np . sum ( a l l o c _ n o n _ n o r m l i z e d [ : , T−1] ) )

122 hidden_new [ T−1]= M u l t i n o m i a l ( a l l o c _ n o r m l i z e d [ : , T−1])

123 re turn a l l o c _ n o r m l i z e d , hidden_new

124
125 " " " Code f o r comput ing t h e c o n d i t i o n a l log− l i k e l i h o o d " " "

126 def C o n d i t i o n a l _ l o g l i k e l i h o o d ( k , o b s e r v a t i o n , pi ,AAA, mu , sigma , h i dd en ) :

127 T= l e n ( o b s e r v a t i o n )

128 c o n _ l o g l i k e = np . z e r o s ( ( T ) )

129 f o r t in r a n g e ( T ) :

130 c o n _ l o g l i k e [ t ]= np . l o g ( norm_pdf ( o b s e r v a t i o n [ t ] , mu[ h i dde n [ t ] ] , s igma [ h i dde n [ t ] ] ) )
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131 re turn np . sum ( c o n _ l o g l i k e )

132
133 ’ ’ ’ Code t o compute t h e h i g h e s t p o s t e r i o r d e n s i t y o b t a i n e d ove r MCMC draws ’ ’ ’

134 def h i g h e s t P o s t D e n s i t y ( da t a , k , p i , mu , s i g ) :

135 ’ ’ ’ Th i s f u n c t i o n r e t u r n t h e i n d e x of h i g h e s t p o s t e r i o r d e n s i t y o b t a i n e d

136 ove r MCMC draws ’ ’ ’

137 # M a x _ D e n s i t y _ A t E a c h _ I t e r a t i o n =np . z e r o s ( [ i t e r a t i o n ] )

138 Max_Density = [ ]

139 D e n s i t y =np . z e r o s ( [ l e n ( d a t a ) ] )

140 f o r t in r a n g e ( l e n ( d a t a ) ) :

141 f o r s in r a n g e ( k ) :

142 D e n s i t y [ t ]+=( p i [ s ]∗ norm . pdf ( d a t a [ t ] , mu[ s ] , s i g [ s ] ) )

143 Max_Density . e x t e n d ( [ np . max ( D e n s i t y ) ] )

144 re turn Dens i ty , Max_Density [ 0 ]

145
146 " " " Code f o r e s t i m a t i n g t h e Normal HMM p a r a m e t e r s u s i n g Gibbs s a m p l e r " " "

147 def Normal_HMM_Gibbs ( obs , T ,M, d , K, z e t a , e t a , a , b , d e l t a ) :

148
149 " " " S t o r a g e " " "

150 a l l o c _ p o s t =np . z e r o s ( [M, K, T ] , np . f l o a t )

151 N_jk=np . z e r o s ( [M, K,K] , i n t )

152 N_j=np . z e r o s ( [M,K] , i n t )

153 A_post=np . z e r o s ( [M, K,K] , np . f l o a t )

154 p _ p o s t =np . z e r o s ( [M,K] , np . f l o a t )

155 z _ p o s t =np . z e r o s ( [M, T ] , d t y p e = i n t )

156 n_y=np . z e r o s ( [M,K] , i n t )

157 sum_y=np . z e r o s ( [M,K] , np . f l o a t )

158 mus_post =np . z e r o s ( [M,K] , np . f l o a t ) # s t o r a g e t h e samples o f p o s t e r i o r o f mean p a r a m e t e r

159 s_2=np . z e r o s ( [M,K] , np . f l o a t )

160 s i g _ p o s t =np . z e r o s ( [M,K] , np . f l o a t ) # s t o r a g e t h e samples o f p o s t e r i o r o f v a r i a n c e p a r a m e t e r

161 t a u _ p o s t =np . z e r o s ( [M,K] , np . f l o a t )

162 r e c u r s i v e _ l o g l i k e l i h o o d =np . z e r o s ( [M] , np . f l o a t )

163 c o n d i t i o n a l _ l o g l i k e l i h o o d =np . z e r o s ( [M] , np . f l o a t )

164 i ppd =np . z e r o s ( [M, T ] ) # a r r a y f o r t h e i n t e g r a t e d p o i n t w i s e p r e d i c t i v e d e n s i t y

165 i l p p d =np . z e r o s ( [M, T ] ) # a r r a y f o r t h e i n t e g r a t e d l o g p o i n t w i s e p r e d i c t i v e d e n s i t y

166
167 " " " I n i t i a l i z a t i o n " " "

168 f o r r in r a n g e (K ) :

169 t a u _ p o s t [ 0 , r ]=1

170 s i g _ p o s t [ 0 , r ]= t a u _ p o s t [ 0 , r ]

171 mus_post [ 0 , r ]=0

172 A_post [ 0 , r , : ] = D i r i c h l e t _ ( d e l t a , np . ones ( (K ) ) )

173 p _ p o s t [ 0 , : ] = D i r i c h l e t _ ( d e l t a , np . ones ( (K ) ) )

174 z _ p o s t [ 0 , 0 ] = M u l t i n o m i a l ( p _ p o s t [ 0 , : ] )

175 f o r t in r a n g e ( 1 , T ) :

176 z _ p o s t [ 0 , t ]= M u l t i n o m i a l ( A_post [ 0 , z _ p o s t [ 0 , t −1 ] , : ] ) # np . where ( np . random . m u l t i n o m i a l ( 1 , ) = = 1 ) [ 0 ] [ 0 ]

177
178 " " " compute t h e r e c u r s i v e and c o n d i t i o n a l l i k e l i h o o d s a t i t e r a t i o n 0 " " "

179 r e c u r s i v e _ l o g l i k e l i h o o d [ 0 ] = R e c u r s i v e _ l o g l i k e l i h o o d (K, obs , p _ p o s t [ 0 , : ] , A_post [ 0 , : , : ] , mus_post [ 0 , : ] ,

180 ( s i g _ p o s t [ 0 , : ] ) ) [ 0 ]

181 c o n d i t i o n a l _ l o g l i k e l i h o o d [ 0 ] = C o n d i t i o n a l _ l o g l i k e l i h o o d (K, obs , p _ p o s t [ 0 , : ] , A_post [ 0 , : , : ] , mus_pos t [ 0 , : ] ,

182 ( s i g _ p o s t [ 0 , : ] ) , z _ p o s t [ 0 , : ] )

183
184 " " " Run MCMC" " "

185 f o r m in r a n g e ( 1 ,M) :

186 sum_y [m, : ] = S u f f i c i e n t _ S t a t i s t i c s ( obs , z _ p o s t [m−1 , : ] ,K) [ 0 ]

187 n_y [m, : ] = S u f f i c i e n t _ S t a t i s t i c s ( obs , z _ p o s t [m−1 , : ] ,K) [ 1 ]

188
189 " " " Upda t ing mean p a r a m e t e r " " "

190 mus_post [m, : ] = np . random . normal ( ( ( e t a∗ z e t a ) + ( t a u _ p o s t [m−1 , : ]∗ sum_y [m, : ] ) ) ∗ 1 . / ( z e t a +( n_y [m, : ]∗ t a u _ p o s t [m− 1 , : ] ) ) ,

191 np . s q r t ( 1 . / ( z e t a +( n_y [m, : ]∗ t a u _ p o s t [m− 1 , : ] ) ) ) )

192
193 " " " I d e n t i f i a b i l i t y c o n s t r a i n t s ( IC ) t o h a n d l e t h e l a b e l s w i t c h i n g " " "

194 IC= s o r t e d ( mus_post [m , : ] )
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195 mus_post [m, : ] = IC

196
197 " " " S u f f i c i e n t s t a t i s t i c s o f t h e sum of s q u a r e s o f o b s e r v a t i o n s g e n e r a t e d from s t a t e k . " " "

198 f o r s in r a n g e (K ) :

199 s_2 [m, s ]= np . sum ( ( z _ p o s t [m, : ] = = s )∗ ( ( obs−mus_post [m, s ] )∗∗2 ) )

200
201 " " " Upda t ing v a r i a n c e p a r a m e t e r " " "

202 t a u _ p o s t [m, : ] = np . random . gamma ( shape =a + ( 0 . 5∗ ( n_y [m, : ] ) ) , s c a l e = 1 . / ( b +(0 .5∗ s_2 [m , : ] ) ) )

203 s i g _ p o s t [m, : ] = 1 . / np . s q r t ( t a u _ p o s t [m , : ] )

204
205 " " " Upda t ing t h e i n i t a l and t r a n s i t i o n s p r o b a b i l i t i e s " " "

206 N_jk [m, : , : ] = C o u n t i n g _ T r a n s i t i o n ( obs , z _ p o s t [m−1 , : ] ,K)

207 N_j [m, : ] = C o u n t i n g _ I i n i t i a l ( z _ p o s t [m−1 , : ] ,K)

208 f o r r in r a n g e (K ) :

209 A_post [m, r , : ] = D i r i c h l e t _ ( d e l t a , N_jk [m, r , : ] )

210 p _ p o s t [m, : ] = D i r i c h l e t _ ( d e l t a , N_j [m, : ] )

211
212 " " " Loca l u p d a t i n g f o r h id de n s t a t e s " " "

213 a l l o c _ p o s t [m, : , : ] = L o c a l _ u p d a t i n g (K, obs , p _ p o s t [m, : ] , A_post [m, : , : ] , mus_post [m, : ] , s i g _ p o s t [m, : ] ,

214 z _ p o s t [m− 1 , : ] ) [ 0 ] # P o s t e r i o r a l l o c a t i o n p r o b a b i l i t i e s

215 z _ p o s t [m, : ] = L o c a l _ u p d a t i n g (K, obs , p _ p o s t [m, : ] , A_post [m, : , : ] , mus_pos t [m, : ] , s i g _ p o s t [m, : ] ,

216 z _ p o s t [m− 1 , : ] ) [ 1 ] # P o s t e r i o r h idd en s t a t e s

217
218 " " " Compute t h e r e c u r s i v e and c o n d i t i o n a l l i k e l i h o o d s a t i t e r a t i o n m" " "

219 r e c u r s i v e _ l o g l i k e l i h o o d [m]= R e c u r s i v e _ l o g l i k e l i h o o d (K, obs , p _ p o s t [m, : ] , A_post [m, : , : ] , mus_post [m, : ] ,

220 ( s i g _ p o s t [m, : ] ) ) [ 0 ]

221 c o n d i t i o n a l _ l o g l i k e l i h o o d [m]= C o n d i t i o n a l _ l o g l i k e l i h o o d (K, obs , p _ p o s t [m, : ] , A_post [m, : , : ] , mus_pos t [m, : ] ,

222 ( s i g _ p o s t [m, : ] ) , z _ p o s t [m , : ] )

223
224 " " " Compute : i n t e g r a t e d l o g p r e d i c t i v e p o i n t w i s e d e n s i t y and t h e r e p l i c a t e d d a t a " " "

225 f o r t in r a n g e ( T ) :

226 i ppd [m, t ]= norm . pdf ( obs [ t ] , mus_post [m, z _ p o s t [m, t ] ] , ( s i g _ p o s t [m, z _ p o s t [m, t ] ] ) )

227 i l p p d [m, t ]= np . l o g ( norm . pdf ( obs [ t ] , mus_post [m, z _ p o s t [m, t ] ] , ( s i g _ p o s t [m, z _ p o s t [m, t ] ] ) ) )

228
229 re turn mus_post , s i g _ p o s t , A_post , p_pos t , a l l o c _ p o s t , z_pos t , r e c u r s i v e _ l o g l i k e l i h o o d , c o n d i t i o n a l _ l o g l i k e l i h o o d ,

230 ippd , i l p p d

231
232 " " " Checking c o n v e r g e n c e u s i n g Gelman−Rubin t e s t " " "

233 def Convergance_Normal_HMM_Gibbs ( obs , T ,M, d , K, d i s p e r s i o n _ m u s , d i s p e r s i o n _ s i g , d i s p e r s i o n _ t r a n , c h a i n ) :

234 " " " C a l l t h e p a r a m t e r t o be ckecked " " "

235 mus_post , s i g _ p o s t , A_post , p_pos t , a l l o c _ p o s t , z_pos t , r e c u r s i v e _ l o g l i k e l i h o o d , c o n d i t i o n a l _ l o g l i k e l i h o o d ,

236 ippd , i l p p d =Normal_HMM_Gibbs ( obs , T ,M, d , K, z e t a , e t a , a , b , d e l t a )

237
238 " " " c r e a t e a r r a y f o r t h e p a r a m e t e r s t o be checked wi th ad d in g a d imens ion t o t h e number o f c h a i n s " " "

239 mean_mus=np . z e r o s ( [ K, c h a i n ] )

240 mean_sig =np . z e r o s ( [ K, c h a i n ] )

241 mean_t ran =np . z e r o s ( [ K, K, c h a i n ] )

242 m e a n _ i n i t =np . z e r o s ( [ K, c h a i n ] )

243
244 " " " V a r i a n c e w i t h i n " " "

245 s_wi th in_mus =np . z e r o s ( [ K, c h a i n ] )

246 s _ w i t h i n _ s i g =np . z e r o s ( [ K, c h a i n ] )

247 s _ w i t h i n _ t r a n =np . z e r o s ( [ K, K, c h a i n ] )

248 s _ w i t h i n _ i n i t =np . z e r o s ( [ K, c h a i n ] )

249
250 " " " V a r i a n c e between " " "

251 W_mus=np . z e r o s ( [K] )

252 W_sig=np . z e r o s ( [K] )

253 W_tran=np . z e r o s ( [ K,K] )

254 W_in i t =np . z e r o s ( [K] )

255 B_mus=np . z e r o s ( [K] )

256 B_sig =np . z e r o s ( [K] )

257 B_ t r an =np . z e r o s ( [ K,K] )

258 B _ i n i t =np . z e r o s ( [K] )
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259 VAR_mus=np . z e r o s ( [K] )

260 VAR_sig=np . z e r o s ( [K] )

261 VAR_tran=np . z e r o s ( [ K,K] )

262 VAR_init=np . z e r o s ( [K] )

263
264 " " " Compute t h e Gelubin−Rubin s t a t i s t i c s , R_hat , f o r each p a r a m e t e r " " "

265 R_hat_mus=np . z e r o s ( [K] )

266 R _ h a t _ s i g =np . z e r o s ( [K] )

267 R _ h a t _ t r a n =np . z e r o s ( [ K,K] )

268 R _ h a t _ i n i t =np . z e r o s ( [K] )

269
270 f o r k in r a n g e (K ) : # run f o r t h e number o f s t a t e

271 f o r f in r a n g e ( c h a i n ) : # run f o r t h e number o f c h a i n s

272
273 " " " compute mean of each p a r a m e t e r f o r each c h a i n " " "

274 mean_mus [ k , f ]= np . mean ( mus_post [ f , d , k ] )

275 mean_sig [ k , f ]= np . mean ( s i g _ p o s t [ f , d , k ] )

276 m e a n _ i n i t [ k , f ]= np . mean ( p _ p o s t [ f , d , k ] )

277 f o r s in r a n g e (K ) :

278 mean_ t ran [ k , s , f ]= np . mean ( A_post [ f , d , k , s ] )

279
280 " " " compute with−i n v a r i a n c e each p a r a m t e r f o r each c h a i n " " "

281 s_wi th in_mus [ k , f ] = 1 . / ( l e n ( d)−1)∗np . sum ( ( ( mus_post [ f , d , k]−mean_mus [ k , f ] )∗∗2 ) )

282 s _ w i t h i n _ s i g [ k , f ] = 1 . / ( l e n ( d)−1)∗np . sum ( ( ( s i g _ p o s t [ f , d , k]−mean_sig [ k , f ] )∗∗2 ) )

283 s _ w i t h i n _ i n i t [ k , f ] = 1 . / ( l e n ( d)−1)∗np . sum ( ( ( p _ p o s t [ f , d , k ]−m e a n _ i n i t [ k , f ] )∗∗2 ) )

284 f o r s in r a n g e (K ) :

285 s _ w i t h i n _ t r a n [ k , s , f ] = 1 . / ( l e n ( d)−1)∗np . sum ( ( ( A_post [ f , d , s , k]−mean_ t ran [ k , s , f ] )∗∗2 ) )

286
287 " " " compute between−v a r i a n c e o f each c h a i n f o r each p a r a m e t e r " " "

288 B_mus [ k ]= l e n ( d )∗ 1 . / ( cha in −1)∗np . sum ( mean_mus [ k , f ]−np . mean ( mean_mus [ k , : ] ) )∗∗ 2

289 B_sig [ k ]= l e n ( d )∗ 1 . / ( cha in −1)∗np . sum ( mean_sig [ k , f ]−np . mean ( mean_sig [ k , : ] ) )∗∗ 2

290 B _ i n i t [ k ]= l e n ( d )∗ 1 . / ( cha in −1)∗np . sum ( m e a n _ i n i t [ k , f ]−np . mean ( m e a n _ i n i t [ k , : ] ) )∗∗ 2

291 f o r s in r a n g e (K ) :

292 B_ t r an [ k , s ]= l e n ( d )∗ 1 . / ( cha in −1)∗np . sum ( mean_ t ran [ k , s , f ]−np . mean ( mean_ t ran [ k , s , : ] ) )∗∗ 2

293
294 " " " compute t h e means o f c h a i n s " " "

295 W_mus[ k ]= np . sum ( s_wi th in_mus [ k , f ] ) ∗ 1 . / ( c h a i n )

296 W_sig [ k ]= np . sum ( s _ w i t h i n _ s i g [ k , f ] ) ∗ 1 . / ( c h a i n )

297 W_in i t [ k ]= np . sum ( s _ w i t h i n _ i n i t [ k , f ] ) ∗ 1 . / ( c h a i n )

298 f o r s in r a n g e (K ) :

299 W_tran [ k , s ]= np . sum ( s _ w i t h i n _ t r a n [ k , s , f ] ) ∗ 1 . / ( c h a i n )

300
301 " " " compute t h e v a r i a n c e s o f c h a i n s " " "

302 VAR_mus[ k ] = ( 1 − ( 1 . / ( l e n ( d ) ) ) )∗W_mus[ k ] + ( 1 . / ( l e n ( d ) ) )∗B_mus [ k ]

303 VAR_sig [ k ] = ( 1 − ( 1 . / ( l e n ( d ) ) ) )∗ W_sig [ k ] + ( 1 . / ( l e n ( d ) ) )∗ B_sig [ k ]

304 VAR_init [ k ] = ( 1 − ( 1 . / ( l e n ( d ) ) ) )∗ W_in i t [ k ] + ( 1 . / ( l e n ( d ) ) )∗ B _ i n i t [ k ]

305 f o r s in r a n g e (K ) :

306 VAR_tran [ k , s ] = ( 1 − ( 1 . / ( l e n ( d ) ) ) )∗ W_tran [ k , s ] + ( 1 . / ( l e n ( d ) ) )∗ B_ t r an [ k , s ]

307
308 " " " compute R_hat o f a l l p a r a m t e r s " " "

309 R_hat_mus [ k ]= np . s q r t (VAR_mus [ k ]∗ 1 . / W_mus[ k ] )

310 R _ h a t _ s i g [ k ]= np . s q r t ( VAR_sig [ k ]∗ 1 . / W_sig [ k ] )

311 R _ h a t _ i n i t [ k ]= np . s q r t ( VAR_init [ k ]∗ 1 . / W_in i t [ k ] )

312 f o r s in r a n g e (K ) :

313 R _ h a t _ t r a n [ k , s ]= np . s q r t ( VAR_tran [ k , s ]∗ 1 . / W_tran [ k , s ] )

314 re turn R_hat_mus , R_ha t_s ig , R _ h a t _ i n i t , R _ h a t _ t r a n

315
316 " " " Model s e l e c t i o n c r i t e r i a " " "

317 def m o d e l _ s e l e c t i o n s ( obs , T ,M, d , K, z e t a , e t a , a , b , d e l t a ) :

318 c o l l e c t i o n _ p o s t e r i o r s = [ ] # a r r a y f o r t h e p o s t e r i o r s d i s t r i b u t i o n s o f t h e model p a r a m e t e r s

319 c o l l e c t i o n _ p o s t e r i o r s _ m e a n s = [ ] # a r r a y f o r t h e p o s t e r i o r s means o f t h e model p a r a m e t e r s

320 c o l l e c t i o n _ a l l _ c r i t e r i a _ r e c = [ ] # a r r a y f o r a l l c r i t e r i a based on r e c u r s i v e d e v i a n c e

321 c o l l e c t i o n _ a l l _ c r i t e r i a _ c o n = [ ] # a r r a y f o r a l l c r i t e r i a based on c o n d i t i o n a l d e v i a n c e

322 c o l l e c t i o n _ a l l _ c r i t e r i a _ W A I C = [ ] # a r r a y f o r WAIC
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323 h = [ ] # number o f a c t u a l p a r a m e t e r s

324 b a r _ d e v i a n c e _ r e c = [ ] # a r r a y f o r p o s t e r i o r menas r e c u r s i v e d e v i a n c e

325 d e v i a n c e _ b a r _ r e c = [ ] # a r r a y f o r r e c u r s i v e d e v i a n c e e v a l u a t e d a t p o s t e r i o r means

326 h a t _ d e v i a n c e _ r e c = [ ] # a r r a y f o r minimum r e c u r s i v e d e v i a n c e

327 AIC_1_rec = [ ]

328 BIC_1_rec = [ ]

329 AIC_2_rec = [ ]

330 BIC_2_rec = [ ]

331 AIC_3_rec = [ ]

332 BIC_3_rec = [ ]

333 p_DIC_1_rec = [ ]

334 DIC_1_rec = [ ]

335 p_DIC_2_rec = [ ]

336 DIC_2_rec = [ ]

337 b a r _ d e v i a n c e _ c o n = [ ]

338 deviance_MAP_con = [ ]

339 h a t _ d e v i a n c e _ c o n = [ ]

340 AIC_1_con = [ ]

341 BIC_1_con = [ ]

342 AIC_2_con = [ ]

343 BIC_2_con = [ ]

344 AIC_3_con = [ ]

345 BIC_3_con = [ ]

346 p_DIC_1_con = [ ]

347 DIC_1_con = [ ]

348 p_DIC_2_con = [ ]

349 DIC_2_con = [ ]

350 I n t e g r a t e d _ l p p d = [ ]

351 p_iWAIC_var = [ ]

352 iWAIC_var = [ ]

353
354 " " " C a l l t h e model e s t i m a t i o n code " " "

355 mus_post , s i g _ p o s t , A_post , p_pos t , a l l o c _ p o s t , z_pos t , r e c u r s i v e _ l o g l i k e l i h o o d , c o n d i t i o n a l _ l o g l i k e l i h o o d ,

356 ippd , i l p p d =Normal_HMM_Gibbs ( obs , T ,M, d , K, z e t a , e t a , a , b , d e l t a )

357
358 " " " P o s t e r i o r means o f p a r a m e t e r s " " "

359 mean_mus_post=np . z e r o s ( [K] )

360 m e a n _ s i g _ p o s t =np . z e r o s ( [K] )

361 m e a n _ t r a n s i t i o n =np . z e r o s ( [ K,K] )

362 m e a n _ i n i t i a l =np . z e r o s ( [K] )

363 f o r s in r a n g e (K ) :

364 mean_mus_post [ s ]= np . mean ( mus_post [ d , s ] )

365 m e a n _ s i g _ p o s t [ s ]= np . mean ( ( s i g _ p o s t [ d , s ] ) )

366 m e a n _ i n i t i a l [ s ]= np . mean ( p _ p o s t [ d , s ] )

367 f o r r in r a n g e (K ) :

368 m e a n _ t r a n s i t i o n [ r , s ]= np . mean ( A_post [ d , r , s ] )

369
370 " " " AIC , BIC , DIC " " "

371 h =(K∗∗2)+(2∗K)−1 # number o f f r e e p a r a m e t e r s wi th r e s p e c t o f AIC and BIC

372
373 " " " R e c u r s i v e dev i ance−based AIC , BIC and DIC " " "

374 b a r _ d e v i a n c e _ r e c =−2∗(np . mean ( r e c u r s i v e _ l o g l i k e l i h o o d [ d ] ) )

375 d e v i a n c e _ b a r _ r e c =−2∗( R e c u r s i v e _ l o g l i k e l i h o o d (K, obs , m e a n _ i n i t i a l , m e a n _ t r a n s i t i o n , mean_mus_post , m e a n _ s i g _ p o s t ) [ 0 ] )

376 h a t _ d e v i a n c e _ r e c =−2∗(max ( r e c u r s i v e _ l o g l i k e l i h o o d [ d ] ) )

377 AIC_1_rec= b a r _ d e v i a n c e _ r e c +(2∗h )

378 BIC_1_rec= b a r _ d e v i a n c e _ r e c +( h∗np . l o g ( T ) )

379 AIC_2_rec= d e v i a n c e _ b a r _ r e c +(2∗h )

380 BIC_2_rec= d e v i a n c e _ b a r _ r e c +( h∗np . l o g ( T ) )

381 AIC_3_rec= h a t _ d e v i a n c e _ r e c +(2∗h )

382 BIC_3_rec= h a t _ d e v i a n c e _ r e c +( h∗np . l o g ( T ) )

383 p_DIC_1_rec= b a r _ d e v i a n c e _ r e c−d e v i a n c e _ b a r _ r e c

384 DIC_1_rec= d e v i a n c e _ b a r _ r e c +(2∗ p_DIC_1_rec )

385 p_DIC_2_rec= b a r _ d e v i a n c e _ r e c−h a t _ d e v i a n c e _ r e c

386 DIC_2_rec= h a t _ d e v i a n c e _ r e c +(2∗ p_DIC_2_rec )
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387
388 ’ ’ ’ Compute t h e h i g h e s t p o s t e r i o r d e n s i t y a t each MCMC draw ’ ’ ’

389 H i g h e s t P o s t D e n s i t y =np . z e r o s ( [M] )

390 f o r m in x ra ng e (M) :

391 H i g h e s t P o s t D e n s i t y [m]= h i g h e s t P o s t D e n s i t y ( obs , K1 , p _ p o s t [m, : ] , mus_pos t [m, : ] , s i g _ p o s t [m, : ] ) [ 1 ]

392
393 # Find t h e i n d e x of t h e h i g h e s t p o s t e r i o r d e n s i t y among MCMC draws

394 i n d e x =np . argmax ( H i g h e s t P o s t D e n s i t y [ d ] )

395 # compupte log−c o n d i t i o n a l l i k e l i h o o d a t t h e b e s t p a i r ( t h e t a , z ) c o r r e s p o n i n g t h e i n d e x

396 # of t h e h i g h e s t p o s t e r i o r d e n s i t y

397 log_con_MAP=np . z e r o s ( [ T ] )

398 f o r t in r a n g e ( T ) :

399 log_con_MAP [ t ]= np . l o g ( norm . pdf ( obs [ t ] , mus_pos t [ d [ i n d e x ] , z _ p o s t [ d [ i n d e x ] , t ] ] , s i g _ p o s t [ d [ i n d e x ] ,

400 z _ p o s t [ d [ i n d e x ] , t ] ] ) )

401 " " " C o n d i t i o n a l d e v i a n c e e v a l u a t e d a t b e s t p a i r " " "

402 deviance_MAP_con=−2∗(np . sum ( log_con_MAP , a x i s = 0 ) )

403
404 " " " mean c o n d i t i o n a l d e v i a n c e " " "

405 b a r _ d e v i a n c e _ c o n =−2∗(np . mean ( c o n d i t i o n a l _ l o g l i k e l i h o o d [ d ] ) )

406
407 " " " Minimum c o n d i t i o n a l d e v i a n c e " " "

408 h a t _ d e v i a n c e _ c o n =−2∗(max ( c o n d i t i o n a l _ l o g l i k e l i h o o d [ d ] ) )

409 AIC_1_con= b a r _ d e v i a n c e _ c o n +(2∗h )

410 BIC_1_con= b a r _ d e v i a n c e _ c o n +( h∗np . l o g ( T ) )

411 AIC_2_con= deviance_MAP_con +(2∗h )

412 BIC_2_con=deviance_MAP_con +( h∗np . l o g ( T ) )

413 AIC_3_con= h a t _ d e v i a n c e _ c o n +(2∗h )

414 BIC_3_con= h a t _ d e v i a n c e _ c o n +( h∗np . l o g ( T ) )

415 p_DIC_1_con= b a r _ d e v i a n c e _ c o n−deviance_MAP_con

416 DIC_1_con= deviance_MAP_con +(2∗ p_DIC_1_con )

417 p_DIC_2_con= b a r _ d e v i a n c e _ c o n−h a t _ d e v i a n c e _ c o n

418 DIC_2_con= h a t _ d e v i a n c e _ c o n +(2∗ p_DIC_2_con )

419
420 " " " Compute iWAIC " " "

421 I n t e g r a t e d _ l p p d =np . sum ( np . l o g ( np . sum ( ippd [ d , : ] , a x i s = 0 )∗1 . / l e n ( d ) ) )

422 p_iWAIC_var=np . sum ( np . v a r ( i l p p d [ d , : ] , a x i s = 0 ) )

423 iWAIC_var=−2∗( I n t e g r a t e d _ l p p d )+(2∗ p_iWAIC_var )

424
425 " " " Appending a l l c r i t e r i a " " "

426 c o l l e c t i o n _ p o s t e r i o r s _ m e a n s . append ( [ m e a n _ i n i t i a l , m e a n _ t r a n s i t i o n , mean_mus_post , m e a n _ s i g _ p o s t ] )

427 c o l l e c t i o n _ p o s t e r i o r s . append ( [ a l l o c _ p o s t , mus_post , s i g _ p o s t , p_pos t , A_post , z_pos t , r e c u r s i v e _ l o g l i k e l i h o o d ,

428 c o n d i t i o n a l _ l o g l i k e l i h o o d , ippd , i l p p d ] )

429 c o l l e c t i o n _ a l l _ c r i t e r i a _ r e c . append ( [ b a r _ d e v i a n c e _ r e c , d e v i a n c e _ b a r _ r e c , h a t _ d e v i a n c e _ r e c , AIC_1_rec , BIC_1_rec ,

430 AIC_2_rec , BIC_2_rec , AIC_3_rec , BIC_3_rec , p_DIC_1_rec , DIC_1_rec , p_DIC_2_rec , DIC_2_rec ] )

431 c o l l e c t i o n _ a l l _ c r i t e r i a _ c o n . append ( [ b a r _ d e v i a n c e _ c o n , deviance_MAP_con , h a t _ d e v i a n c e _ c o n , AIC_1_con , BI C_1_con ,

432 AIC_2_con , BIC_2_con , AIC_3_con , BIC_3_con , p_DIC_1_con , DIC_1_con , p_DIC_2_con , DIC_2_con ] )

433 c o l l e c t i o n _ a l l _ c r i t e r i a _ W A I C . append ( [ I n t e g r a t e d _ l p p d , p_iWAIC_var , iWAIC_var ] )

434 re turn h , c o l l e c t i o n _ p o s t e r i o r s , c o l l e c t i o n _ p o s t e r i o r s _ m e a n s , c o l l e c t i o n _ a l l _ c r i t e r i a _ r e c ,

435 c o l l e c t i o n _ a l l _ c r i t e r i a _ c o n , c o l l e c t i o n _ a l l _ c r i t e r i a _ W A I C

436
437 " " " Sampl ing i n f o r m a t i o n " " "

438 obs=obs # obs i s o b s e r v a t i o n s e q u e n c e

439 T= l e n ( obs ) # compute t h e l e n g t h o f d a t a

440 M=M # p u t a number o f i t e r a t i o n s

441 b u r n i n = b u r n i n # p u t burn−in p e r i o d

442 d= r a n g e ( bu rn in ,M)

443 K=K # Number o f s t a t e s , we have t o p u t a number , e . g ,K=3

444 z e t a = 0 . 0 0 1 ; e t a =0; a = 0 . 0 0 1 ; b = 0 . 0 0 1 ; d e l t a =np . ones ( (K) , i n t ) # hyper−p a r a m e t e r s

445 h , c o l l e c t i o n _ p o s t e r i o r s , c o l l e c t i o n _ p o s t e r i o r s _ m e a n s , c o l l e c t i o n _ a l l _ c r i t e r i a _ r e c ,

446 c o l l e c t i o n _ a l l _ c r i t e r i a _ c o n , c o l l e c t i o n _ a l l _ c r i t e r i a _ W A I C = m o d e l _ s e l e c t i o n s ( obs , T ,M, d , K, z e t a , e t a , a , b , d e l t a )

B.3 Code of Chapter 6
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1 " " " A code f o r model ing and d i a g n o s i n g of t r a f f i c c r a s h r a t e s u s i n g P o i s s o n h i dd en Markov models " " "

2 import numpy as np

3 import m a t p l o t l i b . p y l a b as p l

4 from numpy . random import gamma as Gamma

5 import s c i p y . s t a t s as sc

6 from s c i p y . s t a t s import p o i s s o n

7 import pandas as pd

8 from s t a t s m o d e l s . g r a p h i c s import t s a p l o t s

9 import i t e r t o o l s

10 import s t a t s m o d e l s . a p i as sm

11 from s c i p y import s t a t s

12 from s c i p y . s t a t s import norm

13
14 def D i r i c h l e t ( d e l t a , x ) :

15 re turn np . random . d i r i c h l e t ( d e l t a +( x ) , 1 ) [ 0 ]

16
17 def M u l t i n o m i a l ( p rob ) :

18 re turn np . where ( np . random . m u l t i n o m i a l ( 1 , p rob ) == 1 ) [ 0 ] [ 0 ]

19
20 def S u f f i c i e n t _ S t a t i s t i c s ( da t a ,OO, hid , k ) :

21 # OO: e x p e c t e d c r a s h e s .

22 # d a t a : o b s e r v e d c r a s h e s .

23 # h i d : v e c t o r o f h id de n s t a t e s .

24 sum_data =np . z e r o s ( [ k ] ) # sum o b s e r v e d c r a s h e s a t t h e s t a t e k .

25 sum_OO=np . z e r o s ( ( k ) ) # sum e x p e c t e d c r a s h e s a t t h e s t a t e k .

26 f o r j in r a n g e ( k ) :

27 sum_data [ j ]= np . sum ( ( h i d == j )∗ d a t a )

28 sum_OO [ j ]= np . sum ( ( h i d == j )∗OO)

29 re turn sum_data , sum_OO

30
31 " " " Th i s f u n c t i o n i s s p e c i f i e d f o r c o u n t i n g t h e t h e number o f t r a n s i t i o n s from t h e s t a t e j , d e n o t e d by a

32 v e c t o r N_j o f d imens ion 1∗K. N_j : sum up from t =1 u n t i l t =T . " " "

33 def I n i t i a l _ N u m b e r ( hid , k ) :

34 N_j=np . z e r o s ( ( k ) )

35 f o r j in r a n g e ( k ) :

36 N_j [ j ]= np . sum ( h i d == j )

37 re turn N_j

38
39 " " " Th i s f u n c t i o n i s s p e c i f i e d f o r c o u n t i n g t h e number o f t r a n s i t i o n s from j i n t o k , d e n o t e d by a m a t r i x N_jk

40 of d i m e n t i o n K∗K. " " "

41 def T r a n s i t i o n _ N u m b e r ( da t a , h id , k ) :

42 N_jk=np . z e r o s ( ( k , k ) ) # N_jk : sum up from t =1 u n t i l t =T−1.

43 f o r t in r a n g e ( l e n ( d a t a )−1) :

44 N_jk [ h i d [ t ] , h i d [ t +1] ]= N_jk [ h i d [ t ] , h i d [ t +1] ]+ 1

45 re turn N_jk

46 " " " A f u n c t i o n t o u p d a t e t h e h id de n s t a t e l o c a l l y . Loca l u p d a t i n g method assumes t h e r e i s a g i v e n h i dd en

47 s t a t e s e q u e n c e . We d e n o t e d i t a s ’ h idden ’ and t h e u p d a t i n g i s done i n t h e new s e q u e n c e . We d e n o t e d

48 i t a s ’ hidden_new ’ . " " "

49 def H i d d e n _ u p d a t i n g ( k , da t a ,OO, A, pi , lam , h i d ) :

50 T= l e n ( d a t a )

51 hid_new=np . z e r o s ( [ T ] , d t y p e = i n t )

52 a l l o c =np . z e r o s ( [ T , k ] )

53 f o r i in r a n g e ( k ) :

54 a l l o c [ 0 , i ]= p i [ i ]∗A[ i , h i d [ 1 ] ]∗ ( ( np . e∗∗(−OO[0]∗ lam [ i ] ) )∗ ( ( lam [ i ])∗∗ d a t a [ 0 ] ) )

55 a l l o c [ 0 , : ] = a l l o c [ 0 , : ] ∗ 1 . / ( np . sum ( a l l o c [ 0 , : ] ) )

56 hid_new [ 0 ] = M u l t i n o m i a l ( a l l o c [ 0 , : ] )

57 f o r t in r a n g e ( 1 , T−1):

58 f o r i in r a n g e ( k ) :

59 a l l o c [ t , i ]=A[ hid_new [ t −1] , i ]∗ ( ( np . e∗∗(−OO[ t ]∗ lam [ i ] ) )∗ ( ( lam [ i ])∗∗ d a t a [ t ] ) )∗A[ i , h i d [ t + 1 ] ]

60 a l l o c [ t , : ] = a l l o c [ t , : ] ∗ 1 . / ( np . sum ( a l l o c [ t , : ] ) )

61 hid_new [ t ]= M u l t i n o m i a l ( a l l o c [ t , : ] )

62 f o r i in r a n g e ( k ) :

63 a l l o c [ T−1, i ]=A[ hid_new [ T−2] , i ]∗ ( ( np . e∗∗(−OO[ T−1]∗ lam [ i ] ) )∗ ( ( lam [ i ])∗∗ d a t a [ T−1] ) )

64 a l l o c [ T−1 , : ]= a l l o c [ T− 1 , : ]∗ 1 . / ( np . sum ( a l l o c [ T− 1 , : ] ) )

261



B.3. CODE OF CHAPTER 6

65 hid_new [ T−1]= M u l t i n o m i a l ( a l l o c [ T−1 , : ] )

66 re turn a l l o c , hid_new

67
68 " " " P o i s s o n d e n s i t y f u n c t i o n " " "

69 def Pois_pmf ( da t a , lamd ) :

70 re turn p o i s s o n . pmf ( da t a , lamd )

71
72 " " " Compute t h e r e c u r s i v e l i k e l i h o o d f u c n t i o n " " "

73 def R e c u r s i v e _ l o g l i k e l i h o o d ( k , da t a ,OO, A, pi , lam ) :

74 T= l e n ( d a t a )

75 a l p h a _ h a t = np . z e r o s ( ( k , T ) )

76 a l p h a _ s t a r = np . z e r o s ( ( k , T ) )

77 C = np . z e r o s ( [ T ] )

78 f o r s in r a n g e ( k ) :

79 a l p h a _ h a t [ s , 0 ] = p i [ s ]∗ p o i s s o n . pmf ( d a t a [ 0 ] , (OO[0]∗ lam [ s ] ) )

80 C [ 0 ] = 1 . 0 / ( np . sum ( a l p h a _ h a t [ : , 0 ] ) )

81 a l p h a _ s t a r [ : , 0 ] = C[0]∗ a l p h a _ h a t [ : , 0 ]

82 f o r t in r a n g e ( 1 , T ) :

83 f o r j in r a n g e ( k ) :

84 f o r i in r a n g e ( k ) :

85 a l p h a _ h a t [ j , t ] += np . d o t ( a l p h a _ s t a r [ i , t −1] ,A[ i , j ] )∗ p o i s s o n . pmf ( d a t a [ t ] , (OO[ t ]∗ lam [ j ] ) )

86 C[ t ] = 1 . 0 / ( np . sum ( a l p h a _ h a t [ : , t ] ) )

87 a l p h a _ s t a r [ : , t ]=C[ t ]∗ a l p h a _ h a t [ : , t ]

88 re turn −np . sum ( np . l o g (C ) )

89
90 " " " Compute t h e c o n d i t i o n a l l i k e l i h o o d f u c n t i o n " " "

91 def C o n d i t i o n a l _ l o g l i k e l i h o o d ( k , da t a ,OO, A, pi , lam , h i dd en ) :

92 # d e f i n e a f u n c t i o n t o compute t h e c o n d i t i o n a l l o g l i k e l i h o o d ove r i n t e g r a t i n g # o u t t h e h i dd en s t a t e s .

93 a l l o c , hid_new= H i d d e n _ u p d a t i n g ( k , da t a ,OO, A, pi , lam , h i d )

94 T= l e n ( d a t a )

95 c o n _ l o g l i k e = np . z e r o s ( ( T ) )

96 f o r t in r a n g e ( T ) :

97 f o r s in r a n g e ( k ) :

98 c o n _ l o g l i k e [ t ]+= a l l o c [ t , s ]∗np . l o g ( p o i s s o n . pmf ( d a t a [ t ] , (OO[ t ]∗ lam [ s ] ) ) )

99 re turn np . sum ( c o n _ l o g l i k e )

100
101 " " " Run t h e D i r e c t Gibbs s a m p l e r f o r samplimg from K−s t a t e P o i s s o n HMM " " "

102 def PoissonHMM_DirectGibbs ( obs , O, T ,M, d , K, ch , a , b , d e l t a ) :

103 # obs : o b s e r v e d c r a s h .

104 # O: e x p e c t e d c r a s h .

105 # T : l e n g h t o b s e r v e d c r a s h .

106 # a , b : t h e shape and s c a l e p a r a m e t e r s o f Gamma .

107 # d e l t a : t h e p a r a m e t e r o f D i r i c h l e t .

108
109 " " " S t o r a g e p o s t e r i o r s " " "

110 N_jk=np . z e r o s ( [ ch ,M, K,K] , d t y p e = i n t ) # t h e number o f t r a n s i t i o n s from s t a t e j i n t o k .

111 N_j=np . z e r o s ( [ ch ,M,K] , d t y p e = i n t ) # t h e number o f t r a n s i t i o n s in s t a t e j .

112 sum_y=np . z e r o s ( [ ch ,M,K] , np . f l o a t ) # sum of o b s e r v e d c r a s h e s

113 sum_O=np . z e r o s ( [ ch ,M,K] , np . f l o a t )# sum of e x p e c t e d c r a s h e s

114 a l l o c _ p o s t =np . z e r o s ( [ ch ,M, T ,K] , np . f l o a t ) # a l l o c a t i o n p r o b a b i l i t i e s

115 z _ p o s t =np . z e r o s ( [ ch ,M, T ] , d t y p e = i n t ) # h id de n s t a t e s

116 t r a n _ p o s t =np . z e r o s ( [ ch ,M, K,K] , np . f l o a t ) # t a n s i t i o n m a t r i x

117 i n i t _ p o s t =np . z e r o s ( [ ch ,M,K] , np . f l o a t ) # i n i t i a l s t a t e v e c t o r

118 l amd_pos t =np . z e r o s ( [ ch ,M,K] , np . f l o a t ) # c r a s h r a t e p a r a m e t e r

119 r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t =np . z e r o s ( [ ch ,M] , np . f l o a t ) # r e c u r s i v e log− l i k e l i h o o d

120 c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t =np . z e r o s ( [ ch ,M] , np . f l o a t )# c o n d i t i o n a l l o g _ l i k e l i h o o d

121 f o r f in r a n g e ( ch ) : # r u n n i n g ove r L c h a i n s

122 f o r r in r a n g e (K ) :

123 # I n i t i a l i z a t i o n

124 l amd_pos t [ f , 0 , r ]=Gamma( shape =(1 .0+(50∗ f ) ) , s c a l e = 1 . 0 , s i z e =1) [ 0 ]

125 t r a n _ p o s t [ f , 0 , r , : ] = D i r i c h l e t ( d e l t a , np . ones ( (K ) ) )

126 i n i t _ p o s t [ f , 0 , : ] = D i r i c h l e t ( d e l t a , np . ones ( (K ) ) )

127
128 " " " Compute t h e h id de n s t a t e s a t i t e r a t i o n 0 " " "
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129 z _ p o s t [ f , 0 , 0 ] = M u l t i n o m i a l ( i n i t _ p o s t [ f , 0 , : ] )

130 f o r t in r a n g e ( 1 , T ) :

131 z _ p o s t [ f , 0 , t ]= M u l t i n o m i a l ( t r a n _ p o s t [ f , 0 , z _ p o s t [ f , 0 , t − 1 ] , : ] )

132
133 " " " Compute t h e r e c u r s i v e and c o n d i t i o n a l l i k e l i h o o d s a t i t e r a t i o n 0 " " "

134 r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t [ f , 0 ] = R e c u r s i v e _ l o g l i k e l i h o o d (K, obs , O, t r a n _ p o s t [ f , 0 , : , : ] ,

135 i n i t _ p o s t [ f , 0 , : ] , l amd_pos t [ f , 0 , : ] )

136 c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t [ f , 0 ] = C o n d i t i o n a l _ l o g l i k e l i h o o d (K, obs , O, t r a n _ p o s t [ f , 0 , : , : ] ,

137 i n i t _ p o s t [ f , 0 , : ] , l amd_pos t [ f , 0 , : ] , z _ p o s t [ f , 0 , : ] )

138
139 " " "MCMC Running " " "

140 f o r m in r a n g e ( 1 ,M) :

141 " " " S u f f i c i e n t s t a t i s t i c s " " "

142 sum_y [ f ,m, : ] = S u f f i c i e n t _ S t a t i s t i c s ( obs , O, z _ p o s t [ f ,m−1 , : ] ,K) [ 0 ]

143 sum_O [ f ,m, : ] = S u f f i c i e n t _ S t a t i s t i c s ( obs , O, z _ p o s t [ f ,m−1 , : ] ,K) [ 1 ]

144
145 " " " Upda t ing r a t e p a r a m e t e r , lmabda " " "

146 l amd_pos t [ f ,m, : ] = Gamma( shape =a+sum_y [ f ,m, : ] , s c a l e = 1 . / ( b+sum_O [ f ,m , : ] ) )

147
148 " " " Apply A r t i f i c i a l C o n s t r a i n t s ( IC ) t o h a n d l e t h e l a b e l s w i t c h i n g " " "

149 IC= s o r t e d ( l amd_pos t [ f ,m , : ] )

150 l amd_pos t [ f ,m, : ] = IC

151
152 " " " Upda t ing t h e i n i t i a l and t r a n s i t i o n p a r a m e t e r s " " "

153 N_jk [ f ,m, : , : ] = T r a n s i t i o n _ N u m b e r ( obs , z _ p o s t [ f ,m−1 , : ] ,K)

154 N_j [ f ,m, : ] = I n i t i a l _ N u m b e r ( z _ p o s t [ f ,m−1 , : ] ,K)

155 f o r r in r a n g e (K ) :

156 t r a n _ p o s t [ f ,m, r , : ] = D i r i c h l e t ( d e l t a , N_jk [ f ,m, r , : ] )

157 i n i t _ p o s t [ f ,m, : ] = D i r i c h l e t ( d e l t a , N_j [ f ,m , : ] )

158
159 " " " Compute t h e a l l o c a t i o n and h id de n s t a t e s " " "

160 a l l o c _ p o s t [ f ,m, : , : ] = H i d d e n _ u p d a t i n g (K, obs , O, t r a n _ p o s t

161 [ f ,m, : , : ] , i n i t _ p o s t [ f ,m, : ] , l amd_pos t [ f ,m, : ] , z _ p o s t [ f ,m− 1 , : ] ) [ 0 ]

162 z _ p o s t [ f ,m, : ] = H i d d e n _ u p d a t i n g (K, obs , O, t r a n _ p o s t [ f ,m, : , : ] , i n i t _ p o s t [ f ,m, : ] , l amd_pos t [ f ,m, : ] , z _ p o s t [ f ,m− 1 , : ] ) [ 1 ]

163
164 r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t [ f ,m]= R e c u r s i v e _ l o g l i k e l i h o o d (K, obs , O, t r a n _ p o s t [ f ,m, : , : ] , i n i t _ p o s t [ f ,m, : ] ,

165 l amd_pos t [ f ,m , : ] )

166 c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t [ f ,m]= C o n d i t i o n a l _ l o g l i k e l i h o o d (K, obs , O, t r a n _ p o s t [ f ,m, : , : ] ,

167 i n i t _ p o s t [ f ,m, : ] , l amd_pos t [ f ,m, : ] , z _ p o s t [ f ,m , : ] )

168
169 re turn a l l o c _ p o s t , z_pos t , t r a n _ p o s t , i n i t _ p o s t , l amd_pos t ,

170 r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t , c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t

171
172 " " " Sub−code t o implement t h e t h i n n i n g " " "

173 def t i n n i n g ( obs , O, T ,M, d , K, ch , a , b , d e l t a ) :

174 c o l l o c t i o n _ p o s t e r i o r s = l i s t ( )

175 a l l o c _ p o s t , z_pos t , t r a n _ p o s t , i n i t _ p o s t , l amd_pos t ,

176 r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t , c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t

177 =PoissonHMM_DirectGibbs ( obs , O, T ,M, d , K, ch , a , b , d e l t a )

178 c o l l o c t i o n _ p o s t e r i o r s . append ( ( a l l o c _ p o s t , z_pos t , t r a n _ p o s t , i n i t _ p o s t ,

179 l amd_pos t , r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t , c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t ) )

180 l a m d a _ t h i n =np . z e r o s ( [ ch , t h i n ,K] )

181 i n i t _ t h i n =np . z e r o s ( [ ch , t h i n ,K] )

182 t r a n s _ t h i n =np . z e r o s ( [ ch , t h i n , K,K] )

183 a l l o c _ t h i n =np . z e r o s ( [ ch , t h i n , T ,K] )

184 Z _ t h i n =np . z e r o s ( [ ch , t h i n , T ] )

185 R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n =np . z e r o s ( [ ch , t h i n ] )

186 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n =np . z e r o s ( [ ch , t h i n ] )

187 f o r f in r a n g e ( ch ) :

188 f o r m in r a n g e ( t h i n ) :

189 l a m d a _ t h i n [ f ,m, : ] = l amd_pos t [ f , d [ l a g∗m] , : ]

190 i n i t _ t h i n [ f ,m, : ] = i n i t _ p o s t [ f , d [ l a g∗m] , : ]

191 t r a n s _ t h i n [ f ,m, : , : ] = t r a n _ p o s t [ f , d [ l a g∗m] , : , : ]

192 a l l o c _ t h i n [ f ,m, : , : ] = a l l o c _ p o s t [ f , d [ l a g∗m] , : , : ]
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193 Z _ t h i n [ f ,m, : ] = z _ p o s t [ f , d [ l a g∗m] , : ]

194 R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n [ f ,m]= r e c u r s i v e _ l o g l i k e l i h o o d _ p o s t

195 [ f , d [ l a g∗m] ]

196 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n [ f ,m]=

197 c o n d i t i o n a l _ l o g l i k e l i h o o d _ p o s t

198 [ f , d [ l a g∗m] ]

199
200 re turn l amda_ th in , i n i t _ t h i n , t r a n s _ t h i n , a l l o c _ t h i n , Z_ th in , R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n ,

201 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n , c o l l o c t i o n _ p o s t e r i o r s

202 " " " Gelman_Rubin s t a t i s t i c " " "

203 def Convergance_DG ( obs , O, T ,M, d , K, ch , t h i n , l ag , a , b , d e l t a ) :

204 l amda_ th in , i n i t _ t h i n , t r a n s _ t h i n , a l l o c _ t h i n , Z_ th in ,

205 R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n ,

206 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n , c o l l o c t i o n _ p o s t e r i o r s =

207 t i n n i n g ( obs , O, T ,M, d , K, ch , a , b , d e l t a )

208 mean_lamd_th in =np . z e r o s ( [ K, ch ] )

209 mean_mean_lamd_thin=np . z e r o s ( [K] )

210 m e a n _ i n i t _ t h i n =np . z e r o s ( [ K, ch ] )

211 m e a n _ m e a n _ i n i t _ t h i n =np . z e r o s ( [K] )

212 m e a n _ t r a n _ t h i n =np . z e r o s ( [ K, K, ch ] )

213 mean_mean_ t r an_ th in =np . z e r o s ( [ K,K] )

214 W i t h i n _ l a m d _ t h i n =np . z e r o s ( [ K, ch ] )

215 W i t h i n _ t r a n _ t h i n =np . z e r o s ( [ K, K, ch ] )

216 W i t h i n _ i n i t _ t h i n =np . z e r o s ( [ K, ch ] )

217 W_lamd_thin=np . z e r o s ( [K] )

218 W _ t r a n _ t h i n =np . z e r o s ( [ K,K] )

219 W _ i n i t _ t h i n =np . z e r o s ( [K] )

220 Between_ lamd_th in =np . z e r o s ( [K] )

221 B e t w e e n _ t r a n _ t h i n =np . z e r o s ( [ K,K] )

222 B e t w e e n _ i n i t _ t h i n =np . z e r o s ( [K] )

223 VAR_lamd_thin=np . z e r o s ( [K] )

224 VAR_tran_th in =np . z e r o s ( [ K,K] )

225 V A R _ i n i t _ t h i n =np . z e r o s ( [K] )

226 R _ h a t _ l a m d _ t h i n =np . z e r o s ( [K] ) # R_hat f o r mean p a r a m e t e r

227 R _ h a t _ t r a n _ t h i n =np . z e r o s ( [ K,K] ) # R_hat f o r t r a n s i t i o n p a r a m e t e r s

228 R _ h a t _ i n i t _ t h i n =np . z e r o s ( [K] ) # R_hat f o r i n i t i a l p a r a m e t e r

229
230 f o r k in r a n g e (K ) :

231 f o r f in r a n g e ( ch ) :

232 # compute mean each p a r a m e t e r f o r each c h a i n

233 mean_lamd_th in [ k , f ]= np . mean ( l a m d a _ t h i n [ f , : , k ] )

234 m e a n _ i n i t _ t h i n [ k , f ]= np . mean ( i n i t _ t h i n [ f , : , k ] )

235 f o r s in r a n g e (K ) :

236 m e a n _ t r a n _ t h i n [ k , s , f ]= np . mean ( t r a n s _ t h i n [ f , : , k , s ] )

237 mean_mean_lamd_thin [ k ]= np . mean ( mean_lamd_th in [ k , : ] )

238 m e a n _ m e a n _ i n i t _ t h i n [ k ]= np . mean ( m e a n _ i n i t _ t h i n [ k , : ] )

239 f o r s in r a n g e (K ) :

240 mean_mean_ t r an_ th in [ k , s ]= np . mean ( m e a n _ t r a n _ t h i n [ k , s , : ] )

241 # compute with−in v a r i a n c e each p a r a m t e r f o r each c h a i n

242 f o r f in r a n g e ( ch ) :

243 W i t h i n _ l a m d _ t h i n [ k , f ] = ( 1 . / ( t h i n −1))∗( np . sum ( ( ( l a m d a _ t h i n [ f , : , k ]−mean_lamd_th in [ k , f ] )∗∗ 2 ) ) )

244 W i t h i n _ i n i t _ t h i n [ k , f ] = ( 1 . / ( t h i n −1))∗( np . sum ( ( ( i n i t _ t h i n [ f , : , k ]−m e a n _ i n i t _ t h i n [ k , f ] )∗∗ 2 ) ) )

245 f o r s in r a n g e (K ) :

246 W i t h i n _ t r a n _ t h i n [ k , s , f ] = ( 1 . / ( t h i n −1))∗( np . sum ( ( ( t r a n s _ t h i n [ f , : , s , k]−m e a n _ t r a n _ t h i n [ k , s , f ] )∗∗ 2 ) ) )

247 W_lamd_thin [ k ]= np . sum ( W i t h i n _ l a m d _ t h i n [ k , : ] , a x i s = 0 )∗ 1 . / ( ch )

248 W _ i n i t _ t h i n [ k ]= np . sum ( W i t h i n _ i n i t _ t h i n [ k , : ] , a x i s = 0 )∗ 1 . / ( ch )

249 f o r s in r a n g e (K ) :

250 W _ t r a n _ t h i n [ k , s ]= np . sum ( W i t h i n _ t r a n _ t h i n [ k , s , : ] , a x i s = 0 )∗ 1 . / ( ch )

251 # compute between−v a r i a n c e each o f each c h a i n f o r each p a r a m e t e r

252 Between_ lamd_th in [ k ] = ( t h i n ∗ 1 . / ( ch−1))∗( np . sum ( ( mean_lamd_th in [ k , : ] −mean_mean_lamd_thin [ k ] )∗∗2 , a x i s = 0 ) )

253 B e t w e e n _ i n i t _ t h i n [ k ] = ( t h i n ∗ 1 . / ( ch−1))∗( np . sum ( ( m e a n _ i n i t _ t h i n [ k , : ] − m e a n _ m e a n _ i n i t _ t h i n [ k ] )∗∗2 , a x i s = 0 ) )

254 f o r s in r a n g e (K ) :

255 B e t w e e n _ t r a n _ t h i n [ k , s ] = ( t h i n ∗ 1 . / ( ch−1))∗( np . sum ( ( m e a n _ t r a n _ t h i n [ k , s , : ] − mean_mean_ t r an_ th in [ k , s ] )

256 ∗∗2 , a x i s = 0 ) )

264
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257 # compute t h e v a r i a n c e s o f c h a i n s

258 VAR_lamd_thin [ k ] = ( ( 1 − ( 1 . / ( t h i n ) ) )∗ W_lamd_thin [ k ] ) + ( ( 1 . / ( t h i n ) )∗ Between_ lamd_th in [ k ] )

259 V A R _ i n i t _ t h i n [ k ] = ( ( 1 − ( 1 . / ( t h i n ) ) )∗ W _ i n i t _ t h i n [ k ] ) + ( ( 1 . / ( t h i n ) )∗ B e t w e e n _ i n i t _ t h i n [ k ] )

260 f o r s in r a n g e (K ) :

261 VAR_tran_th in [ k , s ] = ( ( 1 − ( 1 . / ( t h i n ) ) )∗ W _ t r a n _ t h i n [ k , s ] ) + ( ( 1 . / ( t h i n ) )∗ B e t w e e n _ t r a n _ t h i n [ k , s ] )

262
263 # compute R_hat o f a l l p a r a m t e r s

264 R _ h a t _ l a m d _ t h i n [ k ]= np . s q r t ( VAR_lamd_thin [ k ]∗ 1 . / ( W_lamd_thin [ k ] ) )

265 R _ h a t _ i n i t _ t h i n [ k ]= np . s q r t ( V A R _ i n i t _ t h i n [ k ]∗ 1 . / ( W _ i n i t _ t h i n [ k ] ) )

266 f o r s in r a n g e (K ) :

267 R _ h a t _ t r a n _ t h i n [ k , s ]= np . s q r t ( VAR_tran_th in [ k , s ]∗ 1 . / ( W _ t r a n _ t h i n [ k , s ] ) )

268
269 re turn l amda_ th in , i n i t _ t h i n , t r a n s _ t h i n , a l l o c _ t h i n , Z_ th in , R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n ,

270 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n , R_ha t_ l amd_th in , R _ h a t _ i n i t _ t h i n , R _ h a t _ t r a n _ t h i n , c o l l o c t i o n _ p o s t e r i o r s

271
272 " " " T h i n n i n g t h e c h a i n s f o r each p a r a m e t e r " " "

273 def t h i n n i n g _ c h a i n s ( obs , O, T ,M, d , K, ch , T o t a l _ t h i n , a , b , d e l t a ) :

274 l amda_ th in , i n i t _ t h i n , t r a n s _ t h i n , a l l o c _ t h i n , Z_ th in ,

275 R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n , C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n , R_ha t_ l amd_ th in ,

276 R _ h a t _ i n i t _ t h i n , R _ h a t _ t r a n _ t h i n , c o l l o c t i o n _ p o s t e r i o r s

277 =Convergance_DG ( obs , O, T ,M, d , K, ch , t h i n , l ag , a , b , d e l t a )

278 # keep a l l t h i n n e d samples

279 t h i n _ l a m d s =np . z e r o s ( [ T o t a l _ t h i n ,K] )

280 t h i n _ i n i t s =np . z e r o s ( [ T o t a l _ t h i n ,K] )

281 t h i n _ t r a n s =np . z e r o s ( [ T o t a l _ t h i n , K,K] )

282 t h i n _ Z =np . z e r o s ( [ T o t a l _ t h i n , T ] )

283 t h i n _ a l l o c s =np . z e r o s ( [ T o t a l _ t h i n , T ,K] )

284 t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s =np . z e r o s ( [ T o t a l _ t h i n ] )

285 t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s =np . z e r o s ( [ T o t a l _ t h i n ] )

286 f o r s in r a n g e (K ) :

287 t h i n _ l a m d s [ : , s ]= l i s t ( i t e r t o o l s . c h a i n ( l a m d a _ t h i n [ 0 , : , s ] , l a m d a _ t h i n [ 1 , : , s ] , l a m d a _ t h i n [ 2 , : , s ] ) )

288 t h i n _ i n i t s [ : , s ]= l i s t ( i t e r t o o l s . c h a i n ( i n i t _ t h i n [ 0 , : , s ] , i n i t _ t h i n [ 1 , : , s ] , i n i t _ t h i n [ 2 , : , s ] ) )

289 f o r r in r a n g e (K ) :

290 t h i n _ t r a n s [ : , s , r ]= l i s t ( i t e r t o o l s . c h a i n ( t r a n s _ t h i n [ 0 , : , s , r ] , t r a n s _ t h i n [ 1 , : , s , r ] , t r a n s _ t h i n [ 2 , : , s , r ] ) )

291 f o r t in r a n g e ( T ) :

292 t h i n _ Z [ : , t ]= l i s t ( i t e r t o o l s . c h a i n ( Z _ t h i n [ 0 , : , t ] , Z _ t h i n [ 1 , : , t ] , Z _ t h i n [ 2 , : , t ] ) )

293 f o r s in r a n g e (K ) :

294 t h i n _ a l l o c s [ : , t , s ]= l i s t ( i t e r t o o l s . c h a i n ( a l l o c _ t h i n [ 0 , : , t , s ] , a l l o c _ t h i n [ 1 , : , t , s ] , a l l o c _ t h i n [ 2 , : , t , s ] ) )

295 t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s = l i s t ( i t e r t o o l s . c h a i n ( R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n [ 0 , : ] ,

296 R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n [ 1 , : ] , R e c u r s i v e _ l o g l i k e l i h o o d _ t h i n [ 2 , : ] ) )

297 t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s = l i s t ( i t e r t o o l s . c h a i n ( C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n [ 0 , : ] ,

298 C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n [ 1 , : ] , C o n d i t i o n a l _ l o g l i k e l i h o o d _ t h i n [ 2 , : ] ) )

299
300 re turn t h i n _ l a m d s , t h i n _ i n i t s , t h i n _ t r a n s , th in_Z , t h i n _ a l l o c s , t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s ,

301 t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s , R_ha t_ l amd_th in , R _ h a t _ i n i t _ t h i n , R _ h a t _ t r a n _ t h i n , c o l l o c t i o n _ p o s t e r i o r s

302
303 " " " model s e l e c t i o n : AIC , BIC and DIC " " "

304 def M o d e l _ s e l e c t i o n ( obs , K, O, T ,M, d , T o t a l _ t h i n , a , b , d e l t a ) :

305 C o l l e c t i o n _ c o l l o c t i o n _ p o s t e r i o r s = [ ]

306 # s t o r a g e f o r c r i t e r i a

307 Col lec t ion_AIC_BIC_3 = [ ]

308 C o l l e c t i o n _ D I C _ r e c _ 2 = [ ]

309 C o l l e c t i o n _ D I C _ c o n _ 2 = [ ]

310 r e p l i c a t e d _ r e s u l t s = [ ]

311
312 " " " c a l l t h e t h i n n e d c h a i n s " " "

313 t h i n _ l a m d s , t h i n _ i n i t s , t h i n _ t r a n s , th in_Z , t h i n _ a l l o c s ,

314 t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s , t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s ,

315 R_ha t_ l amd_ th in , R _ h a t _ i n i t _ t h i n , R _ h a t _ t r a n _ t h i n , c o l l o c t i o n _ p o s t e r i o r s =

316 t h i n n i n g _ c h a i n s ( obs , O, T ,M, d , K, ch , T o t a l _ t h i n , a , b , d e l t a )

317 c o l l o c t i o n _ t h i n n e d _ p o s t e r i o r s = [ ]

318 c o l l o c t i o n _ t h i n n e d _ p o s t e r i o r s . append ( [ t h i n _ l a m d s , t h i n _ i n i t s , t h i n _ t r a n s , th in_Z ,

319 t h i n _ a l l o c s , t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s , t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s ,

320 R_ha t_ l amd_ th in , R _ h a t _ i n i t _ t h i n , R _ h a t _ t r a n _ t h i n , c o l l o c t i o n _ p o s t e r i o r s ] )

265



B.3. CODE OF CHAPTER 6

321
322 " " " compute t h e means o f t h e p o s t e r i o r s " " "

323 mean_lamd=np . z e r o s ( [K] )

324 m e a n _ t r a n s i t i o n =np . z e r o s ( [ K,K] )

325 m e a n _ i n i t i a l =np . z e r o s ( [K] )

326 f o r s in r a n g e (K ) :

327 mean_lamd [ s ]= np . mean ( t h i n _ l a m d s [ : , s ] )

328 m e a n _ i n i t i a l [ s ]= np . mean ( t h i n _ i n i t s [ : , s ] )

329 # t h e p o s t e r i o r p r o b a b i l i e s o f each segemnt g i v e n d i f f e r e n t s t a t e s .

330 f o r r in r a n g e (K ) :

331 m e a n _ t r a n s i t i o n [ r , s ]= np . mean ( t h i n _ t r a n s [ : , r , s ] )

332
333 " " " AIC and BIC " " "

334 F r e e _ p a r a =(K∗∗2)+(K)−1

335 AIC_rec_3=−2∗np . max ( t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s )+(2∗ F r e e _ p a r a )

336 BIC_rec_3=−2∗np . max ( t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s ) +( np . l o g ( T)∗ ( F r e e _ p a r a ) )

337 " " " r e c u r s i v e DIC " " "

338 bar_D_rec=−2∗np . mean ( t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s )

339 D_ha t_ rec=−2∗np . max ( t h i n _ r e c u r s i v e _ l o g l i k e l i h o o d s )

340 p_DIC_rec2=bar_D_rec−D_ha t_ rec

341 DIC_rec2= bar_D_rec +p_DIC_rec2

342 " " " c o n d i t i o n a l DIC " " "

343 bar_D_con=−2∗np . mean ( t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s )

344 D_hat_con=−2∗np . max ( t h i n _ c o n d i t i o n a l _ l o g l i k e l i h o o d s )

345 p_DIC_con2=bar_D_con−D_hat_con

346 DIC_con2=bar_D_con+p_DIC_con2

347
348 Col lec t ion_AIC_BIC_3 . append ( [ AIC_rec_3 , BIC_rec_3 ] )

349 C o l l e c t i o n _ D I C _ r e c _ 2 . append ( [ bar_D_rec , D_hat_rec , p_DIC_rec2 , DIC_rec2 ] )

350 C o l l e c t i o n _ D I C _ c o n _ 2 . append ( [ bar_D_con , D_hat_con , p_DIC_con2 , DIC_con2 ] )

351 C o l l e c t i o n _ c o l l o c t i o n _ p o s t e r i o r s . append ( [ c o l l o c t i o n _ p o s t e r i o r s ] )

352 re turn Col lec t ion_AIC_BIC_3 , C o l l e c t i o n _ D I C _ r e c _ 2 , Co l l ec t ion_DIC_con_2 , r e p l i c a t e d _ r e s u l t s ,

353 C o l l e c t i o n _ c o l l o c t i o n _ p o s t e r i o r s , c o l l o c t i o n _ t h i n n e d _ p o s t e r i o r s

354
355 " " " d a t a " " "

356 obs=obs # where obs i s c r a s h c o u n t s

357 O= O # wheer O i s e x p e c t e d c r a s h c o u n t s

358 CR=CR# where CR i s t h e o b s e r v e d c r a s h r a t e s

359 " " "MCMC i n f o r m a t i o n " " "

360 K=K # K i s t h e number o f s t a t e s

361 M=M # i t e r a t i o n s

362 b u r n i n = b u r n i n # burn−in p e r i o d

363 d= r a n g e ( bu rn in ,M) # t h e k e p t samples a f t e r d i s c a r d i n g t h e burn−in p e r i o d

364
365 " " " Four d i f f e r e n t p r i o r s " " "

366 a=np . a r r a y ( [ 0 . 1 , 0 . 0 1 , 0 . 0 0 1 , 0 . 0 0 0 1 ] ) # v a l u e s o f t h e shape p a r a m t e r o f Gamma

367 b=np . a r r a y ( [ 0 . 1 , 0 . 0 1 , 0 . 0 0 1 , 0 . 0 0 0 1 ] ) # v a l u e s o f t h e s c a l e p a r a m t e r o f Gamma

368 d e l t a =np . ones ( (K) , i n t ) # d e l t a v a l u e o f D i r i c h l e t d i s t r i b u t i o n

369 T= l e n ( obs ) # l e n g t h d a t a

370 ch =3 # t h e number o f c h a i n s

371 l a g =100 # t h i n n i n g l a g

372 t h i n = i n t ( l e n ( d )∗ 1 . / l a g )

373 T o t a l _ t h i n =( t h i n∗ch ) # l e n g t h o f t h i n n e d c h a i n

374 R e s u l t s = [ ]

375 f o r i in r a n g e ( l e n ( a ) ) :

376 " " " s e l e c t i o n model ove r d i f f e r e n t p r i o r s " " "

377 Col lec t ion_AIC_BIC_3 , C o l l e c t i o n _ D I C _ r e c _ 2 , Co l l ec t ion_DIC_con_2 ,

378 r e p l i c a t e d _ r e s u l t s , C o l l e c t i o n _ c o l l o c t i o n _ p o s t e r i o r s ,

379 c o l l o c t i o n _ t h i n n e d _ p o s t e r i o r s = M o d e l _ s e l e c t i o n ( obs , K, O, T ,M, d , T o t a l _ t h i n , a [ i ] , b [ i ] , d e l t a )

380 R e s u l t s . append ( [ Col lec t ion_AIC_BIC_3 , C o l l e c t i o n _ D I C _ r e c _ 2 , Co l l ec t i on_DIC_con_2 , r e p l i c a t e d _ r e s u l t s , c o l l o c t i o n _ t h i n n e d _ p o s t e r i o r s ] )

381
382 " " " R e s u l t s o f model s e l e c t i o n c r i t e r i a : AIC , BIC , DIC and WAIC" " "

383 p r i n t ’ AIC_rec_3 = ’ , [ R e s u l t s [ i ] [ 0 ] [ 0 ] [ 0 ] f o r i in r a n g e ( l e n ( a ) ) ]

384 p r i n t ’ BIC_rec_3 = ’ , [ R e s u l t s [ i ] [ 0 ] [ 0 ] [ 1 ] f o r i in r a n g e ( l e n ( a ) ) ]
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385 p r i n t ’ bar_D_rec ’ , [ R e s u l t s [ i ] [ 1 ] [ 0 ] [ 0 ] f o r i in r a n g e ( l e n ( a ) ) ]

386 p r i n t ’ D_hat_rec ’ , [ R e s u l t s [ i ] [ 1 ] [ 0 ] [ 1 ] f o r i in r a n g e ( l e n ( a ) ) ]

387 p r i n t ’ p_DIC_rec2 = ’ , [ R e s u l t s [ i ] [ 1 ] [ 0 ] [ 2 ] f o r i in r a n g e ( l e n ( a ) ) ]

388 p r i n t ’ DIC_rec2 = ’ , [ R e s u l t s [ i ] [ 1 ] [ 0 ] [ 3 ] f o r i in r a n g e ( l e n ( a ) ) ]

389 p r i n t ’ bar_D_con ’ , [ R e s u l t s [ i ] [ 2 ] [ 0 ] [ 0 ] f o r i in r a n g e ( l e n ( a ) ) ]

390 p r i n t ’ D_hat_con ’ , [ R e s u l t s [ i ] [ 2 ] [ 0 ] [ 1 ] f o r i in r a n g e ( l e n ( a ) ) ]

391 p r i n t ’ p_DIC_con2 ’ , [ R e s u l t s [ i ] [ 2 ] [ 0 ] [ 2 ] f o r i in r a n g e ( l e n ( a ) ) ]

392 p r i n t ’ DIC_con2 ’ , [ R e s u l t s [ i ] [ 2 ] [ 0 ] [ 3 ] f o r i in r a n g e ( l e n ( a ) ) ]

393
394 " " " Convereganece D i a g n o s t i c r e s u l t s " " "

395 #1−Gelman s t a t i s t i c R f o r c o n v e r g e n c e

396 f o r i in r a n g e ( l e n ( a ) ) :

397 f o r j in r a n g e (K ) :

398 R_hat= R e s u l t s [ i ] [ 5 ] [ 0 ] [ 7 ] [ j ]

399 p r i n t ’ Gelman lamd ’ , j +1 , ’= ’ , R_hat

400
401 #2− t h e Geweke D i a g n o s t i c f o r c o n v e r g e n c e

402 def Geweke ( t r a c e ) :

403 L1=np . round ( 0 . 1∗ l e n ( t r a c e ) )

404 L2=np . round ( 0 . 5∗ l e n ( t r a c e ) )

405 s1= t r a c e [ 0 : L1 ]

406 s2= t r a c e [ L2 : ]

407 v a r _ s 1 = np . v a r ( s1 )∗ 1 . / ( L1 )

408 v a r _ s 2 = np . v a r ( s2 )∗ 1 . / ( L2 )

409 z =( np . mean ( s1 )−np . mean ( s2 ) ) ∗ 1 . / ( np . s q r t ( v a r _ s 1 + v a r _ s 2 ) )

410 re turn z

411 f o r i in r a n g e ( l e n ( a ) ) :

412 f o r j in r a n g e (K ) :

413 Z_sco re =Geweke ( R e s u l t s [ i ] [ 5 ] [ 0 ] [ 0 ] [ : , j ] )

414 p r i n t ’ Geweke lamd ’ , j +1 , ’= ’ , Z_sco re

415
416 " " " Compute and p l o t t h e iPPD , g i v e n Gamma ( 0 . 1 , 0 . 1 ) p r i o r " " "

417 y _ r e p l i c a t i o n =np . z e r o s ( [ T o t a l _ t h i n , T ] , i n t )# r e p l i c a t i o n s

418 f o r m in r a n g e ( T o t a l _ t h i n ) :

419 f o r t in r a n g e ( T ) :

420 y _ r e p l i c a t i o n [m, t ] = ( np . random . p o i s s o n ( R e s u l t s [ 0 ] [ 5 ] [ 0 ] [ 0 ] [ m, R e s u l t s [ 0 ] [ 5 ] [ 0 ] [ 3 ] [ m, t ] ]∗O[ t ] ) )

421
422 " " " P l o t c e n t e r s and 95% CI of iPPD vs t h e o b s e r v e d c r a s h c o u n t " " "

423 f i g , ax = p l . s u b p l o t s ( 1 , 1 )

424 p l . x l im (−2 , 92)

425 p l . y l im (−7 , 140)

426 x = np . a r a n g e ( 1 , 9 1 , 1 )

427 ax . s e t _ x t i c k s ( x )

428 p l . p l o t ( x , obs , ’ rd ’ , l i n e w i d t h = 5 . 0 , l a b e l = ’ Observed ’ )

429 y= np . mean ( y _ r e p l i c a t i o n , a x i s =0 , d t y p e =np . f l o a t 6 4 )

430 c i 9 5 = np . abs ( y − 1 . 9 6 ∗ sc . sem ( y _ r e p l i c a t i o n , a x i s = 0 ) )

431 p l . e r r o r b a r ( x , y , y e r r = c i95 , fmt = ’o ’ , l a b e l =’95% CI P r e d i c t e d ’ )

432 ax . s e t _ x t i c k s ( x )

433 p l . t i t l e ( ’ $K=3$ ’ , f o n t s i z e =16)

434 p l . x l a b e l ( ’ Segment ’ , f o n t s i z e =16)

435 p l . y l a b e l ( ’ P r e d i c t i v e vs . Observed ’ , f o n t s i z e =16)

436 p l . l e g e n d ( l o c = ’ uppe r r i g h t ’ )

437 p l . show ( )

438
439 " " " QQ_plots f o r t h e pseudo−r e s i d u a l s " " " "

440 y _ r e s i d u a l =np . z e r o s ( [ T o t a l _ t h i n , T ] )

441 f o r m in r a n g e ( T o t a l _ t h i n ) :

442 y _ r e s i d u a l [m, : ] = ( y _ r e p l i c a t i o n [m, : ] < obs )

443 a v e _ r e s i d u a l _ 3 =np . sum ( y _ r e s i d u a l , a x i s = 0 )∗ 1 . / ( T o t a l _ t h i n )

444 sm . q q p l o t ( a v e _ r e s i d u a l _ 3 , s t a t s . t , f i t =True , l i n e = ’45 ’ )

445 p l . show ( )
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