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Abstract 

 

Assessment of ocular accommodation in humans 

Nicola Szostek  

 

Accommodation is the change in the dioptric power of the eye altering the focus from 

distance to near. Presbyopia is the loss of accommodative function that occurs with age. 

There are many techniques used to measure accommodation, however, there is little 

consensus as to how clinical data should be collected and analysed.  The overarching 

theme of this thesis is the in vivo examination of accommodation and how lifestyle can 

affect the onset of presbyopia.  

An open-field autorefractor with badal adaption was used to examine accommodative 

dynamic profiles under varying demands of vergence. From this data a new metric for 

assessing the time for accommodative change was derived. Furthermore this thesis 

describes a bespoke automated accommodative facility instrument that was developed 

to provide further assessment of accommodative speeds.   

Defocus curves are used for assessing accommodation and depth-of-focus; the work 

presented explores the use of non-linear regression models to define the most 

appropriate method of assessing defocus curves in phakic subjects, and pseudophakic 

subjects implanted with an extended depth-of-focus intraocular lens.  Using an absolute 

cut-off criteria of +0.30logMAR improved the repeatability and reliability of the depth-

of-focus metrics over a cut-off criteria relative to the best corrected visual acuity.  

A swept-source anterior segment optical coherence tomographer (AS-OCT) was used to 

image the morphology of the ciliary muscle during accommodation.  The accuracy of 

ciliary muscle measurements was improved when using reference points on the sclera 
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to align the AS-OCT scan. The use of a ciliary muscle area metric demonstrated poor 

repeatability and reliability when compared to the traditional assessment of muscle 

morphology via thickness measurements. 

Physiological ageing in the crystalline lens occurs in line with ageing in other structures 

in the body.  The methods for assessing accommodative function examined in previous 

chapters, were used to examine whether lifestyle factors which affect the rate of 

systemic ageing, such as smoking, also affect accommodative function.  Although being 

a current smoker and having greater central adiposity was associated with a slower time 

for accommodative change, further research is required before these findings can be 

applied to the target population.  
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Chapter 1: Introduction 

Accommodation can be defined as the change in the dioptric power of the eye, altering 

the eye’s focus from distance to near (Millodot and Laby, 2002).  This is achieved by a 

change in surface curvature and equatorial diameter of the crystalline lens.   

The structures involved in the mechanism of accommodation are shown in Figure 1.1; 

these include the crystalline lens, the ciliary body and the lens zonules.   

 

 

   

  

Figure 1.1: A schematic diagram of the structures of the anterior eye. 
Reproduced from Oyster (1999c) 
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1.1 The crystalline lens 

The crystalline lens is a transparent, flexible structure, which changes shape and dioptric 

power to focus light onto the retina.  The lens is held in suspension behind the pupil and 

posterior surface of the iris, and in front of the anterior surface of the vitreous (Millodot 

and Laby, 2002).    

Figure 1.2 shows the structure of the crystalline lens.  Surrounding the crystalline lens is 

the lens capsule; an elastic, transparent extracellular matrix which is secreted by the 

epithelial and superficial fibre cells (Lens et al., 2008).  The lens capsule is largely 

composed of collagen type IV (Barraquer et al., 2006).  The outer most anterior surface 

of the lens consists of cuboid-shaped cells and comprises the lens epithelium.   

 

Figure 1.2: A cross-sectional diagram displaying the structure of the crystalline lens. 
Reproduced from Oyster (1999a) 
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The majority of the lens’ body is formed of elongated lens fibre cells arranged in 

concentric layers, where the outer cells, constituting the lens cortex, extend from the 

anterior epithelium to the posterior lens surface (Glasser, 2011).  Only lens epithelial 

cells in the germination zone near the equatorial lens margin undergo mitosis (Rafferty 

and Rafferty, 1981).  The newer cells migrate posteriorly and differentiate into lens fibre 

cells at the lens equator (Atchison, 1995).  The lens fibre cells then elongated to allow 

the apical end of the cell to meet the lens epithelium, and the basal end of the cell to 

meet the posterior lens surface and the inner lens capsule (Charman, 2008, Augusteyn, 

2010).  At this point the newly differentiated lens fibre cells synthesize and accrue large 

quantities of crystallin proteins.  The cells’ migration from the germinative zone towards 

the lens nucleus continues; the two ends of the fibre cells move along their 

corresponding surfaces until they meet equivalent elongating fibre cells at the anterior 

and posterior midline, forming junctions called sutures (Glasser, 2011).  The basal cell 

end then detaches from the lens capsule.  Once the lens fibre cells reach this stage, their 

membrane-bound intracellular organelles degrade and are removed (Maisel et al., 1981, 

Atchison, 1995, Augusteyn, 2010).  As newer cells are formed and migrate towards the 

lens nucleus, the more mature fibre cells become compacted deeper towards the lens 

nucleus (Dubbelman et al., 2003).  These cells and the intra-cellular proteins remain in 

the lens throughout life, meaning that the most central cells comprising the lens nucleus 

are the eldest and are present from embryonic development.  As newer cells are formed, 
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both the number of lens fibre cells and the size of the lens increase over lifetime 

(Scammon and Hesdorffer, 1937).       

The refractive properties of the lens are attributed to the curvature of both the anterior 

and posterior lens surfaces, as well as the higher refractive index (RI) of the crystalline 

lens (approximately 1.4), relative to the aqueous and the vitreous humour 

(approximately 1.336) (Oyster, 1999c).  The RI of the crystalline lens is not homogenous 

throughout its structure; the RI is greatest at the central plateau, at approximately 1.41 

(Jones et al., 2005, Kasthurirangan et al., 2008) and decreases with increasing distance 

into the peripheral zones, to approximately 1.38 (Jones et al., 2005, Kasthurirangan et 

al., 2008).  Whilst the lens is in an accommodative state, this change in distribution 

throughout the lens, is thought to add to the power and affect optical aberrations of the 

eye (Garner and Smith, 1997).  During accommodation the diameter of the central 

plateau region decreases, although not significantly (Garner and Smith, 1997, 

Kasthurirangan et al., 2008).         

In an emmetropic eye, when looking at a distance object, the crystalline lens adopts its 

flattest shape with its least refractive power (Glasser, 2011).  As focus changes to a near 

object, to compensate for the negative vergence of light entering the eye, the crystalline 

lens increases in power by increasing its central thickness as well as increasing its 

anterior and posterior lens surface curvature (Kasthurirangan et al., 2011).  This is a 

result of contraction of the ciliary body releasing tension in the lens zonules, allowing 

the elastic lens to return to its more spherical shape.    
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The posterior surface of the lens meets with the patellar fossa, a depression on the 

anterior surface of the vitreous.  Due to the high water content of the vitreous, it 

remains rigid and cannot be compressed; therefore, during accommodation there is a 

relatively small change in curvature of the posterior lens surface comparative to the 

change in curvature in the anterior lens surface (Oyster, 1999c).   

The lens fibre cells and proteins are aligned with high regularity within the crystalline 

lens in order to achieve transparency (Glasser, 2011).  There is an abundance of soluble 

and insoluble protein within the lens itself; the three most commonly found soluble 

proteins within the lens are: α-crystallins, β-crystallins and γ-crystallins.   Each lens fibre 

cell has a protein concentration approximately three times greater than the cytoplasm 

of other typical cells (Glasser, 2011).   Transparency of the lens is also aided by small and 

uniformed extracellular spaces between fibre cells and the absence of membrane-

bound intracellular organelles.   

 

1.2 The ciliary body 

The ciliary body, as shown in Figure 1.1, begins anteriorly at the scleral spur in the 

anterior chamber angle and extends posteriorly to the ora serrata of the retina (Oyster, 

1999c).  The ciliary body is thought to be an anterior extension of the retina and choroid.   

The full length of the ciliary body has been found to be longer temporally, and shorter 

nasally in vitro (Aiello et al., 1992), although in vivo studies have contested these 
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observations (Sheppard and Davies, 2010, Sheppard and Davies 2011).  The inner 

surface of the ciliary body consists of two epithelial layers which are continuous with 

the retinal layers; the non-pigmented ciliary epithelium which runs continuously with 

the sensory retina, and the pigmented ciliary epithelium, which runs continuously with 

the retinal pigmented epithelium (Tamm and Lutjen-Drecoll, 1996).  The ciliary body 

consists of two sections: the pars plicata anteriorly and the pars plana posteriorly.  The 

pars plana forms the smooth portion of the ciliary body, the outer most surface of the 

pars plana meets the vitreous, this layer is covered in zonular fibres orientated 

longitudinally (Rohen, 1979, Glasser et al., 2001).  The base of the iris runs continuously 

into the pars plicata, which is formed of the ciliary processes.  The ciliary processes are 

involved in producing aqueous humour and form the site at which the lens zonules are 

inserted (Oyster, 1999b).   The aqueous humour, which is produced in the ciliary 

processes, is secreted into the anterior chamber.    

Within the ciliary body, lies the ciliary muscle; the anterior ciliary muscle originates at 

the scleral spur, where its tendons insert through to the trabecular meshwork, and 

anchor the muscle during contraction (Oyster, 1999c).  There are three types of anterior 

muscle tendons forming the anterior attachment of the ciliary muscle: Type I tendons 

consisting of collagen and elastic fibres attaching the scleral spur to the longitudinal 

ciliary muscle fibres. Type II tendons consist of elastic fibres and extend to the trabecular 

meshwork.  Type III extend through the trabecular meshwork into the corneal stroma 

(Tamm and Lutjen-Drecoll, 1996).  The posterior attachment of the ciliary muscle is via 
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elastic tendons originating from longitudinal and radial fibres, inserting into the Bruch’s 

membrane of the choroid.   

The outer surface of the ciliary muscle is loosely attached to the sclera, this thin outer 

surface consists of; collagen fibres, fibroblasts and melanocytes and form the supra-

choroidal lamina (Tamm and Lutjen-Drecoll, 1996).  In this region the ciliary muscle 

fibres are orientated so that as the muscle contracts, the mass of the ciliary body moves 

forwards and inwards and there is a narrowing of the ciliary ring diameter, leading to 

the anterior choroid also being pulled forwards (Strenk et al., 1999, Pardue and Sivak, 

2000, Glasser et al., 2001, Charman, 2008, Richdale et al., 2013).  There are three main 

groups of muscle fibres forming the smooth muscle of the ciliary body; the longitudinal 

(or peripheral meridional) fibres, the circular fibres and the radial fibres (Tamm and 

Lutjen-Drecoll, 1996).  The main group is the longitudinal fibres, which extend 

longitudinally from the scleral spur to the choroid, parallel to the sclera (Tamm and 

Lutjen-Drecoll, 1996, Glasser, 2011).  The circular fibres lie closest to the ciliary 

processes and lens.  The radial fibres attach anteriorly to the scleral spur and posteriorly 

to the choroid, these fibres are branched into ‘Y’- or ‘V’- shapes (Glasser, 2011).    

The main role of the ciliary muscle is to initiate a change in shape and dioptric power (D) 

of the crystalline lens to allow light to focus on the retina.  Stimulation of the M3 

muscarinic receptors on the ciliary body occurs via the Edinger-Westphal nucleus (Ostrin 

and Glasser, 2007).  During contraction, the inwards and anterior movement of the 

ciliary muscle releases tension on the lens zonules, causing the acting elastic force to fall 
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to below that of the opposing elastic force of the lens capsule, allowing the lens to 

assume it’s more spherical and powerful state (Charman, 2008).  

 

1.3 The lens zonules 

The lens zonules suspend the crystalline lens between the posterior surface of the iris 

and the patellar fossa of the vitreous. There are two types of zonules; the main fibres 

(which include the anterior and vitreous fibres) and the tension fibres (Rohen, 1979). 

The anterior lens zonules originate from the non-pigmented layer of the ciliary 

processes of the anterior ciliary body and attach to the lens capsule near the lens 

equator, some of which penetrate the capsule attaching to the main body of the lens.  

A number of the zonules cross over one another as they extend from the ciliary body to 

the lens (Glasser and Campbell, 1999).   The vitreous zonules extend from the ora serrata 

to the ciliary processes (Glasser, 2008, Lutjen-Drecoll et al., 2010).  Rohen (1979) states 

that intermediate tension fibres link the anterior and vitreous fibres and insert into the 

ciliary epithelium.  Charman (2008) and Gilmartin (1995) suggest the function of these 

tension fibres is to support the main fibres allowing fast accurate adjustments of 

accommodation. 

Lens zonules are composed of protein fibrillins; these fibrillins are composed of many 

fibrils grouped together in bundle fibres of approximately 4-6 to 40-50 micrometers 

(Davanger, 1975).  The components of the zonules are secreted by the ciliary epithelium, 
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these are non-collagenous carbohydrate-protein mucopolysaccharides and 

glycoproteins (Glasser, 2011).   

 

1.4 The mechanism of accommodation 

The exact mechanism of accommodation is still debated (Glasser, 2006), although 

Helmholtz’s theory of accommodation (Helmholtz, 1855) is widely accepted.  

Accommodation is activated by the parasympathetic pathway stimulating contraction 

of the ciliary smooth muscle.  The pre-ganglionic para-sympathetic signals originate in 

the Edinger-Westphal nucleus and travel through the ciliary ganglion via the oculomotor 

nerve (cranial nerve III).   Contraction is mediated by M3 muscarinic receptors (Ostrin 

and Glasser, 2004a).    Helmholtz’s theory states that as the ciliary smooth muscle 

contracts, the apex of the muscle and the main muscle mass moves both anteriorly and 

inwards towards the optical axis of the eye, decreasing the diameter of the ciliary muscle 

ring (Strenk et al., 1999, Pardue and Sivak, 2000, Glasser et al., 2001, Charman, 2008, 

Richdale et al., 2013).   This action releases tension in the lens zonules, so that their 

acting elastic force falls to below that of the opposing elastic force of the lens capsule, 

allowing the lens to assume it’s more spherical and powerful state (Charman, 2008).   As 

the lens assumes its more spherical shape there is an increase in the curvature of the 

anterior lens surface, with a comparatively smaller increase in the posterior lens surface 

curvature (Ni et al., 2011).  This difference in curvature change is thought to be due to 
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three reasons.  Firstly, a thicker anterior capsule compared to the posterior capsule, 

secondly, a greater change in tension in the anterior lens zonules, and finally the vitreous 

resisting movement at the posterior lens surface (Charman, 2008).  Furthermore, as 

accommodation occurs, there is a forward movement of the lens (Strenk et al., 2004b) 

that decreases the anterior chamber volume (Kasthurirangan et al., 2011).  Fincham 

(1937) noted that the decrease in anterior chamber volume was less than the 

accompanying increase in axial thickness of the lens, suggesting that there is a 

backwards movement in the posterior lens surface with accommodation.  

Lens volume remains the same during accommodation, therefore as the axial thickness 

of the lens increases, there is a decrease in lens equatorial diameter (Strenk et al., 1999, 

Glasser, 2006, Jones et al., 2007, Ostrin and Glasser, 2007).  

There is some debate as to whether the iris may also contribute to the accommodative 

mechanism; Crawford et al. (1990) suggested that the iris may pull the ciliary body 

forwards and inwards to aid the lens to assume a more spherical shape, and yet Fincham 

(1937) observed successful accommodation in aniridic subjects.   

The mechanism of dis-accommodation is innervated by the sympathetic pathway, 

mediated by the β2-adrenergic receptors causing a relaxation of the ciliary body, 

facilitated by the restoring force of the choroid.  As the ciliary body relaxes, there is an 

increase in tension in the lens zonules, as well as the elastic nature of the choroid pulling 

the ciliary body posteriorly and outwards (Strenk et al., 1999).   The increase in tension 

in the lens zonules pulls the lens capsule and therefore the lens nucleus into a much 
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thinner and flatter shape, so that the power of the eye coincides with the eye’s far point 

(Glasser, 2006, Glasser, 2008). The anterior and posterior lens surfaces reduce in 

curvature; increasing the volume of the anterior and posterior chambers (Glasser, 2006).   

Coleman has proposed a theory of accommodation which stated that changes in the 

pressure in the vitreous, in comparison to the anterior chamber during accommodation, 

may increase the forward movement of the anterior lens surface, increasing 

accommodation (Coleman, 1970, Koretz and Handelman, 1982, Coleman, 1986, 

Coleman and Fish, 2001).  However, Fisher observed successful accommodation in 

patients who did not have a vitreous (Fisher, 1983).      

Schachar has proposed an alternative theory for the mechanism of accommodation, 

based on observations made when the application of equatorial pressure to other 

encapsulated  biconvex objects resulted in these objects assuming the same shape 

changes observed in the lens during accommodation (Schachar and Fygenson, 2007).  

Schachar’s theory states that as the ciliary muscle contracts, equatorial zonular tension 

increases, with a decrease in anterior and posterior zonular tension (Schachar, 2006).  

The force from the zonules results in lenticular changes including; an increase in axial 

lens thickness, the central portion of the anterior and posterior lens surfaces increase in 

curvature, with a decrease in curvature of the peripheral anterior and posterior lens 

surfaces.  This is thought to result in an increase in the dioptric power of the lens, and a 

decrease in spherical aberrations (Abolmaali et al., 2007).   Using this alternative 

mechanism, Schachar proposed a different theory for the mechanism of presbyopia; 
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that as equatorial diameter increases with age there is an associated decrease in zonular 

tension resulting in a reduction in the ciliary muscle length.  This reduction in ciliary 

muscle length is thought to cause a reduction in maximum ciliary muscle strength, 

resulting in reduced accommodative function with age (Schachar et al., 2006).  However, 

an overwheming volume of literature supports Helmholtz theory of accommodation 

over Schachar’s theory (Strenk et al., 1999, Strenk et al., 2005, Glasser, 2006, Charman, 

2008, Richdale et al., 2008, Sheppard and Davies, 2010, Sheppard and Davies, 2011, 

Richdale et al., 2013, Richdale et al., 2016). 

 

1.5 The near vision triad and components of 

accommodation  

The ‘near vision triad’ is the response observed in pre-presbyopes to a near vision 

stimulus.   The response consists of accommodation stimulated by retinal blur, 

convergence stimulated by fixation disparity and pupil constriction.   There are four 

components of accommodation: tonic, reflex, convergence, and proximal.   

Tonic accommodation can be described as the ‘resting state’ of accommodation, it is 

the accommodation that is present in the absence of a stimulus e.g. in darkness.  This is 

due to a constant tonus in the ciliary muscle, resulting from a balance between 

parasympathetic and sympathetic innervation, when no stimulus is present (Zadnik et 
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al., 1999).  Millodot and Laby (2002) state this to be approximately 1.25D, but with a 

variable range. 

Reflex accommodation is the automated response to a blur circle at the retina, induced 

to maintain a clear and sharp image, achieved by a change in dioptric power of the eye 

(Millodot and Laby, 2002). 

Convergence accommodation is the component of accommodation which is induced by 

a change in convergence, a part of the near vision triad (Millodot and Laby, 2002).  

Convergence is driven by fixation disparity, and the response is dictated by an 

individual’s accommodation/convergence: accommodation ratio (AC/A ratio).  

Proximal accommodation is induced by the awareness or belief of a near vision target 

within a subject’s viewing plane (Rosenfield et al., 1990). 

In phakic eyes the accommodative response consists of both ‘true’ accommodation: the 

dioptric power change in the eye, and ‘pseudo’ accommodation: an increase in depth-

of-focus resulting from pupil constriction.  In presbyopes where no ‘true’ 

accommodation remains, pupil constriction from the near vision triad still occurs, 

increasing depth-of-focus, and allowing some pseudo-accommodation to remain.   

 

1.6 Measuring accommodative function 

In order to conduct near vision tasks efficiently the accommodative change must occur 

quickly and smoothly, whilst the response must be accurate and sustained.  The 
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efficiency of the accommodative change is often referred to as the accommodative 

function or accommodative ability.   

Accommodative dysfunction and presbyopia are characterised by reduced 

accommodative function, leading to asthenopic symptoms (Hennessey et al., 1984a, 

Levine et al., 1985, Sterner et al., 2006).   Measuring accommodation in practice is 

important to examine a subject’s accommodative function and assess the need and 

suitability for near vision correction.  Traditional methods of correcting presbyopia 

including reading spectacles, monovision, and either contact lens or spectacle multifocal 

correction, provide functional options for most activities (Charman, 2014).  However, 

each modality of optical correction has their own limitations leading to compromises in 

visual function, which has subsequently driven current research into novel methods of 

restoring accommodation after presbyopia or cataract surgery (Glasser, 2008).   In an 

attempt to address this need numerous accommodative and extended depth of focus 

intraocular lens designs have been developed (Wolffsohn et al., 2006, Schmidinger et 

al., 2006, Maxwell et al., 2009, Sheppard and Davies, 2010, Lichtinger and Rootman, 

2012, Pepose et al., 2017).   In order to assess the effectiveness of novel intraocular lens 

(IOL) designs, tests which can accurately assess accommodative function are essential 

(Sheppard et al., 2010). 

Each of the methods for measuring accommodative components are categorised as 

either subjective or objective.   Subjective methods rely on the patient’s perception of 

blur as its end point criterion; therefore these measurements are a combined value of 
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both true- and pseudo- accommodation.   Objective methods measure the refractive 

status of the eye whilst viewing a target at a set distance.  The end-point criterion is 

entirely objective, there is no subjective input from either the subject or examiner, 

removing the component of pseudo-accommodation.  Therefore, measurements from 

objective methods are of the true-accommodative response only.  This can lead to 

subjective methods giving higher readings of accommodation than objective methods 

(Glasser, 2006).  In an absolute presbyope, where no true-accommodation is present, 

pseudo-accommodation may remain; leading to subjective methods over-estimating 

accommodative function, and indicating that true-accommodation may be present, 

where there is none.  Due to these limitations Wold et al. (2003) concluded that a 

combination of subjective and objective methods should be used when analysing the 

effectiveness of novel methods for restoring accommodation.   

The different subjective and objective tests to assess the accommodative function 

quantify one or more different parameters of the accommodative response; these 

parameters are listed alongside their corresponding subjective and objective 

accommodation tests in Table 1.1.  

The accommodative response or amplitude of accommodation (AoA) is the maximum 

accommodative power change of the eye in response to an accommodative target.   

Accommodative lag or lead is the difference between the accommodative demand of 

the near target and the accommodative response of the eye.  The most common 
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subjective and objective methods for assessing accommodative function both clinically 

and in a research setting are displayed in Table 1.1 and reviewed below. 

Table 1.1: The comparable subjective and objective tests for assessing the different parameters of 
accommodative function. 

 

1.6.1 The Push-Up Test 

As the Royal Air Force rule (RAF rule, Richmond Products, USA.)  is relatively quick to use 

and widely available, the Push-Up test is often used in clinical practice to measure AoA 

(Elliott and Flanagan, 2014).  This is a subjective technique and therefore it is often found 

to over-estimate AoA and to be the least repeatable in comparison to other 

accommodative function tests (Rosenfield and Cohen, 1996, Ostrin and Glasser, 2004a, 

Kasthurirangan and Glasser, 2006b, Win-Hall et al., 2007, Anderson et al., 2008, Gupta 

et al., 2008, Leon et al., 2012).   The low repeatability of the Push-Up test has been 

attributed to; 

Parameters Subjective Tests Objective Tests 

Time for the 
accommodative response 

Accommodative facility Accommodative dynamics 

Accuracy of response 
(Accommodative lag) 

None applicable 
Accommodative dynamics 
Dynamic retinoscopy 

Absolute response or 
Amplitude of 
accommodation 

Push-Up/Pull-Down test 
Minus-to-blur / Defocus 
curves 

Accommodative dynamics 

Sustainment of response None applicable Accommodative dynamics 
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 Practitioner skill: if the test is performed too quickly the measured AoA is over-

estimated (Rosenfield and Cohen, 1996, Anderson et al., 2008)  

 Proximal cues and depth-of-focus cues (Atchison et al., 1997)  

 The subjectivity of the end criterion relying on the subject’s perception 

(Glasser, 2006).   

 The compressed scale on the upper section the RAF rule can lead to over-

estimations and reduce the repeatability of AoA in younger patients. (Anderson 

et al., 2008). 

 As the target is moved towards the patient the minutes-of-arc subtended on 

the retina will increase, leading to over-estimations of AoA. 

 Using the same target for the patient to assess blur can lead to over-

estimations of the response and repeatability, from a learning effect. 

Some attempts to reduce the effects of these errors have been made.  A variation of this 

method is the Pull-down test; this removes the learning effect of the target, improving 

repeatability; Antona et al. (2009) demonstrated that the Pull-down test gives lower 

values of AoA in comparison to the Push-Up test.  In clinical practice a modified version 

of the Push-Up test is often used, which combines both the Push-Up to find a break-

point and the Pull-Down to find a recovery-point, to calculate an average AoA.   
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1.6.2 The Minus-to-blur/Defocus curves 

The minus-to-blur method has been shown to assess the AoA; by introducing 

increasingly powered concave lenses in front of the eye, whilst fixating on a target.  The 

highest powered concave lens through which the best corrected visual acuity (BCVA) 

can be maintained is recorded as the AoA.   The AoA measured via the minus-to-blur 

method is often lower than when measured via the Push-Up test.  This has been 

attributed to a number of factors including: the minimization effects from the increase 

in negative lens power, and the use of a distance target removing pupil miosis and 

depth-of-focus cues (Rosenfield and Cohen, 1996, Wold et al., 2003, Ostrin and Glasser, 

2004a, Gupta et al., 2008), and the end-point criteria relying on subjective blur.  Minus-

to-blur has been shown to over-estimate measurements of AoA when compared to 

dynamic retinoscopy (DR) (Leon et al., 2012), and objective measures of AoA from 

optometers.  

If the power of lens used to induce defocus is plotted against the visual acuity achieved, 

a defocus curve can be plotted.  Defocus curves have been used extensively in research 

to assess the depth-of-focus, specifically to evaluate the effectiveness of novel 

accommodating or extended depth-of-focus IOL designs  (Schmidinger et al., 2006, 

Gupta et al., 2007, Gupta et al., 2008, Alfonso et al., 2009, Antona et al., 2009, Buckhurst 

et al., 2012, Leon et al., 2012, Wolffsohn et al., 2013).  Despite the popularity of defocus 

curves there is a lack of standardisation for both the methods used to construct defocus 

curves, and the methods used to derive information (Gupta et al., 2007, Gupta et al., 
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2008, Buckhurst et al., 2012, Wolffsohn et al., 2013).  This can make it difficult to 

compare studies that have looked at how successful different accommodating and 

extended depth-of-focus IOLs designs are at restoring accommodation.  

 

1.6.3 Dynamic retinoscopy 

Dynamic Retinoscopy (DR) measures accommodative lag or lead.  Accommodative lag is 

the difference between the accommodative response and the dioptric stimulus 

(Millodot and Laby, 2002).   DR relies on a subjective end-point criteria decided upon by 

the practitioner; therefore removing the subjective component from the patient.  

Studies have shown that a skilled and experienced practitioner, can produce repeatable 

measurements of accommodative lag (Leon et al., 2012) which are comparable to 

corresponding measurements obtained using an auto-refractor (McClelland and 

Saunders, 2003).   Generally, accuracy and repeatability of DR techniques relies on 

practitioner skill, the quality of the observed reflex, the co-operation of the subject in 

fixating on the near target, and involuntary accommodative spasm.  There are two 

widely used methods for DR: the Monocular Estimate Method (MEM) and Nott’s 

method.  Both examine the monocular response under binocular viewing conditions to 

a near target. The MEM DR uses lenses presented briefly in front of the eye to neutralise 

the lag or lead of accommodation.  Nott’s method involves the practitioner physically 

moving the retinoscope forwards or backwards until neutralization of the lag or lead is 

achieved.  Numerous studies have compared the validity and repeatability of these 
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methods.  Locke and Somers (1989) found that these two techniques produced 

interchangeable results.  However, further work by Rosenfield et al. (1996) found that 

measurements via Nott’s DR gave the closest agreement to those obtained with an 

objective auto-refractor than the MEM.  It was concluded that Nott’s DR was more 

appropriate for measuring accommodative response because the addition of powered 

lenses can lead to the subject adapting to these lenses before the accommodative 

response is fully assessed, leading to inaccuracies (Rosenfield et al., 1996, del Pilar Cacho 

et al., 1999).   

 

1.6.4 Accommodative facility 

Accommodative facility (AF) or lens rock is a subjective technique which can be used to 

assess the eyes’ ability to change focus quickly and accurately (Eperjesi, 2004).  Clinically, 

the AF test is used to investigate symptomatic accommodative dysfunction, (Levine et 

al., 1985, Goss, 1992, Gall and Wick, 2003) and is predominantly used in a paediatric 

setting (Hennessey et al., 1984b, Wick et al., 2002b).  Studies have found that in both 

children and adults with symptomatic accommodative dysfunction, AF is often reduced, 

even when all other measures of accommodative metrics such as AoA and 

accommodative lag are within a normal range (Levine et al., 1985, Wick and Hall, 1987, 

Wick et al., 2002a, Gall and Wick, 2003).   

There is significant variation in the methodology used to assess AF in the literature (Wick 

et al., 2002b) which has hindered attempts to establish normative values.  Currently, the 
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method set out by Zellers et al (1984) is the one most commonly recommended for use 

in clinical practice (Eperjesi, 2004, Elliott and Flanagan, 2014).  This method assesses the 

number of cycles of ±2.00D (an accommodative change of 4D) that a subject can adjust 

their focus to view a target clearly, within one minute.  One cycle is the subject ‘clearing’ 

both the positive and negative lenses.  From the cycles per minute achieved, the time 

taken for each cycle can be calculated.  This time period is equivalent to the time for 

accommodative change, (ToAC) i.e. the combined time taken for the eye to 

accommodate and dis-accommodate.  The test is normally conducted monocularly, and 

binocularly using a stereogram target to monitor suppression.     

The normative values for binocular AF using a stereogram target are >7 CPM, or >11 

CPM monocularly (Zellers et al., 1984), for individuals within 18 to 30 years of age.  When 

applying these values to subjects outside this age range problems arise: when Wick and 

Hall (1987) applied this binocular criterion to a group of schoolchildren, they found an 

artificially high failure rate.  They postulated that either a lower pass/fail criteria should 

be used for school screening, and/or AF results should be considered in conjunction with 

other measures of accommodation, such as lag and amplitude, before a diagnosis of 

binocular accommodative dysfunction is made.  As such, in school-children Scheiman et 

al. (1988) recommended normative values for binocular AF using a stereogram target 

should be >5 CPM, or >7 CPM monocularly.  The variations in these values have been 

attributed to the variation in methods and subjects utilised in these studies (Wick et al., 

2002b).  
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1.6.5 Objective and dynamic assessment of accommodation 

Objective optometers such as open-field auto-refractors and power-refractors, can be 

used to measure the absolute accommodative response to a target, or to assess the 

accommodative dynamic profile.  Autorefractors measure the refractive status of an eye 

whilst viewing an accommodative target.  Power-refractors use the same principles as 

DR to measure the accommodative response: analysing the light reflex reflecting from 

the fundus.  By removing the need of the subject or clinician’s judgement of the end-

point, no pseudo-accommodation is measured when using an objective optometer, 

therefore lower measurements of absolute accommodative response are found in 

comparison to subjective methods.   

For both an auto-refractor and a power-refractor accommodation can be stimulated by 

either altering the distance of a real target or by using concave lenses. Technical features 

provided by such devices, which are desirable for accommodation evaluation include: 

the use of infra-red light to control pupil constriction (Wolffsohn et al., 2002), and the 

availability of an open-field viewing platform to minimise proximal accommodation 

(Hennessy, 1975). The accuracy of objective optometers are limited by pupil size, and 

from Purkinje image reflections that can make measurements difficult to obtain.  Win-

Hall and Glasser (2009) also found that dry eyes, precipitated by repeated 

measurements with an auto-refractor can lead to unexpected astigmatic components 

to be found.     
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Power-refractors are often used to measure refractive error in infants (Braddick et al., 

1979) and during eye-screening in school-children.  This is often attributed to various 

factors including the ease of training non-clinical staff to take measurements, the fact 

that two eyes can be examined at once, and because the procedure is conducted at a 

greater distance (1m) than an auto-refractor.  Some studies have shown that power-

refractors can give more hyperopic readings of refractive error when compared to auto-

refractors and subjective refraction suggesting that there may be a need for individual 

calibration to ensure accurate readings are obtained (Jainta et al., 2004, Blade and 

Candy, 2006).  Gabriel and Mutti (2009) found comparable results of accommodative 

response in infants measured with the MEM DR and power-refraction.  Power-refractors 

can generally obtain measurements of accommodation through smaller pupils, than 

other optometers, and are therefore the optometer of choice for use with older subjects 

(Ostrin and Glasser, 2004a).   However, a study by Richdale et al. (2013) found that whilst 

an auto-refractor gave more consistent readings of the accommodative response when 

compared with a power-refractor, the corresponding readings from the two instruments 

were not significantly different to each other.  Open-field auto-refractors have been 

validated to measure accommodative response in both phakic populations (Win-Hall et 

al., 2007) and pseudophakic populations (Davies et al., 2003, Win-Hall and Glasser, 

2009) 

Dynamic assessment of accommodation can be performed using both auto-refraction 

and power-refractors.  Using these accommodative profiles, numerous objective 
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metrics can be derived to describe the parameters shown in Table 1.1.  These metrics 

can include: absolute accommodative response, accommodative lag, time constants, 

peak velocity of accommodation, response times, and micro-fluctuations (Beers and van 

der Heijde, 1996, Kasthurirangan et al., 2003, Kasthurirangan and Glasser, 2006b, 

Radhakrishnan et al., 2007, Win-Hall et al., 2007, Allen et al., 2010, Anderson et al., 

2010).  Many studies have compared the metrics used to describe the accommodative 

parameters of absolute response and accuracy to other available subjective and 

objective tests (McClelland and Saunders, 2003, Ostrin and Glasser, 2004b, 

Kasthurirangan and Glasser, 2006b, Win-Hall et al., 2007, Gupta et al., 2008).  

Comparatively fewer have examined the relationship between the metrics used to 

describe the time taken for the accommodative change (i.e. accommodative lag, time 

constants, peak velocity of accommodation, response times) and the corresponding 

subjective test of AF (Radhakrishnan et al., 2007, Allen et al., 2010).  Furthermore, there 

is also little concensus between the studies on the exact definitions and methods used, 

to derive each of the accommodative metrics from the accommodative dynamic profile. 

 

1.7 Presbyopia 

Presbyopia is the natural loss of accommodative function  with increasing age (Anderson 

et al., 2008).  Although presbyopia begins in early infancy, the onset of asthenopic 

symptoms, including eyestrain whilst attempting near tasks, occurs around the age of 
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40-45 years (Holden et al., 2008).  By the age of 50-55 years all accommodation is 

effectively lost (Hamasaki et al., 1956), although some pseudo-accommodation may still 

remain contributing to a subjective amplitude of accommodation of 1.00D in this age 

group (Ostrin and Glasser, 2004a).   

The exact mechanism of presbyopia is still debated; there are numerous age-related 

structural changes in the accommodative apparatus, which may contribute to the loss 

of accommodative ability.  However, not all of the age-related structural changes are 

thought to contribute equally to the loss of accommodation.  Presbyopia in humans is 

mainly thought to be a lensocentric phenomenon, and attributed to an increase in 

stiffness and density of the crystalline lens, as new cells are formed and deposited, thus 

decreasing the elasticity of the crystalline lens (Strenk et al., 2005, Glasser, 2006, 

Charman, 2008, Glasser, 2008, Van de Sompel et al., 2010, Sheppard and Davies, 2011, 

Richdale et al., 2013). 

 

1.7.1 Age –related changes in the crystalline lens 

The thickness of the crystalline lens capsule changes with increasing age (Krag et al., 

1997); Barraquer et al. (2006) noted the anterior lens capsule increased with age, the 

central posterior lens capsule thickness did not change with age, whilst the peripheral 

posterior lens capsule  thickness  decreased with age.  It has been found that there is a 

significant decrease in mechanical strength in both the anterior lens capsule (Krag et al., 
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1997) and the posterior lens capsule with age (Krag and Andreassen, 2003), and that this 

decrease starts earlier in the posterior lens capsule than the anterior lens capsule.  

The crystalline lens grows continuously throughout life which results in an increase in: 

 Crystalline lens mass with age (Glasser and Campbell, 1999). 

 The curvature of the anterior lens surface (Dubbelman et al., 2005, Atchison et 

al., 2008, Kasthurirangan et al., 2011). 

 Axial lens thickness (Sorsby et al., 1963, Koretz et al., 1989, Strenk et al., 1999, 

Dubbelman et al., 2001, Jones et al., 2007, Atchison et al., 2008, Richdale et al., 

2008, Kasthurirangan et al., 2011). 

As a result of the increase in axial lens thickness, anterior chamber depth decreases 

(Koretz et al., 1989, Dubbelman et al., 2001, Atchison et al., 2008, Kasthurirangan et al., 

2011) and anterior segment length increases.  There is some debate as to whether 

equatorial diameter of the crystalline lens also becomes wider; Kasthurirangan et al. 

(2011) and Atchison et al. (2008) found an increase in equatorial diameter, however 

many other studies have found no significant change in equatorial diameter with 

progressing age (Strenk et al., 1999, Jones et al., 2007).  Since the age-related changes 

in shape are localised to the inner portion of the crystalline lens, the external shape of 

the older unaccommodated lens, resembles that of a younger accommodating lens 

(Strenk et al., 1999, Jones et al., 2007) .   
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In addition to the above structural shape changes of the crystalline lens, the RI of the 

lens nucleus reduces with age (Dubbelman et al., 2001, Moffat et al., 2002), although 

the magnitude of this change has not always been shown to be significant (Jones et al., 

2005, Jones et al., 2007).  Due to the increase in the curvature of the crystalline lens, 

there should be a myopic shift in the eye with age, however it is commonly observed 

that the ageing eye shows a hyperopic shift (Attebo et al., 1999, Wong et al., 2001, 

Wickremasinghe et al., 2004, Shufelt et al., 2005).  This is known as the lens paradox, for 

which there are two possible explanations (Moffat et al., 2002, Koretz and Cook, 2001).  

Firstly, a flattening of the central lens surface, and an increase in steepness towards the 

lens periphery resulting in a reduction in the gradient index power.  An alternative 

explanation is that either a decrease in RI in the inner lens nucleus, or an increase in RI 

in the outer lens cortex could lead to a decrease in the variation of RI through the lens 

(Smith et al., 1992, Jones et al., 2005, Jones et al., 2007, Kasthurirangan et al., 2008).   

Both the lens stiffness and the lens stiffness gradient increases with age; in younger 

lenses the lens nucleus is softer than the lens cortex, however this stiffness differential 

reverses with age (Heys et al., 2004, Weeber et al., 2007).   Consequently, these changes 

reduce the ability of the lens cortex to mould and increase the thickness of the lens 

nucleus during accommodation, resulting in the overall loss of accommodative ability.    

As well as the above changes there is a reduction in circumlental space with progressing 

age (Strenk et al., 2000, Kasthurirangan et al., 2011).   
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1.7.2 Age-related changes in the ciliary body 

Physiologically age changes in the ciliary body include a decrease in: the total area and 

length of the ciliary muscle (Tamm et al., 1992b, Pardue and Sivak, 2000), the density of 

longitudinal, meridional and radial fibres of the ciliary muscle (Tamm et al., 1992b), and 

the ciliary muscle ring diameter (Strenk et al., 1999, Strenk et al., 2006, Kasthurirangan 

et al., 2011, Richdale et al., 2016).  In addition to these changes, with increasing age the 

inner apex of the ciliary muscle has been shown to displace forwards and inwards 

towards the axis of the eye (Strenk et al., 1999, Pardue and Sivak, 2000, Strenk et al., 

2004, Strenk et al., 2010, Sheppard and Davies, 2011).  It is unclear as to whether this is 

a cause or effect of the ciliary muscle being pulled inwards by the anterior zonules 

(Tamm et al., 1992b).  As a consequence of these changes, it has been suggested that  

the ciliary muscle is impaired in its ability to reshape the crystalline lens into its flatter 

unaccommodated state (Glasser, 2011).  Indeed studies have shown that with ageing 

there is a loss of muscle fibres from the ciliary muscle, and an increase in connective 

tissue (Nishida and Mizutani, 1992, Tamm et al., 1992b, Pardue and Sivak, 2000). 

Sheppard and Davies (2011) and Richdale et al. (2013) reported conflicted observations 

on whether the cross-sectional thickness of the ciliary muscle significantly decreases 

with age.  Ambiguity in the findings may be related to differences in the methodologies 

employed in these studies; nevertheless the age-related changes observed in these 

studies have been relatively small, and thought to be insignificant in comparison to the 

overall cross-sectional thickness, with accommodative effort (Richdale et al., 2013).  
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Therefore, it has been concluded that the overall accommodative function of the ciliary 

muscle does not significantly decline with age (Strenk et al., 1999, Pardue and Sivak, 

2000, Strenk et al., 2005, Strenk et al., 2006, Strenk et al., 2010, Sheppard and Davies, 

2011, Richdale et al., 2013, Shao et al., 2015, Richdale et al., 2016).  Furthermore, the 

age-related changes observed in the physiological structure and function of the ciliary 

muscle are not thought to be significant enough to contribute to the development of 

presbyopia in humans.   

 

1.7.3 Age-related changes in the lens zonules 

Due to continual growth of the lens with age; the distance between the site of zonular 

insertion into the lens capsule, and the lens equator increases (Farnsworth and Shyne, 

1979) such that the zonules-free region decreases (Sakabe et al., 1998).  Farnsworth and 

Shyne (1979) noted that the rate of increase in this distance is relatively constant until 

the fifth decade of life, when it increases more rapidly.   This should result in a change 

in zonular tension with age, however Glasser (2011) stated that this does not occur for 

two reasons.  Firstly because the distance between the ciliary body and the site of the 

lens zonules insertion into the lens capsule remains constant with age, and secondly 

because the elasticity of the lens zonules remains constant with age. 
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1.7.4 Factors affecting the onset of presbyopia  

As discussed by Hickenbotham et al. (2012) there are a number of primary, secondary 

and tertiary factors which can affect the onset of presbyopia.  These are summarised in 

Table 1.2.  There are many interactions between these factors, for instance exposure to 

ultra-violet light (UV) may be dependent on occupation and ethnicity; gender may 

impact on occupation and arm length (Millodot and Millodot, 1989).  Age is likely to 

influence several of these factors, given that with advancing age the pupil size and 

focusing ability decreases, lens density increases, and there are changes in refractive 

error.  Studies on the impact of some of the tertiary factors stated in Table 1.2 have 

been discussed. 

 

Primary Factors Secondary Factors Tertiary Factors 

Focusing ability 

Habitual reading 

distance 

Depth of focus 

Refractive error/ocular 

aberrations 

Occupation/ near vision 

requirements 

Arm length 

Pupil size 

Lens optical density 

UV exposure 

Indoor lighting levels 

Complexity of near task 

Gender 

Ethnicity 

Social economic status 

 

 

Numerous studies have noted that females are prescribed higher near corrections than 

age-matched males (Pointer, 1995, Duarte et al., 2003, Burke et al., 2006, Nirmalan et 

al., 2006, Patel et al., 2006, Hashemi et al., 2017), although Hunter and Shipp (1997) and 

Table 1.2: Factors that affect the onset of presbyopia 
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(Castagno et al., 2017) failed to identify a difference.  Conversely, several studies have 

reported that female subjects demonstrate higher AoA than age-matched males, 

although these findings are ambiguous (Koretz et al., 1989, Carnevali and Southaphanh, 

2005, Kragha, 1986, Millodot and Millodot, 1989).  It has therefore been suggested that 

the apparent need for females to have a higher near correction is not due to 

physiological differences in accommodation, but rather due to differences based on 

gender; that is, females generally have shorter arms (and therefore shorter working 

distances) (Millodot and Millodot, 1989) tending to do more detailed near work 

(Hickenbotham et al., 2012). 

Studies into the differences in ethnicity and the onset of presbyopia have been 

numerous with conflicting results. A study which compared Hispanic populations and 

non-Hispanic populations in the USA found no significant difference between the age of 

onset and progression of presbyopia (Carnevali and Southaphanh, 2005).   Hunter and 

Shipp (1997) compared the reading additions of Caucasians and black African-American 

patients attending for sight tests at the University of Alabama, Birmingham School of 

Optometry and found no significant difference in the age of onset or progression of 

presbyopia.  However other studies conducted in South Africa (Hofstetter, 1949, 

Hofstetter, 1963, Hofstetter, 1968),  Nigeria (Olurin, 1973), and Southeast Asia (Ong, 

1981) that did similar record reviews found that black African patients were prescribed 

higher reading additions at a significantly younger age.  The reasons for the apparent 

differences in these findings could indicate that there are other influential factors which 
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affect the onset of presbyopia, possibly relating to: social economic status (Hunter and 

Shipp, 1997) and ambient temperature of the living environment (Weale, 2003).  Hunter 

and Shipp (1997) discussed how previous studies found that socio-economic status, such 

as low levels of education and low levels of income were associated with presbyopia; 

however their study failed to confirm this link when comparing reading additions 

prescribed to patients, to the average incomes of their zip codes.  Weale (2003) 

discussed how numerous studies have linked ambient temperature to age of onset and 

development of presbyopia: suggesting that, the nearer an individual lives to the 

equator (and therefore generally experiences higher ambient temperatures), the earlier 

and faster they are likely to develop presbyopia.  In support of this supposition, Truscott 

and Zhu (2010) reported an association between heat and the biomechanical changes 

which occur in the crystalline lens during presbyopia and cataract formation. 

 

1.8 In vivo imaging of the accommodative apparatus 

Previously, it has been difficult to image the ciliary muscle in vivo due to the position of 

the iris (Strenk et al., 2006).  High resolution imaging of both the crystalline lens and the 

ciliary body in vivo during accommodation has only been possible since more recent 

advances in imaging with Anterior-Segment Optical Coherent Tomography (AS-OCT) 

(and to a lesser extent MRI scanners, (Strenk et al., 1999, Kasthurirangan et al., 2011, 

Sheppard et al., 2011)).   
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Previous to the advancement of imaging instruments, studies observing the ciliary body 

were conducted either in vitro, in patients with aniridia, or on Rhesus monkeys.   Rhesus 

monkeys were thought to provide a sound model for accommodation and presbyopia 

research because their accommodative apparatus (Koretz et al., 1987), mechanisms 

(Glasser and Kaufman, 1999, Croft et al., 2006), and development of presbyopia is 

similar to humans (Kaufman et al., 1982, Neider et al., 1990).  Numerous studies have 

observed that the primary underlying mechanism of presbyopia in Rhesus monkeys is 

the same as in humans, i.e. an increase in stiffness of the crystalline lens with age 

(Glasser and Campbell, 1999, Glasser and Kaufman, 1999, Heys et al., 2004, Richdale et 

al., 2008, Richdale et al., 2013).  Despite these similarities there are some key structural 

developmental differences between the human and Rhesus monkey crystalline lens, 

ciliary muscle and choroid (Koretz et al., 1987, Koretz et al., 1988, Lutjen-Drecoll et al., 

1988).  In contrast to humans, one of the factors that significantly contribute to 

presbyopia in Rhesus monkeys is a reduction in the contractility of the ciliary muscle 

with increasing age (Lutjen-Drecoll et al., 1988), as a result of age-related changes in the 

choroid (Tamm et al., 1991, Tamm et al., 1992a).  Furthermore, the ciliary muscle in a 

Rhesus monkey moves posteriorly with age, in contrast to the anterior movement 

observed in ageing humans (Strenk et al., 1999, Pardue and Sivak, 2000, Strenk et al., 

2004a, Strenk et al., 2010, Sheppard and Davies, 2011).  Due to these differences in the 

ageing of the ciliary muscle and other accommodative apparatus between humans and 

Rhesus monkeys, further study of the human ciliary muscle in vivo is required.   
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The motivation for developing an improved understanding of the structure and function 

of the human ciliary muscle has numerous reasons.  The current drive in research to 

develop novel methods to restore accommodation (Glasser, 2008) has led to the 

development of accommodative and extended depth of focus IOL designs (Sheppard 

and Davies, 2010, Lichtinger and Rootman, 2012).  By establishing the per dioptre 

changes in the biometric measurements of the ciliary muscle and crystalline lens with 

accommodation, an improved understanding of the interactions between an 

accommodating IOL and the ciliary muscle, could be obtained.  It is envisaged that this 

would better inform accommodating IOL design and optimum placement within the eye 

(Sheppard et al., 2010, Richdale et al., 2013, Richdale et al., 2016).    

Recent research has suggested that the ciliary muscle morphology may also have a role 

in myopigenis or accommodative dysfunction.  Studies have shown that ciliary muscle 

thickness varies with refractive error in children and young adults;  the ciliary muscle in 

myopic eyes has been found to be longer (Sheppard and Davies, 2010) and thicker in the 

posterior region (Bailey et al., 2008, Schultz et al., 2009, Oliveira et al., 2005, Kuchem et 

al., 2013, Buckhurst et al., 2013, Pucker et al., 2013).  However, the relationship between 

the change in morphology or physiology of the ciliary muscle and the development of 

reactive error is unknown, and requires further research (Bailey et al., 2008, Sheppard 

and Davies, 2010, Buckhurst et al., 2013, Pucker et al., 2013). 

Although AS-OCT imaging provides numerous research opportunities, there are some 

limitations with this technique.  One challenge lies within image analysis; trying to 
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identify anatomically corresponding points along the ciliary muscle for each individual 

subject, at which to compare changes in thickness in the ciliary muscle as it contracts is 

problematic (Bailey, 2011).  Bailey et al. (2008) and Oliveira et al. (2005) measured the 

ciliary muscle thicknesses at points set posteriorly from the scleral spur.  Sheppard and 

Davies (2010) argued that this does not consider the fact that ciliary muscle thickness 

and length varies with refractive error (Oliveira et al., 2005), therefore Sheppard and 

Davies (2010) attempted to identify the length of the ciliary muscle and then split the 

body and considered the thickness at proportional locations of 25%, 50% and 75% 

relative to the length. Despite its benefit, this technique has been suggested to be 

difficult to replicate due to the limited resolution of the OCT images making it difficult 

to identify the end of the ciliary muscle (Bailey, 2011).   

Images produced by AS-OCT include some inherent optical distortions, which need to 

be corrected by applying an appropriate refractive index (RI) to the image.  The AS-OCT 

Zeiss Visante (Carl Zeiss Meditec Inc., Dublin, CA, USA), which is often employed in ciliary 

muscle studies, apply n= 1.000 (RI of air) to the structures before the anterior corneal 

surface, n=1.388 (RI of the cornea) to all of the corneal layers, and 1.343 to all of the 

structures behind the posterior corneal surface (Richdale et al., 2008).   However, the RI 

of the ciliary muscle and sclera are estimated to be 1.382 and 1.48, respectively (Tearney 

et al., 1995, Dirckx et al., 2005).  This has led to disparities between the exact RI, and 

way the RI is applied to the image data during image analysis  (Bailey et al., 2008, 
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Sheppard and Davies, 2010, Kao et al., 2011, Sheppard and Davies, 2011, Lossing et al., 

2012, Richdale et al., 2012, Richdale et al., 2013, Laughton et al., 2015).  

In studies that have examined the ciliary muscle in vivo during accommodation, 

accommodative lag should be considered (Charman, 2008, Lossing et al., 2012, Richdale 

et al., 2013).  To accurately assess the ciliary muscle shape change per dioptre of 

accommodation, the accommodative response of the eye should be measured 

simultaneously, rather than assumed to be accurate to the accommodative demand of 

the target (Lossing et al., 2012).  In view of this recommendation, several investigators 

have implemented the use of power refractors to monitor accommodative response 

whilst the images are captured with the Visante OCT (Lossing et al., 2012, Richdale et 

al., 2012, Richdale et al., 2013, Richdale et al., 2016).   However due to technical 

restrictions relating to the size and design of OCTs, many studies have been unable to 

implement this facility to track the accommodative response simultaneously (Sheppard 

and Davies, 2010).    

AS-OCTs have in built software to allow the analysis of images and biometric 

measurements of structures.   To do this, the software features movable straight-line 

calliper tools.  However, utilising these straight-line callipers to measure the ciliary 

muscle does not account for scleral curvature and could therefore lead to increased 

variability in the thickness measurements, particularly across the posterior portion (Kao 

et al., 2011). 
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Solutions to these limitations have varied across the literature, however, to allow 

comparisons between studies, standardisation in the methods utilised to capture and 

analyse images is essential (Bailey, 2011).  Furthermore, much of the literature which 

has used an AS-OCT to study the ciliary muscle in vivo, has utilised the time domain AS-

OCT Zeiss Visante (Carl Zeiss Meditec Inc., Dublin, CA, USA), this instrument not allow 

the selection of a specific reference point for scan analysis (Bailey et al., 2008, Sheppard 

and Davies, 2010, Sheppard and Davies, 2011, Lewis et al., 2012, Lossing et al., 2012, 

Richdale et al., 2012, Buckhurst et al., 2013, Pucker et al., 2013, Richdale et al., 2013, 

Richdale et al., 2016). This could therefore limit the repeatability and validity of any 

results obtained from repeated measurements.   

The development of anterior segment swept source spectral OCT, has advanced the 

resolution and speed of image acquisition.  As yet, to the author’s knowledge there have 

been no studies examining the ciliary muscle utilising a swept-source AS-OCT, such as 

the Tomey CASIA SS-1000 AS-OCT (Tomey, Nagoya, Japan).    

 

1.9 Ageing 

Ageing in any organism is inevitable. In biological papers, ageing is often discussed as a 

chronic disease; a simplified overview states that as this disease progresses there is  

reduced resilience to respond and adapt to environmental stresses, due to reduced 
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physiological capacity, which leads to greater susceptibility to age-related health 

conditions (Troen, 2003).   

There are numerous ageing theories or processes used to explain the mechanisms of 

biological ageing; these processes are broadly split across two (not mutually exclusive) 

categories: pre-programmed/developmental-genetic theories, and stochastic/damage-

error theories (Troen, 2003, Jin, 2010, Bao et al., 2014).    

Ageing is an extremely complex process affected by both physiological and 

environmental factors, from cellular to organismic level.  The interspecies and individual 

rate of ageing results from the exposure to physiological and environmental factors, and 

interactions between the ageing theories (Troen, 2003, Davidovic et al., 2010).   Whilst 

some studies debate that one ageing theory has a more profound effect on the rate of 

ageing than others, it is likely that one single ageing theory could not solely explain the 

process (Troen, 2003, Jin, 2010, Bao et al., 2014, Goldsmith, 2015, Libertini, 2015, 

Goldsmith, 2016).    

An overview of the possible interactions between the ageing theories is shown in Figure 

1.3. These interactions are not only between the individual theories, but also across two 

main categories of ageing.  For instance, UV exposure can increase oxidative damage via 

the free-radical theory, which could also affect the rate of somatic DNA damage, the  

DNA damage could lead to genetic mutations, affecting protein and hormone 

production, impacting on the Endocrine and Immunological theories.  A brief overview 

of these theories is given below. 
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1.9.1 Programmed or Developmental-genetic Theories 

1.9.1.1 Programmed longevity 

Programmed longevity theory states that ageing is a result of different genes being 

expressed at different points over a lifetime and that genetic instability can switch 

certain genes ‘on’ or ‘off’ (Davidovic et al., 2010).  Troen (2003) has discussed that this 

is possibly an evolutionary development, and that it can lead to the different biological 

systems within one organism, ageing at different rates. 

Figure 1.3:  The interactions and relationships between the different ageing theories. 
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1.9.1.2 Endocrine theory 

The Endocrine theory suggests that ageing is controlled by ‘pre-set’ biological clocks 

regulated by hormones from the endocrine system.  This theory has been linked to the 

menopause in women, and insulin/IGF-1 signalling (that has a role in the regulation of 

ageing) (Bao et al., 2014). 

 

1.9.1.3 Immunological theory 

The Immunological theory states that the development of the immune system is 

dynamic throughout a human’s life.  In childhood the immune system is in a stage of 

development, which peaks at, or just after puberty, and then begins a programmed 

decline.  This leaves the body more vulnerable and susceptible to infections, and chronic 

diseases such as Alzheimer’s disease (Rozemuller et al., 2005), and cardiovascular 

disease (CVD) (Hearps et al., 2014). 

 

1.9.1.4 Telomere theory 

The telomere theory states that the lifespan of an organism is dictated by the lifespan 

of its composing cells and the number of times those cells can divide.  Replication of 

DNA during cell division is terminated at the sequence of an end telomere (TTAGGG).  

Telomeres shorten after each cell division due to intrinsic molecular factors; this can 

lead to DNA damage and cell death (Pathai et al., 2013).  Therefore the number of times 
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a human cell can divide is thought to be pre-programmed and is affected by the length 

of the telomeres at the end of chromosomes (Park and Yeo, 2013).  This process is 

known to be accelerated by oxidative stress.   

 

1.9.2 Stochastic or Damage/Error Theories 

1.9.2.1 Wear and tear theory 

Initially suggested by Dr August Weismann in 1882, this theory states that as cells and 

tissues age, they wear out due to continual use (Jin, 2010).   Aided by exposure to ‘stress’ 

environments such as UV exposure, smoking, and toxins in our diet, this therefore 

relates to the free-radical theory (Salvi et al., 2006). 

 

1.9.2.2 Cross-linking theories 

This theory states that ageing is due to the accumulation of cross-linked proteins 

(specifically collagen) causing damage to cells and tissues via two mechanisms; firstly, 

enzyme-controlled processes and secondly, via glycation which involves oxidation and 

glucose (Bailey et al., 1998).  Glycation is often associated with the development of both 

presbyopia and cataracts (Truscott and Zhu, 2010). 
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1.9.2.3 Free radical theory 

The free radical theory is one of the stochastic ageing theories, that can be affected by 

physiological and environmental factors.  The free radical theory links the oxidative 

damage caused by reactive oxygen species (ROS) to ageing (Harman, 1956).  ROS are 

unstable molecules with at least one unpaired electron and are therefore highly 

reactive.  ROS and free radicals acquire an electron from a surrounding molecule; 

leading to further electron transport chain reactions and production of further ROS.  If 

the chain of reaction is not halted, damage occurs to surrounding biological structures 

including lipids, nucleic acids, and proteins, as well as cellular structures such as cell 

membranes and DNA (Jacob and Mason, 2005).   There are numerous anti-oxidant 

molecules including ascorbic acid (vitamin C), vitamin E, reduced glutathione (GSH), 

various enzymes and proteins, which provide redox reactions to stabilise ROS and free-

radicals.  If the levels of ROS exceeds the levels of anti-oxidant defence molecules, 

systemic oxidative stress occurs.  Prolonged periods of systemic oxidative stress can lead 

to increased levels of systemic chronic inflammation in humans.  There is a complex 

interlinking relationship between chronic inflammation and oxidative stress, creating a 

vicious cycle, whereby chronic inflammation can trigger the release of more ROS, further 

exacerbating oxidative stress (Bryan et al., 2013).  This is known to accelerate the ageing 

process (Sohal, 2002, Harper et al., 2004, Touyz and Briones, 2011, Vitale et al., 2013) 

and directly affect the cardio-vascular system, causing  CVD such as hypertension, which 

are both caused by, and affects the levels of chronic inflammation (Touyz and Briones, 
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2011).  This theory is often linked to the formation of cataracts (Truscott, 2005, Lobo et 

al., 2010). 

 

1.9.2.4 DNA damage theory 

DNA damage theory states that ageing occurs due to the accumulation of damage to the 

genetic material of cells. Damage to cellular DNA occurs naturally and continually in 

living cells (often from ROS); whilst most of this damage is repaired, if the rate of damage 

exceeds the rate of repair by DNA polymerases and other repair mechanisms, the 

damage can accumulate resulting in genetic mutations.  These genetic mutations can 

lead to cell malfunction, specifically in non-dividing cells, resulting in cell death, leading 

to tissue damage (Park and Yeo, 2013).   

 

1.9.2.5 Rate of living theory 

Rate of Living theory states that the greater the metabolic rate of an organism, the 

shorter its life span, i.e. the length of an individual’s life is inversely proportional to the 

rate of energy expenditure (Sohal, 2002).  This could be linked to the free-radical theory, 

since the greater the energy expenditure, the higher the metabolic rate which 

consequently increases the rate of ROS production. 
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1.9.2.6 Mitochondrial theory 

The mitochondrial theory links with both the free radical and the DNA damage theories 

of ageing.  Park and Yeo (2012) describes how the high rate of metabolic reactions 

(including aerobic respiration) occurring within mitochondria results in the 

mitochondrial-DNA being more susceptible to damage from ROS and free radicals (Pak 

et al., 2003, Harper et al., 2004).  Within the mitochondria as levels of oxidative stress 

increase damage occurs, this is compounded by anti-oxidants and DNA repair enzymes 

being external to the organelle.  Damage to mitochondrial DNA can lead to reduced 

energy production and an increased production of free radicals (Balaban et al., 2005).  

Dysfunction of mitochondria has been linked to cataract formation along with an 

imbalance of ROS (Brennan and Kantorow, 2009).    

 

1.9.3 Anti-ageing theories 

Many theories on lifestyle modifications that can increase lifespan exist (Sohal, 2002, 

Jin, 2010, Park and Yeo, 2013).  Increasing anti-oxidant intake and calorie-restricted 

diets, have both resulted in increased longevity (Simpson et al., 2017); however, for 

ethical and practical reasons, this latter modification has not been tested in humans and 

any dietary changes need to be made with caution, as the full effects of this may still be 

unknown (Lobo et al., 2010).  Exercise is known to have advantageous effects on the 

body due to increased muscle and skeletal tissue, reduction in body weight and 

reduction in risk of CVD, which could increase lifespan (Park and Yeo, 2013). 
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1.10 Physiology and ageing of the crystalline lens 

The crystalline lens requires energy (in the form of ATP) for growth and to maintain 

transparency, this is mostly derived from glucose via aerobic respiration and anaerobic 

glycolysis (Mathias et al., 2010).  This, along with other homeostasis reactions exposes 

the lens cells and organelles to a constant supply of endogenous ROS and free radicals, 

increasing the risk of oxidative damage.  Other exogenesis ROS i.e. from smoking and 

UV radiation can further increase the levels of oxidative stress.  It is known that vitamin 

E and GSH located in cell membranes, along with ascorbic acid (vitamin C), cysteine and 

many other enzymes act as repair systems; providing redox reactions to stabilise ROS 

and free-radicals, reducing oxidative stress (Lou, 2003, Michael and Bron, 2011).   

GSH has been stated as the chief anti-oxidant in the lens (Giblin, 2000), Truscott (2005) 

suggested that concentrations of 2mM (millimolars) of GSH is sufficient to protect 

against oxidative damage causing cataracts.  GSH not only directly reduces ROS and free 

radicals; it acts synergistically with other anti-oxidants such as ascorbic acid.  With 

increasing age, the production, activity and recycling of GSH falls (Zhang and Augusteyn, 

1994, Spector, 1995), leaving the lens nucleus cells more susceptible to damage from 

oxidative stress. 

As discussed in Section 1.1, the crystalline lens contains an abundance of structural 

protein types: α-crystallin, β-crystallin and γ-crystallins.  Lens α-crystallins have a 
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principal role in the stress response and cell survival (Andley et al., 1998, Andley, 2008), 

and they have two main functions: 

1. Act as heat shock proteins (HSP) and as molecular chaperones, responding to 

potential stresses from heat, inflammation and hypoxia  (Lindquist and Craig, 

1988). 

2. Molecular chaperone function (Graw, 2009). 

Although the crystalline proteins are relatively stable, through-out their life they 

undergo numerous non-enzymatic modifications.   

Deamidation affects α- and β- crystallins, the process involves the unfolding of their 

tertiary structure, resulting in insolubility, and leaving them more vulnerable to 

oxidation.  This has been related to cataract formation, and is known to occur naturally 

during embryogenesis, and throughout life (Michael and Bron, 2011). 

Glycation occurs via the Maillard reaction in the lens (Nagaraj et al., 2012); glycation 

involves covalent modification of the crystallins by sugar aldehyde groups such as 

glucose, fructose, glyoxal, pentoses and resultant products of ascorbic acid degradation 

(Ortwerth and Olesen, 1988).  The end products of glycation are termed advanced 

glycation end products (AGEs).  AGEs formulated in the lens nucleus can contribute to 

the accumulation of chromophores, which increase absorption of blue-light and lead to 

nuclear opacities.  AGEs can also form cross-links with proteins, and bind with receptors 

forming receptor advanced glycation end products (RAGE), causing an inflammatory 
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response and increasing the state of oxidative stress (Pathai et al., 2013).   The resulting 

modifications of the α- and β- crystallins decreases chaperone function, which is further 

affected by oxidative damage and truncation of α- and β- crystallins.   

Protein cross-linking, the formation of high-molecular weight aggregates, and 

insolubility of crystallins occur as a result of oxidation of modified or unfolded crystallins.  

Each of these can lead to changes in the highly-ordered protein structure, leading to loss 

of lens transparency, light scatter and hardening of the lens.  This results in cataract 

formation and the loss of accommodative function.  The changes in the lens nucleus can 

contribute to the formation of chromophores leading to lens nucleus opacities (Michael 

and Bron, 2011). 

Loss of lens transparency, increased light scatter and protein insolubility also occurs as 

a direct result of loss of α-crystallin chaperone activity with advancing age (Graw, 2009).  

These changes are accelerated as anti-oxidant defence levels drop, leaving proteins 

susceptible to oxidative damage (Giblin, 2000, Harding, 1970).   

Truscott and Zhu (2010) and Pathai et al. (2013) have suggested that the underlying 

ageing mechanisms for the development of both presbyopia and cataracts are similar.  

Both of these ocular conditions have been associated with the ageing theories of cross-

linking, free-radical, mitochondrial, DNA-damage, and telomere (Hegde and Varma, 

2005, Truscott, 2005, Brennan and Kantorow, 2009, Truscott, 2009, Lobo et al., 2010, 

Truscott and Zhu, 2010, Babizhayev et al., 2011).  Numerous physiological factors such 

as obesity, conditions related to metabolic syndrome, and nutritional status (Paunksnis 
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et al., 2007, Lindblad et al., 2008, Sabanayagam et al., 2011, Ghaem Maralani et al., 

2013), as well as environmental factors such as smoking, (Cumming and Mitchell, 1997, 

Klein et al., 1999, Klein et al., 2003, Raju et al., 2006, Xu et al., 2006, Navarro Esteban et 

al., 2007, Tan et al., 2008c, Wu et al., 2010, Ye et al., 2012), promote these ageing 

processes and are associated with an increased risk of, or the earlier development of 

cataracts (Robman and Taylor, 2005).  

 

1.10.1  Obesity  

Both an increased Body-Mass Index (BMI) and greater central adiposity, as predictors of 

obesity, have been associated with cataract formation (Glynn et al., 1995, Schaumberg 

et al., 2000, Paunksnis et al., 2007, Lindblad et al., 2008, Lim et al., 2009, Sabanayagam 

et al., 2011, Ghaem Maralani et al., 2013).  Furthermore, Glynn et al. (1995) found a 

dose-response relationship for BMI and cataract, with a 2-point increase on the BMI 

scale, increasing the risk of cataract by 12%.   

There are some discrepancies between studies as to which types of cataracts are 

associated with an increased BMI.  The Blue Mountains Eye Study (BMES) concluded 

that a BMI >30 was associated with a higher incidence of cortical cataracts after 5 years 

(Ghaem Maralani et al., 2013), in agreement with the Singapore-Malay Eye Study (SMES) 

(BMI >25) (Sabanayagam et al., 2011), and another study which examined this link in an 

Asian population (BMI >30) (Lim et al., 2009); however this latter study also found an 

association between higher BMI (>30) and posterior subcapsular cataracts.   
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The mechanism underlying the relationship between raised BMI and cataracts is thought 

to be due to oxidative stress.  Excessive visceral fat is known to increase chronic 

inflammation; increasing the levels of oxidative stress (Fernández-Sánchez et al., 2011, 

Lumeng and Saltiel, 2011, Savini et al., 2013).  Furthermore, both adults and children 

with excessive central adiposity are known to have reduced levels of anti-oxidants 

(Canoy et al., 2005, Andersen et al., 2006, Kaidar-Person et al., 2008); potentially further 

increasing the oxidative stress levels and chronic inflammation.  Systemic chronic 

inflammation in humans increases the risk of the metabolic syndrome disorders such as  

hypertension, hyperlipidaemia, and type 2 diabetes (Dandona et al., 2005, Jacob and 

Mason, 2005, Kyselova et al., 2005, Cheung and Wong, 2007, Self-Medlin et al., 2009, 

Agarwal et al., 2016, Kim et al., 2016), which have been found to be associated with 

increased rates of biological ageing (Tzanetakou et al., 2012, Babizhayev et al., 2014) 

 

1.10.2   Metabolic syndrome  

Metabolic syndrome is the term given to a group of systemic conditions; dyslipidaemia, 

hypertension (HBP), central obesity and diabetes mellitus.  These conditions are known 

to both raise and be caused by raised levels of systemic inflammation, which can directly 

and indirectly lead to a greater risk of other conditions within the metabolic syndrome 

group (Savini et al., 2013). 

Acute levels of inflammation in the body are known to increase the oxidative state of 

tissues.  In the eye this can lead to an increased risk of ocular pathology such as diabetic 
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retinopathy (Li et al., 2017), age-related macular degeneration (ARMD) (Venza et al., 

2012) and cataracts (Spector, 1995).  The association between metabolic syndrome and 

cataracts is well established.  Two cross-sectional European studies have found a 

positive relationship with metabolic syndrome and the risk of cataract (Lindblad et al., 

2008, Paunksnis et al., 2007).  The first stage of the BMES was a cross-sectional study, 

which examined the incidence of cataracts in metabolic syndrome and its individual 

component conditions: diabetics, CVD, dyslipidaemia and BMI. This study found that 

metabolic syndrome was associated with a higher incidence of all three types of 

cataracts (Tan et al., 2008b).   Further follow-up for a longitudinal study as part of the 

BMES concluded that metabolic syndrome was associated with an increased 5-year 

incidence of both cortical and posterior sub-capsular cataracts (Ghaem Maralani et al., 

2013).  The SMES was a cross-sectional study with a South Asian-based population; it 

found that metabolic syndrome was associated with a higher prevalence of cortical 

cataracts, but not nuclear sclerotic or posterior subcapsular cataracts (Sabanayagam et 

al., 2011).   

 

1.10.3   Hypertension (HBP) 

Associations between HBP and cataract development have been equivocal.  Several 

studies have found a general association between HBP and with either the development 

of cataracts or cataract extraction (Paunksnis et al., 2007, Lindblad et al., 2008, Tan et 

al., 2008b, Sabanayagam et al., 2011). Other studies have found associations between 
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HBP and certain types of cataract, specifically nuclear sclerotic (Na et al., 2014), and 

posterior subcapsular (Richter et al., 2012).   

 

1.10.4   Dyslipidaemia  

A relationship between raised levels of serum triglycerides and cataracts was noted in a 

cross-sectional study in Europe (Paunksnis et al., 2007).  In contrast, the cross-sectional 

portion of the BMES did not suggest a relationship between low-HDL cholesterol and 

cataract formation (Tan et al., 2008b).  However, the longitudinal follow-up did find an 

association between low-HDL and cortical cataract formation (Ghaem Maralani et al., 

2013).  The authors concluded that the 10-year time period was needed to observe this 

relationship and suggested that oxidative stress was the underlying mechanism behind 

this association between dyslipidaemia and cataract formation (Varma et al., 1984, 

Klimov et al., 1993, Ghaem Maralani et al., 2013). 

 

1.10.5   Diabetes  

A higher incidence of cataracts in diabetics compared to non-diabetics is well 

established (Janghorbani et al., 2000, Lindblad et al., 2008, Kang et al., 2016).  The 

underlying mechanism behind this observation is thought to be due to poor glycaemic 

control and increased levels of oxidative stress (Larsen et al., 1989, Biswas et al., 2004, 

Hegde and Varma, 2005, Hashim and Zarina, 2012).  Sorbitol is a sugar derived from 
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glucose, and if glycaemic control is poor, sorbitol can accumulate in the crystalline lens, 

causing osmotic stress, resulting in the lens swelling.  This can lead to transient changes 

in refractive error (Skarbez et al., 2010) and transient accommodative paralysis 

(Marmor, 1973).  Moreover, the Maillard reaction, resulting in accumulation of AGEs 

occurs at a faster rate in diabetics (Garlick et al., 1984, Pathai et al., 2013).  Diabetics are 

also known to have lower levels of accommodation compared to non-diabetics (Moss et 

al., 1987, Kergoat and Lovasik, 1991). 

There are some discrepancies over which types of cataracts are associated with 

diabetes; the BMES confirmed a link between diabetes and a higher risk of nuclear 

sclerotic cataracts (Tan et al., 2008b).  Further analysis of the data showed diabetes to 

have an increased 5-year and 10-year incidence of cortical and posterior subcapsular 

cataracts (Ghaem Maralani et al., 2013).  Diabetes has also been identified as a risk 

factor for nuclear sclerotic cataracts in a Korean population (Na et al., 2014).  

Interestingly this study did not find this association for cortical cataracts, which is in 

contrast with the AREDS study that found diabetes to be a significant risk factor for 

cortical cataracts in a North American population (Chang et al., 2011).   

 

1.10.6   Nutritional status 

As previously discussed numerous anti-oxidants are found in the crystalline lens and are 

known to contribute towards the anti-oxidant defence mechanism (Dagnelie et al., 

2000, Lou, 2003, Lien and Hammond, 2011, Koushan et al., 2013, Kang et al., 2016).  
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Therefore, both observational studies and interventional studies have examined 

whether anti-oxidant intake has any effect on the incidence of cataract formation in 

different populations.  

 

1.10.6.1 Observational Studies 

Increased plasma levels of vitamin C & E have been found to be inversely proportional 

to nuclear cataracts in Indian (Dherani et al., 2008) and US populations (Jacques et al., 

2001).   

The Beaver Dam Eye Study (BDES) found a significant inverse relationship between 

lutein and zeaxanthin intake and the risk of cataracts.  This study also assessed the intake 

of other vitamins and the risk of cataracts; there were no associations found with the 

intake of vitamin C or E (Lyle et al., 1999).  However, where a subject was found to have 

other risk factors predisposing them to cataracts, e.g. a positive smoking status, 

increasing the intake of these two vitamins, decreased the risk of cataracts (Lyle et al., 

1999).  Although, it should be noted, that smokers have been observed to have diets 

with fewer nutrients and a reduced vitamin C status, compared to non-smokers 

(Dallongeville et al., 1998).  

Whereas many studies have found an association between an increased intake of 

micronutrients and a reduced risk of cataracts; trying to identify the specific micro-

nutrients involved in this association is difficult due to the contrasting findings.  The 
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cross-sectional stage of the BMES associated a higher intake (greater than the 

recommend daily intake) of protein, vitamin A, niacin, thiamin, and riboflavin, with a 

lower risk of developing nuclear sclerotic cataracts (Cumming et al., 2000).  Another 

investigation reported that the use of vitamin supplements containing vitamins A, 

vitamin B or multivitamins to be associated with reduced risk of nuclear and cortical 

cataracts (Kuzniarz et al., 2001).  However, the longitudinal portion of the BMES 

suggested that an increased long-term intake of vitamin C in isolation or in combination 

with vitamins E, beta-carotene and zinc reduced the risk of nuclear cataracts (Tan et al., 

2008a).    

The Nurses’ Health Study in the USA found that high plasma levels of vitamin C, vitamin 

E, and carotenoids were associated with a lower risk of cataract extraction.  They 

associated higher levels of vitamin A, vitamin C, vitamin E, lutein or zeaxanthin intake 

with a reduced risk of cataract extraction.  The study also found that supplementation 

of either vitamins C or E over a period of 10 years or more was associated with an 

approximately a 20% to 30% lower risk of cataract extraction (Kang et al., 2016).  

Generally these studies (along with many other observational studies), concluded  that 

further research was required to confirm and fully investigate the mechanisms for any 

associations found (Leske et al., 1991, Seddon et al., 1994, Leske et al., 1998, Lyle et al., 

1999, Cumming et al., 2000, Mares-Perlman et al., 2000, Jacques et al., 2001, Kuzniarz 

et al., 2001, Tan et al., 2008a).  
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1.10.6.2 Interventional studies 

There have been numerous interventional studies where the incidents of cataracts have 

been compared between groups of subjects given either supplements or placebos.  

Similarly to the observational studies, these interventional studies have provided 

ambiguous findings. 

The Linxian Cataract Trials in China gave a nutritional deprived population either a 

multivitamin or one of 4 vitamin mixes (containing: riboflavin and niacin, or retinol and 

zinc, or vitamin C and molybdenum, or vitamin E with beta-carotene and selenium) or a 

placebo.  The study reported that the multivitamins reduced the incidence of nuclear 

cataracts by 36%; the mix of riboflavin and niacin also reduced the risk of nuclear 

sclerotic cataracts (by 44%), but increased the risk of posterior sub-capsular cataracts 

(to a smaller degree) (Sperduto et al., 1993).   

Two small interventional studies using lutein and a combination of lutein and zeaxathin 

found an improvement in the visual function of patients with cataract (Olmedilla et al., 

2003), and in patients with no ocular pathology (Kvansakul et al., 2006) 

The Age-Related Eye Disease Study (AREDS) -1 concluded that supplementation with a 

combination of vitamin C, vitamin E, and beta-carotene did not affect the incidence of 

cataract (AREDS I, 2001).  The follow-up AREDS-2 study trialled lutein and zeaxanthin 

supplementations as a treatment for cataract, but found no significant difference 

between the supplemented and placebo group in progression to cataract surgery.  



 

 

 

Page 78 

However, this study did find that lutein and zeaxanthin supplementation was beneficial 

to those who had a low dietary intake of the two nutrients (Chew et al., 2013). 

Two studies of male physicians investigated the effects of vitamin E supplementation vs. 

placebo, vitamin C supplementation vs. placebo, and beta-carotene vs. placebo and 

associations with cataracts, over an 8 and 12-year period.  No significant increases or 

decreases in the incidence of cataracts or progression to cataract surgery was found for 

any of the supplementation groups in comparison to the placebo groups (Christen et al., 

2003, Christen et al., 2010).  Similar findings for the vitamin E supplementation and beta-

carotene supplementation were found in The Women’s Health Study (Christen et al., 

2004, Christen et al., 2008).   

A clinical trial examining the use of a multivitamin vs. placebo in subjects with, or 

without early cataracts found a reduction in incidence of nuclear sclerotic cataracts, but 

an increased incidence of posterior subcapsular cataracts in the supplemented group 

(Maraini et al., 2008). 

Two recent reviews of the available literature from both the observational and 

interventional studies suggest that more data is needed to draw firm conclusions (Chew, 

2013, Weikel et al., 2014).  Despite these recommendations, Weikel (2014) commented 

that the limited data from the interventional studies supported the observational 

studies in suggesting that some nutrients may be beneficial in preventing nuclear 

sclerotic cataracts.  
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1.10.7   Smoking status 

Galor and Lee (2011) have discussed the effects of smoking on overall ocular health: 

they state that smoking heightens the levels of general ocular inflammation, increasing 

oxidative stress whilst decreasing the level of endogenous anti-oxidants in the 

crystalline lens.  In a study examining the effect of smoking on the density of the 

crystalline lens nucleus Pekel et al. (2014) found that heavy smokers had a denser lens 

nucleus than non-smokers, however these differences were not found to be statistically 

significant, possibly due to the small sample size examined.   

Numerous studies on populations of different ethnicities have found smoking to be a 

risk factor for cataract formation, both in isolation but also in association with other 

factors (such as obesity, reduced anti-oxidant intake, and CVD) (Cumming and Mitchell, 

1997, Klein et al., 1999, Klein et al., 2003, Raju et al., 2006, Xu et al., 2006, Navarro 

Esteban et al., 2007, Tan et al., 2008c, Wu et al., 2010, Ye et al., 2012, Kang et al., 2016).   

Three large cross-sectional studies have also examined the association between 

smoking and cataracts; the BDES found a significant correlation between smoking and 

an increased risk of developing nuclear sclerotic cataracts, which further increased with 

the number of years and packs of cigarettes smoked (Klein et al., 1999).  This association 

was confirmed after a 10-year incidence follow-up (Klein et al., 2003). 

The BMES found that smoking was associated with a higher prevalence of nuclear 

sclerotic and posterior subcapsular cataracts (Cumming, 1997).  However, during the 
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long-term follow-up of the BMES the association between smoking and posterior 

subcapsular cataract was not found (Tan et al., 2008c). 

Results from the SMES also associated current smokers with developing nuclear 

cataracts at a younger age, however this study found that smoking increased the risk of 

all 3 major types of cataracts (nuclear, cortical and posterior subcapsular).  Furthermore, 

a border-line (but non-significant) dose-response trend was found for prevalence of any 

type of cataract and subjects who smoke >5 packs per day, compared to non-smokers.  

This trend was found to be stronger and significant for nuclear-sclerotic cataracts and 

subjects who smoked > 5 packs of cigarettes per week, compared to non-smokers.  

Interestingly the study found that past smokers showed no increased risk of cataract 

development (Wu et al., 2010), suggesting a possible recovery system.   

 

1.10.8   Alcohol intake 

Several studies have investigated whether alcohol intake affects the risk of developing 

cataracts with ambiguous findings. 

The BDES found a positive relationship between alcohol intake and the incidence of 

cataract (Klein et al., 1999); these findings have been supported by other studies 

(Clayton et al., 1982, Harding and Van Heyningen, 1988).  In comparison, the cross-

sectional BMES found an increased risk of cataracts in heavy drinkers only if they were 

also heavy smokers (Cumming and Mitchell, 1997).  The long-term follow-up of the 

BMES found that both heavy drinkers (> 2 standard drinks per day) and non-drinkers 
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were at a significantly higher risk of cataract surgery, in comparison to moderate 

drinkers (1-2 standard drinks per day) (Kanthan et al., 2010).  Contrary to these 

observations, however some investigators have failed to find any association between 

alcohol consumption and cataract formation (Italian-American Cataract Study Group, 

1991, Leske et al., 1991, Wu et al., 2010).    

 

1.10.9  UV exposure 

Increased exposure to UV-A and UV-B can increase the levels of oxidative stress in the 

crystalline lens and is therefore known to elevate the risk of cataracts (Robman and 

Taylor, 2005, Roberts, 2011).  Most recently, Na et al. (2014) showed that daily exposure 

of >6 hours of sunlight, significantly increased the risk of both nuclear sclerotic and 

cortical cataracts.  Both decreased cloud cover (Mohan et al., 1989) and increased 

outdoor activities (Italian-American Cataract Study Group, 1991) have also been 

associated an increased risk of cataract.      

 

1.10.10 Socio-economic status 

It has been concluded that low socio-economic status is a risk factor for numerous eye 

pathologies such as glaucoma, diabetic retinopathy, ARMD and cataracts (Cackett et al., 

2008).  Several studies have examined the relationship between socio-economic status 

in isolation and in conjunction with other modifiable factors whilst assessing the 
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prevalence of cataracts in different populations around the globe.  Generally these 

studies have observed that a lower level of education (Mohan et al., 1989, Italian-

American Cataract Study Group, 1991), a lower income, or a lower-entry job level are 

associated with a higher risk of cataracts (Reidy et al., 1998, Foster et al., 2003, Klein et 

al., 2003, Krishnaiah et al., 2005, Athanasiov et al., 2008).   

 

1.11  Conclusions  

With the current demand for developing novel solutions of restoring accommodation 

after presbyopia or cataract removal, it is critical to have an improved understanding of 

the structure and physiology of the accommodative apparatus including the crystalline 

lens, ciliary muscle, and the lens zonules.   Additionally, it is vital that the age-related 

changes that affect these structures, and factors that can influence the rate of these 

changes are identified and mechanisms understood.   

In view of these objectives, it is evident that accurate and repeatable methods of 

assessing accommodation are required to determine the success of methods in 

restoring accommodation, and to clinically investigate and manage accommodative 

dysfunction and presbyopia.   All subjective and objective methods of measuring 

accommodation provide useful assessments of the different parameters of the 

accommodative function.   However, standardisation of these methods is imperative to 
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allow comparisons of findings between studies, and allow further understanding of the 

relationships between objective and subjective tests.   

In research, the dynamic profile of accommodation is often examined; however there is 

often a lack of standardisation between which accommodative metrics are utilised, and 

how these metrics are derived, this is particularly important when considering the speed 

of the accommodative change.  As such, there is a need to further examine which 

metrics most accurately describe this parameter, how these are derived, and the 

relationship between these metrics and the subjective AF test.  Attempts to standardise 

the technique used to assess AF have been made, however the current method still has 

some inherent limitations which could reduce the accuracy of the results obtained.   

Defocus curves are commonly used to derive information about depth-of-focus, 

assessing the effectiveness of multifocal and extended depth-of-focus IOL designs in 

restoring accommodative function in pseudophakic eyes.  Yet further standardisation 

between the methods used to construct defocus curves and derive the depth-of-focus 

is needed to allow closer comparisons between IOL-designs.  

Historically, the structure and physiology of the crystalline lens has been easier to study 

in vivo in humans, due to ease of access; whereas in vivo studies of the human ciliary 

muscle have been hindered by the position of the iris, and until more recent years, a 

lack of a high-resolution, non-invasive imaging system.  The introduction of AS-OCTs 

have since provided the opportunity to investigate the human ciliary muscle in greater 

detail, in vivo.  However, in order to accurately compare the results of such studies, there 
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is a need to standardise how images are acquired and which metrics are the most 

appropriate to accurately describe the ciliary muscle physiology and change in 

morphology during accommodation, and with increasing age.    

Both presbyopia and cataracts result from age-related changes to the structure of the 

crystalline lens.  Many physiological and environmental factors affect the rate of ageing 

within different structures of the body.  Truscott and Zhu (2010) have described how 

the underlying biological ageing mechanisms of both presbyopia and cataract are 

similar.  Therefore, it is possible that the development of both conditions could be 

influenced by the same physiological and environmental factors.  Much of the current 

literature has concentrated on identifying lifestyle factors that can increase the risk of 

cataract development (Athanasiov et al., 2008, Lim et al., 2009, Lindblad et al., 2008, 

Robman and Taylor, 2005, Nita and Grzybowski, 2017).  As yet, no studies have 

examined whether the lifestyle factors which have been associated with the risk of 

developing cataracts including; smoking status, obesity, anti-oxidant intake, or alcohol 

intake, also affect the rate at of development of presbyopia.  

 

1.12 Aims of this thesis 

The overarching aim of this thesis was to scrutinise the methods used to assess 

accommodative function, and examine the suitability of these methods in pre-

presbyopes, presbyopes and pseudophakes.  Additionally one chapter has focused on 
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investigating the associations between lifestyle and the loss of accommodative function.  

In an attempt to address some of the issues raised above further aims of this thesis 

were: 

 To investigate a novel method for deriving metrics to describe the 

accommodative dynamic profile and to assess their relationship to AF.   

 To validate a new instrument for measuring accommodative facility, to improve 

accuracy.    

 To examine the influence of a binocular stereogram target during the binocular 

AF test. 

 To assess the validity and repeatability of a novel defocus curve metric in a 

phakic and a pseudophakic population. 

 To explore the use of a swept source spectral AS-OCT  (Tomey CASIA 1000 AS-

OCT) for the assessment of the ciliary muscle during accommodation.  

 To investigate if segments of the ciliary muscle cross-sectional area can be used 

to assess ciliary muscle morphology. 

 To identify if lifestyle factors (associated with increased risk of cataracts), are 

associated with reduced accommodative function. 
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Chapter 2: Validation of novel metrics from the 

accommodative dynamic profile  

2.1 Introduction 

As discussed in section 1.6.4 the accommodative dynamic profile can be assessed using 

an auto-refractor, and used to derive different accommodative metrics to describe the 

parameters of accommodation.  Numerous metrics have been derived to quantify the 

time taken for the accommodative change to occur, including the latency of 

accommodation, response times, time constants and peak velocity.    Across the 

literature there is significant variability in the methods used to define, measure, and 

calculate metrics from the accommodative dynamic profile.  A brief summary of how 

each is broadly defined, and the most common methods used to calculate each metric 

are discussed below. 

Latency of accommodation is defined as the time delay between the onset of the 

accommodative stimulus and the initiation of the accommodative response, which is 

illustrated by the red arrow in Figure 2.1.  The starting point of the latency of 

accommodation is well defined and established across the literature, and is considered 

as the introduction of the near stimulus.  However, the methods for identifying the 

initiation of the accommodative response as the end point, differs.  One point proposed 

by Anderson et al. (2010) was the start of the first of five consecutive data points to 
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increase in accommodation.  Another proposed by Schor et al. (1999) and utilised by 

Kasthurirangan et al. (2003), and Kasthurirangan and Glasser (2006b) was the first point 

at the beginning of a sequence where three consecutive data points increased in 

accommodation, followed by a further four data points where no two consecutive 

points decreased in accommodation.  Both of these end-points require visual inspection 

of the data which is time consuming.    

 

Response times are generally defined as the time interval between the change in the 

accommodative stimulus, and reaching the maximum accommodative (or 

disaccommodative) response, as illustrated by the green arrow in Figure 2.1.  Studies 

that have examined response times have not specified the exact methodology used to 

Figure 2.1 An accommodative dynamic profile of a pre-presbyope. 
The purple line represents the onset of the accommodative stimulus, the yellow line represents the 
accommodative response and the black line is the curve fitted to smooth the data.  The red arrow 
demonstrates the latency of accommodation and the green arrow represents the time for 
accommodation. 
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identify the precise start and end-points to calculate this time interval (Heron et al., 

2001, Radhakrishnan et al., 2007, Allen et al., 2010). 

Time constants are defined as the time to reach a set percentage of the total 

accommodative response.  Many studies have used 63% as this set point (Beers and Van 

Der Heijde, 1994, Kasthurirangan et al., 2003, Anderson et al., 2010).  However, 

Radhakrishnan et al. (2007) and Allen et al. (2010) defined the time interval as the period 

between reaching 10% and 90% of the total accommodative response. 

Peak velocity is the maximum speed of the accommodative change reached at a set 

point of the accommodative response.  The peak velocity is calculated using the 

following formula: 

𝑉𝑚𝑎𝑥 =
𝑎

𝜏
 

Where Vmax is peak velocity, a is the accommodative response, and τ is the time 

constant.  Although studies tend to agree on this formula for calculation, the variation 

in methods used to derive the time constant, will ultimately lead to variations in the 

peak velocity calculated (Beers and Van Der Heijde, 1994, Kasthurirangan et al., 2003, 

Radhakrishnan et al., 2007, Allen et al., 2010, Anderson et al., 2010).  

Before any of these metrics are calculated the accommodative dynamic profile data is 

smoothed to remove erroneous results.  Various methods to achieve this have been 

applied, including averaging three consecutive points and re-plotting the profile 

(Anderson et al., 2010).  Others have fitted smoothing curves (Beers and Van Der Heijde, 
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1994, Kasthurirangan et al., 2003, Kasthurirangan and Glasser, 2006b, Radhakrishnan et 

al., 2007, Allen et al., 2010). 

The apparent lack of standardisation in the methodology used to derive these metrics 

from the accommodative profile makes it difficult to compare results across studies, and 

draw firm conclusions.  Therefore, this study aims to investigate a novel method for 

deriving the latency of accommodation and the time for accommodative change, from 

the accommodative dynamic profile and their correlation with AF.   

 

2.2 Methods 

The abbreviations used in this chapter are stated in Table 2.1. 

Abbreviation Metric 

AoA Amplitude of accommodation 

CPM Cycles Per Minute 

LoA Latency of accommodation (novel) 

LoD Latency of disaccommodation (novel) 

oToAC Objective time for accommodative change 

pLoA Latency of accommodation (As derived in previous studies) 

pLoD Latency of disaccommodation (As derived in previous studies) 

sToAC Subjective time for accommodative change 

ToA Time for accommodative change 

ToD Time for accommodation 

ToAC Time for disaccommodation 

 
Table 2.1 The abbreviations of the accommodative metrics used in this chapter 
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2.2.1 Subjects 

Forty-three subjects (18 males, 25 females) of mean age 31, standard deviation (SD) ± 8 

years (range 19 – 48) were recruited from the student and staff population at Plymouth 

University through convenience sampling.  Exclusion criteria included current or 

previous ocular pathologies or trauma, binocular vision abnormalities and diabetes 

mellitus (Skarbez et al., 2010).  Subjects whose best corrected visual acuity (BCVA) was 

worse than 0.0 LogMAR were also excluded.  All subjects gave informed consent to 

participate in the study, following explanation of the procedures and the risks involved. 

The study adhered to the tenets of the Declaration of Helsinki and was approved by 

Plymouth University’s Research Ethics Committee. 

An initial objective and subjective refraction was performed to establish any habitual 

refractive error.  Any refractive error >±0.50DS and/or >0.75DC was corrected with soft 

contact lenses.  The mean spherical equivalent refractive error of the subjects included 

in this study was RE: -0.90DS ±2.10 and LE: -0.88DS ±2.00.  

 

2.2.2 Subject visits 

Each subject was assessed on three separate visits separated by at least 24 hours, to 

assess intra-observer and inter-observer. At visit one and two, a single examiner 

assessed each subject. At the third visit a second examiner who was blind to the previous 
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results examined each subject. The measurements of accommodation were conducted 

in a random order. 

 

2.2.3 The accommodative dynamic profile 

 

The accommodative dynamic profile was assessed monocularly on each eye using the 

Grand Seiko Auto-refractor WAM-5500 (Grand Seiko Co. Ltd., Hiroshima, Japan) with a 

motorised Badal adaption (Figure 2.2, left).  The contralateral eye was occluded in all 

cases. Subjects viewed a Maltese cross target within the Badal lens system (Figure 2.2, 

right).  The system consisted of a +5.00 D full aperture convex 2 inch lens, with a Maltese 

cross target placed at the focal point of the lens (20 cm); thus allowing a measure of the 

refractive error at 0 D of accommodation (simulating distance vision).  A second Maltese 

cross was attached to a motorized flipper system to provide an accommodative stimulus 

of 4 Dioptres on demand (simulating near vision).  The badal system and auto-refractor 

were then activated to capture real time measurements of refractive status whilst the 

accommodative demand was alternated between 0 and 4 D. The auto-refractor was set 

Figure 2.2.  The set-up of the auto-refractor and Badal lens system (left), and the subject’s view of 
the Maltese targets whilst measuring accommodative dynamics (right). 
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to take measurements at a rate of 8Hz for six full cycles. An individual cycle consisted of 

a near and distance target presentation, each lasting for five seconds.   

 

2.2.4 Accommodative facility (AF) 

AF was assessed monocularly with the contralateral eye occluded. The subject was 

presented with a near vision target at a viewing distance of 40cm, and instructed to look 

at a four-letter N5 word.  Using confirmation flippers a +2.00D lens was presented in 

front of the ipsilateral eye and the subject was asked to report when the target first 

became “clear”.  Once a positive response was given, the flippers were rotated so that 

a -2.00D lens was placed in front of the eye, the subject was again asked to report 

verbally when the target was “clear”.  Presentation of the +2.00DS lens followed by -

2.00DS lens provided a 4D change in accommodation and was classed as one cycle.  After 

an initial ‘practice’ with two cycles or until the test was understood, a timer was started 

and the number of full cycles (presentation of +2.00DS and -2.00DS) achieved within one 

minute was recorded. 
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2.2.5 Data Analysis 

 

 

For each subject six full cycles of accommodative and disaccommodative dynamics were 

collected.  Each accommodative dynamic profile (as shown in Figure 2.3) was split into 

individual cycles (labelled C1 to C6.); the start of a cycle was identified as the first data 

point following the 4D target presentation; the end of a cycle was identified as the last 

data point of the 0D target presentation.  At the start of C1 there was a short time delay 

between the onset of the stimulus and the start of the auto-refractor recording 

accommodative response.  The end point of C6 was determined by the observer 

terminating the auto-refractor and DynaWAM software.  Therefore, both C1 and C6 

were deemed unreliable, so only C2 to C5 were used for analysis.  Cycles assessed were 

further split into accommodation and disaccommodation; accommodation was defined 

as the phase between the first to the last data point with the 4D stimulus. The 

Figure 2.3: The accommodative response of a 27-year-old participant (yellow line), over six cycles 
of accommodative demand flipping between 0D and 4D  (purple line)  
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disaccommodation phase was defined as the first to the last data point with the 0D 

stimulus. 

Matlab software (R2014a, The MathWorks Inc., Massachusetts, USA) was utilised to fit 

a 4-parameter non-linear sigmoidal regression curve (Equation 1) to the accommodative 

response data points in each cycle (Appendix 1). 

 

𝑦 = 𝑎 +  {
𝑏

1 + 𝑒 (− [
𝑥 − 𝑑

𝑐 ])
} 

Equation 1 

A 4-parameter non-linear regression where ɑ is the minimum accommodative 
response (diopters), b = the asymptote, c is the mid-point between the minimum and 
maximum accommodative response (diopters) and y is accommodative response 
(dioptres) and x is the time (seconds) 
 

Figure 2.4 shows C4 from Figure 2.3 with a 4-parameter non-linear regression curve 

fitted to smooth the data. 

 

Figure 2.4: The accommodative portion of the C4 from the accommodative profile in Figure 2.3.  
The accommodative demand (purple line), the accommodative response (yellow line) and the 4-
parameter non-linear regression curve fitted to smooth the accommodative response (black line). 
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During a blink, the auto-refractor would continue to take measurements resulting in 

brief erroneous measurements. These were identified and removed before data 

analysis.  If these blinks occurred during accommodation or disaccommodation, the data 

from that curve was excluded from analysis.   

Only three of the four cycles with the most significant linear fits of r2 were used for data 

analysis.  A mean of these three cycles was found for all of the calculated metrics.  From 

each cycle the following metrics were calculated using MATLAB software. 

 

2.2.5.1 Latency of accommodation (LoA) and disaccomodation (LoD) 

Latency of accommodation and disaccommodation were calculated using a method 

similar to that used in previous studies (pLoA and pLoD) (Schor et al., 1999, 

Kasthurirangan and Glasser, 2006a, Anderson et al., 2010).  The data was smoothed by 

calculating a mean of three consecutive data points, and this averaged data was re-

plotted against time (Anderson et al., 2010).  The data was then visually inspected to 

identify the first data point corresponding to the initial accommodative response.  The 

identification of the initial accommodative response was confirmed once it met the 

following two criteria: (Schor et al., 1999, Kasthurirangan et al., 2003, Kasthurirangan 

and Glasser, 2006a): 
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1. The response was followed by three data points with consecutive increases in 

accommodation (or decreases in disaccommodation) 

2. The response was followed by seven data points where no two consecutive 

data points had a decrease in accommodation (or increase in 

disaccommodation).  

For the purposes of this study a novel method for deriving LoA and LoD was assessed: 

 LoA was defined as the time taken to achieve 1% of the full accommodative 

response to the 4D near target.   

 LoD was defined as the time taken to achieve 1% of the full disaccommodative 

response once the 4D target was removed and 0D stimulus introduced.  

Equation 2 was used to calculate LoA and LoD 

𝑦 = 𝑎 +  {
(𝑏 ∗ 0.01 − 𝑎)

1 + 𝑒 (− [
𝑥 − 𝑑

𝑐 ])
} 

Equation 2  

Calculation of LoA and LoD where ɑ is the minimum accommodative response 
(diopters), b = the asymptote, c is the mid-point between the minimum and maximum 
accommodative response (diopters) and y is accommodative response (dioptres) and 
x is the time (seconds) 
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2.2.5.2 Time for accommodation (ToA) and disaccommodation (ToD), and objective   

time for accommodative change (oToAC) 

 ToA was defined as the time taken to achieve 99% of the full accommodative 

response to the 4D near target.   

 ToD was defined as the time taken to achieve 99% of the full 

disaccommodative response once the 4D target was removed and 0D stimulus 

introduced.  

 ToAC was defined as the sum of ToA and ToD. 

Equation 3 was used to calculate ToA and ToD. 

 

𝑦 = 𝑎 +  {
(𝑏 ∗ 0.99 − 𝑎)

1 + 𝑒 (− [
𝑥 − 𝑑

𝑐 ])
} 

Equation 3  

Calculation of ToA and ToD where ɑ is the minimum accommodative response 
(diopters), b = the asymptote, c is the mid-point between the minimum and maximum 
accommodative response (diopters) and y is accommodative response (dioptres) and 
x is the time (seconds) 

       
 

2.2.5.3  Subjective time accommodative change (ToAC) 

AF is a measure of the number of times a participant can accommodate and dis-

accommodate to a 4D vergence stimulus in 60 seconds. In order to compare AF with 

ToAC, the time taken (in seconds) to complete a single cycle needed to be calculated. 
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This time was termed sToAC and was achieved by dividing 60 by the total number of 

cycles. 

 

2.2.6 Statistical Analysis 

2.2.6.1 Assumptions of normality 

After visual inspection of descriptive statistics, histograms, box-plots and Sharpiro-Wilks 

tests all of the accommodation metrics were found to have a non-normal distribution. 

 

2.2.6.2 Comparisons between the right and left eye 

Wilcoxon’s Signed Rank tests were used to determine if there were any significant 

differences between the right and left eye.  Where no significant difference was found, 

the right eye only was then used for further analysis. 

 

2.2.6.3 Repeatability  

Intra- and inter-observer repeatability was examined by assessing Intraclass 

Correlation Coefficients (ICC) for visits 1 - 2 and visits 1-3, respectively.  This was 

calculated using two-way mixed single measures (absolute agreement);  

𝐼𝐶𝐶 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒, 2) =  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟) ÷ 2
 

 



 

 

 

Page 99 

2.2.6.4 Latency analysis 

To examine the agreement between LoA-pLoA, and LoD-pLoD, Bland and Altman plots 

were constructed. Using these plots the proportional bias of the data was assessed. To 

assess the associations between LoA-pLoA and LoD-pLoD, Spearmans correlation 

coefficient and Wilcoxons signed-rank tests were also evaluated. 

 

2.2.6.5 Relationship between the objective and subjective measurements of time to 

accommodation 

Spearman’s Rho two-tailed tests were conducted to investigate the correlation between 

the LoA, LoD, pLoA, pLoD, ToA, ToD and ToAC and CPM achieved during AF.  

 

2.2.6.6 Relationship between the accommodative measurements and age 

Spearman’s Rho two-tailed tests were conducted to investigate the correlation between 

the LoA, LoD, pLoA, pLoD, ToA, ToD, ToAC, and CPM achieved during AF, with age.  

 

2.2.6.7 Comparisons of the time for accommodation metrics 

Bland and Altman plots of sToAC and oToAC were constructed to determine if any 

proportional bias was present.  Wilcoxons signed rank tests were conducted to 

investigate whether sToAC was significantly faster or slower than oSoAC, and 

Spearman’s correlation coefficients were also assessed.  
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2.2.6.8 Comparisons of accommodation and disaccommodation metrics 

Wilcoxon’s signed rank tests were conducted comparing LoA-LoD, pLoA-pLoD, and ToA-

ToD to investigate whether the accommodation or disaccommodation metric was 

faster.  

 

2.2.6.9 Regression Analysis 

Both a forward stepwise and backward regression analysis was completed to find which 

metric was the best predictor AF.   

 

2.3 Results 

The box plots of all the accommodative parameters measured are shown in Figure 2.5.   

  

  

Figure 2.5: Box plots displaying the median, 10th, 25th, 75th and 90th percentiles of data for all 
accommodative metrics derived from the accommodative dynamic profile and AF 
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2.3.1 Comparison of the right and left eye 

Wilcoxon’s signed rank 2-tailed analysis showed that there was no significant difference 

between the right and left eye at the 0.05 significance level for any of accommodative 

metrics measured (Appendix 2).  Therefore only right eye data from each participant 

was used for further analysis. 

 

2.3.2 Comparison of latency calculation methods 

Latency values obtained using the metric LoA were greater than the values from pLoA 

(Z= -3.212, p= 0.001) and demonstrated a moderate correlation (rs= 0.342, p= 0.032). In 

addition LoD was greater than pLoD (z = -2.920, p = 0.004) and achieved a moderate 

correlation (rs = 0.427, p = 0.004). 

Bland and Altman plots comparing LoD-pLoD and LoA-pLoA (Figure 2.6) show a mean 

difference of 0.28 and 0.24 seconds respectively, with relatively large limits of 

agreement on both plots.  

 

Figure 2.6: Bland and Altman plots of a. LoA-pLoA and b. LoD-pLoD 
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2.3.3 Correlations between accommodative metrics and AF   

Figure 2.7 shows the correlations coefficients of the accommodative metrics when 

compared with AF.  AF demonstrated a moderate, inverse correlation with ToA, ToD, 

and oToAC (rs= -0.407, p <0.007), but failed to demonstrate any significant association 

with LoA, LoD, pLoA, and pLoD.   

 

Figure 2.7: The correlation coefficient between AF and a. ToA, b. ToD, c. oToAC, d. LoA, e. LoD, f. 
pLoA, and g. pLoD 
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2.3.4 Correlations between accommodative metrics and age  

Figure 2.8 shows the correlation coefficients of the accommodative metrics with age.  

ToA, ToD and oToAC displayed a moderate positive correlation with age, whereas AF 

showed a strong inverse correlation with age.  However, none of the latency of 

accommodation or disaccommodation metrics demonstrated a correlation with age. 

 

 

  

Figure 2.8:  The correlation coefficient between age and a. ToA, b. ToD, c. oToAC, d. AF,  
e. LoA, f. LoD, g. pLoA, and h. pLoD. 
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2.3.5 Comparison of oToAC and sToAC 

sToAC was significantly greater than oToAC (z=-2.498, p=0.012) and the two metrics 

showed a moderate correlation (rs=0.371, p=0.026). The Bland and Altman 

plotsrevealed a mean difference of 0.80s between the two metrics and significant 

proportional bias: as mean oToAC and sToAC times increased, the values for sToAC 

increased disproportionally to those for oToAC.  

 

 

2.3.6 Repeatability  

Table 2.2 shows the intra- and inter-observer repeatability of each metric measured. AF 

demonstrated high levels of both intra-observer and inter-observer repeatability. The 

lowest level of intra-observer repeatability was found with ToA, and the lowest level of 

inter-observer repeatability was observed with pLoA. 

  

Figure 2.9:  Bland and Altman plot of sToAC and oToAC 
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Intra-observer 
Repeatability 

Inter-observer 
Repeatability 

AF 0.843 0.889 

ToA 0.258 0.645 

ToD 0.811 0.568 

oToAC 0.491 0.575 

sToAC 0.843 0.889 

LoA 0.937 0.384 

LoD 0.342 0.519 

pLoA 0.475 0.295 

pLoD 0.610 0.375 

 
Table 2.2: The Intraclass correlation coefficients of each measured metric, showing both intra-

observer repeatability and inter-repeatability. 

 

2.3.7 Comparisons of accommodation and disaccommodation 

metrics 

Wilcoxon’s signed ranks analysis revealed that ToD was significantly faster than ToA (Z= 

-3.357, p< 0.001), LoD was significantly faster than LoA (Z= -3.236, p<0.001) and that 

similarly pLoD was significantly faster than pLoA (Z= -2.683, p= 0.007). 

 

2.3.8 Regression Analysis 

Both a forward stepwise and backward regression analysis was used as an exploratory 

test to determine which metric was the best predictor of AF.  ToA, ToD and ToAC were 
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the independent variables included, and it was found that ToD  (t= -2.673, p= 0.011) was 

the single best predictor of AF.  However when age was added into the model, age (t= -

5.422, p <0.001) was found to be the single best predictor of AF, this was also found to 

be true in the backwards model. 

 

2.4 Discussion  

Numerous metrics have been used to describe the speed of accommodation from the 

accommodative dynamic profile.  Different studies have used a variety of methods to 

derive these metrics, so that it is difficult to compare the results across the literature.  

Therefore, the present investigation utilised subjective measures of accommodative 

facility to validate both current and novel metrics from the accommodative dynamic 

profile.  

 

2.4.1 Latency 

Previous studies have found average latency times for 19-40 years of approximately 0.3s 

(Sun et al., 1988, Heron et al., 2001, Heron et al., 2002, Heron and Charman, 2004, 

Kasthurirangan and Glasser, 2006a, Anderson et al., 2010).  Although in this study 

medians (rather than means) have been reported, the median latencies were found to 

be slower (LoA 1.07s, LoD 0.91, pLoA 0.84s and pLoD 0.63s) than previously reported,  

due to the different equipment used to measure accommodative dynamics.  In this study 
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all of the latency calculations have an accuracy limited to ±0.125s, the interval at which 

each data set was recorded by the auto-refractor.  This, for example could have 

accounted for up to 19.8% of the total of the median of pLoD (0.63s). 

The medians of LoA and LoD (1.07s and 0.91s, respectively) were slightly higher than the 

medians of the previously used metric pLoA and pLoD (0.84s and 0.63s respectively). 

The higher values for LoA and LoD could be attributed to the difference in methods of 

calculating these latencies from the data.  Firstly, data smoothing for LoA and LoD was 

achieved by fitting a 4-paramenter non-linear regression curve; whereas for pLoA and 

pLoD the data smoothing was achieved by averaging three consecutive values.  

Secondly, LoA and LoD were calculated from the onset of the stimulus until 1% of the 

accommodative response was reached, this would generally be a longer time period 

than pLoA and pLoD, which are calculated until the initiation of the accommodative 

response. The measures for pLoA and pLoD are not interchangeable with the results for 

LoA and LoD respectively: LoA and LoD results are longer as they assess the time taken 

to the 1% growth point rather than the initial point of change. Furthermore the novel 

metrics utilise curve fitting as opposed to visual inspection of the data and as such 

demonstrate greater repeatability.  

The relationship between age and latency in adults has been examined in numerous 

studies, with equivocal findings.  Many studies have agreed with the findings of this 

study; that there is no significant correlation between age and latency (Sun et al., 1988, 

Heron et al., 2001, Heron et al., 2002, Heron and Charman, 2004).  Conversely Anderson 
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et al. (2010) found a significant decrease in both accommodative and disaccomodative 

latencies with age (Anderson et al., 2010).  Furthermore, some studies have found a 

significant increase in the disaccommodative latency in adults (Kasthurirangan and 

Glasser, 2006a, Heron et al., 2002).   The ambiguity in the relationship between age and 

latency from these studies could be due to whether the accommodative demand used 

whilst measuring the accommodative dynamics was proportional to the maximum effort 

for each age group.  In older participants a step change accommodative demand would 

represent a significantly larger proportion of their overall accommodative response 

ability compared to younger participants, and would therefore require greater effort 

(Heron et al., 2002, Kasthurirangan and Glasser, 2006a).  

 

2.4.2 Correlations with accommodative facility (AF) 

AF provides a combined assessment of both accommodation and disaccommodation. 

As expected no association was found between measures of AF and the LoA, LoD, pLoA 

and pLoD metrics.  This is likely to be due to a number of factors; primarily all of these 

metrics define the accommodative or disacommodative response individually rather 

than the gross accommodative/disaccommodative behaviour as assessed by AF.  

Furthermore, the latency metrics only evaluate the time taken to initiate the 

accommodative/disaccomodative response rather than the time taken to complete the 

response, which is more analogous to the AF measures.  
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Unlike the latency metrics, ToA, ToD, and oToAC all assess the time taken to complete 

the accommodative/disaccommodative response.  Therefore, it is unsurprising that 

these metrics were correlated with AF.  ToD was found to be the best  predictor of AF 

when age was excluded as a factor.  This latter finding was unexpected as it would be 

predicted that the oToAC relates better to AF as it provides a measure of the gross 

accommodative/disaccommodative response.  This discrepancy may be explained by 

examining the Bland and Altman comparisons of the AF (expressed as sToAC) and 

oToAC. The results of sToAC were slower than that of oToAC.  A likely reason for these 

differences may be due to the objective measures of ToA, ToD, and oToAC accounting 

only for the time of response, whereas sToAC calculated from AF would account for both 

time and accuracy of the accommodative response. This could also explain why the 

median oToAC (3.91s) was found to be significantly faster than the median sToAC 

(4.80s).  Another reason for this slower subjective time could be the combined reaction 

times of the participant reporting when the target is clear and the practitioner reacting 

to this, which would not be accounted for with the objective measures.  Furthermore 

the subjectivity of the endpoint for sToAC and the influence of depth-of-focus, could 

also have contributed to the slower sToAC compared to oToAC.  

A significant proportional bias was found on the Bland and Altman plot, resulting from 

the upper ceiling effect of the sToAC.  In order for a cycle to be registered using AF the 

subject is required to accommodate to a sufficient level to resolve the target.  In 

comparison the WAM flipper system is pre-programmed and changes accommodative 
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demand independent of the subjects accommodative effort.  In cases where a subject is 

unable to accommodate sufficiently it is likely that using a lower accommodative 

stimulus may have produced more concurrent results.  

As expected, age was found to be the single best predictor of AF demonstrating that the 

technique is a valid assessment of accuracy and amplitude of accommodative response 

which is known to decline with age (Duane, 1912, Hamasaki et al., 1956, Strenk et al., 

2005, Glasser, 2006, Lockhart and Shi, 2010).  ToA, ToD and oToAC took into account 

the time taken to reach 99% of the amplitude of accommodative response.  However, 

latency accounts only for time until initiation of the response.  This may explain why 

latency failed to change significantly with age.  

To summarise, ToD was the metric found to be most closely associated with AF.  In 

addition it demonstrated the highest repeatability of all of the metrics, and was 

observed to be the most valid and repeatable metric in relation to AF. 

 

2.4.3 Objective time of accommodation 

The median ToA (2.09s) and ToD (1.71s) found in the present study are in accordance 

with the times observed by Radhakrishnan et al. (2007) (2.39s and 2.04s respectively) 

and Allen et al. (2010) (1.89s and 2.64s, respectively). In both of these studies 

accommodative dynamics were measured on the ipsilateral eye whilst AF was 

performed on the contralateral eye; thus, directly measuring subjective and objective 

reaction times simultaneously (Radhakrishnan et al., 2007, Allen et al., 2010).  
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Other studies, which have measured accommodative response times have reported 

shorter times of between 0.53s and 0.9s (Tucker and Charman, 1979, Ibi, 1997, Heron 

et al., 2002). The slower ToA and ToD found in this study may be due to inherent 

differences in the methodology and analysis.  It has also been noted that both latencies 

and response times are more difficult to measure accurately if the magnitude of 

response is small (Heron et al., 2002).   

Contrary to the findings of Heron et al. (2002) the present results demonstrated that 

ToA, ToD and oToAC significantly increased with age. Heron et al. (2002) proposed that 

the apparent maintenance of reaction time, whilst the AoA reduced with age, could be 

due to an age-related decrease in the diameter of the ciliary ring in the 

unaccommodated state.  The equatorial diameter of the lens remains constant in 

presbyopia, yet, the distance between the unaccommodated ciliary ring and lens 

equator decreases (Strenk et al., 1999).  These physiological changes could reduce the 

maximum possible zonular lens tension achievable, resulting in a reduction in the 

maximum AoA without a change in the response time (Heron et al., 2002).  However, 

the findings of this study fail to support this supposition, and indicate that the reduction 

in elasticity of the crystalline lens or capsule with age reduces ToA, ToD, oToAC, sToAC 

and  AoA.  

The accommodative latency is attributed to the time taken for the neurological 

processing involved in the recognition of a blurred target, to the innervation of the ciliary 

muscle.  Results from this study would suggest that age does not impact on this 
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neurological phase as readily as the time phase where the change in shape of the 

crystalline lens occurs, leading to the corresponding change in accommodation.  

Furthermore, when Shao et al. (2015) imaged the accommodative apparatus during 

accommodation, they noted a time delay between the ciliary muscle contraction and 

the resultant change in shape of the crystalline lens; this time delay would further 

contribute to the latency period of accommodation.  Contraction of the ciliary muscle is 

unaffected by increasing age (Richdale et al., 2013, Richdale et al., 2016); this would 

support the findings of this study in demonstrating that, unlike the time for 

accommodative change the latency period showed no significant change with increasing 

age, these differences are likely to be due to presbyopic changes in the crystalline lens 

structure.  

 

2.4.4 Difference between time to accommodate and 

disaccommodate 

In accordance with previous studies, all objective metrics examining accommodation 

were found to be faster than those assessing disaccommodation (Vilupuru and Glasser, 

2002, Beers and van der Heijde, 1996).  

In view of the present findings, the rate of lenticular shape change during 

accommodation and disaccommodation appear to be asymmetric; with a more rapid 

increase in radius of curvature during disaccommodation.  This difference in time for 
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accommodation and disaccommodation may be related to the mechanism of 

accommodation.  It has been suggested that disaccommodation occurs more rapidly 

due to the passive nature of increasing zonular tension, in contrast to accommodation 

which requires a decrease in zonular tension (Beers and van der Heijde, 1996, Vilupuru 

and Glasser, 2002).  Alternatively, the nature of the accommodative response may be 

explained by the properties of the elastic capsule surrounding the lens. It is conceivable 

that the capsule has a viscoelastic nature rather than being purely elastic, causing a 

significant delay when generating a convex shape.  

 

2.4.5 Considerations of this study 

The Grand Seiko WAM auto-refractor took measurements of accommodation every 

0.125 seconds.  This would have limited all time and latency metrics measured in this 

study to ±0.125s and accounted for up to 19.8% of the total of the median of pLoD 

(0.63s).  This interval time is significantly greater than other studies that have examined 

the accommodative dynamic profile using Power refractors, which take measurements 

at frequencies of 25Hz (0.04s) (Kasthurirangan et al., 2003, Kasthurirangan and Glasser, 

2006b, Radhakrishnan et al., 2007, Allen et al., 2010), or 30Hz (0.03s) (Anderson et al., 

2010).   The difference in frequencies of measurement acquisition in this study, 

compared to previous investigations may partly explain the longer latency periods found 

in this study, compared to those found previously (Sun et al., 1988, Heron et al., 2001, 
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Heron et al., 2002, Heron and Charman, 2004, Kasthurirangan and Glasser, 2006b, 

Anderson et al., 2010).    

To further examine the relationship between the accommodative time metrics derived 

from the accommodative dynamic profile and AF, a novel instrument could be 

developed to allow separate logging of the subjective times for accommodation and 

disaccommodation from the AF test.  An instrument which allows the subject to initiate 

the flip of the lenses during the AF test would allow for more accurate measurements 

of sToAC to be calculated.  This would remove the practitioner reaction time, and the 

time error added to the average sToAC which is determined by the point at which the 

AF cycle is terminated. 

 

2.4.6 Conclusions 

In summary the key findings of this study was: 

 The novel metrics for latency examined were more repeatable than the metrics 

used in previous studies. 

 The novel method of calculating latency were not interchangeable with the 

method used in previous studies. 

 Time for disaccommodation was the metric most associated with 

accommodative facility, and demonstrated the highest repeatability of all of 

the metrics 
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Chapter 3: The validation of a Patient-controlled 

Accommodative Facility Instrument 

3.1 Introduction 

In Chapter 2 the objective metrics describing the time for accommodative change, 

derived from the accommodative dynamic profile, demonstrated a strong relationship 

with accommodative facility (AF).   It became apparent that the development of a novel 

instrument could improve the accuracy of these measurements, and allow closer 

examination of the relationship between the time metrics from the accommodative 

dynamic profile and AF.  This chapter describes the development of this novel 

instrument and employs it in scrutinising the traditional method of AF used in clinical 

practice. 

For an efficient change in focus of the eye to occur, accommodation must be rapid, 

accurate and stable.  AF is a subjective test for assessing the  time taken for the 

accommodative change whilst accounting for the accuracy of the response (Eperjesi, 

2004). 

The AF test has been shown to be both valid and repeatable (Zellers et al., 1984).  

Clinically, the AF test is used to investigate symptomatic accommodative dysfunction, 

(Levine et al., 1985, Goss, 1992, Gall and Wick, 2003) and is predominantly used in the 

paediatric setting (Hennessey et al., 1984b, Wick et al., 2002b).  Studies have found that 
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in both children and adults with symptomatic accommodative dysfunction, AF is often 

reduced, even when all other measures of accommodation, such as amplitude of 

accommodation and dynamic retinoscopy, are within a normal range (Levine et al., 

1985, Wick and Hall, 1987, Wick et al., 2002a, Gall and Wick, 2003).   

The standardised traditional method for AF uses ±2.00DS flippers to induce a 4D 

accommodative change.  The flippers are alternated by the practitioner each time the 

subject reports a near target as ‘clear’, suggesting that sufficient accommodative effort 

has been achieved; the number of full cycles (changing from positive-to-negative lenses 

and changing back from negative-to-positive lenses) ‘cleared’ within one minute are 

recorded in cycles per minute (CPM)  (Zellers et al., 1984, Wick et al., 2002b).   Normative 

values of AF are typically quoted to be >7 CPM binocularly using a stereogram target, or 

>11 CPM monocularly (Zellers et al., 1984).   

There are several limitations in the AF test (Kedzia et al., 1999), including:   

1. The optical magnification (by the +2.00DS lens) and minification (by the -

2.00DS) of the target, is likely to artificially increase the time taken to 

accommodate and decrease the time taken to disaccommodate. 

2. The subjective nature of the technique is likely is to lead to inherent variability 

in the test results. 

3. Saccadic eye movements are required to move between symbols on the fixed 

target.  
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4. Having a discrete magnitude for accommodative change (4D) may 

disproportionally disadvantage patients with a lower amplitude of 

accommodation.  

5. The technique is based on the combined reaction time of the practitioner and 

patient and thus further increasing test variability. 

6. Application of the normative values for AF to different age ranges. 

Solutions have been sought to reduce the impact of these limitations on the results of 

the AF test.  The subjective nature of the AF method can lead to uncertainty relating to 

the accuracy and repeatability of the test.  Such issues are more pronounced when 

assessing AF in the paediatric population; studies have found children often achieve 

fewer CPM during AF compared to adults, despite having greater amplitudes of 

accommodation (Scheiman et al., 1988, Kedzia et al., 1999).  Furthermore the cognitive 

demand of the task affects the time taken by the subject to appreciate the target as 

clear and relaying this to the practitioner.  Kedzia et al. (1999) suggested reducing the 

cognitive demand of the task from saying aloud the letter or number on the target, to 

instead asking the subject to say ‘clear’ or ‘now’ when the target is focused, or allowing 

the patient to initiate the ‘flip’ of the lenses. The authors found that by compensating 

for the child’s recall and reaction times in this manner, measures of binocular AF CPM 

were comparable to Zeller’s normative values for AF.    
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It has been proposed that the discrete magnitude for accommodative change (4D) 

reduces the sensitivity of the traditional AF method, when utilised to differentiate 

between symptomatic and asymptomatic accommodative dysfunction in adults (Siderov 

and DiGuglielmo, 1991, Wick et al., 2002a, Yothers et al., 2002).  Therefore, Yothers et 

al. (2002) and Scheiman and Wick (2014) recommended that when assessing 

symptomatic adults, the accommodative change value should be relative to the 

individual’s amplitude of accommodation.  However, not all studies agreed with the 

reduced sensitivity findings in early presbyopes (Levine et al., 1985, Gall and Wick, 

2003), and the proposed solution would be impractical to implement in a clinical setting.  

The AF technique is significantly affected by the reaction times of both the subject and 

practitioner thus artificially limiting the CPM achieved.  In an attempt to remove this 

error in a paediatric population, Kedzia et al. (1999) firstly examined the response time 

of subjects by performing the AF through plano lenses, calculating the average time 

taken for each cycle.  AF was then performed through ±2.00 lenses using the traditional 

method, and the average time taken for each cycle was calculated.   This former 

calculated time was then used to compensate the latter; this effectively removed the 

combined reaction times of the subject and practitioner reaction time from the final 

measurements.   

As discussed above, Kedzia et al. (1999) proposed allowing the subject to initiate the 

‘flip’ of the lenses.  A motorised system could minimise (and regulate)  the time delay 

caused by the practitioner reaction time, and part of a subject’s neuro-processing time 
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involved in calling aloud the target.  Furthermore, this would allow improved 

comparisons of assessments of the time for accommodation (ToA), time for 

disaccommodation (ToD), and time for accommodative change (ToAC) derived from AF, 

to the corresponding objective measurements derived from the accommodative 

dynamic profile.  In Chapter 2, the subjective method of AF was correlated with an 

objective ToAC (oToAC) metric derived from the accommodative dynamic profile.  

oToAC was calculated by summating the ToA and ToD measured from the same cycle of 

changing focus from distance-to-near and near-to-distance.  When considering the 

traditional method of assessing AF it is possible to calculate a subjective ToAC (sToAC) if 

the time period over which the test is completed (sixty seconds) is divided by the 

number of cycles achieved.  However, the sToAC is likely to be longer than the oSoAC 

due to reaction times, and at which point in final the cycle, the test is terminated.  This 

error would be proportionally greater the fewer CPM achieved.   

To overcome such errors, it can be anticipated that a modified technique for assessing 

AF, where the time interval for each lens flip could be  recorded automatically, and it 

would be possible to record separate measurements for subjective ToA and ToD, 

allowing sToAC to be calculated as oToAC.   

Another difficulty with AF testing is the application of the normative values for AF 

(Zellers et al., 1984).  Findings of ≥7 CPM binocularly using a stereogram target and ≥11 

CPM monocularly, were noted in a study of subjects between the ages of 18 and 30 

years, who had previously passed a binocular vision-screening exam, and were classed 
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as having ‘normal’ binocular function.  Applying these normative values to children, 

adults older than 30 years, or subjects with binocular dysfunction could lead to an 

artificially high false positive rate when investigating accommodative dysfunction.  Wick 

and Hall (1987) found an artificially high failure rate when they applied this binocular 

criterion to a group of schoolchildren.  They postulated that either a lower pass/fail 

criteria should be used for school screening, and/or AF results should be considered in 

conjunction with other measures of accommodation, such as lag and amplitude, before 

a diagnosis of binocular accommodative dysfunction is made.  Scheiman et al. (1988) 

recommended normative values of AF for schoolchildren to be monocularly ≥7 CPM and  

 ≥5 CPM binocularly if a stereogram target is used.  Siderov and DiGuglielmo (1991) 

found much lower CPM of 1.2 with the AF test, or 8.9 CPM when using ±1.00DS lenses.  

Other studies that have attempted to either set normative values of AF or apply 

normative values across different populations (Table 3.1).  The contrasting results from 

these studies have been attributed to the range of ages of the subjects included, 

variations in the screening methods used to define ‘normal’, and/or the different 

methods used to measure AF  (Wick et al., 2002b). 

The traditional method for assessing binocular AF recommends the use of a stereogram 

target to monitor for suppression (Zellers et al., 1984, Wick et al., 2002b).  Bifoveal 

fixation is mandatory to achieve binocular fusion.  Assessment of AF requires 

performance of a visually demanding task, during which the visual stress it imposes 

could lead to suppression of one eye, breaking down bifoveal fixation.  If such  
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Study Age range 
(years) 

Inclusion/ 
exclusion 

Test 
procedure 

Results (CPM) Comments 

Burge (1979) 6 to 39 
n= 30 

6/6 & N5  
Monoc. AoA of >5D 
Pre-presbyope 
Non-strabismic 

Traditional  
RE 
LE 
Binoc F* 
Binoc S** 

Mean Median  

12.5 
11.5 
9 
7 

13.5 
12 
9.5 
6 

Griffin et al. (1977) 20 to 30 
n= 27 

Not stated 
 

Traditional 
Verbally 
reported 
numbers  

 
Dominant eye 
Binoc F* 
Binoc S** 

‘Norms’ (11) 
 18 
12.5 
9 

‘Suspect’ (16) 
15 
9 
4 

Classed as ‘suspect’ if during AF they supressed or 
scored <9CPM. 

(Hoffman and 
Rouse, 1980) 

Literature review Recommended monoc or binoc of 12CPM 6/9 line 
at 40cm. Diff of 2 or more CPM between eyes 

Hennessey et al. 
(1984b) 

8 to 14 
n= 60  

40 secs of arc. 
Normal AoA 
(Hofstetters) 

Used target of 
6/12 monoc. and 
a 6/9  
stereogram 

 
RE 
LE 
Binoc  

Asymp (30) 
14±6 
15.2±6.7 
10.7±8 

Symp (20) 
8.6±5.5 
9.2±6.7 
4±6 

Used Zellers et al., (1984) criteria as normative 
values 

Zellers et al. (1984) 18 to 30 
n= 100 

Pass screening, 
BCVA of 6/9, 40 
secs of arc 

Stereogram 6/9  
Monoc 
Binoc 

RE 
11.6±5 
7.7±5 

LE 
11.1±5.3 

 

Levine et al. (1985) 16 to 32 
n= 105 

Significant 
anisometropia 

20/25 
 

 
Monoc 

Asymptomatic 
14.6 

Symptomatic 
10.1 

Concluded that cut-off between symptomatic and 
asymptomatic was 11CPM 

Siderov and 
DiGuglielmo (1991) 

30 to 42 
n= 45 

Stereoacuity of 40 
sec,  
6/6 binocularly 

6/9 stereogram Standard binoc. 
only & ±1.00DS 

±2.00 
1.2±2.1 

±1.00 
8.9±5.2 

 

Table 3.1 The variation in methods and findings in accommodative facility testing across the current literature 
* Binocular measurements without suppression monitored, ** Binocular measurements with suppression monitored 
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occurs during binocular AF testing, erroneous measurements will be recorded (Griffin et 

al., 1977, Burge, 1979).  Due to the increased visual demands of the task, the CPM 

achieved when a stereogram target is used is expected to be significantly less than if 

suppression is not monitored.  This reduction is expected to be between 3 and 3.5CPM 

(Burge, 1979, Griffin et al., 1977).  However, the studies that have explored this 

relationship have numerous limitations that need to be considered.  Burge (1979) mixed 

child and adult subjects; accommodative ability is known to reduce through-out life 

(Glasser, 2006, Charman, 2008), and children are known to achieve fewer CPM ompared 

to adults with the traditional method of AF (Hoffman and Rouse, 1980, Hennessey et al., 

1984a, Wick and Hall, 1987, Scheiman et al., 1988, Wick et al., 2002b).  By including 

subjects with a large age range this would have over-estimated the reduction in 

binocular CPM achieved using a stereogram target, in adults.  Griffin et al. (1977) did not 

state the inclusion or exclusion criteria of their subjects or whether screening for 

binocular dysfunction was conducted, therefore their study could have included both 

patients with ‘normal’ accommodative function and binocular abnormalities.   Again, 

this could have led to an over-estimation of the reduction in binocular CPM achieved 

using a stereogram target.  Therefore, further work is required to understand the true 

effect of monitoring suppression during the binocular AF test, in adults.  Such an 

investigation with an instrument which allows subjects to initiate the ‘flip’ of the lenses, 

and automated logging of the time interval at each lens flips would increase the accuracy 
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of the times recorded, and allow improved comparisons between subjective and 

objective ToA, ToD and ToAC to be made.  

 

3.1.1 Aims 

The primary aim of this study is to validate a novel Patient-controlled motorised 

Accommodative Facility System (PcAF). The second aim of this study is to examine the 

influence of a binocular stereogram target and to determine which type of target is the 

most appropriate for binocular AF assessment.  

 

3.2 Methods 

3.2.1 Subjects 

Thirty subjects (8 male, 22 female) of mean age 25, SD ± 7 years (range 18 – 34) were 

included in this study, from the student and staff population of Plymouth University 

through convenience sampling.  The inclusion criteria for the study were as follows: 

 BCVA in soft contact lenses equal to or better than 0.0 LogMAR monocularly 

and binocularly (Thomson Test Chart).   

 Normal stereo acuity (defined as 40 secs of arc) with the Titmus Fly test (Stereo 

Optical, Chicago USA). 

 The absence of binocular vision abnormalities (compensated phorias, 

measured at 40cm, were acceptable up to 4∆ on cover test).   
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 At least one cycle per minute (CPM) could be achieved monocularly, by each 

eye and binocularly within one minute during AF. 

The exclusion criteria for this study included current or previous ocular pathologies or 

trauma, and/ or diabetes mellitus.   

Ethical approval was obtained from the Plymouth University Ethics committee and the 

study was performed in accordance to the tenets of the Declaration of Helsinki.   All 

subjects gave informed consent to participate in the study, following an explanation of 

the procedures and the risks involved.   

The subjects underwent an objective and subjective refraction, any refractive error 

>±0.50DS and/or >0.75DC was corrected with soft contact lenses.  A screening exam was 

conducted to ensure each subject met the inclusion/exclusion criteria.  The mean 

spherical equivalent refractive error for the subjects was -1.59DS (range -6.38DS to 

plano; myopic n=17, emmetropic n=13), with the mean BCVA of -0.04logMAR 

(0.00LogMAR to -0.16logMAR).   
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3.2.2 Part 1: Validation of the Patient-controlled Accommodative 

facility Instrument 

3.2.2.1 Accommodative Dynamics (AD) 

Monocular AD was assessed using the Grand Seiko Auto REF WAM-5500 with a 

motorised Badal adaption.  The methods used to measure the AD and derive the metrics 

of ToA, ToD and ToAC are as described in section 2.2.3 and section 2.2.5 

 

3.2.2.2 Traditional Accommodative facility (TAF) 

 

A Bernell BC29 mini variable stereogram (Figure 3.1) set at 40cm from the subject was 

used as the test target for the AF test.  The BC29 stereogram displays three lines of 

letters equivalent to a reduced Snellen near acuity of 6/9.  When polarising filters are 

Figure 3.1: The Bernell BC29 mini variable vectogram used during AF testing 
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used to view the stereogram, the top and middle line of letters are viewed by one eye, 

whilst the fellow eye views the lower and middle line.  The subject was asked to confirm 

if all three lines of letters were present and clear.  The subject was presented with a 

+2.00D lens using confirmation test flippers,  and asked to report when ‘all three lines 

of letters were present and clear’, at which point the lens presented was flipped by the 

practitioner to a -2.00D lens and held in place until the subject once again reported that 

‘all three lines were present and clear’; this  was classed as one cycle.  After an initial 

‘practice’, with at least two cycles or until the subject understood the task, a timer was 

started and the number of full cycles achieved within one minute was recorded.  TAF 

was tested under the following conditions:  

 Right eye with no polarising filters (left eye occluded) 

 Left eye with no polarising filters (right eye occluded) 

 Binocularly viewing a polarised version of the Bernell BC29 card with polarising 

filters   

Between each AF test subjects were allowed a break of up to two minutes to minimise 

fatigue effects. 
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3.2.2.3 Patient-controlled Accommodative Facility 

 

A motorised flipper system (Figure 3.2) was built to allow assessment of the patient-

controlled accommodative facility (PcAF). Subjects viewed the Bernell BC29 card 

through either the positive or negative 2.00D lenses and were required to press a button 

every time all three lines, on the card, were present and clear. The button response 

initiated the motorised flippers (Thor Labs Inc., USA) and the lenses were switched at a 

speed of 300ms.  LabVIEW Software (National Instruments, USA) was used to control 

the motorised system and to record the time interval at which the lenses were switched, 

to the nearest 0.1s. From the time outputs both time for accommodation (ToA) and time 

for disaccommodation (ToD) were recorded separately. Assessment of the AF with the 

PcAF was repeated under the same three conditions as TAF.  Between each AF test 

subjects were allowed a break of up to two minutes to minimise fatigue effects.  

 

Figure 3.2: Patient-controlled accommodative facility instrument 
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3.2.3 Part 2: Investigating the effects of using a stereogram target 

on binocular accommodative facility 

The same subjects were asked to perform binocular TAF and PcAF under the same 

instructions as described above under the following viewing conditions: 

 Binocularly viewing a polarised version of the Bernell BC29 card with polarising 

filters   

 Binocularly viewing a non-polarised (‘flat’) version of the Bernell BC29 card with 

polarising filters.   

Between each AF test subjects were allowed a break of up to two minutes to minimise 

fatigue effects. 

 

3.2.4 Repeatability 

Repeatability of the AF tests in both part one and part two were assessed.  To examine 

the intra-observer repeatability of the TAF and PcAF, all AF tests were repeated on 10 

separate visits on a single subject, with at least 48 hours between each visit.  

To test inter-examiner repeatability, ten subjects returned for a second visit with a 

different examiner (PB) where the PcAF was repeated under the three conditions.  

 

3.2.5 Data Analysis 

3.2.5.1 TAF 

Measures of TAF ToAC were calculated by dividing 60 seconds by the number of CPM 

achieved.  
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3.2.5.2 PcAF  

The PcAF system recorded the time intervals between the presentation of the lenses 

controlled by the patient. The timings were exported into Excel 2016 Software 

(Microsoft, USA) and used to calculate ToA and ToD in seconds.  PcAF ToAC was derived 

by summating the values for ToA and ToD. CPM was calculated by dividing the number 

of lens presentations, within one minute, by two (given that a cycle represents two lens 

changes).  

 

3.2.5.3 Assumptions of normality 

Visual inspection of descriptive statistics, histograms, box-plots and Sharpiro-Wilks tests 

were used to determine whether the accommodation metrics were found to have a 

normal or non-normal distribution.  For each statistical investigation, where a normal 

distribution was found then parametric statistical analysis was performed and the 

appropriate non-parametric statistical test was performed where a non-normally 

distributed data  was found, as detailed below. 

 

3.2.5.4 Part 1: Validating the PcAF 

Pearson’s correlations coefficients or Spearman's tests were conducted using SPSS 23 

software (IBM, USA), and scatterplots were constructed to examine the correlations 
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between the AF CPM achieved with both TAF and PcAF under both monocular and 

binocular viewing conditions, using the stereogram target.   

Further correlations tests and scatterplots were examined to explore the correlation 

between measures of ToAC obtained with TAF, PcAF, and AD. Associations between 

measures of ToA and ToD, via PcAF and AD were also examined using Spearman’s Rho 

correlation coefficents. 

Two-tailed paired t-tests and Wilcoxon’s signed rank tests were conducted to 

investigate if there were significant differences between each of the paired metrics.   A 

Friedman’s two-way analysis of variance test was conducted to investigate the 

agreement between measures of monocular ToAC derived from the TAF, PcAF and AD.  

Bland and Altman plots were constructed to examine the mean difference and limits of 

agreement between the paired metrics. 

 

3.2.5.5 Part 2: The effect of a stereopsis target with binocular viewing conditions 

Pearson’s and Spearman’s correlation co-efficient tests were used to investigate 

correlation between the CPM achieved when using either a ‘flat’ or stereogram target 

with both TAF and PcAF.  Wilcoxon’s signed rank tests and two tailed paired t-tests were 

used to determine if using a stereogram target significantly affected the CPM achieved 

binocularly, with both the TAF and PcAF.  Bland and Altman plots were constructed to 

examine the mean difference and limits of agreement between the paired metrics. 
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3.2.5.6 Repeatability 

Intra-observer repeatability for each accommodative metric was assessed by calculating 

the co-efficient of variance (CoV): 

𝐶𝑜𝑉 =  
𝜎

𝜇
 

 Where σ is the standard deviation and µ is the mean. 

Interobserver variability was evaluated by using ICC; two-way mixed single measures 

(absolute agreement);  

𝐼𝐶𝐶 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒, 2) =  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟) ÷ 2
 

3.3 Results 

3.3.1 PART 1: Validation of the PcAF 

Table 3.2, displays the means, standard deviations, medians and CoV for intra-observer 

repeatability. The metrics denoted with * were found to be non-normally distributed.  

The means or medians, and spread of the all of the metrics are shown in Figure 3.3.       
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There was a strong positive correlation between the monocular CPM achieved with the 

TAF and PcAF (r= 0.626, p< 0.001) (Figure 3.4), however the subjects achieved more CPM 

 Mean (SD) Median CoV 

TAF 
Monoc. 

CPM 13.7 ±3.9 14.8 7% 

ToAC* 5.01 ±2.5 4.1 8% 

Binoc. 
(stereogram) 

CPM 9.8 ±4.1 10.0 16% 

PcAF 
Monoc. 

CPM 15.4 ±5.2 14.8 8% 

ToA* 1.99 ±1.84 1.84 14% 

ToD* 2.71 ±2.94 1.81 8% 

ToAC* 4.65 ±3.04 3.87 9% 

Binoc. 
(stereogram) 

CPM 10.1 ±4.6 10.0 16% 

Accommodative 
Dynamics 

Monoc. 

ToA* 1.96 ±0.63 1.90 8% 

ToD 1.59 ±0.47 1.61 8% 

ToAC 3.58 ±0.92 3.67 5% 

Table 3.2, The means, medians and intra-observer repeatability (CoV) of the accommodative 
metrics measured 

Figure 3.3, The box plots display the mean or median, 10th, 25th, 75th and 90th percentiles of data for 
each AF metric measured: a, CPM achieved monocularly and binocularly for TAF, and PcAF. b, ToAC 
measured monocularly for TAF, PcAF, and AD. c, The ToA and ToD, measured monocularly for PcAF 

and AD. 
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with the PcAF when compared to the TAF (t= -2.531, p= 0.017).  The Bland and Altman 

plot revealed relatively wide limits of agreement.   

 

In comparison, the binocular measures of CPM with the TAF and the PcAF using a 

stereopsis target correlated significantly (r = 0.776, p < 0.001) (Figure 3.5), and the CPM 

achieved were similar (t= -1.094, p = 0.284), and with smaller limits of agreement on the 

Bland and Altman plot. 

 

Figure 3.4 The correlation coefficient (left), and Bland and Altman agreement (right) between 
monocular measurements of CPM achieved during TAF and PcAF 

Figure 3.5 The correlation coefficient (left), and Bland and Altman agreement (right) between 
binocular measures of CPM achieved with the TAF and PcAF  
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Measures of ToA and ToD derived from the PcAF and AD demonstrated strong positive 

correlations (rs = 0.879, p < 0.001, and rs = 0.867, p < 0.001, respectively).  ToA measured 

with PcAF and AD were similar (Z = -1.049, p = 0.294), and good agreement was observed 

between the two methods on the Bland and Altman plot (Figure 3.6).  In comparison, 

the ToD was found to be slower with PcAF when compared with the value achieved with 

AD (Z = -4.722, p < 0.001).  The Bland and Altman plot (Figure 3.7) reveals significant 

proportional bias and the agreement between the two methods decreased (r= -0.849, 

p< 0.001) as ToD values increased (Figure 3.7).  

 

Figure 3.6: The correlation coefficient (left) and Bland and Altman agreement (right) between 
measures of ToA derived from PcAF and AD 
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Figures 3.8 and 3.9 show that measures of monocular ToAC derived from PcAF 

correlated significantly with both the TAF ToAC (rs= 0.666, p< 0.001) and AD ToAC (rs= 

0.775, p< 0.001).  A Friedman’s two-way analysis of variance test demonstrated a 

significant difference between measures of monocular ToAC with the TAF, PcAF and AD 

(X(2)= 20.581 p< 0.001).  Post-hoc analysis, with Wilcoxon’s signed rank tests showed 

that AD ToAC was significantly faster than both the PcAF ToAC (Z= -3.633, p < 0.001), 

and the TAF ToAC (Z= -3.568, p< 0.001).  Measures of ToAC via PcAF were significantly 

Figure 3.7 The correlation coefficient (top left), Bland and Altman agreement (top right), and the 
correlation coefficient of the proportional bias between between ToD (PcAF) and ToD (AD) (bottom 

centre) 
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faster than TAF ToAC (Z= -1.979 p= 0.048).  The Bland and Altman plots (Figures 3.8 and 

3.9) demonstrated proportional bias as ToAC values increased, agreement between the 

methods decreased.  

 

 

 

 

 

Figure 3.8 The correlation coefficient and Bland and Altman agreement between ToAC derived 
via PcAF and TAF 

 

Figure 3.9: The correlation coefficient and Bland and Altman agreement  between ToAC 
(PcAF) and ToAC (AD) 
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3.3.1.1 Repeatability 

Good intra-observer repeatability was shown for all accommodative metrics as 

displayed in Table 3.2.  Binocular AF measurements displayed greater levels of variability 

and poorer repeatability than monocular AF measurements.   

Good inter-observer repeatability was shown for all of the PcAF as displayed by the ICC 

values in Table 3.3; the lowest levels of ICC were observed for ToD.  Good agreement is 

confirmed by the Bland and Altman plots, as shown in Figure 3.10. 

 

 

 

 

PcAF Metric ICC 

CPM  monocular 0.936 

ToA 0.942 

ToD 0.724 

ToAC 0.942 

CPM binocular flat 0.976 

CPM binocular stereo 0.937 

Table 3.3: The Intraclass correlation co-efficient for inter-observer repeatability for all the 
accommodative metrics measured using the PcAF. 
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3.3.2  PART 2: Investigating the effects of using a stereogram 

target on binocular accommodative facility. 

The means and data spread of CPM achieved binocularly with the TAF and PcAF, with 

both the stereogram and ‘flat’ target are shown in Figure 3.11.  Binocular measures of 

CPM were compared for both the TAF and PcAF when using a ‘flat’ and stereogram 

target (Table 3.4).  There was a positive correlation between the CPM results achieved 

with a ‘flat’ and stereogram target both with TAF (r = 0.896, p < 0.001) (Figure 3.12), and 

PcAF (rs = 0.886, p < 0.001) (Figure 3.13).   

Figure 3.10 Bland and Altman plots demonstrating the inter-observer repeatability for PcAF metrics 
measured: a. ToAC measured monocularly, b. ToA measured monocularly, c, ToD measured 

monocularly, d. CPM measured monocularly, e. CPM measured monocularly with a stereogram 
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The stereogram target significantly reduced the mean number of CPM achieved with 

TAF by 1.3 CPM (t= -1.742, p= 0.004).  In comparison, similar CPM were observed 

between the stereo and flat targets with PcAF (Z=-1.171 p= 0.241).  Intra-repeatability 

was reduced for both types of target when using the PcAF.  

 

 Mean (SD) Median CoV 

TAF 
‘Flat’ target 11.1 ±3.7 11.0 8% 

Stereogram 9.8 ±4.3 10.0 16% 

PcAF 
‘Flat’ target* 10.9 ±5.2 9.8 12% 

Stereogram 10.1 ±4.7 10.0 15% 

 
Table 3.4: The mean, medians and CoV of binocular AF, *non-normally distributed 

Figure 3.11: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
spread of data for all of the binocular AF measurements 
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The Bland and Altman plots (Figures 3.12 and 3.13) show good agreement between the 

tests when different targets were used, however, there were large limits of agreement 

between the use of a ‘flat’ target and a stereogram target of 6.3 CPM for TAF, and 

9.6CPM for PcAF.  

Figure 3.12 The correlation coefficient and Bland and Altman agreement between binocular TAF 
using different targets 

Figure 3.13 The correlation coefficient and Bland and Altman agreement between binocular PcAF 
using different targets 
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3.4 Discussion 

AF is a valid and repeatable clinical test, which is useful to investigate symptomatic 

accommodative dysfunction (Zellers et al., 1984).  Due to its subjective nature, the 

technique is prone to inaccuracies, particularly relating to the response time of the 

subject and practitioner performing the test.  Furthermore the technique has been 

shown to induce significant visual stress, and therefore errors relating to ocular 

suppression, which are likely to affect binocular measures of AF.  In an attempt to 

improve subjective measures of AF, the present investigation demonstrates the validity 

of a novel patient-controlled accommodative facility device. The PcAF allowed for 

separate identification of the ToA and ToD during the AF cycle allowing comparability 

with the equivalent metrics derived from the accommodative dynamic profile.  Given 

the potential flaws in the previous studies that have examined the effects of using a 

stereogram target on binocular AF, this study also re-examined this influence, with a 

group of healthy pre-presbyopes.  Binocular AF was assessed using both a stereogram 

target and a non-stereogram target and results were compared. The stereogram target 

reduced the CPM achieved during TAF by 1.3 CPM; in contrast the stereogram target 

had no effect on the CPM during PcAF. 
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3.4.1 Validation of the PcAF 

Both monocularly and binocularly measures of the CPM observed via TAF and PcAF were 

within the range of normative values reported by Zellers et al. (1984).  The TAF test relies 

on a subjective end criterion; relying on the subject to appreciate and then relay when 

a target appears clear.  Hence a proportion of the time for each cycle includes an 

inherent time delay that is related to the subject and practitioner reaction times; the 

reaction time of the subject in appreciating the target as ‘clear’, then indicating this to 

the practitioner (usually verbally), consequently leading to the practitioner flipping the 

lenses.  

The PcAF provided the means to allow the subject to control the lens flip thus removing 

the need for the verbal signal and the practitioner actioning the lens change.  This would 

have also reduced the cognitive demand of the task (Kedzia et al., 1999).  When 

compared with the traditional AF test, PcAF results showed a faster ToAC to TAF and a 

higher number of CPM.   In comparison objective measures of accommodative dynamics 

ToAC, demonstrated a faster ToAC than PcAF, suggesting that a significant proportion of 

the PcAF ToAC is related to the subject’s reaction time.   

Current measures of ToA and ToD assessed via PcAF, (1.99s and 2.71s, respectively) and 

accommodative dynamics (1.96s and 1.59s, respectively) are within a similar range of 

subjective response times found by Radhakrishnan et al. (2007) (2.39s and 2.04s 

respectively) and Allen et al. (2010) (1.89s and 2.64s, respectively).  The strong 

correlations and Bland and Altman plots, demonstrate good agreement between the 
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ToA, ToD and ToAC found using the PcAF and AD.  However, proportional bias was 

present with slower values of ToD; there was a greater reduction in ToD with PcAF, than 

in ToD with AD.  This could have been due to a ceiling effect inherent with 

measurements of accommodative dynamics; any measurement of time derived from 

the accommodative dynamic profile will be limited to the total time that each target is 

presented.  In this study, this time was 5 seconds, however from Figure 3.7 it can be 

seen that the measurement threshold remained at approximately 2.5 seconds.  

The ToD and ToAC were found to be significantly slower when assessed with PcAF 

compared to AD. It is likely that the inherent time delay from the subject’s response and 

subjectivity during PcAF explains this discrepancy.  

PcAF data showed good intra- and inter-observer reliability. Although repeatability was 

reduced binocularly, with both the TAF and PcAF, possibly due to the increased 

complexity of the task and stress that the binocular test puts on the visual system.  

Moreover good concordance was observed between PcAF, TAF, and AD metrics 

suggesting that PcAF is a valid method for the assessment of AF.   

 

3.4.2 The effect of a stereopsis target on binocular AF testing  

The mean binocular TAF using a stereogram target was 9.8CPM, which is within the 

normal values suggested by Zellers et al. (1984) of 8CPM ±5, and in line with previous 

studies (Burge, 1979, Griffin et al., 1977, Wick et al., 2002b).   
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In the present investigation, the stereogram target significantly reduced the CPM 

achieved during binocular TAF by 1.3CPM, which is less than the reduction observed in 

previous studies.  Griffin et al. (1977) reported a reduction in binocular CPM achieved 

with a stereogram target of 3.5CPM in ‘normal’ subjects and 5CPM in ‘suspect’ subjects.  

Their criteria for ‘suspect’ was defined as subjects who struggled to keep bifoveal 

fixation during testing, or achieved a ‘low’ score (of less than 9 CPM).  The specific 

inclusion/exclusion criteria for the study was not stated.  Therefore, subjects with other 

binocular vision dysfunction may have been included, which would have potentially 

exaggerated the effects of using a stereogram target during binocular AF in the ‘normal’ 

group.   In a similar study, Burge (1979) conducted an investigation which excluded 

subjects with strabismus, or reduced amplitude of accommodation.  The study found a 

significant reduction of 3.5CPM when using a stereogram target.  However, there was a 

1.5CPM difference noted between the right eye and left eye;  the investigators fail to 

report whether this difference was statistically significant.  The contrasting findings 

between the present investigation and that of Burge’s study may have also been due to 

the age ranges included: the study assessed a large age range of 6 to 30 years.  Children 

tend to have reduced AF compared to adults (Hoffman and Rouse, 1980, Hennessey et 

al., 1984a, Wick and Hall, 1987, Scheiman et al., 1988, Wick et al., 2002b) and therefore 

using this large age range could have exaggerated the reduction in CPM achieved with 

a stereogram.  Zellers et al. (1984) found that in adults, a monocular difference of 

greater than 4CPM between the eyes would be suspicious.  Therefore, the widely cited 
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3.5CPM reduction in binocular AF with a stereogram target found by Griffin, Graham 

and Clausen (1977) and Burge (1979) although statistically significant may not be 

clinically significant.  Similarly in this study although 1.3CPM may be statistically 

significant, it may not be clinically significant.  The large limits of agreement found in the 

Bland and Altman plots comparing the use of the stereogram and ‘flat’ targets, for the 

TAF and PcAF, and the agreement between the binocular AF tests between the ‘flat’ and 

stereogram target with the PcAF, would support this supposition.  Further research is 

required to explore the clinical significance of the reduction in CPM achieved when using 

a stereogram across different age groups, and between ‘normal’ and ‘suspect’ groups. 

 

3.4.3 Considerations of this study 

There are some limitations of the PcAF, firstly the taken to flip the lenses (300ms)  

increases the ToA, ToD, SoAC, decreasing the total number of CPM achieved.  The 

shortest time between flip measured was 0.7s, of which 300ms would represent 43% of 

the total time.  Secondly, the time intervals were recorded to the nearest 0.1s, which 

would have limited the accuracy of the accommodative times recorded.   

During this study, the target that was viewed by the subject did not vary during TAF, 

PcAF or AD. Randomizing the target letters between lens presentations may have 

prevented the subject from anticipating the target and thus may have improved the 

reliability of the test. The choice of a consistent target was made so that the AF systems 

used in this study closely emulated the TAF used in clinical practice.  During TAF  Levine 
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et al., (1985) and Zellers et al. (1984) found a slight in-test training effect; and a better 

flip rate in the second eye.  To mitigate the learning effect, the order in which the 

monocular and binocular tests, including whether TAF or PcAF were tested first, was 

randomised.  Intra-observer repeatability in this study was tested using a subject who 

would have been classed as having normal AF using the criteria set by Zellers et al. 

(1984). The good intra-observer repeatability of the AF metrics found during this study 

would support findings by  Levine et al. (1985)  that subjects with normative AF did not 

significantly improve AF CPM on repeated testing.   

 

3.4.4 Conclusions and future work 

In summary the key findings of this study were: 

 PcAF was a valid and repeatable method of assessing AF.   

 Using a stereogram target reduced the CPM achieved in a sample of young 

adults with ‘normal’ binocular function.   

 

Future work will seek to modify the PcAF, by improving the accuracy of times recorded.  

Further investigations will include examining the effects of in-test fatigue and subject 

age on the ToA and ToD (McKenzie et al., 1987, Rouse et al., 1989, Rouse et al., 1992). 

Further exploration using a more systematic approach in quantifying groups of 

symptomatic and non-symptomatic accommodative dysfunction, and normal and 
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‘suspect’ binocular function, is needed to further understand the effects of using a 

stereogram during binocular AF.  It would also be useful to examine the effects of using 

a stereogram during binocular AF across different ages. 
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Chapter 4: Optimising the calculation methods 

for analysing depth of focus from defocus 

curves 

4.1  Introduction 

Given that the overarching aim of this thesis is to examine the suitability of the methods 

for assessing accommodative function in pre-presbyopes, presbyopes and 

pseudophakes, the previous two chapters conducted investigations of methods for 

measuring accommodation on pre-presbyopes and presbyopes.  Therefore, in this 

chapter, a pseudophakic group has been included in the study population, in an 

investigation into the measurement of depth-of-focus.  Thus, providing the opportunity 

to compare the methods for assessing depth-of-focus across age groups.   

Depth of focus (DoF) is the dioptric range over which an object can still be resolved 

(Wang and Ciuffreda, 2004).  In contrast, range-of-focus is defined as the physical 

distance range over which an object can be resolved (Pieh et al., 2002, Schmidinger et 

al., 2006, Alfonso et al., 2009, Maxwell et al., 2009).  DoF can be measured by 

determining the VA through optical lenses of varying powers, this is the most common 

method for constructing and assessing defocus curves in the phakic eye (Rosenfield et 

al., 1996, Wold et al., 2003, Ostrin and Glasser, 2004a, Gupta et al., 2007, Gupta et al., 
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2008, Antona et al., 2009, Leon et al., 2012, Momeni-Moghaddam et al., 2014).   In the 

accommodating eye, VA can be maintained with negative lens defocus but decreases 

with positive lens defocus.  The magnitude of the dioptric range over which the acuity is 

maintained is dependent upon both the amplitude of accommodation (AoA) and the 

individual’s tolerance to optical blur (known as true DoF).  In defocus curve assessment 

the terms AoA and DoF are often used interchangeably, however these are separate co-

dependant metrics.  The AoA is often derived from a defocus curve as the highest 

powered negative lens where VA is maintained to a set cut-off criterion.  The DoF is 

quantified by two different metrics: the range-of-focus and the area-of-focus.  The 

range-of-focus is defined as the dioptric range over which VA can be maintained above 

the cut-off criterion (Gupta et al., 2008), as shown in Figure 4.1.   

 

Figure 4.1: An example of a defocus curve of a presbyopic patient, showing the range-of-focus metric 
derived with an absolute cut-off of +0.30logMAR and a relative cut-off of BCVA+0.04logMAR 

 

The area-of-focus calculates the area of vision seen above a cut-off criterion and 

quantifies both the range and depth-of-focus (Buckhurst et al., 2012) (Figure 4.2).   
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Figure 4.2: The method used by Buckhurst et al. (2012) to analyse defocus curves of a subject fitted 

with a MIOL 

 

The set cut-off on a defocus curve, at which the AoA or DoF is determined, influences 

the dioptric value attained from the evaluation. This cut-off can be relative or absolute 

(Figure 4.1); if relative then the chosen VA level is dependent on the BCVA whereas an 

absolute criterion is independent of the subject’s BCVA.   

One limitation of measuring the DoF using minus lenses, is that the VA measured via 

negative defocus is generally an under-estimation of the actual VA which can be 

achieved at the equivalent distance.  This underestimation of VA is due to the lack of 

physiological miosis associated with the near vision triad response and the minification 

of the target by the optical lens power (Pieh et al., 2002), although this latter source of 

error can be compensated for mathematically (Gupta et al., 2008).   

Accurate and repeatable methods in constructing and analysing defocus curves, are 

necessary to assess the DoF clinically and in a research setting.  Currently there is much 

variation in the methods used, as summarised in Table 4.1, including:   
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• The distance at which the test is performed 

• Method of analysis 

• The step size between optical defocus levels 

• Randomisation or non-randomisation of target 

• Randomisation or non-randomisation of lens power 

 

4.1.1 Target distance 

Defocus curves have been constructed with subjects viewing targets at both distance 

and near. There has been some debate over whether this variation in test distance 

would have any significant clinical implications.  Ostrin and Glasser (2004a) suggested 

that using a distance target as a stimulus to accommodation, leads to a general under-

estimation of AoA in younger subjects due to the absence of proximal cues.   In contrast, 

Momeni-Moghaddam et al. (2014) demonstrated that a distance (6m) target, gave 

significantly lower AoA compared to a near (40cm) target; the magnitude of difference 

was amplitude dependant.  The investigators concluded that the difference in the AoA 

response was likely to be due to the pupil miosis and proximal cues from the near vision 

target, both of which would be absent when using a distance target.  Therefore, the 

study concluded that although the AoA found via defocus curves using distance and near 

targets correlate significantly, the two measures are not clinically interchangeable.   

 

  



 

 

 

Page 152 

4.1.2 Method of analysis  

The cut-off criteria used to derive the AoA or DoF can be either absolute (Ostrin and 

Glasser, 2004a, Momeni-Moghaddam et al., 2014) or relative to the BCVA (Rosenfield 

and Cohen, 1996, Lovie-Kitchin and Brown, 2000, Wold et al., 2003, Gupta et al., 2008, 

Antona et al., 2009, Buckhurst et al., 2012, Leon et al., 2012, Wolffsohn et al., 2013).  

Figure 4.1 shows a defocus curve of a typical presbyope, with the DoF calculated at both 

a relative criteria of BCVA+0.04logMAR and an absolute criteria of +0.30logMAR.  Gupta 

et al. (2008) recommended using a relative criterion of BCVA +0.04logMAR, to derive 

AoA, which is based on the variability of VA measurements (Raasch et al., 1998, Lovie-

Kitchin and Brown, 2000).  When deriving the DoF via the area-of-focus Wolffsohn et al. 

(2013) compared the use of an absolute criteria of +0.30logMAR (the legal driving 

standard within the UK (DVLA, 2015)) to a relative cut-off criterion of BCVA +0.10logMAR 

in a study with IOL implants.  The higher threshold of +0.10logMAR was used instead of 

BCVA+0.04logMAR to allow for the reduced near visual acuity with IOLs.   It was 

concluded that the relative criteria of BCVA +0.10logMAR was more prone to erroneous 

errors when compared to the absolute criteria of +0.30logMAR (Wolffsohn et al., 2013). 

 
4.1.3 Step size between lens presentations 

Increased test duration whilst establishing AoA can lead to patient fatigue affecting 

results.  In response to this Wolffsohn et al. (2013) investigated the effect of using step 

changes of 0.50DS, 1.00DS and 1.50DS in groups of patients with different multifocal IOL 
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designs.  The study found that a larger step size of 1.00DS and 1.50DS adversely affected 

the results when a relative cut-off criteria was used: the shorter range-of-focus derived 

using a relative cut-off is more sensitive to variations in the defocus curve (Wolffsohn et 

al., 2013).  

 

4.1.4 Randomisation of lens power and visual target 

Presenting lens powers in a predictable order, or using static letters as a target during 

the construction of defocus curves could lead to a learning effect, and over-estimating 

the final AoA or DoF calculated.  Gupta et al. (2007) and Gupta et al. (2008) investigated 

the effects of randomising these two factors; both studies concluded that the AoA 

measured was not significantly affected by randomising the order of the lens powers 

presented, or changing the letters used as a target. However, these studies still 

encouraged the use of randomisation of both the lens power and the target presented 

(Gupta et al., 2007, Gupta et al., 2008) to minimise any learning effects (Altman and 

Bland, 1999).    
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  Table 4.1: The different defocus-curve methodology used to obtain AoA or range-of-focus from defocus curves in phakic subjects  

Study Target Cut-off Criteria Other Comments 

Distance targets 

Gupta et al. (2007) LogMAR chart at 6 metres Not stated   

Gupta et al. (2008) LogMAR chart at 6 metres First negative lens which blurred to 
BCVA+0.04LogMAR 

+0.036LogMAR is the variation found in 
repeated measures of VA (Raasch et al., 1998, 
Lovie-Kitchin and Brown, 2000) 

Ostrin and Glasser (2004a) Letter chart at 6 metres First negative lens which blurred 6/6 0.25DS step changes 

Wold et al. (2003) Letter chart at 6 metres Most negative lens where the BCVA was still 
achievable.  

 

Momeni-Moghaddam et al. 
(2014) 

Snellen chart at 6 metres Most negative lens at which 6/9 could be 
read 

0.25DS step changes 

Near Targets 
Antona et al. (2009) Corresponding VA of 0.9logMAR at 

40cm   
The first negative lens which induced the first 
point of sustained  blur, +2.50D 

0.25DS step changes 

Leon et al. (2012)  Letters 0.7mm high, at 33 cm The first negative lens which induced the first 
point of sustained blur +3.00D 

 

Rosenfield and Cohen (1996) One line above the BCVA on near 
chart at 40cm 

The first negative lens which induced the first 
point of sustained blur 

Does not mention compensation for near 
distance was used 

Momeni-Moghaddam et al. 
(2014) 

Equivalent 6/9 line on Reduced 
Snellen chart at 40cm 

Last minus lens at which 6/9 could be read 
on the reduced Snellen +2.50D 

0.25DS step changes 
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4.1.5 Defocus curves compared to other methods of measuring 

accommodation 

Objective techniques for measuring accommodation are known to be more repeatable 

and reliable than alternative subjective methods such as defocus curves (Glasser, 2006).  

Subjective methods often over-estimate accommodation levels due to blur cues and a 

subjective end point (Wold et al., 2003, Ostrin and Glasser, 2004a, Leon et al., 2012).  It 

has been proposed that objective methods are better suited to examine the efficacy of 

presbyopia treatment strategies (Ostrin and Glasser, 2004a, Wold et al., 2003).  

However, in comparison with the crystalline lens, an IOL causes Purkinje images III and 

IV to be laterally displaced and brighter resulting in aberrant auto-refractor and power-

refractor measurements.  Therefore, a combination approach of using objective and 

subjective methods to assess pseudophakic accommodation is advocated 

(Langenbucher et al., 2003, Sheppard et al., 2010).  Defocus curves are often used and 

are the preferred subjective method for assessing the effectiveness of IOLs for restoring 

accommodation (Gupta et al., 2007).  As discussed in Section 1.6.2 in comparison to the 

Push-Up test, defocus curves have been shown to measure lower AoA.  This has been 

attributed to a number of factors including: the minification effects from the increase in 

negative lens power, and a lack of both pupil miosis and proximal cues during defocus 

curve measurements, and the variation in target size during the push-up test (Rosenfield 

and Cohen, 1996, Ostrin and Glasser, 2004a, Gupta et al., 2008).    
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4.1.6 Assessment of defocus curves in the pseudophakic eye  

The pseudophakic eye is unable to accommodate and hence a reduction in VA is 

expected when introducing both positive and negative defocus lenses.  Multifocal IOLs 

(MIOLs), accommodating IOLs (AIOLs) and extended depth-of-focus IOLs (EDoF IOLs) 

have all been developed with the aim of restoring functional near vision in pseudophakic 

eyes.  During DoF assessment a pseudophakic eye implanted with one of these lenses 

should demonstrate an improved tolerance to negative defocus lenses 

 

4.1.6.1 Multifocal intra-ocular lens (IOL) designs 

Multifocal intraocular lenses (MIOLs) work on the principle of simultaneous vision, 

achieved by diffractive or refractive designs, providing a double or triple peaked defocus 

curve (Rosenfield et al., 1996, Schmidinger et al., 2006, Alfonso et al., 2009, Antona et 

al., 2009, Maxwell et al., 2009, Wolffsohn et al., 2013, Buckhurst et al., 2012, Leon et al., 

2012, Momeni-Moghaddam et al., 2014).  However, it is difficult to describe the profile 

of MIOLs using either absolute or relative cut-off criterions, due to the multi-peaked 

defocus curve.   Buckhurst et al., (2012) developed an area metric to describe the areas 

of vision at distance, intermediate and near following MIOL implantation, as shown in 

Figure 4.2 (Buckhurst et al., 2012).  By examining areas of the defocus curves in these 

three portions, the describing metric assessed both range-of-focus and VA.   
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4.1.6.2 Accommodative IOL lens designs 

The first generation of commercially available accommodative IOLs were based upon 

the optic shift principle and were designed to translate anteriorly with accommodation.  

However, studies have failed to demonstrate that these accommodative IOLs provide a 

significant magnitude of accommodative change.  Cleary et al. (2010) utilised a relative 

cut-off criteria of +0.04LogMAR and showed similar AoA values for both monofocal (0.64 

± 0.37) and accommodative IOL (0.93 ± 0.35) groups (Cleary et al., 2010).  

The second generation of accommodative IOLs were based on a dual optic telescopic 

system. These IOLs have a high-powered positive anterior lens and negative posterior 

lens.  In the unaccommodated state, the capsule holds the lenses close to each other. 

With accommodative effort the capsule compresses the haptics, forcing a separation of 

the two lenses. The anterior lens of a dual optic IOL has a higher power than the optic 

of the single lens system; this means that these lenses are able to produce higher 

accommodative power (McLeod et al., 2007).  Ossma et al (2007) assessed defocus 

curves on subjects implanted with the Synchrony dual optic lens. To demonstrate the 

accommodative power of the lens, defocus curves were examined using a relative cut-

off criteria, and compared with a matching monofocal group. The Synchrony group 

maintained an increased range-of-focus in comparison with the monofocal group and 

the authors concluded that this provided evidence of the accommodative power of the 

IOL (Ossma et al., 2007).  On further examination of these findings, it is evident that the 

gradient of the negative and positive slopes were similar for both IOLs.  If 

accommodation was present then a shallower gradient of curvature should be present 
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with negative defocus, in comparison to positive defocus.  The results suggest that the 

increased range-of-focus observed was due to increased DoF, rather than increased 

accommodation.  As such, these conclusions need to be viewed with caution and 

highlights the need for a valid method of analysing defocus curves for pseudophakic 

assessment.    

Since 2014 an emerging category of IOL known as extended-depth-of-focus IOL (EDoF 

IOL) have been made commercially available. The classification that defines a lens as 

EDoF has yet to be fully specified and as such there appears to be some overlap between 

EDoF IOLs and MIOL designs: The Symfony EDoF IOL incorporates a low addition 

diffractive surface producing a second defocus curve peak (Gatinel and Loicq, 2016).  

Neither the range-of-focus nor the area-of-defocus metrics have been validated for 

assessing the defocus curve profile of EDoF IOLs. The range-of-focus metrics to describe 

the profile of EDoF IOLs may not be suitable as they do not differentiate between the 

positive and negative defocus gradients.  The area metric proposed by Buckhurst et al., 

(2012) was developed to assess the specific visual profiles of multifocal IOLs and may 

not be suitable for EDoF lenses. 

To accurately assess and compare the efficacy of EDoF IOLs, there is a clinical need to 

standardise the defocus curve analysis.  

 
4.1.7 Study aims 

The aim of this study was to assess the validity of defocus curve metrics in phakic and 

pseudophakic eyes.  In phakic eyes the validity of a range of defocus metrics against both 
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amplitude of accommodation (AoA) and accommodative dynamics (AD) was assessed.  

AoA is considered the gold standard clinical test of accommodation despite the influence 

of depth-of-focus.  In addition accommodative dynamics is a valuable tool for validation 

as it assesses accommodation independently of depth-of-focus. 

The investigation also assessed the validity of the range of defocus metrics against 

reading speed in pseudophakic eyes with EDoF IOL correction. Reading speed was 

chosen, as in comparison to near acuity, reading speed provides a real life measure of 

usable near vision. AoA and accommodate dynamics were not relevant with 

pseudophakic eyes given that these subjects do not accommodate.   

The secondary aims of this study were to examine the relationship between the push-

up test, accommodative dynamics and the defocus curve metrics.  

 

4.2 Methods 

4.2.1 Phakic Subjects 

Forty two healthy adults (18 males and 24 females) with a mean age of 31, SD ±8 years 

(range 19 – 49) were recruited for this study.  The inclusion criteria for the study 

included: 

 Aged between 18 and 50 years old. 

 Correctable VA in soft contact lenses at least 0.0 LogMAR or better.    

 



 

 

 

Page 160 

The exclusion criteria for the study was: 

 Current or previous ocular pathology, injury or surgery 

 Current or previous binocular vision disorder 

 Diabetes mellitus 

 

4.2.2 Pseudophakic Subjects 

A further 30 subjects (7 males, 18 females) with a mean age of 67, SD ± 6 years (range 

55 - 74) were recruited from BMI Southend Hospital (Southend on Sea UK). The inclusion 

criteria for this study included:  

 Previously had bilateral cataract surgery or bilateral clear lens extraction within 

the last 3-6 months.   

 A postoperative best corrected distance VA of at least 0.1 LogMAR. 

 Aged between 40 and 70 years old. 

The exclusion criteria for this study included: 

 Current or previous ocular pathology, injury or surgery (other than cataracts or 

lens extraction. 

 Capsular opacification, LASIK and YAG capsulotomy. 

 Corneal astigmatism of greater than 1.50DC. 

The 30 subjects recruited had been implanted within the previous 3 to 6 months, with 

one of two types of lenses: 
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 Group one; 15 subjects who had been implanted bilaterally with the Tecnis 1-

piece acrylic monfocal IOL (Abbott Medical Optics Inc. Santa Ana, California). 

 Group two; 15 subjects who had been implanted bilaterally with the Symfony 

EDoF IOL (Abbott Medical Optics Inc. Santa Ana, California). 

Ethical approval was obtained from the Plymouth University Ethics committee and the 

study was performed in accordance to the tenets of the Declaration of Helsinki.  

Informed written consent was obtained from each subject prior to commencement of 

both parts of this study.   

 

4.2.3 Phakic Evaluation 

All 42 subjects were examined by a single observer (NS). Intra-observer repeatability was 

assessed on a subset of 24 subjects: these subjects attended a second visit separated by 

at least 24 hours and were examined by the same observer (NS).  Inter-observer 

repeatability was assessed on a subset of 20 subjects: these subjects attended an 

additional visit and were examined by a second observer (PB).  The two observers were 

blind to all data measurements collected previously. 

 

4.2.3.1 Refraction 

A full objective and subjective monocular refraction was performed on each eye, to 

ensure that the refractive error was within the inclusion criteria.  The mean spherical 

refractive error of the study population was RE: -0.90DS ±2.10, LE: -0.88DS ±2.00.  Any 
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refractive error greater than -0.50DS, +0.75DS and -0.75DC was corrected using soft 

contact lenses.  At this point, any subjects who could not achieve a VA of 0.0 LogMAR 

were excluded. 

 

4.2.3.2 Defocus curves (minus-to-blur) 

Data for the defocus curves for each subject was collected with the use of trial lenses 

and with the subject viewing a logMAR test chart using Thomson test chart 2000 

(Thomson Software Solutions, Hatfield, Herts, UK.).  The procedure was performed with 

the fellow eye occluded.  Lenses between the range of +2.00DS to –15.00DS were 

presented monocularly in 1.00DS steps.  The VA was recorded for each presentation.  In 

between each presentation, the letters on the vision chart were randomised to minimise 

any learning effects.  The process was then repeated on the second eye.   

 

4.2.3.3 Push-Up Test 

AoA was measured using the RAF rule monocularly and binocularly.  The target (a single 

word on the N5 line) was initially presented 50cm away from the subject (2.00D demand 

of accommodation).  Subjects were asked to identify if the word appeared clear.  If clear, 

the target was slowly moved towards the subject, until the first point of sustained blur 

was reported.  This was recorded as the break point.  The target was then retracted until 

the target was reported as clear, this was recorded as the recovery.  The procedure was 
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repeated until three readings were recorded, and mean break and recovery were 

calculated.  The total mean of the break and recovery was recorded as the AoA. 

 

4.2.3.4 Time for Accommodative Change (ToAC) 

The ToAC was derived from the monocular accommodative dynamic profile, which was 

measured using the Grand Seiko Auto REF WAM-5500 with a motorised Badal adaption 

system, as described in Section 2.2.3.   

 

4.2.4 Pseudophakic evaluation 

All subjects were examined 3-6 months post-operatively. During this visit the following 

tests were performed. 

  

4.2.4.1 Refraction 

A combination of retinoscopy, autorefraction and a full subjective refraction at 6 m were 

used to determine the refractive power.  The mean spherical refractive error was RE: 

+0.30DS ±0.75, LE: +0.42DS ±0.75.  Any refractive error was corrected by placing trial 

lenses at the back of the trial frame whilst assessing the defocus curve.   
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4.2.4.2 Binocular defocus curves 

The logMAR test chart at 6m was used to measure the binocular VA with each defocus 

lens.  Lenses were presented binocularly, within the range of +1.50 to –5.00D in 0.50D 

steps. The letters on the test chart were randomised between measures.  

 

4.2.4.3 Assessment of Critical Print Size in the pseudo-phakic population 

To assess the near visual function, the Radner Reading Chart was used to measure the 

reading speed.  This reading test consists of paragraphs of different sized text.  The test 

has high repeatability due to the standardized structure and construction of the 

sentences used (Stifter et al., 2004, Radner and Diendorfer, 2014).  The structure is 

composed of three lines, fourteen words, and between eighty-two and eighty-four 

letters. The construction of the text is such that the nouns, verbs and syllables are 

consistently positioned across each sentence (Radner et al., 1998, Radner and 

Diendorfer, 2014).  The Radner Reading Chart can quantify three reading metrics: the 

reading acuity (RA) which is determined as the smallest sized print that is resolved, the 

maximum reading speed (MRS) which is the fastest reading speed (when print size is not 

a limiting factor), and the critical print size (CPS) defined as the smallest size print size 

which allows maximum reading speed to be maintained (Radner et al., 1998, Radner and 

Diendorfer, 2014).   Each participant had their MRS measured for each of the different 

sized text, from which the CPS was determined with visual inspection of the results.  
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4.2.5 Statistical Analysis 

4.2.5.1 Evaluation of the defocus curves 

4.2.5.1.1 Correction of Effective Power and Magnification of the Defocus 

Curves 

Any spectacle lens placed in front of the eye has a magnifying effect on the retinal image. 

The magnification is dependent on the lens shape, refractive index and the distance 

between eye and lens (Gupta et al., 2008) (Equation 4.1).  As discussed in section 4.1, 

minus lenses have a minification effect on the target, which can lead to an under-

estimation of the VA.  Positive lenses have a magnification effect on the target, which 

can lead to an over-estimation of the VA. To compensate for these optical effects a 

correction was applied to every VA measured in the defocus curve (Equation 4.1). 

 

      Equation 4.1 

Where SM = Spectacle Magnification, t = Lens thickness, n = Refractive Index, F1 = 
Front surface power, d = Back Vertex Distance, and Fs = Lens power. 
 
The back vertex distance of a lens also influences its effective power at the ocular plane. 

Thus a correction was used to determine the effect of defocus at the ocular plane 

(Equation 4.2).  

𝑂𝑑 =  
𝐹𝑠

(1 − 𝑑𝐹𝑠)
 

        Equation 4.2 



SM 
1

1
t

n
F1









* 1 dFs 
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Where Od = Ocular defocus, Fs  = Lens power and d = Back Vertex Distance 

4.2.5.1.2 Curve Fitting 

Matlab software was used to plot defocus curves and calculate DoF (see Appendix 3).  

The defocus curves were constructed plotting lens power in dioptres (x-axis) against 

LogMAR VA (y-axis).  A 9th order polynomial was fitted to each data set to create the 

defocus curves (Wolffsohn et al., 2013) (equation 4.3). The curve fitting process was 

limited to 100 iterations for each curve.  

𝒚=𝒂+𝒃𝒙+ 𝒄𝒙𝟐+ 𝒅𝒙𝟑+ 𝒆𝒙𝟒+ 𝒇𝒙𝟓+ 𝒈𝒙𝟔+ 𝒉𝒙𝟕+ 𝒊𝒙𝟖+ 𝒋𝒙𝟗 

Equation 4.3 

For each of these defocus curves the following metrics were calculated: 

1. The area-of-focus with 0.30 logMAR as the cut-off (0.30area) 

2. The area-of-focus with 0.04 log MAR as the cut-off (0.04area) 

3. The range-of-focus (in dioptres) between the two points on the curve where 

0.30 intercepts x-axis (0.30dist) 

4. The range-of-focus (in dioptres) between the two points on the curve where 

0.04 intercepts x-axis (0.04dist) 

A relative cut-off criteria of BCVA+0.04logMAR was used as proposed by Gupta et al. 

(2008). The absolute criteria of +0.30logMAR was used, as it is equivalent to the legal 

driving standard in the UK (DVLA, 2015).   
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4.2.5.1.3 Calculating range-of-focus 

The absolute criteria of +0.30LogMAR and relative criteria of BCVA+0.04 LogMAR were 

used to calculate the range-of-focus. The Newton-Raphson method is used to find the 

roots of a function (Ypma, 1995), by adjusting the polynomial function by 0.3 (or BCVA 

+0.04), x can be calculated when y = 0.3 (Equation 4.4).  In the present study, the 

Newton-Raphson method was used to calculate x when y = 0.3, and x when y= best VA 

+0.04.  

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
= 𝑥0 −

(𝑎 − 0.3) + 𝑏𝑥0 + 𝑐𝑥0
2 + 𝑑𝑥0

3 + 𝑒𝑥0
4 + 𝐹𝑥0

5 + 𝑔𝑥0
6 + ℎ𝑥0

7 + 𝑖𝑥0
8 + 𝑗𝑥0

9

𝑏 + 2𝑐𝑥0 + 3𝑑𝑥0
2 + 4𝑒𝑥0

3 + 5𝐹𝑥0
4 + 6𝑔𝑥0

5 + 7ℎ𝑥0
6 + 8𝑖𝑥0

7 + 9𝑗𝑥0
8  

 

Equation 4.4 

To increase the accuracy of the estimation of x when y=0.3, the resultant x1 from 

Equation 4.5 is used as xn and utilised in Equation 3.5 until the % error is reduced to 0 

(Equation 4.6). 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
= 𝑥0 −

(𝑎 − 0.3) + 𝑏𝑥𝑛 + 𝑐𝑥𝑛
2 + 𝑑𝑥𝑛

3 + 𝑒𝑥𝑛
4 + 𝐹𝑥𝑛

5 + 𝑔𝑥𝑛
6 + ℎ𝑥𝑛

7 + 𝑖𝑥𝑛
8 + 𝑗𝑥𝑛

9

𝑏 + 2𝑐𝑥𝑛 + 3𝑑𝑥𝑛
2 + 4𝑒𝑥𝑛

3 + 5𝐹𝑥𝑛
4 + 6𝑔𝑥𝑛

5 + 7ℎ𝑥𝑛
6 + 8𝑖𝑥𝑛

7 + 9𝑗𝑥𝑛
8

 

 

 Equation 4.5 

 

        Equation 4.6 

The Newton-Raphson method was used to determine each intersection of the curve at 

0.3 LogMAR. The range-of-focus (0.30dist) was calculated as the dioptric distance over 



%error 
xn1  xn 
xn1  xn
2
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which VA was better than 0.3 LogMAR. The range-of-focus (0.04dist) was calculated as 

the dioptric distance over which VA was better than the BCVA+0.04LogMAR. 

4.2.5.1.4 Calculating area-of-focus 

The polynomial equations for each curve were integrated such that the area of defocus 

(LogMAR*m-1) could be derived (Equation 4.7).  

 

  Equation 4.7 

The upper area limit was defined as either +0.30LogMAR or BCVA +0.04 and bound the 

area of defocus.  Separate areas were calculated for the positive and negative area of 

defocus.  The negative area of defocus was subtracted from the positive defocus area to 

create an accommodative area metric (Equation 4.8 and Figure 4.3).  The resulting area-

of-focus metric describes the range and area of VA seen, beyond what would be 

expected by an absolute presbyope.  In an absolute presbyope this area-of-focus would 

expected to be zero.    

Area-of-focus = negative area-of-focus – positive area-of-focus 

Equation 4.8 

 



ax  bx2  cx 3

a1

a0

  dx4  ex 5  Fx 6  gx7  hx8  ix 9  jx10
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Figure 4.3: The area-of-focus metric (shaded in red) was calculated by finding the area-seen on the 
positive side of the graph and on the negative side of the graph.  The positive area-seen (shaded in 

yellow) was then subtracted from the negative area-seen. 

 

4.2.5.2 Evaluation of accommodative dynamics curves 

The speed of accommodative change (ToAC) was derived from the accommodative 

dynamics via the same methods as outlined in Section 2.2.5. 

 

4.2.5.3 Assumption of Normality 

Visual inspection of descriptive statistics, histograms, box-plots and Sharpiro-Wilks tests 

were conducted to determine whether the accommodative metrics followed a normal 

distribution.  All of the DoF and accommodative metrics measured in the phakic 

population were found to be normally distributed with the exception of ToAC, and 

0.04area.  All of the DoF and near visual function metrics measured in the pseudophakic 

population followed a normal disruption.   
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4.2.5.4 Comparison of Eyes 

A two-way repeated measures ANOVA was used to investigate if there was a significant 

difference between the right and left eye for each accommodative metric measured. 

The ANOVA was constructed with the metrics assessed as within-subject factors and eye 

(right or left) as between-subject factors.  

 

4.2.5.5 Repeatability 

To test intra-observer and inter-observer repeatability ICC was calculated: two-way 

mixed single measures (absolute agreement);  

𝐼𝐶𝐶 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒, 2) =  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟) ÷ 2
 

 

Bland and Altman plots were also constructed: intra-observer repeatability was tested 

by comparing the defocus curves assessed at two separate visit by the first examiner 

(NS).  Inter-observer repeatability was tested by the defocus curves measured during 

the first visit, by the first observer (NS), and the third visit by the second observer(PB). 

 

4.2.5.6 Correlations between the DoF metrics and other accommodative metrics 

Pearson’s correlation coefficient was used to assess the association between the DoF 

metrics 0.30dist, 0.30area and 0.04dist, with both AoA and age.  Similarly Spearman’s 
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Rho test was used to assess the relationship between both AoA and age with the 0.04 

area metric. 

Spearman’s Rho correlation coefficient was used to investigate the association between 

the DoF metrics and ToAC.  

Pearson’s correlation coefficient was utilised to investigate the relationship between the 

binocular CPS from the Radner reading chart and the DoF metrics derived in the 

pseudophakic population.  Additionally, for the DoF metrics that showed a significant 

correlation, a forward stepwise regression analysis was completed to investigate which 

DoF metric best predicted the CPS.   

 

4.2.5.7 Metric sensitivity to different designs of IOLs 

Two-way repeated measures ANOVAs were examined to determine which metrics 

derived from the binocular defocus curves of the pseudophakic population, could detect 

the difference between a monofocal and EDoF IOL.  The ANOVA was constructed with 

the metrics assessed as within-subject factors and lens design as between-subject 

factors (monofocal and Symfony EDoL).   
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4.3 Results 

4.3.1 Phakic population 

Repeated measures ANOVA for all measures of accommodation showed no significant 

difference between right and left eyes (F2,6 =0.194, p=0.661). Hence only the RE data 

were considered for further analysis; the means or medians and spread of data are 

shown in Figure 4.4. 

 

Figure 4.4: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of the data for 
the accommodative metrics measured: a. dist0.30, dist0.04 and AoA, b. area 0.30 and area0.04, and c. 

ToAC 
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4.3.1.1 Correlations between the DoF metrics and the Push-Up test 

Figure 4.5 displays the correlation coefficients between the AoA found via the push-up 

test and each defocus curve calculation method.  The 0.30dist metric showed the 

strongest positive correlation with AoA.  No significant correlation was found between 

AoA and the 0.04area  metric. 

 

Figure 4.5: The correlation coefficient between AoA (via the Push-Up method) and: a 0.04area , b. 

0.04dist, c. 0.30area, d. 0.30dist. 
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4.3.1.2 Correlations between the DoF metrics and ToAC  

Figure 4.6 shows the Spearman’s Rho correlations between the defocus curve metrics 

and ToAC.  It can be seen that the correlations were significant when the cut-off 

criterion was set at +0.30 logMAR; the highest level of correlation was seen with the 

0.30area metric.   

 

 

4.3.1.3 Correlations between DoF metrics and age  

Except the 0.04dist metric, all other measures of accommodation showed a significant 

inverse correlation with age.  The association with age was greatest when the metric 

cut-off was set at +0.30 logMAR rather than +0.04 logMAR (Figure 4.7).   

Figure 4.6 Spearman’s Rho correlation coefficient between the ToAC and each metric for 
calculating the depth of focus: a. 0.04area, b. 0.04dist, c. 0.30area, d. 0.30dist 
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4.3.1.4 Repeatability 

Intraclass correlation coefficents (ICCs) were examined to assess intra-observer and 

inter-observer repeatability, these are displayed in Table 4.2.   

Of the defocus curve measurements both intra-observer and inter-observer 

repeatability was highest with the +0.30 logMAR cut-off in comparison to the BCVA+0.04 

logMAR cut-off.  Figure 4.8 and 4.9 displays the Bland and Altman plots for both the 

inter- and intra-observer repeatability for all accommodation metrics evaluated. 

 

 
Intra-observer 
repeatability 

Inter-observer 
repeatability 

ToAC 0.491 0.575 

AoA 0.969 0.947 

DoF 

0.30dist 0.975 0.914 

0.30area 0.935 0.870 

0.04dist -0.118 -0.051 

0.04area 0.693 0.474 

Table 4.2: The ICC intra-observer repeatability and inter-observer repeatability 
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Figure 4.7 Pearson’s correlation coefficient between the age and each accommodation metric: 
a. 0.04area, b. 0.04dist, c. 0.30area, d. 0.30dist, e. AoA, and f. ToAC. 
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 Figure 4.8: Bland and Altman plots of a. intra-observer repeatability 0.04area, b. inter-

observer repeatability 0.04area, c. intra-observer repeatability 0.04dist, d. inter-observer 
repeatability 0.04dist, e. intra-observer repeatability 0.30area, f. inter-observer 

repeatability 0.30 area.  
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Figure 4.9: Bland and Altman plots of a. intra-observer repeatability 0.30dist, b. inter-observer 
repeatability 0.30 dist, c. intra-observer repeatability AoA, d. inter-observer repeatability AoA, 

e. intra-observer repeatability ToAC, f. inter-observer repeatability ToAC.  
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4.3.2 Pseudophakic populations 

Figure 4.10 show the means and spread of data for all of the metrics examined.   

 

 

 

4.3.2.1 The ability of the metric to differentiate between IOL-designs 

A significant difference was found between the lens design (F2,6=10.249, p<0.004).  

Further post-hoc analysis with independent 2-tailed t-tests, (Table 4.3) demonstrated 

that the cut-off of BCVA+0.04logMAR did not identify a significant difference between 

the two lens designs with either the area-of-focus or range-of-focus metric.  The cut-off 

of 0.30logMAR showed significant differences between the lens designs, with the 

Symphony EDoF IOL having a significantly larger range-of-focus and area-of-focus than 

the monofocal IOL. 

  

Table 3.6: The mean and standard deviations of the accommodation metrics 

Figure 4.10: Box plots displaying the median, 10th, 25th, 75th and 90th percentiles of data for 
monofocal IOL and EDoF IOL groups: a. the area-of-focus metrics, b. the range-of-focus 

metrics, c, the Radner CPS 
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DoF Metric t p 

0.30dist 3.007 0.006 

0.30area 3.842 0.001 

0.04dist 1.4828 0.198 

0.04area 0.610 0.553 

 

 

4.3.2.2 Correlations between the DoF metrics and the Radner CPS  

The mean CPS in the monofocal group was 0.53 ±0.12, whilst for the Symfony EDoF 

group it was 0.44 ±0.11.  The Pearson’s correlation between the DoF metrics derived 

from the defocus curves and the Radner CPS in the pseudophakic population are 

displayed in Figure 4.11.  Only the 0.30dist metric demonstrated a significant inverse 

correlation (r =-0.487, p =0.014).  

 

Figure 4.11 Pearson’s Correlations between the Radner CPS and each metric for calculating 
the defocus curve: a. 0.04area, b. 0.04dist, c. 0.30area, d. 0.30dist 

 

Table 4.3: The independent t-tests comparing the monofocal and Symfony EDoF lens designs 
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4.4 Discussion 

The aims of this study were to assess a range of defocus curve metrics in both phakic 

and pseudophakic eyes. In phakic eyes repeatability was assessed as well as the 

agreement with the results of AoA and accommodative dynamics. In eyes implanted 

with an EDoF IOL the agreement between defocus curve metrics and the results of 

reading speed were determined. 

 

4.4.1 Repeatability of defocus curve metrics 

The defocus curve metrics calculated with an absolute criterion of +0.30logMAR 

(0.30area and 0.30dist) demonstrated a high level of intra- and inter-observer 

repeatability when compared with the relative BCVA +0.04logMAR cut-off (0.04area and 

0.04dist). This can be explained by considering the likelihood of a false positive result.  

The narrower threshold for the relative cut off areas (0.04area and 0.04dist) leave these 

measurements very sensitive to small variations in visual acuity measurements resulting 

in poor repeatability. Gupta et al (2008) who proposed the 0.04dist metric did not assess 

its repeatability.  

 

4.4.2 Correlation of defocus curve metrics with other measures of accommodation  

In comparison to the metrics calculated with the cut-off of BCVA+0.04log MAR, AoA and 

ToAC, showed higher levels of correlations with the metrics calculated with an absolute 
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criterion of +0.30logMAR (0.30area and 0.30dist).  This finding is in contrast to a study 

by Gupta et al. (2008), which concluded that the AoA derived from defocus curves using 

a BCVA+0.04logMAR cut-off demonstrated a stronger correlation and more clinically 

acceptable limits of agreements than an AoA derived using +0.30logMAR.  The 

discrepancy may be explained by the demographical differences between the study 

populations and methodological differences. It can be surmised that the poor 

repeatability of the relative cut off metrics (0.04area and 0.04dist) adversely affects a pre-

presbyopic population rendering the results unreliable.  

Similar results were found in the pseudophakic population, the relative cut-off metrics 

(0.04area and 0.04dist) failed to significantly correlate with reading speed despite it 

having a strong correlation with the absolute metrics (0.30area and 0.30dist). 

Determining whether the range-of-focus or area-of-focus metric is the most valid and 

repeatable within the phakic population is more ambiguous.  With the +0.30logMAR cut-

off, both the range-of-focus and area-of-focus metric demonstrated comparable inter-

and intra-observer repeatability, and comparable correlations with age, push-up test 

AoA and the ToAC.   Therefore both metrics, when derived using an absolute criteria of 

+0.30logMAR, are valid and repeatable whilst describing the DoF in a phakic population. 

It would be anticipated that a participant fitted with an EDoF lens would achieve a 

greater DoF than a participant fitted with a monofocal lens.  Therefore, it would be 

expected that the EDoF group have a significantly greater range-of-focus and area-of-

focus than the monofocal group at both cut-off criterion.  However, this study found 

that these metrics only differentiated between a monofocal IOL and EDoF IOL if an 
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absolute cut-off criteria was utilised.   This would support the findings of Buckhurst et 

al. (2012), who established that the area-of-focus and range-of-focus metrics, with the 

absolute criteria of 0.30logMAR could determine between a monofocal IOL and MIOL 

designs.  However, Buckhurst et al. (2012) noted that only the area-of-focus metric could 

differentiate between the different types of refractive and diffractive designs of the 

MIOL used.   This would suggest that a metric quantifying the area of vision seen with 

an absolute cut-off criterion would provide a more valid overall assessment of the visual 

out-come after implantation with EDoF IOLs and MIOLs, than a range-of-focus metric.  

Conversely, when this study further examined the correlations between the Radner CPS 

scores and each accommodative metrics a significant correlation was demonstrated 

with only the 0.30dist metric. 

It would be anticipated that due to the increased depth-of-focus offered by EDoF IOLs, 

subjects in this group would score better on a near visual function test.  Buckhurst et al. 

(2012) assessed near vision function using a subjective rating system to quantify patient 

satisfaction with near vision, after IOL implantation.  They found that the subjective near 

vision rating correlated highest with near area-of-focus (r s = 0.484, P < 0.001), than with 

the range-of-focus metric (r s = 0.408, P = 0.001).  These findings contrast with the 

findings in this study, that Radner CPS correlated only with 0.30dist metric (r =-0.487, p 

=0.014).   These observations may be due to the difference in the calculation methods 

used in quantifying and calculating the area-of-focus metric.  This finding would suggest 

that the 0.30dist metric was the most sensitive in detecting the greater DoF expected in 

subjects with the EDoF lens.   
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One of the limitations of this study was the use of step changes of 1.00DS, despite 

previous studies recommending step changes of no greater than 0.50DS if a relative 

criteria is used (Wolffsohn et al., 2013).   However, Wolffsohn et al. (2013) found that if 

an absolute cut-off criteria was used, a larger step size of 1.00DS did not affect the range-

of-focus metric.  The present study included young adults of 19 years and older, where 

some of the younger subjects had a Push-Up test AoA of up to 14.16D; therefore it was 

appropriate that the depth-of-focus needed to be measured over a large range (2.00DS 

to -15.00DS).  If step changes of 0.50DS were used this would involve a total of 35 lens 

presentations, compared to the total of 18 lens presentations with 1.00DS steps.  The 

investigators deemed that this greater number of lens presentations would have a 

greater risk of results being affected by fatigue bias.  Furthermore, the study which 

recommended step changes of 0.50DS examined a pseudophakic population with 

multifocal IOLs (Wolffsohn et al., 2013), whereas all of the subjects examined using 

1.00D step changes, in this study were phakic subjects.  Therefore further studies to 

understand the effect of the size of step changes on defocus curves measured in young 

phakic populations would lead to a greater understanding of the balance needed 

between step changes and fatigue bias.  
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4.4.3 Conclusion 

In summary the key findings of this study were: 

 The repeatability of the defocus curve metrics was higher when an absolute 

cut-off criteria of 0.30logMAR was used. 

 The dioptric range over which a subject can see 0.30logMAR consistently 

demonstrated the best repeatability, and highest correlations with other 

measures of accommodation in phakic eyes, and near vision function in eyes 

implanted with the EDoF IOL. 
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Chapter 5: Investigating the in vivo ciliary muscle 

shape change during accommodation  

5.1 Introduction 

It is apparent from previous chapters that whilst there are many accommodative metrics 

that can be measured, there are common problems around the subjectivity of response. 

Being able to measure the physical changes in the ciliary body during the 

accommodative response in vivo is an alternative approach that could be useful in future 

experiments.   An understanding of the normal structure and function of the human 

ciliary muscle is desired for numerous reasons.   

The compromises in visual function associated with the traditional methods of 

correcting presbyopia have driven the development of novel methods of restoring 

accommodation, including accommodating IOLs (Glasser, 2008).  An improved 

understanding of the interactions between an accommodating IOL and the ciliary muscle 

could better inform IOL design and placement within the eye (Richdale et al., 2013, 

Richdale et al., 2016).  

As discussed in Section 1.8, the ciliary muscle may also have a functional role in the 

development of accommodative dysfunction and myopia (Oliveira et al., 2005, Bailey et 

al., 2008, Schultz et al., 2009, Sheppard and Davies, 2010).  Studies have shown that 

ciliary muscle thickness varies with refractive error in children and young adults;  the 
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ciliary muscle in myopic eyes have been found to be longer (Sheppard and Davies, 2010) 

and thicker in the posterior region (Oliveira et al., 2005, Bailey et al., 2008, Schultz et al., 

2009, Buckhurst et al., 2013, Kuchem et al., 2013, Pucker et al., 2013).  The hyperopic 

defocus model states that increased axial length and relative hyperopic peripheral 

refractive error can be a predictor of myopic development (Mutti et al., 2007, Charman 

and Radhakrishnan, 2010).  After the onset of refractive error, myopes have 

demonstrated increased accommodative lag (Gwiazda et al., 2005, Mutti et al., 2006), 

higher accommodative convergence/stimulus to accommodation ratios (Mutti et al., 

2000, Gwiazda et al., 2005, Mutti et al., 2017), and increased accommodative 

fluctuations (Schultz et al., 2009).  The exact role of ciliary muscle morphology in 

myopigenis is unclear, but studies have suggested that there is likely to be a significant 

relationship between the two (Bailey et al., 2008, Sheppard and Davies, 2010, Buckhurst 

et al., 2013, Pucker et al., 2013). 

 

5.1.1 Imaging the in vivo ciliary muscle 

Historically, studying the ciliary muscle in vivo has been challenging due to the position 

of the iris in human eyes (Strenk et al., 2006).  Prior to the availability of anterior eye 

imaging devices, much of the research on the ciliary muscle had been performed in vitro; 

on patients with aniridia, or using animal models (particularly Rhesus monkeys).  With 

improved medical imaging technology, MRI scanners and ultrasound bio-microscopy 

have been used to investigate ciliary muscles thickness with ageing and accommodation 
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(Strenk et al., 1999, Strenk et al., 2006, Strenk et al., 2010, Kasthurirangan et al., 2011, 

Sheppard et al., 2011).  More recently with the introduction of the anterior segment 

time-domain optical coherence tomography (TD-ASOCT) there is now a non-invasive 

means to capture highly detailed images of the crystalline lens and the ciliary muscle in 

vivo.  

Optical coherence tomography (OCT) produces highly detailed 3D images using 

interference technology.   A low-coherence infra-red light-source is split into a sample 

beam, and a reference beam. As the light source scans across an ocular structure, the 

sample beam reflections from the ocular tissues coincide with the reference beam 

reflections from a mirror, resulting in interference (Wolffsohn, 2008).  In TD-ASOCT, a 

reference mirror is moved within an interferometer, to measure the resulting coherence 

(the difference in frequency and phase) of the interference.  This movement 

continuously varies the distance between the reference mirror and beam splitter, such 

that this distance matches the time delay of the sample beam.  The variation in the 

optical length of the reference beam determines the axial depth of the ocular tissues; 

this is utilised to construct A-scans.  Multiple A-scans are aligned to create 2D images.    

It is the mechanical movement of the reference mirror that limits the scan time, 

resolution and clarity of images, of TD-ASOCT (Wolffsohn, 2008, Drexler et al., 2014).  

Swept source OCT (SS-OCT) overcomes the limitations posed by the movement of the 

reference mirror, by keeping it stationary, and instead employing a tunable narrow-

width laser source to sweep through the light spectrum (Drexler et al., 2014).  The 

spectral pattern of the resulting interference between the reflections from the sample 
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beam and reference beam are assessed; this allows the reflections from each layer to 

be measured concurrently. In SS-OCTs the scan speed is determined by the wavelength 

of the swept source laser (Drexler et al., 2014).  Compared to TDOCT, SSOCTs offers 

greater axial resolutions, and faster scan times (Drexler, 2004).  

The Zeiss Visante anterior segment TD-ASOCT (Carl Zeiss Meditec Inc., Dublin, CA, USA) 

was the first commercially available AS-OCT used to assess the in vivo human ciliary 

muscle.  TD-ASOCT imaging has been used to study the effects of ageing and 

accommodation, on biometric measurements of the crystalline lens  (anterior lens 

surface,  anterior lens curvature, lens thickness, and lens equivalent refractive index), 

and the ciliary muscle (ciliary muscle  length, thickness, total cross-sectional area, and 

differences between the nasal and temporal portions), in both children and adults 

(Bailey et al., 2008, Sheppard and Davies, 2010, Sheppard and Davies, 2011, Lewis et al., 

2012, Lossing et al., 2012, Richdale et al., 2012, Buckhurst et al., 2013, Pucker et al., 

2013, Richdale et al., 2013, Richdale et al., 2016).    

 

5.1.2 Ciliary muscle changes with age 

Much of the evidence derived from ASOCT studies support the findings of in vitro and 

animal model studies but some disparities are evident.  In their AS-OCT study, Sheppard 

and Davies (2011) support the in vitro observations of Pardue and Sivak (2000) reporting 

a decrease in ciliary muscle length with age.  In contrast during a study on Rhesus 

monkeys, Tamm et al. (1992b), found no change in overall ciliary muscle length with 
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increasing age.  In Rhesus monkeys the ciliary muscle appears to move posteriorly with 

age, as apposed to the anterior movement observed during in vitro and in vivo human 

studies, (Strenk et al., 1999, Pardue and Sivak, 2000, Strenk et al., 2004a, Strenk et al., 

2010, Sheppard and Davies, 2011).   

Furthermore, in vivo studies that have reported on the change in ciliary muscle thickness 

with age, in humans, have reported conflicted results; Richdale et al. (2013) found no 

significant changes in thickness, at any point along the ciliary muscle with age.  However, 

Sheppard and Davies (2011) found that (in emmetropes) the posterior temporal ciliary 

muscle thickness decreased, whilst maximum anterior ciliary muscle thickness 

increased, both nasally and temporally.  This study also found an overall inward shift of 

ciliary muscle mass, and a decrease in anterior length (the distance between the scleral 

spur and point of vertical maximum thickness).   

 

5.1.3 Ciliary muscle changes with accommodation 

There is general consensus among AS-OCT studies that during accommodation the 

overall length of the ciliary muscle reduces, whilst the anterior ciliary muscle thickness 

increases, and the posterior ciliary muscle becomes thinner (Sheppard and Davies, 2010, 

Sheppard and Davies, 2011, Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 

2013, Richdale et al., 2016).  Investigators have also confirmed the forward and inwards 

movement of the ciliary muscle mass with accommodation, which releases zonular 

tension (Sheppard and Davies, 2010, Lossing et al., 2012, Richdale et al., 2013).   
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In Rhesus monkeys there is a reduction in the contractility of the ciliary muscle with 

increasing age, which significantly contributes to presbyopia (Lutjen-Drecoll et al., 1988).  

Conversely TD-ASOCT studies are in general agreement that the change in ciliary muscle 

contractility, in humans, does not change with age (Sheppard and Davies, 2011, Richdale 

et al., 2013, Shao et al., 2015, Richdale et al., 2016).  Furthermore, the overall length and 

anterior length of the ciliary muscle continues to decrease with accommodation, 

independently of age (Sheppard and Davies, 2011, Shao et al., 2015).  In order to further 

assess the ciliary muscle response to accommodation, several investigators have 

examined the ciliary muscle thickness change per dioptre of accommodation (Sheppard 

and Davies, 2010, Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 2013, 

Richdale et al., 2016); the methodology and results from these studies are displayed in 

Table 5.1.   

 

5.1.4  Considerations of AS-OCT methodologies when examining 

the ciliary muscle 

Various attempts have been made to standardise the methodologies utilised when 

investigating the ciliary muscle with AS-OCT, (Sheppard and Davies, 2010, Kao et al., 

2011, Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 2013, Laughton et al., 

2015) but disparities still exist (see Table 5.1).  
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5.1.4.1 Refractive index 

As discussed in section 1.8 images produced by AS-OCT include some optical distortions.  

These optical distortions result from the refraction of light at each surface edge as the 

OCT scanning light passes through different mediums; this results in loss of detail of the 

structures imaged (Ortiz et al., 2010).  As discussed in section 1.8, to compensate for 

these optical distortions, a refractive index (RI) appropriate to each ocular structure 

needs to be applied to each image.  The RI of the ciliary muscle and sclera are estimated 

to be 1.382 and 1.48, respectively (Tearney et al., 1995, Dirckx et al., 2005).  However, 

there are some disparities between the exact RI and way the RI is applied to the image 

data during image analysis; the vast majority of  investigators have applied a RI of 1.48 

for the sclera and 1.38 or 1.382 for the ciliary muscle (Bailey et al., 2008, Sheppard and 

Davies, 2010, Kao et al., 2011, Sheppard and Davies, 2011, Lossing et al., 2012, Richdale 

et al., 2012, Richdale et al., 2013, Laughton et al., 2015).  
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Study N 
Age 

(years) 
Refractive Error 

Ciliary 
Muscle 

Pharmacological agents, 
Accommodative demands 

RI* Mean thickness (µm) 

Bailey et al. 
(2008) 

53 8-15 ‘All types’ 
Mean= -1.13D ±2.26 

RE nasal Proparacaine  
Tropicamide 1% x 2 drops 

1.000 CMT1 
CMT2 
CMT3 

899 
601 
326 

Sheppard and 
Davies (2010) 

50 19-34 Between -10 and +6 RE nasal & 
temporal 

0D, 4D, 8D 
Measured  before OCT (using WAM-5500)  

1.382 Temporal Nasal 

CM25 
CM50 
CM75 
CMT2 

550 
347 
174 
405 

CM25 
CM50 
CM75 
CMT2 

535 
297 
152 
347 

Sheppard and 
Davies (2011) 

79 19-70 Between 9.50D and +2.33D RE nasal and 
temporal 

0D, 4D, 8D 
Measured before OCT (using WAM-5500) 

1.382 Nasal 

CMT2 327 

Lossing et al. 
(2012) 

25 23-28 Any if BCVA >6/6 in contact 
lenses 

RE Temporal 1D, 4D 
Measured simultaneously (using Power Refractor) 
 

1.38 CMTmax 
CMT1 
CMT2 
CMT3 

825 
796 
598 
367 

Buckhurst et 
al. (2013) 

62 18-40 -10.06 to +4.38 RE & LE 
nasal & 

temporal   

NA 1.388 Temporal Nasal 

CMT1 
CMT2 
CMT3 

529 
335 
189 

CMT1 
CMT2 
CMT3 

556 
319 
170 

Kuchem et al. 
2013 

29 18-40 -2.56 to +3.29 RE & LE NA 1.38 CMTmax 
CMT1 
CMT2 
CMT3 

855 
826 
598 
348 

Table 5.1:  Previous studies, which have used AS-OCT to image the ciliary muscle.  *RI = Refractive Index. All studies utilised the Zeiss Visante  AS-OCT, apart from **, 
which did not state the type of AS-OCT used. CMT1: ciliary muscle thickness at 1mm from the scleral spur, CMT2:  ciliary muscle thickness at 2mm from the scleral spur, 
CMT3:  ciliary muscle thickness at 3mm from the scleral spur, CM25:  ciliary muscle thickness at 25% from the scleral spur, CM50:  ciliary muscle thickness at 50% from 

the scleral spur, CM75:  ciliary muscle thickness at 75% from the scleral spur 
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Study N 
Age 

(years) 
Refractive Error 

Ciliary 
Muscle 

Pharmacological agents, 
Accommodative demands 

RI* Mean thickness (µm) 

Pucker et al. 
2013 

26
9 

6-14 -4D to +7.75 RE nasal NA 1.38 CMTmax 
CMT1 
CMT2 
CMT3 

809 
778 
527 
280 

Richdale et al. 
(2013) 

26 30-50  -0.50D to  +0.50 RE 
temporal 

Phenylephrine  
0, 2, 4, 6D 
 

1.41  
1.38 

CMTmax  
CMT1  
CMT2  
CMT3 

870  
800 
490 
270 

Shao et al. 
2015** 

33 20-39 -7.75 to plano LE 0D & 6D    

Richdale et al. 
2016 

91 30-50 -10.90D to +1.75D RE 
Temporal 

Phenylephrine  
0, 2, 4, 6D 
Measured simultaneously (using Power Refractor) 

1.41 
1.38 

CMT1  
CMT2 
CMT3 
  

790 
510 
300 

Table 5.1 (continued) Previous studies, which have used AS-OCT to image the ciliary muscle.  *RI = Refractive Index. All studies utilised the Zeiss Visante  AS-OCT, apart 
from **, which did not state the type of AS-OCT used.  CMT1: ciliary muscle thickness at 1mm from the scleral spur, CMT2:  ciliary muscle thickness at 2mm from the 

scleral spur, CMT3:  ciliary muscle thickness at 3mm from the scleral spur, CM25:  ciliary muscle thickness at 25% from the scleral spur, CM50:  ciliary muscle thickness 
at 50% from the scleral spur, CM75:  ciliary muscle thickness at 75% from the scleral spur 
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5.1.4.2 Reference points 

Much of the literature on AS-OCT and the ciliary muscle is based upon manual 

examination of the OCT images. As such when assessing changes in ciliary muscle 

parameters with accommodation a challenge is posed when anatomically corresponding 

points need to be identified to allow accurate comparisons between the relaxed and 

accommodative status (Bailey, 2011).   In earlier in vivo studies, Bailey et al. (2008) and 

Oliveira et al. (2005) measured the ciliary muscle thickness at designated distances 

posterior to the scleral spur.  Sheppard and Davies (2010) stated that this does not 

consider the fact that ciliary muscle thickness and length varies with refractive error 

(Oliveira et al., 2005), and therefore comparing pre-determined points along a ciliary 

muscle between emmetropic, myopic, and hyperopic eyes may fail to examine the 

equivalent anatomical points.  Therefore, Sheppard and Davies (2010) proposed that the 

full length of the ciliary muscle should be assessed and thickness measurements are 

taken at 25%, 50% and 75% of the length relative to the scleral spur.  In principal this 

technique should improve comparability between refractive groups, however there has 

been some debate as to how accurately the full length of the ciliary muscle can be 

assessed with the current resolution offered by TD-ASOCT  (Bailey, 2011).   

 

5.1.4.3 Accommodative lag 

In studies examining ciliary muscle change with accommodation, several investigators 

have noted a significant accommodative lag to a near stimulus (Charman, 2008, Lossing 
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et al., 2012, Richdale et al., 2013).  Therefore, to accurately assess the ciliary muscle 

shape change per dioptre of accommodation, the accommodative response of the eye 

should be measured, rather than assumed to be accurate to the accommodative 

demand of the target. Hence, accommodation should ideally be assessed 

simultaneously whilst imaging the ciliary muscle (Lossing et al., 2012).   

To this end some investigators have implemented the use of power refractors to 

monitor accommodative response whilst the images are captured with the Visante AS-

OCT (Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 2013, Richdale et al., 

2016).   Due to technical restrictions relating to the size and design of the AS-OCT,  many 

studies have been unable to do this and have therefore either assumed an 

accommodative response equal to the accommodative demand of the target, or 

measured the accommodative response to the a target either prior to, or following 

imaging (Sheppard and Davies, 2010).    

 

5.1.4.4 Software for ciliary muscle image analysis 

Previous studies have utilised the Visante AS-OCT’s built-in software to analyse images 

to extract biometric measurements of the ciliary muscle (Bailey et al., 2008, Sheppard 

and Davies, 2010, Sheppard and Davies, 2011).  However, there are numerous 

limitations in employing this software to assess the ciliary muscle. These include: 

 Automatically applying RIs to an image of the ciliary muscle, which are more 

appropriate for the anterior cornea (n= 1.000), the central cornea (n= 1.338) and 
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the posterior cornea (n= 1.343).  Whilst the exact RI of the sclera and ciliary 

muscle are not compensated for.  

 Using straight-line callipers to measure the ciliary muscle length or distances 

from the scleral spur does not account for scleral curvature.  Individual variation 

in scleral curvature would lead to increased variability in the thickness of the 

ciliary body particularly across the posterior portion (Kao et al., 2011). 

 The Visante software cannot be used to measure cross-sectional area.  This 

biometric measurement could provide an improved understanding of the 

physiology and morphology of the ciliary muscle; especially where studies on 

ciliary muscle thickness have shown conflicting findings (Bailey et al., 2008, 

Sheppard and Davies, 2010, Sheppard and Davies, 2011, Lewis et al., 2012, 

Lossing et al., 2012, Richdale et al., 2012, Buckhurst et al., 2013, Pucker et al., 

2013, Richdale et al., 2013, Richdale et al., 2016) . 

To combat these limitations investigators have developed semi-automated software 

programmes to allow image analysis on images exported from the Vistante OCT (Kao et 

al., 2011, Laughton et al., 2015).   These programmes have been designed such that once 

a landmark, such as the scleral spur, has been selected manually by an observer, the 

appropriate RI for the sclera (approx. n= 1.41) and the ciliary muscle (approx. n= 1.38) 

are applied to the images and edges of the ciliary muscles detected.  Various lengths, 

thicknesses and cross-sectional areas can then be measured taking into account the 

specific curvature of the sclera.  Although full automation of this software could remove 
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any observer variation in selecting specified landmarks, this would be difficult to achieve 

due to the challenges in ensuring uniformity during image acquisition (Laughton et al., 

2015).  A significant limitation of the Kao et al. (2011) software (which has been utilised 

in studies by Lossing et al., (2012), Richdale et al., (2012), Richdale et al., (2013) and 

Richdale et al., (2016)), is that the edge detection algorithm combined the ciliary muscle 

with the pigmented ciliary epithelium, which overestimates the biometric 

measurements. 

 

5.1.4.5 Tomey SS-ASOCT  

The newer Tomey CASIA SS-1000 AS-OCT (Tomey, Nagoya, Japan) is an SS-ASOCT and 

has the ability to produce scans of the ciliary muscle with a higher resolution than the 

Zeiss Visante TD-ASOCT.  A comparison between the two AS-OCTs, and their equivalent 

modes, most suited to imaging the ciliary muscle, is summarised in Table 5.2.   

When imaging the ciliary muscle with the Visante OCT, the position of the image plane 

is approximated by viewing a real-time image of the subject’s eye on the video monitor. 

As such the system does not provide the facility to identify specific points on the anterior 

eye for scanning. Therefore, ensuring uniformity of the specific location of the cross-

section of the ciliary body used for analysis during repeated measurements, is difficult.  

One unique feature of the Tomey CASIA is that the area of the conjunctiva, over which 

the scan is acquired, is visible during both image acquisition and before image analysis.  

This scan area can be utilised to select a specific plane from which the image to be 
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analysed, can be selected.  With this function it is possible to identify a physiological 

marker on a subject’s eye as a reference point (RP) which is selected for image analysis.  

This facility should increase the repeatability and accuracy of repeated ciliary muscle 

measurements.    

 

Another feature of the Tomey CASIA software is the tools for cross-sectional area 

analysis.  This feature allows analysis of both the entire cross-sectional area of the ciliary 

muscle, and segment cross-sectional areas.  This would allow a more in-depth analysis 

of the morphology of the ciliary muscle during accommodation and provide improved 

 Visante Casia 

Light Source Superluminescent LED Swept-source laser 

Wavelength 1310nm 1310 nm 

Mode High-resolution corneal scan Angle ‘HD’ 

Axial resolution 18µm 10µm 

Transverse resolution 60µm 30 µm 

Scan resolution 
(per line sampling) 

512 a-scans 2048 a-scans 

Scan area 10mm x 3mm 8mm x 8mm 

Scanning time 0.25 seconds 0.2 seconds 

Table 5.2: The specifications of the Visante TD-ASOCT and Tomey CASIA SS-ASOCT in the 
equivalent modes, most suited to imaging the ciliary muscle 
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understanding of the changes in ciliary muscle physiology with refractive error and 

ageing. 

 

5.1.5 Aims of this study 

The overarching purpose of this study was to evaluate the use of an anterior segment 

swept source spectral OCT (Tomey CASIA 1000 SS-ASOCT) for the assessment of the 

ciliary muscle during accommodation. The three main aims were:  

1. To investigate whether the Tomey CASIA AS-OCT can be used to examine 

the ciliary muscle changes that occur with accommodation. 

2. To investigate if the technique can be improved (determined by assessing 

inter- and intra-observer repeatability) by using a reference point to 

select a specific location of ciliary muscle for cross section scan analysis. 

3. To investigate whether ciliary muscle area can be used to assess the 

ciliary muscle morphology during accommodation, and whether this 

metric is valid and repeatable. 

 

5.2 Methods 

5.2.1 Subjects 

Thirty healthy adults (11 males and 19 females) of mean age of 30, ± SD 9 years (range 

19 – 48) were recruited for this study.  The inclusion criteria was adults aged between 

18 and 50 years old with a VA correctable in soft contact lenses to at least 0.0logMAR or 

better.  The exclusion criteria for this study included any current or previous ocular 

pathology, injury, surgery or binocular vision abnormality, and diabetes mellitus. 



 

 

 

Page 201 

Ethical approval was obtained from the Plymouth University Ethics committee and the 

study was performed in accordance to the tenets of the Declaration of Helsinki.  

Informed written consent was obtained from each subject prior to commencement of 

both parts of this study.   

 

5.2.2 Refraction 

Objective and subjective monocular refraction was performed on both eyes. One eye 

was randomly selected for further analysis.  The mean spherical refractive error was  

-0.76DS ±2.44.  Any refractive error, outside of the range of -0.50DS to +0.75DS and 

above 0.75DC, was corrected using soft contact lenses. 

   

5.2.3 Accommodative Response 

Due to the physical dimensions of the Tomey CASIA AS-OCT, simultaneous 

measurements of accommodation during image acquisition were not possible.  

Therefore, the accommodative response was measured using a WAM-5500 open field 

auto-refractor (Grand Seiko Co. Ltd., Hiroshima, Japan), prior to image acquisition.  The 

contralateral eye was occluded and subjects were asked to focus on a Maltese cross 

target. A full aperture, convex, +5D badal lens of 2 inch diameter was used to create a 

4D accommodative demand. Subjects were instructed to ‘focus on the cross and to make 

it as clear as possible’.  Although presbyopic subjects may struggle to clearly focus on, 

or maintain a clear focus on a 4D target, it is known that a blurred target will stimulate 
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ciliary muscle contraction (Strenk et al., 1999, Strenk et al., 2006, Strenk et al., 2010, 

Sheppard and Davies, 2011).  Three measurements were taken, and then the process 

was repeated with the patient viewing a target at 6 metres, to simulate 0D 

accommodative demand.  The dimensions of the WAM restricted the power of the badal 

lens to 5D, therefore it was not possible to achieve 8D accommodative demand. The 

difference between the distance best vision sphere and near best vision sphere was 

calculated to determine accommodative change. The process was repeated three times 

and the mean accommodative change was recorded.  

 

5.2.4 Image Acquisition  

The equipment was set up as shown in Figure 5.1; to acquire scans of the temporal and 

nasal ciliary muscle, whilst the subject viewed the external target with the ipsilateral 

eye.   

 

 

Figure 5.1: The set-up of the equipment for capturing images of the accommodative apparatus 
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The subject viewed the Maltese cross in a mirror attached to the Tomey CASIA AS-OCT, 

the location of the Maltese cross was set to achieve an eccentric gaze of approximately 

40 degrees whilst the head was in the primary position on the chin rest. The real time 

on screen video feed from the Tomey CASIA AS-OCT was use to ensure the correct 

eccentric gaze angle. Two-dimensional images were obtained in the ‘Angle HD mode’.  

In this mode the Tomey CASIA AS-OCT captures up to 2048 A-scans covering an area of 

8mm x 8mm in 0.2 seconds (Tomey, 2017).   

Scans were acquired for both the temporal and nasal ciliary muscle whilst the subject 

viewed a Maltese cross at distance and at accommodative demands of 4D and 8D; the 

8D demand allowed near-maximal induced accommodative change without using a 

pharmaceutical agent (Sheppard and Davies, 2010).    The order of the presentation of 

accommodative demands was randomised for each subject in order to avoid bias.   

 

5.2.5 Image Analysis 

5.2.5.1 Identification of a conjunctival reference point 

The Tomey CASIA AS-OCT, displays a real time video image of the conjunctiva during 

image acquisition. Following this a still image is displayed that shows the location of each 

A-scan line. This feature allows the user to select an A-Scan for analysis that corresponds 

with a specific RP on the conjunctiva (for example a conjunctival blood vessel), as 

illustrated in Figure 5.2. In this study, a RP on the conjunctiva was used to ensure that 

all images analysed, for a single subject would be conducted in the same location.  
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5.2.5.2 Measurements of ciliary muscle thickness and area  

Each image was analysed by one examiner using the in-built image analysis software. 

The ‘2D Analysis’ tool provided by the Tomey software was utilised to measure ciliary 

muscle thickness and area.   In built callipers were used to measure the thickest vertical 

point of the ciliary muscle (CMTMax). The measurement being taken from the anterior 

ciliary muscle-scleral boundary to the posterior ciliary pigment epithelial surface. In 

addition to the thickest point, sequential anterior-to-posterior measurements were 

taken at 1mm (CMT1), 2mm (CMT2) and 3mm (CMT3) increments from the scleral spur 

(see Figure 5.3).  

Figure 5.2: The display of the 8mm x 4mm area of conjunctiva over which the Tomey AS-OCT 
captures the image of the ciliary muscle.  In this image the physiological RP chosen was the inferior 
loop of conjunctival blood vessels, as shown by the blue arrow.  The red line once aligned with the RP 

illustrates the plane of the image analysed.  This ensured that subsequent images were analysed 
along the same plane of the ciliary muscle. 
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Four area measurements were assessed. To define the zones, for ciliary muscle area 

analysis, the callipers used for thickness measurements were positioned at the 1mm, 

2mm, and 3mm locations as described above. The defined areas were between; the 

scleral spur to 1mm (CMA1), 1 to 2mm from the scleral spur (CMA2), 2 to 3mm from the 

scleral spur (CMA3), and the scleral spur to 3mm (CMAtotal) as shown in Figure 5.4.   For 

the purpose of this analysis the ‘Area’ tools facility on the Tomey CASIA AS-OCT software 

was selected and used to outline the boundaries of the ciliary muscle for each area.  

Once the borders of an area are defined the software automatically calculates the area.  

Figure 5.3: Measurements of the ciliary muscle being taken using callipers of CMTmax, CMT1, CMT2, 
and CMT3. 
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To attain accurate measures of ciliary muscle thickness, the vast majority of  

investigators have applied a RI of 1.48 for the sclera and 1.38 or 1.382 for the ciliary 

muscle (Sheppard and Davies, 2010, Kao et al., 2011, Sheppard and Davies, 2011, Lossing 

et al., 2012, Richdale et al., 2012, Richdale et al., 2013, Laughton et al., 2015). For this 

study a RI of 1.38 was applied for all ciliary muscle measurements to minimise the effects 

of optical distortion produced by variation in refractive indices of the tissues. 

 

5.2.6 Repeatability of the thickness and area measurements 

To determine intra-observer repeatability a single subject was assessed on ten separate 

visits by one examiner. The examiner captured nasal and temporal ciliary muscle images 

for each accommodative demands of 0D, 4D, and 8D. Implementing the above protocol 

Figure 5.4: Calculations of CMA1 (top-left), CMA2 (top-right), CMA3 (lower-left), and CMAtotal (lower-right). 
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for ciliary muscle parameters, one examiner (NS) evaluated the images in a random 

order and was blind to the knowledge of which accommodation level was being 

assessed. 

To determine inter-observer repeatability a subset of 20 subjects was assessed by a 

second examiner (MN). The second examiner captured nasal and temporal ciliary muscle 

images independently using the protocol described above. The two examiners analysed 

the ciliary muscle images following agreed identification of a nasal and temporal RP. 

Each examiner were masked to the results of the other. 

 

5.2.7  The use of a reference point to increase accuracy and 

repeatability of measurements with the Tomey AS-OCT 

The utility of a conjunctival RP during image analysis was examined in this study. 

Specifically the study sought to examine if the intra-observer repeatability improved 

when using a RP. Ciliary muscle images were captured and analysed using three distinct 

protocols: 

1. Images were captured on one participant at ten separate visits.  The use of a RP 

was avoided for image acquisition and analysis.  

2. Images were captured on one participant at ten separate visits.  A RP was used 

for image acquisition and analysis. 

3. Images were captured on a single visit and analysed at 9 positions at regular 

intervals (every 0.44mm) across the scan area (Figure 5.5). This was conducted 
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to examine the effect of vertical scan location across superior and inferior ciliary 

muscle.  

 

The temporal muscle was used in line with previous studies (Sheppard and Davies, 

2010).  Identifying the scleral spur is critical as a point of reference for image analysis, 

and studies have found the scleral spur to be more difficult to identify in the temporal 

ciliary muscle compared to the nasal ciliary muscle (Sakata et al., 2008).  Therefore, 

measures of the temporal ciliary muscle are likely to show greater variability. 

 

5.2.8 Statistical analysis 

5.2.8.1 Assumption of Normality 

Following visual inspection of descriptive statistics, histograms, box-plots and Sharpiro-

Wilks tests, it was determined that all of the ciliary muscle thickness and area metrics 

followed a normal distribution.   

Figure 5.5: The scan area displayed by the Tomey CASIA AS-OCT during image acquisition and analysis, with black 
lines depicting the nine positions at which scans were analysed 
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5.2.8.2 Change in ciliary muscle thickness and area with accommodation 

A three-way mixed repeated measures ANOVA was performed to test the difference in 

ciliary muscle metrics between the two eyes with eye (right/left) as the between-subject 

variable and accommodative level and ciliary muscle metric as the within subject 

variables. The same three-way mixed repeated measures ANOVA was performed to 

determine if there was a significant difference between the temporal and nasal ciliary 

muscle: muscle location (nasal or temporal) was the between subject variable and 

accommodative level and ciliary muscle metric were the within-subject variables. Where 

a significant difference was found then multiple one-way ANOVAs were used with 

accommodation as the between subject variable and ciliary muscle metric as the within 

subject variable. The Bonferroni post hoc was used to identify the pair-wise differences 

between accommodative levels. 

 

5.2.8.3 Per dioptre changes in ciliary muscle thickness and area with 

accommodation 

The change in ciliary muscle thickness and area between 0 and 4D was calculated. The 

area and thickness change per dioptre of accommodation was derived by dividing each 

value by the individual subject’s accommodative response to a 4D target.  
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5.2.8.4 Repeatability 

Inter-observer repeatability was investigated using ICC for each nasal and temporal 

ciliary muscle metric at different accommodative levels in SPSS, using the following 

formula.   

𝐼𝐶𝐶 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒, 2) =  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟) ÷ 2
 

 

Intra–observer repeatability was assessed using co-efficent of variation (CoV% = 

(standard deviation/mean) * 100).  Bland and Altman plots were constructed to visualise 

the agreement of inter-observer measurements (see Appendix 4).   

 

5.2.8.5 The use of a reference point with the Tomey CASIA OCT  

The ten measurements acquired for each of the three separate protocols were used to 

calculate the coefficient of variation (CoV) to examine if the intra-observer repeatability 

improved when using a reference point. 

 

5.3 Results 

5.3.1 Change in ciliary muscle thickness and area with 

accommodation 

Figure 5.6 shows the box plots for each of the ciliary muscle thickness and area 

measurements.  Table 5.3 and 5.4 displays the means and ANOVA results for the ciliary 
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muscle area and thickness measurements (respectively) at 0D, 4D and 8D of 

accommodative demand. 

No significant difference was found between the nasal and temporal CMTmax, CMT1, 

CMT2, or CMT3, with a 0D accommodative demand (F1= 2.315 p= 0.319).  In comparison, 

nasal CMA2 was found to be was significantly greater than temporal CMA2 (p= 0.006). 

Changes in the accommodative demand had a significant effect on both the nasal (F2,3= 

19.316, p< 0.001) and temporal (F2,3= 15.889, p< 0.001) ciliary muscle thickness 

measurement.  Post-hoc analysis revealed that with increasing accommodative demand 

CMTmax and CMT1 increased whilst CMT2 and CMT3 decreased; this trend was evident 

for both nasal and temporal CMT (Table 5.4). 

Accommodative demand also influenced the nasal (F2,3= 29.516, p< 0.001) and temporal 

(F2,3= 10.188, p< 0.001) ciliary muscle area.  Post-hoc analysis revealed that the nasal 

and temporal CMAtotal and CMA1 increased with accommodative demand between 0D 

and 4D although between 4D and 8D only the nasal CMAtotal and CMA1 demonstrated a 

significant increase. In contrast CMA2 and CMA3 remained unchanged with increasing 

accommodative effort. 
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Figure 5.6: Boxplots displaying the means, 10th, 25th, 75th and 90th percentiles of data for: a. nasal ciliary muscle thickness (top left), b. temporal ciliary 
muscle thickness (top right), c. nasal ciliary muscle area (lower left) and d. temporal ciliary muscle area (lower right). Whilst the subject was viewing a 

target of 0D (a distance target), 4D of accommodative demand, 8D of accommodative demand. 
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Area 
Nasal Temporal 

0D 4D 8D 0D 4D 8D 

Total 

Area 

 

1.266  

± 0.191 

1.318  

± 0.200 

1.364  

± 0.203 

1.319  

± 0.189 

1.400  

± 0.170 

1.425  

± 0.210 

 0D/4D 

p<0.001 

4D/8D 

p<0.001 

 0D/4D 

p=0.002 

4D / 8D 

p=0.670 

 

0D /8D p=0.004 0D/8D p=0.002 

CMA1 

0.651  

± 0.084 

0.697 

± 0.105 

0.754 

± 0.106 

0.664  

± 0.097 

0.735 

± 0.093 

0.764 

± 0.103 

 0D/4D 

p=0.003 

4D/8D 

p<0.001 

 0D/4D 

p=0.002 

4D/8D 

p=0.364 

 

0D/8D p<0.001 0D/8D p<0.001 

CMA2 

0.380  

± 0.084 

0.394  

± 0.080 

0.383  

± 0.094 

0.421  

± 0.097 

0.435  

± 0.099 

0.439  

± 0.086 

 0D/4D 

p=0.067 

0D/4D 

p=0.586 

 0D/4D 

p=1.000   

4D/8D 

p=1.000 

 

0D/8D p=1.000 0D/8D p=0.563 

 

CMA3 

0.235  

± 0.078 

0.227  

± 0.081 

0.226 

± 0.084 

0.234  

± 0.072 

0.254  

± 0.081 

0.222  

± 0.073 

 0D/4D 

p=1.000 

4D/8D 

p=1.000 

 0D/4D 

p=1.000 

4D/8D 

p=1.000 

 

0D/8D p=1.000 0D/8D p=1.000 

Table 5.3: The means (mm), standard deviations and ANOVA results for the ciliary muscle area 
measurements at 0D, 4D and 8D of accommodative demand 
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Thickness 
Nasal Temporal 

0D 4D 8D 0D 4D 8D 

CMTmax 

 

0.721 

± 0.089 

0.779 

± 0.087 

0.819 

± 0.086 

0.735 

± 0.104 

0.799 

± 0.100 

0.833 

± 0.101 

 0D/4D 

p<0.001 

4D/8D 

p<0.001 

 0D/4D 

p<0.001 

4D / 8D 

p<0.001 

 

0D /8D p<0.001 0D/8D p<0.002 

CMT1 

0.489 

± 0.097 

0.531 

± 0.102 

0.552 

± 0.101 

0.519  

± 0.084 

0.559 

± 0.117 

0.586 

± 0.083 

 0D/4D 

p<0.001 

4D/8D 

p=0.003 

 0D/4D 

p<0.001 

4D/8D 

p<0.001 

 

0D/8D p<0.001 0D/8D p<0.001 

CMT2 

0.318  

± 0.079 

0.292  

± 0.072 

0.278 

± 0.076 

0.344 

± 0.064 

0.312  

± 0.063 

0.291 

± 0.066 

 0D/4D 

p<0.001 

4D/8D 

p=0.001 

 0D/4D 

p<0.001   

4D/8D 

p<0.001 

 

0D/8D p<0.001 0D/8D p<0.001 

 

CMT3 

0.177 

± 0.054 

 0.151 

± 0.056 

0.141 

± 0.060 

0.191 

± 0.045 

0.164 

± 0.042 

0.148  

± 0.039 

 0D/4D 

p<0.001 

4D/8D 

p=0.003 

 0D/4D 

P<0.001 

4D/8D 

P<0.001 

 

4D/8D p<0.001 0D/8D p<0.001 

Table 5.4: The means (mm), standard deviations and ANOVA results for the ciliary muscle 
thickness measurements at 0D, 4D and 8D of accommodative demand 
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5.3.2 Changes in ciliary muscle thickness and area per dioptre of 

accommodation 

The mean accommodative response to the 4D target was 2.52D±0.62D.  There was no 

significant difference between the nasal and temporal ciliary muscle thickness, and area 

changes. 

 

5.3.3 Repeatability 

Inter-observer repeatability was found to show good agreement, with all ICC values 

≥0.714. Overall ICC was greater for ciliary muscle thickness compared to ciliary muscle 

areas (Table 5.6).   

For intra-observer repeatability, the CoV values were between 0.28% and 3.79% (Table 

5.7). With increasing distance from the scleral spur, the repeatability for both the 

thickness and area measurements of the temporal ciliary muscle reduced.  This trend 

Ciliary Muscle Thickness (mm) Ciliary Muscle Area (mm2) 

 Nasal Temporal  Nasal Temporal 

CMTmax +0.028 ±0.029 +0.026 ±0.016 CMAtotal +0.026 ±0.036 +0.036 ±0.049 

CMT1 +0.019 ±0.016 +0.018 ±0.013 CMA1 +0.023 ±0.038 +0.029 ±0.041 

CMT2 -0.012 ±0.015 -0.014 ±0.011 CMA2 +0.006 ±0.016 +0.007 ±0.030 

CMT3 -0.007 ±0.006 -0.026 ±0.012 CMA3 -0.002 ±0.025 +0.008 ±0.027 

Table 5.5: The mean (with standard deviation) of the per dioptre change in ciliary muscle thickness 
and area for a 4D stimulus. 
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can be observed for all accommodative demands.  Area measurements demonstrated 

poorer repeatability than the thickness measurements. 

 Temporal Nasal 

0D 4D 8D 0D 4D 8D 

CMTmax 0.911 0.770 0.959 0.952 0.984 0.900 

CMT1 0.957 0.968 0.807 0.942 0.788 0.800 

CMT2 0.933 0.804 0.735 0.714 0.873 0.957 

CMT3 0.837 0.862 0.833 0.939 0.948 0.923 

       

CMATotal 0.896 0.857 0.794 0.926 0.887 0.972 

CMA1 0.854 0.830 0.803 0.717 0.921 0.965 

CMA2 0.751 0.717 0.847 0.972 0.891 0.978 

CMA3 0.874 0.728 0.883 0.759 0.914 0.959 

 

 

 Temporal Nasal 
 

0D 4D 8D 0D 4D 8D 

CMTmax 0.44% 0.28% 0.58% 1.27% 1.24% 0.63% 

CMT1 1.18% 1.18% 0.46% 1.00% 0.83% 1.07% 

CMT2 1.50% 1.58% 1.02% 1.28% 1.28% 2.52% 

CMT3 1.78% 1.78% 3.59% 3.48% 2.98% 3.79% 

       

CMATotal 0.76% 0.39% 0.58% 0.59% 0.63% 1.07% 

CMA1 0.51% 0.41% 0.50% 0.43% 0.61% 0.59% 

CMA2 1.29% 1.17% 1.67% 1.68% 1.42% 2.21% 

CMA3 2.53% 1.62% 1.67% 1.22% 2.23% 3.33% 

 

  

Table 5.6: The ICC values for inter-observer repeatability, for all of the measurements taken from 
both the nasal and temporal ciliary muscle, whilst viewing accommodative demands of 0D, 4D and 

8D. 

Table 5.7: The CoV% intra-observer for all of the measurements of both the nasal and temporal 
ciliary muscle, whilst viewing accommodative demands of 0D, 4D and 8D. 
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5.3.4 Repeatability when using a conjunctival reference point 

As can be seen in Table 5.8, improved levels of intra-observer repeatability were 

observed for both area and thickness measurements when a RP was used for image 

analysis (protocol 2). The lowest levels of repeatability were found when area or 

thickness were measured at the 9 positions across the scan area (protocol 3).  

In general with increasing distance from the scleral spur, the repeatability for both the 

thickness and area measurements reduced across all protocols.  

 Protocol 2 Protocol 1 Protocol 3 

 Images were captured on 

one participant at ten 

separate visits. A 

reference point was used 

for image analysis. 

Images captured on one 

participant at ten separate 

visits. The use of a 

reference point was 

avoided for image analysis. 

Images were captured on a 

single visit and analysed at 

9 positions at regular 

intervals across the scan 

area. 

CMTmax 1.27% 4.53% 3.05% 

CMT1 1.00% 8.07% 6.45% 

CMT2 1.28% 7.07% 11.90% 

CMT3 3.48% 17.94% 25.07% 

    

CMATotal 0.59% 2.53% 5.87% 

CMA1 0.43% 5.64% 3.42% 

CMA2 1.68% 8.74% 7.95% 

CMA3 1.22% 7.37% 16.40% 

 

 

Table 5.8: The CoV values for the temporal ciliary muscle whilst viewing a distance target, using a 
RP, no RP and across one scan. 
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5.4 Discussion 

The primary purpose of this study was to evaluate the novel features of the Tomey CASIA 

AS-OCT, and to assess the influence of its features when examining the ciliary muscle in 

vivo. Images were captured whilst the subject simultaneously viewed accommodative 

demands of 0, 4 and 8D.  The proprietary software within the Tomey CASIA AS-OCT, 

allows measurement of the ciliary muscle thickness and cross-sectional area. The study 

utilised this software to examine the change in cross-sectional area of three distinct 

zones of the temporal and nasal ciliary muscle, relative to the scleral spur, during 

accommodation.  

 

5.4.1 Overall changes in the area of the ciliary muscle with 

accommodation 

The increase in CMAtotal and CMA1 with accommodative demand corresponds with the 

observed increase in anterior CMT (CMTmax and CMT1).  These findings further support 

the supposition that during accommodation the ciliary muscle mass shifts inwards and 

anteriorly (Croft et al., 2001, Charman, 2008, Sheppard and Davies, 2010, Richdale et al., 

2012, Lossing et al., 2012, Richdale et al., 2013, Richdale et al., 2016).  

Since CMT1 and CMT2, showed a respective increase and decrease with accommodation, 

CMA2 remained constant. Unexpectedly, CMA3 showed no significant change with 

accommodation despite reduced measures of CMT2 and CMT3. Potential changes in the 
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curvature of the ciliary muscle-sclera and the ciliary muscle-anterior chamber interfaces 

may partly explain the constant nature of CMA3. Indeed the repeatability of all ciliary 

muscle metrics examined was poorer posteriorly and this may explain the ambiguity of 

the CMA3 results.  

Other sources of error may originate from the technique used to measure CMA. During 

image analysis with the Tomey CASIA software the circumference of the ciliary muscle 

cross-sectional area is highlighted and once the outline is complete, the software 

automatically calculates the area. One possible source of error in this method is that on 

automatic fitting of the area the corner regions became more bulbous.  Such artificial 

changes are likely to have overestimated the area measurement and potentially explain 

the contrasting finding between the lack of change observed in cross-sectional area, as 

thickness measurements decreased during accommodation.  

The overall repeatability of ciliary muscle area was lower than the ciliary muscle 

thickness measurement. In view of the ambiguous results and reduced repeatability it 

may be surmised that utilising the area function offered by the Tomey CASIA AS-OCT in 

its present form has limited clinical and research value.  

Future work around designing a software programme which is compatible with the 

Tomey AS-OCT images to outline and calculate the sectioned cross-sectional areas, could 

improve the accuracy of area measurements. 
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5.4.2 The use of a reference point in scan acquisition and image 

analysis 

Much of the literature on CMT and accommodation is based upon studies that have 

manually examined the thickness changes with accommodative demand. A major 

criticism of the manual method of assessing CM images is the accuracy with which the 

examiners can identify the same anatomical points on different AS-OCT images. For 

example in studies that have used the scleral spur as the reference point for subsequent 

CMT measurements, accurate identification of the scleral spur between images is vital.  

The present study highlights the difference in variability of the ciliary muscle metrics 

when image analysis was performed with and without reference to a conjunctival RP. 

Repeatability was found to be significantly lower when a RP was not used.  

The improvement in CoV values in every ciliary muscle measurement when a RP was 

used, demonstrates how this feature of the Tomey CASIA AS-OCT software improves 

both the repeatability and accuracy of measurements.   

The Visante OCT has been widely used for assessing the in vivo ciliary muscle but it does 

not have the facility to identify a RP. However, there is a clear rational from the results 

of this study to recommend that a RP should be utilised in any future studies which 

include repeated scanning of the ciliary body, to maximise accuracy and repeatability. 
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5.4.3 Ciliary muscle thickness   

The present values of mean ciliary muscle thickness observed with the Tomey CASIA AS-

OCT are in accordance with values reported from previous studies (Sheppard and 

Davies, 2010, Lossing et al., 2012, Richdale et al., 2012, Buckhurst et al., 2013, Richdale 

et al., 2013, Richdale et al., 2016).  However, as Table 5.1 shows there is some 

discrepancy in measures of ciliary muscle thickness in the literature.   

Discrepancies between mean CMT values reported in the literature and the results of 

the present study are likely to be due to variations in the methodology used to analyse 

the images.  In this study a refractive index of 1.38 was applied across the data set to 

correct for the optical distortion, however, there is no standardisation in the methods 

of how the refractive index correction is applied. Bailey et al., 2011 suggests that the 

refractive index should only be applied parallel to the image axial scan depth (the co-

ordinates of the y-axis) (Bailey, 2011). The inbuilt Vistante software does not allow for 

such refractive index manipulation of the images and thus, custom designed image-

analysis software have been created for these purposes (Kao et al., 2011, Laughton et 

al., 2015). The semi-automated programme designed by Laughton et al (2015) which fits 

polynomial curves to the air/sclera boundary and the inner and outer ciliary muscle 

boundary applies tiered refractive index correction to scleral (n = 1.41) and ciliary muscle 

tissue (n=1.38). A significant limitation of this study was that the proprietary software 

within the Tomey CASIA OCT does not allow this tiered application of refractive indices. 
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The straight-line callipers used in this study do not take into account the curvature of 

the sclera which is likely to vary between individuals (Bailey, 2011; Kao et al., 2011).   The 

ciliary muscle is known to be longer in myopic eyes, and therefore the scleral curvature 

is likely to differ between refractive error groups (Bailey et al., 2008, Schultz et al., 2009).  

This study used subjects with a range of refractive errors and therefore it is likely that 

the scleral curvature varied between subjects. The CMT values found in this study were 

generally lower than those found previously (see Table 5.1); the use of straight line 

callipers may partly account for these results (Bailey, 2011, Kao et al., 2011).  

Other factors that are likely to have contributed to the disparities between study results 

include variations in edge-detection algorithms.  Some of which appear to combine both 

the pigmented ciliary epithelium along with the ciliary muscle, and therefore over-

estimate ciliary muscle thickness (Kao et al., 2011).  

 

5.4.4 Overall changes in the thickness of the ciliary muscle with 

accommodation 

With increasing accommodative demand the present study found CMTmax and CMT1 to 

increase where as CMT2 and CMT3 reduced; this trend was found for both the temporal 

and nasal ciliary muscle.  These findings are in general agreement with previous studies 

examining CMT and accommodation (Sheppard and Davies, 2010, Sheppard and Davies, 

2011, Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 2013, Richdale et al., 

2016).    
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Our findings of a posterior ciliary muscle thinning are not corroborated by all previous 

studies; Sheppard and Davies (2010) failed to detect a change in the posterior ciliary 

muscle thickness, which is likely to be due to the different methods used to quantify the 

distances from the scleral spur at which thickness measurements were taken.   

In their study examining ciliary muscle morphology in children during accommodation, 

Lewis et al. (2012) hypothesised that the CMT2 position may act as a ‘fulcrum’ point 

along the muscle as it showed no significant change with accommodation.  This is 

contrary to the findings of this present study and other studies of the ciliary muscle in 

adults, where a significant reduction in thickness was observed with increasing 

accommodative demand (Sheppard and Davies, 2010, Richdale et al., 2012, Richdale et 

al., 2013, Richdale et al., 2016).  Therefore, the observations of (Lewis et al., 2012) may 

be attributable to differences in the age group examined.  

In agreement to previous studies, the CMT increase was greater for the 0D to 4D 

demand when compared to the 4D to 8D demand (Sheppard and Davies, 2010).  In view 

of the age range included in this study the variation in accommodative lag between 

subjects may partly explain the lack of proportional increase in thickness expected for 

the 4-8D demand. Although ciliary muscle contraction can still occur to the same degree, 

regardless of whether the subject can see a target clearly (Strenk et al., 1999, Strenk et 

al., 2006, Strenk et al., 2010, Sheppard and Davies, 2011). 

  



 

 

 

Page 224 

5.4.5 Differences between nasal and temporal muscles 

In support of the present findings, Sheppard and Davies (2010), (2011), and Buckhurst 

et al. (2013) found no significant difference between the nasal and temporal anterior 

ciliary muscle thickness.  

In contrast to Sheppard and Davies (2010), who found that the posterior temporal ciliary 

muscle was significantly thicker at CM2, CM50 and CM75, the present study showed 

symmetry between the nasal and temporal portions of the posterior ciliary muscle 

thickness.  Furthermore, Sheppard and Davies (2010) found a greater reduction in 

thickness in the anterior length of the temporal ciliary muscle, with accommodation, 

indicating that the temporal muscle is more contractile than the nasal muscle.   

Further work to investigate possible asymmetry between the nasal and temporal ciliary 

muscles is required.  Ideally, this would involve imaging the nasal and temporal portions 

simultaneously; however, this would require acquiring scans in a mode giving lower 

resolution images of the ciliary muscle, which may affect the accuracy of results. 

 

5.4.6 Repeatability 

Interestingly it was noted that despite the good to excellent inter- and intra-observer 

repeatability values demonstrated for each ciliary muscle metric measured, the 

measurement variability was greater for the posterior ciliary muscle, compared to the 

anterior ciliary muscle.  Furthermore, when no RP was utilised for scan acquisition and 

image analysis, the increase in CoV was markedly greater in the posterior region of the 
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ciliary muscle. This would suggest that there is greater intra-subject variability in ciliary 

muscle thickness posteriorly. 

The contrast in results between the thickness and area measurements posteriorly would 

suggest that using distinct cross-sectional areas to quantifying changes in the ciliary 

muscle, during accommodation, is not a valid metric. 

 

5.4.7 Per dioptre changes in thickness of the ciliary body with 

accommodation 

Due to the dimensions of the Tomey CASIA AS-OCT it was not possible to measure 

accommodation whilst simultaneously acquiring ciliary muscle images as recommended 

by Lossing et al., (2012). Despite this limitation the change in ciliary muscle thickness per 

dioptre of accommodation was in alignment with previous studies (Table 5.9).  

 

5.4.8 Conclusion 

In summary the key findings of this study were:  

 The repeatability of the ciliary muscle area, using the Tomey CASIA AS-OCT 

software, was lower in comparison to ciliary muscle thickness.  

 The use of a conjunctival reference point improved the repeatability of ciliary 

muscle measurements and should be used in all future studies examining the 

ciliary body when possible.  
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 In line with previous studies, the ciliary muscle thickens anteriorly and thins 

posteriorly, with accommodation (Sheppard and Davies, 2010, Sheppard and 

Davies, 2011, Lossing et al., 2012, Richdale et al., 2012, Richdale et al., 2013, 

Richdale et al., 2016).   

 The increase in thickness and area of the anterior ciliary muscle with 

accommodation observed in this study, further supports Helmholtz’s theory of 

accommodation (Croft et al., 2001, Charman, 2008, Sheppard and Davies, 2010, 

Richdale et al., 2012, Lossing et al., 2012, Richdale et al., 2013, Richdale et al., 

2016). 
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 Ciliary Muscle Thickness change per dioptre of accommodation to a 4D target (mm) 

 This Study Previous studies 

Nasal Temporal 
Richdale et 
al., (2016)  
Temporal 

Richdale et 
al., (2013) 
Temporal 

Lossing et 
al., (2012) 
Temporal 

Richdale et 
al., (2012) 
Temporal 

Sheppard and 
Davies (2010) 

Temporal 

CMTmax +0.028 (±0.029) +0.026 (±0.016)  +0.026 +0.018 +0.025  

CMT1 +0.019 (±0.016) +0.018 (±0.013) 
No 

significant 
change 

+0.013 +0.012 +0.015 CM25 +0.071 

CMT2 -0.012 (±0.015) -0.014 (±0.011) 
Significant 
decrease 

-0.011 
No 

significant 
change 

-0.011 -0.021 

CMT3 -0.007 (±0.006) -0.026 (±0.012) 
Significant 
decrease 

-0.015 -0.012 -0.017 
CM75 No 
significant 

change 

Table 5.9: The mean (and standard deviation) of per dioptre changes in ciliary muscle thickness with accommodation. CMT1: ciliary muscle thickness 
at 1mm from the scleral spur, CMT2:  ciliary muscle thickness at 2mm from the scleral spur, CMT3:  ciliary muscle thickness at 3mm from the scleral 
spur, CM25:  ciliary muscle thickness at 25% from the scleral spur, CM50:  ciliary muscle thickness at 50% from the scleral spur, CM75:  ciliary muscle 

thickness at 75% from the scleral spur 
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Chapter 6: Crystalline lens ageing study (CLAS): 

does smoking status and other lifestyle factors 

affect accommodation? 

6.1 Introduction 

As discussed in section 1.9, ageing is an extremely complex process, due to the 

interaction between different ageing theories and the influence of physiological and 

environmental factors (Troen, 2003, Jin, 2010, Bao et al., 2014, Goldsmith, 2015, 

Libertini, 2015, Goldsmith, 2016).   One of the theories known to play a central role in 

the ageing of the crystalline lens is the free-radical theory, which states that if levels of 

ROS exceeds the levels of anti-oxidant defence molecules, oxidative stress occurs 

leading to damage to the surrounding biological structures.  

Aerobic respiration, which occurs abundantly in the crystalline lens, produces 

endogenous ROS.  Lifestyle can affect both the endogenous ROS, and exogenous ROS, 

that a human can be exposed to.  For example, tobacco smoke and UV exposure are 

exogenous sources of ROS, whilst having a large amount of central adiposity can 

increase exposure to endogenous ROS (Savini et al., 2013).     
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Cigarette smoke contains numerous noxious substances such as carbon monoxide, 

formaldehyde, nitric oxides, and peroxides.  Each inhalation from a cigarette contains 

approximately 1015 ROS or free radicals. Not only does this increase exposure to 

exogenous ROS, but reduces the antioxidant defence mechanisms, further increasing 

oxidative stress levels (Alberg, 2002, Northrop-Clewes and Thurnham, 2007, Nita and 

Grzybowski, 2017).  Smokers are also known to have reduced levels of many of the anti-

oxidants defence molecules.  Whether this is solely due to a reduced dietary intake is 

unclear (Schleicher et al., 2009), however studies have shown that after correcting for 

fruit and vegetable intake, smokers still had a reduced concentration of plasma vitamin 

C than non-smokers (Lykkesfeldt et al., 2000).  This suggests that vitamin C has a higher 

metabolic turnover in smokers (Kallner et al., 1981). 

Central adiposity is the accumulation of both subcutaneous fat and visceral fat around 

the abdomen.  As discussed in section 1.10.1, excessive visceral fat is associated with 

modifying glucose and lipid metabolism, and increased chronic inflammation; resulting 

in greater levels of oxidative stress (Fernández-Sánchez et al., 2011, Lumeng and Saltiel, 

2011, Savini et al., 2013).  Furthermore, excessive central adiposity is associated with 

reduced levels of anti-oxidants (Canoy et al., 2005, Andersen et al., 2006, Kaidar-Person 

et al., 2008); potentially further increasing the oxidative stress levels and chronic 

inflammation.  Systemic chronic inflammation in humans increases the risk of metabolic 

syndrome disorders (Dandona et al., 2005, Agarwal et al., 2016, Kim et al., 2016) and is 
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associated with increased rates of biological ageing (Tzanetakou et al., 2012, Babizhayev 

et al., 2014).  

Interestingly, as part of the multi-centred European Prospective Investigation of Cancer 

Study (EPIC-study), Khaw et al. (2008) created a lifestyle model with subjects scoring 

points for healthy lifestyle factors including: smoking status, physical activity levels, 

plasma vitamin C levels (indicating fruit and vegetable intake) and alcohol intake.  The 

study found that if four high-risk lifestyle factors were followed, there was a four times 

greater chance of mortality, equivalent to  14 years in age, compared to if four low-risk 

lifestyle factors were followed.  This suggested that biological ageing in humans is 

heavily influenced by lifestyle.  

Presbyopia and opacification of the crystalline lens are age-related changes.  Pathai 

(2013) suggested that the mechanisms underlying systemic ageing are also responsible 

for ageing within the crystalline lens, with the opacification of the crystalline lens being 

proposed as a biomarker for ageing.  Supporting this theory numerous studies have 

demonstrated that cataracts are linked to a significantly greater mortality rate (West et 

al., 2000, Hennis et al., 2001, Nucci et al., 2004, Truscott, 2005, Truscott and Zhu, 2010).    

Truscott and Zhu (2010) suggested that the increasing protein concentration in the 

crystalline lens, and the changes to life-long proteins are responsible for both the loss of 

accommodative function and increasing opacification of the crystalline lens.   Therefore, 

the ageing mechanisms, which can affect protein production or protein maintenance, 

are likely to influence the rate of ageing within the crystalline lens.  The free radical 
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theory causing oxidative stress and chronic inflammation is known to accelerate the age-

related protein changes in the crystalline lens associated with cataract formation (Sohal, 

2002, Harper et al., 2004, Truscott, 2005, Graw, 2009, Babizhayev et al., 2011, Michael 

and Bron, 2011).  A higher risk of cataract formation has been associated with conditions 

related to increased sources of endogenous ROS  including:  metabolic syndrome 

conditions, (Paunksnis et al., 2007, Lindblad et al., 2008, Sabanayagam et al., 2011, 

Ghaem Maralani et al., 2013), diabetes (Janghorbani et al 2000, Lindblad et al 2008, 

Hegde and Varma 2005, Hashim and arina 2012), and obesity/raised BMI (Glynn et al., 

1995, Schaumberg et al., 2000, Lim et al., 2009, Sabanayagam et al., 2011, Ghaem 

Maralani et al., 2013).    

A higher risk of cataract formation has also been associated with increasing levels of 

exogenous ROS e.g. smoking (Cumming and Mitchell, 1997, Klein et al., 1999, Klein et al., 

2003, Raju et al., 2006, Xu et al., 2006, Navarro Esteban et al., 2007, Tan et al., 2008c, 

Wu et al., 2010, Ye et al., 2012).  Furthermore, the anti-oxidant defence mechanism in 

the crystalline lens is known to decline with  increasing age (Zhang and Augusteyn, 1994, 

Spector, 1995), leaving lens nucleus cells and lens proteins more susceptible to damage 

from oxidative stress (Giblin, 2000).   This progressive loss of the oxidation defence 

mechanisms in the lens accompanies a reduction in chaperone activity (Harding, 1970).    

This has led to many researchers exploring the potential links between cataract 

formation and nutrient intake.  As discussed in section 1.10.6 these studies have found 

conflicting results (Leske et al., 1991, Sperduto et al., 1993, Seddon et al., 1994, Leske et 
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al., 1998, Lyle et al., 1999, Cumming et al., 2000, Mares-Perlman et al., 2000, AREDS I, 

2001, Jacques et al., 2001, Kuzniarz et al., 2001, Christen et al., 2003, Olmedilla et al., 

2003, Christen et al., 2004, Kvansakul et al., 2006, Christen et al., 2008, Dherani et al., 

2008, Maraini et al., 2008, Tan et al., 2008a, Christen et al., 2010, Chew et al., 2013, Kang 

et al., 2016).  However, during a review of the available literature Weikel et al. (2014) 

recommended that maintaining a vitamin C intake of 135 mg per day (exceeding the 

daily recommend intake of 40mg), and a protein intake of 100 to 150g (greater than the 

daily recommended intake of 55g), over a long term period may be beneficial in 

preventing nuclear sclerotic cataracts.  Overall it has been concluded that further data 

from observational studies and interventional studies is required before any firm 

conclusions can be made (Chew, 2013, Weikel et al., 2014). 

With presbyopia having similar underlying physiological ageing processes as cataracts  

(Truscott and Zhu, 2010), it is known that some of the risk factors that are associated 

with cataracts, such as age and diabetes can also affect the accommodative ability of an 

individual (Skarbez et al., 2010).  There is a gap in the literature as to whether other 

modifiable risk factors which influence the physiological levels of oxidative stress 

associated with cataract can also affect accommodative function, and therefore the rate 

of development of presbyopia.  The purpose of this study is to investigate and identify 

links between accommodative function and lifestyle factors such as smoking, levels of 

physical activity, body shape, alcohol intake, and nutrient intake.  
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6.1.1 Aims and Objectives 

The main aim of this cross-sectional study was to investigate whether the ‘EPIC’ lifestyle 

scoring system, found to predict mortality risk (Khaw et al., 2008), or a modified version 

‘CLAS’, was associated with accommodative function, mainly AoA, AF, and ToAC.  

Further aims of this study were to identify: 

 Whether accommodative function is associated with smoking status.  

 If the total daily energy intake, daily protein intake, or the intake of anti-

oxidants such as: vitamin C, vitamin E, are associated with accommodative 

function. 

 If body shape is associated with accommodative function. 

 If alcohol intake is associated with accommodative function. 

 Whether levels of physical activity are associated with accommodative 

function. 

 

6.2 Methods 

6.2.1 Subjects 

Seventy healthy adults (21 males and 49 females) with a mean age of 33, SD ±3 years 

(range 30 - 40) were recruited for this study across four sites: 

1. Patients of Plymouth University’s Centre of Eye Care Excellence.  

2. Staff and students at University of Plymouth. 
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3. Patients who had attended Livewell SouthWest Stop Smoking service. 

4. Advertisements in local Plymouth press.  

The inclusion criteria for this study included healthy individuals between the ages of 30 

and 40 years old, and a BCVA in soft contact lenses of better than 0.0logMAR.  The 

exclusion criteria included current or previous ocular pathology or trauma, currently 

taking medications known to affect accommodation, diabetes mellitus and pregnancy. 

Ethical approval was obtained from The National Institute for Social Care and Health 

Research Academic Health Science’s Research Ethics Committee (Powys Teaching 

Health Board) and the study was performed in accordance to the tenets of the 

Declaration of Helsinki.  Informed written consent was obtained from all subjects, 

following an explanation of the procedures involved, and prior to any data being 

collected.  

 

6.2.2 Refraction 

Objective and subjective monocular refraction was performed on each eye, the mean 

spherical equivalent refractive error found was -0.65DS ±1.55.  Any refractive error 

greater than -0.50DS, +0.75DS or 0.75DC was corrected using soft contact lenses.  At this 

point, any subject who could not achieve a BCVA of 0.0 LogMAR or better, was excluded. 
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6.2.3 Accommodation measurements 

The right or left eye was randomly selected for all accommodation measurements.  

During the following procedures the contralateral eye was occluded.   

 

6.2.3.1 Push-Up test 

Monocularly, the subject was instructed to focus on a near vision target on the RAF rule 

(a word of size N5), presented at 40cm from the subject’s eye.  The subject was asked 

‘to report when the word first appears blurry’.  The target was moved slowly towards 

the subject, at the first point of reported blur, the target was stopped and the subject 

asked if the target became clear.  If so, the target was moved further towards the subject 

until the first point of sustained blur was reached.  This was recorded as the break point.  

The target was then moved slowly away from the subject and the subject was asked ‘to 

report when the target first becomes clear’.  This was recorded as the recovery point.  

This was performed three times so that a mean could be calculated.  AoA was calculated 

by taking an average of the mean break point and the mean recovery point. 

 

6.2.3.2 Accommodative facility 

Accommodative facility was performed monocularly.  The subject was presented with a 

near vision target at a viewing distance of 40cm, and instructed to look at a four letter 

word on the N5 line.  The -2.00D lens was presented first; the subject was asked to report 
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when the target first became clear, at which point the lens was flipped to the +2.00D 

lens until the subject reported the target as ‘clear’.  This was classed as one rotation.  

After an initial ‘practice’, with at least two rotations, or until the subject understood the 

test, a timer was started and the number of full rotations (presentation of -2.00 and 

+2.00) achieved within one minute was recorded.   

 

6.2.3.3 Time for accommodative change from the accommodative dynamic profile 

Accommodative dynamics were measured using Grand Seiko Auto-refractor WAM-5500 

with a motorised Badal adaption as described in section 2.2.3.   From the 

accommodative dynamic profile the time for accommodation (ToA), time for 

disaccommodation (ToD) and time for accommodative change (ToAC) were derived as 

described in section 2.2.5.   

 

6.2.4 Questionnaires 

All subjects completed three questionnaires (see Appendix 5). The first captured data 

on age, gender, ethnicity, social status, occupation, hobbies, and alcohol and smoking 

history.  The second was a Food Frequency Questionnaire (FFQ) to capture information 

about the participant’s diet over the past year (Bingham et al., 2001).  FFQs capture 

information about nutritional dietary intake over a set period time, normally within the 

last 12 months, by asking the subject to estimate how often they have consumed 
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different types of foods and beverages.  Despite the limitations of these methods, 

including relying on subjects to honestly report intake and gross estimations of portions 

size, FFQs have been validated in numerous populations (Fallaize et al., 2014, Tayyem et 

al., 2014), and have good agreement with other methods of investigating nutritional 

status, such as 7-day diet diaries and biomarkers (Brunner et al., 2001).  FFQs are less 

time consuming or invasive than 7-day food diaries and biomarker testing.   The specific 

FFQ used in this study has been validated for use in the UK, and used in a large-scale 

lifestyle study: the European Prospective Investigation of Cancer study (EPIC-study) 

(Bingham et al., 1994).   Thirdly, subjects completed an International Physical Activity 

Questionnaire (IPAQ) which has been validated to capture information on physical 

activity in the proceeding 7 days (Craig et al., 2003).    

 

6.2.5 Body Parameters 

6.2.5.1 Body-Mass Index 

Height was measured in meters, using a Marsden Leicester Height Measurer (Marsden 

Group, Rotheram, UK).  With their shoes removed, the subjects were asked to stand 

with their feet flat on the floor and close together, and to stand as tall as possible.  Two 

measurements were taken.  If these were within 1cm of agreement an average was 

taken, and if the repeated measurements had a difference of 1cm or greater the two 

measurements were repeated.   
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Weight was measured using scales, in kilograms, again with shoes and heavy clothing 

removed.   From this the BMI was calculated using the following formula: 

𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2
 

Equation 1 

The BMI of the subject was then used to classify them into one of the following groups 

(WHO, 2000):  

 Underweight: If BMI <18.5 

 Normal weight: If BMI was between 18.5 and 24.9 

 Overweight: If BMI was between 25 and 29.5 

 Obese if BMI was ≥30 

 

6.2.5.2 Waist-hip ratios 

The waist and hip circumferences were measured in line with the World Health 

Organisation (WHO) recommendations (WHO, 2008) using a stretch-resistant tape 

measure.  Subjects were asked to stand up straight, with their feet together and to take 

a few normal breaths.  The waist measurement was taken at the end of expiration; the 

waist portion was identfied as the midpoint between the lower side of the last palpable 

rib and the top of the iliac crest.  The hip measurement was identified as the widest 

portion around the buttocks.  This was repeated twice, if the repeated measurements 
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were within 1 cm of agreement then an average was calculated, and if the repeated 

measurements had a difference of 1cm or greater then the two measurements were 

repeated. From this the waist-hip ratio was calculated using the following formula: 

𝑊𝑎𝑖𝑠𝑡 − ℎ𝑖𝑝 𝑟𝑎𝑡𝑖𝑜 =
𝑤𝑎𝑖𝑠𝑡 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑐𝑚)

ℎ𝑖𝑝 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑐𝑚)
 

Equation 2 

Subjects were then categorised into two groups using the WHO’s waist-hip ratio criteria 

for a ‘healthy’ waist-hip ratio (<0.9 for men or <0.85 for women) or an ‘at risk’ (of 

obesity-related healthy conditions), waist-hip ratio (≥0.9 for men or ≥0.85 for women) 

(WHO, 2008).   

 

6.2.6 Statistical Analysis 

6.2.6.1 Assumptions of normality 

After visual inspection of descriptive statistics, histograms, box-plots and Sharpiro-Wilks 

tests all of the accommodation metrics were found to have a normal distribution, with 

the exception of AF, which was found to be non-normally distributed.   
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6.2.6.2 Compensated amplitude of accommodation (c.AoA) 

A scatter plot was constructed with the AoA (y-axis) versus age (x-axis) and a linear 

regression line was fitted using Sigmaplot (Version 13.0, Systat Software Inc. San Jose, 

California, USA) using equation 3.  

𝑦 = 𝑦0 + 𝑎𝑥 

Equation 3 

From this a was derived, and compensated AoA (c.AoA) values were calculated to align 

each measurement to the average age of all subjects (34 years), effectively removing 

age factor from the AoA measurements, using equation 4, where y is the measured AoA 

and x is the subject’s age. 

𝐶. 𝐴𝑜𝐴 =  ([
100

(𝑎 × 𝑥) ×  (𝑎 × 34)
] ÷ 100) × 𝑦 

          Equation 4 

 

6.2.6.3 Associations between smoking status and accommodative function 

All subjects were first classified into two groups: ever-smoked or never-smoked, with the 

ever-smoked group including all subjects who were current, or past-smokers.   The c.AoA 

and ToAC were compared between the two groups using two-tailed independent t-tests, 

AF was compared between the two groups using a Mann-Whitney U test.  
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Subjects were also sorted into three groups: current smokers (for any subject who had 

smoked at least one cigarette in the last year), past-smokers, and non-smokers.  A One-

Way ANOVA was used to compare the c.AoA and ToAC between the three groups. A 

Kruskal-Wallis test was used to compare AF between the three groups. 

 

6.2.6.4 Associations between diet and accommodative function 

Analysis of the FFQ was completed using FETA software (Mulligan et al., 2014), the 

average daily intake of portions of fruit and vegetables, vitamin C, vitamin E, protein and 

total energy were derived.  The correlations between vitamin C, vitamin E, protein and 

total energy, and each of the above accommodative parameters was investigated using 

Pearson’s correlation coefficient or Spearman’s Rho correlation test.  Subjects were then 

sorted into two groups as to whether they had reported to consume less than five 

portions of fruit and vegetables per day, or five or more portions of fruit and vegetables 

per day.   Five portions of fruit and vegetables per day was chosen in line with public 

health guidelines at the time of the study (Moseley, 2013). 

Independent two-tailed t-tests were used to compare the c.AoA and ToAC between the 

groups.  A Mann-Whitney U test was used to compare AF between the two groups. 
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6.2.6.5 Associations between alcohol consumption and accommodative function 

Information about weekly alcohol consumption was derived from the first lifestyle 

questionnaire (Appendix 5).   The correlation between weekly units of alcohol consumed 

and accommodative function was investigated using Pearson’s and Spearman’s Rho 

correlation coefficent tests.  Subjects were then sorted into two groups: ‘moderate 

drinkers’ defined as drinking between 1 and 14 units per week, and ‘non-moderate 

drinkers’ defined as drinking less than one unit of alcohol per week or greater than 14 

units of alcohol per week (Khaw et al., 2008).  Two-tailed independent t-tests and Mann- 

Whitney U tests were used to compare the accommodative parameters between the 

‘moderate’ and ‘other’ drinkers. 

 

6.2.6.6 Associations between exercise and accommodative function 

Analysis of the IPAQ was completed manually using Excel 2016 Software (Microsoft, 

Redmond, USA), to calculate each subject’s MET-minute scores.  The MET-minutes score 

is a quantification of the energy required to do a set physical activity, for an average 60 

kilogram person, multiplied by the duration of activity (in minutes) (Ainsworth et al., 

2000).  To investigate any relationship between MET-minute scores and accommodative 

function, the accommodative parameters were correlated with the MET-minute score 

using Pearson’s or Spearman’s Rho Signed rank test.  Furthermore, each subject was 

classified into one of three groups: ‘inactive’, ‘minimally active’ or ‘HEPA active’ (Health 

enhancing physical activity), as defined by the IPAQ criteria (IPAQ, 2004), briefly this is:  
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 HEPA active, either:  

- High-intensity activity on a least 3 days per week, contributing at least 

1500 MET-minutes to the weekly MET score, or  

- Seven or more days of vigorous or moderate intensity activity, or 

- walking contributing to at least 3000 MET-minutes to the weekly MET 

score.   

 Minimally active, either:  

- Three or more days of vigorous activity lasting at least 20 minutes per 

day. 

- Five or more days of walking or moderate intensity activity, lasting at 

least 30 minutes per day. 

- Five or more days of any combination of: vigorous or moderate activity 

or walking which contributes a minimum of 600 MET-minutes to the 

weekly MET score.  

 Inactive: Any subject who does not meet the criteria for the other two 

categories. 

One-Way ANOVAs were used to compare the c.AoA and ToAC between the three groups.  

A Kruskal-Wallis test was used to compare AF between the three groups. 
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6.2.6.7 Associations between body shape and accommodative functions  

The correlations between BMI and each of the accommodative parameters was 

investigated using Pearson’s and Spearman’s Rho correlation coefficent tests. 

All of the subjects in this study had a BMI greater than 18.5, therefore the 

accommodative parameters were firstly compared between two groups: ‘normal weight’ 

(BMI <25) and ‘overweight’ (BMI ≥25) using independent two-tailed t-tests and Mann-

Whitney U tests.  Secondly, the over-weight group was further split into ‘overweight’ 

(BMI between 25 and 29.5) and ‘obese’ (BMI ≥30).  The accommodative parameters 

were compared between the normal weight, overweight, and obese groups using one-

way ANOVAs and a Kruskal-Wallis test. 

The correlations between waist-hip ratio and each of the accommodative parameters 

was investigated using Pearson’s and Spearman’s Rho correlation coefficient tests.  Two-

tailed independent t-tests and Mann- Whitney U tests were used to compare the 

accommodative parameters between the ‘healthy’ waist-hip ratio and the ‘at risk’ waist-

hip ratio groups.   

 

6.2.6.8 Associations between the EPIC-study lifestyle model and accommodative 

function 

Subjects were each scored for each positive lifestyle factor that they demonstrated, in 

line with the model used by Khaw et al. (2008), summarised in Table 6.1. This gave each 
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subject a lifestyle score between zero (being the least healthy) and four (being the most 

healthy).  Accommodative parameters were compared between the groups using One-

Way ANOVAs and a Kruskal-Wallis test.  Furthermore, linear regression was used to see 

whether lifestyle score could predict a subject’s accommodative function.   

 

6.2.6.9 Associations between the CLAS lifestyle model and accommodative function 

An alternative lifestyle model termed the Crystalline Lens Ageing Study (CLAS) model 

was proposed, utilising the same lifestyle factors as the EPIC model, substituting physical 

activity levels for waist-hips ratio. This measurement of central adiposity was included 

because the association between obesity and cataracts is well documented (Glynn et al., 

1995, Schaumberg et al., 2000, Paunksnis et al., 2007, Lim et al., 2009, Sabanayagam et 

al., 2011, Ghaem Maralani et al., 2013), whereas no study has found an association 

between physical activity and cataracts.  As discussed previously, as central adiposity 

increases chronic inflammation and oxidative stress, it is possible that this accelerates 

the age-related changes in the crystalline lens, leading to a loss of accommodative 

Lifestyle Factor 
Score 

Zero One 

Smoking status Current smoker 
Non-smoker or past 
smoker 

Fruit and Vegetable 
intake 

<5 portions per day ≥5 portions per day 

Physical Activity Inactive or minimally active HEPA-active 

Alcohol intake 
<1 unit per week or >14 
units per week 

1 to 14 units per week 

Table 6.1: The scoring system for the EPIC-study lifestyle model 
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function.  Table 6.2 provides a summary of how the subjects were scored using the CLAS 

model.  Again, this gave each subject a lifestyle score between zero (being the least 

healthy) and four (being the healthiest).  Accommodative parameters were compared 

between the groups using One-Way ANOVAs and a Kruskal-Wallis test.  Furthermore, 

linear regression was used to assess whether lifestyle score could predict a subject’s 

accommodative function.   

Lifestyle Factor 
Score 

Zero One 

Smoking status Current smoker Non-smoker or past smoker 

Fruit and Vegetable 
intake 

<5 portions per day ≥5 portions per day 

Waist-hips ratio At-risk* Healthy* 

Alcohol intake 
<1 unit per week or >14 
units per week 

1 to 14 units per week 

6.3 Results 

6.3.1 The association between smoking and accommodative 

function  

The subjects were first classified by their smoking history into two groups ever-smoked 

(n=32) or never-smoked (n=38).  The mean or median and spread of data of the 

accommodative metrics for these two groups are shown in Figure 6.1.   Smoking history 

demonstrated no association with accommodative function; there was no significant 

Table 6.2: The scoring system for the CLAS lifestyle model. 
 * as classified by the WHO (2008) 
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difference in ToAC (t= -1.285, p= 0.203), c.AoA (t= 0.495, p= 0.622) or AF (U= 606.5, z= -

0.018, p= 0.986) between the ever-smoked and never-smoked groups.   

 

Further investigation involved examining the association between current smoking 

status and accommodative function.  The subjects were split into three groups: current-

smokers (n=13), past-smokers (n=19), and never-smoked (n=38), the mean, medians and 

spread of data for these groups of each accommodative metric are shown in Figure 6.2.   

 

There was a significant difference in the ToAC between current-smokers, past-smokers 

and never-smoked groups, F(2,68) = 6.975, p< 0.002.  Post-hoc pairwise comparisons with 

Figure 6.1 Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data for 
each of the accommodative parameters for the ‘Ever-smoked’ and ‘Never-smoked’ groups 

Figure 6.2 Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data for 
each of the accommodative parameters for  the ‘current-smokers’, ‘past-smokers’ and ‘never-

smoked’ groups 
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Bonferroni correction revealed that the current-smokers had significantly slower ToAC 

than the past-smokers (p= 0.016) and the never-smoked (p< 0.008).  There was no 

significant difference in the C.AoA (F(2,68)= 2.156, p= 0.124) or AF (H(2,68) = 1.177, p= 0.555)  

between the current-smokers, past-smokers and non-smokers groups.                     

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

6.3.2 The associations between diet and accommodative function 

There was no correlation between any of the accommodative parameters and daily total 

energy intake, vitamin C intake, vitamin E intake or protein intake (Table 6.3).  There was 

no significant difference in the accommodative abilities between subjects who 

consumed five or more portions of fruit and vegetables per day (n=27), and those who 

consumed less than five portions per day (n=43) (Figure 6.3).  ToAC: t= 0.237, p= 0.814, 

c.AoA: t= 0.975, p= 0.975, AF: U= 404.00 Z= -1.880, p= 0.60. 

Total Daily Intake ToAC C.AoA AF 

Energy r= 0.113, p= 0.363 r= -0.120, p= 0.324 rs= -0.146, p= 0.234 

Vitamin C r= -0.45, p= 0.721 r= 0.027, p= 0.828 rs= 0.227, p= 0.062 

Vitamin E r= 0.30, p=0.808 r= -0.046, p=0.705 rs= -0.073, p= 0.555 

Protein r= 0.18, p=0.888 r= -0.015, p=0.902 rs= -0.040, p= 0.749 

Table 6.3: The correlation coefficients of the accommodative parameters measured and daily 
intake of: total energy, vitamin C, vitamin E and protein 
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6.3.3 The associations between alcohol consumption on 

accommodative function 

There was no correlation between weekly units of alcohol consumed and 

accommodative function (C.AoA: r= -0.052, p= 0.670, ToAC: r= -0.176, p= 0.152, AF: rs= 

0.055, p= 0.651).  Alcohol consumption demonstrated no association with c.AoA or ToAC; 

there was no significant difference in these c.AoA or ToAC between the moderate 

drinkers (n=49), and non-moderate drinkers (n=21) (Figure 6.4, t= 1.440, p=0.154 and t= 

-1.277, p=0.206, respectively). However, moderate drinkers achieved a significantly 

greater number of CPM during AF (median= 10CPM) compared to subjects who were 

either non-drinkers or heavy-drinkers (median= 8CPM) (Figure 6.4, U= 350.000, Z= -

2.014, p< 0.044).  

Figure 6.3: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
for each accommodative parameter, for subjects who had an average daily consumption of <5 

portions of fruit and vegetables, and ≥5 portions of fruit and vegetables per day 
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6.3.4 The associations between body shape and accommodative 

function 

There was no correlation between BMI and any of the accommodative parameters 

measured (C.AoA: r= -0.008, p= 0.723, ToAC: r= -0.43, p= 0.723, AF: rs= -0.73, p= 0.548). 

There was no significant difference in any of the accommodative parameters between 

the normal-weight (n=46) and over-weight (n=25) groups (Figure 6.5: c.AoA: t= -0.231, 

p= 0.818, ToAC: t=-0.60, p= 0.952, AF: U= -0.73, p= 0.548), nor the normal-weight, over-

weight, or obese groups (Figure 6.6: c.AoA: F(2,68)= 2.291, p= 0.109, ToAC: F(2,68)= 0.75, p= 

0.476 H(2)= 4.209, p= 0.122).  

Figure 6.4: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
for each accommodative parameters for the moderate drinkers and non-moderate drinkers 

groups  



 

 

 

Page 251 

 

 

Waist-Hips ratio did not correlate with accommodative parameters (C.AoA: r= -0141, p= 

0.242, ToAC: r= 0.207, p= 0.088, AF: rs= -0.034, p= 0.778).  There was no significant 

difference between the C.AoA or AF between the normal and at-risk waist-hips groups 

(t= 0.154, p= 0.878; U=550.500, Z=-0.363, p= 0.717, respectively).   However the ToAC 

was found to be significantly quicker (t= -1.997, p= 0.05) in subjects with a normal waist-

hips ratio (mean= 4.00s) than in subjects with an at-risk hips-ratio (mean= 4.37s), Figure 

6.7. 

Figure 6.5: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
for each accommodative parameters for the ‘normal-weight’ and ‘over-weight’ groups as defined 

by BMI 

Figure 6.6: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
for each accommodative parameters for the ‘normal-weight’, ‘over-weight’ and ‘obese’ groups as 

defined by BMI 
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6.3.5 The associations between exercise and accommodative 

function 

There was no correlation between the subjects’ MET score and any of the 

accommodative function measurements (c.AoA: r= 0.71, p= 0.558, ToAC: r= -0.41, p= 

0.736, AF: rs= 0.156, p=0.197).  Furthermore, there was no significant difference 

between the accommodative function measurements and the ‘inactive’ (n=9), 

‘minimally-active’ (n=20) or ‘HEPA-active’ (n=41) levels of physical activity (Figure 6.8 

ToAC: (F(2)= 0.772, p=0.477, C.AoA: F(2) = 0.301, p= 0.743, AF: H(2) = 0.621, p= 0.312 .  

Post-hoc pairwise comparison tests using Bonferroni correction, demonstrated that 

there was no significant difference between each of the groups for all accommodative 

metrics.   

Figure 6.7: Box plots displaying the median, 10th, 25th, 75th and 90th percentiles of data for each 
accommodative parameters for the ‘normal’ and ‘at-risk’ groups as defined by waist-hip ratio 
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6.3.6 The effects of lifestyle on accommodative function using the 

EPIC model 

Once subjects were scored according to the EPIC lifestyle model, there was an uneven 

number of subjects in each group, with a general skew to a higher lifestyle score: (score 

1: n=7, score 2: n=21, score 3: n=30, score 4: n=12.  Box plots displaying the means or 

medians of the accommodative parameters across the lifestyle groups are shown in 

Figure 6.9. 

 

Figure 6.8: Box plots displaying the mean or median, 10th, 25th, 75th and 90th percentiles of data 
for each of the accommodative parameters for the ‘high’, ‘moderate’ and ‘low’ exercise groups  

Figure 6.9: Box plots displaying the median, 10th, 25th, 75th and 90th percentiles of data for each of 
the accommodative parameters, for each of the EPIC lifestyle scoring groups. 

Score 1, Score 2, Score 3, Score 4 
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A One-way ANOVA with EPIC lifestyle model score as the between subjects groups, and 

post-hoc pairwise comparisons with Bonferroni correction, revealed no significant 

difference between the lifestyle groups for ToAC (F(3,68) = 0.821, p= 0.487) or c.AoA (F(3,68) 

=1.557, p= 0.208).  A Kruskal-Wallis Test with EPIC lifestyle model score as the between 

subjects groups, with post-hoc Mann-Whitney U-Tests with Bonferroni correction 

revealed no significant difference between the lifestyle groups for AF (H(3,68) =6.031, p 

=0.110). 

 Single linear regression revealed that the lifestyle score could not predict the 

accommodative function: ToAC (t= 0.239, p= 0.812), C.AoA (t= -1.002, p= 0.320), and AF 

(t= 1.484 p= 0.143). 

 

6.3.7 The effects of lifestyle on accommodative function using the 

CLAS model 

Once subjects were scored according to the CLAS model one subject had a score of zero, 

to allow further statistical analysis this subject was included in the group scoring 1.  With 

the CLAS model there was a general skew of subjects falling into lower lifestyle groupings, 

again these groupings had uneven sizes:   1: n=12, score 2: n=26, score 3: n=25, score 4: 

n=6.  Box plots displaying the means or medians of the accommodative parameters 

across the lifestyle groups are shown in Figure 6.10. 
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One-way ANOVAs with CLAS lifestyle model score as the between subjects groups, and 

post-hoc pairwise comparisons with Bonferroni correction, revealed no significant 

difference between the lifestyle groups for ToAC (F(3,69) = 1.269, p= 1.269) or (F(3,69) = 

0.238, p= 0.869).  A Kruskal-Wallis Test with the CLAS lifestyle model score as the 

between subjects groups, and post-hoc Mann-Whitney U-Tests with Bonferroni 

correction revealed no significant difference between the lifestyle groups for AF (H(3,69) 

=2.387, p=0.496). 

 Single linear regression revealed that the lifestyle score could not predict the 

accommodative function: ToAC (t= 1.801, p=0.076), C.AoA (t= -0.587, p=0.559), and AF 

(t= 0.341, p=0.734). 

 

  

Figure 6.10: Box plots displaying the median, 10th, 25th, 75th and 90th percentiles of data for each 
of the accommodative parameters, for each of the CLAS lifestyle scoring groups. 

Score 1, Score 2, Score 3, Score 4 

 



 

 

 

Page 256 

6.3.8 Post-hoc Power calculations 

Post-hoc power calculation was conducted using G*Power; using the c.AoA as the 

between-group comparison in the CLAS lifestyle model, with an ɑ of 0.05 and the study 

population size (n=70) a power of 0.09 was achieved.  In order to achieve a statistical 

power of 0.80 a study population of 1052 would be required (Faul et al., 2007, Faul et 

al., 2009). 

 

6.4 Discussion 

The primary aim of this cross-sectional study was to investigate whether the ‘EPIC’ 

lifestyle score or ‘CLAS’ lifestyle score, was associated with accommodative function, 

mainly AoA, AF, and ToAC.  In doing so the associations between smoking status, diet 

and alcohol, body shape, and physical activity levels, and accommodative function, were 

examined.  Current smokers or subjects with greater central adiposity were found to 

take longer to complete an accommodative change, furthermore, moderate drinkers 

were found to achieve more CPM during AF.  

 

6.4.1 Smoking status 

Smoking is known to increase the overall level of ocular inflammation, which increases 

the levels of oxidative stress and reduces the levels of endogenous anti-oxidants, in the 

crystalline lens (Galor and Lee, 2011).   This has been associated with an overall 



 

 

 

Page 257 

increased risk of cataracts in smokers, (Cumming and Mitchell, 1997, Klein et al., 1999, 

Klein et al., 2003, Raju et al., 2006, Xu et al., 2006, Navarro Esteban et al., 2007, Tan et 

al., 2008c, Wu et al., 2010, Ye et al., 2012), and at a younger age compared to non-

smokers (Tan et al., 2008c, Wu et al., 2010).  Furthermore, a dose-response curve has 

been demonstrated; with risk of cataract formation increasing alongside the packs of 

cigarettes smoked, and years smoked (Klein et al., 1999, Klein et al., 2003, Wu et al., 

2010) (Klein et al., 2003).  In this study, current smokers took longer to complete an 

accommodative change cycle than past-smokers or non-smokers.  This association could 

suggest that the increased levels of oxidative stress, in current smokers could affect how 

quickly the accommodative response occurs.   The similarity between the mean ToAC in 

the past-smokers and never-smoked groups would suggest that after smoking cessation, 

there is some recovery of the oxidative stress levels and anti-oxidant defence 

mechanism.  This would be in agreement with other studies, which have found a 

reduced risk of cataract extraction dependant on when smoking is ceased (Kang et al., 

2016).  Therefore, by including current-smokers and past-smokers together in the ever-

smoked group, any significant difference between the never-smoked and ever-smoked 

groups could have been masked, which could be why smoking status was not found to 

affect ToAC in the EPIC lifestyle model.  There was no significant difference in c.AoA or 

AF between any of the groups describing smoking status, this could have been due to 

the relative small number of current-smokers recruited in this study.  To further explore 

the effects of smoking status on accommodative ability, future work is required and 

should include a greater number of current smokers and past-smokers, and examine the 
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number of cigarettes smoked, and the years passed since smoking cessation in the ‘past-

smokers’ group.  There were a much lower proportion of current-smokers than non-

smokers and past-smokers included in this study, smokers consisted of 18.3% of the 

sample population, which is representative of the proportion of smokers in the UK 

(approximately 17.2%) (ONS, 2017b). 

This study did not capture data on e-cigarette use. 

 

6.4.2 Dietary intake  

Despite both vitamin C and vitamin E constituting key components of the anti-oxidant 

defence mechanism in the crystalline lens, and numerous studies associating a higher 

level of dietary anti-oxidant intake with reduced cataract formation (Jacques, 1999, 

Cumming et al., 2000, Jacques et al., 2001, Kuzniarz et al., 2001, Dherani et al., 2008, 

Tan et al., 2008a, Kang et al., 2016), this study found no association between anti-

oxidant intake and accommodative function.  This could have been due to the relatively 

low proportion of subjects in this study consuming fewer than five portions of fruit and 

vegetables per day.  The Family Food Report, which reports the food purchased each 

year within the UK, stated that in 2015 an average of 3.9 portions of fruit and vegetables 

per person, per day were bought (DEFRA, 2017).  The average daily portions of fruit and 

vegetables reported to be consumed in this study was 7.3, and therefore the dietary 

habits of the study population may not best represent the dietary habits of the target 
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population.  Also it is generally known that subjects tend to over-report fruit and 

vegetable intake on Food Frequency Questionnaires (Bingham et al., 2001, Brunner et 

al., 2001).  The specific FFQ used in this study has been validated to accurately reflect 

plasma vitamin C concentrations (Bingham et al., 2001), this is despite vitamin C being 

very labile; its content can be affected by season, shelf life, storage time, and cooking 

practices.  However, the FFQ asked about dietary intake over the previous 12 months, 

which may not be representative of the dietary intake over a life-time, other limitations 

that could have affected these results include errors in memory and natural seasonal 

variations in eating habits.   

Interventional studies have shown that nutritional supplements have little impact on 

reducing the risk of cataracts in subjects with a nutritionally adequate diet (AREDS I, 

2001, Christen et al., 2003, Christen et al., 2004, Christen et al., 2008, Christen et al., 

2010, Chew et al., 2013).  This suggests that there could be a ceiling threshold of the 

antioxidant defence mechanism in the crystalline lens, above which increasing the 

dietary intake of antioxidants has no further effect on reducing oxidative stress.  There 

may have been too few subjects in this study with an anti-oxidant intake below this 

threshold to have an adverse effect on the crystalline lens, and the accommodative 

mechanism.  To further investigate if there is an association between anti-oxidant intake 

and accommodative function, a larger study sample would be necessary, including more 

subjects with a lower anti-oxidant intake.  Furthermore, investigation is needed to 

establish whether the reported intake of fruit and vegetable portions or blood plasma 
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levels of vitamin C best represent the anti-oxidant defence mechanisms within the 

crystalline lens. 

     

6.4.3 Alcohol  

Moderate drinkers were found on average to achieve more CPM during AF.  This result 

could support the findings of the longitudinal portion of the Blue Mountains Eye Study, 

which found that both heavy drinkers (> 2 standard drinks per day) and non-drinkers 

had a significantly increased likelihood of cataract extraction surgery, in comparison to 

moderate drinkers (1-2 standard drinks per day) (Kanthan et al., 2010).  These findings 

would further support the proposed ‘U’ or ‘J’ shaped dose-response curve between 

alcohol intake and age-changes in the crystalline lens, which has been further evidence 

in a recent meta-analysis of alcohol intake and risk of cataracts by Gong et al. (2015).  

This J-shaped curve has been observed for alcohol intake and age-related cardiovascular 

disease, suggesting that moderate alcohol intake has a cardioprotective effect (Rehm et 

al., 2010).  Although, non-drinkers, those that have stopped drinking and occasional 

periods of heavy drinking are known to skew the data on this relationship (Roerecke and 

Rehm, 2014).  The similarity in the relationships between cataract development, and 

cardiovascular disease with alcohol intake could be due to the two disorders sharing 

many risk factors including: smoking, obesity, diabetes, hyperlipidaemia and 

hypertension (Nemet et al., 2010).   Therefore, some caution must be taken as to 

whether the J-shaped curve association between alcohol intake and age-related changes 
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in the crystalline lens has any clinical significance; more work to understand the 

underlying physiological mechanisms of this relationship is needed. 

Guides were provided whilst subjects completed the questionnaires, as to how many 

units each common measure of alcohol contains, however, subjects are known to under-

report the number of units of alcohol consumed.  This could have skewed the data in 

this study, so that the association of heavy drinking on AF could be greater than was 

reported. 

 

6.4.4  Body shape  

Subjects with a waist-hip ratio classified as ‘at-risk’, took longer on average to change 

their focus than subjects with a ‘normal’ waist-hip ratio, however this finding was not 

apparent when comparing subjects as classified by their BMI as being over-weight or a 

‘normal’ weight.  This could have been due to the limitations of using BMI 

measurements alone to identify obesity;  BMI does not discriminate between muscle 

and fat tissue, and therefore very different body compositions can have similar BMIs, 

increasing the risk of an alpha error (Kok et al., 2004).  Conversely, waist-hip ratios 

include an assessment of visceral fat and has been confirmed as a predictor of chronic 

disease (Balkau et al., 2006, WHO, 2008, Kwakernaak et al., 2013, Kim et al., 2016).   

Numerous studies have found an association between lens changes leading to cataract 

formation and obesity (Glynn et al., 1995, Schaumberg et al., 2000, Paunksnis et al., 2007, 
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Lim et al., 2009, Sabanayagam et al., 2011, Ghaem Maralani et al., 2013).  This 

association has been found by quantifying both BMI, and central adiposity (Glynn et al., 

1995, Schaumberg et al., 2000, Paunksnis et al., 2007, Lindblad et al., 2008).   The exact 

mechanism behind the relationship between obesity and cataracts is unknown, however 

the increase in oxidative stress levels in obesity is well-documented (Agarwal et al., 

2016), and therefore could increase the levels of ocular oxidative stress in the crystalline 

lens.  35.2% of the study sample population were classified as either over-weight or 

obese, which is lower than the reported UK average of 64.8% (Public Health England, 

2017), again suggesting the study population did not best represent the target 

population.  

 

6.4.5 Physical Activity 

Exercise offers numerous benefits for health, and protection against many chronic age-

related diseases (Martinson et al., 2001, Hurley and Reuter, 2011, Booth et al., 2012, 

Kokkinos, 2012).   There is little known about the long-term effects of exercise on ocular 

diseases and physiology (Gale et al., 2009).  Short term effects of exercise have been 

associated with increases in ocular perfusion pressure (Gale et al., 2009, Risner et al., 

2009, Yip et al., 2011, Schmidl et al., 2012), and both an increase and decrease in 

intraocular pressure dependant on the type of exercise performed (Gale et al., 2009, 

Risner et al., 2009).  This study found no association between exercise levels and 

accommodative function.  The results in this study could have been affected by the 

relatively low portion of subjects categorised as physically inactive (12%), this is in 
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contrast to findings from a nationwide survey by Sport England (2016), which found the 

portion of inactive adults to be closer to 29% (with a similar, but not identical criteria for 

classifying active and inactive).  It is known that subjects tend to over-report their 

physical activity levels, which would have further compounded this finding (Sallis, 2010).  

Furthermore, the IPAQ asks subjects about physical activity undertaken in the last seven 

days only and it is not particularly sensitive to change in physical activity levels (Bauman 

et al., 2009).  Therefore the MET-minute scores and activity level found in this study may 

not have been representative of a subject’s physical activity level over a longer period 

of time, or accurately reflect their levels of physical activities over their lifetime.   

 

6.4.6 Lifestyle Models and accommodative function 

Despite some of the individual lifestyle factors showing associations with ToAC and AF, 

once lifestyle was classified by either the EPIC or novel CLAS model, no association with 

accommodative function was found.  There are numerous possible reasons for this, 

firstly it can be seen that there were relatively fewer subjects in the lower and upper 

groups with each lifestyle model due to recruitment constraints.  This would have 

increased the chance of a Type II error in all mean comparisons tests.  As previously 

discussed the lifestyle demographics of the study population did not always represent 

the lifestyle demographics of the target population (of 30 to 40 year olds within the UK).  

The study population had a greater proportion of subjects with a healthy weight, did 

more physically activity and consumed more portions of fruit and vegetables, than the 
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target population.  This could have been due to the fact that in this study 86% of 

participants were either graduates or currently undergraduates.   This would further 

suggest that the study population did not best represent the target population (ONS, 

2013).  Socio-economic status has also been found to be a risk factor for cataracts both 

in isolation and in conjunction with other modifiable risk factors (Cackett et al., 2008).  

Generally it has been found that a lower level of education (Mohan et al., 1989, Italian-

American Cataract Study Group, 1991), a lower income, or a lower-entry job level are 

associated with a higher risk of cataracts (Reidy et al., 1998, Foster et al., 2003, Klein et 

al., 2003, Krishnaiah et al., 2005, Athanasiov et al., 2008).    Overall, this study population 

and may have a lower risk of premature lens ageing, than the target population.   This 

would limit how applicable the results of this study are.   As demonstrated by the power 

stats calculations, a greater number of subjects and more even number of subjects 

across all of the groups should be included in further research.   

Secondly, both of the models have given equal importance to each of the lifestyle factors.  

Within this study population, no association was found between accommodative 

function and fruit and vegetable intake, nor physical activity levels, in isolation, and 

therefore in combination with the other lifestyle factors, could have masked the effects 

of waist-hip ratio and smoking status on accommodative function.     It is quite possible 

that one of the lifestyle factors would have a greater effect on age-related changes in 

the crystalline lens than some of the other factors.  This has possibly been demonstrated 

in this study, as both smoking status and waist-hip ratio were both associated with 
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slower accommodative times.  As well as in previous literature which has confirmed that 

a positive current smoking status and obesity is likely to increase oxidative stress in the 

crystalline lens, leading to age-related changes such as cataract formation (Glynn et al., 

1995, Schaumberg et al., 2000, Klein et al., 2003, Xu et al., 2006, Paunksnis et al., 2007, 

Tan et al., 2008c, Lim et al., 2009, Wu et al., 2010, Sabanayagam et al., 2011, Ghaem 

Maralani et al., 2013, Ye et al., 2012).  However, there is no evidence of an association 

between physical activity and cataract formation. 

There are numerous interactions between lifestyle behaviours; for instance, smokers 

are generally known to have a poorer diet, drink more alcohol, do less physical activity 

and be overweight (Chiolero et al., 2008).   Therefore, examining these factors in 

isolation could give misleading associations as has been previously discussed in the 

example of alcohol demonstrating a J-shaped dose-response curve with cataracts and 

cardio-vascular disease (Nemet et al., 2010).   

Thirdly, lifestyle is dynamic: dietary habits, smoking status, alcohol consumption, body 

shape and levels of physical activity are likely to change over time (Hurley and Reuter, 

2011, ONS, 2017b, ONS, 2017a).  The FFQ used in this study asks subjects to consider 

their intake over the last year, and the IPAQ questionnaire asks subjects to consider their 

physical activity in the previous seven days.  Questions about alcohol intake asked for 

estimations of current alcohol intake and information about smoking included current 

smoking status, and if a past smoker, when they last smoked.  Therefore, it is unlikely 

that this study would not have been sensitive to changes in lifestyle.  The methodological 
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constraints of this cross-sectional study has limited the information available to account 

for these changes.  Ideally, a longitudinal study with long–term observations, utilising 

more objective measures instead of self-reporting, would provide more robust data.     

Finally, these models considered only five single lifestyle factors; there are numerous 

lifestyle factors which could have an effect on the ageing processes of the crystalline 

lens including UV exposure (Robman and Taylor, 2005, Roberts, 2011, Na et al., 2014),  

which have not be considered.  Furthermore, numerous non-modifiable lifestyle factors 

such as gender, ethnicity, and socio-economic status have been associated with the rate 

of presbyopia and cataract development. As discussed in section 1.7.4, the literature 

examining the relationships between these non-modifiable lifestyle factors and 

accommodative function have often had conflicting findings and these could be due to 

different methodologies used to examine the relationships.  For example, Hunter and 

Shipp (1997) discussed how previous studies found that socio-economic status, such as 

level of education and income, inversely correlates with onset of presbyopia; however, 

their study did not confirm this link when comparing reading additions prescribed to 

patients to the average incomes of their zip codes.    However, these conflicting findings 

could also suggest that when one factor is being examined in isolation, other modifiable 

and non-modifiable lifestyle factors need to be considered. 
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6.4.7 Conclusion 

To our knowledge, this is the first study to examine the association between 

accommodative function and lifestyle.  The key findings of this study are:  

 Smokers and subjects who had an at-risk waist-hip ratios took more time for 

accommodative changes. 

 No differences in the accommodative function were found between subjects 

classified as having a ‘healthy’ or ‘un-healthy’ lifestyle. 

 The size and lifestyle demographics of the study population, limits the 

applicability of these results to a wider population.  

 More work is need in this area to validate these findings, and then to explore 

possible mechanisms.    
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Chapter 7: Conclusions 

7.1 Summary 

A detailed understanding of the structure and physiology of the accommodative 

apparatus, and how these are affected by age and lifestyle, are vital for the development 

of a presbyopic treatment.   The different parameters of the accommodative function 

can be assessed using various subjective and objective methods.  However, there is 

much variation in these methods leading to ambiguity, which hinders the comparisons 

of study findings and the application of ‘normative’ values.  Furthermore, 

standardisation between the tests would allow the relationships between the objective 

and subjective tests to be effectively examined.  Therefore, the overarching aim of this 

thesis was to scrutinise the methods used to assess accommodative function and to 

evaluate the effect of lifestyle on accommodation.  

  

7.2 Chapter 2: Validation of novel metrics from the 

accommodative dynamic profile  

The dynamic profile of accommodation is often studied in a research setting to quantify 

parameters of accommodation by deriving different accommodative metrics.  

Numerous metrics have been utilised to describe the active response of the 

accommodative change, and yet there is often a lack of standardisation in how these 
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are derived, and little understanding of how these metrics relate to the subjective 

measurement of accommodative facility.  Therefore, this study aimed to compare novel 

metrics quantifying how quickly the accommodative change occurred, to metrics 

currently used, and relate these to the accommodative facility test.  In doing so, an 

improved understanding of how to standardise these metrics was obtained; the novel 

method of calculating latency of accommodation was more repeatable than methods 

used in previous studies, although this new latency metric did not prove to be 

interchangeable with the previous metric.  The new metrics of time for accommodation, 

time for disaccommodation, and time for accommodative change demonstrated good 

repeatability and the strongest correlations with accommodative facility, and age.  

Therefore, when describing how quickly the accommodative change occurs from the 

accommodative dynamic profile, time metrics may provide more clinically relevant 

information relating to accommodative facility in comparison to accommodative latency 

metrics.  

  

7.3 Chapter 3: Validation of a Patient-controlled 

Accommodative Facility Instrument. 

There are some inherent limitations in the traditional method used to assess AF, which 

can affect the accuracy and repeatability of the results.  These limitations include the 

speed at which the practitioner and patient can recognise and respond to a completed 
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accommodative change, and the application of the commonly quoted normative values.  

Numerous attempts to quantify the normative values for AF have been attempted, 

however the methodology used to investigate the effect of monitoring binocular fusion 

during the AF is inconsistent, therefore conclusions are limited.  The study described in 

chapter 3 was conducted in two parts; the first aimed at validating a novel instrument 

to minimise the error caused by reaction times, the second part was aimed at 

investigating the effect of using a stereogram target during the AF test. 

The Patient-controlled Accommodative Facility (PcAF) instrument was developed and 

validated, with a modified technique for assessing AF.  The instrument allowed the 

patient to initiate the lens flip, removing the practitioner reaction time and, improving 

the accuracy of AF measurements.  The instrument also automatically logged the time 

interval for each lens flip separately, allowing measurements of the subjective time for 

accommodation, disaccommmodation, and the accommodative change.  Therefore 

improving the comparisons between the objective accommodative time metrics derived 

from the accommodative dynamic profile and AF.  The PcAF instrument was found to 

provide a valid and repeatable assessment of AF, and provides the opportunity to 

further investigate the effect of in-test fatigue on time for accommodation and time for 

disaccommodation.   

The PcAF and traditional AF test were then used to perform binocular AF tests with both 

a stereogram target, and a ‘flat’ target which did not monitor suppression.  Using a 

stereogram target reduced the cycles per minute achieved during AF testing in young 

adults with normal binocular function, however further work is required to understand 
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the clinical relevance of this finding.  Further studies are also required to examine the 

effects of monitoring suppression during AF in adults between the ages of 30 and 40 

years, and in individuals with binocular abnormalities. 

 

7.4 Chapter 4: Optimising the calculation methods for 

analysing depth of focus from defocus curves 

Defocus curves are commonly used to derive information about depth-of-focus, and 

accommodation in phakic eyes.  They are also used to assess the effectiveness of 

multifocal and extended depth-of-focus IOL designs, in restoring accommodative 

function.  Yet further standardisation between the methods used to construct defocus 

curves and derive the metrics is required to enable closer comparisons between studies.  

The aim of chapter 4 was to compare the validity of four defocus curve metrics in a 

phakic and pseudophakic population.  These metrics were compared with the amplitude 

of accommodation and the time for accommodative change in the phakic population, 

and with the Radner Critical Print Size in the pseudophakic population.    

The range-of-focus metric with an absolute cut-off of +0.30logMAR was found to be the 

most valid and repeatable metric, when compared to an area-of-focus metric, and a 

relative cut-off criteria of best corrected visual acuity +0.04logMAR.  This would suggest 

that future studies analysing the effectiveness of an accommodative IOL or extended 
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depth of focus IOL using defocus curves, should assess depth-of-focus by calculating the 

range-of-focus at a cut-off of +0.30 logMAR.  

 

7.5 Chapter 5: Investigating the in vivo ciliary muscle 

shape change during accommodation  

Before the introduction of AS-OCTs, studying the human ciliary muscle in vivo was 

limited by the position of the iris.  With the introduction of the high-resolution and non-

invasive instrument AS-OCT, researchers were presented with the opportunity to vastly 

expand the depth of knowledge of the structure and physiology of the human ciliary 

muscle in vivo.  Subsequent research has focused on the changes in structure and 

function of the ciliary muscle during accommodation, with age, and its possible role in 

myopigensis.  This research has been conducted using time-domain AS-OCT.  The more 

recent development of swept source AS-OCT allows for faster scan times and superior 

image resolution.  The swept source ASOCT TOMEY CASIA 1000 also has novel software 

features such as the real-time viewing of the conjunctival area over-which the scan is 

acquired, and tools to analyse portioned cross-sectional area of the ciliary muscle.  

Therefore, the purpose the study described in chapter 5 was to examine the use of the 

Tomey CASIA and its unique features in analysing changes in the ciliary muscle with 

accommodation.    
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Utilising the Tomey CASIA software a reference point was identified, along-which a 

specific location of the ciliary muscle was used for cross section scan analysis.  This 

approach improved the repeatability of ciliary muscle measurements, and allowed for 

more accurate assessment of ciliary muscle morphology changes.  It was concluded that 

the use of a physiological reference point on a patients conjunctiva, should always be 

employed in future studies examining repeated scans of the ciliary muscle, where 

possible.  

Traditionally thickness measurements across the ciliary muscle have been used to assess 

the change in shape of the ciliary muscle during accommodation.  The study explored 

the use of the Tomey CASIA’s cross-sectional area measurement tool and examined the 

repeatability and validity of such a measure.  The repeatability of the portioned cross-

sectional area metric was found to be lower in comparison to the ciliary muscle thickness 

metric.  Furthermore, thickness measurements demonstrated that the anterior portions 

of the ciliary muscle thickened with accommodation whilst the posterior thickness 

reduced. However, the area metric only identified a change of the anterior portion of 

the ciliary muscle. It was concluded that the area metrics were less reliable than 

thickness measurements in describing muscle morphology. 
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7.6 Crystalline lens ageing study (CLAS): does smoking 

status and other lifestyle factors affect 

accommodation? 

The rate of biological ageing in humans is known to be influenced by many physiological 

and environmental factors.  Age-related changes in the crystalline lens include the loss 

of accommodative ability and the loss of transparency.  Truscott and Zhu (2010) have 

described how the underlying biological ageing mechanisms leading to the loss of 

accommodative function and reduced lens transparency, are similar.  Therefore, it is 

possible that the development of both conditions could be influenced by the same 

physiological and environmental factors.  Much of the current literature has 

concentrated on identifying lifestyle factors that can increase the risk of cataract 

development (Athanasiov et al., 2008, Lim et al., 2009, Lindblad et al., 2008, Robman 

and Taylor, 2005, Nita and Grzybowski, 2017).  As yet, no studies have examined 

whether the lifestyle factors that have been identified as possible risk factors for 

cataracts, also affect the rate of development of presbyopia.  This study explored the 

association between smoking status, body shape, anti-oxidant intake, alcohol 

consumption, and physical activity on the accommodative parameters of amplitude of 

accommodation, accommodative facility and time for accommodative change, in 

healthy adults between the ages of 30 and 40 years.  Although being a current smoker 

and having greater central adiposity was associated with a slower time for 
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accommodative change, once lifestyle models were used, no association between 

lifestyle and accommodative function was found.  However, application of this data may 

be restricted due to limitations of the study population including a non-representative  

study population.  Further research is needed in this area on a larger study population 

to validate these findings.   

 

7.7 Limitations and additional considerations of current 

work  

There were a few known considerations or potential sources of error through-out these 

studies that were not controlled for; these include an uneven number of females and 

males, and refractive error groups in the study populations.  Other potential sources of 

error could have arisen from the fatigue effects of repeated measures of 

accommodation, and reduced subject co-operation. 

 

7.7.1 Effect of gender  

As discussed in section 1.7.4 studies that have investigated if there is a physiological 

difference in the accommodative function of males and females have had inconsistent 

findings. (Kragha, 1986, Koretz et al., 1989, Millodot and Millodot, 1989, Pointer, 1995, 

Hunter and Shipp, 1997, Carnevali and Southaphanh, 2005, Burke et al., 2006, Nirmalan 

et al., 2006, Patel et al., 2006).  In a review of this literature  Hickenbotham et al. (2012) 
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concluded that there were no physiological difference in accommodative abilities 

between the genders, and that the contrasting findings of these studies could be 

explained by other physiological or environmental factors.    

 

7.7.2 Inclusion of a range of refractive error groups 

In all of the study populations there was generally a higher number of emmetropes and 

myopes, than hyperopes.  Myopes generally have increased accommodative lags, 

compared to emmetropes and hyperopes (Gwiazda et al., 2005, Mutti et al., 2006, 

Millodot, 2015).  However, lag was not utilised in any of the studies to describe the 

accommodative function.  Studies which have investigated the relationship of refractive 

error and AoA have had varied results; McBrien and Millodot (1986) reported higher 

AoA in myopes, however, other studies reported lower AoA in myopes (Fong, 1997, 

Allen and O'Leary, 2006), whereas some studies have found no significant differences 

(Fisher et al., 1987, Anderson et al., 2008).  Studies which have investigated the effect 

of refractive error on near AF, found no significant differences between refractive error 

groups (O'Leary and Allen, 2001, Allen and O'Leary, 2006, Pandian et al., 2006, 

Radhakrishnan et al., 2007).  Therefore, the range of refractive errors used in these 

studies should not have had a large impact upon the results. 

 

7.7.3 Fatigue affects and patient co-operation 

For accurate assessment of accommodation, subjects must be co-operative through-out.  

Repeated measures of accommodation can cause fatigue effects, or loss of 
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concentration by subjects leading to under-estimations of the true accommodative 

function.  To minimise the effects of this in all of the studies, rest breaks were given 

between tests, and the order of different accommodative tests were randomised. 

  

7.7.4 Chapter 6: Crystalline lens ageing study (CLAS): does 

smoking status and other lifestyle factors affect 

accommodation? 

The main limitations of the CLAS study limit the application of the findings to the target 

population are discussed in section 6.4.6.  During analysis, it became apparent that the 

target population reported generally healthier lifestyles (i.e. consuming more portions 

of fruit and vegetables, and being more physical activity) than the target population.  

The methodology employed in this study would not have accounted for any previous 

changes in the lifestyle factors assessed, which could have affected the associations 

found with accommodative function.   A longitudinal follow-up to this study would be 

useful to identify the potential impact that changes in lifestyle would have had.   

The main limitation of this study was the reduced power (0.09) due to the small sample 

size (70). As stated in section 6.3.8 to obtain a power of 0.80 when using an ANOVA to 

compare the difference in c.AoA between the CLAS lifestyle groups, a sample size of n= 

1052 was required, which would have been difficult to achieve in the time constraints 

of this study.   
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Due to the relatively small sample size, comparisons between groups with uneven 

numbers were carried out.  This would have further affected the reliability of the results 

found.  Due to the nature of study recruitment and drop-out this was difficult to control 

for.  Ideally, this study would be repeated with a larger study population to confirm the 

findings. 

 

7.8 Clinical implications and future work 

7.8.1 Chapter 2: Validation of novel metrics from the 

accommodative dynamic profile  

The novel metrics of time for accommodation investigated in this study were valid 

descriptors of the accommodative function, which more closely related to 

accommodative facility than the traditional metric of accommodative latency.  

Furthermore, the method proposed to define and derive accommodative latency proved 

to be more repeatable than the method used in previous studies, due to utilising curve 

fitting as opposed to visual inspection of the data.  Therefore, the novel accommodative 

time metrics and latency metrics proposed in this study could be used in future research 

where descriptors of the speed of the accommodative change are desired.    

Future work could involve deriving the peak velocity and time constants via curve fitting, 

and investigating their relationship to accommodative facility. 
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7.8.2 Chapter 3: Validation of a Patient-controlled 

Accommodative Facility Instrument 

With minor improvements to the novel PcAF instrument, future work would begin by 

investigating the change in subjective time for accommodation and disaccommodation 

with age.  Another study to investigate the effect of in-test fatigue on accommodative 

times would be clinically useful to increase the depth of understanding on the 

implications of the method of accommodative facility, commonly used in clinical 

practice.   

Results from this study suggest that further exploration with a more systematic 

approach in quantifying groups of symptomatic and non-symptomatic accommodative 

dysfunction, and normal and ‘suspect’ binocular function, is needed to understand the 

effects of using a stereogram during binocular AF.  It would also be useful to examine 

the effects of using a stereogram during binocular AF across different ages. 

 

7.8.3 Chapter 4: Optimising the calculation methods for analysing 

depth of focus from defocus curves 

The findings from this study suggest that the dioptric range over which a subject can see 

+0.30LogMAR should be utilised to describe the depth-of-focus from a defocus curve, 

when  analysing the success of an accommodative IOL or extended depth-of-focus IOL 

in restoring accommodation. 
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7.8.4 Chapter 5: Investigating the in vivo ciliary muscle shape 

change during accommodation  

Results from this study demonstrate that during investigations with repeated scans of 

the ciliary muscle, the use of a reference point on the conjunctiva to align with, to select 

the scan for analysis improves repeatability, and therefore should be used (where 

possible) in future studies.   

The findings from this study also suggested that portioned cross-sectional area was a 

less repeatable metric that muscle thickness when investigating the shape change of the 

muscle, during accommodation. 

The Tomey CASIA 1000 AS-OCT has a video function that could be utilised in future 

studies to analyse the change in shape of the ciliary muscle at different time intervals 

after the introduction of an accommodative target. 

 

7.8.5 Chapter 6: Crystalline lens ageing study (CLAS): does 

smoking status and other lifestyle factors affect 

accommodation? 

To our knowledge, this is the first study to examine the association between 

accommodative function and lifestyle.  Although some associations were found 

between accommodative function and smoking status, and central adiposity, further 

work is required before applying these results to a wider population.   
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A cross-sectional study with a larger population size would be required.   Some 

amendments to the methodology of how the lifestyle factors were assessed would 

improve the validity of the data collected.  For instance, assessing plasma levels of 

vitamin C and vitamin E, and developing and validating a new physical activity 

questionnaire, which captures data for a time-period greater than 7-days.  Ideally 

proceeding this, a longitudinal study would be conducted to confirm any findings, and 

identify the effect of any changes in lifestyle on accommodative function. 

Accumulation of AGEs as a by-product of cross-linking of proteins, affects both skin and 

crystalline lens auto-fluorescence.  AGE readers which measure skin auto-fluorescence 

and confocal biomicroscopes measuring lens auto-fluorescence have been validated to 

quantify the risk of cardiovascular disease, diabetes, and mortality (de Vos et al., 2014, 

Fokkens and Smit, 2016, Stirban, 2014, Burd et al., 2012).  Future work could assess 

whether AGE measures of the crystalline lens or skin are associated with 

accommodative function or predict cataract development.
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Appendices 

A1 The Matlab code used to derive metrics from the 

accommodative dynamic profile  

c% curvefitting_v1 

  
clear all 
filename = input ('Please input file name :   ', 's');  
rawdata=xlsread(filename) 

  
% for the first time taken to full accommdoative 
 x = rawdata(:,1); 
 y = rawdata(:,2);  
[param]=sigm_fit(x,y) 
[a] = param(1,1)  
[b] = param(1,2)  
[c] = param(1,3)  
[d] = param(1,4) 
 if param(1,2)>param(1,1)  
    [y91] = param(1,2)*.99 
else     

     [y91] = param(1,1)*.99 
end 
[x91] = (-(log10(((b-a)/(y91-a))-1))/d)+c 
[starttime] = x(1,1) 
[measurementnumbers] = x91 - x(1,1) 
[time] = measurementnumbers * 0.125 

  
% for first accommodative latency 
[y01] = (param(1,2)-param(1,1))/100 + param(1,1) 
if param(1,2)>param(1,1)  
    [y01] = (param(1,2)-param(1,1))/100 + param(1,1) 
else 
    [y01] = (param(1,1)-param(1,2))/100 + param(1,2) 
end 
 [x01] = (-(log10(((b-a)/(y01-a))-1))/d)+c 
[measurementnumbers01] = x01 - x(1,1) 
[lag] = measurementnumbers01 * 0.125 

     

  
% for the second time taken to full accommdoative 
 x2 = rawdata(:,5); 
 y2 = rawdata(:,6);  
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[param2]=sigm_fit(x2,y2)  
[a2] = param2(1,1) 
[b2] = param2(1,2) 
[c2] = param2(1,3) 
[d2] = param2(1,4) 
 if param2(1,2)>param2(1,1)  
    [y92] = param2(1,2)*.99 
else 
    [y92] = param2(1,1)*.99 
end 
 [x92] = (-(log10(((b2-a2)/(y92-a2))-1))/d2)+c2 
 [starttime2] = x2(1,1) 
 [measurementnumbers2] = x92 - x2(1,1) 

  
[time2] = measurementnumbers2 * 0.125 

 
 % for second accommodative lag 
 [y02] = (param2(1,2)-param2(1,1))/100 + param2(1,1) 
 if param2(1,2)>param2(1,1)  
    [y02] = (param2(1,2)-param2(1,1))/100 + param2(1,1) 
else 
    [y02] = (param2(1,1)-param2(1,2))/100 + param2(1,2) 
end 

  
[x02] = (-(log10(((b2-a2)/(y02-a2))-1))/d2)+c2 
[measurementnumbers02] = x02 - x2(1,1) 
[lag2] = measurementnumbers02 * 0.125 

  
% for the third time taken to full accommdoative 
 x3 = rawdata(:,9); 
 y3 = rawdata(:,10); 
 [param3]=sigm_fit(x3,y3) 
 [a3] = param3(1,1) 
 [b3] = param3(1,2) 
 [c3] = param3(1,3) 
 [d3] = param3(1,4) 
 if param3(1,2)>param3(1,1)  
    [y93] = param3(1,2)*.99 
else 
    [y93] = param3(1,1)*.99 
end 
 [x93] = (-(log10(((b3-a3)/(y93-a3))-1))/d3)+c3 
 [starttime3] = x3(1,1) 
 [measurementnumbers3] = x93 - x3(1,1) 
 [time3] = measurementnumbers3 * 0.125 

  
% for third accommodative lag 
 [y03] = (param3(1,2)-param3(1,1))/100 + param3(1,1) 
 if param3(1,2)>param3(1,1)  
    [y03] = (param3(1,2)-param3(1,1))/100 + param3(1,1) 
else 
    [y03] = (param3(1,1)-param3(1,2))/100 + param3(1,2) 
end 
 [x03] = (-(log10(((b3-a3)/(y03-a3))-1))/d3)+c3 
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[measurementnumbers03] = x03 - x3(1,1) 
[lag3] = measurementnumbers03 * 0.125 

  

  
% for the fourth time taken to full accommdoative 
 x4 = rawdata(:,13); 
 y4 = rawdata(:,14); 
 [param4]=sigm_fit(x4,y4) 
 [a4] = param4(1,1) 
 [b4] = param4(1,2) 
 [c4] = param4(1,3) 
 [d4] = param4(1,4) 

  
if param4(1,2)>param4(1,1)  
    [y94] = param4(1,2)*.99 
else 
    [y94] = param4(1,1)*.99 
end 
 [x94] = (-(log10(((b4-a4)/(y94-a4))-1))/d4)+c4 

  
[starttime4] = x4(1,1) 
[measurementnumbers4] = x94 - x4(1,1) 
[time4] = measurementnumbers4 * 0.125 

  
% for fourth accommodative lag 
 [y04] = (param4(1,2)-param4(1,1))/100 + param4(1,1) 
 if param4(1,2)>param4(1,1)  
    [y04] = (param4(1,2)-param4(1,1))/100 + param4(1,1) 
else 
    [y04] = (param4(1,1)-param4(1,2))/100 + param4(1,2) 
end 
 [x04] = (-(log10(((b4-a4)/(y04-a4))-1))/d4)+c4 
 [measurementnumbers04] = x04 - x4(1,1) 
[lag4] = measurementnumbers04 * 0.125 

 
 %for time taken to full disaccommodation  
 x5 = rawdata(:,3); 
 y5 = rawdata(:,4); 
 [param5]=sigm_fit(x5,y5) 
 [a5] = param5(1,1) 
 [b5] = param5(1,2) 
 [c5] = param5(1,3) 
 [d5] = param5(1,4) 
 if param5(1,2)>param5(1,1)  
    [y95] = (param5(1,2)-param5(1,1))/100 + param5(1,1) 
else 
    [y95] = (param5(1,1)-param5(1,2))/100 + param5(1,2) 
end 
 [x95] = (-(log10(((b5-a5)/(y95-a5))-1))/d5)+c5 
 [starttime5] = x5(1,1) 
 [measurementnumbers5] = x95 - x5(1,1) 
 [disaccommdation] = measurementnumbers5 * 0.125 

  
%for disaccommodative lag 
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 x6 = rawdata(:,3); 
 y6 = rawdata(:,4); 
 [param6]=sigm_fit(x6,y6) 
 [a6] = param6(1,1) 
 [b6] = param6(1,2) 
 [c6] = param6(1,3) 
 [d6] = param6(1,4) 

  
if param6(1,2)>param6(1,1)  
    [y96] = param6(1,2)*.99 
else 
    [y96] = param6(1,1)*.99 
end 
 [x96] = (-(log10(((b6-a6)/(y96-a6))-1))/d6)+c6 
 [starttime6] = x6(1,1) 
 [measurementnumbers6] = x96 - x6(1,1) 
 [disaccommdationlag] = measurementnumbers6 * 0.125 

  
%for time taken to full disaccommodation  
 x7 = rawdata(:,7); 
 y7 = rawdata(:,8); 
 [param7]=sigm_fit(x7,y7) 
 [a7] = param7(1,1) 
 [b7] = param7(1,2) 
 [c7] = param7(1,3) 

  
[d7] = param7(1,4) 
 if param7(1,2)>param7(1,1)  
    [y97] = (param7(1,2)-param7(1,1))/100 + param7(1,1) 
else 
    [y97] = (param7(1,1)-param7(1,2))/100 + param7(1,2) 
end 
 [x97] = (-(log10(((b7-a7)/(y97-a7))-1))/d7)+c7 
 [starttime7] = x7(1,1) 
 [measurementnumbers7] = x97 - x7(1,1) 
 [disaccommdation2] = measurementnumbers7 * 0.125 

  
%for disaccommodative lag 
 x8 = rawdata(:,7); 
 y8 = rawdata(:,8); 
 [param8]=sigm_fit(x8,y8) 
 [a8] = param8(1,1) 
 [b8] = param8(1,2) 
 [c8] = param8(1,3) 
 [d8] = param8(1,4) 
 if param8(1,2)>param8(1,1)  
    [y98] = param8(1,2)*.99 
else 
    [y98] = param8(1,1)*.99 
end 
 [x98] = (-(log10(((b8-a8)/(y98-a8))-1))/d8)+c8 
 [starttime8] = x8(1,1) 
 [measurementnumbers8] = x98 - x8(1,1) 
 [disaccommdationlag2] = measurementnumbers8 * 0.125 
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%for time taken to full disaccommodation  
 x9 = rawdata(:,11); 
 y9 = rawdata(:,12); 
 [param9]=sigm_fit(x9,y9) 
 [a9] = param9(1,1) 
 [b9] = param9(1,2) 
 [c9] = param9(1,3) 
 [d9] = param9(1,4) 
 if param9(1,2)>param7(1,1)  
    [y99] = (param9(1,2)-param9(1,1))/100 + param9(1,1) 
else 
    [y99] = (param9(1,1)-param9(1,2))/100 + param9(1,2) 
end 
 [x99] = (-(log10(((b9-a9)/(y99-a9))-1))/d9)+c9 
 [starttime9] = x9(1,1) 
 [measurementnumbers9] = x99 - x9(1,1) 
 [disaccommdation3] = measurementnumbers9 * 0.125 

  
%for disaccommodative lag 
 x10 = rawdata(:,11); 
 y10 = rawdata(:,12); 
 [param10]=sigm_fit(x10,y10) 
 [a10] = param10(1,1) 
 [b10] = param10(1,2) 
 [c10] = param10(1,3) 
 [d10] = param10(1,4) 
 if param10(1,2)>param10(1,1)  
    [y910] = param10(1,2)*.99 
else 
    [y910] = param10(1,1)*.99 
end 
 [x910] = (-(log10(((b10-a10)/(y910-a10))-1))/d10)+c10 
 [starttime10] = x10(1,1) 
 [measurementnumbers10] = x910 - x10(1,1) 
 [disaccommdationlag3] = measurementnumbers10 * 0.125 

 
 %for time taken to full disaccommodation  
 x11 = rawdata(:,15); 
 y11 = rawdata(:,16); 
 [param11]=sigm_fit(x11,y11) 
 [a11] = param11(1,1) 
 [b11] = param11(1,2) 
 [c11] = param11(1,3) 
 [d11] = param11(1,4) 

  
if param11(1,2)>param11(1,1)  
    [y911] = (param11(1,2)-param11(1,1))/100 + param11(1,1) 
else 
    [y911] = (param11(1,1)-param11(1,2))/100 + param11(1,2) 
end 
 [x911] = (-(log10(((b11-a11)/(y911-a11))-1))/d11)+c11 
 [starttime11] = x11(1,1) 
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 [measurementnumbers11] = x911 - x11(1,1) 
 [disaccommdation4] = measurementnumbers11 * 0.125 

  
%for disaccommodative lag 
 x12 = rawdata(:,15); 
 y12 = rawdata(:,16); 
 [param12]=sigm_fit(x12,y12) 
 [a12] = param12(1,1) 
 [b12] = param12(1,2) 
 [c12] = param12(1,3) 
 [d12] = param12(1,4) 
 if param12(1,2)>param12(1,1)  
    [y912] = param12(1,2)*.99 
else 
    [y912] = param12(1,1)*.99 
end 
 [x912] = (-(log10(((b12-a12)/(y912-a12))-1))/d12)+c12 
 [starttime12] = x12(1,1) 
 [measurementnumbers12] = x912 - x12(1,1) 
 [disaccommdationlag4] = measurementnumbers12 * 0.125 

  

  
beep 
subject = input('Please enter subject no :   ', 's'); 
activities = input('Please enter the testing activities :   ', 's'); 
trial = input('Please enter the trail number :   ', 's'); 
%group = input('Please enter Group no, Group 1= Normal, Group 2: Painful 

Gp 
%:   '); 

   
% Export to excel file 

  
angname='Study2allraw.xls'; 
fod = fopen(angname, 'a'); 
fprintf(fod, '%s\t',subject); 
fprintf(fod, '%s\t',activities); 
fprintf(fod, '%s\t',trial); % should analyse 3 trails in one matlab file 
% fprintf(fod, '%7.4f\t',int_J_AP_L1); 
% fprintf(fod, '%7.4f\t',J_ML_L1); 
fprintf(fod, '%7.4f\t',time); 
fprintf(fod, '%7.4f\t',time2); 
fprintf(fod, '%7.4f\t',time3); 
fprintf(fod, '%7.4f\t',time4); 
fprintf(fod, '%7.4f\t',lag); 
fprintf(fod, '%7.4f\t',lag2); 
fprintf(fod, '%7.4f\t',lag3); 
fprintf(fod, '%7.4f\t',lag4); 
fprintf(fod, '%7.4f\t',disaccommdation); 
fprintf(fod, '%7.4f\t',disaccommdation2); 
fprintf(fod, '%7.4f\t',disaccommdation3); 
fprintf(fod, '%7.4f\t',disaccommdation4); 
fprintf(fod, '%7.4f\t',disaccommdationlag); 
fprintf(fod, '%7.4f\t',disaccommdationlag2); 
fprintf(fod, '%7.4f\t',disaccommdationlag3); 
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fprintf(fod, '%7.4f\t',disaccommdationlag4); 
fprintf(fod, '%7.4f\t',a); 
fprintf(fod, '%7.4f\t',a2); 
fprintf(fod, '%7.4f\t',a3); 
fprintf(fod, '%7.4f\t',a4); 
fprintf(fod, '%7.4f\t',b); 
fprintf(fod, '%7.4f\t',b2); 
fprintf(fod, '%7.4f\t',b3); 
fprintf(fod, '%7.4f\t',b4); 
fprintf(fod, '%7.4f\t',c); 
fprintf(fod, '%7.4f\t',c2); 
fprintf(fod, '%7.4f\t',c3); 
fprintf(fod, '%7.4f\t',c4); 
fprintf(fod, '%7.4f\t',d); 
fprintf(fod, '%7.4f\t',d2); 
fprintf(fod, '%7.4f\t',d3); 
fprintf(fod, '%7.4f\t',d4); 
fprintf(fod, '%7.4f\t',a5); 
fprintf(fod, '%7.4f\t',a7); 
fprintf(fod, '%7.4f\t',a9); 
fprintf(fod, '%7.4f\t',a11); 
fprintf(fod, '%7.4f\t',b5); 
fprintf(fod, '%7.4f\t',b7); 
fprintf(fod, '%7.4f\t',b9); 
fprintf(fod, '%7.4f\t',b11); 
fprintf(fod, '%7.4f\t',c5); 
fprintf(fod, '%7.4f\t',c7); 
fprintf(fod, '%7.4f\t',c9); 
fprintf(fod, '%7.4f\t',c11); 
fprintf(fod, '%7.4f\t',d5); 
fprintf(fod, '%7.4f\t',d7); 
fprintf(fod, '%7.4f\t',d9); 
fprintf(fod, '%7.4f\t',d11); 
fprintf(fod, '%s\n',subject); 
fclose(fod); 
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A2 Wilcoxon’s Signed Rank test comparing each 

accommodative metric between the right and left 

eye  

ToA: Z= -0.596, p= 0.551,  

ToD: Z= -0.53, p= 0.958,  

oToAC: Z=-0.158, p= 0.874,  

LoA: Z= -1.109, p= 0.267,  

LoD: Z= -1.727, p= 0.84,  

pLoA: Z= -0.161, p= 0.872,  

pLoD: Z= -1.041, p= 0.298,  

AF: Z= -1.313, p= 0.189,  

sToAC: Z= -0.965, p= 0.334  
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A3 The Matlab codes used to calculate the depth-of-

focus metrics 

 0.04 area area-of-focus metric 

% defocus_curve_fitting_V1 
clear all; 
hold off; 
clc 
filename=input ('Please input filename : ', 's') 
rawdata= xlsread(filename) 
%plotting graph 
x = rawdata(:,1); 
y = rawdata(:,2); 
plot(x,y); 
xlabel ('Lens Power, Dioptres'); 
ylabel ('Visual Acuity, LogMAR'); 
p = polyfit(x,y,8)   
p1 = p  
p1(1,9)= p1(1,9)-0.3  
p2 = roots(p1)  
syms x  
n=1  
fun = p(1,1)*x(n).^8+p(1,2)*x(n).^7 + p(1,3)*x(n).^6 + p(1,4)*x(n).^5 + 

p(1,5)*x(n).^4 + p(1,6)*x(n).^3 + p(1,7)*x(n).^2 + p(1,8)*x(n) + p(1,9)  
prompt1 = 'data1 = ' 
prompt2 = 'data2 = '  
data1 = input(prompt1) 
data2 = input(prompt2)  
integration1 = int (fun,0,data2)  
area1 = 0.3 * data2 - integration1  
area_1d = double(area1)  
integration2 = int (fun,data1,0)  
area2 = 0.3 * abs(data1) - integration2  
area_2d = double(area2)  
prompt3 = 'subject = ' 
prompt4 = 'visit = ' 
prompt5 = 'eye = '  
subject = input(prompt3) 
visit = input(prompt4) 
eye = input(prompt5) 

  
% make a matrix  
exportdata = [subject,visit,eye,area_1d,area_2d] 

   
% Export to excel file  
fod = 

fopen('/Users/nicolaszostek/Documents/Matlab_output/Curvefitting_v1_03

0_area_multiandmono.xls', 'a'); %file destination 
fprintf(fod, '%7.4f\t',subject); 
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fprintf(fod, '%7.4f\t',visit); 
fprintf(fod, '%7.4f\t',eye); 
fprintf(fod, '%7.4f\t',area_1d); 
fprintf(fod, '%7.4f\n',area_2d); 

 

 

0.04dist range-of-focus metric 

% defocus_curve_fitting_V2  
clear all; 
hold off;  
clc 
filename=input ('Please input filename : ', 's')  
rawdata= xlsread(filename)  
%Identify BCVA  
data45 = -rawdata(3,2)-0.04  
%plotting graph  
x = rawdata(:,1);  
y = rawdata(:,2);  
plot(x,y);  
xlabel ('Lens Power, Dioptres'); 
ylabel ('Visual Acuity, LogMAR');  
p = polyfit(x,y,8)   
p1 = p  
p1(1,9)= p1(1,9)+(data45)  
p2 = roots(p1)  
syms x  
n=1  
fun = p(1,1)*x(n).^8+p(1,2)*x(n).^7 + p(1,3)*x(n).^6 + p(1,4)*x(n).^5 + 

p(1,5)*x(n).^4 + p(1,6)*x(n).^3 + p(1,7)*x(n).^2 + p(1,8)*x(n) + p(1,9)  
prompt2 = 'data1 = ' 
prompt3 = 'data2 = '  
data1 = input(prompt2) 
data2 = input(prompt3)  
distance = (data1)-(data2)  
prompt4 = 'subject = ' 
prompt5 = 'visit = ' 
prompt6 = 'eye = '  
subject = input(prompt4) 
visit = input(prompt5) 
eye = input(prompt6) 

  
% make a matrix  
exportdata = [subject,visit,eye,distance] 

   
% Export to excel file  
fod = 

fopen('/Users/nicolaszostek/Documents/Matlab_output/Curvefitting_004_d

ist_comp_monoandmulti.xls', 'a'); %file destination 
fprintf(fod, '%7.4f\t',subject); 
fprintf(fod, '%7.4f\t',visit); 
fprintf(fod, '%7.4f\t',eye); 
fprintf(fod, '%7.4f\t',distance); 
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 0.30area area-of-focus metric 

% defocus_curve_fitting_V1 
clear all; 
hold off;  
clc 
filename=input ('Please input filename : ', 's')  
rawdata= xlsread(filename)  
%plotting graph  
x = rawdata(:,1);  
y = rawdata(:,2);  
plot(x,y);  
xlabel ('Lens Power, Dioptres'); 
ylabel ('Visual Acuity, LogMAR'); 
p = polyfit(x,y,8)  
p1 = p  
p1(1,9)= p1(1,9)-0.3 
p2 = roots(p1)  
syms x  
n=1  
fun = p(1,1)*x(n).^8+p(1,2)*x(n).^7 + p(1,3)*x(n).^6 + p(1,4)*x(n).^5 + 

p(1,5)*x(n).^4 + p(1,6)*x(n).^3 + p(1,7)*x(n).^2 + p(1,8)*x(n) + p(1,9)  
prompt1 = 'data1 = ' 
prompt2 = 'data2 = '  
data1 = input(prompt1) 
data2 = input(prompt2)  
integration1 = int (fun,0,data2)  
area1 = 0.3 * data2 - integration1  
area_1d = double(area1)  
integration2 = int (fun,data1,0)  
area2 = 0.3 * abs(data1) - integration2  
area_2d = double(area2)  
prompt3 = 'subject = ' 
prompt4 = 'visit = ' 
prompt5 = 'eye = '  
subject = input(prompt3) 
visit = input(prompt4) 
eye = input(prompt5)  

  
% make a matrix  
exportdata = [subject,visit,eye,area_1d,area_2d] 

   
% Export to excel file  
fod = 

fopen('/Users/nicolaszostek/Documents/Matlab_output/Curvefitting_v1_03

0_area_multiandmono.xls', 'a'); %file destination 
fprintf(fod, '%7.4f\t',subject); 
fprintf(fod, '%7.4f\t',visit); 
fprintf(fod, '%7.4f\t',eye); 
fprintf(fod, '%7.4f\t',area_1d); 
fprintf(fod, '%7.4f\n',area_2d); 
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0.30dist range-of-focus metric 

% defocus_curve_fitting_V3_distance_0.3 
clear all; 
hold off;  
clc 
filename=input ('Please input filename : ', 's')  
rawdata= xlsread(filename)  
%plotting graph  
x = rawdata(:,1);  
y = rawdata(:,2);  
plot(x,y);  
xlabel ('Lens Power, Dioptres'); 
ylabel ('Visual Acuity, LogMAR');  
p = polyfit(x,y,8)  
p1 = p  
p1(1,9)= p1(1,9)-0.3  
p2 = roots(p1)  
syms x  
n=1  
fun = p(1,1)*x(n).^8+p(1,2)*x(n).^7 + p(1,3)*x(n).^6 + p(1,4)*x(n).^5 + 

p(1,5)*x(n).^4 + p(1,6)*x(n).^3 + p(1,7)*x(n).^2 + p(1,8)*x(n) + p(1,9) 
prompt1 = 'data1 = ' 
prompt2 = 'data2 = '  
data1 = input(prompt1) 
data2 = input(prompt2)  
distance = (data1)-(data2)  
prompt3 = 'subject = ' 
prompt4 = 'visit = ' 
prompt5 = 'eye = '  
subject = input(prompt3) 
visit = input(prompt4) 
eye = input (prompt5)  

 
% make a matrix  
exportdata = [subject,visit,eye,distance]  

  
% Export to excel file  
fod = 

fopen('/Users/nicolaszostek/Documents/Matlab_output/Curvefitting_v1_03

0_distance_multiandmono.xls', 'a'); %file destination 
fprintf(fod, '%7.4f\t',subject); 
fprintf(fod, '%7.4f\t',visit); 
fprintf(fod, '%7.4f\t',eye); 
fprintf(fod, '%7.4f\t',distance); 

 

 

 



 

 

 

Page 294 

A4 
 

 

  

Figure A4.1 Bland and Altman plots demonstrating the inter-observer repeatability for each position along the temporal ciliary muscle, at 0D, 4D and 8D of accommodation 
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Figure A4.2 Bland and Altman plots demonstrating the inter-observer repeatability for each position along the nasal ciliary muscle, at 0D, 4D and 8D of accommodation
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A5 Chapter 6 questionnaires 
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