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Abstract - This paper presents an analytical investigation on the free vibration, static buckling 

and dynamic instability of laterally-restrained zed-section purlin beams when subjected to uplift 

wind loading. The analysis is carried out by using the classical principle of minimum potential 

energy. By assuming the instability modes, the kinetic energy and strain energy of the beam and 

the loss of the potential energy of the applied load are evaluated, from which the mass, stiffness 

and geometric stiffness matrices of the system are derived. These matrices are then used to carry 

out the analyses of free vibration, static buckling and dynamic instability of the beams. 

Theoretical formulae are derived for the free vibration frequency, critical buckling moment, and 

excitation frequency of the beam. The effects of the section size of the beam and the static part of 

the applied load on the change of dynamic instability zone are also discussed. 
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1. Introduction 

 

Cold-formed steel (CFS) has been widely used in buildings to support roof and wall sheeting for 

the enclosure of the buildings. The benefits of using CFS sections are not only its high strength-

to-weight ratio but also its lightness that can save costs on transport, erection and the 

construction of foundation, and flexibility that the members can be produced in a wide variety of 

sectional profiles, which can result in most cost effective designs. However, because of the 

feature of their open, thin, cross-sectional geometry, which gives great flexural rigidity about one 

axis at the expense of low flexural rigidity about a perpendicular axis and low torsional rigidity, 

the CFS structural members are susceptive to local, distortional, and lateral-torsional buckling 

[1], which can significantly affect the design strength of the members.  

 

Literature survey on CFS sections shows a large resource of information that has been generated 

since the early work dating back to 1970’s. The work involves the analysis of local, distortional, 

and lateral-torsional buckling of CFS columns and beams using analytical, numerical and 

experimental methods and the determination of design strengths of CFS structural members 

using effective width method and/or direct strength method. The details of the research 

development in the field can be found in the books specifically for CFS structures [2-7] and the 
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review articles on the research achievement of CFS sections [8-15]. New design specifications 

for CFS sections are also developed in recent years in Europe [16], North America [17] and 

Australia [18]. These specifications provide the basic rules and procedures to be followed in the 

design analysis of CFS sections and cover a number of aspects of CFS design. Despite this, 

however, there is one area where there is little research on CFS sections, which is the dynamic 

instability of CFS structural members when the applied load varies with time.  

 

It is well-recognized that the dynamic characteristics of structures are very important. When 

design a structure in an earthquake zone, for example, one has to know the dynamic 

characteristics of the structure in order to avoid resonance disasters caused by the earthquake. It 

is known that the vibration in a structural member can reduce the critical load of buckling of the 

member. Hence, it is also important to study the dynamic load-induced instability of structures. 

The early work on the dynamic instability of elastic bodies was reported by Hsu in 1966 [19], 

who investigated the dynamic stability of the elastic body with given initial conditions and 

presented the necessary and sufficient stability criterions in terms of trajectories in the phase 

space of finite dimension. Huang and Hung studied the dynamic instability of a simply supported 

beam under periodic axial excitation by using the averaging method and the Routh-Hurwitz 

stability criteria [20]. The instability regions and vibration amplitudes was examined by 

considering the coupling of the first two modes. Park presented a finite element dynamic 

instability model of Timoshenko beams [21], in which the beam transverse motion in the plane 

was formulated through the extended Hamilton's principle. The dynamic instability of the beam 

was investigated by examining the divergence and flutter instabilities. The analysis showed that 

the effects of the rotary inertia and shear deformation parameters on the stable transverse motion 

of the beam are significant in certain ranges. More work on the dynamic instability of beams can 

be found in references [22-25]. The general theory of dynamic stability of elastic systems can be 

found in the book presented by Bolotin [26]. The use of finite element method for the analysis of 

dynamic stability of plates was first presented by Hutt and Salam [27]. The analysis of dynamic 

instability of structures using numerical methods are also available in references [28-30]. 

 

In this paper an analytical approach is proposed to analyze the dynamic instability of laterally-

restrained zed-section beams under the action of an uplift wind load. The analysis is carried out 

by using the classical principle of minimum potential energy. By assuming the instability modes, 

the kinetic energy and strain energy of the beam and the loss of the potential energy of the 

applied load are evaluated, from which the mass, stiffness and geometric stiffness matrices of the 

system are derived. These matrices are then used to carry out the analyses of free vibration, static 

buckling and dynamic instability of the beams. Theoretical formulae are derived for the free 

vibration frequency, critical buckling moment, and excitation frequency of the beam.     

 

 

2. Governing equation for dynamic instability analysis 

 

The governing equation for the dynamic instability analysis of a structure can be expressed as 

follows [28-30], 

}{}]{[}]{[}]{[ 0qKqKqM g          (1) 

where [M] is the mass matrix, [K] is the stiffness matrix, [Kg] is the geometric stiffness 

matrix, }{q  is the generalized acceleration vector, {q} is the generalized displacement vector, and 
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 is the loading factor. Assume that the externally applied load is periodic, in which case the 

loading factor can be divided into two parts as expressed in Eq.(2), 

tts  cos          (2) 

where s and t are the amplitudes of the static and dynamic parts, respectively, is the 

excitation frequency of the dynamic part of the load, and t is the time.  

 

The dynamic instability regions of the structure described by Eq.(1) can be determined by 

periodic solutions with the periods of T=2/ and 2T=4/[28-30]. The solution with the 

period of 2T is of particular importance, representing the primary instability region of the 

structure, which can be expressed using the form of trigonometric series given by Eq.(3), 
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where {ak} and {bk} are the vectors of coefficients of the assumed solution. Substituting Eqs.(2) 

and (3) into (1) and letting the coefficients of the series associated with sin(t/2) and cos(t/2) 

be zero, it yields, 
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      (5) 

 

For given values of s and t, one can calculate the two frequencies of  from Eqs.(4) and (5), 

which represent the boundary of dynamic instability regions of the structure analyzed.  

 

Eqs.(4) and (5) are now applied to analyze the dynamic instability of a purlin-sheeting system 

under the action of a wind uplift load, as shown in Fig.1. In the system the uplift load acts on the 

sheeting, which is transferred to the purlin through the fixings and contact between the sheeting 

and upper flange of the zed-section purlin. The sheeting in the system provides translational and 

rotational restraints to the purlin due to its membrane and bending rigidities. For most types of 

sheeting the lateral displacement at the fixing point may be assumed to be completely restrained 

since the membrane rigidity of the sheet is sufficiently strong. However, the rotational restraint 

depends upon several factors, which contain the number, type and positions of the screws used 

for the fixings as well as the dimensions of purlin and sheeting. In the present study, the 

rotational restraint is ignored due to the weak bending rigidity of the sheeting and thus the 

corresponding results are considered to be conservative.  

 

Let x, y, and z be the three coordinate axes of the right-hand rectangular coordinate system, with 

x being the longitudinal axis, y and z being the cross-sectional axes parallel to the web and flange 

lines, respectively. The origin of the coordinates is defined at the centroid of the section. Note 

that, for a zed-section of equal flanges the centroid and the shear centre are at the same point. Let 

v and w be the transverse and lateral displacement components of the beam at the centroid, and  

be the rotation of the beam section (see Fig.1). Since the lateral restraint provided by the sheeting 

is applied on the upper flange, w and  must satisfy the following restraint condition [31,32], 
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0
2


h

w                (6) 

where h is the web depth. The kinetic energy and strain energy of the zed-section beam with 

simply supported boundary conditions due to the transverse displacement, lateral displacement 

and rotation thus can be expressed as 
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where  is the density, A is the cross-section area, Ip is the polar moment of inertia, E is the 

Young’s modulus, G is the shear modulus, Iy and Iz are the second moments of area about y- and 

z-axis, Iyz is the product moment of area, J is the torsion constant, Iw is the warping constant, and 

l is the beam length. Note that the dot above a symbol in Eq.(7) represents the derivative of the 

symbol with respect to time t and the prime of a symbol in Eq.(8) represents the derivative of the 

symbol with respect to space coordinate x. Assume that the uplift load is applied on the upper 

flange along the web line of the zed-section beam. The loss of potential energy of the transverse 

load qy can be expressed as [33,34], 
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where qy is the uplift distribution load, Mz=qyx(l-x)/2 is the internal bending moment, and ay=h/2 

is the distance between the loading point and shear centre. Note that the pre-buckling bending 

about the minor axis for a zed-section beam can be normally ignored because of the restraint 

provided by the sheeting and thus the pre-buckling moment about minor axis is not included in 

Eq.(9). Assume that the transverse displacement v, lateral displacement w, and rotation  of the 

beam can be expressed as follows,  

l
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where Cj(t) (j=1,2) are the functions of time. Note that the displacement functions assumed here 

in Eqs.(10)-(12) satisfy all boundary conditions required for a simply support beam. The mass 

matrix of the zed-section beam can be obtained by substituting Eqs.(10)-(12) into (7), that is, 
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The stiffness matrix of the zed-section beam can be obtained by substituting Eqs.(10)-(12) into 

(8), that is, 
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The geometric stiffness matrix of the zed-section beam can be obtained by substituting Eqs.(10)-

(12) into (9), that is, 
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3. Free vibration 

 

The free vibration frequencies of the laterally restrained zed-section beam can be calculated 

using Eq.(16) 

0][][ 2  MK           (16) 

where  is the frequency. Substituting Eqs.(13) and (14) into (16), it yields, 
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The two frequencies given by Eq.(17) represent the translational and rotational vibrations of the 

laterally restrained zed-section beam. Fig.2 plots the variation of the two frequencies with the 

beam length for three typical section dimensions defined in Table 1, which are currently used in 

practice in UK market and represent small, medium and large size sections, respectively. 

 

It can be seen from the figure that, for each section the frequencies of both the 1
st
 and 2

nd
 

vibration modes decrease with the beam length, but the rate of decrease turns to be small with 

increased beam length. Also, it can be observed that, the larger the section size, the greater the 

frequencies. The comparison of the frequencies between the two vibration modes plotted in 
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Fig.3a and Fig.3b indicates that, the larger the section, the bigger the gap between the two 

frequencies. For example, the frequency of the 1
st
 mode of the small, medium and large size 

beams of 7 m length is about 24, 28 and 41 rad/sec, respectively; whereas the frequency of the 

2
nd

 mode of these beams is about 53, 92, and 142 rad/sec, respectively. Note that because of the 

point-symmetry of the cross section and the lateral restraint applied at the upper flange the 

transverse and lateral vibration modes and the rotational vibration mode are all coupled each 

other. In other words, the 1
st
 vibration mode represents neither the translational vibration mode 

nor the rotational vibration mode, but a combination of the two modes. 

 

 

4. Buckling analysis 

 

The buckling of the laterally restrained zed-section beam subjected to static load can be analyzed 

as follows, 

0][][  gcr KK           (18) 

where cr is the loading factor and Mcr=crMo is the critical moment for static buckling. 

Substituting Eqs.(14) and (15) into (18), it yields, 
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The critical moments of the small, medium and large size beams calculated using Eq.(19) are 

plotted in Fig.3, in which Figs.3a and 3b are for the uplift loads that are applied at the upper 

flange (ay=h/2) and at the shear centre (ay=0), respectively. In order to demonstrate the 

appropriateness of the present model the critical moments computed from the semi-analytical 

finite strip analysis [35,36] are also plotted in Fig.3b, in which the trigonometric series 

describing the variation of displacement functions along the x-axis are all coupled and thus 

enable the effect of pre-buckling moment gradient to be taken into account. It is evident from the 

figure that the critical moments calculated from the present simple model are very close to those 

computed using the semi-analytical finite strip analysis method.  

 

As is to be expected, for each section the critical moment decreases with the increase of beam 

length. The larger the section size, the higher the critical moment. Also, it can be found from the 

comparison of the buckling curves shown in Fig.3a and 3b that, the position where the load is 

applied has a significant effect on the critical moment. For example, when the load is applied at 

the shear centre the critical moment of the small, medium and large size beams of 7 m length is 

about 0.102My, 0.125My and 0.262My, respectively; whereas the load is applied at the upper 

flange the critical moment of these beams is about 0.192My, 0.235My and 0.490My, respectively. 

The reason for this is similar to what is explained in the references [33,34]. 

 

 

5. Dynamic instability analysis 
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The dynamic instability regions of the laterally restrained zed-section beam can be calculated 

using Eq.(20), which can be derived from Eqs.(4) and (5), 
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Substituting Eqs.(13), (14) and (15) into (20), it yields, 
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shown in Section 3, the frequency associated with the 2
nd

 vibration mode is much greater than 

that associated with the 1
st
 vibration mode. Hence, only the 1

st
 vibration mode need be 

considered when calculating the dynamic instability regions. In this case, Eq.(21) can be 

simplified as follows, 
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For the simplicity of presentation, in the following dynamic instability analysis the reference 

moment Mo used in the calculation of geometric stiffness matrix is assumed to be Mo=Mcr. Thus, 

for a given value of s (s <1 because sMo=sMcr must be less than Mcr) one can obtain two sets 

of values of 
2
 for a given set of values of t. These two sets of 

2
 values form the dynamic 

instability region of the laterally restrained zed-section beam.  

 

Fig.4 shows the dynamic instability region of the laterally-restrained zed-section beams of 7 m 

length, under an uplift periodic load applied at the upper flange of the beams. It can be seen from 

the figure that, the dynamic instability regions of the three beams all exhibit like a “v” shape 

although they have different widths. With the increase of section size of the beam the dynamic 

instability zone not only moves towards to higher frequency side but its width is also expanded.  

 

Fig.5 shows the dynamic instability region of the laterally-restrained zed-section beams of 7 m 

length, under a combined static and periodic load applied at the upper flange of the beams. It can 

be seen from the figure that, when a static load of 20% of the critical load is involved, the 

dynamic instability zone shifts to lower frequency side and the corresponding width is largely 

extended. With the further increase in the value of the static load, the dynamic instability zone 

moves further towards to the lower frequency side and its width is continuously expanded as is 

demonstrated in Fig.6. Note that, in all cases, the variation of the dynamic instability zone due to 

either the section size change or the loading type change of the beam can be characterised by the 

“shift” of the right-side arm and the “shift” plus “twisting” of left-side arm of the instability 

zone. 

 

 

6. Conclusions 
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This paper has presented an analytical investigation on the dynamic instability of laterally-

restrained zed-section purlin beams under the action of uplift wind loading. By assuming the 

instability modes, the kinetic energy and strain energy of the beam and the loss of the potential 

energy of the applied load have been evaluated using the theory of classical elastic mechanics, 

from which the mass, stiffness and geometric stiffness matrices of the system are derived. These 

matrices are then used to carry out the analyses of free vibration, static buckling and dynamic 

instability of the beams. The following conclusions are drawn from the obtained results: 

 

 There is a modal coupling between the translational and rotational modes in the free 

vibration, static buckling and dynamic instability analyses of the laterally-restrained zed-

section purlin beams under the action of uplift wind loading.  

 Both the frequency and critical buckling moment of the beam can be increased by 

increasing the beam section size. However, the effectiveness of doing so decreases with 

increased beam length.  

 The increase of the section size of the zed-purlin leads to a shift of the dynamic instability 

zone towards to higher frequency side and the broad up of the width of the instability 

zone. 

 When the applied load involves also a static load the dynamic instability zone will shift 

towards to lower frequency side and the width of the dynamic instability zone of the 

beam will be also expanded.   
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Table 1. Section dimensions of zed-section beams 

 

Section Web depth 

h (mm) 

Flange width 

b (mm) 

Lip length 

c (mm) 

Thickness 

t (mm) 

A 120 50 15 1.5 

B 225 65 20 2.0 

C 345 100 30 2.5 
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             (a)                                                (b) 

 

 

Figure 1. (a) Sheeting-purlin system. (b) Definition of lateral-torsional displacements. 
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Figure 2. Frequency of laterally-restrained zed-section beams. (a) 1
st
 mode and (b) 2

nd
 mode. 
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Figure 3. Critical moment of laterally-restrained zed-section beams (My=2yIz/h is the yield 

moment). (a) Load acts at top flange and (b) load acts at shear centre. 
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Figure 4. Dynamic instability region of laterally-restrained zed-section beams (s=0, Mo=Mcr). 
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Figure 5. Dynamic instability region of laterally-restrained zed-section beams (s=0.2, Mo=Mcr). 
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Figure 6. Dynamic instability region of laterally-restrained zed-section beams (s=0.4, Mo=Mcr). 

 


