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Abstract - This paper proposes an analytical model for analyzing the interaction between 

web distortion and lateral-torsional buckling of partially restrained I-section beams under 

transverse distribution loading. The analysis is performed by using Rayleigh-Ritz 

method, in which the web is modelled as a plate and the two flanges are treated as two 

independent beams. The total potential energy functional of the system is derived using 

three-dimensional strain-displacement relationships in solid mechanics. The critical 

buckling stress and critical buckling moment of the I-section beam are calculated by 

solving a 3x3 eigen-matrix equation. For the validation of the present model the finite 

element analysis using three-dimensional shell elements is also carried out. The 

comparison between the analytical and numerical results demonstrates the correctness 

and rigorous of the proposed analytical model despite its simplicity. 
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1. Introduction 

 

It is well-known that beams, which have a large flexural rigidity in their loaded plane and 

a small flexural rigidity in the other plane, such as I-section beams and castellated beams, 

are prone to web distortional buckling [1-9] and/or lateral-torsional buckling [10-26] 

depending on lateral restraint conditions and the slenderness of the flanges and web of the 

beams. The load, at which the buckling occurs, may be considerably less than the in-

plane load-carrying capacity of the beam. Note that the web distortional buckling 

generally occurs in beams in which the tension flange is fully or partially restrained in the 

lateral direction of the beams and the compression flange is completely free; whereas the 

lateral-torsional buckling frequently occurs in beams which have no lateral and/or 

rotational restraints. The former is characterized by the rotation and translation of the free 

flange, which is in compression, with a distortion in the web; whereas the latter is 
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characterized by the lateral deflection and sectional rotation of the beam along its length 

direction without cross-sectional distortion. In some cases the beam may buckle in a 

combined mode of web distortion and lateral-torsional buckling, in which case the 

interaction exists between the two buckling modes [27-30].  

 

The elastic lateral-torsional buckling problem of I-beams was first studied by 

Timoshenko and Gere [1] using analytical method. Following Timoshenko and Gere 

work, many researchers have investigated the lateral-torsional buckling of beams of 

different types. For instance, Ings and Trahair [2] investigated the lateral buckling of 

restrained roof purlins. Collin et al. [3] discussed the lateral-torsional buckling of 

continuous bridge girders. Özdemir and Topkaya [4] examined the lateral buckling of 

overhanging crane trolley monorails. Andrade et al. [5] studied the lateral-torsional 

buckling of singly symmetric web-tapered thin-walled I-beams. Kurniawan and 

Mahendran [6], Anapayan and Mahendran [7] investigated the elastic lateral buckling of 

LiteSteel beams subjected to transverse loading. Sweedan [8] and Panedpojaman et al. [9] 

investigated the elastic lateral stability and the inelastic lateral–torsional buckling of 

cellular steel beams, respectively.  

 

Unlike the sole lateral-torsional buckling, most of work on buckling of beams involving 

web distortion started only in 1990s. For example, Wang et al. [10] provided a parametric 

study on the distortional buckling of monosymmetric structural members. Ma and 

Hughes [11], Samanta and Kumar [12] investigated the lateral distortional buckling of 

monosymmetric I-beams subjected to transverse load. Kolakowski et al. [13] discussed 

the modal interactive buckling of thin-walled composite beam-columns concerning 

distortional deformations. Teter and Kolakowski [14] investigated the interactive 

buckling and load carrying capacity of beam–columns with intermediate stiffeners. Vrcelj 

and Bradford [15] examined the elastic distortional buckling of doubly symmetric steel I-

section members with thin webs and stocky flanges, in which their tension flange is fully 

restrained against the translational and lateral rotational buckling deformations and 

elastically restrained against the twist rotation. White and Jung [16] discussed the effect 

of web distortion on the buckling strength of noncomposite discretely-braced steel I-

section members. Zirakian [17] provided a comparison of elastic distortional buckling 

strengths of doubly symmetric I-shaped flexural members with slender webs by using 

AISC code prediction and finite strip analysis. Trahair [18,19]  investigated the lateral-

distortional buckling of normal and overhanging monorail I-beams and its influence on 

the design strengths of the beams. Anapayan et al. [20], Anapayan and Mahendran [21] 

investigated the lateral distortional buckling of LiteSteel beams using experimental and 

numerical methods. Kalkan and Buyukkaragoz [22] presented an analytical and 

numerical study on the distortional buckling of doubly-symmetric steel I-beams. 

Gonçalves [23] provided a geometrically exact approach to analyzing the lateral-torsional 

buckling of thin-walled beams with deformable cross-section. Hassanein and Silvestre 

[24] discussed the lateral–distortional buckling of hollow tubular flange plate girders with 

slender unstiffened webs. Yuan et al. [25] and Tong et al. [26] investigated the flange-

web distortional buckling of thin-walled beams under different restraint conditions. 
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Interaction between the lateral-torsional buckling and the web distortional buckling of 

channel- and hat-sections was investigated by Schardt [27] using the generalized beam 

theory. Bradford [28] studied the interactive buckling of beams with continuous and 

completely restrained tension flange by using a special-purpose inelastic finite element 

analysis method. Ellobody [29,30] investigated the behaviour of normal and high strength 

castellated and cellular steel beams under combined lateral-torsional and distortional 

buckling modes using a nonlinear finite element analysis method. His results showed that 

the cellular steel beams failing due to combined web distortional and web-post buckling 

modes exhibited a significant decrease in failure loads. Recently, Kim et al. [31] 

proposed an analytical model for calculating the lateral-torsional critical transverse load 

of castellated beams. More recently, Zhu and Li [32] and Huang and Zhu [33] 

investigated the distortional buckling problems of thin-walled steel beams and columns 

using the stiffened plate buckling model, which considers the interaction between the 

web and flange. Yuan et al. [34] studied the distortional buckling of perforated cold-

formed steel channel-section beams with circular holes in web, which also considers the 

interaction between the web and flange. 

 

In practice, there are many I-section beams that are partially restrained, largely in lateral 

and rotational directions. In a beam-roof system, for instance, the beam is usually 

restrained by the roof in its lateral direction. Under the action of uplift wind load, the 

bottom flange of the beam is in compression, whereas the top flange of the beam, which 

is restrained by the roof, is in tension. The buckling behavior of such partially restrained 

beams is different from that of unrestrained beams. The second example is the I-section 

beam used to support the composite floor. During concrete casting the beam is bent under 

the gravity load; while its bottom flange is in tension and is restrained by the steel deck 

and its top flange is in compression and is entirely free. If the flexural rigidity of the 

beam about its minor axis is small or the web of the I-beam is weak, then the web 

distortional buckling and/or the lateral-torsional buckling of the beam may occur during 

the construction of the composite floor. This kind of buckling problems is not fully 

addressed and there is no direct equation or formula that can be utilized to determine the 

critical load to characterize the web distortional buckling and/or the lateral-torsional 

buckling of partially restrained I-section beams subjected to transverse distribution 

loading. In this paper an analytical approach is proposed to analyze the web distortional 

and lateral-torsional buckling problem of partially restrained I-section beams subjected to 

transverse distribution loading. The buckling analysis is performed by using the 

Rayleigh-Ritz method, in which the web is modelled as a plate and the two flanges are 

treated as two independent beams. The total potential energy of the system is derived 

using the three-dimensional strain-displacement relationships in solid mechanics. To 

validate the present analytical model, finite element analyses using three-dimensional 

shell elements are also carried out. The comparison between the analytical and numerical 

results demonstrates the correctness and rigorous of the proposed analytical model 

despite its simplicity. 

 

 

2. Combined web-distortional and lateral-torsional buckling model 
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Consider an I-section beam subjected to a uniformly distributed gravity load. Assume 

that the bottom flange of the beam is completely restrained in its lateral direction and 

partially restrained in its rotational direction. Let bf and tf be the width and thickness of 

the flanges, hw and tw be the depth and thickness of the web (see Figure 1a). Under the 

action of the gravity loading, the upper flange of the beam, which is free, is in 

compression and the bottom flange of the beam, which is partially restrained, is in 

tension. Hence, when the load reaches to a certain level, the beam will have a lateral-

torsional buckling involving web distortion because of the effect of restraints applied at 

the bottom flange (see Figure 1b). This kind of buckling mode is different from the 

traditional lateral-torsional buckling mode which does not involve web distortion.  

 

Assume that the lateral-torsional buckling mode of the beam with web distortion can be 

characterized by the translational displacement, w1, and the rotational displacements, 1 

and 2 of the upper and bottom flanges (see Figure 1b). To determine the critical load that 

is associated with the assumed buckling modes, the total potential energy change of the 

system owing to the assumed buckling displacements is evaluated. For the simplicity of 

presentation, the I-section is divided into three components, namely the free flange, the 

restrained flange, and the web. During the lateral-torsional buckling with web distortion 

the web is assumed to behave like a plate and the free and restrained flanges are assumed 

to behave like independent beams. According to the displacements defined in Figure 1b, 

the free flange has a translational displacement w1 and a rotational displacement 1. 

Hence the strain energy of the free flange can be expressed as follows, 
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where E is the Young’s modulus, G is the shear modulus, and l is the beam length. In 

contrast, the restrained flange has only a rotational displacement 2, and its strain energy 

can be expressed as follows, 
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where k in N-m/m is the rotational spring constant per unit length. The second term in 

Eq. (2) is the strain energy of the rotational spring provided by the restraint, such as from 

the roof or floor supported by the beam. The strain energy of the web can be calculated 

using the bending theory of plates as follows, 
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where 
)1(12 2

3


 wEt

D is the flexural rigidity of the web plate,  is the Poisson’s ratio, and 

w3 is the deflection function of the web plate, defined as 

2312113 )()()(),(  yNyNwyNyxw        (4)  

where Nj(y) (j = 1, 2, 3) are the interpolation functions, which are defined by Eqs.(5)-(7), 
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For the uniformly distributed load, the pre-buckling stresses involve both the bending and 

shear stresses. They can be calculated using the theory of beams as follows,  

In the free flange: 
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where x and xz are the compressive and shear stresses in the free flange, qcr is the 

critical density of the uniformly distributed load, Iz is the second moment of the area of 

the I-beam about its major axis, sign(z) = 1 for z > 0 and sign(z) = -1 for z < 0 is the sign 

function, and cr is the largest bending stress occurs at x = l/2 and y = 0 when buckling 

occurs and defined as, 
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In the restrained flange: 
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where x and xz are the compressive and shear stresses in the restrained flange.  

 

In the web: 
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The loss of potential of the prebuckling stresses in the two flanges and web is 

respectively expressed as follows, 
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 is the polar radius of gyration of the free/restrained flange.    

 

Note that if the applied load is not applied at the shear centre of the I-section beam then 

the loss of the potential of the applied load needs to be considered, which can be 

expressed as follows, 

   













l

o

h

o

cr dxdy
y

wq
W

w 2/ 2

3
4

2
  for load applied at upper flange  (18) 

or 

  













l

o

h

h

cr dxdy
y

wq
W

w

w 2/

2

3
4

2
  for load applied at lower flange  (19) 

 

The translational displacement, w1, and the rotational displacements, 1 and 2 of the 

upper and bottom flanges of the beam are assumed as follows,  
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where Cj (j = 1, 2, 3) are the constants, and k is the number of half-waves. It is known 

that when the buckling occurs the total potential of the system will have a stationary 
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Substituting Eqs. (20)-(22) into (1)-(3) and (15)-(19), then into (23)-(25), it yields 
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where U = U1 + U2 + U3, W = W1 + W2 + W3 + W4,  and  are the factors of either equal 

to zero or one, depending on the loading position. For the load applied at mid of the web 

W4=0 and thus  = 0,  = 0.  For the load applied at upper flange W4 is defined by 

Eq.(18) and thus  = 1,  = 0. For the load applied at lower flange W4 is defined by 

Eq.(19) and thus  = 0,  = 1.  

 

Eq. (26) presents an eigen-value equation from which the critical stress cr can be 

determined. The critical load qcr can be calculated directly using Eq. (10) from the 

obtained cr. Note that the present model considers not only the bending stress but also 

the shear stress. The latter could be very important in the web distortional buckling of 

short beams. 
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3. Numerical examples 

 

As numerical examples, herein three I-section beams of different flange widths are 

discussed, which represent the narrow, modest and wide flange-beams. In all cases the 

uniform transverse load is assumed to act at the shear centre. Figures 2-4 show the 

calculated critical buckling stresses of the three beams from the present model. In each 

case three different rotational spring constants are considered.  

 

It can be seen from Figure 2 that, the critical stress of the narrow beam without rotational 

restraint drops continuously with the increase of beam length. In contrast, the critical 

stress of the beams with rotational restraint drops initially and then increases with the 

increase of beam length. The latter reflects the influence of the rotational restraint on the 

lateral-torsional buckling and web distortional buckling of the beam. Note that if there is 

no rotational restraint the beam can rotate freely and when the buckling occurs the 

rotational and translational displacements will adjust themselves automatically from all 

admissible displacements to achieve the buckling mode associated to the smallest 

buckling load. However, when the rotational restraint is applied, the adjustment of the 

rotational and translational displacements for developing possible buckling mode is 

limited largely by the rotational displacement, which leads to a significant change in the 

configuration of buckling curve. It can also be found from the figure that, the lowest 

critical stress increases with increased rotational spring constant; whereas the 

characteristic length of the beam corresponding to the lowest critical stress reduces with 

increased rotational spring constant. This feature is similar to the local and distortional 

buckling happened in most cold-formed steel members, for which the minimum critical 

stresses are related to the wavelengths of their buckling modes which define the critical 

loads of local buckling and distortional buckling. Therefore, for a partially restrained I-

section beam, one can use the minimum critical stress for the design for the lateral-

torsional and web distortional buckling of the beam if the rotational restraint at its tension 

flange is sufficiently large.   

 

Figures 3 and 4 show the critical buckling stresses of the modest and wide flange beams 

with different rotational spring constants. The main buckling behavior of these two 

beams is similar to that of the narrow flange beam shown in Figure 2. Comparing the 

critical stresses shown in Figures 2 and 3 or in Figures 3 and 4, one can see the critical 

stress increases with the flange width, which is to be expected. For example, the critical 

stress ratios of the narrow, modest and wide flange beams of 8 m beam length are 0.423, 

0.553, and 0.740 for k = 0; 0.470, 0.592, and 0.773 for k = 500 N; and 0.564, 0.667, and 

0.835 for k = 1500 N, respectively. However, the influence of the rotational spring 

constant kon the critical stress decreases with the increase of flange width. For example, 

the increase of critical stress for k from 0 to 500 N is 11%, 6.9% and 4.3% in the the 

narrow, modest and wide flange beams. While, the increase of critical stress for k from 0 

to 1500 N is 33%, 20% and 13% in the the narrow, modest and wide flange beams. This 

indicates that for beams of wider flanges one should use stronger rotational restraints in 
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order to increase the buckling resistance of the beams against the web distortional 

buckling and/or lateral-torsional buckling.  

 

In order to validate the aforementioned analytical model, finite element analyses are also 

conducted by using ANSYS software. The three I-section beams of various lengths used 

in the above-mentioned examples are analyzed numerically using three-dimensional shell 

elements (shell 181) built in ANSYS software. The material properties used in the finite 

element analyses are Young’s modulus of E=210GPa and Poisson’s ratio of =0.3. 

Owing to geometric symmetry, only a half span of the beam is modelled. The boundary 

conditions of the beam are assumed as that: the nodes on one end section of the beam (x = 

0) have zero transverse and lateral displacements (v = w = 0) and on the other end section 

of the beam (symmetric section at x = l/2) have zero rotations about the transverse and 

lateral axes (y = z = 0) and zero axial displacement (u = 0). In addition, zero lateral 

displacement (v = 0) is applied to the nodes on the intersection line between the tension 

flange and web to simulate the lateral displacement restraint. The transverse load is 

applied at the top of the web connected to the compression flange. 

 

Linear buckling analysis is utilized to find the smallest positive eigenvalue, which 

represents the critical load of the beam when the transverse load is applied at the top 

flange. The largest element size of mesh used in the finite element analysis is 20 mm. 

This is determined from several trials, which show the eigen-values associated to the first 

two lowest buckling modes having virtually no change with the reduction in mesh sizes.  

 

Figure 5 shows a comparison of critical moments, Mcr = qcrl
2
/8, of the narrow, modest 

and wide flange beams obtained from the present analytical model and finite element 

analyses. It is evident from the figure that the results obtained from the present analytical 

model be in excellent agreement with those computed from the finite element analysis. 

This demonstrates that the use of the plate model for the web and the independent beam 

model for the two flanges proposed in the present study is appropriate and able to 

characterize the interaction of web distortional buckling and lateral-torsional buckling of 

the partially restrained I-section beam. 

 

 

4. Conclusions 

 

This paper has presented an analytical model for analysing the web distortional buckling 

and lateral-torsional buckling of partially restrained I-section beams subjected to 

transverse distribution loading. The analysis is performed by using Rayleigh-Ritz 

approach, in which the web is treated as a plate and the two flanges are modelled as 

independent beams. The potential energy functional of the system is derived using the 

three-dimensional strain-displacement relationships in solid mechanics. The finite 

element analysis has also been used to validate the critical load or critical moment 

calculated from the present model. From the obtained results the following conclusions 

can be drawn: 
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 The lateral and rotational restraints applied at the tension-flange of an I-section 

beam can considerably increase the critical load of the beam, particularly to the 

long span beam.  

 Not only can the rotational restraint increase the critical load of web distortional 

and lateral-torsional buckling but also can shaft the critical buckling mode from 

lateral-torsional buckling to web distortional buckling.  

 When the web distortional buckling becomes a significant part in the critical 

buckling mode the buckling stress curve of the partially restrained beam will 

exhibit a minimal point. Before the minimal point the critical stress decreases, but 

after the minimal point it increases with the beam length. 

 The level of increase in critical buckling stress/moment due to the use of 

rotational spring is also dependent on the beam size. For the same rotational 

spring, the beam with narrow flanges has a larger increase in critical load than the 

beam with wide flanges.    
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             (a)                                                (b) 

 

Figure 1. (a) Symbols used to define sectional dimensions of I-beam. (b) Model used for 

describing web distortional buckling. 
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Figure 2. Critical stress of web-flange distortional buckling of a I-section beam (hw = 350 

mm, bf = 150 mm, tw = 10 mm, tf = 10 mm, y = 300 MPa,  =  = 0).  
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Figure 3. Critical stress of web-flange distortional buckling of a I-section beam (hw = 350 

mm, bf = 200 mm, tw = 10 mm, tf = 10 mm, y = 300 MPa,  =  = 0).  
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Figure  4. Critical stress of web-flange distortional buckling of a I-section beam (hw = 350 

mm, bf = 250 mm, tw = 10 mm, tf = 10 mm, y = 300 MPa,  =  = 0).  
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Figure 5. Comparison of critical stresses between present analytical model (dotted-dash, 

dashed and solid lines) and finite element analysis (diamond, square and circle points) (hw 

= 350 mm, tw = 10 mm, tf = 10 mm, k = 0, y = 300 MPa,  = 1,  = 0). 


