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Lactic acid bacteria as bio-preservatives in bakery – Role of sourdough 
systems in the quality, safety and shelf life of bread 

Rebaz Aswad Mirza Koy 

Abstract 

Microbial contamination and survival during storage of bread are a cause 
of both health concerns and economic losses. Traditional fermentation 
systems were studied as sources of lactic acid bacteria (LAB) with 
antagonistic potential against foodborne pathogens and spoilage 
organisms, with the aim to improve the safety and shelf life of bakery 
products. 

The antagonistic activity of four types of buttermilk (BM) products 
fermented with Lactococcus lactis subsp. lactis was evaluated against a 
number of pathogenic bacteria to select the best fermented-BM for 
application as bio-preservatives in bread crumpets, showing up to 9 µg/ml 
of nisin equivalent antimicrobial activity. These food ingredients could be 
suitable to be used in crumpet formulations,  

BM fermented with Lc. lactis subsp. lactis and nisin influenced the quality 
and shelf life of crumpets; the pH value and firmness of products with 
fermented BM was lower and the acidity and springiness was higher than 
for unfermented BM treatment and control withouth additive. The nisin and 
fermented BM treatment had beneficial effects on the pore size and colour 
in comparison with the control, and improved microbial shelf life by 2 days. 

Commercial and traditional sourdough and bread samples (n=18) were 
collected to assess the diversity of LAB strains and potential properties 
when applied to dough and bread. DGGE followed by sequencing showed 
that Lactobacillus was the predominant genus in the studied sourdoughs. 
Lb. plantarum and Lb. brevis strains accounted for 69% of the 32 isolates, 
out of which 10 were amylolytic and 12 had proteolytic activity. Most were 
also good acid producers after 24 h at 30°C. Some LAB strains presented 
a strong in vitro inhibitory activity against five indicator strains, showing 
potential as starter cultures to ferment sourdough. 

In subsequent experiments, the properties of 24 sourdoughs were 
evaluated, and one of them, fermented with Lb. plantarum (SIN3) yielded 
low pH value, high lactic acid production, and suitable microbial growth, 
and was selected for further bread making performance trials. The bread 
with fast fermentation and high sourdough concentration (FFHSD) had a 
lower pH, higher acidity and increased the quality attributes with 
significantly better shelf life comparing to the other treatments during the 
storage period. Sensory evaluation demonstrated that fast-fermented 
breads were more acceptable than the slow-fermented counterparts. 
Bread prepared with high level (18%) of sourdough fast-fermented with 
the selected culture (SIN3) had a good eating quality and shelf life. The 
approach of this study is likely to yield feasible improvements of the 
current methods of preparation of baking goods. 
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CHAPTER ONE 

General introduction and literature review 

1.1 Introduction 

Lactic acid bacteria (LAB) have a long history of safe use in fermented foods. 

LAB play an important fermentative role in many foods. They are mainly used in 

food products due to their contributions to flavour and aroma, increasing shelf 

life of fermented products and to improve the nutritional and sensory 

characteristics of the products (Nes et al., 1996; De Vuyst and Leroy, 2007; 

Ravyts et al., 2012). Various LAB are used commercially as starter cultures in 

the manufacture of food products, including dairy products (Salama et al., 1995), 

fermented vegetables (Leisner et al., 1996), fermented dough (De Vuyst and 

Vancanneyt, 2007), alcoholic beverages (Leroy and De Vuyst, 2004), probiotics 

in animal feeds (Anadón et al., 2006), and meat products (Hugas, 1998). Food 

preservation aims to maintain the quality of raw material and their physical and 

chemical properties, to improve the quality of the final product and to provide 

safe and stable products (Brul and Coote, 1999). LAB have an ability to produce 

antimicrobial compounds such as organic acids (lactic acid and acetic acid), 

hydrogen peroxide, diacetyl, carbon dioxide and bacteriocins or bactericidal 

proteins that have been used to preserve food through carbohydrate 

fermentations and for their effect on texture, colour, taste and smell of food 

products (Holzapfel et al., 2001; Oyetayo et al., 2003; Gerez et al., 2008). 

Bacteriocins are produced by several LAB strains and provide an additional 

hurdle for the growth of spoilage and pathogenic microorganisms. Furthermore, 

lactic acid and other metabolic products contribute to the sensory properties of 

a food item. LAB are considered to be safe. They have qualified presumption of 
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safety (QPS; EU) and are generally recognized as safe (GRAS; USA) status 

and playing an essential role in food preservation, due to their presence in food 

and as friendly microflora in the human intestine (Tallon et al., 2003; Wessels et 

al., 2004; Bernardeau et al., 2008; Settanni and Corsetti, 2008). 

An interesting property of some strains of various genera within the LAB group 

is their ability to synthesise exopolysaccharides (EPS) (Cerning, 1990; Ricciardi 

and Clementi, 2000). EPS exhibit a positive effect on the texture, mouth-feel, 

taste perception and stability of fermented foods (Korakli et al., 2002; Tieking 

and Gänzle, 2005). 

Since ancient times, many ways of food product preservation have been used 

by humans such as high concentrations of salt and sugars, using high 

temperature and chemical addition for preserving food products; some of those 

methods are still in use. Some of them have negative impacts on the food 

products, which might affect the quality and nutritional value of the food 

products and cause health problems (Uhlman et al., 1992; Kelly, et al., 1996). It 

is expected that biological preservation methods using metabolites of LAB may 

enjoy better consumer acceptance than preservation methods that use 

traditional chemical preservatives. They produce a variety of metabolites which 

have an antagonistic activity against many microorganisms, including food 

spoilage and pathogenic microorganisms (Schillinger et al., 1996; O’Sullivan et 

al., 2002). They can also improve the quality and safety of food products 

(Bernardeau et al., 2006). LAB have been associated with the human 

environment and lead to beneficial interactions in food and in the human 

intestinal tract (Savadogo et al., 2006). 
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All over the world, very important losses in the baking industry occur due to 

microbial contamination on bread (Menteş et al., 2007). The main reasons for 

these losses are suitable conditions in bread and other flour based foods for 

microbial growth, such as water activity (Aw) and pH value. The problems, 

occurring most frequently in the baking industry, are mould contamination and 

rope spoilage (Jenson, 1998). 

Sourdough is a mixture of flour and water that is fermented by LAB and yeasts. 

Sourdough fermentation is best known and most studied for its effects on the 

sensory quality and shelf life of baked goods (Gobbetti et al., 1994; Vogel et al., 

1999; Dy Vuyst and Neysens, 2005). Acidification, activation of enzymes and 

their effects on the cereal matrix as well as production of microbial metabolites 

all produce changes in the dough properties and bread matrix that also 

influence the nutritional value of the products (Di Cagno et al., 2003). 

The quality of bread is characterised by its flavour, nutritional value, texture, and 

shelf life (Arendt et al., 2007). In the baking industry, these characteristics are 

improved by addition of bread improvers or enzymes. Alternatively, the addition 

of sourdough influences all aspects of bread quality and thus meets the 

consumer demand for a reduced use of additives. As sourdough is an 

intermediate, not an end product, the microbiological activity has to be 

determined on the bases of their impact on bread quality. Biochemical changes 

during sourdough fermentation occur in protein and carbohydrate components 

of the flour due to the action of microbial and flour endogenous enzymes. The 

rate and extent of these changes that occur in sourdough fermentation affects 

the properties of bread such as improving the nutritional value by increasing 

levels of bioactive compound and inducing mineral bioavailability, producing 



 

4 
 

flavour volatile compounds, which results in change of the flavour and taste of 

the final-product, and prolonging shelf life of the bread product through 

antimicrobial components produced by LAB (Hammes and Gänzle, 1998; Dal 

Bello et al., 2007; Poutanen et al., 2009; Galle, 2013). 

LAB are also responsible for a range of roots and tubers producing staple foods 

e.g. cassava fermentation, which might be able to produce antimicrobial 

compounds which can inhibit the growth of both spoilage and pathogenic 

organisms, contributing to stability and safety of the fermented product 

(Holzapfel, 2002). Cassava (Manihot esculenta Crantz) is a tropical root crop 

that serves as food security and income generation for many millions of people 

in the developing world (Scott et al., 2000). Fermentation is an important 

processing technique used to reduce toxicity and prevent post harvest 

deterioration of the roots. Cassava fermentation processes can be classified 

into two main types: solid state, as in gari production, where cassava is grated 

prior to fermentation and constantly watered during the process; and the 

submerged process as in fufu or lafun production, where the tubers are cut into 

chunks and soaked in water for the duration of the fermentation by LAB during 

which both acidification and softening of the roots take place (Oyewole, 1995; 

Moorthy and Matthew, 1998). 

 

1.2 The concept of LAB 

The term LAB was used for the first time in 1919 by Orla-jensen who studied 

the characteristics and qualities of this group of bacteria and classified then into 

four main genera Lactobacillus, Tetracoccus, Streptococcus and Betacoccus 
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(Priest and Campbell, 1999). LAB are a genetically distinct group of bacteria 

that have same traits, such as: Gram-positive, non-spore forming, rods or cocci, 

catalase negative, acid tolerant, homofermentative or heterofermentative, lactic 

acid fermented as the major end product during carbohydrate fermentation, and 

growth under anaerobic conditions, but also they are aerotolerant (Wessels et 

al., 2004; Axelsson, 2009). The classification of LAB into different genera is 

largely based on morphology, mode of glucose fermentation, growth at different 

temperatures, production of lactic acid, ability to grow at different salt 

concentration, and acid alkaline tolerance (Axelsson, 2009). LAB include a 

number of bacterial genera: Lactobacillus, Pediococcus, Leuconostoc, 

Streptococcus, Lactococcus, Vagococcus, Oenococcus, Enterococcus, 

Aerococcus, Lactosphaera, Carnobacterium, Tetragenococcus and Weissella, 

but the first four genera are the main group of the LAB (Stiles and Holzapfel, 

1997; Carr et al., 2002; Hutkins, 2006). 

LAB have been isolated from milk and then found in such foods and fermented 

products as dairy products, meat, vegetables, bakery products and alcoholic 

beverages (Carr et al., 2002). In addition, LAB have been used as a starter 

culture in the preparation of fermented food products, and they have the ability 

to develop flavour in these products. For that reason LAB have been used as 

flavouring and texturizing agents as well as being used in manufacturing and 

preserving of food products (Richard et al., 2006). 

There are several potential health or nutritional benefits associated to strains 

species of LAB. Among these are: improved nutritional value of food, reduced 

risk of intestinal infections, improved digestion of lactose, potential prevention of 

some types of cancer, control of serum cholesterol levels and stimulation of the 
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immune system (Gilliland, 1990). Some of the strains of LAB are considered to 

be probiotic, which means that they are capable of exerting a beneficial effect 

on the host. Those must be non-pathogenic and non-toxic, and capable of 

surviving and metabolising in the gut environmentand also stable and viable 

after long periods in storage (Khetarpaul, 2005). 

1.3 The concept of safety and fermented food  

Fermentation is one of the oldest forms of food preservation in the world. The 

central role of LAB in acid fermentation is now widely acknowledged, and it is 

accepted that these microorganisms exert beneficial effects through two 

mechanisms: direct effects of the live microbial cells, known as the ‘probiotic 

effect’, or indirect effects during fermentation, where these microbes act as cell 

factories for the generation of secondary metabolites with health-promoting 

properties (Hayes et al., 2007). Some species of LAB are called beneficial 

microorganisms which are used in fermentation of various food products such 

as cheese, yogurt, fermented sausage, pickles, and bakery products, by 

producing enzymes, flavouring and odorous compounds, acids, and 

antimicrobial agents. These metabolism products have the ability to extend the 

shelf life of products, inhibit the growth of spoilage and pathogenic 

microorganisms, and at the same time they have an effect on retaining the 

sensory qualities of the product such as texture, flavour, colour and nutritional 

value (Bernardeau et al., 2006; Reis et al., 2012). Species that have been used 

for food fermentations belonging to the genera Lactobacillus, Lactococcus, 

Pediococcus, Leuconostoc, and Streptococcus are shown in the Table 1.1. 



 

7 
 

Table 1.1: Fermented food products and their related LAB. Adapted from Leroy 

and De Vuyst (2004) and Kostinek et al. (2005) 

Fermented food products  Lactic acid bacteria* 

Dairy products:   
Cheese  Lc. lactis subsp. lactis, 

Lc. lactis subsp. cremoris, 
Lu. menestroides subsp. cremoris  

Butter and Buttermilk  Lc. lactis subsp. lactis, 
Lc. lactis subsp. Cremoris 
Lc. lactis subsp. lactis var. diacetylactis 

Yoghurt  Lb. delbrueckii subsp. bulgaricus, 
Strep. thermophilus 

Fermented and probiotic 
milk 

 Lb. casei, Lb. acidophilus, Lb. rhamnosus, 
B. lactis, B. bifidum, B. breve 

Kefir  Lb. kefir, Lb. kefiranofacies, Lb. brevis 

Fermented meats:   

Fermented sausage   Lb. sakei, Lb. curvatus 

Fermented cereals:   

Sourdough  Lb. plantarum, Lb. brevis, Lb. farciminis 
Lc. Lactis subsp. Lactis, Lb. Fermentum 
Lb. Sanfransiscensis, Lb. Brevis, Lb. 
Amylovorus, Lb. Reuteri, Lb. Pontis, Lb. 
Panis, Lb. Alimentarius, Weissella cibaria 

Sorghum   Lb. plantarum, Lb. sakei, Lb. curvatus, Lu. 
Menestroides, Pc. Acidilactici, 
Pc. Pentosaceus 

Fermented vegetables:   

Pickles  Lb. plantarum, Lu. Menestroides 

Fermented olives  Lb. Plantarum, Pc. Acidilactici, 
Pc. Pentosaceus 

Fermented root crops   

Fermented cassava  
(gari and fufu) 

 Lb. plantarum, Lb. fermentum, Lb. brevis, 
Lb. casei, Lb. fermentum, Lb. reuteri, Lb. 
delbrueckii, Lb. acidophilus, Lu. fallax, Lu. 
mesenteroides 

Fermented fish products  Lb. alimentarius, C. piscicola 

B.=Bifidobacterium Lc.=Lactococcus; Lb.=Lactobacillus; Lu.=Leuconostoc; 
Pc.=Pediococcus; Strep.=Streptococcus; C.=Carnobacterium 



 

8 
 

1.4 Cereal microflora  

Cereals are a staple food source for humans because of energy supply and 

nutrition. Cereals have been used as main staple diet by people of all races 

(Rosell, 2016). When grains are grown, handled and processed, microbial 

contamination of cereals can be found at traceable levels to the environment. 

Contamination of cereal grains is caused by physical and chemical 

contamination and microorganisms that may come from air, dust, soil, water, 

insects, rodents, birds, animals, humans, storage and shipping containers, and 

handling and processing equipment (Smith et al., 2004). Environmental factors 

affecting microbial contamination of cereals can be rainfall, drought, humidity, 

temperature, sunlight, frost, soil conditions, wind, insect, bird and rodent activity, 

harvesting equipment, use of chemicals in production versus organic production, 

storage and handling. 

Raw cereals and cereal products contain microflora which include bacteria, 

yeasts and fungi ranging from 104 –107 CFU/g, while flour contains 2×104 – 

6×106 CFU/g (De Vuyst and Neysens, 2005). Mesophilic bacteria are mainly 

found in spontaneously fermented sourdoughs. They include Gram-negative 

aerobes such as Pseudomonas and facultative anaerobes Enterobacteriaceae, 

as well as Gram-positive LAB which include homofermentative rods (Lb. casei, 

Lb. coryniformis, Lb. curvatus, Lb. plantarum, and Lb. salivarius), 

heterofermentative rods (Lb. brevis and Lb. fermentum), homofermentative 

cocci (E. faecalis, Lc. lactis, Pc. acidilactici, Pc. parvulus, and Pc. pentosaceus), 

and heterofermentative cocci (Leuconostoc and Weissella). Also, undesirable 

Bacillus cereus, Bacillus subtilus, Bacillus licheniformis, Bacillus mesentericus, 

Staphylococcus aureus and Escherichia coli, as well as other bacteria, may be 
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present (Galli et al., 1987; Corsetti et al., 2001). Cereals are considered a good 

medium for microbial fermentations, because they are enriched with 

polysaccharides, which are a main source of carbon and energy. Starch is a 

major polysaccharide in cereals, which can be used by microbes after 

hydrolysis (Salovaara, 2004). LAB are capable of utilizing starch to ferment 

cereals (Nguyen et al., 2007). Improvement in starch digestibility during 

fermentation can be related to enzymatic properties of fermenting microflora 

that brings about the breakdown of starch. The enzymes bring about cleavage 

of amylase and amylopectin to maltose and glucose (Karovičová and 

Kohajdová, 2007). 

The following yeasts have been reported, either in cereals up to 9×104 CFU/g 

and in flours up to 2×103 CFU/g: Candida, Cryptococcus, Pichia, Rhodotorula, 

Torulaspora, Trichosporon, Saccharomyces, and Sporobolomyces. 

Saccharomyces cerevisiae occurrence in sourdough may be explained by the 

application of baker’s yeast in most daily bakery practice (Galli et al., 1987; 

Corsetti et al., 2001). Fungi (up to 3×104 CFU/g), especially Alternaria and 

Fusarium, as well as Cladosporium, Drechslera, Helminthosporium, and 

Ulocladium are found from the field (dried cereals), while Aspergillus, Wallemia 

sebi, Penicillium, Rhizopus, Mucor and Neurospora are found from the storage 

and bread products (Galli et al., 1987; Pateras, 1998; Corsetti et al., 2001; 

Hutkins, 2006). 
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1.5 Spoilage and pathogenic microorganisms associated with bread and 

bakery products 

The most common and influential factor on bakery products shelf life 

determination is microbial spoilage in particular mould growth and Bacillus sp. 

(Smith et al., 2004), even when different chemical and physical factors can also 

reduce.  

Fungi are the main cause for spoilage of bakery products, posing a serious 

economic concern. Moulds involved in spoilage of bakery products mainly 

include Eurotium, Penicillium sp., Aspergillus sp. Fusarium, and Wallemia sebi 

and also Cladosporium, Mucor and Rhizopus especially in warmer climates 

(Legan, 1993; Gerez et al., 2009). Moulds are also responsible for mycotoxin 

production, a public health issue (Legan, 1993; Nielsen and Rios, 2000). 

Common bakery products and ingredients’ spoilage yeasts belong to Candida, 

Pichia, Zygosaccharomyces, Saccharomycopsis, and Debaryomyces genera 

(Legan and Voysey, 1991). For example, “chalk mould” is caused by Pichia 

butonii (Pateras, 1998). Baked goods can be protected from fungal and yeast 

spoilage using LAB with high and wide antimicrobial activities as starters for 

sourdough preparation (Lavermicocca et al., 2000). Gerez et al. (2009) reported 

that some strains of LAB (Lactobacillus plantarum, Lactobacillus brevis and 

Lactobacillus reuteri) showed antifungal activity against Aspergillus, Fusarium, 

and Penicillium, which are main contaminants in bakery products. 

A type of bread spoilage is ropiness, characterised by fruity odour, and then soft 

and sticky crumb as a consequence of enzymatic degradation of crumb and 

generation of extracellular slimy polysaccharides (Thompson et al., 1993; Pepe 

et al., 2003). Ropiness ocurrs mostly in summer or at hot locations when high 
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temperature and pH are the environmental factors that increase the growth of 

bacteria (Saranraj and Sivasakthivelan, 2016) such as Bacillus genus mainly 

Bacillus subtilis, and Bacillus licheniformis, but Bacillus cereus, Bacillus 

megaterium, Bacillus pumilus, Bacillus clausii and Bacillus firmus have also 

been implicated (Katina et al., 2002; Mantzourani et al., 2014). Health problems 

could be associated to high numbers of Bacillus subtilis or Bacillus licheniformis 

in foods which may result in mild food poisoning. To prevent bread ropiness, 

fermented sourdough with LAB may be effective, because rope-forming bacteria 

are sensitive to low pH (Hansen, 2012).  

Cereal-borne outbreaks involving Salmonella sp., Listeria monoctyogenes and 

Bacillus cereus have been reported. Pathogenic microorganisms may be 

introduced into bakery products where ingredients including dairy products, 

eggs, chocolate, desiccated coconut, and cocoa powder could be the vehicles, 

with eggs being the most common source of Salmonella sp. transfer (Smith and 

Simpson, 1995).  Furthermore, Clostridium botulinum is of concern, particularly 

in high-moisture cereal products which are sealed under modified atmospheres 

(Smith et al., 2004). However, there is limited information about the occurrence 

of Clostridium botulinum in bakery ingredients or end bakery products. There 

are studies reporting bakery products’ contamination with Clostridium botulinum 

type A and B spores,  which are ubiquitously observed in soil in agricultural and 

animal products (Smith et al., 2004). Collins-Thompson and Wood (1993) stated 

that dairy products, which are common on some bakery formulations, have an 

extremely low incidence of Clostridium botulinum spores and are seldomly 

implicated in botulism outbreaks. Botulism outbreaks have been caused by a 

variety of fruits and vegetables (e.g. peppers, tomatoes, potatoes, mushrooms, 
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onions, garlic, olives, and peanuts), which are used in the production of sweet 

and savoury bakery products (Notermans, 1992). Therefore it is important to 

evaluate botulism risks in cereal products separately in the components utilised 

in cereal products (Smith et al., 2004). Unfilled pastry products can also 

undergo spoilage. However, in contrast with bread, when pastries are filled, 

they can be contaminated by other pathogenic microorganisms such as Bacillus 

cereus and Staphylococcus aureus, especially if the filler has been in contact 

with ingredients such as egg and dairy products (Smith and Simpson, 1995). 

The most abundant pathogenic bacteria associated to dairy products are 

mycobacteria, Brucella sp., Listeria monocytogenes, Staphylococcus aureus 

and enterobacteria including toxigenic E. coli and Salmonella (Brisabois et al., 

1997). Thus, there is a real concern when using dairy products in bakery 

products because of the possibility microbial transmission from the dairy 

product to the end product (e.g. cream filled bread). 

 

1.6 Chemical preservatives 

Food additives are defined as chemical substances intentionally added to foods, 

directly or indirectly, in known quantities, for purposes of assisting in the 

processing of foods, preservation of foods, or in improvement of the flavour, 

texture, or appearance of foods (Saltmarsh and Insall, 2013). All food additives 

are covered by Regulation (EC) No. 1129/2011 of the UK and EU and approved 

for use in foods and their conditions of use. Chemical preservatives are food 

additives used to keep foods safe for longer by protecting them against  

pathogenic microorganisms, and also from spoilage therefore increasing shelf 

life (Russell, 1991). Many chemicals can kill microorganisms, or stop their 
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growth, but most of them are not permitted in foods. Chemicals that are 

permitted as food preservatives by the Food Standard Agency (FSA) in the 

current EU are propionic acid (E280), sodium propionate (E281), calcium 

propionate (E282), potassium propionate (E283), sorbic acid (E200), sodium 

sorbate (E201), potassium sorbate (E202), calcium sorbate (E203) and sodium 

acetate (E262). Preservation of bakery products commonly involves the use of 

preservatives such as propionates and sorbates, and sometimes benzoates 

(Marín et al., 2003). Table 1.2 shows the list of permitted preservatives and use 

as recommended for bakery products with the maximum level of use. 

Table 1.2:  List of permitted preservatives and use as recommended for bakery 

products by the European Commission Regulation (EC) No. 1129/2011 

E-number Name 
Maximum level 
(mg/l or mg/kg) 

Permitted use in bakery products 

E280-283 Propionic acid 
and propionate 

2000 Bread and rolls; energy-reduced 
bread, partially baked prepacked 
bread, prepacked rolls, pitta and 
tortillas 
Fine bakery wares which category 
covers sweet, salty products; such 
as cookies, cakes, muffins, 
doughnuts, biscuits, pastries, 
crumpets, pancakes 

E200-203 Sorbic acid and 
sorbates 

2000 Bread and rolls; prepacked sliced 
bread and rye-bread, partially 
baked, prepacked bakery wares 
and energy-reduced bread 
intended for retail sale 

2000 cookies, cakes, muffins, croissants, 
doughnuts, biscuits, pastries 

E262 Sodium acetate Quantum satis* Bread and rolls 

* no maximum level is specified, use as much as necesary 
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Organic acids are such effective food preservatives because, apart from their 

antimicrobial inhibitory activities, they are also acidulants acidifying and 

lowering the pH of foods to levels that inhibit bacterial growth (Hinton Jr, 2006). 

Weak organic acids such as propionic, benzoic, and sorbic acids have been 

used as food preservatives for a long time, due to their comprehensive 

antimicrobial activity (Steiner and Sauer, 2003; Plumridge et al., 2004) 

prolonging the shelf life of bakery products (Legan, 1993; Gould, 1996). The 

antimicrobial activity of these compounds is mostly attributed to undissociated 

molecules (Zeuthen and Bøgh-Sørensen, 2003). Sorbates (sorbic acid) have 

many uses because of a milder taste, greater effectiveness, and broader pH 

range of inhibitory activity in comparison with either benzoate or propionate 

(Barbosa-Cánovas et al., 2003). 

Previous in-vitro observations have found that calcium propionate, sodium 

benzoate and potassium sorbate were affective at inhibiting some moulds e.g. 

Eurotium, Aspergillus and Penicillium isolates from bakery products at pH 4.5 

when they were used at a concentration of 0.3% (Marín et al., 2002; Guynot et 

al., 2005). Potassium sorbate has been noticed to be effective, even at 

concentrations as low as 0.03% (Guynot et al., 2005). 

There are certain harmful adverse effects of using weak organic acids; for 

example, benzoates have been responsible for worsening asthma, allergic 

rhinitis, skin rashes, chronic urticaria, hyperactivity and flushing in some people 

(Kinderlerer and Hatton, 1990; Poulter, 2007; Motala and Steinman, 2008). 

Despite perceived harmlessness and the sensorial neutrality of sorbic acid 

(Banerjee and Sarkar, 2004), concerns are linked to situations when it is used 

together with benzoic acid, which could result in oxidative stress in humans. 
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Benzoic acid is also generally regarded to be safe, being conjugated in the liver 

to produce benzoylglycine (hippuric acid), which is then excreted out with the 

urine. Sorbic acid is also largely excreted, as the oxidation product 2,4-

hexadienedioxic acid. The problem is that before these acids are transported to 

the liver, they will come into contact with epithelial cells of the gastrointestinal 

tract, but the claimed pro-oxidant negatively effects were uncertain (Piper, 1999; 

Theron and Lues, 2011). Moreover, concern regarding excessive use of 

benzoic or sorbic acid which may lead to dangerous side effects such as 

metabolic acidosis, convulsions, and even hyperpnea in humans (Tfouni and 

Toledo, 2002; Wen et al., 2007). Small amounts of bromate (≤30 mg/kg) may be 

used in flour or dough during the bread making, however, this can be broken 

down to bromide during the process as reported by international agency for 

research on cancer (IARC, 1986). JECFA (1995) reported that the previous 

acceptable level of treatment of flour for bread making (0-60mg of bromate per 

kg of flour) has been withdrawn, and the use of potassium bromate as a flour 

treatment agent is not appropriate, because it strongly irritates the gastric 

mucous membrane, causing nausea and sometimes vomiting. 

 

1.7 Use of LAB and their metabolites in the food industry as bio-

preservatives 

There are demands by consumers regarding fresh, healthy and natural food 

with no chemical preservatives (a so-called “clean label”), with low level of fat, 

salt, and sugar (Zink, 1997; Brul and Coote, 1999). Consumers are concerned 

about the presence of artificial chemicals in their foods and prefer natural 
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compounds (Zeuthen and Bøgh-Sørensen, 2003). Therefore, consumer 

demands for natural products have encouraged the research on alternative  

preservatives e.g. safe vegetal and microbial preservation systems. In this 

respect, LAB are organisms of interest for their bio-preservation potential in 

different fermented foods as reflected by emerging literature. Hansen (2012) 

reported that the use of fermented sourdough with LAB is the most promising 

procedure to preserve bread from spoilage, which is in agreement with the 

consumer demand for natural and additive free food products. LAB are 

important microorganisms in the traditional industrial field that can be used for 

fermentation in food products and are also recognized as healthy and beneficial 

organisms (Gilliand, 1990). LAB play an important role in the food industry and 

can be useful as starter cultures for food products (Holzapfel et al., 1995; Leroy 

and De Vuyst, 2004; Mayra-Makinen and Bigret, 2004). LAB produce a wide 

range of metabolites through fermentation which play a substantial role in 

inhibiting the growth and proliferation of food spoilage and pathogenic 

microorganisms (Zottola et al., 1994; Cintas et al., 1998; Lahtinen et al., 2011; 

Holzapfel and Wood, 2014). There are two main fermentation pathways of 

glucose in LAB as shown in Figure 1.1. Homofermentative LAB use the 

Embden – Meyerhof - Parnas pathway to produce more than 85% lactic acid 

from glucose. Heterofermentative LAB, meanwhile, use the 6P-gluconate 

pathway or phosphoketolase pathway and produce only 50% lactic acid with an 

amount of acetic acid, ethanol, and carbon dioxide (Caplice and Fitzgerald, 

1999; Zalán et al., 2010; Lahtinen et al., 2011; Holzapfel and Wood, 2014). 

There are several studies which indicate closely the effectiveness of LAB and 

their metabolites as food preservatives (Trias Mansilla, 2008). 
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Figure 1.1: Metabolic pathways of LAB: (A) Homo-fermentation (Embden -

Meyerhof - Parnas pathway) (B) Hetro-fermentation (6P-gluconate or 

phosphoketolase pathway). Selected enzymes are numbered: 1) 

glucokinase; 2) fructose-1,6-diphosphate aldolase; 3) glyceradehyde-

3-phosphate dehydrogenase; 4) pyruvate kinase; 5) lactate 

dehydrogenase; 6) glucose-6-phosphate dehydrogenase; 7) 6-

phosphogluconate dehydrogenase; 8) phosphoketolase; 9) 

acetaldehyde dehydrogenase; 10) alcohol dehydrogenase and 11) 

acetatekinase (Lahtinen et al., 2011; Holzapfel and Wood, 2014) 
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Several compounds in nature are able to inhibit microorganism growth (Roller, 

2003). They can be derived from plants, animals or microorganisms. However, 

many of them have a limited spectrum of activity and are effective only at very 

high concentrations. Combining antimicrobial agents is a way to overcome 

these problems, since a synergistic action may be observed, allowing the use of 

lower concentrations. At the same time a wider spectra of microbial inhibition 

can be found. 

 

1.8 Antimicrobial compounds produced by LAB 

1.8.1 Organic acids (lactic acid and acetic acid) 

LAB produce organic acids during growth; lactic acid and acetic acid are two of 

the acids that are produced which have an important role in inhibiting the growth 

of microorganisms (Cabo et al., 2002). LAB have an ability to produce organic 

acid from carbohydrates through the process called fermentation. The 

fermentation system of LAB is divided into three groups based on fermentation 

of carbohydrate under unlimited condition; homofermentative, 

heterofermentative and facultative heterofermentative (Hutkins, 2006). 

For millennia, people have used lactic acid fermentation, which is a natural 

process to preserve food and animal feed (Wood, 1985; Campbell-Platt and 

Cook, 1995). LAB transform sugar into lactic acid through the fermentation 

process under anaerobic conditions. Lactic acid is a natural, low-pH, effective 

and preservative compound. Sugar fermentation, followed by a reduction of the 

pH to a “safe” level of 4.5 or lower (Holzapfel, 1997) due to the production of 

lactic and other organic acids, is an important factor for the inhibition of growth 
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of undesired microorganisms. The low pH makes organic acids lipossoluble, 

allowing them to break through the cell membrane and reach the cytoplasm of 

pathogens by releasing lipopolysaccharides (Haller et al., 2001). Since both 

lactic and acetic acids are lipophilic, they can rapidly diffuse into the cell and 

dissociate at the near neutral pH of the cytoplasm releasing protons and anions 

until an equilibrium between the external and internal concentrations is reached. 

In this way cell growth can be inhibited if the accumulation of protons inside the 

cytoplasm exceeds the buffering capability of the cell or its capability to pump 

protons out by H+-ATPase carriers (Corsetti et al., 2015). 

 

1.8.2 Hydrogen peroxide (H2O2) 

LAB have a capability to produce hydrogen peroxide in the presence of oxygen 

during the action of some enzymes such as Nicotinamide adenine hydroxyl 

dinucleotide oxidase (NAHD), Flavo-protein oxidase and glycerophosphate 

oxidase (Ross et al., 2002). LAB will not produce catalase for the removal of 

hydrogen peroxide (Ouwehand and Vesterlund, 2004). Collins and Aramaki 

(1980) reported that Lactobacillus bulgaricus has the ability to produce sufficient 

quantities of hydrogen peroxide at low temperature to reduce growth of 

psychotropic bacteria e.g. Pseudomonas fragi. Tharrington and Sorrells (1992) 

reported that the hydrogen peroxide produced by Lactobacillus delbrueckii 

subsp. lactis inhibited the growth of L. monocytogenes. Ito et al. (2003) showed 

that the cell-free filtrate of Lc. lactis subsp. lactis AI 62 containing 300-380 ppm 

hydrogen peroxide had a strong bactericidal effect against psychrotrophic food-

borne pathogens such as Listeria, Yersinia, and Aeromonas species, and 
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mesophiles such as E. coli. Hydrogen peroxide is well studied and the mode of 

action by which it is one of the most powerful oxidizers is known. The 

destructive oxygen in hydrogen peroxide is known as a free radical. The 

peroxide is composed of two oxygen atoms, which react with bacterial cell walls’ 

structures. The antimicrobial activity of hydrogen peroxide is due to the strong 

oxidizing effect on the bacterial cells, and to the destruction of basic molecular 

structures of cell proteins (Magnusson, 2003). 

 

1.8.3 Carbon Dioxide (CO2) 

CO2 is produced by heterofermentative LAB. The quantity of CO2 is produced 

by LAB will change from one LAB to the other (Strom, 2005). Synthesis of CO2 

and the antimicrobial effect occur in anaerobic conditions (Cleveland et al., 

2001). The antimicrobial activity of this compound is due to its ability to replace 

the existent molecular oxygen in food products, creating anaerobic conditions 

toxic to some aerobic food microorganisms such as moulds and Gram-negative 

bacteria through its action on the membranes of microbial cells and its ability to 

reduce internal and external pH (Caplice and Fitzgerald, 1999). Moreover, the 

antimicrobial activity of CO2 is due to the inhibition of enzymatic de-

carboxylation and accumulation of CO2 in the membrane lipid bi-layer resulting 

in defective function in membrane permeability (Lindgren and Dobrogosz, 1990). 

  

1.8.4 Diacetyl 

Diacetyl is an aroma compound (2,3-butanedione) that is produced by a lot of 

LAB as a result of pyruvate and citrate metabolism. Diacetyl has a buttery odour. 



 

21 
 

It is found in most fermented products, especially dairy products and products 

from lactic acid fermentation. Diacetyl show more inhibitor effect on Gram-

negative bacteria, fungi and yeasts than Gram-positive bacteria. Also LAB are 

highly resistant to diacetyl (Jay, 1982; Cogan and Hill, 1993; De Vuyst and 

Vandamme, 1994; Magnusson, 2003). Helander et al. (1997) reported that 

diacetyl can enter the cell of a Gram-negative bacteria throughout the porin 

protein, without altering the outer membrane permeability. The proposed mode 

for antimicrobial action relies on the reaction between diacetyl and the 

periplasmic proteins binding the arginine, thus interfering with the metabolism of 

such an amino acid. The Lack of similar binding proteins and the possibility to 

use a wider pattern of amino acids confer the Gram-positive bacteria a greater 

resistance to this compound (Jay et al., 2005). Diacetyl concentrations can be 

present in fermented foods in a range from 0.5-20 to 44.0-66.5 mg/kg in dairy 

and bakery products, respectively, as reported by Escamilla et al. (2000). 

However, diacetyl may act synergistically with other antimicrobial factors and 

contribute to combined preservation systems in fermented foods (Jay, 1982). 

 

1.8.5 Bacteriocins 

Bacteriocins of LAB are ribosomally synthesised peptides or proteins that have 

bactericidal or bacteriostatic activity (De Vuyst and Vandamme, 1994; Chen and 

Hoover, 2006). In recent years, LAB bacteriocins have generated interest due to 

their potential as a safe bio-preservative. LAB bacteriocins play an important 

role in food industries to improve quality and increase safety and shelf life of 

food products (De Vuyst and Leroy, 2007). LAB bacteriocins are different if 

compared with antibiotics as follows (Table 1.3). Richard et al. (2006) reported 



 

22 
 

the possibility of using bacteriocins as alternatives to antibiotics to play an 

important role in preserving food and also to be used for medical treatment 

cases. Another important factor to consider will be the economic aspects or the 

cost of using bacteriocin in foods. One way to reduce the cost is to determine 

the optimum parameters for the production of a bacteriocin. For economical use 

in food, the bacteriocins have to be produced in large amounts, preferably by 

growing the strains in media containing food grade ingredients (Ennahar et al., 

2000). LAB and their bacteriocins have an inhibitory spectrum against 

microorganisms which includes food spoilage and pathogenic microorganisms 

(Schillinger et al., 1996). 

Table 1.3: The comparison between bacteriocins and antibiotics which is 

explained by Cleveland et al. (2001) 

Characteristics Bacteriocins Antibiotics 

Application Food Clinical 

Synthesis Ribosomal Secondary metabolite 

Activity Narrow spectrum Varying spectrum 

Producer immunity Yes No 

Target cell resistance 
or tolerance 

Usually adaptation 
affecting cell membrane 

Usually a genetically 
transferable determinant 

Interaction 
requirements 

Sometimes docking Specific target molecules 

Mode of action Mostly pore formation 
Cell wall or intracellular 
targets 

Toxicity / Side effects None known Yes 

 

LAB bacteriocins have several important traits that change them to an 

appropriate substance to be used as a food preservative such as: protein nature, 

low molecular weight, non-toxicity to laboratory-tested animals’ food and a wide 

lethal activity against Gram-positive and Gram-negative bacteria, which include 

various pathogens bacteria such as Listeria monocytogenes, Bacillus cereus, 
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Salmonella sp., and Staphylococcus aureus. Recently, bacteriocins have 

become of great interest to food manufacturers who utilize them as bio-

preservatives in food products in general and in perishable food in particular 

(Parada et al., 2007). 

 

1.8.5.1 Classification of bacteriocins 

Klaenhammer (1993) classified bacteriocins produced by LAB into four major 

classes. Class I: Lantibiotics that have a molecular weight of less than 5000 

Dalton and contain to unnatural amino acids like Lanthionine, e.g. nisin which is 

produced by Lactococcus lactis subsp. lactis. Class II: Small heat-stable 

bacteriocins are bioactive peptides which do not contain Lanthionine and have a 

molecular weight of less than 10000 Dalton. Class III: Large heat-labile 

bacteriocins have a large molecular weight; there is meagre information 

available on this group of bacteriocins. Class IV: Complex proteins that require 

additional carbohydrate or lipid to attain antimicrobial activity. The majority of 

the bacteriocins that are produced by LAB associated with food belong to 

classes I and II (Lowe and Arendt, 2012). 

 

1.8.5.2 Structure of nisin and mode of action 

Nisin is a protein compound produced by Lactococcus lactis subsp. lactis with 

antimicrobial activity (Delves-Broughton et al., 1996; Kuwano et al., 2005). It is 

the only bacteriocin which is used for preserving food products such as cheese, 

beer and canned foods in more than 50 countries, and it has generally been 
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considered nontoxic (Harris et al., 1992; Delves-Broughton et al., 1996; Lacroix, 

2010). Nisin is a bacteriocin which consists of 34 amino acids and is heat and 

acid stable. The molecular weight of nisin is 3500 Dalton (Roberts et al., 1992; 

Benech et al., 2002). Nisin has an antimicrobial activity against Gram-positive 

bacteria and the spore forming of bacteria, and it has an effect on the outer 

membranes of Gram-negative bacteria (Delves-Broughton, 1990; Gandhi and 

Chikindas, 2007; Settanni and Corsetti, 2008). Additionally, nisin has been used 

as a biopreservative and a potential agent in other fields such as in 

pharmaceutical, veterinary and health care products (De Arauz et al., 2009). 

The mechanism of nisin is very specific to the destruction of Gram-positive 

bacteria. Nisin attaches to a cell membrane lipid as shown (Figure 1.2) then 

inserts itself into the cytoplasm membrane by forming pores, which results in 

inhibition or death of the bacterium (Brötz and Sahl, 2000; Delves-Broughton, 

2005). 

There are three nisin variants were discovered which are nisin A, nisin Z, and 

nisin Q and they differ only in a few amino acids (Figure 1.3) (Twomey et al., 

2002; Zendo et al., 2003). Today, nisin is the only bacteriocin available 

commercially which is manufactured industrially from supernatant of Lc. lactis 

subsp. lactis culture by a low-cost and simple process (Waites et al., 2001). In 

general, nisin Z is used more than nisin A as a preservative in food products 

because nisin Z has a higher inhibitory activity and solubility (Benech et al., 

2002). 

 

http://www.sciencedirect.com/science/article/pii/S0924224409000594


 

25 
 

 

Figure 1.2: Mode of action of bacteriocins by LAB (Juodeikiene et al., 2012) 

 

Nisin inhibits the majority of the Gram-positive bacteria tested so far and also 

many Gram-negative bacteria if presensitised with chelating agents such as 

ethylene diamine tetra acetate acid (EDTA), osmotic shock, sublethal heat, or 

freezing, to convert the cytoplasmic membrane accessible to nisin (Delves-

Broughton, 1993; Blackburn et al., 1997; Gänzle et al., 1999). 
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Figure 1.3: Structure of nisin A and nisin Z (Gross and Morell, 1971; De Vuyst 

and Vandamme, 1994) 

Both vegetative cells and spores of bacilli were reported to be sensitive to nisin 

(Ray, 1992; DeVuyst and Vandamme, 1994). Spores of a sensitive strain were 

claimed to be more sensitive to nisin than the vegetative cells (Delves-

Broughton et al., 1996). Nisin possibly inhibits the spores during the early 

stages of germination (Ray, 1992). 

The inhibitory effect of nisin alone against different Bacillus sp. has been shown 

in laboratory media and in foods, as well as in combination with physical factors 

e.g. heat, pulsed-electric field and high hydrostatic pressure and chemical 

factors e.g. acids, monolaurin, sucrose fatty acid esters, and carvacrol (Ray, 
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1992; Roberts and Hoover, 1996; Thomas et al., 1998; Beard et al., 1999; Kato 

et al., 1999; Komitopoulou et al., 1999; Pol and Smid, 1999; Pol et al., 2000).  

Jenson et al. (1994) quoted Lee (1988) who in a New Zealand conference 

reported a number of local food poisoning outbreaks due to the growth of 

Bacillus cereus in crumpets with no more information available. Bennett et al. 

(2013) reported that there was no outbreaks caused by Bacillus cereus in baked 

goods in United States from 1998-2008. While, the BIOHAZ Panel of EFSA 

2016 reported 8 number of foodborne outbreaks from 67 human cases resulting 

in 2 hospitalisations from 2008-2012 caused by Bacillus cereus in bakery 

products. Rosenquist et al. (2005) reported that 40 number of Bacillus cereus 

group strains isolated in 53 samples of ready-to-eat-bread in Denmark which 31 

out of the 40 isolates were classified as Bacillus thuringiensis. Emetic toxin was 

related to only one Bacillus cereus strain, while others involved in human 

diarrhoeal disease. Nisin is permitted as a preservative to control the growth of 

Bacillus cereus in crumpets. Addition of nisin to the batter mix at 3.75 mg/kg to 

prevent the growth of Bacillus cereus spore has received regulatory approval in 

Australia and New Zealand (Jenson et al., 1994). 

Nisin is water soluble and stable at pH≤4, also at high temperatures (Ray, 1992). 

Its antimicrobial activity is best at low pH and it becomes inactive at pH 8 (Ray, 

1992). Nisin can be inactivated by proteolytic enzymes such as α-chymotrypsin, 

pancreatin, and ficin that are able to break its peptidic chain then destroy its 

antibacterial properties (Ray, 1992). However, other enzymes such as trypsin, 

pepsin and carboxypeptidase have no significant effect on its antimicrobial 

effect (Chollet et al., 2008). One explanation for the insensitivity of some 

Bacillus sp. to nisin may thus be the production of proteolytic extracellular 
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enzymes. Because of the sensitivity of nisin to proteolytic enzymes, It is likely 

that nisin does not persist after being discharged into the environment. 

Oshima et al. (2014) reported that nisin A can extend the shelf life of high-fat 

chilled dairy dessert (milk-based pudding) to 20 days by controlling the growth 

of spores from Bacillus thuringiensis, Bacillus cereus and Paenibacillus jamilae, 

when using reduced heat treatment to improve the flavour and aroma. Behnam 

et al. (2015) found that treatment of vacuum packaged rainbow trout (fish) with 

nisin resulted in improvement of quality and extension of the shelf life from 12 to 

16 days at 4°C. 

 

1.8.5.3 Usage of natural and commercial additives of nisin: (Nisin and its 

applications) 

Nisin was first introduced commercially as a food preservative in the UK 

approximately 50 years ago (Delves-Broughton et al., 1996). Nisin A is currently 

the only bacteriocin licensed as a food preservative by FSA in the current EU 

where it is numbered (E234). Nisin generally regarded as a safe (GRAS) status 

by the US Food and Drug Administration (FDA) and World Health Organization 

(WHO) since 1969. Nisin products are mainly commercialised by DuPont 

Danisco (Nisaplin® and Novasin™) as dried concentrates containing 

approximately 2.5% nisin (Lacroix, 2010). Nisin is a naturally produced 

compound with antimicrobial activity. Applications for nisin have been described 

for food, feed and cosmetic preservation (Taylor, 1986), and disinfecting of 

surfaces (Daeschel and Mcguire, 1995). The potential applications of nisin were 

first suggested in 1951, which showed that the use of nisin-producing starter 
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cultures could prevent clostridial gas formation in cheese (Delves-Broughton et 

al., 1990). The major food uses are processed cheese products, other milk 

products and canned foods (Ray, 1992). Maximum level of addition is regulated 

in some countries, usually to 12-200 mg/kg (Ray, 1992). Levels of nisin are 

covered by Regulation (EC) No. 1129/2011 of the UK and EU and approved for 

use in foods which the maximum level is 12.5mg/kg or mg/l as appropriate. The 

level of natural and commercial additive nisin and the commercial extract 

nisaplin are mentioned as follows (Table 1.4). The dosage of nisaplin is in the 

range 25-500 (mg/kg, mg/L) in food as recommended by DuPont Danisco 

Company (DuPont Danisco, USA). 

Nisin has been used as an additive to be effective in controlling spoilage and 

pathogenic bacteria in many food products (Jenson et al., 1994; Cooksey, 2005; 

Sivarooban et al., 2007). However, the activity of nisin may be affected by many 

factors, such as concentration, the target microorganisms, interaction with food 

components, fat content and phosphate type, processing and storage 

conditions of food (Davies et al., 1999; Soriano et al., 2004; Chollet et al., 2008). 
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Table 1.4: Levels of natural and commercial additive nisin and the commercial 

extract nisaplin in food application (Thomas et al., 2000; Delves-Broughton, 

2005) 

Food application 
Level of nisin 

(mg/kg, mg/L) 

Level of 

Nisaplin 

(mg/kg, mg/L) 

Typical Target Organism 

Processed cheese  2.5 – 15.0 100 – 600 Bacillus, Clostridium 

Milk and milk 
products 

0.25 – 1.25 10 – 50 
Bacillus (B. 
sporothermodurans) 

Pasteurised chilled 
dairy desserts 

1.88 – 5.00 75 – 200 Bacillus, Clostridium 

Liquid egg 1.25 – 5.00 5 – 200 Bacillus (B. cereus) 

Pasteurised soups 2.50 – 6.25 100–250 Bacillus sp. 

Crumpets 3.75 – 6.25 150 – 250 B. cereus 

Fruit juice 
(pasteurised / 
ambient storage) 

0.75 – 1.50 30 – 60 
Alicyclobacillus 
acidoterrestris 

Canned food (high 
acid) 

2.5 – 5.0 100 – 200 
B. stearothermophilus, 
Clostridium botulinum, 
Cl. thermosaccharolyticum 

Dressings and 
sauces  

1.25 – 5.00 50 – 200 
Lactic acid bacteria,  
Clostridium sp., 
Bacillus sp. 

Meat products 
such as bologna, 
frankfurter 
sausages 

5  – 10 200 – 400 
Lactic acid bacteria 
Brochothrix thermosphacta 
Listeria monocytogenes 

Ricotta cheese, 
Beer, wine, 
fermented 
beverages, spirits 

2.5 – 5.0 100 – 200 

Listeria monocytogenes 
Lactic acid bacteria 
(Lactobacillus, 
Pediococcus) 

Pitching yeast 
wash 

25.0 – 37.5 1000 – 1500 
 

Reduced 
pasteurisation 

0.25 – 1.25 10 – 50 
 

During 
fermentation 

0.63 – 2.50 25 – 100 
 

Post fermentation 0.25 – 1.25 10 – 50  

 

http://en.citizendium.org/wiki/Brochothrix_thermosphacta
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1.8.6 Production of exopolysaccharides (EPSs) 

A number of LAB are capable of producing exopolysaccharides (EPSs) which 

are excreted outside the cell in the form of capsules (Laws et al., 2001). This is 

a ropy material and sticks to the cell wall. This may be able to protect the 

microbial cell against desiccation, phagocytosis and phage attack (Cerning, 

1990). The synthesis of EPSs by LAB has gained increasing interest for its 

ability to improve textural properties of fermented dairy products and non-dairy 

products such as cheese, buttermilk and fermented milks (Crescenzi, 1995; 

Ruas-Madiedo et al., 2002; Galle et al., 2012). Also, LAB play an important role 

in the development of the dough structure through the production of EPS that 

positively influence the viscosity of sourdough (Vogel et al., 2002). EPS in food 

products leads to increased density, balance, emulsion gel cofactor and water 

retention capacity (Crescenzi, 1995). Commercially, only a few bacterial EPSs 

used, such as xanthan, gellan, and dextran, due to high production costs  

(Freitas et al., 2011). 

Li et al. (2014) reported that EPS produced from Bifidobacterium bifidum 

WBIN03 and Lactobacillus plantarum R315 exhibited antimicrobial activities 

against tested pathogens such as Bacillus cereus, Escherichia coli, Listeria 

monocytogenes, Staphyloccocus aureus, Cronobacter sakazakii, Candida 

albicans, Salmonella typhimurium, and Shigella sonnei at 300 μg/mL using agar 

diffusion assay. A few studies showed that EPS from microorganisms had 

strong antimicrobial activity against several pathogens in vitro. Moreover, they 

have proposed several antibacterial mechanisms of EPS such as impairing cell 

division, disrupting the cell wall and cytoplasmic membrane, and decomposing 

DNA (He et al., 2010; Wu et al., 2010). Further studies are needed to evaluate 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683990/#B31
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the components responsible for antimicrobial activity and mode of actions of 

EPS. 

Cerning (1995) pointed out that the level of EPSs production from LAB depends 

on the growth stage, temperature, pH value, carbon sources from 

carbohydrates, and factors that can affect the growth indirectly. Usually milk 

(non-fat skim milk) is used as a medium to produce EPSs from LAB and some 

mucus and ropy materials appear as indicators for EPSs production (Mozzi et 

al., 2001). Ricciardi and Clementi (2000) and Ruas-Madiedo et al. (2002) found 

that several species of Lactobacillus can excrete EPSs. Vaningelgem et al. 

(2004) reported that supplementation of the skim milk medium with whey 

protein concentrate or whey protein hydrolysates increased EPS production 

by Streptococcus thermophilus ST111. The use of whey protein concentrate 

increased buffering capacity of the medium, thus decreasing the acidic effects 

on EPS production during fermentation (De Vuyst and Degeest, 1999).  

The EPSs produced from LAB are classified into two groups: homo-

polysaccharides, which are comprised of one type of monosaccharides, and 

hetero-polysaccharides which are comprised of repeated units of 

polysaccharide and non-carbohydrates units, including phosphate, acetyl and 

glycerol (Ruas-Madiedo et al., 2002). Homo-polysaccharides are secreted 

outside the cells through secreting enzymes such as glycansucrases which 

have a group of monosaccharides (Duboc and Mollet, 2001; Jolly et al., 2002). 

The hetero-polysaccharides are classified into two groups: fructan, which 

includes lefan and inulin, and the other group, glucan, which includes dextran, 

mutan, alteran beta 1-3 glucan (Monsan et al., 2001). The hetero-

polysaccharides are produced inside the cell. A plasma membrane uses 
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nucleotides sugars to produce a series of polysaccharides (Cerning, 1995). It 

has been found that a number of LAB species are able to produce hetero-

polysaccharides (Van den Berg et al., 1995). This type of sugar usually includes 

glucose, galactose, ramenose and small group of N-acetylglucosamine, N-

acetylgalactosamine and glucoronic (Ruas-Madiedo et al., 2002). 

 

1.9 Safety concerns and shelf life of bakery products 

Bread is a food product that is universally accepted as a very convenient form 

of food over the world. It has desirability to all sectors of the population rich and 

poor, rural and urban, which gives cereals an important position in international 

nutrition (Potter and Hotchkiss, 2006). It is a good source of nutrients, such as 

macro-nutrients e.g. high starch content as an energy source, protein and lipids 

rich in essential fatty acids, and micro-nutrients e.g. minerals (Calcium, iron, 

magnesium and zinc), vitamins, especially many B vitamins and vitamin E, 

antioxidants and phytochemicals that are all essential for human health (Potter 

and Hotchkiss, 2006; Dewettinck et al., 2008). Bread has been transformed into 

different types with varying characteristics depending on the innovations put into 

the production. All these varying attributes of bread most times distract 

consumers from the nutritional and wholesome quality of the bread product. 

This is to say that there is a need to continuously, improve the nutritional and 

organoleptic attributes of bread (Potter and Hotchkiss, 2006).  

Bread is one of the most important products of wheat flour in many parts of the 

world, especially in developing countries. The extension of shelf life by 

decreasing the growth of pathogenic microorganisms and delaying bread staling 
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during storage period is one of the biggest challenges for the baking industry 

today (Plessas et al., 2008). 

Bakery products are classified in three groups based on pH such as high acid 

with pH <4.6, low acid with pH>4.6 but <7 and non-acid products with pH>7 

(Smith et al., 2004). According to another classification based on their Aw, the 

categories are as follows; low moisture bakery products (Aw<0.6), intermediate 

moisture bakery products (Aw between 0.6 and 0.85) and high moisture bakery 

products (Aw>0.85 and generally between 0.95 and 0.99) (Smith and Simpson, 

1995). In high moisture products (aw 0.94–0.99), almost all bacteria, yeasts, 

and moulds are capable of growth (Smith, 1992). Several types of bakery 

products can be found on market shelves in categories shown in Table 1.5. 

Bakery products are subjected to chemical, physical and microbial spoilage, 

influenced by interrelated factors. These factors are storage temperature, 

relative humidity, preservatives, pH, packaging material and gas around product, 

and quite importantly the moisture content and Aw (Smith et al., 2004). 

Examples of physical spoilage are staling, which reduces consumer 

acceptability, and moisture loss and gain, which is a serious problem as it 

results in textural changes and may promote chemical and microbiological 

spoilage in low and intermediate moisture bakery products (Hebeda and Zobel, 

1996; Smith et al., 2004).  

Chemical hazards occur when chemicals are present in foods at levels that can 

be harmful to humans. In the food industry, there are dissimilar kinds of 

chemical hazards, e.g. mycotoxins, pesticides, environmental contaminants (air 

and water) and food additives which may result in food contamination. 
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Mycotoxins are secondary metabolites made by filamentous fungi. These 

mycotoxins may result in a toxic response, known as mycotoxicosis, when 

consumed by humans or animals. Aspergillus, Fusarium, and Penicillium are 

the most predominant mycotoxin producers, contaminating foods through fungal 

growth before and during harvest, or often during improper storage (Theron and 

Lues, 2011). A mycotoxin commonly related to bread products is ochratoxin A, 

which mainly is present in the wheat flour (Arroyo et al., 2005). Pesticides are 

used in cereals to prevent pest growth and storage problems, associated with a 

risk of  residues in the cereal and cereal products if used inadequately (Berry, 

2006). 

High fat bakery goods are particularly vulnerable to rancidity, a chemical 

spoilage characterised by lipid degradation resulting in off-odours, off-flavours 

and changes in the colour during processing and storage, which render 

products unpalatable and decrease the shelf life. Microbial spoilage (yeast, 

mould, bacterial growth) is often the major factor limiting the shelf life of high 

and intermediate moisture bakery products, and is also a major cause of 

economic loss to the bakery industry. These microorganisms often spoil food by 

growing in the food and producing substances which change colour, texture and 

odour of the food, making it unfit (undesirable) for human consumption (Smith et 

al., 2004). 
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Table 1.5: Categories of bakery products found on supermarket shelves. 

Adapted from Seiler (2012) 

Categories of bakery products Types within each category 

Unsweetened 
products 

Bread: sliced, crusty, 

par-baked, ethnic 

Rolls: soft, crusty 

Crumpets, Sourdough bread, Naan 

bread, flat bread, Tortilla, English 

muffins, Pitta bread, Croissants, 

Pizza base, Raw pastry 

Sweet products 
Large cakes: plain, fruited 

Pancakes, Doughnuts, Waffles 

Cookies, Biscuits, American muffins 

Buns, Wafers 

Filled products Tarts: fruit, jam 

Pies: meat, fruit 

Sausage rolls 

Pasties, Pizza, Quiche 

Cakes: cream, custard, filled pastries 

 

A number of methods are applied to reduce microbial spoilage in bread 

products such as addition of propionic acid, modified atmosphere packaging, 

irradiation and pasteurisation of packaged bread (Legan, 1993; Pateras, 1998). 

Nowadays, the increased interest of the scientific community in the application 

of consumer-friendly bio-preservatives is due to the increased concern of the 

consumers regarding the side effects of chemical preservatives, and also the 

growing demand for minimally processed foods with long shelf life (Corsetti et 

al., 2015).  

LAB are used in many bakery products in different ways due to their 

antimicrobial activities and also for improving the quality, safety and overall 

http://www.sciencedirect.com/science/article/pii/S0733521006001330#bib17
http://www.sciencedirect.com/science/article/pii/S0733521006001330#bib28
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acceptability of the end product. Many published studies have been carried out 

on LAB microbiota in order to find effective antifungal strains, and most of them 

refer to Lactobacillus strains (Schnürer and Magnusson, 2005). Magan and 

Aldred (2006) claimed that colonisation and growth of fungi represents more 

than 90% of the total microbial contamination which causes spoilage of wheat 

bread and other bakery products. Rizzello et al. (2011) reported that various 

fungi isolated from bakery products were inhibited by Lb. plantarum and Lb. 

rossiae isolated from raw wheat germ. During fermentation, organic acids and 

peptides synthesised in-situ were responsible for the antifungal activity. 

However, the inhibitory activities of the characterised components were different, 

depending on the choice of LAB strains and flour type (Rizzello et al., 2011). 

Dal Bello et al., (2007) characterised lactic acid, phenyllactic acid, cyclic 

dipeptides cyclo (L-Leu–L-Pro) and cyclo (L-Phe–L-Pro) produced by Lb. 

plantarum FST 1.7 and found them to inhibit the growth of Fusarium sp. in 

wheat bread. Lavermicocca et al. (2000) reported that strains isolated from 

sourdough showed strong antifungal activity by a conidial germination assay. A 

concentrated Lb. plantarum culture filtrate of almost completely inhibited 

Eurotium repens, Eurotium rubrum, Penicillium corylophilum, P. roqueforti, P. 

expansum, Endomyces fibuliger, Aspergillus niger, A. flavus, Monilia sitophila 

and Fusarium graminearum. Gerez et al. (2009) reported that four LAB strains 

isolated from sourdough (Lactobacillus plantarum CRL 778, Lactobacillus 

reuteri CRL 1100, Lactobacillus brevis CRL 772, and L. brevis CRL 796) could 

inhibit Aspergillus, Fusarium, and Penicillium which are the main contaminants 

in bread. Indeed, LAB and their bacteriocins have been used as an additive to 

prevent the growth of Bacillus species and spore forming bacteria in bread 
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(Gänzle, 1998). For example, nisin; produced by Lc. lactis subsp. Lactis,  has 

been used as additive to the batter of crumpets at 3.75 mg/kg to prevent the 

growth of Bacillus cereus spore and to prolong shelf life (Jenson et al., 1994). 

 

1.10 Overview of sourdough technology 

Sourdough technology is widely used in bread making and cake production as it 

confers distinctive characteristics such as palatability, high sensory properties 

and shelf life to the resulting products (Corsetti and Settanni, 2007; Banu et al., 

2011; Gobbetti and Gänzle, 2013). Sourdough has become a component of 

recent biotechnology of pastry products, in particular bread production, as a 

leavening agent (Hansen, 2012). The sourdough is made from flour and water 

and then is fermented with LAB and yeast to produce a pH value around 4.5. 

The amount of LAB in sourdough is between 108-109 CFU/g, and the LAB: 

yeast ratio is generally 100:1 (Gobbetti et al., 1994; Ottogalli et al., 1996; 

Meignen et al., 2001; Stolz, 2003). The LAB that is added to sourdough is 

preliminarily comprised of heterofermentative strains, elaborating lactic acid and 

acetic acid in the mixture. These confer a sour taste to the end product (De 

Vyust and Neysens, 2005). Recently, sourdough is employed in the 

manufacture of breads, cakes and crackers (Ottogalli et al., 1996). The main 

role of LAB (mainly obligatory and facultative heterofermentative lactobacilli) is 

in the acidification process, while yeasts mainly account for the leavening of the 

dough by releasing CO2 (Hammes and Gänzle, 1998). Sourdough bread 

properties are pH (pH 3.8-4.6), lactic acid (0.4-0.8%), acetic acid (0.1-0.4%), 
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and slow staling and it has a good protection against microbial contaminations 

(Hansen et al., 1989). 

LAB ensure acid production and leavening upon addition of flour and water. The 

fermentation of sourdough is a sophisticated process caused by the effects of 

the metabolism of both yeasts and LAB. In dough, sometimes yeast and LAB 

work synergistically. Despite its main role as fermenter of carbohydrate and 

producer of ethanol and carbon dioxide, the yeast also produces by-products 

which confer taste and flavour in the final-product (Faid et al., 1993; Meignen et 

al., 2001). Sourdoughs made with both LAB and yeasts resulted in more aroma 

compounds compared to sourdoughs made from single starters based either on 

LAB for example Lb. brevis or yeast such as S. cerevisiae (Meignen et al., 

2001). Therefore, this increase in the production of aroma compounds in a 

mixed-starter process appears to be related to the proteolytic activity of LAB 

(Corsetti and Settanni, 2007). According to Spicher and Nierle (1988), LAB 

cause the release of amino acids which will then be used by S. cerevisiae to 

produce higher alcohols. A correlation would exist between concentrations of 

amino acids and aroma compounds but specific amino acids could not be 

associated with corresponding volatile compounds (Torner et al., 1992). 

Additionally, a higher percentage of sourdoughs could be produced with a 

combination of S. cerevisiae with Lb. sanfranciscensis and Lb. plantarum during 

the sourdough fermentation process (Gobbetti et al., 1995a).  

The purpose of using sourdough in bread production involves: using microbes 

as leavening agent with little or no baker’s yeasts, improving of dough 

characteristics, conferring flavour and taste to the end-product, upgrading the 
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product’s nutritional value and prolonging shelf life of the final-product (Arendt et 

al., 2007; Dal Bello et al., 2007; Nawaz et al., 2007). 

In bread production, organic acids or approximately 15% of sourdough can be 

added to common dough to avoid the growth of microbial contaminants such as 

moulds or bacteria (e.g. Bacillus subtilis and clostridia) that subsequently grow 

and spoil the product (Voysey and Hammond, 1993). The antimicrobial activity 

of sourdough arises from lactic acid, acetic acid, carbon dioxide, diacetyl, 

ethanol, hydrogen peroxide and bacteriocins produced by LAB during 

fermentation. Because of their effective antimicrobial role, bacteriocin-producing 

Lactobacillus strains are commonly used in sourdough (Voysey and Hammond, 

1993; Rosenquist and Hansen, 1998; Vogel et al., 1999). Additionally, it can 

improve dough and bread quality and prolong shelf life of the final product. 

Moreover, sourdough fermentation is a safe and acceptable technique to 

protect bread from detrimental effects by microbial agents and it could meet the 

demand of the consumers for safe and natural additive free goods (Messens 

and De Vuyst, 2002; Corsetti, 2013). 

The sourdough mechanism is sophisticated and there are several parameters 

which can influence the metabolic efficiency of the microflora production of 

sourdough, such as flour type and processing factors (Hammes and Gänzle, 

1998). Temperature can also play an important role as it could change the 

metabolism and fermentability environment for LAB and yeast. During 

fermentation, biochemical alterations take place in the flours biopolymers such 

as protein and carbohydrate as a result of microorganisms and its indigenous 

fermentative activity (Hammes and Gänzle, 1998). 
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1.10.1 LAB in sourdough fermentation and their Influence on sourdough 

There are numerous species of LAB which have been isolated from sourdough. 

It has been mentioned that a number of LAB species occur in wheat and rye 

flour such as strains of Lactobacillus, Pediococcus, Enterococcus, Lactococcus, 

Leuconostoc and Weisella (Hammes and Vogel, 1995; De Vuyst and Neysens, 

2005; Ehrmann and Vogel, 2005). About 50 different species of LAB from 

sourdough have been reported by De Vuyst and Neysens (2005) and Hammes 

et al. (2005). The majority of LAB of the genus Lactobacillus has been isolated 

from sourdoughs (Ottogalli et al., 1996; Corsetti et al., 2001; Corsetti and 

Settanni, 2007) such as Lactobacillus sanfranciscensis, Lb. brevis and Lb. 

plantarum (Vogel and Hammes, 1990; Gobbetti, 1998; Corsetti et al., 2001; 

Corsetti et al., 2003). The population dynamics of microbial food ecosystems 

have been studied mainly through microbiological analysis (Giraffa, 2004). In 

recent years, culture-independent methods have been developed to circumvent 

the limitations of conventional cultivation for the analysis of microbial 

communities in fermented foods (Ercolini, 2004). In this regard, denaturing 

gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA fragments 

(16S rRNA PCR-DGGE) is often used as a relatively rapid and reliable 

cultivation-independent method to study the biodiversity and population 

dynamics of microbial communities in fermented foods (Ercolini, 2004; Van Der 

Meulen et al., 2007). The application of PCR-DGGE technique has been 

described to monitor the diversity and dynamics of LAB and yeast populations 

during sourdough fermentation processes (Meroth et al., 2003b; Gatto and 

Torriani, 2004; Meroth et al., 2004; Randazzo et al., 2005). The PCR-DGGE 

technique is a genetic fingerprinting technique that examines the microbial 
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diversity based upon electrophoresis of PCR-amplified 16S rDNA fragments 

with gels containing a linear gradient of DNA denaturants (Muyzer et al., 1993). 

The PCR product banding pattern is indicative of the number of bacterial 

species or assemblages of groupings consisting of species that are present and 

thus allow visualisation of the genetic diversity of microbial populations (Muyzer 

et al., 1993). Many researchers still report on the existence of non-identifiable 

and perhaps new sourdough LAB species and/or strains (Rosenquist and 

Hansen, 2000; De Vuyst et al., 2002). When back-slopping is applied for 

sourdough fermentation, one can find the microflora of spontaneous sourdough 

fermentations (where homofermentative lactobacilli dominate), but mainly 

heterofermentative lactobacilli are found. The so-called sourdough lactobacilli 

Lactobacillus sanfranciscensis (Kline and Sugihara, 1971), Lb. pontis (Vogel et 

al., 1994), Lb. panis (Wiese et al., 1996), Lb. paralimentarius (Cai et al., 1999), 

Lb. frumenti (Müller et al., 2001), and Lb. mindensis (Ehrmann et al., 2003) are 

considered typical to sourdough environments. 

The homo-fermentative species may not produce CO2, but their main role is to 

acidify and improve flavour.  Despite the fact that homo-fermentative species of 

LAB are used in the vast majority of the food products, hetero-fermentative 

species also play a key role in the fermentation of sourdough (Corsetti et al., 

2001; Corsetti et al., 2003). This is because only heterofermentative LAB are 

able to produce a significant amount of acetic acid under anaerobic conditions 

which is of interest in sourdough to improve taste and flavour of the bread 

(Kosmina, 1977). In contrast, homofermentative LAB produce a considerable 

amount of lactic acid compared to acetic acid, hence it gives a flat taste and 

flavour to the bread (Spicher et al., 1981). In a study to compare the effect of 
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homo- and hetero- fermentative LAB on the aroma of rye-bread, it was found 

that using a pure culture of hetero-fermentative bacteria L. brevis resulted in the 

desirable flavour and taste and an elastic crumb; however, adding homo-

fermentative bacteria (Lb. plantarum) to the bread led to undesirable flavour and 

taste. It has been suggested that both types should be added to obtain 

acceptable aroma and crumb properties (Oura et al., 1982). 

Cereal fermentation by combination of both leavening agents (LAB and yeast), 

commonly referred to as sourdough or yeasted preferment, is a traditional and 

natural method, through metabolism of carbohydrates and of nitrogen sources, 

for improving the flavour, dough structure, texture and shelf life of the leavened 

baked good (Clarke and Arendt, 2005; Arendt et al., 2007). Gül et al. (2005) 

found that a mixture of S. cerevisiae (1.5%) and Lactobacillus amylophilus 

(1.5%) could produce sourdough and bread with the best quality attributes 

including yield and specific volume. However, a sensory evaluation revealed 

that consumers preferred sourdough bread made from a mixture of 1.5% S. 

cerevisiae and 1.5% Lactobacillus sake (Gül et al., 2005) 

LAB during fermentation of sourdough may contribute to the improvement the 

quality of cereal products in dissimilar ways as shown in Figure 1.4 (Rollán et al., 

2010). Through fermentation process in sourdough, LAB produce organic acids 

from carbohydrates which results in a decrease of pH value, inhibition of mould 

growth and microbial spoilage, prolonging shelf life of bread products (Rollán et 

al., 2005; Gobbetti et al., 2007; Gerez et al., 2008, Lhomme et al., 2016). 

However, they can produce flavour volatile compounds from gluten in the flour 

that can be affected by hydrolysing proline-rich allergenic fragments, improving 

the edibility and quality of whole grain, dietary fibre-rich products, gluten-free 
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products and increasing levels of bioactive compound and inducing mineral 

bioavailability (De Angelis et al., 2003; Arendt et al., 2007). This bioactive 

compound, such as the phenyllactic acid (derived from the phenylalanine 

metabolism), is active against several fungal species isolated from bakery 

products, flour and cereals, including bacterial contaminants (Lavermicocca et 

al., 2000; Gerez et al., 2009).  

The hydrolysis of the flour protein during dough fermentation is of importance 

for bread quality. The sourdough fermentation causes increased amino acid 

concentrations, while in dough fermentation by yeast only, a decrease of these 

compounds has been detected (Gobbetti, 1998). Recent studies have explained 

the contributions of cereal and microbial enzymes to the proteolysis, peptide 

degradation and amino acid turnover during sourdough fermentation (Loponen 

et al., 2007; Rizzello et al., 2007). The proteolytic activity of LAB and active 

proteases of cereal flour under acidic conditions may be the cause of protein 

degradation. Microbial acidification of the dough can achieve the optimum pH 

(3.5-4) for the cereal proteinases to play an essential role in the primary 

proteolysis of gluten (Rollán et al., 2010). The released peptides are hydrolysed 

to amino acids (secondary proteolysis) by intracellular LAB peptidases, these 

metabolites may be further metabolised or accumulated in the dough (Figure 

1.4). 
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Figure 1.4: Role of LAB in sourdough fermentation. Adapted from Rollán et al. 

(2010) 

 

1.10.2 Classification of sourdough 

Sourdough is classified into three types on the basis of technological 

applications; type I, type II and type III (De Vuyst and Neysens, 2005; Corsetti 

and Settanni, 2007; De Vuyst and Vancanneyt, 2007; De Vuyst et al., 2009).  

Type I sourdough is produced by a traditional method. In this type of sourdough, 

the process is characterised by continuous steps at fermentation temperature 

(22-28ºC) and pH 4, with the microorganisms kept metabolically active through 

daily refreshments. At present, this is the most widely used type which is used 

in the production of traditional breads.  
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Type I sourdoughs are known to have an effective role in achieving dough 

leavening without addition of baker’s yeast. In this type of sourdough, a three-

stage protocol is applied relying on three refreshments over 24h in order to 

obtain the leavened dough to bake. The steps are characterised by a given 

dough yield (DY), fermentation temperature and time. At the end of the last step 

of fermentation the sourdough is used as the leavening agent; so it can be 

counted as a natural starter culture having many microbial strains. The 

dominant strains of LAB in these sourdoughs are Lb. sanfransciscensis, Lb. 

pontis, Lb. brevis, Lb. fermentum. 

Type II sourdough, or accelerated sourdough is utilised during bread making as 

source of souring. This is semi-solid and produced in a long-term fermentation 

(2-5 days). In this type of sourdough, fermentation temperature is increased to 

above 30ºC to speed up the process through increasing the activity of 

microorganisms which is generally have a shelf-life of several days 

(approximately one week in a cold environment). The dominant LAB in the type 

II sourdough are Lb. pontis, Lb. reuteri, Lb. fermentum, Lb. brevis, Lb. 

delbrueckii and Lb. acidophilus etc.  

Type III sourdough is produced in a dry form and is characterised by having 

LAB resistant to drying processes. The LAB in these sourdoughs are resistant 

to drying and includes Lb. plantarum and Lb. brevis as shown in Table 1.6 

(Hammes and Ganzle, 1998; Clarke et al., 2002). The quality of the sourdough 

bread is influenced by the microbial flora (starter cultures of LAB and yeasts), 

flour type (rye/wheat, flour extraction rate), flour/water ratio (dough yield), and 

the process parameters such as temperature, initial pH, quantity of sourdough 

incorporated in dough and time of fermentation (Müller et al., 2001).  
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The type II and III sourdoughs require the addition of baker’s yeast 

(Saccharomyces cerevisiae) as a leavening agent, whereas type I does not 

require this addition (Müller et al., 2001; Corsetti, and Settanni, 2007). 

Sourdough LAB consisting of obligate and facultative hetero-fermentative and 

obligate homo-fermentative species are associated with type I, type II and type 

III sourdoughs. Type 0 dough, for which baker’s yeast is the main fermenting 

agent, is not made with sourdough technology. Bacterial isolates from, a mature 

sourdough or other natural environment are selected and tested for their 

suitability for being employed as sourdough starters and their viability after 

drying. Lyophilized strains of Lb. delbrueckii, Lb. fructivorans, Lb. plantarum, 

and Lb. brevis have been established as sourdough LAB (Hammes and Gänzle, 

1998). In contrast to the type-1 sourdough starters, frequent inoculation of these 

strains is required as these are not well adapted to the cereal environment 

(Röcken and Voysey, 1995). Due to the selective pressures that result from the 

environmental conditions of sourdough preparation, Lb. sanfranciscensis 

dominates type I sourdough fermentations (Corsetti et al., 2001; Foschino et al., 

2001). The type Ib sourdough contains several LAB which refers to over 50 LAB 

species of Lactobacillus, Pediococcus, and Leuconostoc in concentrations of 

about 108–109 CFU/g (Gobbetti et al., 1994; Ottogalli et al., 1996; Stolz, 2003; 

De Vuyst and Neysens, 2005). Table 1.5 shows the Classification of 

sourdoughs and the corresponding characteristic microflora. 
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Table 1.6: Classification of sourdoughs and the corresponding characteristic 

microflora. Adapted from De Vuyst and Neysens (2005) 

Types 
Obligate 

heterofermentative 
Facultative 

heterofermentative 
Obligate 

homofermentative 

Type Ia Lb. sanfranciscensis 

 

  

Type Ib 
 
 
 
 
 
 

Lb. brevis 

Lb. buchneri  

Lb. fermentum 

Lb. fructivorans 

Lb. pontis 

Lb. reuteri 

Lb. sanfranciscensis 

W. cibaria 

Lb. alimentarius 

Lb. casei 

Lb. paralimentarius 

Lb. plantarum 

Pc. pentosaceus 

Lb. acidophilus 

Lb. delbrueckii 
Lb. farciminis 

Lb. mindensis 

Type Ic Lb. fermentum 

Lb. pontis 

Lb. reuteri 

 Lb. amylovorus 

Type II Lb. brevis 

Lb. buchneri  

Lb. fermentum 

Lb. fructivorans 

Lb. pontis 

Lb. reuteri 

Lb. sanfranciscensis 

W. confusa  

 Lb. acidophilus 

Lb. amylovorus 

Lb. delbrueckii 

Lb. farciminis 

Lb. johnsonii 

Type III Lb. brevis Lb. plantarum 

Pc. pentosaceus 

 

 

1.10.3 Use of sourdough in cereal products 

The use of the sourdough process as a form of leavening is one of the oldest 

biotechnological processes in food production (Röcken and Voysey, 1995). The 

use of sourdough in wheat breads has gained popularity as a mean to improve 

the quality and flavour of wheat breads (Brummer and Lorenz, 1991; Corsetti et 

al., 2000; Thiele et al., 2002). To facilitate continuous production, one can save 

a portion of ripe sourdough to seed subsequent dough; this process has been 
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conducted since the nineteenth century (Williams and Pullen, 1998). A vast 

array of traditional products rely on the use of the sourdough fermentation to 

yield baked goods with a particular quality characteristic. Some examples 

include the well-known Italian products associated with Christmas, Panettone, 

which originated in Milan (Sugihara, 1977). San Francisco sourdough, French 

breads (Kline et al., 1970) and soda crackers (Sugihara, 1985) are other 

examples of wheat products that depend on the process of souring. The same 

process is also used in the production of a number of flat breads, a typical 

example of which is the Egyptian Baladi bread (Qarooni, 1996). 

Anti-rope activity of Bacillus sp. has to be considered an important characteristic 

for selecting LAB in order to extend the shelf life of baked products (Rosenquist 

and Hansen, 1998; Pepe et al., 2003). For example, Pepe et al. (2003) reported 

that using Lb. plantarum E5 and Lu. mesenteroides A27 during the baking 

process had the most effective antirope activity and inhibited the development 

of ropiness for more than 15 days. In addition, the study also reported that the 

bread produced with Lb. plantarum E5 and Lu. mesenteroides A27 in a lower 

storage temperature (23°C) could extend the bread shelf life for 7 days, while in 

a storage temperature of 30°C it could be extended for 4 days. 

Quintavalla and Parolari (1993) have described the importance of pH as a 

controlling factor in the development of ropiness. According to the study 

observations, the time of inhibition of rope symptoms increases at a low pH 

(range, pH 3.7 to 4.3). The differences may have been due to the different 

experimental conditions and the different strains used as indicators. The 

storage of bread at temperatures below 25°C is another factor associated with 
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the antirope activity of the starter in order to prevent the growth of Bacillus and 

prolong the shelf life of the bread (Quintavalla and Parolari, 1993). 

 

1.10.4 Proteolysis and starch hydrolysis 

Metabolic properties including production of lactic and acetic acids, synthesis of 

aroma substances, and proteolytic and amylolytic activities of sourdough LAB 

are of interest for their selection as sourdough starter cultures. During the 

fermentation of sourdough, proteolysis can be achieved by LAB through 

creating optimum conditions for activity of cereal proteinases. High proteolytic 

activity of LAB may cause the hydrolysis of wheat proteins in a strain-specific 

manner (Di Cagno et al., 2003). In general, sourdough fermented with LAB 

caused an increase of amino acid concentrations during fermentation. However, 

dough fermentation with yeast resulted in a decrease in the concentration of 

free amino acids. An intermediate value for total amino acid levels is produced 

by the combination of yeast and LAB. The factors that affect the level of 

individual amino acids in wheat doughs are the pH level of the dough, 

temperature, fermentation time and the consumption of amino acids by the 

fermentative microorganisms (Thiele et al., 2002).  

Flavour components are key elements for consumer acceptance and product 

identification in bread. One category of speciality breads, the sourdoughs have 

a fermentation process affected by a complex microflora of yeasts and LAB 

which confer specific flavour characteristics (Rehman et al., 2006). LAB can 

produce important flavour components in sourdough fermentation which are 

presented in Table 1.7 (Damiani et al., 1996). 



 

51 
 

Table 1.7: Flavour components present in wheat flour sourdough fermented 

with hetero-fermentative and homo-fermentative LAB strains. Adapted from 

Damiani et al. (1996) 

Compounds 
homo-fermentative LAB hetero-fermentative LAB 

1 2 3 4 5 6 7 8 9 10 

Lactic acid + + + + + + + + + + 

Acetic acid + + - - - + + + + + 

Ehanol - - - - - + + + + + 

1-Propanol - - - - - + - - - - 

Ethyl acetate + + + + + + + + + + 

Acetaldehyde + + + + + + + + + + 

Hexanal + + + + + + + + + + 

Octanal + + + + + + + + + + 

Nonanal + + + + + + + + + + 

Diacetyl + + + + + - - - - - 

2-Methyl-1-
pentanol 

- - - - - + + - - - 

3-Methyl-1-
butanal 

+ + - - - + - - - - 

Hexane + + - + + + + + + + 

Heptane + + + + + + + + + - 

Octane + + + + + + + + + - 

+, Present and -, not present 

1, Lb. plantarum; 2, Lb. farciminis; 3, Lb. alimentarius; 4, Lb. acidophilus;  

5, Lb. delbrueckii 6, Lb. brevis lindneri; 7, Lb. brevis; 8, Lb. fructivorans;  

9, Lb. fermentum; 10, Lb. cellobiosus 

 

The typical sourdough flavours of baked breads are produced by bacterial 

proteolysis during sourdough fermentation if compared to the chemically 

acidified or yeasted breads (Hansen et al., 1989). The addition of amino acids 

such as ornithine, leucine and phenylalanine to doughs increased the flavouring 

compounds (Gassenmeier and Schieberle, 1995). The proteolytic strains of LAB 

may affect the level of amino acids in doughs, while cereal proteases can 

degrade proteins in sourdoughs (Thiele et al., 2003; Thiele et al., 2004). 
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The levels of aliphatic, dicarboxylic, and 22 hydroxyl amino acids in wheat 

sourdoughs is increased by Lb. brevis subsp. lindneri, Lb. sanfranciscencis, Lb. 

brevis and Lb. plantarum (Collar et al., 1991; Gobbetti et al., 1994). The 

microbial starter and the processing conditions affect proteolytic activity of 

wheat sourdough. The level of free amino acids relies on the extraction rate of 

flour and the fermentation temperature (Martínez-Anaya, 2003). It has also 

been reported that the level of amino acids and the amount of amino acids is 

affected by a dough yield (Martínez-Anaya, 2003).  

It is well-known that amylolytic LAB found in different tropical amylaceous 

fermented foods have been prepared mainly from cassava and cereals (e.g., 

maize and sorghum). Strains of Lb. plantarum were isolated from African 

cassava-based fermented products (Nwankwo et al., 1989), and amylolytic LAB 

species Lb. manihotivorans has been isolated from cassava sour starch 

fermentations in Colombia (Morlon-Guyot et al., 1998). Agati et al. (1998) 

isolated amylolytic strains of Lb. fermentum for the first time in Benin maize 

sourdough (ogi and mawè). Amylolytic strains of Lb. plantarum and Lb. 

fermentum strains have been found in various Nigerian traditional amylaceous 

fermented foods by Sanni et al. (2002). The search for amylolytic LAB in 

fermented amylaceous foods has been justified by the high starch content of the 

raw material.  

Lactic acid can be produced from the carbohydrate materials by coupling the 

enzymatic hydrolysis of carbohydrate substrates and microbial fermentation of 

the derived glucose into a single step. This process has been utilised for lactic 

acid production from raw starch materials and many representative bacteria 

including Lactobacillus and Lactococcus species (Vishnu et al., 2002; Naveena 
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et al., 2003; Naveena et al., 2005). Several amylolytic LAB can convert the 

starch directly into lactic acid (Agati et al., 1998; Guyot and Morlon-Guyot, 2001; 

Santoyo et al., 2003; Thomsen et al., 2007). Sourdough bread is more easily 

digestible due to the macromolecule-extended enzymatic hydrolysis action by 

the LAB that facilitates hydrolysis (Katina et al., 2005). 

 

1.10.5 Effect of ingredients and processing on the sourdough flavour 

The LAB strains of sourdough vary in metabolism and aroma compounds. 

Monoculture fermentation of dough for 15h at 30ºC, followed by mixing and 

further 10h fermentation has shown increase in the production of sourdough 

volatile compounds (Meroth et al., 2004). Using only yeasts in wheat bread, 

seven volatiles were found to be abundant: acetaldehyde, acetone, ethyl 

acetate, ethanol, hexanal, isobutyl alcohol, and propanol. The lactic acid 

fermentation enhanced the sensory quality, which is related to the amounts of 

lactic acid, acetic acid and aromatic compounds (Damiani et al., 1996). There 

are two categories of flavour compounds produced during sourdough 

fermentation. The first category includes non-volatile compounds including 

organic acids produced by homofermentative and heterofermentative bacteria, 

which decreases pH, acidifies, and contributes to the aroma of bread dough 

(Gobbetti et al., 1995b). The second category of volatile compounds of 

sourdough bread includes alcohols, aldehydes, ketones, esters and sulphur. 

These compounds are produced by biological and biochemical actions during 

the fermentation process and contribute to the flavour of the final product 

(Spicher, 1983). Major volatile components in fermented wheat flour include 
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ethyl acetate, acetaldehyde, hexanal, octanal, nonanal and diacetyl (Damiani et 

al., 1996). However, 1-hydroxy-2-propanone, furfuryl alcohol, pyrazine, 2-

methylpyrazine, 2,5-dimethylpyrazine, hexanal, furfural, pentanol, 3-hydroxy-2-

butanone and ethyl-3,6-dimethylpyrazine were the major volatiles of rice flour 

(Buttery et al., 1999). Whereas major volatiles identified in corn flour include 3-

methylbutanal, 2-methylpyrazine, 2,5-dimethylpyrazine, 1- hydroxy-2-propanone, 

4-vinylguaicol and furfuryl alcohol (Buttery and Ling, 1999). 

The quantity of volatile flavour compounds can be improved by the addition of 

glucose and sucrose; less by maltose. Addition of enzymes to sourdough 

sponges can also enhance bread volatile compounds (Martínez-Anaya, 1996). 

Low temperature (25°C) and sourdough firmness are appropriate for LAB 

souring activities but limit yeast metabolism. Raising the temperature to 30°C 

causes semifluid sourdoughs to give more complete volatile profiles. At 3h 

leavening time, the sourdough is mainly characterised by iso-alcohols. An 

increase of leavening time up to 9h gives a total amount of volatiles about three 

times higher than that at 5h and strengthens the LAB contribution (Gobbetti et 

al., 1995b). The additions of fructose and citrate to the dough have been 

reported to enhance the acetic acid and volatile synthesis by LAB, respectively. 

After baking, the ethanol disappears, 2-methyl-lpropanal is synthetized, lactic 

and acetic acids remain constant, the total amount of volatiles is reduced to a 

level <12.5% of the initial, and an increase in the relative percentage of 

isoalcohols and aldehydes are detected (Gobbetti et al., 1995b). 
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1.10.6 Beneficial effects of sourdough fermentation on bread quality 

Sourdough fermented bread can have health benefits to the consumer. It is 

considered to play a key role in the improvement of overall quality, flavour, 

texture, nutritional and shelf life properties of bakery products (Katina et al., 

2005; Carnevali at el., 2007; Ryan et al., 2008; Gobbetti et al., 2014). Figure 1.5 

shows a process flow diagram (PFD) for bread making with fermented 

sourdough in which the sourdough has been kept metabolically active and 

probably microbially stable for decades by the addition of flour and water at 

regular intervals. The sourdough is an intermediate, not an end product 

(Hansen and Schieberle, 2005; Hui, 2006). The microbial activities in the 

sourdough (mother sponge) have to be judged on the basis of their impact on 

the quality of baked goods that are produced with its aid. These are 

characterised by their flavour, nutritional value and texture, i.e. the size and 

distribution of pores and the elasticity of the bread crumb (Hammes and Gänzle, 

1997). 
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Figure 1.5: Process flow diagram (PFD) of sourdough bread production. 

Adapted from Hansen and Schieberle (2005) and Hui (2006) 

 

The sourdough fermentation inhibits the growth of the pathogens by 

synthesizing antimicrobial compounds, like lactic acid, acetic acid, benzoic acid 

and hydrogen peroxide (Park et al., 2006). Health benefits of sourdough 

fermentation by LAB are based mainly on the production of lactic acid, which 

subsequently decrease the pH below the point at which undesirable 

microorganisms can grow (Diowksz and Ambroziak, 2006). 

Un-fermented 
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Bread dough 

Final dough 

Flour + water Mother sponge + 
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Bread 
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In order to reduce the use of preservatives and treatments that may affect 

healthy attributes of food, attempts have been made to improve bread quality 

and shelf life through formulation with compounds naturally occurring in foods 

(Lavermicocca et al., 2000). Gobbetti et al. (2005) showed that the presence of 

sourdough in bread can enhance the digestion process through substantial 

degradation of cereal components that occurs during fermentation as compared 

to breads made with baker’s yeast leavening. 

Liukkonen et al. (2003) and Kariluoto et al. (2004) reported that sourdough 

fermentation has caused an increase in folate content; on the other hand, 

sourdough fermentation has been shown to decrease tocopherol and tocotrienol 

content (Wennermark and Jägerstad, 1992; Liukkonen et al., 2003). 

The sourdough has also great potential to modify the macromolecules in the 

dough, the most well-known examples being the ability of sourdoughs to reduce 

the digestibility of starch (Liljeberg et al., 1995). The presence of lactic acid in 

bread, either added or formed during sourdough fermentation, has also been 

reported to reduce acute glyceamic and insulinaemic responses (Liljeberg et al., 

1995; De Angelis et al., 2007). 

Sensory evaluation of food and food products is one of the most important 

aspects of quality control and it is a powerful tool with a wide range of 

applications in the bakery industry (Elia, 2011). The sourdough fermentation 

effects the sourdough bread by improving nutritional value and sensory quality 

(Mueen-Ud-Din, 2009). The optimal use of sourdough can improve the taste 

and flavour of the bread (Rehman et al., 2006). 

The sourdough fermentation affects the dough rheology at two levels, in 

sourdough itself, and in bread dough containing sourdough. In dough, 
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fermentation decreases elasticity and viscosity, whereas the addition of 

sourdough to final bread dough results in less elastic and softer dough’s. The 

level of rheological changes taking place in these doughs and its influences on 

bread quality can be controlled by adjusting fermentation time and the ash 

content of flour during the pre-fermentation process (Clarke et al., 2004). 

Di Cagno et al. (2002) measured the rheology of fermented dough’s by using 

empirical techniques and found a decrease in resistance to extension and an 

increase in both extensibility and degree of softening. During the sourdough 

fermentation different organic acids are produced. These organic acids improve 

the flavour of bread, help the swelling of gluten and increase gas retention, 

which results in products with good texture and massive volume and also 

function as natural dough conditioner (Park et al., 2006). LAB are responsible 

for the aroma and flavour of fermented products. The sourdough wheat bread is 

more aromatic than simple wheat bread because of its long fermentation time 

(Brummer and Lorenz, 1991). Sourdough in the baking process has been 

shown to increase the rate of acidification, improve bread volume and retard 

bread staling in white wheat bread (Corsetti et al., 2000; Di Cagno et al., 2003). 

There are several functions of sourdoughs which lead to improve bread making 

as reported by some researchers (Salovaara, 2004; Katina et al., 2005; 

Lahtinen et al., 2012; Galle, 2013). 

 Leavening action by yeast growing in association with heterofermentative 

LAB, which make the dough easier to bake, increase bread volume, improve 

bread-crumb quality, delay staling of bread and increase palatability 

 Modification of flour components, such as swelling and partial hydrolysis of 

protein and polysaccharides, has some advantages, such as improvement 
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of baking properties of rye dough, improvement of crumb properties of 

wheat and rye bread, and control of excessive enzymatic activity of rye flour, 

especially α-amylase and starch degradation in wheat breads by using 

amylolytic strains 

 Occurring organic acids and low pH, and possibly other mechanisms 

contribute fermentation processes which can control and inhibit 

contamination or spoiling flora. As result, elongation of mould-free time of 

bread and prevention of growth of Bacillus subtilis and the rope-causing 

organism can be obtained 

 Bread flavour and aroma are built up as a result of accumulation of organic 

acids such as lactic and acetic acids which are produced by LAB and their 

reaction with other dough components such as alcohol 

 Accumulation of flavour precursor compounds such as amino acids and 

reducing carbohydrates 

 Sourdough fermentation has a well-known role in improving the nutritional 

properties of wheat, rye and oat baked goods via increasing the levels of 

bioactive compounds such as phytochemicals in cereals. These health-

beneficial phytochemicals include lignan, phenolic acids, phytosterols, tocos, 

folates and other vitamins that are found concentrated in the germ and the 

outer layer of kernel 

 Phytic acid is degraded by phytase in flour and from LAB. This increase the 

bioavailability of iron and other minerals 

 Identification of the product by a natural image; greater versatility, local and 

regional products 
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 Lower glycemic index values of wheat bread can be obtained through 

modification of starch structure by using amylolytic strains of LAB which can 

break down starch into glucose. Inversely, starches with lower amylose 

content can have higher glycemic indexes 

 

1.11 The rationale 

The interest in consuming natural foods, with the least possible amount of 

chemical additives to be found, is increasing. Consumers have become more 

demanding about the quality of food. Research has shown that LAB for 

fermentation of bread products could increase the shelf life and microbiological 

safety of bread products. Also, there are lots of potential advantages in 

improving the quality, sensory characteristics, texture and acidity of the 

fermented bread products by LAB. Nowadays, consumers are aware of the 

health concerns regarding food additives; the health benefits of “natural” and 

“traditional” foods, processed without any addition of chemical preservatives, 

are becoming more attractive. 

There are several advantages of acidic food fermentation; first of all, it 

increases food’s resistance to microbial spoilage and the development of food 

toxins, decreases pathogenic microbial activity in the food, preserves foods 

between the time of preparing and consumption, modifies the flavour of the 

products, and also improves nutritional value. 

Bread is one of the most important products as a balanced diet in many parts of 

the world, especially in the developing countries. Today, many types of bakery 

products can be found on market shelves. Most bread products have a short 
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shelf life when stored at room temperature. Crumpets are a type of bread 

products which can be stored at ambient temperature, having a short shelf life 

which is usually preserved by chemical additions. Buttermilk is often used in 

baking because of its special properties. Fermented buttermilk is a great source 

of vitamins like vitamin B complex, high levels of proteins, natural enzymes, 

calcium, and potassium and probiotic bacteria and their metabolites compounds 

(Chandan et al., 2008). The first experiment (Chapter 3) is conducted with four 

types of buttermilk fermented with Lactococcus lactis subsp. lactis and using 

commercial nisin additive. Chapter three investigates the antimicrobial activities 

of them in vitro against some pathogenic bacteria strains. Studies on the 

addition of fermented Buttermilk (FBM) and nisin-producing Lc. lactis subsp. 

lactis on bread crumpets would present an opportunity to preserve it without 

using chemical preservatives. Moreover, they could give very useful information 

about the influence of them on the quality, delay staling and the shelf life of the 

final bread product (Chapter 4). 

Cereal-based foods represent a very important source of biological as well as 

cultural diversity. Sourdough has proven to be useful in improving dough 

properties; bread texture and flavour, delaying the staling process and 

preventing bread from spoilage. There are many studies conducted on the 

sourdough diversity especially in European countries. However, there are not 

as many available studies on the sourdough diversity in the UK as there are in 

the rest of Europe. Studying sourdough aims to investigate the biodiversity and 

find starter cultures from the spontaneously fermented sourdough collection. 

They would help for sourdough fermentation and can also be used for bread-

making (Chapter 5 and 6). The use of fermented sourdough by LAB may have 
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an influence on the bread quality and shelf life and functionality of bread 

products by inhibiting or killing undesirable pathogenic microorganisms via a 

number of metabolites compounds, which may be produced by LAB such as the 

production of lactic acid and antimicrobial peptides (bacteriocins) etc. In 

addition, it may potentially affect the nutritional value and sensory properties of 

bread products.  
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1.12 The aim and objectives of this study 

The overall aim of this study is to investigate the effect of LAB and their 

bacteriocins on the shelf life of cereal products, with the purpose of reducing the 

chance for pathogenic microorganisms to grow on the product during the 

storage period. The schematic outline of the thesis is summarised in Figure 1.6. 

The specific objectives of this study are addressed as the followings: 

 To use LAB and their bacteriocins as an alternative to chemical 

preservatives which are assumed to have side effects on health 

 To evaluate the influence of LAB and their bacteriocins as bio-

preservatives for bread products (crumpets and sourdough bread) to 

prolong shelf life and increase safety of bread products through the 

fermentation process 

 To evaluate the influence of LAB and their metabolites on the 

acidification values of bread products (crumpets and sourdough bread) 

through the fermentation process 

 To investigate the potential modification changes to bread texture and 

quality after treatments 

 To investigate the effects of LAB and their metabolites on the sensory 

attributes of bread products 

 To investigate the effects of LAB and their metabolites on the colour 

changes of bread products (crumpets and sourdough bread) 

 To assess the ability of LAB and traditional fermentation to kill or restrict 

the growth and proliferation of pathogenic and spoilage microorganisms, 

to improve safety of products 
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Figure 1.6: A schematic outline of the thesis with the main outcomes 

 

CHAPTER ONE 

General Introduction and Literature review 

CHAPTER FOUR 

Effects of bacteriocin produced by Lactococcus lactis subsp. lactis, and 
fermentation of Buttermilk products on the shelf life and safety of bread crumpets 

Addition of BM fermented with Lc. lactis subsp. lactis and nisin to the bread 
crumpets had better shelf life and improving the quality 

CHAPTER FIVE 

Diversity of lactic acid bacteria from fermented dough – Potential use as sourdough 
bread starters 

Lactobacillus sp. was the predominant group in sourdough collection, 
Some strains of LAB that were isolated from sourdoughs had a strong inhibitory 

activity against some indicator strains which could be helpful as starter cultures to 
ferment sourdough 

CHAPTER SIX 

Impact of sourdough fermented with Lactobacillus plantarum on the quality and 
shelf life of sourdough bread 

Sourdough fermented with Lb. plantarum (SIN3) had a good property as sourdough 
when tested. The bread with fast fermentation and high sourdough concentration 

(FFHSD) had high quality attributes with significantly better shelf life 

CHAPTER SEVEN 

General discussion, conclusion and future work 

CHAPTER TWO 

General materials and methods 

CHAPTER THREE 

Potential application of bacteriocin-producing Lactococcus lactis subsp. lactis and 
fermentation products against food pathogenic bacteria strains 

Buttermilk (BM1) fermented with Lactococcus lactis subsp. lactis had the highest 
inhibitory activity against bacteria, which was equivalent to 9µg / ml of nisin. Those 

could be suitable to be added to crumpet’s formulations 
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CHAPTER TWO 

General materials and methods 

2.1 Methods 

This chapter includes the general materials and methods which were applied to 

four experiments. All experiments were carried out in the microbiology and 

nutrition laboratories at the University of Plymouth. The general procedures and 

analytical techniques, which were used in the present study, are presented in 

this chapter. Other techniques specific to particular trials are described in the 

relevant experimental chapters. In the first experiment, four types of fermented 

buttermilk (BM) products with Lactococcus lactis subsp. lactis and commercial 

nisin (3, 6, 9, 12µg/ml) as a reference, were examined in-vitro against some 

pathogenic bacteria to select the best fermented BM and commercial nisin were 

used as bio-preservatives for bread crumpets. The second experiment was 

conducted to use fermented BM with Lc. lactis subsp. lactis and nisin additive 

(in the first experiment) for adding bread crumpets, to investigate the safety and 

quality changes and also extending the shelf life of bread crumpets. 

The last two experiments were conducted to characterise fermented sourdough 

to be used for making bread. Purpose to improve the quality changes, 

increasing the safety and shelf life of bread products and also for evaluation of 

sensory characteristics. Sourdough and bread samples (n=18) were collected in 

the third experiment to assess the diversity of LAB isolate strains which would 

be useful for making bread with acceptable dough properties and extending the 

shelf life of bread. The fourth experiment was investigated on the properties of 
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sourdoughs preparation to select the best sourdough for making sourdough 

bread with acceptable properties and longer shelf life of bread. 

 

2.2 Bacterial strains 

The following strains were obtained from the School of Biological Sciences/ 

culture collection (microbiology lab) at the University of Plymouth : Lactococcus 

lactis subsp. lactis ATCC 8656, and the following indicator strains used for the 

inhibitory activity test, Bacillus cereus NCIMB 11925, Bacillus subtilis, 

Pseudomonas aeruginosa ATCC 10817, Escherichia coli ATCC 10418 and 

Staphylococcus aureus ATCC 6821. 

 

2.3 Culture media 

Unless otherwise indicated, media were prepared according to the 

manufacturer’s instructions and were sterilised by autoclaving at 121°C for 

15min. 

2.3.1 Nutrient broth and agar 

Nutrient broth (CM0001, Oxoid Ltd., Basingstoke, Hampshire, England) was 

prepared by dissolving 13g of base in one litre of distilled water then distributing 

in 10ml aliquots into universal tubes, using an Eppendorf dispenser (Eppendorf 

AG, 22331, Hamdarg, Germany) and autoclaved at 121°C for 15min. 15g/litre 

agar (LP0011, Oxoid Ltd., Basingstoke, Hampshire, England) was added to the 

media before autoclaving to prepare of nutrient agar. 
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2.3.2 Brain heart infusion agar (BHI)  

BHI agar (CM1135, Oxoid Ltd., Basingstoke, Hampshire, England) was 

prepared by dissolving 37g of base in one litre of distilled water microwaving for 

10min, then distributed in 20ml aliquots in universal tubes. All tubes were 

sterilised by autoclaving for 15min at 121ºC and used to prepare agar plates for 

the agar well diffusion method. 

 

2.3.3 Bacillus cereus selective agar base medium 

Bacillus cereus selective agar base medium (CM0617, Oxoid Ltd., Basingstoke, 

Hampshire, England) was prepared by suspending 20.5g in 475ml of distilled 

water. Then microwaving for 10min and sterilised by autoclaving at 121°C for 

15min. The medium was cooled to 50°C, one vial of polymyxin B supplement 

(SR0099) and 25ml of sterile egg yolk emulsion (SR0047) was added to the 

media and then it was mixed well and poured into sterile Petri dishes. 

 

2.3.4 M17  

M17 (CM 0817, Oxoid Ltd., Basingstoke, Hampshire, England) was prepared by 

dissolving 37.25g of base in 950ml of distilled water, then the media was 

sterilised by autoclaving for 15min at 121ºC. After autoclaving and cooling the 

media to 50ºC, 50ml of lactose solution (10% w/v) sterilised by membrane 

filtration through 0.2µm were added to M17 broth. 
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2.3.5 Preparation of De Man, Rogosa Sharpe agar (MRS) 

MRS (CM 0817, Oxoid Ltd., Basingstoke, Hampshire, England) was prepared 

by dissolving 60.5g of base in one litre of distilled water and adding one ml 

tween 80, and then the media was sterilised by autoclaving for 15min at 121ºC. 

 

2.3.6 Potato Dextrose agar (PDA) 

PDA (CM0139, Oxoid Ltd., Basingstoke, Hampshire, England) was prepared 

according to the manufacturers' instructions by dissolving 25g of base in one 

litre of distilled water then the media was autoclaving for 15min at 121ºC and 

was used for determination of moulds and yeasts. 

 

2.3.7 Yeast extract glucose chloramphenicol agar 

The medium used for determination of yeast from sourdough fermentation was 

prepared by mixing yeast extract (5g), glucose (20g), Chloramphenicol (0.1g) 

and agar 15g with one litre of distilled water. The pH of Media was adjusted to 

6.6±0.2 then it was sterilised by autoclaving at 121°C for 15min. 

 

2.3.8 Plate count agar (PCA) 

PCA (CM 0325, Oxoid Ltd., Basingstoke, Hampshire, England) was prepared 

by dissolving 17.5g of base in one litre of distilled water, then the media was 

sterilised by autoclaving at 121ºC for 15min. This media was used for spore 

forming bacteria. 
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2.4 Preparation of standard (McFarland’s) opacity tube 

A specific amount (0.05, 0.1, 0.2, 0.3 and 0.4)ml of 1% barium chloride was 

added to 1% sulphuric acid (9.95, 9.9, 9.8, 9.7 and 9.6)ml respectively in order 

to prepare (0.5, 1, 2, 3 and 4) McFarland opacity standard tubes (Harrigan, 

1998). 

 

2.5 Preparation of saline solution 

Saline Tablets BR0053 (Oxoid Limited, Basingstoke, Hampshire, England) were 

used by dissolving one tablet in 500ml of distilled water to obtain 0.85% saline 

solution and used to dilute the bacterial cultures. 

 

2.6 Preparation of inoculum bacteria 

A single colony of inoculum was taken from colonies grown previously as a pure 

culture on a plate and inoculated into 10ml nutrient broth. The broth suspension 

was incubated for 18h at 37°C (LEEC incubator, LEEC Limited, Nottingham, 

UK), except Pseudomonas aeruginosa which was incubated at 30°C (Swallow 

Incubators, LTE Scientific Ltd, Oldham, UK. Bacterial cultures were diluted by 

using saline solution and were standardised to 107-108 CFU/ml using the 

McFarland standards by visually comparing the opacity of the bacterial 

suspension to the 0.5 McFarland standard. 
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2.7 Measurement parameters of bread samples 

Crumpets and sourdough bread were prepared for separate experiments. The 

procedures for bread making are each presented in this chapter. Nevertheless, 

some parameters were obtained using the same procedures in both cases such 

as pH and acidity values, colour measurement, water activity and microbial 

shelf life of bread products. 

 

2.7.1 Measuring PH value 

The pH value of samples was determined by mixing 10g of the sample with 100 

ml of distilled water and subsequently homogenised for 3min in a stomacher 

(Bag mixer 100 MiniMix, Arpents, France). pH meter (pH 213, HANNA 

Instrument, Indonesia) was used for measuring a pH value which was 

previously calibrated (pH 4.0 and 7.0). A pH electrode was then flooded directly 

into the sample. The pH values were recorded in triplicate samples (El-Khoury, 

1999). 

 

2.7.2 Measuring titratable acidity value 

The suspension of the sample was prepared for pH value as mentioned 

previously was titrated against 0.1N NaOH with phenolphthalein indicator. Total 

titratable acidity (TTA) was expressed as the amount of NaOH was used (in ml). 

Triplicate of TTA was measured from each sample. Titratable acidity (TA) was 

expressed as lactic acid percent (mg/100mg) according to standard procedure 

as described by AACC method 02.31 (2000). 
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2.7.3 Water activity measurement for bread samples 

Water activity (Aw) for samples was determined in triplicate at room 

temperature (22°C) using a Aw meter (Novasina Thermoconstanter, TH-2/RTD-

33, Zürich, Switzerland). Samples were transferred to a measuring cell until 

about half full, and then the measuring cell was left in the instrument until 

constant readings indicated that equilibrium was reached. 

 

2.7.4 Measuring the colour of bread samples 

The colour of bread crumb and crust was measured using a Minolta colorimeter 

(Minolta Ltd.; Model, CM2600d, UK) with a 10° standard observer and D65 

(room light) and calibrated with a white plate standard. The colour of sample 

was denoted by the 3 dimensions L*, a*, and b*. When the L* scale represents 

the value of a product lightness from zero (for dark) to 100 (absolute white). 

Components a* and b* represent redness/greenness and yellowness/blueness 

colour of products respectively. Nine replicates were run per sample and the 

whiteness was calculated according to the following equation (Hsu et al., 2003; 

Chiavaro et al., 2008; Borsuk et al., 2012). 

Whiteness= 100 - [(100-L*)2 + a*2+ b*2]0.5 

 

NaOH (in ml) × 0.1N × Equivalent weight of lactic acid (90.08) 
TA (mg/100mg) = 

Weight of sample (g) × 10 
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2.7.5 Microbial shelf life determination of bread samples  

The bread samples were taken for microbiological analysis every two days 

during the storage period until microbial growth was observed on the surface of 

bread samples. Ten g of sample was homogenised with 90 ml of PBS buffer 

solution (0.1 M, pH 7.0) for 3min in a stomacher (Bag mixer 100 MiniMix, 

Interscience, Arpents, France). Aliquots were serial diluted in maximum 

recovery diluent and plated out following National Standard Methods (HPA, 

2004, 2009). Aerobic plate count (APC) were determined on nutrient agar. The 

inoculated nutrient agar was incubated at 37ºC for 48h. LAB counts were 

determined on MRS Agar medium, with the inoculated plates incubated under 5% 

CO2 incubator at 37°C for 48 hours. Mould and yeast counts were enumerated 

on potato dextrose agar medium, and then the plates were incubated at 25°C 

(±2°C) for 5 days. 

Bacillus cereus was enumerated on Bacillus cereus selective agar base 

medium with polymyxin B supplement (SR0099) and egg yolk emulsion 

(SR0047) to detect the growth of Bacillus cereus in bread samples, the 

inoculation media were incubated at 37ºC for 48h (Ntuli et al., 2013). 

For the spore forming bacteria, plate count agar medium was used to determine 

the number of spore forming bacteria. First, the dilution of the bread samples 

was heated to 80ºC for 10min. Then the inoculated plates were incubated at 

37°C (±2°C) for 48h (Stear, 2012). 
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2.8 Sensory evaluation 

The sensory evaluation protocol was approved by the Human Ethics review 

committee of the Faculty of Science and Engineering, Plymouth University. 

Information and a consent form stated that each participant could withdraw from 

the panel at any time during the experiment. 

Bread samples were subjected to sensory evaluation by 33 non-expert 

panellists (Plymouth University students and staff members of) the day after 

baking. Each bread sample was sliced into 3cm thickness and evaluated on the 

basis of the following characteristics; overall appearance, Aroma, texture, 

flavour, acidity, and overall acceptability. The scoring scales for each attribute 

were as follows; 1= dislike extremely, 2= dislike very much, 3= dislike 

moderately, 4= dislike slightly, 5= neither like or dislike, 6= like slightly, 7= like 

moderately, 8= like very much and 9= like extremely. 

 

2.9 Statistical Analysis 

All data were subjected to one way analysis of variance (ANOVA) using Minitab 

statistics software version 16.0 (Minitab, Coventry, UK) to compare different 

treatment groups followed by Tukey’s Multiple Comparison test. Data are 

presented as mean ± standard deviation (SD) and P<0.05 was considered 

significant. Sensory evaluation data is presented as average ranks, and 

whenever conditions for ANOVA were not met (e.g. not normally distributed), a 

Kruskal – Wallis test (Non parametric) with Dunn’s test was used to determine 

significant differences between the different parameters as suggested by 

O'Mahony (1986). 
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CHAPTER THREE 

Potential application of bacteriocin-producing Lactococcus lactis subsp. 

lactis and fermentation products against food pathogenic bacteria strains 

3.1 Introduction 

LAB and their metabolites commonly have a significant role in the preparation 

and bio-preservation of food products which are due to their contributions to 

flavour, aroma, prolonging shelf life and increasing safety of food products by 

inhibiting growth of food spoilage and food pathogen microorganisms 

(Devlieghere et al., 2004; De Vuyst and Leroy, 2007). In previous studies, LAB 

have been used as biopreservatives to extend shelf life of food products e.g. 

bread products (Ogunbanwo et al. 2008; Saranraj and Sivasakthivelan, 2016), 

beef steaks (Djenane et al., 2005) and processed sliced apples and lettuce with 

Lactobacillus plantarum (Siroli et al., 2015). An example of the shelf life of bread 

reported by Axel et al. (2015) who found that the shelf life of the Quinoa breads 

(gluten-free sourdough bread) containing Lb. amylovorus fermented sourdough 

increased for 4 days compared to the non-acidified control. LAB are an 

important microorganism in traditional industrial field that have the fermentative 

ability in food products and also recognized as healthy and beneficial organisms 

(Gilliand, 1990; Caplice and Fitgerald, 1999). LAB have been used as a natural 

food preservative to increase safety and quality of food products and also have 

effect on food stability. They have been used to preserve bread products for 

longer shelf life, delay staling and may also minimise the changes in physico-

chemical properties of products during storage (Brul and Coote, 1999; Onilude 

et al., 2005; Plessas et al., 2008). 
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Lactococcus (Lc.) strains have been used for centuries as starters for the 

manufacture of cheeses and other fermented dairy products. Lc. lactis strains 

(particularly Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris) have been 

used as commercial starter cultures in industrial fermentation for dairy products 

e.g. hard cheeses (Hutkins, 2006). On the other hand, food producers face a 

major challenge in an environment in which consumers demand safe foods with 

a long shelf life, but also express a preference for minimally processed products 

that do not contain chemical preservatives. Bacteriocins present an attractive 

option that could become at least part of the solution. They are produced by 

food-grade organisms, are usually heat stable, and have the ability to inhibit 

many primary pathogenic and spoilage microorganisms (Chen and Hoover, 

2003; Ouwehand and Vesterlund, 2004; Von Mollendorff et al., 2006). 

Lc. lactis is a Gram-positive bacterium used extensively in the production of 

buttermilk and cheese. It is an obligately homofermentative, facultative 

anaerobe, with an optimum growth temperature near 30°C. Lc. lactis is among 

the most important of all LAB (and perhaps one of the most important 

organisms involved in food fermentations, period). Lc. lactis is known as 

generally recognized as safe (GRAS) status (Wessels et al., 2004; Hutkins, 

2006). Lc. lactis subsp. lactis BZ isolated from boza and its bacteriocin has a 

wide inhibitory activity against several Gram-positive and Gram-negative 

foodborne pathogens and food spoilage bacteria e.g. B. cereus, B. subtilis, E. 

coli, Listeria monocytogenes and Salmonella sp. and it can be potential for use 

as a bio-preservative in food products (Şahingil et al., 2011). 

Nisin is a natural antimicrobial polypeptide produced by Lc. lactis subsp. lactis. 

It belongs to the group of inhibitors called bacteriocins (Thomas and Delves-

http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Buttermilk
http://en.wikipedia.org/wiki/Cheese


 

76 
 

Broughton, 2005) and it effectively inhibits Gram-positive bacteria and also the 

outgrowth of spores of bacilli and clostridia (Gandhi and Chikindas, 2007). The 

application of nisin as a food preservative has been studied extensively (Marth, 

1966; Lipinska, 1977; Hurst, 1981; Hurst and Hoover, 1993). 

Buttermilk is a diary product and it is widely used in the food industry by many 

people around the world for centuries, because of emulsifying capacity and its 

positive effect on flavour (Sodini et al., 2006). Buttermilk is a by-product, a liquid 

left over after extracting butter from churned yoghurt and cream (Jinjarak et al., 

2006; Costa, 2010). Buttermilk contains all the water soluble component of 

cream such as milk protein, lactose and minerals. It also includes materials like 

phosphotidyl choline (lecithin) derived from milk fat globule membrane which is 

disrupted during the churning and mostly migrates to the buttermilk fractions. 

Many kinds of buttermilk preparation methods are available in the world. Dry 

buttermilk is the product resulting from the removal of water from liquid 

buttermilk (Chandan et al., 2008). Some of the lactose of buttermilk is converted 

into lactic acid by the LAB, which gives the milk a slightly sour taste and makes 

it easier to digest by lactose intolerant consumers (Chandan et al., 2008). The 

use high concentration of salt, sugars and chemical addition for preserving food 

products which might be affecting the quality and nutritional value of the food 

products that causes health problems as well (Uhlman et al., 1992; Kelly et al., 

1996). 
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The aims of this study were: 

 To investigate the antimicrobial activities of four types of buttermilk 

fermented with Lc. lactis subsp. lactis and commercial nisin as a 

reference in vitro against some pathogenic bacteria strains 

 To select the best buttermilk fermented with Lc. lactis subsp. lactis and 

commercial nisin as a reference for further investigation in this study 

 

3.2 Materials and methods 

3.2.1 Bacterial strains, culture media and preparation of inoculum bacteria 

The bacterial strains were obtained from the School of Biological Sciences / 

University of Plymouth culture collection as detailed in Section 2.2. Nutrient 

broth, BHI and M17 were prepared as described in Section 2.3.1, 2.3.2 and 

2.3.4 respectively. Inoculum bacteria were prepared and standardised as 

described in Section 2.6. 

 

3.2.2 Nisin products 

Commercial nisin in the form of Nisaplin (PD214210-7.2EN) was obtained from 

Danisco Company (Danisco A/S DK, Denmark) which is produced by Lc. lactis 

subsp. lactis and it was used as a preservative for food product to increase 

quality and shelf life of food products. 
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3.2.3 Buttermilk products 

Four different buttermilk (BM) were studied, including three commercial 

buttermilk powders which are Frontier buttermilk powder (BM1) (Frontier, 

Norway, IA, USA), Now real food buttermilk powder (BM2) (Now foods 

Bloomingdale, IL, USA) and Bob’s red mill buttermilk powder (BM3) (Bob’s red 

mill natural foods SE Pheasant Court Milwaukie, Oregon, USA), Components 

are shown in the Table 3.1. The other buttermilk (BM4) was churned from 

cream then it was frozen. 

 

Table 3.1: Commercial buttermilk powder’s components 

Components 
per 120g 

Frontier 
buttermilk 
powder (g) 

Now Real Food 
buttermilk powder 
(g) 

Bob’s Red Mill 
buttermilk powder 
(g) 

Sugar 56 60 56 

Fat 6 8 8 

Protein 40 40 40 

Sodium (mg) 0.60 0.60 0.68 

Total 102.6 108.6 104.68 

 

3.2.4 Buttermilk preparation 

Three commercial buttermilk powders were prepared in three different ways as 

shown in Figure 3.1. The first one was prepared according to manufacture and 

referred as control that was prepared by adding 120g in 480ml water (BM1), 

120g in 1200ml water (BM2) and 120g in 1680ml water (BM3). Other 

preparations were standardised on sugar content (46.66%) and solid content 
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(85.5%) of BM1, and the frozen buttermilk was used directly after churned from 

cream. 

 

 

 

 

 

 

Figure 3.1: buttermilk preparation design 

 

3.2.5 Preparation of Lc. lactis subsp. lactis 

Lc. lactis subsp. lactis was cultured at 30°C overnight in M17 broth 

supplemented with 0.5% lactose (Terzaghi and Sandine, 1975; Cheigh et al., 

2002). Resulting Lc. lactis subsp. lactis was inoculated (1% by volume) into 

100ml M17 broth, and then incubated for 24h at 30°C. The cells were harvested 

by centrifugation at 10000rpm for 10min (Rotina 46 centrifuge, Hettich 

Zentrifugen, Germany) and washed twice with sterilised saline solution (Kivanç, 

1990) after that the cell was suspended in 10ml of each prepared buttermilk 

separately. The cells were incubated at 30°C for 24h, the level of cell was 109 

CFU/ml and then it was used for subsequent studies. 

Buttermilk 
powder 

Control 
Sugar 

content 
46.66% 

Solid 
content 
85.5% 

Cream 

Frozen 
buttermilk 

(BM4) 

(BM1) Frontier buttermilk powder  
(BM2) Now real food buttermilk 
powder  

(BM3) Bob’s red mill buttermilk 

powder  

Churn 
cream 

(BM4) Liquid buttermilk 

http://www.sciencedirect.com/science/article/pii/S016816560200010X#BIB29
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3.2.6 pH and titratable acidity (TA) of buttermilk products 

The pH and TA values of buttermilk products were measured directly after 0, 8, 

16 and 24h as detailed in Section 2.7.1 and 2.72 respectively. 

 

3.2.7 Preparation of Cell free supernatant 

Cell free supernatant (CFS) was prepared from each buttermilk fermented with 

Lc. lactis subsp. lactis. CFS was obtained by centrifuging the culture at 

10000rpm for 10min. CFS was sterilised by membrane filtration through 0.22μm 

pore size filter (Milipore Ireland Ltd, Cork, Ireland). 

 

3.2.8 Agar well diffusion bio-assay for activity of buttermilk products 

fermented with Lc. lactis subsp. lactis 

The agar well diffusion method was used to determine the antimicrobial activity 

of Lc. lactis subsp. lactis against bacterial strains such as B. cereus, P. 

aeruginosa, E. coli and S. aureus (Kuri et al., 1998; Fernández-López et al., 

2005). Stock cultures of all tested bacteria were grown in nutrient broth for 18h. 

Final cell concentrations were standardised to 107-108 CFU/ml using the 

McFarland standards as mentioned in Section 2.6. Then, 200μl of this inoculum 

was added to each universal tube containing 20ml molten brain heart infusion 

(BHI) agar, mixed well and poured into a disposable Petri dish. A sterile cork 

borer was used to make wells (5mm diameter) after the agar was solidified. 

Forty μl of fermented buttermilk supernatants was added into each well and was 

left to diffuse for one h at room temperature, then incubated at 37°C for 24h. 
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After incubation, the diameter (mm) of the inhibition zone around the wells was 

measured in three directions using Vernier callipers and the averages were 

calculated (Kuri et al., 1998). The assay was carried out in triplicate. 

 

3.2.9 Determination of the antimicrobial activities of buttermilk 

supernatant and commercial nisin against food pathogenic strains 

In this method 96-well micro plate (Thermo Scientific, Nunclon Delta Surface, 

Denmark) was used to determine cells densities of pathogenic bacterial strains 

by adding supernatant of fermented buttermilks at manufacture preparation and 

different concentration of commercial nisin. This method was used to compare 

the antimicrobial activity of them against the same food pathogenic bacterial 

strains. 1% of buttermilk supernatant was suspended in BHI broth separately 

and also nisin was suspended in BHI broth at different concentration from 3, 6, 

9 and 12µg/ml with control. Mainly 90µl of prepared antimicrobials from each 

BHI broth was pipetted into the wells of sterile micro plate and 10µl of 107-108 

CFU/ml culture of each overnight bacterial test was inoculated in wells, Then 

micro plate kit was incubated in a micro plate reader (Tecan Infinite M200 Pro 

Microplate Reader, Tecan Austria GmbH) at 37°C for 24h, the growth of each 

strain was determined by measuring the optical density (OD) at 595nm. Three 

replications were made for the experiment. 
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3.2.10 Detection of nisin activity and fermented buttermilk against spores 

of Bacillus cereus 

The method is described by Jenson et al. (1994) in which spores of B. cereus 

were tested for their sensitivity to nisin. B. cereus was grown in nutrient broth at 

37°C for 72h, and then the growth culture was heated to 80°C for 10min. The 

spore suspension was diluted in sterile ringer solution and 0.1ml of each dilution 

was transferred into nutrient broth, which was suspended with 1% of each 

fermented buttermilk supernatant and different concentration of nisin from 3, 6, 

9 and 12µg/ml with control. The broth cultures were then incubated at 37°C for 

7 days. The control tube containing no fermented buttermilk and no nisin was 

used to estimate the number of spores added to each tube. The highest dilution 

for which growth was noted, was deemed to have 10spore/ml. The measure of 

the presence or absence of growth was noted. Three replications were made for 

the experiment. 

 

3.2.11 Determination of the antimicrobial activities of bio-preservatives 

and chemical preservatives against bacterial tested 

A 96-well micro plate (Thermo Scientific, Nunclon Delta Surface, Denmark) was 

used to determine cells densities of bacterial cells tested by adding various 

antimicrobial activities which are included commercial nisin, potassium sorbate, 

calcium propionate and vinegar to BHI broth at different concentration. 

Commercial preservative nisin was added in the form of nisaplin into BHI broth 

by different concentration including 0, 3, 6, 9 and 12µg/ml. Potassium sorbate, 

calcium propionate and vinegar were added into BHI broth 0, 100ppm, 300ppm, 
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600ppm and 900ppm. The acidity of malt vinegar was 5% (v/v) (Sarson’s malt 

vinegar, UK).  

For each prepared antimicrobial 90µl were pipetted into the wells of sterile micro 

plate and 10µl of 107-108 CFU/ml culture of each overnight bacteria were 

inoculated in wells. Then, micro plate was incubated in a micro plate reader at 

37°C for 24h, the cells densities of each strain were determined by measuring 

the optical density (OD) at 620 nm. Three replications were made for the 

experiment. 

 

3.2.12 Statistical Analysis 

All data were analysed statistically as detailed in Section 2.9. 
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3.3 Results 

3.3.1 pH and TA values of fermented buttermilk 

pH and TA values of different types and prepared in three different methods of 

fermented buttermilk products are shown in Tables 3.2 and 3.3 respectively.  

The pH values of all types and preparation methods of buttermilk ranged 

between 6.67 and 6.69 before incubation period of buttermilk products. During 

incubation periods, the pH values of fermented buttermilks was decreased 

significantly (P<0.05) according to the type of buttermilk products and 

preparation methods. After 24h incubation period, there were significant 

differences in pH levels between fermented buttermilks of up to 4.92 to 5.39 

according to the type of buttermilk products and preparation methods. During 

time point of fermented buttermilks, the pH of fermented BM1 at each 

preparation method was lower than the other fermented buttermilk products. 

The pH value of churned BM was higher which maight be due to of the frozen 

BM was used (Table 3.2). 

Before incubation period, the TA values of buttermilks ranged between 0.66 and 

0.73. During incubation, the TA value of fermented buttermilks was significantly 

increased (P<0.05) according to the buttermilk (BM1-BM4) and preparation 

methods. Additionally, there were significant differences in TA between 

fermented buttermilks. The TA value of BM1 was higher than the other 

fermented buttermilk at each preparation method in each time point of 

fermented buttermilks (Table 3.3). 
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Table 3.2: pH development* of buttermilk (BM1-BM4)a prepared by three 

different methodsb and fermented with Lc. lactis subsp. lactis over 24h at 30°C 

Fermented 
buttermilk 

 Time  (h) 

preparation Brand  0 8 16 24 

Control 

BM1  6.68±0.01 ab 5.98±0.01 g 5.36±0.02 f 4.92±0.01 c 

BM2  6.67±0.01 b 6.02±0.02 f 5.54±0.02 e 5.08±0.02 b 

BM3  6.68±0.01 ab 6.14±0.01 d 5.83±0.01 b 5.37±0.01 a 

Fixed sugar 

content 

46.66% 

BM1  6.68±0.01 ab 5.98±0.01 g 5.37±0.01 f 4.93±0.02 c 

BM2  6.69±0.01 a 6.18±0.01 c 5.63±0.01 d 5.11±0.01 b 

BM3  6.68±0.01 ab 6.31±0.01 a 5.81±0.02 bc 5.38±0.03 a 

Fixed solid 

content 

85.5% 

BM1  6.68±0.01 ab 5.98±0.01 g 5.37±0.01 f 4.93±0.01 c 

BM2  6.67±0.01 b 6.07±0.01 e 5.61±0.01 d 5.10±0.02 b 

BM3  6.67±0.01 b 6.24±0.01 b 5.78±0.02 c 5.35±0.02 a 

Churned 
buttermilk 

BM4  6.68±0.00 ab 6.27±0.01 b 6.86±0.02 a 5.39±0.04 a 

* Mean values from three replicates ± standard deviations (ANOVA was 

followed by Turkey’s test). a-g Means in the same column with different 

superscripts are significantly different (P<0.05). 

a BM1 is Frontier buttermilk powder; BM2 is Now Real Food buttermilk powder; 

BM3 is Bob’s Red Mill buttermilk powder and BM4 is frozen buttermilk. 

b Control: commercial products were prepared according to manufacturer’s 

instructions, sugar content: buttermilk powders were standardised on sugar 

content of BM1, solid content: buttermilk powders were standardised on total 

solid content of BM1 and churned buttermilk: buttermilk was churned from 

cream and then frozen it. 
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Table 3.3: Development of TA values* (mg/100mg) of buttermilk (BM1-BM4) 

prepared by three different methods and fermented with Lc. lactis subsp. lactis 

over 24h at 30°C 

Fermented 
Buttermilk** 

 Time  (h) 

preparation Brand  0 8 16 24 

Control 

BM1  0.73±0.01 a 0.78±0.01 a 0.85±0.01 a 0.92±0.01 a 

BM2  0.72±0.01 ab 0.75±0.01 b 0.79±0.01 b 0.85±0.01 b 

BM3  0.69±0.02 abc 0.72±0.01 c 0.75±0.01 cd 0.79±0.01 cd 

Fixed sugar 

content 

46.66% 

BM1  0.73±0.01 a 0.78±0.01 a 0.84±0.01 a 0.91±0.01 a 

BM2  0.70±0.01 abc 0.73±0.01 bc 0.76±0.01 cd 0.80±0.02 cd 

BM3  0.68±0.01 bc 0.72±0.01 c 0.74±0.01 e 0.78±0.005 de 

Fixed solid 

content 

85.5% 

BM1  0.72±0.02 ab 0.77±0.01 a 0.84±0.01 a 0.92±0.02 a 

BM2  0.68±0.01 bc 0.74±0.01 bc 0.77±0.01 bc 0.84±0.01 bc 

BM3  0.66±0.01 c 0.68±0.01 d 0.71±0.01 f 0.74±0.01 e 

Churned 
buttermilk 

BM4  0.69±0.01 abc 0.72±0.01 c 0.75±0.01 de 0.80±0.01 cd 

* Mean values from three replicates ± standard deviations (ANOVA was 

followed by Turkey’s test). a-f Means in the same column with different 

superscripts are significantly different (P<0.05). 

** Key of the table as Table 3.2 
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3.3.2 Antibacterial activity of fermented buttermilk 

The antibacterial activity of three types with three different methods of 

preparation of buttermilk and churned buttermilk which are fermented with Lc. 

lactis subsp. lactis were tested against some strains of food pathogenic bacteria 

such as B. cereus, E. coli, P. aeruginosa and S. aureus by agar well diffusion 

method the result are shown in Table 3.4. The fermented buttermilks gave 

zones of inhibition against the strains of food pathogenic bacteria strains. All 

fermented buttermilks were able to inhibit the growth of B. cereus and S. aureus 

to varying degrees from 6-16mm except churned BM which had no inhibitory 

activity against S. aureus. 

All fermented BM exhibited different inhibitory activity depending on the type 

and preparation method of the BM as well. Among the four fermented 

buttermilks, the strongest (14-16mm) diameter zones obtained with the 

fermented BM1 at all preparation methods against B. cereus, and S. aureus. 

Fermented BM1 had an intermediate (10-13mm) diameter zones against E. coli 

and P. aeruginosa. Smallest or weak (6-9mm) diameter zones was observed 

from some other fermented buttermilks (Table 3.4). However, fermented BM3 at 

all preparation methods and BM4 had no inhibitory activity against E. coli and 

BM4 also with S. aureus. Fermented BM2 at sugar content and solid content 

had no inhibitory activity against P. aeruginosa.  
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Table 3.4: Antibacterial activity* of fermented buttermilk preparations against 

bacterial food pathogens using an agar well diffusion method 

Fermented 
Buttermilk** 

 Target strains 

preparation Brand  B. cereus E. coli P. aeruginosa S. aureus 

Control 

BM1  +++ ++ ++ +++ 

BM2  ++ ++ + ++ 

BM3  ++ - + +  

Fixed sugar 

content 

46.66% 

BM1  +++ ++ ++ +++ 

BM2  ++ + - ++ 

BM3  ++ - + + 

Fixed solid 

content 

85.5% 

BM1  +++ ++ ++ +++ 

BM2  ++ + - + 

BM3  + - + + 

Churned 
buttermilk 

BM4  + - ++ - 

* Diameter of inhibition zone: (–) no inhibition zone, (+) weak (6 – 9mm), (++) 

intermediate (10 – 13mm) and (+++) strong (14 – 16mm). Mean values from 

three replicates 

** Key of the table as Table 3.2 
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3.3.3 Effects of fermented buttermilk supernatant and nisin against strains 

of food pathogenic bacteria strains 

The microbial growth (OD595) of the four food pathogenic bacteria in BHI broth 

media containing four different types of fermented BM supernatant and different 

concentration of commercial nisin (3, 6, 9, 12µg/ml) as reference and control 

without additives after 24h of incubation are shown in Table 3.5.  

After 24 h of incubation, the fermented BM1 had the highest inhibitory (P<0.05) 

activity against B. cereus and P. aeruginosa in comparison to the other 

fermented BM. No significant differences (P>0.05) found between Both BM1 

and BM2 against E. coli and S. aureus.  

Figure 3.2 shows the growth curves of bacterial strains in BHI broth 

supplemented with fermented BM and different concentration of nisin every 3h 

of incubation by using micro-plate reader. The growth curves show that each 

fermented BM had different inhibitory activity against food pathogenic bacteria, 

except B. cereus and S. aureus from both BM1 and BM2, which they were 

grown at the same range over 24h. During the time over 24h, the growth of food 

pathogenic strains significantly decreased when the concentration of nisin was 

increased. Control of pathogen growth is probably due to the activity of 

metabolites produced by Lc. lactis during fermentation of buttermilk and also 

adding nisin-produced by Lc. lactis directly in different concentration which they 

have antimicrobial activity against food pathogenic and spoilage 

microorganisms. This study found that the BM1 had an inhibitory activity 

equivalent to 9µg/ml of nisin after 24h of incubation (Figure 3.2). 
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Table 3.5: Microbial growth* (OD595) at 24h of incubation at 37°C, as affected by fermented buttermilks’ supernatant or 

concentration of nisin 

Antimicrobial 
Component 

BM 
type** 

Con. 
(µg/ml) 

Target strains 

B. cereus E. coli P. aeruginosa S. aureus 

Control  0 1.53±0.06 a 1.35±0.04 a 1.59±0.04 a 1.48±0.07 a 

Fermented 
buttermilk (1%) 

BM1  0.44±0.04 d 0.55±0.03 e 0.47±0.02 e 0.45±0.02 ef 

BM2  0.56±0.02 c 0.58±0.02 e 0.59±0.02 d 0.53±0.01 e 

BM3  0.61±0.03 c 0.72±0.03 d 0.64±0.02 d 0.82±0.02 c 

BM4  0.84±0.03 b 1.09±0.01 c 0.78±0.02 c 1.21±0.03 b 

Nisin 
suspension 

 3 1.48±0.05 a 1.21±0.04 b 1.26±0.03 b 1.17±0.03 b 

 6 0.95±0.02 b 0.74±0.05 d 0.78±0.03 c 0.63±0.04 d 

 9 0.53±0.03 cd 0.58±0.04 e 0.48±0.04 e 0.38±0.01 f 

 12 0.15±0.01 e 0.22±0.02 f 0.19±0.01 f 0.14±0.01 g 

  R2 = 0.96 R2 = 0.97 R2 = 0.99 R2 = 0.98 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-g Means in the same column 

with different superscripts are significantly different (P<0.05).  ** Key of the table as Table 3.2
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(a) B. cereus with fermented buttermilks 

 

 

(b) B. cereus with different concentrations of nisin 
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(c) E. coli with fermented buttermilks 

 

 

(d) E. coli with different concentrations of nisin 
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(e) P. aeruginosa with fermented buttermilks 

 

 

(f) P. aeruginosa with different concentrations of nisin 
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 (g) S. aureus with fermented buttermilks 

 

(h) S. aureus with different concentrations of nisin 

 

 

Figure 3.2: Growth curves of target bacterial strains in BHI broth supplemented 

with supernatant of fermented buttermilk with Lc. lactis subsp. lactis and 

different concentrations of nisin every three hours by using micro-plate reader. 

Results are the means from three replicates 
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3.3.4 Detection of inhibitory activity of fermented buttermilk supernatant 

and nisin activity against spores of Bacillus cereus 

Fermented buttermilk supernatants and different concentrations of nisin were 

influenced on spores of Bacillus cereus as presented in Table 3.6. The Bacillus 

cereus spores were sensitive to all fermented buttermilk supernatants from 

dilutions 10-3 spores/ml. In addition, it was found to be sensitive to fermented 

BM1 supernatant from dilutions 10-1 spores/ml. The Bacillus cereus spores 

were sensitive to fermented BM2 from dilutions 10-2 spores/ml. The spores of 

Bacillus cereus were also found to be sensitive to all nisin at the levels tested 

from dilution 10-4 spores/ml, with nisin concentration at 6µg/ml from 10-2 

spores/ml and from dilution 10-1 spores/ml with nisin concentration at (9 and 

12)µg/ml. 

 

Table 3.6: Bacillus cereus spores sensitivity* to different concentrations of nisin 

and fermented buttermilk at 37°C for 7 days 

number 

of spores 

Control  Nisin (µg/ml)  
Fermented buttermilk 

(1%) 

0  3 6 9 12  BM1 BM2 BM3 BM4 

10-1 +  + + - -  - + + + 

10-2 +  + - - -  - - + + 

10-3 +  + - - -  - - - - 

10-4 +  - - - -  - - - - 

10-5 +  - - - -  - - - - 

* (+) growth of Bacillus cereus after spore incubation at 37°C for 7days, (-): no 

growth 
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3.3.5 Antimicrobial activity of nisin and chemical preservatives 

The effectiveness of antimicrobial activity of nisin comparing to chemical 

preservatives for the inhibition of food pathogenic strains were assessed in this 

study using 96-well micro plate to determine the microbial growth of food 

pathogenic stains. The microbial growth (OD595) of the four food pathogenic 

bacteria strains in BHI broth media containing different concentration of 

commercial nisin (3, 6, 9, 12µg/ml) as reference and potassium sorbate, 

calcium propionate and vinegar were added into BHI broth 100, 300, 600 and 

900ppm with control are shown in Table 3.7. 

The growth of food pathogenic bacteria strains (B. cereus, E. coli, P. aeruginosa 

and S. aureus) were decreased significantly (P<0.05) by increasing the 

concentration of nisin and chemical preservatives. 12µg/ml of nisin and 900ppm 

of calcium propionate had the highest inhibitory activity against the growth of all 

food pathogenic bacteria strains. 900ppm of both potassium sorbate and 

vinegar with 600ppm of calcium propionate had inhibitory activities equivalent to 

9µg/ml of nisin at all food pathogenic strains. 
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Table 3.7: Microbial growth* (OD595) at 24h of incubation at 37°C, as affected by chemical preservatives or concentrations of nisin 

Antimicrobial 

component 

Con.  Target strains 

(µg/ml) (ppm)  B. cereus E. coli P. aeruginosa S. aureus 

Control --  1.53±0.06 a 1.35±0.04 a 1.59±0.04 a 1.48±0.07 a 

Nisin 

3   1.48±0.05 a 1.21±0.04 b 1.26±0.03 bc 1.17±0.03 bc 

6   0.95±0.02 d 0.74±0.05 f 0.78±0.03d f 0.63±0.04 g 

9   0.53±0.03 f 0.58±0.04 g 0.48±0.04 h 0.38±0.01 h 

12   0.15±0.01 g 0.22±0.02 h 0.19±0.01 i 0.14±0.01 i 

Potassium sorbate   

 
100  1.36±0.03 b 1.19±0.03 b 1.33±0.02 b 1.25±0.03 b 

 
300  0.99±0.03 d 0.93±0.01 d 0.94±0.02 e 1.07±0.03 cd 

 
600  0.75±0.02 e 0.73±0.01 f 0.66±0.01 g 0.75±0.02 f 

 
900  0.52±0.01 f 0.54±0.02 g 0.45±0.02 h 0.41±0.02 h 

Calcium propionate  

 
100  1.14±0.02 c 1.21±0.02 b 1.19±0.02 cd 1.24±0.02 b 

 
300  0.84±0.01 e 0.86±0.01 de 0.72±0.01 fg 0.88±0.01 e 

 
600  0.51±0.01 f 0.54±0.01 g 0.43±0.02 h 0.42±0.03 h 

 
900  0.14±0.01 g 0.19±0.01 h 0.14±0.01 i 0.16±0.01 i 

Malt vinegar 5% (v/v) 

 
100  1.49±0.02 a 1.29±0.02 ab 1.51±0.02 a 1.39±0.04 a 

 
300  1.09±0.03 c 1.04±0.04 c 1.14±0.02 d 1.05±0.04 d 

 
600  0.78±0.02 e 0.78±0.04 ef 0.71±0.02 fg 0.83±0.02 ef 

 900  0.49±0.04 f 0.55±0.02 g 0.44±0.03 h 0.47±0.03 h 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-i Means in the same column 

with different superscripts are significantly different (P<0.05). 
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3.4 Discussion 

Three different BM prepared by three different methods and a frozen BM were 

fermented with Lc. lactis subsp. lactis and as well as different concentrations of 

nisin (3, 6, 9, 12 µg/ml) were used as a reference. They were used to evaluate 

their effectiveness on food pathogenic bacteria using in-vitro method. The aim 

of this chapter is to select the best BM fermented with Lc. lactis subsp. lactis, 

with a high inhibitory activity against spoilage and pathogenic microorganisms, 

which they might be found in bakery products e.g. crumpet bread. Then it could 

be suitable to be added to the bread crumpet formulations for increasing the 

quality, texture and shelf life of bread crumpet. 

The present study showed that the four different types and preparation method 

of BM products with Lc. lactis subsp. lactis had significantly different values of 

pH and TA values. The pH level of all types and preparation methods of 

buttermilk ranged between 6.67 and 6.69 before incubation period of buttermilk 

products. The rate of fall in the pH level of fermented BM was significantly 

different according to the type of buttermilk products and preparation methods. 

After 24h incubation period, the pH levels between fermented buttermilks of up 

to 4.92 to 5.39. BM1 with Lc. lactis subsp. lactis had the lowest pH value and 

highest TA value, which might be due to the conversion of sugars in the BM 

through fermentation to organic acids at different levels as the Lc. lactis subsp. 

lactis is homo-fermentative. It can produce more than 95% lactic acids from 

lactose fermentation which is due to decrease pH and increase acidity of food 

(Hutkins, 2006). The result was similar with findings of Sodini et al. (2006) who 

reported that different types of buttermilk products have different pH values, 

which it is around 5.39-6.61. Lc. lactis is one of the most important 
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microorganisms in the dairy industry, because of the capability to produce lactic 

acid from lactose and drop down in pH level which have an important role in 

inhibiting growth of microorganisms (Cabo et al., 2002; Walker and 

Klaenhammer, 2003). 

Comparing the fermented BM products with different concentration of 

preservative nisin, fermented BM1 had an inhibitory activity equivalent to 9µg/ml 

of nisin against food pathogenic strains. Fermented BM1 with Lc. lactis subsp. 

lactis could be a suitable candidate to add to crumpets formulation. 

In comparison to other fermented BM products, highest inhibitory activity was 

observed in fermented BM1 with Lc. lactis subsp. lactis against food pathogenic 

strains such as B. cereus, E. coli, P. aeruginosa and S. aureus. The level of 

inhibitory activity of fermented buttermilk products might be due to antimicrobial 

substances which they produced by the Lc. lactis subsp. lactis through 

fermentation. The researcher reported that the antagonistic effect could be due 

to organic acids and antimicrobial substances such as hydrogen peroxide, 

diacetyl, bacteriocins and low-molecular-weight metabolites which produced by 

LAB that inhibit pathogenic organisms (Oluwafemi and Adetunji, 2011). Our 

findings of the results of fermented BM1 products with Lc. lactis are in 

agreement with the results of Millette et al. (2004) where they found Lc. lactis 

subsp. lactis inhibiting the growth of E. coli and Staph. aureus. There were no or 

weak (6–9mm) diameter zone against pathogenic strains which might be due to 

loss or reduction of bacteriocin activity which it has been widely reported in food 

matrices and may be caused by a host of factors, including food constituents, 

pH and proteases (Gálvez et al., 2007). 
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In general, antimicrobial activities of commercial preservative nisin, four types of 

fermented buttermilk products with Lc. lactis subsp. lactis and chemical 

preservatives (potassium sorbate, calcium propionate and vinegar) was found 

to inhibit the growth of the food pathogenic strains depending on the 

compounds tested and targeted bacteria. Lactic acid has effects on the 

membranes of bacteria by forming pores on it, which results in inhibition or 

death of the bacteria (Delves-Broughton, 2005). According to the LAB and their 

bacteriocins, the results are similar with findings Cizeikiene et al. (2013) which 

they showed that the metabolites of LAB have inhibitory activities against food 

pathogenic bacteria, belonging to Bacillus, Pseudomonas, Escherichia and 

Listeria genera in various degrees. LAB have an ability to ferment foods and 

produce several antimicrobial activities which affects food pathogenic bacteria 

in food products (De Vuyst and Leroy, 2007).  

Fermented buttermilk supernatants and different concentrations of nisin had 

influenced on different levels of spores of Bacillus cereus, which it is more 

sensitive to fermented BM1 and nisin at 9 and 12µg/ml (Table 3.6). The results 

agreed with Jenson et al. (1994) who found the Bacillus cereus spores 

sensitivity to nisin and Delves-Broughton (2005) who demonstrated that nisin-

produced from Lc. lactis subsp. lactis has an antimicrobial activity against 

Gram-positive bacteria and the spore forming of bacteria. Lc. lactis produces 

acids which rapidly lower the pH and inhibit the development of undesirable 

microorganisms. The inhibitory activity of fermented BM supernatants against 

food pathogenic strains may belong to antimicrobial substances which produced 

by Lc. lactis subsp. lactis during fermentation. Nisin-producing by Lc. lactis was 

reported as bio-preservative against Bacillus cereus in cooked rice and in milk 
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(Penna et al., 2002). Nisin is less effective on Gram-negative bacteria, as the 

outer membrane disables the entry of this molecule to the site of action 

(Boziaris and Adams, 2001; Lee et al., 2003). The differential antimicrobial 

activity of fermented BM supernatants and pure nisin may belong to un-purified 

fermented BM supernatants. Cintas et al. (1998) observed increase in nisin 

activity after the purification and related to the removal of inhibitors of 

bacteriocin activity during the purification and/or to a conformational change of 

the molecule to a more active form in the hydrophobic solvent. 

The addition of chemical preservatives and nisin additive was found to have 

inhibitory activities on all food pathogenic strains, which is concentration 

dependent. This result is similar to those from previous studies that observed 

the effect of chemical preservatives in inhibiting the growth of foodborne 

pathogenic bacteria, also with increasing the concentrate of chemical 

preservatives due to decrease in the growth of pathogenic bacteria (Pranoto et 

al., 2005; Oladapo and Abiodun, 2014).  

Further studies are needed for gathering the knowledge about the application of 

fermented BM with starter culture Lc. lactis and its bacteriocin as an 

intermediate ingredient for making bread products. This is to understand the 

effect of the fermented BM directly on the bread product including the quality 

changes and shelf life by preventing the growth of undesirable microorganisms. 
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3.5 Conclusion 

This study revealed that BM products fermented with Lactococcus lactis subsp. 

lactis and commercial nisin (3, 6, 9, 12µg/ml) has different activities on some 

food pathogenic bacteria using in-vitro method. The lowest value of pH and the 

highest TA value in the experimental preparation in this study were found in the 

fermented BM1, which might be due to the conversion of sugars in the BM 

through fermentation to organic acids at different levels as the Lc. lactis subsp. 

lactis is homo-fermentative. Levels of 9 µg/ml of nisin had an inhibitory activity 

against some food pathogenic bacteria equivalent to 900 ppm of both 

potassium sorbate and vinegar with 600ppm of calcium propionate which they 

are used as preservatives in bread production. Additionally, the fermented BM1 

and nisin at 9 and 12µg/ml demonstrated the highest inhibitory activity against 

some food pathogenic bacteria and Bacillus cereus spores. Moreover, the 

fermented BM1 had an inhibitory activity equivalent to 9µg/ml of nisin. 

Consequently, further studies are needed to evaluate the effect of adding 

fermented BM1 and 9µg/ml of nisin directly to the bread crumpet formulations 

(instead of using chemical preservatives), which might be suitable for increasing 

the safety, quality, texture, colour changes and extending the shelf life with 

delaying staling of bread crumpet, this has been demonstrated as discussed in 

the next chapter. 
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CHAPTER FOUR 

Effects of bacteriocin produced by Lactococcus lactis subsp. lactis, and 

fermentation of Buttermilk products on the shelf life and safety of bread 

crumpets 

4.1 Introduction 

LAB are the most important bacterial group used in the fermentation of dairy 

products such as yogurt, cheese, sour milk and butter. Also in fermented meats, 

and also in combination with yeast are commonly used to ferment cereal 

products such as sourdoughs (Lavermicocca et al., 2000; Ryan et al., 2008; 

Ravyts et al., 2012). LAB can be utilised as a starter culture in the bread 

industry, which increases the sensory properties and prolongs the shelf life and 

also delay bread staling during storage period of bakery products (Plessas et al., 

2008). However, the shelf life among breads are different, for example Axel et al. 

(2015) reported that the shelf life of quinoa breads (gluten-free sourdough bread) 

containing Lb. amylovorus fermented sourdough increased for 4 days compared 

to the non-acidified control. Nowadays, consumers are aware of the health 

concerns regarding food additives; the health benefits of “natural” and 

“traditional” foods, processed without any addition of chemical preservatives, 

are becoming more attractive. One of the alternatives to satisfy this request are 

bacteriocins, which are antimicrobial peptides produced by a large number of 

bacteria, including LAB, normally acting against closely related and some 

spoilage and disease-causing Gram-positive pathogens e.g. Bacillus sp., 

Clostridium sp. and Staphylococcus aureus (Balciunas et al., 2013). For this 

reason they are used in several applications, among which are biopreservation, 

shelf-life extension, clinical antimicrobial action and control of fermentation 
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microflora (Balciunas et al., 2013). Parada et al. (2007) reported that bio-

preservation systems in food products are of increasing interest by the 

manufacturer and the consumers in recent years.  

Bread is one of the most essential products of wheat flour in the world 

especially in the developing countries (Plessas et al., 2008). Crumpets are an 

unsweetened bakery good, popular in the United Kingdom, Australia and New 

Zealand. Commercially crumpets properties are non-acid pH (pH 6-9), high 

moisture (48–56%) and high water activity (0.95–0.99) (Delves-Broughton, 2005; 

Koukoutsis et al., 2005). In general, the product is sold at ambient temperature 

and has a shelf life of five days and it is changed based on preservatives use. 

Because of these properties, crumpets have been involved in food poisoning 

due to growth and toxin production by Bacillus cereus during storage at ambient 

temperature (Jenson et al., 1994). Bacillus cereus produces one emetic toxin 

(intoxication) and three different enterotoxins (diarrhoeal infection) (Granum and 

Lund, 1997). The intoxication is occurred in rice cooked for a time and 

temperature insufficient and when is improperly stored in order to kill any spores 

present. It can produce a toxin cereulide if the vegetative cell count exceeds 105 

CFU/g, which is not inactivated by later reheating. This form leads to nausea 

and vomiting 1-5h after consumption (Watson, 1998). A diarrhoeal infection is 

due to the ingestion of bacterial cells which produce enterotoxin in the small 

intestine. This infection occurs when Bacillus cereus levels exceed 106 CFU/g in 

the food and sufficient amounts of the enterotoxin are formed in the small 

intestine of the host. Two of the three enterotoxins are proved to be involved in 

food poisoning. Both of them consist of three different proteins that interact. 
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This form leads to abdominal pain, diarrhoea and nausea 8-16h after 

consumption (Granum, 1994; Granum and Lund, 1997).  

The Regulation (EC) No. 2073/2005 differentiates the general microbiological 

criteria for the food safety hygiene and the process hygiene which indicates 

whether or not the production process is operating in a hygienic manner. They 

are applicable to foodstuffs placed on the market during their shelf life. Although 

European regulations do not provide specific criteria for Bacillus cereus, the 

Regulation (EC) No. 1441/2007 introduced a requirement for presumptive 

Bacillus cereus in dried infant formulae and dried dietary foods for special 

medical purposes intended for infants below six months of age. This criterion is 

applicable at the end of manufacturing. 

The main component of crumpet formulations is flour which may invariably 

contain low numbers of Bacillus cereus spores. Baking kills vegetative micro-

organisms and mould spores, but cannot destroy bacterial spores. After the hot 

plate cooking and during the 3–5 days when the crumpets are stored at ambient 

temperature, cells could grow to levels of public health concern (105 CFU/g) 

which can be sufficient to cause food poisoning (Jenson et al., 1994; Smith et 

al., 2002) by toxin production, but other health risks are explained in Section 1.9. 

In some cereal products, and particularly bread made without dough 

acidification, the combination of the hurdles pH (5.4±6.0) and Aw (0.94±0.97) 

may still allow growth of some Bacillus strains (Zeuthen and Bøgh-Sørensen, 

2003). Control of Bacillus cereus spores in crumpets can be achieved through 

low temperature storage and most commonly through the use of chemical 

preservatives such as sorbic and propionic acids and their salts. Nisin, a 

bacteriocin produced by Lc. lactis, is also permitted as a preservative to control 
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the growth of Bacillus cereus in crumpets. Addition of nisin to the batter mix at 

3.75 mg/kg to prevent the growth of Bacillus cereus spore has received 

regulatory approval in Australia and New Zealand (Jenson et al., 1994). Also, it 

is permitted as a food preservative by FSA in the UK. Bread crumpets were 

used in this study because of the food poisoning outbreak caused by Bacillus 

cereus, to keep them safe for longer shelf life, delay staling and increase the 

quality by adding BM fermented with Lc. lactis subsp. lactis. Moreover, preserve 

bread crumpets by bio-preservatives instead of using chemical preservatives. 

The aims of this study were: 

 To investigate the potential changes on crumpets texture properties and 

sensory attributes after treatments with fermented buttermilk product by Lc. 

lactis and natural preservative nisin  

 To investigate the effects of buttermilk product fermented by Lc. lactis and 

natural preservative nisin on the colour of bread crumpets 

 To assess the ability of natural preservative nisin and fermented buttermilk 

product to kill or restrict the growth and proliferation of pathogenic and 

spoilage microorganisms, to improve safety and shelf life of crumpets 

 

4.2 Materials and Methods 

4.2.1 Preparation of bread crumpets 

The crumpets were prepared as described by Daifas et al. (2003) with some 

modifications. Four types of English-style crumpets were used in the study as 

follows: and the project of experiment was done as shown in Figure 4.1. 
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CON = Control group (Standard crumpets without additive). 

NIS= Standard crumpets with added natural preservative nisin (9 µg/g of batter). 

NFBM= by using buttermilk (non-inoculated crumpets) 

FBM= with fermented buttermilk (inoculated crumpets with Lc. lactis subsp. 

lactis) at 30ºC for 24h with 109 cells/ml. 

 

Figure 4.1: The experimental design 

 

4.2.2 Basic ingredients and crumpet Formulation 

Bread making: the formulation were made by mixing 450g strong white bread 

flour, 8g salt, 8g sugar, 12g dried active yeast, 70g skim milk powder, 630g 

water. Skim milk powder was replaced by the same amount of buttermilk in 

NFBM and FBM treatments as shown in the Table 4.1. 
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Table 4.1: Treatment formulations* of bread crumpets (g/100g of mixture) 

Ingredients 

Treatment** 

CON NIS NFBM FBM 

Skim milk powder 5.94 5.94 - - 

Buttermilk powder (BM1) - - 5.94 5.94 

* Strong white bread flour (38.2g/100g of the mixture), Salt (0.67g/100g of the 

mixture), Sugar (0.67g/100g of the mixture), Dried active yeast (1.00g/100g 

of the mixture), Water (53.5g/100g of the mixture) 

** CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 

buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 

 

4.2.3 The procedure of making bread crumpet 

Skim milk and water were heated to 40°C in a pan for the CON and NIS 

treatments and skim milk powder was replaced by buttermilk for NFBM and 

FBM treatments, when the buttermilk in FBM treatment was fermented with Lc. 

lactis subsp. lactis for 24h at 30ºC. The liquid were then poured into a bowl and 

sugar and yeast were added on to the liquid, the mixture were stirred well and 

left in a warm place for about 10-15min so the mixture started to ferment to get 

a good frothy head. Flour and salt were added into the mixture and stirred 

together with a wooden spoon to get a smooth batter (9 µg/g of nisin was added 

to the batter of NIS treatment and stirred well). The batter were covered and left 

in a warm place for about one hour until the batter looked creamy and frothy. 

For cooking the crumpet, the inner surface of the metal rings and the frying pan 

were greased over the heat, the rings were arranged in the frying pan. When 
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the temperature reached around 150ºC, 50g of crumpet batter was poured into 

each ring, after a while, crumpets started to bubble and formed holes on the 

surface which indicate that the crumpet is setting. Later, the crumpets were 

cooked for 5-6min then flipped. After that, the ring and the crumpet were 

separated and cooked for one more minute. Finally, crumpets were cooled to 

room temperature and stored in polyethylene bags then kept in room 

temperature. 

 

4.2.4 Physical and chemical properties of crumpets 

4.2.4.1 PH and TA values 

The pH of batter before baking, and bread crumpets were measured every two 

days during storage until they were spoiled as described in Section 2.7.1. To 

measure the TA, the solutions of bread samples were prepared for pH value 

and then titrated against 0.1N NaOH with phenolphthalein indicator. TA was 

expressed as lactic acid percent as described in Section 2.7.2. 

4.2.4.2 Water activity measurement for bread samples 

Water activity for bread crumpet samples was determined every two days at 

storage up to spoiled were determined as described in Section 2.7.3. 

 

4.2.4.3 Measuring the colour of bread crumpets 

The colour of bread crumb and crust was measured as mentioned in Section 

2.7.4. 
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4.2.4.4 Measuring firmness and springiness of bread crumpets 

Bread texture was analysed to assess firmness and springiness (elasticity) 

using texture analyser (TA-TX2-Stable Micro System, UK) calibrated with a 5Kg 

weight. Circles of bread (20mm diameter) were taken from the bread and tested. 

The settings were used as pre-test speed: 1.0mm/s; test speed: 1.0mm/s; post-

test speed; 10mm/s; return distance: 5mm; auto 5g trigger force and a 36mm 

diameter cylindered probe with radius (P/36R) were used. Texture analysis was 

measured every two days during storage of bread samples. Six replicates were 

measured for each treatment. 

 

4.2.4.5 Image analysis based measurement of bread porous structure 

Bread crust crumpets were photographed with a digital camera (Sony Cyber 

shot DSC-HX30V, Japan). The images were analysed using the software Image 

J version 1.49 (Braadbaart and Van Bergen, 2005; Datt et al., 2007) that uses 

the contrast between the two phases (pores and solid part) in the image. The 

image was firstly converted to grey scale, and then the images were stored in a 

format of 3256×3225pixels. Using bars of known lengths, pixel values were 

converted into distance units. After adjusting the threshold, area-based pore 

size distribution, median pore diameter and pore area as fraction of total area 

were determined using the software image J. Measurements were performed in 

triplicate.  
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4.2.5 Microbial shelf life determination of bread crumpets  

Crumpets were taken aseptically for microbiological analysis (aerobic plate 

count (APC), mould and yeast counts and Bacillus cereus) as described in 

Section 2.7.5.  

 

4.2.6 Sensory evaluation 

Samples of crumpets; control (no additives), crumpets with NIS, NFBM and 

FBM were subjected to sensory evaluation by 33 panellists as described in 

Section 2.8. 

 

4.2.7 Statistical Analysis 

All data were analysed statistically as detailed in Section 2.9. 
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4.3 Results 

4.3.1 pH and TA values of bread crumpets 

Bread samples were produced using fermented buttermilk with Lc. lactis subsp. 

lactis and compared to samples including non-inoculated buttermilk, natural 

preservative nisin, and Control. The pH and TA values of bread batter and 

bread crumpets are shown in Table 4.2. There were significant differences 

(P<0.05) in pH and TA values between treatments. The pH values varied from 

5.43 to 5.95 and TA values varied from 0.25 to 0.39mg/100mg for bread batter 

after 1h fermentation. Whereas the pH values ranged from 5.63 to 6.26 and TA 

values from 0.19 to 0.33 for bread crumpets after made directly. The pH of 

bread batter and bread crumpets with FBM was lower than other treatments, 

while the TA values were higher than the other treatments. 

The pH and TA values of bread crumpet samples during storage period at room 

temperature are shown in Table 4.3. In each time point of storage, the pH 

values of the bread with FBM was decreased and TA was increased 

significantly (p˂0.05) compared to the other treatments. No significant change 

was found in pH and TA values between bread crumpets with NIS and NFBM 

over 6 days of storage. There were no significant differences in TA between 

control and bread with NIS over 6 days of storage. The pH values had 

decreased significantly (P<0.05) for all treatments over 8 days of storage at 

room temperature. Microbial growth was observed on the surface of the control 

crumpet bread and crumpets with NFBM on day 8 of storage, so they were 

discarded and removed from the test. 
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Table 4.2: pH and TA values* of bread batter and bread crumpets with added 

natural preservative nisin and fermented buttermilk product 

Treatment** 

Bread batter  Bread crumpets 

pH 
TA 
(mg/100mg) 

 pH 
TA 
(mg/100mg) 

CON 5.95±0.02 a 0.25±0.02 a  6.26±0.01 a 0.19±0.01 a 

NIS 5.91±0.02 ab 0.26±0.02 ab  6.19±0.01 b 0.22±0.02 ab 

NFBM 5.89±0.005 b 0.29±0.01 b  6.22±0.01 ab 0.24±0.01 b 

FBM 5.43±0.02 c 0.39±0.02 c  5.63±0.02 c 0.33±0.01c 

* Mean values from three replicates ± standard deviations (ANOVA was 

followed by Turkey’s test). a-c Means in each column with different 

superscripts are significant different (P<0.05). 

** CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 

buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 
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Table 4.3: Development of pH and TA (mg/100mg) values* of bread crumpets after 0, 2, 4, 6 and 8 days of storage at room 

temperature 

Parameter Treatment1 
Time (days) 

0 2 4 6 8 

pH CON 6.26±0.01 aA 6.25±0.01 aA 6.22±0.01 aAB 6.19±0.01 aB Spoiled2 

 NIS 6.19±0.01 bA 6.17±0.01 bA 6.16±0.01 bA 6.15±0.01 bAB 6.11±0.01 aB 

 NFBM 6.22±0.01 abA 6.20±0.01 bAB 6.27±0.01 bBC 6.15±0.01 bC Spoiled 

 FBM 5.63±0.02 cA 5.63±0.01 cA 5.61±0.01 cAB 5.61±0.01 cAB 5.59±0.01 bB 

TA CON 0.19±0.01 cA 0.19±0.01 cA 0.19±0.01 cA 0.20±0.01 cA Spoiled 

(mg/100mg) NIS 0.22±0.02 bcA 0.22±0.02 bcA 0.22±0.01 bcA 0.22±0.01 bcA 0.22±0.17 bA 

 NFBM 0.24±0.01 bA 0.24±0.01 bA 0.24±0.02 bA 0.25±0.02 bA Spoiled 

 FBM 0.33±0.01aA 0.34±0.01 aA 0.34±0.01 aA 0.34±0.01 aA 0.35±0.01 aA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-c Means in the same column 

with different superscripts are significantly different (P<0.05). A-C Means in the same row with different superscripts are not 

significantly different (P<0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented buttermilk and FBM: Fermented buttermilk with Lc. lactis 

subsp. lactis 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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4.3.2 Water acidity of bread crumpets  

Changes in the water activity values of bread crumpet samples during storage 

period at room temperature are shown in Table 4.4. There were significant 

differences (P<0.05) between the treatments (CON-FBM) during day 0 and 2 of 

the storage. For the day 4 and 6 of the storage period, there were no significant 

differences between control and crumpets with NFBM, as well as between 

crumpets with nisin and crumpets with FBM. The water activity of crumpets with 

FBM and nisin was significantly lower than the other treatments. Over the 

storage period, water activity did not change significantly. 
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Table 4.4: Water activity* of bread crumpets with added nisin and FBM after 0, 2, 4, 6 and 8 days of storage at room temperature 

Treatment1 

Time (days) 

0 2 4 6 8 

CON 0.95±0.00 a 0.95±0.00 a 0.95±0.00 a 0.95±0.00 a Spoiled2 

NIS 0.93±0.00 c 0.93±0.00 c 0.93±0.00 b 0.93±0.00 b 0.93±0.01 a 

NFBM 0.94±0.00 b 0.94±0.00 b 0.94±0.01 a 0.95±0.01 a Spoiled 

FBM 0.92±0.00 d 0.92±0.00 d 0.92±0.00 c 0.92±0.01 b 0.92±0.00 b 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-d Means in the same column 

with different superscripts are significantly different (P<0.05). ANOVA followed by Tukey’s test with row are not significantly 

different (P>0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented buttermilk and FBM: Fermented buttermilk with Lc. lactis 

subsp. lactis 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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4.3.3 Firmness and springiness of bread crumpets 

Changes in the firmness and springiness of bread crumpet samples during the 

storage period at room temperature are shown in Table 4.5. In each time point 

of storage, firmness of the bread with FBM was decreased and springiness was 

increased significantly (p˂0.05) comparing to the other treatments. Over 2 days 

of storage, there were no significant differences in firmness and springiness 

between crumpets with NIS and NFBM, and no change happened to the 

firmness and springiness between control and crumpets with NFBM on day 2 of 

storage. Day 4, there were no significant differences (P>0.05) in firmness 

between control and crumpets with FBM. Day 6, there were significant 

differences in firmness between all the treatments. On days 2, 4 and 6, no 

changes happened to the springiness of the control and crumpets with NFBM. 

On day 8, firmness and springiness did not change significantly between 

crumpets with NIS and FBM. Microbial growth was observed on the surface of 

control and crumpets with NFBM on day 8, so they were discarded and 

removed from the test. Furthermore, there were significant increases (p˂0.05) in 

the firmness and decrease in the springiness to all treatments at all days of 

storage except firmness of FBM between day 0 and 2, also springiness of 

crumpets with nisin and FBM between day 6 and 8, and NFBM between day 4 

and 6. The use of a strain of LAB with particular characteristics appears to be a 

fundamental requisite to delay hardness. The use of FM by Lc. lactis may have 

been responsible for the decreased firmness. Organic acids produced by LAB 

have proved to have a beneficial effect on texture and staling which affect the 

protein and starch fractions and reduce the pH that results in an increase in 

protease and amylase activities of the flour, thus reducing staling. 
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Table 4.5: Firmness and springiness* of bread crumpets after 0, 2, 4, 6 and 8 days of storage at room temperature 

Parameter Treatment1 
Time (days) 

0 2 4 6 8 

Firmness (g) CON 113.64±9.43 aD 140.57±9.72 aC 221.26±5.58 aB 270.86±8.7 aA Spoiled2 

 NIS 79.49±6.9 bcE 107.53±12.59 bcD 179.78±13.81 bC 242.78±5.61 cB 275.09±7.78 aA 

 NFBM 91.92±8.06 bD 121.28±18.08 abC 213.08±9.14 aB 256.66±3.73 bA Spoiled 

 FBM 76.79±10.52 cD 93.19±6.46 cD 140.74±7.15 cC 225.29±10.38 dB 265.27±14.97 aA 

Springiness (%) CON 53.09±4.38 cA 42.85±2.88 cB 27.13±0.69 cC 22.17±0.69 cD Spoiled 

 NIS 75.95±6.55 abA 56.43±6.53 abB 33.55±2.81 bC 24.72±0.56 bD 21.82±0.62 aD 

 NFBM 65.67±5.51 bA 50.35±7.11 bcB 28.20±1.19 cC 23.38±0.34 cC Spoiled 

 FBM 79.36±10.76 aA 64.65±4.76 aB 42.72±2.14 aC 26.68±1.31 aD 22.68±1.36 aD 

* Mean values from six replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-d Means in the same column with 

different superscripts are significantly different (P<0.05). A-E Means in the same row with different superscripts are not significantly 

different (P>0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented buttermilk and FBM: Fermented buttermilk with Lc. lactis 

subsp. lactis 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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4.3.4 Colour of bread crumpets 

Whiteness crust (top and bottom) and crumb of bread crumpets are shown in 

Table 4.6. L* (lightness) a* (redness) and b* (yellowness) of crust (top and 

bottom) and crumb of bread crumpets were measured as shown in Figure 4.2. 

Colour analysis of the crust top indicated that crumpets with FBM had 

significant (P<0.05) lower whiteness and lightness comparing to the control. 

The crumpets with NIS and NFBM had no significant difference (P>0.05) in 

whiteness and lightness when compared to the control and crumpets with FBM 

except crumb colour of crumpets with NFBM and FBM. There were no 

significant differences of crust bottom whiteness and lightness between all the 

treatments. The whiteness and lightness of the crumb bread with FBM was 

significantly lower in comparison with the control and crumpets with NFBM. 

There were no significant differences for whiteness crumb colour among control, 

crumpets with NIS and NFBM (Table 4.6 Figure 4.2). There were no significant 

differences of the redness crust (top and bottom) and crumb colour between all 

the treatments. According to the yellowness, there were no significant 

differences of crust top colour between all the treatments, whereas the crust 

bottom of crumpets with FBM had higher yellowness than control. Furthermore, 

there were no significant differences of crumb colour crumpets with FBM in 

comparison with the other treatments (Figure 4.3). 
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Table 4.6: Whiteness crust and crumb* of bread crumpets with added nisin and 

fermented buttermilk product 

Treatment** 
Crust colour 

Crumb colour 
Top Bottom 

CON 59.24±4.03 a 43.56±3.24 62.65±1.89 a 

NIS 55.59±3.77 ab 42.43±3.80 60.72±1.72 ab 

NFBM 57.69±2.07 ab 42.74±3.42 62.27±1.52 a 

FBM 54.06±3.81 b 42.00±4.16 59.53±2.43 b 

* Mean values from nine replicates ± standard deviations (ANOVA was followed 
by Turkey’s test). a, b Means within a column with different superscripts differ 
significantly (P<0.05). 

** CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 
buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 

 

Figure 4.2: Lightness (L) for crust (top, bottom) and crumb of crumpets. Mean 

values from nine replicates ± standard deviations (ANOVA followed by Turkey’s 

test). a-b Within parameter, means with different superscripts are significantly 

different (P<0.05) 
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Figure 4.3: Colour (a*) redness and (b*) yellowness values for crust (top and 

bottom) and crumb of crumpet samples. Mean values from nine replicates ± 

standard deviations (ANOVA followed by Turkey’s test). a-b Within same 

parameter,means with different superscripts are significantly different (P<0.05) 
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Figure 4.4: Illustration of how the software Image J uses contrast in the image 

to find the edges of pores and defines the regions representing voids before 

measuring their areas 
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4.3.5 Image analysis based measurement of bread porous structure 

The photograph images of bread crumpets and pore area of bread crumpets 

(n=3) are extracted with the image J software to grey scale as shown in Figure 

4.5. The pore area distributions obtained for bread crumpets also shown. The 

percentage of 0.5 mm diameter of control crumpets pore size was higher than 

the other treatments. From the cumulative data of each treatment, about 42% of 

the pore size had diameter above 1 mm in control, 53.67 and 56.24% to the 

crumpets with NIS and NFBM respectively. While about 71.85% of the pore size 

had diameter above 1 mm in bread crumpets with FBM. 

 

 

Figure 4.5: Pore size distributions obtained using image analysis of bread 

crumpets with added nisin and fermented buttermilk product 

* CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 

buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 
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4.3.6 Shelf life of bread crumpets  

The shelf life of treatment samples was determined as microbial growth during 

storage at room temperature, shown in Table 4.7, 4.8 and 4.9 between all 

(CON–FBM). The level of aerobic plate count (APC) was observed in all bread 

samples (Table 4.7). In all day of storage, the growth of APC in control and 

crumpets with NFBM was significantly (P<0.05) higher compared to the other 

treatments. There were no significant differences between control and crumpets 

with NFBM over spoiled breads except day 2 of storage. 

Crumpets with FBM had a significantly (P<0.05) lower APCs in comparison with 

the other treatments after 8 days of storage at room temperature. APCs 

increased significantly during storage in all treatments. Microbial growth was 

observed on the surface of control and crumpets with NFBM on day 8, 

prompting removal from the test. 

The mould and yeast colony counts in bread crumpets over storage period at 

room temperature are shown in Table 4.8. Moulds and yeasts were not 

observed in the crumpets with NIS and FBM over 2 days of storage at room 

temperature. Moulds and yeasts were observed in the control and crumpets 

with NFBM on day 8 of storage. The number of mould and yeast counts in 

crumpets with FBM was significantly (P<0.05) lower than the other treatments 

over 8 days of storage at room temperature. Mould and yeast did not change 

significantly between control and crumpets with NFBM during storage at room 

temperature. Over the storage period, moulds and yeasts increased significantly 

for all treatments. 
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Table 4.7: Aerobic plate count* (APC) of bread crumpets after 0, 2, 4, 6 and 8 days of storage at room temperature (Log10CFU/g) 

Treatment1 

Time (days) 

0 2 4 6 8 

CON 4.11±0.03 aD 5.12±0.02 aC 5.32±0.01 aB 5.97±0.05 aA Spoiled2 

NIS 3.92±0.02 bE 4.32±0.01 cD 4.96±0.03 bC 5.35±0.01 bAB 5.83±0.03 aA 

NFBM 4.16±0.03 aD 5.04±0.02 bC 5.27±0.01 aB 5.92±0.05 aA Spoiled 

FBM 3.81±0.05 cE 4.27±0.01 dD 4.83±0.04 cC 5.05±0.03 cB 5.73±0.02 bA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-d Means in the same column 

with different superscripts are significantly different (P<0.05). A-D Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented buttermilk and FBM: Fermented buttermilk with Lc. lactis 

subsp. lactis 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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Table 4.8: Moulds and yeasts* of bread crumpets after 0, 2, 4, 6 and 8 days of storage at room temperature (Log10CFU/g) 

Treatment1 

Time (days) 

0 2 4 6 8 

CON n.d.2 3.58±0.06 aC 3.91±0.01 aB 4.31±0.02 aA Spoiled3 

NIS n.d. n.d. 2.91±0.03 bC 3.57±0.04 bAB 4.11±0.01 aA 

NFBM n.d. 3.52±0.03 aC 3.85±0.01 aB 4.26±0.02 aA Spoiled 

FBM n.d. n.d. 2.73±0.04 cC 3.53±0.03 bB 4.04±0.02 bA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-d Means in the same column 

with different superscripts are significantly different (P<0.05). A, B Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented buttermilk and FBM: Fermented buttermilk with Lc. lactis 

subsp. lactis 

2 n.d.: not detected, the detection limit was <10 

3 Spoiled: Microbial growth was observed on the surface of the breads 
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Table 4.9 shows the growth of Bacillus cereus in bread crumpets during storage 

periods at room temperature. Bacillus cereus was not detected in all the 

treatment until day 6 of storage except control bread and crumpets with NFBM, 

which were grown on day 6 of storage at room temperature. Crumpets with 

FBM had a significant (P<0.05) lower number of Bacillus cereus in comparison 

with the other treatments on the day 7 and 8 of storage. Bacillus cereus counted 

significantly in all treatments during storage periods at room temperature. 

Microbial growth was observed on the surface of the breads, so they were 

tested. Aerobic colony counts in bakery products is satisfactory at the level of 

<104 CFU/g. While, the Bacillus cereus is satisfactory at the level of <103 CFU/g 

as reported by HPA (2009). The crumpets with FBM and NIS separately had a 

shelf life of 8 days. While the other treatments had a shelf life of 6 days when 

tested for the level of APC, mould and yeast colony counts and growth of 

Bacillus cereus. This extend is probably due to the activity of Lc. lactis and their 

metabolites during fermentation of buttermilk and also adding nisin-produced by 

Lc. lactis directly to the crumpets which they have antimicrobial activity against 

food pathogenic and spoilage microorganisms. 
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Table 4.9: growth of Bacillus cereus* of bread crumpets after 6, 7 and 8 days of 

storage at room temperature (Log10CFU/g) 

Treatment1 
Time (days) 

6 7 8 

CON 2.77±0.05 aA 3.28±0.03 cB Spoiled3 

NIS n.d.2 2.68±0.04 bA 2.94±0.03 bB 

NFBM 2.67±0.05 aA 3.25±0.01 cB Spoiled 

FBM n.d. 2.54±0.04 aA 2.63±0.04 aB 

* Mean values from three replicates ± standard deviations (ANOVA was 

followed by Turkey’s test). a-c Means in the same column with different 

superscripts are significantly different (P<0.05). A, B Means in the same row 

with different superscripts are significantly different (P<0.05). 

1 CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 

buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 

2 n.d.: not detected, the detection limit was <10 

3 Spoiled: Microbial growth was observed on the surface of the breads 

 

4.3.7 Sensory evaluation 

From the six sensory attributes evaluated, there were no any significant 

differences (P>0.05) in all attributes such as overall appearance, aroma, texture, 

flavour, acidity and overall acceptability. The average rank of 33 panel 

evaluation from each sensory attributes are shown in Figure 4.6 and pairwise 

comparisons for the sensory attributed was used for comparison between 

treatments as overall appearance and overall acceptability are shown in Figure 

4.7. 
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Figure 4.6: Average rank of the sensory evaluation for overall appearance, 

aroma, texture, flavour, acidity and overall acceptability of bread crumpets with 

added natural preservative nisin and fermented buttermilk product 
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Figure 4.7: Pairwise comparisons of the sensory attributes (a) Overall 

appearance and (b) Overall acceptability: example of breads using Donn’s test 

 

* CON: Control, NIS: Natural preservative nisin, NFBM: Non-fermented 

buttermilk and FBM: Fermented buttermilk with Lc. lactis subsp. lactis 

  

4.4 Discussion 

The fermented buttermilk with Lc. lactis subsp. lactis and nisin additive were 

used to make crumpet breads to improve the bread properties and increase the 

safety and the shelf life due to reducing growth of pathogenic microorganisms 

and bacterial sporulation of crumpet breads. 

The pH of bread batter and bread crumpets with FBM was lower and TA was 

higher than the other treatments. Furthermore, the pH value of the bread with 

FBM was decreased and TA was increased significantly comparing to the other 
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treatments in each time point of storage. The change in pH level of the batter 

and bread crumpets with FBM may be due to adding fermented buttermilk with 

Lc. lactis subsp. lactis (homo-fermentative LAB) to the batter, which might 

cause a pH decrease of the batter due to organic acids production (Walker and 

Klaenhammer, 2003; Hutkins, 2006). It may also increase the shelf life of bread 

products because of producing antimicrobial substances such as hydrogen 

peroxide, organic acids, diacetyl, bacteriocins that inhibit pathogenic organisms 

in fermented foods (Lavermicocca et al., 2000; Holzapfel et al., 2001). The 

procedure by which buttermilk was fermented with LAB to decrease pH and 

produce antimicrobial metabolites was used for making safe and stable 

crumpets. As an analogy, this was applied by Menteş et al. (2007) when instead 

of fermented buttermilk, they used sourdough fermentation to induce pH 

decrease. The pH of crumpets  for all treatments decreased during the period of 

storage. This change of the pH may to the growth of some pathogenic 

microorganisms on the bread crumpets.  

The findings of the present study indicate that the firmness of bread crumpets 

with FBM was softer and springiness was higher in comparison with the control 

and bread crumpets with NFBM. No significant changes revealed in firmness 

and springiness between crumpets with NIS and FBM on days 0, 2 and 8 of 

storage. These results are in agreement with the results of Dal Bello et al. (2007) 

who demonstrated that the crumb firmness of bread fermented by LAB is softer 

than non-acidifed bread products. Further studies by Clarke et al. (2002) and 

Corsetti et al., (2000) have shown that the breads made by adding fermented 

sourdough instead fermented buttermilk with LAB decreases the crumb 

firmness values. The different metabolites produced by LAB have proved to 
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have a beneficial effect on texture and staling. Organic acids affect the protein 

and starch fractions and reduce the pH that results in an increase in protease 

and amylase activities of the flour, thus reducing staling (Fadda et al., 2014). 

The pores percent and pores dimensional range of the crumpet breads that 

inoculated by fermented buttermilk with Lc. lactis subsp. lactis were higher than 

the other treatments that are related to the fermentation process and producing 

metabolites that affected on the crumpet breads’ pores. For the water activity, 

the results were not agreed with results of Dal Bello et al. (2007) who reported 

no significant differences between breads with regard to water activity. 

The crust top colour of the crumpets with FBM had significant (P<0.05) lower 

lightness and whiteness in comparison with the control. There were no 

significant differences on lightness and whiteness of crumb colour between 

crumpets with NIS additive, crumpets with NFBM and the control. The results 

are in agreement with Chiavaro et al. (2008) who reported that the bread with 

adding fermented sourdough had lower lightness on crust colour with no 

significant differences in the crumb colour. Changes in the crust and crumb 

colour of the crumpet bread samples may be related to the production of 

different compounds during the fermentation process.  

Rizzello et al. (2011) reported that the shelf life of bread can be extended when 

adding certain LAB strains to bread formulations. The present study showed the 

shelf life of crumpet breads using FBM and NIS comparing to the control and 

NFBM (Table 4.7-4.9). The bread crumpets with FBM and crumpets with NIS 

had a shelf life of 8 days, whereas the control and crumpets with NFBM had a 

shelf life of 6 days when tested for the level of APC, mould and yeast colony 

counts and growth of Bacillus cereus. The reason is probably due to 
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metabolites of Lc. lactis during fermentation or adding nisin-produced by Lc. 

lactis to the food products which they have antimicrobial activity against food 

pathogenic and/or spoilage microorganisms as it is presented by researchers 

(Messens and De Vuyst, 2002; Cooksey, 2005; Sivarooban et al., 2007). Based 

on available information, nisin-produced by Lc. lactis has had practical 

application as a preservative in food processing (Hansen and Sandine, 1994). 

In the same case, the similar results found from Ogunbanwo et al. (2008) who 

reported that the bread produced with addition of chemical preservative using 

yeast as starter culture had shelf life of 8 days, however, the combination of Lb. 

plantarum and Saccharomyces cerevisae extended the shelf life of bread up to 

12 days. The antimicrobial effect of nisin has been demonstrated in crumpets 

(Jenson et al., 1994), 50IU/ml of nisin was added as nisaplin which inhibited 

101-103 spores/g of five Bacillus cereus strains. The result was similar with 

findings of Kikelomo (2012) who reported that the lowest growth of APC and 

total fungal counts was observed in white layer cake with added commercial 

nisin in comparison with control sample and cake with added chemical 

preservatives. LAB have an ability to produce antimicrobial which can contribute 

in a number of ways towards improving the quality of fermented foods, for 

instance, through the control of pathogens, prolonging shelf life and improving 

sensory qualities of food products (Lavermicocca et al., 2000; Gerez et al., 

2008). 

Sensory evaluation is one of the most common and useful measurement to 

assess the quality and acceptability of food product (Elia, 2011). As the results 

of sensory evaluation have shown there were no significant differences of 

sensory attributes including overall appearance, Aroma, texture, flavour, acidity, 
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and overall acceptability between all the treatments. Whereas in previous 

studies, researchers have reported that LAB and their metabolites are 

responsible for the characteristic sensory qualities of bread (Beuchat, 1997; 

Caplice and Fitzgerald, 1999). Finally, it can be concluded that panellists 

accepted all crumpets. Whereas, there is a considerable difference between 

sensory attributes. For overall appearance, texture, flavour and overall 

acceptability crumpets with NIS and NFBM recorded the highest average rank. 

 

4.5 Conclusion 

In conclusion, the results of this study demonstrate that the fermented BM with 

Lc. lactis subsp. lactis and commercial nisin products had an influence on 

quality, delay staling and shelf life of bread crumpets product. The bread 

crumpets with fermented BM showed lower pH values, higher TA values, lower 

water activity, lower firmness and higher springiness and it effects on the pore 

size of the crumpets comparing to the other treatments. Consequently, the 

bread samples with fermented BM and nisin separately had a microbial shelf life 

of 8 days, which was longer than other treatments (6 days) based on microbial 

counts. These impacts on the bread product are due to activity of Lc. lactis 

subsp. lactis and its metabolites which are produced during fermentation of BM. 

The results of the sensory evaluation revealed that there was no change from 

the sensory attributes of all treatments. All crumpets accepted by panellists. 

Our findings from this study confirm that BM fermented with Lc. lactis subsp. 

lactis which was used for crumpet breads as a model successfully improved the 

safety and quality, decreased Aw, delayed staling and extended shelf life of 
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crumpet breads by reducing the growth of total microbial counts, moulds and 

yeasts and growth of Bacillus cereus. Therefore, it might be interesting to 

investigate the diversity of LAB and isolate them in sourdough, which helps to 

understand their role in spontaneously fermented ecosystem. Further study 

needed such as, antimicrobial activity of isolates against food pathogenic 

microorganisms to achieve the effect of starter cultures on the quality, 

palatability and shelf life of other baked goods. 
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CHAPTER FIVE 

Diversity of lactic acid bacteria from fermented dough – Potential use as 

sourdough bread starters 

5.1 Introduction 

Since it was found (Chapter 4) that BM fermented with LAB effectively improved 

the quality and shelf life of crumpet bread, when tested as a model system, it 

might subsequently be interesting to understand the role of LAB sourdough, 

which is a considerably more complex system. The diversity of LAB in such 

spontaneously fermented ecosystems can be explored, and that information 

can be used in relation to their role. An example of relevant properties of LAB is 

the antimicrobial activity against food pathogenic microorganisms, which can be 

tested in isolates. Biotechnology companies would select and evaluate potential 

starters to perform in fermentation to achieve optimum quality, palatability and 

shelf life of bread product. 

Sourdough is a mixture of flour and water fermented by LAB and yeast (Vogel 

et al., 1999; Corsetti and Settanni, 2007). The levels of the LAB are usually 

higher than 5x108 CFU/g (Ottogalli et al., 1996; De Vuyst and Neysens, 2005; 

Hansen, 2012). Sourdough is a very complex microbial ecosystem. The 

sourdough is used to improve nutritional value, sensory properties and to 

extend the shelf life of bread products because of the activity of LAB and their 

metabolites during the souring of the dough (Katina et al., 2006b; Dal Bello et 

al., 2007; Valerio et al., 2008; Kim et al., 2009). Reduction in pH is related to the 

production of organic acids, causing an increase in the proteases and amylases 

activity of the flour. This consequently reduces bread staling. While improving 
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the textural qualities of bread, sourdough fermentation also results in increased 

mineral bioavailability and reduced phytate content (Arendt et al., 2007). 

Many species of LAB have been isolated from sourdough using culture media. 

Also LAB have been identified by conventional physiological and biochemical 

methods, and through PCR fingerprinting analysis by DNA extraction from the 

pellets of pure bacterial cultures (Ravyts and De Vuyst, 2011). More LAB 

species occur in wheat and rye flour, including strains of Lactobacillus, 

Pediococcus, Enterococcus, Lactococcus, Leuconostoc and Weisella (Hammes 

and Vogel, 1995; Ehrmann and Vogel, 2005; De Vuyst and Neysens, 2005; 

Robert et al., 2006). A few less than 50 different species of LAB from sourdough 

have been reported by De Vuyst and Neysens (2005); Hammes et al. (2005) 

and Corsetti and Settanni (2007). Additionally, the majority of LAB of the genus 

Lactobacillus have been isolated from sourdoughs (Ottogalli et al., 1996; 

Corsetti et al., 2001; Corsetti and Settanni, 2007) such as Lactobacillus 

sanfranciscensis, Lb. brevis and Lb. plantarum (Gobbetti, 1998; Corsetti et al., 

2001, Corsetti et al., 2003). 

Complex fermentations involve several organisms growing in succession and 

sharing the same environment, but it is not always possible to isolate them as 

they would not grow on culture conditions. Therefore, alternative non-cultural 

approaches can be used. 

DGGE (denaturing gradient gel electrophoresis) of PCR amplicons of a 

fragment of the 16S rRNA gene (16S rRNAPCR-DGGE) is the basis for a 

molecular method which has been used to determine the variation of bacterial 
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populations in sourdoughs (Corsetti et al., 2001; De Vuyst and Vancanneyt, 

2007). 

The aim of this study was to assess the biodiversity of LAB strains from 

sourdough collection through 16S rRNA PCR-DGGE, to isolate LAB from 

sourdough samples using culture media and identify pure bacterial cultures by 

physiological and biochemical tests and through PCR fingerprinting analysis by 

DNA extraction. Moreover, it aims to investigate the potential influences of 

isolated LAB from sourdoughs on the food pathogenic microorganisms and to 

test LAB for proteolytic and amylolytic enzyme activities which are important in 

food preservation and in flavour production. The isolated LAB can be used as a 

starter culture for making sourdough bread which may improve the quality and 

shelf life of bread product. 
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5.2 Materials and Methods 

5.2.1 Sample collection 

Sourdough and bread samples (n=18) were collected from different sources as 

shown in Table 5.1, to investigate the diversity of LAB and also to isolate and 

identify LAB from sourdough collection using physiological and biochemical 

tests and molecular methods. Three commercial starter cultures with specific 

LAB were collected from Lallemand Company, France. The cultures were 

Florapan L62k containing a specific hetero-fermentative LAB strain (SD1), 

Florapan L73K containing a specific facultative (SD2) and Florapan LA4 (K), a 

blend of two selected LAB and one aromatic yeast (SD3). Fourteen fermented 

sourdough samples (SD4 to SD17, except SD9),  which were spontaneously 

fermented from different kind of flours, were used in this experiment. San-

Francisco-style sourdough bread (SD18) was collected from a supermarket 

(Marks and Spencer); which was made from San-Francisco starter and yeast 

without any additive. It was processed with sourdough samples for 

understanding the presence of LAB after the baking process. The samples were 

stored at −20°C until DNA extraction. 
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Table 5.1: The label of sourdough samples collection and producer 

samples Starter culture Kind of flour Producer 

SD1 Florapan L62k - 

Lallemand, France SD2 Florapan L73k - 

SD3 Florapan LA4 (K) - 

SD4  Wholemeal rye flour 
Red Dog Bakery, Black Torrington, 
UK 

SD5  Light rye flour 

SD6  White strong flour Cheltenham, Gloucestershire, UK 

SD7  Organic whole rye flour 
Divine Crust,  Shanklin, on the Isle of 
Wight, UK 

SD8  Organic whole rye flour Bread matters, Scotland, UK 

SD9 
Lb. sanfrancisco, 
Torulopsis Holmii 

organic brown rice Yemoos, Utah 84092, United States 

SD10  White strong flour 
Hobbs House Bakery, South 
Gloucestershire, UK 

SD11  
Organic white bread 
flour 

Eastcourt Manor, Gillingham, Kent, 
UK 

SD12  Rye flour 
Pure Nature GmbH, Zur Rothheck 
1455743 Idar-Oberstein, Germany 

SD13  Organic white flour Sturgis, South Dakota, United States 

SD14  
Unbleached all-
purpose flour 

Gold rush sourdough, Ladson, South 
Carolina, United States 

SD15  wholegrain rye flour Wooloowin, QLD, Australia 

SD16  
Hard white flour with 
sourdough culture 

Bakery Bits Ltd, Honiton - Devon, UK 

SD17  White strong flour 
Column Bake-house, Plymouth - 
Devon, UK 

SD18  
San-Francisco 
sourdough bread 

Marks and Spencer, Plymouth - 
Devon, UK 

 

 

http://www.tripadvisor.co.uk/Restaurant_Review-g186258-d5443095-Reviews-Column_Bakehouse-Plymouth_Devon_England.html
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5.2.2 Molecular microbial method 

5.2.2.1 Bacterial DNA extraction by DNeasy mericon Food Kit method for 

sourdough samples 

DNeasy mericon Food Kit (Qiagen, West Sussex, UK) was used for DNA 

extraction from sourdough samples. 200mg homogenised sourdough samples 

were placed in a sterilised micro-centrifuge tube. One ml Food Lysis Buffer and 

2.5μl Proteinase K solution were added to the sourdough sample, well mixed 

and incubated for 30min at 60°C and shaken every 5min; the samples were 

cooled on ice after incubation. The samples were centrifuged at 2500xg for 

5min. The maximum volume of clear supernatant from lysis tube was drawn into 

one micro-centrifuge tube, without disturbing the inhibitor precipitate at the 

bottom at the tube, and mixed by pipetting up and down several times to ensure 

a homogeneous solution. 500μl of chloroform was pipetted into a new 

microcentrifuge tube. Then 700μl of the clear supernatant pool was transferred 

to the microcentrifuge tube containing the chloroform and mixed for 15 seconds 

by vortexing, then centrifugation at 14000xg for 15min. 350μl of the upper 

aqueous phase of the mixture was added to 350μl of Buffer PB into a fresh 

microcentrifuge tube and mixed thoroughly by vortexing. 

The samples were pipetted into the QIAquick spin column which was placed in 

a 2ml collection tube. The samples were centrifuged at 17,900xg for 1min and 

the flow-through discarded. Then after 500μl Buffer AW2 was added to the 

QIAquick spin column, it was subjected to further centrifugation at 17,900xg for 

1min to discard the flow-through. The collection tubes were reused for 

centrifugation again at 17,900xg for 1min to dry the membrane. 
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The QIAquick spin column was transferred to a microcentrifuge tube and 150μl 

Buffer EB was pipetted directly onto the QIAquick membrane. The samples 

were Incubated for 1min at room temperature (15–25°C), and then centrifuged 

at 17,900xg for 1min to elute and stored at 4°C. 

 

5.2.2.2 Spectrophotometric assay  

The DNA concentration (ng/μl) in the samples was determined by using a 

Nanodrop® ND-1000 spectrophotometer at a wavelength of 230nm. DNA in 

Buffer EB was used as a blank to re-zero the device. The results of DNA 

concentrations in sourdough samples were more than 20ng/μl except SD1, SD2 

and SD15 where the results were (14.5, 13.1 and 16.4) ng/μl respectively. The 

protein purity of 260/280 and humic acid of 260/230 were higher than 1.7 except 

SD1, SD9 and SD15 which were less than 1.7. The average bacterial DNA 

of >20ng/μl are good and protein purity and humic acid purity of >1.7 are good. 

 

5.2.2.3 PCR amplification (polymerase chain reaction)  

PCR amplification of the V3 region of 16S rRNA genes was undertaken with the 

reverse primer P2 (534R) (5’- ATT ACC GCG GCT GG-3’) and the forward 

primer P3 (341F+GC) with a GC clamp (5’-CGC CCG CCG CGC GCG GCG 

GGC GGG GCG GGG GCA CGG GG GCC TAC GGG AGG CAG CAG-3’). 

These primers correspond to position 341-534 in the 16S rRNA of E. coli which 

produces a fragment of 193bp. Each PCR tube contained 1μl of primer P2 and 

P3 (50pmol/μl, Eurofins MWG Operon, Germany), 3μl DNA template, 25μl of 
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Ready Mix Taq DNA polymerase (Sigma Aldrich, UK) and were made up 50μl 

with 20μl of PCR grade water. The PCR thermal cycling was conducted under 

the following conditions: 94ºC for 10min, then 30 cycles starting at 94ºC for 

1min, 65ºC for 2min, and 72ºC for 3min. The annealing temperature decreased 

by 1ºC every second cycle until 55ºC and then remained at 55ºC for the 

remaining cycles.  

 

5.2.2.4 Agarose gel electrophoresis  

Eight μl of the PCR products was separated by electrophoresis on a 1.5% 

agarose gel (Lonza, Rockland ME, USA). A mixture of 1.35g of agarose powder 

and 90ml of 1x TEA buffer (Tris/ EDTA/Acid) was dissolved using a microwave 

for 1min with periodic mixing. Eight μl of PCR product was loaded in the wells of 

the gel with 2μl of loading buffer. Ten μl of the 100bp DNA ladder (Fisher, UK) 

was used to assess the size of DNA products. The gel was run at 90volts for 

45min, and the bands were visualised with UV and photographed using a Gray 

scale digital camera CFW-1312M (Tokyo, Japan) in the Universal Hood II, BIO-

RAD Laboratories (Milan, Italy). Figure 5.1 shows the single band of DNA 

templates of the samples after PCR amplification. 
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Figure 5.1: PCR amplified product of DNA templates of the samples after PCR 

for DGGE 

                  * Key of the table as Table 5.1       N.: Negative 

 

5.2.2.5 Denaturing gradient gel electrophoresis (DGGE)  

The DGGE was made using a DGGE-2001 system (CBS scientific, USA). 

Fifteen μl of PCR products was run on acrylamide gels (16 X 16 X 0.1) cm with 

a denaturing gradient of 40-60% (where 100% denaturing are 7M urea and 40% 

formamide). A loading buffer with 200μl of gel green stain was added to the high 

gel solution (60%) to stain DNA in acrylamide gels. 100μl of ammonium per 

sulphate (APS) was added to the high and low gel solutions. 50μl of 

tetramethylethylindiamine (TEMED) was added to the gels and 16ml of both gel 

solutions were added gradually using a Bio–Rad gradient delivery system 

(model 475). A comb (20 wells) was inserted and gels were left for 20min to 

completely set. All samples were run on the same gel to prevent issues of non-
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reproducibility. The outside lanes were not used. The gel was run at 60V for 

16hr at 60ºC in 1x TAE buffer (66mM Tris, 5mM Na acetate, 1mM EDTA). 

Visualising of the DGGE band was achieved by high sensitivity and optimised 

gold staining method. The gel was soaked and incubated in fixation buffer 

(200ml 1x TAE containing 20μl SYBER safe DNA gel stain) for 25-30min on a 

shaking platform at room temperature, and scanned in a Bio-Rad Gel-Doc 

system and optimised for analysis of UV light. Bacteria were identified by 

sequencing PCR-DGGE fragments. DNA fragments of interest were excised 

aseptically from the polyacrylamide gel, under the UV light, placed in 20μl DNA 

grade water and incubated overnight at 4°C to allow elution of the DNA. 

 

5.2.2.6 Preparation of samples of DGGE bands for sequencing 

Five μl of diffusion DNA bands kept in molecular grade water overnight were 

added to a master mix which included 12.5μl of Ready Mix Taq polymerase 

(Sigma Aldrich, UK). 1μl of reverse primer P2 (534R) and 1μl of forward primer 

P1 (341F-GC), which have no GC clamp, were completed with 10.5μl of 

molecular grade water to make up 30μl for re-PCR products. The mixture runs 

using the same program of PCR-DGGE. The PCR products were cleaned after 

checking the concentration of PCR product by using QIAquick PCR purification 

kit (Qiagen, USA) to clean PCR product according to manufacturer's 

instructions. Briefly, 100μl of Buffer PB was added to 20μl of the PCR product 

and mix. QIAquick spin columns were placed in a provided 2ml collection tubes. 

The samples were added to the QIAquick columns and centrifuged for 30-

60sec., to bind the DNA, then, flow-through was discarded and the QIAquick 
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column was placed back into the same tube. 750μl of buffer PE was added to 

the QIAquick column and centrifuged for 30-60sec. to wash the samples. The 

flow-through was discarded and placed the QIAquick column back into the 

same tube, and then the column was centrifuged for an additional 1min. The 

QIAquick column was placed in a clean 1.5ml microcentrifuge tube. 30μl of 

Buffer EB (10 mM Tris·Cl, pH 8.5) was added to the centre of the QIAquick 

membrane and centrifuged for 1min to elute DNA; the DNA was then stored at 

4°C overnight. The concentration of DNA was determined by using gel 

electrophoresis. Only 5μl of diluted to 20-80ng/μl of PCR product and 5μl of one 

of the primers (5pmol/μl) in Eppendorf tube together was sent for sequencing 

centre of GATC biotechnology in Germany and the sequencing results sent via 

their website: http://www.gatc-biotech.com/en/index.html. All the obtained DNA 

sequences were manually edited using Bio Edit software (Version 7.2.5) to trim 

the sequence ends as their sequence lengths were varying. Each sequence 

was compared to those in available databases by using of the BLAST (Basic 

Local Alignment Search Tool) from GeneBank network services at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi for species identification. The major steps 

of DGGE are presented in Figure 5.2. All 16S rRNA gene sequences were 

aligned using ClustalW alignment by Molecular Evolutionary Genetics Analysis 

(MEGA) software version 6. A phylogenetic tree of the 16S rRNA gene 

sequences was constructed in MEGA 6 using a neighbour joining method with a 

P-distance as a measure of genetic distance, and bootstrap values were 

calculated with 1000 replicates. The transitions and transversions substitution 

and homogenous pattern among lineages were chosen with uniform rates 

among sites. 

http://www.gatc-biotech.com/en/index.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 5.2: The main steps of the denaturation gradient gel electrophoresis 

(DGGE) process of PCR amplified DNA 
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5.2.3 Measurement of pH and TA values of sourdough samples 

The pH and TA values of sourdough starters were determined as mentioned in 

Sections 2.71 and 2.7.2 respectively. 

 

5.2.4 Preparation of culture media 

5.2.4.1 Preparation of MRS media 

MRS was prepared as in Section 2.3.5. This was used for growth of 

Lactobacillus species. 

MRS medium was used to detect the proteolytic and amylolytic activities for 

LAB isolates. The MRS medium contained (per litre): 5g yeast extract (Oxoid 

Ltd., Basingstoke, Hampshire, England),10g peptone (Oxoid Ltd., Basingstoke, 

Hampshire, England),10g beef extract (Oxoid Ltd., Basingstoke, Hampshire, 

England), 2g K2HPO4 (Sigma-Aldrich, UK); 0.2g MgSO4-7H2O (Sigma-Aldrich, 

UK); 0.05g MnSO4-4H2O (Sigma-Aldrich, UK), 5g NaHCO3 Sodium acetate 

hydrate (Sigma-Aldrich, UK), 1ml Tween 80 (Merck, Darmstadt, Germany), 12g 

agar, with added 2g glucose (Sigma-Aldrich, UK) for proteolytic activity and 15g 

starch instead glucose for amylolytic activity. The medium was adjusted to pH 

6.5 then sterilised by autoclaving for 15min at 121ºC. 

 

5.2.4.2 Preparation of Nutrient broth 

Nutrient broth was prepared as in Section 2.3.1. This was used to prepare stock 

cultures of all pathogenic bacteria. 
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5.2.4.3 Preparation of skim milk (SM)  

Skim milk (LP0031, Oxoid Ltd., Basingstoke, Hampshire, England) was 

prepared according to the manufacturers' instructions by dissolving 10% of skim 

milk in distilled water and autoclaved at 115°C for 10min. 

 

5.2.4.4 Preparation of BHI agar  

BHI agar was prepared as in Section 2.3.2. This was used to prepare agar 

plates for the agar well diffusion and agar spot methods. 

 

5.2.5 Isolation of LAB from sourdough samples 

One gram of each sourdough sample was blended with 9ml of PBS buffer 

solution (0.1 M, pH 7.0) and subsequently homogenised for 3min in a 

stomacher. The homogenate samples were serially diluted to yield dilutions of 

10-5, 10-6 and 10-7, and cultured onto MRS agar medium containing 5g/L 

calcium carbonate. The plates were incubated in the 5% CO2 incubator at 37°C 

for 48h. The resulting colonies were first characterised phenotypically by Gram-

positive, catalase negative, growth at 15°C and 45°C and growth tolerance at 

different salt levels (2, 4 and 6.5% w/v NaCl). Gram-positive, catalase negative 

isolates were considered to be LAB, and then used in further studies. LAB 

isolates were kept in MRS broth with 30% (vol/vol) glycerol and frozen at -80°C. 

Stock cultures were reactivated by subculturing in MRS broth and incubating at 

37°C in the 5% CO2 incubator for 24h before use. 
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5.2.6 Molecular identification of LAB strains by PCR amplification and 

DNA sequencing of 16S rRNA 

5.2.6.1 Bacterial DNA extraction 

All LAB strains isolated from sourdoughs were identified by a PCR based 

method. DNA of each LAB isolate was extracted by using a protocol of the 

GenEluteTM Bacterial Genomic DNA Kit (Sigma-Aldrich, Germany). The 

overnight cultures were centrifuged for 2min at 12000xg and the culture medium 

completely removed. The pellet was re-suspended thoroughly in 200µl of 

lysozyme solution which was prepared from lysozyme chicken egg white (L4919) 

diluted by 50mg/ml in TE buffer (10mM Tris-HCl, pH 8.0), and the mixture 

incubated for 30min at 37°C. 20µl of the proteinase K solution was added to the 

sample followed by 200µl of lysis solution C (B8803), vortexed thoroughly for 

about 15sec and then incubated at 55°C for 10min 500µl of the Column 

Preparation Solution was added to the pre-assembled Gen Elute Mini prep 

Binding Column and seated in a 2ml collection tube. The sample was 

centrifuged at 12000xg (Sanyo, Micro Centaur, MSE, UK) for 1min and the 

eluate removed. 200µl of ethanol (95-100%) was added to the sample in the 

lysate and mixed homogeneously for 5-10sec. The entire contents of the tube in 

the Load lysate was transferred into the binding column and then the sample 

was centrifuged at 8000xg for 1min. The collection tube containing the eluate 

was discarded and the column placed in a new 2ml collection tube. The first 

washing added 500µl wash solution 1 (W0263) to the column, and it was 

centrifuged for 1min at 8000xg. The collection tube containing the eluate was 

discarded and the column placed in a new 2ml collection tube again. The 

second washing added 500µl wash solution to the column, and it was 
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centrifuged for 3min at 12000xg to dry the column. The column was centrifuged 

for an additional 1min at 12000xg, because the column must be free from 

ethanol before eluting the DNA. Finally, the collection tube containing the eluate 

was discarded and the column placed in a new 2ml collection tube. The elute 

DNA was added in 200µl of the elution solution (B6803) directly onto the centre 

of the column and then incubated for 5 min at room temperature, to increase the 

elute efficiency. The sample was then centrifuged for 1min at 8000xg to elute 

the DNA. The eluate contains pure genomic DNA, and then the sample will be 

stored at 2-8°C for short term storage.  

 

5.2.6.2 Spectrophotometric test 

The optical density of the DNA mixture was examined using Nanodrop® ND-

1000 as mentioned in Section 5.2.2.2. The DNA was measured and the 

average bacterial DNA were more than >20ng/μl. The protein purity of 260/280 

and humic acid of 260/230 were higher than 1.7. 

 

5.2.6.3 PCR amplification and DNA sequencing of 16S rRNA 

Bacterial DNA was amplified using PCR primers obtained from (Eurofins MWG 

Operon, Germany); 

Forward primer 27(F)         5'-AGAG TTTG ATCC TGGC TCAG-3' (20 bases) 

Reverse primer 1492(R)    5'-GGCT ACCT TGTT ACGA CTT-3'    (19 bases) 
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A mixture of 1µl of bacterial DNA extraction, with 24µl of reaction mix, 

containing 12.5µl Red Taq ready Mix (Sigma-Aldrich, USA), 1µl forward primers, 

1µl reverse primers and 9.5µl DNA grade water was prepared in a 0.2ml PCR 

tube. The samples were amplified in a PCR thermal cycler (Techne, Model TC-

312) for a period of 4h. The PCR program was run as follows: denature the 

template at 95°C for 1min, anneal primers at 55°C for 2min and extension at 

72°C for 3min. Each set of reactions included a negative and a positive control. 

The PCR products were then analysed by electrophoresis on a 1% agarose gel 

to check the size of amplicons. A mixture of 1.5g of agarose nondenaturating 

gel, 90ml of 1x TAE, and the agarose gel was heated briefly in the microwave 

with shaking for 1 min. After cooling, 4µl of SYBR®safe stain (Fisher, UK) was 

added to the gel. To prepare the samples for electrophoresis, eight µl of each 

PCR product was added to the wells. Eight μl of the 100bp DNA ladder (Fisher, 

UK) was used to assess the size of DNA products. The gel was run at 90volts 

for 45min, and the bands were visualised and photographed using a camera on 

a UV trans-illuminator as mentioned in Section 5.2.2.4. 

 

5.2.6.4 DNA purification 

Purification of PCR products was performed with the ChargeSwitch®-Pro PCR 

Clean-up Kit (invitrogen, Fisher, UK) by life technologies. All steps were 

performed at room temperature; three main steps were adjusted, based on the 

instruction of the manufacturer. Binding the DNA was achieved by adding a 1:1 

volume of ChargeSwitch®-Pro PCR Purification buffer to the PCR reaction, 

gently vortexed to mix well. The mixture was transferred onto the 
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ChargeSwitch®-Pro PCR Clean-up column inserted in a collection tube. The 

column/tube was centrifuged at 10000xg for 1min. The column was removed 

from the tube and the flow-through discarded, and then the column was re-

inserted in the same collection tube. The column was washed in 600µL of 

ChargeSwitch®-Pro PCR wash buffer. The column/tube was centrifuged at 

10000xg for 1min. The flow-through and the collection tube were discarded, and 

the column was inserted into a new sterile elution tube. The final steps of 

purification were eluting the DNA. 25µL of ChargeSwitch®-Pro PCR Elution 

buffer was added onto the column, and incubated at room temperature for 2min. 

The column/tube was centrifuged at 10000xg for 1min. The flow-through 

contained the purified DNA. The elution step was repeated one more time, and 

the flow-through was collected in the same tube. The quantity of DNA purified 

was determined by electrophoresis assay; after dilution to 1/10 by 1µL of 

sample with 3µL of loading buffer and 6µL of DNA grade water, the DNA 

concentration was calculated by multiplying the bp of the sample with the 50bp 

DNA ladder (21ng/µL). Then DNA was sequenced by GATC Biotech (European 

Custom Sequencing Centre, Germany) and the phylogenetic tree was 

constructed in MEGA version 6 as mentioned in Section 5.2.2.6. 

 

5.2.7 Measuring pH, titratable acidity (TA) values and microbial growth 

One percent of each isolated LAB from an overnight culture was inoculated in 

MRS broth and each was put in separate flask. Then all the culture media were 

incubated in the incubator at 30°C for 24h. pH values were measured directly 

every 3h up to 24h (9 times) of the incubation period by pH meter (Corbo et al., 
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2013). TA values were also measured every 3h of the incubation period (24h). 

10ml of each sample was taken each 3h (up to 24h) of the incubation period, 

then titrated against 0.1N NaOH with phenolphthalein indicator. TA expressed 

as lactic acid percent as detailed in Section 2.7.2. Duplicate determination was 

made for each LAB isolate. 

 

5.2.8 Determination of proteolytic and amylolytic enzymes activity 

5.2.8.1 Determination of proteolytic activity 

To detect proteolytic activity, the selected LAB strains were inoculated on plates 

of 80% MRS agar (2% glucose) mixed with 20% skim milk, and incubated in 5% 

CO2 at 37°C for 48h followed by holding in a refrigerator (4°C) for 3 days. 

Protein hydrolysis was observed by the production of clear halos surrounding 

isolated colonies (Essid et al., 2009; Golshan-Tafti et al., 2014). This test was 

carried out in triplicate for each sample. 

 

5.2.8.2 Determination of amylolytic activity 

Amylolytic activity of the strains was determined by the detection of starch. MRS 

containing starch was used. The selected LAB strains were inoculated on MRS 

agar containing starch and the plates were incubated in 5% CO2 at 37°C for 48h. 

After incubation, iodine reagent was added to surface of each plate to detect the 

presence of starch. Iodine reagent complexes with starch to form a blue-black 

colour in the culture medium. Clear halos surrounding colonies are indicative of 
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their ability to digest the starch in the medium due to the presence of alpha-

amylase. This test was carried out in triplicate for each sample. 

 

5.2.9 Detection of antagonistic activity of LAB 

5.2.9.1 Preparation of broth culture bacteria 

All isolated strains of LAB were cultured in MRS broth (107 CFU/ml) under 5% 

CO2 incubator at 37ºC for 18-20h, and were used as the broth culture bacteria.  

In addition, food pathogenic bacteria strains such as B. cereus MCIMB11925, B. 

subtilis, P. aeruginosa ATCC 10817, E. coli ATCC 10418 and S. aureus ATCC 

6821 were grown in nutrient broth and incubated at 37ºC for 18-20h as 

mentioned in Section 2.6. 

 

5.2.9.2 Procedure for agar well diffusion method 

The agar well diffusion method was used to determine the antimicrobial activity 

of isolated LAB from sourdough samples against bacterial strains (Kuri et al., 

1998, Fernández-López et al., 2005). Stock cultures of all tested bacteria were 

grown in nutrient broth for 18h. Final cell concentrations were standardised to 

107–108 CFU/ml using the McFarland standards as mentioned in Section 2.6. 

Then, 200μl of this inoculum was added to each universal tube containing 20ml 

molten brain heart infusion (BHI) agar, mixed well and poured into a disposable 

Petri dish. A sterile cork borer was used to make wells (5mm diameter) after the 

agar was solidified. Each well was filled with 40μl of each LAB isolates. Aliquots 

of fresh MRS broth were used as control. Agar plates were left for 1 hour at 
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room temperature to diffuse into the agar, then the plate culture were incubated 

at 37°C for 24h. After incubation, the diameter (mm) of the inhibition zone 

around the wells was measured in three directions using Vernier callipers and 

the average was calculated (Kuri et al., 1998). The assay was carried out in 

triplicate. 

 

5.2.9.3 Procedure for agar spot method 

To confirm the results of the agar well diffusion, an agar spot method was used. 

This is an in vitro method for evaluating antimicrobial activity such as LAB 

against pathogenic microorganisms. The isolated LAB strains were used for 

detection of antagonistic activity against the same pathogenic bacterial strains 

by the agar spot method according to the method of Santini et al., (2010). The 

strains of LAB were grown in MRS broth at 37°C under 5% CO2 conditions for 

24h. Three μl of each LAB overnight culture were spotted on the surface of 

MRS agar; plates were incubated for 24h at 37°C under 5% CO2 conditions to 

allow colony spots develop. Sterile MRS broth was used as a negative control 

on each plate. After strain growth, an overnight broth culture of each pathogenic 

bacterial strain was standardised to 107–108 CFU/ml using the McFarland 

standards as mentioned in Section 2.6. Then a 100μl volume of this inoculum 

was mixed with 10ml of soft nutrient agar (0.7% w/v bacteriological agar in 

nutrient broth). The mixture was poured over the plate with the LAB spotted 

onto the surface, and left for 1h to solidify. The plates were incubated at 37°C 

for 24h. After incubation, the diameter (mm) of the inhibition zone around the 

spots was measured in three directions using Vernier callipers (the range was 
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±1mm) and the average was calculated (Figure 5.3). A clear zone of more than 

1mm around a spot was considered as an indicator of antimicrobial effect 

(Tahara et al., 1996).  Each strain was performed in triplicate. 

 

 

Figure 5.3: Procedure for agar spot method 

 

5.2.10 Statistical analysis 

All data were subjected to one way analysis of variance (ANOVA) as described 

in Section 2.9. Comparisons of sourdough microbial communities DGGE among 

sourdough samples were done using the Primer-6 software package (PRIMER-

E Ltd, Plymouth, UK). Cluster analysis was used to check the observed 

groupings, and half matrix similarity analysis was also displayed as a measure 

of the similarity of replicates within the sourdough samples. The species 

richness and the microbial diversity were determined for the samples.  
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5.3 Results   

5.3.1 PCR-DGGE DNA fingerprinting of microflora in sourdough samples 

Figure 5.4 shows the PCR–DGGE bacterial profiles of the sourdough samples. 

Many different bands are shown in the DGGE image and the gel bands which 

were considered to be operative taxonomy unit (OTU) in each sample. 

The similarity of bacterial populations within and between the sourdough 

samples was measured by using half matrix similarity (%) of sourdoughs DGGE 

fingerprints as shown in Table 5.2, non-metric multidimensional scaling (MDS) 

and cluster analysis of DGGE fingerprints as shown in Figure 5.5. There was 

more than 40% similarity of bacterial population between SD1, SD2 and SD3. 

There was about 40% similarity between all sourdough samples except SD1, 

SD2 and SD3. There was 60% similarity among SD4, SD5 and SD8. Also, there 

was about 60% similarity among SD11, SD12 SD13, SD14 SD15, SD16, SD17 

and SD18 and between SD6 with SD7 as well. There was 80% similarity 

between each two sourdoughs (SD1 with SD3), (SD4 with SD5), (SD17 with 

SD18) and also there was 80% similarity among SD13, SD14 and SD16. 

Figure 5.6 shows the distance of PCR-DGGE band of the sourdough samples 

as measured in (mm) by using image J software. The first band at the top had a 

distance 0.3cm from the top and the last bands in the bottom of the gel had a 

distance 9.43cm from the top measurement. The distance between two bands 

varied between 0.06-3.56cm which the smallest distance is shown between two 

bands in SD12 and the biggest distance is shown between two bands in SD2. 
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Figure 5.4: DGGE fingerprints of sourdough samples. Number of bands 

(operative taxonomy units (OTUs)) in each sample relates to diversity richness 

* Key of the table as Table 5.1 
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Table 5.2: The half matrix similarity of sourdoughs DGGE fingerprints of bacterial populations 

Samples* SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11 SD12 SD13 SD14 SD15 SD16 SD17 SD18 

SD1 100                  

SD2 50 100                 

SD3 80 60 100                

SD4 15 15 13 100               

SD5 20 20 17 80 100              

SD6 29 43 50 32 38 100             

SD7 27 27 35 30 35 76 100            

SD8 25 25 20 62 80 29 27 100           

SD9 46 15 40 56 67 42 50 46 100          

SD10 31 15 27 56 53 42 50 46 44 100         

SD11 36 18 31 38 46 59 67 36 50 50 100        

SD12 29 14 25 53 50 50 57 43 42 63 71 100       

SD13 29 14 38 53 50 50 57 43 53 63 59 60 100      

SD14 29 14 38 53 50 60 57 43 53 53 71 70 90 100     

SD15 40 27 47 40 47 57 64 40 50 60 67 67 57 67 100    

SD16 29 14 38 42 50 60 57 43 53 63 71 80 80 90 67 100   

SD17 40 20 33 40 50 63 71 40 67 53 77 62 63 63 59 63 100  

SD18 40 20 33 53 67 50 59 60 53 67 77 75 75 75 71 75 83 100 

      * Key of the table as Table 5.1   
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A 

 

B 

 

Figure 5.5: (A) Cluster analysis and (B) non-metric multidimensional scaling 

(MDS) graph based on the PCR-DGGE DNA fingerprints showing similarity (%) 

of bacterial communities between sourdough samples.    * Key of the table as 

Table 5.1 
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Figure 5.6: Distances of PCR-DGGE fingerprints of sourdough samples 

         * Key of the table as Table 5.1 

Diversity and richness of sourdough samples are shown in Table 5.3. These 

indexes were used to display the microbial population diversity and richness in 

the sourdough samples. The diversity and richness of bacterial community 

based on the PCR-DGGE DNA fingerprinting of sourdough samples indicated 

that; there were differences in diversity and richness among the sourdough 

samples. The diversity varied between 2.16 and 4.17 and richness varied 

between 1.39 and 2.4. The diversity and richness of SD7 and SD15 were higher 
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value than the other sourdough samples which reached 4.17 and 2.4 

respectively. 

Table 5.3: Diversity index and richness of bacterial community in sourdough 

samples based on the PCR-DGGE DNA fingerprinting 

Samples1 Band No. Diversity2 Richness3 

SD1 4 2.16 1.39 

SD2 4 2.16 1.39 

SD3 6 2.79 1.79 

SD4 9 3.64 2.2 

SD5 6 2.79 1.79 

SD6 10 3.91 2.3 

SD7 11 4.17 2.4 

SD8 4 2.16 1.39 

SD9 9 3.64 2.2 

SD10 9 3.64 2.2 

SD11 7 3.08 1.95 

SD12 10 3.91 2.3 

SD13 10 3.91 2.3 

SD14 10 3.91 2.3 

SD15 11 4.17 2.4 

SD16 10 3.91 2.3 

SD17 6 2.79 1.79 

SD18 6 2.79 1.79 
1 Key of the table as Table 5.1 
2 Diversity: H‟ = -SUM (pi٭Log (pi)). 
3 Richness: d = (S -1) ⁄ log (N). 
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Figure 5.7: Phylogenetic tree showing the relative position of sourdough LAB 

based on 16S rDNA gene sequences, using the neighbour joining method. 

Bootstrap values for a total of 1000 replicates are shown at the nodes of the 

tree, using MEGA 6 software. The scale bar corresponds to 0.05 units of the 

number of base substitutions per site. 

Figure 5.7 shows the phylogenetic relationship among LAB strains that were 

constructed based on the 16S rDNA sequences using the neighbour joining 

method. The identification of bands in PCR-DGGE fingerprints of the bacterial 

population of sourdough samples were selected from the bands in Figure 5.4 for 
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sequencing. Most of the bands that were found are Lactobacillus species. The 

maximum identity of bacterial species was varied between 96 to 100%. There 

were some uncultured bacteria found in the selected bands, which might be 

mainly as-yet-uncultured bacteria in the data banks and they were discarded 

due to their maximum identity which were less than 90%. 

 

5.3.2 pH and TA values measurement of sourdough samples 

The pH and TA values of the sourdough samples are shown in Table 5.4 and 

Figure 5.8. Three different groups were defined according to the pH and TA 

ranges. There were significant differences (P<0.05) in pH and TA values among 

the sourdough samples. The pH values ranged from 3.46 to 4.36 and TA values 

from 0.67 to 1.05mg/100mg. Thirteen sourdoughs had pH values of less than 

4.0. The sourdough samples of the high acids group including SD6 and SD8 

have a lower pH and higher TA values in comparison with the other sourdough 

samples, whereas SD9 has a higher pH and lower TA values in comparison 

with the other sourdough samples. 
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Table 5.4: pH and TA (mean*±standard deviations) of sourdough collection 

samples grouped by acidity 

Groups samples** pH TA (mg/100mg) 

High acid SD8 3.46±0.02 a 1.05±0.01 a 

SD6 3.48±0.02 a 1.05±0.01 a 

Medium acid SD4 3.53±0.03 b 0.88±0.02 d 

SD13 3.57±0.03 bc 0.92±0.02 b 

SD10 3.61±0.02 c 0.88±0.02 d 

SD2 3.69±0.02 d 0.78±0.01 fg 

SD11 3.75±0.01 e 0.82±0.02 e 

SD3 3.75±0.01 e 0.89±0.02 cd 

SD7 3.81±0.03 f 0.91±0.01 bc 

SD16 3.88±0.01 g 0.83±0.01 e 

SD1 3.92±0.02 gh 0.71±0.01 hi 

SD15 3.94±0.02 h 0.80±0.01 ef 

SD12 3.96±0.02 h 0.94±0.02 b 

SD14 4.06±0.02 i 0.75±0.02 gh 

Low acid SD5 4.23±0.02 j 0.69±0.01 ij 

SD17 4.29±0.02 k 0.71±0.02 hi 

SD9 4.36±0.02 l 0.67±0.01 j 

* a-l, a-j Means (n=3) with different letters are significantly different (P<0.05). 

** Key of the table as Table 5.1 
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Figure 5.8: The pH and TA values of sourdough samples 

 

5.3.3 LAB isolates from sourdough samples 

Thirty two isolates of LAB were isolated from seventeen sourdough samples as 

shown in Table 5.5. All LAB isolates of clear zones on MRS agar plates were 

randomly selected and purified. Phenotypic and biochemical characterisation 

was carried out for identification of LAB. All isolates were Gram positive, 

catalase negative.  All LAB isolates grew at 15ºC and salt levels 2 and 4% w/v 

NaCl. 26 isolates grew at 45ºC, 28 isolates grew in salt level 6.5% w/v NaCl and 

Lb20 were not grown at both characters as the results are shown in Table 5.6. 
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Table 5.5: LAB isolates with their sources 

Number 
of isolates 

Isolates Source 

1 Lb1 SD1 

1 Lb2 SD2 

2 Lb3 and Lb4 SD3 

3 Lb5, Lb6 and Lb7 SD4 

3 Lb8, Lb9 and Lb10 SD5 

1 Lb11 SD6 

2 Lb12 and Lb13 SD7 

1 Lb14 SD8 

2 Lb15 and Lb16 SD9 

2 Lb17 and Lb18 SD10 

3 Lb19, Lb20 and Lb21 SD11 

1 Lb22 SD12 

3 Lb23 Lb24 and Lb25 SD13 

1 Lb26 SD14 

2 Lb27 and Lb28 SD15 

1 Lb29 SD16 

3 Lb30, Lb31and Lb32 SD17 

 

Table 5.6: Characterisation of LAB isolates from sourdough samples 

Number of 
isolates 

Isolates Growth at 
45ºc 

Growth at 
NaCl 6.5% 

23 Lb1, Lb2, Lb3, Lb4, Lb6, 
Lb8, Lb9, Lb11, Lb12, 
Lb14, Lb15, Lb17, Lb18, 
Lb19, Lb21, Lb22, Lb23, 
Lb25, Lb26, Lb27, Lb29, 
Lb30 and Lb32 

+ + 

5 Lb5, Lb7, Lb10, Lb16 and 
Lb31 

- + 

3 Lb13, Lb24 and Lb28 + - 

1 Lb20 - - 
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Figure 5.9: Phylogenetic tree showing the relative position of LAB isolates from 

sourdoughs based on 16S rDNA gene sequences, using the neighbour joining 

method. Bootstrap values for a total of 1000 replicates are shown at the nodes 

of the tree, using MEGA 6 software. The scale bar corresponds to 0.05 units of 

the number of base substitutions per site. 
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5.3.4 Identification of isolates LAB from sourdough samples 

Figure 5.9 shows the phylogenetic relationship among LAB strains, constructed 

based on the 16S rDNA sequences using neighbour joining method. All isolated 

LAB from sourdoughs belong to the family Lactobacillaceae, where thirteen of 

them are Lactobacillus plantarum, nine are Lactobacillus brevis and six are 

Lactobacillus rossiae DSM15814. Lb15 are Lactobacillus hammesii strain TMW 

1.1236. Lb23 are Lactobacillus parabrevis strain LMG 11984, Lb24 are 

Lactobacillus farciminis strain BCRC 14043. Lb25 are Lactobacillus 

senmaizukei strain NBRC 103853. The maximum identity of bacterial species 

was 99%. 

 

5.3.5 pH and acidity development of LAB in MRS broth 

The pH and TA values during the incubation period of the media culture 

fermented with LAB isolates are shown in Table 5.7 and Table 5.8 respectively. 

The pH levels varied between 3.63 and 4.30 after 24 h. Eighteen LAB strains 

had pH values of less than 4.0. The TA values of the LAB strains were between 

0.57 and 1.13 mg/100mg after 24h of the incubation period. 

Three different groups were detected according to the pH and TA as shown in 

the Figure 5.10. LAB strains of the high acids group include Lb1, Lb2, Lb3, Lb11, 

Lb14, Lb17 which had lower pH values and higher TA values. pH and TA values 

of LAB strains of the medium acids group varied between 3.78 and 3.92 and 

0.78 and 0.97mg/100mg respectively after 24h of incubation. LAB strains of the 

low acids group had pH values above 4.0 and TA values varied between 0.57 

and 0.74mg/100mg. 
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Table 5.7: pH development by the LAB isolates in MRS broth media over 24h 

incubation at 30ºC 

LAB 
isolates 

Incubation time (h) 

0 3 6 9 12 15 18 21 24 

Lb14 6.00 5.68 5.10 4.42 4.18 4.01 3.81 3.73 3.63 

Lb11 6.01 5.60 5.05 4.54 4.15 4.00 3.87 3.73 3.67 

Lb17 5.97 5.81 5.50 4.83 4.10 3.97 3.89 3.81 3.72 

Lb2 6.00 5.49 5.08 4.76 4.21 4.09 3.90 3.80 3.73 

Lb1 6.00 5.60 5.28 4.79 4.31 4.10 3.95 3.84 3.76 

Lb3 6.05 5.75 5.33 4.89 4.30 4.14 4.01 3.89 3.77 

Lb7 6.02 5.72 5.46 5.09 4.91 4.45 4.09 3.90 3.78 

Lb23 6.05 5.93 5.65 4.88 4.27 4.02 3.93 3.87 3.80 

Lb22 6.01 5.87 5.46 4.99 4.35 4.05 3.96 3.89 3.81 

Lb5 5.98 5.45 5.10 4.93 4.45 4.24 4.05 3.91 3.81 

Lb25 5.99 5.86 5.36 5.06 4.82 4.31 4.07 3.95 3.82 

Lb28 6.02 5.75 5.53 5.31 4.81 4.38 4.08 3.93 3.82 

Lb12 6.02 5.72 5.45 5.21 5.00 4.71 4.29 4.05 3.84 

Lb30 6.00 5.84 5.58 5.21 4.79 4.14 3.96 3.89 3.84 

Lb26 5.99 5.81 5.42 4.95 4.55 4.14 3.98 3.91 3.85 

Lb9 6.04 5.69 5.33 5.00 4.51 4.17 4.02 3.90 3.86 

Lb6 6.03 5.69 5.40 5.02 4.81 4.33 4.12 4.00 3.90 

Lb4 6.00 5.67 5.32 4.98 4.61 4.43 4.23 4.05 3.92 

Lb16 6.03 5.76 5.58 5.30 5.07 4.79 4.50 4.22 4.01 

Lb24 6.01 5.87 5.56 5.12 4.95 4.72 4.32 4.18 4.02 

Lb10 6.03 5.82 5.64 5.43 5.07 4.81 4.57 4.29 4.09 

Lb15 6.02 5.89 5.76 5.49 5.29 4.85 4.49 4.26 4.11 

Lb32 6.03 5.91 5.78 5.51 5.02 4.71 4.54 4.27 4.14 

Lb18 5.99 5.93 5.81 5.51 4.89 4.53 4.35 4.25 4.18 

Lb8 5.99 5.81 5.63 5.47 5.24 5.02 4.73 4.49 4.20 

Lb19 6.04 5.95 5.86 5.44 4.85 4.51 4.37 4.24 4.20 

Lb31 6.04 5.93 5.79 5.54 5.11 4.83 4.68 4.39 4.21 

Lb21 6.04 5.96 5.80 5.52 4.83 4.55 4.42 4.37 4.24 

Lb27 6.01 5.84 5.75 5.46 5.02 4.79 4.54 4.37 4.25 

Lb29 6.01 5.90 5.76 5.46 5.10 4.87 4.64 4.42 4.28 

Lb13 6.02 5.84 5.68 5.53 5.41 5.13 4.89 4.58 4.29 

Lb20 6.03 5.94 5.85 5.54 4.83 4.57 4.41 4.37 4.30 

P. value 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 
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Table 5.8: TA production (mg/100mg) by the LAB isolates in MRS broth media 

over 24h incubation at 30ºC 

Acid 
group 

LAB 
isolates 

Incubation time (h) 

0 3 6 9 12 15 18 21 24 

High 
acid 

Lb14 0.21 0.32 0.44 0.50 0.59 0.67 0.79 0.96 1.13 

Lb2 0.22 0.29 0.36 0.48 0.55 0.62 0.74 0.86 1.08 

Lb1 0.21 0.27 0.32 0.38 0.44 0.55 0.67 0.84 1.05 

Lb3 0.21 0.28 0.35 0.45 0.53 0.60 0.69 0.82 1.04 

Lb11 0.21 0.31 0.41 0.47 0.52 0.62 0.70 0.85 1.03 

Lb17 0.19 0.31 0.35 0.41 0.53 0.62 0.66 0.82 1.01 

Medium 
acid 

Lb4 0.21 0.27 0.30 0.36 0.41 0.50 0.58 0.74 0.97 

Lb12 0.20 0.30 0.36 0.48 0.54 0.61 0.72 0.82 0.94 

Lb23 0.21 0.27 0.32 0.37 0.54 0.58 0.65 0.79 0.94 

Lb7 0.19 0.26 0.31 0.36 0.46 0.56 0.66 0.77 0.92 

Lb22 0.21 0.25 0.28 0.34 0.49 0.56 0.63 0.72 0.89 

Lb30 0.18 0.26 0.33 0.39 0.54 0.62 0.69 0.77 0.89 

Lb5 0.22 0.25 0.31 0.36 0.41 0.47 0.59 0.72 0.88 

Lb6 0.20 0.27 0.32 0.39 0.45 0.53 0.58 0.67 0.86 

Lb25 0.19 0.28 0.30 0.36 0.51 0.60 0.67 0.73 0.85 

Lb9 0.20 0.27 0.35 0.43 0.49 0.56 0.64 0.73 0.84 

Lb28 0.19 0.29 0.32 0.41 0.51 0.56 0.70 0.74 0.83 

Lb26 0.18 0.26 0.28 0.33 0.56 0.63 0.69 0.72 0.78 

Low 
acid 

Lb10 0.19 0.24 0.31 0.38 0.45 0.52 0.60 0.67 0.74 

Lb16 0.20 0.27 0.33 0.39 0.45 0.51 0.58 0.65 0.73 

Lb24 0.18 0.30 0.32 0.40 0.49 0.56 0.62 0.66 0.72 

Lb8 0.20 0.28 0.31 0.36 0.44 0.53 0.60 0.66 0.71 

Lb19 0.21 0.24 0.29 0.37 0.44 0.50 0.57 0.64 0.71 

Lb27 0.21 0.26 0.36 0.38 0.43 0.46 0.56 0.62 0.71 

Lb13 0.19 0.24 0.32 0.36 0.43 0.48 0.55 0.63 0.69 

Lb31 0.21 0.28 0.31 0.36 0.41 0.48 0.54 0.59 0.67 

Lb32 0.19 0.29 0.32 0.44 0.51 0.54 0.58 0.61 0.67 

Lb15 0.19 0.22 0.28 0.34 0.41 0.48 0.54 0.58 0.66 

Lb18 0.18 0.26 0.37 0.40 0.47 0.51 0.54 0.60 0.65 

Lb20 0.18 0.31 0.35 0.40 0.43 0.47 0.51 0.54 0.59 

Lb29 0.20 0.24 0.29 0.36 0.43 0.45 0.48 0.51 0.59 

Lb21 0.20 0.27 0.30 0.35 0.37 0.42 0.48 0.53 0.57 

P. value 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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Figure 5.10: pH and TA values of isolated LAB from sourdough samples discriminating the cultures by acidity production level at 

30°C for 24h 
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5.3.6 Proteolytic and amylolytic enzyme activities of LAB strains 

Twelve isolates of the LAB presented proteolytic activity and ten LAB strains 

presented amylolytic activity as shown in Table 5.9. From six LAB stains of high 

acid group, five of them had proteolytic activity. Four LAB strains from six 

strains of a high acid group had amylolytic activity, while three of the LAB 

strains from twelve of a medium acid group had proteolytic and amylolytic 

enzyme activities. Four and three of LAB strains from fourteen LAB strains of a 

low acid group had proteolytic and amylolytic enzyme activities respectively. 

Table 5.9: Proteolytic and amylolytic enzyme activities of LAB strains 

Acidity 
groups 

 
Enzyme activities 

Proteolytic activity  Amylolytic activity 

High acid  Lb1, Lb2, Lb3, Lb11, Lb14   Lb1, Lb2, Lb11, Lb14 

Medium acid  Lb5, Lb12, Lb23  Lb28, Lb4, Lb30 

Low acid  Lb8, Lb19, Lb20, Lb27   Lb15, Lb20, Lb27 

 

5.3.7 Microbial growth  

The cell densities (OD595) of LAB in MRS broth media over 24h of incubation 

period are shown in the Table 5.10. The range of bacterial growth over 24h 

incubation period varied between 1.22 and 1.88. All LAB strains of the high 

acids group had a good growth at 24h of incubation at 30°C which varied 

between 1.78 and 1.82. The range of LAB growth of the medium acid group 

varied between 1.56 and 1.88, while the low acid group varied between 1.22 

and 1.77.   
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Table 5.10: Bacterial growth (OD595) over 24h of incubation period at 30°C in 

MRS broth media 

Acid group 
LAB 

isolates 

Incubation time (h) 

0 6 12 18 24 

High acid Lb14 0.22 0.53 1.07 1.62 1.82 

Lb17 0.20 0.37 1.19 1.65 1.82 

Lb1 0.23 0.52 1.19 1.67 1.81 

Lb11 0.26 0.50 1.15 1.67 1.81 

Lb2 0.21 0.48 1.14 1.66 1.79 

Lb3 0.20 0.40 1.03 1.65 1.78 

Medium 
acid 

Lb30 0.22 0.54 1.23 1.60 1.88 

Lb26 0.21 0.54 1.37 1.76 1.87 

Lb28 0.19 0.37 1.16 1.52 1.82 

Lb6 0.22 0.47 1.19 1.66 1.80 

Lb5 0.23 0.45 1.13 1.66 1.79 

Lb9 0.31 0.49 1.11 1.68 1.79 

Lb25 0.19 0.51 1.46 1.64 1.78 

Lb22 0.21 0.34 0.93 1.52 1.76 

Lb23 0.19 0.53 1.29 1.65 1.76 

Lb7 0.21 0.51 1.02 1.58 1.75 

Lb4 0.21 0.51 1.05 1.53 1.72 

Lb12 0.22 0.34 0.83 1.29 1.56 

Low acid Lb10 0.22 0.30 0.97 1.66 1.77 

Lb19 0.19 0.30 0.85 1.21 1.69 

Lb32 0.20 0.37 1.02 1.44 1.67 

Lb16 0.22 0.42 0.71 1.18 1.66 

Lb24 0.20 0.43 1.25 1.58 1.64 

Lb27 0.19 0.30 1.02 1.41 1.62 

Lb29 0.20 0.25 0.94 1.35 1.58 

Lb31 0.19 0.35 0.97 1.36 1.56 

Lb20 0.18 0.31 0.77 1.34 1.53 

Lb21 0.18 0.29 0.78 1.18 1.51 

Lb18 0.18 0.27 0.41 0.82 1.41 

Lb15 0.19 0.24 0.42 1.16 1.39 

Lb8 0.22 0.31 0.44 0.88 1.28 

Lb13 0.16 0.20 0.31 0.61 1.22 

P. value 0.01 0.01 0.02 0.01 0.01 
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5.3.8 Antagonistic activity of LAB of sourdough samples 

The antibacterial activity of LAB isolates were tested against bacterial strains 

such as B. cereus, B. subtilis, E. coli, P. aeruginosa and S. aureus by agar well 

diffusion and agar spot methods; the results are shown in Table 5.13 and 5.14 

respectively. The LAB strains gave zones of inhibition against the bacterial 

strains. Most of LAB strains were able to inhibit the growth of bacterial strains to 

varying degrees. 

The results of agar well diffusion method are in Table 5.11. All isolates of LAB 

exhibited different inhibitory activity. Lb1, Lb2, Lb11, Lb12 and Lb14 strains had 

the strongest (14-17mm) diameter zones against all bacterial strains except Lb2, 

which had intermediate (10–13mm) diameter zones against S. aureus, and 

Lb12, which had intermediate diameter zones against P. aeruginosa and S. 

aureus. However, other LAB isolates strains had intermediate, weak (6-9mm) 

diameter zones or no inhibitory activities against bacterial strains (Table 5.13). 

To further confirm the results of agar well diffusion method, the agar spot 

method was used and the results are shown in Table 5.12. Lb1 and Lb2 had the 

strongest (14-17mm) diameter zones against E. coli, P. aeruginosa and S. 

aureus, and intermediate (10–13mm) diameter zones against B. cereus and B. 

subtilis. Lb11 had the strongest diameter zones against all bacterial strains 

except E. coli. Lb14 had the strongest diameter zones against B. cereus, P. 

aeruginosa and S. aureus, and intermediate diameter zones against B. subtilis 

and E. coli. Other isolates had intermediate or weak diameter zones or no 

inhibitory activities against bacterial strains. 
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As the results of antibacterial activities show, Lb1, Lb2, Lb11, Lb12 and Lb14 

strains had higher antibacterial activities than the other strains of LAB which 

isolated from sourdough samples. 

Table 5.11: Antibacterial activity* of LAB strains against some bacterial strains 

using an agar well diffusion method 

Isolates 
Target strains 

Rankingʺ 
B. cereus B. subtilis E. coli P.aeruginosa S. aureus 

Lb1 +++ +++ +++ +++ +++ 15 

Lb11 +++ +++ +++ +++ +++ 15 

Lb14 +++ +++ +++ +++ +++ 15 

Lb2 +++ +++ +++ +++ ++ 14 

Lb12 ++ +++ +++ ++ ++ 12 

Lb4 ++ +++ ++ ++ ++ 11 

Lb23 ++ +++ ++ ++ ++ 11 

Lb3 ++ ++ ++ ++ ++ 10 

Lb5 ++ ++ ++ ++ ++ 10 

Lb24 ++ ++ ++ ++ ++ 10 

Lb19 + ++ ++ ++ ++ 9 

Lb6 ++ ++ + + ++ 8 

Lb28 + ++ + ++ ++ 8 

Lb10 ++ ++ ++ - + 7 

Lb20 + ++ ++ + + 7 

Lb21 + ++ + + ++ 7 

Lb25 ++ ++ + + + 7 

Lb30 + ++ ++ + + 7 

Lb32 + + + ++ ++ 7 

Lb15 ++ ++ ++ - - 6 

Lb22 + ++ ++ + - 6 

Lb9 + ++ + - + 5 

Lb17 - + + - ++ 4 

Lb27 + ++ + - - 4 

Lb31 + ++ - - + 4 

Lb7 - - + + + 3 

Lb8 - - + + + 3 

Lb13 - - + + + 3 

Lb16 + + - + - 3 

Lb18 - - + + + 3 

Lb26 + - - + + 3 

Lb29 - + - + + 3 

* Diameter of inhibition zone: (–) no inhibition zone, (+) weak (6 – 9 mm), (++) 
intermediate (10 – 13 mm) and (+++) strong (14 – 16 mm). Mean values from 
three replicates. ʺ Degree of ranking from more to less 
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Table 5.12: Antibacterial activity* of LAB strains against some bacterial strains 

using the agar spot method 

Isolates 
Target strains 

Rankingʺ 
B. cereus B. subtilis E. coli P.aeruginosa S. aureus 

Lb11 +++ +++ ++ +++ +++ 14 

Lb1 ++ ++ +++ +++ +++ 13 

Lb14 +++ ++ ++ +++ +++ 13 

Lb2 ++ ++ ++ +++ ++ 11 

Lb3 ++ ++ ++ ++ ++ 10 

Lb23 + ++ + + ++ 7 

Lb4 + + ++ + + 6 

Lb5 + + + + ++ 6 

Lb12 + ++ + + + 6 

Lb6 + + + + + 5 

Lb19 + + + + + 5 

Lb21 + + + + + 5 

Lb24 + + + + + 5 

Lb25 + + + + + 5 

Lb28 + + + + + 5 

Lb30 + + + + + 5 

Lb20 + + + - + 4 

Lb32 - + + + + 4 

Lb7 - - + + + 3 

Lb9 + + + - - 3 

Lb10 + + + - - 3 

Lb15 + + + - - 3 

Lb17 + + + - - 3 

Lb18 - - + + + 3 

Lb22 + + + - - 3 

Lb27 + + + - - 3 

Lb31 + + - - + 3 

Lb8 - - - + + 2 

Lb13 - - + - + 2 

Lb26 - - - + + 2 

Lb29 - + - - + 2 

Lb16 - - - - - 0 

* Diameter of inhibition zone: (–) no inhibition zone, (+) weak (6 – 9 mm), (++) 
intermediate (10 – 13 mm) and (+++) strong (14 – 16 mm). Mean values from 
three replicates. Degree of ranking from more to less 

 

As the result of antimicrobial activity, enzyme activities and acidification, Lb1 

(Lactobacillus brevis ATCC 367), Lb11 (Lactobacillus rossiae strain DSM 15814) 

and Lb14 (Lactobacillus plantarum strain JCM 1149) were selected for further 

studies.  
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5.4 Discussion 

The purpose of this study was the assessment of the biodiversity of LAB strains 

from sourdough collection using a molecular method. The potential influence of 

isolated LAB from sourdoughs was also investigated; some of them had high 

antimicrobial activity against food pathogenic microorganisms. Isolated strains 

are known to be useful as a starter culture for preparing high quality sourdough 

products, and also to improve the quality and shelf life of the bread products. 

PCR-DGGE has been applied to identify microorganisms in sourdough samples. 

This technique is well-known for reducing the workload and improving the 

accuracy and efficiency of identification of microorganisms. In recent years, 

culture- independent methods have been developed to reduce the limitation of 

conventional cultivation techniques for analysis of microbial communities in 

fermented foods (Ampe et al., 1999; Ercolini, 2004). There is wide range of 

DNA-based methods that have been used for identification and typing of LAB 

strains (Temmerman et al., 2004). The PCR-DGGE technique is a genetic 

fingerprinting technique that examines the microbial diversity based upon 

electrophoresis of PCR-amplified 16S rDNA fragments with gels containing a 

linear gradient of DNA denaturants (Muyzer et al., 1993). The PCR product 

banding pattern is indicative of the number of bacterial species or assemblages 

of groupings consisting of species that are present, and thus allows 

visualisation of the genetic diversity of microbial populations. These amplified 

fragments may be referred to as PCR products, fragments, or bands. This 

technique acts as an suitable method for the evaluation of microbial ecosystems. 

Additionally, it also allows the analysis of large number of samples and 

detection of shifts in predominant microbial populations. This molecular 
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fingerprinting technique has been used successfully to describe the variation in 

bacterial population or microbial community of sourdough (Meroth et al., 2004; 

Randazzo et al., 2005). 

In this study, homofermentative and heterofermentative species of LAB were 

found in all the sourdough samples; the results are in agreement with the 

findings of De Vuyst and Neyssens (2005) and De Vuyst and Vancanneyt (2007) 

who reported that both of them were found  on the natural sourdoughs, whereas, 

it could be noticed in the previous study that the dominant group of LAB are 

heterofermentative LAB in sourdough especially when the sourdough is 

traditionally prepared, as confirmed by De Vuyst et al. (2002) and Corsetti et al. 

(2003). Gene sequencing of the results allowed identification of bacterial 

populations on sourdoughs, showing a predominance of the genus 

Lactobacillus in agreement with the findings of Savic et al. (2013) which was 

also related to diversity and richness indices. During sourdough fermentation, a 

selection of microbial population with specific nutrient requirements and growth 

conditions occurs; lactobacilli, among all the bacteria; inhabitants of sourdoughs, 

are highly adapted to the environmental conditions (temperature, pH, acidity, 

antimicrobial products, etc.) of sourdough (Vera et al., 2009). For this reason, 

lactobacilli represent the dominant microbial group and commonly occur with 

the highest concentration, especially in mature sourdoughs. A standard 

approach to obtain a first preliminary view of the taxonomic diversity, among a 

set of unknown isolates recovered from a sourdough ecosystem, has long relied 

on the use of 16S rRNA genes by sequence-based analysis approaches (De 

Vuyst et al., 2002; Meroth et al., 2004). According to literature, Lb. plantarum is 

a typical LAB found in wheat and spelt sourdough (Van der Meulen et al., 2007) 
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and is also frequently present in other sourdough ecosystems (De Vuyst and 

Vancanneyt, 2007). Lb. sanfranciscensis was detected from French sourdough 

but not predominantly (Ferchichi et al., 2007; Robert et al., 2009) as the same 

result found from some of the sourdough ecosystem. This could be elucidated 

by the highly adapted carbohydrate metabolism during cereal fermentations 

(Kleerebezem et al., 2003). The differences in microbial diversity and richness 

between sourdough samples might be due to collecting various sourdough 

samples and from different places. Microbial interactions, type of flour, low and 

variable availability of nutrients, environmental stresses during processing and 

changes in the technology can be some of the factors which affect the 

biochemical and physiological responses of LAB in sourdough (Şimşek et al., 

2006; Hüfner et al., 2008; Serrazanetti et al., 2009).  

The results of this study show that the sourdough samples had different pH and 

TA values. The pH values varied between (3.46 and 4.36) and TA values varied 

between (0.67 to 1.05 mg/100mg). SD6 and SD8 had the lowest pH value and 

highest TA value in comparison to the other sourdough samples. Thirteen 

sourdoughs had pH values of less than 4.0. The results are in agreement with 

Minervini et al. (2012), who reported that the pH values of thirteen sourdough 

samples from nineteen had pH under 4.0; this might be due to the microbial 

action in sourdoughs producing metabolite compounds including lactic acid. The 

pH of sourdoughs varies according to kind of starter culture, nature of the flour 

in particular its ash content and nature of the process used, which has an effect 

on acidification as well (Clarke et al., 2002; Clarke and Arendt, 2005). In 

spontaneous sourdough fermentation, the initial pH usually is within the range 
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of 5-6.2 while during the fermentation, it reaches approximately 3.5 to 4.2 

(Corsetti et al., 2001). 

Based on the 16S rDNA sequences, all isolated LAB (32) from sourdoughs 

belonged to the family Lactobacillaceae, where more of them are Lb. plantarum, 

Lb. brevis and Lb. rossiae. However, some others were isolated from 

sourdoughs such as Lb. hammesii, Lb. parabrevis, Lb. farciminis and Lb.  

senmaizukei. The previous studies showed that the strains of Lb. plantarum, Lb. 

fermentum, Lb. brevis, Lb. rossiae, and Lb. paraplantarum were dominant in 

some of the sourdough ecosystems (Van der Meulen et al., 2007). The isolation 

of more Lb. plantarum and Lb. brevis groups from the sourdough samples might 

be due to the dominant group of the sourdough which were assigned to the 

plant-associated (De Vuyst et al., 2014; Zheng et al., 2015).  

Based on the results, some of the 32 LAB strains presented amylolytic (10) and 

proteolytic (12) activities. Additionally, from six LAB strains of the high acid 

group, four and five of them had amylolytic and proteolytic activities respectively. 

The enzyme activities might be due to a decrease in pH and increase in acid 

production. A similar reason was reported by Galle (2013) who demonstrated 

that low pH and acidification would affect the sourdough characteristics 

including changes in enzyme activity. Arendt et al. (2007) also reported that the 

decrease in pH linked with acid production and caused an increase in the 

protease and amylase activity of the flour. Good sugar fermenting strains also 

happened to be hydrolytic enzyme producers, when tested in absence of sugar. 

Corsetti et al. (1998) found that Lactobacillus plantarum DC400 and 

Lactobacillus sanfrancisco CB1 were the most proteolytic and amylolytic strains 

studied. Thiele et al. (2002) reported that proteolysis activity increased in 
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doughs at pH 4 and an acidic range in comparison to non-acidified systems. 

The proteolytic activity of wheat sourdough depends on the microbial starter 

and the processing conditions as reported by Katina (2005), who showed that 

wheat sours, the extraction rate of flour and the fermentation temperature have 

been found to be the main factors that can have a positive impact on the level of 

free amino acids, and accumulation of hydrophobic and basic amino acids. 

The antibacterial activities of LAB isolates were tested against some food 

pathogenic strains using agar well diffusion and agar spot methods, the results 

show that Lb1, Lb2, Lb11, Lb12 and Lb14 strains had higher antibacterial 

activities against pathogenic strains than the other strains of LAB. The inhibitory 

action of LAB could be due to the production of antimicrobial compounds based 

predominantly on organic acids (lactic acid and acetic acid) and bacteriocins. 

Also hydrogen peroxide and diacetyl have an inhibitory activity which can 

restrict the growth of potential pathogenic and spoilage microorganisms as 

discussed in the literature review (Lavermicocca et al., 2000; Gerez et al., 2008). 

Şimşek et al. (2006) reported that LAB isolated from sourdough samples had 

different antimicrobial activities against food pathogenic and spoilage 

microorganisms using agar spot and agar well diffusion methods, which showed 

that more than one Lb. plantarum has a good inhibitory activity against bacterial 

strains. A Lb. brevis strain isolated from Egyptian dairy products had good 

antimicrobial activity against Staphylococcus aureus, E. coli and Salmonella 

typhi as reported by Rushdy and Gomaa (2013). Yateem et al. (2008) reported 

that Lb. plantarum had a higher inhibitory activity against E. coli and Salmonella 

sp. than other LAB strains such as Lb. pentosus and Lc. lacts subsp. lactis 
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using an in-vitro method. The knowledge about sourdough microflora is useful 

for selecting LAB strains as starter cultures for sourdough fermentation.  

 

5.5 Conclusion 

This study aimed to investigate the bacterial biodiversity of starter cultures and 

isolates from spontaneously fermented sourdough made with different types of 

flour. This helps to explore sourdough microbiota, which is useful for selecting 

LAB strains as starter cultures. Safety, high antimicrobial activity and 

technological efficacy have to be considered when selecting strains for the food 

fermentations, to safeguard typical local production which could be better 

exploited in technological processes by producing a better quality of sourdough 

fermentation. PCR-DGGE DNA fingerprinting revealed that Lactobacillus was 

the predominant genus in the studied sourdoughs. Thirty-two strains of LAB 

were isolated and identified using physiological and biochemical tests and 

further PCR fingerprinting analysis. Lb. plantarum and Lb. brevis strains 

accounted for 69% of the 32 isolates. The findings of this study confirm that 

some of isolated LAB show potential as starter cultures based on acidification 

capacity, amylolytic and proteolytic activities and antimicrobial activity against 

food pathogenic microorganisms. However, more studies are needed to apply 

these strains to the fermented sourdough. There is also potential for fermented 

intermediary products to be added to the bread formulations to increase the 

safety, quality, texture, delay staling and increase the shelf life of bread. 
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CHAPTER SIX 

Impact of sourdough fermented with Lactobacillus plantarum on the 

quality and shelf life of sourdough bread 

6.1 Introduction 

Bread can be counted as one of the earliest of all processed foods, it is certainly 

known to be one of the first foods to be produced on a large scale (Wood, 1996). 

Bread in many forms and shapes can be measured as a staple food and it is 

generally considered as a perishable product. Bread’s shelf life is limited by two 

main factors: staling and microbial action including fungi spoilage and ropiness 

(Katina, 2005; Arendt et al., 2007). Bread is a product consisting of two 

distinctly different parts: crust and crumb. Varieties of bread can be different 

according to the in size, shape, colour, texture, and flavour (Hui et al., 2007). 

Sourdough is an important modern fermentation of cereal flours and water 

based upon an earlier spontaneous process (Vogel et al., 1999; Hammes et al., 

2005). The sourdough microflora is dominated by LAB that cooperate with yeast 

and can play a key role in the fermentation of bread dough (Gobbetti, 1998; De 

Vuyst and Neysens, 2005; Hammes et al., 2005; Chavan and Chavan, 2011). 

The presence of LAB in sourdough results in a sour taste in the end product. At 

the same time yeast fermentation occurs which leads to the dough expansion. 

Sourdough fermentations are characterised by the combined activity of LAB and 

yeasts (Vrancken et al., 2010). The aim of utilizing sourdough in bread 

production is to use microbes as leavening agents which, while using little or no 

baker’s yeasts can cause improvements of dough properties, due to its useful 

impacts on the flavour, texture and taste of the final product. Moreover, it can 
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improve a product’s nutritional value and extend shelf life of the bread product 

(Hansen, 2012; De Vuyst and Neysens, 2005; Arendt et al., 2007; Dal Bello et 

al., 2007; Nawaz et al., 2007; Plessas et al., 2011; Gobbetti et al., 2014). 

Sourdough bread is traditional bread with a natural flavour developed by LAB 

(mostly Lactobacillus genus) and yeast (commercially Saccharomyces 

cerevisiae). The taste and flavour of bread can be improved by the optimal use 

of sourdough (Seibel and Brummer, 1991). The flavour of sourdough wheat 

bread is richer and more aromatic than wheat bread, a factor which can be 

attributed to the long fermentation time of sourdough (Brummer and Lorenz, 

1991). Studies on the influence of LAB on the aroma of wheat bread revealed a 

positive influence, particularly on the crumb aroma (Hansen and Hansen, 1996). 

The addition of LAB to sourdough can slow down the staling rate during bread 

storage (Gül et al., 2005). Corsetti et al. (1998) found that a high ratio of lactic 

acid to acetic acid could reduce the staling rate and increase volume expansion. 

The ratio of lactic acid to acetic acid is also an important factor for final product 

flavour (Linko et al., 1997). 

The study aimed to investigate the potential changes to bread properties 

including texture, colour changes and sensory attributes after treatments, as 

well as to assess the ability of fermented sourdough used for making bread to 

restrict the growth of pathogenic and spoilage microorganisms, and also to 

improve safety and shelf life of bread products. 
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6.2 Materials and Methods 

6.2.1 Preparation of cultures for sourdoughs 

Lb. brevis ATCC 367 (Lb1), Lb. rossiae DSM15814 (Lb11) and Lb. plantarum 

JCM1149 (Lb14) strains were selected from the previous experiment to be used 

as starter cultures to ferment sourdough. Each inoculum was prepared from an 

overnight culture and 1% was inoculated into 10ml MRS broth; the cultures 

were then incubated overnight at 37ºC in the 5% CO2 incubator. Cells were 

harvested by centrifugation, washed twice with sterilised water and re-

suspended in 150ml water. Bacterial counts were determined by plating on 

MRS agar 37ºC for 72h while making the sourdough (Rosenquist and Hansen, 

1998; Katina et al., 2002; Menteş et al., 2007). 

 

6.2.2 Culture media 

Culture media (Bacillus cereus selective agar base, MRS, nutrient agar, plate 

count agar, potato dextrose agar and yeast extract glucose chloramphenicol 

agar) were prepared as in Section 2.3. 

 

6.2.3 Preparation of sourdough fermented with starter culture 

Sourdoughs were prepared by gently mixing 150g of strong white flour with 

150g lukewarm water (30ºC), containing fresh cells of LAB suspension (Lb1, 

Lb11 and Lb14) at the level of 107 CFU/g of dough from each LAB strain alone 

and mixed cultures. The dough weight was 300g as shown in Table 6.1. The 

control group was made without adding bacterial suspension. Sourdough 
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samples (SD1-SD17) were prepared by mixing 10% of each sourdough 

separately with strong white flour and water except for the first three 

sourdoughs, prepared according to the company, as shown in Table 6.2. Each 

dough was mixed separately for 10min until it was the correct consistency. After 

that, the doughs were covered, then incubated at 30°C for 24h to be fermented, 

and then back slopping was used for further sourdough fermentation. 150g of 

fermented sourdough in the first day of fermentation was mixed with 75g of flour 

and 75ml of water. Then the fermentation was repeated under the same 

conditions until five days of back slopping. Three replicates were made for the 

experiment. 

Table 6.1: Design of the sourdough fermentation batches 

Culture Treatment Microorganisms 
Inoculum 

volume in g 
of water  

Ingredients 
Dough 
weight 

Single 
culture 

SIN1 Lb brevis Lb1 150 

Strong white flour 
(150g) + water 

(150 g) 

300 

SIN2 Lb. rossiae Lb11 150 300 

SIN3 Lb. plantarum Lb14 150 300 

Mixed 
culture 

MIX1 
Lb. brevis Lb1 + 
Lb. rossiae Lb11 

75/75 

Strong white flour 
(150g) + water 

(150 g) 

300 

MIX2 
Lb. rossiae Lb11 + 
Lb. plantarum Lb14 

75/75 300 

MIX3 
Lb. brevis Lb1 + 
Lb. plantarum Lb14 

75/75 300 

MIX4 
Lb. brevis Lb1 + 
Lb. rossiae Lb11 + 
Lb. plantarum Lb14 

50/50/50 300 

Control COND Without culture - 
Strong white flour 

(150g) + water 
(150 g) 

300 
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Table 6.2: Sourdough fermentation batches with sourdough collection samples 

(from chapter 5) 

Sourdough 
samples* Treatment 

Sourdough mixture 

Sourdough 
samples (g) 

White strong 
flour (g) 

Water (g) 

SD1 SDP1 Made according to the company 

SD2 SDP2 
5 5000 5000 

SD3 SDP3 

SD4–SD17 SDP4- SDP17 10 45 45 

* Key of the table as Table 5.1 

 

6.2.4 Measuring pH value of sourdough samples 

The pH values of sourdough starter before and after fermentation were 

measured as mentioned in Section 4.2.5.1. 

 

6.2.5 Measuring TA of sourdough samples 

The TA values of sourdough starter before and after fermentation were 

measured as mentioned in Section 4.2.5.2. 

 

6.2.6 Measuring Organic acids of sourdough fermentation 

About 0.5±0.01g of fermented sourdough samples were added to 1ml of Milli-Q 

water. Samples were mixed for 30sec using a vortex mixer and centrifuged at 

13000xg for 20min. To 100 µl of supernatant in 400 µl of Milli-Q water (Millipore 

Corp., Bedford, MA, USA) was added 20µl of 92mmol/L H2SO4. The 



 

190 
 

supernatant was extracted using 1ml polypropylene disposable syringe (Fisher 

Scientific, BD A-Line, UK) and filtered through Millipore microfilter (0.20µm pore 

size) (SMI-LabHut Ltd, Gloucester, UK) in to a vial and sealed with a crimp cap 

(11mm, Ruber/PTFE, Fisher Scientific, Loughborough, UK). The organic acid 

(lactic acid, acetic acid and propionic acid) composition of the fermented 

sourdough samples was analysed in triplicate using High Performance Liquid 

Chromatography (HPLC) (Gynkotek, Dionex Corp., Sunnyvale, CA, USA) 

according to the method of Niven et al. (2004).  

All data obtained were processed using Chromeleon® 7.1 Chromatography 

Data System Software (Dionex Softron GmbH, Germering, Germany). A 

calibration curve for each (lactic acid, acetic acid and propionic acid) was 

obtained from six different concentrations (0.2μmol, 2μmol, 20μmol, 200μmol, 

2mmol and 20mmol) of the standards’ stock solutions. 

 

6.2.7 Microbial count of sourdough 

The aerobic plate count (APC), cell counts of LAB, and yeasts in sourdough 

fermentation samples were determined by the viable cell count method on BHI 

agar, MRS agar and yeast extract glucose chloramphenicol agar respectively. 

 

6.2.8 Sourdough microflora analysis 

The sourdough samples, after fermentation as described in Section 6.2.3, were 

put into a sterile 1.5ml Eppendorf tube. The samples were stored at −20°C until 

DNA extraction. All procedures were as described in Section 5.2.2, including 
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DNA extraction, polymerase chain reaction (PCR) followed by agarose gel 

electrophoresis (AGE), and denaturant grade gel electrophoresis (DGGE) 

analysis and lastly gene sequences. Selected bands (OTU) of DGGE gel were 

aseptically separated and sequenced according to whether the band 

represented many groups or was a unique band for particular groups. BLAST at 

NCBI was used to confirm the species of the bacteria. The phylogenetic tree of 

the 16S rRNA gene sequences was constructed in MEGA 6 using the 

neighbour joining method as mentioned in Section 5.2.2.6. 

According to the results of pH, acidity, presence of organic acids and microbial 

growth, the sourdough that was made with single culture Lb14 (Lactobacillus 

plantarum strain JCM 1149) from SIN3 had good results and was selected for 

further studies. 

 

6.2.9 Preparation of bread and baking 

Breads were prepared according to the recipe of Tovar et al. (1992) and 

Tudorica (2004) using batches of 500g basic mixture dough 60% of white strong 

flour, 40% water and the active sourdough with Lb. plantarum JCM1149 (SIN3) 

were added using 9% and 18% on the base of flour and water. Dried active 

yeast (0.6g/100g of the mixture), salt (0.6g/100g of the mixture) and oil 

(0.3g/100g of the mixture) were added as a portion for each dough. The control 

bread was made without sourdough addition. The ingredients were mixed for 

5min in an electric high speed mixer - Robot Coupe R4 (Robot Coupe Ltd, UK). 

After hand moulding, the dough pieces were put into tins and proofed at 

different temperatures and different fermentation times in two groups as shown 
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in Table 6.3. The first group of doughs were left for 3h at 30°C (fast 

fermentation) while the other group were left for 18h at 20°C (slow fermentation) 

to ferment. The bread was baked in an oven (Challenger, Garland, A Welbilt 

Company, Model E9E, USA) at 220°C for 20min. Afterwards, the bread was left 

to cool at room temperature and they were placed in polyethylene bags. Baking 

tests were run in triplicates.  

Table 6.3: The experiment design and treatment formulations of sourdough 

bread (%) 

Ingredients 

Fast fermentation 
3 h at 30°C  

 
 

Slow fermentation 
18 h at 20°C  

FFCON* FFLSD FFHSD  SFCON SFLSD SFHSD 

Strong white 
bread flour 

60 55.5 51  60 55.5 51 

Water 40 35.5 31  40 35.5 31 

Sourdough 0 9 18  0 9 18 

Dried active yeast (0.6g/100g of the mixture), salt (0.6g/100g of the mixture), oil 

(0.3g/100g of the mixture) 

* FFCON, Fast fermentation control bread 

  FFLSD, Fast fermentation low level sourdough bread 

  FFHSD, Fast fermentation high level sourdough bread 

  SFCON, Slow fermentation control bread 

  SFLSD, Slow fermentation low level sourdough bread 

  SFHSD, Slow fermentation high level sourdough bread 

 



 

193 
 

6.2.10 Physical and chemical properties of bread samples 

6.2.10.1 pH and TA values of bread samples 

The pH and TA values of dough before baking and bread at storage period at 

room temperature were measured as mentioned in Section 4.2.5.1 and 4.2.5.2 

respectively. 

 

6.2.10.2 Moisture of bread samples 

Moisture content was measured according to AACC 44.01 (2000). The bread 

samples were weighed and dried at 103±2°C with a fan assisted oven (Genlab 

Ltd., UK). Samples were taken out from the oven at definite time intervals and 

weighed after cooling in a desiccator. This action was continued until achieving 

a fixed weight. Finally, moisture content was calculated using the equation 

below. Three readings per bread sample were run. 

                         Sample weight (g) – Dry weight of the sample (g) 

                                            Sample weight (g) 

 

6.2.10.3 Loaf volume of bread samples 

The loaf volume of the sourdough bread was measured with a standard method 

rapeseed displacement method. A container of known size was filled with 

rapeseed and then samples placed in the container followed by rapeseed. The 

extra rapeseed which is no longer able to fill the container is deemed as loaf 

volume. Three readings per sample batch were run. 

Moisture % = X 100 
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6.2.10.4 Water activity of bread samples 

Water activity (Aw) measurement was determined in triplicate on each bread 

sample. The determination was mentioned in Section 4.2.5.3. 

 

6.2.10.5 Instrumental evaluation of bread quality 

Texture profile analyser (TPA) from Texture analyser (TA-TX2-Stable Micro 

System, UK) was used to evaluate sourdough bread quality parameters 

(hardness, springiness and chewiness). 2cm height of bread crumb was taken 

from the bread and tested. The settings were: pre-test speed: 1.0mm/s; test 

speed: 1mm/s; post-test speed; 1mm/s; distance: 40%, auto 5g trigger force, 

with 12.5mm cylinder probe with radius (P/12.5R). Texture analysis was 

measured every two days during storage of bread samples. Six replicates per 

each sample batch were assessed. 

 

6.2.10.6 Colour of bread samples 

Bread crust and crumb colour L*, a* and b* were measured as described in 

Section 2.7.4. 
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6.2.10.7 Image analysis of bread samples 

Breads were cut into two pieces then bread crumbs were photographed by a 

digital camera (Sony Cyber shot DSC-HX30V, Japan) in a constant place with 

white light. The image J software (version 1.49) was used for analysing the 

porosity of bread crumb which was between two phases (pores and solid part). 

The photographed colour images were first converted to grey scale. Using bars 

of known length, pixel values were converted into distance units. The largest 

possible rectangular cross-section with the same size of the each bread was 

cropped. After adjusting the threshold, the total pore area was measured using 

the software. However, height of bread samples was measured via image J. 

Three replicates were measured for each treatment. 

 

6.2.11 Microbial shelf life of breads 

The microbial shelf life of bread samples is described in Section 2.7.5. 

 

6.2.12 Sensory evaluation 

Bread samples were subjected to sensory evaluation by 33 panellists the day 

after baking, which is described in Section 2.8. 

 

6.2.13 Statistical analysis 

All data were analysed statistically as detailed in Section 2.9 and 5.2.10. 
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6.3 Results   

 6.3.1 pH and TA values of sourdough samples 

The pH and TA values of the sourdoughs were tested before and after 

fermentation from day four of sourdough refreshment for day five at 30ºC as 

shown in the Table 6.4. There were no significant differences (P>0.05) in pH 

values among sourdoughs before fermentation, where the pH values varied 

from 5.81 to 5.88. After 24h of fermentation at day five, there were significant 

differences (P<0.05) in pH values between some sourdoughs. The pH values 

varied from 3.34 to 5.02, where the lower pH values belong to SIN3 and the 

higher belong to COND. Sixteen sourdough samples had pH values of less than 

4.0 after 5 days of back-slopping at 30ºC.  

There were significant differences (P<0.05) in TA values between some 

sourdough samples before and after the fermentation period. The TA values of 

the sourdoughs varied from 0.19 to 0.36mg/100mg before fermentation of the 

sourdoughs, where the lower pH value belongs to SDP14 and the higher 

belongs to SDP8, while the TA values varied from 0.67 to 1.53mg/100mg after 

fermenting the sourdoughs. SIN3 had a high TA value (1.53mg/100mg) and 

significant differences in comparison with the other sourdoughs after the 

fermentation period. However, COND and SDP17 had  lower TA values after 

sourdoughs fermented at 30ºC for 24h at the fifth day of refreshment. 
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Table 6.4: pH and TA value* measurements during sourdough fermentation 

before and after from day four of sourdough refreshment for day 5 at 30ºC  

Treatments** 
pH values TA values (mg/100mg) 

0h/day 4 24h/ day 5 0h/day 4 24h/ day 5 

SIN1 5.88±0.02 3.46±0.01 n 0.27±0.02 efg 1.31±0.02 bc  

SIN2 5.84±0.01 3.42±0.01 n 0.32±0.00 bc 1.4±0.01 ab 

SIN3 5.88±0.02 3.34±0.01 o 0.32±0.01 bc 1.53±0.07 a 

MIX1 5.82±0.01 3.42±0.01 n 0.28±0.01 def 1.39±0.1 b 

MIX2 5.81±0.02 3.59±0.01 lm 0.31±0.01 bcd 1.33±0.05 bc 

MIX3 5.87±0.01 3.55±0.01 m 0.33±0.01 bc 1.34±0.01 bc 

MIX4 5.81±0.01 3.61±0.01 l 0.31±0.01 bcd 1.21±0.01 cd 

COND 5.85±0.02 5.02±0.02 a 0.23±0.07 hijk 0.67±0.02 k 

SDP1 5.85±0.04 3.82±0.02 ij 0.26±0.01 fgh 0.79±0.02 ijk 

SDP2 5.86±0.04 3.78±0.01 j 0.29±0.01 def                0.84±0.02 hij 

SDP3 5.85±0.02 3.70±0.02 k 0.30±0.01 cde                       0.92±0.02 fgh 

SDP4 5.85±0.02 3.87±0.02 i 0.28±0.01 def            0.79±0.02 ijk 

SDP5 5.82±0.01 4.70±0.03 d 0.22±0.01 ijkl   0.68±0.01 k 

SDP6 5.82±0.01 3.60±0.02 lm 0.33±0.01 ab            1.14±0.01 de 

SDP7 5.86±0.02 4.83±0.02 c 0.22±0.01 ijkl 0.94±0.02 fgh 

SDP8 5.83±0.02 3.67±0.02 k 0.36±0.01 a 1.18±0.01 d 

SDP9 5.81±0.04 4.80±0.02 c 0.20±0.01 kl 0.71±0.02 jk 

SDP10 5.85±0.04 3.86±0.02 i 0.24±0.02 hij 0.86±0.01 ghi 

SDP11 5.83±0.02 4.95±0.03 b 0.22±0.01 ijkl 0.77±0.01 ijk 

SDP12 5.86±0.02 4.31±0.02 f 0.25±0.02 ghi 1.03±0.01 ef 

SDP13 5.83±0.09 3.96±0.02 h 0.33±0.01 bc 1.00±0.01 fg 

SDP14 5.81±0.02 4.40±0.02 e 0.19±0.02 l 0.79±0.02 ijk 

SDP15 5.85±0.02 4.14±0.02 g 0.26±0.01 fgh 0.85±0.01 hi 

SDP16 5.82±0.01 3.97±0.02 h 0.22±0.01 ijkl 0.77±0.01 ijk 

SDP17 5.83±0.01 4.44±0.03 e 0.21±0.01jkl 0.67±0.01 k 

* Mean values from three replicates ± standard deviations. a-l Means in each 
column with different superscripts are significant different (P<0.05) . 

** Key of the table as Table 6.1 and 6.2 
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6.3.2 Microbial growth of sourdough samples 

Growth of microorganisms (LAB, APC and yeasts) are shown in Table 6.5. The 

range of LAB growth in prepared sourdough fermentation after 5 days of back-

slopping at 30ºC varied between 5.1 and 9.86 Log10CFU/ml. The number of 

LAB in SIN3 was significantly (P<0.05) higher than the number of LAB in other 

sourdough samples. APC and yeast count in sourdough fermentation samples 

after five days of back-slopping at 37ºC (for APC) and 25ºC (for yeast) ranged 

from 4.70 to 6.6 Log10CFU/ml and 3.54 to 4.32 Log10CFU/ml respectively. The 

number of APC was significantly lower in sourdoughs SIN2, SIN3 and MIX2 

compared to the other sourdoughs. The yeast count was significantly higher in 

SDP6 compared to the other sourdoughs. There was no yeast growth in some 

fermented sourdoughs (SDP9, SDP11, SDP14 and SDP15). Consequently, the 

number of LAB, APC and yeast in COND was 5.33, 7.23 and 3.5 Log10CFU/ml 

respectively. 
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Table 6.5: Growth of LAB, APC and yeasts* in the fermented sourdoughs 

preparation after 5 days of back-slopping at 30ºC, 37ºC, and 25ºC respectively 

Treatments** 
Microorganisms (Log10CFU/ml) 

LAB  APC yeasts 

SIN1 9.10±0.03 d 4.94±0.02 mn 4.12±0.01 d 

SIN2 9.59±0.15 b 4.79±0.01 op 4.19±0.01 bc 

SIN3 9.86±0.08 a 4.73±0.01 pq 4.16±0.01 cd 

MIX1 9.25±0.03 cd 4.99±0.01 lm 3.87±0.02 g 

MIX2 9.44±0.02 bc 4.70±0.01 q 3.95±0.01 f 

MIX3 9.41±0.02 bc 4.86±0.01 no 4.03±0.01 e 

MIX4 9.20±0.07 cd 5.06±0.04 kl 3.86±0.03 g 

COND 5.33±0.02 no  7.23±0.04 a 3.50±0.02 k 

SDP1 7.43±0.03 g 5.10±0.04 k 3.54±0.02 jk 

SDP2 6.10±0.08 jk 5.40±0.02 hi 4.04±0.03 e 

SDP3 6.71±0.09 h 5.69±0.06 g 3.85±0.02 g 

SDP4 7.36±0.14 g 5.44±0.01 h 4.20±0.01 bc 

SDP5 6.42±0.04 i 6.17±0.03 f 3.96±0.02 f 

SDP6 8.47±0.19 f 5.09±0.02 k 4.32±0.01 a 

SDP7 6.96±0.07 h 5.34±0.02 i 4.03±0.03 e 

SDP8 8.80±0.08 e 4.96±0.01 m 4.24±0.02 b 

SDP9 5.32±0.06 no 5.24±0.05 j 0.00±0.00 l 

SDP10 6.19±0.06 ijk 5.35±0.02 i 3.77±0.02 h 

SDP11 5.41±0.05 n 6.38±0.01 de 0.00±0.00 l 

SDP12 5.68±0.16 m 5.37±0.02 hi 3.51±0.02 k 

SDP13 6.27±0.05 ij 6.13±0.01 f 3.59±0.02 ij 

SDP14 5.95±0.04 kl 6.32±0.01 e 0.00±0.00 l 

SDP15 6.36±0.03 i 6.42±0.01 cd 0.00±0.00 l 

SDP16 5.75±0.05 lm 6.47±0.02 c 3.63±0.03 i 

SDP17 5.10±0.02 o 6.66±0.02 b 3.51±0.04 k 

* Mean values from three replicates ± standard deviations. a-q Means in each 
column with different superscripts are significant different (P<0.05) . 

** Key of the table as Table 6.1 and 6.2 
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6.3.3 Organic acid concentrations of sourdough samples 

The results of the organic acids in the fermented sourdough samples are shown 

in the Table 6.6. Lactic acid, acetic acid and propionic acid production were in 

the ranges 1.33 -139.78mmol/L, 4.97 - 29.03mmol/L and 1.67 - 12.87mmol/L 

respectively. There were no significant differences (P>0.05) in the lactic acid 

production in the three sourdoughs (SIN3, SDP3 and SDP8). There were also 

no significant differences (P>0.05) among the sourdoughs made by single and 

mixture cultures of LAB. Sourdough fermented with single and mixture cultures 

of LAB could produce higher amount of lactic acid in comparison with the other 

sourdoughs except SDP3 and SDP8. Sourdough preparation SDP15 and 

SDP16 could produce higher amounts of acetic acid and low amounts of lactic 

acid. High amounts of propionic acid were produced by the SDP15 which was 

significantly different (P<0.05) to the other sourdough production. Some of the 

sourdough samples had not produced propionic acid, as shown in Table 6.6. 

Through sourdough fermentation, LAB produced organic acids which directly 

related to a decrease in pH level (high organic production decrease level of pH) 

which is clearly shown in Table 6.4 and 6.6. 
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Table 6.6: Lactic acid, acetic acid and propionic acid* of fermented sourdoughs 

after 5 days of back-slopping at 30ºC 

Treatments** 
Organic acids (mmol/L)  

Lactic acid Acetic acid Propionic acid 

SIN1 118.61±6.11  bcd 5.93±2.12  j 2.33±0.58  cd 

SIN2 123.12±1.30  bcd 8.33±0.21  ghij 0  

SIN3 131.36±1.74  ab 7.13±0.06  hij 2.00±0.17  d 

MIX1 122.64±7.20  bcd 8.13±0.5  ghij 1.67±0.16  d 

MIX2 124.87±4.51  bc 6.93±1.44  ij 0  

MIX3 125.66±1.55  bc 7.10±0.72  hij 2.80±0.1  cd 

MIX4 125.69±6.52  bc 7.73±0.45  hij 2.23±0.06  cd 

COND 23.70±2.92  h 12.83±2.61  fghi 0  

SDP1 51.22±2.81  g 8.07±0.56  ghij 0  

SDP2 115.63±6.44  cd 6.17±0.15  j 0  

SDP3 127.89±11.04  abc 20.43±2.4  bc 2.17±0.06  cd 

SDP4 3.11±0.9  i 13.07±1.95  efgh 0  

SDP5 2.06±0.58  i 19.07±2.91  cde 6.43±0.25  b 

SDP6 95.60±9.05  e 12.83±1.06  fghi 0  

SDP7 1.33±0.5  i 4.97±1.77  j 6.57±1.60  b 

SDP8 139.78±5.83  a 18.00±2.14  cdef 2.97±0.12  cd 

SDP9 2.76±0.19  i 7.20±2.46  hij 0  

SDP10 110.70±0.72  d 13.80±2.39  defg 0  

SDP11 11.23±3.77  hi 22.27±3.45  bc 0  

SDP12 7.03±1.53  i 19.27±1.00  cd 0  

SDP13 74.06±1.85  f 18.63±1.99  cdef 0  

SDP14 5.97±1.13  i 21.10±1.73  bc 3.70±0.62  c 

SDP15 9.56±0.64  i 25.70±1.02  ab 12.87±1.82  a 

SDP16 8.00±0.15  i 29.03±3.63  a 0  

SDP17 7.92±2.34  i 17.93±1.72  cdef 0  

* Mean values from three replicates ± standard deviations. a-j Means in each 
column with different superscripts are significant different (P<0.05) . 

** Key of the table as Table 6.1 and 6.2 
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6.3.4 PCR-DGGE of sourdough samples  

Figure 6.1 shows the PCR–DGGE bacterial profiles of the sourdough samples. 

Many different bands are shown in the DGGE image and the gel bands which 

were considered to be the operative taxonomy unit (OTU) in each sample. 

The similarity of bacterial populations within and between the sourdough 

samples were measured by using half matrix similarity (%) of sourdoughs 

DGGE fingerprints as shown in Table 6.7; non-metric multidimensional scaling 

(MDS) and cluster analysis of DGGE fingerprints are shown in Figure 6.2. There 

was about 40% similarity of bacterial population between all the sourdough 

samples. There was more than 80% similarity between all sourdough samples 

except the control dough (CONA, CONB and CONC). 

The diversity and richness indexes were used to display the microbial 

population’s diversity and richness in the sourdough samples as shown in table 

6.8. The diversity and richness of the bacterial community based on the PCR-

DGGE DNA fingerprinting of sourdough samples indicated that; there were 

significant differences (P<0.05) in diversity and richness among sourdough 

samples. The diversity varied between 6.34 and 7.74, and richness between 

3.05 and 3.26. The diversity and richness of COND was significantly higher than 

the other sourdough samples, reaching 7.74 and 3.26 respectively. There were 

no significant differences in the diversity between single and mixed culture 

sourdoughs, except MIX4 in which all three LAB mixed to make a sourdough. 

Also, there were no significant differences in the richness between SIN3, MIX1, 

MIX2, MIX3 and MIX4.  
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Figure 6.1: DGGE fingerprints of sourdough samples. Numbers of bands 

(operative taxonomy units (OTUs)) in each sample relates to diversity richness 

* Key of the figure as Table 6.1 

** (Lb1) Lb. brevis ATCC 367, (Lb11) Lb. rossiae DSM15814 and (Lb14) Lb. 

plantarum JCM1149  
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Table 6.7: The half matrix similarity of bacterial population of DGGE fingerprints of sourdough samples which they were made with 

Lb. brives, Lb. rossie and Lb. plantarum separately and mixed together 

Samples* 
SIN1

A 

SIN1
B 

SIN1
C 

SIN2
A 

SIN2
B 

SIN2
C 

SIN3
A 

SIN3
B 

SIN3
C 

MIX
1A 

MIX
1B 

MIX
1C 

MIX
2A 

MIX
2B 

MIX
2C 

MIX
3A 

MIX
3B 

MIX
3C 

MIX
4A 

MIX
4B 

MIX
4C 

CON
A 

CON
B 

CON
C 

SIN1A 100                        

SIN1B 100 100                       

SIN1C 100 100 100                      

SIN2A 96 100 96 100                     

SIN2B 96 100 96 100 100                    

SIN2C 96 96 96 100 100 100                   

SIN3A 95 95 95 95 100 95 100                  

SIN3B 95 95 95 95 100 95 100 100                 

SIN3C 95 95 95 95 95 95 100 100 100                

MIX1A 95 95 95 95 95 95 100 100 100 100               

MIX1B 95 95 95 95 95 95 100 100 100 100 100              

MIX1C 95 95 95 95 95 95 100 100 100 100 100 100             

MIX2A 95 95 95 95 95 95 100 100 100 100 100 100 100            

MIX2B 95 95 95 95 95 95 100 100 100 100 100 100 100 100           

MIX2C 95 95 95 95 95 95 100 100 100 100 100 100 100 100 100          

MIX3A 95 95 95 95 95 95 100 100 100 100 100 100 100 100 100 100         

MIX3B 95 95 95 95 95 95 100 100 100 100 100 100 100 100 100 100 100        

MIX3C 95 95 95 95 95 95 100 100 100 100 100 100 100 100 100 100 100 100       

MIX4A 93 93 93 93 93 93 98 98 98 98 98 98 98 98 98 98 98 98 100      

MIX4B 93 93 93 93 93 93 98 98 98 98 98 98 98 98 98 98 98 98 100 100     

MIX4C 93 93 93 93 93 93 98 98 98 98 98 98 98 98 98 98 98 98 100 100 100    

CONA 40 40 40 44 44 44 42 42 42 42 42 42 42 42 42 42 42 42 38 38 38 100   

CONB 47 47 47 51 51 51 49 49 49 49 49 49 49 49 49 49 49 49 46 46 46 95 100  

CONC 38 38 38 43 43 43 40 40 40 40 40 40 40 40 40 40 40 40 36 36 36 94 88 100 

* Key of the table as table 6.1, A-C refers to replicate number in each treatment
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Figure 6.2: (A) Cluster analysis and (B) non-metric multidimensional scaling 

(MDS) graph based on the PCR-DGGE DNA fingerprints showing similarity (%) 

of bacterial communities between sourdough samples 

* Key of the figures as table 6.1 

B 

A 
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Table 6.8: Diversity index of bacterial community* in sourdough samples based 

on the PCR-DGGE DNA fingerprinting 

Samples1 Band No. Diversity2 Richness3 

SIN1 23 b 7.02 b 3.14 b 

SIN2 23 b 7.02 b 3.14 b 

SIN3 21 bc 6.57 bc 3.05 c 

MIX1 21 bc 6.57 bc 3.05 c 

MIX2 21 bc 6.57 bc 3.05 c 

MIX3 21 bc 6.57 bc 3.05 c 

MIX4 20 c 6.34 c 3.00 c 

COND 26 a 7.74 a 3.26 a 

* a-c Means with the different superscript in the same column and age are 
significantly different (P<0.05). 
1 Key of the table as Table 6.1 
2 Diversity: H‟ = -SUM (pi٭Log (pi)). 
3 Richness: d = (S -1) ⁄ log (N). 
 

 

Figure 6.3 shows the phylogenetic relationship among LAB strains that were 

constructed based on the 16S rDNA sequences using the neighbour joining 

method. The identification of bands in PCR-DGGE fingerprints of the bacterial 

population of sourdough samples were selected from the bands in Figure 6.1 for 

sequencing. Most of the bands that were found are Lactobacillus species. The 

maximum identity of bacterial species was varied between 97 to 99%. There 

were some uncultured bacteria found in the selected bands; they were 

discarded due to their maximum identity which were less than 90%. These 

might be mainly as-yet-uncultured bacteria in the data banks. 
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Figure 6.3: Phylogenetic tree showing the relative position of sourdough LAB based on 16S rDNA, using the neighbour joining 

method. Bootstrap values for a total of 1000 replicates are shown at the nodes of the tree, using MEGA 6 software. The scale bar 

corresponds to 0.05 units of the number of base substitutions per site. 
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6.3.5 pH and TA values of dough samples before baking 

The pH and TA of the dough are important during sourdough fermentation. 

Before and after the fermentation process of the dough, the pH and TA values 

were measured as shown in Table 6.9. The results indicated that there were no 

significant differences (P>0.05) in pH values before starting fermentation, 

except FFHSD and SFHSD, which might be due to adding more fermented 

sourdough. However, the TA values were significantly different (P<0.05) before 

starting fermentation due to the presence of fermented sourdough that was 

added to the dough at different concentrations. The results indicated that pH 

and TA values changed significantly (P<0.05) between all treatments after fast 

fermentation (3h) at 30ºC and slow fermentation (18h) at 20ºC of the doughs. 

Table 6.9: pH and TA values* of the doughs before and after fermentation at 

different temperature and different time interval 

Treatment** 
Fermentation 

process 

pH  TA (mg/100mg) 

before after  before after 

FFCON 

3h at 30°C 

6.22±0.01 a 5.67±0.01 b  0.25±0.01 c 0.49±0.01 e 

FFLSD 6.19±0.02 a 5.43±0.02 d  0.28±0.01 b 0.60±0.01 c 

FFHSD 6.14±0.02 b 4.97±0.01 f  0.30±0.01 a 0.80±0.01 a 

SFCON 

18h at 20°C 

6.22±0.01 a 5.79±0.02 a  0.25±0.01 c 0.46±0.01 f 

SFLSD 6.19±0.02 a 5.52±0.01 c  0.28±0.01 b 0.56±0.01 d 

SFHSD 6.14±0.02 b 5.08±0.02 e  0.30±0.01 a 0.69±0.01 b 

* Mean values from three replicates ± standard deviations (ANOVA was 

followed by Turkey’s test). a-f Means in each column with different 

superscripts are significant different (P<0.05). 

** Key of the table as Table 6.3 
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6.3.6 pH and TA values of bread samples 

The pH and TA values of bread samples during the storage period at room 

temperature are shown in Table 6.10 and 6.11 respectively. On day 0, there 

were significant differences (P<0.05) in the pH values between treatments, 

except FFHSD and SFHSD, where pH values ranged from 5.10 to 5.98. There 

were also significant differences on other days. The pH of the bread with 

FFHSD was lower than the other treatments. During the storage period over 10 

days at room temperature, the pH values were decreased significantly (P<0.05) 

at all treatments. The TA values ranged from 0.36 to 0.77 on day 0. The TA 

values of sourdough bread were always higher than control breads. The TA 

values that were defined significantly increased (P<0.05) during storage over 10 

days at room temperature which was due to a decrease in pH values. There 

were no tests determined on day 8 of storage for the control bread (SFCON) 

and on day 10 for breads (FFCON, SFCON and SFLSD) due to of microbial 

growth which was observed on the surface of the breads. 
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Table 6.10: pH* development over 10 days of storage of sourdough bread at room temperature 

Treatment1 
Fermentation 

process 

Time (days) 

0 2 4 6 8 10 

FFCON 

3h at 30°C 

5.98±0.01 aA 5.96±0.01 aB 5.94±0.01 aC 5.93±0.01 aC 5.91±0.01 aD Spoiled 

FFLSD 5.55±0.01 cA 5.53±0.02 cAB 5.52±0.01 cAB 5.51±0.01 cBC 5.50±0.01 bBC 5.49±0.01 aC 

FFHSD 5.11±0.01 eA 5.10±0.01 eA 5.09±0.01 eAB 5.08±0.01 eBC 5.07±0.01 dC 5.05±0.01 bD 

SFCON 

18h at 20°C 

5.93±0.01 bA 5.92±0.01 bA 5.89±0.01 bB 5.88±0.01 bB Spoiled2 Spoiled 

SFLSD 5.50±0.01 dA 5.48±0.01 dB 5.46±0.01 dC 5.44±0.01 dCD 5.43±0.01 cD Spoiled 

SFHSD 5.10±0.01 eA 5.09±0.01 eAB 5.07±0.01 fBC 5.06±0.01 eCD 5.05±0.01 dCD 5.04±0.01 bD 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-f Means in the same column 

with different superscripts are significantly different (P < 0.05). A-D Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 Key of the table as Table 6.3 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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Table 6.11: Development of TA* values (mg/100mg) over 10 days of storage of sourdough bread at room temperature 

Treatment1 
Fermentation 

process 

Time (days) 

0 2 4 6 8 10 

FFCON 

3h at 30°C 

0.38±0.01 eC 0.38±0.01 eC 0.40±0.02 eB 0.40±0.01 eB 0.41±0.01 eA Spoiled 

FFLSD 0.58±0.01 cC 0.59±0.01 cC 0.59±0.00 cC 0.59±0.01 cC 0.61±0.01 cB 0.63±0.01 cA 

FFHSD 0.77±0.01 aD 0.78±0.01 aCD 0.80±0.01 aC 0.82±0.01 aB 0.83±0.01 aA 0.84±0.01 aA 

SFCON 

18h at 20°C 

0.36±0.01 eB 0.37±0.01 eB 0.39±0.006 eA 0.40±0.01 eA Spoiled2 Spoiled 

SFLSD 0.52±0.01 dC 0.54±0.01 dC 0.56±0.01 dB 0.57±0.01 dB 0.58±0.01 dA Spoiled 

SFHSD 0.72±0.01 bD 0.73±0.01 bC 0.74±0.01 bC 0.76±0.01 bB 0.77±0.00 bAB 0.78±0.01 bA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-f Means in the same column 

with different superscripts are significantly different (P<0.05). A -D Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 Key of the table as Table 6.3 
2 Spoiled: Microbial growth was observed on the surface of the breads 
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6.3.7 Physical and chemical properties of bread samples 

The physical and chemical properties were measured after baking bread on day 

0 as shown in Table 6.12. There were significant differences (P<0.05) in the loaf 

volume among the treatments, except bread with FFLSD and SFHSD, where 

the values ranged between 881.67 to 1480ml. There were significant 

differences (P<0.05) in the height of breads among all the treatments, except 

breads with FFCON and SFHSD; the height of the bread with FFHSD was 

significantly higher than the other treatments. The moisture percentage of the 

breads ranged from 36.55-44.64% and water activity from 0.92–0.95. There 

were no significant differences (P>0.05) in the moisture between breads with 

SFCON, SFLSD and SFHSD. The bread with FFHSD had a lower moisture 

percentage and water activity than the other treatments. The results showed 

that the cell total area percentage of all treatments at 30ºC for 3h of 

fermentation was higher compared to the treatments at 20ºC for 18h. The cell-

total area of the breads with FFLSD and FFHSD was higher than the other 

treatments. No change showed in the cell-total area between controls (FFCON 

and SFCON) and between bread with SFCON and SFHSD: Figure 6.4 shows 

the pores area of the bread samples after conversion to grey and then to black 

and white. 
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Table 6.12: physical and chemical properties* of bread with added different concentration and fermentation process of sourdough  

Treatment** 
Fermentation 

process 
Loaf volume (ml) Height (mm) Moisture (%) Aw Cell-total area % 

FFCON  1113.33±5.51 c 95.33±1.00 c 40.57±1.71 bc 0.95±0.002 a 13.06±0.86 b 

FFLSD 3h at 30°C 1225.67±6.66 b 106.00±1.00 b 39.72±1.14 c 0.93±0.002 c 16.67±1.19 a 

FFHSD  1480.00±12.12 a 115.00±1.00 a 36.55±1.16 d 0.92±0.002 d 17.53±1.31 a 

SFCON  881.67±10.60 e 87.67±0.58 e 44.64±0.31 a 0.95±0.001 a 11.77±0.76 bc 

SFLSD 18h at 20°C 1019.33±6.11 d 91.00±1.00 d 43.33±0.28 ab 0.94±0.002 b 7.32±0.86 d 

SFHSD  1211.67±5.69 b 97.67±0.58 c 43.30±0.81 ab 0.94±0.001 b 10.25±0.62 c 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-e Means in the same column 

with different superscripts are significantly different (P<0.05).  

** Key of the table as Table 6.3
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FFCON* 

FFLSD 

FFHSD 

SFCON 

SFLSD 

SFHSD 

 

Figure 6.4: The areas of pores of the crumb breads measurement by using 

ImageJ software.             * Key of the figure as Table 6.3 
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6.3.8 Texture properties of bread samples during storage time  

Bread properties were measured over a storage period, including textures such 

as hardness, springiness and chewiness for sourdough breads as shown in 

Table 6.13. On day 0, hardness and chewiness recorded the same effect which 

showed that bread with FFHSD significantly (p˂0.05) decreased these factors. 

In contrast, hardness and chewiness of the bread with SFCON significantly 

increased comparing to the other treatments. There were no significant 

differences (P>0.05) in the springiness among all the treatment except SFCON 

with SFLSD. On all other days, hardness of bread with FFHSD was shown to be 

lower than the other treatments. However all breads which made with 

sourdough addition at low and high level and with both fermentation processes 

were softer than the control breads at each day of storage. On day 2, 

springiness was significantly higher and chewiness lower in the bread with 

FFHSD compared to the other treatments. On day 4, bread with FFHSD had 

higher springiness, while, the chewiness of bread with FFHSD, SFLSD and 

SFHSD was lower. On days 6 and 8, there were no significant differences in 

springiness from all breads with added sourdough except bread with FFLSD on 

day 6. Furthermore, hardness and chewiness were increased in all treatments 

over 10 days of storage at room temperature. Microbial growth was observed 

on the surface of bread with SFCON on day 8 and breads with FFCON, SFCON 

and SFLSD on day 10 of storage. They were discarded and removed from the 

test. 
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Table 6.13: The influence of the sourdough on the quality* of breads  

Time 
(day) 

Treatment** Hardness (g) Springiness Chewiness 

0 FFCON 176.61±4.78 b 0.95±0.02 ab 121.46±2.28 c 

 FFLSD 157.65±6.41 c 0.94±0.02 ab 100.30±2.81 d 

 FFHSD 113.60±1.42 e 0.95±0.02 ab 90.61± 3.72 e 

 SFCON 203.08±3.18 a 0.93±0.01 b 144.19±2.50 a 

 SFLSD 174.39±3.82 b 0.96±0.02 a 134.41±4.29 b 

 SFHSD 136.10±6.93 d 0.95±0.01 ab 122.29±3.54 c 

2 FFCON 282.89±6.98 b 0.94±0.01 bc 188.37±4.11 b 

 FFLSD 225.74±5.10 d 0.95±0.02 b 161.74±3.42 c 

 FFHSD 192.49±9.13 e 0.98±0.01 a 108.79±4.77 e 

 SFCON 307.87±7.11 a 0.92±0.01 c 206.12±5.26 a 

 SFLSD 256.94±4.19 c 0.92±0.01 c 160.65±6.53 c 

 SFHSD 232.47±5.29 d 0.93±0.01 c 150.93±7.01 d 

4 FFCON 376.98±5.09 a 0.91±0.01 b 207.30±6.79 b 

 FFLSD 295.50±4.07 d 0.93±0.01 b 189.34±8.95 c 

 FFHSD 244.99±5.51 f 0.95±0.01 a 167.54±8.41 d 

 SFCON 337.78±6.47 b 0.88±0.01 c 224.45±7.53 a 

 SFLSD 314.81±5.32 c 0.92±0.01 b 165.18±12.54 d 

 SFHSD 271.93±4.68 e 0.93±0.01 b 162.46±7.44 d 

6 FFCON 492.19±6.83 b 0.88±0.01 a 242.61±6.77 b 

 FFLSD 365.38±5.24 d 0.91±0.01 b 216.13±8.46 c 

 FFHSD 315.84±4.98 f 0.92±0.01 b 182.02±9.44 d 

 SFCON 570.08±5.81 a 0.87±0.01 a 279.67±7.23 a 

 SFLSD 402.33±5.12 c 0.91±0.01 b 238.13±10.66 b 

 SFHSD 340.79±7.00 e 0.92±0.01 b 204.37±10.13 c 

8 FFCON 608.61±8.43 a 0.87±0.01 b 298.01±7.20 a 

 FFLSD 459.75±6.87 d 0.88±0.01 b 264.22±5.99 c 

 FFHSD 389.96±6.69 e 0.91±0.00 a 230.86±6.84 d 

 SFLSD 526.12±5.27 b 0.91±0.01 a 284.18±7.38 b 

 SFHSD 484.00±9.80 c 0.92±0.01 a 238.04±6.29 d 

10 FFLSD 511.80±5.05 b 0.86±0.02 b 286.47±6.61 b 

 FFHSD 441.90±6.85 c 0.90±0.00 a 263.29±7.87 c 

 SFHSD 569.79±5.37 a 0.86±0.01 b 296.92±8.58 a 

* a-f Means (n=6) in the same column with different letters in each separate days 

are significantly different (P < 0.05).           ** Key of the table as Table 6.3 
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6.3.9 Colour of bread samples 

Whiteness of crust (top and bottom) and crumb of breads are presented in 

Table 6.14 and L* (lightness) a* (redness) and b* (yellowness) measurements of 

crust (top and bottom) and crumb of breads are showed in Figure 6.5. Bread 

with FFHSD had a significantly lower (P<0.05) whiteness of crust top. There 

were no significant differences of whiteness of crust bottom between breads 

with SFCON and SFLSD, and no differences between FFCON and FFLSD, and 

also FFCON, FFHSD and SFHSD. No changes on the whiteness of crumb 

colour were noticed in the fast fermented breads with and without sourdough 

addition. The crumb colour of breads with SFLSD and SFHSD had noticeably 

lower whiteness and lightness than the other treatments. No change was found 

in lightness on the crust top of breads among all the treatments. Redness of the 

crust top of bread with FFCON and FFHSD was higher than the other 

treatments, while the crumb of bread with SFHSD had noticeably higher 

redness. There was significantly decreased yellowness of the crust top of the 

bread with SFLSD and SFHSD. There were no changes in yellowness of the 

crust bottom of breads with SFCON, SFLSD and FFHSD, and lower yellowness 

of crumb of bread with FFCON was found. 
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Table 6.14: Whiteness crust and crumb colour* of sourdough bread  

Treatment** Fermentation 
process 

Crust colour 
Crumb colour 

Top Bottom 

FFCON  41.00±2.00 b -48.20±1.28 ab 66.27±1.54 a 

FFLSD 3h at 30°C 44.24±1.35 a -45.63±1.65 a 66.37±0.75 a 

FFHSD  38.71±1.74 c -49.14±4.28 b 65.46±0.76 a 

SFCON  42.18±0.92 ab -56.06±1.88 c 59.75±0.91 b 

SFLSD 18h at 20°C 43.29±1.95 a -56.16±1.96 c 56.86±1.17 c 

SFHSD  42.54±0.93 ab -51.34±1.54 b 57.06±1.02 c 

* Mean values from nine replicates ± standard deviations (ANOVA was followed 
by Turkey’s test). a-c Means within a column with different superscripts differ 
significantly (P<0.05). 

** Key of the table as Table 6.3 
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Figure 6.5: Colour (a) lightness, (b) redness and (c) yellowness values for crust 

(top and bottom) and crumb of bread samples. Mean values from nine 

replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-c 

Means within same parameter with different superscripts are significantly 

different (P<0.05).           * Key of the treatments as Table 6.3 
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6.3.10 Shelf life of bread samples 

Shelf life of the sourdough breads was determined by microbial growth over 10 

days of storage at room temperature. The aerobic plate count (APC) and LAB 

were observed in all bread samples as shown in Table 6.15 and 6.16 

respectively. On day 0, the growth of APC ranged from 3.52 to 4.65 log10CFU/g 

and LAB from 3.49 to 3.98 log10CFU/g while the number of APC in bread with 

SFCON significantly was higher (P<0.05) and the number of LAB was lower. 

There were significant differences between the breads at each day of storage 

except growth of APC in the bread FFLSD with SFHSD on days 2, 4 and 6 and 

also growth of LAB in the breads with SFLSD with SFHSD on day 0. The growth 

of APC and LAB were significantly increased in all the treatments over 10 days 

of storage at room temperature. The bread with SFCON on days 8 and 10, and 

breads with FFCON and SFLSD on day 10 of storage were discarded and 

removed from the test due to the microbial growth on the surface of them.  

Table 6.17 shows the growth of mould and yeast over 10 days of storage at 

room temperature. On day 0, there was no growth of mould and yeast detected 

in any of the treatments. No mould and yeast colonies were detected when the 

breads with FFLSD, FFHSD and SFHSD were tested on day 2 of storage at 

room temperature. The number of mould and yeast in the bread with SFCON 

was significantly higher in comparison with the other treatments over days of 

storage at room temperature until spoiled by microbial growth on the surface of 

the bread. 
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Table 6.15: Aerobic plate count (APC) of sourdough bread over 10 days of storage at room temperature (*Log10 CFU/g) 

Treatment1 
Fermentation 

process 

Time (days) 

0 2 4 6 8 10 

FFCON  4.65±0.03 bE 5.01±0.01 bD 5.30±0.02 bC 5.65±0.02 bB 6.17±0.02 aA Spoiled 

FFLSD 3h at 30°C 3.84±0.01 dF 4.11±0.02 dE 4.31±0.02 dD 4.64±0.02 dC 5.12±0.01 dB 5.77±0.01 bA 

FFHSD  3.52±0.02 fF 3.92±0.02 eE 4.20±0.02 eD 4.46±0.01 eC 4.91±0.02 eB 5.21±0.02 cA 

SFCON  4.94±0.01 aD 5.13±0.02 aC 5.42±0.01 aB 6.03±0.02 aA Spoiled2 Spoiled 

SFLSD 18h at 20°C 3.95±0.02 cE 4.22±0.02 cD 4.45±0.02 cC 4.82±0.02 cB 5.56±0.02 bA Spoiled 

SFHSD  3.57±0.02 eF 4.07±0.02 dE 4.29±0.02 dD 4.63±0.03 dC 5.25±0.02 cB 6.08±0.02 aA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-f Means in the same column 

with different superscripts are significantly different (P<0.05). A-F Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 Key of the table as Table 6.3 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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Table 6.16: Growth of LAB of sourdough bread over 10 days of storage at room temperature (*Log10CFU/g) 

Treatment1 
Fermentation 

process 

Time (days) 

0 2 4 6 8 10 

FFCON  3.57±0.01 dE 3.94±0.01 eD 4.09±0.02 eC 4.30±0.01 eB 4.82±0.02 eA Spoiled 

FFLSD 3h at 30°C 3.68±0.02 bF 4.16±0.01 bE 4.41±0.01 bD 4.90±0.02 bC 5.10±0.01 bB 5.40±0.02 bA 

FFHSD  3.98±0.01 aF 4.32±0.01 aE 4.94±0.01 aD 5.23±0.01 aC 5.44±0.01 aB 5.90±0.02 aA 

SFCON  3.49±0.01 eD 3.82±0.02 fC 4.04±0.02 fB 4.26±0.01 fA Spoiled2 Spoiled 

SFLSD 18h at 20°C 3.60±0.01 cE 3.98±0.01 dD 4.24±0.02 dC 4.57±0.01 dB 4.90±0.02 dA Spoiled 

SFHSD  3.62±0.01 cF 4.02±0.01 cE 4.36±0.01 cD 4.64±0.02 cC 5.04±0.01 cB 5.32±0.02 cA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-f Means in the same column 

with different superscripts are significantly different (P<0.05). A-F Means in the same row with different superscripts are 

significantly different (P<0.05). 

1 Key of the table as Table 6.3 

2 Spoiled: Microbial growth was observed on the surface of the breads 
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Table 6.17: Mould and yeast counts of sourdough bread over 10 days of storage at room temperature (*Log10CFU/g) 

Treatment1 
Fermentation 

process 

Time (days) 

0 2 4 6 8 10 

FFCON  n.d.2 2.60±0.02 bD 3.13±0.01 bC 3.88±0.02 bB 4.57±0.02 aA Spoiled 

FFLSD 3h at 30°C n.d. n.d. 2.64±0.02 dD 3.03±0.02 eC 3.74±0.02 dB 4.29±0.01 bA 

FFHSD  n.d. n.d. 2.50±0.01 eD 2.90±0.01 fC 3.24±0.02 eB 4.03±0.02 cA 

SFCON  n.d. 2.67±0.02 aC 3.24±0.02 aB 4.19±0.02 aA Spoiled3 Spoiled 

SFLSD 18h at 20°C n.d. 2.50±0.02 cD 3.09±0.02 cC 3.46±0.01 cB 4.10±0.02 bA Spoiled 

SFHSD  n.d. n.d. 2.64±0.02 dD 3.26±0.02 dC 3.85±0.02 cB 4.42±0.02 aA 

* Mean values from three replicates ± standard deviations (ANOVA was followed by Turkey’s test). a-f Means in the same column 
with different superscripts are significantly different (P<0.05). A-D Means in the same row with different superscripts are 
significantly different (P<0.05). 

1 Key of the table as Table 6.3 

2 n.d.: not detected, the detection limit was <10 

3 Spoiled: Microbial growth was observed on the surface of the breads 
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The growth of Bacillus cereus in bread samples during storage periods at room 

temperature is shown in Table 6.18. Bacillus cereus was not detected in breads 

which were fermented with sourdoughs including FFLSD, FFHSD, SFLSD and 

SFHSD until day 8 of the storage period, except bread with SFLSD where they 

were found growing on day 8 of the storage period at room temperature. They 

were found on control breads including FFCON and SFCON on day 6 of the 

storage at room temperature. On day 10, the growth of Bacillus cereus in the 

bread with FFHSD was significantly lower (P<0.05) compared to the other 

treatments. Bacillus cereus was increased significantly in all treatments during 

storage periods at room temperature. 

The bread samples were tested for spore forming bacteria, which were not 

detected in any bread samples in any case of storage time, which might be due 

to having been baked at 220°C for 20min. Spores of Bacillus species observed 

in flour and other raw components are resistant to temperature and some of 

them can survive the baking process where the temperature in the centre of the 

crumb reaches up to 97–101°C for a few minutes (Valerio et al., 2012; Rosell et 

al., 2016). During baking process, most microbes are killed 

Bread with SFCON and FFCON, which were made without sourdough addition 

(control bread), had a shelf life of 6 and 8 days respectively; this change might 

be due to the slow and fast fermentation at different temperature. However, the 

bread with fast fermentation at level 9 and 18% and slow fermentation at level 

18% of sourdough addition had a shelf life of 10 days when tested for the level 

of APC, LAB, mould and yeast colony counts, growth of Bacillus cereus and 

spore forming bacteria. The reason is probably due to metabolites of LAB 

during the fermentation of sourdough and addition to the bread formulation 
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which have antimicrobial activity against food pathogenic and spoilage 

microorganisms. 

 

Table 6.18: Growth of Bacillus cereus of sourdough bread over 10 days of 

storage at room temperature (*Log10CFU/g) 

Treatment1 Fermentation 
process 

Time (days) 

6 8 10 

FFCON  2.70±0.02 bB 3.16±0.02 aA Spoiled 

FFLSD 3h at 30°C n.d.2 n.d. 2.87±0.01 a 

FFHSD  n.d. n.d. 2.6±0.01 c 

SFCON  2.80±0.01 a Spoiled3 Spoiled 

SFLSD 18h at 20°C n.d. 2.95±0.01 b Spoiled 

SFHSD  n.d. n.d. 2.81±0.02 b 

* Mean values from three replicates ± standard deviations (ANOVA was 
followed by Turkey’s test). a-c Means in the same column with different 
superscripts are significantly different (P<0.05). A-B Means in the same row 
with different superscripts are significantly different (P<0.05). 

1 Key of the table as Table 6.3 

2 n.d.: not detected, the detection limit was <10 

3 Spoiled: Microbial growth was observed on the surface of the breads 
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6.3.11 Sensory evaluation of bread samples 

The current sensory evaluation was undertaken to assess overall appearance, 

aroma, texture, flavour, acidity and overall acceptability of the breads with 

FFCON, FFLSD, FFHSD, SFCON, SFLSD and SFHSD as the labels show in 

Figure 6.6. In a ranking test, the higher scores refer to a food with high 

acceptability. 

Of the six sensory attributes evaluated, only one attribute (acidity) showed no 

significant change (P>0.05) between all the treatments. On the other hand, 

there is a considerable difference between other attributes. For overall 

appearance and overall acceptability, bread with FFLSD recorded the highest 

average rank, scoring 122.8 and 128 respectively. Those were significantly 

different than the breads with SFLSD and SFHSD. There were also significant 

differences between FFLSD with SFCON in the term of overall acceptability, but 

those were not significantly different to the other breads. For texture, bread with 

SFHSD recorded the lowest average rank with 66.7 and it was significantly 

different compared to the other breads. In both aroma and flavour, the breads 

with fast fermentation had a higher average rank than breads with slow 

fermentation. However, the statistical analysis indicated that there was no 

significant difference in aroma between the breads with FFHSD, SFCON, and 

SFLSD and also between FFCON, SFCON, and SFLSD in flavour. The results 

are shown in Figure 6.6 and pairwise comparisons for the sensory attributes 

were used for comparison between treatments which is shown in Figure 6.7.  
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Figure 6.6: Average rank of sensory evaluation of breads made with and without sourdough using fast fermented process at 30ºC 

for 3h and slow fermented process at 20ºC fore 18h with different concentration of sourdough   

* Key of the figure as Table 6.3 
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Figure 6.7: Pairwise comparisons (normal (0,1) distribution) of the sensory 

attributes of breads using Donn’s test (|Bonferroni Z-value| : 2.475). (A) Overall 

appearance, (B) Aroma, (C) Texture, (D) Flavour, (E) Acidity, (F) Overall 

acceptability. The y-axis labels are listed on Table 6.3. 
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6.4 Discussion 

Starters Lb. brevis, Lb. rossiae and Lb. plantarum as a single and mixed culture 

and also 17 sourdough samples separately were tested for sourdough 

fermentation to evaluate sourdough bread making properties. 

The pH and TA values of the sourdoughs were tested before and after day five 

of back-slopping at 30ºC for 24h. The pH remain constant, showing no changes 

before starting the fermentation. During the fermentation time at 30ºC for 24h, 

pH of sourdoughs decreased and acidity increased due to the presence of LAB. 

This result is in agreement with the results of Banu et al. (2010) who reported 

that fermented sourdough with LAB effected to decrease pH and increase 

acidity and also cause differences in the pH and acidity between fermented 

sourdoughs, which might be due to use of different starter culture and flour 

spontaneous microflora. These results in the present study are in agreement 

with the findings of Thiele et al. (2002) and Wehrle and Arendt (1998) who 

studied the wheat sourdough and found that the pH ranged from 3.5-4.3 as 

observed in the present study. However, Robert et al. (2006) reported that the 

pH of sourdoughs change during sourdough fermentation when using different 

LAB starters, while, Jekle et al. (2010) showed small variations in the pH and 

acidity with the use of different starter cultures during sourdough fermentation. 

Growth of LAB, APC and yeasts (each separately when tested) were different 

between sourdough samples; the number of LAB in sourdoughs prepared with 

starter cultures was higher than the other microorganisms. The results agree 

with Paramithiotis et al. (2005) who reported that the level of starter cultures 

was higher than yeast during sourdough fermentation. In addition, the results 
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agree with the findings of Meignen et al. (2001) and Stolz (2003) who reported 

that the level of LAB in sourdough is between 108-109 CFU/g, and the LAB: 

yeast ratio is generally 100:1. In the present study, the level of LAB in the 

fermented control dough was about 104-105 CFU/g, which is in the range found 

in fermented dough without the addition of starter cutlures as presented by 

Palacios et al. (2006). The high number of LAB in prepared sourdoughs might 

be due to the addition of LAB as starter cultures to prevent growth of other 

microbes at fermentation time. 

The results of the present study show that LAB strains, when used for 

sourdough fermentation, were capable of producing organic acids. Different 

quantities of organic acids (lactic acid, acetic acid and propionic acid) are 

produced by LAB and this could be due to the utilization of both homo and 

heterofermentative starter cultures of LAB for making sourdough samples. 

Production of suitable metabolites during sourdough fermentation depends on 

the availability of soluble carbohydrates in the flour (Collar, 1996; Martínez-

Anaya, 1996). In some sourdough samples, the results were in agreement with 

Sterr et al. (2009) and Minervini et al. (2012) who reported that the lactic acid 

production in the fermented sourdoughs is the dominant product which ranged 

from 63.7 to 178.1 mm/L, and acetic acid and propionic acid are produced as 

well. Arendt et al. (2007) showed that organic acids affect the protein and starch 

fractions of the flour. In addition, the drop in pH associated with acid production 

in fermented sourdough causes an increase in the amylase and protease 

enzyme activities of the flour, thus leading to a reduction in staling of bread 

products (Arendt et al., 2007). 

In the present study, PCR-DGGE was applied to identify microorganisms in 
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fermented sourdough samples, which is an easy and reliable technique that 

gives easy-to-read results. The phylogenetic situation of LAB as it is currently 

presented is based on 16S rRNA genes and shows a clear separation of the 

genera. The DGGE gel band numbers in the dough control was higher than the 

sourdough treatments. The low DGGE gel band numbers in the sourdough 

treatments might be due to the addition of LAB as starter cultures to prevent 

growth of other microbes at fermentation time. Also, refreshment (back-slopping) 

of the sourdough could have a possible impact on the microbial communities via 

changes in metabolic activity of the microbial communities at all times (De Vuyst 

and Vancanneyt, 2007). However, the environment could be affected in the 

dough by microorganisms which may come from air, dust, water, handling and 

processing equipment. Some researchers showed that the microorganisms 

usually originate from flour, dough ingredients or the environment (De Vuyst 

and Neysens, 2005; Gobbetti et al., 2005; Paramithiotis et al., 2006; Corsetti 

and Settanni, 2007). The present study shows that the Lactobacillus species 

were the dominant group in wheat sourdough as the results are in agreement 

with the findings of Ricciardi et al. (2005) and Corsetti et al. (2001). Band 

number 13 was identified as Clostridium saccharobutylicum strain NCP 262. 

The presence of this species can be explained by the absence of LAB; it could 

also be argued that Clostridium saccharobutylicum can be found as a result of 

anaerobic conditions. 

The use of sourdough to make breads is to improve the bread properties, and to 

increase the safety and the shelf life of breads through the reduction in growth 

of pathogenic microorganisms and bacterial sporulation. The breads were 

prepared with different concentrations of sourdough and different temperatures 
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and fermentation times. Some researchers have reported that the process 

parameters such as dough yield, number of back slopping of the sourdough, 

temperature and fermentation time of the dough affect the quality and shelf life 

of the bread products (Hammes and Gänzle, 1998; Meroth et al., 2003b; 

Vogelmann and Hertel, 2011; Vrancken et al., 2011). The pH of the dough 

fermented with sourdough decreased and the acidity increased during 

fermentation at different temperatures (3h at 30ºC and 18h at 20ºC). The results 

also show that the pH of each treatment decreased and the TA of each 

treatment increased at 30ºC for 3h of fermentation as compared to the same 

treatment at 20ºC for 18h. 

The changes from carbohydrates to organic acids can be explained by 

presence of LAB, which subsequently can lead to a decrease in pH and 

increase the acidity values. Some researchers also found that the sourdough 

addition to the dough could cause a pH decrease and subsequent increase in 

acidity (Gül et al., 2005; Katina et al., 2009). Under most circumstances, the 

LAB play an important role in dough and bread acidity (Hutkins, 2006). During 

the storage period at room temperature, there were significant decreases in the 

pH and increases in the acidity values for all treatments. The change during 

recent periods of storage may be caused by increased growth of 

microorganisms on the bread samples which may have decreased the pH value 

in the food products. 

The results show that the loaf volume and height of bread with FFHSD was 

significantly higher than the other treatments, which due to use of high 

concentration of sourdough and possibly the use of 30ºC for proofing the dough 

was better suited to growth of LAB and production of metabolites. This result is 
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in agreement with the findings of Corsetti et al. (2000) who showed the 

effectiveness of LAB as starters for fermentation of dough in improving bread 

volume when compared to the fermented dough with pure yeast, which might 

be due to interactions of metabolic compounds produced by LAB and yeasts 

during fermentation of the dough. Also, Clarke et al., (2002) reported that 

sourdough addition in bread production effects an increase in loaf specific 

volume and has a positive effect on the crumb structure. The loaf volume and 

height of the breads with FFLSD and FFHSD were significantly higher than the 

breads with SFLSD and SFHSD. The slow fermentation at 20ºC for 18h had low 

acidification as improved volume of the sourdough breads has been suggested 

to be dependent on the nature and intensity of the acidification process (Clarke 

et al., 2003). The loaf volume improvement in breads with FFLSD and FFHSD 

might be due to the ability of heterofermentative LAB to produce more CO2 in 

the acidified dough as reported by Gobbetti et al. (1995b) and Katina et al. 

(2006a). 

In the present study, there were no significant differences of the moisture and 

water activity of breads with slow fermented and low temperature among 

treatments, except the SFCON bread which was higher than the breads with 

SFLSD and SFHSD, while the moisture and water activity of bread with FFHSD 

was significantly lower than the other treatments. Barber et al. (1992) reported 

that strains of LAB had no affect on the variation of moisture during baking and 

storage. The change of moisture and water activity might be due to the LAB 

activities, fermentation time and using different temperatures for microbial 

growth. The fermented sourdough influences moisture redistribution throughout 

the loaf during storage as reported by Corsetti et al. (2001). Water activity has a 
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marked effect on the growth of microorganisms. The breads with FFLSD and 

FFHSD had a higher ratio of pore area comparing to the other treatments. It 

could be the result from interactions of metabolites which were produced by 

LAB and yeasts during fermentation of the sourdoughs. The microorganisms 

present during cereal fermentation can produce metabolites, which 

consequently interact with the grain constituents. For example, LAB produce 

lactic and acetic acids, and yeasts produce carbon dioxide and ethanol; 

interaction between them can be important for the metabolic activity of the 

sourdough (Poutanen et al., 2009). The result is in agreement with the findings 

of Coda et al. (2010) who demonstrated that the highest cell total area of crumb 

bread was found in bread with added sourdough. The lowest hardness and 

chewiness of crumb slices were found in breads with FFHSD. Sourdough 

breads which were made with both fermentation processes were softer than the 

control breads on all days of storage. However, it was pointed out that the bread 

made with sourdough starters was softer when compared to the other breads as 

reported by Dal Bello et al. (2007) and Coda et al. (2010). It could be noticed 

quite clearly that the addition of sourdough at different concentrations with slow 

(20ºC for 18h) and fast (30ºC for 3h) fermentation time could reduce hardness 

and chewiness in general to a good extent. Hardness and chewiness of breads 

increased and springiness decreased over storage time.  

This study shows that the whiteness of the crust top of the bread with FFLSD 

was lower than the other treatments. No changes were found in whiteness 

crumb colour between breads which were fast fermented at 30ºC for 3h 

(FFCON, FFLSD and FFHSD), whereas, crumb breads with SFLSD and 

SFHSD had significantly lower whiteness. Chiavaro et al. (2008) reported that 
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the bread with sourdough had lower lightness values for crust colour with no 

significant differences in the crumb colour. Changes in the crust and crumb 

colour of the bread samples may be related to the production of different 

compounds during the fermentation process by microorganisms. However, 

bread colour and aroma develop during baking, simultaneously with crust 

formation, and derive from chemical reactions such as maillard and sugar 

caramelisation (Ahrné et al., 2007). 

While investigating the shelf life of bread, microbial growth bread was tested 

over a 10 days storage period at room temperature. The breads with FFLSD, 

FFHSD and SFHSD were unspoil after 10 days, whereas the breads with 

FFCON and SFLSD had a shelf life of 8 days, and SFCON had 6 days shelf life. 

The present study is in agreement with Saikia and Sit (2014) who reported that 

the sourdough bread had a shelf life of 8-9 days compared to a control bread 

with microbiological shelf life of 5 days. The reason for this increase in the shelf 

life of sourdough bread seems to be linked to antimicrobial components 

produced by LAB during fermentation which reduce the growth of mould and 

bacteria (Dal Bello et al., 2007). The microbial growth or breadincreased during 

the storage at room temperature in all cases.. Natural sourdoughs are 

commonly used in bread-making processes, especially for organic bread. The 

stability of the sourdough microbial community during and between bread-

making processes is debated. However, it has an effective role in bread flavour 

and dough rise (Lhomme et al., 2016). In the present study, sourdough addition 

for bread production in any case had a lower APC and Mould count compared 

to the control breads. The growth of mould was not noticed in any treatment on 

the day of baking. Mould started growing from the bread with FFCON, SFCON 
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and SFLSD on day 2 of the storage period at room temperature. Similar results 

found in the results of Moore et al. (2008) who reported that the sourdough 

addition led to significant decrease in mould presence, probably due to 

antifungal components produced by LAB during fermentation. Sourdough 

associated LAB produce many antimicrobial substances which reduce the 

growth of pathogenic microorganisms, such as organic acids, diacetyl, 

hydrogen peroxide, ethanol, CO2, fatty acids, phenyllactic acid, reuterin, and 

fungicins (Messens and De Vuyst, 2002; Schnürer and Magnusson, 2005). 

Some researchers showed that sourdough Lb. plantarum shows very broad 

antimicrobial activity, and it can produce antifungal compounds such as 4-

hydroxyphenlyllactic and phenyllactic acids, which have been identified as 

responsible for fungal inhibition (Lavermicocca et al., 2000; Dal Bello et al., 

2007; Ryan et al., 2008). 

The present results show that the sourdough addition has positive effects on the 

shelf life of bread due to restriction of the growth of Bacillus cereus, possibly 

due to the high acidity value at pH 5 of the sourdough bread from the day of 

baking over 10 days. The results are in agreement with the results of Katina et 

al. (2002) who clearly demonstrated that the reduction of Bacillus counts in the 

sourdough breads was strongly dependent on the acidity level and particularly 

at pH 5 of the sourdough that was fermented with Lb. plantarum, P. 

pentosaceus or Lb. brevis. The toxin of Bacillus cereus is restricted in the 

presence of 0.1% organic acid at pH 5. If the pH outside the cell is less than the 

pH inside the cell, acid anion will be accumulated within the cell and inhibit 

cellular function. This is the case in mildly acidic foods (Carpenter and 

Broadbent, 2009). 
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Sensory evaluation is an important step in product development to evaluate the 

success and acceptability of any product by consumers and to predict 

consumers’ perception, which could have an impact on marketability of the 

products (Elia, 2011). Bread flavour is known to be a key factor for consumers’ 

acceptance and product identification (Rehman et al., 2006). This study showed 

that the results of bread flavour with sourdough addition FFLSD and FFHSD 

were higher than the bread control (SFCON). This might be due to flavour 

components which produced by LAB (Chavan and Chavan, 2011). The use of 

sourdough in wheat bread production clearly improves the dough properties, 

bread texture and flavour (Hammes and Gänzle, 1998; Martínez-Anaya, 2003). 

The present study showed that all sensory attributes of breads with slow 

fermentation at 20ºC for 18h were lower than breads with fast fermentation at 

30ºC for 3h, which might be due to the differences in the temperature and 

fermentation time and their effect on metabolic activity of microbes (Meroth et 

al., 2003b; Vogelmann and Hertel, 2011). No difference was found in the acidity 

when tasted by panellists. The overall appearance and overall acceptability of 

breads with FFLSD and FFHSD were higher than the others, which might be 

due to improve the sensory characteristics such as loaf volume, texture and 

flavour of breads as described by Rehman et al. (2006) and Nawaz et al. (2007). 

The earliest production of fermented foods was based on spontaneous 

fermentation resulting from microflora development from that naturally present 

in the raw material. The quality of the end-product was dependent on the 

microbial load and the raw material. Moreover, the addition of sourdough with 

selected starter cultures can cause an improvement in texture properties and a 

delay in staling of the bread. Antimicrobial compounds from sourdough LAB 
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have been reported to contribute to extended shelf life of bread products by 

inhibiting the growth of food spoilage and pathogenic microorganisms. 

Therefore, any applications involving the sourdough bread as described above 

will require further investigations to ascertain the most advantageous setting for 

future use. 

 

6.5 Conclusion 

Sourdough fermentation with single and mixed starter cultures was studied to 

evaluate the quality of a sourdough product. Then, bread with sourdough 

addition, prepared at different fermentation time and temperature was evaluated 

for safety and shelf life, quality changes, processability and sensory properties. 

Back-slopping fermentations with Lb. plantarum JCM1149 (SIN3) had a lower 

pH and higher acidity values after five days. The high acidification by SIN3, 

classed as a high acid producer was investigated using HPLC. Even when a 

single culture was used for sourdough fermentation (SIN3), higher microbial 

viability was important. PCR-DGGE DNA fingerprinting revealed that in the 

sourdough samples where starters were used, more diversity was recorded 

when compared to the control dough. Considering the properties of the 

sourdoughs, SIN3 was selected for further application studies on bread, where 

fermentation factors of temperature and rate were considered, in combination 

with level of sourdough addition. The bread from fast fermentation and high 

sourdough concentration (FFHSD) had a lower pH, higher acidity and increased 

quality attributes with significantly better shelf life compared to the other 

treatments in all cases of storage period (10 days shelf life). Texture 
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improvement is especially important in production of bread, where the hardness 

and chewiness of the bread with FFHSD was lower than the other treatments 

and also exhibited delayed staling during storage. The results of the sensory 

evaluation revealed that breads with FFLSD and FFHSD showed better 

acceptability by testing panels for most of the sensory attributes such as overall 

appearance, texture, flavour and overall acceptability, which might be due to the 

improvement the bread quality by the addition of sourdough and fermentation 

processes. 

The findings from this study revealed that making bread with an 18% sourdough 

addition, which was fermented by Lb. plantarum (SIN3) as a leavening agent 

and at a fast fermentation process at 30ºC for 3h of the dough, was successfully 

affected to produce a bread with good qualities including improved texture, 

sensory acceptability, loaf volume, height of the bread and decreased moisture 

and Aw. However, it was effective in increasing the safety and shelf life of the 

bread product over 10 days by reducing the growth of pathogenic and spoilage 

microorganisms as well as delaying staling during storage. The developed 

sourdoughs would allow industries to produce a safe bread with a good quality 

and increased shelf life without using chemical preservatives.  
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CHAPTER SEVEN 

General discussion, conclusion and future work 

7.1 General discussion and conclusion 

The preservation of foods by fermentation is a widely practiced traditional 

technology. Fermentation can help to increase the shelf life and microbial safety 

of foods. However, the processes by which this takes place are complex and 

the nature of the bacterial interactions in products are not always well known. 

The use of LAB as a source of alternative preservatives for food products (e.g. 

dairy products, bread, fresh fruits, vegetables) have been demonstrated by 

several studies (Pawlowska et al., 2012; Corsetti et al., 2015). This has been 

primarily aimed reducing the growth of food pathogenic and spoilage 

microorganisms. Consumers have become more demanding about the quality 

of food. An increasing trend for natural foods, with the minimum amount of 

chemical additives, is prompting those in the industry to find alternatives (Divya 

et al., 2012). Several natural compounds can inhibit microbial growth and 

manufacturers can use a limited selection of these additives. 

LAB have been associated with the human environment and led to beneficial 

interactions in food and in the human gut. LAB and their metabolites occur 

naturally in foods, and sometimes they are used for targeted purposes as 

preservatives. Moreover, LAB improve the quality of the food products including 

texture, colour, taste and smell. They could also provide health benefits and 

reduce economic losses due to spoilage as reported by several previous 

studies (Settanni and Moschetti, 2010; Gobbetti et al., 2014). 
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The purpose of this work was to investigate the influence of LAB in fermented 

buttermilk (BM) and sourdough fermentation separately on baked goods. 

Furthermore, variables in the fermentation process and formulation were 

evaluated in relation to microbial shelf life, bread texture, colour changes and 

sensory attributes of bread products. 

The first experiment (Chapter 3) demonstrated the antimicrobial effects of four 

types of BM products fermented with Lc. lactis and using commercial nisin (3, 6, 

9, 12µg/ml) as reference, against a selection of food pathogenic bacteria 

including B. cereus, P. aeruginosa, E. coli and S. aureus. Data in Chapter 3 

showed that all BM fermented with Lc. lactis indicated antimicrobial effects 

against pathogenic and spoilage bacteria with different efficacy; Gram-positive 

bacteria were more sensitive to these, compared to Gram-negative strains. It 

was explained earlier (Section 1.8.5) that nisin is less effective on Gram-

negative bacteria, as the outer membrane disables the entry of this molecule to 

the site of action (Boziaris and Adams, 2001; Lee et al. 2003). Current results 

are in line with previous reports, which have hypothesised that this is 

attributable to the differences in the cell wall structures; antimicrobial 

compounds can penetrate through the cell wall of Gram-positive bacteria and 

attack the cytoplasmic membrane, leading to not only leakage of the cytoplasm 

but also cytoplasm coagulation (Gandhi and Chikindas, 2007; Enan et al., 2013). 

The findings from this study (Chapter 3) confirm that the fermented BM1 had 

the lowest value of pH and the highest TA value in the experimental preparation. 

This might be due to the conversion of sugars in the BM through fermentation to 

organic acids at different levels which is presented in the literature review 

(Sodini et al., 2006). Additionally, the fermented BM1 and nisin at 9 and 12µg/ml 
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demonstrated the highest inhibitory activity against some food pathogenic 

bacteria and Bacillus cereus spores. Moreover, the fermented BM1 had an 

inhibitory activity equivalent to 9µg/ml of nisin. Compared with other chemical 

preservatives, 9µg/ml of nisin was equivalent to 600ppm of calcium propionate 

and 900ppm of potassium sorbate or vinegar. 

Consequently, it could be more challenging to use the fermented BM1 and 

9µg/ml nisin additive (as a reference) as an alternative to chemical 

preservatives for baked goods (e.g. for crumpet formulations), which might be 

suitable for increasing the quality, texture, colour changes and extending the 

shelf life of bread crumpets. 

The study described in Chapter 4 revealed potential influence of the BM1 

fermented with Lc. lactis subsp. lactis (FBM) and commercial nisin additive on 

the quality and shelf life of bread crumpets. The results of this experiment 

showed that the bread crumpets with FBM had lower pH values, higher TA 

values, lower water activity, lower firmness and higher springiness during the 

storage period, and it has effects on the pore size of the crumpets compared to 

the other treatments. The change in pH level of the bread crumpets with FBM 

may be the result of adding fermented BM with Lc. lactis (homo-fermentative 

LAB) to the batter, which might cause pH to decrease and increase acidity of 

the batter. This is due to organic acid production that has been demonstrated by 

several studies to date (Walker and Klaenhammer, 2003; Hutkins, 2006). 

However, the use of FM by Lc. lactis may have been responsible for the 

decreased firmness and delayed staling. This agreed with previous studies that 

showed LAB can be used as a starter culture in the bread industry, which can 

delay bread staling during storage period (Plessas et al., 2008).  
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Consequently, our findings showed that the bread samples with fermented BM 

and nisin had a microbial shelf life of 8 days, whereas the control and crumpet 

breads with non-fermented buttermilk (NFBM) had a microbial shelf life of 6 

days based on microbial counts. This might be due to metabolites of Lc. lactis 

during fermentation of BM or adding nisin-produced by Lc. lactis to the crumpet 

formulation which have antimicrobial activity against food pathogenic and/or 

spoilage microorganisms as presented by several studies (Messens and De 

Vuyst, 2002; Cooksey, 2005). The reduction of Bacillus counts and delayed 

mould growth in crumpets with FBM is likely associated with the presence of 

organic acids produced by LAB, which is presented in previous studies (Lynch 

et al., 2014). Axel et al. (2015) reported that the mould free shelf life of the 

Quinoa breads containing Lb. amylovorus fermented sourdough (gluten-free 

sourdough bread) increased by 4 days compared to the non-acidified control 

and also improved bread quality with reduced staling. 

Sensory evaluation is an important step for new product development, it 

measures consumer preference for a particular product (Guàrdia et al., 2006). 

In this case, there was no difference in sensory attribute acceptability of all 

treatments. BM fermented with Lc. lactis successfully improved the quality, 

delayed the staling and extended the shelf life of crumpet breads by reducing 

the total microbial counts, moulds and yeasts and growth of Bacillus cereus. 

However, it gives more opportunity to minimise the use of chemical additives for 

the preservation of bakery products. This work could lead to improvements of 

current methods used for the preparation of bakery products. 

Two other chapters (Chapter 5 and 6) were focused on the role of LAB 

sourdough, which is a considerably more complex system. However, making 
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bread products using starter cultures isolated from sourdough might achieve 

optimum quality, delayed staling, palatability and shelf life. 

The purpose of this study (Chapter 5) was to assess the biodiversity of LAB 

strains from sourdough collection using molecular method (16S rRNA PCR-

DGGE). This might help to explore sourdough microflora, and use that 

information in relation to their role. The potential influence of isolated LAB from 

sourdoughs was also investigated, establishing that some of them had a high 

antimicrobial activity against food pathogenic microorganisms. Isolated LAB 

strains are known to be useful as a starter culture for preparing high quality 

sourdough products (De Vuyst et al., 2002). They can also be useful to achieve 

improved bread quality or to obtain “clean label” products as well as to improve 

shelf life of the bread products. Gene sequencing showed that Lactobacillus 

was the predominant genus in the studies of sourdoughs, in agreement with the 

other studies (Savic et al., 2013). Microbial interactions, type of flour, low and 

variable availability of nutrients, environmental stresses during processing, and 

changes in the technology can be some of the factors which affect the 

biochemical and physiological responses of LAB in sourdough (Şimşek et al., 

2006; Serrazanetti et al., 2009). 

Based on the DNA sequences, more of of the isolates of LAB from sourdoughs  

are Lb. plantarum, Lb. brevis and Lb. rossiae strains which is in agreement with 

Van der Meulen et al. (2007) which showed that the strains of Lb. plantarum, Lb. 

fermentum, Lb. brevis, Lb. rossiae, and Lb. paraplantarum were dominating 

some of the sourdough ecosystems. 
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Based on the results of 32 LAB strains, three different groups were proposed 

according to the pH and acidity. Some of the 32 LAB strains presented 

amylolytic (10) and proteolytic (12) activities. Additionally, from six LAB strains 

of high acid group, four and five of them had amylolytic and proteolytic activities 

respectively. These enzyme activities might be due to a decrease in pH and 

increase in acid production, which have been demonstrated by several studies 

which reported that the decrease in pH is linked with acid production and 

causes an increase in the protease and amylase activities on the flour (Thiele et 

al., 2002; Galle, 2013). Also Fadda et al. (2014) reported that organic acids 

produced by LAB affect the protein and starch fractions and reduce the pH 

which results in an increase in protease and amylase activities in the flour. 

The inhibitory action of LAB could be due to the production of antimicrobial 

compounds based predominantly on organic acids (lactic acid and acetic acid) 

and bacteriocins. Hydrogen peroxide and diacetyl also have inhibitory activity 

which can restrict the growth of potential pathogenic and spoilage 

microorganisms (Holzapfel et al., 2001; Gerez et al., 2008). Five LAB strains 

presented a strong inhibitory activity against five food pathogenic bacteria using 

agar well diffusion and spot methods. The result is in agreement with the finding 

by Şimşek et al. (2006) who reported that LAB isolated from sourdough 

samples had different antimicrobial activities against food pathogenic and 

spoilage microorganisms, using agar spot and agar well diffusion methods. The 

knowledge about sourdough microflora is useful in selecting LAB strains as 

starter cultures. Safety, high antimicrobial activity, and technological efficacy 

have to be considered when selecting strains for the food fermentations. The 

findings from this study (Chapter 5) confirm that some LAB show potential as 



 

246 
 

starter cultures to ferment sourdough. However, further studies are needed to 

apply fermented intermediary products to be added to the bread formulations 

that might yield further insight into the strain’s functionality and technological 

contributions to achieve optimum quality, palatability and shelf life of bread 

products. 

Finally, the experiment (Chapter 6) was to investigate the potential effect of 

prepared sourdough fermentation with selected starter cultures in bread making 

where the dough samples were fermented at different concentrations of 

sourdough and different fermentation times and temperatures to improve safety, 

delayed staling, shelf life, quality changes and sensory properties of sourdough 

bread. The earliest production of fermented foods was based on spontaneous 

fermentation resulting from microflora development that were naturally present 

in the raw material. The quality of the end product was dependent on the 

microbial load and component of the raw material (Ray and Joshi, 2015). 

Moreover, the direct addition of selected starter cultures to raw materials has 

been an improvement in fermented food processing, which can result in a high 

degree of control over the fermentation process and standardisation of the end 

product (Leroy and De Vuyst, 2004). The latter can contribute to the microbial 

safety or offer one or more technological, nutritional, or health advantages. 

Examples are LAB that are able to produce antimicrobial substances, sugar 

polymers, sweeteners, aromatic compounds, vitamins, useful enzymes, or 

those which have probiotic properties (Leroy and De Vuyst, 2004). This is 

regarded as a way of replacing chemical additives with natural compounds 

produced by LAB, and at the same time providing the consumer with new and 
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attractive food products. It also leads to a wider application area of starter 

cultures (Leroy and De Vuyst, 2004). 

From 24 prepared sourdoughs that were tested (Chapter 6), the fermented 

sourdough with starter culture Lb. plantarum JCM1149 (SIN3) after five day 

back-slopping at 30ºC had a low pH value and high lactic acid production. The 

differences in the pH and acidity between fermented sourdoughs might be due 

to the use of different starter culture and flour spontaneous microflora (Robert et 

al., 2006; Banu et al. 2010). Gül et al. (2005) and Katina et al. (2009) reported 

that LAB decreased the pH and increased the acidity of fermented sourdough. 

The growth of LAB was also higher in SIN3 and this starter culture had a high 

antimicrobial activity as mentioned in Chapter 5. Diversity analysis of PCR-

DGGE DNA fingerprinting revealed that the LAB diversity was higher in the 

sourdough samples when compared to the control dough. 

In this study, SIN3 was used for making breads according to the high quality of 

this sourdough as a leavening agent. However, the bread dough was fermented 

by two different processes (fast fermented at 30ºC for 3h and slow fermented at 

20ºC for 18h) to achieve the quality changes, sensory properties, shelf life and 

palatability of the bread product. The results showed that the bread with FFHSD 

had a lower pH, higher acidity and improved the quality attributes (e.g. 

increasing loaf volume and decreasing moisture and Aw). Sourdough addition 

for bread production has been found to have a positive effect on the bread 

volume and crumb structure as described by (Corsetti et al., 2000; Clarke et al., 

2002). The drop in pH might be due to the activity of sourdough starter cultures 

in bread dough which influenced the nutritional properties of the bread products 

as reported by several studies (Poutanen et al., 2009; Gänzle and Gobbetti, 
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2013). The use of high amounts of sourdough to make the bread and 

fermentation temperature of the dough might result in higher acidity of the bread 

product which was pointed out by Plessas et al. (2008). The decrease of 

moisture and Aw of FFHSD might be due to the LAB activities, high amount of 

sourdough, fermentation time and use of different temperature for microbial 

growth. The low Aw may prevent the growth of pathogens on the outer surface 

of bread products. The bread with FFHSD had significantly lower hardness and 

delayed staling comparing to the other treatments in all cases of storage period. 

However, the lower hardness of the bread made with sourdough starters was 

pointed out when comparing to the bread made without sourdough as reported 

by Dal Bello et al. (2007) and Coda et al. (2010). The reduced staling might be 

due to the organic acids produced by LAB, which affect the protein and starch 

fractions and reduce the pH resulting in an increase in protease and amylase 

activities of the flour (Arendt et al., 2007; Fadda et al., 2014). In bakery products, 

bread staling has been responsible for huge economic losses to both the baking 

industry and the consumer (Gray and Bemiller, 2003). 

Bread with SFCON and FFCON which were made without sourdough addition, 

had a shelf life of 6 and 8 days respectively, which might be due to the slow and 

fast fermentation time at different temperatures. However, the bread with 

FFLSD, FFHSD and SFHSD had a shelf life of 10 days when tested for the level 

of microbial counts (APC, LAB, mould and yeast colony counts, growth of 

Bacillus cereus and spore forming bacteria). The reason for this increase in the 

shelf life of sourdough bread is probably due to antimicrobial components 

produced by LAB during fermentation which reduce the growth of food 

pathogenic and spoilage microorganisms (Schnürer and Magnusson, 2005; 
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Moore et al., 2008). However, differences of shelf life among breads might be 

caused by the fermentation processes of bread-dough including time and 

temperature. The shelf life of bread products is limited by physicochemical 

changes including staling and microbiological spoilage (Leuschner et al., 1999). 

Sensory evaluation is an important step in product development to evaluate the 

successfulness and acceptability of any product by consumers (Elia, 2011). In 

this case, breads from slow fermentation at 20ºC for 18h had lower sensory 

acceptability than breads with fast fermentation at 30ºC for 3h, including the 

control. The overall appearance and overall acceptability of breads with FFLSD 

and FFHSD were higher than the others which might be due to improvements in 

the sensory characteristics such as loaf volume, texture and flavour of breads 

as described by Rehman et al. (2006) and Nawaz et al. (2007). Differences in 

the temperature and fermentation time to produce the metabolic activity of 

microbes might be also affect the product, as previously studied by Meroth et al. 

(2003b) and Vogelmann and Hertel (2011). 

Making bread with 18% of sourdough addition and fast fermentation by Lb. 

plantarum (SIN3) successfully resulted in a bread with improved texture, loaf 

volume and sensory acceptability. Furthermore, the bread had a shelf life over 

10 days by reducing the growth of pathogenic and spoilage microorganisms as 

well as delaying staling during storage. 

The main novel findings from this research demonstrate the usefulness and 

potential of starter cultures with antimicrobial properties for fermentation in 

intermediate ingredients (sourdough and buttermilk) and applications of these 
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intermediate ingredients on making bread products (sourdough and crumpet 

breads).  

 BM fermented with Lc. lactis subsp. lactis which was used for crumpet 

breads as a model successfully improved the quality, safety and 

extended shelf life of crumpet breads for 8 days, which was longer than 

other treatments (6 days) by reducing the growth of total microbial 

counts, moulds and yeasts and growth of Bacillus cereus and delaying 

staling during storage. 

 Some of LAB (Lb1, Lb11, and Lb14) were isolated from sourdough 

samples show potential as starter cultures based on acidification 

capacity, amylolytic and proteolytic activities and antimicrobial activity 

against food pathogenic microorganisms. However, these strains were 

applied to the fermented sourdough. There is also potential for fermented 

intermediary products to be added to the bread formulations to increase 

the safety, quality and texture, delay staling and increase the shelf life of 

bread. 

 Making bread with 18% sourdough addition, which was fermented by Lb. 

plantarum (SIN3) as a leavening agent and at a fast fermentation 

process (30ºC for 3h) of the dough, was successfully affected to produce 

a bread with good qualities including improved texture, sensory 

acceptability, loaf volume and height of the bread product and decreased 

moisture and Aw. However, it was effective in increasing the safety and 

shelf life of the bread product over 10 days by reducing the growth of 

pathogenic and spoilage microorganisms as well as delaying staling 

during storage. 
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The approach of this study is likely to yield feasible improvements (e.g. 

acidification, decreasing moisture and Aw, texture, increasing safety, extending 

shelf life and delaying staling) of the current methods for the preparation of 

baking goods. 

 

7.2 Future work 

The following areas can be studied further: 

 The action of selected starter cultures of LAB and their metabolic 

components on proteins embedded in the cytoplasmic membrane and on 

phospholipids in the membrane could be a focal area for future research. 

Further elucidation of these mechanisms against pathogenic and 

spoilage bacteria related to bakery product is important and would 

provide insights that may prove usefulness for technological applications. 

The use of scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) to investigate the mechanisms of action of 

selected starter cultures against cell membranes, and also more details 

can be obtained related to the alteration in cell morphology.  

 Regarding the antibacterial activity of selected starter cultures of LAB 

against pathogenic bacterial strains, the research is needed to increase 

knowledge regarding the effect of selected starter cultures and their 

metabolites on the mould growth in bread products by testing their 

antifungal activities against some specific moulds, which can grow on 

bread such as Aspergillus, Eurotium, Penicillium, Wallemia sabi. 



 

252 
 

 Study the prevalent organic and volatile compounds in sourdough and 

their contribution to bread flavour and aroma using different techniques 

including HPLC and gas chromatography–mass spectrometry to identify 

the quantity and identity of the compounds. 

 Study the ability of selected starter cultures fermentability in treated 

(sterile) and non-treated commercially available flour in order to evaluate 

their performance in both the absence and presence of microflora for 

their sourdough fermentation ability. 

 Exploration of the application of probiotic heath-resistant sporeformers 

that could survive the fermentation and baking process 

 Study the microstructure of crumpet and sourdough bread using Cryo-

SEM in order to investigate and visualise the influence of fermentation on 

the microstructure bread, starch granule gelatinization and gluten matrix 

and connect to the change in bread quality. 

 Further investigation is needed in making sourdough using combination 

of leavening agents (selected starter cultures and addition of yeasts) and 

interactions between them in fermentation process, which may increase 

the quality and dough improvement. However, investigate their influence 

on the bread product including quality, sensory characteristics, bread 

improvement and shelf life. 

 Bread is one of the highly consumed products in Kurdistan regional of 

Iraq. Investigating the potential of selected LAB and their metabolites in 

fermentation of different types of Kurdish bread need further research. 

This is particularly when microbial spoilage is the most and fastest way of 

shortening the shelf life. 
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Appendices 

Appendix A 

Sensory evaluation of crumpet bread that added with natural preservative nisin 

and fermented buttermilk 

Assessor number: . . . . . . . . . .                                   Sample code: . . . . . . . . . .  

Please evaluate and indicate your opinion about each attribute by ticking (X) in 

a suitable box for each attribute. Please make sure that your results are placed 

under the correct code. 

Sensory 
attributes 

1 
dislike 

extremely 

5 
neither like 

or 
dislike 

9 
Like 

extremely 

Overall 
appearance  

Aroma 
 

Texture 
 

Flavour 
 

Acidity 
 

Overall 
acceptability  

Additional comments: 
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Appendix B 

Research training and development 

1. Modules training and development 

1.1 BIO5124 (Postgraduate Research Skills and Methods) 3rd Oct. – 12th Dec. 

2012. 

 

1.2 BIO5102 (Principles and Applications of Electron Microscopy) 28th Sep. - 

14th Dec. 2012. Dr Roy Moate 

1.3 ENV5101 (Laboratory Teaching Methods and Practice) 25th Oct. – 07th 

Dec. 2012. Dr David Harwood 

1.4 DIET107 (Food safety and quality 1 practical session and 6 lectures) 

November- December 2012, Dr Victor Kuri and Dr Jane Beal. 

No. Date Module Facilitator Venue 

1 03/10/2012 Research ethics and 
methodology in science 

Dr John Eddison Babbage building 

2 03/10/2012 Research ethics and 
methodology in science 

Dr John Eddison Babbage building 

3 05/10/2012 Field safety and risk 
assessment 

Dr Paul Ramsay SCB 001 

4 17/10/2012 Good laboratory practice Dr Jha AN Babbage building 

5 17/10/2012 Laboratory safety and risk 
assessment 

Dr Andy Foey Babbage building 

6 05/10/2012 Written communication  Dr Paul Ramsay Babbage building 

7 24/10/2012 Field safety and risk 
assessment 

Dr Paul Ramsay Babbage building 

8 24/10/2012 Writing scientific papers Dr Paul Ramsay Babbage building 

9 25/10/2012 Writing and publishing papers Dr Paul Ramsay Babbage building 

10 25/10/2012 Working with literature: e-
resources & adv. searching 

Titley G Babbage building 

11 21/11/2012 Biostatistics I Dr Miguel Franco Babbage building 

12 28/11/2012 Oral presentations Dr Piero Calosi Babbage building 

14 28/11/2012 Biostatistics II and III Dr Miguel Franco Babbage building 

15 05/12/2012 Project management and 
funding 

Dr Ted Henry Babbage building 

16 05/12/2012 Poster presentations Prof. Rod 
Blackshaw 

Babbage building 

17 12/12/2012 Public communication of 
science 

Dr Maria Donkin Babbage building 

18 12/11/2012 Careers in biology Ms Mandy Burns Babbage building 
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2. Postgraduate Research Skills and Training Sessions 

No. Date Training skills Facilitator Venue 

1 19/04/2012 Fisher trip to Science World Michele Kiernan London, UK 

2 03/05/2012 Research Owning and Using Graham Titley 
Portland square 
Plymouth University 

3 10/05/2012 What is La Tex  
Rolle building 
Plymouth University 

4 30/05/2012 
Careers: Simulated 
Assessment Centres 

Sara and Jolia 
Babbage building 
Plymouth University 

5 06/06/2012 Introduction to EndNote 
Subject 
Librarians 

Babbage building 
Plymouth University 

6 12/06/2012 
Introduction to applying for 
research funding 

John Martin 
Roland Levinsky 
Plymouth University 

7 18/06/2012 
Session Research 
Methodology 

Dr Martin Coath 
Babbage building 
Plymouth University 

8 31/10/2012 Keeping Laboratory Records Dr Rich Boden 
Rolle building 
Plymouth University 

9 22/06/2013 Transfer Process Mick Fuller 
Roland Levinsky 
Plymouth University 

10 01/05/2013 
Writing up and completing 
the thesis 

Stacey 
DeAmicis; Joe 
Allison and 
Carolyn Gentle 

Fitzory building 
Plymouth University 

11 10/03/2016 
Preparing to submit on pearl 
including copyright and open 
access 

Kate Russel 
Babbage building 
Plymouth University 
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3. Conferences and courses attended 

 

 

4. Membership of Scientific Societies: 

 Society of Applied Microbiology (sfam) 

 Institute of Food Science and Technology (IFST) 

 

No. Date Event Venue 

1 06/06/2012 
Postgraduate conference for computing: 
Application and theory PCCAT2012 

Plymouth University -  
United Kingdom 

2 26/06/2012 The post graduate Society Annual Conference  
Plymouth University -  
United Kingdom 

3 04/07/2012 CARS Postgraduate Symposium 
Duchy College -  
United Kingdom 

4 21/11/2012 The post graduate Society Conference Series 
Plymouth University -  
United Kingdom 

5 10/12/2012 CARS Postgraduate Symposium 
Plymouth University -  
United Kingdom 

6 21/05/2013 Microstructure for food products conference 
University of Reading,  
United Kingdom 

7 18/06/2013 The post graduate Society Conference Series 
Plymouth University -  
United Kingdom 

8 15/09/2013 Bread Making Classes (Super Sourdough) 
Red Dog Bakery  
Black Torrington-
Devon 

9 11/11/2013 CARS Postgraduate Symposium 
Duchy College -  
United Kingdom 

10 17/06/2014 The Postgraduate Society Conference Series 
Plymouth University -  
United Kingdom 

11 19/11/2014 6th CARS Postgraduate Symposium 
The Eden Project, 
Boldeva, Cornwall, 
UK 

12 24/03/2015 The Postgraduate Society Conference Series 
Plymouth University -  
United Kingdom 

13 
14-15 

/05/2015 
IFST conference London 

14 23/06/2015 The post graduate Society Conference Series 
Plymouth University -  
United Kingdom 

15 06/02/2016 Artisan Baking (one-day course) 
Dartington / Totnes -  
United Kingdom 

16 
14-15 

/04/2016 
Spring conference on probiotics 

University of Reading,  
United Kingdom 

17 
04-07 

/07/2016 
SfAM Summer Conference 

Edinburgh, Scotland 
United Kingdom 
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Appendix C 

Food Safety Certificate 
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Appendix D 

Posters 
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