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ABSTRACT

Intensive baroclinic eddies in the ocean are shown to have a new type of nonlinearity
which is not taken into account by the traditional quasi-geostrophic equation. The evolution
and decay of dipole eddies are investigated using a generalized near-geostrophic model. The
time interval after which the traditional approach is no longer valid is estimated analytically.
Two sets of numerical calculations are presented. In the first one, the evolution of "modons” is
simulated and shown to depend on their intensity and size. It is found that additional nonlinear
effects change the trajectory of relatively small eddies rather than their structure. In the second
set of experiments, we consider the process of coupling of initially monopole eddies in a shear
flow.

1. INTRODUCTION

Mesoscale dipole eddies have been observed in many parts of the World Ocean. They are
often referred to as "mushroom-like currents”, a term introduced by Professor Konstantin
Fedorov (Ginsburg and Fedorov, 1984). Highly organized cyclonic-anticyclonic pairs can also
be realized in laboratory experiments (Ginsburg et al., 1987; Flierl et al., 1983). It has been
shown theoretically in the work of Flierl et al. (1983) that any slowly varying and isolated dis-
turbance in a stratified fluid on a B-plane must have zero net relative angular momentum, so
that the dipole is one of the simplest dynamically consistent representation of such a distur-
bance. Analytical models of dipole eddies based on the solution of the Quasi-Geostrophic
Equation (QGE) have been presented by Stern (1975), Larichev and Reznik (1976), and others.

In this paper some aspects of the evolution of cyclonic-anticyclonic vortex pairs are inves-
tigated mainly by numerical simulation. The present level of theoretical knowledge and the
available observational data do not allow to give a proper numerical forecast of the behaviour
of real ocean mesoscale eddies for a durable period of time of the order of several years. Thus,
theoreticians concentrate their attention on the detailed study of certain idealized situations
which are useful to understand the physical picture of the dynamical processes and to obtain
reasonable estimates of the lifetime and trajectories of eddies.
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The observational data (Kamenkovich et al., 1982; Belkin et al., 1986; Ivanov et al., 1986)
show that, for intense baroclinic eddies, the thickness of the fluid layer confined between two
fixed isopycnal surfaces deviates significantly from the equilibrium state. This results in finite
amplitude disturbances of the density field and Brunt-Valsala frequency. The question then
arises as to whether there are any qualitatively new features in the behaviour of eddies of finite
amplitude in comparison with less intensive eddies. Eddies associated with small fluctuations
of the density field are often described analytically by the QGE (Pedlosky, 1979; Kamenkovich
et al., 1986) which is suitable to investigate the evolution of barotropic and baroclinic synoptic
scale eddies. However, as follows from its derivation, this equation is not adequate for the
description of disturbances with large amplitude fluctuations of the density field. In this case,
one can use the so-called Generalized Near-geostrophic Equation (GNE) derived by Williams
(1985) and Shapiro (1986, 1989). The GNE has no restrictions on the amplitude of the isopyc-
nals displacement. This equation filters out high-frequency gravity waves, as does the tradi-
tional QGE, and it also includes some additional nonlinear terms.

In this paper, we consider intense baroclinic eddies on a [-plane using the reduced gravity
approximation. It is assumed that the motion is sufficiently slow that f Ty« 3 1 (where

f = fy + Py is the Coriolis parameter and T is the time scale for the eddy evolution) and that

. u*
the geostrophic balance dominates, so that Ki=

< 1, where Ki is the Kibel-Rossby
o L

number, ux the current velocity scale and L. the length scale (e.g., the radius of an eddy). In

nondimensional variables, the GNE on a [-plane is reduced to:
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M=E-V [(i + gH) V] is a nonlinear operator, E is the unit operator, V is the horizontal
h — hs

gradient operator, H(x,y,t) = is the nondimensional and h the dimensional thickness of
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the dynamically active layer, h. = const. being its typical value, J is the Jacobian operator,
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is the sphericity parameter, and Ly = e is the internal radius of deformation.
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The horizontal distances and the time are nondimensionalized by the scales Ly and (B Lg)7),
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respectively. The parameter € is assumed to be small on a B-plane.  The nondimensional vari-
ables H, x, y, t are not necessarily of order of one. It can be found from the geostrophic bal-
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ance that the scale of the amplitude of the H fluctuation is He = - ) Then the Kibel-
g Ne
] . e He g : ; X
Rossby number can be rewritten as Ki = , where [ = — 1is the nondimensional size.
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For € = 0, the GNE reduces to the QGE

9 ¥ - V) +J (V¥, ¥) - o | 0 (1.2)
ot dx

where the function W is introduced instead of H. For € # 0, the terms including H in (1.1)
describe the nonlinear effects caused by the finite amplitude displacement of the isopycnals.

To capture some new effects of the behaviour of dipole eddies, it is useful to consider ini-
tial conditions correspending to stationary solutions (Rossby solitons) of the QGE. Then, any
departure from the prescribed stationary motion of the dipole eddy should be caused by some
additional effects which are not taken into account in the QGE. Even when the nonlinearity is
small but acting over a long time, such effects result in a notable departure from the soliton
solution and their role should not be neglected.

This paper is organized as follows. In Section 2, an analytical estimation is made of the
time interval during which the soliton theory based on the QGE is applicable. In Section 3, we
present an efficient finite-difference scheme for solving the GNE. The results of numerical
simulations of the evolution and decay of vortex pairs are presented in Section 4. In Section 5,
we investigate the processes of coupling and interaction of a cyclone and an anticyclone in a
shear flow. The conclusions are summarized in Section 6.

2. ANALYTICAL ESTIMATION

The quasi-geostrophic equation (1.2) has exact solitary solutions of different types (Lari-
chev and Reznik, 1976; Berestov and Monin, 1980; Berestov, 1981). A helpful review is
presented in the monograph by Kamenkovich et al. (1986). The simplest example is the so-
called Larichev-Reznik soliton or modon (Larichev and Reznik, 1976, McWilliams et al., 1981,
Makino et al., 1980). A modon consists of two connected eddies of cyclonic and anticyclonic
spin, the center of mass moving along the x axis with constant speed c.

The Larichev-Reznik soliton is an exact solution of the QGE on a B-plane but is does not
satisfy exactly more general equations such as the shallow water equations of the GNE. If such
a soliton is taken as an initial condition, it would be changed in time under the action of finite
amplitude effects which are not taken into account by the quasi-geostrophic model. The time
interval during which the initial modon is approximately unchanged can be estimated using the
GNE.

In a coordinate system x"'=x —ct,y =y, "=t moving at constant zonal speed c, the
GNE (1.1) can be written as:

a—H=M‘l —.;’1(‘?21—1,I—I)+ﬂ_I—(l-i-c}—c:‘F’z—awﬂ =egeV I-IV’B—H
ot oJx ox ox
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where M1 is the inverse operator to M and the primes are omitted.

The time derivative of H at any fixed time can be determined from (2.1) if the spatial dis-
tribution of H is known. Taking the Larichev-Reznik solution H = H, as an initial condition

and substituting it into the right-hand side of (2.1), we can calculate ol at t = 0. Note that

ot

some of the terms vanish, Further evaluation of the derivatives by ratios of appropriate scales

gives the ordering relation:
1 [ 1 + €M, cH, H? H,

’3!]
A - R

o max |1 P = £ max (2.2)

where H- is the nondimensional scale for H, (e.g., its maximum wvalue), and T is the nondimen-
sional time scale for the evolution of the soliton, i.e., the time period during which the exact
solution of the GINE does not deviate significantly from the Larichev-Reznik solution. The esti-
mation of the soliton propagation speed ¢ follows from (1.2) by the ordering relations:

H.
max(l, —-)
!

ST T (2.3)
max(l, =)
IZ

This estimation is in good agreement with the results of the calculation of ¢ versus H. and [

made by McWilliams et al. (1981). The values of ¢ and T depend on the specific relations

between €, [, and H«. It follows from (2.2) and (2.3) that in the case 1 < [ < % P L
- £

(the Kibel-Rossby number is in the range €/ < Ki < -fz—), the values of ¢ and T are:

}'[* ‘fd 8
=—, 1= = — (2.4)
P eHZ  Ki?

We choose the following values as being typical for mid-latitude eddies: e =0.01,71=2
and eHs = 0.5, so that the maximal disturbance in the thickness of a fluid layer is equal to
50%. TFrom (2.4), we find ¢ = 6, T = 0.6, and X = ¢t = 4 where X is the zonal displacement of
the eddy after time T. In dimensional variables, X = 4Ly, so that it is twice as large as the
radius of the eddy. TFor other relationships between the parameters, the problem is solved simi-
larly.

What happens after the time interval T: the decay of the vortex pair or the rearrangement
of its inner structure, a change of its propagation speed or a deflection from a strongly zonal
motion? To answer such a question, we have carried out a set of numerical experiments with
dipole eddies.
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3. FINITE-DIFFERENCE SCHEME

The fast and accurate numerical solution of equation (1.1) presents difficulties in the inver-
sion of the operator M. We use a modification of the finite-difference scheme developed in the
work of Konshin and Shapiro (1988) which is based on the idea of physical splitting.

A uniform finite-difference grid is introduced within the two-dimensional region of
interest; the grid nodes are defined by

{x]— = A~ 1=12..N; % =i Ay, j=12.P } (3.1)

where Ax and Ay are the space steps; N and P are the numbers of grid points along the X and
Y directions, respectively.

The numerical procedure consists of three steps.

1) The grid approximation F" of the right-hand side of (1.1) is calculated at the n-th level. The
Jacobian operator is calculated using Arakawa’s scheme and the last term is approximated by
central differences.

2) The value of %I} is obtained from the equation:

R RN
M S = F (3.2)

where M" is the grid approximation of M at the n-th level. It can be proved that M is an
elliptical and self-adjoint operator (Konshin, 1984). To solve (3.2), we use a fast and
economic iterative procedure:

LR[EE e
u CLa e

where k = 0,1,... is the iteration number, W is the iteration parameter that will be determined

11

JH

dt

e 111

n
a—H] L (33)

k at i

below and R = E - A is the positive and self-adjoint operator. We also have the following
estimations for R and M (Konshin, 1984):

aRE,H<ME,HSPBRTE, ) (3.4)

where o =1 + ¢ min(H), B = 1 + & max(H), and (R f, f) = [ f R f dx dy.
It should be emphasized that R is energetically equivalent to M with constant ot and p but R

is much simpler than M. The optimal value of W is equal to —--2“— A direct method is

(o + B)

used to inverse R which includes the Fourier transformation along the y-direction and the
standard method for the inversion of a tridiagonal matrix along the x-direction. The choice
of R and [ provides the rapid convergence of the iterations. The calculations are 5 to 10

times faster than with the widely used over-relaxation method.

3) The value of H at the (n+1) level is obtained from
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I
HIY Py BT [%?] (3.5)
where AT is the time step. The calculation is restarted from H™! = % (H" + H™1) after 50

or 100 time steps, as in the paper of Matsuura and Yamagata (1982).

4. DIPOLE EVOLUTION AND DECAY

The results of two groups of numerical experiments are presented in this paper, In this
section, we consider the first group wherein we investigate the evolution and the decay of iso-
lated dipole eddies with resting background. The initial condition is taken in the form of the
Larichev-Reznik soliton:

R FET AT

H = ——2(1+c+ck2) sind  for r<a
k2 J,(ka) K
¢ a Ky(pr)
H= - ——— sinb for rza 4.1
Ki(pa) e

where a is the radius of the soliton, p = (1 + ¢)/c)!”? is a parameter, and 8 is the polar angle.
The values of k and p are related by

hka) — Ky(pa)
k a J(ka) 3 p a K (pa)

(4.2)

where Jy, J, are the Bessel functions of the first kind and Ky, K, are the McDonald functions.

For & =0, the QGE (1.2) has an exact solution which is simply the initial distribution
(4.1) moving at a constant speed c¢. Some test computations made with € = 0 show that the
numerical solution is in good agreement with the theoretical one,

We present here the results of 6 experiments with € = 0.01. The radius of the soliton, a,
varies from 3" to 2, the fluctuation amplitude is ¢H, = 0.32 or eH. = 0.65. The grid includes
from 40x50 up to 120x60 points. The space steps in the first four cases are Ax = Ay = 0.3464.
In the last two cases, we use Ax = Ay = 4. In the first two cases, the following parameters are
used: case A, a = 3'2, p = 1.054, eH, = 0,32; case B, a = 312, p = 0.974, eM, = 0.65.

In cases A and B (Fig. 1), the center of the cyclone is placed at a higher latitude than that
of the anticyclone. The vortex pair moves first to the east, in agreement with the quasi-
geostrophic theory. Later, the dipole deviates towards the equator and it begins to move along
a curvilinear trajectory. The cyclone turns around the anticyclone. After some time, the
cyclone is intensified, the anticyclone is decreased and the anticyclone turns around the
cyclone. The distance between the centers of the vortices is slightly increased and the dipole
propagation speed is decreased.

The comparison of cases A and B shows that the larger the amplitude of the vortex, the
stronger it deviates from the zonal trajectory. The computations were carried out up to 3.5



763

Fig. 1: Trajectories of dipole eddies and time sequence of contour maps of the thickness of the
active layer for cases A and B. The positions of the dipole centers at different times are shown.
The straight line (Q) represents dipole trajectories according to the quasi-geostrophic model.
Maps of H(x,y,0) are shown in the lower panels. Contour interval 8H is 10. Length scales are
shown for each case.
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years of model time for case A and up to 1.7 years for case B. Values of
B=12x10"cm™s! and Ly = 15 km were used to calculate the dimensional data.

In cases C and D, we use the same parameters as in cases A and B except that the initial
locations of the cyclone and the anticyclone are permuted. In both cases, the dipole moves
along a curvilinear trajectory again, as shown in Fig. 2. First, the dipole moves to the west and
the cyclone turns around the anticyclone. Later, the dipole is turned upside down, so that the
vortices are placed as they were in cases A and B and the dipole starts to move to the east. In
case C (relatively small amplitude), the dipole keeps the general eastward direction during all
the time of computation. In case D (large amplitude), the vortex pair makes many turns and it
moves generally westward along a spiral trajectory at an averaged speed ¢ = —1. The calcula-
tions are made up to T = 2.6 years of model time (case C) and T = 0.9 years (case D). The
length of the dipole trajectories is about 1350 km in case C and 1100 km in case D. No

noticeable Rossby wave radiation is observed in cases A-D.

In cases E (Fig. 3) and F (Fig. 4), dipoles of relatively large scale are investigated: a = 20,
p = 0.055, eH. = 0.32, Ax = Ay = 4, AT = 1; the numerical grid consists of 120x60 points. In
case E, the cyclone is placed poleward of the anticyclone, and in case F it is vice versa. In
contrast to the eddies of smaller size (cases A-D), the vortex pair with a = 20 radiates Rossby
waves which propagate westward at the phase speed ¢ = —1. There are about four grid points
on a typical Rossby wave length.

Since Rossby waves are radiated mainly by the cyclone, the lifetime of the latter is shorter
than that of the anticyclone. The amplitude of the cyclone has decreased to half of its initial
value at the nondimensional time t = 250 in case E and at time t = 150 in case F. During that
time, the amplitude of the anticyclone is maintained practically constant. It should be noted

that the axis of the dipole eddy does not remain meridional. We believe that this can be

Al ek in the last term in (1.1) which can be treated as
(1 + ey)?

the perturbation phase speed. It turns out to be different for the cyclone and the anticyclone
due to differences in the signs of H and y.

explained by the action of the factor

5. CYCLONE-ANTICYCLONE COUPLING IN A SHEAR FLOW

One of the mechanisms of formation of a dipole eddy in the ocean is the instability of a
jet that results in the development of "mushroom-like currents”. Another possibility is the cou-
pling of originally monopole eddies. This situation seems to take place for example in the
Kuroshic - Oyashio region of the North Pacific.

In a second group of numerical experiments, we have simulated the interaction and cou-
pling of monopole eddies of equal amplitudes and different signs in a shear flow. Initially, the
monopoles were placed sufficiently far from each other. Then, the shear flow moved the eddies
to within a short distance from each other. The main goal was to investigate the possibility of
coupling of monopole eddies.




Fig. 2: Same as Fig. 1 for cases C and D.
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t-0

Fig. 3: Time sequence of contour maps for case E. Note that the cyclone radiates Rossby waves
more intensively than the anticyclone.
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Fig. 4: Same as Fig. 3 for case F.




As an initial condition for an anticyclone, we use the distribution of H found in laboratory
experiments by Nezlin (1986), which can be well approximated analytically by:

H=D [ ch(Er)]_m (5.1)

where D > (0 and E > 0 are the fitting parameters, and r is the radius. We use the same for-
mula for a cyclone with negative values for D. The shear flow is assumed to be zonally homo-
geneous, the zonal velocity varying linearly in the meridional direction. The initial field of H is
taken as the sum of two disturbances described by (5.1), i.e.,

HiD [[ch(Er,)]_m i [ch(Erz)]_m] H, (5.2)

112
where H, = A (ybz - y9), G = [(x — %) (v — yi)ﬁ] , 1 = 1,2. The coordinates of the mono-
poles are (x;, y;); A and y, are constants.

The results of two numerical experiments with € = 0.01, D = 50, E = 0.43, y,, = 20, and
A = 0.1 are presented in Fig. 5. First we consider the behaviour of isolated monopoles in a
shear flow without any interaction. The anticyclone moves predominantly westward with a
very small meridional velocity, without any change of the H-distribution and without Rossby
wave radiation up to time t = 10. The solitary cyclone moves first to the north-west and then it
deviates to the north. It radiates Rossby waves intensively and is noticeably decreased. The

lifetime of the cyclone is much shorter than that of the anticyclone.

In the second experiment, the parameters (X3, y1) {xz, ya) are chosen such that the trajec-
tories of the monopoles intersect and the eddies interact strongly. During the interaction the
velocities of the monopoles become almost equal. The eddies form a vortex pair which moves
to the west. Then, the cyclone turns around the anticyclone and the dipole axis becomes
directed almost meridionally. The vortex pair is changed slowly during some time period. The
radiation of Rossby waves is very weak. Then the cyclone is displaced more poleward. It
begins to radiate waves and decreases again. It should be noted that the lifetime of the
interacting cyclone is much longer than that of a solitary one. We conclude that under definite
circumstances, cyclone-anticyclone coupling may take place. The interaction results in chang-
ing the trajectory of the eddies and in increasing the lifetime of the cyclone.

6. DISCUSSION

The evolution of a vortex pair depends significantly on the radius and on the intensity of
the vortices. Modons of small amplitude propagate predominantely in a zonal direction in
agreement with the quasi-geostrophic theory. If the intensity of the vortices is high and the
radius comparable to the radius of deformation, the modon basically retains its inner structure
but the trajectory becomes rather entangled. Dipole eddies of large size and amplitude do not
keep their initial structure and radiate waves, their trajectories being almost zonal.
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Fig. 5: Cyclone-anticyclone interaction and coupling in a shear flow. The meridional displace-
ment of isolated (cl, al) and interacting (c2, a2) cyclones and anticyclones is shown at the top.
The lower panels show the contour maps of the thickness disturbance, H — H;, att =0 and t =
56.



In a shear flow a solitary cyclone has a much shorter lifetime than in a resting fluid, The
trajectory of a cyclone has a noticeable meridional component. If the flow brings a cyclone
and an anticyclone together, so that they can interact, their velocities are equalized and a cou-
pling may occur. Our numerical experiments show that intensive VOrtex pairs are stable with
respect to the action of additional nonlinear forces which are not taken into account in the stan-
dard quasi-geostrophic model. This conclusion is in correlation with the wide occurance of
dipole eddies in nature.
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