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Theory of Axisymmetric Rossby Solitons

G. 1. SHAPIRO

Shirshov Institute of Oceanology, USSR Academy of Sciences, Moscow

Estimates are given of the rate of evolution for axisymmetric Rossby solitons
under the influence of additional effects not ordimarily included in the soliton
theory. It is shown that for a given disturbance amplitude there are infinitely
many soliton solutions with differing horizontal size, but having approximately
the same lifetime. These results have made it possible to explain why the corre-
lation between the amplitude of a scoliton and its radius established in laboratory
experiments does not always satisfy the nonlinear dispersion relation derived in a

number of theoretical papers.

Rossby solitons are nonlinear solitary waves
that propagate with a constant speed and without
changing their shape. Interest in the study of
Rossby solitons has come about from attempts to
explain the long time for the existence of the
Great Red Spot on Jupiter and strong localized
eddies in the ocean [l-6, 9]. Several types of
solitons are known for Rossby waves [1-6, 9, etec.].
In this paper we consider axisymmetric anticyclones
for which solutions were found in [4, 6, 9] for
greater clarity comnsidering only barotropic motions
over a horizontal bottom in the EB-plane approxi-
mation. Baroclinic motions in a stratified fluid
can be considered in an analogous manner. The
theory in [4, 6, 9] makes it possible to calculate
the elevation in the free surface as a function of
the coordinates, as well as the phase wvelocity for
the motion of the soliton. According to [4, 6, 9],
the diameter and speed of a Rossby soliton are re-
lated by a nonlinear dispersion relation and are
uniquely determined by its amplitude (and the para-
meters of the medium), as are the well-studied
Korteweg de Vries solitoms.

Rossby soliton research has also been carried
out under laboratory conditions [l, 5]. In the
experiments, in particular, the height h was deter-
mined for the free surface of the fluid over a uni-
form bottom. It turned out that the wvariation in
h as a function of x and ¥ often did not agree with
the predictions of the theory in [6, 9] or with its
generalization given in [7]. In particular, the
correlation between the amplitude of a soliton and
its radius did not always satisfy the theoretical
nonlinear dispersion relation.

The present article is devoted to an explana-
tion of this circumstance. It is shown that the
dispersion relation for Rossby solitons contains
an additional "hidden" parameter. The reason for
this is the fact that for a given amplitude there
is not one but a whole family of solitons with a
different horizontal size and propagation phase
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velocity. The actual value for the "hidden" para-
meter is determined by the history of formation
for the soliton.

We consider a thin fluid layer with a free
surface in the shallow water equations approximation

on the B-plane whose motions are close to geostro-
phic [9]:

ET-S—:—I—E{LII"F?U—,‘— (14 By) [k xu] = — VH, (1)
UET% eV [(1+4 oH)u] =0, (2)

Equations (1) and (2) are written in dimensionless
variables, for the conversion to which we used the
following dimensional scales: length [, geostrophic
velocity V, time T, undisturbed layer thickness hD’

and Coriolis parameter fﬁ; u is the horizontal velo-

city compomnent, H=(h—h,)/(ch), h{x, ¥y, t} is the
total thickness of the layer, ¢ is the relative
amplitude of the disturbances, k is the unit wvector
for the 0z axis, and V is the horizontal gradient
operator. The parameters are er=1/f,T, e=V/f,L, and

&Eﬁiih;lh=ﬁhLﬂJL,.Lq:={ghﬂ“fh is the deformation

radius, o = €/s and s = L°_ /%
We will assume that the parameters Eqpy € and

B are small, and in this case the amplitude ¢ should
not necessarily be small. Following [8], we substi-
tute for the wvelocity u the asymptotic series
u=u,+eu,+ert,+... in Eq. (1), solve it relative

to ui,_and substitute the result into Eq. (2). We
have

oer (mgfi—s? (u L GH)V %}) % EEJ((H oH) AH +

FC K 2 1 oH) (1— 2By) =
e0 (2, eer, e7) 4 eBO0 (er, &, B2). (3)



A more detailed derivation and analysis of this
equation is given in [8]. An analogous equation
has been obtained independently in [10]. We change
in Eq. (3) to a moving coordinate system using the
equations £ = x = et and t' = £, where ¢ 1s a con-
stant to be determined later, and we carry out cer-
tain algebraic transformations on the right side

using the well-known properties of Jacobians. We
have
aff E dH 3. 8
O e h o e LA I |8 irres
o (0420 W)= —rfan 3
—ofhy gy B ) peateyadl
s $ £ dE
— efisc’V (H? %—]—waﬂj (H&H 5 W‘;““ ,H) 5
— 2efPyH E‘r;u +- O (g2, eer, eF) + eBO (er, &, P5),
dE (4)

where ﬂﬂzsrmhﬁ_ Up to now the parameters E,S,E,
and ' have been arbitrary. Following [9], we re-
strict ourselves to a specific class of motions
that contains Rossby solitons, and we tie together
these parameters by the relations

B=DBs,e=Fs? 14+c' =Cs, E,C~1,B< 1,51 (5)

. S () . e L S

the horizontal scale L: Lﬂﬁiiﬁiiq==[hL?W§}ﬁ_
The scale LI was evidently first derived in
[9]. It plays an important role in the classifica-

tion of motions in the ocean that are close to geo-
strophic. For L > L, the traditional quasi-geo-

strophic approximations on the B-plane turns out
be be incorrect.
(5), Eq. (4) becomes

]

[EH— —5Y ({1—!- Esf V —dfj—))
dt af
= — F53] [:;jH —i—%EH“ — 2B8uH + CH,H—"E H} -+

+ 0 (s%) + sO (E®s*, Es?er, e7) + s*0 (er, Es?, B%s?). (6)

From a comparison of the terms in Eq. (6) it is
easily seen that egr=0(s'), We drop in Eq.

4
terms on the order of U(8') and higher, and we con-
sider the steady-state solutions for this equation.
We have

: . = B
J (8 + L EHY—2ByH + CH H— 2 4) =0 ()

To within the accuracy of the notation, Eq. (7)
agrees with the steady-state form of Eq. (18.20)
from [9]. Equation (7) can be integrated in the
form

3 8B 3\
5H+—E-EH3—ZBHy+CH=f(H—Ey}, (7"

where [ is an arbitrary and sufficiently smooth

Taking into account the conditioms

(6) small
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L

function of its argument. For soliton solutions
H+ 0 as '#*+y* >0, from which it follows that f =
0. Further, the authors in [9] assume that B << 1,
drop the term 2BHy on the left side of Eq. (7'),
and obtain the fundamental equation of soliton
theory

5H+§EHE+CH={J. (8)

Equation (8) has an axisymmetrically rapidly
decreasing solution (a soliton) that satisfies the
conditions H(Q0) = 1 and H(=) = 0:

H () = G k), € =— I, r =@+ 4%

b l/g d,~ 2.39,

where G(kr) is a bell-shaped function whose curve
is given in Fig. 18.6 in [9]. The parameter ( is
defined as the eigensolution of the problem. It
has been shown in [6] that the function G(kr) can
be approximated by the simple equation

(9)
(10)

G (kr) = G, (k,r) =ch™"* (k,1), &, =[/§-§~ (9")

Equations (9) and (10) determine the monlinear
dispersion relation, i.e., the relation between the
soliton diameter and phase velocity, and its ampli-
tude. Actually, if we take for the scale L the
width of the soliton at half-height, 1i.e., at

h—4h==éwﬂm,then from Eqs. (9') and (10) we have

~3L—R and
il p
the value for the phase velocity in dimensional
variables.

We emphasize that the soliton (9) and (10)
from [9] and also the analogous solitons from [4,
6] are solutions of approximate equations. The
asymptotic derivation given above for the funda-
mental equation (8) makes it possible to trace the
character of the approximations made and to evalu-
ate the order of magnitude for the omitted terms.
If the shape (9) and (10) is substituted as the
initial condition in a more exact equation, such
as in Eq. (4), then it does not remain constant
but begins, generally speaking, to slowly evolve
under the influence of terms not included in Eq.
(8).

It is analogous to the theory of long waves
described by the Korteweg de Vries (KDV) equation.
A characteristic of the KDV solitons is that they
evolve (within the framework of the more complete
equations of hydrodynamics) much more slowly than
other initial disturbances of the same type. Actu-
ally, suppose the nonlinear and dispersion terms in
the KDV equation have the same order of magnitude
for y (p is a small parameter). Then the subsequent
terms not included in this equation are on the order

=BL%c"~ —pL%, (1 +0,60), where E'p is

of uz. Therefore, the characteristic time for the

svolution of the solitons is € ~ ﬂfuz. For other



Fig. 1. Variation in the free surface
height % as a function of the horizontal

coordinate & according to data in the
experiment in [5] and Eq. (14). The un-
disturbed laver thickness is hﬂ = 0.5 en
and the deformation radius is LR = 2.1

em: 1) g=2.,4; 2) q= 4.3. :Shown for
comparison is the profile 3 calculated

from Eq. (18.19¢) from [9], ¢ = V1.5.

initial disturbances with the same characteristic
dimensions it is much less, & ~ 1/y.

We shall show that the Rossby solitons (9)
and (10) do not have this special property. To do
this, we estimate the time derivative in Eq. (6)
using the solution (9) and (10) at the initial
time. Substituting Eqs. (9) and (10) on the right
side of Eq. (6), we have

aH [ - ﬂ_H —_— aj £ {j '1.
Eyﬁg—%ﬁ(“+£ﬂﬂ?m]m imﬁﬁﬁ(ﬂﬁ—59)+ (s%)

(11)

Equating the orders of magnitude for quantities on
both sides of the equation we have

!
_I..:HETE:_:EEBEE':EH—-{, T.:f—'

foT 5 2BV (12)

Equation (12) determines the characteristic
time for the evolution of the Rossby soliton con-
structed in [9]. The question as to what happens
over the course of this time, decay of the soliton
or adjustment of its internal structure and tran-
sition to a more stable state, is still open. We
note that as a result of the conditions (5) the
time I cannot exceed [,/(2EB*L%:).

We now construct a one-parameter family of
approximate solutions for Egq. (7) that have the
same properties as the solution (9) and (10). 1In
order to do this we rewrite Eq. (7) in the form

J (ﬂH+q2EH2—|—CH,H—%y) I

23({?3_ i)H OH zaﬂy A

"
2 dt E dg &7

We consider the equation -
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- left side of Eq.

AH+?EH*+ CH=0, (13)

whose form* is suggested by the expression in the
integral near the symbol for the Jacobian on the
(7"). When ¢°=°/; Eq. (13) changes
to Eq. (8). The same as for Eq. (8), it has an

axially-symmetric solution (9, except that the
equation for the "wave number" %k now has the form

k==q]/ﬁgg.

For different g the solutions of Eq. (13) dif-
fer only in spatial scale. In dimensional variables
the resulting family is determined by the equations

(10%)

B : .
h{r] --mﬁﬂ:m&uﬂ (%ﬁ; ;V-i) D= _ﬁ.};ﬁ,(l_[_ 29

We recall that the constraint o¢®/d,<1 follows from
the conditions (5)
By direct substitution we can see that the

solutions of Eq. (13) when qz = 1/2 satisfy Eq.

(7") with a discrepancy on the order of BZIE, and
for arbitrary O(B* E), including qE = 3/2, with a

discrepancy O(B*E)+O(B).

/4
g = 3/2 has no particular advantanges in this case.

Finally, if Eq. (7') with f = 0 and B # 0 were to
have localized solutions, they would satisfy Eq. (6)
with less discrepancy than Eq. (14), and the value

7
¢~ = 3/2 would turn out to be distinct. However,

as has been shown by V. I, Petviashwvili and G. M.
Reznik, such localized solutions do not exist.

Proceeding in a similar manner to the preced-
ing, we estimate the characteristic evolution time
for the solution (l4). We have

== (Yol )] vom). av

For the scale I we now have from Egs. (9') and (10'")
that L=~46L,/qgyc . Substituting this equation into
Eq. (15) we find that for the given properties of
the medium (i.e., the values for fD’ B and LR) and

Consequently, the wvalue

for a given amplitude ¢ the smallest wvalue for Ep

2
(i.e., the maximum in I') is reached when ¢~ = 1/2.
Solutions with other values for ¢ on the order of

unity, including qz = 3/2, have approximately the
same evolution time.

Thus, there has been constructed a one-para-
meter family of localized solutions, which for the

*This equation can also be obtained from Eq.
(7') if for B << 1 we neglect the terms containing

'3
B, and set HH}=(E--1;2)EHE.



parameter value ¢ = 3/2 contains an axially-
symmetric Rossby soliton [9]. The solutions of
this family corresponding to different values for
g on the order of unity (but g¢’541/2) satisfy Eq.
(7), and thus also the initial system (1) and (2)
with the same degree of accuracy, and have evolu-
tion times that are on the same order of magnitude.
From this point of view they can on the same basis
be called (or not called) solitons.

In order to illustrate these results, numeri-
cal modeling* has been carried out for soliton
evolution according to Eq. (3) with BLA/fi=2-10"7°

and ¢ = 0.3 for the two values qz = 1 and qz = 3/2,
In both cases there was distortion in the initially
axially-symmetric shape, the gradients being steep-
er in the southern part of the anticyclones. Cy-
clonic satellite—eddies were formed in the wake,

and at {=232 (BLr)~" with qz = 3/2 the amplitude of
the satellite (in terms of H) was 37 of the ampli-

tude of the main eddy, and for q2
| i

= 1 it was only

Rossby soliton profiles h(r) were measured in
the laboratory experiments in [5]. Two of them
(for hg = (0.5 em and LH = 2.1 ¢cm with amplitudes
D= 0.25 and o,
These profiles are quite well approximated by Eqgs.
(9') and (10') with gy = 4.3 and q, = Peilie - In

= 0.51) are shown in Fig. 1.

other words, the radii for the solitomns observed

in experiment are correspondingly 3.5 and 2 times
less than what follows from the theory in [6, 9].
Some of the constraints (5) were not satisfied

for these conditions. Nevertheless, Eqs. (14)

lead to a qualitative understanding of the reason
for the discrepancies between the theoretical and
experimental [5] relations for h(r): The theoreti-
cal profiles were calculated under the assumption

qz = 3/2, whereas solitons with a different value

for ¢ were observed in experiment.

#The calculations were done jointly with
V. N. Kon'shin.
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