1987-07

SOME PROPERTIES OF ISOLATED INTERTHERMOCLINE EDDIES

Shapiro, Georgy

http://hdl.handle.net/10026.1/9750

IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
же, сопоставляя расчеты с соответствующими видами $\text{Nu}=m\beta a^n$ для других фиксированных $m$ и $n$, можно распространять теорию на весь экспериментальный изученный диапазон изменений $\beta a$. На рисунке показан вид функций $\varphi$, $\psi$, $\varphi_0$ при $Ra=5 \cdot 10^4$, $\alpha=\gamma$, $\beta=2.2$. Нетрудно видеть, что в основной массе жидкости — изотермия ($\varphi=\text{const}$); изменения температуры происходят в пристеночных слоях, теоретические толщины которых совпадают с их эмпирическими значениями $\delta=1/(2mRa^n)$ с погрешностью менее 20%.

2. Рассмотрим КПС в атмосфере над нагреваемой Солнцем подстилающей поверхностью. Ограничением распространения конвекции в атмосфере является устойчивая температурная стратификация на тех высотах, куда суеточная тепловая волна не доходит $\partial\psi/\partial z=\gamma>0$ при $z>H$, где $\theta$ — потенциальная температура. В отсутствие движения $\theta(x, t)$ и коэффициент турбулентной теплопроводности $k(x, t)$ рассчитывались из системы уравнений одномерной модели локального прогноза погоды [2]. Для параметрического учета влияния конвекции использовалось модифицированное уравнение (2), включающее вместо $\Delta/T/a$ внешний параметр $\gamma$:

$$\frac{\partial \varphi}{\partial t} + \beta \sqrt{\frac{k}{\gamma \theta_0} \left( \frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial z} \right)} = \frac{\partial}{\partial x} \frac{\partial \varphi}{\partial x}$$

$$\beta = \text{const} > 0.$$  

Уравнение (5) решалось численно при следующих условиях:

при $z=0$ и $z=H$ $\varphi=0$;  
при $t=0$ $\varphi=\varphi_0(x)$.  

Результаты расчетов показали, что профиль $T=(\theta+\Theta)$ верно отражает характерные черты и эволюцию атмосферного КПС: стратификация в слое $z<10$ м очень устойчива. Выше расположен слой перемешивания, в котором $\partial T/\partial z=0$, достигающий в стадии максимального развития конвекции высот $z=1-1.5$ км. В верхней части КПС расположен слой с устойчивой стратификацией, в котором $\partial T/\partial z>\gamma$.

ЛИТЕРАТУРА

2. Костриков А. А., Стерненский Л. С., Пушков П. Ю. О локальном прогнозе температуры и ветра в приземном слое атмосферы с помощью модели планетарного слоя// Тр. ЭСРНГМН. 1978. Вып. 20. С. 19—33.

Западно-Сибирский региональный ин.-ст. институт
Поступила в редакцию 29 VII.1985
после доработки 17 XII.1986

УДК 551.465.11

О НЕКОТОРЫХ ХАРАКТЕРИСТИКАХ ВНУТРИТЕРМОМЕЛИННЬХ ИЗОЛИРОВАННЫХ ВИХРЕЙ

ШАПИРО Г. И.

Подповерхностные изолированные вихревые линии (В,Л), обнаруженные в различных районах Мирового океана [1—2], представляют собой весьма богатый класс объектов. Структура и даже амплитуда (толщина в центре) линии не определяется однозначно ее горизонтальным размером в отличие, скажем, от солитонов Коротнева-Бриха. Поэтому выявление типических либо предельных характеристик ВЛ представляется не менее важной задачей, чем нахождение частных решений. В данной работе определен минимально возможный радиус линии и ее характерное время жизни.

Рассмотрим установившиеся движения в стратифицированной по плотности вихревой линии, находящейся в стратифицированном окружении (пиноклоние). Обобщая гипотезу [3] об автомодельном распределении плотности в синоптических вихрях, 778
предположим, что распределение плотности в зоне внутритермоклинного эхра \( p(x, y, z) \) можно записать в виде

\[
\rho = \rho_0 (z) + \rho' (x, y, z), \quad \rho' (x, y, z) = \alpha h^2 B \left( \frac{z}{h} \right),
\]

где \( z \) отсчитывается вверх от некоторого уровня с плотностью \( \rho_0 \), функция \( h(x, y) \) характеризует переменную по горизонтали толщину линзы, \( B(\xi) \) — распределение возмущений плотности по вертикали, \( \xi = z/h \) — автомодельная переменная, \( \gamma \gg 0 \); \( \alpha \) — константы. Для определенности примем за \( \rho_0 \) такую плотность внутри линзы, где возмущение \( \rho' \) меняет знак, а в качестве \( h \) — толщину слоя между уровнем с плотностью \( \rho_0 \) и максимумом \( \rho' \) на верхней границе линзы. Предположение об автомо-
dельности возмущений плотности согласуется с данными резервов через внутритер-
mоклинные вихри [1, 2].

Уравнения движения осесимметричного вихря в приближении гидростатики и
Буссинеска имеют вид

\[
\frac{V^2}{r} + fV = \frac{1}{\rho_0} \frac{\partial \rho}{\partial r}, \quad \frac{\partial \rho}{\partial z} = -\rho g,
\]

где \( V(r) \) — азимутальная скорость жидких частиц, \( r \) — радиус, \( f \) — параметр Король-
иса, \( g \) — ускорение силы тяжести. Рассмотрим левую часть циклонстратифицированного
соотношения (2) как функцию \( V \) при каждом фиксированном \( r \). Она имеет максимум, равный \( -f r/4 \) при \( V = -f r/2 \). При этом величины сил Корольиса и центробежной
оказываются равными. Отсюда

\[
\frac{\partial \rho}{\partial r} \geq -\frac{1}{4} \rho_0 r^2.
\]

Величину \( \partial \rho/\partial r \) вычислим из уравнения (2) при помощи формулы (1). Тогда из пере-
равенства (3) следует

\[
-\alpha gh^2 \frac{dh}{dr} \leq \frac{1}{4} \rho_0 r^2,
\]

где \( \alpha \) — минимальное возможное радиус линзы в зависимости от характера стра-
тификации, \( \rho_0 \) — плотность максимальной толщины линзы \( H_0 = 2 h_0 \):

\[
R_{\text{min}} = \frac{8 \xi (\gamma + 1)^{1/2}}{4 (\gamma + 1)^{1/2}} \left( \frac{4 g H_0 \rho_0'}{(\gamma + 1)^{1/2}} \right)^{1/2},
\]

где \( \rho_0' = \) — максимальное возмущение плотности в линзе. Минимальный радиус соот-
ветствует максимальному числу Кисельба \( K_i = 1/2 \). Рассмотрим конкретные примеры.

1. Однородная линза плотности \( \rho \) плавает на границе раздела слоев с плотностями \( \rho + \delta \) и \( \rho - \delta \). Согласно (5) \( Q = 1 \), и линза не имеет радиус, меньший, чем \( R_{\text{min}} = 2 f (\delta g h_0 \rho / f) \), в полном соответствии с известным результатом [4].

2. Линейно-стратифицированная линза в линейно-стратифицированном окруже-

\( B(\xi) = 0 \) вне линзы. По формуле (6) имеем \( R_{\text{min}} = H_0 (N^2 - N_1^2)^{1/2} \), т. е. при задан-
ной толщине \( H_0 \) стратификация линза может быть меньше, чем однородная (у которой \( N_1 = 0 \)).

Расчеты, выполненные для вихревых линз [1, 2], показывают, что \( R/R_{\text{min}} \approx 2 \). Если это соотношение тяпечно и для других ВЛ, то формула (6) дает удовлетвори-
тельно оценки горизонтальных размеров линзы по данным вертикального зондирования
в ее центре.

При \( \gamma = 0 \) динамику ВЛ можно описывать, используя эквивалентно-однослоенную
аппроксимацию. В приближении бета-плоскостной уравнение эволюции ВЛ в безразмер-
ных переменных имеет вид [5]:

\[
\frac{\partial H}{\partial t} + \mu^3 J \left( \nabla H + \frac{1}{2} (\nabla H)^3, H \right) - \epsilon \mu \nabla (H \nabla \frac{\partial H}{\partial t}) = -\frac{\partial H}{\partial x} O (\epsilon^3, \mu^3, \mu^3, \mu^3),
\]

где \( H(x, y, t) \) — полная толщина линзы, \( \epsilon = 1/m, \mu = U/L, \mu = \beta L_3/U \) — малые пара-
метры, \( T, U \) — масштабы времени и скорости, \( L \approx R \). Для почти осесимметричных ин-

тенсивных ВЛ в (7) можно отбросить некоторые малые члены. Укороченное уравнение (7) описывает некоторый класс стационарных антициклонических ВЛ [5]. Малые силы, не учтенные укороченной формой уравнения (7), действующие в течение долгого времени, фактически приводят к медленной эволюции ВЛ. Время эволюции $T_e$ оценим так. Перейдем в полном уравнении (7) в движущуюся систему координат и оценим временную производную, подставив в качестве начального значения стационарное решение. Получим $\frac{dH}{dt} = \alpha H$ или $T_e = \frac{1}{\alpha}$. При $f = 10^{-4}$ с$^{-1}$, $\beta = 2 \cdot 10^{-13}$ см$^{-1}$с$^{-1}$, $U = 20$ см/с, $L = 20$ км имеем $T_e = 2.5 \cdot 10^8$ с $\approx 8$ лет. Таким образом, ВЛ оказываются гораздо более устойчивыми к действию вызванной $\beta$-эффектом дисперсии, чем волны Россби с тем же горизонтальным масштабом.

ЛИТЕРАТУРА


Академия наук СССР
Институт океанологии

Поступила в редакцию 7.11.1984
после доработки 7.5.1985