УДК 551.465

Г. И. ШАПИРО, С. Л. МЕЩАНОВ, М. В. ЕМЕЛЬЯНОВ

ЛИНЗА СРЕДИЗЕМНОМОРСКИХ ВОД ПОСЛЕ СТОЛКНОВЕНИЯ С ПОДВОДНЫМИ ГОРАМИ

Изолированная линза средиземноморских вод обнаружена в январе 1990 г. в 50 милях к западу от подводной горы Эрвинг. В горизонтальной плоскости линза имеет эллиптическую форму с осью 90 и 70 км. Аномальные температуры и солености достигают 3,75°С и 0,76%, обнаружены также два небольших пятна теплой и соленой воды, отделенных от линзы. В сумме они содержат ~16% от полного объема линзы и образовались, по-видимому, вследствие столкновения линзы с подводными горами. Наши результаты доказывают, что линза пролила через узкий (ширина 45 км) проход между подводными горами Эрвинг и Йер в западной части Канарской котловины. При столкновении линза деформировалась, но не разрушилась. Она сохранилась и в виде когерентного, устойчивого объекта. Этот результат противоречит существующим представлениям о том, что для крупных средиземноморских линз якобы невозможно проникновение теплых подводных гор, расположенное между 30 и 35° с. ш.

Промежуточные средиземноморские воды (СМВ) в Северной Атлантике занимают диапазон глубин от 500 до 1500 м. Они распространяются не только в виде сплошного языка, но и в виде изолированных линий повышенной солености [1, 10]. Одним из районов, где линзы СМВ наблюдались неоднократно [1, 10, 11, 13, 14], является Канарская котловина, которая с востока ограничена Канарскими островами и островом Мадейра, а с запада — цепочкой подводных гор Плейто, Крузер, Эрвинг, Йер и Метеор. По некоторым оценкам, линзы СМВ занимают от 4 до 8% всей площади Канарской котловины [10, 13] и пермещаются в основном на запад или юго-запад. Поэтому весьма вероятно, что в западной части котловины они могут сталкиваться с подводными горами, вершины которых достигают глубин 200—300 м.

Из теоретических оценок [9], лабораторных экспериментов [4, 5], и в последние время и из прямых наблюдений [11, 14] известно, что в глубоководных районах океана линзы месяцами и даже годами сохраняет свою индивидуальность, преодолевая тысячи километров. А как обстоит дело на мелководье, в районах со сложным подводным рельефом? Приводит ли столкновение с щелочной гор к разрушению линзы? Ответ на этот вопрос имеет важное значение для понимания процессов глобального теплопотока и переноса, поскольку предполагаемые траектории линз СМВ пересекают не только гряду подводных гор на западе Канарской котловины, но и Срединно-Атлантический хребет [6, 12]. Нам известно несколько работ, относящихся к этой проблеме и основанных на материалах натурных наблюдений.

В работе [3] приведены данные двух СТД-съемок линзы СМВ в западной части Канарской котловины. Показано, что при подходе к подножию подводной горы Крузер на границе линзы развиваются волнобразные возмущения. Авторы пришли к выводу, что эти возмущения могут нарастать и приводить к разрушению линз.

Мезомасштабные пятна повышенной солености, обнаруженные в районе подводной горы Метеор на глубинах 600—1300 м, были интерпретированы

© Г. И. Шапиро, С. Л. Мещанов, М. В. Емельянов, 1992 г.
Isolated lens of Mediterranean Water was found 50 miles west off the Irving seamount in January, 1990. In horizontal plane the lens has an elliptical shape, the major axis being 90 km and the minor axis being 70 km. The anomalies of temperature and salinity in the lens are as large as 3.75°C and 0.76‰, respectively. Two small saline and warm patches split from the lens were also observed. They content ~16% of the whole lens volume and appeared to be formed as a consequence of the lens collision with seamounts. Our results prove that the lens passed westward from the Canary Basin through the narrow (45 km wide) passage between the seamounts Irving and Hyeres. Despite the deformation of shape, the lens was not destroyed after collision. It remained as a coherent, stable feature. This result is in contradiction to the idea, that it would appear almost impossible for large Mediterranean lenses to pass through the line of seamounts stretching from 30 to 35°N.

Наиболее детально проблема влияния донной топографии на динамику и устойчивость линзы рассмотрена в работе [14], где приведено описание столкновения линзы СМБ радиусом 50 км с горной грядой на западе Канарской котловины. Непрерывное долговременное наблюдение за положением линзы и скоростью орбитального вращения частиц воды осуществилось с помощью поплавков нейтральной глубинной слойки SOFAR, уравновешенных на горизонте 1100 м. В июле 1986 г. линза приближалась с востока к вершине г. Йер, и вращение поплавков стало менее упорядоченным, а затем прервалось. Выполненная в октябре 1986 г. СTD-съемка не обнаружила никаких следов этой линзы к западу от г. Йер. На основании изложенных фактов авторами работы [14] был сделан вывод о том, что линза полностью разрушилась при прохождении между г. Йер и безымянной вершиной, расположенной на 40 км южнее и, следовательно, «...для крупных средиземноморских линз представляется почти невозможным пройти через цепочку подводных гор, расположенную между 30 и 35° с. ш.» [14].

В настоящей работе представлены результаты исследований, проведенных в январе 1990 г. в 14-м рейсе УЭС «Профессор С. Дорофеев», которые опровергают этот вывод. Измерения выполнялись зондирующими комплексами...
<table>
<thead>
<tr>
<th>Параметр</th>
<th>Центр линзы (ст. 42)</th>
<th>Осколок линзы (ст. 34)</th>
<th>Осколок линзы (ст. 37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Широта (с.)</td>
<td>32°12’5"</td>
<td>31°34’</td>
<td>31°34’</td>
</tr>
<tr>
<td>Долгота (з.)</td>
<td>28°59’0"</td>
<td>28°20’</td>
<td>29°07’</td>
</tr>
<tr>
<td>Диапазон</td>
<td>690—1355</td>
<td>670—1235</td>
<td>855—1045</td>
</tr>
<tr>
<td>глубин (м)</td>
<td>(650—1435)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{max} (%)</td>
<td>36,21(36,2)</td>
<td>35,82</td>
<td>35,71</td>
</tr>
<tr>
<td>T_{max} (°C)</td>
<td>12,16(12,3)</td>
<td>10,85</td>
<td>9,97</td>
</tr>
<tr>
<td>L_a (км)</td>
<td>45(55)</td>
<td>15</td>
<td><15</td>
</tr>
<tr>
<td>L_b (км)</td>
<td>35(40)</td>
<td>15</td>
<td><15</td>
</tr>
<tr>
<td>H (м)</td>
<td>335(390)</td>
<td>285</td>
<td>95</td>
</tr>
<tr>
<td>V (км²)</td>
<td>2200(3600)</td>
<td>270</td>
<td><90</td>
</tr>
<tr>
<td>Q (Дж)</td>
<td>1,31·10⁹</td>
<td>2,74·10⁸</td>
<td>0,78·10⁸</td>
</tr>
<tr>
<td>M (кг)</td>
<td>7,18·10¹¹</td>
<td>1,11·10¹¹</td>
<td>0,32·10¹¹</td>
</tr>
</tbody>
</table>

Примечание. За границу линзы принята изохалина 35,60%, за границу осколков — изохалина 35,55%. В скобках указаны параметры линзы в ноябре 1989 г. [3].

Интенсивная линза СМВ была обнаружена 10—14 января 1991 г. примерно в 50 км к западу от вершины подводной горы Эрвинг (см. таблицу). По вертикали линза, которая получила имя «Эрвинг», имеет бимодальную (двухъярусную) структуру, особенно заметно выраженную в поле солености (рис. 1). Максимумы солености расположены на глубинах 885 м ($S = 36,19\%$) и 1145 м ($S = 36,21\%$). Слой повышенной солености ($S > 35,60\%$) в центре линзы занимает диапазон глубин от 690 до 1355 м, т. е. определенная таким образом толщина линзы составляет 665 м. Отсутствие ступенчатой структур в нижней части линзы свидетельствует о подавлении конвекции в виде солевых пальцев, что, возможно, обусловлено трением о дно при прохождении линзы через мелководный проход между горами.

В верхнем ядре линзы зарегистрировано инверсионное повышение температуры: от 11,00° С при $z = 695$ м до максимального значения 12,16° С при $z = 855$ м. Второму (более глубокому) максимуму солености соответствует изотерма в профиле температуры: $T = 11,66°$ С при $z = 980$ м и $T = 11,46°$ С при $z = 1145$ м. В верхнем ядре средний градиент температуры примерно совпадает по абсолютной величине с градиентом в окружающей жидкости, но противоположен по знаку, в то время как в нижнем ядре он в пять раз меньше фонового. Плотностная стратификация в верхнем ядре линзы примерно вдвое слабее, чем в фоновых водах.

Бимодальная вертикальная структура линзы «Эрвинг» скорее всего обусловлена ее формированием у мыса Сан-Винсент в Кадисском заливе, где присутствие двойного максимума на вертикальных профилях температуры и солености является типичным [14, 15].

В верхнем ядре линзы «Эрвинг» (на уровне $z = 885$ м) аномалия солености относительно фона составляет $\Delta S = 0,71\%$, аномалия температуры равна $\Delta T = 2,66°$ С (рис. 1). В нижнем ядре ($z = 1145$ м) соответственно $\Delta S = 0,76\%$ и $\Delta T = 3,75°$ С. Изотермический анализ даст близкие значения: в верхнем ядре ($\sigma_1 = 27,48$) $\Delta S = 0,71\%$, $\Delta T = 2,91°$ С, а в нижнем ($\sigma_1 = 27,63$) $\Delta S = 0,74\%$, $\Delta T = 3,35°$ С. Аномалия скорости звука составляет $\Delta c = 10,2$ м/с (на $z = 885$ м) и $\Delta c = 14,6$ м/с (на $z = 1145$ м). Как показывают

2 Химические определения выполнены сотрудниками Ленинградского гидрометеорологического института под руководством Н. Н. Осинова.
Рис. 2. Распределение солености на глубине 1000 м. Точками отмечено положение CTD-зондирований.

Рис. 3. Распределение температуры на глубине 1200 м. Пунктиром показана изотерма 8,5° C, соответствующая положению линзы «Эрвинг» в ноябре 1989 г. по данным [3]. Подводные горы отмечены изобатой 1500 м.
расчеты, такие сильные возмущения поля скорости звука приводят к возникновению локального антиканала и замедляют скачок акустических лучей [8].

В горизонтальной плоскости (на уровне 1000 м) линза имеет эллиптическую форму: с северо-запада на юго-восток ее диаметр по изохоре 35,60% составляет 90 км, а с северо-востока на юго-запад — 70 км (рис. 2). Полагая линзу трехосным эллипсоидом, получаем величину ее объема

\[V = \frac{4}{3} \pi H L_a L_b = 2,2 \cdot 10^3 \text{ км}^3, \]

где \(H = 335 \text{ м}, L_a = 45 \text{ км}, L_b = 35 \text{ км} \) — полуоси эллипсоида по распределению соленности.

Кроме основного ядра линзы были обнаружены два пятна теплых, соленых вод (см. таблицу). За внешнюю границу пятен была принята изохоры \(S = 35,55\% \). Первое пятно занимает слой толщиной 565 м в диапазоне глубин 670—1235 м и имеет диаметр около 30 км. Его объем ровен 270 км³, максимальная соленость \(S = 35,82\% \), максимальный вертикальный градиент солености \(3,6 \cdot 10^{-3} \text{ м}^{-1} (z = 820 \text{ м}) \). Второй осколок менее мощный: толщина равна 190 м (диапазон глубин 855—1045 м), диаметр не превышает 30 км, объем не более 90 км³. Максимальная соленость \(S = 35,71\% \) наблюдается на горизонте 1005 м, максимальный градиент солености \(5,0 \cdot 10^{-4} \text{ м}^{-1} \) — на горизонте 865 м. Суммарный объем пятна составляет 360 км³, или 16% от объема линзы.

Судя по расположению и параметрам этих пятен (см. таблицу), оба они являются осколками основного ядра линзы «Эрвинг» и образовались при ее прохождении через узкий (ширина 45 км на горизонте 1500 м) проход между вершинами подводных гор Эрвинг и Йер. На это же указывает слабый температурный и соленостной след, тянущийся за линзой на глубинных горизонтах (1200—1400 м) (см. рис. 3).

Кроме того, основные параметры линзы (например, температура и соленость в центре) совпадают с соответствующими параметрами линзы, обнаруженной в Канарской котловине за два месяца до этого экспедиции под руководством Филюшкина [3]. В ноябре 1989 г. линза была расположена у восточного подножья подводной горы Крузер (рис. 3) и перемещалась со скоростью около 2 миль в сутки на юго-запад, в направлении подводных гор Эрвинг и Йер. Во время нашей экспедиции (январь 1990 г.) не было обнаружено никаких следов линзы по восточной сторону подводной гряды. Поэтому можно с высокой степенью вероятности утверждать, что объектом исследования обеих экспедиций являлась одна и та же линза СМВ.

Считая линзу эллиптической в плане (рис. 2), параметризуем пространственное распределение прointегрированных по толщине линзы изохорических аномалий теплосодержания \(q(r, \varphi) \) гауссовой зависимостью

\[q(r, \varphi) = q_0 \exp \left[- \frac{r^2}{L^2(\varphi)} \right], \]

где \(r \) — расстояние от центра линзы; \(\varphi \) — угол полярной системы координат; \(q_0 = 7,23 \cdot 10^9 \text{ Дж/м}^2 \) — значение аномалии в центре линзы; \(L(\varphi) \) — переменный радиус линзы, зависящий от полярного угла:

\[L^2(\varphi) = \frac{L_a^2}{1 - e^2 \cos^2 \varphi}, \]

где эксцентриситет \(e \) определяется формулой \(e^2 = 1 - L_b^2/L_a^2, L_a = 30 \text{ км}, L_b = 20 \text{ км} \) — полуоси линзы, рассчитанные методом наименьших квадратов по распределению \(q(r, \varphi) \). Для
интегральной по объему линзы аномалии теплосодержания Q получаем

$$Q = \frac{\pi}{\sqrt{1 - \varepsilon}} q_0 L^2.$$

Аналогичная формула была получена и для интегральной по объему линзы аномалии солесодержания M. Численные значения Q и M представлены в таблице. Осколки линзы в сумме содержат 27% от теплосодержания Q линзы и около 20% от ее солесодержания M.

Совместный анализ карт динамической топографии, температуры и солености позволяет выделить четыре когерентные, динамически устойчивые структуры, и именно: собственно средиземноморскую линзу, два ее осколка, "потерянных" при прохождении через горную гряду, и антициклонический вихрь к западу от подводной горы Эрвинг (рис. 4). Линза, вращающаяся в антициклоническом направлении, возбуждает над собой вихревые движения, которые прослеживаются в поле динамических высот от горизонта 1400 м вплоть до поверхности. Оба осколка линзы расположены в зоне слабой вихревой активности и геострофических течений и в отличие от основного ядра линзы практически не проявляются в поле динамических высот.

Антициклон, который прослеживается в слое 0—1000 м к западу от горы Эрвинг (рис. 4), является, по-видимому, квазистационарным баротропным топографическим вихрем. Мы считаем, что именно он привел к затягиванию линзы между горами Эрвинг и Йер и ее переносу на западную сторону подводной гряды.

Основные когерентные структуры, которые были выделены по гидрофизическим данным, прослеживаются и на картах гидрохимических элементов, правда, с меньшей степенью выраженности. Наиболее репрезентативным является распределение фосфатов: местоположение линзы и двух ее осколков характеризуется замкнутыми областями с пониженным (24—28 мкг/л) по сравнению с фоном (34 мкг/л) содержанием фосфатов. Линза «Эрвинг» соответствует также областей пониженных (450—500 мкг/л) по сравнению...
с фоном (580—600 мкг/л) концентраций силикатов. Эта область прослеживается в диапазоне глубин 800—1000 м. Осколки линзы не выделяются в поле распреления силикатов. Ядро линзы характеризуется пониженными (< 200мкг/л) концентрациями нитратов и небольшим минимумом содержания растворенного кислорода (< 4,4 мл/л). В распределении pH выделяется замкнутая область пониженных (7,9) по сравнению с фоном (8,0) значений, которая занимает слой 600—1200 м и соответствует средиземноморской линзе. Осколки линзы в поле распределения pH не проявляются. Ядро линзы характеризуется повышенной концентрацией тяжелых металлов.

Таким образом, установлено, что линза «Эрвинг» вышла из Канарской котловины на запад, преодолев узкий проход (45 км) между подводными горами Эрвинг и Йер. При столкновении с подводной горой градиент линзы деформировался, приобрела эллиптическую форму и наклон вертикальной оси. Линза оставалась за собой «след» в виде двух осколков, суммарный объем которых составляет 16% от общего объема линзы. Такая потеря все же позволила линзе сохраниться в виде когерентного, гидродинамически устойчивого объекта.

Авторы благодарят А. Г. Зацепина за полезные обсуждения, Ю. Е. Щербакова и Н. Н. Осипова — за помощь в проведении измерений.

СПИСОК ЛИТЕРАТУРЫ

1. Белкин И. М., Емельянов М. В., Костянной А. Г., Федоров К. Н. Термохалинная структура промежуточных вод океана и внутритермоклинные вихри. //Внутритермоклинные вихри в океане. М.: ИО АН СССР, 1986. С. 8—34.