Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll

McQuatters-Gollop, A::0000-0002-6043-9563

http://hdl.handle.net/10026.1/9732

10.1016/j.jmarsys.2008.06.002
Journal of Marine Systems
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Title: Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll

Article Type: Research Paper

Keywords: Black Sea; chlorophyll; eutrophication; climate change; system memory; regime shift

Corresponding Author: Dr Abigail McQuatters-Gollop, PhD

Corresponding Author's Institution: University of Plymouth

First Author: Abigail McQuatters-Gollop, PhD

Order of Authors: Abigail McQuatters-Gollop, PhD; Laurence D Mee, PhD; Dionysios E Raitos, PhD; Georgy I Shapiro, PhD
Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll

Abigail McQuatters-Gollopa,*, Laurence D. Meea, Dionysios E. Raitosa,1, Georgy I. Shapiroa

aMarine Institute, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom

* Corresponding author. Tel: +44 (0)1752 233910; Fax: +44 (0)1752 232406

e-mail: Abigail McQuatters-Gollop amcquatters-gollop@plymouth.ac.uk

Laurence D. Mee: lmee@plymouth.ac.uk

Georgy I. Shapiro: gshapiro@plymouth.ac.uk

1Present address: Hellenic Centre for Marine Research (HCMR), 46,7 Km Athens-Sounio, P.O Box 712, 190 13 Anavissos, Attica, Greece

Dionysios E. Raitos: draitsos@hcmr.gr

Abstract

The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea.
Sea’s recovery. Maps of chl \(a\) anomalies, calculated relative to the 9 year mean, emphasise temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of the ‘system memory’ between three major regions of the Black Sea. With the exception of 2001, chl \(a\) has generally decreased during our 9 year time-series. However, the winter of 2000-2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl \(a\) throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea’s chl \(a\) regime. The long-term significance of this recent shift is still uncertain but illustrates non-linear response to climate forcing that makes future ecosystem change in the pelagic Black Sea ecosystem difficult to predict.

Key words: Black Sea, chlorophyll, eutrophication, climate change, system memory, regime shift

1. **Introduction**

The pelagic Black Sea ecosystem has undergone significant changes during the last 30 years including habitat loss (Zaitsev and Mamaev, 1997), collapse of predatory fish stocks (Daskalov, 2002), wide-spread establishment of the invasive ctenophore *Mnemiopsis leidyi* (Kideys, 2002), and massive phytoplankton blooms resulting in hypoxia and loss of benthic
communities (Cociasu et al., 1996). It is widely accepted that these changes are at least partially attributable to intense eutrophication, particularly in coastal waters (Mee, 1992; Mee, 2006; Niermann, 1999; Yunev et al., 2002; Zaitsev and Mamaev, 1997). In recent years, the Black Sea has shown some signs of improvement such as an increase in the proportion of diatoms in the phytoplankton community (Bodeanu et al., 2004), a decrease in the number of monospecific algal blooms (Bodeanu et al., 2004), a decrease in phytoplankton biomass (Yunev et al., 2002), and decreased area of hypoxia (Mee, 2006). This system recovery appears to be linked to a reduction in intensive farming practices after the collapse of the Soviet Union (Mee et al., 2005). However, the role of climate in the Black Sea’s recovery is unclear.

The aforementioned alterations to the Black Sea’s ecosystem are all directly or indirectly connected to changes that occurred in the phytoplankton community. As phytoplankton comprise the base of the marine food web, alterations in phytoplankton production and community composition may have profound consequences for higher trophic levels (Edwards and Richardson, 2004). Due to their short life cycles and quick response to changes in their environment phytoplankton are sensitive to ecosystem change (Hays et al., 2005). However, most of the historical ecological data available regarding plankton in the Black Sea are the result of near-shore monitoring programmes or occasional research cruises and are therefore limited in temporal and spatial extent and, consequently, the amount of information the data can provide. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite, however, provides daily remotely-sensed spatially-comprehensive estimates of chlorophyll a ($chl\ a$) concentration, a proxy for phytoplankton biomass. Although SeaWiFS is not without limitations (see Oguz and Ediger, 2006 for more information on calibration issues), the
comprehensive spatio-temporal nature of this dataset enables the exploration of changes in
and the possible recovery of the pelagic Black Sea system.

The aims of the work are 1) to investigate variability in recent inter- and intra-annual chl \(a\) dynamics in the Black Sea through the use of SeaWiFS satellite data, 2) to explain spatial patterns in phytoplankton biomass, and 3) to explore the role of climate in the recovery of the Black Sea.

2. Materials and methods

2.1 Study area

The Black Sea drains a catchment area containing large parts of 12 countries, covering a land area of 2 million km\(^2\), and receiving waste water from more than 100 million people (Mee, 1992). The Black Sea is a nearly enclosed body of water, with only a narrow inlet to the Mediterranean through the Bosporus Strait. In its northwestern region, the Black Sea has a wide and biologically active continental shelf while the open sea is permanently anoxic below 100-150 m (Sorokin, 2002). Hydrographically, the Black Sea is divided into two distinct regions: the shallow (< 200 m) Northwest Shelf and the deep (> 1000 m) central sea (Fig. 1). The Northwest Shelf receives most of the nutrient load to the Black Sea through riverine inputs from the Dniester, Dnieper and Danube rivers and is therefore the region most severely impacted by eutrophication (Cociasu and Popa, 2005). A large part of the terrestrial nutrients entering the Black Sea originate in central and western Europe, particularly those transported by the Danube, which alone is responsible for 75% of total nutrient input to the
Black Sea (Mee, 1992; Zaitsev and Mamaev, 1997). A rim current creates a fluid boundary at the edge of the shelf, separating shallow shelf and deep open waters (Simonov and Altman, 1991). This liquid boundary is intermittently crossed by mesoscale eddies and filaments providing an efficient exchange mechanism between nutrient-rich shelf waters and the less productive waters of the central basin (Enriquez et al., 2005; Zatsepin et al., 2003).

For the purpose of this study, the Black Sea is separated into three regions: (1) the shallow Northwest Shelf, (2) the deeper western gyre and (3) the eastern open Black Sea (Fig. 1). The far eastern open sea, although deep, was excluded from this study due to the complex nature of the relatively poorly studied Batumi gyre. GIS polygons representing the open and coastal Black Sea study areas were used to regionally partition each geographically referenced data set used in the analysis (SeaWiFS chl a, wind stress, sea surface temperature (SST)).

2.2 Data

Wind speed and sea surface temperature (SST) data were obtained from the NCEP/NCAR Reanalysis Project at the NOAA-CIRES Climate Diagnostics Center (NOAA-CIRES Climate Diagnostics Center, 2006). Wind speed was converted into wind stress, which is a function of wind speed, non-dimensional drag coefficient and boundary layer air density (Pickard & Pond 1978). Wind stress regulates the dynamics of the boundary layer and is connected to the production of wind-driven surface currents, the generation of surface waves and upper-ocean mixing (Pond and Pickard, 1978). Therefore, low wind stress contributes to formation of highly stratified waters. Monthly wind stress and SST anomalies were calculated by subtracting from each monthly value the corresponding long-term monthly mean of the 100
month time-series. Danube river discharge data were obtained from the Global Runoff Data Centre, a digital worldwide repository of discharge data and associated metadata (Global Runoff Data Centre, 2005).

SeaWiFS current reprocessed version (v5.1) data produced by Ocean Biology Processing Group were acquired from the NASA Ocean Color website (NASA Ocean Biology Processing Group, 2006). The data were Level 3, 8-day products (9 km x 9 km square resolution) of the near-surface Chl a concentration (mg m$^{-3}$), estimated using the ocean Chlorophyll 4 - version 4 (OC4-v4) algorithm (O'Reilly et al., 1998):

$$\text{chl } a = 10^{(0.366 - 3.067x + 1.930x^2 + 0.649x^3 - 1.532x^4)},$$

where $x = \log_{10}\left(\frac{(R_{rs, 443} > R_{rs, 490} > R_{rs, 510})/R_{rs, 555}}{\text{Rs}}\right)$ and Rs is the satellite calculated remote sensing reflectance. The first (x) equation takes the highest reflectance value from a waveband at 443, 490, or 510 nm and divides it by the reflectance at 555 nm; reflectance maximum moves towards higher wavebands as the chl a concentration increases. This x value then goes into an equation that results from a statistical fit of this empirical algorithm to a large in situ database. NASA processed these data using a series of radiometric corrections (e.g., atmospheric) to eliminate the presence of clouds, haze, and water vapour (Mueller and Austin, 1995). The 8-day products were aggregated into monthly means from September 1997 through December 2005.

In order to remove the long-term mean, to emphasize subtle temporal patterns in productivity, and to allow for the relative comparison of chl a dynamics, standardized chl a anomalies (z) were calculated as:
where \bar{x} = the long-term mean and σ = the standard deviation. This was repeated for each SeaWiFS measurement ($n=6683$) at three temporal scales: 1) the intra-annual (monthly composite) anomaly was calculated based on the long-term mean of each calendar month relative to the composite annual mean; 2) the inter-annual chlorophyll anomaly was calculated from the yearly mean of each complete calendar year available (1998-2005) relative to the composite annual mean; and 3) the individual monthly chl a anomalies were calculated for each month (September 1997 – December 2005, $n = 100$) relative to the long-term monthly means.

Interpolated maps illustrating standardized chl a anomalies in the Black Sea were created for each month using the inverse distance weighting (IDW) method of interpolation on a 9 x 9 km data grid (Caruso and Quarta, 1998) thereby creating a continuous distribution of chlorophyll concentration across the Black Sea. IDW assumes that interpolated points are more influenced by nearby data than data that are further away (Caruso and Quarta, 1998), and like all geostatistical methods, assumes that spatial structures are stable in time for the duration of the sampling period.

The Black Sea includes both Case I (open ocean) and Case II (optically complex coastal) waters (IOCCG, 2000). In Case II waters, chl a is difficult to distinguish from particulate matter and/or yellow substances (dissolved organic matter) and so global chl a algorithms
(such as OC4-v4) are less reliable (IOCCG, 2000). SeaWiFS has also been found to overestimate chl \(\alpha\) concentrations by a factor of 4 in the Black Sea (Oguz and Ediger, 2006). Nevertheless, the observation of near-coastal chl \(\alpha\) with remote sensing satellites has been found to provide important information on potential relationships with climate and nutrient enrichment in the Black Sea (Barale et al., 2002; Nezlin, 2001).

Pearson correlation analysis was used to calculate ‘system memory’ effects in each region of the Black Sea (see ‘Results’ section for more information). Each monthly chl \(\alpha\) anomaly was correlated with the anomalies of each of the previous 4 months. Two methods were used to assess changes in monthly anomalies of each variable. First, the relatively simple and well known cumulative sums method was applied in order to summarize major changes by smoothing high frequency variability and highlighting changes in local mean values along the time-series. Successive positive anomalies produce an increasing slope, while successive negative anomalies produce a decreasing slope. The occurrence of shifts was then confirmed and their significance evaluated using an automatic sequential algorithm, which detects regime shifts by accounting for statistically significant differences between the means in consecutive segments of a time-series (Rodionov, 2004). This method is based on a regime shift index (RSI) combined with a sequential \(t\) test (Rodionov, 2004). Absolute value of RSI indicates magnitude of shift while its sign indicates change in direction of mean between regimes. More information on the RSI may be found in (Rodionov, 2004; Rodionov, 2007). An 18 month minimum regime length was chosen in order to increase the likelihood of selecting real shifts as opposed to small variations in the mean; however, any shift detected must be considered in context of the relatively short (100 months) length of the time-series evaluated here.
3. Results and discussion

3.1 Chl a anomalies

Changes in climate affect productivity in the Black Sea through changes in temperature, wind patterns, and riverine inputs, but the spatial variation of impact, extent of change to the pelagic system and the exact mechanisms through which change will occur are not fully understood. The open and shelf regions of the Black Sea are distinct systems, whose productivity is regulated by different drivers. Production in the shelf system is linked to both freshwater inflow and climatic processes (Bodeanu, 2002; Bodeanu et al., 2004) while the open Black Sea is predominantly influenced by climatic forces, primarily wind and temperature, aspects of which regulate stratification, upwelling, and pattern and magnitude of circulation (Mikaelyan, 1995; Sorokin, 2002). Inter- and intra-annual chl a concentrations throughout the Black Sea are patchy, with an obvious difference between the chlorophyll-rich shelf and comparatively less productive open regions (Fig. 2, 3) (Sorokin, 2002).

[FIGURE 2]

[FIGURE 3]

The chl a seasonal cycle can be used to provide a baseline of ‘typical’ relative chl a conditions in the Black Sea throughout the year (Fig. 3a). It is immediately clear that the seasonal cycle of chl a is not spatially uniform across the Black Sea. The open Black Sea experiences its chl a maximum during autumn and winter with minimum levels found during the summer months (as first described by Vinogradov et al., 1999). The bloom begins near the shelf slope in the northwestern region during September and progresses eastward across
the open Black Sea, covering the entire basin during October and November. The blooming cycle in the open Black Sea is primarily a response to the erosion of the seasonal pyconocline in autumn which replenishes the photic zone with nutrients from the mixed layer (Vinogradov et al., 1999). The bloom ends as stratification occurs, nutrients are depleted and grazer biomass increases (Vinogradov et al., 1999). The eastern Black Sea is the last region in which the phytoplankton bloom disperses in early spring. Unlike the open Black Sea, the seasonal cycle of the Northwest Shelf undergoes two blooms, an annual pattern typical of temperate waters (Sorokin, 2002). The spring bloom is dependent upon Danube River flow, and commences during April and May, the months of maximum Danube discharge, when nutrient-rich shelf waters are sufficiently warm for phytoplankton growth (Fig. 3a) (Cociasu and Popa, 2005; Yunev et al., 2007). The decline of the spring bloom on the shelf is most likely a combination of nutrient depletion and increased zooplankton grazing pressure (Chu et al., 2005). A late summer/autumn bloom also occurs in shelf waters as zooplankton grazing pressure is reduced, but is not as intense as the spring bloom. The chl a minimum occurs during autumn and winter in the shelf region, when Danube discharge is lowest and shelf waters well-mixed and cool.

Differences between the three regions may be partially described by variability in regional ‘system memory’, or the persistence of a bloom-sustaining state from one month to the next (Table 1). Such conditions are reflected in chl a anomalies; i.e., a positive chl a anomaly indicates that the conditions conducive to phytoplankton growth are also present. The relationship (quantified as a correlation) between chl a anomalies in consecutive months provides an indication of the time it takes for environmental conditions (e.g., nutrients, stratification, horizontal exchanges, etc) to change in a particular region. The system memory is defined as a length of time over which the correlation remains above a certain level (in our
case above $r^2 = 0.50$). Thus, strength of system memory is a function of the rate of change of flux of chl a into and out of a region (through large scale circulation or mesoscale eddies) as well as local conditions (e.g., weather conditions, nutrients, local mixing) which regulate phytoplankton growth and death. Strength of system memory is variable between regions; in other words, the temporal pattern at which bloom conditions develop and the length of time for which they are sustained is not consistent across the whole Black Sea. Memory is longest in the western open Black Sea, with a correlation of $r^2 > 0.50$ at a 4 month lag period. System memory is considerably shorter in the eastern open Black Sea and Northwest Shelf with memory in both regions decreasing rapidly after only one month. The shallow shelf is a physically dynamic system that is strongly influenced by sharp variations in riverine input as well as short term weather changes and active hydrodynamic processes (Zatsepin et al., 2003), resulting in limited system memory in that region. The memory of the eastern open Black Sea is shorter than that of the open western Black Sea. The reasons for the difference between system memory in the two open regions are not entirely clear but may be attributed to regional differences in gyres, eddies, and variability in the rim current (Enriquez et al., 2005; Zatsepin et al., 2003). This variability in system memory indicates that the western open Black Sea appears to be the most stable region, with bloom events, and the underlying hydrodynamic conditions that enable them, likely to persist for longer in that region than in either the shelf or eastern open regions. In this respect, the Western Black Sea acts as a repository for the surface open sea system where there is a tendency for the overall circulation to pool water and associated chlorophyll. Further investigation is needed to determine the relative importance of chl a flux and local processes to the system memory of each region.
Due to the differences in the shelf and open water systems, the response of the Black Sea to changes in climate is not spatially homogeneous. A clear example of the decoupled nature of the two systems occurred in 2001 when an extensive bloom encompassed most of the open Black Sea from March through November, with chl a levels reaching > 2 sd above the long-term mean (Fig. 2, 3b, 3c). The cause of the 2001 bloom was almost certainly climate-related. The winter of 2000-2001 was exceptionally warm with very low wind stress in the central Black Sea. The warm, stable winter resulted in stratification throughout the season and constrained the formation of the Cold Intermediate Layer (CIL), an intrusion of cold water between the pycnocline and thermocline at approximate 50-150 m depth (Oguz and Ediger, 2006). The CIL normally traps nutrients below surface waters, locking them out of the photic zone, until mixing energy caused by winter storms or upwelling returns them to the photic zone (Yunev et al., 2005). However, in the absence of subduction, nutrients may have remained in the surface waters, available for uptake by plankton.

The bloom of 2001 was decoupled from conditions in shelf waters. The shelf, though quantitatively richer in chl a than the open Black Sea, contained anomalously low levels of chl a during most of the year (Fig. 3c). Phytoplankton biomass on the Northwest Shelf is intimately related to riverine outflow, and Danube discharge is correlated with chl a ($r^2 = 0.30$, $p = 0.015$, $n = 64$). Danube outflow was uncommonly low during the winter of 2000-01, causing the front between high chl a Danube-influenced and low chl a open sea waters to be close to the coastline (the boundary is clearly observable in Figure 3c, particularly during February and April). During winter, nutrient-rich waters are usually subducted and during cold winters, the contribution of nutrient-rich water from the northwestern continental slope and Northwest Shelf may constitute 60% of the CIL water mass (Stanev et al., 2003). Since this process did not occur in 2001, the nutrient rich waters stayed on the surface of the shelf.
where they were later mixed into the open Black Sea. The intrusion of low chl a waters from the open Black Sea and the out-mixing of the nutrient rich shelf waters resulted in anomalously low chl a levels in the shelf region during most of 2001. Concurrently, close inshore, where blooms were still fed by river discharge, high temperatures and low wind stress encouraged stratification and resulted in severe hypoxia in bottom waters (Kondratiev and Lemeshko, 2003).

The warm, stratified conditions occurring throughout the winter of 2000-2001 lengthened the phytoplankton growing season and caused alterations to phytoplankton community composition across the Black Sea (Fig. 4). Dinoflagellates, which are well-suited to stratified conditions (Margalef, 1978), occurred in very high numbers (91% of biomass) in both open (Soydemir et al., 2003) and shelf (Bodeanu et al., 2004) waters. Although the chl a concentration in the shelf region was relatively low during most of 2001, nine algal blooms occurred during summer, with 13 species reaching bloom concentrations, conditions similar to those seen in shelf waters during the eutrophic 1980s (Bodeanu et al., 2004). Additionally, there was no coccolithophore bloom in the open Black Sea during the summer of 2001 (Soydemir et al., 2003). This shift in community composition was indirectly visible through remotely-sensed chl a, which shows a distinct spring bloom in the open sea in addition to the usual high chl a level that occurs during late autumn (Fig. 4). The double bloom structure was previously common in the Black Sea during periods of non-diatom dominance in both open and shelf waters and is visible in Coastal Zone Color Scanner data from the late 1970s and early 1980s (Bodeanu et al., 2004; Oguz et al., 2003).
Changes in the phytoplankton community such as those observed during 2001 may have profound consequences for higher trophic levels. It is already known that warming seas are detrimental to diatoms due to increased stratification and consequent nutrient depletion of surface waters (Bopp et al., 2005). A shift to a non-diatom dominated phytoplankton community may result in an increased number of ‘trophic dead-ends’ (Verity and Smetacek, 1996). This was the case during the hot summer of 2001 when blooms of jellyfish and *Noctiluca scintillans* occurred in shelf waters (Velikova and Mihneva, 2005). Abundance of *Noctiluca*, a heterotrophic dinoflagellate used as an indicator of water quality in the Black Sea, had previously been found to be decreasing (daNUbs, 2005) and its resurgence in 2001 has been linked to the unusual climatic conditions (Velikova and Mihneva, 2005).

Additionally, a hypoxic event on the shelf resulting in mass fish mortalities took place in 2001 (Boicenco, personal communication; Kondratiev and Lemeshko, 2003). High numbers of algal blooms, hypoxic events, faunal mortalities, and a non-diatom dominated phytoplankton community are all conditions reminiscent of those regularly found in the Black Sea during the period of peak eutrophication in the 1970s and 1980s. Such trophic changes and their related consequences may become increasingly common if they are also a symptom of a warming climate, and could have serious impacts for higher trophic levels, including commercially important fish species.

The response of phytoplankton production to warming SST is geographically variable on a global scale: increases in chl *a* have been observed in temperate seas as rising SST extends the growing season and prolonged periods of stratification reduce light limitation (e.g. North Sea (McQuatters-Gollop et al., 2007)), but, conversely, warming SST has resulted in decreased productivity in much of the tropical to mid-latitude World Ocean as stratification prevents nutrient upwelling (Behrenfeld et al., 2006). In general, the second scenario is true
of the open Black Sea; apart from 2001, the open Black Sea experienced a statistically
significant decrease in annual mean (western open: $r^2 = 0.75, p = 0.012$; eastern open: $r^2 =
0.89, p = 0.001$; 2001 excluded) and winter (November-March, $r^2 = 0.49-0.73, p < 0.05$) chl a
concentrations between 1998 and 2005. During all years except 2001, the open Black Sea
also underwent a bloom cycle similar to that of the nearby oligotrophic Mediterranean
(Bricaud et al., 2002) with an autumn chl a peak and summer minimum, but no spring bloom.
However, the winter of 2000-01 was exceptionally warm and stable and the water remained
stratified throughout autumn and winter thereby extending the growing season. That year the
Black Sea responded as a temperate system with a double bloom pattern characteristic of
mid-latitude oceans. The chl a anomalies observed after 2001 were nearly the opposite of
those observed before, with most of the Black Sea comparatively low in chl a (Fig. 3b).

3.2 Non-linearities

It is now clear that the role played by winter weather in the production of phytoplankton
biomass is non-linear in the Black Sea. It has previously been believed that windy, cold
winters lead to bigger spring/summer blooms due to enhanced vertical mixing and stronger
upwelling and that the effects of eutrophication are magnified during years with severe
winters (such as during the late 1980s and early 1990s) and depressed during warm winters
(Oguz, 2005; Oguz and Gilbert, 2007). The trend toward milder winters in recent years has
also been cited as the reason for the disappearance of the spring bloom in the open Black Sea
(Oguz, 2005). Yet the warmest winter of the last 50 years resulted in an extensive bloom
encompassing nearly the entire Black Sea as well as the return to the previously-observed
double bloom structure. Furthermore, the winter of 2003 was comparatively windy and cool,
which, according to the previously postulated relationship between winter weather and phytoplankton production, should have resulted in higher chl a, yet 2003 had the lowest chl a anomaly of the time-series (Fig. 2, 3b).

The non-linear relationship between winter weather and phytoplankton biomass may be explained by the degree of subduction of water below the photic zone, most noticeably in the CIL. During years when subduction occurs, nutrient rich water is stored below the photic zone where nutrients remain unavailable throughout spring and summer; however, the disappearance or severe erosion of the CIL in 2001 kept nutrients available in surface waters, resulting in high levels of chl a. The degree of subduction of nutrient rich water depends on the regeneration of the CIL, which in turn depends on the severity of winter weather, particularly from January through March when CIL replenishment is at its strongest (Sorokin, 2002). For formation of the CIL to be prevented it may be necessary for SST to be warmer than some ‘threshold’ temperature during those key months; in other words, the warming of the open Black Sea may indeed result in decreased chl a, but only if winter temperature remains below a certain threshold level and nutrients are subducted and stored below the photic zone. The gradual erosion of the CIL due to warmer winters has already been documented (Oguz et al., 2003) and the lack of its formation as observed during 2001 could become a regular feature as warm winters become more common.

3.3 Regime shifts
The anomalous climatic conditions that occurred during 2001 may have triggered a shift in the Black Sea chl a regime (Fig. 5). A distinct switch to a predominantly negative chl a anomaly post-2001 is clearly observable in the open Black Sea and, to a lesser extent, on the shelf (Fig. 2, 3b). A clear downward trend in the chl a anomaly beginning in January 2002 was observed for the open Black Sea and in March 2002 for the Northwest Shelf (Fig. 5). A second, positive trend also began in shelf waters in October 2004. These three shifts are all statistically significant (open region: January 2002 (RSI: -0.67; $p < 0.01$); shelf region: March 2002 (RSI: -0.88; $p < 0.01$), October 2004 (RSI: 0.66; $p < 0.01$)) (Fig. 5). None of these shifts corresponded with a shift in wind stress but the October 2004 shift in the Northwest Shelf region coincided with a shift in SST (RSI: 0.10, $p < 0.05$). The lack of direct relationship between climate and chlorophyll is a factor of the synergistic and interactive impacts of climate on phytoplankton biomass. Thresholds and non-linearities make it difficult to model the climate-chl a relationship and accurately predict the consequences of changes in climate.

Due to the limited length of the SeaWiFS dataset, it is difficult to assess the full significance of these shifts on the Black Sea ecosystem. As more data, particularly those from other ecological time-series, become available, an increasingly thorough examination of the importance of the detected shifts can be made. If the shifts in chl a coincide with changes in other trophic levels, they may be part of an ecological regime shift, a stepwise alteration in the composition and productivity of the whole ecosystem at a regional scale that reflects major hydrographic change (Beaugrand, 2004). Oguz and Gilbert (2007) recently suggested that since 1995 the open Black Sea has undergone a period of decreasing chlorophyll as a result of warming SST and decreased nutrient loading. The shift in open Black Sea chlorophyll identified here may therefore be a stepwise change occurring as part of this shift in phytoplankton biomass. Alternately, the shifts in chlorophyll described here could be
caused by natural variability or might be part of an oscillatory cycle. Regardless of their cause, these changes in the chl a regime cannot be underestimated. Non-linear responses in biological communities have been found to amplify subtle environmental changes; in other words, environmental shifts may be detectable in the phytoplankton before they are detectable in the environmental variables themselves (Taylor et al., 2002).

4. Conclusions

The relationship between climate and chl a in the Black Sea is complex; however it is highly likely that climate has played a significant role in the recovery of the Black Sea. A decreasing trend in chl a and primary production has been observed world wide as SST increases (Behrenfeld et al., 2006), suggesting that reduced phytoplankton biomass in the Black Sea ecosystem is not solely a factor of diminished nutrient loading. The Black Sea nutrient regime is also dependent on degree of nutrient subduction, a function of CIL formation and winter temperature; however, the relationship between chl a and these aspects of climate appears to be non-linear, with a possible temperature threshold constraining subduction. A further non-linearity was evidenced in a shift in the chlorophyll regime which coincided with the anomalous climatic conditions occurring in 2001. Although the significance of the chl a shift has yet to be determined, it may be a precursor of further ecosystem change. These unpredictable responses to climatic variability emphasize the uncertain future the Black Sea faces as our climate changes.

Acknowledgements
This research was supported by the EU-funded FP6 projects European Lifestyles and Marine Ecosystems (ELME) and Southern European Seas: Assessing and Modelling Ecosystem Changes (SESAME). The authors would also like to thank Dr J Friedrich for her helpful comments.
References

NASA Ocean Biology Processing Group, 2006. NASA Ocean Color. NASA.

NOAA-CIRES Climate Diagnostics Center, 2006. NCEP/NCAR Reanalysis Project. NOAA.

Figure legends

Figure 1. Black Sea regions used in this study. The line surrounding the open Black Sea is also the 200m isobath.

Figure 2. Time-series of chlorophyll (standardized) and climatic anomalies in the open and Northwest Shelf of the Black Sea. Shaded areas highlight season of CIL formation and nutrient subduction.

Figure 3. Standardized anomaly maps illustrating (a) the mean seasonal intra-annual chl \(a \) cycle, standardized across the year; (b) inter-annual chl \(a \), standardized across all years; and (c) a detail of 2001, an exceptionally productive year in the Black Sea, standardized to the 9 year mean of each calendar month.

Figure 4. Seasonal chl \(a \) cycles for the Northwest Shelf 1997-2005 (▲), the open Black Sea during 2001 (○), and the open Black Sea excluding 2001 (●). The 2001 seasonal cycle for the open Black Sea resembles that of the Northwest Shelf with a spring and an autumn bloom.

Figure 5. Shifts in chl \(a \) anomaly revealed by (a) cumulative sums method and (b, c) automatic sequential algorithm. (a) A major shift in the Black Sea’s chl \(a \) regime occurred after 2001 (Northwest Shelf (○), Open Black Sea (●)). (b) Statistically significant shifts were identified in the shelf region in March 2002 and October 2004 and (c) in the open region (western and eastern open regions combined for brevity) in January 2002.
Table 1: Correlation matrix illustrating variability in chlorophyll system memory length between Black Sea regions. Bold values denote significant relationships ($p < 0.05$).

<table>
<thead>
<tr>
<th></th>
<th>Northwest Shelf</th>
<th>Western Open Black Sea</th>
<th>Eastern Open Black Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>month 0</td>
<td>month 1</td>
<td>month 2</td>
</tr>
<tr>
<td>month 0</td>
<td>0.56</td>
<td>0.35</td>
<td>0.38</td>
</tr>
<tr>
<td>month 1</td>
<td>0.56</td>
<td>0.55</td>
<td>0.35</td>
</tr>
<tr>
<td>month 2</td>
<td>0.35</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>month 3</td>
<td>0.38</td>
<td>0.35</td>
<td>0.55</td>
</tr>
<tr>
<td>month 4</td>
<td>0.38</td>
<td>0.38</td>
<td>0.35</td>
</tr>
<tr>
<td>month 5</td>
<td>0.37</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>
The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a ($chl \ a$), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea’s recovery. Maps of $chl \ a$ anomalies, calculated relative to the 9 year mean, emphasise temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of the ‘system memory’ between three major regions of the Black Sea. With the exception of 2001, $chl \ a$ has generally decreased during our 9 year time-series. However, the winter of 2000-2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of $chl \ a$ throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea’s $chl \ a$ regime. The long-term significance of this recent shift is still uncertain but illustrates non-linear response to climate forcing that makes future ecosystem change in the pelagic Black Sea ecosystem difficult to predict.

The attached article, entitled “Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll”, contains original, unpublished data and results and is of immediate interest to oceanographers and marine biologists/ecologists. Climate researchers and environmentalists interested in the role of plants in the marine ecosystem would also find our findings particularly pertinent as well as researchers interested in anthropogenic impacts on the marine ecosystem.

We hope that you will consider this manuscript for publication in Journal of Marine Systems.

Yours Sincerely,
Abigail McQuatters-Gollop (corresponding author), Laurence D. Mee, Dionysios E. Raitsos, Georgy I. Shapiro
Figure 1
Click here to download Figure(s): McQuatters-Gollop_Fig1.eps
Figure 2
Click here to download Figure(s): McQuatters-Gollop_Fig2.EPS
Figure 3

Click here to download Figure(s): McQuatters-Gollop_Fig3.eps

a) Standardized intra-annual seasonal chl α cycle

b) Standardized inter-annual chl α anomalies

c) Standardized chl α anomalies for 2001

Standard deviations from mean
Figure 4
Click here to download Figure(s): McQuatters-Gollop_Fig4.eps