TIMING RECOVERY AFTER THE CRETACEOUS/PALEOGENE BOUNDARY:
EVIDENCE FROM BRAZOS RIVER, TEXAS

ANDREW D. LEIGHTON1, MALCOLM B. HART1,4, CHRISTOPHER W. SMART1,
MELANIE J. LENG2 AND MATTHEW HAMPTON3

1School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
2NERC Isotope Geosciences Facilities, British Geological Survey, Nottingham NG12 5GG, UK & School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK
3Network Stratigraphic Consulting Ltd, Harvest House, Cranborne Road, Potters Bar, Hertfordshire EN6 3JF, UK
4Correspondence author E-mail: mhart@plymouth.ac.uk
ABSTRACT

As part of an on-going re-assessment of the Cretaceous/Paleogene boundary in the Brazos River area, Falls County, Texas, a number of new exposures have been described. One of these, at Riverbank South, provides a near-continuous record of the lowermost Paleocene. It is from this succession that stable isotope analysis of bulk organic matter (δ^{13}C and C/N) and mono-specific samples of the benthic foraminifera *Lenticulina rotulata* Lamarck (δ^{18}O and δ^{13}C) yields an orbitally-tuned stable isotope record, which allows the timing of events adjacent to the Cretaceous/Paleogene boundary to be determined. Using this cyclicity, it is suggested that the on-set of biotic recovery began ~40,000 years after the impact (near the base of Zone Pα) and that more significant recovery of planktic foraminifera and calcareous nannofossils began close to the base of Zone P1a, some 85,000–100,000 years post-impact. The data also appear to record the presence of the earliest Paleocene DAN-C2 and Lower C29n hyperthermal events and that these events appear to be an accentuated segment of this orbital cyclicity.
INTRODUCTION

The Cretaceous/Paleogene (K/Pg) mass extinction event is not the most severe of the major extinction events in Earth’s history but it is one of the most studied (Twitchett, 2006). There were synchronous extinctions (Keller et al., 2009) in both the marine and terrestrial realms including some invertebrates (e.g., ammonites), calcareous nannofossils, planktic foraminifera and non-avian dinosaurs. A bolide impact at Chicxulub in the Yucatan Peninsula, Mexico, is now generally accepted as a major cause of the extinction event (MacLeod et al., 2007), despite on-going discussions (Schulte et al., 2010) regarding the timing of the extinctions and the changes to global climate caused by the eruption of the Deccan volcanic centre in India (Adatte et al., 2014; Keller, 2014; Punekar et al., 2014).

The K/Pg boundary on the Brazos River and its tributaries in Falls County, Texas (Fig. 1) has been extensively studied (Hansen et al., 1987; Yancey, 1996; Keller et al., 2009; Adatte et al., 2011; Hart et al., 2011, 2012) although there are on-going debates over the placement of the boundary event in that area. Many of the discussions relate to the nature of the boundary complex exposed in the Brazos River area, which has been interpreted as either tsunami deposits associated with the Chicxulub impact (Bourgeois et al., 1988; Keller et al., 2003, 2009), a series of storm deposits (Gale, 2006) or a succession of storm deposits resting on a tsunami-generated erosion surface (Yancey, 1996; Hart et al., 2012; Yancey & Liu, 2013). At its base, the boundary complex contains re-worked, impact-derived spherules, overlain by discrete sandstone bodies (Hart et al., 2012) with hummocky cross-stratification, climbing ripples, complex bioturbation and fossil-rich siltstone inter-beds. To date, investigations of this boundary have focused mainly
on exposures in the bed of the Brazos River close to the Rt. 413 bridge, the creeks (Darting Minnow and Cottonmouth) or cored material. Recently, a new section on the Brazos riverbank, which crops out between Cottonmouth and Darting Minnow creeks (8.5 km south of the Rt. 413 bridge), has been re-discovered and described (Plummer, 1926; Hart et al., 2012, figs. 2–4). This exposure, known as River Bank South (RBS), is laterally continuous along a >100 m long cliff and is currently the most complete exposure of the K/Pg boundary in the area at the present time (Fig. 2). There have, however, been times between 1926 and 2011 when the outcrop was covered by river-derived sediments.

The RBS succession exposes the uppermost part of the Corsicana Mudstone Formation (uppermost Maastrichtian). The volcanic ash seen in Cottonmouth Creek, 45 cm below the base of the ‘Event Bed’ (Keller et al., 2007; Hart et al., 2012) has not been recorded despite quite extensive clearance of the outcrop. This volcanic ash, fully documented by Hart et al. (2012, p. 75–77) has been recorded within the Corsicana Mudstone Formation just north of the Rt. 413 bridge at a location described as River Bank North (RBN on Fig. 1). The thickness of the Corsicana Mudstones between the volcanic ash and the tsunami-generated erosion surface is variable, as would be expected below such an erosive surface. The conglomerate of re-deposited calcareous mudstone nodules that marks the base of the ‘Event Bed’ succession in the bed of the Brazos River immediately downstream of the Rt. 413 bridge is also indicative of the levels of down-cutting by the tsunami. In Darting Minnow Creek the ‘Event Bed’ is present in the waterfall succession but, traced downstream, the Maastrichtian mudstones are directly overlain by Paleocene strata with the level of the ‘Event Bed’ represented by only an erosion surface. The absence of the ‘Event Bed’ was also recorded in the nearby Mullinax 3 core (Adatte et al., 2011; Hart et al., 2012). This level of field investigation and understanding is required prior to the
careful collection of representative suites of samples from the various localities and the subsequent micropaleontological investigations.

METHODOLOGY

Planktic foraminifera have been extensively studied (Keller, 1989; Keller et al., 2009; Abramovich et al., 2011) in this area and they clearly demonstrate the typical K/Pg mass extinction pattern. Fewer investigations of benthic foraminifera have been undertaken (Plummer, 1926, 1931; Cushman, 1946; Hart et al., 2011; Leighton, 2014), even though they are highly diverse and abundant throughout the K/Pg boundary succession. Figure 3 shows the lithostratigraphy, nature of the sediments and some of the more important benthic foraminifera. This assemblage is typical of the Gulf Coastal Plain area (Plummer, 1926, 1931; Cushman, 1946; Olsson et al., 1996; Culver, 2003; Schulte & Speijer, 2009). As indicated by Hart et al. (2011, 2012), both the latest Maastrichtian and earliest Paleocene assemblages are typical of an inner to mid-shelf setting with a water depth of 50–100 m based on the analysis of morphotypes (see Koutsoukos & Hart, 1990). This so-called ‘Midway-type assemblage’ (Berggren & Aubert, 1975) is in contrast to the deeper-water ‘Velasco-type assemblage’ (Schnitker, 1979) that has been described from northeast Mexico (Alegret & Thomas, 2001 and references therein).

Here we report stable isotope ratios obtained from the benthic species *Lenticulina rotulata* Lamarck, an epifaunal/semi-infaunal taxon (Koutsoukos & Hart, 1990) that is abundant throughout the succession and has been used by other authors (Keller et al., 2009; Adatte et al., 2011) for stable isotope analysis at other K/Pg boundary locations. Specimens for the stable isotope analysis were obtained by normal micropaleontological processing techniques. The bulk
sediment was air dried, weighed and then soaked in white spirit (Stoddart Spirit) for ~4 hours, after which the excess white spirit was removed by filtering. Samples were then immersed in de-ionised water for ~12 hours before washing through a 45 μm sieve, and then dried in an oven at 20°C. Once dry, the >45 μm residues were dry sieved into the >500 μm, 500–250 μm, 250–150 μm and 150–45 μm size fractions. If the samples were not fully disaggregated the whole process was repeated 2 or even 3 times. All samples were processed in stratigraphical order.

Individual specimens of L. rotulata from three different size fractions were analysed to assess the isotopic variations with specimen size (= growth or ontogeny). Specimens from the >500 μm, 500–250 μm and 250–150 μm size fractions were checked by both optical and electron microscopy for evidence of re-crystallization or chamber infilling. Clean specimens were weighed, as approximately 15–100 mg were required for the isotope analysis. For the >500 μm size fraction, this equated to 2–3 individuals, while 4–6 and 9–14 individuals were needed from the 500–250 μm, and 250–150 μm fractions respectively. Measurements of Δ13C and δ18O were performed on a GV IsoPrime mass spectrometer plus Multiprep device, located in the National Isotope Geosciences Laboratory (NIGL), Keyworth, Nottingham. Isotope values (δ13C, δ18O) are reported as per mille (‰) deviations of the isotopic ratios (13C/12C, 18O/16O) calculated to the VPDB scale using a within-run laboratory standard calibrated against NBS standards. Analytical reproducibility of the standard calcite (KCM) is < 0.1‰ for δ13C and δ18O.

After an acid wash to remove any carbonate material, δ13C and C/N were measured on the organic material by combustion in a Costech Elemental Analyser (EA) on-line to a VG Triple Trap and Optima dual-inlet mass spectrometer (also located at NIGL). Values of δ13C were calculated to the VPDB scale using a within-run laboratory standards calibrated against NBS18, NBS-19 and NBS22. Replicate analysis of well-mixed samples indicated a precision of + <0.1‰.
(1 SD). Ratios of C/N were calibrated against an Acetanilide standard. Replicate analysis of well-mixed samples indicated a precision of $+ < 0.1$.

RESULTS

The stable isotope data from *L. rotulata* are shown in Figure 4. As there is a significant degree of reworking in the lowermost Paleocene, it is possible that the first 50 cm of the Paleocene *may* include a re-worked signal from the Maastrichtian, *despite* the excellent preservation. It is evident that the large δ13C negative excursion that is often recorded immediately above the K/Pg boundary (Fig. 5) is not present in the RBS section (see Martinez-Ruiz et al., 1994; Hart et al., 2005, fig. 10; Lamolda et al., 2016, fig. 7; Hart et al., 2016, fig. 4). This is unsurprising as the global, post-impact iridium anomaly is also absent from this succession (Gertsch & Keller, 2012).

There is a full discussion of the K/Pg boundary at River Bank South given by Hart et al. (2012). Following the agreed definition of the Global Stratotype Section and Point (GSSP) provided by Molina et al. (2006), the boundary is the erosion surface generated by the tsunami that resulted from the Chicxulub impact, with the overlying spherule bed and storm-derived sandstones and siltstones representing the lowermost Paleocene. In more distal areas (from the impact) such as Stevns Klint (Denmark), the Bottacione Gorge and Contessa Highway successions near Gubbio (Italy), Gams (Austria), El Kef (Tunisia), Agost (Spain) and Caravaca (Spain) the boundary hiatus is immediately overlain by sediments containing the iridium anomaly and the negative δ13C isotope excursion (see, for example, Lamolda et al., 2016, fig. 7), neither of which are recorded in the Brazos River successions.
In the RBS succession, a series of gradually increasing, cyclical (?), stable isotope excursions are recorded up-section into the Paleocene (Fig. 4). The >500 μm signal records these excursions well, but the amplitude of each excursion increases as the size and, therefore, maturity, of the *L. rotulata* specimens decreases. This indicates that the size (= age) of the benthic foraminifera test is inversely proportional to the δ^{18}O and δ^{13}C signals. The amplitude of the cyclicity in these excursions increases from the K/Pg boundary to within Zone P1a, where the largest excursions (~6‰ and >5‰ in δ^{18}O and δ^{13}C respectively) in the smallest size fraction are recorded. The excursions occur in all of the size fractions in the same interval, indicating that the isotope signal appears to be genuine.

Cross-plots of δ^{18}O and δ^{13}C are often used extensively in paleoceanography (e.g., Wendler et al., 2013) to identify both benthic and planktic foraminifera niches (e.g., Birch et al., 2013 and references therein). In our case, only data from a single benthic taxon is used and any scatter, therefore, shows only the variability of the stable isotope signal with the size of specimens analysed (= growth).

The bulk organic δ^{13}C$_{org}$ is similar to the benthic foraminiferal δ^{13}C$_{carbonate}$ especially around the major excursions in Zone P1a (Fig. 5). Bulk δ^{13}C$_{org}$ shows a negative excursion of >1‰, followed by a positive excursion of >1‰. Bulk δ^{13}C$_{org}$ shows a cyclical pattern of positive and negative excursions, the magnitude of which increases up-section, similar to benthic foraminiferal δ^{13}C$_{carbonate}$. The carbon/nitrogen (C/N) ratio increases to >10 in this interval which would normally be interpreted as a greater contribution of terrestrial organic material (Fig. 5; see Sampei & Matsumoto, 2001 and Lamb et al., 2007).

There is a variable response in the foraminifera >500 μm, 500–250 μm and 250–150 μm size fraction δ^{18}O data, with the greatest variation within the smallest (usually the more juvenile)
specimens. This ontogenetic variation in stable isotope data in benthic foraminifera has been reported before using extant material (Schumacher et al., 2010) from the Indian Ocean, where the variation was attributed to the infaunal mode of life, with juveniles residing at a greater depth in the sediment than the larger adults. Ishimura et al. (2012) have confirmed this variation, although they used the weight (i.e., calcification) of the specimens rather than overall dimensions. In their study of living foraminifera, the lightest and, therefore, the youngest and—though not discussed—the smallest forms recorded the largest negative excursions. Wendler et al. (2013), reported a large variation in *Lenticulina* spp. stable isotope data from the Turonian (Wendler et al., 2013, fig. 6) and this was attributed to the opportunistic life-style of the genus *(op. cit., p. 22)*. These authors suggest that, for most of the benthic taxa used in their analysis, between 1 and 22 specimens were required in order to perform the stable isotope analysis. If *Lenticulina* spp. are recording significant stable isotope variability with size (both ontogenetic change and changes in life position *vis à vis* the sediment surface) then this might explain the variability recorded by Wendler et al. (2013, p. 6). As many other authors (Keller et al., 2007, 2009) have used this genus from a range of size fractions their data may have been compromised by this ontogenetic variability. This relationship has previously been described from planktic foraminifera (Bornemann & Norris, 2007; Birch et al., 2013), where individuals are known to change their position in the water column during ontogeny, but has rarely been reported in studies of benthic foraminifera.

Whilst there is a close agreement between the results of all three size fractions, it is the 250–150 μm size fraction (juveniles) that displays the greatest variability in the δ^{18}O data (Fig. 4). These results indicate that there is a clear variation in δ^{18}O and δ^{13}C with size and that comparisons with data generated from ‘bulk’ or randomly selected individuals may be invalid.
The graphs in Figure 4 show that only a profile based on standardised samples can be used in a reliable way to determine events. The key features of the stable isotope data are presented below.

The lowermost Paleocene ‘large’ negative δ\(^{13}\)C excursion (Hart et al., 2005, fig. 10; Schulte et al., 2010; Hart et al., 2016, fig. 4; Lamolda et al., 2016, fig. 7) is not evident (except perhaps in the fine fraction data: Fig. 5). This is because the reworked spherule-rich bed and the sandstones of the ‘Event Bed’ represent a disturbed environment in which the stable isotope signal has been lost by erosion or completely masked by sediment mixing. The pattern of δ\(^{18}\)O and δ\(^{13}\)C excursions above the ‘Event Bed’ appears cyclical and probably represents an orbital forcing. A record of orbital cyclicity is well-known in the Maastrichtian (Hart et al., 2005, fig. 9; Batenberg et al., 2012, 2014) and Paleocene (Zachos et al., 2010; Westerhold et al., 2012) and the cyclicity observed in our RBS succession is almost certainly that of the 21kyr precession signal. Although no obvious sedimentary cycles are observed in the lowermost Paleocene deposits of Texas (Fig. 2), there are distinctive carbonate-mudstone cycles recorded in the coeval Lower Paleocene sediments of the Braggs, Mussel Creek (Hart et al., 2013, fig. 7), Miller’s Ferry (Olsson et al., 1996) and Moscow Landing (Hart et al., 2013, fig. 12) successions in Alabama.

TIMING OF EVENTS

In the chalks of the Sigerslev Member (Surlyk et al., 2006) exposed in the Stevns Klint succession, the stable isotope data (Hart et al., 2005, fig. 10) appear to record a precessional cyclicity, which was also recorded in the Maastricht chalk succession of the Netherlands (Schiøler et al., 1997) and in the Maastrichtian successions on the north coast of Spain (Batenberg et al., 2012, 2014). The ‘Grey Chalk’ (= Højerup Member) of the Stevns Klint
succession, which displays visible signs of sediment transport and the formation of ‘mounds’ on the Maastrichtian sea floor, records no cyclicity as a result of sediment mixing. The overlying Fish Clay (= Fiskeler Member), however, records (Hart et al., 2016, fig. 4) the characteristic, negative δ^{13}C excursion (see Molina et al., 2006) and a number of other δ^{13}C excursions that diminish in magnitude up-section (see Martinez-Ruiz et al., 1994). The total thickness of the Fish Clay may, if these are precessional cycles, represent 40,000 – 60,000 years. This interval of time is represented by only <50 cm of sediment (after compaction), implying a remarkably slow rate of sedimentation. This is, however, to be expected as – in the chalk sea of northwest Europe – a loss of calcareous nannofossils and planktic foraminifera would significantly reduce the sediment supply. The background supply of siliciclastic sediment (largely clays) normally represents <1% of uppermost Cretaceous chalks in north-west Europe (Hancock, 1976) and the loss of carbonate sediment supply following the K/Pg mass extinction event explains the reduced sedimentation rate. The Fish Clay contains a diverse and abundant assemblage of dinoflagellate cysts (Hansen, 1977; Hultberg, 1985, 1986, 1987; Hultberg & Malmgren, 1987), but this abundance must also be viewed in the context of the reduced sedimentation rate.

In Texas, however, the dominant sediment supply is siliciclastic and the stable isotope data (Fig. 4) do not show the same levels of condensation, despite a similar loss of calcareous nannofossils and planktic foraminifera at the level of the K/Pg extinction event. The large δ^{13}C negative excursion is missing and there are, therefore, ~2 excursions prior to the P0/Pα boundary. This indicates ~40,000 years of elapsed time between the extinction event and the onset of ‘recovery’. Berggren & Pearson (2005) have also indicated ~30,000 years for the duration of Zone P0. As there are a further 2–3 cycles to the Pα/P1a boundary (Fig. 4), this places the on-set of a more comprehensive recovery of the plankton at ~80,000–100,000 years.
At the level of the Middle Sandstone Bed (MSB) and the Dirty Sandstone Bed (DSB) the benthic foraminifera are at their most diverse (Fig. 3) with large specimens recorded. Many of these nodosariids are exceptionally long and, as the apical spine and the aperture are often present, unlikely to have suffered any disturbance or transport. The presence of these large specimens was noted by Plummer (1926) as being a particular characteristic of the RBS section. Following the models of Emery & Myers (1996, fig. 6.14) and Oxford et al. (2000, 2004), this would suggest that the MSB/DSB interval represents a zone of maximum flooding, which may contribute to the increased δ^{13}C peak. There is also a peak in the δ^{13}C_{organic} record (Fig. 5), which may indicate a greater supply of terrestrial organic material and increased surface run-off from the land.

PALEOCENE HYPERTHERMAL EVENTS

The Paleocene world was characterised by a continuing greenhouse condition and, within it, there are a number of significant – but transient – hyperthermal events (Bralower et al., 2002; Speijer, 2003; Pettrizzo, 2005; Bernaola et al., 2007; Quillévéré et al., 2008; Bornemann et al., 2009; Coccioni et al., 2010). Whilst the most prominent is the Paleocene–Eocene Thermal Maximum or PETM (Zachos et al., 2001, 2010), earlier events are also quite significant and, in carbonate-rich sediments, are associated with a drop in carbonate production and/or enhanced dissolution. The DAN-C2 and Lower C29n events (Coccioni et al., 2010) have been identified in the Contessa Highway section (Gubbio, Italy) and a small number of ODP/DSDP sites (Quillévéré et al., 2008). None of these locations are in a shallow-water, mid-shelf environment, comparable with the Brazos River area. In the RBS succession the maximum δ^{13}C excursion
appears to be coeval with the Lower C29n event while the Dan-C2 event (represented by the upper Pα and lower P1a zones) is less pronounced.

The significant negative $\delta^{18}O$ and $\delta^{13}C$ excursion near the NP1/NP2 boundary approximately 2.5 m above the K/Pg boundary represents a possible <6°C warming that is relatively short-lived. This appears to be coeval with the Lower C29n hyperthermal event (Coccioni et al., 2010) while a smaller, but still significant, negative $\delta^{18}O$ and $\delta^{13}C$ excursion below this near the Pα/P1a boundary appears to be coeval with the DAN-C2 hyperthermal event. The DAN-C2 hyperthermal event (Quillévéré et al., 2008; Coccioni et al., 2010) occurs within the lower P1a and NP1 biozones, while the Lower C29n hyperthermal event occurs within the uppermost part of the NP1 calcareous nannofossil biozone and within the P1a planktic foraminiferal biozone. The hyperthermal events at Contessa Highway (Coccioni et al., 2010) appear coeval with the timing of the excursions in the RBS section as the biostratigraphy is well-constrained. The biostratigraphy within the RBS section is reliable and accurate, with the calcareous nannofossil data based on the same samples as those used in the analysis of the benthic and planktic foraminifera and the stable isotope analyses. The distribution of the planktic foraminifera in the RBS succession is exactly comparable to that recorded in the Brazos-1 section by Liu (pers. comm., 2012, 2013) and the Brazos River outcrop immediately south of the Rt. 413 bridge. The distribution of taxa is also in agreement with that recorded in the Mullinax-1 borehole (Abramovich et al., 2011; Keller & Adatte, 2011 and papers cited therein), though our placing of the K/Pg boundary is different to that recorded by these authors. The calcareous nannofossil data allow the placing of NP1 and NP2, with direct comparisons to the successions in Agost (Lamolda et al., 2016), Caravaca (Lamolda et al., 2005), El Kef (Pospichal, 1994) and Elles (Gardin, 2002). The magnitude of the stable isotopic excursions recorded in the Brazos
River area are larger than those observed near Gubbio (Coccioni et al., 2010), although this can be attributed to the use of species-specific benthic foraminifera within this study rather than bulk rock samples.

The $\delta^{13}C_{\text{organic}}$ isotope data (Fig. 5) are in close agreement with the species-specific foraminiferal isotope data, with the $\delta^{13}C_{\text{organic}}$ signal closely reflecting the excursions of the species-specific $\delta^{13}C_{\text{carbonate}}$ isotope data. This indicates that the carbon source for both the foraminifera and the sediments ($\delta^{13}C_{\text{organic}}$ and $\delta^{13}C_{\text{carbonate}}$) is the same. An increase in the C/N ratio $>$10 indicates a more terrestrial origin for organic material (Fig. 5). The marked increase in the C/N ratio coincides with the marked negative $\delta^{13}C$ excursion of the foraminiferal isotopic data and suggests that there was a greater supply of terrestrial plant material and increased surface run-off from the land onto the shelf. This mechanism could also account for the fluctuations of the $\delta^{18}O$ isotope signal as this could be marking an increase of freshwater into the system and, therefore, much lighter isotopic values. Increased surface run-off from the land, as a result of hydrological changes, is a particular feature that often characterizes hyperthermal events (see Manners et al., 2013, and references therein), so the interpretation of increased freshwater input into the Brazos River area supports this conclusion.

The general warming recorded by the DAN-C2 and Lower C29n events (Coccioni et al., 2010) appears to be associated with the interval of time close to the last of the eruption phases of the Deccan Plateau (Chenet et al., 2007, 2009), although there is an on-going re-evaluation of the ages of the Deccan volcanics (e.g., Schoene et al., 2015). The timing of the hyperthermal event(s) in the Brazos River area suggests that the DAN-C2 and Lower C29n event may be more widespread than previously suggested. The stable isotope data from the Brazos River area may be astronomically tuned, a feature of the DAN-C2 event (Quilléveré et al., 2008).
astronomical signal has also been suggested (Jolley et al., 2011; Gilmour et al., 2012, 2013, 2014) following an analysis of the sediments within the Boltysh impact crater in Ukraine. There are four climate-induced cycles (Gilmour et al., 2013, 2014) between the K/Pg boundary and what has been identified as the DAN-C2 event. If this cyclicity, and the DAN-C2 event (and Lower C29n event), are confirmed from terrestrial, shallow marine (Brazos River area) and deeper marine successions, then these events are comparable to other Paleogene hyperthermal events that are recorded globally and from a wide range of environments (both terrestrial and marine).

CONCLUSIONS

Stable isotope data derived from size-controlled samples of *Lenticulina rotulata* Lamarck across the K/Pg boundary in the Brazos River area, Texas, indicate that early recovery began ~40,000 years post-impact and that a more significant recovery was under-way by 80,000–100,000 years post-impact. The data also suggest that the DAN-C2 and Lower C29n hyperthermal events have been detected in the mid-shelf environment represented by the sediments of the Kincaid Formation, Brazos River area, Falls County, Texas. These events appear to be coeval with those identified from the Contessa Highway K/Pg section in Italy, and occur at the same stratigraphic level as determined by both calcareous nannofossil and planktic foraminiferal biozonation schemes. The variation in δ^{18}O and δ^{13}C recorded in the various size fractions of the mono-specific samples used in our investigation raises issues for stable isotope data derived from variously-sized foraminifera or samples of mixed benthic assemblages. The data do, however, indicate that fossil material is showing stable isotope variations in line with
those recorded in modern (living) foraminifera. The stable isotopic signal from the Brazos River area indicates an increased amount of surface run-off (freshwater input) in the early Paleocene. The increased surface run-off, hyperthermal events and bulk organic $\delta^{13}C$ geochemical signals indicate that the earliest Paleocene immediately after the K/Pg boundary event was a period of climatic instability and fluctuating environmental parameters.

ACKNOWLEDGMENTS

ADL acknowledges receipt of a Plymouth University Scholarship to support his PhD research (2009–2013). The authors also acknowledge financial support from Plymouth University, the Geological Society of London (MBH) and Shell Exploration & Production, Houston (MBH/ADL). Mr and Mrs Mullinax, owners of the Brazos Rose Ranch, are also thanked for their hospitality and un-paralleled access to their property. Prof. Tom Yancey (Texas A&M University, USA) and Prof. Rodolfo Coccioni (Urbino, Italy) are also thanked for helpful and constructive discussions. The authors acknowledge the helpful comments (and criticisms) of two reviewers that have prompted a number of improvements to the final version of the paper. Mr Tim Absalom (Plymouth University Geomapping Unit) is thanked for his assistance with some of the figures.

REFERENCES

Abramovich, S., Keller, G., Berner, Z., Cymbalista, M., and Rak, C., 2011, Maastrichtian planktic foraminiferal biostratigraphy and paleoenvironment of Brazos River, Falls

Received 25 March 2015

Accepted 22 March 2017
FIGURE CAPTIONS

FIGURE 1. Locality map of the Brazos River area, Falls County, Texas (after Hart et al., 2012).

FIGURE 2. Sedimentary log of the K/Pg boundary succession exposed on the Brazos River at RBS (based on Hart et al., 2012). The thin volcanic ash recorded in the uppermost Maastrichtian of the Cottonmouth Creek succession (Hart et al., 2012) has not been recorded in the RBS succession, despite digging into the Maastrichtian mudstones as far as river levels allowed.

FIGURE 3. Sedimentary log of the RBS succession, which also shows examples of a representative selection of benthic foraminifera. The lithological symbols are explained in Figure 2 and the bed names follow Yancey (1996) including, from bottom to top, Hummocky Cross-Stratification (HCS), Lower Calcareous Horizon (LCH), Middle Sandstone Bed (MSB), Dirty Sandstone Bed (DSB), Upper Calcareous Horizon (UCH) and Rusty Pyrite Horizon (RPH).

FIGURE 4. Comparison of the δ¹⁸O and δ¹³C stable isotope data derived from an analysis of Lenticulina rotulata Lamarck in the >500 μm, 500–250 μm and 250–150 μm size fractions. The thinner black line marks the running average.

FIGURE 5. Bulk organic δ¹³C, fine fraction δ¹⁸O/δ¹³C and C/N ratio data for the RBS succession. The data are plotted against the same sedimentary log as used in Figures 3 and 4 to ease comparison, with the dashed line representing the K/Pg boundary.
Figure 1. Locality map of the Brazos River area, Falls County, Texas (after Hart et al., 2012).
Figure 2. Sedimentary log of the K/Pg boundary succession exposed on the Brazos River at RBS (based on Hart et al., 2012). The thin volcanic ash recorded in the uppermost Maastrichtian of the Cottonmouth Creek succession (Hart et al., 2012) has not been recorded in the RBS succession, despite digging into the Maastrichtian mudstones as far as river levels allowed.

Figure 3. Sedimentary log of the RBS succession, which also shows examples of a representative selection of benthic foraminifera. The lithological symbols are explained in Figure 2 and the bed names follow Yancey (1996) including, from bottom to top, Hummocky Cross-Stratification (HCS), Lower Calcareous Horizon (LCH), Middle Sandstone Bed (MSB), Dirty Sandstone Bed (DSB), Upper Calcareous Horizon (UCH) and Rusty Pyrite Horizon (RPH).
Figure 4. Comparison of the δ^{18}O and δ^{13}C stable isotope data derived from an analysis of *Lenticulina rotulata* Lamarck in the >500 μm, 500–250 μm and 250–150 μm size fractions. The thinner black line marks the running average.

Figure 5. Bulk organic δ^{13}C, fine fraction δ^{18}O/δ^{13}C and C/N ratio data for the RBS succession. The data are plotted against the same sedimentary log as used in Figures 3 and 4 to ease comparison, with the dashed line representing the K/Pg boundary.