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ABSTRACT
We report preliminary results of linking distinct parameter metrics
and stability via a novel dynamical system stability characteriza-
tion (BBIOS). We conduct EA trials to determine the extent of EA
stability in parameter space neighborhoods de�ned by metrics. We
capture EA performance loss due to perturbation.
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1 INTRODUCTION
It is known that changes in the control parameters of EAs form a
dividing line between success and failure. �is work introduces
an EA stability characterization depending on parameter pertur-
bation according to given input metrics. An EA is converted to a
black box dynamical system and, via relaxation of control system
stability over perturbation neighborhoods, a novel characterization
of EA stability (BBIOS) is reached. �e literature on EA stability
with respect to control parameter perturbation is scarce, although
individual articles on the stability of related algorithms do exist
[1–3, 7]. �ese works ignore EA performance stability with respect
to parameter perturbation. Work on this began relatively recently
(the study [5] and a visual EA stability criterion [6]). �e bene�ts
of EA stability include lower EA performance variability and more
consistent results, and it naturally follows that these may assist
parameter tuning. �is work expands on our works [5, 6], providing
a preliminary theoretical basis to an experimental framework.

EA performance may be viewed as e�ectiveness of the �tness
function or runtime. For simplicity, we choose runtime to be the
number of generations required to solve a problem instance (equal
to the number of �tness evaluations divided by population size).
�e EA control parameters determine how many individuals in each
generation are produced by which operation. Let there be n such
parameters, denoting this by the vector p = (p1,p2, . . . ,pn ) with
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�xed sum. �e totality of all such vectors is the parameter space S.
We make use of notation from [5, 6]. To each perturbed parameter
vector p′ associate the perturbation vector, ε = (ε1, ε2, . . . , εn ) with
p′i = pi + εi . �e Manha�an and Chebyshev input metrics are

dM (ε) =
n∑
i=1
|εi | , dC (ε) = max

1≤i≤n
|εi | . (1)

A�er sampling the parameter vector neighborhood
N ′dX ,β (p) = {r ∈ S \ {p} : dX (p, r) ≤ β} (2)

according to the metric dX , the output (Kolmogorov) metric is
de�ned on EA output space as

dK
(
p, p′

)
=

(
Er (p) − Er

(
p′

) )2
, (3)

where p, p′ ∈ N ′dX ,β (p) and Er (·) is the mean runtime from an EA
run r times with a given vector. A penalty runtime is imposed if
the EA fails to converge. �e metric dK indicates EA perturbation
sensitivity (the change in output given a parameter perturbation).
Previous work [5] reported that for r = 1 the variation in dK
over vector samples was high, suggesting more accurate results
may emerge for larger r . EA parameters are tuned to try and
achieve optimal performance. However results may vary due to
small changes in parameter se�ings. We explore how EA stability
may be characterized according to metrics dM and dC .

2 INPUT-OUTPUT STABILITY (IOS)
We take the notion of IOS from control systems [9]. To apply this
to EAs we need the following notation. Let dX be an input metric.
Suppose that, at iteration t ≥ 0, our EA has input the perturbation
ε(t) with size ‖w(t)‖ = dX (ε(t)), output y(t) and population x(t).
Let F ,H be locally Lipschitz functions, F denoting an EA iteration
on state x(t) and H the output. We write the EA as a system{

Ûx(t) = F (x(t), ε (t))
y(t) = H (x(t)) x(0) = ξ , (4)

where the initial state of the system is denoted ξ and time is discrete.
De�nition 2.1 ([9]). System (4) is IOS if there exist functions α ,γ

such that y (t , ξ ,w) ≤ α (|ξ | , t) + γ (‖w ‖) for all t ≥ 0, with
i. α strictly increasing and continuous on |ξ |, and α → 0 as

t →∞;
ii. γ strictly increasing, continuous and satisfying γ (0) = 0.

�is de�nition states that the output size has upper bound de-
pending upon the perturbation ε . However, this is time-dependent
and so cannot be black box. Addressing this, we propose an IOS
relaxation which gives a more ��ing notion of EA stability.

3 BLACK BOX I-O STABILITY (BBIOS)
First, we set perturbation ε(t) = ε for all t , implying a constant
control. We then replace the term y (t , ξ ,w) with vr, ` (ξ , ε), for
r repeats and instance size ` (or some instance parameter). We
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remove dependence on the iteration number, t , meaning we focus
only on initial state, input and end output. i.e., a black box. Let H
be the function that a�er EA termination assigns the values

H (x(t)) = (χ ,д) if t < S or (‘FAIL’, S) if t = S . (5)
�is denotes output of a best solution, χ , when found, and the run-
time д = E1 (·). If a solution is not found within S generations then
‘FAIL’ is output. Let vr, ` be the list of outputs H (x(t)) produced by
executing the EA r times on the same instance and parameter vec-
tor. �e mean EA performance is the expectation E[|vr, ` |] = Er (·).
�e conditions on functions F and H are weakened to be locally
continuous and bounded. Finally, as a population metric is unde-
�ned, we replace |ξ | with ξ . �ese relaxations give the following,
in which the perturbation ε is applied to a vector p.

De�nition 3.1. �e system (4) is strongly BBIOS with respect to
input metric dX , distance β and vector p, if, for all perturbation
vectors ε ∈ NdX ,β (p), there exist functions α ,γ such that

E
[ ��vr, ` (ξ , ε)�� ] ≤ α (ξ , r , `) + γ (r ,dX (ε)) , (6)

with α increasing in `, continuous, and with decreasing variabil-
ity for large r ; and γ increasing, sub-exponential, continuous and
satisfying γ (r , 0) = 0.

�e term strongly refers to the BBIOS conditions being satis�ed
for all parameter vectors in the given neighborhood. �e function
α (ξ , r , `) represents the baseline EA runtime of a set of r EA runs,
assuming a reference parameter vector p. �e term γ (r ,dX (ε))
relates to the (likely nonlinear) variability of r runs when the input
distance dX (ε) is increased. �is is the additional runtime due to
perturbation. �e condition γ (r , 0) = 0 means that a zero perturba-
tion contributes zero to dK (ε). �e functions α and γ are expressed
in generations. �e perturbative runtime γ depends on the input
metric, implying that distinct metrics distinctly a�ect stability. We
de�ne the stability radius to be the maximal β∗ such that (4) is
strongly BBIOS with respect to the neighborhood N ′dX ,β ∗ .

BBIOS is the generalization of non-sensitivity of a vector p to a
neighborhood N ′dX ,β (p) under metric dX . Increasing r e�ectively
removes randomness from the baseline and perturbative runtimes,
giving a lower bound for mean runtime in the limit r → ∞. For
small r , however, mean runtime is more variable and BBIOS relies
upon mean behavior of the EA over r runs. So we may weaken the
BBIOS de�nition, giving a more practical approximation.

De�nition 3.2. �e system (4) is ϵ-weakly BBIOS if ϵ is the maxi-
mal number such that for all perturbations ε ∈ N ′X ,β (p), we have
P (ε does not satisfy (6) ) ≤ ϵ .

�is means that, given a stability radius β > 0 for the neighbor-
hood N ′dX ,β , there exists some β ′ > β and a small ϵ > 0 such that
the system is ϵ-weakly BBIOS on the neighborhood N ′dX ,β ′ .

4 EXPERIMENTS AND RESULTS
We compare BBIOS with experimental results obtained using the
case study EA of [4]. For a range of β and each metric dX we took
a sample of N − 1 vectors in N ′dX ,β (p

∗) at random. �e optimal
vector p∗ (determined by experiment) was also included. �e output
distance (3) between all pairs

(
pi , pj

)
∈ Q2, followed by the mean

and standard deviation was computed. In [5], we conducted similar

experiments using r = 1 for dM only. In this work we restrict
stability to around optimal vectors. �e le� of Table 1 gives data
for the Manha�an and the right for the Chebyshev metrics. Each
row is a new sample. �e mean value of input metric in a given row
may be distinct from β as distances are measured over all pairs.

Table 1: Global statistics over S for r = 3 repeats andN = 1000
with bold text indicating stability radii.

β dM dK s(dK ) dC dK s(dK )
4 - - - 5.11 19485 31852
6 - - - 7.03 21141 34936
8 10.36 19043 34350 8.85 24620 44975
10 12.42 20760 40445 10.56 27245 44622
20 22.53 21791 34814 18.73 48109 94250
30 31.83 26087 44721 27.51 71614 121566
40 41.06 30508 51710 31.86 120515 203171
50 50.69 38475 64946 35.68 124690 208462

�e data indicate that BBIOS conditions (i) and (ii) are true,
con�rming the characterization is appropriate. Up to the stability
radii in bold (β = 10 for the Chebyshev metric and β = 40 for the
Manha�an) the output metric increases smoothly, and outside the
radii, leaps in value (suggesting exponentiality).

5 CONCLUSIONS AND FUTUREWORK
BBIOS provides an e�ective characterization of EA stability. BBIOS
also mitigates the variability of performance and outputs through
the use of mean EA behavior. It provides a lower and upper bound
in system performance characterized by instance and perturbation
size. It depends on an EA possessing well-de�ned input metric
and output metrics, and an instance parameter `, making it readily
applicable to general EAs. If p∗ is an optimal EA parameter vector,
then we conjecture (but will need to further investigate) that for
all ϵ ∈ [0, 1) and as r → ∞, ϵ−weakly BBIOS becomes strongly
BBIOS. We will further explore our characterization of EA stability;
for example, we will research and evaluate with parameter-�nding
methodologies such as irace [8]. Also, we wish to try out BBIOS
on standard EAs and compare the stability of two (or more) di�erent
EAs in solving a given problem. Finally, we hope to test BBIOS on
real-world problems with unknown optima.

REFERENCES
[1] S. Ben-David, U. von Luxburg, and D. Pál. 2006. A Sober Look at Clustering

Stability. In Learning �eory. Springer, 5–19.
[2] O. Bousquet and A. Elissee�. 2002. Stability and generalization. J. Machine

Learning Res. 2 (2002), 499–526.
[3] N. Chakravarti and A. P. M. Wagelmans. 1998. Calculation of Stability Radii for

Combinatorial Optimization Problems. Oper. Res. Le�. 23 (1998), 1–7.
[4] Ma�hew J Craven. 2008. An Evolutionary Algorithm for the Solution of Two-

Variable Word Equations in Partially Commutative Groups. In Stud. Comp. Intell.
153. Springer, 3–19.

[5] Ma�hew J Craven and Henri C Jimbo. 2011. A Kolmogorov-Type Stability
Measure for Evolutionary Algorithms. In LNCS 6622, P Merz and J-K Hao (Eds.).
26–37.

[6] Ma�hew J Craven and Henri C Jimbo. 2014. EA Stability Visualization: Per-
turbations, Metrics and Performance. In GECCO 2014 Companion, C Igel (Ed.).
1083–1089.

[7] M. V. Devyaterikova, A. A. Kolokolov, and N. A. Kosarev. 2011. �e Analysis
of the Stability of Some Integer Programming Algorithms with Respect to the
Objective Function. Russian Mathematics 55, 4 (2011), 18–25.
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