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Abstract 75 

Species communities that experience stable conditions have been speculated to preserve more 76 

specialized interspecific associations as well as having higher proportions of smaller-ranged 77 

species. However, this suggestion remains poorly supported with empirical evidence. Here, we 78 

analyzed data for hummingbird resource specialization, range size, contemporary climate and late 79 

Quaternary climate stability for 46 hummingbird-plant mutualistic networks distributed across the 80 

Americas, representing 130 hummingbird species (ca. 40% of all hummingbird species). We 81 

demonstrate a positive relationship between the proportion of smaller-ranged hummingbird species 82 

(SRS) and community-level specialization, i.e. the division of the floral niche among coexisting 83 

hummingbird species. This relationship remained strong also when accounting for climate. 84 

Furthermore, the much stronger statistical effect of SRS on specialization than vice versa 85 

(standardized coefficient = 0.75 vs. 0.43), suggests that climate largely associates with 86 

specialization through species’ range-size dynamics. Irrespective of the exact mechanism involved, 87 

our results indicate that communities consisting of higher proportions of smaller-ranged species 88 

may be vulnerable to disturbance not only because of their small geographic ranges but also 89 

because of high degree of specialization.  90 

 91 

Keywords: biogeography, climate gradients, macroecology, mutualistic networks, range size, 92 

specialization   93 



1. Introduction  94 

Ecological specialization may facilitate species coexistence and speciation, and is therefore 95 

hypothesized to structure global patterns of biodiversity [1]. Notably, higher degrees of community-96 

level resource specialization, i.e. the division of local resources, may be associated with reduced 97 

interspecific competition and greater local richness [2]. It is therefore debated whether high 98 

ecological specialization in the tropics may contribute to the observed continental-scale increased 99 

species richness toward the tropics [3–10]. Likewise, it is speculated that large-scale geographical 100 

differences in ecological specialization coincides with patterns of range-size frequency distributions 101 

[11].  102 

We address this and the role of extrinsic factors, notably climate, as potential 103 

determinants of community-level specialization and range-size distributions. Contemporary climate 104 

has been suggested to influence ecological specialization, with communities in productive areas 105 

having the highest degree of specialization [12,13]. Similarly, in areas with low contemporary 106 

seasonality, where resource availability supposedly is relatively stable throughout the year, 107 

communities may have a higher degree of specialization than those found in more seasonal 108 

environments [14–16]. Recent studies have also pointed towards historical climate fluctuations as 109 

influencing the local degree of specialization, as unstable climatic conditions are hypothesized to 110 

disrupt specialized species interactions, either through changes in the phenology of species or 111 

through increased dynamics in range-size [6,11,17–19]. Both ecological and historical factors may 112 

thus shape geographical patterns of ecological specialization as found for plant-hummingbird 113 

networks, which have a higher community-wide specialization in areas with higher precipitation 114 

and temperature, lower seasonality and more stable climate conditions since the last glacial 115 

maximum [6,20]  116 

 Contemporary and historical climate may also affect the geographical distribution of 117 

species range-sizes [21–23]. For instance, variable climate conditions have traditionally been 118 



suggested to select for broad environmental tolerance, which influence the potential geographical 119 

range of species and, hence, causes species to have large ranges in seasonal areas [23–27], though 120 

see [28,29]. A highly seasonal climate may also force species to migrate in order to track suitable 121 

environmental conditions, and as smaller-ranged species have been suggested to have weaker 122 

dispersal ability than larger-ranged species [30], they are more likely to be residents in seasonally 123 

stable environments. This reasoning may be extended to fluctuations in historical climate, which 124 

may have forced species either to adapt to the new conditions, track suitable climatic conditions or 125 

to go locally extinct. As smaller-ranged species may track suitable climate conditions more slowly 126 

[30], these would suffer from an increased local extinction probability under climate change 127 

[27,31]. In accordance with this, late Quaternary climate-change velocity correlates negatively with 128 

the global distribution of proportionally smaller-ranged amphibian, mammal and bird species [31]. 129 

 Taken together, numerous studies have pointed towards historical climate stability and 130 

contemporary seasonality as being important to support both ecological specialization and high 131 

proportions of smaller-ranged species. Thus, areas with disproportionally many smaller-ranged 132 

species are expected to coincide geographically with a high degree of community-level ecological 133 

specialization, but this remains poorly supported [6,11,19]. We tested this using a database 134 

consisting of 46 quantitative hummingbird-plant networks, i.e., studies of all hummingbird species’ 135 

visitation frequencies on plant species at a given locality. The 46 networks are distributed widely 136 

across the American mainland [20; figure 1].  Specifically, we investigate: (i) whether 137 

specialization in plant-hummingbird networks is positively related with community-level proportion 138 

of smaller-ranged species (hereafter SRS), and (ii) whether contemporary and late Quaternary 139 

climate correlates with both specialization and SRS, or whether contemporary and late Quaternary 140 

climate are more likely to influence specialization indirectly via SRS (or vice versa). Hummingbirds 141 

are well-suited for such large-scale comparative studies on the pattern of ecological specialization 142 



as they are highly specialized on nectar-feeding, and the hummingbirds and the plants they pollinate 143 

are mutually dependent [32–34], i.e. it is ecologically relevant to understand how specialization 144 

vary geographically [6] Moreover, hummingbirds are highly successful, being the second most 145 

species-rich family of birds and able to thrive in an array of environments across most of the 146 

Americas [35], and, finally, hummingbird-plant communities have long served as model system for 147 

examining ecological and evolutionary processes as determinants of ecological specialization at the 148 

community-level [6,32,33]. Our study advances the current understanding of how geographical 149 

patterns of range-size and specialization are shaped, and have additional implications for 150 

conservation of species communities engaged in specialized associations.  151 

 152 

2. Materials and Methods 153 

(a) Plant-hummingbird network data.  154 

We used a database consisting of 46 plant-hummingbird networks [table S1; see 20 for more 155 

detailed information about the network data], from which we constructed weighted interaction 156 

networks for the hummingbirds and their associated nectar plants (figure 1). Taking a network 157 

approach allow for detailed information about the interaction frequencies between all hummingbird 158 

and plant species within a given community to be summarized by easily interpretable metrics. For 159 

the present study, networks were presented as P (number of plant species)x H (number of 160 

hummingbird species) matrices with entries indicating the strength of each interaction (i.e. the 161 

number of visitations recorded for a given hummingbird-plant species pair). Known incidents of 162 

nectar robbing, for instance if a hummingbird pierced the flower corolla without contacting the 163 

floral reproductive organs, were not considered since they represent antagonistic rather than 164 

mutualistic interactions [36]. For a network to be included in the study, it should fulfil certain 165 

criteria: i) each study must have a community approach, i.e. aiming to include all hummingbird and 166 



hummingbird-pollinated plant species within the given community over the sampled period; (ii) 167 

networks need to consist of weighted data, i.e. include frequency of interactions, since binary 168 

networks exhibit high sensitivity to sampling effort and species abundance [37]; (iii) moreover, 169 

island networks were not included since species from islands are naturally constrained in their 170 

geographic distribution by the hard boundaries made up by the sea. Measuring species range size 171 

solely as the number of occupied grid cells would therefore contain less biological and mostly 172 

geographical information and, hence, is not comparable to the situation on the continent.  173 

 174 

(b) Measuring hummingbird range-size proportions.  175 

The geographical range-size of each hummingbird species was extracted from an updated database 176 

previously presented in Rahbek & Graves [38] – see [39,40] for details on method and data sources. 177 

As an estimate of hummingbird geographical range-size, we used the total number of occupied 1
o
 178 

1
o
 latitude-longitude grid cells. Following Jetz and Rahbek [41], we divided the total number of 179 

species (n = 130) into quartiles according to range size (i.e. the 1
st
 quartile consists of the 25% 180 

species with the smallest ranges (n = 33) and the 4
th

 quartile consist of the 25% with largest ranges 181 

sizes in order to determine the community level proportion of smallest-ranging species (SRS). For 182 

each network, we calculated the proportion of 1
st
 quartile species. As larger-ranging species 183 

contribute with more records among communities than smaller-ranging species [41], even though 184 

the majority of hummingbirds have relatively small ranges (S1). Hence, summary statistics as the 185 

mean and median range size for co-occuring species would largely be influenced by large-ranging 186 

species. This was confirmed for data set where linear models regressing the local proportion of 25% 187 

of species with largest ranges, was strongly correlated with both the mean range size (Pearson 188 

correlation = 0.85, P < 0.001) and the median range size (Pearson correlation = 0.83, P < 0.001). On 189 

this basis, we assess the proportional variable SRS to be a more appropriate attribute of the local 190 



range-size frequency distribution for determining the variation in presence of smaller-ranged 191 

species. In addition, where richness of smaller-ranged species may reflect areas of high stability 192 

[42,43], richness of larger-ranged species, which would influence the mean/median calculations, 193 

may rather reflect factors related to productivity [41]. Hence, for the reason that the degree of 194 

specialization may be higher in climatic more stable areas, we argue that testing for an association 195 

to the proportion of smaller-range species is more relevant. However, It should be noted that the 196 

range-size-frequency-distribution of our data is somewhat skewed toward larger ranges than the 197 

RSFD of all hummingbird species of the world (figure S1). This is why we refer to 1st quartile 198 

species as “smaller-ranged” species rather than using the term “restricted-range” species as in Jetz 199 

& Rahbek [41] and others using continental data on all species (see also “Sensitivity Analyses” 200 

below). This proportional variable was transformed by using arcsine square-root transformation for 201 

the further analysis. 202 

 203 

(c) Specialization, richness, environmental variables and sampling intensity.  204 

Following Blütgen, Menzel & Blütgen [44] ecological specialization (<d’>) for each hummingbird 205 

community was calculated as the weighted mean of the normalized Kullback-Leibler distance for 206 

all coexisting hummingbird species [45]. The estimate is based on frequency data representing the 207 

strength of each interaction (i.e.number of visits recorded for each hummingbird-plant partner) in 208 

the network, which has been shown to be relatively insensitive to sampling intensity and network 209 

size [44,46]. First, species level degree of specialization (di) is calculated as a comparison of the 210 

distribution of hummingbird interactions with plant partners in relation to the overall partner 211 

availability: 212 

𝑑𝑖 =  ∑ (𝑝′𝑖𝑗 × 𝑙𝑛
𝑝′𝑖𝑗

𝑞𝑗
 )

𝑐

𝑗=1

 



Here, pij is the proportion of interactions with plant j in relation to the summed number of 213 

interactions for hummingbird i (Ai), qj denotes the summed number of interaction for plant j relative 214 

to the summed number of interactions in the network (m) and c indicates the plant species richness. 215 

Following a normalization procedure, letting d’i denote the deviation of the empirical frequencies of 216 

interaction for hummingbird i from the null expectation that all plants a visited equal to their 217 

availability (see [44] for details regarding the normalization procedure), the weighted averaged 218 

degree of specialization for the hummingbird assembly is calculated as: 219 

〈𝑑′𝑖〉 =  
1

𝑚
∑(𝑑′𝑖  ×  𝐴𝑖)

𝑟

𝑖=1

 

Where r denotes the hummingbird species richness. The index ranges between 0 (extreme 220 

generalization; i.e. many interactions with many plants shared by other hummingbird species) and 1 221 

(extreme specialization; i.e. many interactions with few plants and limited sharing with other 222 

hummingbird species). Weighting the averages by the summed number of interactions for each 223 

hummingbird gives more accurate measures for comparison as rare interactions are not over-224 

interpreted [44]. Conceptually, the use of <d’i> as a measure of ecological specialization can be 225 

translated into the functional attributes specific to the local species community, i.e. the realized 226 

Eltonian niche [47]. Estimating ecological specialization based on species interaction networks 227 

could potentially be biased by differences in species abundance. This is the reason for weighting the 228 

average degree of hummingbird specialization by the marginal sum of interactions, assuming a 229 

positive association between abundance and visitation frequency. Although we do not have 230 

sufficient independent measurement of abundance to validate this assumption, a study conducted on 231 

a network collected in the Brazilian Atlantic Rainforest documented that the frequency of 232 

hummingbird interactions was a good surrogate for their abundance [see Table S1 network ID 41 233 

48]. On the other hand, for the specialization estimate, we identified potential confounding effects: 234 



network size [6], i.e. the richness of hummingbird and plant species in the network (standardized 235 

coefficient; std. coeff. = -0.495, P = 0.015), and network asymmetry [49], i.e. the ratio between the 236 

richness of hummingbird and plant species P = 0.013). We thus conducted independent analyses 237 

using the residuals of linear regressions predicting <d’> by respectively network size and network 238 

asymmetry, respectively. To assess the confounding influence of differences in sampling effort, we 239 

conducted additional linear regressions predicting both SRS and specialization by sampling 240 

intensity, which for each network is calculated by dividing the total number of observed interactions 241 

(square root transformed) with the richness for plants and hummingbirds [50]. 242 

 The contemporary climate variables hypothesized to predict specialization and SRS, 243 

i.e. mean annual temperature (MAT), mean annual precipitation (MAP), temperature seasonality 244 

(i.e. standard deviation in annual temerature; TS) and precipitation seasonality (i.e. standard 245 

deviation in annual precipitation; PS), were extracted from the WorldClim database in resolution of 246 

1 x 1 km [http://www.worldclim.org; 51]. We estimated variables reflecting historical climate 247 

change as the absolute difference in temperature and precipitation between pre-industrial time and 248 

the Last Glacial Maximum (21,000 years ago), i.e. temperature and precipitation anomalies 249 

(AnomT and AnomP). To generate projections of climate anomaly, we used the Hadley Centre 250 

Model Version 3 (HadCM3) at 3.75 x 2.5 arc degrees resolution and subsequently down scaled to 251 

0.1 x 0.1 arc degrees [52]. We included also measures of topographic heterogeneity (i.e. range in 252 

elevation; TH), as predictors of both specialization and SRS [53,54]. As an estimate of the 253 

interactive effect of historical climate and topography, we included estimates of temperature and 254 

precipitation velocity (VelT and VelP), which capture the buffering effect in mountain areas where 255 

species can track their original climate zone by migrating a short distance up or down slope [55]. 256 

For each community, TH and estimates of historical and contemporary climate were calculated as 257 

the average of values within a radius of 10 km from the sampled location. Given the large 258 



geographical scale of the data, we assume that the regional down scaled climate estimates are good 259 

indicators of the variation of local climate among communities. To meet statistical assumptions 260 

about normality, mean annual temperature was squared and mean annual precipitation, temperature 261 

seasonality, temperature and precipitation velocities and anomalies were log-transformed prior to 262 

further analyses. All variables were scaled to zero mean and unit variance.  263 

 264 

(d) Structural Equation Modeling.  265 

Structural Equation Models (SEMs) are statistical tools used to evaluate multivariate hypotheses. 266 

Compared to multiple regression models, the main advantage is that they seek to account for both 267 

direct and indirect effects among predictor and response variables while allowing multiple 268 

dependent variables to be tested simultaneously. Initially, we constructed two SEM’s based on a 269 

priori hypotheses, considering different causal paths among the response variables. The first 270 

considered a link from SRS to specialization, corresponding to a scenario where local preservation 271 

of higher proportions of smaller-ranged species (e.g. through lowered range size dynamics) affect 272 

species possibilities to develop specialized interactions in the local plant community. Secondly we 273 

considered an opposite link from specialization to SRS corresponding to a scenario where local 274 

opportunities to develop increased ecological specialization provides better conditions for the 275 

preservations of smaller ranged species. Due to relatively low sample size (n = 46) in comparison to 276 

the number of predictor variables, this model was simplified through model selections using the 277 

Akaike Information Criterion (AIC). For each response variable, among all model combinations, 278 

only predictors present in the better predicting models (determined from having ΔAIC less than 2 in 279 

relation to the model with lowest AIC; 50) were included in the initial SEM models (figure S2). The 280 

two SEMs were evaluated through the chi-square test, comparative fit index (CFI) and the Root 281 

Mean Square Error of Approximation (RMSA) [57]. The chi-square value indicates the divergence 282 



between the sample and the fitted structures in the data and was used to evaluate overall model fit 283 

where a non-significant result (P> 0.05) indicated good model fit. The CFI compares the chi-square 284 

of the model with the chi-square value of an independent model assuming no correlation among all 285 

variables while accounting for sample size. With a range from 0 to 1, we accepted models with 286 

CFIs > 0.09 [58]. Lastly, the RMSA was implemented, but only on the simplified models due to the 287 

index’s sensitivity to the number of estimated parameters in the model. Here, values below 0.07 288 

were used as indication of good model fit [58]. We expected some degree of correlation among the 289 

included climate predictors. In order to obtain reliable model fit according to the three above 290 

mentioned indices, we identified and added this covariance based on high modification indices and 291 

large residual correlations [59,60]. By stepwise refitting, we simplified the SEMs, removing non-292 

significant links conditional on the model fit being satisfied [61,62]. The contribution of each 293 

predictor variable was evaluated through the standardized path coefficients. Three additional SEM 294 

pairs were constructed to examine if our results were sensitive to the significant positive effects of 295 

network size and network asymmetry on specialization (figure S3-S4), and when using climate 296 

velocities rather than anomalies (figure S5). All SEMs were constructed and analyzed with the R 297 

package lavaan [63]. 298 

(e) Spatial auto-correlation.  299 

Using the R package ncf [64], we assessed whether significant positive spatial autocorrelation 300 

occurred in linear model residuals by computing correlograms with distance classes of 1000 km. 301 

Four linear models were set up similarly to the direct links between climate and specialization and 302 

SRS as in figure. 2. None of them contained significantly positive spatial autocorrelation, and we 303 

thus conclude that spatial autocorrelation is negligible for the model results. 304 



(f) Sensitivity analyses of range-size definition.  305 

To evaluate the robustness to the use of different range-size cut-offs, We fitted ten additional linear 306 

models using different range-size cut-offs to define a smaller-ranged species (i.e. from 20 to 30% of 307 

species having the smallest range sizes; figure S6). In addition, we conducted follow up analyses 308 

using a redefined measure of the proportion of smaller-ranged species based on the 1
st
 quartile 309 

species of the global pool of mainland hummingbird species (n = 318) as in Jets, Rahbek & Colwell 310 

[43] rather than the one in our data set (n = 130). Following this method, a species was assigned to 311 

be smaller-ranged if it had a global range-size less than 10 grid cells, as this represent the threshold 312 

between 1
st
 and 2

nd
 quartile of the global species pool. For the 130 species occurring in the dataset, 313 

this cut-off will include the 13% of species with the smallest range sizes. Du to zero inflation in the 314 

corrected SRS variable, we were unable to conduct the above SEMs, which are based on linear 315 

model assumptions. Instead, we used a logistic regression including all data points (n = 46) to test 316 

the association between specialization on the corrected SRS (figure 3a). We note that a chi-square 317 

test applied on the residual deviance and degrees of freedom to assess model fit indicated that SRS 318 

was acceptably represented by a binominal distribution (P = 0.06). Considering specialization as 319 

response variable, we separated the corrected SRS into two variables: one categorical that simply 320 

determines whether communities hold smaller-ranged species or not (n = 46) and one containing 321 

only communities having smaller-ranged species according to the corrected threshold (n = 10). The 322 

association between the corrected SRS and specialization was fitted using ANOVA and simple 323 

univariate linear models, respectively (figure 3b and c).  324 

 In addition to the threshold used to define smaller-ranged species, the latitudinal 325 

variation in continental or biome narrowness may constitute hard boundaries to the range size of 326 

species [28,65], which could also influence the association between SRS and specialization. To 327 

account for this, we used dispersion fields to construct a null model, which generates SRS values 328 

for each community from a similarity-weighted species source pool [66]. The null model integrates 329 



data of the presence-absence of all 318 hummingbird species across mainland Americas at 1
o
 × 1

o
 330 

latitude-longitude resolution. The concept of the biogeographical sourse pool is based on dispersal 331 

of species to most likely occur within their biogeographical region [66,67]. Thus, we determined the 332 

regional source pool of a community using the rationale that species living in communities with 333 

species compositions more similar the focal are more likely to constitute its source pool. Across 334 

1000 iterations of each community containing n species, the null model algorithm randomly 335 

samples n grid cells probabilistically weighted by the number of shared species with the focal 336 

community. From these, n species were randomly assembled weighted by their frequency of 337 

occurrence in the n sampled grid cells. For these, the null values of SRS were then calculated. 338 

Deviations between the observed SRS values and the normal curve of the null generated SRS values 339 

were standardized as the z-score: SRSz =  (SRSobserved  −  SRSnull)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /sd(SRSnull). 340 

   341 

3. Results  342 

We found a positive correlation between specialization and SRS (coefficient; coef. = 0.394, R
2
 = 343 

0.349, P < 0.001, n = 46). For the SEM containing a hypothesized direct link from specialization to 344 

SRS was considered, a positive association was found between the two (std coeff. = 0.43, figure. 345 

2a). Here, we found that SRS was negatively associated with temperature seasonality (TS; std coeff. 346 

= -0.42) and positively associated with topographical heterogeneity (TH; std coeff. = 0.42) and 347 

temperature anomaly (AnomT; std coeff. = 0.23), whereas specialization was negatively related to 348 

temperature anomaly (AnomT; std coeff. = -0.37) and positively related to both mean annual 349 

precipitation (MAP; std coeff. = 0.31) and precipitation anomaly (AnomP; std coeff. = 0.35). In the 350 

SEM having SRS as a predictor of specialization (figure 2b), there was a similarly strong positive 351 

link from SRS to specialization (std coeff. = 0.75). In comparison to the above SEM, we here found 352 



additional links between specialization and mean annual temperature (MAT; std coeff. = 0.29), TS 353 

(std coeff. = 0.31) and a positive influence of AnomP on SRS instead of specialization.  354 

Linear regressions testing the influence of sampling intensity on specialization and 355 

SRS showed no significant associations (coef. = -0.01, R
2
 = 0.07, P = 0.07, n = 46; coef. = -0.02, R

2
 356 

= 0.08, P = 0.06, n = 46 respectively). Similarly, the strong association between SRS and 357 

specialization was insensitive to specialization estimates when correcting for network richness 358 

(figure S3) and network asymmetry (figure S4). The results from the SEM pairs considering the 359 

interactive effect of topographic heterogeneity and historical climate through estimates of climate-360 

change velocity also showed similar results (figure S5).  361 

Linear regression including SRS variables calculated using different range-size cut-362 

offs to define smaller-ranged species (ranging from 20% to 30% of species having the smallest 363 

range sizes) documented a robust association between the degree of specialization and SRS (figure 364 

S6). When using the first quartile of the global mainland species pool of hummingbirds rather than 365 

the first quartile of our dataset as a threshold to define smaller-ranged species (figure 3): (i) a 366 

logistic regression confirmed that the association between specialization and SRS remained 367 

significantly positive (R
2
 = 0.345, P < 0.001, n = 46; figure 3a); (ii) a one-way ANOVA test 368 

showed significantly higher degree of specialization in communities with smaller-ranged species 369 

present (F = 6.719 , P = 0.013, n = 46; figure 3b) and; (iii) a linear regression conducted only for 370 

communities containing smaller-ranged species showed similar trend towards increased 371 

specialization in communities with higher proportion of smaller-ranged species (F = 6.739, P = 372 

0.032, n= 10, R
2
 = 0.457; figure 3c). Finally, null model corrected SRS remained significantly 373 

positively associated to specialization (R
2
 = 0.357, P < 0.001, n = 46; figure 4), indicating that the 374 

influence of biome or continental narrowness on the range size of species is negligible in respect to 375 

the association between SRS and specialization.   376 



4. Discussion 377 

For hummingbird–plant networks across mainland Americas, we found that communities with high 378 

proportions of smaller-ranged species (SRS) also have a high degree of ecological specialization 379 

(figure 1-2). The association between SRS and specialization was insensitive to the definition used 380 

for smaller-ranged species (figure 3; S6), to the influence of biome or continental narrowness as 381 

accounted for by null models (figure 4), to the influence of species richness and network asymmetry 382 

on specialization (figure S3-S4) as well as how historical climate stability is summarised (figure 383 

S5). Although contemporary and historical climate was important in predicting both SRS and 384 

specialization, it did not affect the strong association between specialization and SRS. Notably, 385 

current precipitation was strongly correlated with hummingbird specialization, possibly explained 386 

by either increased productivity and thus greater opportunities for specialization or lower 387 

importance of insects in comparison to hummingbirds as pollinators in more rainy conditions, 388 

thereby favouring hummingbird–plant specialization [5,68,69]. Interestingly, we found a strong 389 

consistent negative link from temperature seasonality to SRS (figure. 2) and, when accounting for 390 

the indirect effects of climate on specialization via SRS, a direct positive association of temperature 391 

seasonality on specialization appeared (figure 2b). This positive association has likewise been 392 

observed for frugivorous bird-plant networks, which could be explained by non-overlapping 393 

interactions arising from higher annual turnover in species composition in more seasonal 394 

environments [50]. A synthesis of the effects of topography and climate together with the much 395 

stronger effect of SRS on specialization than vice versa (std coeff. = 0.75 vs. std coeff. = 0.43), is in 396 

accordance with the hypothesis that climate may increase specialization through reduced annual 397 

species range dynamics [30,42], facilitating adaptation to local foraging niches. However, the direct 398 

association between niche breadth and climatically induced population dynamics still lacks 399 

sufficient support by empirical evidence [70]. In accordance with the contrary hypothesis, that less 400 

specific adaptations to local food resources may extend the range over which a species can occur 401 



resulting in fewer smaller-ranged species in the more generalized communities, a positive direct 402 

link from specialization to SRS remained present in all SEM models. Thus, although we are able to 403 

confirm the hypothesised interrelatedness between SRS and specialization, we are with the present 404 

data unable to firmly identify the underlying mechanism causing this association or their causal 405 

relationships.  406 

In addition to contemporary climate, we found correlations with the estimates of 407 

historical climate anomaly. However, their effects were less consistent in the follow-up analyses 408 

(figure S3-S5) than those of contemporary climate, which in our models showed higher and 409 

consistent importance in predicting the interrelatedness of SRS and specialization. This indicates 410 

that late Quaternary temperature stability may play a role, but a minor one compared to 411 

contemporary climate. Contradicting the suggested high importance of historical climate changes 412 

for species range dynamics [11,31], our results could indicate that annual-scale climate stability also 413 

has a considerable influence for the preservation of smaller-ranged species through time [42]. The 414 

observed positive link from precipitation anomaly to specialization could derive from historical 415 

increases in productivity ultimately facilitating specialization. In contrast, the positive association to 416 

SRS could be explained by recent speciation events following the onset of glacial cycles during the 417 

Late Pleistocene, where species repeatedly disperse and become isolated in a heterogeneous 418 

environment – e.g. on mountain tops [71] – see Garcia-Moreno et al. for an explicit example with 419 

hummingbirds [72]. Mechanisms, as the latter, related to the evolutionary history of species also 420 

operates on time scales beyond the last glacial maximum [11,42], and may influence the 421 

intercorrelation of richness of smaller-ranged species, high levels of specialization and high local 422 

speciation-low extinction. Therefore, in order to understand what causes communities consisting of 423 

mainly smaller-ranged species to be more specialized, one could test the hypothesis that specialized 424 

hummingbirds and their nectar-food plants have concerted demographic trends in more stable 425 



environments, ranking from current seasonality to climates at deep-time evolutionary time-scales 426 

[73]. This could potentially identify the main mechanism and temporal scale facilitating 427 

specialization in communities consisting of mainly smaller-ranged species, which have lower 428 

dispersal ability and thus may depend more on nectar-food plants from the local flora.  429 

Irrespective of the exact mechanism involved, the detected relationship between SRS 430 

and specialization has relevance for ecological and evolutionary theory regarding their respective 431 

geographical patterns. Specifically, it illustrates that interspecific interactions are of great 432 

importance to consider when studying biogeographical patterns on large geographical scales, at 433 

least for highly specialized systems such as hummingbird–plant communities. Our results also have 434 

implications for conservation of species engaged in mutualistic associations, especially as 435 

anthropogenic activity may impact mutualistic interactions [74], and cause pollinator and linked 436 

plant extinctions [75,76]. For instance, the strong link between SRS and specialization indicate that 437 

some communities may be fragile in multiple ways, both by having smaller-ranged species slow in 438 

tracking ongoing climate changes and by having species less prone in switching their interactions 439 

and at higher risk of secondary extinctions [30,31,77] 440 
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Figures and tables  673 

 674 

Figure 1. Geographical pattern of specialization and the proportion of smaller-ranged species (SRS) 675 

for 46 hummingbird communities across mainland Americas. The coloration of each circle on the 676 

map indicates the degree of specialization in relation to the proportion of smaller-ranged species 677 

(SRS); black indicates both high SRS and specialization, white conversely indicates both low SRS 678 

and degree of specialization. Orange and blue indicate poorer correlation through either high SRS 679 

or specialization, respectively. Note that some points have been slightly moved to avoid overlap. 680 

SRS was arcsin square-root transformed to improve normality. Painted illustration shows three 681 

hummingbird species from the Costa Rican highlands, where the network with the highest degree of 682 

specialization and SRS is found in the data set (specialization = 0.782, SRS = 0.6). From above: 683 

Volcano Hummingbird (Selasphorus flammula), White-bellied Mountain-gem (Lampornis 684 

hemileucus) and Fiery-throated Hummingbird (Panterpe insignis). Painting by Jon Fjeldså. 685 

 686 

 687 

 688 



Figure 2. Results from two reduced structural equation models showing the direct and indirect links 689 

of contemporary climate and Quaternary climate velocity on specialization and the proportion of 690 

smaller-ranged species (SRS; n = 46). (a) the path structure when specialization is hypothesized to 691 

predict of SRS. (b) the paths for the possible opposite scenario where SRS is hypothesized to 692 

predict specialization. Black arrows indicate positive relationships, red arrows indicate negative 693 

relationships; the thickness of each arrow illustrates the strength. The double headed grey arrows 694 

indicate covariance links. Other abbreviations are: MAT, mean annual temperature; MAP, mean 695 

annual precipitation; TS, temperature seasonality, PS, precipitation seasonality; AnomT, 696 

temperature anomaly; AnomP, precipitation anomaly; TH, topographic heterogeneity. 697 
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 699 

 700 
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Figure 3. Three models constructed to test the relationship between specialization and a redefined 704 

measurement of the proportion of smaller-ranged species calculated based on the 1
st
 quartile of the 705 

range-size frequency distribution for the global mainland species pool of hummingbirds (n = 318), 706 

rather than for the 130 species occurring in our data set. (a) Logistic regression testing the 707 

association between specialization and SRS when treating SRS as a binary variable (n = 46). (b) 708 

One-way ANOVA testing for difference in specialization among communities with smaller-ranged 709 

species either present or absent. (c) A linear regression testing the linear association between the 710 

proportion of smaller-ranged species (SRS) and specialization for communities with smaller-ranged 711 

species present (n = 10).  712 
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Figure 4. Scatterplot showing the correlation between specialization and a geographic null model 722 

correction of SRS. The source pool for each community was assembled using the rationale that 723 

species living in areas, which are compositionally more similar with the focal community, are more 724 

likely to be included (see Materials and Methods for details). Deviations between the observed SRS 725 

values and the normal curve of the null generated SRS values were standardized as the z-score. 726 

Maps show examples of the sampling frequency of grid cells for 1000 randomization within the 727 

hummingbird dispersion fields associated with each of the coloured example networks spanning the 728 

spectra of SRSz-scores.   729 

730 
  731 

 732 

 733 

 734 



Supplementary Material  735 

Figure S1. Range size frequency distributions (RSFD) of all continental hummingbird species (n = 736 

318; a) in comparison to the RSFS for continental hummingbird species occurring in the sampled 737 

communities (n = 130; b). The density indicate that all columns sum to one.    738 

 739 

 740 

 741 



Figure S2. Initial structural equation models (SEMs) showing all direct and indirect effects of 742 

contemporary climate and Quaternary climate velocity on specialization and the proportion of 743 

smaller-ranged species (SRS; n = 46). A and b show initial SEMs including all predictors present in 744 

the best linear models (i.e. showing ΔAIC < 2 in comparison to the model with lowest AIC). (a) a 745 

SEM predicting SRS through specialization and (b) vice versa. Error covariances were added to 746 

obtain appropriate fit (see Materials and Methods). Final SEMs with removed non-significant paths 747 

are presented in figure 2. Other abbreviations are: MAT, mean annual temperature; MAP, mean 748 

annual precipitation; TS, temperature seasonality, PS, precipitation seasonality; AnomT, 749 

temperature anomaly; AnomP, precipitation anomaly; TH, topographic heterogeneity. 750 

 751 

 752 



Figure S3. Results from two structural equation models, SEMs (n = 46), correcting specialization 753 

for the correlation with network size (i.e. the summed richness of plants and hummingbirds in the 754 

network). Similar to figure 2 and S2, a and b show initial SEMs including all predictors present in 755 

the best linear models (i.e. showing ΔAIC < 2 in comparison to the model with lowest AIC ). Here, 756 

a SEM predicting SRS through specialization (a) and vice versa (b). Error covariances, shown as 757 

double headed arrows, were added to obtain appropriate fit (see Materials and Methods). c and d 758 

show reduced versions of the same SEMs where non-significant links have been removed. Black 759 

arrows indicate positive relationships, red arrows indicate negative relationships; the thickness of 760 

each arrow illustrates the strength. Other abbreviations are: MAT, mean annual temperature; MAP, 761 

mean annual precipitation; TS, temperature seasonality, PS, precipitation seasonality; AnomT, 762 

temperature anomaly; AnomP, precipitation anomaly; TH, topographic heterogeneity. 763 
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Figure S4. Results from two structural equation models, SEMs (n = 46), correcting specialization 768 

for the correlation with network asymmetry (i.e. the ratio between the network richness of 769 

hummingbird and plant species). Similar to figure 2 and S2-S3, a and b show initial SEMs 770 

including all predictors present in the best linear models (i.e. showing ΔAIC < 2 in comparison to 771 

the model with lowest AIC ). Here, a SEM predicting SRS through specialization (a) and vice versa 772 

(b). Error covariances, shown as double headed arrows, were added to obtain appropriate fit (see 773 

Materials and Methods). c and d show reduced versions of the same SEMs where non-significant 774 

links have been removed. Black arrows indicate positive relationships, red arrows indicate negative 775 

relationships; the thickness of each arrow illustrates the strength. Other abbreviations are: MAT, 776 

mean annual temperature; MAP, mean annual precipitation; TS, temperature seasonality; PS, 777 

precipitation seasonality; AnomT, temperature anomaly; AnomP, precipitation anomaly; TH, 778 

topographic heterogeneity. 779 
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Fig. S5. Results from two structural equation models, SEMs (n = 46), considering the interactive 784 

effect of topography and historical climate change through estimates of temperature and 785 

precipitation velocity (VelT and VelP). Similar to figure 2 and S2-S4, a and b show initial SEMs 786 

including all predictors present in the best linear models (i.e. showing ΔAIC < 2 in comparison to 787 

the model with lowest AIC ). Here, a SEM predicting SRS through specialization (a) and vice versa 788 

(b). Error covariances, shown as double headed arrows, were added to obtain appropriate fit (see 789 

Materials and Methods). c and d show reduced versions of the same SEMs where non-significant 790 

links have been removedved. Black arrows indicate positive relationships, red arrows indicate 791 

negative relationships; the thickness of each arrow illustrates the strength. Other abbreviations are: 792 

MAT, mean annual temperature; MAP, mean annual precipitation; TS, temperature seasonality, PS 793 

and precipitation seasonality. 794 
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Fig. S6. Results from 10 linear models predicting the degree of specialization by the proportion of 799 

smaller-ranged species (SRS) calculated by considering cut-offs from 20-30% of the species data 800 

with the smallest range sizes. The black line indicate the 25% cut-off, which has been used to 801 

calculate SRS for the structural equation models (figure 2, S2-S5). Among the 10 regression 802 

models, the slope ranged from 0.33-0.39 (standard deviation = 0.02). all models were significant at 803 

0.001 level.     804 

 805 
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Table S1. Location, network size (total species richness), specialization (<d’>), SRS (the 809 

proportion of smaller-ranged species) of the plant-hummingbird networks and null model corrected 810 

SRS (SRSz; see material and method section for algorithmic details).  811 

Network  

        ID

  

Site Latitude 

 

 

Longitude 

 

 

Network  

Size 

Specialization  SRS SRSz 

1 Atlantic forest, SE Brazil -20.75 -42.92 22 0.43 0.00 -0.45 

2 Montane meadow, SW USA 34.22 -116.95 6 0.00 0.00 0.00 

3 Sub-alpine meadow, Central USA 38.98 -106.97 4 0.01 0.00 -0.12 

4 Atlantic forest, SE Brazil -23.35 -44.83 54 0.49 0.08 0.84 

5 Tropical dry deciduous forest, W Mexico 19.5 -105.05 20 0.35 0.00 -0.58 

6 Pampa, S Brazil -31.8 -52.42 35 0.23 0.00 -0.48 

7 Highland Atlantic forest, SE Brazil -22.5 -44.83 37 0.46 0.00 -0.34 

8 Caatinga, NE Brazil -7.87 -36.4 36 0.07 0.00 -0.41 

9 Altitudinal caatinga, NE Brazil -11.48 -41.32 35 0.35 0.13 1.47 

10 Amazonas riverine, SE Colombia -3.82 -70.27 46 0.50 0.00 -0.64 

11 High andean forest, Colombia 1.25 -77.43 40 0.49 0.44 1.62 

12 Atlantic Forest, low elevation -27.27 -49.01 24 0.67 0.17 2.99 

13 Atlantic Forest, mid elevation -27.26 -49.02 14 0.29 0.00 -0.30 

14 Atlantic Forest, high elevation -27.26 -49.02 11 0.38 0.00 -0.19 

15 Highland temperate mosaic forest, Central Mexico 19.23 -98.97 21 0.15 0.00 -0.95 

16 Suburban forest, Central Mexico 19.28 -98.23 10 0.07 0.00 -0.64 

17 Protected cloud forest, Central Mexico 19.5 -96.95 15 0.19 0.00 -1.37 

18 Rainforest, Colombia 0.07 -72.45 52 0.52 0.13 1.54 

19 Caatinga forest, NE Brazil -8.6 -38.57 11 0.18 0.00 -0.25 

20 Highland caatinga, NE Brazil -13.12 -41.58 35 0.41 0.14 1.67 

21 Open cerrado, NE Brazil -13.12 -41.57 19 0.58 0.13 1.30 

22 Campos rupestres, NE Brazil -12.98 -41.33 42 0.44 0.14 1.32 



Network  

        ID

  

Site Latitude 

 

 

Longitude 

 

 

Network  

Size 

Specialization  SRS SRSz 

23 Cloud forest, mid elevation, Costa Rica 10.27 -84.08 33 0.66 0.38 1.21 

24 Cloud forest, high elevation, Costa Rica 10.18 -84.11 28 0.48 0.44 2.17 

25 Cloud forest, low elevation, Costa Rica 10.44 -84.01 29 0.51 0.13 0.10 

26 Cerrado, Central Brazil -18.99 -48.3 25 0.28 0.00 -0.41 

27 Cerrado, Central Brazil -19.16 -48.39 43 0.46 0.00 -0.40 

28 Cerrado, Central Brazil -17.78 -48.68 21 0.33 0.00 -0.44 

29 Protected cloud forest, Central Mexico 19.5 -96.95 21 0.27 0.00 -1.52 

30 Pantanal wetland, SW Brazil -19.52 -56.98 17 0.47 0.00 -0.24 

31 Campos rupestres, SE Brazil -19.25 -43.52 56 0.70 0.17 2.37 

32 Cerrado, W Brazil  -20.44 -54.65 20 0.14 0.00 -0.40 

33 Montane Forest, SE Brazil -22.73 -45.58 31 0.49 0.00 -0.40 

34 Andean forest, Colombia 4.53 -73.85 22 0.36 0.33 0.93 

35 Andean forest, Colombia 5.9 -73.42 34 0.60 0.17 -0.21 

36 Andean forest, Colombia 5.92 -73.53 19 0.36 0.17 0.76 

37 Coastal cloud forest, SE Brazil -23.63 -45.85 31 0.41 0.00 -0.35 

38 Primary forest, Bolivia -17.51 -63.64 9 0.54 0.17 1.86 

39 Primary forest, Bolivia -16.96 -65.41 9 0.51 0.00 -0.25 

40 Campo rupestre, W Brazil -19.95 -43.9 16 0.12 0.00 -0.43 

41 Atlantic forest, SE Brazil -23.28 -45.05 56 0.51 0.00 -0.39 

42 Subtropical humid montane forest, Perú -13.22 -72.12 12 0.39 0.33 0.90 

43 Lowland primary forest, Perú -12.85 -69.37 15 0.17 0.00 -0.48 

44 Andean rainforest, mid-elevation, Ecuador. -0.02 -78.77 84 0.32 0.37 1.99 

45 Elfin forest, Costa Rica 9.57 -83.73 22 0.62 0.50 2.10 

46 Undisturbed highland páramo, Costa Rica 9.48 -83.48 30 0.78 0.60 2.45 
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