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Abstract

The benefit of social robots to support child learning in an educational context over an

extended period of time is evaluated. Specifically, the effect of personalisation and adapta-

tion of robot social behaviour is assessed. Two autonomous robots were embedded within

two matched classrooms of a primary school for a continuous two week period without

experimenter supervision to act as learning companions for the children for familiar and

novel subjects. Results suggest that while children in both personalised and non-personal-

ised conditions learned, there was increased child learning of a novel subject exhibited

when interacting with a robot that personalised its behaviours, with indications that this ben-

efit extended to other class-based performance. Additional evidence was obtained suggest-

ing that there is increased acceptance of the personalised robot peer over a non-

personalised version. These results provide the first evidence in support of peer-robot beha-

vioural personalisation having a positive influence on learning when embedded in a learning

environment for an extended period of time.

Introduction

Social robots have the potential to make positive contributions to a range of human-centred

activities, from support of the elderly to therapeutic assistance to adults and children [1–4].

One domain of particular interest is education, where social robots may be used to supplement

existing teaching structures to provide additional support to children. A range of evidence

comes together to support this perspective: it is known that one-to-one tutoring leads to signif-

icant learning improvements [5], classroom engagement is a predictor for peer acceptance in

later years in young children [6], and that personalised social and academic support has been

shown to reinforce later achievement [7]. The role of robots to facilitate engagement in class-

room activities thus has potentially significant consequences for learning as well as for social

development. In these efforts, the role of adaptivity is considered central to the efficacy of

application: an adaptive robot will be able to take into account the specific needs, requirements

and preferences of the person(s) with whom they are interacting. This personalisation of robot
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behaviours is the focus of the present work. In this paper, we demonstrate the positive role that

personalised robot peer behaviours play (along a number of dimensions) for child learning in

a situated context.

Existing work has shown that the presence of robots confers a number of advantages over

other media (e.g. standard desktop computers or paper-based systems) for learning and beha-

vioural change in people [8]. This has been demonstrated, for example, in the domains of

adherence to weight-loss programmes [9], reducing puzzle solving times [10], learning words

[11], and motor task learning [12]. Further studies have shown that physical robots will attract

more attention than their virtual analogues [13–15], and will comply with their requests [16],

following evidence suggesting children regard social robots as psychological agents [17] and

are perceived as more enjoyable interaction partners [18, 19]. Taken together, these studies

indicate that robots take advantage of, and amplify, the human propensity to anthropomor-

phise inanimate objects, which results in subsequent behavioural change [20, 21]. Given this

effect of physical robots as a basis, the question of interest is therefore how the behaviour of

the robot can augment this to maximise the desired outcome for the human interactant.

Two prior studies in the domain of social robots for educational contexts have set bench-

marks for subsequent research. In the first (single experimental condition) study, a robot was

placed in a corridor outside two Japanese classrooms for two weeks (6-7 and 10-11 year-olds,

under experimenter supervision), with the nominal task of encouraging the children to learn

English in unstructured interactions in break times [22]. This study demonstrated significantly

increased vocabulary recall by the children. In the second study, a humanoid robot with a

gradually unfolding repertoire of social behaviours was placed within a classroom of 10-11

year-olds in Japan for two months (32 experimental days), although interactions took place

outside of normal lesson times and also under constant experimenter supervision [23]. While

the examination of learning outcomes for the children was not the focus of the study, with the

development of relationships between the children and robot the primary aim, it was shown

that children who maintained peer-like interactions with the robot maintained interactions

over the extensive experimental period. Extending significantly from these works, the present

study focusses explicitly on learning, and being simultaneously embedded both physically and

in terms of the curriculum in the classroom itself.

A number of other studies have recently followed from these seminal works to further

explore the specific potential role that such social robots can play in helping children to learn,

although typically these have taken place outside of school classrooms or over isolated interac-

tion sessions. While a number of studies demonstrate the benefit of social robots in terms of

preference [24] and for adult learning [25], studies with children have shown that personalisa-

tion of robot behaviour (e.g. using names) [26] and task content (e.g. increased coverage of

subjects in which the children struggle) [27] can lead to modest learning gains in short-term

and single interactions, and that collaborative learning between children is facilitated [28].

However, these studies are ambiguous regarding the actual impact of social behaviour on child

learning: the presence of robots appears to facilitate increased learning, but the role of social

behaviour to extend this effect remains unclear, in contrast to the human-centred theory [29].

In the present work, we specifically examine the role that robot personalisation can play in

supporting the learning of children in social interaction with a humanoid robot over longer

and more intensive periods of time. We conduct this study within the classrooms themselves,

integrated within the school curriculum, and with no experimenters present during proceed-

ings, so as to maximise the ecological validity of our observations, results, and potential utility

for real applications. Our findings broadly support the hypothesis that personalisation within

interactions facilitates learning.

Robot education peers in a situated primary school study
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Situated school study

In an education context, robots could take on a number of social roles, such as tutor or peer,

each of which gives rise to certain behavioural expectations. As noted above, both have been

found to result in child learning, and both come with the expectation of social behaviour [30,

31]. However, whereas a tutor can be reasonably expected to not make mistakes, there is not

necessarily such an expectation for a peer: indeed, it has been found that the robot making

mistakes will further encourage child learning [32]. A robot with a more cooperative interac-

tion style has been found to elicit higher levels of engagement when interacting with children

[33]. Finally, in terms of preferences, it has been shown that in comparison with a tutor, a peer

role is preferred [34]: in the domain of robot companions for diabetic children for example,

the robot playing the role of a peer appears to be preferred over a tutor [4, 35]. For the present

study, we therefore focus on the role of social robot as peer; a learning companion.

This focus on the peer role entails a greater emphasis on collaborative (involving multiple

parties attempt to learn something together [36]) rather than didactic (in the manner of a

teacher) interactions between the child and robot. Technology is broadly being highlighted as

a means of ameliorating this [37]: child-child interaction studies have shown that collabora-

tions are more effective with jointly visual and manipulable objects [38]. The touchscreen-

based task environment we use takes advantage of this effect by implicitly constraining the

content of the interaction to the task [39], thus encouraging collaboration and participation

(active learning) [40] in a shared task space. It has been previously shown how such a task

environment provides an engaging context for child-robot interactions [15, 41, 42].

Our application context is a primary school classroom, with the intent that the robots act

autonomously whilst embedded within them. We seek to achieve ecological validity for the

study [43]: we emphasise that the robots are not under experimenter supervision during the

experiment (the teacher themselves provide this) and thus also not whilst the children interact

with the robot, as this detracts from relevance to potential deployment scenarios. Furthermore,

we consider the robot to be embedded within the classroom, both in terms of physical presence

(in the classroom, and in operation during lesson time), but also in terms of the incorporation

of learning material from the children’s curriculum. These two points (embeddedness and

unsupervised operation) constitute novel extensions to studies in the existing literature.

These considerations contextualise the broad hypothesis of the present study: that persona-
lisation in a robot learning peer will lead to greater learning effects for children in an embedded
educational context. Four aspects of this broad hypothesis require specification. Firstly, we

hold learning to incorporate generalisation in addition to memorisation, following a revision

of Bloom’s taxonomy [44], which identifies cognitive processes (from remembering to crea-

tion) as well as knowledge (from factual to meta-cognitive) as essential educational objectives.

Our learning evaluation thus specifically incorporates aspects of application of knowledge to a

new context. Secondly, we note that there are a range of potential targets for learning for the

children in their educational environment. For this reason, we examine both topics that are

part of their existing curriculum (familiar subjects), and ones that are not (novel subjects).

Thirdly, the novelty of our classroom-embedded application necessitates an examination of

the attitudes of the children in addition to their performance, to begin to assess the wider

implications of such an application. We thus attempt to characterise the wider experience of

the children over the experimental period. The fourth aspect is the nature and extent of robot

behaviour personalisation, which has been stated as “. . .reflect[ing] the needs and require-

ments of the (social) environment where the robot is operating in” [45] (p20). Consistent with

this definition, Lee et al [24] describe three non-exclusive means of increasing robot personali-

sation that include aspects of behaviour that are not related directly to adaptation per se, but

Robot education peers in a situated primary school study
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also to the creation of a personable character: increasing friendliness, alteration to fit user pref-

erences, and adaptation over repeated encounters. This indicates a broad and integrated per-

spective on personalisation; a position that we here subscribe to.

A range of evidence in HRI studies, grounded in multiple other disciplines, may be brought

together to further support this perspective for the present work. Mapping onto the definition

and characterisation of behaviour personalisation discussed in the previous paragraph, we

identify three particular facets of personalisation that are particularly relevant to our task con-

text: adaptation of non-verbal behaviour, personable language content, and alignment to task

performance. These encompass both adaptive (non-verbal and task performance adaptation)

and personable (language content) behaviours that match the social interaction context

(repeated peer-peer interactions in an education setting). Following the phenomenon that

humans align their actions to one another, such as linguistic content [46], non-verbal behav-

iour adaptation follows from and encompasses those aspects of the robot behaviour that are

manipulable based on observation of the child’s behaviour [47], based on the phenomenon

that humans will adapt their behaviour to that of a robot [48]. Personable language content

refers to the explicit taking into account of the specific person with which the interaction takes

place: for the present study, this entails using the interacting child’s name during the interac-

tion [26], and using an informal style for instruction and feedback utterances [49]; being per-

sonable as opposed to imperative. Finally, performance alignment is the modification of

aspects of the task to align them with the performance of the child [25, 50]. In the present

study, such performance alignment is employed at two levels: firstly at the task level, where the

children could repeat an individual task, and secondly at a behavioural level, where the perfor-

mance of the robot is aligned with that of the child [47]. The first and third facets of personali-

sation effectively constitute a memory of prior interactions, which may subsequently be

applied to further interactions.

As stated above, we consider these three facets of personalisation together as a single con-

cept [24]. Evidence from a range of sources indicates that the consideration of single modality

interaction cues is insufficient to account for human behaviour, and that instead a fundamen-

tally integrated perspective needs to be taken [51]. For example, emotion perception has been

found to require conceptual processing, and is thus open to contextual influences (e.g. visual

and social) [52]. Furthermore, recent theoretical developments in the domain of social cogni-

tion, emphasising contingent behaviours, suggest that the context of the interaction shapes the

individual’s disposition to engage in interaction, resulting in a difficulty in handling out-of-

context cues [53]. Given that the context is at least partly determined by the interaction part-

ner, this further indicates the importance of coherency of context. Human social interactions

naturally integrate all these aspects of personalisation, and so we anticipate that such coher-

ency would also be expected of a nominally social robot. Taken together, and as a first truly

embedded study of this type, these lines of evidence motivate and justify our decision to main-

tain the integration of the three facets of personalisation for the present study.

The study described in this paper seeks to address the broad hypothesis by using a two-con-

dition, between-subject experimental design. Two age- and ability-matched groups of 7-8

year-old children in a U.K. primary school form the subject groups. A single robot is deployed

in each group in the same room in which the children engage in their daily lessons (Fig 1), dur-

ing which time individual children interact with the robot. They engage in a collaborative sort-

ing task with the robot on novel (history—the stone age) and familiar (mathematics—times-

tables) topics using a large mediating touchscreen [54] (Fig 1(b)). There are no experimenters

present during the interactions, which took place over a continuous two-week period. In the

“Personalised” condition (P), the robot personalises its behaviour along the three defined

Robot education peers in a situated primary school study
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dimensions; in the “Non Personalised” condition (NP) the robot displays non-adaptive, non-

personalised behaviour (see the Methods section for details).

Materials and methods

The aim of the study conducted was to investigate whether personalised robots embedded

within a classroom for an extended period of time (part of normal classroom activities, and

with no experimenters present) can lead to increased child learning. The primary hypothesis

of the study is therefore that children in the Personalised robot condition would learn more

than children in the Non-Personalised robot condition, on the given set of topics. In addition

to this, we seek to explore some of the wider implications of having the robots embedded

within the classrooms, and whether the personalisation had any additional effects beyond the

target learning outcomes.

Ethics statement

Approval for conducting this study was granted by the Plymouth University Faculty of Science

and Technology Human Ethics Committee, as part of a thematic programme of research

involving the robot and touchscreen setup, and children in local schools. An opt-out informed

consent was obtained in writing from the parents/guardians of all participating children, and a

separate opt-in written informed consent was obtained for video recording the interactions

between the children and the robots. Children were withdrawn from the study if consent was

not obtained, and it was made clear that they could withdraw if and when they wished to.

Subjects

A total of 59 children aged 7-8 (in U.K. year 3) took part in the study (summer term). All chil-

dren attended a single U.K. primary school, but were divided into two classes. This division

Fig 1. Typical physical setup of the system within the classroom. The robot, Sandtray—a touchscreen device—and camera setup was located in one

corner of the room in which the children had their normal lessons. Interactions took place during normal lesson time. Both classrooms had similar

arrangements. Not to scale.

https://doi.org/10.1371/journal.pone.0178126.g001
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was not on the basis of ability. Gender balance favoured girls, although this applied equally to

both the first (12 boys, 18 girls, 30 in total) and second (12 boys, 17 girls, 29 in total) classes.

Each class was based in a different room where the majority of their lessons took place

(Information Technology lessons and Sports took place in different areas of the school). These

classrooms were located on the same corridor on the first floor of the school building (one

other empty classroom was on the same floor). The children in the two classes were separated

in these classes, although break times were held in communal areas of the school. Each class

was randomly assigned an experimental condition for the duration of the experiment. Each

class had a separate teacher who remained with the class for the duration of the experiment

period. In addition, each class was assigned a teaching assistant (TA), who varied by day. Both

teachers and TAs were briefed regarding the experimental setup; none of these were told of the

experimental conditions, nor that there were different robot behaviours deployed in the two

classes. This arrangement of children and classes provided the greatest degree of homogeneity

possible between the conditions by controlling for a number of potentially confounding sub-

ject and environment factors.

Materials

The same hardware setup was employed in both classrooms (Fig 1(a)). This consisted of a

touchscreen (the Sandtray), Nao humanoid robot (58cm tall, made by Aldebaran Robotics),

aluminium extrusion frame, and recording devices (Fig 1(b)). The robot and touchscreen were

synchronised over a wireless network such that the robot could manipulate virtual ‘objects’

displayed on the screen [54]. The aluminium frame served the dual purpose of maintaining

the arrangement of the equipment (e.g. reducing cable trip hazards) and providing a minimal

barrier to discourage the children from interfering with the hardware. The only difference

between the robots used was the highlight colour of the plastic panels: orange was used in the

Personalised condition, and grey was used in the Non-Personalised condition. One such hard-

ware setup was deployed in each classroom, where it remained for the continuous two week

period of the experiment.

Learning task

Taking into account the children’s current curriculum, two topics for learning in the interac-

tion with the robot were chosen, since there is a suggestion that multiple activities support the

maintenance of engagement [55]. The first was novel to the children, but was due to be learned

in the following academic year. The second was familiar as it had already been the ongoing

subject of learning. This dual-topic learning task was chosen to assess whether, in the context

of a familiar learning environment, a robot learning companion could be applied as an inter-

vention for an existing learning process as well as to a novel task.

The familiar learning task was chosen to be the times-tables, up to and including 12. This

formed part of the curriculum that the children studied throughout the year. As such, the chil-

dren were used to the concept involved, but varied in ability across the subject group. The

novel learning task concerned the stone age. This was a new subject matter for the children in

the school environment, with it due to appear on the syllabus in the following year. Learning

gains made in this topic would thus have been beneficial to the children in the future.

Both topics were administered using the Sandtray, and were structured in the form of a

series of two-category sorting tasks played with the robot (e.g. Fig 2(c)). A library of images is

placed on the screen, each library comprised of two static category images, and a number of

movable images. The task is to sort each movable image into the correct category: visual feed-

back is displayed on the screen to indicate a correct (or incorrect) categorisation. The child

Robot education peers in a situated primary school study
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uses the touchscreen, and the robot can virtually drag the same images, thus establishing parity

of potential interaction affordances with the screen, and facilitating interaction between the

child and robot [54]. This methodology has been employed in a number of previous studies [4,

15] and has proven to be an effective strategy to engage children with robot interaction tasks.

Given that both novel and familiar learning tasks are displayed on the touchscreen, the tasks

are interleaved: i.e. times-tables and stone age libraries are alternated (Table 1).

The image libraries were the same for all children, in both conditions. Each image library

formed a two-category sorting task, of which half were uniquely associated with one of the two

categories, and half to the other. The stone-age libraries were each comprised of 14 images,

and the times-tables libraries were comprised of 12 images. The images appearing in the image

libraries did not appear in the pre- and post-experiment knowledge tests. The order of the

times-tables is according to difficulty (as specified by the teachers prior to the study), whereas

the stone-age image libraries each covers a different topic (where the task is to recognise

whether each image displayed belongs in the stone-age or not).

There were two additional learning-related components that were tested in this experiment.

In the first, an item of factual information was stated by the robot to the children during their

interaction, with recall of this fact tested for at the end of the experiment (with the multiple-

choice question “how long ago was the stone-age?”, options: {two years, two hundred, two

thousand, two million, two trillion, two bazillion}; last option a fake large number, correct

answer is two million years ago). The second component was tracking child performance in a

class-based task that was independent of either the familiar or novel learning tasks (incidental
task): spelling test scores were chosen as they were assessed on a weekly basis. In this way, per-

formance prior to, during and after the experiment could be tracked.

Conditions

Two experimental conditions were employed: a Personalised (P) interactive robot condition,

and a Non-Personalised (NP) robot condition. The robot behaviour differed between the

Fig 2. Interaction structure and contents. (a) structure of each interaction, with five minutes on the collaborative sorting task itself; (b) example of a child

engaged in the task with the robot (hardware and classroom setup as shown in Fig 1); (c) two sample image libraries, showing a 3 times-table task, and a

stone-age animals task.

https://doi.org/10.1371/journal.pone.0178126.g002
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robots in three distinct respects: non-verbal behaviour (gaze, movement alignment), verbal

behaviour (friendliness, personalisation), and adaptivity of progression through the learning

content (to personal performance). In neither condition were the children or teachers made

aware of the differing aspects of behaviour, nor of the differences between the conditions. In

both conditions, the robots acted autonomously, i.e. not under the control of an experimenter

or teacher.

In the Personalised condition, the robot was animated (actively seeking to match gazes to it

by the interacting child, and exhibiting life-like idling movements), responsive to the approach

of a child at the start of an interaction (it would stand up), and varied its behaviour according

to the characteristics of each child, as observed in the interaction. In terms of non-verbal

behaviour, this constituted adaptation of the drag speed of the robot movements on the screen,

the accuracy of the movements (in terms of percentage correct and incorrect categorisations),

and the length of time between successive moves [47]. In terms of verbal behaviour, the robot

would use the interacting child’s name, and employ a more friendly (as opposed to imperative)

demeanour. Full details may be found in the supplementary materials (S1 File). Progression

through the lesson image libraries was partially dependant on performance: assuming that the

child completed more than four image categorisations, then the image library was considered

to be successfully completed if the success rate for the child (i.e. not including robot moves)

exceeded 65%, with performance below this resulting in the library being repeated (up to a

maximum of three times). This personalisation of lesson progress provides a greater degree of

opportunity for practice on those topics where performance was low.

For the Non-Personalised condition, the robot’s behaviour remained constant throughout

all interactions, independent of the characteristics of each child, and was not responsive to the

Table 1. Image libraries used for the sorting tasks. Shown are the type of sorting task for each library, and

the categories used for the sorting itself. There were 14 images per stone age library, and 12 images per

times-table library. Stone age libraries are in italics: the fifth and sixth of these were combinations of images

from the first four stone-age libraries.

Library Library topic Library contents Sorting task

1 Times-table 2x table In/Out

2 Stone age Lifestyle Yes/No

3 Times-table 10x table In/Out

4 Stone age Animals Yes/No

5 Times-table 5x table Odd/Even

6 Stone age Tools Yes/No

7 Times-table 2, 10 & 5 division Odd/Even

8 Stone age Art Yes/No

9 Times-table 3x table Odd/Even

10 Times-table 4x table In/Out

11 Times-table 6x table In/Out

12 Times-table 3, 4, & 6 division Odd/Even

13 Stone age mix of subjects Yes/No

14 Times-table 7x table In/Out

15 Times-table 8x table In/Out

16 Times-table 9x table Odd/Even

17 Times-table 11x & 12x tables Odd/Even

18 Stone age mix of subjects Yes/No

https://doi.org/10.1371/journal.pone.0178126.t001
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approach of a child. This included movement speed, accuracy of moves, and delay between

moves. Imperative non-personal phrases were used (matched for number and length of utter-

ances used in the Personalised condition), and the progression through the learning material

was set at a constant rate for each child: each image library was completed only once before

moving on.

In neither condition was there a mechanism to explicitly consider turn-taking behaviours;

nevertheless, previous work has indicated that if the children perceive the robot to be a social

agent, turn-taking will emerge in the interaction [41].

Protocol

The class teachers were not informed of the hypotheses of the study, nor of the differences in

robot behaviour between the classrooms. The teachers administered pre-experiment knowl-

edge tests and questionnaires, and did so again for post-experiment tests and questionnaires.

During the experiment period itself, the teachers collected child performance on the normal

spelling tests and maths times-table tests, which were administered weekly. Maths lessons were

postponed for the two-week duration of the experimental period. A final debriefing interview

was conducted with the teachers after the experimental period. These additional data were col-

lected to enable a broader perspective on the influence of the robot in the classroom beyond

the interactions themselves.

During the experiment, there were no experimenters in the room: the robot system ran

autonomously, with experimenters only present at the start and end of the day to initialise and

shut down the system, respectively. In both conditions, the teachers designated the next child

to interact with the robot. The child would approach the robot setup (from the right-hand side

of Fig 1(b) for example), kneel down, and press a large ‘start’ button on the screen. Following a

verbal acknowledgement from the robot (differing by condition), the child would then proceed

to select their name on the screen. On name confirmation, the robot would begin the interac-

tion (differing by condition) with the last uncompleted image library.

After five minutes of interaction time, during which both the child and robot were able to

sort the images on the screen, the robot would announce that it had to rest (differing by condi-

tion). The child would be asked to answer a multiple-choice question on the screen, the robot

would return to it’s rest position, and the child would return to their seat in the classroom. The

next child could then be called to interact by the teacher.

Metrics

Four types of metric were used: pre- and post-experiment knowledge tests, within-interaction

performance data, questionnaires assessing opinion of and engagement with the robot, and

measures of performance in the classroom not involved in the experiment.

The pre- and post-experiment knowledge tests were administered on paper on the subject

of the novel learning task. They consisted of 24 images, 12 of which belonged to the stone-age

category, 12 did not. The same test was administered for both pre and post, but the children

were not given any feedback after the pre-test; the images in the test did not appear in the

robot interaction stage (Table 1), thereby testing an aspect of generalisation.

Within the interactions, all aspects of the child’s performance as detectable by the touchsc-

reen and robot were logged. This included the number of correct and incorrect classification

attempts per image library (including repeats in the Personalised condition). The change in

performance over interaction time per child could therefore be assessed. In addition to this, at

the end of each interaction, the child was asked to answer a multiple-choice question on the

screen before returning to their seat in the classroom (Table 2, the precise phrasing depended
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on the condition, shown in table S1 File). The questions after interactions two and three were

same in order to explore the changes in response over time. The questions varied according to

the interaction number, and are shown in Table 2. If the child did not respond within 30 sec-

onds, the interaction would end, and a ‘no response’ entry was made.

The third type of metric used was the administering of standard questionnaires. A prelimi-

nary pre-study questionnaire was administered to provide an indication of prior expectations,

following prior work [23]. The main battery of questionnaires was administered after the

experiment had been completed. Three questionnaires were used at this time. The first was

comprised of two sub-scales of the Intrinsic Motivation Inventory [56, 57]: interest/enjoyment

and perceived competence. The second was to assess the perception of social presence of the

robot [58], as previously validated [59]. The third was to assess the perceived social support

provided by the robot [60], an adaptation of a version validated with children (peer subscale)

[61]. All questionnaires may be found in the supplementary materials (S1 File).

The final evaluation metric was performance of the children in a classroom task not related

to the topics of the familiar and novel learning tasks. Spelling was determined as a suitable

choice for this as it was assessed on a weekly basis, which allowed change in performance to be

tracked over the course of the experiment.

Data analysis

For all results, the 95% confidence interval (CI) is provided for both within condition data and

between condition comparisons. Where appropriate, normality of data is tested for using the

Shapiro-Wilk test [62]; unless otherwise stated, the data are found to be consistent with nor-

mality, if not, then the Wilcoxon (non-parametric) test was employed. Homogeneity of data

variance is tested for using the Levene’s test [63]. Bootstrapping is employed to provide estima-

tions of population hypothesis testing from our collected sample [64]: 106 replications are used

and the studentized bootstrap 95% CI reported [65].

When considering learning effects, it should be noted that the pre- and post-tests used have

a maximum (and minimum) possible score, leading to a negative correlation of absolute learn-

ing gain and pre-test score [66]. Given this limit on maximal attainable increase in score, the

normalised learning gain metric, g = (scorepost − scorepre)/(scoremax − scorepre), is employed,

which normalises change in score to pre-test score, while being uncorrelated with pre-test

score [67]. This enables an assessment of the extent of learning irrespective of prior (starting)

performance. Normalised learning gain is calculated for all individuals, with the mean normal-

ised learning gain for each condition subsequently derived (and associated 95% CI).

Results

Two primary aspects of the results are considered. Given the main hypothesis, the effect of the

personalisation of robot behaviours on learning outcomes is considered. Then, given the con-

tinued presence of the robots in the two classrooms for the two week period, an assessment is

Table 2. End-of-interaction questions. Multiple choice questions displayed on the screen after each interaction, each of which had five possible responses.

Int. Question Option 1 Option 2 Option 3 Option 4 Option 5

1 Did you enjoy playing? Not at all No A bit Yes Yes a lot

2 What would you prefer to play with next? Robot Classmates Read a book Play outside Games console

3 What would you prefer to play with next? Robot Classmates Read a book Play outside Games console

4+ What do you think of the robot? Boring OK Good Bad Brilliant

https://doi.org/10.1371/journal.pone.0178126.t002
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made of how the children’s perceptions varied over time, both within and between conditions.

All data may be found in the supplmentary materials (S2 File). First however, we summarise

the characteristics of the interactions in the two conditions.

Expectations and interaction characteristics

As part of the pre-experiment questionnaires, the expectations of the children were assessed,

following [23]. Four questions were asked of the children regarding their perceptions of the

robot and how they expected their interactions to be (please refer to S2 File for full wordings

and possible responses). The results of this show no effective differences between the two con-

ditions, reinforcing the notion that the subject population is equivalent between conditions.

The children generally expected the robot to be like a friend (66.7%, followed by games con-

sole, 15.8%, and toy, 10.5%), wanted to know how the robot worked (across conditions, scale

1–5, M = 4.53, n = 59, 95% CI = [4.34, 4.72]), and wanted to be friends with the robot (across

conditions, scale 1–5, M = 4.71, n = 59, 95% CI = [4.57, 4.85]).

Both robot setups were permanently located in the two classrooms for a two week period.

This encompassed nine school days (a school closure occured on one day in the second week).

Over the two conditions for the experimental period, a total of 199 interactions took place

between the children and the robots—note that each of these took place in the classroom dur-

ing normal lesson time, and thus other children were present (albeit under the direct supervi-

sion of the teacher). Overall, the children completed an average of M = 4.56 image libraries

(n = 59, SD = 1.10) per interaction with the robot.

Given the touchscreen-centred nature of the interactions, performance of the individual

children on individual image libraries could be recorded and compared between conditions.

This progression through the image libraries is shown in Fig 3. In all cases, performance in the

Personalised condition exceeds that in the Non-Personalised condition, however, significance

is only present in a few of these cases (S2 File). While not a statistically significant effect, note

that the difference between the conditions generally increases as progression through the

image libraries increase.

Learning outcomes

Three learning topics were considered, and one recall task. The novel topic was recognition of

stone-age items; the familiar topic was the maths times tables (from two to twelve, inclusive);

and the incidental topic was a weekly spelling test. The recall task was a fact introduced by the

robot in its interactions with the children, the memory for which was tested after the experi-

mental period.

The two classes used in this study were not divided on the basis of ability, although they

were of the same age. In order to verify that the abilities of the children involved were ability

matched with respect to the learning metrics used, we consider the pre-experiment scores in

each of the three topics examined. Each of these indicates that the performance is indeed simi-

lar in the novel (MP = 0.731, nP = 30, 95% CI = [0.695, 0.766], MNP = 0.759, nNP = 29, 95% CI =

[0.718, 0.799], independent samples two-tailed t-test: t(57) = 1.097, p = .277), familiar (MP =

0.557, nP = 30, 95% CI = [0.478, 0.635], MNP = 0.520, nNP = 29, 95% CI = [0.467, 0.574], inde-

pendent samples two-tailed t-test: t(57) = 0.821, p = .415) and incidental tasks (MP = 0.617, nP

= 29, 95% CI = [0.526, 0.708], MNP = 0.654, nNP = 28, 95% CI = [0.553, 0.755], independent

samples two-tailed t-test: t(56) = 0.437, p = .664). This justifies the examination of differential

learning outcomes in the two conditions.

From the pre-test scores described above, consideration of the post-test scores provides an

initial and illustrative indication of the change in performance. For the novel (MP = 0.807, nP =
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30, 95% CI = [0.782, 0.832], MNP = 0.800, nNP = 24, 95% CI = [0.767, 0.834]), familiar (MP =

0.563, nP = 30, 95% CI = [0.485, 0.640], MNP = 0.537, nNP = 27, 95% CI = [0.481, 0.592]) and

incidental (MP = 0.800, nP = 29, 95% CI = [0.697, 0.903], MNP = 0.532, nNP = 28, 95% CI =

[0.417, 0.648]) tasks, this indicates similar outcomes between conditions (Fig 4(a)). Only in the

incidental task is there an indication of a significant difference between the conditions in the

post-test (independent samples two-tailed t-test: t(55) = 3.396, p = .0013).

Fig 3. Library scores per image library. Overview of mean scores per library, by condition, error bars are 95% CI: (a) performance in each of the image

libraries, see Table 1 for library contents; (b) scores for the first four stone-age image libraries (novel subject): ‘*’ denotes significance at the .05 level.

https://doi.org/10.1371/journal.pone.0178126.g003

Fig 4. Child learning performance between conditions. (a) summary of mean percentage test scores (for pre and post experimental period) for the familiar

learning task (times-tables), the novel learning task (the stone age), and the independent task (spelling, for which there was also a mid-experiment test); (b)

normalised learning gain exhibited in the familiar, the novel, and the independent learning tasks. Error bars show 95% CI.

https://doi.org/10.1371/journal.pone.0178126.g004
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However, consideration of only the difference between pre- and post-test scores (whether

by group or by individual) is a flawed metric since there is a ceiling on the maximum attainable

score (100%), and thus also on the maximum attainable increase in score given a pre-test

score. To counter this issue, we employ the ‘normalised learning gain’ metric (see Methods

section), which normalises score change to pre-test score. Applied to all subjects in both condi-

tions (i.e. all children in the study, minus exclusions), this indicates no significant learning

results for the novel (M = −0.026, n = 54, 95% CI = [−0.309, 0.256]), familiar (M = 0.002,

n = 57, 95% CI = [−0.085, 0.090]) or incidental (M = −0.082, n = 59, 95% CI = [−0.379, 0.214])

learning tasks.

Applied on a condition-basis (Fig 4(b)) to the data shows that for the novel task (stone-age)

the 95% confidence interval around the observed mean learning gain for the Personalised con-

dition does not include zero (MP = 0.253, nP = 30, 95% CI = [0.179, 0.328]), whereas the Non-

Personalised condition does (MNP = −0.376, nNP = 24, 95% CI = [−0.983, 0.231]). For the

familiar (MP = −0.026, nP = 30, 95% CI = [−0.179, 0.128], MNP = 0.033, nNP = 27, 95% CI =

[−0.040, 0.107]) and incidental (MP = 0.253, nP = 28, 95% CI = [−0.133, 0.639], MNP = 0.429,

nNP = 27, 95% CI = [−0.881, 0.022]) tasks, all confidence intervals include zero, indicating that

no learning is not an unexpected event (i.e. no significant learning effect).

A bootstrapping process was applied to provide estimations of population hypothesis test-

ing, examining whether the observed difference between the condition means lies outside of

the non-parametric bootstrapped distribution (Table 3). The analysis shows that this is the

case for the novel (MP−NP = 0.629, 95% CI = [−0.557, 0.589]) and the incidental (MP−NP =

0.682, 95% CI = [−0.588, 0.589]) learning tasks, indicating positive learning effects in these

learning tasks. This is not observed in the familiar learning task (MP−NP = −0.059, 95% CI =

[−0.174, 0.175]).

The final learning-related metric applied was a recall task. After the second image library

(the first stone-age library, see Table 1), the robot would introduce a fact related to the stone-

age: how long ago it was. In the experiment post-test (paper-based), a multiple-choice question

(six options, see Method section) assessed retention of this fact: correct responses in the P con-

dition (57.1%) exceed those in the NP condition (48.1%), both of which exceed chance (1/6,

16.7%). Application of the Fisher exact test (due to small/null values present in the 6x2 contin-

gency table) reveals a marginal effect (p = .059). Collapsing the contingency table into 2x2 (cor-

rect/incorrect responses) reveals no significant effect (χ2(2, 55) = 0.446, p = .504). That both

condition groups of children perform greater than chance (multinomial probability for both P

and NP given 1/6 chance level, p<.001) indicates a learning effect. However, given the pres-

ence of the robot in the classroom during the interactions, the marginal effect between the con-

ditions could, for example, be due to social contagion effects between individuals of the class.

Table 3. End-of-Interaction Questions Bootstrapping. 106 replications on the difference between the conditions (P—NP), compared to observed differ-

ence. Numbers in bold denote that observed difference of means lies outside of the bootstrapped 95% CI of the difference of means.

Metric Difference of the Mean (P—NP) 95% CI of bootstrapped difference of means

StoneAge Learning Gain (novel task) 0.629 [−0.557, 0.589]

Maths Learning Gain (familiar task) −0.059 [−0.174, 0.175]

Spelling Learning Gain (incidental task) 0.682 [−0.588, 0.589]

Social Presence Questionnaire 0.184 [−0.368, 0.368]

Social Support Questionnaire 0.249 [−0.395, 0.396]

IMI Interest/Enjoyment Questionnaire 0.177 [−0.328, 0.333]

IMI Perceived Competence Questionnaire 0.016 [−0.460, 0.464]

https://doi.org/10.1371/journal.pone.0178126.t003
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These results indicate that the interaction with the personalised robot leads to a significantly

increased learning outcome for the children in the novel task than with the non-personalised

robot, although this is not the case for the familiar task. There is a similar suggestion of

increased learning performance for the incidental task, since this was assessed at the same time

and in the same way for both condition groups. However, while this result is significant, we

only tentatively claim the beneficial role of the personalised robot on other aspects of class-

room-based work (as with the familiar task) since there are number of factors for which there

was no control put in place (e.g. potential exposure to the material to be learned in the inter-

vening time, or social interaction effects between subjects). This result does however lend sig-

nificant support to a further exploration of this issue.

Child perceptions and correlations

After each of the interactions, a multiple-choice question was displayed on the screen, with the

robot asking the children to choose one of the options prior to returning to their seat (see

Table 2). The question posed after the first interaction (“did you enjoy playing?”) reveals high

levels of agreement for both conditions: 96.7% chose “yes a lot” or “yes” in the personalised

condition (n = 30), compared with 89.7% in the non-personalised condition (n = 29), with no

significant difference between the two. This is not a surprising result, given the initial enthusi-

asm due to the novelty effect.

The questions posed after interactions two and three were the same (“what would you prefer
to play with next?”, with answers classified as either robot or other), and enable an examination

of changes in response over time, possibly as the novelty effect increasingly wore off. The

results show (Fig 5(a)) that in both conditions there is a reduction in children choosing the

robot over other options, with this effect being greater in the NP condition. This difference

between interaction numbers is not significant in either the P (dint2−int3 = 0.033, χ2(2, 60) =

1.355, p = .508) or NP (dint2−int3 = 0.137, χ2(2, 54) = 2.703, p = .259) conditions. In addition,

the effect size is weak for the P condition (Cramer’s VP = 0.150), and moderate for the NP con-

dition (Cramer’s VNP = 0.224). These results suggest that the novelty effect was reducing over

the course of the interactions.

The post-experiment questionnaires assessed four aspects of the children’s perceptions of

the robot: social presence (SPQ), social support (SSQ), interest and enjoyment, and perceived

competence; please refer to the supplementary materials for full details of the questionnaires

(S1 File). Overall questionnaire reliability (Cronbach’s α) was high (listwise deletion for miss-

ing values) for the SPQ (α = 0.878), SSQ (α = 0.899), interest and enjoyment (α = 0.817), and

for the perceived competence (α = 0.812), which indicates good internal consistency.

Overall, the robot was rated highly in terms of social support, the children expressed high

levels of interest and enjoyment in the activity and in their own competence, with slightly

lower levels of perceived social presence for the robot.

There are however no significant differences between the conditions for any of the four

questionnaire-based results: SPQ (MP = 3.783, nP = 28, 95% CI = [3.545, 4.022], MNP = 3.599,

nNP = 26, 95% CI = [3.311, 3.887], independent samples two-tailed t-test: t(50) = 0.965, p =

.339), SSQ (MP = 4.247, nP = 28, 95% CI = [4.012, 4.482], MNP = 3.998, nNP = 26, 95% CI =

[3.673, 4.323], independent samples two-tailed t-test: t(46) = 1.215, p = .231), Enjoyment/

Interest (MP = 4.648, nP = 28, 95% CI = [4.411, 4.884], MNP = 4.470, nNP = 26, 95% CI = [4.239,

4.702], independent samples two-tailed t-test: t(52) = 1.051, p = .298), or Competence (MP =

4.125, nP = 28, 95% CI = [3.785, 4.465], MNP = 4.109, nNP = 23, 95% CI = [3.795, 4.423], inde-

pendent samples two-tailed t-test: t(49) = 0.069, p = .945). Bootstrapping supports this by
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showing a lack of significant difference between the conditions with respect to these four

aspects of robot perception (Table 3).

It is also of interest to examine the relationship between the performance levels, responses,

and questionnaire answers. Correlations are used for this (as opposed to linear regression)

since all variables are measured rather than manipulated (except for the conditions them-

selves): we seek to explore the data rather than generate predictions. The majority of correla-

tions are not significant, or are the same in both conditions. However, a number of

observations can be made based on the significance (or not) of the correlations in both the P

(Table 4) and NP (Table 5) conditions. In the NP condition, the score attained in the first

interaction is strongly and positively correlated with the first question response (whether they

enjoyed the interaction: r(26) = 0.542, p = .003), whereas this is not the case for the P condition

(r(28) = 0.097, p = .610), despite the mean scores (MP = 0.798, MNP = 0.756) and responses

(MP = 2.867, MNP = 2.643) being equally high. Conversely, however, the response in

Fig 5. End-of-interaction question responses. (a) end of interaction responses after the second and third interactions to the question “what would you

prefer to play with next?”, with “none” recorded if an answer is not given within 30 seconds (multiple choice from: robot, classmates, read a book, play outside,

games console, or no answer); (b) box-plots showing child ratings for the four questionnaires (end of bars represent last datum within the 1.5*IQR; circles

denote outside values; no outliers): social presence, social support, interest/enjoyment and perceived competence. Crosses indicate the mean, numbers

below the bars denote sample size.

https://doi.org/10.1371/journal.pone.0178126.g005

Table 4. P-condition correlations. Pearson product-moment correlation coefficients for the P condition between the post-experiment questionnaires, first

interaction score and response, and the overall learning gain. Cells in bold denote correlations significant at least at the .05 level.

SPQ SSQ Int / Enj Comp Int1 score Int1 resp SA-gain M-gain S-gain

SPQ 1

SSQ 0.675 1

Int/Enj 0.466 0.518 1

Comp 0.467 0.378 0.498 1

Int1 score 0.094 0.042 0.026 −0.108 1

Int1 resp 0.251 0.214 0.743 0.359 0.097 1

SA-gain 0.175 −0.076 −0.208 −0.011 0.327 −0.095 1

M-gain −0.151 0.159 0.138 −0.234 −0.172 0.083 −0.250 1

S-gain −0.189 0.079 0.253 −0.102 0.127 −0.066 −0.344 0.065 1

https://doi.org/10.1371/journal.pone.0178126.t004
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interaction one is strongly and positively correlated with the interest/enjoyment post-experi-

ment questionnaire response in the P condition (r(26) = 0.743, p<.001), but not in the NP con-

dition (r(24) = −0.032, p = .877). This appears to suggest that the levels of enjoyment

experienced in the first interaction are maintained throughout the experiment in the P condi-

tion, but not necessarily in the NP condition. The correlations between the post-experiment

questionnaire responses are similar between the two conditions, with the exception of a signifi-

cant positive correlation between perceived competence and interest/enjoyment for the P con-

dition (r(26) = 0.498, p = .001), but not for the NP condition (r(21) = 0.101, p = .655).

Taken together, these results indicate a high level of continued engagement with the robot

is sustained in both conditions, even after the two-week experimental period. There is some

indication that, where this existed in the first place, this is sustained somewhat more in the P

condition than in the NP condition.

Discussion and conclusion

In general terms, the results show that children exhibit significantly increased learning in the

novel learning task in the personalised condition compared with the non-personalised condi-

tion. This effect is also apparent in the incidental learning task, but not in the familiar learning

task. Personalisation encompasses three distinct aspects (non-verbal behaviour, linguistic con-

tent, and performance alignment) that we consider as contributing to the integrated percep-

tion of a single agent: in addition to the cue integration framework [51], discontinuities

between different aspects of the robot behaviour (e.g. personalisation in one respect, but not in

another) may impair the overall perception [68]. This motivated our decision to provide the

comparison between an integrated personalisation agent and one that did not, with the subse-

quently observed differences in learning outcome.

One aspect of the results that may have been impacted by this amalgamation of features in

the implementation of personalisation is the perceived ‘friendliness’ of the robot, which has

been characterised as including gentle, predictable movements [69]. It is thus possible that the

difference in robot personalisation between conditions leads to a difference in perception of

friendliness, which in turn could have an effect on the learning outcomes. However, the out-

come of the post-study questionnaires indicates that that this is not the case. Specifically, the

Social Presence (SPQ), Social Support (SSQ), and interest and enjoyment questionnaires all

showed non-significant differences between the conditions. To the extent that the SPQ and

Table 5. NP-condition correlations. Pearson product-moment correlation coefficients for the NP condition between the post-experiment questionnaires, first

interaction score and response, and the overall learning gain. Cells in bold denote correlations significant at least at the .05 level.

SPQ SSQ Int / Enj Comp Int1 score Int1 resp SA-gain M-gain S-gain

SPQ 1

SSQ 0.748 1

Int/Enj 0.443 0.335 1

Comp 0.400 0.363 0.101 1

Int 1 score −0.074 0.046 −0.224 −0.307 1

Int 1 resp 0.049 0.014 −0.032 0.142 0.542 1

SA-gain 0.271 0.228 0.126 −0.001 0.079 0.207 1

M-gain −0.089 0.124 0.326 0.017 −0.135 −0.077 −0.157 1

S-gain −0.476 −0.311 −0.272 0.071 0.262 0.243 −0.057 0.097 1

https://doi.org/10.1371/journal.pone.0178126.t005
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SSQ responses are related to friendliness, this indicates that friendliness is not a confounding

factor for the learning results.

In terms of behaviour, two further characteristics in particular can be incorporated beyond

the three aspects of personalisation currently used, namely personality and affective respon-

siveness. Adaptation to personality has, with adults for example, been shown to be beneficial

in the domains of the home [70], rehabilitation [71], and human-robot collaboration [72]. The

incorporation of such adaptation for children in an educational context may thus be of interest

in the future, even if the reliability of child self-report personality assessments may be ques-

tionable [73]. Affective responsiveness for a robot, as a more reactive phenomenon, has been

associated with a greater perception of social support [60], with the face of the robot a particu-

larly important feature [74]. A limitation in the current study regards the expressivity of the

hardware platform, particularly in terms of variation in facial expression (the Nao robot used

has a minimal static face, see Fig 1(b)), which limited the degree to which affective responsive-

ness, and hence potential for engagement [75], could be achieved. However, the present study

nevertheless provides a foundation for further investigation into such issues, by establishing

the importance of personalisation for learning.

The embedded nature of the present study methodology contributes to its novelty: we wish

to reiterate that the robots became permanent fixtures in the two classrooms over the two

week experimental period, and that there were no experimenters/technicians present with the

robots during the school day. This remains a rarity in social robotics research. With only the

teacher (and occasionally a teaching assistant) present with the children in the classroom, this

enabled us to approximate ‘natural’ conditions for the experiment, thus supporting the eco-

logical validity of our results. There is necessarily however a trade-off for the levels of control

over potential influences in an experimental sense [43]. For example, we did not, and indeed

could not given the lack of experimenter present, prevent the interaction of individual children

with their classmates during their turn with the robot. Furthermore, given that the children of

the two separate classes had breaks at the same time, we cannot exclude the possibility that the

two groups did not exchange ideas regarding the robot and its behaviour.

The lack of significance between conditions in the familiar task may be due to four effects,

apart from the possibility that there are no actual differences to be found. Firstly, robot perso-

nalisation as instantiated in the present study may not be sufficient to give rise to outcome dif-

ferences, or the robot personalisation aspects used were insufficient. However, given the

learning differences seen for the novel learning material, we suggest that this is not the case.

We certainly acknowledge the possibility of further behavioural refinements, but the demon-

stration of significantly different learning gains supports our primary hypothesis. Secondly, it

is possible that the novelty factor of having robots in the classroom increased overall motiva-

tion and hence performance in the tasks. This is unlikely for two reasons: (a) given the same

hardware setup in both classrooms, there is nevertheless an increased performance in the

novel task for the personalised condition but not the non-personalised condition, indicating

the influence of condition differences over a novelty factor; and (b) the qualitative results indi-

cate that the novelty factor decreased in the second week (also see point below). Thirdly, given

the potential mixing of children between the conditions outside of the classroom as noted

above, there is a possibility of some degree of cross-condition contamination. Whilst the prev-

alence of this is not possible to rule out, we note in mitigation that the teachers in their debrief-

ings did not suggest that this occurred. We further note that our efforts to maximise the

ecological validity of the study necessarily prevented an explicit control for the possible pres-

ence of this phenomena. Finally, we recognise that there are limitations in the administration

of questionnaires to children, in terms of the ceiling effect, or social desirability distortion [76].
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Although our use of standardised questionnaires mitigates the impact of this, the effect

remains potentially apparent in the results (Fig 5(b)).

Nevertheless, the experimental design (developed in conjunction with the teachers them-

selves) sought to avoid and minimise any potential confounds. For example, the teachers were

not informed of the specific hypotheses nor conditions of the study, and were involved only in

the learning task content and procedural issues (to ensure that similar methods would be used

by the teachers when interacting with and referring to the robot in their classroom). Similarly,

the classes were balanced in terms of age, gender and ability (as evidenced by the lack of signif-

icant difference in the pre-experiment scores and attitudes), reinforced by equivalent pre-

experiment expectations, resulting in homogeneous condition groups, which validates our

results and observations [77].

The children who took part in the study were primary school children, an age range that

has recently seen increasing use in HRI studies [4, 27, 50, 60], as means of supplementing exist-

ing educational practice [29]. In terms of generalising the results to other children of the same

age, the UK government Office for Standards in Education, Children’s Services and Skills

(Ofsted) conducts regular school inspections and compiles national statistics and performance

tables [78]. For the school at which this study was conducted, the proportion of children who

attained the expected standard in reading, writing and mathematics (72%, 2014 rating) for the

age group (Key Stage 2, level 4) is consistent with the regional (74%) and national (78%) mean

ratings. Based on this characterisation, we suggest that the results could be reasonably general-

ised to other primary school populations (at least in the U.K.), thus supporting the wider appli-

cability of the findings.

One further point of note is the wider effect of the presence of the robots in the classroom.

The teacher debriefing highlighted the impact of novelty: in the first week of the experiment,

some disruption to the class occurred as children were distracted by the robot actions and

speech. However, they noted that in both classrooms, this distracting effect dissipated in the

second week, although they reported still being able to use the robots as a motivator for the

children [79]. This is supported by the high levels of interest/enjoyment in the activity at the

end of the study (non-significantly higher for the personalised condition). This maintenance

of motivation speaks to the wider role of technology, including social robotics, in the class-

room and how it is handled (‘orchestrated’) by the teachers [80]. While acceptance was high in

the present study, this may be a self-selection bias (i.e. the school and teachers were enthusias-

tic about the study prior to implementation), and further examination of the effort required

on the part of the teachers and the school versus the learning benefits afforded by the type of

personalised social robot systems we have demonstrated here is necessary, particularly in

embedded applications (i.e. inside the classroom itself), as we have achieved in the present

study.

The methodology employed, with the autonomous robots embedded (both physically and

in terms of curriculum) within primary school classes without experimenter supervision, max-

imises the ecological validity of the study, and thus the implications for educational practice

and application. This study found that a robot peer exhibiting personalised behaviours in a col-

laborative learning task with individual children facilitated improved learning for the children

in a novel task over a non-personalised robot behaviour. This effect was not seen for the famil-

iar task, and whilst a differential improvement was observed in the incidental task, these results

require further verification in light of the non-significant differences between the child percep-

tions. We conclude that while further empirical study is required to distinguish between, and

indeed maximise the impact of, the different aspects of personalisation employed, we have

shown that robot personalisation provides a positive influence on child learning in the

classroom.
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