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Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the
eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations
in the persistent neural activity of neural integrators in the oculomotor brainstem, which
integrate sequences of transient saccadic velocity signals into a short term memory of
eye position. Despite intensive research and much progress, the precise mechanisms
by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic
statistical profile which has been modeled using random walk formalisms. Tremor is widely
dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue
that tremor may be a signal which usefully reflects the workings of oculomotor postural
control. We identify signatures reminiscent of a certain flavor of transient neurodynamics;
toric traveling waves which rotate around a central phase singularity. Spiral waves play
an organizational role in dynamical systems at many scales throughout nature, though
their potential functional role in brain activity remains a matter of educated speculation.
Spiral waves have a repertoire of functionally interesting dynamical properties, including
persistence, which suggest that they could in theory contribute to persistent neural activity
in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of
oculomotor postural control implies testable predictions, and could provide the beginnings
of an integrated dynamical framework for eye movements across scales.

Keywords: fixational eye movement, tremor, traveling waves, spiral wave, phase singularity, Lévy walk, persistent

neural activity, neural integrator

1. INTRODUCTION
During fixation the eye is not still. Three main classes of fixational
eye movement (henceforth FEM) have been identified (Martinez-
Conde et al., 2004). Microsaccades are very fast movements
which occur relatively infrequently. Drift is a slow, meander-
ing component which occupies most of fixation time. Tremor
is a fast, low amplitude aperiodic oscillation imposed on drift.
Microsaccades are in many ways much like saccades on a tiny
scale (Ko et al., 2010; Kagan and Hafed, 2013; Martinez-Conde
et al., 2013; Otero-Millan et al., 2013; Poletti et al., 2013),
though they may also be linked to the drift component (Engbert
and Mergenthaler, 2006; Engbert et al., 2011). FEM have clas-
sically been thought to counteract sensory adaptation. Recent
evidence suggests that FEM play a more sophisticated role, opti-
mizing visual flow for the response properties of retinal ganglion
cells (Rucci et al., 2007; Kuang et al., 2012) and relocating the
highest resolution parts of the retina with great precision (Ko
et al., 2010; Poletti et al., 2013). Some theories suggest that
FEM perform an active perceptual palpitation of the visual scene
which is fundamental to vision (Ahissar and Arieli, 2001, 2012;
O’Regan and Noë, 2001). Recently, very high resolution eye move-
ment data based on tracking tiny movements of ocular vein
structure in three dimensions has revealed more structure to FEM
than had previously been suspected (Li and Zhang, 2012; Zhang

and Li, 2012). These studies reported microsaccades which were
not straight and ballistic (as previously thought), but curving,
and even bent and jerky. Relatively little detailed information was
given, but it was reported that the drift-tremor combination took
a complex, curling trajectory. These high resolution data may
enable new insight into the underlying generative mechanisms of
fixational eye movements. Oculomotor postural control is medi-
ated by brainstem circuits (Aksay et al., 2000, 2007; Sparks, 2002)
and is strongly associated with persistent neural activity (Major
and Tank, 2004), which plays the role of integrating transient
stimulation from superior colliculus reflecting saccadic velocity
commands into persistent activity encoding the new eye position.
The neuroanatomy and functional circuitry of oculomotor pos-
tural control has been intensively studied (e.g., Aksay et al., 2000,
2001, 2003; Miri et al., 2011a,b; Fisher et al., 2013), but the precise
mechanisms underlying drift and tremor remain elusive.

Rotational waveforms (aka spiral waves, vortices, tori) are a
commonplace, universal dynamical form which play an orga-
nizing role in dynamical systems at all scales, from galaxies to
weather to evolution to organisms to organs to cells to pho-
tons (Toomre, 1969; Da-sheng, 1980; Boerlijst and Hogeweg,
1991; Gray and Jalife, 1996; Winfree, 2001; Molina-Terriza et al.,
2007; Schecter et al., 2008; Taniguchi et al., 2013). This general-
ity led Winfree (2001) to suggest toroidal temporal structure as
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a fundamental aspect of biological time, a notion for which the
reference provides many empirical examples. Spiral waves are a
canonical mode of pattern formation in dissipative systems oper-
ating far from equilibrium (Kuramoto and Koga, 1981; Cross and
Hohenberg, 1993). The brain, by necessity, is one such system
(e.g., Kelso, 1995; Ermentrout, 1998). Thus if toroidal wave-
forms (termed spiral waves in two dimensions, and scroll waves
in three dimensions) do not play an organizing role in normal
neurodynamics, then the brain must be considered something
of an exception to the rule, which would require explanation.
The suspected role of spiral waves in some pathological scenar-
ios such as epilepsy (Milton, 2012) and cardiac fibrillation (Gray
et al., 1998) suggests that the nervous system possesses mech-
anisms for actively suppressing turbulence and spatiotemporal
chaos (e.g., Schiff et al., 1994), but observations of spiral waves
in non-pathological settings (Jung et al., 1998; Huang et al., 2004,
2010) clarify that such suppression is not complete or universal.
Indeed, an active field of study in cardiac defibrillation is the sup-
pression of spatiotemporal chaos and turbulent neural activity by
the seeding of spiral waves (e.g., Zhang et al., 2002; Xiao-Ping
et al., 2011).

The current contribution hypothesizes a connection between
quasi-persistent spiral neurodynamics and persistent neural activ-
ity in the context of oculomotor postural control (Major and
Tank, 2004). Sections 2 and 3 respectively introduce the liter-
ature on spiral waves and fixational eye movements. Section 4
details our motivations in proposing the singularity hypothesis of
postural memory. Our purpose is not an exhaustive review, nor
to convince the reader that our hypothesis is necessarily correct,
but a targeted presentation of empirical evidence and functional
arguments which render the singularity hypothesis interesting,
plausible and worth testing. Section 5 offers some concluding
remarks. Predictions are presented in boxes in the main text.

2. TRANSIENT NEURODYNAMICS AND SPIRAL WAVES
The classical focus on attractor networks in systems neuroscience
(see for review Amit, 1992) is increasingly being enriched by
a modern synthesis which also stresses the importance of self-
organization and transient neural dynamics (Rabinovich et al.,
2001; Maass et al., 2002; Seliger et al., 2003; Durstewitz and
Deco, 2008; Friston et al., 2012; Milton, 2012), fractality in phys-
iology (Goldberger and West, 1987; West et al., 1994; Werner,
2010; West, 2010), self-organizing criticality (Bak et al., 1987;
Bak, 1996; Jung et al., 1998), chaotic itinerancy (Tsuda, 1991,
2001; Kaneko and Tsuda, 2003) and dynamic pattern formation
in non-equilibrium dissipative systems (Cross and Hohenberg,
1993).

Neural spiral waves are an intriguing class of quasi-persistent
transient neurodynamics, whose functional potential in brain
activity remains an open question. They have received extensive
theoretical attention in terms of their abstract properties in net-
works (e.g., Coombes, 2005; Kilpatrick and Bressloff, 2010b; Ma
et al., 2012b), but surprisingly little attention in terms of con-
crete cases linking their dynamics to perception and behavior. We
have conducted preliminary modeling studies employing spiral
waves for visual salience mapping (Wilkinson and Metta, 2011;
Wilkinson et al., 2011), and spiral neurodynamics have linked to

visual geometric hallucination (Bressloff et al., 2001; Kilpatrick
and Ermentrout, 2012a,b; Froese et al., 2013). At the motor end,
Heitmann, Breakspear and colleagues have developed physiologi-
cally explanatory models showing how traveling waves (including
spirals) can encode motor trajectories (Heitmann, 2013).

2.0.1. Spiral waves in nature, biology, and the brain
The multiscale ubiquity of spiral waves in nature and biol-
ogy (Toomre, 1969; Lechleiter et al., 1991; Winfree, 2001), and
their interesting dynamical properties (Boerlijst and Hogeweg,
1991; Biktashev and Holden, 1993, 1995; Langham and Barkley,
2013), have motivated many physical, chemical, and mathemati-
cal studies. Arthur Winfree pioneered computational and empiri-
cal investigations of toroidal dynamics in chemical and biological
systems (Winfree, 1967, 1972). Many biological dynamics exhibit
toroidal form (Winfree, 2001). The modern understanding of
pathological heart fibrillation (and de-fibrillation intervention)
is perhaps the most prominent medical application of this work
(e.g., Gray et al., 1998; Gray and Chattipakorn, 2005), though cel-
lular calcium dynamics is another important example (Lechleiter
et al., 1991). Spirals are reentrant waves which circle around a cen-
tral rotor known as a phase singularity (Winfree, 1991); a point of
maximally uncertain phase, surrounded by points of all phases.
The central rotor of a whirlpool or tornado provides a physical
example in three dimensions.

Propagating calcium waves in astrocyte networks are thought
to play an important role in regulating brain activity (Cornell-
Bell and Finkbeiner, 1991; Finkbeiner, 1992). Jung et al. (1998)
observed that Ca2+ spiral waves exhibiting scale-free distribu-
tions suggestive of self-organizing criticality (Bak et al., 1987)
are characteristic of healthy function, whilst epileptic events
are characterized by the breakdown of this scaling. In neu-
ral tissue, traveling waves have been observed widely in vari-
ous species in both sensory and motor cortices (see for review
Wu et al., 2008; Sato et al., 2012) via voltage sensitive dye
imaging (“VSDI”). VSDI is an invasive optical imaging method
which enables measurement of subthreshold changes in mem-
brane potential with high spatiotemporal resolution (Grinvald
and Hildesheim, 2004). Spiral dynamics are commonplace in
the dynamics of simulated excitable media including networks
of model neurons (Milton et al., 1993; Winfree, 2001; Chun-Ni
et al., 2010; Yu et al., 2010; Ma et al., 2012a), and have been
observed in mammalian (Huang et al., 2004, 2010) and reptil-
ian (Prechtl et al., 1997) cortex. Movies of cortical spiral waves
in the VSDI signal (from Huang et al., 2010) can be found
http://www9.georgetown.edu/faculty/wuj/propagationwave.html.

It has been suggested that spiral waves may play an organiz-
ing role in neural field interactions (Wu et al., 2008; Freeman,
2009; Huang et al., 2010). Short-lived spiral waves are frequently
observed in the healthy case (Huang et al., 2010), but the growth
of spiral wave formations of large duration and extent has been
linked to pathological conditions including heart fibrillation
(Gray et al., 1998) and epileptic seizure (Milton and Jung, 2003;
Viventi et al., 2011; Milton, 2012; Stacey, 2012). This is sugges-
tive that spiral waves are a part of normal function, whether
constitutive or epiphenomenal, but that their (potentially use-
ful) tendency to enslave surrounding dynamics (e.g., Savill et al.,
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1997; Yang and Yang, 2007; Huang et al., 2010) has to be carefully
controlled.

2.0.2. Dynamical behavior of spiral waves
The dynamical behavior of spiral waves can be complex and
is the subject of extensive research. A useful introduction with
video visualizations is given at Björn Sandstede’s website hosted
by the Department of Applied Mathematics at Brown University,
USA, http://www.dam.brown.edu/people/sandsted/research.
php?project=spirals. At the risk of oversimplifying, the behavior
of spiral singularities exhibits three basic components. Firstly,
the rotational orbit of the whole spiral wave will exhibit a
characteristic frequency and phase, and is reflected in a small, “on
the spot” circular rotation of the phase singularity at the spiral
tip. The current hypothesis proposes that this component may
correspond to the low frequency peak observed in tremor statis-
tics (Spauschus et al., 1999; Greschner et al., 2002), and could
explain new high resolution observations of curling trajectories
of drift and tremor (Li and Zhang, 2012; Zhang and Li, 2012).

This trajectory may be perturbed in various ways to take
on a locally more complex, globally drifting form. This is
known as spiral drift, and occurs in response to various forms
of symmetry breaking perturbations/gradients in the external
milieu (Biktashev and Holden, 1995; Wulff, 1996; Sandstede
et al., 1999; Biktashev, 2007). Figures 1–11 in the Scholarpedia
article Biktashev (2007) (http://www.scholarpedia.org/article/
Drift_of_spiral_waves), display images and animated movies
of the trajectory of spiral singularities under various forms of
symmetry breaking. Note the basic curling trajectory, whose
period is equal to that of the wave’s orbit. This spiral drift in
response to symmetry breaking perturbations in the excitability
of the medium is the neural correlate we hypothesize for the
well known slow component of fixational drift (Martinez-Conde
et al., 2004; Rolfs, 2009).

In addition to the above relatively slow components, fast, ape-
riodic oscillatory modulations of the basic curling trajectory can
result from instabilities at the phase singularity (Winfree, 1991).
The singularity is the point at which all surrounding signals can-
cel exactly, and so small fluctuations in the surround cause this
point of balance to jitter unpredictably. Gray et al. (1998); Bray
et al. (2001) tracked the spacetime trajectory of phase singulari-
ties in cardiac fibrillation data. Figure 1, from Bray et al. (2001)
depicts the evolution of a real cardiac phase singularity (white
tube inside black mesh) in detail over one cycle of the carrying
spiral wave. Figure 2, also from Bray et al. (2001) graphs longer
trajectories of the singularities of four interacting spirals. Note
the fast (80–90 Hz) aperiodic oscillation superimposed on the
basic curling trajectory, much faster than the period of the carrier
wave. Gray et al. (1998) reported similar spiral meander during
cardiac fibrillation. Though here in cardiac tissue, this instability
at the singularity is a universal feature of spiral waves (Winfree,
1991). The current proposal suggests this instability as the source
of the well known high frequency component of fixational tremor
(Martinez-Conde et al., 2004; Rolfs, 2009).

2.0.3. The functional role of neural traveling waves
Traveling waves are routinely observed throughout the brain (Wu
et al., 2008), and evidence is increasingly suggesting that they

play a functional role (Modolo et al., 2011; Sato et al., 2012;
Bahramisharif et al., 2013). Heitmann, Breakspear and colleagues
have produced a series of physiologically explanatory and plau-
sible models showing how traveling waves can encode motor
trajectories read out by dendritic spatial filters (Breakspear et al.,
2010; Heitmann et al., 2012, 2013). These are particularly interest-
ing in the current context. In these models, traveling waves encode
motor patterns defining movement, whilst synchrony constitutes
the resting state. The current model, in which spiral waves encode
for the active holding of posture, sits well in this framework,
because spirals, unlike other traveling waves, have and (almost)
hold a location in a specific sense (Biktasheva and Biktashev,
2003; Langham and Barkley, 2013). This makes them interest-
ing for the kind of active almost-stillness characterizing postural
control.

Spiral wave activity has been observed in the VSDI signal,
which primarily reflects the field dynamics of sub-threshold
membrane potentials (Grinvald and Hildesheim, 2004). These
waves can keep cells in a depolarized “ready” state for input, or
indeed polarize cells to effectively ignore input (Bahramisharif
et al., 2013). This implements a form of spatiotemporally struc-
tured gain control, widely agreed to be a fundamental aspect
of nervous function (Hillyard et al., 1998; Salinas and Thier,
2000; Salinas and Sejnowski, 2001; Rothman et al., 2009; Olsen
et al., 2012). Gain fields have been associated with attentional
selectivity at both the sensory and motor end (Aston-Jones and
Cohen, 2005; Saalmann and Kastner, 2009; Sara and Bouret,
2012).

On this view, fast, aperiodic spiral meander depolarizes a point
locus of local cells in the gamma band (peaking around 80–90 Hz)

FIGURE 1 | The evolution of a spiral wave over one rotational orbit.

Space is represented in the horizontal axes, and time (in milliseconds) on
the vertical axis. The black mesh encloses a thresholded area of reduced
variance (i.e., low amplitude) at the spiral center, as observed in cortex by
Huang et al. (2004, 2010). The white tube within the black mesh tracks the
evolution of the phase singularity at the spiral core. Note the fast (80–90 Hz)
oscillation of the singularity, which we hypothesize underlies the fast
component of fixational tremor. Reproduced from Figure 8B in Bray et al.
(2001), copyright John Wiley and Sons Publishing 2001.
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FIGURE 2 | The evolution of four interacting spiral singularities

in space (horizontal axes) over time (vertical axis). Time is
denoted in milliseconds. Note the fast (80–90 Hz) oscillation of the
singularities, which we hypothesize underlies the fast component

of fixational tremor. Graphs A–C are real trajectories from cardiac
data. Graph D is from a computational model. Reprinted from
Figure 4 in Bray et al. (2001), copyright John Wiley and Sons
Publishing 2001.

in a quasi-phaseless manner. The region outside the spiral center
is polarized and depolarized periodically by the spin of the spiral
arms, on a slower (5–25 Hz) scale dependent on the period of
the spiral orbit and the number of spiral arms. Examining the
relationship between local field potential and spike rates in the
temporal cortex, Zanos et al. (2012) found two populations of
cells with just these response characteristics. One population
responded at high frequencies in a phase invariant manner, the
other at lower frequencies in a phase dependent manner. The
(quasi)persistent, self-generating character of spiral waves is par-
ticularly interesting in the context of persistent neural responses
to transient stimuli. Huang et al. (2010) suggests that spiral waves
in visual cortex may be involved in maintaining persistent activity
from transient stimuli in the sensory context. A video of their
minimal computational model, in which a persistent spiral wave
is seeded by transient input, is http://www.jneurosci.org/content/
suppl/2004/11/03/24.44.9897.DC1/model-_spiraldrift.mpg. The
current hypothesis extends this idea to the context of persistent
activity in oculomotor postural control (Aksay et al., 2001; Major
and Tank, 2004).

3. FIXATIONAL EYE MOVEMENTS
Fixational eye movements can be quite different between species.
Martinez-Conde and Macknik (2008) review comparative stud-
ies of FEM in different species, concluding that tremor appears

to be the most phylogenetically conserved and fundamental
component, consistent with a basic role for spiral wave dynam-
ics in the generative process of FEM. Drift is also widespread,
whilst microsaccades appear linked to the existence of foveated
ocular architecture. Microsaccades are the most intensively
researched component of FEM in humans. These fast reloca-
tions of the fixation point appear to play a similar role and
manifest similar neural correlates as saccades more generally
(Ko et al., 2010; Hafed and Krauzlis, 2012; Kagan and Hafed,
2013; Martinez-Conde et al., 2013; Otero-Millan et al., 2013;
Poletti et al., 2013), but also show relations to drift (Engbert
and Mergenthaler, 2006; Chen and Hafed, 2013). Microsaccades
are relatively infrequent, occuring up to three times per sec-
ond at most and usually less frequently, in an irregular but
individually characteristic fashion (Engbert and Mergenthaler,
2006).

Most of fixation time (>90%) is occupied by a slow drift of
fixation (Martinez-Conde et al., 2004; Martinez-Conde, 2006;
Rolfs, 2009), as depicted in Figures 3, 4. Upon this is superim-
posed a fast (peaked around 80–90 Hz), low amplitude (approx.
one photoreceptor), aperiodic oscillation termed tremor. Tremor
is usually within the noise range of the recording equipment
(Martinez-Conde et al., 2004). As a result, less is known about
tremor than other components, and tremor is not resolved in
many FEM studies of drift and microsaccades.
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3.1. DYNAMICAL CHARACTERISTICS OF FIXATIONAL EYE
MOVEMENTS

3.1.1. Random walk modeling of FEM
On the basis of early studies (Cornsweet, 1956; Matin et al.,
1970; Findlay, 1971), FEM have been widely held to exhibit the
1/f spectrum of classical Brownian noise. Random walk analysis
examines the mean squared displacement of a diffusing “parti-
cle” (in this case the point of fixation) relative to time. In ideal

FIGURE 3 | Fixational eye movements and microsaccades, from Figure

1 in Engbert et al. (2011). Data were recorded from fixational eye
movements during a fixation of 2 s. Slow movements (blue) are highly
erratic, whereas microsaccades (red) are ballistic, small-amplitude epochs
with a more linear trajectory (compared with the slow background
motions). The sample trajectory was recorded with a sampling frequency of
500 Hz (for details see ref. 29 in Engbert et al., 2011). Reprinted from
Engbert et al. (2011), copyright PNAS 2011.

FIGURE 4 | FEM trajectories recorded with a new high resolution video

tracking technique. Zhang and Li, 2012

Brownian motion, this relation is linear in time. This character-
ization has been adopted in some recent models of how vision
may cope with (Pitkow et al., 2007; Burak et al., 2010), and indeed
exploit (Kuang et al., 2012), jitter of the retinal image due to FEM.

At the motor end, an important neural correlate of oculo-
motor postural control is persistent neural activity in brainstem
regions including the prepositus hypoglossi (“PH”) (Delgado-
Garcia et al., 1989) and medial vestibular nucleus (“MVN”)
(Serafin et al., 1991; du Lac and Lisberger, 1995). Persistent here
refers to sustained activity on timescales much longer than indi-
vidual neural spiking timescales, in response to a relatively brief
stimulation. Seung (1996) described a model of how persistent
neural activity could be maintained through positive feedback,
and showed how FEM drift-tremor could reflect a random walk
along the line attractor created by the positive feedback dynamics
in the motor memory of eye position. Seung suggested that vari-
ous sources of noise, such as the random fluctuations in the tonic
input from vestibular afferents, could be causing the random walk
behavior.

Persistent neural activity is associated with short term mem-
ory more generally (Major and Tank, 2004), and various potential
mechanisms for maintaining persistent activity have been investi-
gated (see for review Brody et al., 2003). Stability issues arising
from the positive feedback model were addressed in Koulakov
et al. (2002); Goldman et al. (2003). More recently, empirical evi-
dence contrary to the predictions of line attractor models (Aksay
et al., 2007; Miri et al., 2011a) has motivated the proposal of mod-
ifications of recurrant network models, and the development of
new models based on functionally feedforward networks and bal-
anced regimes of excitation and inhibition (Goldman, 2009; Lim
and Goldman, 2013). We address this topic in more detail in the
following section.

3.1.2. Self-avoiding random walk models
Recent work has shown that FEM exhibit non-trivial temporal
correlations whose description require fractional scaling expo-
nents, rather than the unitary scaling exponent of pure Brownian
motion. Engbert and Kliegl (2004); Mergenthaler and Engbert
(2007) applied random walk analysis to the statistics of fixational
eye movements at short (<40 ms) and long time (100–400 ms)
scales. The tremor component was not resolved in these stud-
ies. At short timescales, the fixation point drifts faster than
for normal diffusion/Brownian motion, with scaling exponents
in the range 1.3–1.5. This is termed a “persistent” Codling
et al. (2008) or “superdiffusive” Metzler and Klafter (2000) pro-
cess. On longer timescales, however, the distance of the fixation
point drifts slower than normal diffusion (termed subdiffu-
sive/antipersistent). We adopt “sub/superdiffusive” here to avoid
crossing terminology with that of persistent neural activity.

(Engbert et al., 2011) modeled this behavior in terms of a
self-avoiding random walk (“SARW”) in a potential. The poten-
tial accounts for the long term subdiffusivity, implementing a
tendency for “wandering back” to the center of the potential
well in the long term. The short term superdiffusivity is mod-
eled by giving the random walk a memory, and adding a term
such that the walk next visits the neighbor whose “previously
visited” activation is lowest, with ties resolved randomly. As a
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result, the walk tends to be structured by the initial direction
which is chosen (randomly), as the path backwards is in general
more visited. In this model, microsaccades are triggered by vis-
iting a site with a “visited” activation above a threshold. Roberts
et al. (2013) describe a similar self-avoiding random walk model,
though without the confining potential and the microsaccade
threshold, and with an imprecise continuous memory and rather
than a lattice representation. Importantly, this study showed that
both the superdiffusive drift in the FEM signal, and the self-
avoiding random walk approach, generalize to more ecologically
valid, dynamic viewing conditions (watching a film).

3.1.3. Recent findings may challenge some existing ideas
about FEM

Recently, Zhang and Li (2012) reported technical innovations
based on binocular video tracking of ocular vein structure, which
enable non-invasive, high resolution imaging of FEM in three
rotational degrees of freedom. Importantly, the optical imag-
ing approach avoids the interaction of mechanical measurement
devices with ocular tremor. The authors reported a previously
unsuspected level of structure at high resolution. See Figure 3 for
a FEM trajectory where tremor is not resolved. Figure 4 depicts
a FEM trajectory as measured by this new technique. These find-
ings are quite new and have not received much attention to date,
at least in terms of citations. They likely merit more attention,
because if they are reproducible, they offer a challenge to existing
conceptions of FEM in a number of ways.

Firstly, the microsaccadic trajectories recorded in these high
resolution data are not straight and ballistic, as is widely sup-
posed Martinez-Conde et al. (2004); Martinez-Conde (2006);
Rolfs (2009); Martinez-Conde et al. (2013). The microsaccadic
trajectories observed by Zhang and Li (2012) were often curved,
and could exhibit fine scale changes in both speed and direc-
tion. Secondly, and crucially to our argument here, Zhang and
Li (2012) reported that drift can take the form of a curled line at
a fine spatial scale wherein tremor is resolved. This observation
of a trajectory which is habitually self-crossing at a small spa-
tiotemporal scale is not predicted by self-avoiding random walk
models of drift generation, as the process should be self-avoiding
at small spatiotemporal scales. These findings are a significant
part of the motivation for the current hypothesis. Unfortunately,
however, we have as yet been unable to obtain the associated
time series data. Speculativeness notwithstanding, we believe that
the proposal of testable hypotheses is a positive way to motivate
the publicization of data and structure further empirical inves-
tigations in this area. Another high resolution non-contact FEM
measurement method which can resolve tremor has recently been
reported by Kenny et al. (2013a,b), so data of sufficient resolution
may soon become available from this group.

3.1.4. Tremor; a clue to the mechanisms of FEM, or “just noise”?
Tremor has often been dismissed as “noise,” but then so have
other aspects of FEM over the years. Whether tremor reflects
unrelated background noise or the workings of the neural mech-
anisms which maintain the dynamical posture of the eye remains
very much an open question. Spauschus et al. (1999) found strong
binocular coherence of tremor, and concluded that tremor reflects

the patterning of low-level drives to oculomotor neurons, rather
than motor noise. More recently, a sophisticated method was
employed by Thiel et al. (2008), who reported positive evidence
for binocular phase synchronization. They concluded that there
might be only one center in the brain that produces the fixational
movements in both eyes, or a close link between the two centers.
The loss or reduction of tremor in certain cases of brain pathology
(Michalik, 1987) and in coma (Shakhnovich and Thomas, 1977)
also gives reason to suspect a more important, and delicate, source
of tremor.

4. MOTIVATIONS FOR THE SPIRAL WAVE HYPOTHESIS OF
FEM DRIFT-TREMOR

4.1. STATISTICAL SIMILARITIES BETWEEN DRIFT-TREMOR
TRAJECTORIES AND SPIRAL DYNAMICS

Tremor contains a strong spectral peak around 80–90 Hz and
a less prominent, variable lower frequency component up to
around 25 Hz (Spauschus et al., 1999). A low amplitude (approx.
1 photoreceptor), slow (around 5 Hz), tremor-like ocular oscil-
lation has been recorded at very high resolution in the turtle
(Greschner et al., 2002), possibly corresponding to the slow
component of tremor in primates, though cross species compar-
isons must be made with caution (Martinez-Conde and Macknik,
2008). Greschner et al. (2002) reported this oscillation as periodic,
though the flat peak in the frequency spectrum around 5 Hz, and
the high variability visible in the inset example trajectories, may
be suggestive of quasi-periodicity (see their Figure 1A). Either
way, the regularity of this low frequency component is interest-
ing because it suggests a certain systematicity to the generative
mechanisms. Closer examination of human tremor is required
to establish whether an identifiable carrier wave exists at lower
frequencies, which is then heavily masked by the fast aperiodic
component of tremor. An underlying spiral wave neurodynamics
is consistent with both a periodic and a quasi-periodic form for
this carrier wave (Barkley et al., 1990; Broer et al., 1996), and pre-
dicts the accompanying high frequency aperiodic oscillation (see
Figures 1, 2).

See Figure 5, reprinted from Figure 7 in Huang et al. (2010),
for visual representations of spiral drift recorded in visual cor-
tex. Like FEM drift (Cornsweet, 1956; Matin et al., 1970; Findlay,
1971), spiral drift can exhibit Brownian statistical structure, due
to both external forcing/environmental gradients (Sendiña-Nadal
et al., 2000; Yuan et al., 2011) and intrinsic dynamics (Biktashev
and Holden, 1998). Such gradients could (but need not) reflect
the path memory and/or confining potentials in SARW models
(Engbert et al., 2011), and perhaps even visual context (Mensh
et al., 2004; Chan and Galiana, 2005). Like FEM drift, the veloc-
ity of spiral drift in neocortex is variable (Huang et al., 2010),
and was found to be higher in induced sleep-like states (see
Figure 5), consistent with recent observations that time-on-task
increases the speed of FEM drift, whilst reducing the peak velocity
of microsaccades (Di Stasi et al., 2013).

Prediction The singularity hypothesis predicts that, when the
small spatial scale of tremor is resolved, drift-tremor trajec-
tories will take a curling, self-crossing form reflecting the
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rotational orbit of a spiral wave. This might also be complex
due to interactions between similar systems controlling dif-
ferent degrees of freedom. The fast component of tremor will
manifest as an aperiodic modulation of this carrier wave. The
presence of a slow (10–20 Hz) rotational component, giving
the trajectory a habitually self-crossing form at small scales,
would distinguish the spiral wave model from self-avoiding
random walk models of FEM drift.

4.2. SPIRAL WAVES AND THE NEURODYNAMICS OF OCULOMOTOR
POSTURAL CONTROL

4.2.1. Persistent neural activity
Persistent neural activity (“PNA”) refers to localized “bumps” of
fast firing cells which persist over timescales much longer then
the timescales of the individual neurons comprising the bump.
PNA is an important neural correlate of working memory (Major
and Tank, 2004), and has been studied intensively in the context
of brainstem neural integrators which encode eye position dur-
ing oculomotor control (e.g., Aksay et al., 2001, 2007; de Dios
Navarro-López et al., 2004; Miri et al., 2011a). Fluctuations in
oculomotor PNA are thought to underly FEM drift and tremor,

FIGURE 5 | Behavior of spiral waves in mammalian visual cortex under

various conditions. From the original; Drifting of Spiral Phase Singularities.
(A) Trajectory of spiral phase singularity during a 12-cycle spiral waves in
cortical slices. (B) Trajectory of spiral phase singularity during an 11-cycle
spiral waves in vivo under Cch/bic application. Hexagon shows the field of
view and each color represents one cycle of spiral wave. (C) Trajectory of
spiral phase singularities during 2 spiral waves (red and cyan, each with 1.5
turn) during sleep-like states. (D) Comparison of drifting speed of spiral
phase singularity for slices and in vivo. Five examples from in vivo under
Cch/bic, in vivo during sleep-like states and slices, respectively, are shown
(mean + SD). Columns with stars on top are from the examples in (A,C).
The standard deviation is large because the drifting of spiral phase
singularity is not consistent and there are large variations from time to time.
The difference between in vivo and slices is statistically significant (Welch’s
test, p < 0.001, 25 t tests). The difference between in vivo (Cch/bic) and in
vivo (sleep-like) is also significant. Reprinted from Figure 7 in Huang et al.
(2010), copyright Elsevier 2010.

but the precise mechanisms responsible for their generation
remain a matter of considerable debate. Current models regarding
these mechanisms have been categorized on the basis of whether
they posit intrinsic unicellular mechanisms (e.g., Shen, 1989;
Loewenstein and Sompolinsky, 2003; Teramae and Fukai, 2005)
or network mechanisms (Cannon and Robinson, 1985; Seung,
1996; Seung et al., 2000; Goldman et al., 2003; Goldman, 2009).
Some role for network mechanisms is suggested by evidence of
correlated activity between cells in the oculomotor integrator net-
work (Aksay et al., 2003), and by the observed covariance of eye
position and the frequency and magnitude of the synaptic barrage
converging on integrator cells (Huang, 2009). These alternatives
are not necessarily mutually exclusive, and multiple mechanisms
may operate in the maintainance of PNA in the oculomotor
system and elsewhere in the brain (Major and Tank, 2004).

The vestibulo-oculomotor system exhibits fractional dynam-
ics (Anastasio, 1994), and complex time variation in PNA has
motivated arguments that a model with multiple timescales of
persistent firing may be required (Anastasio, 1998). Indeed, recent
evidence for multiple timescales of persistence in oculomotor
PNA (Miri et al., 2011a) suggests a higher dimensional attractor
dynamics than proposed by earlier line attractor models (Seung,
1996; Seung et al., 2000; Goldman et al., 2003), leading to the
development of new models with more complex dynamics (Miri
et al., 2011a; Fisher et al., 2013). (Goldman, 2009) describes a
functionally feed-forward architecture which reproduces some of
the time variation in PNA, showing that positive feedback is not
essential in principle, while Lim and Goldman (2013) presents a
model based on homeostatic mechanisms which maintain a care-
ful balance of excitation and inhibition. In human psychophysical
studies, Khojasteh et al. (2012) found that cross subject averag-
ing hides idiosyncratic nonlinear patterns. All this suggests that
considerable complexity inhabits the dynamics of PNA in the
oculomotor system (Durstewitz and Seamans, 2006).

The current hypothesis suggests an addition to the repertoire
of hypothesized mechanisms for PNA, which falls into the cat-
egory of network mechanisms, though is distinct from existing
network models in a number of ways. Unlike existing network
models, which concentrate on modeling neural behavior at the
level of firing rates and drift, we focus on the finer spatiotem-
poral scale of FEM tremor and subthreshold fluctuations in the
membrane potential of cells mediating oculomotor integration.
Rather than specific circuit design, persistence is based on the
transient self-organization of population activity into a reentrant,
(quasi)periodic spatiotemporal pattern. Spiral waves require a
predominance of excitatory, spatially distributed connections but
precise connectivity structure is not required; spirals can easily
emerge in randomly connected networks (Milton et al., 1993; Chu
et al., 1994; Yuan et al., 2011). This is not to say that specific cir-
cuitry is not important or present in the hVPNI; just that it is
not a requirement of the current model. The existence of spatially
organized, excitatory lateral connectivity is suggested by various
studies (Aksay et al., 2001, 2007; Miri et al., 2011a). Disinhibition
is crucial to the formation of spirals (and other traveling waves)
in cortical tissue (Huang et al., 2004, 2010). (Aksay et al., 2007)
identified that mutually inhibitory collateral interactions were not
necessary to local integrators within a certain range, suggesting
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that these mutually inhibitory interactions regulated local mech-
anisms rather than driving PNA directly. Such a situation could
relate to mutual modulation of the excitability required for the
emergence and propagation of traveling waves.

4.2.2. Functional properties of spiral waves
Certain features of spiral waves make them potentially interesting
as neurodynamical mediators of PNA. Indeed, spiral waves are
a form of neural activity which is persistent (e.g., Milton et al.,
1993; Chu et al., 1994), though they are not usually associated
with the term as used in the context of short term memory and
neural integrators. The combination of A, B, C and D below sug-
gests a mechanism capable of contributing to the maintenance of
localized persistent neural activity.

A. Spatiotemporally organized depolarization: Sub-threshold
traveling waves in the membrane potential field coordinate net-
work activity in space and time, by defining spatiotemporal
regimes of polarization-depolarization (Wu et al., 2008; Huang
et al., 2010; Bahramisharif et al., 2013). Cells in the vicinity of
the singularity can take arbitrarily differing phase, leading to an
almost phaseless depolarizing synaptic barrage in that vicinity.

B. Pseudo-locality: Spiral waves exhibit a duality which gives
them both a local, particle-like description (the singularity) and
a global wave-like description (the propagating spiral arms)
(Biktasheva and Biktashev, 2003). Though the wave is exten-
sive, its behavior is almost entirely based on what happens in the
neighborhood of the singularity.

C. Quasi-persistence: Spirals are reentrant waves, whose activ-
ity generates the conditions for their own persistence in time
(Winfree, 1991), subject to certain conditions (e.g., Ito and Glass,
1991; Fenton et al., 2002; Zhang et al., 2003; Chun-Ni et al., 2010;
Ma et al., 2010, 2012a). C combined with A and B, enables a spi-
ral wave to persistently depolarize a spatially localized region in the
neighborhood of the singularity.

D. Seedability: Spiral waves can be induced in an appropriate
medium by various methods (Aranson et al., 1994; Williams and
Holland, 1999; Leanhardt et al., 2002; Zhang et al., 2002; Xiao-
Ping et al., 2011; Yuan et al., 2011; Ma et al., 2012b).

The most effective and tunable method is probably to directly
impose an external forcing spiral, as in (Xiao-Ping et al., 2011),
or a spiral seed plus a periodic forcing current near the singu-
larity (Zhang et al., 2002). However, persistent spirals can also
be induced in networks of integrate-and fire neurons by a brief,
non-spiral periodic forcing (Milton et al., 1993; Chu et al., 1994;
Huang et al., 2004; Kilpatrick and Bressloff, 2010b; Yuan et al.,
2011) given some reasonable connectivity conditions (chiefly
spatiality and some kind of inhomogeneity/noise/perturbation
which breaks rotational symmetry).

D combined with A, B and C, provides a mechanism whereby
an afferent may seed a spatial pattern in an efferent, and then leave
that pattern to sustain itself with a certain amount of autonomy.
Durstewitz and Deco (2008); Friston et al. (2012) suggest that
brain activity is characterized by a high dimension chaotic back-
ground state, from which lower dimensional metastable states
transiently emerge. Figure 6, from (Zhang et al., 2002) nicely
visualizes the notion of how a spiral wave seeding might realize
such a transient dimensionality reduction in the context of the

FIGURE 6 | Examples of spiral seeding in a background of chaotic

turbulence. Seeding and growing spiral waves in a background of chaotic
turbulence. The extent of the spiral wave seeded was dependent on the
frequency of periodic forcing at the singularity. Too low, or too high,
frequency was less effective. The ratio of the frequency of the forcing
signal to that of the angular frequency of the spiral equalled (A) 0.6 (B) 0.8
(C) 1.0 (D) 1.2. Figure reprinted from Zhang et al. (2002). Copyright
American Physical Society 2002.

observed (Aksay et al., 2001) difference between a background
“off” state of the integrator, characterized by irregular firing at
low rates (the turbulent background), and an “on” state char-
acterized by driving input from the seeding of a spiral wave.
de Dios Navarro-López et al. (2004) induced PNA in an oculo-
motor integrator circuit with brief, cholinergic periodic forcings.
Oscillatory neurons observed in the guinea pig nucleus preposi-
tus hypoglossi (Idoux et al., 2006), a region deeply associated with
oculomotor integration (Delgado-Garcia et al., 1989; McCrea and
Horn, 2006), might exemplify a neural substrate for periodic
forcing inputs and the maintainance of traveling wave activ-
ity in the population. The persistent spiking of neurons in the
vicinity of the induced singularity will be facilitated due to con-
stant depolarization of the cellular membrane by high frequency
microstimulation without a strong phasic component, as cells
near the singularity may take arbitrarily different phase.

The bump of persistent firing activity in PNA has naturally
been associated with “bumps” in neural field models (e.g., Tegnér
et al., 2002; Owen et al., 2007; Kilpatrick and Ermentrout, 2013).
However, it has also been suggested that hVPNI neurons may
operate in a fluctuation dominated regime, in part because the
firing threshold of the cell increases with the membrane potential,
and in part because firing always occurs at the apex of membrane
potential fluctuations (Huang, 2009). In a fluctuation dominated
regime, firing rate is dependent less on mean membrane potential
than on fast fluctuations in the level of the depolarizing synaptic
barrage. On this view, at the level of subthreshold field dynamics
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fast microfluctuation (from a spiral wave) could be more effective
than a constant raise in stimulation (from a bump) in inducing
persistent firing. Thus spiral waves possess a unique repertoire of
functional properties which render them interesting in the con-
text of PNA. However, the presence or absence of a spiral wave
only yields a binary distinction between an “on” state and an “off”
state. Still missing is a mechanism for a graded temporal memory
capable of remembering multiple, arbitrary step changes.

4.2.3. Possible mechanisms for continuous temporal integration
Persistent neural activity is associated with neural integration
(Major and Tank, 2004), and has been intensively studied in the
anatomical context of oculomotor postural control, in particu-
lar the horizontal velocity to position integrator (“hVPNI”) (Aksay
et al., 2000). Here, a cell integrates (in the mathematical sense)
its inputs over time, providing the ability to hold, and externally
nudge, set points. An external nudge is reflected in a persis-
tent shift in average membrane potential, co-occuring with step
changes in firing rate and eye position (Aksay et al., 2001). How
might this graded integration functionality be implemented by a
spiral wave depolarization regime?

One possibility here is that spiral waves of different spatial
extent generate different levels of depolarizing input. Figure 6,
reprinted from Zhang et al. (2002) depicts how different inten-
sities of forcing current can generate different sizes of spiral wave,
from a pre-existing background of low level, chaotic turbulence.
Increasing the size of the spiral by adding energy could perhaps
encode up steps, but it is less obvious how a down step would be
implemented. Another possibility is inducing multiple spirals.

Functionally, however, modulation of the frequency of the
spiral’s rotational orbit could provide the most appropriate vari-
able for graded temporal integration. The excitability of the
medium has a strong determining effect on the frequency taken
by spirals and other traveling waves (Winfree, 1991). Modulation
of the strength of lateral connections might therefore provide
a mechanism to induce persistent changes in spiral frequency.
Calcium mediated presynaptic facilitation (Mongillo et al., 2008)
could provide a mechanism for strengthening lateral connectiv-
ity, and other modes of disinhibition could also be relevant (e.g.,
de Dios Navarro-López et al., 2004). Kilpatrick and Bressloff
(2010a,b) describe spirals in neural field models, in which spike
frequency adaptation modulates the frequency of network oscilla-
tions. Whatever the mechanism of frequency modulation, a faster
spiral would generate more action potentials per unit time in the
synaptic barrage converging on the cell from weak but numer-
ous lateral connections, maintaining membrane depolarization,
and the magnitude of these would be amplified by lateral synap-
tic facilitation. Both the magnitude and the arrival frequency
of depolarizing excitatory postsynaptic potentials converging on
active eye position coding cells varies systematically with eye
position Aksay et al. (2001); Huang (2009).

Secondary Prediction A spiral frequency based temporal inte-
grator is consistent with the close covariance of the arrival
frequency of action potentials with eye position (Huang,
2009), and would predict in addition that a spectral peak in

the slower range (around 10–20 Hz) of membrane potential
oscillations during PNA will vary systematically with eye posi-
tion in individual trial data (averaging might hide this effect).
Note that the frequency modulation approach to graded inte-
gration is a secondary hypothesis.

4.2.4. Subthreshold dynamics of the membrane potential during
PNA in an oculomotor integrator

Aksay et al. (2001) carried out in vivo intracellular recording
and perturbation of persistent activity in an oculomotor neural
integrator. They tracked the evolution of the cellular membrane
potential during step changes in persistent activity associated with
position control during fixation events. Their Figure 2 is reprinted
here as Figure 7. See also their Figure 1 for longer recording
period. Note the step like change in membrane potential that
accompanies the onset of persistent firing. Further step changes
are marked by brief (50–100 ms) overshoot/undershoot depend-
ing on direction of change, followed by a persistent change in the
mean membrane potential and firing rate. The membrane depo-
larization was found to be sufficient to explain the associated PNA
in a control experiment, suggesting an important role for network
mechanisms.

Up (down) steps in membrane potential are correlated with
increases (decreases) in both arrival frequency and magnitude of
excitatory postsynaptic potentials (“EPSPs”) (Aksay et al., 2001;
Huang, 2009). The membrane potential (Vis)and the firing rate
(Fintra) shows signs of an oscillation at around 15 Hz, perhaps
corresponding to the rotational orbit of a spiral wave and the
slow component of tremor. If the barrage of depolarizing EPSPs
are indeed originating from the slow rotational orbit and fast jit-
ter of a spiral wave, then under close examination one would
expect to see the leading edge of the spiral waveform reflected in
the EPSPs. Huang (2009) examined membrane potential fluctu-
ations during PNA in great detail. Whole-cell patch recordings
revealed the existence of many small (0.2–3 mV) excitatory post-
synaptic potentials lasting 5–10 ms, and manifesting a “peculiar”
sharp-attack, slow-decay form obscured in accompanying sharp
electrode recordings. See their section 5 and Figure 5.3, repro-
duced here as Figure 8. This waveform is typical of that generated
by the passing of the leading edge of a spiral wave, where the
phase gradient is very high (providing the sharp attack). See for
example the depictions from Qu et al. (1999) of action poten-
tials caused by cardiac spiral waves http://ajpheart.physiology.
org/content/ajpheart/276/1/H269/F8.large.jpg. Note though that
other possibilities exist. Based on similar waveforms observed in
Mauthner cells (Golding and Spruston, 1998; Korn and Faber,
2005), Huang (2009) suggests that mixed NMDA/AMPA conduc-
tances could underly the shape of these potentials.

Prediction At the network level, the singularity hypothesis pre-
dicts that spiral waves should be directly identifiable in the
VSDI signal at the site of PNA (at least in the anatomical
context of brainstem oculomotor integration), and that the
success (failure) to induce a spiral wave will distinguish success
(failure) to induce PNA. While it is possible in principle
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that the membrane potential dynamics just reviewed could
reflect a spiral wave which exists elsewhere, neurophysiolog-
ical evidence suggests that the mechanisms sustaining PNA in
the hVPNI are local (Aksay et al., 2007).

A standard test for whether an observation corresponds to a true
spiral wave is the existence of a phase singularity, with a local
amplitude reduction of field oscillations in the vicinity of the sin-
gularity (Winfree, 1991, 2001; Huang et al., 2010), caused by the
cancellation of signals from closely located nodes with opposing
phase near the singularity. See Figure 1A in Huang et al. (2010),
reprinted here as Figure 9 for neurophysiological recordings of
this phenomena. Small fluctations in the balance of this cancella-
tion result in an increase in high frequency fluctuations visible in
the VSDI signal in Figure 9 (and also visible as jitter of the sin-
gularity in our Figure 1), which could drive a cell effectively in a
fluctuation dominated regime (Huang, 2009).

We are not aware of VSDI studies of brainstem neural integra-
tors. Recent methodological advances may combine to provide
opportunities for imaging the spatiotemporal dynamics of sub-
threshold activity in the deep brainstem. Fiber optics offer a
means to image non-superficial regions (Flusberg et al., 2005).
Combining VSDI and laser scanning microstimulation offers a
fast method for anatomical and functional mapping (Xu et al.,
2010). Zebra fish larvae have recently been shown to provide an
in vivo preparation with high optical transparency (Miri et al.,
2011a; Fisher et al., 2013). Miri et al. (2011b) used two-photon
laser scanning microscopy (Stosiek et al., 2003) to simultaneously
image many cells in neural integrator circuits in the larval zebra
fish, and introduced a semi-automated approach for identifying
behavior measure (in this case eye movement) related cells in the
ensuing space-time series.

Combining this methodology with VSDI, which would pro-
vide access to subthreshold spatiotemporal dynamics associated
with PNA, could test directly whether spiral waves exist and if
so, whether they are spatially associated with active eye position
integrators and whether their rotational frequency (and/or spa-
tial extent) covaries systematically with eye position. Regardless
of whether these predictions are confirmed or denied, VSDI data
would likely to be of great utility in the general research effort on
the hVPNI.

4.3. SACCADES AND MICROSACCADES
The current contribution focuses on the dynamic maintainance
of oculomotor posture between microsaccades. Nonetheless
microsaccades, and indeed saccades in general, are naturally rel-
evant to the discussion as a whole. In this section, we briefly
address how a spiral wave model of drift-tremor might fit into
its saccadic context.

4.3.1. Scale free saccadic behaviors
Recent evidence points to a remarkable continuity in the statistics
of saccadic oculomotor control across scales including microsac-
cades (Otero-Millan et al., 2013). How might a spiral wave model
of fixational postural control fit into its containing context of fast
(micro and macro) saccadic gaze shifts? Is there a continuously

FIGURE 7 | From the original; Membrane potential changes during

transitions in fixation position. (A) Eye position, firing rate of an
intracellularly recorded neuron (Fintra), membrane potential (Vm), interspike
membrane potential (Vis), and injected current (Iinj) for on-direction steps
during intracellular recording. Solid lines at lower left indicate the average
value of Vis during separate fixations. (B) Changes during off-direction steps

(Continued)
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FIGURE 7 | Continued

of the ipsilateral eye. This segment is taken from the end of a
nasaltemporalnasal cycle that started with the transitions shown in (A). (C)

Rate and potential changes for a different neuron during an on-direction
step. The firing rate (Fextra) of a second extracellularly recorded position
neuron (Vextra) served as a surrogate for eye position. In this recording, the
fast afterhyperpolarization following action potentials was abolished by
substituting cesium for potassium in the electrode solution. From Aksay
et al. (2001), copyright Nature Publishing 2001.

FIGURE 8 | Shapes of action potentials recorded with whole-cell patch

measurements. Note the “peculiar” triangular form, typical of the leading
edge of a spiral waveform. From Huang (2009), copyright The Author.

FIGURE 9 | From the original; raw data traces from the EEG (blue) and

two optical detectors labeled on the left. Detector 2 (Optical spiral
center) is selected from the spiral center, showing large amplitude
reduction. Detector 3 is selected from a location that spiral center never
swept through, showing no amplitude reduction. From Huang et al. (2010),
copyright Elsevier 2010.

scaling control principle which could give rise to a visual scan path
with, from the bottom up;

A. microfixations characterized by spiral dynamics (drift-
tremor), which are interspersed with

B. relatively long, straight and fast flights (microsaccades), which
are organized into

C. clusters of microfixations (macrofixations), which are inter-
spersed with

D. relatively very long, straight, fast flights (macrosaccades),
which in turn cluster into

E. regions of dense exploration and short saccades, interspersed
by long saccades to new regions of interest?

The natural variability of human scanning patterns has been
modeled at the macro-saccadic level by the imposition of a
stochastic component comprising a Lévy walk (Klafter et al.,
1987) upon scanpaths in a deterministic salience landscape
(Brockmann and Geisel, 1999; Boccignone and Ferraro, 2012).
Another possibility is that the stochastic component reflects an
intrinsic probabilistic feature of the salience function, (e.g., Harel
et al., 2006), rather than an imposed randomization.

4.3.2. Lévy walks in rotational and turbulent flow
Theoretical work has revealed deep links between spiral waves,
turbulent flow, fractional Brownian motion, anomalous diffusion
and Lévy type trajectories (Shlesinger et al., 1987; Viecelli, 1990;
Metzler and Klafter, 2000). Solomon et al. (1993) observed Lévy
walks of tracer particles in a physical system of effectively two
dimensional rotating flow, and Solomon et al. (1994) examined
in more detail behavior in periodic, chaotic and turbulent condi-
tions. See our Figure 10 for a reprint of Figure 6 in Solomon et al.
(1994), depicting example trajectories. Long term trajectories
exhibited a pattern of long, relatively direct flights in predom-
inantly translational flow, interspersed with episodes where the
particle is caught up in a spiraling curve due to capture by a
vortex (“sticking”). Analysis of sticking times and flight statis-
tics indicated a Lévy walk trajectory evolving in continuous time.
Biomechanical constraints suggest that a truncated Lévy walk
Mantegna and Stanley (1994), where maximum step lengths are
finite, may be more appropriate to the biological case.

Similar dynamics in a more complex landscape consisting of
multiple clusters of vortices could conceivably result in a trajec-
tory resembling that of multiscale visual exploration. “Fixation”
periods consist of clusters of mini-fixations, each of which con-
sists of an episode of vortex sticking characterized by rotational
flow. Escaping a cluster results in a relatively long step to the next
cluster (i.e., a macrosaccade), followed by a sequential sampling
of the new cluster. The traveling wave accompanying saccadic
execution observed in the superior colliculus by Munoz et al.
(1991) might be a manifestation of relatively long flights between
vortex sticking visible in Figure 10. The curling trajectory of
drift-tremor during microfixation and the curving, interrupted
microsaccade trajectories reported by Zhang and Li (2012) are
reminiscent of the turbulent transport scenario just outlined,
though closer analysis of these data is required. Note how the
microsaccadic trajectories in Figure 4 do not always start their
trajectory in the direction of their final destination. They are
often curved and can have small scale variations in velocity.
Looking closely at the microsaccades depicted, one may observe
vertical motions exhibiting an oscillation which is damped in
one horizontal dimension and amplified in the other, sugges-
tive of transport in a potential field. Where they do travel in
straight lines, this is usually on the horizontal axis, suggestive of
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FIGURE 10 | From the original; Chaotic particle trajectories in a

time-periodic flow. (A–D) Depict different runs of the apparatus with
different numbers and locations of vortices. From the original; Chaotic
particle trajectories in a time-periodic flow. Long sticking events can be
seen in each case, and flights of length greater than one rotation about the
annulus can be seen in (C), (D). Hyperbolic fixed points, near which the
particle motion is particularly sensitive to transitions between flights and
sticking events, are evident in all the trajectories. The particle motion is
viewed from a reference frame that is co-rotating with the vortex chain, and
the beginning of each trajectory is marked by a circle, the end by a triangle.
From Solomon et al. (1994), copyright American Physical Society 1994.

a potential field. Overall the pattern is not ballistic, but is con-
sistent with the trajectory first escaping local vortex sticking in
an unpredictable direction, followed by a trajectory dominated
by translational flow with potential fields. Figure 11 depicts an
example of a trajectory in a model of anomalous transport in
magnetic field turbulence, taken from Chiaravalloti et al. (2006).
This provides an example, though from a different domain, of
how these dynamics could generate trajectories similar to the
FEM trajectories depicted in Figure 4. Adding a potential field
might further approximate the FEM trajectories in Figure 4.

4.4. TURBULENT TRANSPORT AND CHAOTIC ITINERANCY
Thus there is some potential for a continuous, deterministic
dynamical principle capable of generating the scale free, stochas-
tic profile of visual scanning trajectories. This speculative pro-
posed framework for multiscale visual exploration would imply a
widespread role for traveling waves and rotational flow in brain-
body hermeneutics, which may stretch the readers credulity at
this stage, but there is some existing context. Breakspear (2001);
Tyukin et al. (2009); Friston et al. (2012) examine traveling wave
processing and self-organized instability in perception, whilst
Heitmann (2013) explores traveling wave functionality in the
motor context. In addition to noting a potential contribution
to persistent neural activity in the sensory context, Huang et al.

FIGURE 11 | Particle trajectory in a model of two dimensional

magnetic turbulent flow. From Chiaravalloti et al. (2006), copyright the
Royal Swedish Academy of Sciences 2006. Reproduced by permission of
IOP publishing.

(2010) suggests that spiral waves, as a locally generated event, may
also help a local cortical circuit to quickly disengage from globally
synchronized rhythms. If traveling waves are playing functional
roles in brain activity, one role of rotational flow may be to
“hold the posture” of the central nervous system, while trans-
lational flow interconnects metastable postural transients. If so,
this should be reflected in fixational drift-tremor and saccades,
because the eye is part of the CNS. Breakspear et al. (2010) sug-
gest that traveling wave solutions may offer optimal solutions to
minimization of the free-energy in far from equilibrium initial
conditions. Free energy minimization may be a rather general
heuristic in nervous function (Friston, 2010). If the predictions
of the singularity hypothesis of FEM drift-tremor turn out to
be accurate, then the case for transient population dynamics as
optimizers of behavior would gain a considerable boost.

It is interesting to speculate that attention may be related to
nervous mechanisms of suppressing spiral waves. On this view,
the sequential visiting of spirals in a cluster would destabilize
the spirals and cause their breakup, resulting in a collateral effect
resembling inhibition of return. This kind of self-destabilizing,
itinerant trajectory would link action and perception into a com-
mon framework probably best described in terms of existing work
on (embodied) chaotic itinerancy (Tsuda, 1991, 2009; Kaneko,
1992; Kaneko and Tsuda, 2003; Ikegami, 2007). Transient dynam-
ics traversing a landscape of attractor ruins with riddled basins
(Milnor, 1985) (i.e., quasi-attractors whose basin of attraction
is riddled with repellent trajectories belonging to the basin of
another attractor) can perform perceptual (Breakspear, 2001;
Tyukin et al., 2009) and memory (Rabinovich et al., 2001) func-
tions. This raises the possibility that the transient dynamics of
embodied eye movements could play a rather sophisticated per-
ceptual role analagous in computational description to that of
neural sensory mechanisms (Tyukin et al., 2009), but at the
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embodied level where the perturbation structure of the world
constitutes the data set (Ikegami, 2007). Wilkinson et al. (2011)
give a simple computational example of how exploratory gaze
patterns structured by spiral waves can enact perception of a
global property of a social scene (co-orientation), as has been
observed in infants (Augusti et al., 2010; Handl et al., 2013).

5. CONCLUSION
Despite extensive study of oculomotor postural control, the gen-
erative mechanisms of fixational drift and tremor remain uncer-
tain. We have proposed the hypothesis that these components
reflect the drift and meander of spiral wave neurodynamics.
Whilst speculative, the singularity hypothesis offers a parsimo-
nious and predictive account of FEM. Though our motivations
are chiefly functional, the available psychophysical and neuro-
physiological evidence is largely consistent with, and occasionally
suggestive of, a contribution of rotational flow to the main-
tainence of persistent neural activity in the oculomotor system.
We have laid out an argument motivating our hypothesis in terms
of the existing literature, and made testable predictions which
could falsify it. Our hope is that these predictions will encour-
age other groups working in the fields of FEM and oculomotor
integration to consider looking for indicators of rotational flow
when analysing data, and perhaps even motivate neuroimaging
studies to examine the subthreshold spatiotemporal dynamics
associated with PNA. Should empirical studies and/or analysis
of existing data confirm the basic predictions of the concep-
tual model, future work should undertake detailed computational
modeling. Further testing and development may offer a determin-
istic account of the stochasticity and self-similarity manifest in eye
movement patterns across scales, based on the complex dynamics
of anomalous transport in rotating neural flow.
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