Pleistocene range shifts, refugia and the origin of widespread species in Western Palaearctic water beetles

David García-Vázqueza, David T. Biltonb Garth N. Fosterc, I. Riberaa*

a Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
b Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
c Aquatic Coleoptera Conservation Trust, 3 Eglinton Terrace, Ayr, KA7 1JJ, Scotland, UK

ABSTRACT

Quaternary glacial cycles drove major shifts in both the extent and location of the geographical ranges of many organisms. During glacial maxima, large areas of central and northern Europe were inhospitable to temperate species, and these areas are generally assumed to have been recolonized during interglacials by range expansions from Mediterranean refugia. An alternative is that this recolonization was from non-Mediterranean refugia, in central Europe or western Asia, but data on the origin of widespread central and north European species remain fragmentary, especially for insects. We studied three widely distributed lineages of freshwater beetles (the \textit{Platambus maculatus} complex, the \textit{Hydraena gracilis} complex, and the genus \textit{Oreodytes}), all restricted to running waters and including both narrowly distributed southern endemics and widespread European species, some with distributions spanning the Palearctic. Our main goal was to determine the role of the Pleistocene glaciations in shaping the diversification and current distribution of these lineages. We sequenced four mitochondrial and two nuclear genes in populations drawn from across the ranges of these taxa, and used Bayesian probabilities and Maximum Likelihood to reconstruct their phylogenetic relationships, age and geographical origin. Our results suggest that all extant species in these groups are of Pleistocene origin. In the \textit{H. gracilis} complex, the widespread European \textit{H. gracilis} has experienced a rapid, recent range expansion from northern Anatolia, to occupy almost the whole of Europe. However, in the other two
groups widespread central and northern European taxa appear to originate from central Asia, rather than the Mediterranean. These widespread species of eastern origin typically have peripherally isolated forms in the southern Mediterranean peninsulas, which may be remnants of earlier expansion-diversification cycles or result from incipient isolation of populations during the most recent Holocene expansion. The accumulation of narrow endemics of such lineages in the Mediterranean may result from successive cycles of range expansion, with subsequent speciation (and local extinction in glaciated areas) through multiple Pleistocene climatic cycles.

Keywords: glacial refugia, Dytiscidae, Hydraenidae, Quaternary glaciations, range expansion, Mediterranean Peninsulas, Central Asia
1. Introduction

The Quaternary was a period of drastic cyclical climatic changes, with multiple glacial–interglacial periods, ultimately driven by variations in the earth’s orbit known as Milankovitch cycles. Milankovitch–driven climate oscillations led to large changes in the size and location of the geographic distribution of many species, in some cases resulting in speciation due to the higher probability of isolation of small populations in areas under new selection regimes (Dynesius & Jansson, 2000). These Pleistocene climatic oscillations and the subsequent shifts in ecological conditions, with the repeated fragmentation of populations during glacial and interglacial, have long been hypothesised to have driven the origin of most extant Holarctic species (e.g. Rand, 1948; Mayr, 1970).

Pleistocene climatic changes were especially drastic in northern latitudes of the Palearctic region, since during the Last Glacial Maximum the European ice sheet covered most areas north of 52°N, with permafrost north of 47°N (Dawson, 1992). Large areas of central and northern Europe therefore became inhospitable to temperate taxa during glacial; in stark contrast to the Mediterranean peninsulas, which retained more temperate climate and vegetation (e.g. Huntley, 1988; Bennett et al., 1991).

However, despite the fact that most of central and northern Europe and regions of Asia at similar latitudes were exposed to extremely cold conditions (Dawson, 1992), there were areas on the slopes of mountain ranges and along river valleys where moister conditions prevailed (Soffer, 1990), allowing the local survival of temperate biota in these northern/eastern refugia (e.g. Stewart et al., 2009; Schmitt & Varga, 2012).

Two main scenarios could account for the origin of the current central and northern European fauna. Firstly, there is the traditional model of postglacial range expansion from Mediterranean refugia (e.g. Hewitt, 2000), in which central and northern Europe were colonized by northward range expansions mainly from the Iberian, Italian, Balkan and Anatolian peninsulas at the end of the last glaciation. According to this model, populations of most European species were confined to refugial areas in southern Mediterranean peninsulas during glacial maxima, from which they would have re-colonized the continent during interglacials (although Hewitt (2000) also recognised the important role of the Carpathians as providing potential refugia).

Whilst such a scenario is well established for some taxa, it is not ubiquitous. A second possibility is that the colonization of central and northern Europe at the end of the Last Glacial was from non-Mediterranean source areas in eastern Europe and Asia (Bilton et...
According to this view, the isolation of the Mediterranean peninsulas during glacial cycles led to speciation, preventing gene flow with the new colonisers of central and northern Europe during subsequent interglacials. For taxa conforming to this model, southern peninsulas are centres of endemism rather than being a source of colonists (Bilton et al., 1998; Schmitt & Varga, 2012).

Such biogeographical isolation of Mediterranean peninsular populations has been suggested previously for small mammals (Bilton et al., 1998) and some insects (e.g. Cooper et al., 1995). Amongst aquatic Coleoptera, the absence of fossil remains of southern species in the abundant central and northern European Quaternary subfossil record (Abellán et al., 2011) supports a view of Mediterranean peninsulas as areas of endemism, rather than significant sources of postglacial colonists. Data from extant species also suggest that current southern endemics have not contributed to the diversity of northern areas (e.g. Hydrochus (Hydrochidae), Hidalgo-Galiana & Ribera, 2011; or Enicocerus (Hydraenidae), Ribera et al., 2010). Some central and northern European species may have had their origin in Mediterranean peninsulas, but in such cases it appears that the taxa concerned were those whose refugia were located in the northernmost areas of the peninsulas, on the margins of deglaciated areas (e.g. Ribera et al., 2010 for Enicocerus, and García-Vázquez & Ribera, 2016 for Deronectes), successful expansion possibly being aided by physiological adaptations in such species (Calosi et al., 2010; Cioffi et al., 2016).

Despite increased understanding of the evolution of the European insect fauna in recent decades, data on the origin of widespread central and northern European species, which should have necessarily experienced recent expansions of their geographical ranges, remain severely limited. Here we study a suite of such species, using molecular phylogeographic data to clarify their temporal and geographic origin and to better understand the role of the Pleistocene glacial cycles in driving their diversification. We examined species groups from three genera of freshwater beetles, in two different families, whose representatives colonised water independently: 1) the Hydraena gracilis complex (“Haenhydra” lineage, family Hydraenidae); 2) the Platambus maculatus complex (family Dytiscidae) and (3) Oreodytes sanmarkii (C.R. Sahlberg) and O. davisii (Curtis) (family Dytiscidae). All taxa concerned are typical of running waters, and include both widespread European and narrowly distributed southern endemic species (Trizzino et al., 2013; Nilsson & Hájek, 2017a,b). They do, however, differ in
functional traits and evolutionary histories (see below), facts which contribute to the
generality of our conclusions.

Using a combination of mitochondrial and nuclear data we reconstruct the
phylogenetic relationships, age and geographical origin of the western Palaearctic
species of these three widely distributed lineages, to better understand the effects of
Quaternary glacial cycles on their diversification and current distributions.

2. Material and Methods

2.1. Taxonomic background and taxon sampling

a) Hydraena gracilis complex

The genus Hydraena, currently with ca. 900 species distributed worldwide (Trizzino et al., 2013) is the largest genus within the family Hydraenidae and probably the most diverse amongst the aquatic Coleoptera (Jäch & Balke, 2008). Within Hydraena, the “Haenrydra” lineage includes ca. 90 species with a north Mediterranean distribution (Trizzino et al., 2013). They are usually found in clean, fast flowing waters, often in mountain streams, from the Iberian Peninsula to Iran and the Urals, but are absent from North Africa (Ribera et al., 2011; Trizzino et al., 2011; Trizzino et al., 2013; Jäch, 2015). Many species of this lineage have very restricted distributions, often limited to a single valley or mountain system, but there are also a few species with very wide geographical ranges.

In this work we focus on the most widespread species of “Haenyrda”, Hydraena gracilis Germar and its closest relatives in the H. gracilis complex sensu Jäch (1995), which includes seven recognised species and one subspecies (Trizzino et al., 2013). Hydraena gracilis is widely distributed across almost the whole of Europe, ranging from southern France eastwards to Ukraine and northwards to Finland, including the British Isles (Fig. 1). Previous molecular studies, albeit on a limited number of specimens (Ribera et al., 2011), suggested that despite its widespread distribution, genetic differences across its geographic range were minimal. Jäch (1995), however, found morphological differences between specimens from the Balkans and the rest of Europe, supporting the recognition of the subspecies H. gracilis balcanica d’Orchymont. Hydraena gracilis is absent from the Iberian and Anatolian peninsulas, where it is replaced by different species of the complex (Fig. 1). Hydraena gracilidelphis Trizzino, Valladares, Garrido & Audisio is the westernmost species of this group, endemic to the Iberian Peninsula (mainly in the north but with some records
in the southwest) and the French Pyrenees (Trizzino et al., 2012). The Anatolian Peninsula and adjacent areas are occupied by three species: *H. anatolica* Janssens distributed in northern and eastern Anatolia and parts of the Caucasus and northwestern Iran; *H. graciloides* Jäch in northern Turkey; and *H. crepidoptera* Jäch known only from two northern Turkish provinces (Kastamonu and Sinop). The other two species of the complex, *H. nike* Jäch and *H. elisabethae* Jäch, are endemic to two Aegean islands; Samothraky and Thassos respectively (Trizzino et al., 2013).

We studied a total of 48 specimens from five of the seven species of the *H. gracilis* complex (we could not obtain fresh specimens of the two Aegean Island endemics) from 37 different localities, covering the full geographical range of the studied species (Fig. 1; Table S1). As outgroups we used three closely related species of the wider *H. gracilis* lineage within “Haenydra” (Trizzino et al., 2011; Table S1).

b) *Platambus maculatus* complex

The genus *Platambus* contains 66 recognised species (Nilsson & Hájek, 2017a) and has a wide distribution, being present in the Palearctic, Nearctic, Neotropical and Oriental regions, and is currently divided into eight species-groups (Nilsson & Hájek, 2017a). Amongst these the *P. maculatus* group - as defined by Nilsson (2001) - is the largest, with 24 species distributed across Asia and Europe. In a molecular phylogeny of Agabinae Ribera et al. (2004) recovered a paraphyletic *Platambus*, with the *P. maculatus* group separated from other Asian and American species.

Here we focus on the most widespread species of the group; *P. maculatus* (Linnaeus) and its closest relative, *P. lunulatus* (Fischer von Waldheim), which we refer to as the *Platambus maculatus* complex. *Platambus maculatus* has a wide Palearctic distribution, from western Iberia to northern Iran and Mongolia (including Italy, the Balkans and Anatolia), Scandinavia and the British Isles (Nilsson & Hájek, 2017b; Fig. 2). The species has a very variable elytral pattern, which led to the description of many forms all of which are currently considered synonyms of *P. maculatus* (Nilsson & Hájek, 2017a,b). Most conspicuous amongst these is *P. maculatus* "graellsi" (Gemminger & Harold) from the northwest and centre of the Iberian Peninsula (Millán et al., 2014). The other species of the complex, *P. lunulatus*, is distributed from the Anatolian Peninsula and parts of the Caucasus and Middle East to Egypt (Karaman et al., 2008; Nilsson & Hájek, 2017b) (Fig. 2).
We sequenced 106 specimens from 67 different localities of the two recognised species of the *P. maculatus* complex, including the "graellsi" form (Fig. 2; Table S1). As outgroups we used seven specimens from different species of the *Platambus maculatus* group, as defined in Nilsson & Hájek (2017b).

c) European species of the genus *Oreodytes*

The Holarctic genus *Oreodytes* Seidlitz contains 30 recognised species, four of them split into two subspecies (Fery, 2015; Nilsson & Hájek, 2017a). *Oreodytes* species live in cold streams or lakes margins, generally at high altitude or latitude (Balfour-Browne, 1940; Zack, 1992; Nilsson & Holmen, 1995). The genus is distributed in the Palearctic and Nearctic regions, with six species occurring in Europe. In a previous study, Ribera (2003) recovered a paraphyletic *Oreodytes*, although with low bootstrap support. *Oreodytes* was divided into two lineages corresponding to the main distinction in body size and shape, i.e. larger and more elongate species (including *O. davisii*) versus smaller and rounder ones (including *O. sanmarkii*).

Of the six European species of *Oreodytes*, the most widespread is *O. sanmarkii*, distributed over large parts of the Palearctic from the Iberian Peninsula to the Russian Far East, and reaching the Nearctic in northern Canada (Larson et al., 2000; Nilsson & Hájek, 2017a,b) (Fig. 3). In southern Europe, the species is known from the Iberian Peninsula, northern provinces of Italy and the Balkans south to Bulgaria and Macedonia (Fery, 2015; Nilson & Hájek, 2017b). The species shows a high level of variability in colouration over its large distributional range (e.g. Larson, 1990) but only one subspecies, *O. sanmarkii alienus* (Sharp), endemic to the Iberian Peninsula, is currently recognised (Balke, 1989; Nilsson & Hájek, 2017a,b). Also with a wide Palearctic distribution is *O. davisii*, known from the British Isles to Ukraine and the Caucasus, including Scandinavia, the Mediterranean peninsulas and Turkey (Nilsson & Hájek, 2017b) (Fig. 3). In the case of this species an Iberian form has also been recognised as a subspecies on morphological grounds, *O. davisii rhianae* Carr (Carr, 2001; Nilsson & Hájek, 2017a,b). The other European species of *Oreodytes* are *O. septentrionalis* (Gyllenhal), distributed from the Iberian Peninsula to eastern Siberia and Mongolia (Nilsson & Hájek, 2017b); *O. alpinus* (Paykull), with a northern Palearctic distribution, being present from lochs in northern Scotland (Foster, 1992) and Scandinavia to Kamchatka in the Russian far East (Nilsson & Kholin, 1994); *O. meridionalis* Binaghi
& Sanfilippo, endemic to the southern Apennines (Rocchi 2007; Nilsson & Hájek, 2017b); and the recently described *O. angelinii* Fery from Greece (Fery, 2015).

We studied 58 specimens from 35 different localities of all the European species of *Oreodytes* with the exception of the Italian endemic *O. meridionalis* and the newly described *O. angelinii*, with a focus on *O. davisii* and *O. sanmarkii* and the two Iberian subspecies (*O. d. rhianae* and *O. s. alienus* respectively). We also included in the analysis 16 specimens of different Asian and American species of the genus as outgroups (Fig. 3; Table S1).

2.2. DNA extraction and sequencing

Specimens were collected and preserved in absolute ethanol directly in the field. We extracted the DNA non-destructively with commercial kits (mostly "DNeasy Tissue Kit", Qiagen GmbH, Hilden, Germany and "Charge Switch gDNA Tissue Mini Kit", Invitrogen, Carlsbad, CA, USA) following the manufacturers’ instructions. Specimens and DNA extractions are deposited in the collections of the Institut de Biología Evolutiva, Barcelona (IBE), Museo Nacional de Ciencias Naturales, Madrid (MNCN) and Natural History Museum, London (NHM). We obtained seven gene fragments from six different genes (four mitochondrial and two nuclear) in five different amplification reactions (see Table S2 for primers and typical sequencing reactions): (1) 5´end of the Cytochrome Oxidase Subunit 1 gene (the barcode fragment; Hebert et al., 2003, COI-5´); (2) 3´end of Cytochrome Oxidase Subunit 1 (COI-3´); (3) 5´end of 16S rRNA plus tRNA transfer of Leucine plus 3´end of NADH subunit 1 (nad1) (16S and nad1 respectively); and internal fragments of the nuclear genes (4) Histone 3 (H3) and (5) Wingless (Wg). Due to their lower variability, the nuclear markers were only sequenced from representative specimens according to geographical and topological criteria. For each amplification reaction we obtained both forward and reverse sequences. In some specimens, due to difficulties in amplification, we used internal primers for the COI-3´ sequence, obtaining two fragments of 400 bp each (Table S2). PCR products were purified by standard ethanol precipitation and sent to external facilities for sequencing. DNA sequences were assembled and edited using the Geneious 6 software (Biomatters Ltd, Auckland, New Zealand). Ambiguous calls in the nuclear genes were coded as "N"s. New sequences (561) have been deposited in GenBank with accession numbers LT855666-LT856230 (Table S2).
2.3. Phylogenetic and divergence time analyses

Edited sequences were aligned with MAFFT v.6 using the G-INS algorithm and default values for other parameters (Katoh & Toh, 2008). We included sequences obtained from the literature (GenBank and BOLD databases) in some analyses to increase geographical coverage and possible genetic variation not covered by our sampling.

In the phylogenetic analyses we employed six partitions, corresponding to the gene fragments COI-5’, COI-3’, 16S, nad1, H3 and Wg, and used Partition Finder 1.1.1 (Lanfear et al., 2012) to estimate the best-fitting models of nucleotide substitution for each partition separately, using AIC (Akaike Information Criterion). We considered the two fragments of the COI gene separately due to the uneven taxonomic coverage (Table S1). To infer the phylogeny of the three groups, and estimate divergence dates amongst species, we used Bayesian methods implemented in Beast 1.8 (Drummond et al., 2012).

For the analyses we included both mitochondrial and nuclear markers and implemented the closest available evolutionary model to those selected by Partition Finder. We used a Yule speciation model and ran two analyses to determine which clock model (strict or lognormal relaxed) best fitted the data. As there are no fossils or unambiguous biogeographic events that could be used to calibrate the phylogeny of the studied groups, we applied published estimations of a-priori rates for the same genes in related groups of beetles. For the Platambus maculatus complex and the genus Oreodytes (both Dytiscidae) we used a rate of 0.013 substitutions/site/MY (SD 0.002) for protein coding genes and 0.0016 substitutions/site/MY (SD 0.0002) for 16S, obtained for the related family Carabidae for the same combination of mitochondrial protein coding and ribosomal genes (Andújar et al., 2012). For the Hydraena gracilis complex we used a rate of 0.015 and 0.006 substitutions/site/MY (SDs 0.002 and 0.0002) for the COI-3’+nad1 and 16S partitions respectively, obtained for the related Leiodidae (Cieslak et al., 2014). Clock rates of H3 and Wg were left with uniform priors due to the absence of any suitable estimations of the evolutionary rate for these nuclear genes. We executed two independent analyses with the same settings, running 100 million generations (saving trees every 5,000) or until analyses converged and the number of trees was sufficient according to Effective Sample Size (ESS) values, as measured with Tracer v1.6 (Rambaut et al., 2014). The maximum clade credibility tree of the two runs was compiled with Tree Anotator v1.8 (Drummond et al., 2012) and visualized with FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). For selection of the best molecular
clock we used the modified Akaike Information Criterion (AICM) with the moments estimator (Baele et al., 2012), as implemented in Tracer v1.6, with 1,000 bootstrap replicates.

To test for potential topological discordances between mitochondrial and nuclear data we analysed the nuclear genes only, applying the best clock and the same settings as in the combined (mitochondrial and nuclear) analysis.

We also analysed the combined matrix (mitochondrial and nuclear) using maximum likelihood (ML) methods. ML analyses were performed in RAxML v.7.4.2 (Stamatakis et al., 2008) as implemented in RAxML GUI v 1.3.1 (Silvestro & Michalak, 2012). We selected the best tree out of 100 searches using the GTR+G as an evolutionary model with the same six partitions as in the Bayesian analysis. Node support was estimated with 1,000 bootstrap replicates.

2.4. Demographic analyses

To study population history for each of the three groups separately we estimated the population coalescent model that best fitted the data. We used the mitochondrial sequences only and no outgroups. In the analysis for the *H. gracilis* complex we only included specimens of *H. gracilis* and *H. anatolica*, whilst only specimens of *P. maculatus* (including the "graellsi" form) and *O. sanmarkii* were included in the analyses for *Platambus* and *Oreodytes* respectively. The datasets were divided into four partitions, corresponding to each mitochondrial gene (COI-5’, COI-3’, 16S and nad1) and the same settings used as in the topological analyses, including evolutionary models selected by Partition Finder and the best molecular clock for each group. To identify the best demographic model we ran four analyses including Constant Size, Exponential Growth, Logistic Growth and Expansion Growth coalescence models. For model selection of the best coalescent analyses we used the modified Akaike Information Criterion (AICM) with the moments estimator as implemented in Tracer v1.6, with 1,000 bootstrap replicates. We also computed Bayesian skyline plots (Drummond et al., 2005) for each group, to reconstruct variation in effective population sizes through time.

3. Results

There were no length differences in protein coding genes, and the length of ribosomal genes in the ingroup ranged between 784-786 bp in the *H. gracilis* complex and 796-797 bp in the *P. maculatus* complex and the genus *Oreodytes*. The best
evolutionary models, as selected by Partition Finder for each individual partition (Table S3), were implemented in the Bayesian analysis for the *H. gracilis* complex and the species of the genus *Oreodytes*. In the *P. maculatus* complex, when the more complex models were applied the analyses did not converge adequately for both the relaxed lognormal and strict clocks, and in consequence we applied an HKY+I+G model to each partition.

3.1. *Hydraena gracilis* complex

The nucleotide alignment matrix showed no variability in the two nuclear genes, which were therefore excluded from subsequent analyses. The analysis using a lognormal relaxed clock did not converge adequately so we applied a strict molecular clock model.

The ultrametric tree obtained with the combined mitochondrial and nuclear data estimated a recent origin and diversification of the *H. gracilis* complex at ca. 0.3 Ma (95% confidence interval (c.i.) 0.4-0.2 Ma) (Fig. 4), with strongly supported monophyly. The complex was divided into two major clades, one included the Iberian *H. gracilidelphis* plus all specimens from the easternmost populations identified as *H. anatolica* (eastern Anatolia, the Caucasus and Iran), and the other was formed by two groups, one containing specimens of *H. anatolica* and *H. crepidoptera* from northern Turkey and the other with the widespread European *H. gracilis*, including the subspecies *H. gracilis balcanica* and two Turkish specimens of *H. anatolica* and *H. graciloides*. In the latter clade, specimens from the most southeasterly populations occupied basal positions, with the more western and northern populations nested within them (Fig. 4). The lineage with the eastern specimens of *H. anatolica* had a poorly supported position between the two remaining main clades of the complex, which differed between analyses. Bayesian analysis (Fig. 4) recovered the eastern lineage as sister to the Iberian *H. gracilidelphis*, whilst ML analysis (Fig. S1) linked the eastern lineage to the other clade, as sister to *H. gracilis* and the Turkish westernmost populations, but always with low support.

In the coalescence analyses a constant size model was preferred over exponential growth (Table 1) (logistic and expansion models did not converge adequately). The Bayesian Skyline Plot showed a continuous, slight increase in population size, with a marked increase at ca. 50,000 years BP and a slight decrease towards the present (Fig. 5A).
3.2. *Platambus maculatus* complex

The relaxed lognormal was significantly better than the strict molecular clock, and was therefore implemented in the Bayesian analyses (Table 1). The temporal origin of the *P. maculatus* complex was estimated to be in the Middle Miocene (ca. 12 Ma) (Fig. 6), although the split between the two extant species (*P. maculatus* and *P. lunulatus*) occurred in the Messinian (ca. 6.5 Ma, c.i. 9.3-4.1 Ma). Extant intraspecific variability dates from the Pliocene-Pleistocene boundary (2.5-3.5 Ma). The ultrametric tree obtained from Bayesian analysis using the combined mitochondrial and nuclear matrix strongly supported the monophyly of the two recognised species (Fig. 6).

Platambus maculatus was divided into three clades, one with specimens with a predominantly western distribution (northern Spain, France and the British Isles, including specimens from some Scottish lochs, these forming a monophyletic lineage); a second clade with specimens from easterly populations (central Europe, Scandinavia, the Balkans, Anatolia and the Middle East); and a third clade including specimens of the Iberian "graellsii" form plus *P. maculatus* from northern Italy and the two sampled specimens from one of the localities in the Pyrenees (PIR11, Fig. 6; Table S1). The relationships between these three lineages were not well supported, and varied between analyses. In the Bayesian analysis using only nuclear markers (Fig. S2), all specimens of *P. maculatus" graellsii"* plus the northern Italian and PIR11 *P. maculatus* were included within the western clade. In the ML analysis, on the contrary (Fig. S3), we recovered the northern Italian specimens of *P. maculatus* as sister to all other specimens, which were split into three poorly supported groups (western clade, eastern clade and the "graellsii" form plus the PIR11 *P.maculatus* referred to above).

None of the four coalescence models converged adequately, but the Bayesian Skyline Plot showed a nearly constant effective population size until ca. 15,000 years BP, with a recent increase (Fig. 5B).

3.3. European *Oreodytes* species

A relaxed lognormal clock was preferred over a strict molecular clock, and was implemented in the Bayesian analyses (Table 1). Preliminary results showed the existence of two group of species, one closely related to *O. sanmarkii* (the *O. sanmarkii* group) and the other to *O. davisii* (the *O. davisii* group), the later including the European *O. septentrionalis* and *O. alpinus*. These two clades were constrained as
monophyletic in subsequent Bayesian analyses without outgroups. *Oreodytes alpinus* was nested within *O. davisii* in the analysis using the combined mitochondrial and nuclear matrix (Fig. 7), forming a clade with the eastern Palaearctic *O. mongolicus* (Brinck). In the analysis using only nuclear data, *O. alpinus* and *O. mongolicus* were also sisters, but both sister to *O. davisii* (Fig. S4).

Divergence time analysis (Fig. 7) dated the separation between the *O. davisii* and *O. sanmarkii* groups to the Oligocene (ca. 27 Ma, c.i. 36-20 Ma) and diversification within them to the Lower Miocene (ca. 22 Ma, c.i. 30-15 Ma) for the *O. sanmarkii* group and the Middle Miocene for the *O. davisii* group (ca. 13 Ma, c.i. 18-10 Ma) (Fig. 7). The sister species of the clades *O. davisii*+*O. alpinus*+*O. mongolicus* and *O. sanmarkii* were the North American *O. snoqualmie* (Hatch) and *O. obesus* (LeConte), respectively. Intraspecific variation in both *O. davisii* and *O. sanmarkii* was of Pleistocene origin (1.5-2.0 Ma) (Fig. 7).

We found no clear phylogeographical signal in *O. davisii*, irrespective of the method of analysis (Bayesian or ML). In contrast, *O. sanmarkii* was divided into two clades with a clear geographical pattern, one including specimens with an eastern distribution, from Mongolia to central Europe, and the other including mainly western specimens, from the Iberian Peninsula, Italy and the British Isles, although also including some individuals from the Carpathians. Within the western clade, Iberian populations from the Pyrenees were separated from those from Portugal and central and northwestern Spain, the latter identified as the subspecies *O. sanmarkii alienus*. This difference was more pronounced in the ML analysis (Fig. S5; although with poor support) and in the analysis using only nuclear data (Fig. S4), which recovered *O. s. alienus* as sister to remaining *O. sanmarkii*.

In the case of other European species of the group, we found a deep divergence between Mongolian and European specimens of *O. septentrionalis*, estimated to have occurred during the late Miocene (ca. 5.6 Ma, c.i. 8.3-3.5 Ma; Fig. 7).

The expansion growth coalescence model performed better than logistic or exponential ones (Table 1); the constant size model failing to converge adequately. The Bayesian Skyline Plot showed that effective population size remained constant until relatively recently, with a sharp increase ca. 10,000 years BP (Fig. 5C).

4. Discussion
Our results emphasise the fact that patterns of evolutionary diversification, biogeographical history and range expansion can differ significantly, even when comparing taxa occupying the same broad habitat type in the same region. The three groups of water beetles examined here have all diversified during the Plio-Pleistocene, and been subject to the same historical climatic shifts, but despite this their colonization history and demography differ considerably.

4.1. Hydraena gracilis complex

According to our results the *H. gracilis* complex has a recent, Pleistocene origin, with the widespread *H. gracilis* showing extreme genetic homogeneity throughout its range. This suggests a very recent expansion, in agreement with preliminary results for this and other species of the "Haenyndra" lineage (Ribera et al., 2011). The existence of narrow endemics around the periphery of the range of the complex, both in the far west (Iberian Peninsula) and east (Anatolia, Azerbaijan and Iran) is consistent with successive cycles of range expansion within the complex, followed by local extinctions, most likely during the glacial periods. During such times, remaining populations would have been isolated in refuges, resulting in the divergence of *H. gracilidelphis* in the Iberian Peninsula and *H. anatolica, H. graciloides* and *H. crepidoptera* in Turkey and the Middle East - a scenario consistent with the model for diversification of this group proposed by Ribera et al. (2011).

On current data it was not possible fully to resolve the relationships of eastern Anatolian and Iranian populations of *H. anatolica*, which may be the remnants of earlier diversification cycles (as is the case for *H. gracilidelphis* in the west) or represent early isolates of the most recent range expansion. The separation between western and eastern populations in *H. anatolica* suggests that the Anatolian Diagonal, a mountain range running from north-eastern to south-western Anatolia, acts as an effective barrier to gene flow between western and eastern regions, a pattern observed in many Turkish taxa (Gündüz et al., 2007). The basal position of northern and central Turkish populations of the *H. gracilis* group suggests a second range expansion from these areas, crossing the straits to the Balkans and expanding to western and northern Europe, resulting in the current widespread European *H. gracilis*. This pattern of expansion has been observed in other taxa, including insects (e.g. grasshoppers, Korkmaz et al., 2014) suggesting that Anatolia was an important glacial refugium, which contributed to the recolonization of Europe in some lineages (Ansell et al., 2011; Hewitt, 1996; Rokas et
Such expansion from Anatolia to the Balkans may have been possible through a substantial decrease in sea level during glacial periods (Aksu et al., 1999; Ergin et al., 2007), which resulted in a large part of the Sea of Marmara becoming dry land through which terrestrial and freshwater taxa may have dispersed.

4.2. *Platambus maculatus* complex

Although the precise geographic origin of the *P. maculatus* complex remains uncertain, their closest relatives are distributed in eastern and central Asia (Nilsson, 2015; Nilsson & Hájek, 2017b). Subsequent to the western range expansion from central Asia, one lineage differentiated in Asia Minor and Anatolia, resulting in *P. lunulatus*, and the other Europe, resulting in *P. maculatus*.

Range expansion in *P. maculatus* followed a clear geographical pattern, with western and eastern populations falling into two well-supported clades (Fig. 6). An exception here is the uncertain position of specimens from northern Italy and the Iberian "graellsi" form, both of which show appreciable morphological differences in elytral pattern and sculpture. Northern Italian specimens have long been recognised as amongst the largest, most convex and shiny of this species (Sharp, 1882; Balfour-Browne, 1940) (Figs 6, 8), whilst populations from central Iberia were originally described as a distinct species (*Agabus glacialis* Graells, subsequently changed to *A. graellsi*), but then reduced to a variety and finally synonymised with *P. maculatus* (Nilsson & Hájek, 2017a,b). They have a more reddish coloration than the typical forms of *P. maculatus*, with a poorly defined colour pattern and a very dense and deep microsculpture, giving their dorsal surface a dull, rough appearance (Sharp, 1882) (Figs 6, 8). Both central Iberian and north Italian populations are at the periphery of the main range of the species, in a situation similar to that for *H. gracilidelphis* and the Iberian *Oreodytes* (see below). In *Platambus* our data are, however, inconclusive regarding the origin of these forms, which could have been isolated in the Iberian and Italian Peninsulas as remnants of an earlier range expansion in the complex, or result from incipient isolation during the most recent expansion event.

Within the western clade, specimens from some oligotrophic Scottish lochs, also at the periphery of the species main range, formed a monophyletic lineage. This is most remarkable, as they were, together with *P. maculatus* "graellsi" and the northern Italian populations, the only forms highlighted in the monumental revision of Sharp (1882). Scottish loch animals were described as being the smallest of the species, flatter in
shape, with a duller surface and reduced yellow markings on the elytra (Sharp, 1882; Balfour-Browne, 1940) (Figs 6, 8). However, three specimens from Loch Eck, with a similar morphology (although with less marked differences) were not placed in this clade, but amongst other lineages within the wider western clade (Fig. 6; Table S1). We performed additional analyses, including sequences obtained from public databases, to identify specimens with similar haplotypes to those of Scottish lochs, and found a single northern Swedish sequence which nested within the Scottish clade (obtained from Bergsten et al., 2012). The external morphology of this specimen was within the typical range of *P. maculatus* however, and other beetles from the same locality had similar morphology, and COI haplotypes which nested within the western continental lineage. The nuclear markers used did not have enough resolution to determine if such incongruences are the result of introgression, but in any case our results suggest that some Scottish populations, and perhaps others in northern Europe, could be remnants of an early northward range expansion in *P. maculatus*.

4.3. European species of the genus Oreodytes

Most species of the genus *Oreodytes*, including the sister species of both *O. davisii* and *O. sanmarkii* (*O. snoqualmie* and *O. obesus* respectively) are distributed in the western United States and Canada (Larson, 1990; Larson et al., 2000). The geographical origin of European taxa therefore seems to have been via range expansion through Beringia and Asia. In the case of *O. davisii* this expansion has not left any apparent phylogeographical structure in the studied markers. In the combined analyses (largely driven by mitochondrial data) *O. alpinus* and *O. mongolicus* were nested within *O. davisii*, despite considerable morphological differences between these species (Shaverdo & Fery, 2006; Foster & Friday, 2011). In contrast, the analysis using only nuclear data clearly separated both species from *O. davisii*, consistent with past mitochondrial introgression between populations of these closely related species who are likely to have shared the same broad Pleistocene refugia. Such a situation has been reported from a number of other taxa (e.g. Berthier et al., 2006; Nichols et al., 2012) including aquatic beetles (Hidalgo-Galiana et al., 2014, García-Vázquez et al., 2016). In *O. sanmarkii* there is a more clearly defined phylogeographic structure, with extant western and eastern clades dating from the middle Pleistocene. This suggests an early origin of European populations, with subsequent isolation of these in different eastern and western refugia. Both *O. davisii* and *O. sanmarkii* are very cold resistant (in
the Pyrenees both can be active in winter in partly frozen streams, I. Ribera unpublished observations), likely able to survive in relatively high northern latitudes during glacial cycles, something which may have favoured local persistence in cryptic northern refugia (see below).

Similarly to the *P. maculatus* and *H. gracilis* complexes, the only recognised forms within *O. davisii* and *O. sanmarkii* are the Iberian *O. davisii rhianae* and *O. sanmarkii alienus* respectively, both occurring west and south of the Ebro valley (Balke, 1989; Carr, 2001). In the analysis of nuclear data, and also ML analysis of the combined dataset, the sequenced specimens of *O. sanmarkii alienus* formed a monophyletic group, although in a relatively unsupported position with respect to other *O. sanmarkii*. Irrespective of its taxonomic status it seems that *O. sanmarkii alienus* is relatively isolated genetically from other European populations, reinforcing the pattern of peripheral isolation across the ranges of widespread European taxa. Although difficult to assess without molecular data, the two missing European species of *Oreodytes* in our study, *O. meridionalis* and *O. angelinii*, are also most likely recent peripheral isolates in Mediterranean peninsulas. Thus, *O. meridionalis*, from the central and southern Appenines (Rocchi, 2007) was considered to be a synonymy of *O. davisii* by Francisco (1979) due to their close external morphology. Similarly, *O. angelinii*, from northern Greece, has only been recently recognised as a distinct species by Fery (2015), having been considered within the morphological variability of *O. sanmarkii* by previous authors.

4.4. Concluding remarks: routes of recolonization

Our results show that for some water beetles, as in many other groups, central and northern Europe were recolonized by range expansions from peripheral refugia at the end of the last glaciation. Northern areas of Iberia and Anatolia appear particularly relevant for the taxa studied here, both as sources of recolonists and as cradles for recent, narrow-range endemics. In addition to this classic pattern, however, we also show that some widespread central and northern European species originated not around the Mediterranean basin, but in central Asia, although such taxa still have peripherally isolated forms in the southern Mediterranean peninsulas that in some cases possess divergent haplotypes from those in central and northern Europe. Such species may have colonized northern areas of the continent from cryptic refugia in central/eastern Europe or western Asia during the Holocene. Of particular interest is the possibility of
peripheral refugia not only in the Mediterranean region but also in some areas in the north, as suggested by the Scottish form of *P. maculatus*.

Glacial refugia during cold episodes in Europe were not restricted to the three southern peninsulas, as shown by multiple examples from the Carpathians (Willis et al., 2000; Deffontaine et al., 2005; Kotlík et al., 2006; Sommer & Nadachowski, 2006), and other areas in north and central Europe (Kullman, 1998; Bilton et al., 1998; Stewart & Lister, 2001). Quaternary deposits suggest that a woodland zone existed in the southern foothills of the Carpathian mountains and in sheltered valleys at mid elevations, even during the LGM (Lozek, 2006; Willis et al., 2000). More easterly areas could have also been involved in the colonization of Europe from Asia, including the Caucasus (Massilani et al., 2016). Other potential refugia may have been situated in the Urals, the northern slopes of the Altai, or the Crimean Peninsula (Grichuk, 1984; Hewitt, 1999; Soffer 1990) as well parts of the Ukraine and European Russia (Tarnowska et al., 2016).

In the case of the species studied here, as with other European lotic water beetles (García-Vázquez & Ribera, 2016), interglacial range expansions did not result in the mixing and homogenisation of gene pools, but instead drove the isolation and differentiation of populations at range edges. All the running water beetle lineages studied here are relatively weak dispersers compared to most standing water relatives. All *P. maculatus* examined by Jackson (1952, 1956) had reduced flight muscles and most studied specimens of *O. sanmarkii* have reduced flight muscles, although there is at least one record of a specimen with these fully developed (Foster et al., 2016). *O. davisii* and *H. gracilis* are known to fly (Jäch, 1997; Foster et al., 2016) although have been recorded doing so relatively rarely. It is interesting, however, that these two species are the most genetically homogeneous of the species studied here. This relatively poor dispersal ability begs the question as to how some species are able to expand their ranges to continental scales? The relative genetic homogeneity of widespread species, with genetic differentiation only in peripheral isolates, together with our coalescence data, suggest rapid range expansions over short temporal windows which may have provided optimal ecological conditions for movement between habitat patches. Recently deglaciated areas are likely to have supported a high density of lotic environments, something which may have facilitated the expansion of these beetles. In the Massif Central, Ponel et al. (2016) found an increase in fossil remains of lotic water beetle species immediately after the Last Glacial, but also following the Younger Dryas. This abundance of lotic species was associated with an increase in stream flow resulting...
from snow melt during the rapid warming following these two cold periods. When soil formation and sedimentation transformed the landscape, the abundance of lotic species decreased in parallel with an increase in lentic taxa (Ponel et al., 2016). If the same habitat succession happened at larger geographical scales across the continent, it would have facilitated rapid range expansions in lotic species living close to the margins of deglaciated areas, but only for a short time period. As conditions changed, many populations are likely to have become locally extinct, precipitating the genetic isolation of the remainder and in some their eventual speciation (Ribera et al., 2011). The accumulation of narrowly endemic species in lotic lineages may result from successive cycles of range expansion with subsequent speciation and local extinction in glaciated areas over multiple Pleistocene glacial cycles.

Acknowledgements

We thank all the collectors in Table S1 for allowing us to study their material, and Ana Izquierdo (MNCN) and Roció Alonso (IBE) for laboratory work. We also thank J. Bergsten for providing voucher specimens of Swedish *P. maculatus* for study, U. Schmidt and L. Borowiec for some of the habitus photographs, and two anonymous Referees for comments. DG-V had a FPI PhD grant from the Spanish Government. This work was partially funded by projects CGL2010-15755 and CGL2013-48950-C2-1-P (AEI/FEDER, UE) to IR, and the “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (project SGR1532).

References

Ansell, S. W., Stenøien, H. K., Grundmann, M., Russell, S. J., Koch, M. A., Schneider, H., Vogel, J. C., 2011. The importance of Anatolian mountains as the cradle of

Figure legends

Figure 1. Distribution of studied species of the *Hydraena gracilis* complex. White circles, sampled localities.

Figure 2. Distribution of studied species of the *Platambus maculatus* complex. White circles, sampled localities.

Figure 3. Distribution of *Oreodytes sanmarkii* and *Oreodytes davisii* in the Western Palearctic. Coloured circles, sampled localities for each species, including also *Oreodytes alpinus* and *Oreodytes septentrionalis*. Localities from Mongolia and Siberia for *O. sanmarkii* and *O. alpinus* respectively are not show.

Figure 4. Phylogenetic tree of the *Hydraena gracilis* complex. Ultrametric tree obtained with BEAST with combined nuclear and mitochondrial sequences and a partition by gene. Numbers on nodes represent Bayesian posterior probabilities higher than 0.5. See Table S1 for details of specimens and localities. Habitus photograph, *H. gracilis* (Lech Borowiec).

Figure 5. Coalescence Skyline plots of A) *H. gracilis*; B) *P. maculatus*; C) *Oreodytes sanmarkii*. Blue lines represent 95% highest probability density; horizontal axis - time before present (Ma); vertical axis - effective population size (NeT).

Figure 6. Phylogenetic tree of the *Platambus maculatus* complex. Ultrametric tree obtained with BEAST with combined nuclear and mitochondrial sequences and a partition by gene. Numbers on nodes represent Bayesian posterior probabilities higher than 0.5. See Table S1 for details of specimens and localities. Habitus photographs, from base to tip, north Italian from, *P. maculatus* "graellsii", north-Scottish form, and typical *P. maculatus* (dotted lines mark the corresponding specimens).

Figure 7. Phylogenetic tree for studied *Oreodytes* species. Ultrametric tree obtained with BEAST with combined nuclear and mitochondrial sequences and a partition by gene. Numbers on nodes represent Bayesian posterior probabilities higher than 0.5. See
Table S1 for details of specimens and localities. Habitus photographs, *O. sanmarkii* (L. Borowiec) and *O. davisii* (U. Schmidt).

Figure 8. Habitus of (A) *Platambus maculatus*, standard form (specimen voucher MNCN-AH71); (B) form "graellsii" (voucher MNCN-AI733); (C) specimen from north Italy (voucher MNCN-AH191); (D) specimen from the Scottish Lochs (voucher IBE-AI975). See Table S1 for details on the specimens, and Figs 6, S2 and S3 for the phylogenetic relationships of the specimens.
Table 1. Clock and coalescent demographic model comparisons for each group, including AICM values and standard errors (SE). Best AICM value for each pair shown in bold; models that failed to converge adequately in brackets or represented by a dash. Differences < 2 units were not considered significant.

<table>
<thead>
<tr>
<th>group</th>
<th>clock</th>
<th>AICM</th>
<th>SE</th>
<th>coalescence</th>
<th>AICM</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. gracilis</td>
<td>relaxed</td>
<td>[9076.7]</td>
<td>±0.11</td>
<td>constant</td>
<td>6705.3</td>
<td>±0.05</td>
</tr>
<tr>
<td></td>
<td>strict</td>
<td>9385.8</td>
<td>±0.24</td>
<td>exponential</td>
<td>6717.2</td>
<td>±0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>expansion</td>
<td>[6708.5]</td>
<td>±0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>logistic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. maculatus</td>
<td>relaxed</td>
<td>18568.9</td>
<td>±0.52</td>
<td>constant</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>strict</td>
<td>18596.7</td>
<td>±0.44</td>
<td>exponential</td>
<td>[11173.9]</td>
<td>±19.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>expansion</td>
<td>[9903.9]</td>
<td>±65.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>logistic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. sanmarkii</td>
<td>relaxed</td>
<td>23948.4</td>
<td>±0.87</td>
<td>constant</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>strict</td>
<td>23952.8</td>
<td>±0.56</td>
<td>exponential</td>
<td>8204.6</td>
<td>±0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>expansion</td>
<td>8200.2</td>
<td>±0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>logistic</td>
<td>8202.3</td>
<td>±0.13</td>
</tr>
</tbody>
</table>