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Abstract

Background: Visual neglect is an attentional deficit typically resulting from parietal cortex lesion and sometimes frontal
lesion. Patients fail to attend to objects and events in the visual hemifield contralateral to their lesion during visual search.

Methodology/Principal Finding: The aim of this work was to examine the effects of parietal and frontal lesion in an existing
computational model of visual attention and search and simulate visual search behaviour under lesion conditions. We find
that unilateral parietal lesion in this model leads to symptoms of visual neglect in simulated search scan paths, including an
inhibition of return (IOR) deficit, while frontal lesion leads to milder neglect and to more severe deficits in IOR and
perseveration in the scan path. During simulations of search under unilateral parietal lesion, the model’s extrastriate ventral
stream area exhibits lower activity for stimuli in the neglected hemifield compared to that for stimuli in the normally
perceived hemifield. This could represent a computational correlate of differences observed in neuroimaging for
unconscious versus conscious perception following parietal lesion.

Conclusions/Significance: Our results lead to the prediction, supported by effective connectivity evidence, that
connections between the dorsal and ventral visual streams may be an important factor in the explanation of perceptual
deficits in parietal lesion patients and of conscious perception in general.
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Introduction

Visual neglect (also referred to as ‘‘unilateral neglect’’,

‘‘hemispatial neglect’’ or ‘‘hemineglect’’) can result from a lesion

typically to the posterior parietal cortex [1]. It is also sometimes

associated with frontal lobe lesions [2,3] or lesion of the thalamus

[4]. These neurological patients suffer an inability to notice objects

and events in the hemifield contralateral to their lesion. Deficits in

perception appear to be related to attentional factors, rather than

being purely sensory, because problems are often context

dependent. Although neglect patients are able to make saccades

in the contralesional direction during visual search, their fixations

tend to be concentrated in the ipsilesional hemifield [1,5].

Examples of such a scan path and patient target detection

performance are shown in figure 1. Patients have a tendency to

frequently re-fixate targets and, in parietal cases, re-fixation rates

increase with time since first fixating a location [1]. Neglect

patients whose lesions include frontal cortex are prone to motor

perseveration during paper-and-pen line cancellation tasks,

repeatedly marking the same line and seeming less able than

normals to move their attention away [6]. In particular,

orbitofrontal lesion has been linked to increased re-fixation in

search scan paths [7]. Unlike those associated with parietal injury,

re-fixation errors following frontal lesion do not appear to increase

with time since first fixating a location [1].

We have previously presented a computational model of visual

attention and search [8,9,10,11] that is based on and constrained

by neurobiology. The cellular properties of the model are based on

evidence from monkey electrophysiology and the model has been

used to accurately simulate activity observed in monkey single cell

studies of visual attention, such as those performed by Chelazzi

et al [12,13,14]. On the basis of this biological constraint at the

cellular level of the model, the overall system produces eye

movement behaviours similar to those observed in normal human

and monkey psychophysical studies [8], for example those

reported by Motter and Belky [15] during visual search for a

feature conjunction target. Hence, the model provides a platform

for testing the link between neuronal activity and behaviour, and

the effect of lesions, because it captures visual attentional

behaviours at both the single cell and behavioural levels.

Our aim for the current work was to examine the effects of

parietal lesion in the model on simulated visual search behaviour.

Under normal conditions the model produces search scan paths

that thoroughly investigate a scene and exhibit biologically-

realistic inhibition of return (IOR), a bias against returning to

locations that have been already inspected [16,17,18]. Would a

parietal lesion result in altered scan paths during visual search? We

will describe how the model simulates scan paths under lesion

conditions that resemble those produced by parietal patients

suffering symptoms of visual neglect, including the scan path
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neglecting the contralesional hemifield and exhibiting an increased

rate of re-fixation. We also investigated the effect of lesion to the

frontal bias to parietal cortex, on scan paths and re-fixation rates.

Frontal damage has been linked to neglect behaviours [2,3,19],

deficient IOR behaviour [7] and perseveration [6]. Our frontal

bias is an external signal to the system that mediates IOR and is

represented in scene-based coordinates. Would a unilateral lesion

to an area representing a scene-based frame of reference lead to

the same symptoms of neglect as lesioning a retinotopic parietal

area? We will describe how impairment of this model’s frontal bias

leads to symptoms of neglect, deficits in IOR and, hence,

perseveration.

The extrastriate ventral stream has been linked with the

conscious perception of stimuli [20,21,22]. In our simulations this

region remained free from lesion and represented stimuli across

the scene. However, we found differences in levels of extrastriate

activity when performing simulations with parietal lesion:

neglected stimuli were represented with lower levels of activity

than non-neglected stimuli. We will discuss reasons for this effect

in our model in relation to findings in neuroimaging. Such

differences in levels of activity in our model could represent a

computational correlate of conscious versus unconscious percep-

tion following parietal lesion.

Materials and Methods

The Existing Model
Our computational model, described fully by Lanyon and

Denham [8,11], was inspired by seminal biased competition

modelling by Deco [23,24], and is depicted in figure 2. In addition

to the overt shifts of attention previously modelling, we include

here an extension to the model to allow covert shifts of attention

where fixation is maintained at the centre of the display. Each

module consists of many neurons whose activity is updated at each

time step, according to inputs from other neurons in the same or

other modules and bias signals that originate from brain regions

external to the system (such as a frontal bias relating to the search

target). According to a widely accepted neurobiological model that

suggests cortical visual processing is performed in two main

streams [25,26], our model consists of a ventral and a dorsal

stream. Communication across the streams is also a feature of our

model and recent empirical evidence suggests that the two streams

are less separable than previously thought [27].

In the model’s ventral stream, colour and orientation features

are processed in a feed-forward hierarchical fashion from the

retina through visual area V1 to area V4 and then the anterior

inferior temporal area (IT). Retinal ganglion broad-band cells

Figure 1. Examples from neglect patients. a. Example scan path from patient G.K. who has infarction of the right inferior parietal lobe but
has sparing of the frontal lobe [1]. The search task was to find letter Ts amongst distractor Ls. There is profound neglect of the left side of the
array and many re-fixations on the right. Figure from Husain et al. [1] ‘Impaired spatial working memory across saccades contributes to abnormal
search in parietal neglect’ Brain (2001), 124, 941–952, by permission of Oxford University Press. b. Visual targets successfully cancelled during a
cancellation task involving random shapes by Weintraub and Mesulam [52]. This patient has a large right parieto-temporal lesion and
dramatically neglects the left hemifield. Reproduced from ‘Visual hemispatial inattention: stimulus parameters and exploratory strategies’ Weintraub
and Mesulam [52] Journal of Neurology, Neurosurgery and Psychiatry, 51(12), 1481–8, (1988) with permission from BMJ Publishing Group Ltd.
c. Visual targets successfully cancelled during a cancellation task involving randomly positioned letters by Weintraub and Mesulam [52]. This patient
has a right superior frontal infarct and neglects the left hemifield. Reproduced from ‘Visual hemispatial inattention: stimulus parameters and
exploratory strategies’ Weintraub and Mesulam [52] Journal of Neurology, Neurosurgery and Psychiatry, 51(12), 1481–8, (1988) with permission from
BMJ Publishing Group Ltd.
doi:10.1371/journal.pone.0011128.g001

Model of Visual Neglect
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perform simple centre-surround processing and retinal concentric

single opponent cells process colour information, as we have

described previously [8,11]. Area V2 is not included in the model

on the basis that we are using very simple stimulus sets and similar

feature detection processes would be performed in a V2 module as

those described for V1 and V4. Areas V1 and V4 encode features

in a retinotopic manner with receptive field sizes being biologically

realistic and larger in V4 than V1 (see [8] for further detail). These

areas contain a retinotopic feature map for each feature

represented (red & green colours and vertical & horizontal

orientations). Area V4 feeds forward to area IT, which encodes

invariant object representations. Within the ventral stream, biased

competition operates between different features and different

objects. During visual search, object-based attention results from a

bias from frontal cortex (possibly ventral prefrontal area 46), which

represents the search target, fed back to influence the competition

between objects in IT. IT feeds back to V4 so that, as the target

object wins the competition within IT, the feedback bias results in

target features being enhanced and non-target features being

suppressed in parallel across V4. In order to shift attention

covertly, a spatial attentional focus is fed through the parietal

module to area V4, resulting in spatial attention effects in that

area. So, in area V4, both spatial and object-based attentional

effects emerge from the dynamics of the system.

The model’s dorsal stream consists of a retinotopically organised

parietal module where competition operates between different

retinotopic spatial locations. The location becoming most active

wins the competition to attract attention and, hence, becomes the

new focus of attention. The parietal module receives inputs from

V4 so that, as V4 begins to represent the location of possible target

features most strongly, these locations receive a favourable bias

within the parietal module. Hence, possible target locations

become enhanced and locations not containing target features

become suppressed. The parietal module, therefore, acts as an

indicator of behavioural relevance: it is known that the monkey

lateral intraparietal area represents the behavioural significance of

stimuli [28].

The parietal module receives another external bias that reflects

the novelty of locations in the scene and, hence, their potential

reward (given that locations already visited have low reward for

revisiting). This scene-based (or possibly body-based) representa-

tion could form part of a high-level search strategy that is

controlled by frontal cortex, and might be represented in

orbitofrontal cortex because of the links of this area with reward

Figure 2. Model Architecture. Schematic of the modules within the system. Note that the actual number of cells in V1, V4 and the parietal module
are more than shown, and inhibitory interneurons are not shown. For further details see Lanyon and Denham [8,11].
doi:10.1371/journal.pone.0011128.g002

Model of Visual Neglect
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[7,29]. In our model, this ‘‘novelty map’’, which is the size of the

complete image, indicates whether locations in the scene have

been previously inspected and mediates IOR in the search scan

path by contributing an excitatory bias to the competition in the

parietal module. The map is expressed in a scene-based coordinate

system and is transformed to a retinal coordinate system within the

parietal module. After a location has been visited novelty in that

region is reduced such that there is a gradient of inhibition around

the previously attended location [17]. Novelty then takes some

time to recover so that attention is inhibited from several of the

most recently visited locations [30]. Hence, a recently visited

location will have a negative novelty value and values in the local

vicinity will increase in a gaussian fashion to neutral (zero) novelty

over the extent of an Attention Window (AW), which is scaled

based on stimulus density as described by [31]. Areas of the scene

that have yet to be inspected will have high (positive) novelty value.

Under normal conditions the novelty bias to the competition in the

parietal module causes the scan path to be effective in exploring

the scene and not perseverating in any particular area [8].

Since lesion of the parietal module and the frontal bias signal is

the focus of this work, we now provide the mathematical

description of this part of the model. Other aspects are described

in Appendix S1. The pyramidal cell assemblies in the parietal

module evolve according to the following dynamics:

t1
d

dt
Yij tð Þ~{Yij tð ÞzaF Yij tð Þ

� �
{bF Y I tð Þ

� �

zx
X

k

F Wijk tð Þ
� �

ze
X

c

F Wijc tð Þ
� �

zcPd
ij tð Þzg

X

pq

ZpqzI0zn

ð1Þ

where:

a is the weight of excitatory input from other cells in the pool, set

to 0.95

b is the weight of inhibitory input, set to 1

Wijk is the orientation input from V4 for orientation k, at

location (i,j)

x is the weight of V4 orientation inputs, normally set to 0.8 (see

[8] for examination of relative weighting)

Wijc is the colour input from V4 for colour c, at location (i,j)

e is the weight of V4 colour inputs, normally set to 4

Pd
ij is the spatial AW bias injected directly into this pool when

there is a requirement to attend to this spatial location

c is the weight of the spatial AW bias, set to 2.5

Zpq is the bias from area pq of the novelty map (which is the size

of the original image, N). Area pq represents the size of the parietal

receptive field. (See [8] for more information about the novelty

bias)

g is the weight of the novelty bias, normally set to 0.0009

I0 is a background current injected in the pool, set to 0.25

n is additive noise, which is randomly selected from a uniform

distribution on the interval (0,0.1)

The dynamic behaviour of the associated inhibitory pool in LIP,

providing competition between locations, is given by:

t1
d

dt
Y I tð Þ~{Y I tð Þzl

X

ij

F Yij tð Þ
� �

{mF Y I tð Þ
� �

ð2Þ

where:

l is the weight of pyramidal cell assembly input, set to 1

m is the weight of inhibitory interneuron input, set to 1

Simulated Lesions
Simulating a parietal cortex lesion in this model is the focus of

this work. Our aim was to apply a unilateral lesion to the parietal

module in order to simulate a right hemisphere parietal lesion,

which has been associated with severe symptoms of visual neglect

in search scan paths [32,33]. The lesion was simulated by reducing

the activity in the left half of the parietal module, in order to

simulate a right hemisphere lesion since crossover of the optic

radiations at the optic chiasm is not specifically represented in this

model. In different lesion simulations the activity was either set to

zero across the complete hemifield (a complete hemi-lesion) creating a

step-function of impairment, or was reduced in the hemifield by an

amount that increased in a gradient fashion from the centre of the

visual field towards the periphery (a gradient lesion). Some authors

have argued that neglect manifests as a gradient across the visual

field [33] and parietal lesions have been simulated elsewhere with

a gradient of impairment [34,35,36]. The method we use is a

simple linear gradient in which the amount of deficit was varied

more or less steeply towards the contralesional visual periphery.

The gradient of impairment started at values ranging from 1 to

100% at the far left of the hemifield and reduced to zero at the

centre of the visual field. Search scan path behaviours were

compared at these different gradients of impairment.

A complete unilateral parietal hemi-lesion is given by:

Yij~0 ð3Þ

where:

i ranges from 1 to m, m being the number of rows of neurons in

the parietal module

j ranges from 1 to n/2, n being the number of columns of

neurons in the parietal module, an index of the lateral position of

the neuron

A parietal gradient lesion is given by:

Yij~Yij
:Hij ð4Þ

where:

i and j range as above

H is the gradient of impairment matrix in which the values in each

row increase linearly left to right from starting value x, the

maximum impairment, to 1, no impairment.

In addition to having search scan paths which typically favour the

ipsilesional hemifield, neglect patients also have impaired spatial

memory of locations previously visited [1] and demonstrate persever-

ance, particularly when frontal cortex is involved [6]. We simulated

lesions to the frontal representation of novelty, which is represented in a

scene-based frame of reference, in order to examine the effect on scan

paths of both a unilateral and bilateral frontal novelty/reward lesion.

A frontal lesion is given by:

Zij~0 ð5Þ

where:

i ranges from 1 to N, N being the size of the original image

j ranges from 1 to N/2, for a unilateral lesion; j ranges from 1 to N,

for a bilateral lesion

Attentional Scanning
We have previously described the model in active visual search

mode i.e. using overt attention with eye movements [8]. The model’s

retina processed a portion of the entire scene centred at the current

fixation point and the cortical modules processed only what was

Model of Visual Neglect
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present within the current retinal view. This presents an issue when

simulating a parietal lesion since, unlike the real continuous world, a

simulated scene has boundaries. The parietal module determines the

next location for fixation. If fixation lands at a location very close to

the right edge of the scene, and the left of the parietal module is

ineffective due to lesion, the system may be unable to find a new

location to which to move its focus of attention. This happens because

the intact right half of the parietal module extends beyond the scene

and does not receive any bottom-up featural information. (Note, the

normal practice of computationally extending/replicating the scene

beyond its boundaries does not help to move the scan path back into

the scene in this situation.) For this reason, we extended the model to

operate using covert attention in which fixation is maintained at the

centre of the scene and the entire scene is present on the retina at all

times but the focus of spatial attention moves. Most leading

computational models of visual attention (for example, [23,37,38])

and neglect [34,35,36] tend to use covert rather than overt attentional

movements so that the entire scene is processed for each location that

is attended. However, the use of overt attention with eye movements

is more biologically realistic, such that only the portion of the scene

present on the retina is processed. We present simulations using both

approaches. For our overt simulations we also show the effect of

applying a ‘‘top-down’’ search strategy where a small leftward

saccade is made to shift fixation back into the scene in the situation

where fixation lands at the rightmost border of the scene. Note,

although reports of laterality bias in patients’ saccades vary, some

show as many leftward as rightward saccades in the patient’s normal

hemifield [1,39].

Results

Unilateral Parietal Lesion - Scan Path
Scan paths exhibited complete neglect of the left hemifield of

the visual display when the parietal module was unilaterally

lesioned. This occurred for both covert and overt simulations. For

reasons described above, scan paths tended to become stuck at the

rightmost border of the scene during overt scanning; an example is

shown in figure 3. Attention was attracted to the right hemifield

but was unable to re-orient away from the rightmost border of the

scene. If the strategy of a reset saccade to move left back into the

scene from the rightmost border was adopted then attention was

able to re-orient within the right hemifield but the left was severely

neglected, as shown in figure 4b, in comparison to the scan path

produced by the intact model in figure 4a. Similarly, under covert

scanning, the scan path neglects the left hemifield when the

parietal module is lesioned but not when it is intact, as shown

in figure 4 c and d. This demonstrates that lesion of the

retinotopically organised parietal module results in neglect of the
left hemifield whether or not the eyes are moved. Neglect

occurs despite locations in the left hemifield having high novelty

value: the potential novelty and reward of these locations is not

taken into account by the attention shifting decision process

because of the parietal lesion. Throughout this results section we

show simulations in which the initial fixation is at the centre of the

display, in order to match typical starting points in many

psychophysical studies. However, the normal and pathological

scan path effects are robust and not dependant on initial fixation

location.

Gradient Parietal Lesion - Scan Path
When the simulated lesion incorporated a gradient of

impairment, the left hemifield was again neglected (see example

in figure 5a,b) but the extent to which the scan path entered the

neglected hemifield was determined by the severity of the lesion

i.e. the steepness of the gradient. Figure 5c shows this relationship.

When the gradient was less steep more central regions of the left

hemifield could be attended but regions that were more peripheral

Figure 3. Simulated scan path following parietal lesion without leftward reset. A typical scan path obtained when the parietal module is
unilaterally lesioned under overt attention and no leftward reset back into the scene is present at the rightmost border. The first fixation is placed at
the centre of the image. From there the scan path is attracted to the right and becomes unable to re-orient away from the rightmost border of the
scene.
doi:10.1371/journal.pone.0011128.g003

Model of Visual Neglect
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tended not to be attended. Hence, neglect of stimuli that are

further to the contralesional visual periphery was more severe than

for those closer to the centre of the visual field.

Parietal Lesion – Effect on Cortical Activity
Although the model’s ventral stream was completely intact,

levels of activity in the ipsilesional side of V4 were affected by the

parietal lesion. Activity for stimuli in the neglected left hemifield

was much reduced compared to that in the right hemifield despite

both hemispheres in V4 being free of lesion. Figure 6 shows this

effect with a direct comparison of the activity elicited in V4 in

response to two identical stimuli presented each in one hemifield.

A single red vertical bar was presented either side of the vertical

meridian and the responses of two V4 neurons whose receptive

fields contained each stimulus were recorded. Figure 6 shows that,

in response to the same stimulus, cells representing locations in the

neglected left hemifield had lower activity than cells representing

the normal right hemifield. We will discuss the biological

significance of this in the discussion.

Frontal Lesion - Scan Path
The model’s frontal bias to parietal cortex represents a scene-

based encoding that indicates the novelty of searched locations in

the scene. This bias mediates IOR in the scan path. When this

frontal signal was unilaterally lesioned the scan path exhibited

symptoms of hemineglect similar to those observed following

parietal lesion; an example is shown in figure 7a. However,

attention was sometimes attracted to the left hemifield and neglect

Figure 4. Simulated scan paths following parietal lesion. a. A scan path obtained using the intact version of the model under overt attention.
The target object is a red bar; hence most fixations land near red objects rather than near green objects or in blank regions of the scene. b. Scan path
produced from overt attention when the parietal module is unilaterally lesioned. Severe symptoms of hemineglect are present in the scan path. This
shows that visual hemineglect is produced when the parietal region that encodes stimuli in a retinotopic frame of reference is unilaterally lesioned
and overt eye movements are made. This figure may be compared to the parietal patient behaviours shown in figure 1a and b. c. Attentional
scanning movements produced by the intact model using covert attention. d. Symptoms of visual neglect in covert scanning produced when the
model’s parietal module was unilaterally lesioned. This shows that visual hemineglect is produced when the parietal region that encodes stimuli in a
retinotopic frame of reference is unilaterally lesioned and covert attention is deployed. This figure may be compared to the parietal patient
behaviours shown in figure 1a and b.
doi:10.1371/journal.pone.0011128.g004

Model of Visual Neglect
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was less severe than that following parietal lesion, as shown in

figure 7b. Note that the frontal and parietal representations have

differing frames of reference: scene(or body)-based and retinotopic

respectively, but both lesions led to neglect during covert and overt

attentional scanning. Unlike the effect shown in figure 6 for

parietal lesion, our frontal lesion did not affect extrastriate
responses.

When the frontal bias was completely lesioned, IOR was

impaired, locations were repeatedly revisited and there was

difficulty re-orienting attention so that the scan path failed to

fully explore the scene. Figures 7c shows a typical scan path

demonstrating this perseverance in one area.

Re-visiting Locations in the Scan Path
In addition to frontal lesion resulting in difficulties re-orienting

attention and perseverance, we found that unilateral parietal lesion

also resulted in increased rates of re-visiting the same locations

during the scan path. A comparison of re-fixation rates under the

lesion conditions and the control condition is shown in figure 7d.

Under conditions of unilateral parietal lesion, the increase in re-

fixation rate is not as large as the 13 times increase observed in a

patient with neglect due to right inferior parietal lobe infarct [1].

This likely reflects the fact that not all functions of the parietal

cortex are modelled here. Also, differences could be due to the

extent of the patient’s lesion, and the fact that we do not model

frontal cortex regions that might provide executive strategies to

guide the search scan path. Re-fixation is most prominent under

conditions of frontal lesion in our model, particularly when the

frontal signal is completely lesioned. Whilst our modelling of

frontal cortex is limited in nature, the bias signal modelled here is

specific in that it represents a signal from an area representing

spatial locations encoded in a scene-based co-ordinate system.

This signal biases attentional capture processing in retinotopic

parietal cortex. Lesion to this frontal bias in our model resulted in

very irratic scan paths. Irratic scan paths with increased re-fixation

have been observed in an orbitofrontal patient [7].

Whilst parietal patients have a tendency to re-fixate more with

time since first fixating the location, this increase in re-fixation rate

with time is not a feature of frontal lesion patient behaviour [1].

We find a similar difference here. Figure 8 shows the number of

re-fixations that were made at each time lag since first fixating the

location (in terms of numbers of subsequent fixations). Under

normal conditions there is a slight tendency to re-fixate locations

as more time has passed since they were first inspected. Under

Figure 5. Attentional capture by the left hemifield when there is a gradient of impairment. a. An example of covert scanning under a
gradient lesion when the parietal module was lesioned to reflect a gradient of impairment. The impairment is strongest at the left and improves
towards the centre of the left hemifield. At the leftmost periphery the associated parietal neurons are 7% impaired. Across the left hemisphere
impairment decreases in a linear fashion so that neurons at the centre and those in the right hemifield are unimpaired. Whilst most red (target colour)
stimuli are attended in the right hemifield and the more central region of the left hemifield, the impairment is greatest towards the far left and stimuli
here are neglected. b. The same simulation as (a) but using overt attention. c. Shows that attention is more likely to be captured by stimuli in the left
hemifield when the gradient of impairment is less steep, i.e. the effect of the lesion is less extensive. Mean percentages from 10 separate simulations,
each containing 100 fixations and using covert attention, are shown. Effects saturate (i.e. the hemifield is completely neglected) at 20% lesion at the
far left of the hemifield.
doi:10.1371/journal.pone.0011128.g005

Model of Visual Neglect
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parietal lesion conditions, this tendency to re-fixate increases.

Importantly, the parietal-lesioned model is more likely to re-fixate

locations at larger time lags since first fixation. In contrast, with a

frontal lesion, re-fixation is not dependent on time since first

fixation.

Discussion

We extended our model of visual attention to investigate lesions

that lead to symptoms of visual neglect. Our modelling approach is

based broadly on the theory of biased competition [40] and

seminal computational modelling work in the field of visual

attention by Deco [23] and Usher and Niebur [41]. Biased

competition is based on the idea of competition between neurons

throughout the visual hierarchy, a concept that was presented

earlier by Tsotsos in his ‘selective tuning’ model [42]. Biased

competition has become a very influential and predominant theory

in the field of visual attention. In both Deco’s models and ours, a

dynamic system encompasses biased competitive interactions

between neurons within the system [11].

Under conditions of unilateral parietal lesion in our computa-

tional model, simulated scan path behaviour mimicked that seen

in neurological case studies of visual neglect, where scan paths are

attracted to the ipsilesional hemifield and avoid the contralesional

hemifield. We find that parietal lesion results in neglect of the

ipsilateral hemifield under conditions of both covert and overt

attentional scanning. Patients also tend to fail to remember

previously searched locations so that they make repeated saccades

back to them, particularly as time since first fixating the location

increases [1,5]. Similarly, simulated pathological scan paths

exhibited higher than normal re-visiting of locations, although

not quite as high as those in patients. Differences might be due to

the extent of modelled anatomy compared to the extent of the

patient’s lesion. Consistent with patient behaviour, re-fixations

tended to be made at larger time lags since first fixating a location.

Scan paths from our simulations of overt attention tended to be

attracted to and unable to re-orient away from the right edge of

the scene. This could be due to the artificial extent of our scenes

compared to the continuous real world. However, this could also

reflect real visual neglect deficiencies when viewing a scene of a

fixed size. Such difficulties could be partially overcome by utilising

cognitive control strategies to reset fixation back into the scene.

For our simulations we applied a ‘‘top-down’’ strategy where a

small leftward saccade was made to shift fixation back into the

scene in the situation where fixation lands at the rightmost border

of the scene (note, although reports of laterality bias in patients’

saccades vary, some show as many leftward as rightward saccades

in the patient’s normal hemifield [1,39]). Such a bias could

represent a ‘‘top-down’’ bias from frontal cortex and we predict

that parietal patients with intact frontal cortex may be better able

to use such relocation strategies than patients whose lesions involve

executive areas of frontal cortex that are involved in search

planning (the exact location of these areas has yet to be

established).

Figure 6. Effect of Parietal Lesion On V4 Activity. When presented with a scene containing a single red vertical bar in each hemifield, the
responses of V4 cells that are selective for red or vertical features are shown. Responses from green and vertical selective cells are not shown since
these were near baseline, due to lack of relevant stimuli in the scene. The plots on the left relate to cells that have receptive fields positioned left of
the vertical meridian, in the neglected hemifield. The plots on the right are for cells with receptive fields in the normal right hemifield. Cells selective
for the same feature have the same response properties except the position of their receptive fields. Activity for the stimulus in the neglected
hemifield is reduced compared to that for the identical stimulus in the normal hemifield.
doi:10.1371/journal.pone.0011128.g006
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Our frontal novelty representation is based on a scene (or body)

-based frame of reference. We lesioned this novelty bias to

examine the effect of damage to a non-retinotopic frontal area,

specifically a region such as orbitofrontal cortex, which is involved

in search strategies based on novelty and/or reward [7]. In

patients, scanning deficits have been observed in various frames of

reference, including body-centred [43]. We have not distinguished

between scene-based and body-centred representations since we

do not model a body moving in space. It is possible that the

correlates of this ‘‘novelty map’’ exist somewhere other than

frontal cortex, for example in another region of parietal cortex.

We found that unilateral lesion of our scene-based frontal module

resulted in neglect of the contralesional hemifield, though slightly

less severe than that following parietal lesion. Hence, we find that

Figure 7. Frontal Lesion and Re-visiting Locations in the Scan Path. a. When the frontal module is unilaterally lesioned, symptoms of neglect
are present in the scan path (overt attention shown here). This shows that a lesion in an area representing stimuli in a scene(or body)–based frame of
reference can produce symptoms of neglect. This figure may be compared to the frontal neglect patient behaviour shown in figure 1c. b. A
comparison of the percentage of fixations in the left hemifield following unilateral parietal versus unilateral frontal lesion in this model. The plot
shows the mean percentages from 10 separate simulations, each containing 50 shifts of covert attention (values were similar under overt attention).
Although the left hemifield is typically neglected following frontal lesion, some fixations are placed in this hemifield. Hence, compared to that
following parietal lesion, neglect is less severe with frontal lesion in this model. c. When the frontal module is completely lesioned the scan path has
difficulty exploring the scene and perseverates in one area. An overt attention simulation is shown here but similar effects are produced under
conditions of covert attention. This is due to the lack of novelty bias in the system. d. Shows the effect of lesion on re-visiting of locations under
covert attention. Locations are more frequently re-visited under conditions of parietal lesion than in normal conditions. However, lesion of the frontal
bias in our model causes the greatest increase in re-visiting/re-fixation. The plot shows the mean percentages of re-visited locations from 10 separate
simulations, each containing 50 shifts of attention.
doi:10.1371/journal.pone.0011128.g007
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our model neglects the contralesional hemifield following unilat-

eral parietal or frontal lesion. However, neglect was more severe

following retinotopic parietal lesion and attention was sometimes

attracted to the contralesional hemifield with a scene-based frontal

lesion.

Whilst we observed deficits in scan path behaviours, we did not

find differences in levels of extrastriate activity following lesion to

our frontal bias. This suggests that these effects in neglect are

dissociable. Neuroimaging studies comparing levels of activity in

extrastriate cortex for consciously perceived and neglected stimuli

have so far focussed on patients with parietal lesion. Studies of

neural activity and connectivity in frontal neglect patients, using

functional MRI, event-related potentials and effective connectiv-

ity, would be useful. We predict that neuroimaging of extrastriate

cortex activity under conditions of frontal lesion neglect would not

show the difference in level of activity observed under parietal

lesion neglect for consciously perceived versus neglected stimuli.

We were not attempting to model all functions of the frontal

cortex that relate to visual search, but modelled a very specific

signal from an area representing spatial locations encoded in a

scene-based co-ordinate system that biases attentional capture

processing in retinotopic parietal cortex. Lesions, particularly a

bilateral lesion, to this frontal bias resulted in very restricted scan

paths with high levels of re-fixation. Hodgson et al. [7] and Na

et al. [6] have noted that frontal lesion patients exhibit motor

perseveration and re-visit locations more often than controls. Na

et al. [6] found that neglect patients with frontal damage

(compared to those with more posterior lesions alone) are more

likely to have perseveration, making multiple visible marks on lines

during standard paper-and-pen cancellation tasks. An orbitofron-

tal patient (without neglect) examined by Hodgson et al. [7] had

erratic search scan paths with high re-fixation rates. Therefore,

these anterior lesions tend to be associated with re-fixation [7] and

produce more motor perseveration [6] rather than increasing

severity of neglect. We find qualitatively similar results in

simulations here: lesion of the frontal bias leads to a failure of

IOR so that locations in the scene are often revisited, there is a

tendency to perseverate and scan paths are irratic. Other frontal

functions, not modelled here, may provide further executive

search strategy that control scan path behaviour.

The nature of re-fixation differed depending on locus of lesion.

For our parietal lesion simulations, there was a tendency to re-visit

locations after some time had elapsed since first visiting that

location. However, under frontal lesion, locations were often re-

visited at short time lags as well as at longer time lags. Hence,

frontal lesion in our model results in a break-down in IOR and an

inability to remember which locations the scan path has revisited

whereas parietal lesion increases re-fixation rates but this

Figure 8. Re-visiting Locations in the Scan Path Over Time. Shows the numbers of re-fixations (or simply re-visiting the same location during
covert attentional scanning) that occur at each time lag since that location was first visited under (a) normal conditions, (b) unilateral parietal lesion,
(c) unilateral frontal lesion, (d) bilateral frontal lesion. Similar to that reported by Mannan et al. [1,5], immediate re-fixations i.e. those occurring at the
subsequent fixation (time lag of 1) have been removed. Whereas parietal lesion causes an increase in re-fixation only at longer time lags, frontal lesion
causes re-fixation increases and short and longer time lags.
doi:10.1371/journal.pone.0011128.g008
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principally affects fixations at longer time lags from the time the

location was first fixated. These effects mirrored behaviours seen

in patients [1]. In our model this difference is due to the fact that,

when the frontal bias is ineffective, competition in the parietal

module is not biased by novelty and attention is guided purely by

the output of competition in the model’s ventral stream, which is

driven by bottom-up stimulus factors combined with the top-down

attention modulation related to the task (search target object).

Hence, each fixation at the same location results in a very similar

outcome in the parietal module, because inputs are the same each

time. The competition between locations in the parietal module

determines which location captures attention next. Thus, for any

particular search task (e.g. find the red vertical bar), each time

fixation is at a particular location and the retinal window contains

the same surrounding stimuli at that location, the same stimulus

location will win the competition to attract attention. This results

in perseveration and attention continually being drawn to certain

highly attractive (in the sense of behavioural salience, i.e. bottom-

up saliency combined with top-down target object-based attention)

locations. These locations are not inhibited over time and there is

a tendency to select the same location again and again, even from

the start of the scan path, and be unable to fully explore the scene.

However, when the frontal signal is effective in biasing

competition within the parietal module, each time fixation arrives

at a particular location the novelty of surrounding stimuli (given by

scan path ‘‘history’’, and recorded here in our scene-based novelty

map) will be different and will lead to a different outcome, with

more novel locations being favoured in the parietal competition.

Hence, fixation will be driven towards new locations and inhibited

from locations already inspected. In contrast, parietal lesion results

in locations represented in the damaged hemisphere, i.e. the

neglected hemifield, being prevented from winning the competi-

tion to attract attention. Locations in the intact hemifield compete

normally to attract attention under the influence of the novelty

bias so that more novel locations in the intact hemifield will be

favoured. As more locations in the intact hemifield are inspected,

overall novelty becomes lower and the novelty bias becomes less

effective. The hemifield damage in the parietal module makes it

unlikely for novel locations in the neglected half of the original

image to be inspected and hence there is a tendency, over time, for

locations in the non-neglected half of the image to be re-inspected.

Our simulation results differ from previous modelling contri-

butions in that our model is based on a detailed level of

neurophysiological modelling in which behaviours of individual

model neuron capture effects observed in single unit recordings

[11] and the systems level visual search behaviours are based upon

these effects [8]. Some models of neglect, for example the Selective

Attention for Identification model (SAIM: [35]) and the MORSEL

model [36] are less neurobiologically-constrained. In the SAIM

model inputs from a feature detecting ‘content’ network are gated

by a ‘selection network’, which is linked to the pulvinar and/or

parietal cortex but does not specifically model neuronal response

properties from these areas. Hence, the level of abstraction is

higher than that in our model or that of Deco and Rolls [34]

where neuronal behaviours are based closely upon neurophysiol-

ogy. In SAIM the selection network determines which inputs from

the content network are mapped into the Focus of Attention

(FOA) and lesions to the selection network result in symptoms of

visual neglect. If the selection network is lesioned vertically one

side of the visual field is affected (hemifield neglect), whereas a

horizontal lesion affects one side of the FOA such that, when a

single object is present within the FOA, the left-side is neglected

producing a more object-based effect. Simulations in SAIM use

very small images of 767 pixels (contrasted, for example, with our

scenes which are at least 8806880 pixel complex scenes)

containing one or two objects and do not produce overt eye

movements. However, the architecture provides a very interesting

insight into both spatial and object-based neglect at a fairly high

level of abstraction that could be expanded upon to further

elucidate the neural underpinnings of the theory. Our model

operates at a level of abstraction that is closer to the

neurophysiology in that it also captures neuronal behaviours at

the individual cell level within the cortical areas that are modelled

[11]. A model of basis functions reflecting different coordinate

systems in the parietal function [44] provides insight into parietal

encoding and function and can simulate neglect when lesioned.

However, this model does not include interactions with other areas

of cortex. Most closely allied to our model, Deco and Rolls [34]

used a simplified version of Deco’s visual attention model

[23,24,45], to simulate parietal lesions leading to visual neglect

behaviour during visual search. Their model is based on

neurophysiology and includes V1 and a posterior parietal (PP)

module, which are connected by Gaussian connection weights,

and an IT module connected to V1. For the lesion simulations,

local lateral connections were introduced in the V1 and PP

modules to provide inhibitory input from surrounding locations.

Object-based neglect of the left side of individual objects (or two

objects connected as a single entity) was simulated using a gradient

of impairment in the parietal module. These simulations provided

valuable insight because the neurological symptoms of object-

based neglect were accurately simulated by a model that is

constrained by neurobiology. Neglect is determined in this model

by a very small difference in activity in the PP module. It is not

clear whether this threshold would generalize or is to the tuned to

the specific stimulus configuration. This differs from our

simulations in which lesion of the parietal module led to reduced

activity in the extrastriate ventral stream, which has been directly

linked to differences in conscious perception [21,22,46,47].

The anatomy of neglect is controversial and the syndrome is

heterogeneous, with a range of spatial and non-spatial cognitive

deficits being exhibited by patients [48]. Our parietal module

encodes stimuli in a retinotopic manner, similar for example to

those representations found in monkey inferior parietal sulcus in

the lateral intraparietal region [28]. Human homologues of

monkey parietal cortex are not clear and there appear to be

regions in the human inferior parietal lobe that do not have a clear

homology to monkey posterior parietal cortex [49]. However, like

monkey parietal cortex [50], the organisation of human parietal

cortex involves many differing frames of reference and coordinate

systems, including a retinotopic reference frame [51]. Computa-

tional modelling of non-spatial forms of neglect and more complex

forms of spatial neglect could benefit from a more detailed model

of human parietal cortex function in which the nature of

representation in different regions is elaborated, and methods of

information transfer between different coordinate schemes and

interfaces with the ventral stream are established. Further

development of such models will be possible as more complete

mapping of human parietal function, and identification of its

monkey homologues, emerges from human functional neuroim-

aging and diffusion tensor imaging.

Following unilateral lesion to the parietal module, our

simulations showed activity for neglected stimuli was lower in

V4 than that for consciously perceived stimuli. Activity in the

human ventral visual stream (striate and extrastriate cortex) has

been linked with conscious awareness of stimuli. Event-related

potential and functional MRI studies [20,22,47] show that activity

is present in striate and extrastriate ventral stream regions for both

consciously perceived stimuli and stimuli that are not consciously
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perceived in neglect cases following of parietal lesion. However,

activity is reduced in the situation where the stimulus is not

consciously perceived [21,22,47]. Hence, reduced activity in

ventral stream areas in response to neglected stimuli, as compared

to normally perceived stimuli, may be the neural correlate of

unconscious versus conscious perception in parietal neglect

[21,22,47]. The effect that we observed here appears to be a

possible computational correlate of these differences in levels of

neural activity observed in functional MRI and event-related

potential recordings. In our model, these differences in ventral

stream activity result from the connection between the parietal

module and area V4. Hence, our model simulations lead to the

prediction that dorsal-ventral cross-stream connections may be an

important factor in perceptual deficits in neglect. Further,

Vuilleumier et al. [47] used correlations in functional MRI BOLD

activity to examine the effective connectivity between visual

regions and parietal and frontal areas in neglect patients. They

found that connectivity increased in conditions of conscious versus

unconscious perception. In our model, the connection between the

parietal cortex and the ventral stream is more active in regions that

are not neglected and this leads to higher levels of activity in V4

for normally perceived stimuli than neglected stimuli. On the basis

of our model, and the evidence of effective connectivity [47], we

suggest that interaction between the ventral and dorsal visual

processing streams, i.e. from parietal cortex to extrastriate cortex,

is one important component in the explanation of perceptual

deficits in parietal lesion patients and of conscious perception in

general.

Supporting Information

Appendix S1 Appendix containing the formal definition of the

model.

Found at: doi:10.1371/journal.pone.0011128.s001 (0.09 MB

DOC)
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