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Abstract

Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of

the affected body part, is often professed to be the most common movement disorder,

affecting up to one percent of adults over 40 years of age. The precise cause of ET is

unknown, however pathological oscillations of a network of a number of brain regions are

implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used

to alleviate the symptoms of a number of movement disorders. DBS involves the surgical

implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the

ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating

ET, the mechanism through which the therapeutic effect is obtained is not understood. To

elucidate the mechanism underlying the pathological network activity and the effect of DBS

on such activity, we take a computational modelling approach combined with electrophysio-

logical data. The pathological brain activity was recorded intra-operatively via implanted

DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We

modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The

modelled network exhibited oscillatory behaviour within the tremor frequency range, as did

our electrophysiological data. By applying a DBS-like input we suppressed these oscilla-

tions. This study shows that the dynamics of the ET network support oscillations at the

tremor frequency and the application of a DBS-like input disrupts this activity, which could

be one mechanism underlying the therapeutic benefit.

Author Summary

Essential tremor (ET) is acknowledged to be the most common movement disorder affect-

ing 1% of the population. Although the underlying mechanisms remain elusive, the thala-

mus, cortex and cerebellum are implicated in the underlying pathology. More recently, it
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has been shown that ET can be successfully treated by deep brain stimulation (DBS). This

clinical treatment involves the surgical implantation of electrodes into the brain, through

which current is applied. However, the mechanisms of how DBS achieves clinical benefit

continue to be debated. A key question is whether ET can be modeled as a pathological net-

work behavior as has been suggested previously. If so, we can then ask how DBS would mod-

ulate this brain activity. Our study combines: (i) simultaneous electrophysiological

recordings from the brain and muscle; (ii) computational modelling; (iii) mathematical anal-

ysis. We found that the network supports oscillations in the tremor range, and the applica-

tion of high frequency DBS switches this to low amplitude, high-frequency activity. We

propose that our model can be used to predict DBS parameter settings that suppress patho-

logical network activity and consequently tremor. In summary, we provide the first popula-

tion level model of essential tremor including the effect of DBS on network behaviour.

Introduction

Essential tremor (ET) is purported to be the most common movement disorder [1–4], affecting

one percent of people. This disorder, which is characterised by an uncontrollable shaking of the

affected limb(s) at a frequency in the range of 4-10Hz [5], is detrimental to activities of daily liv-

ing [6]. While the neurophysiological underpinnings remain elusive, a number of brain regions

are implicated in the underlying pathology. The thalamus has long been known to be central to

if not the generation, then the maintenance of tremor, as lesioning the motor thalamus, specifi-

cally the Ventral intermediate (Vim) nucleus, leads to dampening of the tremor [7]. Interest-

ingly, more than 50 years ago, it was reported that low frequency electrical stimulation of the

thalamus reinforced tremor [8]. Furthermore, while the role of the thalamus in tremor is undis-

puted, for essential tremor in particular, it is the involvement of the cerebellum which differenti-

ates it from other tremors. In particular, work has shown structural changes in the cerebellum

with ET, such as neurodegeneration. Interestingly, it has been reported that ET disappears after

stroke in the thalamocortical-cerebellar network [9]. In addition, disturbances of cerebellar

functions, such as gait and eye blink conditioning [10] have been reported in patients with ET.

More recently, it has been shown that ET can be successfully treated by deep brain stimula-

tion (DBS) [11]. DBS involves the surgical implantation of electrodes into disorder specific target

regions, via which the neural tissue is stimulated using trains of electrical pulses. The treatment

works well, with 69% of patients showing total or significant suppression of tremor (Medtronic

DBS Therapy for Parkinson’s Disease and Essential Tremor Clinical Summary, 2013). However,

the efficacy of this method is influenced by two factors: (i) the accuracy with which the electrode

is located in the affected region, and (ii) the stimulation parameter combination. While the for-

mer is typically determined using imaging prior to surgery, the scientific evidence regarding the

implications of varying each DBS parameter, namely amplitude, frequency and pulse width, is

relatively scarce. Thus, the latter is typically chosen by the clinician using trial and error. As such,

this process of parameter determination can be time consuming and difficult, not to mention

frustrating for the patient. At present, the possibility of optimising this process, by predicting

stimulation parameters that would maximize the beneficial effect and minimize unwanted side

effects, is limited by the lack of knowledge about the neuronal mechanisms behind either the dis-

ease itself or the therapeutic effects of DBS.

One popular hypothesis about the neurophysiological mechanisms is that tremor is caused

by synchronous oscillatory activity involving thalamus, cerebellum and the motor cortex [12]

and that DBS disturbs pathological synchrony. DBS also allows us to record local field
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potentials (LFP) from the implanted electrodes whilst simultaneously recording muscle activ-

ity (EMG). Such work has previously demonstrated that recorded LFPs contain synchronised

activity at tremor and double tremor frequency [13–15]. While the thalamocortical—cerebellar

network has been implicated in such activity, no modelling study has looked at whether the

dynamics of this network could indeed support oscillatory activity. In this study, we therefore

modelled this network and, investigated its capacity to oscillate at the frequency of synchro-

nous activity, which we recorded from ET patients undergoing DBS surgery.

Materials and Methods

Ethics statement

The data was recorded as part of routine clinical practice and was stored and analysed anony-

mously. Informed consent was obtained from patients for the use of this data for research,

and this was approved by the local research ethics committee (Charing Cross Research Ethics

Committee).

Electrophysiological recording

LFP signals were recorded from a total of 14 electrodes implanted in the motor thalamus (Vim

nucleus) of seven patients with essential tremor (see Table 1). Recording techniques have been

previously reported [16–18] and are summarised here: LFPs were recorded via the implanted

electrodes (model 3389; Medtronic Inc., Minneapolis, MN, USA) during surgical implantation

with a sampling frequency of 2 kHz. Simultaneous recordings of LFPs were made with three or

four adjacent pairs of electrode contacts in a bipolar configuration. Signals were filtered between

0–1 kHz, amplified with a gain of 10,000 (CED1902, Cambridge Electronic Design, Cambridge,

UK). Simultaneously, EMG was recorded via a tripolar arrangement on the affected limbs, typi-

cally from the wrist flexors. Recordings were made while the patients were awake, off any anti-

tremor medication and in up to three conditions: at rest where we asked the patient not to move

(n = 7), maintaining a posture by holding the arm outstretched (n = 5) and making voluntary

movements such as repeatedly flexing the wrist (n = 3).

Table 1. Table of patient details. The patient details for the seven patients with ET who underwent DBS surgery and whose local field potential data was

used in the study. We include age at time of DBS surgery, gender and tremor grading scores for right and left arms in four positions: rest, held at nose, held

outstretched and whilst making a reaching movement (intention). All signals were down sampled to a sampling frequency of 64 Hz. The power spectra of the

filtered LFP signals were obtained using a Fourier transform (fft function in Matlab). Cross-coherence was performed between the LFP and EMG signals

(mscohere function in Matlab, Mathworks), using a periodic Hamming window, with the number of steps set to 32 and 50% overlap. Spectra were averaged

across electrodes and sides of the brain and then across patients for each condition. The results obtained from this data analysis were used to constrain the

behaviour of the computational model, by comparing the peak frequency of the cross-coherence to the frequency of oscillations produced by the model.

Patient number Age at time of DBS Gender Tremor grade

Measured pre DBS (patients 1–7) or post DBS but off stimulation (patient 5 only)

Right Left

Rest At nose Held out Intention Rest At nose Held out Intention

1 70 F 0 2 3 3–4 0 2 2 3

2 51 M 0 2–3 2–3 3 0 3–5 3–4 4

3 79 M 0 4–5 8 3 0 5 7 4–5

4 67 M 5–6 5–7 5–6 4–5 4 3–4 3–4 3

5 57 F 0 0 1 2 2 2 5 5

6 49 M 0 0–2 3–4 2 0 0–1 2–3 2

7 57 M 3 4 7 3 1 2 1 3

doi:10.1371/journal.pcbi.1005326.t001
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Computational model

We adopt a simple population representation of the network hypothesised to underlie ET (Fig

1A). This is based on previous descriptions of the essential tremor network which include these

brain regions (e.g. [12]). To model the network, namely cortex, cerebellum and thalamus (Fig

1A), we used the population-level Wilson-Cowan approach [19]. This framework has been exten-

sively used to describe interacting populations of excitatory and inhibitory neurons [20–26]. The

main assumption is that the neurons in a population are in close spatial proximity, hence the

model ignores spatial interactions and deals only with temporal dynamics. The modelled variable

is the proportion of cells in a population which are firing action potentials per unit time.

We specifically model two thalamic populations, the excitatory Vim nucleus and the inhibi-

tory reticular nucleus (nRT). The latter has been implicated as a crucial player in thalamic

oscillations [27–29]. In addition, we model an excitatory population of cortical neurons, repre-

senting the motor cortex (Cx) and an excitatory population of cerebellar neurons, representing

the deep cerebellar nuclei (DCN), the main output of the cerebellum. Therefore, the model

comprises of four first-order coupled differential equations:

tVim
dEVim

dt
¼ � EVim tð Þ þ ke � EVimðtÞð Þ:Ze w1ECxðtÞ þ w2EDCNðtÞ � w3InRTðtÞð Þ

tCx
dECx

dt
¼ � ECx tð Þ þ ke � ECxðtÞð Þ:Ze w4EVimðtÞð Þ

tnRT
dInRT

dt
¼ � EnRT tð Þ þ ki � InRTðtÞð Þ:Zi w5ECxðtÞð Þ

tDCN
dEDCN

dt
¼ � EDCN tð Þ þ ke � EDCNðtÞð Þ:Zeext

Fig 1. Schematic representation of the network modelled in the study. (A) The model contains four populations, the motor cortex, the Vim nucleus of

the thalamus, the reticular nucleus of the thalamus (nRT) and the deep cerebellar nuclei (DCN). In addition, there are two additional inputs, a constant

external input in through the cerebellar population and the DBS input into the Vim. (B) The DBS input, unlike the external input, is not tonic, but oscillatory

over time. We used a biphasic square pulse to mirror the pulses used in clinical therapy. The waveform is defined by the following parameters: frequency

(f), amplitude (A), pulse width (PW) and the multiple for the biphasic phase (m).

doi:10.1371/journal.pcbi.1005326.g001
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Here, Ei (i = Vim, Cx or DCN) and Ij (j = nRT) represent the number of active neurons in

the relevant excitatory or inhibitory population at a given time. The strength of the connection

between two populations is given by wn, where n = 1, 2. . . 6. The value of this parameter is cal-

culated by taking the product of the average number of contacts per cell and the average post-

synaptic current induced in the postsynaptic cell by a presynaptic action potential. Note that

the last equation, for the DCN population, is independent of the dynamics of the other three

populations, and only provides an input into the Vim population. Therefore, in this model, the

DCN population will tend to a stationary value and not oscillate.

The response functions Ze(x) and Zi(x) in the model represent the proportion of cells firing

in a population, for a given level of average membrane potential activity x(t) of cells across the

population. In [19], these functions were derived by assuming that the population has a distri-

bution of neural thresholds and that all cells in the population have the same average level of

membrane potential activity. Alternatively, the cells in a population can be assumed to have

the same threshold but there is a distribution of the number of afferent synapses per cell. Either

approach leads to the response functions being represented by monotonically increasing sig-

moid function, as follows:

Zp xð Þ ¼
1

1þ expð� bpðx � ypÞÞ
�

1

1þ expðbpypÞ

where p represents e or i, bp and θp are constants, and x is the level of input activity. Following

Wilson & Cowan, the following values are used for these constants are: θe = 1.3, be = 4, θi = 2.0,

and bi = 3.7.

Therefore, this model effectively assumes that the inputs to a network are weighted,

summed and thresholded.

The parameters ke and ki in the model are the maximum values of the response functions

and are given by ke = 0.9945 and ki = 0.9994. Each of the parameters τi represents the time con-

stant of the change over time in the proportion of nonrefractory cells which are firing in a pop-

ulation, in response to the change over time in the average membrane potential activity of the

cells. The value of the time constant for each population is usually assumed to be equal to the

membrane time constant of the cells in the population, as in [30] and [24]. This value is usually

assumed to lie within the range 10–20 ms [30] and time constants of 10 ms were chosen as

nominal values for all populations, and this parameter was left unchanged throughout the

simulations.

DBS input

The application of a high frequency input to the Vim nucleus of the thalamus was modelled

using a biphasic square pulse as follows:

DBS tð Þ ¼ A

� H
�
sinð2pftÞ �

�
1 � H sinð2pf ðt þ pwÞÞð Þ �

A
m
�H sinð2pf ðt � pw �mÞÞ � 1 � H sinð2pftÞð Þðð

where A is the amplitude of the input in arbitrary (arb.) units, H is the Heaviside function, f is the fre-

quency, pw is the pulse width and m is the multiple for the charge balancing pulse (Fig 1B). This was

included as an additional term into the equation for the Vim population, such that the Vim equation

A Network Model of ET and DBS
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subsequently changed to the following:

tVim
dEVim

dt
¼ � EVim tð Þ þ ke � EVimðtÞð Þ:Ze w1ECxðtÞ þ w2EDCNðtÞ � w3InRTðtÞ þ DBSðtÞð Þ

Bifurcation analysis

To further analyse any oscillatory behaviour displayed by the modelled network, we used

bifurcation analysis of our four equations using a numerical analysis approach in a software

package called LOCBIF [31]. For a system of ordinary differential equations, the nature of the

fixed points of the system can change as the parameters are varied. If a fixed point changes sta-

bility, appears or disappears we say that a bifurcation has occurred. At points of bifurcation the

behaviour of a system changes in a way that depends upon which type of bifurcation has

happened.

In this study, bifurcation analysis revealed that an oscillation can arise through an Andro-

nov–Hopf bifurcation or a SNIC bifurcation (saddle-node on an invariant curve). At the point

of an Andronov–Hopf bifurcation, a stable equilibrium point loses stability and a particular

type of trajectory can appear in the neighbourhood of the fixed point. This trajectory is called a

limit cycle, which is an isolated closed curve. Motion of the system along the limit cycle trajec-

tory is periodic and hence oscillatory behaviour is encountered (see for example [32] for more

details).

This limit cycle behaviour is illustrated in bifurcation diagrams for the model parameters.

The curves shown in these diagrams indicate points in the parameter space where a bifurcation

occurs and a limit cycle arises. Thus the curves separate the portion of the parameter space

where the system has a fixed stable equilibrium point from the portion where a limit-cycle

oscillation is present. These diagrams are produced in each case by keeping all but two of the

parameters at their control values.

Results

LFP recordings display tremor band activity

DBS patients routinely have intraoperative recordings made while they have the electrodes

inserted into the thalamus. This allows us to measure the neural activity patterns associated

with ET and can further aid the targeting of the thalamus by locating neural patterns associated

with the thalamus. Fig 2 shows an example recording from a single patient. Fig 2A shows the

power spectra for a single EMG (left) channel and one LFP (right) channel from the contralat-

eral hemisphere. The data shows that there are clear peaks in the EMG power spectra at

approximately 4 Hz and at the harmonic frequencies of 8 Hz, 12 and 16 Hz. In the LFP power

spectra, a peak at tremor frequency is also seen around 4Hz, and an indication of an increase

in power at 8Hz. The cross-coherence between the EMG and LFP signals is shown in Fig 2B,

and clearly shows a peak at tremor frequency, double tremor frequency and somewhat at the

subsequent harmonic frequencies.

We split our data into the three different behavioural epochs: rest, self-paced voluntary

movement and maintaining a posture. We averaged the data for each of our seven patients

across channels for the two hemispheres, and Fig 3A shows the averaged EMG-LFP cross

coherence across patients for each epoch (shading indicates between subject SEM). In all con-

ditions, there is increased cross-coherence within the tremor frequency band. In the rest con-

dition, patients were instructed not to move, but the observed increase in 6–11 Hz cross-

coherence may be related to movement and/or rest tremor. When moving (hand is repeatedly

A Network Model of ET and DBS
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open and closed) or maintaining a posture (arm is held up with the hand by the nose) the

cross-coherence shows a more tightly tuned, specific increase at 5–9 or 5–6 Hz depending on

the epoch. Furthermore, the individual cross-coherence spectra and the histogram of peak fre-

quency in these spectra (Fig 3B) in the 3–11 Hz range clearly demonstrate that there is variabil-

ity amongst the patients and recordings, which may reflect a number of individual differences,

including the precise electrode location and differences in the performed motor behaviour.

Network supports tremor band oscillations

In order to investigate the dynamics of the network suspected to be responsible or necessary

for such oscillatory activity, we constructed a population model of the thalamocortical-cerebel-

lar network as described above. This network was simulated by exploring the connection

weights parameter space to uncover regions which produced oscillatory activity in the typical

tremor frequency range, as observed in our EMG-LFP data. We found that the network readily

oscillated at a frequency of 5.5Hz, when the weights were set at the values given in Table 2.

Given these baseline weights, all of the neuronal populations in the network, except the DCN,

oscillate at this frequency (the Vim oscillations are shown in Fig 4A). The Vim leads the corti-

cal oscillation by 6.8 ms (Fig 4B), which is consistent with previously measured lags [33]. This

baseline oscillatory activity was examined in more detail using bifurcation analysis.

Fig 2. A representative simultaneous recording of EMG and LFP from one ET patient. In (A), the power

spectra are shown for the EMG and the LFP across the entire recording. The EMG spectrum clearly shows a

tremor band peak at 4Hz and subsequent peaks at the harmonic frequencies. The LFP also shows a 4Hz

peak, although with smaller power. (B) The Cross-coherence between the EMG and LFP reveals a peak at

4Hz and the harmonic frequencies.

doi:10.1371/journal.pcbi.1005326.g002

A Network Model of ET and DBS
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Fig 3. The EMG and LFP data over epochs. (A) The data for each of the patients was first split into different behavioural epochs: rest, when the patient was

asked to refrain from moving (seven patients, 14 spectra); moving, when the patient was asked to make self-paced repetitive movements such as opening

and closing the hand (five patients, nine spectra); and posture, when the patient was asked to hold their arm out (three patients, four spectra). We can see

that in all epochs there is an increase in tremor-band coherence, with a more tuned increase in the moving and posture conditions. (B) In addition to the mean

cross coherence, in order to further demonstrate the variability across patients, we show the cross-coherence for the posture epoch for all nine spectra and a

histogram summarising the peaks of the cross-coherence spectra in the 3–11 Hz range.

doi:10.1371/journal.pcbi.1005326.g003

A Network Model of ET and DBS
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Bifurcation analysis demonstrates importance of connections

Once established, we did not change any of the model parameters from those in Table 2 when

subsequently applying DBS stimulation to our network. However, before doing so, we wanted

to investigate the relative contribution of the connections within the network on the oscillatory

activity we observed. We used bifurcation analysis to locate stable points in our parameter

space and vary two parameters at a time while observing the stability of the system. All but two

Table 2. Model parameters. The free parameters used in the Wilson-Cowan model of the thalamocortical-

cerebellar network for essential tremor. The weight parameters for the six connections and the time constants

in the model network are given here, and all other parameters are listed in the text. These parameters were

selected prior to the bifurcation analysis, by sweeping the parameter space and were chosen to be close to

the bifurcation point where the oscillation exists with the correct frequency. The w symbols are those appear-

ing in the four equations describing the network in the methods section.

Connection Weight

From To w

Cortex Vim w4 12

DCN Vim w1 6

nRT Vim w2 12

Vim Cortex w3 10

Cortex nRT w5 10

Time constant τ 10 ms

doi:10.1371/journal.pcbi.1005326.t002

Fig 4. The oscillatory activity observed in the model. The activity of the Vim population alone (A) is shown over 5

seconds of simulated time, and for the three populations (B) displaying oscillations for approximately one cycle (0.25

seconds). The oscillation amplitude is stable over time for any one population, but varies across populations. The oscillation

is lead by the Vim population (blue), then followed by the nRT (red) and finally the cortex (green).

doi:10.1371/journal.pcbi.1005326.g004

A Network Model of ET and DBS
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parameter values at a time were fixed (as in Table 2) for the determination of each bifurcation

curve. We used specialised software (LOCBIF) for the bifurcation analysis to find a region in

the 2D plane of the two selected parameters corresponding to the oscillations. We found that

the observed tremor frequency oscillation arises in our model through an Andronov–Hopf

bifurcation nearby of which a limit cycle is observed. We plotted bifurcation diagrams for

pairs of weight parameters in the model which kept the model at this bifurcation point, and

these are shown in Fig 5. The shaded regions indicate the region of parameter space for which

the model will display oscillations, although the frequency of the oscillations does not remain

constant throughout these shaded regions, as described below.

This analysis revealed the following features about the importance of connection weights

relative to one another. First, Fig 5A shows that the cortical input to the Vim and the cortical

input to the nRT must be balanced in order to maintain oscillations, as the oscillatory space

lies along the diagonal. Furthermore, if the cortical drive to the Vim decreases, the frequency

of oscillations decreases, but if the cortical input to the nRT increases, or both weights increase

together, the frequency of oscillations increases. Second, the reticular input to the Vim should

on the whole be stronger than the cortical input (shaded region is mainly below the line of

equality in Fig 5B). Interestingly, if those inputs both increase in weight, the frequency

increases, but a move to any other region of the oscillatory space results in a decrease in fre-

quency. Third, the inhibitory loop (cortex to nRT and nRT to Vim) must be maintained with

weights no less than the default values for oscillations to be present. All other regions of the

oscillatory parameter space result in lower frequency oscillations. Finally, one of the weight

parameters (cortical input to Vim) could be set to zero with oscillations maintained in the net-

work, but only with a corresponding increase in cerebellar drive. Hence no population (and its

corresponding connections) could be lost and oscillations maintained, that is all of the popula-

tions are critical to oscillatory behaviour.

DBS has differential effects at different amplitudes and frequencies in

the modelled network

Given that our model network was able to oscillate at tremor frequency, the next step was to

see how this behaviour changed when an input mimicking the effects of DBS was applied to

the thalamus. In the following, we will call the oscillatory network activity before DBS

Fig 5. Bifurcation analysis of the connection weights. The relationship between the six connection weights can be

examined by using bifurcation analysis, which allows us to co-vary any two parameters at a time and trace out the region in

parameter space where the bifurcation leading to oscillatory activity occurs. In this way, we can split the parameter space

into oscillatory (shaded) and non-oscillatory regions and therefore make predictions about the network structure in the

pathological state. Furthermore, we examined the frequency of the oscillations throughout these shaded regions and found

that the frequency of oscillations does not remain constant. In fact, as parameters varied from the default values (black

circle), the frequency increased (solid line) or decreased (dashed line) as shown in the plots. The frequency of oscillations

we observed within these regions however, was between 2 Hz and 8 Hz.

doi:10.1371/journal.pcbi.1005326.g005
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application the baseline oscillation. We applied a biphasic square pulse at different amplitudes

and frequencies into the Vim population of the model network only, to replicate targeted DBS

of the thalamus. We found two effects of DBS on the network activity that we discuss in turn.

First, DBS at low amplitudes altered the baseline oscillatory activity of the network, not in

amplitude, but frequency. Fig 6 shows this relationship quantitatively for three different DBS

amplitudes. At an amplitude of 1 arb. unit, DBS increased the frequency of the oscillatory

activity at all stimulus frequencies greater than 10 Hz. The relationship between stimulation

frequency and thalamic frequency was found to be linear (r2 = 0.98) up to a DBS frequency of

200Hz, beyond which the thalamic frequency plateaued at a maximum 6.8 Hz. It is interesting

to note that this linear relationship changed when the stimulation amplitude was increased to

3 arb. units. At this point, the DBS frequency was inversely related to the thalamic frequency

(r2 = 0.91), with higher DBS frequencies slowing the underlying oscillatory activity until it was

completely suppressed. For the 3 arb. units stimulation, this suppression occurred at frequen-

cies greater than 175 Hz. Similarly, at an amplitude of 4 arb. units there was an inverse rela-

tionship between DBS and thalamic frequency (r2 = 0.93). The slope of the linear fit to the data

was much steeper in this case, and the oscillations were suppressed at frequencies greater than

100 Hz. This trend was observed for increasing DBS amplitudes, such that as the amplitude

increased, the frequency at which DBS would suppress the thalamic oscillations decreased.

However, the limit was that for DBS frequencies less than or equal to 25Hz, even extremely

large amplitudes (100 arb. units) did not suppress the thalamic oscillations.

Fig 6. DBS effects on oscillatory activity. When the DBS input is applied to the Vim, the effect on the

oscillatory activity is both amplitude and frequency dependent. (A) At low amplitudes, DBS changes the

frequency of the oscillation, and the relationship between the applied and the resulting frequency is linear. (B)

At higher DBS amplitudes, this relationship changes, and the higher the DBS frequency the lower the

frequency of the high amplitude oscillation, which is eventually replaced by the low-amplitude, high frequency

activity. When the DBS amplitude increases further (C), this switch from low-frequency, high-amplitude

activity to low-amplitude, high-frequency activity occurs at a lower stimulation frequency.

doi:10.1371/journal.pcbi.1005326.g006
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Second, DBS induced a switch from large amplitude low frequency baseline activity to

small amplitude high frequency activity. For a fixed value of the stimulus frequency, as we

increase the DBS amplitude there is a critical point which eliminates the baseline oscillation

and induces the switch to high frequency network activity. Thus, if DBS amplitude is higher

than this threshold then the baseline oscillation disappears and high frequency, low amplitude

activity becomes the dominating neuronal activity mode.

Fig 7 shows both of the effects described above, the change in the baseline oscillation fre-

quency and the switch to high frequency activity for a DBS stimulation frequency of 150 Hz.

In Fig 7, at 1–3 arb. units of DBS amplitude, the network activity remained low frequency and

high amplitude, but the frequency decreased compared to the baseline (no DBS) condition.

Fig 7. The change in oscillations with increasing DBS amplitude. For a single DBS frequency, the

change in Vim activity is shown as the amplitude of the stimulation increases. The baseline large amplitude

tremor band activity is shown at the top, and the low-amplitude high frequency activity at the bottom. In

between, the activity gradually switches from one to the other, with an initial increase in frequency at low

amplitudes, followed by a decrease in frequency as the amplitude increases further.

doi:10.1371/journal.pcbi.1005326.g007
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However, at 4 arb. units, this activity was abolished and there was a switch to high frequency,

low amplitude activity. For all DBS frequencies between 70 Hz and 100 Hz, this switch

occurred at 5 arb. units and for frequencies greater than 100 Hz this occurred at 4 arb. units.

That is, DBS drove the thalamic activity at stimulation frequency up to a maximum of 167 Hz,

and beyond this point the network could no longer follow the stimulus frequency. Applying

DBS at different amplitudes and at therapeutic frequency or at different sub-optimal frequen-

cies lead to the underlying oscillations changing frequency or being replaced by irregular high

frequency activity depending on the stimulus amplitude.

Interestingly, in the presence of the DBS stimulus, we found another bifurcation near the

Andronov-Hopf bifurcation. A limit cycle is observed near an Andronov-Hopf bifurcation,

and can be seen as a cyclical relationship between two of the time dependent variables in the

model equations. An example of the limit cycle in the absence of DBS is shown in Fig 8A,

where the thalamic and cortical activity are plotted as a function of one another. However,

when DBS is applied, the limit cycle is not constant over time, but varies (Fig 8B). Further-

more, the presence of this saddle-node on an invariant circle (SNIC) bifurcation is confirmed

Fig 8. The SNIC bifurcation. The baseline oscillation in the network is described as a limit cycle, which can be seen when the activities of two populations

(Vim and cortex) are plotted against one another over time (A). When the DBS input is applied to the network, the limit cycle is no longer constant and deviates

from a perfect cycle over time (B). This is caused by a saddle-node on an invariant circle (SNIC) bifurcation, which can be seen here when the ext parameter

value is gradually increased to its value in Table 2 (C).

doi:10.1371/journal.pcbi.1005326.g008
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in the absence of DBS, when the frequency of the baseline oscillation can be decreased by alter-

ing the value of the ext parameter (Fig 8C).

Discussion

The thalamus has been known to be involved in oscillatory activity such as spindling [27–29].

In this study, we hypothesised that the dynamics of the thalamocortical-cerebellar network

would be able to support the pathological synchronous activity, which has been thought to be

the signature, if not the cause, of essential tremor [12, 34]. Such oscillatory activity has been

previously recorded not only in the muscle activity via EMG, but also in the brain via EEG,

LFP and microelectrode recordings [13, 14, 35]. Here we tested our hypothesis, by examining

the population level dynamics of the network constructed using a Wilson-Cowan approach

[19]. We found that this network does indeed oscillate readily in the essential tremor frequency

range, also reflecting the activity we recorded in patients with essential tremor undergoing

DBS surgery.

Our model demonstrates that the dynamics of this thalamocortical-cerebellar network sup-

ports oscillatory activity in the tremor range. Previous computational modelling work examin-

ing the effects of DBS has mainly been directed to studying Parkinson’s disease and either

focussed on unconnected neurons [36–39], axons [40–43], or local networks [44] made up of

conductance-based neurons. The pathophysiological state in these two diseases may have

some similarities, and this study indicates that such activity is not only reliant on the biophysi-

cal properties of the neurons, but emerges from the structure of the tremor network itself,

which involves different brain regions in Parkinson’s disease and Essential tremor. The thala-

mus has been implicated in various types of oscillatory activity [27–29] [25, 26] [45–47], our

results are consistent with such views of the thalamus and interestingly, we find here that

though the corticothalamic connection is important, it is the driving input from cerebellum

which needs to be the strongest input into Vim.

The oscillations in this network arise from an Andronov-Hopf bifurcation. Therefore close

to the point of bifurcation, there will be small amplitude oscillations and the frequency of these

oscillations will be fixed. As we move away from the bifurcation point, the amplitude and

indeed frequency of the oscillations can vary. Furthermore, bifurcation analysis of the network

showed that the oscillatory activity is robust under parameter variations, while important rela-

tionships between the connection weights exist. In particular, we see that quantitative relation-

ships between connection strengths must be maintained for the pathological oscillations to be

sustained. For example, we found that all of the populations in the network are critical to oscil-

latory behaviour. This is consistent with reports of patients with ET, who have seen improve-

ment in their tremor following a stroke in the thalamocortical-cerebellar network [9]. We also

predict that the driving input to the Vim from cerebellum must outweigh the cortical feedback

to maintain oscillations. This prediction is in agreement with the hypothesis that ET occurs

due to a lack of GABA in the cerebellum, which in turn leads to disinhibition [48, 49].

Such predictions about the state of the network in disease can be further tested experimen-

tally either in vitro or in vivo animal work, or in human work via imaging. For example, the

harmaline animal model of ET, the most studied model, suggests that tremor emerges due to

rhythmic inferior olive firing [50]. This model further suggests that DCN, which is part of the

network modelled here, is involved in harmaline tremor as c-Fos expression is induced in the

DCN as a result of the manipulation [51]. While the precise role of the DCN is unclear, the

lesioning of the DCN can lead to action tremor in humans and primates [52]. High frequency

stimulation of the thalamus in mice, has been shown to suppress harmaline tremor, indicating

that a similar network to ET, may indeed be involved [53]. Therefore, such animal models
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may be used to test our predictions about the relative strength of connections between brain

regions. DTI imaging of patients with ET, which until now has been limited and produced

conflicting results, could also be used to further elucidate the network structure of ET. A recent

review [54] indicates a difference between ET and control participants predominantly in the

cerebellar peduncles.

In particular, we studied the impact of a DBS like input at therapeutic frequency on our net-

work activity. We found that such an input suppresses the oscillations and drives a higher fre-

quency, low-amplitude activity across the network. This is consistent with previous modelling

work [55, 56] using conductance-based model neurons, indicating that the use of network

models which are relatively easy to set up, analyse and relate to data is another valid methodol-

ogy for studying DBS. It is important to note however, that in our model the application of

DBS which is applied to the Vim nucleus alone, will affect all efferent connections of the Vim.

Our model does not account for antidromic activation, as the connections are unidirectional.

In future work, we could explicitly model the afferent connections, but in that case these con-

nections would participate in the network activity even in the absence of DBS, and would

change the entire dynamics of the model. Furthermore, this effect reflects a hypothesis about

subthalamic DBS, which proposes that it acts to replace pathological synchrony with low

amplitude activity and regain information flow through the thalamus [57–59]. Interestingly,

while this hypothesis has been proposed for subthalamic DBS to treat Parkinson’s disease, our

results indicate that a similar mechanism may apply for thalamic DBS for ET. Another inter-

esting observation is that the high frequency activity which was driven by DBS, matched the

DBS frequency but only up to a maximum frequency of 200Hz, we predict that a similar result

would be seen in single neuron simulations or recordings.

The model presented here also showed frequency dependent effects with DBS-like stimula-

tion. While previous work has examined the impact of low or high frequency DBS [61, 66],

there has been no in vivo study reporting the effect of systematically varying the DBS fre-

quency, either on the clinical symptoms or electrophysiological recordings. Consequently, our

model allows these experiments to be done in silica. We found that at low frequencies, DBS

did not abolish the tremor band oscillatory activity as readily as at higher frequencies. In fact,

the lower frequency stimuli maintained the low frequency, high amplitude activity for a wider

range of stimulus amplitudes. This effect may be linked to the clinical observation that for

treating essential tremor, high frequencies are necessary [60] Interestingly, for frequencies

greater than 30 Hz, we were able to abolish the tremor band activity in the network if the

amplitude of DBS was increase, which has also been shown previously [61]. It was shown

more than 50 years ago that low frequency stimulation of the thalamus strengthen tremor, in

patients undergoing stereotactic surgery [8]. This predicts that such low frequency stimulation,

may not necessarily drive tremor, but allow the network to sustain the underlying pathological

oscillation, rather than suppress it as with higher stimulation frequencies. Recently, it has been

discussed whether uniform regular stimulation or patterned stimulation such as repeated

bursts of high frequency stimulation is most effective [62]. We applied bursting stimulation

patterns in this model but found it to be less effective at suppressing the pathological oscillation

in this model in agreement with previous work [63].

Furthermore, it has previously been observed clinically and recently shown theoretically

that kilohertz frequency stimulation is also effective at suppressing tremor, but only up to a

limit of approximately 3 kHz [61, 64]. In our model, we found that stimulation up to 3.5 kHz

was still effective at suppressing the low frequency, high amplitude oscillations. The model also

showed amplitude dependent effects of DBS. At low amplitudes, DBS increased the tremor

band activity in a linear fashion, while at higher amplitudes DBS decreased the tremor band

activity with an inversely linear relationship. A physiological study has previously reported an
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increase in tremor frequency with DBS as we observed at low amplitudes {Vaillancourt, 2003

#2396]. However, in that study the increase was independent of DBS amplitude. These differ-

ences in the frequency and amplitude dependent effects may highlight the limitation of such

network level dynamic models, that they do not capture the full spectrum of neuronal dynam-

ics. It is critical to note, that the Wilson-Cowan model however, does not account for the

detailed firing properties of neurons, such as the distinction between burst and tonic firing, a

critical feature of thalamic cells that has been shown to be important in ET. Instead the Wil-

son-Cowan representation only allows for the firing rate of a population. Consequently, this

study therefore can only look at tremor as a network phenomenon and thus the impact of DBS

on that activity.

Similarly, the model presented here does not account for the spatial dimension within a

population. While this is in fact an advantage of this modelling approach, we could represent

different populations within a brain region, for example to represent somatotopy within the

Vim nucleus [65]. Furthermore, the modelled network in our current work, only accounts for

four populations. One brain region which is missing is the inferior olive, which is implicated

in the pathogenesis of ET, particularly due to the work with the harmaline rodent model [50].

Further work could expand the model to include at least this important input to the cerebel-

lum. Finally, in the current study we have used a computational model to replicate the data

recorded from DBS patients. One clear extension to this parallel approach would be to fit the

model parameters, particularly the connection weights, to the patient data. The aim would be

to fit the parameters of the model to the peak frequency of the individual patient’s data. Fur-

thermore, such patient specific models could also be used to simulate specific parameter set-

tings tried in individual patients to correlate network changes to therapeutic effects or the

emergence of side effects. In this way we could explore whether we could represent individual

patients, who may show variations in the frequency of their tremor, with a patient specific

model, not of the network structure, but of the relative strength of parameters across the

network.

Conclusions

In conclusion, we have shown that the dynamics of a network of multiple brain regions

thought to be involved in essential tremor are able to support oscillations in the tremor-band

frequency range, as seen in LFP recordings in patients. In addition, we have shown that the

application of a biphasic square pulse into the Vim nucleus disrupts this synchronous activity.

The network displays frequency-dependent behaviour which may be linked to clinical observa-

tions and makes predictions about the relative strength of connections between brain regions.

This may explain one mechanism by which thalamic DBS achieves suppression of tremor in

ET patients.
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