
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

01 University of Plymouth Research Outputs University of Plymouth Research Outputs

2013

The emergence of two anti-phase

oscillatory neural populations in a

computational model of the

Parkinsonian globus pallidus

Merrison-Hort, R

http://hdl.handle.net/10026.1/9220

10.3389/fncom.2013.00173

Frontiers in Computational Neuroscience

Frontiers Media SA

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



ORIGINAL RESEARCH ARTICLE
published: 02 December 2013

doi: 10.3389/fncom.2013.00173

The emergence of two anti-phase oscillatory neural
populations in a computational model of the Parkinsonian
globus pallidus
Robert Merrison-Hort1* and Roman Borisyuk1,2

1 Centre for Robotics and Neural Systems, School of Computing and Mathematics, The University of Plymouth, Plymouth, UK
2 Neural Networks Laboratory, Institute of Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Russia

Edited by:

Ahmed A. Moustafa, University of
Western Sydney, Australia

Reviewed by:

Robert Rosenbaum, University of
Pittsburgh, USA
Vignesh Muralidharan, Indian
Institute of Technology Madras,
India

*Correspondence:

Robert Merrison-Hort, Centre for
Robotics and Neural Systems,
School of Computing and
Mathematics, The University of
Plymouth, A221 Portland Square,
Drake Circus, Plymouth PL4 8AA,
UK
e-mail: robert.merrison@
plymouth.ac.uk

Experiments in rodent models of Parkinson’s disease have demonstrated a prominent
increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus
(GP) which may underlie some of the motor symptoms of the disease. There are two
main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus
(STN), but it is not known how these inputs sculpt the pathological pallidal firing patterns.
To study this we developed a novel neural network model of conductance-based spiking
pallidal neurons with cortex-modulated input from STN neurons. Our results support the
hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that
as a result of the interplay between excitatory input from the STN and mutual inhibitory
coupling between GP neurons, a homogeneous population of GP neurons demonstrates
a self-organizing dynamical behavior where two groups of neurons emerge: one spiking
in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is
seen in recordings from the GP of rodents that have had Parkinsonism induced via brain
lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic
Nucleotide-gated (HCN) channels in response to burst firing of GP neurons, since this
has been suggested as a possible mechanism for the emergence of Parkinsonian activity.
We found that the downregulation of HCN channels provides even better correspondence
with experimental data but that it is not essential in order for the two groups of oscillatory
neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen
our results.

Keywords: Parkinson’s disease, globus pallidus, oscillation, synchronization, HCN, downregulation, deep-brain

stimulation

1. INTRODUCTION
Parkinson’s disease is a neurodegenerative disorder which
(amongst other symptoms) causes a range of movement-related
disturbances such as tremor and slowness (bradykinesia). The
primary pathology of the disease is the death of dopaminer-
gic neurons in the basal ganglia (BG), specifically those in the
substantia nigra pars compacta (SNc). Since the dopaminer-
gic neurons in the SNc provide widespread innervation to the
other regions of the basal ganglia, it is not surprising that their
loss results in profound changes to neuronal activity in these
regions. What is not yet understood is the precise mechanism by
which abnormal neuronal activity arises as a result of dopamine
loss—and how this activity relates to motor symptoms. One very
successful hypothesis for this was the so-called “rate” hypothesis
(DeLong, 1990), which held that motor areas of the basal ganglia
are divided into two feed-forward pathways that transfer infor-
mation from the cortex to the thalamus: a pro-kinetic “direct”
and an anti-kinetic “indirect” pathway. According to this model,
loss of dopamine input to the striatum upsets the balance of
these two pathways, resulting in movement abnormalities. While
the rate hypothesis makes predictions that have resulted in suc-
cessful treatments, such as lesioning of hyperactive nuclei on the

indirect pathway (Lozano et al., 1995; Gill and Heywood, 1997),
more recent electrophysiological studies have demonstrated that
the changes in neuronal activity that underlie Parkinsonian motor
impairment are likely to be considerably more complex than
those implied by the rate model [see Rubin et al. (2012) for
review].

One aspect of pathological activity in the Parkinsonian basal
ganglia that is under active investigation is the increase in syn-
chronous oscillatory firing. Local field potential (LFP) recordings
from the subthalamic nucleus (STN) of patients with Parkinson’s
disease show a clear increase in power in the β frequency
band (10–30 Hz) when patients are off medication [reviewed in
Eusebio and Brown (2009)], and the size of the reduction in β

power that occurs with dopamine-replacement medication is pos-
itively correlated with the concomitant improvement in severity
of anti-kinetic symptoms (Kühn et al., 2006). There are a num-
ber of reasons why widespread pathological oscillations may cause
motor deficits, for example they may impair the ability to relay
information (Mallet et al., 2008b). It has also been proposed
that, in health, sporadic β oscillations act as a global signal for
maintenance of the current motor activity (Jenkinson and Brown,
2011).
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What is the neural basis for the exaggerated oscillatory activ-
ity of the Parkinsonian basal ganglia? One possibility is that
the reciprocally-connected neurons of the excitatory STN and
inhibitory globus pallidus (GP; homologous to the external
globus pallidus in primates) act as a neural oscillator. Several
computational studies have suggested that this is a plausible
mechanism (Gillies et al., 2002; Terman et al., 2002; Holgado
et al., 2010). In vitro work in slices containing only STN and GP
neurons have also shown that oscillatory firing is indeed possible
(Plenz and Kital, 1999), though only at frequencies much lower
than the β band.

Another possible explanation for exaggerated BG β oscilla-
tions in Parkinson’s disease is that dopamine acts to modulate the
effects of rhythmic cortical activity on cortical-basal ganglia path-
ways, such that in conditions of reduced dopamine this network
becomes pathologically entrained to cortical rhythms. Evidence
for this comes from studies that have used signal processing tech-
niques to attempt determine whether β band coherence between
the cortex and basal ganglia is directed from cortex to STN or vice
versa. Such studies have shown that, in patients with Parkinson’s
disease (Litvak et al., 2011) or Parkinsonian rodents (Sharott
et al., 2005), the oscillations arise in the cortex and drive STN
activity. Computational studies that investigate the synchroniza-
tion of basal ganglia neurons in Parkinson’s disease often consider
the neurons to be phase oscillators, which either synchronize
themselves Popovych and Tass (2012) or become synchronized
through common external inputs Wilson et al. (2011).

Experiments using rodent models of Parkinson’s disease pro-
vide compelling evidence that under Parkinsonian conditions
the activity of neurons in the GP are much more susceptible
to entrainment by cortical rhythms than in the healthy case.
Under conditions of urethane anaesthesia, neurons in the GP
of healthy rodents show uncorrelated tonic firing. However, in
animals where Parkinsonism has been induced, either through
chronic lesioning of the SNc with 6-hydroxydopamine (OHDA)
(Ni et al., 2000; Magill et al., 2001) or acute inactivation of SNc
projection fibers (Galati et al., 2009), the spiking activity of the
majority of GP neurons becomes significantly correlated with cor-
tical “slow wave activity” (SWA); this is the major cortical rhythm
in the anaesthetized state and has a frequency of approximately
1 Hz. These experiments also reveal that, in the chronic lesioned
case at least, the neurons in GP are split into two major groups,
distinguished by whether they preferentially fire during the active
phase (ECoG peaks) or inactive phase (ECoG troughs) of SWA
in dopamine-deprived conditions. These will be referred to as
the TA and TI groups, respectively. The underlying basis for this
division is unknown, but the same division is seen in respect to
cortico-pallidal synchronization that occurs transiently at β fre-
quencies in response to sensory stimulation in OHDA lesioned
rodents (Mallet et al., 2008a), which suggests that the same mech-
anism may be responsible for pathological entrainment in both
behavioral states/frequency bands. If this is the case, then under-
standing this mechanism may lead to improved treatments for
Parkinson’s disease. Unfortunately we do not currently know the
route through which oscillatory cortical input entrains the GP,
although it is likely to involve the two major sources of synap-
tic input to GP neurons: the inhibitory medium spiny projection

neurons of the striatum and excitatory STN neurons. Both receive
widespread cortical inputs and both show increased firing dur-
ing the peaks of SWA under Parkinsonian conditions in rodents
(Magill et al., 2001; Tseng et al., 2001). Given that the majority
of GP neurons belong to the TI group it has been suggested that
cortical oscillations are most effectively relayed via the inhibitory
striatum (Walters et al., 2007), but this view is challenged by the
fact that the entrainment of GP neurons to SWA appears to be
critically dependent on a functioning STN (Ni et al., 2000; Galati
et al., 2009).

In this paper we test the hypothesis that the inhibitory net-
work of GP neurons allows two anti-phase groups of oscillatory
neurons to appear in response to rhythmic excitatory STN input
only. To do this we consider a small neural network model of
interconnected conductance-based GP neurons. Although the
parameters of the neurons in this population are homogeneous,
our simulations reveal a mechanism by which the two oscilla-
tory groups can appear. This collective behavior is the result
of a self-organization process that depends on the GP neu-
rons’ inhibitory dynamics and rhythmic STN modulation. We
study the neural network model under healthy and Parkinsonian
conditions and demonstrate a good correspondence between sim-
ulation results and experimental recordings. Special attention has
been paid to studying the possible role of downregulation of
hyperpolarization-activated cyclic nucleotide-gated (HCN) chan-
nels in this network, based on the effect that these channels
appear to have on GP neurons’ responses to synaptic input (Chan
et al., 2004; Boyes et al., 2007) and the suggestion that oscillatory
activity may not appear immediately after dopamine lesion and
might instead depend on slower adaptive processes (Degos et al.,
2009).

The structure of this paper is as follows. Section 2 describes
our model including the cellular properties of model GP neurons,
how STN neuron activity was generated, the nature of synaptic
connectivity and our proposed model for HCN downregulation.
Section 3 describes the results of simulations and demonstrates
that model GP neurons behave realistically both in isolation and
as part of a network. It also shows how the network’s activity
changes under simulated Parkinsonian conditions in a way that is
similar to the results of previous biological experiments. Section 4
examines results in the context of what has been seen in animal
models of Parkinson’s disease and discusses what the results might
mean in terms of potential improvements to treatments for the
disease.

2. MATERIALS AND METHODS
Figure 1 shows a simple representation of the neural network
model which includes a population of 100 interconnected GP
neurons (right panel, blue) which receive excitatory synaptic
input from 50 STN neurons (left panel, red). Each GP neuron
is described by a detailed single compartment conductance based
model of the Hodgkin–Huxley type with inhibitory connections
from other GP neurons. The STN neurons are described by a
simple enhanced leaky integrate-and-fire model. Neurons in the
STN population are not connected to each other but they are
modulated by a common cortical slow-wave rhythm and make
excitatory synapses onto GP neurons.

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 173 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Merrison-Hort and Borisyuk Computational model of the globus pallidus

FIGURE 1 | An overview of the model. Integrate-and-fire STN neurons, modulated by an approximately 1 Hz rhythm, provide excitatory synaptic input to a
population of GP neurons. Inhibitory local synaptic connections between GP neurons have random connectivity.

2.1. MODEL GP NEURONS
The model GP neurons are of standard Hodgkin–Huxley type,
with a single compartment per neuron. We included ten voltage-
gated ionic channels as in the multicompartmental modeling
work of Günay et al. (2008): fast and slow delayed rectify-
ing K+ (Kv3 and Kv2, respectively), fast and slow A-type K+
(Kv4fast, Kv4slow), M-type K+ (KCNQ), fast spike-producing Na+
(NaF), persistent pacemaking Na+ (NaP), hyper-polarization
activated Ca2+ (HVA), and fast and slow mixed-conductance
hyperpolarization-activated channels (HCNfast, HCNslow). For
simplicity our model does not include calcium-gated potassium
“SK” channels, as these channels’ most significant effect on the
activity of GP neurons appears to be a lengthening of spike
afterhyperpolarization (AHP) (Deister et al., 2009), and we were
able achieve physiologically realistic AHPs without this channel.
Equation 1 describes how the membrane potential (V) of a model
GP neuron evolves in time.

C
dV

dt
= gleak(Eleak − V) + Inaf + Inap

+ Ikv2 + Ikv3 + Ikv4f + Ikv4s + Ikcnq (1)

+ Ihva + Ihcnf + Ihcns + Isyn + Iext

Here C and gleak are the total membrane capacitance and leak
conductance and Eleak is the reversal potential of the leak chan-
nels. Values for these parameters are given in Table 1. Isyn is the
total synaptic current received by the neuron (see below). Iext is
an externally applied current that was only non-zero when testing
the response of individual GP neurons to current injections. The
remaining currents correspond to the voltage-dependent chan-
nels, each of which has an activation gate (represented by the state
variable m) and, for most channels, an inactivation gate (state
variable h). Two channels have slow inactivation gates (s) in addi-
tion to their activation and inactivation gates. Equation 2 shows
the current due to a channel with all three gates:

I = mμhρsφgX(EX − V) (2)

Here EX is the reversal potential of the channel, gX is the max-
imum conductance of the channel, and μ, ρ and φ are integers
that give the relative numbers of gating molecules. Table 2 shows
which channels contain each gate type and the corresponding
values of μ, ρ and φ. Note that the parameters governing the

Table 1 | Passive membrane parameters and channel conductances

for the model GP neurons.

Parameter Value Units

C 141.6 pF

gleak 4.012 nS

Eleak −60.0 nS

gnaf 5900.0 nS

gnap 17.7 nS

gkv2,3,4f,4s 590.0 nS

gkcnq 1.77 nS

ghva 1.77 nS

ghcaf,s 177.0 nS

Ek −80.0 mV

Ena 55.0 mV

Eca 120.0 mV

Ehcn −30.0 mV

Table 2 | The relative proportion of gating molecules of each type for

each channel in the model GP neurons.

Channel μ ρ φ

NaF 3 1 1

NaP 3 1 1

Kv2,3,4fast, 4slow 4 1 –

KCNQ 4 – –

HVA 1 – –

HCNfast, HCNslow 1 – –

dynamics of each gate vary from channel to channel. Since we use
the same equations and parameters for channel gates as Günay
et al. (2008) we do not reproduce these here and instead refer to
the supplementary material of that paper where they are listed.

We could not directly use the channel maximum conduc-
tance parameters from Günay et al. (2008), since this was a
multicompartmental model and the conductances varied widely
between the different compartments. Instead we adjusted the
channel conductances so that our model neurons exhibited
intrinsic pacemaking and displayed realistic responses to depo-
larizing and hyperpolarizing current injections. The chosen con-
ductances are shown in Table 1. In order to generate a range of
intrinsic pacemaking frequencies we applied Gaussian noise to
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the maximum conductances of the persistent sodium and HCN
channels (gnap, ghcnf , and ghcns). The mean values are given in
Table 1 and the standard deviation was 50% of the mean value
for NaP and 30% for both HCN channels.

It has been proposed (Chan et al., 2011) that a homeostatic
mechanism may reduce the intrinsic firing rate of GP neurons
via downregulation of HCN channels in response to burst firing.
Our model includes a possible mechanism for this downregula-
tion by allowing the maximum conductance of HCN channels to
decrease. This occurs during periods of elevated firing rate, which
are indicated by high intracellular calcium concentration ([Ca]).
In order to model the dynamics of this calcium concentration we
use the equations from Terman et al. (2002). The rate of change
of intracellular calcium is given by Equation 3:

d[Ca]
dt

= ε(Ihva − kCa[Ca]) (3)

Here ε represents calcium buffering and has the value 10−4 Ms
CL ,

while kCa is the calcium pump rate and has the value 15.0 CL
Ms

[parameter values from Rubin and Terman (2004)]. Ihva repre-
sents the instantaneous current due to HVA channels (these are
the only Ca+ channels in the model). The maximum conduc-
tance of HCN channels remains constant during time steps and
is adjusted between steps when [Ca] > THCN , where THCN is the
threshold above which downregulation occurs. The amount by
which the conductance is adjusted takes the form of a sigmoid
curve and is given in Equation 4.

gHCN(t + �t) = max

[
0, gHCN(t) − kHCN�t

1 + exp(
θ−[Ca](t+�t)

σ
)

]
(4)

Here kHCN is the maximum conductance change that can occur
in one step, θ is the level of intracellular calcium that gives half
the maximum change, and σ is the slope of the sigmoid. We do
not have any data from biological experiments to suggest val-
ues for the downregulation parameters. Since we hypothesize
that downregulation mostly only occurs during fast burst firing
under Parkinsonian conditions, we chose parameters such that,
in healthy conditions, downregulation only occurred in the very
fastest firing GP neurons. The values of kHCN and σ that we chose
give a fairly rapid reduction in maximum HCN conductance in
response to elevated firing rates. The downregulation parame-
ters that we chose are: THCN = 0.2, kHCN = 6 × 10−4, σ = 0.1,
θ = 0.5.

Note that our model GP neurons are supposed to represent
those in the rodent GP. This nucleus is usually considered to be
equivalent to the so-called “external” pallidus (GPe) in primates.

2.2. MODEL STN NEURONS
Since the aim of this study is to investigate the effects of
rhythmic STN input upon the neurons of the GP, we did not
model STN neurons to the same level of biological detail as
GP neurons. Instead, to simulate the SWA-modulated bursting
of STN neurons that occurs under urethane anaesthesia we use
an enhanced integrate-and-fire generator of neural activity, as

described in Borisyuk (2002). The STN neurons include an expo-
nentially decaying threshold, accumulation of membrane poten-
tial, stochastic noise and an absolute refractory period. Aside from
approximating the SWA modulation of STN activity our model
does not include any synaptic inputs to the STN. In particular
we do not include the GP-STN projection because experiments in
urethane-anaesthetized rats have shown that the changes in firing
rate and pattern that occur in the STN following OHDA-lesion
are not dependent on synaptic input from the GP (Hassani et al.,
1996).

During urethane anaesthesia STN neurons display uncorre-
lated bursting activity that is modulated by a slow rhythm (Magill
et al., 2001) which, for the purposes of this paper, we assume
arises from excitatory cortical inputs. Since firing is uncorrelated,
each STN spike train is generated independently using a proce-
dure that results in spiking activity that is similar to the spiking
activity of real neurons. The generated spike trains contain activ-
ity that is oscillatory with a period of 1300 ms (≈0.8 Hz), where
cycle is made up of an 800 ms “inactive” phase and a 500 ms
“active” phase. The spike trains are constructed by alternately
sampling from two intermediate spike trains, one with slow irreg-
ular firing and one with fast irregular firing (for the inactive and
active periods, respectively). The average firing rates are 0.5 Hz
for the inactive period and 30 Hz for the active period; under
simulated Parkinsonian conditions the firing frequency during
the active phase is increased to 60 Hz. Figure 2 shows cross-
correlations between two STN spike trains which demonstrate
that within the active bursting period activity is not correlated
(A), but that there is strong common modulation at 0.8 Hz (B).
Figures 2C,D are raster plots of the generated spiking activity of
50 STN neurons in healthy and Parkinsonian conditions, respec-
tively, demonstrating a clear increase in firing frequency during
the active phase in the Parkinsonian case.

2.3. SYNAPTIC CONNECTIVITY
Each model neuron contains two variables, o(t) and c(t), which
represent synaptic opening and closing, respectively. When a neu-
ron spikes (defined by the membrane potential crossing 0 mV
in the positive direction), both variables are step-increased by 1.
Following this, the variables decay exponentially to zero according
to different time constants τo and τc, respectively (Eq. 5). Since
τo < τc, a transient synaptic current arises in all post-synaptic
neurons following a spike, according to Eq. 6:

do

dt
= − 1

τo
o

dc

dt
= − 1

τc
c (5)

Isyn = (c − o)gSyn(erev − V) (6)

Here erev is the reversal potential of the synapse (mV) and V is the
membrane potential of the post-synaptic neuron (mV). The value
of parameters erev, τc and τo vary based on the type of the neuron
(glutamatergic STN or GABAergic GP). gSyn denotes the maxi-
mum unitary conductance of a synapse (nS) and its value for a
particular synapse is drawn from a Gaussian distribution. The
mean of this distribution was gSG for STN-GP synapses and gGG

for intra-GP synapses and the standard deviation was 30% of the
mean in both cases.

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 173 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Merrison-Hort and Borisyuk Computational model of the globus pallidus

FIGURE 2 | Properties and spiking activity of STN neurons. (A)

Example cross-correlation between two STN neuron spike trains on a
short time window (30 bins, 3 ms each) shows independent firing. (B)

Longer time window reveals slow (1300 ms) oscillations (400 bins, 20 ms
each). (C) Spiking activity of STN neurons under healthy conditions. (D)

Increased intensity of active-phase firing under Parkinsonian conditions. In
(C,D) the background is shaded to show the active (pink) and inactive
(blue) phases of the SWA cycles. (A,B) are normalized using the

procedure described in Brillinger (1976): if Xi is the unscaled spike count
in histogram bin i then the scaled value X ′

i is given by: X ′
i = TXi

2hNANB
,

where T is the total simulation time, h is half the width of a
cross-correlation bin and NA and NB are the total spike counts for each
spike train. A normalized value of 1 indicates that there is no correlation
at a particular delay, while deviations from 1 indicate positive or negative
correlations. The horizontal bars show the 95% confidence interval for
significant correlations (Brillinger, 1976).

For the intra-GP inhibitory synapses we used synaptic time
constants τo = 5 ms and τc = 40 ms from unpublished current-
clamp recordings of GP-GP IPSPs taken from slices containing rat
GP, cortex and striatum [Alon Korngreen, personal communica-
tion]. Similarly, we chose gGG = 0.5 nS which gives a peak IPSP
of 0.5 mV (measured as deflection away from a holding potential
of −65 mV during injection of hyperpolarizing current) to match
the same experimental recordings. We used a standard GABA
reversal potential of −80 mV. Connectivity between GP neurons
was uniformly random, with each neuron inhibiting 20 others
(no self-connections).

Anatomical data regarding the structure of the STN-GP pro-
jection is currently lacking. However, it is clear that there are
many fewer STN neurons than GP neurons and that each GP
neuron only samples the activity of a small proportion of STN
neurons (Jaeger and Kita, 2011). We therefore arbitrarily chose to
model 50 STN neurons, each of which makes excitatory synapses
onto two randomly selected GP neurons. The time constants of
STN-GP synapses in the model are τo = 0.2 ms and τc = 60 ms,
based on the recordings shown in Loucif et al. (2005). The aver-
age maximum synaptic conductance (gSG) used for the healthy
case was chosen to be just low enough such that the majority
of GP neurons didn’t show significant entrainment to the SWA
rhythm and we investigated the effects of increasing the value in
the Parkinsonian case.

2.4. MODELING OF PARKINSONISM
We simulate the OHDA-lesioned (Parkinsonian) rat basal ganglia
by making three changes to the model’s parameters: (i) faster STN

firing during the active phase of SWA (Figure 2D) (ii) increased
STN-GP synapse strength and (iii) increased intra-GP inhibition
strength. Although the changes that occur to functional connec-
tivity in the basal ganglia in Parkinson’s disease are currently
under active investigation, there is experimental support for facil-
itation of both GP-GP (Johnson and Napier, 1997) and STN-GP
(Johnson and Napier, 1997; Hernández et al., 2006) synapses.
Similarly, under urethane anaesthesia it has been shown that spik-
ing in the STN continues to be modulated by the cortical SWA
rhythm, but that its firing becomes more intense during the active
period (Magill et al., 2001; Galati et al., 2009).

2.5. CATERGORIZATION OF NEURON ACTIVITY
We used a simple method to catergorize GP neurons as being of
type TA (in-phase with active SWA), TI (in-phase with inactive
SWA), NM (not modulated by SWA) or QU (quiet). Each spike
fired by the neuron to be catergorized is represented by a complex
number that indicates its phase in relation to SWA. The sum of
these complex numbers then gives an indication of the average
phase, ω, as shown in Eq. 7.

ωk =
∑
s∈Sk

eiθ(s) (7)

Here Sk is the set of spike times for neuron k (0 ≤ k < 100) and
θ(s) is the phase of SWA at time s (0 ≤ θ(s) < 2π). The argument
of the complex number ωk indicates the average SWA phase at
which neuron k fires, while its modulus provides an indication
of how strongly SWA-modulated the firing is. Normalizing the
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modulus by the number of spikes gives a confidence measure ck =
|ωk||Sk| , where ck = 0 indicates that spikes did not fire preferentially
at any one phase and ck = 1 indicates that every spike occurred at
exactly the same phase. After visual inspection of spike trains, we
decided to catergorize neurons with confidence c < 0.1 as NM.
We catergorized neurons with c ≥ 0.1 as either TA or TI based on
whether the average phase was during the active or inactive part
of the SWA cycle. Neurons that fired fewer than one spike every
SWA cycle on average were catergorized as QU.

2.6. IMPLEMENTATION DETAILS
We simulated the model using custom written software devel-
oped by R Merrison-Hort. This software is written in C and uses
the adaptive Runge-Kutta-Felberg ODE solver routine from the
GNU Scientific Library (version 1.15). Absolute and relative error
tolerances of 10−5 and a maximum step size of 1 ms were used
for all simulations. To analyse the results we used scripts written
in the Python (2.7) programming language with routines from
the NumPy (1.6.2) and SciPy (0.11.0rc1) libraries. For each set
of parameters twelve simulations were performed, with differ-
ent random neural connectivity, STN spike trains and parameter
noise (as described above) in each simulation.

All reported mean values are given with their standard
deviation.

3. RESULTS
3.1. MODEL GP NEURONS BEHAVE REALISTICALLY UNDER HEALTHY

CONDITIONS
The characteristics of the model GP neurons qualitatively match
that those of real rodent GP neurons in a number of key ways
and are illustrated in Figure 3A. When no synaptic or injected
currents are present (dark blue trace in Figure 3A), most model
neurons (96%; 481/500) pacemake at a range of frequencies
(23.6 Hz ± 4.0). Depolarizing current injections increase the fre-
quency of firing (green trace), with very high frequencies possible
(up to approximately 200 Hz). Hyperpolarizing current injections
result in a prominent and transient “sag” in membrane potential
(red, cyan and pink traces). The first spike after hyperpolarizing
current is removed occurs after a similar delay regardless of the

size of the injected current. These properties match those seen in
experiments with slices of rodent GP (Chan et al., 2004; Bugaysen
et al., 2010).

The mixed-conductance HCN channels play an important role
in the activity of the model GP neurons and their response to
hyperpolarizing input. The combination of a reasonably depolar-
ized reversal potential (−30 mV) (Lüthi and McCormick, 1998)
and activation at hyperpolarized membrane potentials (lower
than −60 mV) means that these channels act to return neu-
rons to spiking threshold faster after hyperpolarizing current (or
inhibitory synaptic input) is removed. Figure 3B shows how the
simulated blockade of HCN channels affects the activity of a
model GP neuron. When HCN channels are removed (ghcnf ,s =
0), the average pacemaking frequency decreases to 15.8 Hz ±
2.5 and 12% (58/500) of neurons do not pacemake. Without
HCN channels the membrane potential sag is no longer seen, and
hyperpolarizing current has a much stronger effect on membrane
potential. The time between the removal of hyperpolarizing cur-
rent and the return of spiking is also much longer, and much
more sensitive to the hyperpolarization level. These results agree
with previous work that has investigated the role of HCN chan-
nels using mouse GP slices and multicompartmental simulations
(Chan et al., 2004).

3.2. HEALTHY NETWORK ACTIVITY
Whilst we were able to base STN firing rate and the conductance
of GP-GP synapses directly on experimental evidence, we could
only do this indirectly with the STN-GP synaptic conductance
(gSG). We chose a value of 0.1 nS for this parameter in the healthy
case as this gives similar proportions of neurons in the TI, TA
and NM groups as seen in experiments. Figure 4A shows this dis-
tribution [cf. Figure 2A in Mallet et al. (2008b)] and Figure 4B
shows the spiking activity of the TI, TA and NM neurons in one
trial. A small proportion of neurons (9.9% ± 2.1) are catergo-
rized as QU because they fire spikes rarely or not at all; we are
not sure if this is a biologically accurate result as such neurons
may have been excluded from the results of electrophysiological
studies. The majority of neurons (68.3% ± 3.9) are catergorized
as NM and neurons in this group spike with an average firing rate

FIGURE 3 | Response of a typical isolated model GP neuron to different

current injections. (A) Neuron with normal HCN channel density.
Depolarizing current causes fast, regular spiking (green trace), while
hyperpolarizing current reveals a sag in membrane potential and rebound

firing (red, cyan, and purple traces). With no current injection the neuron fires
regularly at approximately 22 Hz (blue trace). (B) Neuron with HCN channels
removed. Sag in membrane potential is lost and pacemaking is slowed. Note
the difference in scale for the injection currents between (A) and (B).
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FIGURE 4 | Catergorization and activity of neurons under healthy

conditions. (A) The average number of GP neurons in each category
across all trials (n = 12), showing that most cells do not display prominent
modulation by SWA (error bars show standard deviation). (B) Raster plot
showing the spiking activity of TI, TA and NM neurons in one
representative trial. The spike trains above the solid gray line are from
neurons whose average spike phase is in the active part of the SWA cycle
(light pink shaded background), whilst those below the line have average
phases in the inactive part of SWA (light blue shaded background). The
spike trains are ordered such that those closer to the solid gray line have
lower confidence measures than those further away. The dashed gray lines
show the confidence measure boundaries that divide neurons classified as
NM from those classified as TI or TA (this boundary is set at 0.1).

of 12.3 Hz ± 3.3 and coefficient of variation (CV) of 0.12 ± 0.04.
These statistics are in good agreement with those of neurons
recorded from mice GP slices by Chan et al. (2004) (firing rate
12.5, CV 0.18). However, in contrast to these experimental results,
which found no effect on firing rate or CV after blocking GABAA

receptors, we would expect the average firing rate of the neurons
in our model to increase slightly with inhibition blocked, as the
average firing rate in the network is lower than the average pace-
making frequency of isolated model neurons. The average firing
frequencies in the (small) TI and TA groups were 3.7 Hz ±1.8 and
10.7 Hz ± 4.7, respectively.

3.3. PARKINSONIAN NETWORK ACTIVITY
The effects of dopamine lesion were simulated in the model by
an increased intensity of STN firing and increased strength of
STN-GP excitation and intra-GP inhibition. These changes have a
profound effect on activity in the model GP that is similar to what
is seen in experiments. As Figure 5 shows, most neurons begin to
preferentially fire during either the active or inactive phase of the
SWA. In order to see proportions of TA and TI neurons that were

FIGURE 5 | Catergorization and activity of neurons under Parkinsonian

conditions. (A) The average number of GP neurons in each category
across all trials (n = 12), showing that most neurons start to display
SWA-modulated firing patterns, either in-phase (TA) or anti-phase (TI). (B)

Raster plot of Parkinsonian GP neuron activity (description as in Figure 4B).

similar to in vivo results it was necessary to double the strength of
STN-GP and GP-GP synapses (gSG = 0.2 nS, gGG = 1.0 ns).

The average firing frequency of NM neurons decreased slightly
under Parkinsonian conditions while the average firing rates of
the TI and TA groups increased to 6.3 Hz ±3.6 and 11.1 Hz ±5.1,
respectively (Figure 6A). Although the variance of these statistics
is fairly large, there does appear to be a trend for different firing
rates between the different groups that is not seen in vivo (Magill
et al., 2001). This difference is perhaps not too surprising given
our simplistic and somewhat arbitrary choices for STN-GP and
GP-GP connectivity.

In order to investigate the factors that determine whether a
neuron becomes TA, TI, NM or QU we examined the follow-
ing statistics of each neuron: maximum conductance of the NaP
persistent sodium channel; initial (before downregulation) max-
imum conductance of fast and slow HCN channels; total maxi-
mum conductance of all excitatory (AMPA) synapses from STN
neurons; total maximum conductance of all inhibitory synapses
from other GP neurons. In general these statistics were remark-
ably similar between each of the groups, with two exceptions.
Firstly, quiet (QU) neurons have, on average, much lower max-
imum conductances for their NaP channel (Figure 6B). These
channels underlie autonomous pacemaking (Mercer et al., 2007)
and the intrinsic pacemaking frequency is strongly dependent on
the value of the NaP maximum conductance. Since QU neurons
have low NaP conductance they are likely to pacemake very slowly
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FIGURE 6 | Average cell properties by categorization across all GP

neurons from all trials (n = 1200). (A) Average firing rate is rather variable
but is in general slightly lower for TI neurons. (B) Maximum conductance of
the persistent sodium channel (NaP) which underlies pacemaking. Quiet
neurons can be easily categorized as those with very low NaP conductance.
(C) Average total maximum conductance due to excitatory synapses. TA
neurons receive more excitation on average, but it is highly variable.

or not at all, and it appears (from examination of voltage traces)
that the incoming inhibition from other GP neurons is sufficient
to prevent them from ever firing. Secondly, TA neurons receive
on average more excitatory synaptic input from the STN than
the other groups (Figure 6C). This result was expected, since STN
firing occurs during the active phase of SWA and so it is not sur-
prising that those GP neurons that receive more STN input also
fire preferentially during the active phase. In general, however, the
simple statistics we examined about membrane properties and
synaptic connectivity are not enough to determine which group
a particular neuron will fall into. Predicting the classification of a
neuron involves knowing the classification of the other GP neu-
rons that it receives inhibition from. This makes the problem
complex and extremely difficult to resolve a priori. Instead, when
the network is simulated, a dynamic process takes place in which
the network self-organizes its activity into the different groups of
neurons.

HCN channel downregulation plays a significant, but not
essential, role in the emergence of the different groups of neu-
rons in our model. Without this mechanism, many neurons in
the TA group continue to fire during the inactive phase due to
their intrinsic pacemaker properties. Although this inactive-phase
firing is slower than their active-phase firing (due to reduced
excitatory input), it is still a source of inhibitory input to other
GP neurons and may silence or slow the firing of some which
may otherwise be catergorized as TI. With the HCN downreg-
ulation mechanism those neurons that receive the most exci-
tatory STN input, and therefore fire at the fastest rate during
the active period, will have their maximum HCN conductances
reduced. This reduction has the effect of decreasing the intrin-
sic pacemaking frequency and increasing the hyperpolarization
that occurs in response to inhibitory input. To quantify the effect
on pacemaking frequency, we ran four simulations using the
Parkinsonian parameter values for a period of time long enough
for downregulation to take effect (6.5 s) and then removed all
synapses and recorded firing rates. The average pacemaker fre-
quency after downregulation was 16.9 Hz ±2.1, a clear reduction
from the normal pacemaker frequency of our model neurons
(23.6 Hz ± 4.0). The proportion of QU neurons after downreg-
ulation was 2%, lower than the 4% that we would expect based
on the normal pacemaker properties, but we attribute this to
statistical noise due to the rather small sample sizes.

These changes to pacemaking affect the competition dynam-
ics during the inactive phase and mean that most TA neurons
are no longer able to fire at all during this phase. Although the
proportion of neurons classified as either TA or TI is similar
with or without HCN downregulation (72.7% ± 5.4 normally,
68.7% ± 5.0 without downregulation), TA neuron firing is much
more clearly restricted to the active phase with downregulation.
This is seen in the average confidence measure (ω) of TA neurons,
which is 0.44 ± 0.22 with HCN downregulation and 0.32 ± 0.18
without. The effect is also shown by phase diagrams showing
the spiking activity of typical neurons (Figure 7). In these plots
the background is shaded to show the active (pink) and inactive
(blue) parts of the SWA cycle, showing that TI neurons fire pref-
erentially in the inactive part and TA neurons fire preferentially
in the active part. The red bars show the average spike phase and
their length indicates the confidence measure as a proportion of
the total radius.

3.4. LARGER NETWORKS
The results described above were from simulations with 100 GP
neurons, each of which made 20 inhibitory synapses onto 20 other
(randomly chosen) GP neurons. This level of coupling (≈ 20%)
is probably much higher than what is seen in the real GP (Sadek
et al., 2007). We ran several simulations, using Parkinsonian
parameter settings, where the coupling proportion was decreased
by scaling up the number of GP and STN neurons but keeping
the number of synapses that each neuron made constant. In the
first set of simulations we used 200 GP neurons and 100 STN neu-
rons and in the second set we used 300 GP neurons and 150
STN. These give GP-GP coupling levels of 20/199 ≈ 10% and
20/299 ≈ 7%, respectively. In each case we ran three simulations.
For the simulations with 200 GP neurons there were an average
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FIGURE 7 | Phase histograms showing the distribution of spikes

relative to SWA phase grouped by categorization (Top: TI, Middle: TA,

Bottom: NM), demonstrating the effects of HCN downregulation.

Numbers indicate the number of spikes in each bin (65 ms bin width). Data
are shown from two sets of 12 simulations, one with the HCN
downregulation mechanism enabled (left) and one with it disabled (right).
The background of each diagram is shaded to illustrate the active (pink,
500 ms) and inactive (blue, 800 ms) parts of the SWA cycle. Downregulation
reduces TA neuron firing during the inactive phase (Middle), increases TI
firing during the inactive phase (Top) and decreases NM firing (Bottom).
Spikes from the latter half of simulations (6.5 s out of 13 s) from all neurons
(except those categorized as QU) were used to generate the diagrams. The
orientation of the red bars shows the average spike phase and their length
shows the phase confidence measure (ω) as a proportion of the total radius.

of 71 ± 2.8 TI neurons and 73.7 ± 1.7 TA neurons. For the sim-
ulations (n = 3) with 300 GP neurons there were an average of
122 ± 4.1 TI neurons and 101.3 ± 2.5 TA neurons. These propor-
tions (particularly in the latter case) are similar to the proportions
in the smaller network (see Figure 5).

3.5. OTHER FREQUENCY BANDS
We briefly investigated to see if the activity of GP neurons could
become entrained to higher frequency cortical rhythms, specifi-
cally those in the β band. To do this we generated STN spike trains
that were modulated at approximately 14 Hz (70 ms period: 40 ms
inactive phase, 30 ms active phase). Although biological exper-
iments on OHDA lesioned rodents find that most neurons fall
under the same TI or TA category regardless of whether the cor-
tical rhythm is SWA or β, it was difficult and not effective to use
our normal method to categorize neurons because the number of
spikes fired by GP neurons in each β cycle was very low. However,

examining spike cross-correlations between STN and GP neu-
rons showed that the majority of GP neurons did show oscillatory
firing that was in-phase with the STN input (Figure 8A). We
examined auto-correlations for individual GP neurons and found
that the frequency of these neurons’ oscillations varied somewhat
from neuron to neuron, which suggests that their firing becomes
synchronized to some intermediate frequency between the 14 Hz
input and their intrinsic pacemaking frequency. We did not see
any GP neurons that showed anti-phase oscillations when using
our standard Parkinsonian parameters. However, when the degree
of intra-GP inhibition is dramatically increased (40% coupling,
gGG = 3.0 nS) then a few neurons do begin to show a prefer-
ence for anti-phase firing (Figure 8B), albeit at a very low rate.
It is possible that with different synaptic parameters or connec-
tion topology (for example, STN input that preferentially makes
contact with a particular group of GP neurons), the synchro-
nized activity of one group could cause a second group to become
synchronized in anti-phase.

4. DISCUSSION
4.1. A NEW, BIOLOGICALLY DETAILED, MODEL HELPS US TO STUDY GP

DYNAMICS
We have presented what we believe to be a novel model of GP
neurons that features much of the biological realism of previous
detailed multi-compartmental models but considerably reduced
complexity (both computationally and in terms of model con-
struction). This makes our model well-suited to detailed mod-
eling of the dynamics of networks of GP neurons and their
connections with other nuclei. We have also introduced a possi-
ble computational mechanism for simulating the downregulation
of HCN channels and shown that this improves how closely our
results fit with biological evidence.

Our results demonstrate a mechanism whereby local
inhibitory connections allow two anti-phase oscillatory sub-
populations of GP neurons to emerge in response to rhythmic
excitatory input from the STN. The two subpopulations appear
due to a complex self-organization process and despite the
homogenity of the overall population. This effect is only seen
when both the STN input and inhibitory GP-GP coupling are
sufficiently strong, and there is good experimental evidence that
both STN input to the GP and intra-GP coupling increase in
rodent models of Parkinson’s disease. We therefore claim that
our model shows a plausible mechanism for those experimental
results which show a prominent increase in the number of TA
and TI neurons that occurs in the rodent GP after dopamine
lesioning (Magill et al., 2001). In our model, HCN channel
downregulation makes oscillatory entrainment of the in-phase
group of neurons more prominent but is not essential for the
two groups to appear. This may explain the result of Chan et al.
(2011) whereby artificial up-regulation of HCN channels via viral
transfection restored the cells’ ability to autonomously pacemake
but did not give any significant improvement to Parkinsonian
motor impairment. The fact that we did not see an increase in the
number of neurons that were unable to autonomously pacemake
following simulations of the Parkinsonian network may indicate
that we didn’t set the threshold for HCN downregulation low
enough.
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FIGURE 8 | Spike cross-correlation diagrams showing the relationship

between STN and GP neuron firing when STN input is modulated at

approximately 14 Hz (70 ms period). (A) Typical average cross-correlation
between all STN neurons and a single GP neuron showing synchronized

in-phase firing. (B) STN-GP cross-correlation for a (rare) GP neuron that
shows firing that is anti-phase to the β rhythm. Normalization is as in Figure 2

(Brillinger, 1976) and the shaded area shows the standard deviation across
STN neurons.

4.2. RELATIONSHIP TO PREVIOUS STUDIES ON COUPLED
OSCILLATORS

Networks of coupled oscillators are found in many areas of sci-
ence and the dynamics of such networks have therefore been
widely studied from a theoretical standpoint. Our model can be
thought of as a network of inhibitory coupled oscillators that
receive random, sparse excitatory input with a particular global
frequency. Although many theoretical studies of similar systems
use reduced models, they may still provide insights into the
different dynamical behaviors that our model is likely to exhibit.

Most previous theoretical studies do not include common
external input to the coupled oscillators, although some may con-
sider the effects of input that is constant in time. Chow (1998)
describes the analysis of a neuronal network that consists of a
number of oscillators with heterogenous spiking frequencies that
are all-to-all coupled by inhibitory connections. Such networks
are capable of producing a range of dynamics, including almost-
synchronous phase-locking, harmonic locking, and suppression.
The stability of these states strongly depends on the details of the
neurons’ response to synaptic input. This network is similar to
our model in the case where STN input is made constant in time,
although inhibitory coupling in the GP network is random and
relatively sparse rather than all-to-all. Since SWA oscillations are
much slower than the GP neurons’ intrinsic pacemaking, we can
consider the GP network during the active and inactive phases
separately, with constant STN input within each phase. Using the
terminology of Chow (1998), during the active phase of SWA
(high STN input) the TI neurons are in the suppressed state while
in the inactive phase the TA neurons are suppressed. We have not
observed synchrony between neurons during active or inactive
phases, although it’s possible that the system would converge to
these states after a long period of time with constant input.

As the frequency of the cortical modulation is increased to
be closer to the GP neurons’ pacemaker frequencies (e.g., into
the β band) it no longer makes sense to consider the sce-
nario of constant STN input. In this scenario, theoretical results
from oscillator models may be useful for suggesting conditions
that support the emergence of in-phase and anti-phase groups.
Golomb et al. (1992) describes a network of phase oscillators that
all receive common global input that is a function of the phases

of the oscillators. This is not explictly the case in our model,
but nevertheless their findings regarding the stability of solutions
with clustered phase distributions may be relevant. In particu-
lar they show that the fewer clusters a state has, the more stable
it is (larger basin of attraction). This could explain why the GP
network under β modulation organises into just two anti-phase
clusters. Kilpatrick and Ermentrout (2011) study a more biolog-
ically realistic model for the emergence of gamma rhythms in a
network containing a large population of excitatory neurons with
a smaller subpopulation of inhibitory interneurons. Interestingly,
they show that the number of clusters that emerge in their model
depends on the level of spike frequency adaptation in the excita-
tory neurons, which arises due to a calcium current. Our model
contains a calcium channel that activates during fast firing and
causes some degree of spike frequency adaptation, which raises
the possibility that using different conductances for this chan-
nel may result in patterns with more than two clusters. It has
also been shown that networks of neurons that have heteroge-
nous synaptic interconnectivity may display clustered dynamics
if the connectivity structure satisfies certain conditions (Li et al.,
2003)—although this has only been shown for excitatory synapses
and so it is not clear whether the same would apply to the GP
network.

4.3. STIMULATION OF THE STN MAY REDUCE OSCILLATIONS IN THE
HYPERDIRECT PATHWAY

The hypothesis that basal ganglia activity is entrained to corti-
cal rhythms via the hyper-direct pathway in Parkinson’s disease
offers some explanation of the possible mechanism(s) under-
lying the clinical effectiveness of STN deep-brain stimulation
(DBS), in which an implanted electrode provides constant electri-
cal stimulation of approximately 120 Hz to the STN. The precise
effects of this stimulation on neuronal activity in the basal ganglia
are not fully understood and are likely to be many and var-
ied (Kringelbach et al., 2010). The computational model of the
basal ganglia of Kumar et al. (2011) included the effects of DBS
through either a reduction of strength of cortex-STN synapses or
inhibitory input onto STN and in both cases DBS was found to
reduce oscillatory firing. In this model oscillations appear because
the STN and GPe act as a pacemaker circuit due to the excitatory
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connections between STN neurons. It is clear that if DBS were
added to our model in a similar manner then oscillations in the
GP would be much reduced, as they are dependent on reason-
ably strong input from the STN. Another possible mechanism of
DBS that has good experimental support is that it antidromically
activates the fibers that project from the cortex to the STN (Li
et al., 2007). The effect of this antidromic activiation is a reduc-
tion of oscillatory activity in the cortical regions that project to
the STN. Since our model only includes STN input to the GP,
clearly a reduction of oscillatory STN activity would reduce GP
oscillations as well. Wilson et al. (2011) found that in a relatively
abstract model of the GP consisting of uncoupled phase oscilla-
tors synchronized to a common input, chaotic dynamics served to
desynchronize the population at frequencies and intensities sim-
ilar to those that are clinically effecive for DBS. The same may
also be true of our model when the GP neurons are entrained to
β-frequency STN input but further investigation is required. Our
model could also help to test and improve the effectiveness of new
forms of DBS, such as that proposed by Popovych and Tass (2012)
which involves using multiple electrodes to desynchronize groups
of neurons that have become entrained to particular rhythms.

4.4. THE EMERGENCE OF TI/TA GROUPS DEPENDS ON STRONG
INHIBITORY COUPLING

One possible weakness of our model is that it relies on intra-
GP inhibition being much denser than is currently supported by
experimental evidence. It has been estimated that the probability
of a given GP neuron synapsing onto any other, randomly-
chosen, GP neuron is less than 1% (Sadek et al., 2007) but
in most of our simulations this value is 20%. Our preliminary
experiments with larger networks have suggested that the level
of intra-GP coupling can be reduced while preserving the divi-
sion into TI and TA groups by increasing the size of the network.
Further work will involve investigating even larger (more com-
putationally expensive) networks to see how much further the
size of the network can be increased while maintaining the same
division.

If further increases in network size cannot generate realis-
tic activity with physiological levels of GP-GP coupling, there
are several other possible reasons why the connectivity may be
greater than has so far been measured experimentally. It has been
suggested that the basal ganglia are organized into a series of
partially overlapping “channels” (Alexander and Crutcher, 1990),
where neurons preferentially synapse onto other neurons in the
same channel. We have previously shown modeling evidence that
increased coupling between channels may allow the STN-GP cir-
cuit to generate oscillations (Merrison-Hort et al., 2013), but in
the present study we suggest that our small population of GP
neurons could represent part of a single channel. Under this
assumption, the proportion of coupled neurons might be much
higher than would be seen from picking pairs of neurons from
across the whole GP at random. It is also possible that the pro-
jection from GP to STN, which is not included in our model,
may contribute to the effect of lateral inhibition since the tri-
synaptic GP-STN-GP pathway is a route by which GP neurons
inhibit other GP neurons, and there is experimental evidence
to suggest the strength of this pathway may be increased under

Parkinsonian conditions (Johnson and Napier, 1997). However, it
is hard to say whether or not this explanation is plausible without
more detailed information about the topology of the STN-GP and
GP-STN projections.

Similarly, the increase in GP-GP synaptic conductance that
occurs under Parkinsonian conditions in our model may be larger
than in reality. Although we have used data from paired-pulse
experiments to choose the conductance of GP-GP synapses in
the healthy case, it is not clear how much this increases by fol-
lowing loss of dopaminergic input. Miguelez et al. (2012) used
an optogentic technique to stimulate a number of GP neurons
whilst recording IPSCs and found an increase of approximately
67% after dopamine lesioning. This is considerably smaller than
the increase we use under Parkinsonian conditions, where the
GP-GP conductance is doubled. However, the increase seen by
Miguelez et al. (2012) may be lower than the in conductance at
a single GP-GP synapse, since their method simultaneously acti-
vates many pre-synaptic GP neurons and the summation of the
resulting IPSCs may not be linear.

4.5. FUTURE WORK: STRIATAL INPUT, RECIPROCAL CONNECTIONS
AND GP HETEROGENITY MAY IMPROVE OUR RESULTS

The aim of this study was primarily to investigate whether the
hyperdirect pathway alone could account for one characteristic of
the Parkinsonian GP and we have therefore only included STN-
GP and GP-GP synaptic connectivity. However, the main source
of synaptic input to the GP is the striatum, and it is clear that
adding simulated inhibitory striatal synaptic input could improve
our results. Galati et al. (2009) demonstrated that the delivery of
a GABAA antagonist into the GP also causes cortical entrainment
of the neurons there and that this effect is dependent on a func-
tioning STN. They suggest that this demonstrates that inhibitory
striatal input is also involved in oscillatory entrainment. This
result is more difficult to explain in our model, since it is unlikely
that decreasing the level of GP-GP inhibition would cause oscil-
lations to appear in the (otherwise) healthy case. However, if the
effect of GABA antagonism is to remove tonic background inhi-
bition (probably from the striatum) then we could include this in
our model as a depolarizing current injection to all GP neurons.
This would move their membrane potentials closer to the spike
threshold and make them more sensitive to the (weak) rhythmic
STN input that is present in the healthy case. Furthermore, Tseng
et al. (2001) showed that the activity of striatal projection neurons
is modulated by cortical SWA and increases after OHDA lesion.
Including the effects of this in our model would probably increase
the number of TI neurons and may allow us to reduce the amount
of intra-GP inhibition to a more realistic level.

Another possible pathway that could be added to our model
is the projection from the GP back to the STN. Computational
models of networks that include this connection have shown that
the STN and GP can work together to act as a pacemaker circuit
(Gillies et al., 2002; Terman et al., 2002; Holgado et al., 2010).
Terman et al. (2002) describes the results of simulating a spik-
ing model of the interconnected STN-GPe network in which the
tonic activity of both populations can become bursty with a reg-
ular bursting rhythm. In fact, the neurons in this model can
self-organise into different sized clusters, which allows for the
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possibility of two anti-phase groups under some conditions. We
expect that our model could support similar regimes if the GP-
STN connection was added, provided that we also introduced a
more realistic STN neuron model.

Although our model has demonstrated that discrete groups
of neurons can emerge from a population of GP neurons with
homogeneous (unimodally distributed) membrane properties,
there is now some evidence that the neurons in the TA and TI
groups are distinct in some ways, including the nature of local
inhibitory connectivity, the basal ganglia nuclei that they project
to, and in their chemistry (Mallet et al., 2012). Similarly, several
studies (Nambu and Llinás, 1997; Cooper and Stanford, 2000;
Bugaysen et al., 2010) have attempted to categorize GP neurons
based on their electrophysiological properties, and their results
seem to suggest that several distinct groups may exist (although
the boundaries remain fuzzy). It would be very interesting to
incorporate these results into our model, perhaps by making the
parameter noise for the NaP or HCN channels bi- or tri-modal
and by giving one group of neurons a higher degree of local con-
nectivity than another. We expect that this would promote the
emergence of the TI, TA and NM groups and would probably
reduce the degree of GP-GP connectivity that is required in order
to obtain results that are similar to experiments.
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