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Abstract - This paper presents the numerical and analytical investigations on the distortional 

buckling of perforated cold-formed steel channel-section beams with circular holes in web. 

The numerical investigation involves the use of finite element methods. In the analytical 

analysis the distortional buckling model recommended in EN1993-1-3 is employed. The 

influence of the web holes on the distortional buckling behaviour and corresponding critical 

stress and moment of perforated cold-formed steel channel-section beams are discussed. 

Finally, a simple analytical formulation is proposed for evaluating the effect of hole size on 

the reduction of critical stress and critical moment of the channel-section beams with circular 

holes in web. 

 

Keywords: Perforated, cold-formed, channel, distortional buckling, web opening, finite 

element.  

 

 

1. Introduction 

 

Thin-walled, perforated cold-formed steel (PCFS) sections are frequently used as structural 

members in residential buildings and for storage rack constructions. For example, in low and 

mid-rise building construction holes are pre-punched in structural studs to accommodate the 

passage of utilities in the walls and ceilings of buildings; whereas in steel storage rack 

constructions columns perforation patterns are provided to allow for variable shelf 

configurations. The buckling behaviour of PCFS sections is influenced not only by the 

reduction of cross-sectional properties but also by the stress concentration caused due to 

perforations. Similar to common cold-formed steel (CFS) sections, PCFS sections may also 

exhibit local, distortional, and global buckling modes when they are subjected to compressive 

and/or bending loads. However, because of the wide variety in the size and configuration of 

perforations, it is rather difficult to directly calculate the critical buckling stresses of PCFS 

sections [1].   

 

Early work assessed the influence of a single hole on the elastic buckling of rectangular 

plates under compression [2]. It was found that the hole reduces the bending stiffness of the 

plate and causes the concentration of the axial stress in the plate strips adjacent to the hole. 

The work led to the development of approximation of elastic buckling stress for plates with 

holes by assuming the strips adjacent to the hole to act as unstiffened elements and the 

concept of effective width for predicting the post-buckling ultimate strength of plates with 

holes [3,4]. Davies et al. [5] developed a design method for PCFS sections subjected to axial 

and bending loads by using both experimental and numerical results, taking account of local, 
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distortional and global buckling. Kesti and Mäkeläinen [6] presented a design method for 

gypsum-sheathed perforated steel wall studs, of which the failure mode was mainly 

controlled by distortional buckling. Dhanalakshmi and Shanmugam [7] compared the 

ultimate load-carrying capacities of perforated and non-perforated equal-angle CFS stub 

columns under axial and eccentric loads. By using both experimental and numerical results a 

simplified design formula was proposed to determine the ultimate load-carrying capacity of 

PCFS equal-angle stubs. Szabo and Dubina [8] evaluated an equivalent α imperfection factor 

for EN buckling curves to adapt them for sections with different perforation patterns. Freitas 

et al. [9] conducted a material and geometric non-linear analysis using ANSYS for typical 

sections of perforated stub columns manufactured in Brazil. The numerical results were 

compared with experimental data obtained by stub column tests. Sputo and Tovar [10], Tovar 

and Sputo [11] analysed the local and distortional buckling problems of PCFS studs using 

finite strip method and the critical loads obtained were used to calculate the ultimate strength 

of the PCFS studs by using the direct strength method. Experiments were carried out by 

Moen and Schafer [12] to quantify the relationship between the elastic buckling and tested 

responses of CFS columns with holes. Compression tests were conducted on 24 short and 

intermediate length CFS columns with and without slotted web holes. For each tested 

specimen, finite element buckling analysis was also carried out such that the influence of the 

boundary conditions and the hole on local, distortional, and global elastic buckling responses 

was examined. It was showed that slotted web holes could modify the local and distortional 

elastic buckling half-wavelengths, and may also change the critical elastic buckling loads. 

Experimental work was carried out by Crisan et al. [13] on upright members of two different 

cross-sections, with and without perforations to determine the ultimate strength for specimens 

of different lengths corresponding to local, distortional and global buckling. Material tests 

and imperfection measurements for the tested specimens were also performed. The effects of 

perforation positions on the load capacity of column members of lipped channel cross-section 

were investigated by Kulatunga and Macdonald [14] using both experimental and finite 

element numerical methods. The influence of perforations of various shapes on the buckling 

behaviour of CFS columns of lipped channel cross-section was examined by Kulatunga et al. 

[15] using finite element analysis method.  

 

Finite strip method has been widely used for the buckling analysis of CFS members. The 

problem with the finite strip method is that holes cannot be easily modelled. In order to apply 

the finite strip method to PCFS sections, Casafont et al. [16] proposed an approach in which a 

reduced thickness of the perforated strip is applied to take into account perforations effect. A 

formulation was proposed for the reduced thickness that has been calibrated with loads 

obtained in the buckling analysis using finite element method. The accuracy was verified by 

carrying out analyses on real rack columns with different end conditions. Recently, the 

flexural behaviour, including the ultimate moment capacities and failure modes, of built-up 

CFS members with circular web holes was investigated by Wang and Young [17] using 

experimental methods. A total of 43 beams having ten cross-section sizes with different hole 

diameters were tested under four-point bending. Different approaches of determining the 

critical elastic local and distortional buckling moments including the influence of holes for 

the built-up open and closed sections were compared and discussed. The influence of web 

opening on the lateral-torsional buckling behaviour of CFS channel-section purlins was also 

examined by Ling et al. [18] using finite element method. More recently, extensive research 

has been carried out on the load bearing capacity of rack uprights subjected to combined axial 

and bending loads using different analysis methods, including design codes [19], 

experimental [20] and finite element numerical [21-23] methods. 
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In this paper, the distortional buckling of PCFS channel-section beams with circular holes in 

web is investigated using finite element method. The influence of the web openings on the 

critical stress and critical moment of distortional buckling is examined. Finally, according to 

the EN1993-1-3 distortional buckling model, a simple analytical formulation is proposed for 

the prediction of critical stress and critical moment of distortional buckling of PCFS channel-

section beams with circular holes in web. 

 

 

2. Finite element analysis of PCFS channel-section beams with circular holes in web 

 

Consider a PCFS channel-section beam with circular holes in web as shown in Figure 1. The 

depth of web, flange width, lip length, and thickness of the section are symbolised by h, b, c, 

and t, respectively. It is assumed that the circular holes of diameter d are equally displaced in 

the web along the longitudinal direction of the beam. For the convenience of discussion, the 

beam length is assumed to be L = nd/2, where n is an integer, representing the total number 

of holes in the web. This implies that, in the web strip of openings the total opening area is 

equal to the total solid area. The beam analysed is assumed to be simply supported at its two 

ends, and subjected to a pure bending about it major axis. Figure 2 shows a typical mesh of 

shell elements used in the analysis for the beam. The displacement boundary conditions are 

applied to the nodes at the two end sections of the geometrical model. All nodes at both end 

sections are assumed to have zero lateral displacement, zero transverse displacement, and 

zero rotational displacement about the longitudinal axis. To avoid the rigid displacement in 

the longitudinal axial direction a node located at the neutral plane at one of the end sections is 

assumed to have zero axial displacement. The bending moments loaded at the two end 

sections are applied by the line distribution forces defined on the web, flange, and lip lines, in 

which the forces are assumed to be uniformly distributed on the two flange lines (yt for 

upper flange and -yt for lower flange), linearly distributed on the web (from yt to -yt) and 

lip (from yt to yt(1-2c/h) for upper lip and from -yt(1-2c/h) to -yt for lower lip) lines, as 

shown in Figure 2, respectively. The material properties of the beam are assumed as Young’s 

modulus E = 210 GPa and Poisson ratio  = 0.3, yields stress y = 390 MPa. The linear 

buckling analysis is performed by using the commercial software ABAQUS.  

 

In order that the obtained lowest eigen-value represents indeed the critical stress or the 

critical moment of distortional buckling mode, the dimensions of the channel section to be 

analysed are carefully chosen. Figure 3 shows a log-based plot of the buckling curve of the 

chosen channel section without web openings obtained from finite strip method, in which Mcr 

is the critical moment of the beam subjected to pure bending and My is the corresponding 

yield moment. It can be seen from the figure that, the dominant buckling mode is the local 

buckling for beam length less than 220 mm, the distortional buckling for beam length 

between 220 mm and 1200 mm, and the lateral-torsional buckling for beam length greater 

than 1200 mm, respectively. The lowest critical moment of local buckling is found to be 

much higher than that of distortional buckling. It is observed from the figure that, as long as 

the length of the beams analysed is in the range of 300 mm to 1750 mm, the lowest critical 

stress will be that of distortional buckling. It should be noted that, if the PCFS channel-

section beams have identical hole size and hole spacing, the beam length must follow the 

formula of L = nd/2, indicating that the beam length is a discrete function.  

 

Existing experience showed that the element size can affect the accuracy of obtained critical 

stresses. The sensitivity analysis of element mesh on the obtained critical stresses or critical 

moments is thus carried out by using a number of trials with different mesh sizes. It is found 



4 
 

that when the maximum element size in the mesh is equal or below 10 mm, the eigen-values 

associated with the first two lowest buckling modes obtained from different meshes are 

almost the same. Hence, in the present finite element analysis the mesh used for different 

beam lengths is controlled by restricting the maximum element size not exceeding 10 mm. 

 

Figure 4 shows the buckling curves of the four typical PCFS channel-section beams with 

circular holes of different sizes in web, in which Mcr is the critical moment of distortional 

buckling of the beam and My is the yield moment of the beam with no holes. It can be seen 

from the figure that all of the curves have a similar variation patter. In each case the critical 

moment of the distortional buckling varies slightly around the local minimum point, 

representing the interfering effect between the beam length and the half wavelength of 

distortional buckling mode. It is observed that the larger the holes the smaller the critical 

moment. This seems to be expected as the larger the holes, the weaker the web to resist the 

rotation of the compressed flange/lip element and thus leads to a lower critical moment. The 

half wavelength associated with the critical moment (i.e. the minimum point in each curve) is 

found to increase with the hole size, indicating that the web opening affects not only the 

critical moment but also the half wavelength of distortional buckling mode. Note that the 

roughness of the curves shown in Fig.4 is due to the beam length which has to follow the 

formula of L = nd/2 to ensure the beams of different lengths have the same hole size and 

hole spacing. Figure 5 shows the typical distortional buckling modes of a PCFS channel-

section beam at three different beam lengths, obtained from the finite element analysis. It is 

evident from the figure that the distortional buckling modes with one, two and three buckling 

waves, respectively in three different beam lengths are all characterised by the rotation of 

compression flange about the web-flange junction.  

 

                                                                             

3. Distortional buckling modelling of PCFS channel section beams with circular holes in 

web  

 

The distortional buckling of CFS sections is commonly categorized by the translation and 

rotation of the corners of the cross-section [24-28]. The distortional buckling of a flexural 

member such as channel- or zed-section normally involves the rotation of the compression 

flange and lip about the flange-web junction. The web experiences a flexure at the same half-

wavelength as the buckled flange-lip element. In Eurocode 3 [25], the design of compression 

elements with intermediate or edge stiffeners is based on the assumption that the stiffened 

element behaves like a strut supported by an elastic foundation with a spring stiffness along 

the length that depends on the boundary conditions and the flexural stiffness of the adjacent 

plane elements of the cross-section (see Figure 6a). The elastic critical buckling stress of the 

stiffened element is expressed as follows [25], 

s

s

cr
A

KEI2


          (1) 

where cr is the critical stress of distortional buckling, K is the spring stiffness per unit length, 

EIs is the bending rigidity of the stiffened element, Is is the second moment of the area of the 

stiffened element about the axis parallel to flange, and As is the area of the stiffened element. 

For the PCFS channel section discussed in the present study holes are only located in the web 

and thus Eq.(1) could be also applied but the spring stiffness need to be modified to take into 

account the effect of web openings. Hence, when the local buckling of the compressed flange 

and lip is ignored, As and Is of the stiffened element can be calculated as follows [25], 
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where e is the vertical distance of the centroid point of the stiffener element away from the 

flange and is expressed as follows, 
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           (4) 

 

In order to determine the spring stiffness K of the PCFS channel section, the web strip where 

the holes are located is assumed to have a different bending rigidity from the other part of the 

section (see Figure 6b). By using a unit load applied at the centroid point of the stiffened 

element where the spring is located to the whole cross-section similar to that proposed in [27], 

the deflection of the loading point can be evaluated and thus the spring stiffness of the 

PCFS channel section can be calculated (see Figure 6b) and is expressed as follows, 
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 are the flexural rigidity of the strips 

with and without openings, respectively, and  is a reduction factor to be determined. It is 

obvious that if d = 0 then  = 3D/(a3+a2h), which represents the spring stiffness of the 

channel section with no holes in web. Note that, a smear model has been used in the 

derivation of Eq.(5), in which the web is split into three strips. The openings are located only 

in the mid-strip. The effect of openings on the flexural rigidity of the mid-strip is modelled by 

using the overall reduction factor .    

 

Eqs.(1) and (5) provide a simple calculation method for the critical stress of distortional 

buckling of PCFS channel-section beams with circular holes in web under pure bending. The 

critical moment of the section can be calculated as follows, 

 h

I
M redcr

cr

2


          (6) 

where Mcr is the critical moment of distortional buckling and Ired is the second moment of 

reduced area, which is expressed as follows, 

1212412
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      (7) 

where Ifull is the second moment of the area of the channel section without holes in web. Of 

the particular interest is the effect of the hole size on the critical stress and critical moment of 

distortional buckling. Note from Eq.(1) that, the ratio of the critical stresses between PCFS 

and CFS channel-section beams can be expressed as follows, 
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where cr,d and cr,o are the critical stresses of distortional buckling of the CFS channel 

sections with and without holes in web, d and o are the spring stiffness per unit length in 

the CFS channel sections with and without holes in web, respectively. Similarly, for the 

critical moment, it yields, 

 




































1
1

)/(1

)/(3

4

1
1

12
1

2

3

,

,

ha

hd

h

d

I

td

K

K

I

I

M

M full

o

d

full

red

ocr

dcr

        (9) 

where Mcr,d and Mcr,o are the critical moments of distortional buckling of the CFS channel 

sections with and without holes in web, respectively. Figure 7 shows a comparison of the 

critical moments calculated from Eq.(9) and those obtained from the finite element analysis 

for six different hole sizes. It can be seen from the figure that, among three selected  values, 

 =0.57 gives a best fit to the finite element data; while  =0.65 and  =0.50 provide under- 

and slightly overestimated variations. Physically,  =0.50 represents the approach of equal 

width, which can be applied to the case of square holes; while for circular holes a slightly 

higher  value is required because of the section variation of the web post. This is why  

=0.57 has a better fitted result. The critical stress and critical moment of distortional buckling 

of CFS members can be obtained using various analytical methods. The comparison shown in 

Figure 7 demonstrates that the critical stress and critical moment of PCFS channel-section 

beams with circular holes in web can be calculated by using the reduction factor defined by 

Eqs. (8) and (9) if the critical stress and critical moment of the corresponding CFS channel-

section beams are known.   

 

 

4. Conclusion 

 

This paper has presented a study on the distortional buckling of PCFS channel-section beams 

with circular holes in web by using both numerical and analytical methods. The numerical 

analysis has been performed using finite element method; whereas the analytical analysis has 

been accomplished using the EN1993-1-3 distortional buckling model. The influence of the 

web openings on the distortional buckling behaviour and corresponding critical stress and 

critical moment of PCFS channel-section beams subjected to pure bending have been 

examined. From the obtained results the following conclusions can be drawn: 

 

 The critical moment of distortional buckling of PCFS channel-section beam with 

circular holes in web decreases with increased hole size, but the half wavelength 

associated with the critical moment increases with increased hole size. 

 The effect of circular holes in web on the critical moment of distortional buckling of 

PCFS channel-section beams can be interpreted as their effect on the rotational 

restraint to the compressed flange-lip system by using EN1993-1-3 distortional 

buckling model.  

 The reduction of the rotational restraint of the web to the compressed flange-lip 

system due to the circular holes in web can be estimated using the concept of 

equivalent width with taking into account the section variation of the web post.  
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 The web openings have two-fold effects on the critical moment of distortional 

buckling of PCFS channel-section beams with circular holes in web. One is due to the 

reduction of rotational restraint mentioned above; the other is owing to the reduction 

of the second moment of the area of the web.    
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(a) 

 

 
 

(b)        (c) 

 

Fig.1. (a) PCFS channel-section beam. (b) Front view. (c) Side view. 

   

 

 
 

 

Fig.2. Finite element mesh of a PCFS channel-section beam with circular holes in web. 
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Fig.3. Buckling curve of CFS channel section chosen for FEA (h = 200 mm, b = 70 mm, c = 

20 mm, t = 2.5 mm, d = 0, y = 390 MPa, My is the yield moment of the section). 

 

 
 

Fig.4. Distortional buckling curves of PCFS channel-section beams with circular holes in web 

(h = 200 mm, b = 70 mm, c = 20 mm, t = 2.5 mm, y = 390 MPa, My is the yield moment of 

the section with no holes). 
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(a) 

 
(b) 

 
(c) 

 

Fig.5. Distortional buckling modes of PCFS channel-section beams (h = 200 mm, b = 70 mm, 

c = 20 mm, t = 2.5 mm, d = 100 mm). (a) L = 628 mm. (b) L = 1256 mm. (c) L = 1570 mm. 

 

        
                         

(a)                                           (b) 

 

Fig.6. (a) EN1993-1-3 distortional buckling model. (b) Model used to determine spring 

stiffness. 
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Fig.7. Comparison of critical moments of distortional buckling of PCFS channel-section 

beams with circular holes in web (h = 200 mm, b = 70 mm, c = 20 mm, t = 2.5 mm). 
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