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Application of Intermediate Multi-Agent Systems to Integrated 

Computer-aided Composition and Expressive Performance of Music 

Abstract 

We investigate the properties of a new Multi-Agent Systems (MAS) for computer-aided 

composition called IPCS (pronounced “ipp-siss”) the Intermediate Performance Composition 

System which generates expressive performance as part of its compositional process, and 

produces emergent melodic structures by a novel multi-agent process. IPCS consists of a small-

medium size (2 to 16) collection of agents in which each agent can perform monophonic tunes 

and learn monophonic tunes from other agents. Each agent has an affective state (an “artificial 

emotional state”) which affects how it performs the music to other agents; e.g. a “happy” agent 

will perform “happier” music. The agent performance not only involves compositional changes 

to the music, but also adds smaller changes based on expressive music performance algorithms 

for humanization. Every agent is initialized with a tune containing the same single note, and 

over the interaction period longer tunes are built through agent interaction. Agents will only 

learn tunes performed to them by other agents if the affective content of the tune is similar to 

their current affective state; learned tunes are concatenated to the end of their current tune. Each 

agent in the society learns its own growing tune during the interaction process. Agents develop 

“opinions” of other agents that perform to them, depending on how much the performing agent 

can help their tunes grow. These opinions affect who they interact with in the future. IPCS is not 

a mapping from multi-agent interaction onto musical features, but actually utilizes music for the 

agents to communicate emotions. In spite of the lack of explicit melodic intelligence in IPCS, 

the system is shown to generate non-trivial melody pitch sequences as a result of emotional 

communication between agents. The melodies also have a hierarchical structure based on the 

emergent social structure of the multi-agent system and the hierarchical structure is a result of 

the emerging agent social interaction structure. The interactive humanizations produce micro-

timing and loudness deviations in the melody which are shown to express its hierarchical 

generative structure without the need for structural analysis software frequently used in 

computer music humanization. 
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Chapter 1 – Introduction 

 

This chapter introduces the motivation, background and original contributions presented 

in this thesis. The contributions are based around a new application of Intermediate 

Multi-agent Systems: applying them to combined computer-aided composition and 

expressive performance of music.  The original contributions are a result of defining and 

investigating a multi-agent system called “IPCS” – the Intermediate Performance 

Composition System. 

1.0 Motivation 

Computer-aided composition (CAC) of classical music had been around since 1957 

when The Illiac Suite for String Quartet - the first published composition by a computer 

- was published by Hiller and Isaacson (1959). Since then there has been a large body of 

such music and research produced, with many successful systems created for automated 

and semi-automated computer composition (Buxton 1977; Roads 1996; Miranda 

2001a).  

The generation of novelty is at the heart of many CAC systems. Without some way of 

generating new material, a CAC will churn out the same material time after time. To 

avoid this, many systems utilize some form of random number generation (Roads 

1996). A more recent alternative is the use of complexity which is ordered but 

unpredictable. A popular type of system that generates such complexity is found in the 

field of Artificial Life or A-Life (Langton 1986). A-Life investigates systems related to 

life, their processes, and evolution; it does this most often through computer simulations 

and models. An example Artificial Life system is Cellular Automata (CA) – groups of 

artificial stationary growing and dying cells, which produce complex and eye-catching 

patterns, based only on very simple rules of interaction. Cellular Automata have two 

elements in common with much A-Life work which has made them attractive to 
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composers for use in CAC: they generate complexity with order and structure (Bedau 

2003), and they inspire composers by their visual variety (Brown 2002). So although 

Cellular Automata and some other A-Life systems can generate unexpected complexity, 

there is an inherent order – they are not solely random. This is often called “Emergent” 

behaviour (Chalmers 2002). 

One field which has a large intersection with Artificial Life is Multi-agent Systems, 

which (along with computer-aided composition and computer expressive performance) 

is one of the 3 key areas addressed by this thesis. These systems can be viewed as a step 

up in complexity from Cellular automata. Each agent in an MAS is a digital entity 

which can interact with other agents to solve problems as a group, though not 

necessarily in an explicitly co-ordinated way. Many tasks fall naturally into such a 

distributed realm – e.g. multiple web searchBots, server load balancing, or multiple 

automated enemies in a computer game; and there are a number of agent-oriented 

programming languages available (Georgeff 2009). What often separates agent-based 

approaches from normal object-oriented or modular systems is their emergent behaviour 

(Panzarasa and Jennings 2006). The solution of the problem tackled by the agents is 

often generated in an unexpected way due to their complex interactional dynamics, 

though individual agents may not be that complex. As with the application of Cellular 

Automata in CAC, these social dynamics can be both artistically functional – for 

example each agent in an ensemble can contribute a motif or play an artificial 

instrument in a piece of music; or artistically motivational, inspiring an algorithmic 

composer to produce the “music of artificial societies”.  

This thesis was initially motivated by an area of multi-agent systems which has had no 

implemented applications to the best of our knowledge in computer-aided composition: 

Intermediate MAS. The “Intermediate” label is explained as follows. There are multi-
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agent systems which have no significant individual processing in an agent, no memory 

and simple reactive interaction rules; but from which significant group computational 

power can emerge. These are sometimes known as swarm intelligence systems 

(Bonabeau et al. 1999). These are almost as simple as Cellular Automata and have been 

investigated significantly in computer-aided composition. There are also MAS where 

each agent has a significant amount of AI processing ability, memory and/or interaction 

protocols. These are described as “heavy duty” agents by Parunak et al. (2006). This 

thesis will look at MAS existing between these two levels of complexity, that Parunak 

et al. (2006) describe as “Intermediate Agents”. They are more complex than simple 

swarm systems but no agent in an Intermediate MAS has heavy duty AI. Most MAS for 

computer-aided composition have either been of the low processing/swarm type or the 

heavy-duty type. There have been some musical Intermediate MAS – for example 

(Dahlstedt and McBurney 2006) and (Gong et al. 2005) - but none of the intermediate 

musical systems has been implemented and tested as a computer-aided composition 

system.  

Another motivation for this thesis can be related to the idea of “Music Acts” (Murray-

Rust and Smaill 2005), which examines language that not only provides information, 

but causes a change in the environment - i.e. “acts” on the environment. This can be 

compared to improvisers, whose music not only creates the overall improvisation, but 

also provides communicative cues to each participant in real time about what each 

musicians intentions are. Miranda (2003) presents a multi-agent system to investigate 

the evolution of musical culture. Agents develop their social bonds and musical 

repertoire using the same language – that of music. They do not have a separate protocol 

for bonding and for developing their musical repertoire. This thesis examines a system 

where the data and the protocol are the same – i.e. both are purely musical.  
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The question then arises in such a system – what is being communicated? This thesis‟ 

system is based around affective (emotional) communication. Whalley (2009) discusses 

the conversational mode of composing, and argues that a natural core in this mode is the 

use of affective information. It is also informative to observe that music is often called 

the language of emotions (Trainor and Schmidt 2003; Peretz et al. 1998). Furthermore 

designing music by emotional specification is a growing field in computer-aided 

composition, for example in soundtrack composition (Behravan 2007), or for computer 

game music (Livingstone 2008). So one natural approach is to consider that a society of 

agents may be using music to communicate emotions, and looking into how that could 

be used to specify compositions. A corollary to this design decision is that some method 

is needed by the agents to estimate the affective content of music that is passed on to 

them by another agent. So part of this thesis will be introducing a simple linear model 

for performing such an analysis. 

Another element of computer-aided composition that will be addressed through multi-

agent techniques is musical structure – Western music often has a hierarchical structure 

(Schoenburg 1970). For example - notes make up motifs, motifs make up phrases, 

phrases make up themes, themes make up sections, sections make up movements and 

movements make up a piece. This thesis investigates the application of a frequent 

method used in MAS – agent interaction success measures – to the issue of creating 

musical structure. A number of intermediate MAS have agents which develop 

opinion/interaction-history measures of each other, and these measures affect their 

future interaction. These opinion measure methods will be applied here to investigate 

mapping the resulting agent “social structure” to composing a musical hierarchical 

structure. 
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Having discussed computer-aided composition, intermediate multi-agent systems, and 

emotional communication, the final element motivating this thesis is expressive 

performance of music. In the early 1980s the seeds of a problem were sown as a result 

of synthesizers being developed and sold with built-in sequencers.  The introduction of 

MIDI led to an explosion in the use of sequencers and computers, thanks to the new 

potential for connection and synchronisation. These computers and sequencers 

performed their stored tunes in perfect metronomic time, a performance which sounded 

“mechanical”. They sounded mechanical because human performers normally perform 

expressively – for example speeding up and slowing down while playing, and changing 

how loudly they play. The performer‟s changes in tempo and dynamics, and other subtle 

musical features, allow them to express a fixed score – hence the term expressive 

performance (Widmer and Goebl 2004). Publications on computer expressive 

performance of music have lagged behind computer-aided composition by almost 

quarter of a century. But from the end of the 1980s onwards there was an increasing 

interest in automated and semi-automated Computer Systems for Expressive Music 

Performance (CSEMP). A CSEMP is a computer system which – given a score in some 

form – is able to generate expressive performances of music. For example software for 

music typesetting will often be used to write a piece of music, but some packages play 

back the music in a relatively mechanical way – the addition of a CSEMP enables a 

more “human sounding” playback, giving a better idea of how the final performance 

may sound.  

Studies have found that a significant factor affecting a performer‟s deviation from the 

score is the musical structure of that score – i.e. the start and end of phrases and themes, 

etc. A significant amount of CSEMP effort is in either manually analysing the musical 

structure of the score/audio, or researching systems to do this (semi-)automatically. The 

automated approaches are not particularly accurate (Holland 2000; Cambouropoulos 



21 
 

2001; Hamanaka, et al 2004). However, many computer-aided composition systems 

generate a piece based on some local and/or global structure or musical form which can 

often be made explicitly available. So in computer music systems it could be more 

computationally efficient and more amenable to musicological accuracy to design a 

protocol allowing the computer composition system to communicate structure 

information directly to the CSEMP, or simply combine the systems into an integrated 

CAC and CSEMP system.  

For example one could imagine a Finale-type (MakeMusic 2010) scoring tool which 

had some computer-aided composition algorithms, and linking the humanized playback 

facility of the scoring tool to the musical structures create by the composition 

algorithms. In this case it would be less computationally efficient and less able in its 

ability to find the actual structure, if the approach utilized involved separate 

composition and expressive performance systems – i.e. where a score is generated and 

the CSEMP sees the score as a black box and performs a complex structure analysis. 

The system presented in this thesis is designed to generate an expressive performance of 

its music as it composes it. 

1.1 Thesis Aim 

The aims of this work is as follows: 

To investigate/explore the dynamics of a new system that extends the field of Computer-

aided Composition and Computer Expressive Performance through the application of 

intermediate MAS to integrated algorithmic composition and performance.  

1.2 Contributions 

In the course of this research, the following contributions will be made: 
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 The demonstration of the applicability of intermediate multi-agent systems to 

algorithmic composition. 

 A proof of concept that a multi-agent system can develop non-trivial melody 

pitch structures through affective interaction of agents without explicit melodic 

knowledge. 

 A demonstration that multi-agent social structures can generate musical structure 

on thematic and sectional levels as well as on a note or phrase level. 

 A proof of concept that combined algorithmic composition and expressive 

performance system applies expressive performance rules in a way that 

expresses the musical structure and without having to do an explicit musical 

analysis of the composition. 

 A music-emotion analyzing model which takes as input a monophonic MIDI file 

and estimates its affective content. 

 

1.3 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2 – Literature Review. This chapter surveys the literature in the fields 

relating to the aims and contributions of this thesis. There is an overview of multi-agent 

systems, going on to divide them into low processing, intermediate, and higher 

processing types. Computer-aided Composition (CAC) in general is briefly reviewed, 

and then in more detail when it comes to the application of low processing, intermediate 

and heavy duty MAS for CAC. CAC systems which allow users to specify elements of 

the composition/performance using affective labels are also surveyed. This is followed 

by a review of the newer and less well-known field of computer systems for expressive 

performance of music. The chapter then surveys multi-agent systems for expressive 
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performance, of which there is only one; and concludes with a discussion of the areas 

lacking in the systems reviewed which will be addressed by the thesis system IPCS. 

Chapter 3 – Method. Introduces IPCS – the Intermediate Performance Composition 

System, which is an intermediate multi-agent system designed to allow a user to 

generate music with integrated expressive performance. The system will be described in 

detail; including its affective, musical, and social networking aspects. The reasoning 

behind the design, as well as the way in which these details address what is lacking in 

previous systems reviewed, will be discussed as details are introduced, as well as the 

reasoning behind the design. 

Chapters 4 – Experiments. The chapter lays out a series of experiments to 

investigate/explore the dynamics of IPCS. Most experiments focus on the adjusting 

various parameters of IPCS to see the effect on the resulting music and properties in the 

system. They will also be used to show how the performance elements express the 

structure of the music. An initial listening experiment will also be done. Results will be 

reported in this chapter for all experiments. 

Chapters 5 – Discussions. The results of the experiments in the previous chapter are 

analysed and contextualised.  

Chapters 6 – Conclusions and Future Work. The dynamics of IPCS which have been 

explicated and highlighted by the results and discussions will be summarized to 

describe more general properties of the system, together with concluding comments and 

potential further work suggested by this thesis.
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Chapter 2 - Literature Review 

This chapter presents a representative survey of past literature and research in the key 

fields relevant to this thesis: 

 

 Multi-agent Systems in General (i.e. not specifically music-related) 

 Multi-agent Systems for Computer-aided Composition 

 Affective-based Systems for Computer-aided Composition 

 Computer Expressive Performance  

 Combined Computer Expressive Performance and Computer-aided Composition 

 

2.0 Introduction 

The purpose of this review is to contextualise the work of the thesis and to support the 

original contributions (highlighting any elements lacking in previous work in relation to 

the aims of this thesis). An overview of the review is shown in Figure 1. 

 

2.1 Multi-agent Systems Overview 

Multi-agent systems (MAS) are an extremely large field of research, dating back to the 

founding of Distributed AI in the late 1970s (Weiss 1999). The precise definition of 

multi-agent systems has been approached in different ways. For example Wooldridge 

(2004) focuses on agents that are situated in an environment, with each agent 

autonomous, and with explicit goal-directed behaviour – not purely reactive.  
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Figure 1: Overview of Literature Review Chapter 

 

However there are a number of multi-agent system where the agents have a central 

controller (Murray-Rust and Smaill 2005; Baxter et al. 2007), and there are a number of 

researchers who include reactive-based systems as multi-agent. This thesis will take this 

second, more wide-ranging approach. Such an MAS definition has been described as 

defining a complexity continuum going from agents with no or very low processing, up 

to agents with significant AI processing algorithms such as Expert Systems or 

Belief/Desire/Intention (Rao and Georgeff 1991); which  Parunak et al. (2006) describe 

as Heavy Duty agents. They use the label Intermediate Agents for those which lie 

1. Multi-agent Systems (MAS) 

a. Low Processing MAS 

b. Heavy Duty MAS 

c. Intermediate MAS 

2. Computer Aided Composition (CAC) 

a. Low Processing MAS for CAC 

b. Heavy Duty MAS for CAC 

c. Intermediate MAS for CAC 

d. Emotion-based CAC systems 

3. Computer Systems for Expressive Performance 

a. Emotion-based CSEMPs 

b. Hierarchical Structure based-Systems 

c. MAS for Expressive Performance 

4. Combined Performance and Composition Systems 

5.  
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between these levels. It is this Intermediate type which is the focus of this thesis. The 

review of the MAS field will examine some examples from each of these three 

complexity-levels of MAS moving upwards in individual agent complexity, starting 

with low processing MAS, followed by “Heavy Duty” MAS, and then Intermediate 

MAS. 

Before doing this, Cellular Automata (Langton 1986) will be briefly examined. 

Although CA are usually considered a separate field to MAS, low-processing MAS 

have been described as a generalization of CA (Beni 2005;  Spicher et al. 2009) – i.e. 

CA are one step below low processing MAS in complexity. So to complete the picture 

of the complexity continuum, we will begin with CA, especially since they have been 

used in Computer-aided Composition. Cellular Automata are most simply exemplified 

as a fixed grid in which cells can be turned black or white depending on which 

neighbouring cells are black and white. Cells could be thought of as being the location 

of immobile agents which generally have finite and potentially very short life spans. 

The most common CA is the Game of Life (Gardener 1970) with 3 rules: a cell dies if 

too many or too few cells are alive around it (simulating loneliness and overcrowding 

respectively); and a cell comes to life if just the right number are alive around it. Based 

on these simple rules and the cells which are painted black at the start of the iterations, 

great complexity can emerge – for example the moving “Glider Gun” in Figure 2. 

CA have been applied to image processing (Rosin 2006), architectural design (Herr and 

Kvan 2007), generative art (Boden and Edmonds 2009) and algorithmic composition 

(Miranda 1994; Beyls 1989; Kirke and Miranda 2007). 
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Figure 2: Game of Life is a two-dimensional cellular automaton where each cell can be in one of two 

possible states: alive or dead. 

 

2.1.1 Low Processing Multi-Agent Systems 

Having examined Cellular Automata, an overview of low processing MAS will now be 

given. (Note that in the next few sections, no musical low processing MAS will be 

reviewed, this will be saved for separate music-based sections later in the chapter.) 

Agents in Low Processing MAS are usually very simple, having no memory, no 

individual intelligence and no model of other agents (Parunak et al. 2007). They are 

sometimes called “swarm” systems, and one of the major inspirations for low 

processing MAS comes from the societies in nature such as ant, termite and some bee 

and wasp societies (Parker 1994). When many insects interact – even in this simple way 

– structure and “intelligent” behaviour can emerge. Examples are termite nest building, 

ant foraging and body collection (Beckers et al. 1995), and bees searching out a good 

source (Kelly 1995). It should be noted that although these inspire many low processing 

MAS systems, the actual “agent” in real insect swarms and colonies can be relatively 

advanced biological organisms – not the simple reactive ones found in artificial swarm 

intelligence systems. In fact, even the agents in low processing MAS could be seen as 

having some processing, however this processing could often be just as simply 

modelled and perceived as being equations of motion leading the agents to behave like 

particles in each others‟ force fields. As such, swarm MAS often have no explicit 
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communication system, as can be seen in Tables 2 and 3 at the end of the chapter. 

Furthermore, such swarm MAS interactions are usually only between nearby 

neighbours. We will now examine a selection of the main low processing multi-agent 

systems. 

Boids. One of the first low processing MAS was Boids (Reynolds 1987), where a 

sequence of simple agents with basic interaction rules simulated the flocking of birds. 

The basic interaction rules were threefold: avoid getting too close to other agents 

(“separation”), move in the average direction of all neighbouring agents‟ motion 

(“alignment”), move towards the average position of all neighbouring agents 

(“cohesion”). As a result the Boids seemed to flock coherently, and navigate around 

obstacles – exhibiting swarm intelligence.  

Particle Swarm Optimization. Swarm MAS were also applied to optimization theory 

through a Metaheuristic Optimization algorithm (Blum and Rolli 2003) called Particle 

Swarm Optimization (PSO) (Kennedy and Eberhart 1995). PSO was developed in the 

90s inspired by similar elements as those which inspired Boids, but this time focusing 

on group searching behaviour rather than group travelling behaviour. Agents travel 

through the objective function space – like animals flocking in search of something (in 

this case the global optimum of the objective function). Each agent will tend to move in 

a direction towards a function of the positions of: (i) its neighbour who is in the most 

optimal position in the objective function space compared to other neighbours; (ii) the 

agent who is globally at the most optimal position found so far (i.e. not necessarily a 

neighbour, but any member of the population / flock); and (iii) the best objective 

function position the agent/particle has passed through itself in the past. Applications 

have included job scheduling on computer grids and data mining (Abraham et al. 2006).  
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BEES and Ants. The optimization search application has been extended using other 

swarm intelligence based metaheuristic algorithms such as the BEEs Algorithm (Pham 

et al. 2006) and Ant Colony Optimization (Dorigo and Glover 1999). BEES is based on 

the method that bees use to locate food sources from their hive. When a bee returns to 

the hive from a food source it performs a special “dance” to other bees, indicating the 

location of the food source and as a result of multiple bees doing multiple dances, a 

search process emerges. The BEES algorithm utilizes a simplified artificial version of 

the process for optimization searches. The Ant Colony system is a more widely studied 

approach based on how ants locate food. When ants move around looking for food they 

leave a pheromone trail which other ants can detect and will tend to follow. The more 

ants that find a particular food source, the more pheromone is laid to that source and the 

more ants will tend to follow the pheromone trail. Thus successful routes to food tend to 

be reinforced. The Ant Colony Optimization approach simulates this process with 

artificial pheromones and artificial ants moving around the objective function space. 

Ant Colony Optimization has found uses in areas included computer network load 

balancing (Sim and Sun 2003).  

Other applications of Low Processing MAS have included cancer diagnosis (Xu et al. 

2007) and to video watermarking (Lin and Liao 2008). They have also been applied to 

areas of the arts apart from music – for example SwarmArt (Jacob et al. 2007), a way of 

creating interactive visual art installations; and as a methodology for generating swarm 

imagery to be included in traditionally constructed arts (von Mammen et al. 2008). 

To conclude this section on Low Processing MAS, a common property will be 

highlighted – low processing MAS are often homogeneous MAS; i.e. MAS systems in 

which all agents are initially indistinguishable by feature or ability. MAS where agents 

are not the same initially are called Heterogeneous MAS. This property is of interest as 
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there is an approximate correlation between level of MAS heterogeneity and 

processing/complexity in the literature. It can be seen in Tables 2 and 3 at the end of 

this chapter that the vast majority of described Low Processing MAS (5 out of 6) are 

homogeneous, a slightly lower proportion (9 of 11) of the described Intermediate MAS 

are homogeneous and none of the 12 Heavy Duty MAS are homogeneous. One reason 

for this is that the more complex agents can be, the more they can work within complex 

groups (i.e. have a higher social intelligence for dealing with heterogeneity).  

 

2.1.2 “Heavy-Duty” Multi-Agent Systems 

Having examined low processing MAS, some examples of heavy duty MAS which 

utilize more traditional AI techniques, or require heavier processing, will now be 

examined. It has already been noted that these systems tend to be heterogeneous. 

Another common thread running through much heavy duty MAS research is that there 

is some kind of control and planning hierarchy in the system – with the agents further 

up the hierarchy having a wider view than, and more control over, the agents lower in 

the hierarchy. For heavy duty MAS, 9 of the 12 rows described across Tables 2 and 3 

have some form of initial control/planning hierarchy (whereas the proportions for 

Intermediate are 1 out of 11, and for lower processing none of the described systems 

have an explicit  hierarchy). Once again, the increasing complexity of individual agents 

allows for more complex control structures.  

Energy Management. James et al. (2006) introduce a multi-agent system for large-scale 

energy load management developed on the popular multi-agent platform JADE 

(Bellifemine et al. 1999). Agents try to optimize in real-time how much energy is 

generated in an electricity supply grid, and where to generate it, based on demand and 

on energy prices. The system is being experimented with on a physical test bed 

consisting of two “energy receivers”: office-type artificial rooms, an office building 
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with a heating, ventilation and air-conditioning system; and a set of energy “producers”: 

a 30kW turbine, a wind-turbine, and solar energy array. The system is heterogeneous 

with some heavy duty agents; agents requiring more processing power are run on PCs, 

whereas the energy receivers are controlled by agents running on PDAs. The more 

intensive agent types include:  an agent dedicated to forecasting and gathering energy 

prices, an agent which manages the operation of multiple energy receivers and 

producers, and a monitoring agent which takes snapshots of various parameters across 

the whole agent system.  

Emergency Response. Schoenharl et al. (2006) present a multi-agent system WIPER for 

detecting possible emergencies over a mobile-phone network, and also coming up with 

ways to deal with the emergency. Real-time data is collected from mobile phone 

network providers. Mobile phone data can be used to estimate location, movement and 

call activity, it is currently used to monitor traffic activity. There are mobile agents that 

can be migrated to the mobile phone provider (reducing network load), including 

mobile agents to pre-process and anonymise data from mobile phones, and data mining 

and anomaly detection agents. A simulation and prediction system based on agent 

design allows new algorithms to be swapped in and out – including heavy duty agents. 

And the general processing elements are agent-based to allow them to be distributed to 

optimize processing load. Users interact with the system via a web-based interface to 

stay updated in real-time about emergency situations. 

Uninhabited Air Vehicles. (Baxter et al. 2007) UAVs have become better known in the 

last few years as a result of their use in recent armed conflicts. Normally a single UAV 

needs multiple people to control it. This multi-agent system is designed to allow a single 

user to control multiple UAVs. The heterogeneous system consists of multiple agent 

types which are hierarchically in control in approximately the following order: User, 
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Group, Search Specialist Planning, Attack Specialist Planning and a UAV agent for 

each UAV. The user agent is given an overview of the required task and controls group 

agents which are designed to execute and plan team tasks; though they may utilize 

specialist planning agents. There are five group-based behaviours including search for a 

target, attack a target and fly a route in formation.  UAV agents are controlled in teams 

by the group agents and have five behaviours such as releasing a weapon, or taking a 

picture. The agents communicate using XML (Bray et al. 2000) and utilize the 

Belief/Desire/Intention method (Rao 1995) found in many heavy-duty multi-agent 

systems.  

 

2.1.3 Intermediate Multi-Agent Systems 

When working within an MAS paradigm not inspired by the collective behaviour of 

insects/flocks, researchers will tend to consider a wider-range of possible symbolic 

manipulation and storage, changing the potential areas and methodologies of 

application. In higher processing/Heavy Duty MAS, individual agents will have 

significant artificial intelligence. Multi-agent systems which are the agents do not 

individually have significant AI processing, but where agents are not acting like 

particles, insects or purely reactive entities, are labelled here as Intermediate MAS 

(Parunak et al. 2006). Criteria for Intermediate MAS can only be provided in a semi-

fuzzy way, but are as follows, based on the literature reviewed in this thesis: 

 

 No machine learning or AI in individual agents; i.e. no expert systems, neural 

networks, genetic algorithms, inductive logic, clustering, bayesian networks, 

reinforcement learning, symbolic deduction/reasoning/ problem solving, or 

planning. 
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 They have simple rules which can be adaptive. 

 They do not utilize a fixed input output link between agents, e.g. their 

communication content is not fixed, and the agent they communicate with is not 

fixed. 

 They change behaviour based on experience. 

 Their memory changes and often expands through experience. 

 

Common characteristics also found in Intermediate MAS include: 

 

 Homogeneous (7 out of 9 in Tables 2 and 3) – agents in Intermediate systems 

are often the same (unlike Heterogeneous systems where agent‟s initial 

functionality can differ). 

 Flat initial hierarchy (9 out of 9 in Tables 2 and 3) – agents in Intermediate 

systems commonly do not start with any one or group of agents having control 

over others.  

 

It is helpful to draw a border somewhere – even if a semi-fuzzy one – due to the fact 

that researching with a swarm-based motivation will move work in a different direction 

to that found in intermediate MAS. Four examples of intermediate non-musical MAS 

will now be examined. 

Portfolio Selection. Parkes and Huberman (2001) introduce an MAS approach to 

selecting stock portfolios. The usual approach is based on investors choosing a risk 

level they‟re comfortable with, and then using optimizations to find a set of stocks (a 

portfolio) with the maximum predicted profit for that level of risk. In the MAS approach 
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the agents each try out different portfolios in an artificial stock market and share with 

each other some information about how well their portfolios do; then an agent updates 

its portfolio based on the information it gets from other agents about their performances. 

The agents use a common method from MAS, called a “blackboard” to communicate – 

a data area that all agents can see and post to. When agents have finished interacting, a 

final portfolio is constructed based on the portfolios of the agents and the returns of the 

various stocks. The system was tested against FTSE 100 and Nikkei 225 (Valdez 2006) 

(which represent stock markets in London and Tokyo), and the results for the multi-

agent approach outperformed against the market and portfolios constructed using the 

standard risk/return optimization systems. (The practical success of such a system in 

investing however will also depend on the accurate estimation of risks and returns of 

stocks, and the implementation of the trading decision.) 

Data Mining. Di Fatta and Fortino (2007) introduces a multi-agent system for 

distributed data mining. The system specifically avoids using a managing agent – which 

is seen as a bottle-neck - and attempts to do the job in a purely peer-to-peer distributed 

approach. During the search process search agents work in parallel and communicate 

asynchronously, dynamically balancing the task load across the team. The system is 

tested for searching through the results of automated drug screening – with hundreds of 

thousands of potential molecules and their combinations. The resulting system shows 

that peer-to-peer approach works successfully compared to the approach using a 

centrally managing agent. 

Collaborative Interface Agents. Lashkari et al. (1994) introduce the concept of 

Collaborative Interface Agents for email clients. While the user is manually using the 

email client, the agent attached to the client tries to analyse what actions a user takes 

with different types of received emails. For example do they delete them, store them in 
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a certain folder or forward them? So when an agent‟s client receives an email for its 

user, it checks to see if it can make a good prediction of an action to perform based on 

the nature of the email (e.g. the subject line), and suggest the action to the user to take; 

for example – move to Junk folder or Flag for Action. If an email agent does not have 

enough past experience to make a confident prediction then it can ask other more 

experienced email agents (on other users‟ email clients) for advice via the internet. 

These other agents can tell the first agent what action they would take (i.e. what their 

user would probably do). If the first user agrees then the local agent makes a note of 

which other agent it received the advice from and ups it view of the agent‟s usefulness. 

So as time goes on all agents will develop a view of which other agents are most useful 

to them (i.e. which other agent‟s users have similar requirements to their users); thus 

enabling them to pick which advice to take, which agents to trust, and to allow 

automation to develop. The issue of trust and agent popularity is significantly utilized in 

MAS – for example many MAS trust systems are reviewed by Ramchurn et al. (2004). 

In such systems agents keep some kind of records of interactions with other agents, and 

use it to decide on future interactions. These records create a form of social network 

(Sabater and Sierra 2002). It will be seen that the thesis system IPCS utilizes a form of 

past interaction measure between agents to encourage an emergent hierarchy to develop, 

whereby agents take on different roles in the composition and performance process.  

Colour Grounding. There is an intimate relationship between multi-agent systems and 

multi-robot systems – in fact multi-robot systems could be described as “embodied” 

multi-agent systems. Steels and Belpaeme (2005) utilize intermediate multi-agent 

systems in an attempt to design robots which when placed in a new and open-ended 

environment (they give the example of a distant planet) are able to develop new 

categories which they can use for sensor input, processing, recognition and 

communication. So these would need to be shared categories amongst the agents and 



36 
 

which are not explicitly programmed. The example they choose to develop is for colour. 

The agents‟ artificial environment which they move in contains many different colours 

(mixes of Red, Green and Blue at different levels). When an agent experiences a colour 

it starts to self-organise a category for that colour, using a winner-take-all Radial Basis 

Function network (Bugmann 1998). It also attempts to assign a linguistic label to the 

category using a similar winner-take-all approach. As well as perceiving and learning 

colours, the agents play a “guessing game” with each other – an agent communicates 

one of its learned language symbols to a second agent. The second agent attempts to 

“guess” the colour the symbol refers to and communicates that colour back to the agent 

by “pointing to it” in the artificial environment. Based on the success of iterations of 

this guessing game, agents update their internal colour category and language models. 

Experiments are done with various learning mechanisms in this process, and the core 

result it is found that agents develop emergent common colour categories, despite a lack 

of “telepathy” or pre-design.  

 

2.2 Computer-aided Composition 

Having examined multi-agent systems in general, we will now look at applying these to 

the field of computer-aided composition. Computer-aided composition (CAC) has not 

been as clearly delineated as MAS. However there have been a number of reviews of 

such systems: by chronology (Hiller 1981; Burns 1994), by methodology, or by 

dimensions. Examples of the surveys that use the second two approaches are shown in 

Table 1. 

It can be seen from Table 1 that a variety of methodologies have been applied to 

computer-aided composition. It can also be seen that some surveys have focused on 

methodologies, and some on functional dimensions. For our survey of CAC we will 
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focus partially on a functional perspective but mostly on methodologies, using four 

dimensions most appropriate to this thesis: 

 

1. Swarm MAS for CAC 

2. Heavy Duty MAS for CAC 

3. Intermediate MAS for CAC 

4. Affective-based CAC systems 

 

The reason for the addition of the fourth item is that the core multi-agent mechanism 

utilized in IPCS – the thesis system – is based on affective (emotional) communication. 

 

2.2.1 Low Processing MAS for CAC 

We will now look at a significant proportion of the Low Processing MAS for CAC. 

Such systems utilize the emergent self-organisation of swarm intelligence to generate 

music. 

Swarm Music. Blackwell and Bentley (2002) and Blackwell (2007) discuss the use of 

swarms in music. The focus is not so much on pre-organised music, where musical 

events are already largely defined in time, loudness and pitch. They instead discusses 

improvisation from experience and from analysis – arguing that musicians respond to 

each other in improvisation using local-based rules – just as insect swarms do. And thus 

self-organisation would be expected – as found in swarms – and hence improvisations 

have a structure despite the lack of conductor or followed score. They go further and 

argues that the rules are directly analogous to the types of rules used in Low Processing 
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MAS. As a result Blackwell/Bentley‟s basic swarm music approach is based on the 3 

elements of the Low Processing BOIDS-type MAS discussed earlier: cohesion, 

separation and alignment.  

 

Reference Dimensions/Methodologies 

(Papadopoulos and 

Wiggins 1999) 

Mathematical Models,  Knowledge-based Systems,  Grammars,  Evolutionary 

Methods, Systems which Learn, Hybrid Systems 

(Jarvelainen 2000) Stochastic Music; Cellular Automata; Flow control and grammars, etc; Fractals; 

Genetic Algorithms 

(Miranda 2002) Probabilities, Grammar and Automata; Iterative Algorithms: chaos and fractals; 

Neural Computation and Music; Evolutionary Music 

(Ariza 2005) Scale, Process model, Idiom-Affinity, Extensibility, Event Production, Sound 

Source, User Environment 

(Wooler et al. 2005) Linguistic/Structural, Interactive/Behavioural, Creative/Procedural, 

Biological/Emergent 

 

Table 1: Survey of Surveys 

 

The system is turned into a live algorithm which allows it to improvise interactively 

with human improvisers. The behaviour of the human improviser will place “attractors” 

in the space, which the swarms will tend to congregate towards. Swarms can actually 

move in 7 dimensions where the dimensions represent: note loudness, time between 

notes, pitch, time duration of note, number of simultaneous notes in phrase, number of 

ascending or descending pitches in a phrase, and similarity between successive phrases. 
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A number of additional mechanisms in the swarms have been introduced, allowing for 

more complex behaviours and music. In relation to this it should be noted that the 

Swarm Music System does not address the issue of larger scale musical structure; in 

fact Blackwell discusses how the adding of some deliberative mechanisms to the low 

processing MAS (i.e. making them intermediate MAS) may enable a more structured 

self-organised music to emerge.  

Ant Colony System. As has already been mentioned, Ant Colony Search is an algorithm 

which has been developed using low processing multi-agent systems. Clair et al. (2008) 

utilize an artificial ant colony to generate music. Ants wander through graphs in 

multiple dimensions, where vertices trigger pitches and durations. As the ants wander 

the graphs, they leave an artificial pheromone trail, thus increasing the probability of 

other ants following that path. This leads to rhythmic and pitch cycles which create 

repeating sequences that can be musical patterns. Multiple ants moving can create 

harmonies. There are also “silent” ants, whose only function is to enforce structure 

through pheromone path generation. The main motivation for the system is actually its 

use as a live musical instrument. The user can play the ants as an instrument by either 

influencing adding notes they play to the graphs, or by “becoming an ant” themselves 

and creating pheromone paths around the graphs. Unlike the Swarm Music system 

above – which is compared to the process of musical improvisation, the Ant Colony 

System has no clear relationship to musical processes. 

Swarm Orchestra. Bisig and Neukom (2008) use a swarm simulation library for BOIDS 

called ISO Flock and for sound called ISO Synth. ISO Synth is also able to deal with 

sound spacialisation and hence the swarms in their orchestra are played on a 20 speaker 

system with three dimensional sound projection, where the sound positioning can be 
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decided by swarming. They investigate a number of mappings from swarms to sound, 

including: 

1. Additive Synthesis – mapping agent co-ordinates to a sine wave frequency and 

oscillator amplitude 

2. Granular Synthesis (Miranda 1995) – agent velocity amplitude maps to grain 

playback rate, agent amplitude direction maps to where the grain is added in the 

final sound, and number of agent neighbours maps to amplitude of the grain. 

3. Patch Construction – agent movements trigger synthesizer patch construction 

rules 

4. Physical Representation – the agents are constrained by artificial physics, for 

example attached to spring networks, and the springs are also excited by white 

noise. The springs then generate sine waves which create a spectrum for a sound 

source. 

The authors state that the main purpose of their work is to highlight how much untapped 

potential there still is in swarm music. However the more complex the mappings are 

made, the less strong the suggestive links between swarm music systems and human 

improvisation (the original motivation) become. 

The Society of Musical Agents. Beyls‟ (2007) system is designed to create polyphonic 

music in real-time based on clusters which emerge in the agents‟ movement space. 

Agents have “personalities” defined by their repertoires of intervals, durations and 

velocities that they construct music from. Agents also have properties which define the 

distances at which they can communicate and cluster, and a flag which influences 

whether they move away from other agents or attempt to communicate with them. They 

also an activation level that effects the musical influence of the agents in clusters, and 



41 
 

an energy level which defines how they move. To generate music, the agents are 

separated into neighbourhood clusters depending on their locations and feature values. 

The highest energy cluster is selected and music is generated from the pattern using 

various algorithms. The paper focuses more on the complex but coherent patterns which 

emerge as a result agent clustering. These patterns – no matter how complex - do not 

lead to the paper addressing the issue of larger scale musical structure. (Also they 

continue to move swarm music away from its original inspiration of human improviser 

groups.) 

 

2.2.2 Heavy Duty MAS for CAC 

As the complexity of individual agents increases there is a tendency – in musical MAS 

systems – to lead to agents being design to specialize in different parts of the musical 

function; for example, conductors and controller agents, harmony and melody agents, 

etc. This tendency will be clear as a significant proportion of heavy duty MAS systems 

for CAC are now reviewed. 

MMAS (Musical MAS). MMAS (Wulfhost et al. 2003a; Wulfhost et al. 2003b) is 

designed to have agents play along with each other in real time producing compatible 

harmonies and rhythms. One or more of the agents can optionally be a live human 

performer (via MIDI control). Agents have a beat detection sensor and beat inference 

system to help them synchronize their playing. They also attempt to detect the current 

harmonic context to help them select their next note(s), based on a static transition table 

constructed from 50 popular songs. The agent‟s musical knowledge is encoded with 

fuzzy logic rules such as “if accelerando is molto then dynamic is forte”. They use a 

blackboard system to communicate. Tests were run in real-time with a multi-agent 

system including, and not including a human. The system was found to be able to 
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synchronise well with the agents and the human player. There are plans to implement 

affective modes and playing for the agents but the results of these implementations have 

not been reported. The system‟s focus on Fuzzy Logic rules means that interaction 

elements are not the core part of the creative process; they are used more to ensure 

compatibility between multiple sound generators.   

Musical Agents. Each agent in Fonseka‟s (2000) system can run a script system flexible 

enough to perform many algorithmic composition functions. These scripts also define 

how the agents interact with each other. The agents are designed to be distributed over a 

computer network and to take into account network latency times in performing in real-

time with each other. The performance format is MIDI. The agents utilize a central 

communication node. An example is given where a script is written for agents on 

multiple PCs to try to simulate the composition Paragraph 7 by Cardew (1967). In this 

all agents choose random notes to perform for a fixed period, then at the end of that 

period must pick a note their “neighbour” is currently performing for them to perform in 

the next period. This was found by Cardew to have complex emergent properties, and a 

similar behaviour was reported during agent testing. Although able to simulate an 

emergent process, this Musical Agents system is essentially series of algorithmic 

composition script intepreters which can synchronise over a network - the issue of 

multi-agent interaction for creativity is not addressed in depth. 

Andante. Ueda and Kon (2003) is a multi-agent framework distributed across multiple 

computers – like Fonseka‟s Musical Agents, however it is not real time and agents in 

Andante can also migrate across the network. It is described as a framework for a 

mobile multi-agent musical system. A computer in the network can also contain 

multiple instances of an Andante agent. All agents utilize a common metronome. An 

example MAS is given made up of what are called “NoiseAgents”. These agents 
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generate pitches whose features can be defined by types of noise; for example an 

agent‟s pitches could be generated by white noise, its durations by pink noise and its 

loudness by Brownian noise. Later work (Ueda and Kon 2004) introduces a scripting 

system which allows users to define agent parameters in time – e.g. for NoiseAgents 

what different types of noise are used, and what pitch ranges, etc. There do not seem to 

have been any investigations in how the agents could interact; probably because the 

paper is solely a framework introduction. Future work is planned to examine inserting 

real musicians into the process. The lack of reported implementation scenarios for the 

system is its main weakness. 

VirtuaLatin. The VirtuaLatin system (Murray-Rust et al 2005) was not fully 

implemented as a multi-agent system. A single agent was produced for real-time rhythm 

accompaniment. The agent listens to the music it is to accompany, and develops an in-

depth structural representation of music so it can play along. The planned MAS includes 

harmonic, rhythmic and pattern analysis, as well as a central conductor. An experiment 

was reported on the single agent system playing virtual timbalero, and listeners could 

not tell the difference between a human recording and the agent generated rhythms. 

However because of the lack of reported multi-agent implementations it is hard to 

evaluate this system as a musical MAS. 

MAMA (Musical Acts – Music Agents). The VirtuaLatin team were later involved in 

this project (Murray-Rust and Smaill 2005). MAMA is a real-time multi-agent system 

based on a theory called of Musical Acts. This is inspired by Speech Acts Theory in 

language studies, which examines language that not only provides information, but 

causes a change in the environment - i.e. “acts” on the environment. This can be 

compared to musical improvisers, whose music not only creates the overall 

improvisation, but also provides communicative cues to each participant in real time 
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about what each musicians intentions are. Many MAS which act on shared objects have 

a separate protocol for acting on the objects to communicating with each other – e.g. an 

MAS which builds visual data will usually have a separate communication protocol to 

the data it is working on. This has relevance to the thesis system IPCS, which does not 

have any communication protocol separate to the object it acts on. In IPCS the data and 

the protocol are the same – i.e. both are the music being composed. However IPCS 

differs to MAMA in two key ways: MAMA is real-time, and uses higher levels of 

processing to allow an agent to infer information about others agents and their music, 

and to allow agents to play together musically. Furthermore, in MAMA, the user 

provides agents with a high level structure for the piece, a set of musical fragments with 

rules for how they can be used, and style constraints. Based on this MAMA can 

generate a performance. One example given is the Terry Riley piece In C, a piece in 

which every performance is actually a form of “re-composition” (Nyman 1974). 

MAMA also allows humans to be agents within the system. Although MAMA can 

produce music with a higher level structure, this is provided by the user, not generated 

my MAMA itself. 

Kinetic Engine. Eigenfeldt (2009) describes a real-time performance multi-agent 

system for generating rhythms. The user sets parameters for the type of rhythms they 

want – how much syncopation and density of rhythm – and a central selector agent 

chooses material from the generator agents whose live rhythms best suit the parameters 

(which can be adjusted in real time during the performance). During the performance, 

the agents are continually generating new populations of rhythms using the genetic 

algorithms. One of the key problems with genetic algorithm generated music has been 

the “fitness bottleneck” – the evaluation of music by members of the population. This is 

addressed here by the user providing initial rhythmic source material in MIDI format – 

this material is analysed for musical features. And these features become the desirable 
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features within the genetic population algorithm. Eigenfeldt argues that the genetic 

crossover operator in genetic algorithms does not represent a useful musical 

transformation in this context. Therefore members of the GA population reproduce 

“asexually”. A particular GA population member generates a first order Markov chain 

(Roads 1996) to represent its rhythmic transitions, and children are generated from this 

markov model. For clarity it should be noted, the agents themselves do not reproduce – 

each agent holds within it a GA population of tunes which is reproducing. It is reported 

that at times, no agents can supply the selector agent with rhythms that fulfil the user‟s 

real-time requirements for level of syncopation and density of rhythm; in these cases the 

agents‟ parameters will be shifted to attempt to match the GA output more closely with 

the user‟s requirements. From a composition point of view, Kinetic Engine is only 

generating rhythms not pitches. Furthermore its use of MAS methods is largely for 

parallelism of musical lines, its musical intelligence comes from Genetic Algorithms 

and Markov Chains. 

CinBalada. Sampaio et al. (2008) introduce a system for polyphonic rhythm 

composition. Each agent is given a rhythmic role of type “base”, “complementary 

base”, “solo” or “fill”. Before each bar is composed, agents with the same rhythmic role 

negotiate together about which will fulfil the role in the next bar – agents submit 

proposed patterns to each other and they are evaluated in competition. The evaluation 

includes how well the pattern for an agent evolves from the previous bar, and how well 

the pattern fits in with other patterns which have already been selected. A series of 

rhythmic compatibility measures was developed over a three year project in 

collaboration with musical experts. Agents base their composed patterns on a stored 

database of Brazilian percussive performance. Tests were done with listeners comparing 

CinBalada generated patterns with patterns generated randomly or by simpler criteria, 

and listeners showed some preference for CinBalada patterns.  However, because of the 
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bar-to-bar compatibility approach, CinBalada does not generate any higher level 

musical structure. 

AALIVE. Spicer et al. (2003) present a multi-agent system in which each agent has two 

internal oscillators – one for pitch and one for duration – synchronized to the tempo of 

the music. A human gives higher level musical goals, and the system attempts to 

implement them. Whenever an agent plays a note, the current state of the duration 

oscillator defines the note length, and the pitch oscillator the pitch. There are different 

classes of agents, for example: bass player, kick and snare drum player and arpeggio 

player. Some agents are designed to work in sub-groups where there is a lead agent and 

followers; the followers may have certain rules such as “follow the lead pitch an interval 

below”, thus creating harmonies; or to re-align their rhythm pattern to creating 

interlocking rhythms. The human controller defines the starting duration and pitches for 

agents, and defines targets for average pitch and average duration of the MAS. 

NetNeg. This is a system for composing First Species Counterpoint (Goldman et al. 

1999). It makes use of an artificial neural network (ANN) and two agents. The ANN 

generates melodies for the other two agents, and these two agents then negotiate to try 

to produce notes which obey a selection of standard counterpoint rules. The ANN is 

trained to evaluate single line melodies based on lines from 16
th

 century counterpoint. 

Suppose one of the two agents sends a certain note N to the ANN agent, then the ANN 

agent will return what it considers the best next note for the melody. It actually returns a 

vector of 13 numbers where each vector element represents a pitch, and the highest 

magnitude vector element will be at the most melodically “aesthetically pleasing” 

following note. The next most “pleasing” note will have the second highest magnitude 

for its vector element, and so forth. At each time step the two agents send a note each to 

the ANN, and the ANN sends a vector to each of the two agents. These two agents then 
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negotiate, using a counterpoint expert system (Waterman 1986) as their basis, to try to 

come up with a next pair of notes which are an optimal balance of counterpoint rules 

and melodic movement. NetNeg‟s biggest limitation for original composition is that it 

focuses on one type of music only – first species counterpoint. 

Inmamusys. Delgado et al. (2008) present a multi-agent system that has three types of 

agents: manager, composing, and voice. The user specifies their compositional 

requirements to a manager agent using labels such as “worry”, “happiness”, and 

“chaos”. A number of composing agents then compete to fulfil these requirements – 

with labels liked “muzak”, “dark”, “scales”, and “random”. Once the manager has 

selected a composing agent, that composing agent will execute a number of voice 

agents, of which there are four types: melody, accompaniment, drums and harmony. 

These agents then combine their outputs to make the final composition. The agents are 

based on an expert system approach to musical generation. In listening tests, four 

compositions were generated, one for “Happiness” and “Chaos”, and two for “Worry”. 

The tests gave a strong indication that there was a reasonable mapping between the 

input labels and the perception of the music by the listeners. IPCS provides a similar 

method for specifying compositions and for listening tests. It generates music with 

different estimated emotional content; and in the results chapter tests will be reported on 

how some listeners perceive the music. IPCS also attempts to utilize a hierarchical 

approach, but has - unlike Inmamusys - no initial hierarchy. The hierarchy is looser and 

emergent rather than fixed. Another difference is that Inanmusys voice agents work in 

parallel on the same tune, and also have more significant AI processing. It is hard to see 

what advantage Inmamusys gains from being a multi-agent rather than a modular expert 

system – hence its testing of the use of MAS interaction for composition is limited.  
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2.2.3 Intermediate MAS for CAC 

Having reviewed low processing and heavy duty MAS for music, most of the 

Intermediate MAS for Computer-aided Composition will now be reviewed. Most of 

them have either not been implemented, have been designed for studying musical 

culture (rather than for composing), or solely generate rhythm rather than musical lines. 

A significant proportion of this section will involve comparing the systems to the thesis 

system IPCS, because the research reviewed here is the most closely related to IPCS. 

Computer-Aided Multi-Agent Music Composition. The Dahltstedt and McBurney 

(2006) system seems to be more a proposal that has never been implemented. Their aim 

is to using MAS to better understand music and the processes of music composition, as 

well as to utilize them to compose with and to use in installations.  The approach is to 

use agents which have different explicit goals that represent different parts of the 

process of music composition. An example is given of an agent whose goal is to reduce 

sound object density if the population of the system‟s “sound landscape” becomes too 

“cluttered”; another is given of an agent who does the opposite. Both agents would take 

into account the musical context while doing this. The researchers explicitly intend to 

utilise emergence (Bentley 2005) to generate interesting music. This is a similarity with 

IPCS, though key differences are: that agents here act on a common musical landscape 

together, whereas IPCS agents each have their own repertoires which can develop in 

parallel; and the agents in IPCS do not have explicit and distinct goals. Obviously a key 

limitation of the Computer-Aided Multi-Agent Music Composition is its lack of 

implementation  - and hence lack of contribution to investigating MAS interaction in 

composition. 

Cultural Evolution. Miranda‟s (2003) system generates musical motifs in a way 

designed to study the evolution of culture. In this case the agents use a two-way 

imitation procedure to bond socially. Agents can store a repertoire of tunes and have a 
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basic biological models of an adaptive voice box and auditory system. Agents pick 

other agents to interact with randomly. When two agents A and B interact the following 

process occurs: if agent A has tunes in its repertoire it picks one randomly and sings it, 

if not then it sings a random tune. These tunes are three notes long and do not grow in 

length. Agent B compares the tune from A to its own repertoire and if it finds one 

similar enough, plays it back to agent B as an attempted imitation. Then agent B makes 

a judgement about how good the imitation is. If it is satisfied with the imitation it makes 

a “re-assuring” noise back to agent A, otherwise it does not. Based on the success of the 

imitation Agents A and B update their repertoires and their voice box settings to try and 

improve their chances of socially bonding in later interactions – e.g. by deleting or re-

enforcing tunes, or making random deviations to their voice box parameters. The aim of 

the system is to see how the repertoire is generated and affected under such social 

pressures. As a result of the social bonding interactions a community repertoire begins 

to emerge. An example run is reported of 5 agents and 5000 interactions; and it was 

found that the agents evolved a shared repertoire of tunes as an emergent property of the 

social pressure. From an algorithmic composition point of view, the system is clearly 

limited in the use of only three note tunes, and its use of randomness. 

Sequence Evolution. Gong et al. (2005) produced a simple music composing system 

with a similar purpose to Miranda‟s (2003) - investigating the emergence of musical 

culture. The agents start with a set of random motifs, together with different agents 

being equipped with distinct but very simple aesthetic evaluation functions (for rhythm, 

pitch, etc.). An agent plays its tune to another agent and if the second agent finds the 

tune unpleasant, it modifies it (based on its musical evaluation), and plays it back to the 

first agent. If the first agent thinks the modified tune is better than its original, it deletes 

its original and stores the modified version. As agents interact this leads to “more 

pleasant” motifs emerging. Also, using an interaction-history measure, the social link 
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between first and second agent is strengthened so that they are more likely to interact in 

the future. However if the first agent does not prefer the modified tune to its own 

version, it discards it and the link between the two agents is not strengthened. It was 

found that in the emergent social network the agents tended to cluster according to their 

aesthetic preference function. This system has a couple of similarities to IPCS: it 

utilizes MAS social network/trust techniques to decide who interacts with whom, and in 

each interaction agents vary their repertoire based on their opinion of the other agent‟s 

repertoire. The key differences between this system and IPCS is that IPCS agents have 

no explicit evaluative musical intelligence, and the social network in IPCS is used to 

generate music structure within an agent‟s repertoire not to experiment with the 

clustering of agents according to their repertoires. Also the number of notes in Gong et 

al‟s system is very limited and tunes cannot grow in size – neither this system nor 

Miranda‟s above are practical composition systems at this stage. 

A-Rhythm. Martins and Miranda‟s (2007) system sets out to examine the application of 

multi-agent systems to algorithmic composition, but has not yet fulfilled that goal. 

Current papers focus on, like Miranda‟s (2003) and Gong et al.‟s (2005) systems, 

investigating the emergence of social clusters, and are solely based on rhythmic 

repertoire. A-Rhythm has some similarities to IPCS – the agents communicate one at a 

time serially and their musical content grows longer. However A-Rhythm lacks the 

ability to compose pitches, and focuses on rhythms. Also the similarity measures are 

more directly based on the music, rather than affective content of the music. Finally A-

Rhythm uses measures for the “popularity” of rhythms in an agent‟s repertoire, but not 

for the “popularity” of agents. Agents in this system can transform their repertoires 

based on interaction – using certain rhythmic transformation rules (rather than ICPS‟s 

affective-based transformations). In the paper a number of experiments are done based 

on different interaction approaches, and the resulting population and repertoire 
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dynamics are examined, showing the potential for the emergence of structured rhythmic 

repertoires. 

 

2.2.4 MAS and Musical Structure 

It is worth highlighting at this point that none of the MAS CAC systems surveyed above 

were designed to deal with higher level musical structure – e.g. how to order themes and 

sections of a piece of music. They focus on the note to note, or phrase to phrase level. 

There are in the wider CAC field systems which address these higher level issues of 

musical structure. However Collins (2009) observes that algorithmic generation of 

musical form is one of the least advanced elements of computer-aided composition 

systems. In the next chapter it will be shown that an Intermediate MAS can be designed 

so as to incorporate a proposal for a emergent structural composition system arising 

from the social behaviour of the agents in the system. 

 

2.2.5 MAS Summary 

Table 2 gives an overview of the general (non-musical) Multi-Agent Systems (MAS) 

reviewed in this chapter, together with key descriptive properties. The whole field was 

not detailed but these 11 non-musical systems gave an overview of MAS in general, 

their common features, and introduced some of the key elements relevant to this thesis - 

e.g. intermediate vs. low processing MAS, agent interaction networks, etc.  

Table 3 gives an overview of generative musical systems reviewed– both MAS-based 

and non-MAS-based. In terms of computer-aided composition, the review focus was on 

MAS-based computer-aided composition, though affective-based computer-aided 

composition will also be surveyed next because of its relevance to the thesis. The 18 

musical MAS reviewed are, as far as is known, the majority of multi-agent composition 

and expressive performance systems published. The 3 non-MAS musical systems to be 
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reviewed in detail are affective-based composition and cover a significant proportion of 

the published systems. (Affective-based expressive performance is also discussed in the 

expressive performance section of the review.) 

The Fields in table 2 are: 

 

 “Complexity” – is the MAS low processing, intermediate or heavy duty? 

 “Homog / Het” – is the MAS homogeneous or heterogeneous (i.e. do agents all 

start out the same, or are some different)? 

 “Comm” – do the agents communicate, and if so do they do it synchronously or 

asynchronously (i.e. do they take it in turns to communicate and process, or do 

they do it concurrently)? 

 “Initial Hierarchy” – is there a hierarchy of planning/control; are some agents 

dependent on others? Can some agents control others? 

 

The choice of properties is both because they clarify the context for the thesis system 

IPCS, and are also some of the key defining features of any MAS. Some core elements 

of IPCS are that it is Intermediate complexity, homogeneous, that it composes music 

using direct communication, and that there is no central controlling agent or hierarchy. 

Hence the fields chosen for Table 2 for non-musical MAS. Table 3 goes into more 

detail about some of the secondary properties of IPCS and properties which are more 

relevant in the music field.  

The additional fields in Table 3 (Musical MAS) are: 
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 “Num Tunes” – Does the system generate multiple tunes during its processing, 

or a single tune? (Multiple tunes does not mean polyphony but unconnected 

multiple tunes.) 

 “Real-time” – is the music generated in real-time? 

 “Size” – what is the order of the number of agents in the system? 

 “Model / Func” – is the system designed to model some element of music, or as 

a computer-aided composition system? 

 

IPCS is a non-real-time system which works with a small to medium number of agents 

(i.e. not hundreds of agents), it generates multiple tunes in parallel, and it is focused on 

computer-aided composition not on modelling the composition process or musical 

culture. 

 

2.2.6 Affective-based CAC systems 

One area of computer-aided composition which has received more attention recently is 

affectively-based computer-aided composition, for example the Inmamusys system 

described earlier (Delgado et al. 2008). There have been a number of questionnaire 

studies done which support the argument that music communicates emotions 

(Minassian et al. 2003; Lindstrom et al. 2003; Juslin and Laukka 2004). However a key 

point that needs to be clarified is the difference between induced emotion and perceived 

emotion (Juslin 2005). For example a listener may enjoy a piece of music like the 

famous Adagio for Strings by Barber (1938) which most people would describe as a 

“sad” piece of music. However, because they enjoy it, the induced emotion must be 

pleasurable (their valence is increased by listening), but the perceived emotion is 

sadness. Although there are some differences between perceived and felt emotions 
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(Evans and Schubert 2006), perceived and felt emotions are highly correlated (Bigand et 

al. 2005). IPCS, and the systems reviewed below, focus on the generation of music 

which causes certain emotional perceptions in the listener, rather than directly inducing 

an emotional state. 

 

 

System Complexity Homog / 

Het 

Comm Initial 

Hierarchy 

Boids (Reynolds 1987) Low Homog No (see p29) Flat 

PSO  (Kennedy and Eberhart 1995) Low Homog No  Flat 

BEES (Pham et al. 2006) Low Homog Synch Flat 

Ant Colony (Dorigo and Glover 

1999) 

Low Homog No Flat 

Energy Management (James et al. 

2006) 

Heavy Heterog No  Hierarchy 

Emergency Response (Schoenharl 

et al. 2006) 

Heavy Heterog Asynch  Hierarchy 

UAV (Baxter et al. 2007) Heavy Heterog No  Hierarchy 

Portfolio Selection (Parkes and 

Huberman 2001) 

Int Homog Sync  Flat 

Data Mining (Di Fatta and Fortino 

2007) 

Int Homog ASynch  Flat 

Collab Interf. (Lashkari et al. 1994) Int Homog Sync  Flat 

Colour Grounding (Steels and 

Belpaeme 2005) 

Int Homog Synch  Flat 

 

Table 2: Overview of non-musical MAS examples reviewed 
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System Complexity Homog / 

Het 

Comm NumTunes Initial 

Hierarchy 

Real 

time 

Size Model / 

Func 

Swarm Music 

(Blackwell and 

Bentley 2002) 

Low Het No  1 Flat Y 21 F 

Ant Colony Music 

(Clair et al. 2008) 

Low Homog No 1 Flat Y  F 

Swarm Orchestra 
(Bisig and Neukom 

2008) 

Low Homog No 1 Flat Y  F 

Society of Music 

Agents (Beyls 

2007) 

Low Homog Sync 1 Flat N  F 

MMAS  (Wulfhost 
et al. 2003a) 

Heavy Het ASync 1 Flat Y 8 F 

Musical Agents 
(Fonseka 2000) 

Heavy  Het Async 1 Flat Y  F 

Andante (Ueda and 

Kon 2003) 

Heavy  Het Async 1 Flat Y  F 

VirtuaLatin 

(Murray-Rust et al. 

2005) 

Heavy  Het Sync 1 Hierarchy N 1 F 

MAMA (Murray-
Rust and Smaill 

2005) 

Heavy  Het  ASync 1 Hierarchy Y  F 

Kinetic Engine 

(Eigenfeldt 2009) 

Heavy  Het ASync 1 Hierarchy Y  F 

CinBalada 

(Sampaio et al. 
2008) 

Heavy  Het ASync 1 Flat N  F 

AALIVE (Spicer et 

al. 2003) 

Heavy  Het ASync 1 Hierarchy Y  F 

NetNeg (Goldman 

et al. 1999) 

Heavy Het ASync 1 Hierarchy N 3 F 

Inmamusys 

(Delgado et al. 

2008) 

Heavy  Het Sync 1 Hierarchy N 9 F 

CAC Multi-Agent  
(Dahltstedt and 

McBurney 2006) 

Int Het ASync 1 Flat N 6 F 

Critic Culture 

(Gong et al. 2005) 

Int Hom Sync Multi Flat N  M 

Miranda Culture 

(Miranda 2003) 

Int Hom Sync Multi Flat N 5 M 

Artificial Musical 
Society (Martins 

and Miranda 2007) 

Int Het Sync 1 Flat Y  F 

IPCS (thesis 

system) 

Int  Hom ASync Multi Flat N 10 F 

 

Table 3: Overview of Musical MAS reviewed 
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Another common theme running through some of the affective-based systems below is 

their method of affective specification – the Valence / Arousal approach. This is not the 

only possible approach to affective specification. It is just one of a variety of approaches 

which can be broadly divided in the Dimensional type and the Category type (Zentner et 

al. 2008). Category approaches range from basic emotion definitions – which assumes 

that some emotions are more fundamental than others and attempts to list these; to the 

more everyday emotion label systems – which do not attempt to categorize based on an 

emotion hierarchy. A version of the second type of category approach is used in 

Director Musices expressive performance approach (Sundberg et al. 1983; Friberg et al. 

2006) – where six emotion labels are utilized – such as “Happy”, “Angry”, etc. Juslin‟s 

(2005) analysis of musical emotions also uses everyday categories. A more recent 

category-based approach for emotion is the Geneva Emotion Music Scales (GEMS) 

approach (Zentner et al. 2008) which attempts to provide categories optimal for musical 

emotion. This is done by first investigating through psychological tests which sorts of 

emotion are most commonly expressed to people by music. Although GEMS does get 

users to score the category with an integer from 1 to 5, the fact it has up to 45 categories 

puts it more in the realm of categorical than the dimensional systems now discussed. 

The Dimensional approach to specifying emotion utilizes an n-dimensional space made 

up of emotion “factors”. Any emotion can be plotted as some combination of these 

factors. For example, in IPCS and in CMERS, two dimensions are used: Valence and 

Arousal (Lang 1995). In this model, emotions are plotted on a graph with the first 

dimension being how positive or negative the emotion is (Valence), and the second 

dimension being how intense the physical arousal of the emotion is (Arousal). This is 

shown in Figure 3. Just as category approaches would not claim to list all possible 

emotions, so dimensional approaches do not claim to be complete. It is not known if 

emotions can be pinpointed based on unique independent dimensions. Other 
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dimensional approaches include the three dimensional valence/arousal/dominance 

system (Oehme at al. 2007). In this case Valence and Arousal have the same meaning as 

in the 2D version. However in the 2D approach Fear and Anger are both low valence, 

high arousal. In the 3D version, Dominance differentiates emotions such as anger (high 

dominance) and fear (low dominance); anger can be seen as more of an active emotion, 

fear as more of a re-active one. In (Canazza et al. 2004) a task-specific mood-space is 

constructed for expressive performance using experiments and principle component 

analysis. In this case the dimensions are not explicit. 

 

 

Figure 3: The Valence/Arousal Model of Emotion 

 

One key difference between dimensional and category approaches is that dimensional 

approaches are much simpler to implement in continuous change systems. For example 

in a 6 category system like that used in Director Musices, there is no obvious way of 

moving continuously around the emotions – one can only switch between emotional 

types. In IPCS the concept of small changes to affective state is implemented. Hence the 
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choice of a dimensional approach seems natural. Furthermore because of the successful 

implementation of the 2D valence/arousal approach in other musical applications, it was 

this dimensional approach which was selected. So in IPCS affective states are defined 

by a pair of real numbers (valence, arousal). At the heart of affective-dimensional CAC 

systems tends to be a mapping from the desired valence / arousal of a section of music, 

to the resulting musical features such as key, tempo and pitch. This mapping may be a 

set of rules, or a linear or non-linear regression mapping. Three of these affective CAC 

will now be examined. 

CMERS. Many of the affective-based systems are actually based around re-composition 

rather than composition; i.e. they focus on how to transform an already composed piece 

of music to give a different emotional effect – e.g. make it sadder, happier, etc. This is 

the case with the best known and most thoroughly tested system - the Computational 

Music Emotion Rule System (CMERS) (Livingstone et al. 2010; Livingstone et al. 

2007). The rules for expressing emotions map valence and arousal onto such elements 

as modes and pitch class. These rules were developed based on the combining a large 

number of studies by psychologists into music and emotion. However it was found 

these needed to be supplemented by rules for expressive performance of the transformed 

music to express the emotion successfully. Hence CMERS is actually (like IPCS) an 

integrated composition and expressive performance. For this reason a more detailed 

review will be given at the end of this chapter, which focuses on combined composition 

/ expressive performance systems. CMERS‟ key limitation as a composition system is 

that it is designed for re-composition, not for generating new material. 

Knowledge-Base Approach. Oliveira and Cardoso (2009) also perform affective 

transformations on MIDI music, and utilizes the valence-arousal approach to affective 

specification. These are to be mapped on to musical features: tempo, pitch register, 



59 
 

musical scales, and instrumentation. A knowledge-base of musical features and emotion 

was developed based on musical segments with a known affective content. This 

knowledge-base was then used to train a generalized mapping of affective state to 

required music and a model was then generated based on Support Vector Machine 

(Shawe-Taylor and Cristianini 2000) regression. The model was tested for transforming 

the emotion of classical music – the current results are not as good as CMERS. One 

reason for this may be that this Knowledge-Base approach has the limitation that it is 

unable to generate expressive performances. 

Affective GA Composition. Although Legaspi et al. (2007) utilise pre-composed music 

as its heart, it is more focused on composing new music. An affective model is learned 

based on score fragments manually labelled with their appropriate affective perception – 

this maps a desired affective state on to a set of musical features. The model is learned 

based on the machine learning approaches Inductive Logic Programming and Diverse 

Density Weighting Metric (Lloyd 1984; Maron and Lozano-Perez 1998). This is then 

used as a fitness function for a Genetic Algorithm – however the GA is also constrained 

by some basic music theory. The GA is then used to generate the basic harmonic 

structure, and a set of heuristics are used to generate melodies based on the harmonic 

structure. The system was trained with emotion label dimensions “favourable-

unfavourable”, “bright-dark”, “happy-sad”, and “heartrending-not heartrending”. 

Listening tests were done on a series of eight bar tunes and the results obtained were 

considered promising, but indicated more development was needed. Once again, the 

system is lacking the ability to generate expressive performances. 
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2.2.7 MAS and CAC Summary 

In the last few sections, multi-agent systems in general have been reviewed, including a 

focus on MAS for computer-aided composition. This was done because IPCS, the thesis 

system, is an MAS for computer-aided composition. There has also been an overview of 

affective-based computer-aided composition systems, once again an area closely related 

to IPCS. As well as being an MAS and affectively based, IPCS is also a system in 

which computer-aided composition and expressive performance are combined. The field 

of computer expressive performance is newer and less familiar than the field of 

computer-aided composition. Hence, before reviewing the handful of systems for 

integrated computer-aided composition and expressive performance, we will present a 

review and analysis of the field of computer systems for expressive performance of 

music. 

Before moving on to this there is one final point to note. One implicit limitation of 

much of the CAC systems discussed relates to the subjective nature of musical 

performance (Ramirez et al. 2008). Ramirez et al. generate multiple performances in 

parallel so as to allow the user to select their subjective favourite from them. Aside from 

those systems designed for modelling purposes, the CAC systems reviewed all produce 

a single performance. (This issue will be re-visited in the Chapter 3.) 
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2.3 Computer Systems for Expressive Performance 

This section surveys computer expressive performance, and will start by examining 

what expressive performance actually is. 

 

2.3.1 Human Expressive Performance 

How do humans make their performances sound so different to the so-called “perfect” 

performance a computer would give? In this thesis the strategies and changes which are 

not marked in a score but which performers apply to the music will be referred to as 

expressive Performance Actions. Two of the most common performance actions are 

changing the Tempo and the Loudness of the piece as it is played. These should not be 

confused with the tempo or loudness changes marked in the score, like accelerando or 

mezzo-forte, but to additional tempo and loudness changes not marked in the score. For 

example, a common expressive performance strategy is for the performer to slow down 

as they approach the end of the piece (Friberg and Sundberg 1999). Another 

performance action is the use of expressive articulation – when a performer chooses to 

play notes in a more staccato (short and pronounced) or legato (smooth) way. Those 

playing instruments with continuous tuning, for example string players, may also use 

expressive intonation, making notes slightly sharper or flatter; and such instruments 

also allow for expressive vibrato. Many instruments provide the ability to expressively 

change timbre as well.  

Why do humans add these expressive performance actions when playing music? The 

context will be set for answering this question using a historical perspective. Pianist and 

musicologist Ian Pace offers up the following as a familiar historical model for the 

development of notation (though suggests that overall it constitutes an over-

simplification) (Pace 2007): 
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In the Middle Ages and to a lesser extent to the Renaissance, musical scores 

provided only a bare outline of the music, with much to be filled in by the 

performer or performers, freely improvising within conventions which were 

essentially communicated verbally within a region or locality. By the Baroque 

Era, composers began to be more specific in terms of requirements for pitch, 

rhythm and articulation, though it was still common for performers to apply 

embellishments and diminutions to the notated scores, and during the Classical 

Period a greater range of specificity was introduced for dynamics and 

accentuation. All of this reflected a gradual increase in the internationalism of 

music, with composers and performers travelling more widely and thus 

rendering the necessity for greater notational clarity as knowledge of local 

performance conventions could no longer be taken for granted. From Beethoven 

onwards, the composer took on a new role, less a servant composing to occasion 

at the behest of his or her feudal masters, more a freelance entrepreneur who 

followed his own desires, wishes and convictions, and wrote for posterity, hence 

bequeathing the notion of the master-work which had a more palpable 

autonomous existence over and above its various manifestations in performance. 

This required an even greater degree of notational exactitude; for example in the 

realms of tempo, where generic Italianate conventions were both rendered in the 

composer‟s native language and finely nuanced by qualifying clauses and 

adjectives. Through the course of the nineteenth century, tempo modifications 

were also entered more frequently into scores, and with the advent of a greater 

emphasis on timbre, scores gradually became more specific in terms of the 

indication of instrumentation. Performers phased out the processes of 

embellishment and ornamentation as the score came to attain more of the status 

of a sacred object. In the twentieth century, this process was extended much 

further, with the finest nuances of inflection, rubato, rhythmic modification 

coming to be indicated in the score. By the time of the music of Brian 

Ferneyhough, to take the most extreme example, all minutest details of every 

parameter are etched into the score, and the performer‟s task is simply to try and 

execute these as precisely as he or she can. 

 

So in pre-20
th

 century classical music there has been a tradition of performers making 

additions to a performance which were not marked in the score (though the reason Pace 

calls this history an oversimplification is that modern music does have the capacity for 

expressive performance, as we will discuss later).  

A number of studies have been done into this pre-20
th

 Century (specifically Baroque, 

Classical and Romantic) music performance. The earliest studies began with Seashore 

(1938), and good overviews include Palmer‟s (1997) and Gabrielsson‟s (2003). One 

element of these studies has been to discover what aspects of a piece of music – what 

Musical Features - are related to a performer‟s use of expressive performance actions. 
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One of these musical features expressed is the performer‟s structural interpretation of 

the piece (Palmer 1997). As has already been noted, a piece of music has a number of 

levels of meaning – a hierarchy. Notes make up motifs, motifs make up phrases, phrases 

make up sections, sections make up a piece (in more continuous instruments there are 

intranote elements as well). Each element - note, motif, etc. - plays a role in other higher 

elements. Human performers have been shown to express this hierarchical structure in 

their performances. Performers have a tendency to slow down at boundaries in the 

hierarchy – with the amount of slowing being correlated to the importance of the 

boundary (Clarke 1998). Thus a performer would tend to slow more at a boundary 

between sections than between phrases. There are also regularities relating to other 

musical features in performers‟ expressive strategies. For example in some cases the 

musical feature of higher pitched notes causes a performance action of the notes being 

played more loudly; also notes which introduce melodic tension relative to the key may 

be played more loudly. However for every rule there will always be exceptions.  

Another factor influencing expressive performance actions is Performance Context. 

Performers may wish to express a certain mood or emotion (e.g. sadness, happiness) 

through a piece of music. Performers have been shown to change the tempo and 

dynamics of a piece when asked to express an emotion as they play it (Gabrielsson and 

Juslin 1996). For a discussion of other factors involved in human expressive 

performance, the reader is referred to Juslin (2003). 

 

2.3.2 Computer Expressive Performance 

Having examined human expressive performance, the question now becomes why is it 

desirable for computers to perform music expressively? There are at least four answers 

to this question: 
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1. Investigating human expressive performance by developing computational models – 

Expressive performance is a fertile area for investigating musicology and human 

psychology (Seashore 1938; Palmer 1997; Gabrielsson 2003). As an alternative to 

experimentation with human performers, models can be built which attempt to 

simulate elements of human expressive performance. As in all mathematical and 

computational modelling, the model itself can give the researcher greater insight 

into the mechanisms inherent in that which is being modelled.  

2. Playback on a music typesetting or composing tool which gives better insight into 

the final performance – There are many computer tools available now for music 

typesetting and for composing. If these tools play back the compositions with 

expression on the computer, the composer will have a better idea of what their final 

piece will sound like. For example, Sibelius, Notion and Finale have some ability 

for expressive playback. 

3. Playing computer-generated music expressively – There are a number of algorithmic 

computer-aided composition systems that output music without expressive 

performance but which audiences would normally expect to hear played 

expressively. These compositions in their raw form will play on a computer in a 

mechanical way. A CSEMP would allow the output of an algorithmic composition 

system to be played directly on the computer which composed it (for example in a 

computer game which generates mood music based on what is happening in the 

game).  

4. Playing data files - a large number of non-expressive data files in formats like MIDI 

and MusicXML (Good 2001) are available on the internet, and they are used by 

many musicians as a standard communication tool for ideas and pieces. Without 

CSEMPs most of these files will playback on a computer in an unattractive way, 

whereas the use of a CSEMP would make such files much more useful. 
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2.3.3 A Generic Framework for Previous Research in Computer Expressive 

Performance 

Figure 4 shows a generic model for the framework that most (but not all) previous 

research into CSEMPs tends to have followed (Kirke and Miranda 2010). The modules 

of this diagram and the connection system are described beneath Figure 4. The 

connecting lines between the modules/boxes indicate the direction of flow of data. 

 

                                                                      

  

 

                                                                                                                                           

 

Figure 4: Generic model for most current CSEMPs 

 

Performance Knowledge - This is the core of any performance system. It is the set of 

rules or associations that controls the performance action. It is the “expertise” of the 

system which contains the ability, implicit or explicit, to generate an expressive 

performance. This may be in the form of an Artificial Neural Network, a set of cases in 

a Case-based Reasoning system, or a set of linear equation with coefficients. To 

produce performance actions, this module uses its programmed knowledge together 

with any inputs concerning the particular performance. Its main input is the Music / 
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Analysis module. Its output is a representation of the performance of the musical input, 

including expressive performance actions. 

Music / Analysis - The Music / Analysis module has two functions. First of all, in all 

systems, it has the function of inputting the music to be played expressively (whether in 

paper score, MIDI, MusicXML, audio or other form) into the system. The input process 

can be quite complex, for example direct paper score or audio input will require some 

form of analytical recognition of musical events. This module is the only input to the 

Performance Knowledge module that defines the particular piece of music to be played. 

In some systems, it also has a second function – to provide an analysis of the musical 

structure. This analysis provides information about the Music Features of the music – 

for example metrical, melodic or harmonic structure. (It was mentioned earlier how it 

has been shown that such structures have a large influence on expressive performance in 

humans.) This analysis can then be used by the Performance Knowledge system to 

decide how the piece should be performed. Analysis methods used in some of the 

systems include Lerdahl and Jackendoff‟s Generative Theory of Tonal Music (Lerdahl 

and Jackendoff 1983), Narmour‟s Implication Realisation (Narmour 1990), and various 

bespoke musical measurements. The analysis may be automated, manual or a 

combination of the two. 

Performance Context - Another element which will affect how a piece of music is 

played is the performance context. This includes such things as how the performer 

decides to play a piece for example happy, perky, sad, or lovelorn. It can also include 

whether the piece is played in a particular style, e.g. baroque or romantic. 

Adaptation Process - The adaptation process is the method used to develop the 

Performance Knowledge. Like the Analysis module this can be automated, manual or a 

combination of the two. In some systems, a human expert listens to actual musical 
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output of the performance system and decides if it is appropriate. If not then the 

Performance Knowledge can be adjusted to try to improve the musical output 

performance. This is the reason that in Figure 4 there is a line going from the Sound 

module back to the Adaptation Procedure module. The Adaptation Procedure also has 

inputs from Performance Context, Music / Analysis, Instrument Model, and 

Performance Examples. All 4 of these elements can influence the way that a human 

performs a piece of music, though the most commonly used is Music / Analysis and 

Performance Examples. 

Performance Examples - One important element that can be incorporated in the 

Performance Knowledge building is the experience of past human performances. These 

examples can be used by the Adaptation procedure to analyse when and how 

performance actions are added to a piece of music by human performers. The examples 

may be a database of marked-up audio recordings, MIDI files together with their source 

scores, or (in the manual case) a person‟s experience of music performance. 

Instrument Model - By far the most common instrument used in computer generated 

performance research is the piano. This is because it allows experiments with many 

aspects of expression, but requires only a very simple instrument model. In fact the 

instrument model used for piano is often just the MIDI/media player and soundcard in a 

PC. IPCS has been developed and evaluated using the Propellerhead Reason MIDI 

sequencer and piano sampler. In other systems something more complex can be used 

but still not part of the simulation system, for example a Yamaha Disklavier. However a 

few simulation systems use non-keyboard instruments, for example Saxophone, and 

Trumpet. In these cases the issue of a performance is more than just expressiveness. Just 

simulating a human-like performance, even if it is non-expressive, on these instruments 

is non-trivial. So systems simulating expressive performance on such instruments may 
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require a relatively complex instrument model in addition to expressive performance 

elements. 

One element to notice in the above framework is there is nothing incorporated for 

composition. This is because the CSEMPs which we are aware of focus on 

performances of already-composed pieces of music. 

The review presented here is based on three key areas relevant to this thesis: 

 

1. Emotion-based Systems 

2. Hierarchical Structure Systems 

3. Multi-agent systems 

 

Emotion-based systems are those systems which focus on allowing the user to specify 

performances based on emotion or mood, and IPCS utilizes such systems. Hierarchical 

structure systems are those which analyse the hierarchical structure of the music to 

generate an expressive performance; IPCS will be seen to expressively perform the 

hierarchical structure of its music. And the final category – although practically empty - 

is included because IPCS is a multi-agent system. The review covers around half of the 

CSEMPS published, however they contain many of the key elements of the broader 

CSEMP field, and they certainly demonstrate the areas of CSEMP research which are 

relevant to this thesis. The earlier overview of common CSEMP modules provides 

sufficient information about the field as a whole. 
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2.3.5 Emotion-based CSEMPs 

Director Musices. Director Musices (DM) (Sundberg et al. 1983; Friberg et al. 2006) 

has been an ongoing project since 1982. Researchers including violinist Lars Fryden 

developed and tested performance rules using an analysis-by-synthesis method (later 

using analysis-by-measurement and studying actual performances). Currently there are 

around 30 rules which are written as relatively simple equations that take as input Music 

Features such as height of the current note pitch, the pitch of the current note relative to 

the key of the piece, or whether the current note is the first or last note of the phrase. 

The output of the equations defines the Performance Actions. For example the higher 

the pitch the louder the note is played, or during an upward run of notes, play the piece 

faster. Another DM rule is the Phrase Arch which defines a “rainbow” shape of tempo 

and dynamics over a phrase .The performance speeds up and gets louder towards the 

centre of a phrase and then tails off again in tempo and dynamics towards the end of the 

phrase. Some manual score analysis is required – for example harmonic analysis and 

marking up of phrase start and ends.  

Each rule has a numeric “k-value” - the higher the k-value the more effect the rule will 

have and a k-value of 0 switches the rule off. For example the high-loud rule and some 

other loudness rules have their loudness increase results multiplied by k before adding 

them to the note loudness; and similarly rules which change duration will have the 

duration change multiplied by k before being used to change the note duration. The 

results of the multiple transformation rules are all added together linearly to get the final 

performance. DM‟s ability to be a semi-automated system comes from the fact it has a 

“default” set of k-values, allowing the same rule settings to be applied automatically to 

different pieces of music (though not necessarily with the same success). Rules are also 

included for dealing with non-monophonic music (Friberg et al. 2006). The “Melodic-

sync” rule generates a new voice consisting of all timings in all other voices (if two 
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voices have simultaneous notes, then the note with the greatest melodic tension is 

selected.) Then all rules are applied to this synchronisation voice, and resulting 

durations are mapped back onto the original voices. The “Bar-sync” rule can also be 

applied to make all voices re-synchronise at each bar end.  

DM has also been developed to enable emotional expression (Bresin and Friberg 2000), 

drawing on work by Gabrielsson and Juslin (1996). Listening experiments were used to 

define the k-value settings on the DM rules for expressing emotions. The music used 

was a Swedish nursery rhyme and a computer-generated piece in a minor mode written 

using Cope‟s (2005) algorithmic composition system in the musical style of Chopin. Six 

rules were used from DM to generate multiple performances of each piece. Subjects 

were asked to identify a performance emotion from the list: fear, anger, happiness, 

sadness, solemnity, tenderness or no-expression. As a result parameters were found for 

each of the 6 rules which mould the emotional expression of a piece. For example for 

“tenderness”: inter-onset interval is lengthened by 30%, sound level reduced by 6dB, 

and two other rules are used: the Final Ritardando rule (slowing down at the end of a 

piece) and the Duration Contrast rule (if two adjacent notes have contrasting durations, 

increase this contrast).  

Director Musices has been evaluated in a number of experiments. In (Friberg 1995) k-

values were adjusted by a search algorithm, based on 28 human performances of 9 bars 

of Schumann‟s Träumerei. A good correlation was found between the human 

performances and the resulting DM performance. Another experiment involved 

manually fitting to one human performance the first 20 bars of the Adagio in Mozarts 

sonata K.332 (Sundberg et al. 2003). The correlations were found to be low, unless the 

k-values were allowed to change dynamically when the piece was performed. An 

attempt was made to fit k-values using to a larger corpus of piano music using Genetic 

algorithms in (Kroiss 2000), and the results were found to give a low correlation as 
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well. In an attempt to overcome this (Zanon and De Poli 2003) allowed k-values to vary 

in a controlled way over a piece of music. This was tested on Beethoven‟s Sonatine in G 

Major and Mozart‟s K.332 piano sonata (the slow movement) – but the results were 

found to be poor for the Beethoven. The RenCon competition is a regularly organized 

event for comparing by jury the results of various CSEMPs (Suzuki 2003). In the first 

RenCon in 2002, the second prize went to a DM-generated performance, however the 

first placed system (a manually generated performance) was voted for by 80% of the 

jury. In RenCon 2005, a Director Musices default-settings (i.e. automated) performance 

of Mozart‟s Minuette KV 1(1e) came a very close 2nd in the competition. However 3 of 

the other 4 systems competing were versions of the DM-system.  

The DM model has been influential, and as will be seen in the systems described later, 

DM-type rules appear repeatedly. Expressive performance in IPCS is based on DM. 

DM was chosen because it is a well-developed and tested system whose knowledge is 

explicit (i.e. not implicit in some kind of regression matrix), and can therefore be 

integrated as part of a composition process. One of DM‟s most significant weaknesses 

is that it rules do not incorporate the relationship between musical hierarchical structure 

and expressive performance. This relationship must be discerned by the user and the 

rules applied appropriately. As will be seen below, many later CSEMPs do incorporate 

this relationship as part of their core functionality. However this is not an issue when it 

comes to utilizing DM in IPCS, because IPCS itself generates its own musical structure, 

and applies DM in parallel, thus significantly mitigating DM‟s lack of structural 

awareness.  

CaRo. CaRo (Canazza et al. 2000; Canazza et al. 2004; de Poli 2004) is a monophonic 

CSEMP designed to generate audio files which – like CMERS - express certain 

moods/emotions. It does not require a score to work from, but works on audio files 

which are mood-neutral. The files are however assumed to include the performer‟s 
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expression of the music‟s hierarchical structure. CaRo‟s performance actions at the note 

and intra-note level include changes to inter-onset interval, brightness, and loudness-

envelope centroid. A linear model is used to learn actions - every action has an equation 

characterised by parameters called Shift and Range Expansion. Each piece of music in a 

particular mood has its own set of Shift and Range Expansion values.  

CaRo also learns “how musical performances are organised in the listener‟s mind” in 

terms of moods: hard, heavy, dark, bright, light and soft. To do this, a set of listening 

experiments analysed by Principal Component Analysis (PCA) generate a two 

dimensional space that captures 75% of the variability present in the listening results; 

this space is used to represent listeners‟ experience of the moods. A further linear model 

is learned for each piece of music which maps the mood space onto Shift and Range 

Expansion values. The user can select any point in the mood space, and CaRo generates 

an expressive version of the piece. A line can be drawn through mood space, and 

following that line in time CaRo can generate a performance morphing through different 

moods. CaRo‟s has the ability to have a line drawn through the mood space. Users can 

draw trajectories through this space which create entirely novel performances; and this 

can be done in real time. Listening tests with MIDI piano gave results showing that the 

system gave a good modelling of expressive mood performances. 

Emotional Flute. Camurri et al.‟s (2000) Emotional Flute system uses explicit Music 

Features and Artificial Neural Networks (ANN), thus allowing greater generalisation 

than the related CaRo system. The music features are similar to those used in Director 

Musices. Expressive actions include inter-onset interval, loudness, and vibrato. Pieces 

need to be segmented into phrases before being input - this segmentation is performed 

automatically by another ANN. There are separate nets for timing and for loudness. 

There is also a third net for the duration of crescendo and decrescendo at the single note 
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level. However the nets could not be successfully trained on vibrato, so a pair of rules 

were generated to handle it. A flautist performed the first part of Telemann‟s Fantasia 

no.2 in nine different moods: cold, natural, gentle, bright, witty, serious, restless, 

passionate and dark. Like CaRo a 2-D mood space was generated and mapped on to the 

performances by the ANNs.  

To generate new performances the network drives a physical model of a flute. Listening 

tests gave an accuracy of approximately 77% when subjects attempted to assign 

emotions to synthetic performances. To put this in perspective, even when listening to 

the original human performances, human recognition levels were not always higher than 

77%; the description of emotional moods in music is a fairly subjective process.  

SaxEx. The SaxEx system (Arcos et al. 1997; Lopez de Mantaras and Arcos 2002) was 

one of the first systems to learn performances based on the performance context of 

mood. SaxEx includes algorithms for extracting notes from audio files, and generating 

expressive audio files from note data. SaxEx also looks at intranote features like vibrato 

and attack, and needs a non-expressive audio file to perform transformations upon. 

Analysis methods used include the Generative Theory of Tonal Music (GTTM) 

(Lerdahl and Jackendoff 1983), and Implication Realisation (IR) (Narmour 1990). Other 

elements used to analyse the music are ideas from Jazz theory.   

SaxEx was trained on cases from monophonic recordings of a tenor sax playing 4 Jazz 

standards with different moods (as well as a non-expressive performance). The moods 

were designed around three dimensions: tender-aggressive, sad-joyful, and calm-

restless. The mood and local IR, GTTM and Jazz structures around a note are linked to 

the expressive deviations in the performance of that note. These links are stored as 

performance cases. SaxEx can then be given a non-expressive audio file and told to play 

it with a certain mood.  A further AI method is used then to combine cases: Fuzzy 

Logic. For example - if two cases are returned for a particular note in the score and one 



74 
 

says play with low vibrato, and the other says play with medium vibrato, then fuzzy 

logic combines them into a low-medium vibrato. The learning of new CBR solutions 

can be done automatically or manually through a GUI.  

2.3.6  Hierarchical Structure-based Systems 

 

Hierarchical Parabola Model. One of the first CSEMPs with a hierarchical expressive 

representation was the Hierarchical Parabola Model (Todd 1985; Todd 1989; Todd 

1992; Todd 1995). Todd argues it was consistent with a kinematic model of expressive 

performance, where tempo changes are viewed as being due to accelerations and 

decelerations in some internal process in the human mind/body, for example the 

auditory system. For tempo the hierarchical parabola model uses a rainbow shape like 

DM‟s phrase arch, which is consistent with Newtonian kinematics. For loudness the 

model uses a “the faster the louder” rule, creating a dynamics rainbow as well. 

The key difference between DM and this hierarchical model is that the hierarchical 

model has greater expressive representation and wider performance action. Multiple 

levels of the hierachy are analysed using Lerdahl and Jackendoff‟s Generative Theory 

of Tonal Music (GTTM). GTTM Time Span Reduction (TSR) examines each note‟s 

musicological place in all hierarchical levels. The parabolas are generated at each level, 

from the note-group level upwards (Figure 5) and added to get the performance. This 

generation is done by a parameterized parabolic equation which takes as input the result 

of the GTTM TSR analysis. 

The performance was shown to correlate well by eye with a short human performance 

but no correlation figures were reported. Clarke and Windsor (2000) tested the first four 

bars of Mozart‟s K.331; comparing two human performers with two performances by 

the Hierarchical Parabola model. Human listeners found the Parabola version 
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unsatisfactory compared to the human ones. In the same experiment however, the 

Parabola model was found to work well on another short melody. The testing also 

showed that the idea of “the louder the faster” did not always hold.  

 

 

 

 

 

 

Figure 5: Todd Parabola Model 

 

Composer Pulse and Predictive Amplitude Shaping. Manfred Clynes‟ Composer Pulse 

(Clynes 1986) also acts on multiple levels of the hierarchy. Clynes hypothesises each 

composer has a unique pattern of amplitude and tempo variations running through 

performances – a pulse. This is captured as a set of numbers multiplying tempo and 

dynamics values in the score. It is hierarchical with separate values for within the beat, 

the phrase and at multiple bar level. Table 4 shows the values of pulses for phrase level 

for some composers. The pulses were measured using a sentograph to generate pressure 

curves from musicians tapping their finger whilst thinking of or listening to a specific 

composer. Figure 6 shows the structure of a pulse set in three-time (each composer has 

a three-time and a four-time pulse set defined). This pulse set is repeatedly applied to a 

score end on end. So if the pulse is 12 beats long and the score is 528 beats, the pulse 

will repeat 528/12 = 44 times end on end. 

Tempo Parabolas 

Note Groupings 
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Another key element of Clyne‟s approach is Predictive Amplitude Shaping. This adjusts 

a note‟s dynamic based on the next note simulating “a musician's unconscious ability to 

sculpt notes in this way” that “makes his performance flow beautifully through time, 

and gives it meaningful coherence even as the shape and duration of each individual 

note is unique.” A fixed envelope shape model is used (some constants are manually 

defined by the user), the main inputs being distance to the next note and duration of the 

current note. So the Pulse/Amplitude system has only note level expressive 

representation. 

 

Level 2 Composers’ Pulses - 4 Pulse 

Beethoven 
Duration 

Amplitude 

106 

1.00 

89 

0.39 

96 

0.83 

111 

0.81 

Mozart 
Duration 

Amplitude 

105 

1.00 

95 

0.21 

105 

0.53 

95 

0.23 

Schubert 
Duration 

Amplitude 

97 

1.00 

114 

0.65 

98 

0.40 

90 

0.75 

Haydn 
Duration 

Amplitude 

108 

1.00 

94 

0.42 

97 

0.68 

102 

1.02 

Schumann 
Duration 

Amplitude 

96 

0.60 

116 

0.95 

86 

0.50 

102 

1.17 

Mendelssohn 
Duration 

Amplitude 

118 

1.00 

81 

0.63 

95 

0.79 

104 

1.12 

 

Table 4: Level 2 Composers‟ Pulses 

 

Clynes‟ test of his own model (Clynes 1995) showed that a number of expert and non-

expert listeners preferred music with a composers pulse than with a different pulse. 



77 
 

However not all tests on Clynes‟ approach have supported a universal pulse for each 

composer (Thompson 1989; Repp 1990), with suggestions instead that the pulse may be 

effective for a subset of a composer‟s work.  

 

 

 

 

 

Figure 6: Structure of a pulse set in three-time 

 

Kagurame. Kagurame (Suzuki et al. 1999; Suzuki 2003) is a case-based reasoning 

system which is designed to incorporate a wider degree of performance conditions than 

solely mood, for example playing in a Baroque or Romantic style. Rather than GTTM 

and IR, Kagurame uses its own custom hierarchical note structure analysis to develop 

and retrieve cases for expressive performance. Score analysis automatically divides the 

score into segments recursively with the restriction that the divided segment must be 

shorter than one measure. Hence manual input is required for boundary information for 

segments longer than one measure. The score patterns are derived automatically after 

this, as is the learning of expressive actions associated with each pattern. Kagurame acts 

on timing, articulation, and loudness. There is also a polyphony action called Chord 

Time Lag – notes in the same chord can be played at slightly different times. Results are 

reported for monophonic Classical and Romantic styles. It is reported that a high 

percentage of listeners guessed correctly whether the computer piece was Romantic or 

Classical style.  
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Combined Phrase-decomposition/PLCG. The combined Phrase-decomposition/PLCG 

system (Widmer and Tobudic 2003) also utilizes the hierarchical structure of the music. 

When learning the performance model, this CSEMP takes as input scores that have had 

their hierarchical phrase structure manually defined to three levels by a musicologist 

(who also provides some harmonic analysis), together with an expressive MIDI 

performance by a professional pianist. Tempo and Loudness curves are calculated from 

the MIDI performance, and then the system does a multi-level decomposition of these 

expression curves. This is done by fitting quadratic polynomials to the tempo and 

loudness curves (similar to the curves found in Todd‟s Parabola Model).  

Once the curve-fitting has been done, there is still a “residual” expression in the MIDI 

performance. This is hypothesised as being due to note-level expression, and a previous 

note level expression algorithm – PLCG (Partition Learn Cluster Generalize) - 

developed by Widmer (2003) is run on the residuals to learn the note-level rules which 

generate this residual expression. PLCG learns multiple rule-sets in parallel, and 

clusters rules by similarity, and optimizes them into a final single note-level rule set. 

The learning of the higher structure level tempo and loudness deviations is done using a 

case-based learning type method - by a mapping from multiple-level features to the 

parabola/quadratic curves. An extensive set of music features are used including: length 

of the note group, melodic intervals between start and end notes, where the pitch apex 

of the note group is, whether the note group ends with a cadence, and the progression of 

harmony between start, apex and end.  

To generate an expressive performance of a new score, the system moves through the 

score and in each part runs through all its stored musical features vectors learned from 

the training; it finds the closest one using a simple distance measure. It then applies the 

curve stored in this case to the current section of the score. Data for curves at different 
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levels, and results of the note level expression, are added together to give the expression 

performance actions.  

DISTALL System. Widmer and Tobudic did further work to improve the results of the 

Combined Phrase-decomposition/PLCG, developing the DISTALL system (Tobudic 

and Widmer 2003a; Tobudic and Widmer 2003b; Tobudic and Widmer 2003c) for 

simulation. The learned performance cases in the DISTALL system are hierarchically 

linked, in the same way as the note groupings they represent. So when the system is 

learning sets of expressive cases, it links together the feature sets for a level 3 grouping 

with all the level 2 and level 1 note groupings it contains. When a new piece is 

presented for performance, and the system is looking at a particular level 3 grouping of 

the new piece, say X – and X contains a number of level 2 and level 1 subgroupings - 

then not only are the score features of X compared to all level 3 cases in the memory, 

but the subgroupings of X are compared to the subgroupings of the compared level 3 

cases as well. There have been measures available which can do such a comparison in 

case-based learning before DISTALL (e.g. RIBL (Emde and Wettschereck 1996)). 

However DISTALL does it in a way more appropriate to expressive performance – 

giving a more equal weighting to subgroupings within a grouping. In tests for tempo, 11 

of the 16 generated performances were better than a mechanical/neutral performance. 

Correlations varied from 0.89 for loudness in Mozart K283 to 0.23 for tempo in Mozart 

K332. The mean correlation for loudness was 0.7 and for tempo was 0.52.  

 

2.3.7 Multi-agent Systems 

Multi-Agent System with Imitation. The Multi-Agent System with Imitation (Zhang 

and Miranda 2007) is the only MAS for expressive performance we are aware of. It is 

influenced by Miranda‟s (2003) evolution of musical culture MAS study, and inspired 

by the hypothesis that expressive music performance strategies emerge through 
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interaction and evolution in the performers‟ society. The agents have fitness functions to 

evaluate theirs and other agents‟ performances. Rather than comparing the generated 

performances to actual performances, the fitness function here expresses constraints 

inspired by the generative performance work of Eric Clarke (1998). When a score is 

presented to an agent for performance, the system constructs a theoretical timing and 

loudness curve for the melody (one advantage of this CSEMP is that this music analysis 

is automatic). However this curve is not used directly to generate the actual 

performance, but to influence the evolution. The timing curve comes from an algorithm 

based on Cambouropoulos‟ (2001) Local Boundary Detection Model (LBDM) – the 

inputs to this model are score note timing, pitch and harmonic intervals. The resulting 

curve is higher for greater boundary strengths. The approximate loudness curve is 

calculated from a number of components – the harmonic distance between two notes 

(based on a measure by Krumhansl (1991)), the metrical strength of a note (based on the 

Melisma software (Temperley and Sleator 1999)), and the pitch height. These values are 

multiplied for each note to generate a loudness curve.  

A fitness function is constructed referring to the score representation curves. It has 3 

main elements – fitness is awarded if:  (1) the pulse set loudness and timing deviations 

follow the same direction as the generated loudness and timing curves; (2) timing 

deviations are increased at boundaries; (3) timing deviations are not too extreme. Point 

(1) does not mean that the pulse sets are the same as the loudness and timing curves, but 

– all else being equal - that if the dynamic curve moves up between two notes, and the 

pulse set moves up between those two notes, then that pulse set will get a higher fitness 

than one that moves down there.  

In this model each agent listens to other agents‟ monophonic performances, evaluates 

them, and learns from those whose performances are better than their own. Every 

agent‟s evaluation equation is their fitness function, and performance deviations are 
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modelled as a hierarchical pulse set (similar to Manfred Clynes pulse sets described 

earlier). When an agent hears a performance it evaluates as being better than its own, it 

attempts to imitate it but ends up giving a slightly mutated performance. This imitating 

agent then generates a pulse set internally that matches its mutated performance. So 

pulse sets are not exchanged, performances are (just as humans imitate behaviour, not 

neural and underlying biological processes). The performances of the system have not 

been evaluated in testing.  

 

 

Table 5: Expressive Performance Systems reviewed.  

CSEMP Performance 

Knowledge 

Analysis Performance 

Context 

Instrument 

Model (or 

Application)  

Performance 

Actions 

Director Musices  
(Sundberg et al. 1983) 

Rules  Custom Mood space All (Piano) T/D/A/P 

Hierarchical Parabola 
(Todd 1985) 

Parabola 
equation  

GTTM TSR  - Piano T/D 

Composer Pulse 

(Clynes 1986) 

Multiplier set  - - All  T/D 

CaRo (Canazza et al. 

2000) 

Linear model Custom Mood space All  T/K/D/A 

Emotional Flute 

(Camurri et al. 2000) 

ANN and 

rules 

Custom Mood space Flute T/D/V 

SaxEx (Arcos et al. 

1997) 

Fuzzy Rules Narmour / IR / 

GTTM, 

Custom 

Mood space Saxophone T/D/V/K 

Kagurame (Suzuki et 
al) 

Rules Custom  Performance 
conditions 

Piano T/D/A 

PLCG /Phrase-

decomposition 

(Widmer and Tobudic 
2003) 

 

Learned rules Custom, 

Harmonic by 

musicologist 

- Piano T/D/A 

DISTALL (Tobudic 
and Widmer 2003a)  

CBR Custom, 
Harmonic by 

musicologist 

- Piano T/D/A 

MAS with Imitation 

(Zhang and Miranda 
2007) 

Pulse set LBDM, 

Kruhmans, 
Melisma 

- Piano T/D 
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2.3.8 CSEMP Summary 

 

Table 5 lists the systems reviewed together with information about their key modules 

for this thesis (as described for Figure 4 earlier). Note that the column for Instrument 

Model is also used for CSEMPs without an explicit instrument model, so as to show 

their applicability to various instruments. A number of abbreviations are used in Table 5 

and throughout the thesis are explained in the List of Abbreviations in Appendix 5. 

 

2.4 Combined Performance and Composition Systems 

IPCS combines algorithmic composition and expressive performance. There has been 

some work into computer-aided composition systems which also generate expressive 

performances of music as part of their process. However the two systems we are aware 

of, aside from IPCS, were not actually designed for this. The Ossia system was 

originally designed for computer-aided composition, and it was found that the 

compositional algorithms also generated expressive performance-type elements. The 

CMERs system was designed to algorithmic transform previous composition 

affectively, but it was found that expressive performance algorithms were also needed 

to make the transformation effective in communicating emotion. These two systems 

will now be examined. 

Ossia. Dahlstedt‟s (2007) Ossia is a CAC which incorporates both compositional and 

performance aspects. Ossia is able to generate entirely new and expressively performed 

compositions. Like IPCS, Ossia is generating novel compositions and performances, 

rather than learning how to perform like a human. Ossia generates music through a 

novel representational structure that encompasses both composition and performance – 
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Recursive Trees (generated by GAs). These are “upside down trees” containing both 

performance and composition information. The bottom leaves of the tree going from left 

to right represent actual notes (each with their own pitch, duration and loudness value) 

in the order they are played. The branches above the notes represent transformations on 

those notes. To generate music the tree is flattened – the “leaves” higher up act upon the 

leaves lower down when being flattened to produce a performance/composition. So 

going from left to right in the tree represents music in time. The trees are generated 

recursively – this means that the lower branches of the tree are transformed copies of 

higher parts of the tree.  

Motifs are transformed into new motifs, and themes are transformed into new 

expositions. Ossia uses a novel transformation-based music representation. In Ossia, 

transformations of note, loudness and duration are possible – the inclusion of note 

transformations here emphasising the composition aspect of the Ossia. The embedding 

of these transformations into recursive trees leads to the generation of gradual 

crescendos, decrescendos and duration curves – which sound like expressive 

performance patterns to a listener. The trees also create a structure of themes and 

expositions. Ossia uses a GA to generate a population of trees, and judges for fitness 

using such rules as number of notes per second, repetivity, amount of silence, pitch 

variation, and level of recursion. These fitness rules were developed heuristically by 

Dahlstedt through analysis-by-synthesis methods. Dahlstedt observes “The general 

concept of recapitulation is not possible, as in the common ABA form. In terms of 

testing – the system has not been formally evaluated; though it was exhibited as an 

installation at Gaudeamus Music Week in Amsterdam.  

Despite Ossia‟s power, it lacks documentation of in-depth examination of its processes 

and abilities. It also depends significantly on Dahlstedt‟s heuristic rules which limit the 

system‟s flexibility for other composers. 
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CMERS. The Computational Music Emotion Rule System (CMERS) has a rule-set of 

19 rules and requires manual mark-up of phrases in the original score which is to be 

transformed. These rules are designed not only to inject expressive performance patterns 

into the score to generate human-like performances, but also to use expressive 

performance patterns and compositional transformations to express emotions to the 

listener. To this end CMERS is able to change the score itself, recomposing it. CMERS 

rules were constructed from a review of 20 studies of music and emotion. The rules for 

expressing emotions include: moving between major and minor modes, changing note 

pitch classes, and Director Musices-type rules for small changes in loudness and tempo. 

It was found that the addition of the microfeature humanisation rules improved the 

accuracy of the emotional expression (as opposed to solely using macrofeature 

“recomposition” rules). The rules for humanising the performance include some rules 

which are similar to Director Musices, such as Phrase Arch and emphasising metrically 

important beats.  

A significant number of formal listening tests have been done by Livingstone, showing 

that CMERS can change the emotion of music with an average accuracy rate of 78%. 

However this is limited to four emotions – i.e. happy, sad, angry, or tender. Also it does 

not take into account the issue of musicality (Zahler 1991) – i.e. are the resulting re-

compositions of lesser or greater musicality of the original? Also CMERS is more 

successful at influencing perceived emotions in musically trained than untrained 

subjects – and given that the majority of musical listeners are untrained it is possible 

that this factor could skew the results to appearing better than they are (half of their test 

subjects were musically trained). CMERS does not take into account structural and 

cumulative effects on emotional communication. For example the difference in the 

“sad”-communication in these two scenarios: (a) a happy section of music followed by a 

sad section of music; (b) an angry section followed by a sad section of music. Another 
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example would be – how does emotional communication get changed by the various 

different musical structure types, e.g. ABA, ABAB, AABB, etc? 

It was found that CMERS is more successful than DM at expressing emotions, 

presumably because it adjusts both performative and compositional aspects. CMERS is 

one of the better tested systems in this review – one reason being that its aim is more 

measurable than that of a normal computer-aided composition system – i.e. affective 

transformation of a given score. In its current design it has limited use as a computer-

aided composition system, and tests of its usage as such have not been documented. It 

will be seen later that CMERS is a key contributor to the composition algorithms used 

in IPCS. The fact that CMERS does not take into account structural effects is less 

important for IPCS, as in IPCS tune structure is built in parallel with the application of 

the performance algorithms. Also the limitation of CMERS testing to Happy, Sad, 

Angry and Tender is less a limitation and more a convenience for IPCS – given that it 

will be used in IPCS in conjunction with Director Musices (which incorporates similar 

divisions into Happy, Sad, Angry and Tender). 

 

2.5 Summary 

In this chapter we have made a representative survey of the areas involved in the 

technology behind this thesis – Multi-agent Systems, Computer-aided Composition and 

Computer Systems for Expressive Performance.  

The purpose of this review was to contextualize the research reported in this thesis, and 

to help to demonstrate why the work contains original contributions. IPCS attempts to 

address the following elements which are missing from previous work. The systems 

reviewed… 
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 …do not address the issue of the generation of a larger scale musical structure. 

  …(except ones for modeling) produce only one output tune for users to choose 

from. 

 …that are MAS CAC systems, do not use an affective–based interaction model 

(a natural type of model to consider due to affective nature of music). They 

utilize other models, e.g. swarms, negotiation, synchronization. 

 …which are interaction-based MAS CAC systems, either have short fixed tune 

length or do not generate pitches. 

 …that are affective-based composition systems do not attempt to utilize the 

result of interaction emergence in their use of affectivity, or have only reported it 

as a potential non-implemented feature.  

 …for computer-aided composition do not incorporate expressive performance 

algorithms. 

These gaps have focused research in this thesis as follows. Intermediate multi-agent 

systems have been utilized - such systems maintain the focus on emergence, while 

incorporating Blackwell‟s (2007) ideas of increasing structured behavior, including 

“social” structures. The interaction dynamic chosen in this thesis is imitation, a multi-

agent method which has been shown in the review to allow emergent musical behavior 

and repertoires (e.g. (Miranda 2003), (Gong et al. 2005)). To allow tunes to grow in 

length, imitated tunes were concatenated. The imitation dynamics are largely governed 

by an affective processing system, since music is often called a language of emotion, 

and the model of affectively communicating agents is as relevant to performing 

musician groups as swarming is to performing improvisers. Finally affective expressive 

performance was integrated into the imitation process based on one of the simplest 

CSEMPs (DM (Friberg et al. 2006)). In the next chapter will now describe the IPCS 

system in detail. 
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Chapter 3 – Method 

 

An Intermediate Multi-agent Systems for Computer-aided Composition and Expressive 

Performance of Music will now be introduced – called the “Intermediate Performance 

Composition System” or IPCS (pronounced “ip-siss”). IPCS is not a Low Processing 

MAS because its agents have a growing memory of data about themselves and each 

other, and a music perception and deliberation function. IPCS is not heavy duty because 

its processing functions are a handful of static linear equation-based music 

transformations, and a static linear model of musical-affect estimation. Hence IPCS is 

an intermediate MAS and – as has been observed – has a number of elements in 

common with previous intermediate musical MAS. It is the only implemented 

Intermediate MAS designed for computer-aided melody composition of which we are 

aware, as well as the first integrated computer-aided composition and expressive 

performance approach that utilizes MAS. 

There are two linguistic elements that need to be clarified for this chapter. The use of 

affective labels such as “Happy” and “Sad” are used to assist clarity in introducing the 

reader to the concepts of IPCS; they are not meant to be taken literally. For example 

“Happy” refers to a region of high valence and arousal values, and “Sad” refers to a 

region of low valence and arousal values. The same goes for any words which may 

seem to imply that agents have any kind of personification, or deeper intentional or 

biological model. Such language is merely a shorthand for clarifying functionality. A 

second issue is the use of the word “performance”. We distinguish between the word 

“performance” and the phrase “expressive performance”. An agent has a tune – when it 

performs that tune it both “re-composes” elements of the tune, and then expressively 

performs that tune using methods like those found in CSEMPs in the previous chapter. 

So a “performance” by an agent to another agent includes both compositional 
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transforms and expressive performance transforms. Thus the use of the word 

“performance” does not necessarily solely refer to CSEMP-type expressive 

performance. In fact whenever CSEMP-type expressive performance is being referring 

to the phrase “expressive performance” will be used explicitly. 

 

3.1 IPCS Overview 

Agents are initialized with a tune contain a single note, and over the interaction period 

longer tunes are built through interaction. Figure 7 shows a static representation of an 

IPCS collection of agents. Below this an informal six point overview of IPCS is now 

given to allow the reader to have an overall sense of the system before examining the 

detail. Below each point is an explanation of how the point addresses an issue arising 

from elements lacking in previous systems. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Six IPCS agents in a variety of affective states with on agent performing. 

 

 

 



89 
 

1. Size - IPCS consists of a small-medium size (2 to 16) collection of agents. 

Music composition and performance are in the end subjectively judged. Miranda 

et al (2010) address this by each agent generating its own variation of the final 

result. Each IPCS agent will produce its own tune. A small-to-medium number 

of agents allows all tunes to be auditioned and selected from by the user. 

2. Music - Each agent can expressively perform monophonic tunes and learn 

monophonic tunes from other agents. 

Unlike previous computer-aided composition systems, expressive performance 

algorithms are incorporated by design. 

3. Affective Performance - An agent has an affective state (an “artificial emotional 

state”) which affects how it performs the music to other agents; e.g. a “happy” 

agent will perform “happier” music. 

There already exist systems based on simple social and group scenarios: e.g. 

(Blackwell and Bentley 2002) uses a simple swarming model, (Goldman et al. 

1999) uses a simple negotiation model, and (Wulfhost et al. 2003b) uses 

synchronisation between players. But there is not an MAS that uses an affective–

based interaction model (a natural type of model to consider due to affective 

nature of music) to generate melodies. 

4. Affective Influence - An agent‟s affective state is in turn affected by the 

affective content of the music performed to it; e.g. if “sad” music is performed to 

a “happy” agent, the agent will become a little more “sad”. 

The MAS and non-MAS affective-based composition systems reviewed do not 

attempt to utilize the result of interaction emergence in their use of affectivity, or 

have only reported it as a potential non-implemented feature.  
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5. Tune Learning - Agents will only learn tunes performed to them if the affective 

content of the tune is similar to their current affective state; learned tunes are 

concatenated to the end of their current tune. 

The use of affective similarity harks back to point (3) above, regarding 

interaction. Unlike (Miranda 2003) and (Gong et al 2005), tune lengths can 

increase. A simple tune length increase is desirable (concatenation) so as to 

focus musical structure generation on interaction-driven emergence. 

Concatenating at the end of tunes is one element designed to incorporate larger-

scale musical structure into the composition, through tune development.   

6. Agent Interaction Coefficient - Agents develop “opinions” of other agents that 

perform to them, depending on how much the agents can help their tunes grow. 

These opinions affect who they interact with in the future. 

It will be seen that the Interaction Coefficient facilitates the generation of a 

larger scale musical structure, an element lacking from previous MAS and 

affective CAC systems. 

 

The use of affective performances for composition is also motivated by the observation 

that they provide a uniform approach for the generation of melodies and of themes and 

other structures. For example when agents are learning single notes from other agents, 

each of the new notes they learn will have been transformed – often to a new pitch. 

Thus the learning agent will be receiving and concatenating a series of notes which are 

transformed in pitch, thus creating a melody. Once agents have learned melodies and 

are then performing these to each other, transformed versions of melodies will be being 

learned, rather than single notes. This second aspect of transforming melodies to create 

new ones is a common model in algorithmic composition and expressive performance: 
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the development of a number of motifs which are transformed and combined into a 

structural hierarchy. A key difference in IPCS is that the same method that is used to 

create melodies (transformation) is also used to combine the melodies into larger forms. 

Also the compositions are being created here by communication between individual 

agents, whereas algorithmic composition systems usually are based on a single agent 

selecting, transforming and constructing.  

 

3.2 IPCS Agents 

An IPCS agent will be defined from a Data / Output / Input / Processing point of view. 

3.2.1 Agent Data 

An IPCS Agent contains the following data: 

a. Agent Tune - a monophonic tune in MIDI format 

b. Agent Affective State –a number pair <valence, arousal> representing the 

artificial affective state of the agent based on the valence/arousal model of 

affectivity discussed earlier. 

c. Interaction Coefficient List – a list of interaction coefficients of all the other 

agents in the collection – these are non-negative floating point numbers. 

 

The concept of Interaction Coefficient is used in IPCS to attempt to create emergent 

compositional hierarchies (as will be explained later). However another way of thinking 

of Interaction Coefficient at this point is to consider an imagined “motivation” for an 

IPCS agent. The aim of IPCS is – starting with each agent having a single note - to build 

actual tunes. So an agent should “want” notes. An agent A‟s Interaction Coefficient 



92 
 

measure of another Agent B‟ is based on the note count and number of performances it 

has added from B to its own tune.  

The reason Interaction Coefficient method was chosen for musical hierarchy generation 

is that – as seen in the review - such methods are common in intermediate multi-agent 

systems, though not previously for musical reasons. So it was desired to examine if such 

a standard MAS approach could provide larger scale musical structure. The valence / 

arousal model of emotion was chosen because of its successful use in a number of 

musical systems reviewed and because of its continuous nature (allowing continuous 

adjustment of agent state and musical features). 

 

3.2.2 Agent Output 

An IPCS agent can only output one thing – a performance of its current tune. This 

performance is affected by its internal processing based on its internal data. This allows 

the agent to perform its tune with affective re-composition and affective expressive 

performance. 

 

3.2.3 Agent Input 

An IPCS agent can receive two types of input: 

a. Other Agent Performance – when another agent performs a tune to it, an agent 

can precisely store and can process that performance. 

b. Other Agent Identification – the agent is able to identify unambiguously any 

agents during interaction cycles. 
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These allow the agent to imitate performances and grow their tunes, as well as to utilize 

the Interaction Coefficient functionality in choosing which other agents to perform to 

(thus incorporating the larger scale music structure functionality). 

 

3.2.4 Agent Internal Processing 

An IPCS agent has six basic internal processing functions. In brackets after each 

function, the reason for the function is given: 

1. Performance Output Choice– Choose which agent to perform to, based on its 

Interaction Coefficient list of agents [large scale music structure]. 

2. Performance Output Transform - Play its current tune as a performance to 

another agent, with performance features based on its own current affective state 

[affective-based interaction for composition and expressive performance]. 

3. Performance Input Estimate – Estimate the affective content of a tune performed 

to it by another agent, and adjust its own internal affective state based on the 

affective content [to aid the below decision]. 

4. Performance Input Choice – Decide whether to concatenate a performance from 

another agent to its own current tune based on: (a) the affective content of that 

performance, and (b) how long the listening agent‟s current tune is - agents have 

a finite tune length memory [interaction control]. 

5. Performance Input Interaction Coefficient – Update its Interaction Coefficient 

measure of another agent based on that agent‟s performance [large scale music 

structure]. 

6. Performance Input Add – Add a performance by concatenating it to the end of 

its current tune [variable tune length]. 
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The actual details of the processing are given later in this chapter. However it is worth 

noting now an element which will be discussed in more detail later: that the above 

behaviours, including the concatenation process, are designed to generate compositional 

structure even though the agents have zero compositional knowledge of melodic 

structure.  

 

3.2.5 Agent Summary 

Figure 8 summarizes an IPCS individual agent structure in a graphical form, showing 

inputs / outputs / data / processing. The in-depth details of the input / output / processing 

/ data will be discussed in a later section. Before this the interaction protocol and cycle 

between agents in IPCS will be introduced. 

 

3.3 IPCS Agent Interaction Cycle 

The agent interaction cycle will now be defined in terms of: initial condition, repeated 

cycle, and ending condition. 

3.3.1 Initial Condition 

Initially all agents in IPCS are given the same single note. By default this is MIDI value 

60, or middle C. The note will also have a default MIDI duration of 1 second. Both of 

these initial values can be adjusted by the user, but the same across all agents. In most 

musical Cellular Automata and low processing MAS, the music is designed to be an 

expression of the interaction patterns of the cells / agents. By only providing a single 

note to an agent, and giving all agents‟ MIDI notes the same values, it follows that any 

melodies are constructed only as a result of the agent interactions in this Intermediate 

MAS.  
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Figure 8: Summary of Agent Structure 

 

The first agent to perform is always Agent number 1, the first candidate for being 

performed to is always Agent number 2, and then Agent number 3, etc. (Note: hereafter 

for readability whenever a description of any system focuses predominantly on two 

players the performer agent will always be labelled as Agent A and the candidate 

listener as Agent B. But for examples outside of this context, numeric indices will 

usually be used – i.e. Agent 1, 2, etc.) 

3.3.2 Repeated Cycle 

The IPCS cycle is as follows: 

1. If Agent A‟s Interaction Coefficient measure for Agent B is below Agent 

A‟s average Interaction Coefficient for other agents, then ignore Agent B 

and select the next listener agent, repeating this test. 

2. Agent A performs its tune TA, adjusting the tune based on its own current 

affective state to give performance PA. 

Agent Outputs: 

Performance of 

Current Tune to 

Other Agent 

Agent Inputs: 

Other Agent 

Performance. 

Other Agent 

Identification. 

Agent Data: 

Agent Tune 

Agent Affective State 

Interaction 

Coefficient List 

Agent Processing: 

Performance Input Estimate. 

Performance Input Choice. 

Performance Input 

Interaction Coefficient. 

Performance Input Add. 

Performance Output Choice. 

Performance Output 
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3. Agent B estimates the affective content of Agent A‟s performance PA. 

4. If B‟s estimated affective content of PA is close to its own current affective 

state, Agent B concatenates PA to the end of its own tune TB. Or to put it 

another way: TB  = TB  + PA. 

5. Agent B adjusts its own affective state towards its estimate of the affective 

content of performance PA. 

6.  Agent B updates its Interaction Coefficient measure of Agent A 

proportional to the number of notes provided by Agent A in performance PA. 

7. Agent A turns its attention iteratively to the next agent, and returns to Step 1. 

Note: once all agents have been considered as candidates for performance by 

Agent A, a new performer agent is iteratively selected to perform , say agent 

B, and to listen, say agent C. 

We will give two examples to help clarify the cycle process – one in which an agent 

fails in communicating its performance and one in which it succeeds. Note – in these 

examples we assume agents‟ estimation of affective content of tunes is perfect (as will 

be seen later the estimation algorithms are not perfect). 

3.3.2.1 Cycle Example 1 

In this example we examine three agents: (a) Agent 1 is the performer and starts by 

considering performing to Agent 2; (b) Agent 1‟s measure of Agent 2‟s Interaction 

Coefficient is very low in this example; (c) Agent 1‟s measure of Agent 3‟s Interaction 

Coefficient is very high; (d) Agent 1‟s affective state is high valence and high arousal – 

i.e. “happy”; Agent 3‟s affective state is low valence and low arousal – i.e. “sad”. 

i. Because Agent 1‟s Interaction Coefficient of Agent 2 is very low, Agent 1 

does not even perform to Agent 2. It selects the next Agent iteratively – 

Agent 3. 
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ii. Agent 1‟s view of Agent 3‟s Interaction Coefficient is very high – so Agent 

1 performs its tune T1, adjusting it to make it “Happier” because of its high 

valence and arousal state, giving a performance P1. 

iii. Agent 3 estimates the affective content of Agent 1‟s performance P1 and gets 

a result of high valence and arousal – i.e. it estimates it is a “happy” 

performance. 

iv. Because Agent 3‟s affective estimate of Agent 1‟s tune is high valence and 

arousal but Agent 3‟s state is low valence and arousal – i.e. very different to 

“happy” - Agent 3 discards Agent 1‟s tune.  

v. However Agent 3 still adjusts it owns affective state towards its estimate of 

the affective content of performance P1 i.e. it becomes a little more “happy”. 

vi. Neither Agent makes any adjustment to their Interaction Coefficient 

measures since no performances were stored. 

vii. Agent 1 remains the performer, and the next agent is iteratively chosen to 

listen – i.e. Agent 4. 

3.3.2.2 Cycle Example 2 

In this example: (a) Agent 1 is the performer and starts by considering performing to 

Agent 2; (b) Agent 1‟s measure of Agent 2‟s Interaction Coefficient is very high in this 

example; (c) Agent 1‟s affective state is low valence and medium arousal – i.e. “quite 

sad”; Agent 2‟s affective state is low valence and low arousal – i.e. “sad”. 

i. Agent 1‟s view of Agent 2‟s Interaction Coefficient is very high – so Agent 

1 performs its tune T1, adjusting it to make it “quite sad” because of its low 

valence and medium arousal state, giving a performance P1. 

ii. Agent 2 estimates the affective content of Agent 1‟s performance P1 and gets 

a result of low valence and medium arousal – i.e. it estimates it is a “quite 

sad” performance. 
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iii. Because Agent 2‟s affective estimate of Agent 1‟s tune is low valence and 

medium arousal and Agent 2‟s state is low valence and low arousal – i.e. 

because “sad” and “quite sad” are close – Agent 2 concatenates Agent 1‟s 

performance P1 to the end of its Tune: T2  = T2  + P1 

iv. Agent 2 adjusts it owns affective state towards its estimate of the affective 

content of performance P1 i.e. it raises its arousal from “sad” to “quite sad”. 

v. Agent 2 has received a tune from Agent 1 so it increases its Interaction 

Coefficient estimate of Agent 1, proportional to the number of notes in the 

performance P1. 

vi. Agent 1 remains the performer, and the next agent is iteratively chosen to 

listen – i.e. Agent 3. 

 

3.3.2.4 Cycle Diagram 

Cycles happen in a particular iterative order as follows. Suppose there are three agents: 

1, 2 and 3. In the first cycle 1 can perform to 2 and then 3; in the second 2 can perform 

to 1 and 3; and in the third 3 can perform to 1 and 2. In Figure 9 a summary of the 

repeated cycle is shown graphically. 

 

3.3.3 Ending Condition 

The agents continue in the above cycle until they encounter a composer-defined 

stopping condition. Example stopping conditions include (based on a composer-given 

value N) stopping when: 

1. The number of cycles reaches N 

2. The average agent tune length is greater than N 

3. One agent reaches a tune length of greater than N 

4. All agents‟ tunes stop growing in length 
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In experiments in this thesis, condition 1 alone is used. Though the others could be 

easily activated and utilized separately in logical combinations. 

Note that IPCS has a maximum number of notes per agent parameter, separate to the 

above. The purpose of this is to prevent exponential tune length growth. For example 

imagine two agents swapping tunes repeatedly – since each swapped tune was built 

from previous swapped tunes there will be an exponential length growth. Hence the 

maximum agent note count. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Summary of Agent Cycle 

 

Performer Agent A 
selects next listener. If 
Interaction Coefficient 

too low, select next one, 
and so on, until 

Interaction Coefficient 
sufficient.  

Listener Agent  B 
estimates affective 

content of PA 

If PA added, then Agent B 
increases Interaction 

Coefficient measure of 
Agent A by amount 

proportional to number of 
notes in PA. 

Adjust affective state 
of Agent B towards 
its estimate of the 
affective content of 

performance PA. 

Agent A performs its 
tune to listener Agent B, 
adjusting based on its 

affective state = PA 

If affective effective of 
PA is close enough to 

Agent B’s affective 
state, add to end of 
Agent B’s tune TB. 

If Agent A has 
worked through all 
possible listening 

Agents, select a new 
performer agent 

iteratively. 
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3.3.4 Affective Cycle 

Having given an overview of the interaction and cycling protocol, and of the Data / 

Output / Input / Processing for individual IPCS agent, a more in-depth description of 

IPCS will now be presented in the next four sections. This will be based on what will be 

called the “Affective Cycle” which is: 

1. Compositional Affective Transform  

2. Expressive Performance Affective Transform 

3. Performance Affective Content Estimation 

4. Affective State Update  

 

These four functions occur in that order in IPCS Agent cycling. The next sections will 

detail these four parts of the Affective Cycle. 

 

3.4 Affective Cycle – Composition Affective Transform 

Before performing its tune to another agent, an agent will transform its tune in a 

“compositional” way, and then transform it using expressive performance 

transformations. In this section the focus is on the “compositional” transformations. 

These are defined as transformations on the agent‟s MIDI tune that are not of the size 

and type found in Computer Systems for Expressive Performance. It was seen in the 

literature review in Chapter 2 that CSEMPs create patterns in music involve micro-

changes in timing, loudness and pitch. In systems such as the Computational Music 

Emotion Rule System (Livingstone et al. 2007) which perform both compositional and 

expressive performance transformations, the compositional transformations involve 

larger changes in pitch (i.e. a semitone or more) and timing. The compositional 
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transformations used in IPCS are based on two sources: CMERS and Juslin‟s (2001) 

paper on musical features and emotional expression.  

Two types of compositional transformations are applied - Linear Feature Transforms 

and a Key Mode Transform. The linear transformations – based on Livingstone at al, 

(2007) and Juslin (2001) are: (a) inter-onset interval and (b) duration are inversely 

proportional to arousal, (c) loudness is proportional to valence and arousal, and (d) pitch 

is proportional to valence and arousal (but with valence having twice as much 

influence). These are implemented using linear equations described in equations (1) to 

(4). It can be seen that equations (1) and (2) are basically the same, and lead to duration 

and onset being changed in lock-step. In other words the duration is only adjusted so as 

to keep it in line with the inter-onset interval; if inter-onset interval is changed by X%, 

then duration is changed by X%, and duration is never changed by the compositional 

rules unless inter-onset interval is changed by the rules. 

 

    ( )       ( )(              )  
   

(1) 

    ( )       ( )(              )     (2) 

     ( )        ( ) (  
     

 
(                 ))  (3) 

      ( )         ( ) (  
      

 
(                  ))  (4) 

 

When an agent A is about to perform and has a particular level of valence (valenceA) 

and arousal (arousalA), it will first compositionally transform its stored tune based on 

the effects of equations (1) to (4). The primed values on the left hand side of the 
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equations are the defining features of the compositionally transformed music, and are 

used to unambiguously generate a transformed MIDI file. The pre-transformation values 

IOIi(A), duri(A), loudi(A), and pitchi(A) are: the inter-onset interval between note i and 

the next note i+1 in seconds, the note duration in seconds, the MIDI loudness, and 

MIDI pitch of the i-th musical note of Agent A‟s stored tune. The post-transformation 

values are signified by a prime. The theta values, (θonset, θloud, and θpitch), are constant, 

fixed across all agents and define the affective sensitivity of the transformation – i.e. 

how much affect a change in Agent A‟s valence or arousal will have on the 

transformation. They are the maximum variation percentage bars around the current 

feature value. For example if theta is 0.25, then by Equation (1) the onset will vary from 

25% below its current value to 25% above its current value when arousal varies from -1 

to 1. If a transformation goes above the maximum MIDI value (127) then it is set to 

127. Similarly if it goes below 1 it is set to 1. Note θonset is used both for onsets and 

duration so that as gaps between notes are increased or decreased, the duration of the 

same notes is increased and decreased by the same amount. (Note: for more information 

on the MIDI music representation parameters and their maximum and minimum values 

see Appendix 1.) 

To give an example of the composition transformation: suppose agent A has a MIDI 

note with duration 0.5 seconds, MIDI pitch 60 (middle C), MIDI loudness 100, and 

inter-onset interval 1 second between its onset and the onset of the next note. And 

suppose the theta values for equations (1) to (4) are all 0.25. The examples for the 

results of the equations are given in Table 6 for difference values for valence and 

arousal, between -1 and 1. 
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The CMERS summary graph for its compositional affective rules is shown in Figure 10. 

It can be seen that the values in Table 6 are consistent with the properties of the Figure.  

 

Valence Arousal dur loud pitch 

0 0 0.5 100 60 

-0.5 0 0.5 93.75 55 

0.5 0 0.5 106 65 

0 -0.5 0.5625 94 58 

0 0.5 0.4375 106 63 

1 1 0.365 125 75 

-1 -1 0.375 125 75 

 

Table 6: Example Modified Features with thetas of 0.25 

 

Having looked at the linear transforms we will now look at the Mode transform. It is 

partly taken from Livingstone et al. (2007), and partly from Oliveira and Cardoso 

(2009). It is a simple transformation: 

 

 If valence > 0 transform performance to C major  

If valence < 0 and arousal < 0 transform performance to C minor 

If valence < 0 and arousal > 0 transform performance to “C semitone minor” 
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Figure 10: CMERS Music feature summary graph (Livingstone et al. 2007, p5) 

 

The agent transforms its whole performance this way when it performs, i.e. the whole 

tune it has stored, made up of its initial tune and those it has concatenated during 

interactions. For positive emotion a major key i s utilized and for negative emotion with 

negative arousal (e.g. “sadness”) a minor key is utilized. For negative valence and 

positive arousal (e.g. “Anger” or “Fear”) each note in C major is moved alternately up 

or down a semitone; this is designed to inject an “atonal” element to the music. The 

transform is algorithmic and deterministic – it searches either side of the current notes 

for a note in the new mode which does not violate a MIDI boundary (i.e. not out of the 

MIDI 128 parameter range). The pseudo-code for the transformation is shown below for 

major and minor: 
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FOR each PITCH in MIDI file 

 IF NOTE is NOT in required KEY THEN 

  IF Note INDEX is ODD 

   MOVE Note PITCH up a SEMITONE 

  IF Note INDEX is EVEN 

   MOVE Note PITCH down a SEMITONE 

 IF NOTE PITCH now ABOVE MIDI Range (127) 

  SET MIDI PITCH TO 125 

 IF NOTE PITCH now BELOW MIDI Range (1) 

  SET MIDI PITCH TO 3 

 

For the “angry/fear” quadrant, the algorithm is the same, except it tries to move notes 

out of key to create an atonal effect: 

 

FOR each PITCH in MIDI file 

 IF NOTE is IN C MAJOR THEN 

  IF Note INDEX is ODD 

   MOVE Note PITCH up a SEMITONE 

  IF Note INDEX is EVEN 

   MOVE Note PITCH down a SEMITONE 

 IF NOTE PITCH now ABOVE MIDI Range (127) 

  SET MIDI PITCH TO 125 

 IF NOTE PITCH now BELOW MIDI Range (1) 

  SET MIDI PITCH TO 3 

 

So suppose an agent A has stored a tune from a “happy” agent which is a major key. If 

agent A then performs its tune while “sad” it will convert all of its tune, including the 
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major part it received from another agent, into the minor mode. This version of IPCS 

has no ability for actual key composition functionality, hence the reason for using only 

C major and C minor.  

The key change algorithms could have been implemented in alternative ways, perhaps 

with greater compositional intelligence. However the above algorithms were chosen to 

be as simple as possible, while being non-random. The alternating between even and 

odd pitch indices was used to avoid a drift for pitches being moved up or down, given 

that randomness was not being used to avoid a drift. This helps to ensure any music in 

IPCS is not generated by a random process. 

 

3.5 Affective Cycle – Expressive Performance Affective Transform 

Having applied affective compositional transforms to its tune, before performing an 

agent will next apply expressive performance transformations. The expressive 

performance adjustments made when the agent performs a tune are patterns made up of 

much smaller changes in note onset, amplitude and note duration. These adjustments are 

based on the Director Musices (DM) CSEMP already discussed in the previous chapter. 

(As has already been mentioned DM and its variants are widely accepted and tested 

systems, and are simple enough to be integrated as part of a composition process.) An 

IPCS agent performance is based on the following Director Musices rules: 

 

 

 High Loud – Increase loudness as pitch increases. 

 Punctuation – add a micro-pause and duration change at phrase boundaries to 

emphasise phrasing. 
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 Duration Contrast – relatively short notes are shortened and relatively long 

notes are lengthened. 

 Duration Contrast Articulation – inserts a micro-pause between adjacent notes if 

the first note has an IOI between 30 and 600 milliseconds.  

 Phrase Arch – adds an accelerando to the start of a tune and a decellerando to 

the end. Similarly adds a crescendo to the start and a decrescendo to the end. 

 

These are all the rules identified by Bresin and Friberg (2000) as enabling emotional 

expressive performance through Director Musices, except for one. The one rule 

excluded from this list is Final Ritardando. This rule relates to the final slowing down 

that is often heard when a performer reaches the end of a piece of music. This rule is not 

utilised here because DM rules in our system are applied repeatedly as tunes are learned 

and communicated back between agents; whereas the Final Ritardando Rule should 

only be applied once and at the end of the piece. Applying it repeatedly every time an 

agent performs will lead to multiple Final Ritardandos appearing in the middle of the 

piece. All of the other rules (except Phrase Arch) are non-structural and can be viewed 

as emphasising their effects during their re-application as a tune iteratively expands in 

IPCS. The only other structural rule in the list – Phrase Arch – is actually applied 

repeatedly at multiple levels in Director Musices. So it is more reasonable to use such a 

structural rule in the repeated interactions of agents. In the case of all the Director 

Musices rules utilized, a natural question is whether such rules retain their purpose and 

meaning when repeatedly iterated as is done in IPCS. This will be addressed in the 

experiments in the next chapter.  
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3.5.1 Representative Affective States 

Bresin and Friberg (2000) examined what selection of rules, and what parameter values 

for the rules, were appropriate to express certain emotions through performance. They 

only did experiments for distinct emotion labels, rather than continuous valence and 

arousal values – i.e. there is no simple mapping from continuous valence and arousal 

indices on to the parameters of the DM emotional expressive performance model. IPCS 

utilizes continuous values of valence and arousal. So for the emotional expressive 

performance system a similar methodology to that used by Livingstone et al. (2007) is 

utilised and four DM emotions are selected as representing the 4 quadrants of 

valence/arousal. Specifically happiness, sadness, anger, and tenderness are selected - as 

shown in Table 7. The origin for the 2-D representation used for this table is Figure 3 in 

Chapter 2. For example: if the agent valence is less than 0, and the agent arousal is 

greater than 0, then the chosen representative emotion would be “Anger”. Table 8 

shows the DM results from Bresin and Friberg (2000) for these four representative 

emotions. Note that the parameter “Turn” in the final row of Table 8 refers to the peak 

in the “rainbow” shape over the note grouping. For example, a Turn of 0.5 would mean 

the peak was in the middle, giving a symmetric shape; whereas a Tune of 0.25 would 

mean the peak was a quarter way in to the note grouping. 

A key point is that Phrase Arch is defined in the DM Emotion System at two note 

grouping levels in the table: Levels 5 and 6. Examples of these grouping levels are 

shown in Figure 11. In the original Director Musices Emotion System, each grouping on 

Level 6 will have its own phrase arch generated for it, using the Level 6 parameters in 

Table 8; and each grouping on Level 5 will have its own phrase arch generated for it, 

using the Level 5 parameters in Table 8. However in IPCS, the application of Phrase 

Arch happens in a different way, as the rule is applied during and as part of 

composition. The aim of the IPCS approach is to generate a structurally meaningful set 

of accelerandi and deccelerandi. To understand this, there will now be a discussion of 
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compositional structure in IPCS and how it relates to expressive performance. 

 

Valence Arousal Representative 

Emotion 

Negative Negative Sadness 

Positive Positive Happiness 

Negative Positive Anger 

Positive Negative Tenderness 

 

Table 7: Representative Emotions for DM 

 

 Happy Sad Angry Tender 

Tone IOI Shorten 20% Lengthen 30% Shorten 15% Lengthen 30% 

Sound Level Increase 3dB Decrease 6dB Increase 8dB Decrease 6db 

High Loud k = 1.5 N/A N/A N/A 

Punctuation k = 2 N/A k = 2  

Duration Contrast k = 2 k = -2 k = 2 k = -4 

Duration Contrast Articulation k = 2.5 N/A k = 1 N/A 

Phrase Arch N/A Level 5: k = 1.5 

      Turn = 0.25 

Level 6: k = 1.5 
           Turn = 2 

Level 5: k = -0.75 

            Turn = 0.5 

Level 6: k = -0.75 
          Turn = 0.25 

N/A 

 

Table 8: List of Director Musices Rule Parameters to Express Emotional States 

 

Figure 11: Examples of Phrase Arch Levels 5 and 6 in Schumman‟s Traumerei (Friberg 1995, p66) 
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3.5.2 Compositional Structure in IPCS 

While the agents communicate and learn each other‟s tunes, their own tune builds in 

size. This creates a note grouping structure. Because of the nature of the interaction 

cycle, the generative structure is binary. In other words, at each iteration where agent A 

adds a performance to its tune, a new “XY” structure is produced. The X being agent 

A‟s original tune, and the Y being the new performance it is adding. Looking at this 

process building up, the hierarchical structure in Table 9 emerges. The notation in the 

table can give the impression that the right hand half of the binary growing structure is 

always simpler than left hand half. However bear in mind that the tunes added to the 

right are coming from other agents, and these agents are generating a hierarchical 

structure as well in their own repertoire. So the added “y”-tunes will all have their own 

internal grouping structure.  

As has already been discussed, research into human performers has suggested that – 

although there are a number of factors involved - the main consistent contributing factor 

to the expressive deviations during a performance is the hierarchical grouping structure 

of the music. Human performers have been shown to express the hierarchical structure 

in their performances. As a result one of the most common observations in music 

performance studies (Clarke 1998; Clarke 1991; Shaffer and Todd 1987): performers 

slow down at boundaries in a musical piece, with the amount of slowing down being 

greater for the more significant the boundary. 

Hence Chapter 2‟s review of CSEMPs showed two frequent commonalities: 

 

1. Formal musical analysis - CSEMPS often base their performances on the 

hierarchical structure of the music requiring an analysis, sometimes by a 

musicologist. 
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2. Hierarchical combination of expressive performance deviations – Most 

hierarchical systems generate the final tempo and dynamics expressive 

deviations by combining separate multipliers calculated for each level of the 

analyzed or manually marked-up hierarchy. 

 

Tune Added Structure 

Initial tune x0 x0 

y0 x0y0 

y1 (x0y0; y1) 

y2 {(x0y0; y1)}{(y2)} 

y3 ({(x0y0; y1)}{(y2)}; y3) 

etc… … 

 

Table 9: Compositional Structure Growth in IPCS 

 

As has been mentioned - a significant amount of CSEMP effort is often in analysing the 

musical structure of the score/audio. However, as has also been discussed, doing 

musical analysis reliably is nowhere near an automatic process. To clarify the 

desirability of this, we must re-visit the concept of musical hierarchical structure. A 

piece of music often has a number of levels of meaning – a hierarchy. For example: 

notes make up motifs, motifs make up phrases, phrases make up sections, sections make 

up movements, and movements make up a piece. Each element - note, motif, etc. - plays 

a role in higher elements. Figure 11 showed examples of two levels of the hierarchy.  

The key CSEMP contribution in IPCS is that each time the structure of an agent‟s 

composition is extended by tune adding, it will be based on a performance from another 
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agent and this performance will have had a Phrase Arch applied by the other agent. By 

repeatedly applying Phrase Arch like this during multi-agent tune exchange it is aimed 

to simulate the building up of the parabolas, the first two levels of which are shown in 

Figure 5 in Chapter 2 in reference to Todd‟s Hierarchical Parabola System (the first 

CSEMP to implement this parabola hierarchy). However in order to utilize DM to do 

this in an MAS, some adjustments must be made. 

 

3.5.3 DM Adjustments for MAS 

Consider an IPCS system of two agents A and B. Suppose their tunes are both short 

motifs of 4 notes in length - these would be classed as Director Musices Level 7 motifs 

in Director Musices in the type of analysis shown in Figure 11 earlier. If A performs its 

tune, then B will add that to the end of its tune. B‟s tune will then be 8 notes long, more 

of a Director Musices Level 6 length tune from Figure 11 (though this level is not 

shown explicitly in Figure 11). Suppose when B performs its tune back to A, then A 

adds the tune to the end of its own, thus A‟s tune becomes 12 notes long, like a Level 5 

tune from Figure 11. In addition to this length extension process, at each interaction a 

Phrase Arch is added by the performing agent over the tune it performs. However, the 

Director Musices Emotion System only defines its parameters for levels 5 and 6, and the 

composition method of the MAS will extend beyond such levels after only a few 

iterations. So in order to allow the application of the Phrase Arch rule to affective 

generation, a compromise was made whereby a single Phrase Arch rule was applied 

each time an agent performs; and the parameters of that rule are the average of the 

parameters for Levels 5 and 6 in Table 8.  For “Sad” this gives k = 1.5 and Turn = 0.25; 

for “Angry” k = -0.75 and Turn = 0.375. Such an averaging and application will be 

further discussed in the results section. 
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So the process of agent communication and tune addition causes a hierarchical building 

up of tunes through different levels and a resultant hierarchical of performance Phrase 

Arches like Figure 5 in Chapter 2. 

 

3.6 Affective Cycle – Performance Affective Content Estimation 

Having introduced the first two parts of the Affective Cycle: Compositional and 

Expressive Performance Transforms, the part of the cycle involving an agent estimating 

a performance‟s affective content will be examined. A linear equation is used to model 

agent B‟s affective estimate of a performance by agent A – this is shown in equations 

(5) and (6).  

 

valenceEstB = xpmean(pitchA) + xlmean(loudA) + xkmean(keyModeA) +  

xIOImean(IOIA) + x0         (5) 

 arousalEstB = ypmean(pitchA) + ylmean(loudA) + yIOImean(IOIA) + y0  (6) 

 

In these equations pitchA and loudA refer to the average MIDI pitch and MIDI loudness 

of A‟s performance. keyIndexA is defined as having value 2 for a minor key, and 1 for a 

major key; and the key mode of A‟s tune is estimated using a key profile-based 

algorithm (Krumhansl and Kessler 1982). The x and y coefficients in the Equations are 

IPCS constants estimated by linear regression.  

They are estimated in a one-off process as follows. A set of 1920 random MIDI files 

was generated, of random lengths between 1 and 128 notes. Each MIDI file was 

transformed for 10 known and equally spaced valence and arousal values between -1 

and 1 using transformation equations (1) to (4), and key mode transformations. Then a 
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linear regression was run on the resulting transformed MIDI files against the known 

arousal and valence values – based on equations (5) and (6). The resulting coefficients 

are shown in Table 10. The average percentage errors – when tested on a separate 1920 

transformed random files - were 10% for valence and 9% for arousal. These are 

considered to be sufficiently accurate. Actual human musical emotion recognition error 

rates can be as high as 23% (Camurri et al. 2000); and other far more complex artificial 

musical emotion detection systems have rates such as 81% (Legaspi et al. 2007). This 

linear estimation approach will be referred to as the IPCS Linear Estimator (ILE). 

 

 x y 

Pitch -0.00214 0.003025 

Loudness 0.012954 0.052129 

keyMode 1.1874 -1.4301 

IOI -0.6201 0.59736 

Constant 0.61425 -4.5185 

 

Table 10: Regression Results 

 

It will be noted that only the compositional transformations are used in the regression 

above. This was because it was desired to keep the model flexible for use with and 

without expressive performance, since a composer may wish to compose a tune without 

expressive performance. It was found that using the ILE in IPCS with expressive 

performance transformations overlaid on agent B‟s performance did not cause excessive 

errors in the ILE affective estimate by agent A; this will be demonstrated in the results 

in the next chapter. 
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ILE is used in two aspects of IPCS – firstly for an agent to decide whether or not to add 

a performance to its own tune, and secondly for an agent to be influenced by the 

affective content of a performance it has heard. This second aspect, affective influence, 

will be detail in Section 3.7 on the last part of the affective cycle. But before that, the 

decision mechanism for when a performance is added to the end of a tune is examined. 

 

3.6.1 Performance Adding Decision 

Interaction decision methods used in previous Intermediate MAS for music creation 

divide into two types: comparing similarity of musical elements stored by agents 

(Martins and Miranda 2007; Miranda 2003), and critical evaluation of musical elements 

(Zhang and Miranda 2007; Gong et al. 2005). In IPCS it was desired to keep as much 

focus as possible on the patterns of interaction as a primary force generating the music 

structure. Hence the desire to avoid a function which critically evaluated musical 

elements, as found in the work of Zhang and Miranda (2007) and Gong et al. (2005). 

Looking next at the similarity approach in the work of Martins and Miranda (2007) and 

Miranda (2003), the observation was made that in IPCS tune lengths change. 

Comparing different size tunes in a meaningful way is not a trivial task. In the Miranda 

(2003) model all agent tunes remain the same length; in the Martins and Miranda (2007) 

a new rhythmic similarity measure was introduced to deal with rhythms of different 

lengths.  

It is clear that using an affective comparison, rather than a direct tune comparison, not 

only bypasses any complexities of different tune length, but also provides potentially 

simpler ways of specifying compositions, since music is an “affective language” (Juslin 

2005) and has even been used as a method of affective communication in robots (Bethel 

and Murphy 2006). (It was also realised that the use of an affective interaction approach 
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may provide interesting modelling tools for those wishing to investigate elements of 

musical culture; however this has not been explicitly developed or evaluated here).  

So IPCS uses a meaningful meta-feature for comparison. However this comparison is a 

little different to that done in other music Intermediate MAS, in the sense that an IPCS 

agent does not compare the affective content of its stored tune and the performance it is 

hearing, but compares its own affective state with the affective content of the 

performance it is hearing.  And its own affective state will be as a result of the 

performances it has heard in the past. The agent may not have stored all these 

performances. So there could be a substantial difference between an agent‟s affective 

state and the affective state of the tune it has stored. However there will not be such a 

difference between an agent‟s affective state and the affective state of its own 

performance. Because its own performance is transformed significantly by its own 

affective state. So agents are really comparing performances, not tunes. So agents will 

tend to add performances from other agents in a similar, but not necessarily the same 

affective state. Use of such an affective similarity test is expected to lower the feature 

differences between two tunes being added. This is because very different feature 

statistics will often imply a different affective state, and vice versa.  

The precise method by which an agent updates its affective state will now be 

introduced. 

 

3.7 Affective Cycle –Affective State Update 

Equations (7) and (8) below are used to update the valence and arousal of agent B after 

a performance from agent A. The equations were designed to maintain a relatively 

simple agent model – they are independent and linear. In reality organisms‟ response to 

affective influence is almost certainly non-linear, and valence and arousal are not 
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independent dimensions. However the simplicity of (7) and (8) prevents stepping 

beyond the scope of the work here, and maintains the MAS as an intermediate system. 

The γ (Gamma) constant - between 0 and 1 - defines how sensitive an agent is to 

affective state change – i.e. the amount of change to valence (γv) and arousal (γa). If it is 

set to 1 then the new valence and arousal values will be totally changed to the estimated 

values of the performance the agent has just heard 

(                                         – from equations (5) and (6)). A value of 

0 will lead to no change. Values of γv and γa increasing from 0 and 1 will cause the 

estimate to have a proportionally greater effect.  

 

        
  (    )                           (7) 

        
  (    )                           (8) 

 

Once the agent B has decided whether or not to append the performance from A (and if 

so, has done so), it will update its valence and arousal based on Equations (7) and (8) to 

from (                 ) to (                   ). In future, when it next performs 

a tune, it will transform it based on its new valence and arousal state. It is designed so 

that through this series of updating affective states and the agent tune communication 

and system, new musical structures will emerge.  
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3.8 Affective Cycle Summary 

The affective cycle is summarized in a linear graphic in Figure 12. 

 

                                            

  

                                                                                                                                         

Figure 12: Affective Cycle 

 

To further clarify the Affective Cycle, two examples of interaction cycles will be given 

in the next two subsections. 

 

3.8.1 Affective Cycle Example 1 – Compositional Only 

To focus the example, a two agent system is considered where it is assumed agents 

always have a high enough interaction coefficient to interact, and in which the affective 

similarity threshold is so high that agents always consider performances to be similar 

enough to their own affective state. There are two agents 1 and 2, each starts with a 

single note (middle C = MIDI value 60) of duration 1 second. Suppose Agent 1 is 

“happy” – i.e. valence/arousal is 0.5/0.5, and suppose Agent 2 is “sad” – i.e. 

valence/arousal is -0.5/-0.5. Let the agent valence and arousal update rates both be 0.1 

(10%) and the affective pitch, onset and loudness influences be 0.1. The k-Value for 

expressive performance is set to 0. It will be assumed for simplicity in these examples 

that the affective estimation equation is 100% accurate. The first agent to perform will 

be agent 1 – it‟s default onset is 0 seconds, duration 1 second, pitch MIDI value 60, 

loudness MIDI value 60 – write this as <O0, D1, P60, L60>.  

Agent A‟s 

Tune 

Affective 

Expressive 

Performance 

Transforms 

Affective 

Composition

Transforms 

Agent A‟s 

Performance 

Agent B 

estimates 

affective 

content of A‟s 

Performance 
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updates 

its 

Affective 

State 
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i. Agent 1‟s affective state of 0.5/0.5, when inserted into affective influence 

equations (1) – (4) leads to a new quadruple of <0O, 0.95D, 63P, 63V>.  

ii. Next Agent 1 transposes the tune to C Major (since the agent‟s valence is 

positive). However, MIDI pitch 63 is already a tone of C Major, so there is 

no change. Thus it‟s “happy” state leads to a performance that is slightly 

shorter, higher pitch and slightly louder than its stored tune.  

iii. Agent 2 estimates the affective content of Agent 1‟s performance – giving 

estimates of valence of 0.5 and arousal 0.5.  

iv. Because the affective similarity threshold has been set so high, Agent 2 will 

add  Agent 1‟s tune to the end of its own tune. Agent 2‟s tune will initially 

be <O0, D1, P60, L60>. So adding Agent 1‟s performance to the end gives 

Agent 2 a tune of [<O0, D1, P60, L60>, <O1, D0.95, P63, L63>].  

v. Agent 2 updates its valence and arousal using equations (7) and (8) giving a 

new valence of -0.4 and a new arousal of -0.4. Thus its affective state 

becomes a little more “positive” and a little more “aroused”. 

vi. It is Agent 2‟s turn to perform. It‟s valence/arousal of -0.4/-0.4 causes it to 

turn its tune [<O0, D1, P60, L60>, <O1, D0.95, P63, L63>] using equations 

(1)-(4) into a performance of [<O0, D1.04, P58, L58>, <O1.04, D0.988, 

P60, L60>]. Note that the onset value for the second note is calculated by 

transforming the IOI using equation (1).  

vii. Next Agent 1 transposes the tune to C Minor (since the agent‟s valence is 

negative). However, MIDI pitches 60 and 58 are already tones of C Minor, 

so there is no change. Thus its “sad” state leads to a performance that is 

slower, slightly lower pitch, and slightly quieter than its stored tune.    
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viii. Agent 1 estimates the affective content of Agent 2‟s performance – giving 

estimates of valence of -0.4 and arousal -0.4.  

ix. Because the affective similarity threshold has been set so high, Agent 1 will 

add  Agent 2‟s tune to the end of its own tune. Agent 1‟s tune will initially 

be <O0, D1, P60, L60>. So adding Agent 2‟s performance to the end gives 

Agent 1 a tune of [<O0, D1, P60, L60>,<O1, D1.04, P58, L58>, <O2.04, 

D0.988, P60, L60>].  

x. Agent 1 updates its valence and arousal using equations (7) and (8) giving a 

new valence of 0.41 and a new arousal of 0.41. Thus its affective state 

becomes a little more “negative” and a little less “aroused”. 

xi. It is Agent 1‟s turn to perform…etc 

 

The main element to note from this example is how melody pitches are generated. There 

is no explicit mapping from agent states to pitches (as in – for example - Cellular 

Automata music), nor is there explicit musical intelligence generating the pitches. The 

melodies are emergent – being produced as a result of the interactions and affective 

states of the agents.  

 

3.8.2 Affective Cycle Example 2 – Expressive Performance Only 

In this example, there are the global k-value is set to 0.2 rather than 0; and the pitch, 

onset and loudness affective influences are set to 0 – i.e. the compositional elements are 

removed. The third change is because expressive performance elements only apply 

when there are 4 or more notes in a tune. So Agent 1‟s tune will be a 4 note tune: 

middle C, D, E, F - all with duration 1 and onsets matching duration, and loudness 60. 

The first agent to perform will be agent 1 – it‟s tune is [<O0, D1, P60, L60>, <O1, D1, 
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P62, L60>, <O2, D1, P64, L60>, <O3, D1, P65, L60>]. Agent 2 will still be initialised 

with the tune <O0, D1, P60, L60>. 

 

i. Agent 1‟s affective state of 0.5/0.5 – which gives a representative state of 

“Happy”. When this is referenced with Table 8 - the director musices 

equations – it can be seen that “Happy” leads to high positive duration 

contrasts, a medium high-loud effect, no phrase arch, an increase in sound 

level of 3db, and reduction in IOI of 20%; those these will be moderated by 

the k-value of 0.2. 

ii. This leads to the tune being transformed by the Director Musices equations 

into the following performance: [<O0.032, D0.96, P60, L69>, <O0.96, 

D0.96, P62, L71>, <O1.92, D0.96, P64, L73>, <O2.88, D0.976, P65, L74>] 

iii. Agent 2 estimates the affective contact of Agent 1‟s tune – assume this is 

estimated correctly as valence/arousal 0.5/0.5. 

iv. Because the affective similarity threshold has been set so high, Agent 2 will 

add  Agent 1‟s tune to the end of its own tune. Agent 2‟s tune will initially 

be <O0, D1, P60, L60>. So adding Agent 1‟s performance to the end gives 

Agent 2 a tune of [<O0, D1, P60, L60>, <O1.032, D0.96, P60, L69>, 

<O1.96, D0.96, P62, L71>, <O2.92, D0.96, P64, L73>, <O3.88, D0.976, 

P65, L74>].  

v. Agent 2 updates its valence and arousal using equations (7) and (8) giving a 

new valence of -0.4 and a new arousal of -0.4.  

vi. It is Agent 2‟s turn to perform. Its valence/arousal of -0.4/-0.4 gives it a 

representative emotion of “Sad”. So the Director Musices rules in Table 8 

turn its tune [<O0, D1, P60, L60>, <O1.032, D0.96, P60, L69>, <O1.96, 
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D0.96, P62, L71>, <O2.92, D0.96, P64, L73>, <O3.88, D0.976, P65, L74>] 

into a performance of [<O0, D1.06, P60, L51>, <O1.094, D1.09, P60, L58>, 

<O2.078, D1.018, P62, L54>, <O3.095, D1.115, P64, L56>, <O4.112, 

D1.551, P65, L57>].  

vii. Agent 1 estimates the affective content of agent 2‟s performance and adds it 

to the end of its own tune, and so forth… 

 

One element to note here is how sensitive the features are to a global k-Value as low as 

0.2. Hence the low k-values will be used in practice and in the experiments in Chapter 

4. 

 

3.9 Interaction Coefficient Update 

Now the Affective Cycle has been defined, there is only one more core element of IPCS 

which needs to be detailed – Agent Interaction Coefficient. In line with the intermediate 

MAS approach, and the fact that some previous social “reputation” models have been 

quite simple (Sabater et al 2005), Agent Interaction Coefficient is implemented using a 

simple linear update equation (10), and a linear threshold decision function (9). Before 

an Agent A performs to an Agent B it compares its Interaction Coefficient measure of 

Agent B to the average of its Interaction Coefficient for other agents. The Interaction 

Coefficient that B has for A is written as IC(B,A). So the comparison done is: 

 

 IC(B,A) > mean[IC(B, all agents)]     (9) 
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If it is not, then it does not perform to Agent B and moves on to the next agent.  

These interaction coefficients are updated whenever an agent adds a performance to its 

tune. Suppose agent B adds a performance by agent A to its own tune, then it increases 

its Interaction Coefficient measure of agent A. Suppose Agent A‟s performed tune is of 

length N notes. Then the increase in B‟s Interaction Coefficient measure of Agent A is 

calculated using the Equation (9). The parameter d is a constant called the Interaction 

Coefficient Update Rate. N is the length of the tune added. The increase in Interaction 

Coefficient is proportional to the length of tune it has added. So the more notes in Agent 

A‟s performance, the greater its Interaction Coefficient will be viewed by Agent B.  

 

IC(B,A) = IC(B,A) + d.N      (10) 

 

This can be visualised as an Agent‟s basic resources being tunes - so the more notes in 

an Agent‟s tune, the greater its potential Interaction Coefficient to other agents. 

However the actual reason for including Interaction Coefficient functionality, and 

making Interaction Coefficient proportional to the number of notes in a performing 

agent‟s tune is primarily to generate a “social” hierarchy amongst the agents which 

influences the hierarchy of the composed music. Bearing in mind that an agent will only 

perform to other agents with a high enough Interaction Coefficient, it can be seen that: 

 

a. Agents which perform more than listen will tend to have lower interaction 

coefficients 

b. Agents which mostly listen and store will have longer tunes and higher 

interaction coefficients 
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c. Agents with higher interaction coefficients will tend to be selected as listeners 

more often 

 

So the system is designed to turn the agent population into a set of agents who tend to 

perform and have shorter tunes, and a set of agents who tend to listen and store. The aim 

is for lower Interaction Coefficient agents to be focused on providing lower elements of 

the musical hierarchy. So for example, it is hoped that agents with lower Interaction 

Coefficients would provide shorter note groupings (“motifs”) to agents with medium 

Interaction Coefficients, and the “medium” agents would concatenate the motifs in 

longer note groupings (“phrases” or “themes”); and they would later perform to agents 

with higher interaction coefficients who would build the themes and phrases into larger 

note groupings (“sections”). The use of the words “motifs”, “phrases”, etc is not exact 

here, but is to help clarify the hierarchical structure. 

 

3.11 Using IPCS 

Based on the description in this chapter IPCS‟ total parameter set is described in Table 

11 at the end of this chapter. The table also details the section in which each parameter 

is discussed in this chapter. This is a total of 18 parameters which is a large number – in 

particular given that in theory every agent could be given different versions of a 

significant portion of the parameters. This is not necessarily a problem as the system is 

still in the research stage and so has been investigated by an expert user. However for 

the system to be useable by someone who is less familiar with it, it would be necessary 

to provide a hierarchical GUI with some default values and heuristic controls. Examples 

that have already been implemented are entry boxes which allow a user to enter the 

number of “happy”, “sad”, “tender” and “angry” agents.  
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The core thing for a user to understand is what are the key defining parameters in Table 

11 from a music feature point of view, and how they may be used. This will be 

investigated as part of the next two chapters. Once the necessary parameters have been 

set by the user, IPCS is activated and runs its interaction cycles until it reaches an 

appropriate stopping condition (detailed earlier). Once it completes, the user can 

audition or visually examine the tunes stored in the different agents in the population. 

From these the user can select the one they wish to utilize, or perhaps adjust the 

parameters and set the system running again. 

 

3.12 Chapter Summary 

In this chapter an Intermediate MAS for Combined Expressive Performance and 

Computer-aided Composition has been presented, together with some of the rationale 

and background for its features and functionality. The background for IPCS comes from 

a common model in algorithmic composition and expressive performance: the 

development of a number of motifs which are transformed and combined into a 

structural hierarchy; and the addition of micro-deviations to this composed piece to 

express the structure. A key motivator of IPCS development is to investigate the value 

of mapping this model onto common features found in intermediate multi-agent 

systems: memory, social networks, and communication.  

Concerning this issue of “common features”, there was a change in approach needed 

when moving from low processing systems for music, to those of slightly higher 

individual complexity. The low processing and low complexity systems, e.g. swarms 

and Cellular Automata, are used more directly in music –the group dynamics of the 

system are more “directly” mapped onto music features such as pitch and timing.  One 

of the reasons for this is that Cellular Automata and swarms are relatively highly 
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constrained systems with unique, structured and complex dynamics. Researchers 

implementing these systems for composition often state a desire to utilize this structured 

complexity and to create “CA music” or “Swarm music”. However once the individual 

units and interactions become more complex – e.g. in intermediate multi-agent systems 

– there are more degrees of freedom in designing the properties and interactions of the 

elements. 

Successful music generated by the Game of Life or by a Boid swarm may be considered 

a representation and argument for the use of CA and swarms in music respectively. As 

has been seen in this chapter, elements often found in intermediate MAS –e.g. social 

hierarchies and memory (Sabater and Sierra 2002) – can be mapped on to musical 

features such as musical hierarchical structure and learning of tunes. So by 

implementing these features, it is hoped that IPCS will demonstrate the application of 

intermediate MAS beyond their functionality as test beds for musical culture simulation; 

specifically as actual musical composition tools.  

In the next chapter a series of experiments are designed and run on IPCS, with the 

results being reported. 
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Parameter Name Effect Section 

Number of Agents Size of the agent population 3.1, p88 

Number of Cycles Number of potential interactions between agents 3.3.2.4, p98 

Maximum Agent Notes An agent which exceeds it max notes will stop adding to its tune 3.3.3, p98 

Seed Note Duration All agents get a single note with this duration to start 3.3.1, p94 

Seed Note Pitch All agents get a single note with this pitch to start 3.3.1, p94 

Interaction Coefficient 

Initial 

All agents start with this initial Interaction Coefficient measure of all 

other agents. 

3.9, p122 

Interaction Coefficient 

Update Rate 

When agent A provides a tune to Agent B, this is the constant which 

multiplies the performance length of A to give Agent B‟s new value for 

Agent A‟s Interaction Coefficient 

3.9, p122 

Interaction Coefficient 

Threshold 

If this value multiplied by the mean Interaction Coefficient of all agents 

to Agent A, is smaller than Agent B‟s Interaction Coefficient to A, then 

Agent A performs to Agent B. 

3.9, p122 

Similarity Threshold If agent B estimates the affective content of Agent A‟s performance as 

being closer to its own affective state than this threshold measures, then 

the performance is added. 

3.6.1, p115 

Affective IOI Influence How much Agent B‟s affective state affects the inter-onset interval of a 

tune it performs. 

3.3, p94 

Affective Loudness 

Influence 

How much Agent B‟s affective state affects the loudness of a tune it 

performs. 

3.3, p94 

Affective Pitch Influence How much Agent B‟s affective state affects the pitches of a tune it 

performs. 

3.3, p94 

Initial Valence The initial valence an agent starts with 3.7, p116 

Initial Arousal The initial arousal an agent starts with 3.7, p116 

Arousal Update Rate How much an agent‟s arousal is affected by hearing a performance. 3.7, p116 

Valence Update Rate How much an agent‟s valence is affected by hearing a performance. 3.7, p103 

k-Value Intensity of effect of expressive performance equations. 3.5, p106 

 

Table 11: IPCS Total Parameter Set 
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Chapter 4 - Experiments and Results 

 

4.0 Parametric Experiments 

The issue of how to evaluate an algorithmic composition and expressive performance 

system is by no means agreed in the research community. There are systems which 

attempt to simulate human approaches to composition, e.g. counterpoint (Goldman et al. 

1999), or simulate human expressive performance (Widmer and Tobudic 2003). These 

can be more clearly evaluated in reference to their goals. However, as Holland (2000) 

observes, novel composition is a “wicked” problem in which research often has no 

clearly defined evaluatable goal. Pearce and Wiggins (2001) discuss the relative lack of 

evaluation in algorithmic composition research, and they have proposed a framework 

for evaluation. However this framework is still in the early stages of development.  

Parametric/Example-based investigations are common in investigating algorithmic 

composition systems, e.g. (Beyls 2007; Fonkseka 2000; Anders 2007) and expressive 

performance (Lopez de Mantaras and Arcos 2002; Zhang and Miranda 2007). 

Parametric/example-based experiments were done analysing how IPCS output 

responded to various parameter changes, giving objective information for a potential 

user of IPSC‟s behaviour. Such experiments are important because they provide insight 

into the dynamics of the system. Because composition and performance systems 

“output” to human beings, it was decided that a listening experiment for IPCS would be 

conducted with 10 listeners. Most algorithmic composition systems do not include 

listening experiments in their evaluation procedures, hence is was felt a comprehensive 

listening experiment was not necessary for IPCS, but an initial test was felt to be helpful 

as an addendum to the main experiments. This initial experiment focuses on whether a 

user-defined strong affective bias in the agent initiation is expressed in the final music. 



129 
 

(On a more informal note there is an example of a complete computer-aided 

composition in Appendix 4, by the thesis author). 

 

Parameter Name Default Value Effect 

Seed Note Duration 1 Initial Seed note will be 1 second long 

Seed Note Pitch 60 Initial seed pitch will be middle C 

Interaction Coefficient 

Update Rate 

0 Agents will never block interaction through Interaction 

Coefficient judgments 

Interaction Coefficient 

Threshold 

0 Agents will never block interaction through Interaction 

Coefficient judgments 

Interaction Coefficient Initial 0.5 Agents will never block interaction through Interaction 

Coefficient judgments 

Valence Similarity Influence 0.5 Valence and Arousal equally affect affective similarity 

measure 

Arousal Similarity Influence 0.5 Valence and Arousal equally affect affective similarity 

measure 

Similarity Threshold 1x10
10

 Agents will never block interaction through lack of 

tune similarity 

Affective Onset Influence 0.5 Equations (1) and (2): onset can vary by +/-50% 

Affective Loudness 

Influence 

0.5 Equation (3): loudness can vary by +/-50% 

Affective Pitch Influence 0.5 Equation (4): pitch can vary by +/-50% 

Arousal Update Rate 0 Agents affective state will stay constant 

Valence Update Rate 0 Agents affective state will stay constant 

k-Value 0 Agents will not apply expressive performance elements 

into their performance 

Agent Maximum Note Count 1x10
10

 Agent tune size is unlimited 

 

Table 12: Minimum Complexity Parameter Set 

 

In the experiments, different features of IPCS are added in a gradual increase in 

parametric complexity to give insight into the dynamics of the system. Initially IPCS is 

initialised with the Minimum Complexity Parameter Set – in this case the base 
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parameters are shown in Table 12. The aim of this minimum complexity set is to enable 

the investigation of the effects of number of cycles, number of agents, and to provide a 

base from which to develop further experiments into other parameter changes. The 

following experiment sets will be run: 

 

1. Number of Agents, Cycles and Maximum Number of Notes on Tune Growth 

2. Initial Affective State 

3. Affective Similarity Threshold 

4. Inter-agent Affective Update Rate 

5. Interaction Coefficient 

6. Expressive Performance 

7. Listening Experiment 

 

 

4.1 Experiment Set 1 – Number of Agents, Cycles, and Maximum Note 

Count 

The purpose of this experiment was to examine the effects of number of agents and 

number of cycles on the growth of the agents‟ stored tunes. With the Minimum 

Parameter Complexity Set, agents will never fail to interact and build tunes. This 

experiment is designed to investigate what is a fundamental element of IPCS – potential 

exponential growth of the size of tunes. This element is due to the fact that agents learn 

each other‟s complete performances. This means that if Agent B learns Agent A‟s 

performance and performs it back to agent A, agent A will receive a version of its own 

performance back plus a version of Agent B‟s original tune. If this process is repeated it 

can be seen it is exponential. Similarity and Interaction Coefficient thresholds, and 

agent Maximum Note Count, will restrict this exponential growth. However to see the 
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patterns of the restriction it is first necessary to see the effect of the tune growth as the 

number of agents and the number of cycles changes.  

 

 

Figure 13: Effects of Number of Agents and Cycles on Tune Size 

 

For this experiment, populations of 2, 4 and 8 agents were used. The results are shown 

in Figure 13. It was found that the tune growth meant that for a larger number of agents, 

only a smaller number of cycles were needed before the tune size became very large. 

This exponential growth is characterised by the fact that all 3 lines have an R
2
 fit of 

greater than 0.999 to an exponential curve of the form ae
bx

. For example for the 8 agent 

curve fits to Mean Tune Length = 0.94e
0.98Cycles

. 

It can be seen that, as expected, the tunes grow rapidly, even in the two agent system. 

As well as creating tunes of an unlistenable length, this will also cause processing slow-
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down on most PCs. This is the reason for including an agent Maximum Note Count. 

The value of 300 was used. The results of experiments for 2, 4 and 8 agents were 

repeated and are shown in Figure 14. It can be seen that having a maximum agent note 

count of 300 leads to the agent tunes being significantly shorter than 300. This is 

because agents are trying to add performances to tunes which are shorter than 300 notes, 

but the performances would then make the tune longer than 300. Hence the agents‟ 

tunes will stop growing significantly before they reach 300 notes in length. 

Furthermore, it can be seen that the 4 agent system‟s curve flattens out twice. The first 

plateau is due to some, but not all, of the agents being unable to increase their tune 

length. 

 

 

Figure 14: Effects of Max Tune Length of Tune Size  

 



133 
 

One note on agent population size – the average population size for reviewed musical 

MAS systems turned out to be 8, and this is the largest and most frequently used 

population size examined in experiments on IPCS. Apart from being helpfully 

comparative, due to it relating to average population size for musical MAS, it was also 

found to give meaningful results for analysis. 

 

4.2 Experiment Set 2 – Initial Affective State 

The purpose of this set of experiments is to show how agents‟ tunes are affected by their 

initial affective states. In the runs in Experiment 1, every tune was the same, except for 

their note count. All pitches were 1 second long, all inter onset intervals were 1 second 

long, and all notes were middle C. So by now adjusting the initial affective state of the 

agents, they will adjust their tune performances using equations (1) to (4), and thus the 

note features such as pitch, timing and loudness will be affected. The affective states 

were constructed based on medium levels of positive and negative arousal and valence, 

specifically Arousal = 0.5 or -0.5 and Valence = 0.5 or -0.5. For example [0.5, 0.5] 

would be positive valence and arousal (like “happiness”), whereas [-0.5, 0.5] would be a 

negative valence and positive arousal (like “anger”).  Approximate representative labels 

for the other two states are “tenderness” [0.5, -0.5] and “sadness” [-0.5, -0.5]. These 

labels are used as helpful indicators giving a simpler intuitive marker for the 

experiments.  

 

4.2.1 Two Agents 

The affective update rates are all set to 0.5 for pitch, loudness and timing. 10 cycles 

were run. Figures 15 and 16 show how the initial affective states effect the resulting 

music features after the cycles are run. (Table 25A p255 in Appendix 3 shows the final 

mean loudness, and mean estimated valence and arousal of final tunes.) Letters are used 
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to represent initial affective states: “A” = Angry, “S” = Sad, “T” = Tender, “H” = 

Happy. Thus “HH” refers both agents initially having initial affective state Happy = 

[0.5, 0.5]; and “AS” refers to one agent being Angry = [-0.5, 0.5] and one being Sad = [-

0.5, -0.5]. The figures also provide a series of dotted and dashed arrows which give 

insight into the changes in tune features as initial affective state combinations are 

changed; for example highlighting the progression in features going from AA to AT to 

TT in Figure 15. Note that in this diagram, and in future ones where the progression is 

shown as arrows, the selection of these trajectories is not exhaustive. (For example the 

arrows could have been shown going from TT to AT to AA). In this and other cases 

those trajectories which are most simply readable to be marked up are the ones which 

are chosen from the various which could have been marked up.  

 

 

Figure 15: Effects of Initial Affective States in 2 Agent System and trajectories, for mean Key and IOI, 

10 Cycles run 
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The plots are of music features are averaged across the 2 agent system. Note that Pitch 

values are MIDI values, IOI (inter-onset interval) is in seconds, and a keymode of 1 is 

major, whereas a keymode of 2 is minor. In Table 25A p255, Loudness is a MIDI value, 

the Columns Est Valence and Arousal refer to the IPCS linear estimation model being 

applied to all the agents tunes, and the resulting estimated valence and arousal being 

averaged across all agents. 

 

 

 

Figure 16: Effects of Initial Affective States in 2 Agent System and Trajectories for Pitch Median and 

Pitch Spread, 10 Cycles Run 
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Due to their size and numerousness, actual musical figures are placed in Appendix 2. 

Figures 54A, 55A and 56A (p228-30) in Appendix 2 show the actual MIDI note 

development of Agent 1‟s tunes for selected cycles for three of the runs in Figures 15 

and 16: “Sad / Sad”, “Sad / Angry” and “Sad / Happy”. The content of Agent 1‟s tune is 

shown at the end of cycles 4, 6, 8 and 10 in each Figure. The “piano roll” notation is 

used to display pitches in this thesis. This notation is used as it is simple to interpret 

whether or not the reader is able to read standard music notation. On the y-axis of the 

piano roll notation two ticks are separated by a single semitone. The x-axis is in units of 

seconds. A dotted vertical line is drawn on the piano roll figures to show the location of 

Middle C. To represent a note of, for example, MIDI pitch 50 starting at time t1, and 

finishing at time t2, a solid line is drawn from time t1 to t2 on the graph at a height 

representing the MIDI value 50 on the diagram (which would the 10th tick below the 

dotted vertical line). So Figure 54A p228 for example (“Sad / Sad”) shows three 

descending notes of increasing length, starting at Middle C. It can be seen in Figure 

54A, the note groups are all being transformed pitch-wise by Equation 4 in the same 

direction because both agents have the same affective state, with low valence and low 

arousal. However the tune is not monotonic due to the fact that note groups are 

transformed and re-combined during the iterative process of agent communication. This 

process takes on a greater variety when the agents have different affective states as in 

Figure 55A p229. In 55A the second note in cycle four rises due to the fact that Agent 2 

has an affective state with high valence and arousal. 

Figures 57A, 58A, and 59A (p231-2) plot the loudness of the final tune for these runs. 

The Loudness graph is displayed by note index rather than time; the note index of the 

first note is 1 and the second note is 2, and so forth. So each point on the graph 

represents one note. The MIDI loudness value is goes from 0 = silent, up to 127 = 

maximum loudness. The single initial seed note of an IPCS agent always has MIDI 
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loudness 60. So in Figure 57A p231 the loudness stays at 60 for the first couple of 

notes, then falls to the mid-30s for 1 note, and rises to the mid-40s for the next note, and 

so on. The similarity between transformation equations (3) and (4) (p101) mean that the 

loudness in Figures 57A, 58A, and 59A p231-2 follows the pitch direction quite closely.  

 

4.2.2 Eight Agents 

A second set of experiments was done in this vein but increasing the population to 8 

agents to see how a larger population interacts with the affective initiation functionality. 

Because adding 6 agents leads to a larger number of interactions per cycle, the number 

of cycles was lowered to 8, as this made the final number of notes of the same order as 

the 2 agent example above. A similar notation is used: “AAAAAAAA” means all 8 

agents were initialised with “Angry” – i.e. valence -0.5, and arousal 0.5. “AAAASSSS” 

means that the first 4 agents were initialised “Angry” and the last 4 initialised “Sad”. 

The results for various music features are shown in Figures 17 and 18. Figures 60A-62A 

(p233-5) show the development of Agent 1‟s tunes for even cycles for “SSSSSSSS”, 

“SSSSHHHH”, and “SSAAHHTT”. Note that Agent 1‟s tune in Cycle 2 consists of one 

note only, hence the reason that the first piano roll in the figures is 1 second long and 

filled in black. Figures 63A-65A (p236-237) show the loudness for the runs. 

Figure 17 and 18 actually compare the 2 and 8 agent systems music feature results on 

the same diagram. It can be seen that adding more agents does not in this case cause 

very large changes in statistics – apart from for “SSSSHHHH” vs. “SH”. In fact looking 

at Figures 17 and 18 and the raw data tables in Appendix 3 (Table 25A and 26A p255) 

it can be seen that SSSSHHHH/SH is the only initial state which shows a large change 

in any final music features. Figure 19 shows the average of affective estimates on the 

tunes for different initial affective states. For each agent system (e.g. “HH”) the 

affective state of the final tunes was calculated using the linear model and this average 
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is plotted in Figure 19. For readability Figure 19 is bounded at 0.5; this means the more 

extreme feature values in valence/arousal space are placed at the bounded extremes and 

labelled with their actual values. 

 Figures 17, 18 and 19 also have arrows to highlight the progression of features as initial 

affective states are changed. They furthermore have dashed ellipses to highlight how 

close together the resulting features of the 2 agent system are to their “equivalent” 8 

agent system. Figure 19 has some additional sets of dashed lines. These are to highlight 

the relationship between the 2 agent HH-AA-TT-SS boundary in valence/arousal space, 

and the boundary HHHHHHHH-AAAAAAAA-TTTTTTTT-SSSSSSSS. 

 

 

 

Figure 17: Effects of Initial Affective States in 8 Agent System on average IOI and Key, 8 Cycles Run 
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Figure 18: Effects of Initial Affective States in 8 Agent System on Pitch Median / Spread, 8 Cycles Run 
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Figure 19: Average Estimated Valence / Arousal of Final Tunes for Various Initial Affective State Agent 

Groups 

 

 

4.3 Experiment Set 3 –Affective Similarity Threshold 

Having examined “uninhibited” tune learning in the previous experiments, the affective 

similarity threshold will now be included. The basic function of the similarity threshold 

is to examine the possibility of implementing some diversity between agents‟ tunes and 

an emergent affective tune structure (as well as to further limit tune growth, in a 

meaningful way). For an agent B to add a performance from agent A to its own tune, 

agent A‟s performance must have features which are sufficiently similar in affective 

implication to agent B‟s actual affective state. There are two types of similarity included 
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in each comparison – the valence and the arousal. By default they contribute 50% each 

to the total similarity. A similarity result of 0 means that the valence and the arousal for 

both are exactly the same; if there are differences the similarity result will be greater 

than 0. 

 

 

 

Figure 20: Effects of Similarity Threshold SSAAHHTT Agent System on Music Features 

 

For this experiment affective similarity threshold was adjusted through a number of 

possible values. An 8 agent system was used with agents initialised to 2 happy, 2 sad, 2 

angry, and 2 tender (hereafter referred to as an “Equal Spread” initialization), and it was 

run for 8 cycles. Figures 20 and 21 show the effects of similarity threshold on final tune 

lengths and musical features. Figure 22 shows the effects on the mean estimated valence 

and arousal of the final tunes. 
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Some immediate conclusions are that a similarity threshold of 0 causes no interaction (0 

note count), and that a similarity threshold of 1.2 and above causes agents to freely 

interact (and therefore gives the same result without the similarity thresholding – 

SSAAHHTT in Figures 18/19). 

 

 

 

Figure 21: Effects of Similarity Threshold SSAAHHTT Agent System on Keymode and IOI 
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Figure 22: Effects of Similarity Threshold SSAAHHTT Agent System on mean Estimated Valence and 

Arousal of Final Tunes 

 

 

4.4 Experiment Set 4 –Inter-Agent Affective Update Rate 

In the previous experiment agents‟ affective states have remained constant. The agents‟ 

ability to be effected by affective content of performance will now be added. This 

element is parameterized by the Affective Update Rates in Equations (7) and (8) (p117). 

For example, an arousal update rate of 0.1 means that if an agent estimates a 

performance it hears to have an arousal r, then it will add 10% of r to 90% of its own 

arousal, thus moving its arousal toward r by 10%. Whereas an update rate of 0.3 will 

cause it to move its arousal toward r by 30%; and an update rate or 100% will cause it 

to replace its arousal value by r. Thus an increase in arousal and valence update rates 

will change the rate at which agents are influenced by each others‟ affective music. This 
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is with the aim of adding extra affective dynamics to the interaction process which it is 

hoped translate into musical dynamics over a longer time-scale. 

Experiments were done first with the tune adding ability switched off. This will lead to 

agents continuously playing a one note performance to each other, with the note 

transformed based on their affective state. Figure 23 shows how agent valence and 

arousal states change for two different 2 Agent systems: one with an “angry” agent and 

a “neutral” agent; and one with an “angry” and a “sad” agent. “Neutral” means an agent 

with both initial valence and arousal equal to 0. To highlight the valence and arousal 

effects, when final mean valence is being plotted it is for runs with an arousal update of 

0. And when final mean arousal is being plotted, it is for runs with a valence update of 

0. 

To examine how this translates to larger agent groups, an 8 agent system is considered 

with 2 of each type of affective state. Unlike the 10 cycles above, 8 will be used (since 

there are more agents). But once again there is no thresholding and no tune adding. 

Figure 24 shows the results of the 8 cycles.  

It can be seen in Figure 23 that the average valence of the system is made more and 

more negative as the affective influence between agents is increased – and that the 

angry agent is dominating both mean valence and arousal of the 2 agent system. When 

neither agent is neutral the negative valence of the two agents re-enforce each other. In 

Figure 24 the negative valence and positive arousal dominates – making the group on 

average more “Angry”. This is because of the agent ordering, and because the linear 

model has a bias towards negative valence and positive arousal; for example in Tables 

32A and 33A (p259) the average linear model estimates for the MAS‟s constant tunes 

are valence = -0.13 and arousal = 0.13; when ideally the average tune valence and 
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arousal in that scenario should both be estimated as 0. Since the tune does not grow in 

length (as tune learning is switched off here) these biases have a significant effect. 

 

 

 

Figure 23: Effects of Arousal and Valence updates on 2-Agent Systems 

 

Now that some insight into the dynamics of the update process in terms of agents has 

been developed, the tune learning system will be switched back on. To get some idea of 

the effect of affective update, Figures 25 and 26 show the same multi-agent systems 

with and without affective update rates contrasting their musical features. Figure 27 

shows the effects of affective update on the mean estimated valence and arousal of the 

final tunes. 
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Figure 24: Effects of Arousal and Valence updates on an 8-Agent SSAAHHTT System 

 

Piano roll figure 62A p235 (“SSAAHHTT” tune without affective update) in Appendix 

2 is also rebuilt with affective update to give Figure 66A p238, showing the resultant 

tunes. Figure 28 shows the evolution of Agent 1‟s affective state, together with linear 

estimate of its tune‟s affective content. The dotted lines are the valence related values 

and the dash-dot lines are the arousal related values. It can be seen that Agent 1 starts 

with affective state of [-0.5, -0.5] (“Sad”) and during interactions with Agent 2 (which 

is “Happy”) the agent‟s valence moves higher (influenced by Agent 2) and its arousal 

moves lower. 

The final element to be added in the affective cycle in this experiment is the Affective 

Threshold. Figures 20 and 21 in Experiment 3 showed the effect of similarity threshold 

for an 8 agent equally spread system. Figures 29 and 30 are these same calculations but 
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with Affective Update values of 0.1 included (note this is for 8 cycles again). For a 

Similarity Threshold of 1, Figure 31 shows the actual valence and arousal states two of 

the agents go through over time, together with the estimated affective content of their 

tune by the IPCS linear affective estimator. 

 

 

 

Figure 25: Compare 2-Agent System mean final Key and IOI with and without Arousal and Valence 

updates („*‟ With Affective Updates = 0.1) 
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Figure 26: Compare 2-Agent System final mean Median Pitch and Spread with and without Arousal and 

Valence updates („*‟ With Affective Updates = 0.1) 

 

It can be seen from Figure 25 that in general the affective update tends to increase the 

mean IOI. In Table 34A p260 the tune lengths are increased as well – suggesting that 

the affective influences are bringing agent tunes closer together in features, by bringing 

agent states closer together. In Figure 31 it can be seen that the state and estimation tend 

to track each other once the tune lengths get larger. This is presumably because short 

tunes have too little information the Affective Linear Estimator to use in estimating the 

affective content of the tune. It can also be seen that the estimator over estimates the 

magnitude of the affective variables. Piano roll figure 70A p242 in Appendix 2 shows 

the tune evolution for agents 4 and 6.  
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Figure 27: Average Estimated Valence / Arousal of Final Tunes with and without* Affective Update 
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Figure 28: Affective State of Agent 1, and Estimated Affective State of Agent 1‟s tune 

 

 

Figure 29: Effects of Similarity Threshold SSAAHHTT Agent System on Music Features with Affective 

Updates of 0.1 
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Figure 30: Effects of Similarity Threshold SSAAHHTT Agent System on Music Features with Affective 

Updates of 0.1 

 

 

Figure 31: Valence / Arousal Profiles of Agents 4 (“Sad”) and 6 (“Happy”) Tune, Similarity Threshold 1  
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The tunes of Agent 4 and 6 in Figure 70A p242 are more similar than expected – 

possibly due to the higher similarity threshold and the affective influence the agents 

have on each other. The tunes are also repetitive. This raises the fact that there has been 

no attempt in the experiments so far to focus on “interesting” tunes – parameters have 

been acceptable if they have highlighted the dynamics of IPCS. A key example of this is 

that the affective influence on pitch was so large (0.5) that the pitch ranges are multiple 

octaves over just a few notes. As an example of a parameter set which was selected for 

“musical interest” consider Piano roll Figure 71A p243 in Appendix 2. In an attempt to 

introduce more diversity into the population, the similarity threshold was lowered from 

1 to 0.5, and since this would decrease the number of expected interactions, the number 

of cycles was increased to 12. Furthermore the influence of affective state on pitch, 

timing and loudness influence was reduced from 0.5 to 0.1. This leads to a population 

with tunes such as those shown in Figure 71A p243. It can be seen there is greater 

diversity in the tune features. For example, Agent 1‟s tune is a significant 

transformation of Agent 3‟s tune, and Agent 5‟s tune is a combination of significant 

transformations of a similar tune to Agent 1 and 2. Agent 7‟s tune has been built into 

something much longer. Figure 72A p244 in Appendix 2 shows the loudness for Agent 

5‟s final tune. (Note that there is also an example of a complete computer-aided 

composition using IPCS in Appendix 4). 

 

4.5 Experiment Set 5 – Effects of Interaction Coefficient 

Another factor will now be introduced: Interaction Coefficient. As has been mentioned, 

the Interaction Coefficient process is designed as an attempt to regulate tune growth in 

such a way that certain agents will become “tune provider” agents and some will 

become “tune receiver” agents. This is implemented by causing Agent B to increase its 
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Interaction Coefficient measure of Agent 1 if it learns a performance from agent 1; and 

that increase is proportional to the number of notes in Agent 1‟s performance. On top of 

this, in interactions, Agent 2 will only perform its tune to an Agent 3 if its Interaction 

Coefficient measure of Agent 3 is greater than some proportion of its mean Interaction 

Coefficient of all other agents (as in equations (9) and (10) in Chapter 3). So with 

Interaction Coefficient thresholding implemented, Agent 3 will generally only provide 

performances to agents which it values above average – i.e. which in the past have 

provided the performances with the most notes to Agent 3. 

To display the effects of Interaction Coefficient thresholding, a series of runs was done 

to investigate the effect on musical features, and runs were done to demonstrate the 

segmenting of the agent population into “providers” and “receivers”. Table 36A p261 in 

Appendix 3 gives a first indication of how agent tunes are affected by the Interaction 

Coefficient Threshold parameter. In this case, an 8 agent system was used with equally 

spread agent initial affective states, 300 memory size, 32 cycles, affective similarity 

threshold of 1, pitch update rate of 0.1, and IOI and loudness update rates of 0.5; 

valence and arousal update rates were set to 0.1. The Interaction Coefficient update rate 

was set to 0.2; this is the rate at which an agent‟s Interaction Coefficient Measure of 

other agents is updated.  

Table 36A p261 in Appendix 3 shows the results. It can be seen that Pitch and Pitch 

Spread vary little, hence they are not plotted. Keymode and IOI are shown in Figure 32. 

A new measure is added to the results in Table 36A in Appendix 3 and Figure 34 - 

Equality. Equality is the coefficient of variation of the number of tunes received by 

agents, divided by the product of cycles and the number of agents (as a normalising 

denominator). Given the same average final number of notes, an experiment where the 

number of tunes received varies less between agents, will have a greater equality 
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measure than an experiment where the number of tunes received by agents varied a 

great deal. So if Interaction Coefficient divides agents into “givers” and “receivers”, 

then it would be expected to affect equality in some coherent way.  

From Figure 34, it can be seen that with an Interaction Coefficient Threshold of 0 the 

maximum equality is calculated.  As the Interaction Coefficient Threshold increases, 

this equality falls consistently. In Figure 33 it can also be see that tune average lengths 

generally drop (though in Table 36A p261 in Appendix 3 the spread of tune lengths on 

average tends to increase). To look into the effects of Interaction Coefficient in more 

detail one particular run is selected, Interaction Coefficient Threshold = 0.9; the run 

with the lowest equality. Piano roll Figure 73A p245 shows the final tunes for all the 

agents in this run. Figure 35 shows the mean Interaction Coefficient each agent has for 

every other agent, over all 32 cycles.  

 

 

Figure 32: Effects of Interaction Threshold on Keymode and IOI (8 Agents, Equal Spread) 
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Figure 33: Comparison of Effect of Similarity Threshold and Interaction Threshold on Note Count 

 

 

Figure 34: Comparison of Effects of Similarity Threshold and Interaction Threshold on Equality 
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Figure 34 also shows the effects of similarity threshold on equality. It may seem at first 

that Interaction Coefficient and Similarity Threshold are doing the same thing – but they 

are not. Looking at Figure 33 it can be seen that to reduce Equality to levels as low as 

those found for higher Interaction Coefficient thresholds, there is a drastic drop in mean 

tune length. This is because Similarity Threshold focuses on affective states, and 

Interaction Coefficient on tune length.  

The number of notes the agents 1 to 8 have is respectively: 291, 102, 102, 102, 102, 

102, 18, and 5. Looking at Figure 35, it can be seen that this relates to the Interaction 

Coefficient – the higher an agent‟s final Interaction Coefficient the higher its note count. 

Figure 36 shows a two-dimensional interaction diagram giving some idea of the 

evolution of which agents have the highest interaction coefficients for each other. The 

more intense and more red the colour, the higher the interaction coefficient, the more 

blue, the lower. So for example in cycle 2, agent‟s 2 to 6 have a good opinion of agent 

1; and by cycle 20, the interaction coefficient patterns have pretty much settled down.   

Table 13 shows the average number of tunes exchanged over cycles across the whole 

population. The pattern of interaction can be seen from another perspective in Table 14. 

Table 14 shows in each cycle which agents an agent receives tunes from. So for 

example in cycle 1, agents 2 to 6 receive tunes from agent 1. In cycle 2 agent 1 receives 

a tune from agent 2, but no other agents receive tunes. In this table it can be seen that 

the lower Interaction Coefficient agents tend to give out tunes, while the higher 

Interaction Coefficient agents tend to receive tunes. The lower numbered agents have 

higher Interaction Coefficient because of the ordering of agent interaction in each cycle. 

The lower numbered agents will be receivers first, and have a chance to build up the 

size of their tunes. Then when they become performers (givers) the lower agents will 

receive large tunes from them and their Interaction Coefficient will increase as a result. 
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Figure 35: Change in mean Interaction Coefficient leading to tunes in Figure 73A 
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Figure 36: Interaction graph for 8 agent System 
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Agent 

 

Total 

Count 

Mean 

Interaction 

Coefficient 

1 
in 13 

12.7 

 
out 15 

 

2 
in 4 

3.2 

 
out 3 

 

3 
in 4 

0.6 

 
out 3 

 

4 
in 4 

0.6 

 
out 2 

 

5 
in 4 

0.6 

 
out 2 

 

6 
in 4 

0.6 

 
out 2 

 

7 
in 4 

0.4 

 
out 8 

 

8 
in 2 

0.6 

 
out 4 

 

 

Table 13: Agent Tune Exchanges for 8 Agents, 32 cycles 

 

 

 

Figure 37: Cumulative count of tunes given out and received across all agents over 32 cycles 
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This can be further clarified by adding a new mode to IPCS operation: e-mode. In e-

mode, rather than in each cycle agents performing sequentially, the even-numbered are 

performed to first and then the odd numbered. This produces the Interaction Coefficient 

pattern in Figure 38, and final tune lengths of 173, 267, 226, 164, 280, 226, 107, and 

195. The final interaction coefficients are: 11.2, 3, 3.8, 5.6, 3.4, 8.5, 3.6, 3.3. Figure 38 

contrasts strongly with that of the non-e-mode results in Figure 36.  

The question arises – how does the “interaction coefficient structure” relate to the tune 

structure here? Intuitively it is fairly clear – but this can be clarified by considering two 

elements. Table 14 shows the progression of tunes received in the multi-agent system 

(the non-e-mode version earlier). 

 

 

Table 14: Agent tunes received by agent for 32 agents, non-e-mode 

 

This shows the expected behaviour – agents with the shortest tunes (Agents 8 and 7) - 

the “motifs” - are tune providers. So agents 8 and 7 only receive tunes from each other, 

but provide tunes to agents 2 to 7. Agents 2 to 7 have tune lengths “in the middle” and 

provide tunes to the longest highest Interaction Coefficient agent – Agent 1. 

 Cycles 

Agent 1    5     10     15     20     25     30   

1  2 3 4 5 6    2 3 4 5 6    2 3              

2 1      7 8         1                

3 1      7 8         1                

4 1      7 8         1                

5 1      7 8         1                

6 1      7 8         1                

7        8         8       8        8 

8       7        7                  
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Figure 38: Interaction Coefficient Pattern, e-mode, for 8 agent systems 
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Thus the “interaction structure” has Agent 1 at the top, Agents 2 to 6 in the middle and 

Agents 7 and 8 are the bottom. It is important to note that although Agent 1 is most 

frequently receiving tunes it does give out tunes twice in the 32 cycles: very early on, 

and then halfway through. So the interaction structure is not one way, but is still heavily 

weighted toward a kind of hierarchy, which impacts the hierarchy of the music. To see 

this we first define a notation  

Xi = Agent X‟s performance at the end of cycle i 

Using this notation we can represent any agents tune. For example 

 Agent A‟s Stored tune = BjCkDl 

means that agent A‟s tune is made up of 3 sub-tunes: starting with a tune provided by 

agent B during cycle j, followed by tune provided by agent C during cycle k, and then 

followed by a tune provided by agent D in cycle l. Now consider that by Table 14 Agent 

1‟s final tune could be written as: 

1021324354657629310411512613217318 

Remember that an agent‟s tune can vary over different cycles – e.g. 318 is not the same 

32. Because the MAS is a closed deterministic system, all tunes in this structure are the 

result of a transformation on another agent‟s tune. So for example: 

 21 = 2010‟  

32 = 3010‟‟ 

 … 

76 = 7010‟‟‟  
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where the primes („) represent transformations on Agent 1‟s tune due to Agent 1‟s 

affective state at the time. In the next round of tunes being given to Agent 1 this gives: 

29 = 2177‟188‟ =  (2010‟) 77‟188‟ 

… 

This expansion can be continued until there is a full description of Agent 1‟s tunes 

based on the way in which the tune grows. This description will show the building 

structure of the tune. (It will not necessarily show the perceptual structure of the tune – 

this is not claimed, but it will show how the tune was built from the motifs and phrases 

etc of other agents). This structure is clearly a function of the agent interaction 

hierarchy, and as has been seen this hierarchy is strongly influenced by the Interaction 

Coefficient functionality. Hence this supports the idea that the Interaction Coefficient 

provides a non-affective-based method for generating coherent hierarchical structure in 

the tunes, based on the emerging interaction structure in the multi-agent system. 

 

4.6 Experiment Set 6 – Effects of Expressive Performance 

In these experiments the effects of expressive performance on the system are 

investigated. Experiments were run with 8 agents with equal spread of initial affective 

states, and the standard initial parameter values already discussed. The result for 

different k-values (for 10 cycles, with the last section‟s parameters, and seed duration 

0.5) are shown in Figures 39 and 40 (detailed in Table 38A (p262 Appendix 3)). Note 

that the Estimated Tune Affective State columns were left out of Table 38A, as the k-

Value had no effect. In an attempt to see how much the expressive performance 

elements can change agent interactions, experiments were done with a larger number of 

cycles in Table 39A p262 (for 24 cycles). It should be noted that the k-value is per 
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interaction – in other words expressive performance with that k-value is applied in 

every interaction.  

And a different k-value will be applied a different number of times depending on how 

many times a sub-tune is exchanged. It can be seen that the more that the expressive 

performance deviations are applied (i.e. the larger the number of cycles), the greater 

their effect on the interaction of the agents and on their final note features. To show the 

effect on the actual tunes four tune and loudness plots are done: Figures 74A to 77A 

p246-7 in Appendix 2, of Agent 1‟s tune after 24 cycles with k = 0 and k = 0.2.  

One of the expected more useful aspects of such an approach is the emergence of the 

expression of compositional structure. As mentioned in Chapter 3, a survey of previous 

CSEMPs shows two frequent commonalities: 

 

1. Formal musical analysis - CSEMPS often base their performances on the hierarchical 

structure of the music thus requiring a pre-analysis, sometimes by a musicologist. 

2. Hierarchical combination of microstructure deviations – Most hierarchical systems 

generate the final tempo and dynamics expressive deviations by combining separate 

multipliers calculated for each level of the hierarchy. 

 

Hence a significant amount of CSEMP effort is often in analysing the musical structure 

of the score/audio. However, as a result of the way in which expressive performance is 

applied in IPCS the hierarchical structure is actually expressed by the performance 

elements. 
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Figure 39: Effects of k-Value on various Music Features 

 

 

 

Figure 40: Effects of k-Value on IOI and Keymode 
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This can be understood by referring back to Experiment Set 4.5 where Agent 1‟s tune 

could be written as: 

1021324354657629310411512613217318 

It was then described how the various subtunes were built up:  

Agent 2‟s tune in cycle 1 = 2010‟  

Agent 3‟s tune in cycle 2 = 3010‟‟ 

 … 

Agent 7‟s tune in cycle 6 = 7010‟‟‟  

and: 

Agent 2‟s tune in cycle 0 = 2177‟188‟ =  (2010‟) 77‟188‟ 

When k>0 each time a tune was performed by an agent, phrase punctuation is applied 

and for some affective states a Phrase Arch was placed over that performance. The 

longer the tune, the wider the phrase arch. Furthermore the starts and ends of a currently 

performed phrase arch by agent A may coincide with the start or end of a previous 

phrase arch imposed over part of A‟s tune learned earlier. As a result phrase punctuation 

and phrase arches combine hierarchically as agents interact, and more significant 

boundaries of tunes (which are maintained during interactions) will be repeatedly and 

coherently emphasised by the recursive imposition of performative phrasing. This leads 

to the phrasing expressing the grouping structure of the way the notes are built up. For 

example suppose we write the performance of tune x as P(x), and the concatenation of 

tune x followed by tune y as [x y]; and let Agent A plays performs tune 2 to Agent B 

(who currently has a tune called 1), then Agent B will store tune: 

[1 P(2)] 
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where P(2) is an expressively phrased version of tune 2. If Agent B performs this back 

to Agent A (imposing another phrase expression) then Agent B will have: 

 [2 P([1 P(2)])] 

So here P([1 P(2)]) is an expressively phrased version of the concatenation of tune 1 

and tune P(2). And then if Agent A performs back to Agent B, Agent B will have: 

 [[1 P(2)] P(2 P([1 P(2)]))] 

So each time a tune is swapped back, a new phrase expression is added over all the 

“lower” tunes, and the borders of this phrase expression will emphasise certain tune and 

sub-tune boundaries. An actual example is shown now. To explicate this process, some 

adjustments had to be made to the system initialisation. If the normal 8 agents with 

multiple affective states was used, then it would not be clear how the combination of 

expressive performance and composition was working. This is because expressive 

phrasing works differently for different emotions – for example anger imposes a phrase 

arch with a negative k-value, and happiness and tenderness do not use phrase arch at all.  

To simplify things, a 2 agent neutral system was run for 10 cycles with a k-value of 0.2 

and maximum notes 150 (with Affective States Update, Similarity Thresholding and 

Interaction Coefficient not activated). The resulting tempos for Agent 1 for cycles 

5,6,7,9, and 10 are shown in Figures 78A, 79A, and 80A p248-9 in Appendix 2. (No 

expressive performance deviations are added before cycle 5 due to the fact that agents 

need at least 2 notes in their tune to add expressive performance). Agent 1‟s final tune is 

shown in Figure 81A p249; and its loudness curve is given in Figure 82A p250. The 

growth of the expressive curves can be described as follows. Firstly Agent 1 adds Agent 

2‟s expressive performance to the end of its own unexpressive tune giving Figure 78A 
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p248. This gets performed back to Agent 2 who then performs it back to Agent 1 

resulting in Figure 79A p248.  

A key thing to note here is the size of the deceleration between the tune added to Agent 

1 in Figure 79A p248 is larger than the decelerations within the sub-tunes. These 

deceleration sizes actually capture the structure of the tune so far (from a generative 

point of view). If we call the two tunes in Figure 79A “phrases” and call the sub-tunes 

“motifs”, then the separation between “motifs” is expressed by decelerations, and the 

separation of phrases by the largest deceleration. This pattern continues into Figure 80A 

p249. Here a new performance is added to the end of Agent 1‟s tune. If this added 

performance is labelled a “theme” and the tune which was in Agent 1‟s store in Figure 

79A p248 is called a “theme” as well; then the decelerations between “themes” are 

greater than the decelerations between “phrases”. Thus the expressive tempo does 

expresse the generative structure. The behaviour of the loudness is due to the fact that 

MIDI loudness is an integer parameter and so is rounded off. 

This can be compared to one of the most common observations in music performance 

studies (Clarke 1998; Clarke 1991; Shaffer and Todd 1987): performers slow down at 

boundaries in a musical piece, with the amount of slowing down being greater for the 

more significant the boundary. It is clear from the process of IPCS tune growth that 

such an expression will always occur (though to make it noticeable with compositional 

elements added may require increasing the global k-value). This is the main 

demonstration of the advantage of such an approach. It should also be mentioned that 

this approach requires no musical analysis, and therefore could work with musical types 

for which analysis methods are more limited (Clarke 1991). On the other hand it should 

be mentioned that the expression is of the generative structure, not the perceptive one. 

In other words a human may hear different note groupings to those actually implicitly 
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assumed by IPCS. This expressive structure can be heard in the example computer-

aided composition in Appendix 4. 

 

4.7 Experiment Set 7 – Listening Experiment 

The element now to be examined is the effect of specifying agent initial affective states 

on the subjective experience of affective communication by the music. In this 

experiment, the affective parameters were used to perform an initial examination of how 

starting settings in affective states effect the emotional perception in the listener. 

Performances were generated with agents with different initial affective states, the 

resulting perceptions were garnered from test subjects. The performances were played 

through the Grand Piano simulation in the sequencer software Reason (Carlson et al. 

2003). Table 15 shows the initial affective states for the listening experiment. The lists 

of single letters in the second column refer to the initial affective states of agents in the 

group. For example “AAAAAAAA” (either A‟s) means that an 8 agent population was 

used, all of them with initial state of “Angry”, i.e. valence of -0.5 and arousal 0.5. The 

order column is the order in which tunes were presented to test subjects. 

Tunes Initial 

Affective 

State 

Order 

1 AAAAAAAA 1  

2 AAAAAASS 5  

3 AAAAAAHH 9 

4 AAAAAATT 13  

5 SSSSSSSS 2  

6 SSSSSSAA 6  

7 SSSSSSHH 10  

8 SSSSSSTT 14  

9 HHHHHHHH 3  

10 HHHHHHAA 7  

11 HHHHHHSS 11 

12 HHHHHHTT 15  

13 TTTTTTTT 4  

14 TTTTTTAA 8  

15 TTTTTTSS 12  

16 TTTTTTHH 16  

 

Table 15: Initial Affective States for Listening Experiments 
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There is always a clear majority of agents (at least 6 out of 8) with the same initial 

affective state. So one example of a mixed affective set-up is “AAAAAASS” means 6 

agents with valence/arousal -0.5/0.5 (“angry”) and 2 agents with valence/arousal -0.5/-

0.5 (“Sad”). For each quadrant of the 2D affective space, there are 4 tunes with a clear 

agent majority in that quadrant. The mixed states provide two elements: (1) examining 

if the user‟s perception is still skewed toward the agent majority; and (2) further 

exploring the parameter space of the agent‟s affective behaviour to see what sort and 

shape of tunes emerge. 

An 8 agent population was used, run for 10 cycles, with similarity threshold of 1, and a 

k-Value of 0. The valence and arousal update rates were set to 0.001, maximum tune 

size was 150, seed note duration 0.5. The Interaction Coefficient update rate and 

threshold was set to 0, as the desire was to focus on the perception effects of the 

affective cycle, rather than the structure elements. The tune presented to listeners was 

Agent 6‟s tune at the end of all cycles. The reason for such a low update rate is that 

previous experiments showed that agents updating their affective states at a rate of 0.1 

lead to quite large changes in affective state and thus to large changes in musical 

features. A more subtle method for regulating these large changes has not yet become 

clear, hence instead the update rate is set very low for the listening experiments. 

However the parameter was not to 0, and hence has some effect, particularly given the 

exponential interaction effects of the agents (for example in an exponential growth 

equation (1+0.001)
10

 = 1.01).  

4.7.1 Generated Tunes 

The observed features of the tunes generated for the listening experiment gives an 

insight into the function of IPCS. Bearing in mind that all other parameters were the 

same, and it was only the agent‟s initial affective state that was changed, it was found 
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that a wide variety of features are generated purely through adjusting these two 

elements. A web page has been set up for this thesis and five of the tunes used can be 

found on that page (http://cmr.soc.plymouth.ac.uk/alexiskirke/ipcs.html). Figures 41 

and 42, and Table 40A in Appendix 3 p263 show the features. The figures and table in 

themselves highlight some key aspects of IPCS. Because of the low value for affective 

update rate, the table can also be used to examine the effects of different initial affective 

states. The first thing to note is that whenever 6 of the 8 agents start in particular 

valence / arousal quadrant they remain there after 10 cycles, whether expressive 

performance is included or not (column “Agent Approx Label”). This is also true for the 

agents‟ average final tune effective features (column “Approx Tune Label”). 

 

4.7.2 Listening Experiment Set-up 

The listening experiment involved 10 listeners each listening to the 16 tunes in Table 

15. Three of the listeners were musicians or studying music, the others were non-

musicians. Listeners were played the tunes and allowed to pause in between them 

manually. They were told to label each tune with one of four labels: “Happy”, “Sad”, 

“Tender” or “Angry”. Listeners were also told to mark down their subjective scores for 

“Interesting” and “Enjoyment” for the tunes, interpreting those words as they saw fit – 

and scoring between 1 and 10 (10 for most “interesting”, or most “enjoyable”). The 

table was in a form based on that shown in Table 16. 

 

http://cmr.soc.plymouth.ac.uk/alexiskirke/ipcs.html
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Figure 41: Average Keymode and Inter-onset Interval used in Listening Tests 

 

Listeners completed their tests in one session, and sessions were spread over 2 weeks. 

Listeners sat at a desk with a laptop which contained 3 WAVs across which the test 

tunes were distributed in the order described earlier. The subjects would have the 

experiment explained and then put on headphones. The experimenter would be present 

for the first two tunes, and ensure the headphone volume was comfortable, before 

leaving them alone and explaining how they could trigger the two remaining tune files. 

In between each tune there was a short middle C beep to indicate tune start. There was a 

gap of approximately 8 seconds between each tune. The listener was given a sheet in 

which to mark up the results. They were also provided with an instruction sheet which 

they were given an opportunity to read and ask questions.  
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Figure 42: Average Median Pitch and Pitch Spread of Tunes used in Listening Tests 

 

Tune Happy  Sad  Angry  Tender  Interest? 

(1-10) 

Enjoyment? 

(1-10) 

1       

2 (repeat)       

3        

4       

…       

 

Table 16: Type of Format used for Listening Experiments 

 

4.7.3 Listening Experiment Results 

For calculating the results IPCS was defined as having a “Target” state. Each of the 

affective labels represents a valence arousal pair, e.g. “Happy” is valence/arousal = 

0.5/0.5. The Target state is the initial affective state of the majority of agents in the 
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system. So for AAAAAAAA it is “Angry” or valence/arousal = -0.5/0.5; for 

HHHHHHSS it is “Happy” or valence/arousal = 0.5/0.5. The numeric difference in 

valence and arousal was calculated the valence/arousal implied by the user‟s labelling of 

the tune (as “Happy”, “Sad”, “Tender” or “Angry”) and the Target valence/arousal 

based on majority initial agent state. So if the initial agent state was HHHHHHSS, the 

Target is valence/arousal = 0.5/0.5, and if the user selects “Angry” (which is 

valence/arousal = -0.5/0.5) as their affective estimate of the resultant tune, then the 

differences are valence error = 0.5-(-0.5) = 1, and arousal = 0.5-0.5 = 0.  

Results are given for valence and arousal separately in Figure 43, for reasons that will 

become apparent. The numbers are shown in Table 41A in Appendix 3 p263. The figure 

shows how often the mean of how closely a listener‟s experience of valence and arousal 

matched the initialized valence and arousal. The first thing to observe is that the 

differences are often twice as large for valence as for arousal. This reflects what was 

found in other research – that valence is much harder to quantify than arousal. The 

bracketed range given after each mean value is the 95% t-test range. The mean 

“accuracy” for valence is 71% and for Arousal 82%. The quadrant-based difference was 

also calculated. This is how often the user‟s label matched precisely the majority label 

for the initial affective state. The quadrant-based matching is significantly lower, as 

seen in Figure 43. This gives a mean “accuracy” of 59% (which is significantly better 

than chance – 25%). 

The data was also collated for “interest” and “enjoyment” by experimental subject 

(numbered 1 to 10) in Figures 44 and 45. The linear correlation between interest and 

enjoyment was 0.77 which is quite high, but shows they are not precisely the same. 

Another way of viewing the interest/enjoyment results is shown in Table 44A in 

Appendix 3 p265, showing initial affective state together with average Enjoyment and 
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Interest across listeners together with some key music features. The table is sorted by 

decreasing enjoyment. 

 

Figure 43: Percentage Errors for Valence only, Arousal only and Quadrant, for Listening Tests 

 

It can be seen that the top 4 most enjoyable tunes have a majority of positive arousal 

and valence. However the 3 least enjoyable tunes have positive arousal, so assuming 

some independence of valence and arousal, it may suggest the top 4 tunes are the top 4 

because of their positive valence. This is supported by the fact the next 4 most 

enjoyable tunes all have positive valence, but negative arousal. The order in which tunes 

were presented is also shown in column 4. There is a linear correlation of 0.44 between 

the order tunes were presented and the enjoyment of the tune; this may imply that in 

some sense listeners are learning to enjoy IPCS‟ music more as they hear more of it, but 

further experiments would need to be done. It can also be seen that the 3 least enjoyable 
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pieces had a very low pitch spread. Other features examined in the MAS which it was 

thought might contribute to enjoyment: mean IOI and mean number of notes, show no 

obvious correlation to enjoyment.  

Table 45A in Appendix 3 p265 shows the same data but sorted by Interest. There are no 

obvious relationships apart from between presentation order and interest, where the 

correlation of 0.48 is not significantly higher than 0.44 for enjoyment. The 

“AAAAAAAA” tune is clearly far more interesting than it is enjoyable; the 

“TTTTTTAA” is much more enjoyable than it is interesting. Sad tunes are more 

interesting than tender majority tunes, but tender are more enjoyable than sad. But this 

is not a large difference, and neither is particularly interesting or enjoyable. Other data 

not displayed that was examined included tune length in seconds, but it was not 

significantly correlated with interest or enjoyment. 

 

Figure 44: Average Enjoyment and Interest for Each Tune across Listeners 
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Figure 45: Average Interest and Enjoyment scores across Listeners, for the various Initial Affective 

States 

 

4.7.3 Exploring IPCS Affective Space 

It has already been mentioned that it was interesting to see the variety of melodies 

produced when preparing pieces for the listening tests. So these pieces will now be 

displayed to give a sense of the variety available in IPCS in Figures 46 to 53. These 

figures are displayed in a smaller format as it is mainly the variety of melodic patterns 

which is being demonstrated, rather than specific detail.  
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Figure 46: 8 Agents AAAAAAAA, 10 Cycles, and 8 Agents AAAAAASS, 10 Cycles   

 

Figure 47: 8 Agents AAAAAAHH, 10 Cycles, and 8 Agents AAAAAATT, 10 Cycles 

 

Figure 48: 8 Agents SSSSSSSS, 10 Cycles, and 8 Agents SSSSSSAA, 10 Cycles 
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Figure 49: 8 Agents SSSSSSHH, 10 Cycles, and 8 Agents SSSSSSTT, 10 Cycles 

  

Figure 50: 8 Agents HHHHHHHH, 10 Cycles, and 8 Agents HHHHHHAA, 10 Cycles 

  

Figure 51: 8 Agents HHHHHHSS, 10 Cycles, and 8 Agents HHHHHHTT, 10 Cycles 
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Figure 52: 8 Agents TTTTTTTT, 10 Cycles, and 8 Agents TTTTTTAA, 10 Cycles 

 

Figure 53: 8 Agents TTTTTTSS, 10 Cycles, and 8 Agents TTTTTTHH, 10 Cycles 

 

4.9 Chapter Summary  

In this chapter a number of experiments have been run - a total of 7 experiment sets. 

These are all listed below: 

 

1. Experiment Set 1 – Number of Agents, Cycles and Max Tune Length 

2. Experiment Set 2 – Initial Affective State 

3. Experiment Set 3 – Affective Similarity Threshold 

4. Experiment Set 4 – Inter-Agent Affective State Influence 

5. Experiment Set 5 – Interaction Coefficient 
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6. Experiment Set 6 – Emotional Expressive Performance 

7. Experiment Set 7 – Listening Experiment 

 

In the next chapter of the thesis, there will be a discussion of the results of these 

experiments in more depth. 
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Chapter 5 - Discussions 

 

There will be now be further discussions of the results in the previous chapter. The 

discussions will be structured as follows: 

1. Dynamics of Musical Features 

a. Pitch 

b. Timing 

c. Loudness 

2. Software parameters 

a. Number of Cycles 

b. Number of Agents 

c. Affective State Musical Feature Influence 

d. Initial Affective States 

e. Interaction Coefficient 

f. Affective Similarity Threshold 

g. Affective Update Rates 

3. Integration of Composition and Expressive Performance 

4. Listening Experiment 

5. Comparison with Previous Systems 

a. Computer-aided Composition 

b. Expressive Performance 
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5.1 Dynamics of the Musical Features 

The experiments involved investigations of how IPCS responded musically to various 

parameter changes and various measures of IPCS‟s behaviour, or providing example 

outputs. Such experiments provided an insight into the mechanics and dynamics of the 

system. The behaviour of the 3 key musical features – Pitch, Loudness and Timing – 

will now be examined.  

5.1.1 Pitch 

A first observation that should be made is the success of IPCS in generating emergent 

melodies in an innovative way. Figure after Figure (e.g. 55A p228, 71A p243, 46-53 

p178) show the building of non-trivial melodies. Often these melodies are very 

repetitive over time, due to the recursive and semi-continuous transformations of IPCS. 

However the fact that such melodies can be generated by local and non-globally 

controlled interactions based on artificial affective communication is a new approach to 

emergent melody. This in itself is a far more useful result when a significant variety of 

non-trivial tunes can be demonstrated from the output. This is the case here: while 

building the tunes for the listening experiments, a wide variety of different melody 

types were found (Figures 46 to 53 p178). These tunes are not simply linear runs of 

increasing pitch, random pitches, or simple repeated patterns, and are therefore 

significantly non-trivial (Section 5.1.4 below details melodic features regarding as non-

trivial). In Computer-aided Composition melody is usually generated (a) randomly, (b) 

by mapping from some complex pattern generation system, or (c) by a system with 

trained/rule-designed melodic intelligence. For example the CAMUS (Miranda 1994) 

mapping from Cellular Automata to music, or the Blackwell and Bentley (2002) 

mapping from Swarm MAS to music. It could be argued that IPCS is following a 

similar approach to CAMUS and generating music mapped from patterns of complex 

multi-agent interaction. However a look at the underlying IPCS information process 
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shows agents exchanging a growing symbol set with a feedback mechanism based on 

the agents‟ artificial affective state. Firstly the music is the symbol set, not being 

mapped from it. Secondly - if one was going to choose a symbol set to use in a system 

which focuses on communicating emotion, music would be a logical choice. Thus it is 

argued that the results of IPCS melody generation are a new approach compared to the 

standard mapping methodology. IPCS does not use randomness to generate complexity, 

nor pre-defined or trained melodic artificial intelligence. The closest IPCS has to 

musical intelligence are its mappings from affective state to music features and vice-

versa; these are the musical heart of IPCS in terms of functionality.   

The question of whether such a melody generation approach has a meaningful tune 

output is another one. It certainly has structure which is one usual requirement for a 

tune. It also does not simply produce repeated notes, or monotonic runs of notes, or 

repetition of 2-3 note patterns. IPCS does sometimes produce monotonous 

repetitiveness (Figure 70A p242, Figure 60A p233). This repetitiveness can also be 

interesting – for example Figure 71A p243. It is interesting to note that the variety exists 

despite the fact that in all the experiments the seed pitch was set to 60. (Though it is 

clear that if the seed pitch is set higher then higher areas of the pitch space can be 

investigated.) Another important parameter for pitch was the Affective Pitch Influence. 

In a number of the first experiments it was set to 0.5 and this proved to create large 

pitch jumps (Figures 54A to 56A, p228). These sort of pitch skips are more appropriate 

to arpeggios or to occasional elements in melodies.  

In terms of absolute pitch in Figure 42 p173 “Sad” gives the lowest average pitches, and 

“Happy” the highest ones. Median pitch can be adjusted significantly by adjusting in a 

consistent way initial affective states as shown by the trajectory in Figure 16 (p135): 

pitch goes down as HH transforms to SS through Tender and Angry, one agent at a 
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time. Median pitch is not so sensitive to increasing the number of agents (Figure 18, 

p139). Figure 41 (p173) shows that using initial affective state alone it is possible to get 

a range of pitch median pitches from MIDI pitch 50 to 70, with average pitch spreads 

from 5 to 25 semitones around this.  

For pitch spread (i.e. the maximum minus the minimum pitch in a tune) - apart from AS 

in Figure 16 (p135)- the lowest pitch spreads are achieved by combining agents with 

different initial affective states. Pitch spreads are more sensitive than median pitch to 

increasing agent numbers (Figure 18, p139), and to similarity threshold changes (Figure 

20 p141). Similarity threshold increases pitch spread as it is increased.  In a number of 

cases, the pitch spread tends to change in relation to the length of the tune when 

changing a single parameter. For example Similarity Threshold in Figure 20 (p141) and 

k-Value in Figure 39 (p165). However this is not always the case – the Interaction 

Coefficient leads to significant changes in tune length while keeping the pitch spread 

approximately the same (Table 36A, p261). This suggests that a combination of 

Similarity Threshold and Interaction Coefficient could be used to control pitch spread if 

desired, though of course this would not be independent of other factors. The agent 

Initial Affective State in Table 40A (p263) leads to a more interesting relationship 

between pitch spread and tune length.  

Pitch spread can also be adjusted using affective update rate (Figure 26, p148) though it 

can cause some runaway feedback for 2 agent systems involving “Tender”. For larger 

agent groups (8 agents) there is also a median pitch/pitch spread cycle spanning the 

space (Figure 18, p139) going from H->S->A->T and back to H. This cycle is bounded 

for pitch by 30 and 105 top and bottom, and for pitch spread at 20 and 125 at left and 

right, though this is for mean values. 
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Another element in the pitch structure is the key mode. Average key is mostly 

influenced by the majority initial affective state. It can be adjusted but tends to end up 

with mean agent keys close to being major or minor (Figures 17 and 41, p138 and 172). 

For the two agent case the exception is SH and for the 8 agent HHHHHHS. However 

6S/2H, 6S/2T, 6A/2H, 6A/2T also show a little more variety in key behaviour. This may 

be because more agents allow more variety in key across the population in final tunes. 

Figure 41 p172 shows that agent groups with the majority of “Happy” and “Tender” in 

their initial state (e.g. HHHHHHAA) are less influenced by agents with different 

affective states. Those agent populations which start with an “angry” or “sad” majority 

are more influenced by agents with other affective states. For example an angry 

population with two tender (AAAAAATT) and an angry population with two happy 

(AAAAAAHH) give a final average key mode very close to major (1.1). Whereas a 

“Happy” majority is only influenced in average key mode when two “Sad” agents are 

added (HHHHHHSS); but still stays closer to a major than minor key mode. Of course 

this analysis is dependent on the key finding algorithm, which is in itself imperfect; but 

should be indicative. Interaction threshold impacts key – in particular between 0.3 and 

0.9 (for SSAAHHTT in Figure 32 p154) the tunes are made more minor, and are major 

otherwise. This is perhaps because the lower agents are still tune providers in this range. 

At 0.9 the Angry and Happy agents are equally tune providers, but first two agents 

(Sad) become tune receivers and the last two (Tender) agents become tune providers. 

Similarity threshold moves key from major to minor as it increases (Figure 21, p142). 

This is partly because the key finding algorithm is biased to minor keys for shorter 

tunes. On average key will be more minor when using non-zero k-values (Figure 40, 

p165).  
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5.1.2 Timing 

The type of timing being discussed here is the compositional, not expressive 

performance element. Looking at Figure 41 (p172) there is a wide variation of average 

IOI from 0.2 seconds (AAAAAAAA) up to 1.16 (TTTTTTSS). All “Happy” leads to a 

slightly lower tempo than all “Angry”, all “Tender” leads to a much lower tempo than 

all “Happy”, and all “Sad” is slightly lower tempo than all “Tender”. It is interesting to 

note that the fastest IOI is achieved using a single initial affective state type – “Angry” - 

whereas the slowest is achieved by mixing two types of initial affective state – “Tender” 

and “Sad”. There is no clear pattern in how adding minority affective states to a 

majority initial affective state changes timing, apart from the obvious one of influencing 

towards any added minority state.  

It has been mentioned that median pitch showed a clear trajectory of reduction through 

H->T->A->S; however tempo reduction (IOI increase) moves from H&A->S or H&A-

>T (Figure 17, p138). All-H and All-A have similar tempos, as does all-T and all-S. 

Increasing similarity threshold reduces tempo in the SSAAHHTT case (Figure 21, 

p142), presumably because it increases interactions and thus the influence of the first 

agents (S and A). Affective update rate has significantly more effect on mean tempo 

than it does on median pitch (Figure 25/26, p147/148) – in particular for low arousal 

combinations.  

Timing has proved to be a more problematic part of IPCS than pitch. Across a number 

of different parameter settings IPCS tunes often exhibit a global acceleration or 

deceleration of tempo (called by musicians an accelerando and decellerando 

respectively), with or without expressive performance included. For example Figures 

62A (p235) and 61A (p234) show an accelerando, Figures 54A (p228) and 60A (p233) 

shows a decellerando. This is due to the following. Suppose there is a 2 Agent system, 

and Agent A is “Sad” and performs to Agent B who is “Neutral”. Agent A‟s “Sad” state 
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will cause its performance to lower the tempo of the tune it performs. Suppose Agent B 

adds that tune. It will also lower its own affective state towards “Sad”. So when Agent 

B performs the tune back to Agent A, Agent B‟s “sadder” state will cause it to 

decelerate the tune even more which in turn will make Agent A‟s affective state more 

“Sad”. Agent A will now contain a version of its tune, followed by a transformation 

(with possible additions) of a slowed down version of this tune. As this process 

continues the agents end up with a decelerating tune being built. The same can happen 

for, say, happy agents with accelerando. It was hoped that during experiments parameter 

settings would become clear which could lead to a complex “balance” in this process of 

affective influence. Figure 66A (p238) shows the global deceleration becoming local. 

But outside of specific cases, no general balance has yet been found – though this does 

not mean it does not exist. Thus some using IPCS may choose to minimise the ability in 

IPCS of agents to affectively influence each other, as was done in the listening test. 

On a note-to-note level, timing has the opposite issue – too little variance (whereas pitch 

variance is more interesting). One reason for this is that timing changes are perceptually 

fairly continuous, whereas pitch frequency is quantized into jumps and key modes. It 

may be that that a timing quantization method should utilized to create more interesting 

timing. This would create more of a timing “palette”, instead of a semi-continuous time 

transformation. Such an approach would actually be closer to the way that composers 

are inspired to work by common music notation – i.e. changes in tempo are marked by 

themes or sections, and are only occasionally continuous (e.g. with accelerando 

markings). Composers generally rely on the performer to insert continuous timing 

changes. So it may have made more sense to have compositional timing changes being 

quantized and allow the expressive performance algorithms to insert some continuous 

timing. This is something that will be explored in future work. 
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Although duration composition is influenced by affective state, it is only in such a way 

as to reduce or increase duration in proportion to the IOI.  

5.1.3 Loudness 

The type of loudness being discussed here is compositional, not expressive 

performance. It could perhaps be seen as unusual to include loudness as a compositional 

element. But one only needs to take a look at a number of scores to see a plethora of 

loudness indicators (f, p, crescendi, etc) put in as part of the composition process; these 

refer to instructions to play loudly (forte), quietly (pianissimo), louder over time 

(crescendo), etc. However the loudness generated during IPCS composition has been 

shown to be different to this. For example Figure 57A (p231) shows significant changes 

in the loudness between individual notes, exceeding 200% change between notes. There 

are slower patterns – e.g. a gradual global decrescendo in the figure. But in some cases a 

listener will hear the note by note changes as well. Figure 59A (p232) – where 2 agents 

have opposite initial affective states – shows significant changes between almost every 

note. Larger numbers of agents with a wider affective initialization seem to mitigate 

these rapid changes: for example Figure 65A (p237) with 8 agents with equal affective 

spread shows more stability and smaller changes in the loudness on a note by note level. 

Similarly Figure 72A (p244) shows a more stable and much smaller change in loudness 

(down to under 5%). This illustrates an issue with utilizing an affective transformation 

system for compositional purposes. Experiments which have developed rules for 

affective transformations – e.g. CMERS and Director Musices - have focused on 

affective communication, not on compositional interest and enjoyment. This could be 

seen in IPCS as a weakness, because rules are being utilized which were not originally 

designed for use as compositional tools. It could also be seen as a strength – as non-

standard approaches to composition may enable to the user to find tunes of greater 

interest. Whichever of these possibilities is dominant, the loudness composition also 
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raises the issue of notation – such frequent and non-continuous changes in loudness 

would be hard to notate for human performance. 

5.1.4 Summary of Non-trivial Musical Features 

The following are the key features of the experiments which support the non-trivial 

musical features of IPCS melodies (in spite of the lack of explicit melodic intelligence 

in the system): 

 

1. Tune length: music has been generated up to around 50 seconds long. If the 

tunes were only 3 to 6 notes or a few seconds long, these would be trivial. 

2. Pitch and timing change direction: the melodies are not just simple directional 

patterns, like single repeated notes, uniformly rising or falling patterns, or 

repeated “zig-zags”. 

3. Pitch repetition not too high: The melodies are not just groups of repeated 

notes, e.g. 5 notes at one pitch, then 4 notes at another, etc. The pitches vary 

much more than that. 

4. Pitch repetition not to low: However they do not vary all the time – there are 

times when notes are repeated 2 or 3 times, as one would expect in melodies. 

5. Timing repetition not too high or too low: a similar observation as with pitch 

in 3 or 4 above. We have generated melodies where the tempo does not stay 

constant, but also the tempo does not simply seem to vary randomly. 

6. Pitch jumps not too small or large: it would seem odd if note only raised or 

lowered by one pitch in all tunes. In music there are sometimes larger jumps. 

However it would also seem odd if all the pitch changes were large. We have 

shown that tunes can be generated which avoid these two extremes. 
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7. Motifs structure: the melodies contain recognizable note groupings which are 

repeated and transformed to different pitches and timings. This is expected by 

western listeners who usually look to identify a motif structure. 

 

In terms of flexibility, Figures 41 and 42 (p172/173) show some gaps in the feature 

space, but generally span much of the feature space. The major gaps are because the 

system seems to cluster towards on average having tunes in major or minor keys. Note 

that all these observations are made in the context of computer-aided composition. IPCS 

does not generate entire pieces of music. In our investigations we have only seen it 

generate tunes of less than 60 seconds.  

 

5.2 Software Parameters 

A key element with IPCS is finding the correct parameter settings to create non-trivial 

(or “interesting”) tunes. This is easier to do for shorter tunes than longer ones. However 

– it is possible to write longer tunes for example - Figure 49 (p179) with 8 agents 

(SSSSSSHH). It could be argued that even with parameters which lead to repetitive 

larger scale structure, IPCS could be used for phrase generation. This is sometimes done 

with other A-life/Cellular Automata approaches (Miranda 2001b).  

A few of the other key parameters will now be examined in IPCS. 

5.2.1 Number of Cycles 

A larger number of cycles increases the number of interactions agents can have. In each 

cycle a selected agent has the opportunity to perform to all other agents. Another option 

for defining a cycle would have been that all agents interact with all other agents. This 

approach was used at first but was found to lack control – because the effect of a single 
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cycle would grow exponentially with the number of agents. A potential effect of 

number of cycles is saturation of tune features – for example pitch and loudness – due 

to recursive interactions. It could also cause a runaway tempo growth – since tempo is 

not capped in MIDI like loudness and pitch. The effect of cycles is particularly 

important to take into account, since a 1 cycle increase (say from 12 to 13 cycles in 

Figure 13 p131) can lead almost doubling size, in terms of number of notes.  

5.2.2 Number of Agents 

One effect of number of agents is closely related to number of cycles. A larger number 

of agents will cause potentially more interactions for a single cycle. So increasing the 

number of agents increases the potential tune length – Figure 13 p131 shows this. A 

similar effect is found looking at Figure 14 p132.  

Another effect of number of agents is it allows the mixing together of more groups of 

initial affective states. For example a two agent system does not allow combinations of 

more than 2 initial affective states, whereas eight agents can combine 4 different initial 

affective states easily. Figures 17 and 18 (p138/139) show that for most cases, 

increasing the number of agents does not create as large a change in features as 

changing the combinations of initial affective states. This is a useful property as it 

means that one‟s experience of composing with smaller numbers of agents gives some 

intuitive sense of a starting point for composing with larger numbers.  The exception for 

this is Pitch spread which has some quite large changes when TT->TTTTTTTT, AT-

>AAAATTTT, and SH->SSSSHHHH. For AAAATTTT and SSSSHHHH the pitch 

spread for 2 agents is dramatically lower than for 8 agents – and the average keymode 

changes significantly as well. For SSSSSSSS, AAAASSSS, and AAAAAAAA the only 

real differences in results (apart from tune lengths) are shown in Figure 19 p140 in the 

final tune affective estimates. 
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The larger agent populations seem to reduce the average magnitude of the affective 

variables in Figure 19, while usually retaining the same quadrant. The Figures dotted 

boundary lines show that the valence/arousal of 8-agent systems is roughly bounded 

within the 2 agent systems‟ valence/arousal behaviour. So increasing the number of 

agents has the effect of reducing the changes in valence and arousal of agents. Thus it 

regulates the runaway tendencies of IPCS for positive feedback.  

5.2.3 Affective State Influences 

The effect of an agent‟s affective state on the tune features pitch, loudness and timing is 

key. The initial experiments used values of 0.5 for timing, loudness and pitch 

respectively. It was immediately seen (Figures 54A p228 and 55A p229) that this led to 

large pitch changes. Hence the pitch influence was reduced to 0.1 in later experiments. 

What was interesting, but not investigated further, was that there was no need to reduce 

the loudness influence explicitly, but that the addition of other IPCS features such as 

similarity threshold seemed to mitigate the effects. The timing influence value is 

problematic for two reasons: firstly it does not separate out onset and duration; and 

secondly because increasing it as a means of increasing timing diversity in a tune also 

leads to a potential increase in the self-perpetuating runaway of tempo in recursive 

reactions.  

5.2.4 Initial Affective States 

Initial affective state settings were found to be some of the most effective tools in IPCS 

for manipulating tune features (Figures 17/18 p138/139). It also allows for some 

balancing to lower undesirable recursive effects – e.g. in Figure 19 p140 there is a clear 

trajectory going from 8H to 8S and from 8A to 8S. It is interesting to note that the equal 

weighted group (SSAAHHTT) is very roughly in the middle of the bound area by the 

8H, 8S, 8T, 8A. As in fact are all of the 8 agent combinations tested. Setting initial 

affective states was shown by the linear affective estimator in Figure 19 p140 and by the 
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listening experiment (Figure 43 p175) to have a significant influence on the 

communicated affectivity after 10 cycles in an 8 agent system. So to a degree the user 

can utilize the initial affective states to control the affective communication of the 

composition. However it is not clear whether after more cycles than 10 this effect will 

continue. Also the ILE predicts the 8S system ends up in the Tender rather than the Sad 

quadrant in Figure 19 p140.  

Figure 19 p140 shows that AA, HH and TT all end up in the same quadrant as they 

started, according the ILE. But SS ends up in the Tender quadrant. TT is the most 

extreme in its resulting valence/arousal, followed by SS, then HH, and then AA. Only 

AS populates the Sad quadrant. So the Sad quadrant generally seems to be a repellor, 

whereas the Tender quadrant seems to be an attractive zone. “Tender” dominates 5 out 

of 8 rows in Table 26A p255 in terms of tune features. This happens even if the initial 

affective states are not in the “Tender” quadrant. A similar tendency of “Tender” to be 

an attractor is shown in Tables 36A and 37A (p261). Why this should be is not clear 

from the current experiments. Tender is high valence and low arousal. It suggests that 

the compositional transformation rules (Equations (1) to (4)), when all else is equal, 

may tend to be attracted towards this region in recursive application.  

It is useful to note that because the listening experiments showed a communication 

accuracy of 71% for valence and 82% for arousal, and the IPCS Linear Affective 

Estimator (in Column 11 Table 40A p263) showed an accuracy of 100% for estimating 

the communicated valence and arousal quadrant, then the initial listening experiment 

provide initial further support for the validity of the IPCS Linear Affective Estimator as 

a contribution. 

5.2.5 Interaction Coefficient 

The interaction coefficient was shown by – for example – Figure 73A (p245) that it 

could be used to cause an emergent division of the population into motif/phrase 
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providers and motif/phrase receivers. This behaviour is a fairly complex feature of IPCS 

and there was no investigation into a variety of compositions utilising it. To fully 

understand its application would require a rather higher dimensional investigation 

possibly of the order of the length of the whole parametric results section as it already 

is. However it is considered that the initial claim has been sufficiently supported – that 

there can be a link between the multi-agent social network and the musical form. 

Though, as was stated for expressive performance, this musical form is the one defined 

by the IPCS generative process and could be at odds with a human‟s perception of the 

structure in some cases.  

5.2.6 Affective Similarity Threshold  

The functionality of the Affective Similarity Threshold was to control tune growth and 

to examine the possibility of it imposing an emergent affective tune structure. The first 

of these was found to be true in Figure 20 (p141), where lowering the threshold led to 

smaller and smaller tune lengths. It also shows a significant effect on pitch spread, 

which is to be expected as agents with different median pitches will often have different 

affective states, making them less like to interact. In terms of its effect on tune structure, 

it is not clear if it imposes an affective structure. Comparing, for example, Figure 66A 

(p238) which has no affective threshold to Figure 62A (p234) which has an affective 

threshold of 1, the main element apparent is that the motifs or phrases that the tune is 

broken down into are shorter. This is useful to note as it means that the affective 

threshold is not here reducing tune length by simply stopping interactions at some point 

where tunes diverge too far from each other, but that it reduces the tune length by being 

selective of material from early in the generative process. The final structure of the 2 

tunes are quite similar by eye (as are their statistics in Row 8 Table 26A p255 and Table 

27A p256), with the global upwards pitch movement, except for a lower pitch version 

of the theme around the middle of the tune. So the similarity threshold here is 
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maintaining the structure, but reducing the size of the elements (and slightly reducing 

the pitch spread).  

Figure 20 p141 also shows that for thresholds below 0.4 there are no significant 

interactions between any agents. Even for agents with the same initial affective state, 

once tunes have been changed sufficiently, they diverge too far from each other and 

interactions cease. With affective threshold 1.2 and above, agents interact as if the 

threshold was infinite. Figure 22 p143 shows that between 0.4 and 1.2 increasing the 

threshold causes the resulting mean tune valence to reduce very slightly, and the result 

estimated arousal to change in a small n-shape. This n-shape may be related to the peak 

in median pitch and loudness which occurs at similarity threshold of 0.9. The reason for 

this peak is not clear, but is possibly something to do with higher valence or arousal 

agents being able to have more influence for this setting. Once the threshold goes above 

the value some lower valence or arousal agents may be allowed back into the tune 

interaction process, and below this value the higher valence and arousal agents may be 

blocked from taking part in the interaction. 

5.2.7 Affective Update 

The affective state influence between agents was aimed at adding extra affective 

dynamics to the interaction process which is was hoped would translate into musical 

dynamics over a longer time-scale. Looking at Figures 25 to 27 (p147-149) (and Table 

34A (p260) with affective update active, and Table 25A (p255) without affective update 

active) there are a number of differences. A key thing to observe in Figure 27 p149 is 

that all but one approximate affective labels (quadrants) of the average final tune 

affective states are the same, if both agents have the same initial affective state. The 

exception is Sad / Happy which goes from Sad to Tender.  The update rate has a very 

large effect on TT and SS extending them outward on both valence and arousal. 

Interestingly the same figure shows the update rate limits changes with negative 
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valence, and increases those with positive valence (except HH). Figures 25 and 26 show 

that IOI and median pitch are changed by a large amount for TT, and IOI and key are 

changed by a large amount for SS as well. 

It has already been observed that IPCS dynamics do have tendencies to move in certain 

directions and not others – so this possibly explains the non-symmetric effects of the 

affective update rules.  

 

5.3 Integration of Composition and Expressive Performance 

The effects of integrating expressive performance and computer-aided composition in 

IPCS are now discussed. Figures 79A to 82A (p248) support that IPCS does utilize the 

properties of the integration. In IPCS the structural analysis is automated, and “perfect” 

in one sense. When a human composes a piece of western music they naturally think in 

terms of motifs, phrases and sections (if not consciously). The composer will perceive 

these as being units and build using them. A fellow human listener will tend to perceive 

the same elements as being units. However it is not clear how IPCS‟s building units are 

related to human perception; or if there is a way of encouraging this using IPCS‟s 

parameters.  

There will be a tendency, if somebody hears a motif or theme repeated, to hear it as a 

motif or theme. Examples of IPCS tune with this property include Figure 60A (p233), 

Figure 66A (p238) and Figures 46 to 53 (p178). However it may be that the natural 

human perception may be to hear theme as starting in the middle of one of IPCS‟s 

themes, and then ending in the middle of the next IPCS theme. So if IPCS uses 

expressive performance on these two themes, the performance may actually confuse a 

listener‟s perception of the tune. This can be looked at in a more creative way. In many 

cases, non-trained listeners can find it hard to make out the structure of contemporary 
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classical music. Thus it is not a requirement for a piece of music‟s structure to be 

perceivable. From a creative point of view, and because IPCS is not a composition 

simulation system, it could be argued that this non-perceptual constraints in IPCS could 

lead to more interesting music, though this remains unexamined.  

Another element of the combined system is that the music is being shaped by the 

expressive performance as well as the compositional elements. Looking at Figures 39 

and 40 p165 (Table 39A p262) the effects of expressive performance can be seen on 

compositional elements. In the table and figure the most obvious element is that 

expressive performance causes greater changes in tunes, which leads to lower tune 

lengths – since these changes will take performances above the affective similarity 

threshold more often. Loudness trends upwards the increase in expressive performance, 

possibly linked to the increase in agent valence as k-value increases. Though it is 

interesting to note that when k reaches a certain critical value, the average agent 

affective state is suddenly dominated by the “Angry” quadrant. The average key mode 

starts quite major, then once k goes above 1 becomes quite minor, and for the highest 

three values of k sits somewhere between major and minor.  

 

5.4 Listening Experiment 

In a system like Livingstone‟s CMERS there was a primary purpose of communicating 

emotion – it was the system‟s contribution. For this reason CMERS evaluation involves 

twice as many listeners and extensive test design and statistical analysis of the tests as 

IPCS. However the primary contribution of IPCS is the investigation of the utilization 

of intermediate multi-agent systems to combined computer-aided composition and 

expressive performance. The use of affective states in the agents was primarily a 

method to develop a musically-relevant interaction of sufficient complexity to generate 
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non-random but non-trivial material. IPCS is more closely comparable in aim to Ossia 

(Dahlstadt 2007) or the Cellular Automata work – CAMUS - of Miranda (1994) than to 

CMERS, however IPCS‟s underlying methods bear comparison with CMERS.  

Because of this change in focus, IPCS uses a similar approach to that found in such 

systems as Ossia and CAMUS – the investigation by parametric examples. Similarly the 

system is run in a number of configurations to investigate its ability to produce non-

trivial musical material in a structured way. However, the decision to include a listening 

experiment was partially motivated by Papadopoulos and Wiggins (1999) comments on 

algorithmic composition not being viewed as a “creative and meaningful process”. So 

one way of doing this was to run an initial experiment to examine the affective 

interpretation of the music in relation to initial parameter settings, as well as some 

“creative” evaluation using subjective labels of “interesting” and “enjoyable”. However 

because parametric investigations are the standard methodology in algorithmic 

composition, only an initial listening experiment was done (see also Section 5.5.2). 

It should also be noted that the listening experiment essentially looked at the results of 

recursive application of an initial affective bias to the final perception of the music. 

Basing the results on “accuracy” is not meant to imply that IPCS is designed to produce 

“Happy” music after eight happy agents have interacted ten times. It is meant to imply 

that where IPCS to show no relationship between the initial affective states, and the 

affective perception after a small number of cycles, this would be sufficiently 

counterintuitive to a composer so as to reduce IPCS utility. So a higher “accuracy” 

implies a more understandable relationship between IPCS‟ initial affective states, and 

the affective perception of a final tune. 

Looking now at the results, it should be observed that a pigeonholing for test-subject 

affective response strategy was deliberately used because of the highly subjective nature 
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of defining emotions. Two listeners did comment on this. But if the listeners were 

allowed to write down their own emotions then it would be difficult to collate data. 

However this may have had the effect of increasing the apparent accuracy. The final 

accuracy for selected affective label (“Happy”, “Sad”, “Tender”, “Angry”) – Figure 43 

p175 (Table 41A p263) - was 59% which was more than double the chance value of 

25%. Because the aim of IPCS is not primarily emotional communication, but 

composition, this level is not unreasonable. It is significantly less than CMERS 

(Livingstone 2009), which uses the same emotion labels, and has average accuracy of 

78%. It should be noted that unlike IPCS, CMERS uses well-known pre-composed 

tunes by Mendelssohn, Mozart and Beethoven, utilizing both compositional and 

expressive performance rules. The results in IPCS are based on compositional rules 

only, and are newly composed tunes. Furthermore, as can be seen from the results, tunes 

in IPCS with different initial agent affective states will be different tunes, whereas the 

same base tunes are presented to CMERS listeners but with different emotional 

elements changed. However it is interesting to note that the original version of CMERS, 

which only used compositional rules, achieved an accuracy of 63%, very similar to 

IPCS without expressive performance. 

Although Director Musices-type rules were not tested in IPCS for their emotional effect, 

it is worth noting that Director Musices was tested by Bresin and Friberg (2000) to give 

an accuracy of 63% across 7 emotion labels (including the 4 used in IPCS testing). 

Livingstone (2010) retested and came up with an accuracy result for Director Musices 

of 49%. Once again, these compare with IPCS‟s results.  

For IPCS, when the results are separated into valence and arousal, the accuracy 

increases to 71% for Valence and 82% for Arousal. This supports the idea that IPCS is 

more successful at controlling arousal than valence, and also is compatible with the 
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previous research suggesting valence is harder to control than arousal. It should also be 

noted that Figures 46 to 53 (p178) show that changing two of the agent‟s initial 

affective states in a system of 8 agents can have a significant effect on the final tune. 

The results for IPCS are also based on the idea that a majority of agents being a certain 

affective state should, after 10 cycles, lead to the user perceiving that state. If results are 

limited to only those experiments where all 8 agents had the same affective state, the 

accuracy results for valence and arousal become 70% and 90%. Figure 43 (p175) shows 

clearly that valence errors dominate the quadrant errors and that the system 

communicated far better to some listeners than others.  

It is worth noting that the division of affective state into the two dimensions of valence 

and arousal, although common in much emotional research, is not a perfectly accurate 

model. So the results of these tests are dependent on the accuracy of this dimensional 

description. It is used confidently here because of its standard utilization across a 

number of fields.  

Another element of the listening experiments was the responses for “enjoyment” and 

“interest”. It is not clear how the users utilized these scores – whether they were used in 

an absolute sense or a relative sense. If they were used in an absolute sense then the 

average score of 5 for enjoyment and interest is fairly encouraging for monophonic 

tunes which were automatically composed using a process with no explicit 

compositional intelligence. On the other hand – assuming absolute scoring - a highest 

average score of 6.6 for enjoyment and 6.1 for interest shows there is significant work 

to be done with IPCS, either improving the system, or only utilizing it for shorter 

phrases. If the scoring was relative then it should be noted that the mean scores spread 

from 6.6 down to 2.8 for enjoyment, and from 6.2 down to 2.6 for interest. If a rough 
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linear scale is assumed, then listeners like some tunes almost 3 times as much as others, 

or found some tunes almost 3 times as interesting as others.  

Figure 44 (p176) supports the idea of a spread of listener experience, and they appear to 

group into cluster of “likers” around 6/6, and the cluster of dislikers around 3/3, plus 

one listener in the middle around 5/5. The correlation between interest and enjoyment is 

clear in this figure. Figure 45 (p177) shows that angry seems to be the least enjoyable 

and boring as an initial affective state. Happy was rated the most interesting and 

enjoyable on average. It is not clear that mixing up initial affective states made things 

more interesting or enjoyable. Happy is rated a little more enjoyable and interesting than 

Tender on average. 

 

5.5 Comparison with Previous Systems 

The issue of how these results highlight the relationship between IPCS and previous 

work will now be discussed.  

5.5.1 Computer-Aided Composition 

IPCS was not designed as a system for emulating composition traditions in detail – it 

differs radically in usage from such systems such as David Cope‟s EMI (Cope 2005) 

used in the emotional DM tests, which can simulate composers such as Mozart; or 

systems such as William Shottstaedt‟s  (Shottstaedt 1989) program simulating 

Palestrina-type counterpoint rules.  

IPCS applies intermediate multi-agent systems in an attempt to enable to a composer to 

generate emergent material which they may not have come upon themselves. This could 

be compared to some of the work of Iannis Xenakis (1963) who utilized computers to 

generate material which he then used as the basis for some compositions. The first 

algorithmic composition by Hiller and Isaacson (1959) attempted to produce the whole 
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piece of music using a computer. Based on the results so far IPCS may not be suitable 

for whole pieces in its current form due to such elements as the repetitiveness over 

longer time scales and the potential for global accelerandos and decellerandos.  

It is worth dwelling on the comparison between IPCS and Miranda‟s CA approach in 

CAMUS. There were two main significant insights in Miranda‟s approach here: (1) that 

CA provided complexity without random non-structure; and (2) the discovery of a 

mapping of visual patterns to musical features which created compositionally 

interesting phrases and developments that could be moulded by a composer manually 

into a full piece. In IPCS the complexity without randomness comes from multiple 

agents with differing affective states, and the performances affecting the musical 

content of the tunes, and the multiple interactions. Whereas the CA method utilized by 

Miranda (Game of Life) was well established before he did his work, the multi-agent 

interaction structure and properties underlying IPCS were only suggested by previous 

work – in particular Miranda‟s Musical Culture work (2003) and his work with Martins 

(2007), and the Sequence Evolution paper of Gong, Zhang and Wu (2005).  

Because of this it was not clear before the experiments that the needed complexity 

would be generated with no random behaviour (those systems which inspired IPCS all 

had random elements in some way embedded). However it is clear from – for example – 

Figure 71A (p243) and Figures 46 to 53 (p178), that sufficiently different tunes can be 

generated within the limits of IPCS‟s behaviour so far investigated. However it is also 

felt that the “edge of chaos” has not been firmly located in IPCS. This refers to the idea 

from Langton (1990) that when Cellular Automata rules become too stable the 

behaviour is uninteresting and monotonous, but when they are too unstable the 

behaviour is for chaotic and seemingly unstructured. But there is a point at which the 

rules are “just right”, and unexpected ordered complexity emerges at the “edge of 

chaos”. The Game of Life rules utilized by Miranda are an example of rules at this point 
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of complexity. Because IPCS has more parameters than a 1 or 2-dimensional Cellular 

Automata, the testing has not yet settled on finding a parameter space where a user can 

be ensured that IPCS will generate interesting behaviour.  

However looking at the results like Figure 71A p243 it appears that some kind of 

balance between the similarity threshold and the number of cycles/agents may be 

fruitful. And similarly a balance between the spread of initial affective states, the 

affective influence and update rules, and the number of cycles/agents could be 

productive. Dahlstedt (2007) describes how a great deal of time was spent fine tuning 

the rules which would lead to the Ossia algorithm generating interesting music. He 

utilizes a significant number of heuristics which guide the music generation to stop it 

become uninteresting. However there is still no guarantee of all tunes being of interest. 

Ossia is designed as a fixed system, but IPCS encourages the user/composer to 

experiment with the balance of order and chaos in the system. So Ossia has the 

advantage of the composer knowing they are more likely to get an interesting output. 

But the disadvantage of Ossia is that it is almost a creative act in itself, it is owned by 

Dahlstedt because of the time he spent fine tuning the rules. Other composers would 

probably have less interest in using the system, as they may see it as a creative product 

of Ossia. Whereas the flexibility of IPCS (leading to its potential instability or 

monotony) is more suited to computer-aided composition. 

Looking now at the other systems most closely related to IPCS – the multi-agent 

computer-aided composition systems – there are a number of similarities and 

differences highlighted by the results. The swarm music of Blackwell (2007) focuses on 

the mapping approach – but also focuses on being a live system. This allows live 

collaborators to interact with the musical swarm and push it out of less interesting areas 

and into more interesting areas. Because IPCS is not real-time, if it becomes locked into 

a self-perpetuating behaviour (e.g. rising tempo) the composer cannot break it out of 
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this. The Ant Colony system (Clair et al. 2008) is also a live system and has this live 

interaction possibility. Looking at the Heavy duty MAS systems now, the real-time 

MMAS (Wulfhost et al. 2003a; Wulfhost et al. 2003b) system highlights the limitations 

of the monophonic approach in IPCS. The MMAS agents have the ability to infer each 

other‟s tempo and thus synchronise, whereas IPCS agents build their music 

independently.  

A similar synchronisation method like MMAS is used in the heavy-duty Andante 

system (Ueda and Kon 2003). The Andante and Musical Agent systems (Fonseka 2000) 

both require significant scripting from a composer, and are more a framework requiring 

algorithmic scripting when compared to IPCS. An IPCS user can begin generating non-

trivial music with perhaps 10-15 minutes of having the system explained; e.g. being told 

the number of cycles and agents to use and then manipulating the initial affective state 

and similarity threshold. Only a few parameters need to be changed in IPCS to lead to 

significantly different music. Andante and Musical Agent have great flexibility but 

require coding from the ground up compared to IPCS. MAMA (Murray-Rust and Smaill 

2005) has similar advantages and issues – it is real-time and synchronized with musical 

intelligence, but requires the user to provide musical fragments and rules for how they 

are used, as well as style constraints. It should also be noted that MAMA is a system 

designed so that agents communicate by music as well as make music. It is worth re-

visiting that point since the results of the IPCS tests show that agents are able to send 

and receive emotional communication via music. For example in Figure 28 (p150) 

Agent 1‟s affective state updates when it hears Agent 2‟s tune. These communications 

then have an effect on the future music created and communicated.  

CinBalada (Sampaio et al. 2008) and NetNeg (Goldman et al. 1999) are perhaps the 

closest of the heavy-duty systems to being a “simulation” of human musical 

composition. CinBalada‟s design motivation is largely to simulate certain types of 
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Brazilian Rhythms. This has the advantage of being based in a pre-defined and 

appreciated musical culture, but of course does not have as much flexibility of IPCS to 

be used as a computer-aided composition system. Similarly with NetNeg – which uses 

16
th 

Century counterpoint rules. Another element with NetNeg is its fixed population 

size.  

One element with many of the above heavy-duty systems is their motivation to utilize 

multi-agent systems for producing multiple lines of a composition/performance in 

parallel. This has the effect that after a run of the system, one composition will be 

produced. An interesting element of IPCS is that after a run, there will be as many 

compositions as there are agents. A user can potentially audition multiple compositions 

to find the one they prefer. This can be compared to the work of Ramirez et al. (2008) 

which utilizes Genetic Algorithms and multi-agent systems to produce multiple results 

at the end of a run. They argue that because music performance is a subjective task, the 

user should be presented with multiple results so they can subjectively choose the one 

or ones they want. It can be seen in the IPCS results – for example Figures 71A (p243) 

and 73A (p245) – that although there are often a number of similar tunes in all the 

agents at the end of the run, they are not all the same. Thus there is some variety for a 

user to choose from. 

A close relative of IPCS in the heavy-duty systems is Inmamusys which uses multi-

agent systems to compose affectively labelled music (Delgado et al. 2008). Now that it 

has been seen that IPCS does provide the emergence of non-trivial music from simple 

rules, the status of Inmamusys as an MAS will be re-evaluated. In many ways 

Inmamusys is almost indistinguishable from an object oriented program. It is not clear 

how the multi-agent nature of Inmamusys contributes to the composition described in 

the paper. Whereas IPCS‟s music clearly emerges from simple interactions in a 

homogeneous multi-agent system. The testing of Inmamusys utilize 20 listeners, like 
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CMERS, but only 4 examples – with emotion labels “worry”, “happiness”, “chaos” and 

“worry”. The results are not given numerically but in pie charts and reading these leads 

to the system being 40% accurate for “worry”, 90% accurate for “happy”, and 60% 

accuracy for “chaos” – giving an average of 58% - around the same as IPCS. However, 

the Inmamusys testing included the option for the user to mark up results as 

“indifferent” or “fear”, as well as the 4 that were actually being expressed by the 

system. This would lead naturally to lower results because of less of a pigeonholing 

than IPCS. So it could be estimated that Inmamusys is at least as successful as IPCS in 

emotional communication. However Inmamusys is designed for emotional 

communication and is a heavy-duty MAS. 

A number of the heavy-duty systems allow humans to participate in the process, or are 

planning to investigate that potential. IPCS does not allow this to the same degree 

because it is not real time. However, there is no reason why a user could not change the 

initial tune of a number of agents to be larger motifs, rather than middle C. Thus in a 

sense the human composer can become part of the process. This is really an element of 

future work, but is included here for direct comparison with real-time heavy-duty 

systems. 

The intermediate MAS discussed earlier are either modelling systems, rhythm based, or 

not implemented. Looking at the non-implemented Computer-Aided Multi-Agent Music 

Composition system (Dahltstedt and McBurney 2006) the main thing to observe is that 

in spite of no explicit musical goals, IPCS has been shown to generate developing 

musical patterns. The A-Rhythm (Martins and Miranda 2007) system does highlight the 

timing weaknesses in IPCS in its method. If IPCS could generate rhythmic structure like 

A-Rhythm then it would be a significantly improved system. From another perspective, 

IPCS unlike A-Rhythm does generate both rhythm and pitch, though the second more 

successfully than the first. And it does it utilizing emergence in a homogeneous multi-
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agent system, like A-Rhythm. The key extra element found in IPCS is the affective 

interaction protocol and agent state.  

It is clear that in spite of the IPCS tendency to repetitiveness over larger time scales it is 

able to produce phrases and themes, and therefore is a step on from Miranda‟s (2003) 

Cultural Evolution approach, and the Gong et al. (2005) Sequence Evolution approach 

which have small fixed numbers of notes. However it has proved harder in IPCS than in 

the Sequence Evolution approach to understand how agent states will shape a tune. In 

the sequence Evolution system, agents‟ musical preferences can be adjusted in a more 

intuitive way. In IPCS a musical “meta-property” is used – affective state – and a very 

simple model of it. Hence it is not so transparent what will come out of the agent 

interactions, based on their affective parameters. It is interesting that in spite of the 

variation between agent tunes at the end of runs that has been mentioned - in Figures 

71A (p243) and 73A (p245) - there is often a similarity in the tunes across the 

population (as can be seen in these two figures). This is reminiscent of a common 

repertoire of the community emerging in Miranda‟s (2003) system. Another related 

element of IPCS is the affective influence agents have on each other through their 

music, which can lead to agents affective states moving closer, as seen in Figure 28 

(p150) and Figure 31 (p151) – reminiscent of the equilibrium found in many modelling 

MAS. 

  

5.5.2 Expressive Performance 

One immediate effect of expressive performance (i.e. k not being 0) is the requirement 

to increase the similarity threshold or the number of cycles – as seen in Figures 39 and 

40 (p165) (Tables 38A and 39A, p262). This element is fairly unique to IPCS as the 

only other expressive performance multi-agent system (Zhang and Miranda 2007; 

Miranda et al. 2010) uses a different type of thresholding – agents only alter their 
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expressive performance if another agent‟s expressive performance is judged as being 

“better” than theirs. Like IPCS, their approach was evaluated not by listening tests but 

by examining in examples and parametric tests whether the resulting performance 

expressed the note structure of the system. However this evaluation was not done as 

explicitly as in IPCS because the note groupings in the music used (Fur Elise, 

Beethoven) were auto-analysed using LBDM (Cambouropoulos 2001). Furthermore 

even if LBDM was perfect, it does not follow that their system expresses the 

hierarchical note groupings. 

This approach to evaluation, without listening tests, was also followed by SaxEx (Arcos 

et al. 1998), Hierarchical Parabola Model (Todd 1985; Todd 1995), and Ossia. (This 

should be qualified by saying that Ossia was not designed as an expressive performance 

system.) Of the seven CSEMPS in Chapter 2 which are evaluated by listening tests – 

CaRo (Canazza et al. 2000; de Poli 2004), Emotional Flute (Camurri et al. 2000), 

Composer Pulse (Clynes 1986), Kagurame (Suzuki et al. 1999; Suzuki 2003), CMERS 

and PLCG/Distall (Tobudic and Widmer 2003a; Tobudic and Widmer 2003b) – 3 of 

them are evaluated for their effect on emotional communication (as opposed on their 

success in expressive performance techniques per se). The two systems with the closest 

goal of IPCS in terms of expressive performance are the Hierarchical Parabola Model 

and PLCG/Distall. Both are focusing on the relationship between expressive 

performance and the hierarchical structure of the music. Neither combined composition 

and expressive performance systems, so both require an in-depth analysis of the music 

to be expressively performed. The Hierarchical Parabola Model needs a multi-level TSR 

analysis to be done (Lerdahl and Jackendoff 1983); and the PLCG/Distall requires a 

human musicological analysis.   

PLCG/Distall does not give examples of how the hierarchical structure is expressed, but 

focuses on evaluating how successful the performance is. It can be seen from Figures 
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78A to 80A (p249) how the expressive performance leads to tempo in IPCS expressing 

the hierarchical grouping structure of the music. The IPCS advantage of combining 

expressive performance with composition also bears comparison with Director Musices 

itself – which normally requires manual mark-up before applying Phrase Arch. Though 

it is key to note that the analysis methods utilized to prepare for an expressive 

performance in all three of the systems discussed above focus on perceptual grouping, 

whereas IPCS focuses on the grouping as built by the IPCS composition.  

Kagurame has the ability to provide expressive performance for homophonic music (i.e. 

melody with chords). A similar approach is used in DISTALL to allow expressive 

performance of homophonic music. Both the DISTALL and Kagurame systems have 

been successfully evaluated with homophony.  

A final note must be mentioned relating to Ossia. The expressive performance in Ossia 

is more deeply integrated into the composition process, and could be described as being 

“more emergent” than IPCS. Also from a subjective point of view, informal listening to 

Ossia output and comparing with IPCS would lead to the conclusion that – in general – 

Ossia can give more interesting and pleasant performed output than IPCS. However, as 

has already been noted, Ossia was not designed as a combined composition and 

performance system, nor tested as one – e.g. does it express its compositional 

hierarchical grouping structure? Furthermore – as has already been noted – Ossia is not 

necessarily suitable for use in general by composers for reasons already discussed. 

These factors, combined with the results found for IPCS in the previous chapter, support 

the idea that IPCS is still a significant contribution, in the context of Ossia, to 

Composition and Expressive Performance systems. 
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5.5.3 L-Systems 

Lindermeyer Systems (or L-Systems) (Rozenberg and Salomaa 1980) were originally 

developed to model the development of plant growth. This is done using an approach 

similar to that found in the re-writing rules of formal grammar systems (Chomsky 

1956). They have been used in algorithmic composition (McCormack 1996) and have 

enough similarities to the IPCS tune development approach to warrant a comparison 

here. A simple L-System model can be described as a set of variables, an initialised 

state and rules which transform variables, as follows: 

Variables – x y 

Initialisation – x 

Rules – [xxy], [yx] 

 

A series of iterations are run starting with the initial string „x‟ and applying all rules that 

can be applied at each iteration. Table 17 shows the first 6 iterations, and the rules 

applied at each step for the first 6 iterations. 

 

Iteration Result Rules applied 

0 x n/a 

1 xy [xxy] 

2 xyx [xxy] xyy 

[yx] xyx 

3 xyxxy [xxy] xyyx 

 [yx] xyxx 

[xxy] xyyxy 

4 xyxxyxyx [xxy] xyyxxy 

[yx] xyxxxy 

[xxy] xyxxyxy 

[xxy] xyxxyxyy 

[yx] xyxxyxyx 

5 xyxxyxyxxyxxy … 

6 xyxxyxyxxyxxyxyxxyxyxxyxxyxyxxyxxy … 

 
 

Table 17: Simple L-System growth 
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To see how this relates to IPCS consider the version of Table 9 (p111) labelled as Table 

18. In this table the structure markings used in Table 9 have been removed and two 

columns have been added to the right. One is the way that the tune transformation could 

be represented as a replacement transformation like that used in L-Systems, and a fourth 

column showing a possible general transformation rule which has been applied. Based 

on this the tune development has some relationship to the following L-System: 

 

Variables – x0, y0, y1, …, yM 

Initialisation – x0 

Rules – [x0x0y0], [yiyiyi+1] 

 

Tune Added by Agent Agent new Tune Replacement “Rule” 

Initial tune x0 x0   

y0 x0y0 x0  x0 y0 x0  x0y0  

y1 x0y0y1 y0  y0y1 yi  yiyi+1 

y2 x0y0 y1y2 y1  y1y2 yi  yiyi+1 

y3 x0y0y1y2y3 y2  y2y3 yi  yiyi+1 

etc… …   

 

Table 18: Compositional Growth in IPCS 

 

A key element of the above system which makes it unusual is that the variable set is 

limited but needs to be as extensive as the generative ability. This is not the case usually 

with an L-System which uses a relatively small simple set of variables to generate 

significant complexity. Also in an L-System all rules which can be applied are applied 
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at each iteration. Systems which do not have this universal application approach are 

more similar to formal grammars. However, even if IPCS is considered in the context of 

systems which do not require universal replacement rule application (e.g. grammar 

systems), IPCS‟s use of similarity thresholding and affective-

recomposition/performance lead to a significant difference. At each line in replacement, 

there is a decision – is the similarity close enough? And before replacement is done, the 

replacing symbol is further transformed. So in the special case when these elements are 

disabled in IPCS, it can be comparable to generative grammar systems.  

 

Both L-System and generative grammars have been applied to algorithmic composition 

(McCormack 1996)(Morgan 2007). This has often involved a mapping from the 

graphical interpretation of the L-System onto musical features. Consider the scenario 

where the mapping involves one note for each node of vertex of the graphical 

representation. The addition of similarity threshold in IPCS can be viewed as a method 

for reducing the exponential growth in the number of notes in the composition. The 

affective re-composition transformations could be viewed, in this context, as an 

additional layer of musical development process on top of the string replacement 

generating the self-similar note structure. Not all L-System musical approaches use such 

a simple mapping. But even in the more complex cases, a key differences remains 

between information-swapping multi-agent systems and L-Systems systems. An L-

System has fixed rules. Although both have elements of self-similarity, the multi-agent 

system is in essence generating new rules to potential levels of complexity which could 

not have been envisaged by the initiator of an L-System.  
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Chapter 6 – Conclusions and Future Work 

 

This, the final chapter of the thesis will draw conclusions based on the results and 

discussions, and discuss possibilities for future work. 

6.1 Conclusions 

At this point, the contributions of this work will be re-stated from the first chapter: 

1. The demonstration of the applicability of intermediate multi-agent systems to 

algorithmic composition. 

2. A proof of concept that a multi-agent system can develop non-trivial melody 

pitch structures through affective interaction of agents without explicit melodic 

knowledge. 

3. A demonstration that multi-agent social structures can generate musical structure 

on thematic and sectional levels as well as on a note or phrase level. 

4. A proof of concept that combined algorithmic composition and expressive 

performance system applies expressive performance rules in a way that 

expresses the musical structure and without having to do an explicit musical 

analysis of the composition. 

5. A music-emotion analyzing model which takes as input a monophonic MIDI file 

and estimates its affective content. 

 

Contribution 1 has been addressed by Chapters 3 and 4, IPCS is an intermediate system 

– it is not a swarm system nor does it utilize any significant AI processing (e.g. expert 

systems). The affective inference system - a single linear equation – and the affective 

expression system – three linear transforms based on a handful of parameters – could 

not be classified as significant AI processing. It use for algorithmic composition has 
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been supported within the scope of the time and space available for the work. In 

particular it was felt that the experiments showed how number of agents and cycles, 

initial affective state, affective state update rate and similarity threshold could be 

utilized by a user in shaping a variety of tunes. (It is also worth noting that IPCS has 

been used by the author to compose a piece for solo piano – see Appendix 4).  

Contribution 2 has also been demonstrated because the agent has no explicit knowledge 

of how melodies should be built: which notes should follow which, how they should 

repeat, etc. However Chapter 5 Section 5.1.4 p190 gives a list of properties was given 

for non-trivial melodies and these were largely fulfilled by a number of outputs 

demonstrated from IPCS in the various piano roll figures. An agent‟s only 

compositional knowledge of music is its ability to extract affective data from the whole 

and impose affective features on the whole. Contribution 3 was also demonstrated in 

Chapter 4 Section 4.5 p152. There were two demonstrations: (1) it was demonstrated 

diagrammatically how the interaction structure would relate to the musical structure; (2) 

an example were given showing the musical structure building up and how it related to 

the agents social structure. 

Contribution 4 was supported in Chapter 4 Section 4.6 in particular p166 where a 

demonstration was given showing how IPCS utilized integrated expressive performance 

to express the grouping structure of its tunes. And an example tune generation was 

given supporting this. The running of multiple examples to generate a statistical 

demonstration was made difficult by the fact that IPCS is an integrated system – in 

other words as soon as an musical features - apart from expressive performance 

elements – are added to the mix, the expressive performance elements become part of 

the combined whole and hard to separate out. However it was seen that in a pure “non-

compositional” system, the expressive performance expressed the structure. And 

although in the compositional mode new timing and loudness information is added, it 
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does not remove the expressive performance elements; hence they will remain, 

continuing at some level (depending on the size of the k-value) to express the structure. 

Contribution 5 was supported in Chapters 4 and 5 in two ways: (1) offline tests in 

Chapter 3 Section 3.6 p114 gave a sufficient accuracy relative to human accuracy; (2) 

the relationship between the Linear Estimator‟s final affective estimate and the listening 

accuracy described in Section 5.2.4 p194.   

 

6.2 Future Work 

This final section of the thesis will examine ideas for future work on IPCS. It will 

divided into eight subsections:  

a. Further parametric investigation 

b. Composition issues 

c. Initialisation 

d. Agent interactions  

e. Structure  

f. Expressive performance 

g. Affectivity 

h. Listening experiments 

 

6.2.1 Further parametric investigation 

It became clear when discussing results that there is a significant element that could be 

added early on in the parametric testing of IPCS – and it is the effect of different size 

pitch, onset and loudness influences. These parameters were used in the testing of other 

elements of IPCS, but not investigated themselves – due to what seemed an obvious 
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intuitive sense of their effect. However this assumption now seems erroneous due to the 

complex nature of multiple IPCS interactions. So this would be a priority element of 

future work. Another element which was not investigated was the effect of changing 

Seed Note Pitch. Setting this significantly higher or lower will tend to cause tunes to be 

seen to have different affective states, by equations (5) and (6). Similarly the seed note‟s 

duration could be investigated – the only values utilized so far have been 0.5 and 1 

seconds. 

It has already been highlighted that that a better sense needs to be gained of the 

parametric areas of productive complexity in IPCS – i.e. it‟s “edge of chaos”. One 

method not fully investigated was the usage of larger numbers of agents and cycles and 

maximum note counts but with stricter interaction controls – e.g. similarity threshold 

and interaction coefficient. As well as manually investigating, it may be possible to 

attempt this using Genetic Algorithms. Key parameters of IPCS could be encoded as 

genomes and the fitness function could either be a human scoring by eye, and/or various 

automated musical evaluation methods (Kirke and Miranda 2007).  

The cycling approach to IPCS had a fairly profound effect on which agents developed 

which tunes. In many MAS there is a random or more complex process deciding which 

agents interact with which. In IPCS the linear movement through agents leads to more 

predictable interaction networks between agents. There was an example given where 

odd agents interacted with even numbered agents, and it was seen how this changed the 

interaction networks. It may be possible to experiment with different approaches to see 

which gives the most productive musical feature set. 

The interaction coefficient could be more deeply investigated in terms of how it 

behaves. It would be useful to show what regions of the various interaction coefficients 

actually lead to the division of the agents in providers and receivers; and to show what 
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effect the Interaction Coefficient actually has on the music subjectively. It would also be 

interesting to investigate in more depth how this behaviour varies with different other 

parameter settings such as similarity threshold and affective update rates. 

Something which was utilized once but not again was the use of neutral agents – i.e. 

agents initialised to 0 valence and arousal. These agents have the ability to build tunes 

with the minimum of affective influence on the tune. It would be interesting to see if 

there are parameter sets which could actually cause neutral agents to compose pitch, and 

see what sort of tunes develop. Furthermore adding them to the mix of an agent group 

may help to mitigate some of the effects of self-reinforcing music features such as 

tempo. When a non-neutral agent combines two sub-tunes and passes them on, it will 

always change the tunes in some way – not so a neutral agent.  

 

6.2.2 Composition issues 

The problem of repetitiveness in IPCS, caused by its recursive nature, could be further 

investigated. Like Ossia, IPCS is limited in its ability to generate larger scale ABC type 

structures. One possibility is to have a “large” transformation every so often. In this 

case some agent‟s tunes are so radically transformed as to turn them from an A to a B or 

a C. This could be achieved by utilizing some form of basic scripting language which 

defines how the system behaves as cycles continue, perhaps reinitializing some agents 

in some way, etc. The continuous and often linear nature of IPCS‟s simple transforms is 

a significant limiting element, so the issue could be addressed by looking for more 

complex non-linear transformations. The related issue of runaway growth in timing 

could perhaps be further addressed using the already discussed idea of timing palettes 

and quantization. This would force timing and loudness into certain pigeon-holes, just 

as pitch is forced into certain notes values. This approach would also make the output of 
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IPCS more notatable if it is to be played by a human. Loudness could be investigated in 

the opposite way – i.e. find methods to make it smoother, for example crescendos and 

so forth. At the moment loudness tends to change in larger steps and over phrase-size 

time scales. 

The timing quantization may help to address another issue with IPCS – the fact that 

duration is not compositionally utilized. One possibility would be to have a different 

palette for duration than for onset. Another is to have a duration transformation equation 

which is independent of the onset equation. This could be done by making the duration 

equation focus on how legato or staccato a note is - both of which have affective 

implications. Another way of approaching the timing issues could be to have agents not 

always add performances to the beginning of their tunes. For example they could add 

them alternately to the beginning and end of their tunes. In this case the self-enforcing 

timing or loudness sweeps would no longer sound continuous but would be broken up 

in a way which may be more compositionally interesting.  The whole issued of timing 

could actually be sidestepped in one piece of future work – remove all timing elements 

and see how IPCS functions as a system for generating semi-repetitive patterns – e.g. 

for minimalist composition.  

It would be helpful to investigate the melodies generated from a more musicological 

point of view to see what the precise effects of – for example - the similarity threshold 

and affective state influence - have on the melodic properties. This could perhaps be 

done by an independent musically trained person asked to give more in-depth 

comments. It could also be attempted using automated analysis tools, e.g. the work of 

Hamanaka, et al (2004).  
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6.2.3 Initialisation 

At the start of interactions all agents in IPCS were given the same single note value to 

demonstrate the emergence of music by multi-agent interactions. However there is no 

reason that this should be the case outside of this demonstration. Agents could be 

initialised with different notes. In fact agents could be initialised with multiple notes by 

a human user – giving them pre-composed phrases. These approaches could be 

investigated to see their musical results. As well as more complex note initialization, it 

is possible to imagine more complex affective state initializations. Agent‟s affective 

states could be initialized anywhere on the continuous two dimensional space of valence 

and arousal. Different initialisation patterns could be investigated – for example a sine 

wave of arousal and a cosine wave of valence across the agents. 

Random initialisation methods could be used across various IPCS parameters. This 

could provide an extra element of exploratory approach for the user. Another way to 

look for new areas of interest in the space would be to initialise agents with non-global 

values in some of the parameters which are currently global. For example initial 

Interaction Coefficient parameters are currently global across all agents, as are agent 

affective state update rates and affective influence on pitch, onset and loudness. Some 

of these could be potentially initialised non-globally and/or randomly. 

 

6.2.4 Agent Interactions 

Agent interactions in IPCS are currently a closed system. Once the user sets them 

running they cannot be influenced. However it is possible to imagine opening up agent 

interactions to the user at certain cycles, allowing the user to interact with agents 
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themselves acting like an agent, or like a “god” of the system. Possible interaction 

protocols could be investigated to allow this. Another way of inserting an extra element 

into interactions is to allow certain agents to be more “affectively competent” than 

others – to insert an error into the affective feature estimation linear equation. This error 

could be different for different agents, or global. Alternatively, or additionally, entirely 

new ways of making tune adding decisions could be investigated. The similarity 

threshold may not be the only possible approach – perhaps the use of a non-meta-

comparison would be more effective – i.e. compare actual tune features. Similarly there 

is scope for investigating if an Interaction Coefficient function based purely on tune 

length is the most efficient at generating a musically relevant interaction structure in the 

agent group.  

An additional element to consider in agent interaction is an investigation into 

alternatives to the way in which agents update their tunes. Currently in IPCS agents add 

the tune to the end of their own tune. In other intermediate MAS modelling systems it is 

more common to use some form of “influence”. In other words an agent updates its 

tunes based on certain features of the tune it is hearing, as opposed to just adding the 

tune to the end of its own. The listening agent could still extend the length of its tune – 

for example if the tune it is listening to is longer than its own, the agent could extend its 

own tune by repeating elements of it. But the actual features of its tune may be adjusted 

in some way by the incoming tune to make the tunes more similar.   

 

6.2.5 Affectivity 

The model of emotion in IPCS – valence and arousal - is a simplification. A more 

accurate or higher dimensional model may have compositional advantages. Similarly 

emotional influence by one agent on another is a linear and unbounded process; and it 
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would be useful to see if making it more realistic or complex has musical benefits. The 

system currently allows agents affective state to go from minus infinity to infinity; some 

bounding system may be helpful in limiting the runaway self-perpetuating music feature 

transforms that can occur in IPCS.  The linear affective music feature estimation system 

could definitely be improved upon –making it polynomial for example. 

The affective Similarity Threshold and its effect on longer term structure has not been 

fully investigated. There was less detail than expected on its precise musical note by 

note effect or its effect on larger scale structure. Further work could be done looking in 

to this. There could also be further work on the inter-agent affective state influence, and 

how it changes melody structure. Also here was some evidence for the emergence of 

common affective states due to affective influence; it would be useful to investigate this 

further and see and what its precise effect on music is. The same goes for the affective 

dominances found in the experiments – for example the average agent affective states 

were often attracted to the “Tender” quadrant. It would be helpful to know why this 

was, how it could be better controlled, and what its effect on the music was. Finally, 

both of these elements point toward the possibility of IPCS being used as some form of 

modelling tool for music and affectivity in society – though this was not the intent, and 

it has not been evaluated this way. Future work could perhaps be done in collaboration 

with scientists more embedded in the relevant fields. 

 

6.2.6 Expressive Performance 

Currently in IPCS note groupings are expressed by the expressive performance based on 

how they are built, not how they are perceived. It would be helpful to find ways of 

testing how closely the current algorithm‟s note groupings are to human perceptions. To 
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generate perceptual note groupings may require some change in the interaction 

algorithm, for example the similarity and interaction coefficient system.  

It was difficult to judge how subjectively pleasant the repeated recursive addition of 

Director Musices rules are in IPCS. It may be possible to do a recursive reverse 

engineering of the rules to find a set of more primitive rules from which DM-type 

behaviour will emerge.  Some work could be done experimenting with recursive 

methods of phrase arch, i.e. what k-Values etc should be used. One possibly interesting 

side effect of the recursive application of k-Values – and the fact it is embedded in the 

composition process, is that it may be possible to actually overdrive the expressive 

performance algorithms to create unique compositional elements. This may also be a 

way of creating more interesting rhythms in IPCS.  

Currently both IPCS and CMERS use an approach to emotional expressive performance 

which focuses on approximating some features by utilizing a certain quadrant-based 

approximations. For example all affective states with positive valence and positive 

arousal are considered to be “Happy” in terms of selecting parameters for expressive 

performance in IPCS. It would be useful to investigate if the expressive performance 

rules could be made more continuous – for example utilizing some form of linear 

interpolation within each quadrant. This would lead to linear mappings of the type 

found in the IPCS compositional elements. It was desired to focus on a deterministic 

algorithm in designing IPCS and to avoid random methods as a way of creating 

complexity; however another change which could improve the expressive performance 

is including some elements of randomness. There is a DM rule for doing this, designed 

to simulate small human random deviations in timing and loudness. 

Other ways of extending the evaluation of the expressive performance would be to do a 

comparison with the other multi-agent system for expressive performance – the Zhang 
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and Miranda (2007) system. It may be possible to generate IPCS tunes which are the 

same in basic structure when k is zero and when it is non-zero. In that case the tunes 

could be put into the Zhang/Miranda system and the results compared to the output of 

IPCS with k > 0. Another way of evaluating IPCS expressive performance would be to 

get musicologists – and automated systems like LBDM - to divide up some IPCS tunes 

into their hierarchical structure, and see how accurately they can do it. If there are large 

inaccuracies this supports the idea of combined expressive performance and 

composition algorithms providing more accurate performative expressions of structure. 

However a method would need to be found for ensuring that the grouping in the IPCS 

tunes was also their perceptual groupings. Otherwise the human musicologist may differ 

from IPCS because IPCS is perceptually “wrong” in its grouping. 

Ossia embeds humanized performance in its composition at the deepest level, as a result 

of its recursive algorithms. This came out as an accidental result of its design. It would 

be interesting to see if the expressive performance elements of IPCS could be 

deliberately redesigned to work at a deeper level in the composition. Though one 

disadvantage of the deep embedding in Ossia is that removing the 

humanization/expressive performance would cause the composition to unravel, whereas 

in IPCS the expressive performance can be turned on and off.  

 

6.2.7 Listening Experiment 

A key gap in the listening experiment was seeing if the IPCS expressive performance 

algorithms increase the affective perception as much as CMERS‟s use of expressive 

performance does for it; experiments could be run examining this. The listening 

experiment could be extended to get a clearer statistical view of IPCS properties – 

perhaps extending them to 20 listeners, like CMERS. A larger number of tune samples 
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could be used as well – keeping the same initial affective states but adjusting other IPCS 

parameters. Listening experiments could also be done with a wider range of mixed 

affective states – for example half and half (rather than 6 of one and 2 of the other). 

Also the assumption that any agent majority initialized in a state implies that state 

should be communicated could be modified. For example the initial state AAAAAATT 

could be calculated as having a particular valence and arousal average across the 8 

agents, and the ability of the agents to communicate that average would become the 

measure tested in listening tests. It would furthermore be useful to collaborate with a 

music psychologist in designing the tests to maximize their usefulness and validity – for 

example different ways of users filling in perceived emotion, and different labels or 

scoring systems for “enjoyable” or “interesting”.  

A control group for the tests would help to clarify the implications of the results. For the 

control group, the IPCS compositional transformations could be replaced by a set of 

randomly generated transformations based which would generate feature 

transformations of the order of those found in the actual compositional transformations, 

but in an affectively unspecified direction. A similar sized group of listeners could be 

tested, with each having their own set of randomly generated transforms. The results 

would give a baseline with which to compare the results for the original non-random 

compositional transforms. It may help to clarify any affective or pigeonholing bias and 

expectations – for example would the users‟ accuracy for each of the four affective 

quadrants really be 25% when transformations where essentially random? 

Other parameters of IPCS could be investigated for their effect on listeners‟ experience 

– for example interaction coefficient. The inter-agent Affective State Update was set 

very low for the listening experiment, it would be helpful to include it at a higher value 

for a future listening experiment. Listening experiments involving musicological 
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evaluation by experts would be enable greater insight into IPCS‟s strengths, weaknesses 

and flexibility. 
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Appendix 1 – MIDI 

MIDI (Musical Instrument Digital Interface) is a standard music representation that is 

utilized in IPCS. MIDI data is digital and stored in a standard file format. The elements 

of MIDI used in IPCS relate only to MIDI‟s ability to represent tunes. MIDI files used 

in IPCS thus represent a list of notes. The notes can represent a polyphonic tune or a 

melody. A note can have a number of parameters. MIDI files are utilized in IPCS using 

a programming tool called the Matlab MIDI Toolbox (Eerola and Toiviainen 2004). The 

toolbox makes key parameters in a MIDI note file available to a programmer. For each 

note in IPCS, 4 parameters in the MIDI toolbox are used as described below.  

Note Onset 

The time in seconds when a note starts, e.g. 0, 0.1, 1.5, etc. The start of the MIDI file is 

time 0.  

Note Duration  

The length of the note in seconds, e.g. 0.33, 1, 2.  

Note Pitch 

The pitch of the note – integer value 0 to 127. Middle C is 60, Middle C# is 61, B below 

Middle C is 59. 

Note Amplitude 

The loudness of the note – integer value 0 to 127. 0 is silent, 127 is maximum loudness. 

 

For IPCS‟s purposes a MIDI file consists of a list of parameters of this type, with eac of 

the four parameters given for every note represented in the MIDI file.   
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Appendix 2 – Piano roll and Loudness Graphs 

This Appendix contains the large piano roll and loudness graphs generated in the 

experiments in Chapter 4. 

Experiment Set 2 – Initial Affective State 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54A: Tunes for “Sad / Sad” – Agent 1 
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Figure 55A: Tunes for “Sad / Angry” – Agent 1 – Row 2 of Table 25A 
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Figure 56A: Tunes for “Sad / Happy” – Agent 1 – Row 5 of Table 25A 
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Figure 57A: Loudness for “Sad / Sad” – Agent 1 – Row 1 of Table 25A 

 

  

Figure 58A: Loudness for “Sad / Angry” – Agent 1 – Row 2 of Table 25A 
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Figure 59A: Loudness for “Sad / Happy” – Agent 1 – Row 5 of Figure 25A 
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Figure 60A: Tunes for all “Sad” – Agent 1 (8 Agents) 
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Figure 61A: Tunes for half “Sad”, half “Happy” – Agent 1 (8 Agents) 
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Figure 62A: Tunes for 2 happy, 2 sad, 2 angry, 2 tender – Agent 1 (8 Agents) 
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Figure 63A: Loudness for all “Sad” – Agent 1 (8 Agents) 

 

 

 

Figure 64A: Loudness for half “Sad”, half “Happy” – Agent 1 (8 Agents) 
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Figure 65A: Loudness for 2 happy, 2 sad, 2 angry, 2 tender – Agent 1 (8 Agents) 
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Experiment Set 3 –Affective Similarity Threshold 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66A: Eight Agents, Equal Spread of Initial Affective States, Affective  Similarity Threshold 1 
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Figure 67A: Loudness for 8 Agents, Equal Spread of Initial Affective States, Affective Similarity 

Threshold 1 
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Experiment Set 4 –Inter-Agent Affective Update Rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68A: Tunes for “Sad / Happy” – Agent 1 – Affective Updates 0.1 
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Figure 69A: Loudness for “Sad / Happy” – Agent 1 – Affective Updates 0.1 
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Figure 70A: Agents 4 (“Sad”) and 6 (“Happy”) Tunes  
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Figure 71A: Four Agents from an 8 Agent population using “musically” selected parameters, 12 cycles 
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Figure 72A: Loudness for Agent 5 after 12 cycles 
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Experiment Set 5 – Effects of Interaction Coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73A: Final tunes for row 10 of Figure 36A – i.e. Interaction Coefficient Threshold 0.9 
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Experiment Set 6 – Effects of Emotional Expressive Performance  

 

 

Figure 74A: Agent 1‟s tune with k = 0, 24 cycles 

 

 

Figure 75A: Agent 1‟s loudness with k = 0, 24 cycles 
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Figure 76A: Agent 1‟s tune with k = 0.2, 24 cycles 

 

 

Figure 77A: Agent 1‟s loudness with k = 0.2, 24 cycles 
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Figure 78A: Agent 1 - 2 Neutral Agents after 5 and 6 cycles, k = 0.2, Tempo 

 

 

Figure 79A: Agent 1 - 2 Neutral Agents after 7 and 8 cycles, k = 0.2, Tempo 
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Figure 80A: Agent 1 - 2 Neutral Agents after 9 and 10 cycles, k = 0.2, Tempo 

 

 

Figure 81A: Agent 1 - 2 Neutral Agents after 10 cycles, k = 0.2, Tune 
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Figure 82A: Agent 1 - 2 Neutral Agents after 10 cycles, k = 0.2, Loudness 
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Appendix 3 – Results Tables 

This Appendix contains the tables of data generated in the experiments in Chapter 4. 

Experiment Set 1 – Number of Agents, Cycles, and Maximum Note Count 

 

Number of 

Cycles 

 Mean Note 

Count 

Note Count 

Standard Dev 

1 2 1 

2 3 1 

3 4 1 

4 7 2 

5 11 4 

6 17 6 

7 28 9 

8 45 15 

9 72 24 

10 117 39 

11 189 63 

12 305 102 

13 494 165 

14 799 267 

15 1292 431 

16 2091 698 

17 3383 1129 

18 5473 1827 

19 8856 2956 

20 14329 4784 

 

Table 19A: 2 Agents, 20 Cycles 
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Number of 

Cycles 

 Mean Note 

Count 

 Note Count 

Standard Dev 

1 2 1 

2 3 1 

3 6 2 

4 12 3 

5 24 6 

6 45 12 

7 87 23 

8 168 44 

9 324 85 

10 625 164 

11 1204 316 

12 2322 610 

13 4476 1175 

14 8628 2265 

15 16631 4367 

 

Table 20A: 4 Agents, 15 Cycles 

 

Number of 

Cycles 

 Mean Note 

Count 

Note Count 

Standard Dev 

1 2 0 

2 4 1 

3 7 1 

4 14 3 

5 28 6 

6 56 11 

7 112 22 

8 224 44 

9 447 89 

10 893 177 

11 1782 353 

12 3556 704 

13 7098 1405 

14 14168 2805 

 

Table 21A: 8 Agents, 14 Cycles 
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Number of 

Cycles 

 Mean Note 

Count 

Note Cout 

Standard Dev 

1 2 1 

2 3 1 

3 4 1 

4 7 2 

5 11 4 

6 17 6 

7 28 9 

8 45 15 

9 72 24 

10 117 39 

11 189 63 

12 189 63 

13 189 63 

 

Table 22A: 2 Agents, 13 Cycles, Max Note Count 300 

 

Number of 

Cycles 

 Mean Note 

Count 

 Note Count 

Standard Dev 

1 2 1 

2 3 1 

3 6 2 

4 12 3 

5 24 6 

6 45 12 

7 87 23 

8 168 44 

9 168 44 

10 168 44 

11 209 46 

12 209 46 

13 209 46 

 

Table 23A: 4 Agents, 14 Cycles, Max Note Count 300  
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Number of 

Cycles 

 Mean Note 

Count 

 Note Count 

Standard Dev 

1 2 0 

2 4 1 

3 7 1 

4 14 3 

5 28 6 

6 56 11 

7 112 22 

8 224 44 

9 224 44 

10 224 44 

 

Table 24A: 8 Agents, 10 Cycles, Max Note Count 300  
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Experiment Set 2 – Initial Affective State 

 

 

Affective 

State Agent 1 

Affective 

State Agent 2 

Median 

Pitch 

Pitch 

Spread 

Loud Keymode IOI Est 

Valence 

Est 

Arousal 

Approx 

Label 

[-0.5, -0.5]  

“Sad” 

[-0.5, -0.5]  

“Sad” 20 56 20 2 2.8 0.7 -2.0 “Tender” 

[-0.5, 0.5] 
“Anger” 

[-0.5, -0.5]  
“Sad” 29 48 34 2 0.9 -0.4 -0.4 “Sad” 

[-0.5, 0.5] 

“Anger” 

[-0.5, 0.5] 

“Anger” 42 32 60 2 0.3 -0.3 0.3 “Angry” 

[-0.5, 0.5] 
“Anger” 

[0.5, -0.5] 
“Tender” 58 5 60 1 0.9 0.2 -0.3 “Tender” 

[-0.5, -0.5] 

“Sadness” 

[0.5, 0.5] 

“Happy” 50 28 52 1.5 0.9 0.0 -0.5 “Sad” 

[0.5, -0.5] 
“Tenderness” 

[0.5, -0.5] 
“Tenderness” 82 65 60 1 2.8 1.7 -1.7 “Tender” 

[0.5, 0.5] 

“Happy” 

[0.5, 0.5] 

“Happy” 127 67 119 1 0.3 1.1 0.9 “Happy” 

 

Table 25A: Effects of Initial Affective State – 2 agent population, 10 cycles 

 

 

Agents 

Profile 

Median 

Pitch 

Pitch 

Spread 

Loud Keymode IOI Est 

Valence 

Est 

Arousal 

Approx 

Label 

SSSSSSSS 20 55 21 2 2.53 0.12 -0.42 Tender 

AAAASSSS 30 47 36 2 0.93 -0.07 -0.10 Sad 

AAAAAAAA 44 30 60 2 0.35 -0.06 0.06 Angry 

AAAATTTT 60 39 60 1 0.93 0.08 -0.08 Tender 

SSSSHHHH 56 106 57 1 0.95 0.08 -0.16 Tender 

TTTTTTTT 82 47 60 1 2.53 0.34 -0.34 Tender 

HHHHHHHH 127 67 119 1 0.35 0.26 0.22 Happy 

SSAAHHTT 56 82 58 1 0.93 0.07 -0.09 Tender 

SSAAHHHH 68 96 73 1 0.57 0.07 -0.02 Tender 

SSHHHHHH 91 92 89 1 0.57 0.15 0.04 Happy 

SHHHHHHH 116 80 106 1 0.45 0.21 0.13 Happy 

 

Table 26A: Effects of Initial Affective State – 8 agent population 

 

 

  



256 
 

 

Experiment Set 3 –Affective Similarity Threshold 

 

Similarity 

Threshold 

Note 

Count 

Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loudess 

 

Keymode  IOI 

Est 

Valence 

 Est 

Arousal 

 Approx 

Label 

0 1 0 60 0 60 2 0.00 -0.13 0.13 Angry 

0.1 2 1 61 1 60 1.8 0.28 -0.13 0.13 Angry 

0.2 2 1 61 1 60 1.8 0.28 -0.13 0.13 Angry 

0.3 2 1 61 1 60 1.8 0.28 -0.13 0.13 Angry 

0.4 9 9 58 26 62 1.5 0.86 0.09 -0.09 Tender 

0.5 9 9 58 26 62 1.5 0.86 0.09 -0.09 Tender 

0.6 9 9 58 26 62 1.5 0.86 0.09 -0.09 Tender 

0.7 18 22 57 37 61 1.5 0.88 0.09 -0.08 Tender 

0.8 30 19 60 62 63 1 0.89 0.09 -0.08 Tender 

0.9 67 35 63 71 65 1 0.90 0.09 -0.08 Tender 

1 113 37 61 78 62 1 0.90 0.08 -0.08 Tender 

1.1 222 43 57 81 58 1 0.93 0.07 -0.09 Tender 

1.2 224 44 56 82 58 1 0.93 0.07 -0.09 Tender 

1.3 224 44 56 82 58 1 0.93 0.07 -0.09 Tender 

1.4 224 44 56 82 58 1 0.93 0.07 -0.09 Tender 

 

 

Table 27A: Effects of Similarity Threshold 
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Experiment Set 4 –Inter-Agent Affective Update Rate 

 

Affective 

Update 

Valence 

Note 

Count 

 Median 

Pitch 

 

Loud Mode 

Est Tune 

Valence 

 Est 

Tune 

Arousal 

 Approx 

Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx 

Label 

0 1 60 60 2 -0.52 0.51 Angry -0.25 0.25 Angry 

0.02 1 60 60 2 -0.52 0.51 Angry -0.32 0.25 Angry 

0.04 1 60 60 2 -0.52 0.51 Angry -0.38 0.25 Angry 

0.06 1 60 60 2 -0.52 0.51 Angry -0.43 0.25 Angry 

0.08 1 60 60 2 -0.52 0.51 Angry -0.49 0.25 Angry 

0.1 1 60 60 2 -0.52 0.51 Angry -0.54 0.25 Angry 

0.12 1 60 60 2 -0.52 0.51 Angry -0.62 0.25 Angry 

0.14 1 60 60 2 -0.52 0.51 Angry -0.65 0.25 Angry 

0.16 1 60 60 2 -0.52 0.51 Angry -0.77 0.25 Angry 

0.18 1 60 60 2 -0.52 0.51 Angry -0.69 0.25 Angry 

0.2 1 60 60 2 -0.52 0.51 Angry -0.81 0.25 Angry 

 

Table 28A: Two Agents, 1 Angry 1 Neutral, Affective Threshold 1x10
10

, Aff Update Arousal = 0  

 

Affective 

Update 

Arousal 

Note 

Count 

 Median 

Pitch  Loud Mode 

Est 

Tune 

Valence 

 Est Tune 

Arousal 

 Approx 

Tune Label 

 Agent 

Valence 

 Agent 

Arousal 

Approx 

Agent 

Label 

0 1 60 60 2 -0.52 0.51 Angry -0.25 0.25 Angry 

0.02 1 60 60 2 -0.52 0.51 Angry -0.25 0.31 Angry 

0.04 1 60 60 2 -0.52 0.51 Angry -0.25 0.37 Angry 

0.06 1 60 60 2 -0.52 0.51 Angry -0.25 0.41 Angry 

0.08 1 60 60 2 -0.52 0.51 Angry -0.25 0.46 Angry 

0.1 1 60 60 2 -0.52 0.51 Angry -0.25 0.51 Angry 

0.12 1 60 60 2 -0.52 0.51 Angry -0.25 0.55 Angry 

0.14 1 60 60 2 -0.52 0.51 Angry -0.25 0.60 Angry 

0.16 1 60 60 2 -0.52 0.51 Angry -0.25 0.64 Angry 

0.18 1 60 60 2 -0.52 0.51 Angry -0.25 0.69 Angry 

0.2 1 60 60 2 -0.52 0.51 Angry -0.25 0.73 Angry 

 

Table 29A: Two Agents, 1 Angry 1 Neutral, Affective Threshold 1x10
10

, Aff Update Valence = 0  

 

 



258 
 

 

 

Affective 

Update 

Valence 

Note 

Count 

Est Tune 

Valence 

 Est Tune 

Arousal 

 Approx Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx Label 

0 1 -0.52 0.51 Angry -0.50 0.00 Sad 

0.02 1 -0.52 0.51 Angry -0.57 0.00 Sad 

0.04 1 -0.52 0.51 Angry -0.63 0.00 Sad 

0.06 1 -0.52 0.51 Angry -0.69 0.00 Sad 

0.08 1 -0.52 0.51 Angry -0.75 0.00 Sad 

0.1 1 -0.52 0.51 Angry -0.81 0.00 Sad 

0.12 1 -0.52 0.51 Angry -0.87 0.00 Sad 

0.14 1 -0.52 0.51 Angry -0.90 0.00 Sad 

0.16 1 -0.52 0.51 Angry -0.95 0.00 Sad 

0.18 1 -0.52 0.51 Angry -1.00 0.00 Sad 

0.2 1 -0.52 0.51 Angry -1.05 0.00 Sad 

 

Table 30A: Two Agents, 1 Angry 1 Sad, Affective Threshold 1x10
10

, Aff Update Arousal = 0  

 

 

 Affective 

Update 

Arousal 

Est Tune 

Valence 

 Est Tune 

Arousal 

 Approx Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx Label 

0 -0.52 0.51 Angry -0.50 0.00 Sad 

0.02 -0.52 0.51 Angry -0.50 0.08 Angry 

0.04 -0.52 0.51 Angry -0.50 0.15 Angry 

0.06 -0.52 0.51 Angry -0.50 0.21 Angry 

0.08 -0.52 0.51 Angry -0.50 0.28 Angry 

0.1 -0.52 0.51 Angry -0.50 0.35 Angry 

0.12 -0.52 0.51 Angry -0.50 0.39 Angry 

0.14 -0.52 0.51 Angry -0.50 0.42 Angry 

0.16 -0.52 0.51 Angry -0.50 0.47 Angry 

0.18 -0.52 0.51 Angry -0.50 0.52 Angry 

0.2 -0.52 0.51 Angry -0.50 0.60 Angry 

 

Table 31A: Two Agents, 1 Angry 1 Sad, Affective Threshold 1x10
10

, Aff Update Valence = 0  
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Affective 

Update 

Valence 

Est Tune 

Valence 

 Est Tune 

Arousal 

 Approx Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx Label 

0 -0.13 0.13 Angry 0.00 0.00 Neutral 

0.02 -0.13 0.13 Angry -0.13 0.00 Sad 

0.04 -0.13 0.13 Angry -0.21 0.00 Sad 

0.06 -0.13 0.13 Angry -0.29 0.00 Sad 

0.08 -0.13 0.13 Angry -0.39 0.00 Sad 

0.1 -0.13 0.13 Angry -0.62 0.00 Sad 

0.12 -0.13 0.13 Angry -0.65 0.00 Sad 

0.14 -0.13 0.13 Angry -0.79 0.00 Sad 

0.16 -0.13 0.13 Angry -0.83 0.00 Sad 

0.18 -0.13 0.13 Angry -0.86 0.00 Sad 

0.2 -0.13 0.13 Angry -0.87 0.00 Sad 

 

Table 32A: Eight Agents, Equal Spread, Affective Threshold 1x10
10

, Aff Update Arousal = 0  

 

 

 Affective 

Update 

Arousal 

Est Tune 

Valence 

 Est Tune 

Arousal 

 Approx Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx Label 

0 -0.13 0.13 Angry 0.00 0.00 Neutral 

0.02 -0.13 0.13 Angry 0.00 0.11 Angry 

0.04 -0.13 0.13 Angry 0.00 0.21 Angry 

0.06 -0.13 0.13 Angry 0.00 0.31 Angry 

0.08 -0.13 0.13 Angry 0.00 0.41 Angry 

0.1 -0.13 0.13 Angry 0.00 0.50 Angry 

0.12 -0.13 0.13 Angry 0.00 0.58 Angry 

0.14 -0.13 0.13 Angry 0.00 0.58 Angry 

0.16 -0.13 0.13 Angry 0.00 0.69 Angry 

0.18 -0.13 0.13 Angry 0.00 0.80 Angry 

0.2 -0.13 0.13 Angry 0.00 0.81 Angry 

 

Table 33A: Eight Agents, Equal Spread, Affective Threshold 1x10
10

, Aff Update Valence = 0  
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Affective 

State Agent 1 

Affective 

State Agent 2 

Median 

Pitch 

Pitch 

Spread 

Loud Keymode IOI Est 

Valence 

Est 

Arousal 

Approx 

Label 

[-0.5, -0.5]  

“Sad” 

[-0.5, -0.5]  

“Sad” 19 56 16 1 6.22 2.49 -3.94 Tender 

[-0.5, 0.5] 
“Anger” 

[-0.5, -0.5]  
“Sad” 27 50 31 2 1.25 -0.19 -0.72 Sad 

[-0.5, 0.5] 

“Anger” 

[-0.5, 0.5] 

“Anger” 44 29 60 2 0.36 -0.25 0.24 Angry 

[-0.5, 0.5] 
“Anger” 

[0.5, -0.5] 
“Tender” 63 14 60 1 1.10 0.45 -0.46 Tender 

[-0.5, -0.5] 

“Sadness” 

[0.5, 0.5] 

“Happy” 49 29 47 1.5 1.31 0.18 -0.71 Tender 

[0.5, -0.5] 
“Tenderness” 

[0.5, -0.5] 
“Tenderness” 102 67 60 1 4.85 2.71 -2.68 Tender 

[0.5, 0.5] 

“Happy” 

[0.5, 0.5] 

“Happy” 127 67 122 1 0.23 1.07 1.05 Happy 

 

Table 34A: Effects of Initial Affective State – 2 agent population, affective updates 0.1 

 

Similarity 

Threshold 

Note 

Count 

Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loud Mode 

 

IOI 

Est 

Tune 

Valence 

 Est 

Tune 

Arousal 

 

Approx 

Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx 

Label 

0 1 0 60 0 60 2 0.00 -0.13 0.13 Angry -0.48 0.43 Angry 

0.1 1 0 60 1 60 1.9 0.13 -0.13 0.13 Angry -0.48 0.43 Angry 

0.2 1 0 60 2 60 1.8 0.25 -0.13 0.13 Angry -0.42 0.40 Angry 

0.3 2 1 61 5 62 1.8 0.45 -0.13 0.13 Angry -0.42 0.40 Angry 

0.4 11 13 59 19 63 1.6 0.85 0.10 -0.04 Tender 0.30 -0.22 Tender 

0.5 17 19 58 24 61 1.5 0.88 0.09 -0.08 Tender 0.27 -0.28 Tender 

0.6 45 23 63 42 63 1 0.91 0.09 -0.08 Tender 0.27 -0.28 Tender 

0.7 58 23 58 51 58 1 0.96 0.07 -0.10 Tender 0.21 -0.29 Tender 

0.8 106 37 49 46 51 1 1.04 0.06 -0.13 Tender 0.14 -0.43 Tender 

0.9 221 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

1 221 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

1.1 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

1.2 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

1.3 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

1.4 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.08 -0.36 Tender 

 

Table 35A: Effects of Similarity Threshold on Affective Update 
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Experiment Set 5 – Effects of Interaction Coefficient 

 

 

Table 36A: Effects of Interaction Coefficient Threshold: 8 agents, equal spread, 1 Similarity Threshold, 

0.1 valence/arousal update; 0.2 Interaction Coefficient Update, 0.2 Interaction Coefficient, 32 Cycles 

 
Similarity 

Threshold 

Note 

Count 

 Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loud Mode 

 

IOI 

Est 

Tune 

Valence 

 Est 

Tune 

Arousal 

 

Approx 

Tune 

Label 

 

Equality 

0 1 0 60 0 60 2 0.00 -0.13 0.13 Angry 0.00 

0.1 1 0 60 1 60 1.9 0.13 -0.13 0.13 Angry 0.00 

0.2 1 0 60 2 60 1.8 0.25 -0.13 0.13 Angry 0.00 

0.3 2 1 61 5 62 1.8 0.45 -0.13 0.13 Angry 0.01 

0.4 11 13 59 19 63 1.6 0.85 0.10 -0.04 Tender 0.01 

0.5 17 19 58 24 61 1.5 0.88 0.09 -0.08 Tender 0.01 

0.6 45 23 63 42 63 1 0.91 0.09 -0.08 Tender 0.02 

0.7 58 23 58 51 58 1 0.96 0.07 -0.10 Tender 0.04 

0.8 106 37 49 46 51 1 1.04 0.06 -0.13 Tender 0.04 

0.9 221 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.06 

1 221 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.06 

1.1 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.10 

1.2 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.10 

1.3 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.10 

1.4 224 44 48 43 51 1 1.01 0.05 -0.12 Tender 0.10 

 

Table 37A: Effects of Similarity Threshold for 8 agents, equal affective spread, 8 cycles  

Interaction 

Coefficient  

Threshold 

Note 

Count 

 Note 

Count 

Std 

 Median 

Pitch 

 Pitch 

Spread  Loud 

 Key 

mode  IOI 

Est 

Tune  

Valence 

 Est 

Tune 

Arousal 

 

Approx 

Tune 

Label 

 

Equality 

0 

221 44 59 11 51 1 1.02 0.05 -0.12 Tender 0.017 

0.1 

206 53 59 11 51 1 1.00 0.05 -0.12 Tender 0.017 

0.2 

257 24 59 11 50 1 0.97 0.07 -0.17 Tender 0.013 

0.3 

212 38 58 12 49 1.5 0.91 -0.02 -0.10 Sad 0.011 

0.4 

208 64 57 11 46 1.8 0.97 -0.02 -0.14 Sad 0.010 

0.5 

233 42 56 11 43 2 1.07 -0.01 -0.14 Sad 0.010 

0.6 

197 42 58 13 48 2 0.92 -0.01 -0.08 Sad 0.008 

0.7 

124 90 58 13 51 2 0.87 -0.01 -0.06 Sad 0.006 

0.8 

173 64 62 15 60 1.3 0.80 0.01 -0.01 Tender 0.006 

0.9 

103 86 61 10 59 1.1 0.90 0.14 -0.14 Tender 0.004 

1 

103 86 61 10 59 1.1 0.90 0.14 -0.14 Tender 0.004 
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Experiment Set 6 – Effects of Emotional Expressive Performance 

 

k Value 

Note 

Count 

 Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loudness 

 

Keymode  IOI 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx 

Label 

0 13 8 61 5 60 1.8 0.40 -0.15 0.14 Angry 

0.1 13 8 61 5 67 1.1 0.39 -0.08 0.15 Angry 

0.2 12 6 61 5 73 1.1 0.40 -0.04 0.19 Angry 

0.3 8 6 61 4 69 1.3 0.42 -0.03 0.22 Angry 

0.4 5 4 61 3 60 1.3 0.44 0.00 0.25 Happy 

0.5 5 4 61 3 60 1.3 0.44 0.02 0.26 Happy 

0.6 5 4 61 3 61 1.3 0.44 0.03 0.27 Happy 

0.7 5 4 61 3 61 1.3 0.44 0.03 0.27 Happy 

0.8 5 4 61 3 61 1.3 0.44 0.03 0.27 Happy 

0.9 5 4 61 3 61 1.3 0.44 0.03 0.27 Happy 

1 5 4 61 3 61 1.3 0.44 0.03 0.27 Happy 

 

Table 38A: Effects of k-Value Expressive Performance, 8 agents, Equal Spread, 10 cycles  

k Value 

Note 

Count 

 Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loud 

 Key 

mode  IOI 

Est 

Tune 

Valence 

 Est 

Tune 

Arousal 

 Approx 

Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx 

Label 

0 104 85 61 11 59 1.8 0.39 0.05 -0.05 Tender -0.16 0.16 Angry 

0.1 74 73 61 8 74 1.5 0.40 0.02 -0.09 Tender 0.02 0.27 Happy 

0.2 49 64 61 7 69 1.1 0.44 0.00 -0.12 Sad 0.03 0.23 Happy 

0.3 84 53 60 9 59 1.6 0.44 -0.17 -0.10 Sad -0.02 0.25 Angry 

0.4 65 59 63 9 63 1.0 0.42 -0.07 -0.09 Sad 0.17 0.44 Happy 

0.5 24 20 62 6 53 1.0 0.45 -0.09 -0.11 Sad 0.16 0.42 Happy 

0.6 15 14 62 4 73 1.0 0.42 0.02 -0.02 Tender 0.43 0.71 Happy 

0.7 15 14 62 4 74 1.0 0.42 0.02 -0.02 Tender 0.44 0.72 Happy 

0.8 21 19 62 5 78 1.0 0.39 0.02 -0.02 Tender 0.48 0.75 Happy 

0.9 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.49 0.76 Happy 

1 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.52 0.75 Happy 

1.1 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.52 0.75 Happy 

1.2 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.52 0.76 Happy 

1.3 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.51 0.76 Happy 

1.4 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.51 0.76 Happy 

1.5 21 19 62 5 78 1.0 0.38 0.02 -0.02 Tender 0.51 0.76 Happy 

1.6 21 19 62 5 78 1.0 0.37 0.02 -0.02 Tender 0.51 0.77 Happy 

1.7 21 19 62 5 78 1.0 0.37 0.02 -0.02 Tender 0.50 0.77 Happy 

1.8 21 19 62 5 78 1.0 0.37 0.02 -0.02 Tender 0.50 0.77 Happy 

1.9 21 19 62 5 78 1.0 0.37 0.02 -0.02 Tender 0.50 0.77 Happy 

2 21 19 62 5 78 1.0 0.37 0.02 -0.02 Tender 0.49 0.78 Happy 

 

Table 39A: Effects of k-Value Expressive Performance, 8 agents, Equal Spread, 24 cycles  
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Experiment Set 7 – Listening Experiments 

 

Agents 

Profile 

Note 

Count 

 Note 

Count 

Std 

 

Median 

Pitch 

 Pitch 

Spread 

 

Loud Mode 

 

IOI 

Est 

Tune 

Valence 

 Est 

Tune 

Arousal 

 

Approx 

Tune 

Label 

 Agent 

Valence 

 Agent 

Arousal 

 Agent 

Approx 

Label 
AAAAAAAA 

112 22 60 6 60 2 0.20 -0.09 0.09 Angry -0.50 0.50 Angry 
AAAAAASS 

112 22 58 8 53 2 0.25 -0.12 0.05 Angry -0.50 0.25 Angry 
AAAAAAHH 

112 22 61 8 67 1.1 0.20 -0.01 0.07 Angry -0.25 0.50 Angry 
AAAAAATT 

111 22 61 6 60 1.1 0.25 -0.03 0.03 Angry -0.25 0.25 Angry 
SSSSSSSS 

112 22 50 19 24 2 1.12 -0.09 -0.22 Sad -0.50 -0.51 Sad 
SSSSSSAA 

112 22 53 17 31 2 0.68 -0.14 -0.11 Sad -0.50 -0.25 Sad 
SSSSSSHH 

71 39 55 21 37 1.9 0.83 -0.09 -0.05 Sad -0.25 -0.26 Sad 
SSSSSSTT 

111 22 52 18 27 1.1 1.13 -0.02 -0.27 Sad -0.25 -0.51 Sad 
HHHHHHHH 

28 6 68 16 103 1 0.26 0.17 0.20 Happy 0.51 0.51 Happy 
HHHHHHAA 

111 27 66 18 97 1 0.20 0.16 0.21 Happy 0.25 0.51 Happy 
HHHHHHSS 

132 17 64 23 72 1.3 0.38 0.05 0.06 Happy 0.25 0.25 Happy 
HHHHHHTT 

78 40 68 18 98 1 0.33 0.11 0.11 Happy 0.51 0.26 Happy 
TTTTTTTT 

112 22 62 11 60 1 1.1 0.13 -0.13 Tender 0.50 -0.50 Tender 
TTTTTTAA 

96 21 62 9 60 1 0.71 0.05 -0.05 Tender 0.25 -0.25 Tender 
TTTTTTSS 

96 21 60 12 46 1 1.16 0.07 -0.19 Tender 0.25 -0.51 Tender 
TTTTTTHH 

112 22 66 12 76 1 0.68 0.12 0.01 Happy 0.50 -0.24 Tender 

 

Table 40A: Features of Listening Experiment Tunes 

 
Listening 

Experiment 

Valence 

Difference 

Arousal 

Difference 

1* 
25% 13% 

2 
19% 25% 

3 
19% 25% 

4 31% 13% 

5 31% 25% 

6 25% 13% 

7* 50% 31% 

8 19% 19% 

9 31% 13% 

10* 
44% 6% 

 

  Mean 
29% [23,36] 18% [13,23] 

 

Table 41A: Results of Listening Experiments  
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Listening 

Experiment 

Combined 

Error 

1* 
38% 

2 
38% 

3 
44% 

4 44% 

5 44% 

6 31% 

7* 56% 

8 25% 

9 44% 

10* 
50% 

 

 Mean 
41% [36, 47] 

 

Table 42A: Results of Combined Matching Difference for Listening Experiments 

 

 

Listening 

Experiment Enjoyment Interest 

1* 
6.0 6.0 

2 
2.8 2.6 

3 
6.4 6.2 

4 5.8 6.1 

5* 6.6 5.6 

6 4.3 4.9 

7* 3.2 2.8 

8 6.2 6.2 

9 3.0 4.1 

10* 
5.9 

5.7 
 

 

  Mean 
5.0 [4.1, 5.9] 5.0 [4.1, 5.9] 

 

Table 43A: Results of Listening Experiments for Enjoyment and Interest 
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Initial Affective 

State Enjoyment Interest  

Order Mean 

Number of 

Notes 

Mean IOI Mean Pitch 

Spread 

HHHHHHTT 6.5 6.2 
12 78 0.33 18 

HHHHHHSS 5.7 5.9 
11 132 0.38 23 

HHHHHHAA 5.6 5.8 
10 111 0.2 18 

HHHHHHHH 5.6 5.1 
9 28 0.26 16 

TTTTTTSS 5.4 5.4 
15 96 1.16 12 

TTTTTTTT 5.3 4.7 
13 112 1.1 60 

TTTTTTHH 5 5.5 
16 112 0.68 76 

TTTTTTAA 5 5 
14 96 0.71 60 

SSSSSSHH 4.8 4.7 
7 71 0.83 37 

SSSSSSTT 4.7 5 
8 111 1.13 27 

AAAAAAAA 4.6 4.6 
1 112 0.2 6 

SSSSSSSS 4.6 4.5 
5 112 1.12 19 

SSSSSSAA 4.5 5 
6 112 0.68 17 

AAAAAATT 4.4 4.6 
4 111 0.68 6 

AAAAAASS 4.4 4.1 
2 112 0.25 8 

AAAAAAHH 4 3.9 
3 112 0.2 8 

 

Table 44A: Results of Listening Experiments average across Listeners, sorted by Enjoyment 

 
Interest Enjoyment Order 

Mean 

Number of 

Notes 

Mean IOI Pitch Spread 

HHHHHHTT 6.2 6.5 
12 78 0.33 18 

HHHHHHSS 5.9 5.7 
11 132 0.38 23 

HHHHHHAA 5.8 5.6 
10 111 0.2 18 

AAAAAAAA 5.5 5 
16 112 0.68 76 

SSSSSSHH 5.4 5.4 
15 96 1.16 12 

HHHHHHHH 5.1 5.6 
9 28 0.26 16 

SSSSSSSS 5 5 
14 96 0.71 60 

SSSSSSAA 5 4.7 
8 111 1.13 27 

AAAAAASS 5 4.5 
6 112 0.68 17 

SSSSSSTT 4.7 5.3 
13 112 1.1 60 

TTTTTTSS 4.7 4.8 
7 71 0.83 37 

TTTTTTTT 4.6 4.6 
1 112 0.2 6 

TTTTTTHH 4.6 4.4 
4 111 0.68 6 

AAAAAATT 4.5 4.6 
5 112 1.12 19 

AAAAAAHH 4.1 4.4 
2 112 0.25 8 

TTTTTTAA 3.9 4 
3 112 0.2 8 

 

Table 45A: Results of Listening Experiments average across Listeners, sorted by Interest 
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Appendix 4 – “ASH”, a Computer-aided Composition using IPCS 

“ASH” is a 2 minute classical piece for solo piano composed by the author with the help 

of IPCS. ASH can be found online at the thesis web page: 

http://cmr.soc.plymouth.ac.uk/alexiskirke/ipcs.html  

All of the right-hand (treble clef part) of ASH was composed using a single IPCS run, 

except for 4 consecutive notes used to create some chord harmonies about a third of the 

way through the composition, and the last few notes of the composition. The parameters 

for the IPCS run were as follows: 

Number of Agents / Cycles – 8 / 16 

Initial Affective States - AASSSSHH (2 "Angry" 4 "Sad", 2 "Happy") 

Seed Duration - 0.25 

Seed Pitch - 60 

maxAgentMemorySize – 250 notes 

Similarity Threshold - 1 

Affective Onset Influence - 0.1  

Affective Loudness Influence - 0.1  

Affective Pitch Influence - 0.1 

Affective Update Arousal - 0.01  

Affective Update Valence - 0.01 

kValue - 0.2 

 

http://cmr.soc.plymouth.ac.uk/alexiskirke/ipcs.html


267 
 

These parameters were arrived at by the composer through manual experimentation. It 

did not take a great deal of time, due to the experience gained running the parametric 

experiments. It was known that 8 agents created more complexity than 2 so the 

composer used 8 agents. The arousal and valence affective updates were kept low to 

prevent any “runaway” accelerandos or deccelerandos. Similarly a low but non-zero k-

Value was selected. The composer wanted to produce a performance, not just a 

composition. However too large a k-value could lead to excessive performative 

deviations due to recursive application. The composer knew he wanted some shorter 

notes and so set a low seed duration. Various values were tried, as well as various 

values of initial affective states.  

Once the composer was happy with the tune that was produced by one of the agents, he 

placed it into a composing tool (Propellorhead Reason) and experimented with different 

global tempos (though keeping the relative durations and onsets of notes the same).  

Piano was selected as the instrument as it is the easiest one to simulate. The left-hand 

(bass clef part) of ASH was composed manually by ear. The composition of the left 

hand was heavily influenced by at least two elements: the strong structure created by 

IPCS, and the “humanized” nature of the right-hand part (due to the non-zero k-Value). 

The non-zero k-Value helped to encourage the composer to be far more free with their 

timing in a way they found attractive. The strong structure already apparent in the IPCS 

tune shaped how the left-hand developed and repeated, but also encouraged the more 

free timing (since the IPCS structure held the tune together strongly).  

The composition highlighted the fact that IPCS does not really produce tune-endings. 

So a few notes had to be added manually at the end to create a satisfactory conclusion. 

The fact IPCS did not produce a natural ending, and the desire to not interfere with the 

interesting structures IPCS had produced, meant that the human composed ending 
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became slightly unusual in nature. But this was seen by the composer as a positive 

point.  

It was satisfying to note that the integrated expressive performance could be clearly 

heard and appreciated in the final composition. However this also means it is not 

possible to produce a meaningful music notation score, because the timings would come 

over as far too complex in common notation.   
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Appendix 5 – List of Abbreviations 

 

A Articulation 

ANN Artificial Neural Network 

BBN Bayesian Belief Network 

CBR Case-based Reasoning  

CSEMP Computer System for Expressive Music Performance 

CMERS Computational Music Emotion Rule System by Livingstone et al 

D Dynamics 

DM Director Musices (KTH System) 

EC Evolutionary Computing 

GA Genetic Algorithm 

GP Genetic Programming 

GPR Gaussian Process Regression 

GTTM Lerdahl and Jackendoff‟s Generative Theory of Tonal Music 

GUI Graphical User Interface 

HMM Hidden Markov Model 

IBL Instance-based Learning 

ILE IPCS Linear Estimator 

IOI Inter-onset Interval 

IR Narmour‟s Implication/Realisation Theory of Melody 

K Attack 

KCCA Kernel Canonical Correlation Analysis 

kNN k-Nearest Neighbour 

KRR Kernel Ridge Regression 

LBDM Local Boundary Detection Model of Cambouropoulos 

MAS Multi-agent System 

MIDI Musical Instrument Digital Interface 

MusicXML Music Extensible Markup Language 

MIS Music Interpretation System by Katayose et al 

N Note addition/consolidation 

P Pitch 
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PCA Principal Component Analysis  

PSO Particle Swarm Optimisation 

T Tempo 

TSR Time Span Reduction Technique (from GTTM) 

V Vibrato 
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