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Bayesian modelling of ultra high-frequency financial data

Abstract

The availability of ultra high-frequency (UHF) data on transactions has revolutionised

data processing and statistical modelling techniques in finance. The unique characteris-

tics of such data, e.g. discrete structure of price change, unequally spaced time intervals

and multiple transactions have introduced new theoretical and computational challenges.

In this study, we develop a Bayesian framework for modelling integer-valued variables

to capture the fundamental properties of price change. We propose the application of the

zero inflated Poisson difference (ZPD) distribution for modelling UHF data and assess

the effect of covariates on the behaviour of price change. For this purpose, we present

two modelling schemes; the first one is based on the analysis of the data after the market

closes for the day and is referred to as off-line data processing. In this case, the Bayesian

interpretation and analysis are undertaken using Markov chain Monte Carlo methods.

The second modelling scheme introduces the dynamic ZPD model which is implemented

through Sequential Monte Carlo methods (also known as particle filters). This procedure

enables us to update our inference from data as new transactions take place and is known

as online data processing. We apply our models to a set of FTSE100 index changes. Based

on the probability integral transform, modified for the case of integer-valued random vari-

ables, we show that our models are capable of explaining well the observed distribution

of price change. We then apply the deviance information criterion and introduce its se-

quential version for the purpose of model comparison for off-line and online modelling,

respectively. Moreover, in order to add more flexibility to the tails of the ZPD distribution,

we introduce the zero inflated generalised Poisson difference distribution and outline its

possible application for modelling UHF data.
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Chapter 1

Introduction

1.1 Overview

Until three decades ago, most empirical studies in finance were based on low frequency

(daily at finest frequency) data. For example, only the first or the last observation of the

day for the variable of interest (e.g. price) was recorded, thus all intra-day events were ne-

glected. However, due to advances in computer power and the increased automatisation

of financial markets, high-frequency (intra-day) databases have been formed. Transac-

tions, therefore, are recorded at finer time intervals (e.g. minute-by-minute or second-

by-second) with their associated measurements such as price, volume, bid1 and ask2

quotes (Pacurar, 2008). The ultimate form of high-frequency (HF) data is represented by

transaction-by-transaction or trade-by-trade data in which events are recorded one by one

as they occur (McCulloch and Tsay, 2001; Tsay, 2005; Liesenfeld et al., 2006; Pacurar,

2008). These databases are now readily available and commonly known as ultra high-

frequency (UHF) data (Engle, 2000). For example, all equity transactions of the New

York Stock Exchange (NYSE) are recorded in the trades and quotes (TAQ) database from

1992 to the present which includes transactions on the NYSE, AMEX, NASDAQ and

the regional exchanges. A similar database for options transactions from August 1976

to December 1996 is provided by the Berkley Options Data Base. Olsen Associates in

Switzerland has maintained a database of foreign exchange spot quotes for many major
1The bid price is defined as the price that a buyer is willing to pay for a security.
2The ask price is defined as the price that an investor accepts to sell a security.
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currency pairs since the mid 1980’s, published over the Reuters’ network (Goodhart and

O’Hara, 1997; Wood, 2000; Yan and Zivot, 2005; Tsay, 2005). Data from many other

securities and markets are continuously collected and processed.

Embracing finance, econometrics and statistics, the analysis of HF/UHF data has at-

tracted much interest by providing a deeper understanding of market activity. Research

in a variety of issues related to trading process and market microstructure studies3 has

become possible by the advent of HF/UHF data sets (Campbell et al., 1996; Wood, 2000;

Tsay, 2005; Cont, 2011). These developments are not limited to academia, they have

also affected the current trading environment. By increasing the power of computers

and automating transactions, the speed of trading has increased enormously and day-

trading is now available to all investors. This has formed a new and successful category of

hedge funds known as high-frequency finance hedge funds (Goodhart and O’Hara, 1997;

Calamia, 1999; McCulloch and Tsay, 2001; Tsay, 2005; Luca and Gallo, 2009; Pacurar,

2008).

However, analysing UHF data introduces a new challenge in the area of statistics

and finance, because such data have some unique characteristics that are not found in

low frequency data (Engle and Russell, 2005; Tsay, 2005; Liesenfeld et al., 2006). The

purpose of this study is to learn about these special characteristics, investigate possible

methods for analysing UHF data and discuss the application of the obtained results. We

are mainly interested in price movement and its characteristics.

Our analysis in this thesis will be carried out within a Bayesian framework. Almost

until two decades ago, Bayesian statistics was only an interesting alternative to the clas-

sical theory. The intractabilities involved in the calculation of the posterior distribution

prevented researchers from building and developing models using such methods. In recent

years, advances in computer techniques and computational methods have dramatically in-

creased our ability to use Bayesian methods (Ntzoufras, 2009; Gamerman and Lopes,

2006).

3O’Hara (2006) defines: “market microstructure is the study of the process and outcomes of exchanging
assets under explicit trading rules. While much of economics abstracts from the mechanics of trading,
microstructure literature analyses on how specific trading mechanisms affect the price formation process.”
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The remainder of this chapter is organised as follows. Section 1.2 reviews some spe-

cial characteristics of UHF data. A description of the available data set for this study is

presented in Section 1.3. Finally, a literature review of price change modelling and a brief

description of the rest of the chapters are given in Section 1.4.

1.2 Empirical characteristics of UHF data

UHF data are characterised by unique properties that make them different from low fre-

quency data. We highlight below some of their important features.

(i) Unequally spaced time intervals. The time duration between transactions in UHF

data is a random variable because transactions do not occur at equally spaced time

intervals. Therefore, consecutive transaction prices do not form an equally spaced

time series. This means that the time duration may carry important information,

e.g. how fast the transaction price may move in a given market, or it may reflect the

market intensity.

(ii) Discrete valued prices. The price change of an asset in consecutive transactions oc-

curs in a multiple of a tick4 size, which leads to a discrete structure of price process.

(iii) Multiple transactions within a single second. Considering the fact that the time is

measured in seconds, in a period of heavy trading of the market, one second may be

too long as a time scale. As a result, two or more transactions with equal or unequal

prices that occurred within a period of one second are recorded at the same time as

multiple transactions.

See Engle and Russell (2005) and Tsay (2005, Chapter 5) for a further description of UHF

data.

4A tick is defined as the minimum amount by which the price of the market can change.
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1.3 FTSE100 index futures

The data comprise the Financial Times Stock Exchange (FTSE)100 index futures5 for

March 25 and 26, 2008, with the maturity date6 June 2008, traded on the London Interna-

tional Financial Futures and Option Exchange (LIFFE) which was provided by Cantab

Capital Partners through Dr Ewan Kirk. The FTSE100 index is constructed from 100

of the largest UK companies listed on the London Stock Exchange. There are 81,706

transactions over 2 working days. In the first day (March 25) 46,180 transactions and in

the second day (March 26) 35,526 transactions have been recorded. Variables associated

with each transaction are the FTSE100 index futures, the transaction volume and the time

of the transaction in unix time stamp7.

The normal trading hours of the FTSE100 are from 08:00 until 16:30. Therefore, for

simplicity, any transaction beyond these hours are discarded from the analysis. Thus, the

number of transactions are reduced to 45,267 and 34,495 transactions, respectively, for

each of the trading days. Furthermore, one tick size is considered to be 0.5 FTSE100

index. Each contract is valued as £10 per index point, therefore the value of one tick is £5

8.

The FTSE100 index futures is interesting to study because the market microstructure

of stock index futures markets, in general, has not been explored so far to the same extent

as the other markets, e.g. option and stock markets. The reason might be that their

transaction data have not been accessible as frequently as the other markets (Tse, 1999).

In addition, the structure and trading system of futures markets are different from other

securities markets. For example:

(i) There is no market maker on the futures market. All bid and ask offers are re-

vealed to other traders in the trading pit by the process of open outcry, or through

5A contract that obliges the holder to buy or sell an asset at a predetermined delivery price during a
specified future time period. The contract is settled daily.

6The end of the life of a contract.
7“Unix time, or POSIX time, is a system for describing points in time, defined as the number of seconds

elapsed since midnight Coordinated Universal Time (UTC) of January 1, 1970, not counting leap seconds”;
For further information see: http://en.wikipedia.org/wiki/Unix_time.

8 For further information see:
http://www.euronext.com/trader/contractspecifications/derivative/wide/contractspecifications-2830-
EN.html?euronextCode=Z-LON-FUT.
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Figure 1.1: FTSE100 index futures, the discrete structure of price process can be observed for (a)
March 25, and (b) March 26, 2008.

continuous auction system of trading;

(ii) Index futures are not likely to be affected by private information;

(iii) Futures indices are influenced by market-wide information such as macroeconomic

news.

As a result of these differences, the intra-day patterns of trading activity and transaction

data of futures markets are different from those of stock and option markets (Tse, 1999).
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Figure 1.2: One minute of FTSE100 indices presents the main features of UHF data, e.g. price
discreteness, unequally spaced time intervals and multiple transactions.

It may be noteworthy that March 25, 2008, is the Tuesday after Easter bank holiday

which may explain the high intensity of the market on this day; about 10,000 more trans-

actions than the next trading day. Figure 1.1 illustrates FTSE100 indices for the each of

the trading days in the data set. The discrete structure of the FTSE100 indices is observ-

able from the graphs in Figure 1.1. A one minute transaction period (10:00:00-10:01:00)

from March 25 is illustrated in Figure 1.2 which shows unequally spaced time intervals,

price discreteness and multiple transactions.

Now, let us assume that the FTSE100 index change from one transaction at time ti−1

to the next transaction at time ti is given by

Zi =
P′ti
ST
−

P′ti−1

ST
= Pti−Pti−1 , (1.1)

where P′ti is the FTSE100 index at time ti, Pti is the number of ticks for the FTSE100 index

at time ti and ST = 0.5 is the tick size. Here ti is a continuous time, but prices are only

updated when a transaction actually occurs. Table 1.1 illustrates the relative frequencies

of index change for March 25 and 26, 2008. It shows that the positive and the negative

index changes are almost symmetrically distributed around zero. It can be seen that about

69% of the indices have not changed at all and 21% had a change of 1 tick size. In
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Number(tick) ≤ -4 -3 -2 -1 0 1 2 3 ≥ 4
Percentage 0.6 1.0 3.6 10.4 68.8 10.2 3.7 1.1 0.6

Table 1.1: Relative frequencies of index change in multiple of tick size.

addition, changes of 4 or more ticks are rare (about only 1%).

1.4 The state of the problem

1.4.1 Price change

UHF data are usually identified by their two main features: the irregularity of time in-

tervals and the discreteness of price changes as discussed in Section 1.2, from the low

frequency (daily or monthly) data sets. Conventional methods are mainly suitable for the

purpose of analysing low frequency data that are defined over equal time intervals with

continuous variables. Therefore, such methods may not be able to handle UHF data char-

acteristics. Developing methods that consider the features of UHF data may improve our

inference greatly.

A suitable technique needs to address the two characteristics of UHF data and there-

fore should consist of two parts. The first part is modelling time duration between two

consecutive transactions (time duration). Based on the seminal work by Engle and Rus-

sell (1998), a large body of research (among the others, (Bauwens and Giot, 2000; Zhang

et al., 2001; Tsay, 2005; Pacurar, 2008)) has been concerned around the further devel-

opment of autoregressive conditional duration (ACD) models in order to characterise the

time duration (Liesenfeld et al., 2006). The second part is the modelling of price process.

Instead of modelling price process itself, Rydberg and Shephard (1999) suggested mod-

elling price change as a non-stationary and a nonlinear process. More specifically, P′ti , the

price of the most recent transaction at time ti can be considered as follows

P′ti = P′t0 +
Ni

∑
i=1

(ST ·Zi) , (1.2)

where Ni is the number of transactions recorded in the interval from time 0 up to time ti

and Zi is the index change associated with the ith transaction, given by (1.1). In practice
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many of the Zi’s are zero. In contrast with the time process, modelling price change is

not easy. The price change is an integer-valued variable whereas available methods are

dealing with continuous variables or non-negative integer-valued variables.

Ordered probit models were commonly used for modelling price change in early stud-

ies of UHF data sets (Hausman et al., 1992; Bollerslev and Melvin, 1994). In later at-

tempts, Russell and Engle (1998) proposed an autoregressive conditional multivariate

(ACM) model and Darolles et al. (2000) considered price change process as a Markov

process having the values -1, 0 and 1. However, the main drawback of these models is

that they consider a finite range for the discrete distribution of the observed price change.

In addition, for both ACM and the ordered probit models, it is necessary that all potential

outcomes have to occur in the sample period to guarantee the identification and estimation

of the true dimension of the multinomial process. They also assume that the number of

parameters increases with the outcome space. Therefore, these techniques are only suit-

able for the empirical analysis of financial markets which are characterised by a limited

number of discrete price changes and when we are not interested in predicting the market

behaviour (Rydberg and Shephard, 2003; Liesenfeld et al., 2006).

Later on, Rydberg and Shephard (2000, 2003) proposed a model, commonly known as

the ADS model, which considers the price change as a combination of three components:

an indicator for price change (A), the direction (D) of price change if there is a change

and the size (S) of price change if a change occurs. The advantage of such a method is

that the final output is an integer, unlike with the previous models which were defined

over a finite range. Using the idea of decomposition, Liesenfeld et al. (2006) suggested

an integer count Hurdle (ICH) model in which price is decomposed into two components:

a trinomial process which indicates no price change, price increases or decreases, and a

truncated-at-zero count process for the size of price change.

Since parameter estimation in the more complex models is not feasible with standard

techniques such as maximum-likelihood estimation, Bayesian methods may be an alter-

native for analysing UHF data. These methods can be implemented via a wide range

of Monte Carlo techniques such as Markov chain Monte Carlo (MCMC) methods. Us-

8



ing Bayesian methods, McCulloch and Tsay (2001) proposed a bivariate model for price

change and time duration (a PCD model). The PCD model, similar to the ICH model, de-

composes the price change into the direction and the size of price change in combination

with a model for time duration. However, such a model only rests over non-zero price

changes and time durations, which may lead to information loss. Another study which

considered the Bayesian ADS model, is Gendron and McCausland (2005). The original

ADS model was fitted to a set of HF data by Gendron and McCausland (2005), in which

the size of price change was also modelled separately for negative and positive changes,

similar to the ICH and PCD models. Modelling the size of price change as two separate

processes may ignore the effect of the components of the size on one another. Czado

and Kolbe (2004) also used the idea of decomposition in a Bayesian framework, but only

modelled the size of price change which left the interpretation of the results incomplete.

However, decomposing the price change may be at the cost of introducing additional

complication to the analysis of UHF data. Also our interpretation from the model is only

valid when results from all the components are available. Our attempt in this study is to

answer the following question. Can we model price change as a single process without

breaking it into two or three components or limiting it over a finite range? Modelling

price change as a single process gives us better a understanding of the behaviour of price

change. Also, it may be computationally more feasible than the previous methods because

we only deal with a single variable.

1.4.2 Modelling price change

We initiate the discussion about modelling price change for UHF data in Chapter 2. In this

chapter we describe the Bayesian ADS model and use MCMC methods to fit the model to

the FTSE100 index change. This gives us the opportunity to understand better the ADS

model and the behaviour of the data set using a well-known model. We can also use the

results from the Bayesian ADS model to compare with the results obtained from other

models that we propose later in this study.

We introduce the Bayesian application of the zero inflated Poisson difference (ZPD)

distribution for modelling price change in Chapter 3. The Poisson difference distribution

9



provides an integer range for index change and, by considering its zero inflated version,

we are able to take into account the excess of zeros in the model. In this chapter, like in

Chapter 2, we assume that the data from one trading day is available, therefore in practice

the analysis can be performed after the closing time of the market. In general, we refer to

this type of analysis as the off-line modelling of data.

However, as transactions occur sequentially, we may be interested in performing in-

ference and prediction online. That is, we want to update our analysis as a new transac-

tion takes place. This leads us to using sequential Monte Carlo methods (also known as

particle filters) that enable us to perform an online analysis of sequential data sets. For

this purpose, we propose a dynamic zero inflated Poisson difference (DZPD) model in

Chapter 4 which is fitted to our data set via SMC methods. Moreover, in order to assess

the model sequentially, in this chapter, we introduce the sequential deviance information

criterion.

The ZPD distribution may lead to an underestimation of the tails in certain situations.

Therefore, in order to add more flexibility to the tails of the ZPD distribution, we introduce

the generalised Poisson difference (GPD) distribution with four parameters in Chapter 5.

We investigate some important characteristics of the GPD distribution and show that the

GPD distribution suggested by Consul and Famoye (2006, Chapter 9) is a special case of

the GPD distribution introduced in this study. In addition, we outline a possible appli-

cation of the zero inflated version of the GPD (ZGPD) distribution for modelling UHF

data.

We would like to point out that in Chapters 2 and 3, we fitted models to the data

for March 25 and used the next day’s data, March 26, for the purpose of validating our

models. In Chapter 4 we only used the data relating to March 25 for the purpose of

dynamic modelling of one day’s transactions. We carried out all the analysis in R 2.11.1,

a software environment for statistical computing and graphics.

Finally, Chapter 6 provides a summary of our results, the strengths and the weaknesses

of our proposed models and general review of possible extensions of our methods.
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Chapter 2

A Bayesian perspective of the decompo-
sition model

2.1 Introduction

This chapter introduces the ADS model in a Bayesian framework. We model the FTSE100

index change from the trading day March 25 using MCMC techniques. We suggest

an algorithm for predicting index change and obtain forecasts for the next trading day

(March 26). We assess the performance of the MCMC chains by Gelman and Rubin’s

convergence diagnostics (Gelman and Rubin, 1992), and the posterior predictive distribu-

tion with a probability integral transform (PIT) modified for the case of the discrete data

(Liesenfeld et al., 2006).

This chapter is organised as follows. Section 2.2 provides a more detailed introduc-

tion to the ADS model. Section 2.3 describes the Bayesian analysis of the ADS model,

including: the posterior distribution, the Metropolis-Hastings algorithm, prediction and

model checking. Results are presented in Section 2.4, followed by a discussion of the

strengths and weaknesses of the ADS model in Section 2.5.
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2.2 Decomposition of index change

Consider an index change1, Zi given by (1.1), an integer-valued variable observed at time

ti, for i = 1, . . . ,n, where n is the number of observed index changes in a given trading

day. According to the ADS model, Zi can be decomposed into three components. These

components are: the indicator for index change (Ai), the direction (Di), and the size (Si)

of index change if a change occurs. More specifically, Zi can be expressed as follows

Zi = AiDiSi, (2.1)

where Ai is a binary variable with the following values:

• Ai = 0 if the index remains the same, i.e. the index is in-active,

• Ai = 1 if a change occurs, i.e. the index is active.

In the rest of the chapter we may refer to the indicator of index change, Ai, as index

activity or simply activity, interchangeably. The direction of index change, Di, is also a

binary variable given by

• Di =−1 if index change is negative,

• Di = 1 if index change is positive.

Finally, Si is an integer-valued variable such that Si > 0. Consequently, the probability of

an index change can also be decomposed as follows

f (Zi|x) = fA(Ai|xi,A) fD(Di|Ai = 1,xi,D) fS(Si|Di,Ai = 1,xi,S), (2.2)

where x is a set of covariates which affect index change through its individual compo-

nents, and xi,A, xi,D and xi,S are the ith row of the matrices of covariates corresponding to

each of the components of index change. In the following sections we detail the modelling

of the components of index change.

1The ADS model was originally suggested for the price change, whereas here we fit the ADS model to
FTSE100 index changes. Thus, we may use both price change and index change interchangeably.
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2.2.1 Modelling components of index change

We may assign the following model for the probability of index activity

MA : p(Ai = 1| xi,A) = pAi, log
(

pAi

1− pAi

)
= xi,Aβ , (2.3)

where β is a vector of parameters of an appropriate size. Similarly, for the direction of

index change given that Ai = 1, we can set the following model for the probability of the

direction of index change

MD : p(Di = 1| Ai = 1,xi,D) = pDi, log
(

pDi

1− pAi

)
= xi,Dγ, (2.4)

where γ is a vector of parameters of an appropriate size. In order to model the size of

index change, Si, possible choice of distributions are geometric distribution (Tsay, 2005,

Chapter 5), Poisson distribution (McCulloch and Tsay, 2001) and Negative Binomial dis-

tribution (Liesenfeld et al., 2006; Rydberg and Shephard, 2003) distributions. Here, we

use a geometric distribution. In order to consider zero values in the variable size we model

S′i = Si−1. It is noteworthy that Rydberg and Shephard (2003) referred to a value greater

than 0 as a large move. We fit the following model to the size of index change

MS : S′i|
(
Di, Ai = 1, xi,S′

)
∼ g(pS′i

), log

(
pS′i

1− pS′i

)
= xi,S′ θ , (2.5)

where θ is a vector of parameters of an appropriate size and g(pS′i
) denotes a geometric

distribution with parameter pS′i
such that

pS′i
= P(S′i = s′i|Di, Ai = 1,xi,S′).

Therefore, the next transaction may fall into one of the following three categories:

(i) No index change, i.e. Ai = 0 with probability 1− pAi;

(ii) The index increases, i.e. the next transaction increases with associated probability

pAi pDi and a size of Si = S′i +1 such that S′i ∼ g(pS′i
);

13



(iii) The index drops, i.e. the next transaction decreases with associated probability

pAi(1− pDi) and a size of Si = S′i +1 such that S′i ∼ g(pS′i
).

2.3 Bayesian inference

In the Bayesian framework of the ADS model our inference of Z is based on the posterior

distributions of the parameters of the model, β , γ and θ . Let us assume β ,γ and θ are

independently distributed. Therefore, the posterior distribution of the model parameters

using (2.2), can be defined as follows

f post(β , γ, θ |z) ∝ f like(z|β , γ, θ) f prior

β
(β ) f prior

γ (γ) f prior
γ (θ)

= f like
A (a| β ) f prior

β
(β ) f like

D (d| γ, a = 1) f prior
γ (γ) f like

S (s|θ , d, a = 1) f prior

θ
(θ)

∝ f post

β
(β | a = 1) f post

γ (γ| d, a = 1) f post

θ
(θ | s, d, a = 1), (2.6)

where f like
A (a|β ), f like

D (d|γ, a = 1) and f like
S (s|θ , d, a = 1) are the likelihood functions and

f prior

β
(β ), f prior

γ (γ) and f prior

θ
(θ) are the prior distributions. The decomposition in (2.6) en-

ables us to obtain the posterior distribution for each component separately and combine

the posterior distributions in order to make inference about index change.

We start by defining the likelihood functions. Let us denote n as the number of index

changes in a given day and n′ as the number of index changes with active indices. Thus,

there are n− n′ transactions with in-active indices. We assign a Bernoulli distribution to

Ai, with parameter pAi given by (2.3). Thus, the likelihood is

f like
A (a| β ) = p(A1 = a1) . . . p(An = an)

=
n

∏
i=1

pai
Ai
(1− pAi)

1−ai

=
n

∏
i=1

(
pAi

1− pAi

)ai

(1− pAi). (2.7)
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Similarly, if we re-parameterise Di as follows

D′i = Di +1 if Di =−1,

D′i = Di +0 if Di = 1,

and assign a Bernoulli distribution to Di with parameter pD′i
= pDi in (2.4), the likelihood

function is given by

f like
D (d| γ, a = 1) = Pr(D′1 = d′1) . . . Pr(D′n′ = d′n′)

=
n′

∏
i=1

pd′i
D′i
(1− pD′i

)1−d′i

=
n′

∏
i=1

(
pD′i

1− pD′i

)d′i

(1− pD′i
). (2.8)

The probability mass function of the size of index change, S′i = Si− 1, is a geometric

distribution with parameter pS′i
defined in (2.5)

g(S′i = s′i|pS′i
) = pS′i

(1− pS′i
)s′i, S′i = 0,1,2, . . . ,

so the likelihood function is

f like
A (s′|θ , d, a = 1) = Pr(S′1 = s′1) . . . Pr(S′1 = s′1)

=
n′

∏
i=1

pS′i
(1− pS′i

)s′i

=
n′

∏
i=1

(
pS′i

1− pS′i

)
(1− pS′i

)s′i+1. (2.9)

Next, we choose the prior distribution. In the absence of any specific information we

set a normal prior distribution with mean zero and large variance (e.g. 104) for each of

the parameters of the model. Therefore, for each of the variables A, D and S, the prior
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distributions are

β ∼ N(0,Σβ ), (2.10)

γ ∼ N(0,Σγ), (2.11)

θ ∼ N(0,Σθ ), (2.12)

where Σβ = σ1I, Σγ = σ2I and Σθ = σ3I, where I is an identity matrix of an appropriate

size and σ2
1 = σ2

2 = σ2
3 = 104 as there is no prior information available. Thus, the pos-

terior distribution of the parameters of the index activity using (2.3), (2.7) and (2.10) is

proportional to

log( f post

β
(β | a = 1)) ∝

n

∑
i=1

[aixi,Aβ − log(1+ exp(xi,Aβ ))]− 1
2

(
β

T
Σ
−1
β

β

)
. (2.13)

Similarly, using (2.4), (2.8) and (2.11), the posterior distribution of the parameters of the

direction of index change can be obtained as follows

log( f post
γ (γ| d′, a = 1)) ∝

n′

∑
i=1

[
d′ixi,D′γ− log(1+ exp(xi,D′γ))

]
− 1

2

(
γ

T
Σ
−1
γ γ

)
. (2.14)

For the size of index change, considering equations in (2.5), (2.9) and (2.12) the posterior

distribution is

log( f post

θ
(θ | s′, d′, a = 1)) ∝

n′

∑
i=1

[
xi,S′θ − (s′i +1) log(1+ exp(xi,S′θ))

]
− 1

2
(
θ

T
Σ
−1
θ

θ
)
.

(2.15)

It can be seen that the posterior distributions are not known explicitly. Therefore, in

order to generate samples from the posterior distribution we use MCMC methods, more

specifically, the random walk Metropolis-Hastings (M-H) algorithm. We briefly describe

the M-H algorithm in the following section.
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2.3.1 Metropolis Hastings algorithm

A popular way of simulating from a general posterior distribution is by using MCMC

techniques. The MCMC sampling strategy sets up an irreducible, aperiodic Markov chain

for which the stationary distribution equals the posterior distribution of interest (Albert,

2007; Ntzoufras, 2009; Gelman et al., 2003). The M-H algorithm is a class of MCMC

methods which is applicable when the posterior distribution is known up to a normalising

constant (Tsay, 2005).

Suppose that we want to draw samples from the posterior distribution, fpost(ψ|z), where

ψ is a vector of parameters of a given model and z denotes the vector of observations. The

posterior distribution, fpost(ψ|z), contains a complicated normalising constant so that a di-

rect draw is either too time-consuming or infeasible. However, there exists a distribution,

q(.|.), such that the

(i) State space of ψ is the same as in the target distribution;

(ii) Samples from q(.|.) converge to the stationary distribution (target distribution);

(iii) Random draws from such distribution are easily available.

This distribution is referred to as proposal distribution (Gelman et al., 2003; Tsay, 2005).

In the kth iteration, for k = 1, . . . ,m, the random-walk M-H algorithm proceeds as follows

(i) Draw a candidate sample ψ cand from the proposal distribution, q(.|ψ(k−1));

(ii) Obtain the acceptance ratio, r, which is given by

r =
fpost(ψ

cand|z) q(ψ(k−1)|ψ cand)

fpost(ψ(k−1)|z) q(ψ cand|ψ(k−1))
; (2.16)

(iii) Set

ψ
(k) =

 ψ cand with probabilitymin(r,1),

ψ(k−1) otherwise.
(2.17)
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We choose the normal distribution to be our proposal distribution, q(.|ψ(k−1)), such that

(i) The normal distribution is centred at the values from the previous iteration, i.e.

ψ cand ∼ N(ψ(k−1),σ2), for some value of σ2;

(ii) An important point to consider in the case of random walk chains is the choice of

the value of the dispersion parameter of the proposal distribution. A large value for

the variance allow a greater variation from the previous value, but will lead to a very

small acceptance rate. On the other hand, a small value of the variance results in

draws which are close to the previous value with a high acceptance rate (Gamerman

and Lopes, 2006). The optimal choice for the variance of the normal proposal is

σ2 = c2Σ, where c≈ 2.4/
√

d (d is the dimension of the parameter vector) and Σ is

the variance-covariance matrix based on the curvature of the posterior at the mode

(Tanner, 1998).

2.3.1.1 Gelman convergence diagnostics

In order to monitor the convergence of the MCMC chains, we undertake Gelman and

Rubin’s convergence diagnostics (Gelman and Rubin, 1992; Brooks and Gelman, 1998).

The statistic obtained from this method is known as the R statistic which for values greater

than 1.1 may indicate a non-stationary chain. We may need to run the MCMC chains out

till we obtain an R statistic value of less than 1.1.

The M-H algorithm described above is summarised in Algorithm 2.1

2.3.2 Predicting index movements

Let us assume we are interested in estimating the next day’s index change, Z∗=(Z∗1 , . . . ,Z
∗
L),

where L is the number of index changes in the next trading day. The posterior predictive

distribution, using the decomposition of index change in (2.2) and (2.6), is defined as

f pred(Z∗|z) =
∫ ∫ ∫

f like(Z∗|β ,γ,θ) f post(β ,γ,θ |z)dβ dγ dθ

=
∫ ∫ ∫

f like
A (A∗|β ) f like

D (D∗|γ) f like
S (S∗|θ) f post

β
(β |a) f post

γ (γ|d) f post

θ
(θ |s)dβ dγ dθ

= f pred
A (A∗|a) f pred

D (D∗|d) f pred
S (S∗|s). (2.20)
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Algorithm 2.1 Random walk Metropolis-Hastings algorithm.

1. Set an arbitrary initial value ψ(0) at k = 0 ;

2. For k = 1, . . . ,m repeat the following steps:

2.1 Draw ψ cand from the proposal distribution, q(.|ψ(k−1));

2.2 Obtain the acceptance ratio, r, which is given by

r =
fpost(ψ

cand|z) q(ψ(k−1)|ψ cand)

fpost(ψ(k−1)|z) q(ψ cand|ψ(k−1))
; (2.18)

(2.19)

2.3 Sample u ∼ Uniform(0,1), if u < min(1,r), set ψ(i) = ψ cand, otherwise let
ψ(k) = ψ(k−1).

Therefore, by obtaining the predictive distribution for each component of index change we

may be able to evaluate the predictive distribution of index change. We generate samples

from the predictive distribution for A,D and S (and therefore Z) as follows. In the kth

iteration, for k = 1, . . . ,m, repeat the following steps for l = 1, . . . ,L:

(1) Obtain p(k)An+l
using (2.3) as follows

p(k)An+l
=

exp(xn+l,Aβ (k))

1+ exp(xn+l,Aβ (k))
,

and draw A∗n+l
(k) ∼ Bernoulli(p(k)An+l

);

(2) If An+l = 0, repeat (1), otherwise

(2.1) Obtain p(k)
D′n+l

using (2.4) as follows

p(k)
D′n+l

=
exp(xn+l,D′γ

(k))

1+ exp(xn+l,D′γ
(k))

,

and sample D′∗n+l
(k) ∼ Bernoulli(p(k)

D′n+l
);
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• For D′n+l = 1, set

Dn+l = D′n+l−0 = 1,

otherwise, let

Dn+l = D′n+l−1 =−1;

(2.2) Obtain p(k)
S′n+l

using (2.5) as follows

p(k)
S′n+l

=
exp(xn+l,S′θ

(k))

1+ exp(xn+l,S′θ
(k))

,

and draw S′∗n+l
(k) ∼ g(p(k)

S′n+l
). Let S∗n+l

(k) = S′∗n+l
(k)+1.

(3) Obtain Z∗n+l
(k) = A∗n+l

(k) D∗n+l
(k) S∗n+l

(k).

In practice we set z∗n+l−1 = a∗n+l−1d∗n+l−1s∗n+l−1, for l = 1, as the last observed index

change, zn = andnsn.

2.3.3 Model checking

After fitting the ADS model to a given data set, we need to assess how well the model

is able to capture the behaviour of index change. In our case, we are dealing with an

integer-valued random variable (price/index change). In addition, in our data set most of

the values (68%) of index change were zero (no index change). This makes it very difficult

to find suitable diagnostics measures. The only appropriate method that can be used here

is the probability integral transform (PIT) modified for the case of discrete values which

we describe below.

2.3.3.1 Probability integral transform

A randomised version of the PIT is implemented to measure how well the predictive dis-

tribution is able to explain the density of index change for the next trading day (Liesenfeld

et al., 2006). In order to use the PIT, we have to construct intervals based on the cumu-

lative predictive distribution of the ith observed index change and the ith observed index
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change minus 1, as follows

uu
i = p̂(Zi ≤ zi) =

zi

∑
j=−∞

p̂(Z = j), (2.21)

ul
i = p̂(Zi ≤ zi−1) =

zi−1

∑
j=−∞

p̂(Z = j), (2.22)

where zi is the ith index change in the data set from the next trading day and p̂(.) represents

the estimated counterpart of the conditional probability given in (2.2). It can be seen that

(2.21) and (2.22) form intervals with upper and lower limits of uu
i and ul

i , respectively.

If the model is correctly specified, random samples ui’s from such intervals will have a

uniform distribution on (0,1). To test the idea of the uniformity of the constructed values,

one can use the Kolmogrov-Smirnov (K-S) test or plot a quantile-quantile (QQ)-plot of

the standard uniform distribution against the ui’s. Here, we used both the K-S test and the

QQ-plot to judge the efficacy of the predicted values.

2.4 Results

This section presents the results of the analysis of the FTSE100 index change using the

ADS model. On March 25 (March 26), out of n = 45,266 (n = 34,495) index changes,

there were n′ = 13,893 (n′ = 11,031) active and n− n′ = 31,373 (n− n′ = 23,464) in-

active indices. In the M-H algorithm we set the number of iterations to m = 10000 and

discard the first 5000 samples as burn-in.

Traces and the estimates of the posterior distributions of the models (MA,MD and MS)

parameters were produced and are presented in Figures A.2, A.4 and A.6. Gelman and

Rubins’s diagnostics results are provided in Figures A.1, A.3 and A.5, and Tables A.1,

A.2 and A.3. The R statistics are less than 1.1 for all of the models parameters which lets

us assume the convergence of the MCMC chains.

2.4.1 The activity of indices

Consider model MA, as given by (2.3). We may consider the effect of the previous in-

dex activity (ai−1), the volume of the previous transaction (vi−1) and the time duration
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Coefficients Mean SD 95% CI
β0 −0.858 0.014 −0.883 −0.831
β1 −0.309 0.022 −0.325 −0.265
β2 0.381 0.019 0.342 0.417
Acceptance rate 0.412

Table 2.1: The posterior mean, the standard deviation (SD) and the 95% credible intervals for
parameters of the index activity.

Coefficients Mean SD 95% CI
γ0 0.327 0.024 0.278 0.374
γ1 −0.688 0.034 −0.756 −0.6211
Acceptance rate 0.513

Table 2.2: The posterior mean, the standard deviation (SD) and the 95% credible intervals for
parameters of the direction of index change.

between two consecutive transactions (∆ti = ti− ti−1) as possible covariates in MA, for

i = 1, . . . ,n. Our preliminary analysis showed that the volume of the previous transac-

tion does not have a significant effect on the index activity Ai. Therefore, we fit a model

without volume which is given by

log
(

pAi

1− pAi

)
= β0 +β1ai−1 +β2 log(∆ti +1). (2.23)

Table 2.1 provides a summary of the posterior distribution of the parameters of the model

MA. It can be seen that the previous activity of index had a large effect on the activity of

the current index. The negative sign of β1 may imply that, the next index is less likely to

be active if the previous index was in-active. However, the positive significant effect of ∆ti

may indicate that, as the time duration between two consecutive transactions increases,

the chance of having an index change at the next transaction increases.

2.4.2 The direction of index change

Consider the model MD in (2.4) in terms of the previous direction of index change (di−1),

the volume of the previous active transaction (vi−1) and the time duration between two

consecutive active transactions (∆ti−1), for i = 1, . . . ,n′. The time duration between two

consecutive active transactions and the volume of the previous active transaction did not
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Di−1
-1 1

Di
-1 0.419 0.589
1 0.581 0.411

Table 2.3: The plug-in estimates for the probability of the direction of index change.

significantly affect the direction of index change. Hence, we set our model as

log
(

pDi

1− pDi

)
= γ0 + γ1di−1. (2.24)

Results, summarised in Table 2.2, may suggest that the direction of index change at time

ti can be significantly affected by its previous direction. To have a better understanding of

the behaviour of the direction of index change, we obtained the plug-in estimates of pDi

by substituting the posterior mean of the vector of model parameters in (2.24). Table 2.3

suggests that at the next transaction both negative and positive changes are almost equally

likely. Also, one can see that at the next transaction it is more likely to switch the direction

of change.

2.4.3 The size of index change

This section provides results for modelling the size of index change for all active indices.

To consider the dynamics of the negative and positive changes, in addition to the previous

size of index change (si−1), volume of the previous active index (vi−1) and time duration

between two consecutive active indices (∆ti), for i = 1, . . . ,n′, we consider the direction

of the previous active index change (di−1) as a covariate in the model in (2.5). However,

we noticed that the direction of index change was not significant, therefore our model for

the size of index change can be set as follows

log

(
pS′i

1− pS′i

)
= θ0 +θ1s′i−1 +θ2 log(∆ti +1)+θ3 log(vi−1). (2.25)

From Table 2.4, one can see the significant effect of the size of the previous index change

on the size of the current movement. Moreover, for active indices, a big positive index

change is more likely to be followed by a negative index change with a similar magnitude.
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Quantiles
Coefficients Mean SD 2.5% 97.5%
θ0 −0.908 0.025 −0.963 −0.862
θ1 0.318 0.015 0.291 0.348
θ2 −0.073 0.020 −0.112 0.034
θ3 0.090 0.019 0.055 0.131
Acceptance rate 0.328

Table 2.4: The posterior mean, the standard deviation (SD) and the 95% credible intervals for
parameters of the size of index change.

We can also observe the significant effect of the volume. This suggests that a higher

volume of the previous active transaction may increase the chance of a larger change at

the next active index. On the other hand, one can see that as the time duration between

two consecutive transactions increases, the chance of getting a large size of index change

for the next transaction decreases.

Furthermore, using the algorithm in Section 2.3.2 we predicted index changes for the

next trading day. In the algorithm we assumed the time duration between two consecutive

transactions, the volume of the previous transaction and the number of transactions within

the next trading day are known. We assessed the predicted values using the PIT. The Q-Q

plot in Figure 2.1 and K-S test with the p-value of 0.21 suggest that the ADS model is

able to characterise well the distribution of index change for the next trading day. That

is, the predictive distribution of index change over the whole day of March 26 was a

similar distribution to the observed index changes. We observed that about 99.24% of

the predicted changes are within ±4 which is very close to the value observed in the real

data set (99.68%). We also saw that negative and positive changes outside ±4 are equally

distributed with 0.33% at each tail which is almost twice as the observed value (0.15%).

2.5 Summary

In this chapter, we provided an introduction to the ADS model suggested by Rydberg and

Shephard (2000, 2003). The ADS model decomposes index changes into three compo-

nents: the index activity, the direction and the size of index change, if an index change

occurs. This decomposition is mostly helpful for high-frequency traders who are inter-

ested in the movement of indices over very small periods of time. We fitted the ADS
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Figure 2.1: A standard uniform Q-Q plot of random samples drawn from intervals based on the
cumulative predictive distribution. The first and the last 10% of tails are shown on a
larger scale.

model to a set of FTSE100 index changes using the Bayesian approach implemented via

MCMC methods. We also obtained the posterior predictive distribution for the follow-

ing day’s transactions. In order to assess the performance of the MCMC chains and the

probabilistic forecasts of index change, we used the Gelman and Rubin’s convergence

diagnostic and the PIT methods, respectively.

The overall results of one day’s analysis confirmed that in general index change tended

to be in-active, which may suggest the high level of liquidity2 in the market. This proba-

bility increased if the previous index change was active. We also saw that both negative

and positive changes had equal chances of occurrence.

The ADS model has, however, some limitations. For example, our interpretation is

only valid when results from all the three models are available. In addition, modelling

each component separately may lead to us ignoring the simultaneous effect of one com-

ponent as well as its covariates on the other two components. For example, when we are

modelling the size of index change, we do not consider the effect of the previous in-active

2“The ability to buy or sell significant quantities of a security quickly, anonymously, and with little price
impact” (Tsay, 2005, Chapter 5).
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indices. Also, we only consider the volume of the previous active index change and ignore

the fact that one or more in-active changes with non-zero volumes could have happened

before the current active index change.

Therefore, if we model index change as a single process, we may overcome the lim-

itations of the ADS model that we have mentioned above. However, there is not a wide

range of distributions available which are defined over the range of negative and positive

integer values. So far the only choice would be the Poisson difference distribution which

we introduce for modelling UHF data in the next chapter.
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Chapter 3

Zero inflated Poisson difference model

3.1 Introduction

Modelling the difference of two discrete variables has attracted special interest in many

research areas such as medicine (e.g. when before and after treatment measurements

are considered (Karlis and Ntzoufras, 2006)), sport (e.g. the goal difference in sports

involving two competing teams (Karlis and Ntzoufras, 2009)), finance (e.g. index change

in the case of UHF data) and image analysis (e.g. the number of grey values in an image

(Li et al., 2009)) . In the literature a wide range of techniques are available for dealing

with the difference of two continuous or binary variables, while methods for modelling

the difference of two non-negative integer-valued discrete random variables are rare. The

available methods are mainly based on normal approximations of discrete distributions.

However, in most cases normal approximations are not valid, since such data may take on

a small range of integers (Karlis and Ntzoufras, 2006). Thus, techniques that are directly

based on the discrete distributions can improve the inference of integer-valued random

variable.

In the literature such variables are mostly decomposed into two (a trinomial variable

-1, 0 and 1 indicating negative, zero and positive differences, and a non-zero positive

integer-valued variable for the size of differences (Liesenfeld et al., 2006; Bien et al.,

2011)) or three components (a binary variable 0 and 1 denoting zero and non-zero dif-

ferences, a binary variable -1 and 1 representing negative and positive differences, and
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a non-zero positive integer-valued variable corresponding to the size of differences (Mc-

Culloch and Tsay, 2001; Rydberg and Shephard, 2003)). We used the latter method in

Chapter 2 and showed that when we are dealing with large data sets such method may be

time consuming. In addition, it may lead to us ignoring the simultaneous effect of one

component on the other components. Alternatively, we may consider a distribution that

is defined over an integer domain. A possible choice for such a distribution may be the

Poisson difference (PD) distribution which had been suggested, originally, for the differ-

ence of two Poisson random variables with equal parameters (Irwin, 1937) and later, for

unequal values of the parameters (Skellam, 1946). This distribution can be used for the

difference of any two Poisson variables, even when the two variables are not independent

(Karlis and Ntzoufras, 2009)

While the PD distribution has been widely used in the literature for applications in

medicine, sport (Karlis and Ntzoufras, 2009, 2006) and image analysis (Hwang et al.,

2007), its application in finance, especially in modelling UHF data sets, is yet to be de-

veloped. In a recent study, Alzaid and Omair (2010) fitted a PD model to a set of high-

frequency data from the Saudi stock exchange that were recorded every minute. Their

study was limited to comparing the maximum likelihood and the method of moments

estimators of the parameters of the PD distribution. Here, we introduce the application

of the PD model using covariates for handling ultra high-frequency data in a Bayesian

framework. We consider the application of the PD model to data when the difference of

the two variables is only observed. To capture the (possible) excess of zeros, we use the

zero inflated version of the PD model. Furthermore, we demonstrate our methodology

through a simulated data set as well as FTSE100 indices.

The remainder of this chapter is organised as follows. Section 3.2 provides an overview

of the PD and the zero inflated PD (ZPD) distributions. Bayesian inference, diagnostics

and prediction associated with the ZPD model is described in Section 3.3. The results are

presented in Section 3.4. An outline summary of the chapter is given in Section 3.5.
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3.2 Poisson difference distribution

Let us assume X ∼ P(λ1) and Y ∼ P(λ2) are two independent Poisson random variables

with the following joint probability function

pX, Y(x,y) =
e−(λ1+λ2)λ x

1 λ
y
2

x!y!
. (3.1)

The random variable Z =X−Y follows a PD(λ1,λ2) distribution (Skellam, 1946), defined

on the set of integer numbers Z= {. . . ,−2,−1,0,1,2, . . .}, with the following probability

function

fPD(Z = z|λ1,λ2) = pZ(z) =
∞

∑
y=0

pX, Y(z+ y,y)

=
∞

∑
y=0

e−(λ1+λ2) λ
z+y
1 λ

y
2

(z+ y)! y!

= e−(λ1+λ2)
∞

∑
y=0

λ
z+y
1 λ

y
2

(z+ y)! y!

= e−(λ1+λ2)

(
λ1

λ2

) z
2

I|z|
(

2
√

λ1λ2

)
, (3.2)

where λ1,λ2 > 0 and Ir(x) is the modified Bessel function of order r (Abramowitz and

Stegun, 1964), given by

Ir(x) =
(x

2

)r ∞

∑
k=0

(x2/4)k

k!Γ(r+ k+1)
. (3.3)

3.2.1 Properties

We list below some of the important properties of the PD distribution.

• In general, the odd and even cumulants are equal to λ1−λ2 and λ1 +λ2, respec-

tively. That is, the mean and the variance of the PD distribution are as follows

µ = λ1−λ2 and σ
2 = λ1 +λ2.
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• The sign of λ1− λ2 determines the skewness of the PD distribution. A positive

(negative) skewness is a result of λ1 > λ2 (λ1 < λ2). For values of λ1 = λ2, the PD

distribution is symmetric.

• The PD distribution can be approximated by a normal distribution for large value

of (λ1 +λ2).

• ∀ λ2→ 0, the PD distribution becomes a Poisson distribution. On the other hand,

the PD distribution tends to a Poisson distribution on the negative axis for values of

λ1 close to zero.

• The following type of symmetry holds for the PD distribution

fPD(z|λ1, λ2) = fPD(−z|λ2, λ1). (3.4)

• For a random sample of n iid variables, Zi∼ PD(λ1,λ2), i= 1, . . . ,n, Sn =∑
n
i=1 Zi∼

PD(nλ1,nλ2).

Ntzoufras (2009) and Karlis and Ntzoufras (2006) have discussed the properties of the PD

distribution in detail. Also, Alzaid and Omair (2010) have provided details on obtaining

the maximum likelihood estimates of the parameters.

Considering the expected value and the variance of the PD distribution, the method of

moments estimators of the parameters of the PD distribution, λ1 and λ2, can be obtained

as follows

λ̃1 =
1
2
(µ +σ

2) and λ̃2 =
1
2
(µ−σ

2).

Moreover, for the FTSE100 data set, the method of moments estimates of the param-

eters λ1 and λ2 are 0.459 and 0.460, respectively. With these values, the PD distribution

would tell us that 48% of index changes will be zero. We have already mentioned, in

Chapter 2, that on March 25 out of n = 45,266 index changes, there were 31,373 in-

active indices. That is about 69% of index changes were zero, a figure which is heavily
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Figure 3.1: The comparison of the empirical distribution of the observed index change and the
density of the PD distribution with the methods of moment estimates of λ1 and λ2.

underestimated by the PD distribution (Figure 3.1). Therefore, we need to use a zero in-

flated version of the PD distribution to capture the excess of zero values in the data (Karlis

and Ntzoufras, 2006).

3.2.2 Zero inflated Poisson difference distribution

In real life applications count (or integer-valued) data sets, such as dental (Karlis and

Ntzoufras, 2006; Mwalili, 2008), spatial (Agarwal et al., 2002) and sports (Karlis and

Ntzoufras, 2009), may contain an excess of zero values, i.e. more than what the model

would predict; see Ntzoufras (2009, Chapt. 8) and references therein for further examples.

By introducing an extra probability parameter, zero inflated distributions enable us to

capture the excess of zero values.

The zero inflated version of the PD distribution was first introduced by Karlis and Nt-

zoufras (2006) in order to model dental epidemiology data and also it was used by Karlis

and Ntzoufras (2009) to model football data. Let fPD(z;λ1, λ2) be the probability func-

tion of the PD distribution with the parameters λ1 and λ2 given by (3.2). The probability
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(d) p = 0.8

Figure 3.2: The ZPD distribution with parameters λ1 = λ2 = 2 and four values of p.

function of the zero inflated Poisson difference distribution can be defined as follows

fZPD(z|λ1,λ2, p) =

 p+(1− p) fPD(z | λ1,λ2) if z = 0,

(1− p) fPD(z | λ1,λ2) if z 6= 0,
(3.5)

for z ∈ Z, where p is the proportion of extra zero values. According to (3.5), the first part

of the model represents the probability of all zero values, while the probability of z 6= 0 is

given by the second part. Figure 3.2 compares the ZPD distribution for λ1 = λ2 = 2 and

different values of p. It can be seen that as the value of p increases the ZPD distribution

has smaller range with a mean around zero.

This can be confirmed by obtaining the mean and the variance of such a distribution
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Figure 3.3: The behaviour of the variance for different values of λ1 and λ2 over the range of
p ∈ [0,1]

as follows.

E(Z) =
n

∑
i=1

zi fZPD(λ1,λ2, p) =
n

∑
i=1

0 I{z=0}p+ zi(1− p) fPD(λ1,λ2)

= (1− p)
n

∑
i=1

zi fPD(λ1,λ2) = (1− p) E(ZPD), (3.6)

where ZPD ∼ PD(λ1,λ2), and

I{0} =

 1 if z = 0,

0 if z 6= 0,
(3.7)

therefore E(Z) = (1− p)(λ1−λ2). Similarly E(Z2) is given by (1− p)E(Z2
PD), therefore

Var(Z) = E(Z2)− [E(Z)]2 = (1− p)
[
Var(ZPD)+ [E(ZPD)]

2− (1− p) [E(ZPD)]
2
]

= (1− p)
[
Var(ZPD)+ p [E(ZPD)]

2
]

= (1− p)
[
(λ1 +λ2)+ p(λ1−λ2)

2] . (3.8)

Figure 3.3 illustrates the behaviour of the variance for different values of λ1 and λ2 over

p∈ [0,1]. It can be seen that when λ1 = λ2, the variance is a linear function of p and when
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λ1 6= λ2, the variance becomes a nonlinear function of p with the nonlinearity increasing

as the difference between λ1 and λ2 gets bigger.

3.3 A model for index change

Let us assume index change, Zi, for i = 1, . . . ,n, where n is the number of index changes

in a given data set, is the response variable such that

Zi ∼ ZPD(λ1,i,λ2,i, p).

Here, we adopt the same model structure as Karlis and Ntzoufras (2009) for modelling

the goal difference, thus we can set the ZPD model parameters as follows

log(λ1) = xα,

log(λ2) = xβ ,
(3.9)

where x is a matrix of covariates, and α and β are parameter vectors of appropriate size.

Similar to Chapter 2, in our model we may consider the effect of the previous index change

zi−1, previous volume of transactions vi−1 and the time duration between two consecutive

transactions ∆ ti = ti−ti−1. Thus, (3.9) in terms of the covariates can be written as follows

log(λ1,i) = α0 +α1zi−1 +α2 log(vi−1)+α3 log(∆ ti +1),

log(λ2,i) = β0 +β1zi−1 +β2 log(vi−1)+β3 log(∆ ti +1),
(3.10)

for i = 2, . . . ,n. We denote the parameter vectors as α = (α0,α1,α2,α3)
T and β =

(β0,β1,β2,β3)
T and consider the matrix of covariates x as an n×4 matrix given by:

x =



1 z1 log(v1) log(∆ t2 +1)
...

...
...

...

1 zi log(vi) log(∆ ti +1)
...

...
...

...

1 zn−1 log(vn−1) log(∆ tn +1)


. (3.11)
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3.3.1 Bayesian inference

Let us, in the model (3.10), denote the parameter vector by ψ = (α T, β T, p). In the

Bayesian framework we obtain our inference based on the posterior distribution of the

parameter vector ψ . In the absence of any specific information, we choose a normal

prior distribution with mean zero and a large variance (e.g. 104) for all of the parameters,

excepting p which is uniform in the range of (0,1). Here we assume all nine model

parameters to be independent. Thus, the posterior distribution of ψ is given by

fpost(ψ|z) ∝ flike(z|ψ) fprior(ψ),

where flike(z|ψ) =∏
n
i=1 f (zi|ψ) is the likelihood and fprior(ψ) is the prior distribution given

by

fprior(ψ) = fP(p)
3

∏
j=0

fα j(α j)
3

∏
j=0

fβ j(β j).

For the case of the ZPD model, the likelihood in terms of (3.9) is given by

flike(z|ψ) =
n

∏
i=1

fZPD(zi|ψ) =
n

∏
i=1

[
pI{0}+(1− p) fPD(zi|α,β )

]
=

n

∏
i=1

[
pI{0}+(1− p) e−(λ1,i+λ2,i)

(
λ1,i

λ2,i

)zi/2

I|zi|

(
2
√

λ1,iλ2,i

)]

=
n

∏
i=1

[
pI{0}+(1− p) exp

[
−(exiα + exiβ )+

zi

2
(xiα−xiβ )

]
I|zi|

(
2e

xiα+xiβ
2

)]
,

(3.12)

where xi is the ith row of the matrix of covariates in (3.11) and I{0} is given by (3.7). The

prior distribution is

fprior(ψ) =
3

∏
j=0

(
1√

2πσ2
e
−α2

i
2σ2

)
3

∏
j=0

(
1√

2πσ2
e
−β2

i
2σ2

)
, (3.13)

where σ2 is set to be 104. Thus, the posterior distribution of the model parameters is

given by
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fpost(ψ|z) ∝ exp

(
−

3

∑
j=0

αi

2σ2

)
exp

(
−

3

∑
j=0

βi

2σ2

)
×

n

∏
i=1

[
pI{0}+(1− p) exp

(
−(exiα + exiβ )+

zi

2
(xiα−xiβ )

)
I|zi|

(
2e

xiα+xiβ
2

)]
.

(3.14)

It can be seen that the posterior is not known explicitly, therefore, in order to generate

samples from the posterior, in a similar way to Chapter 2, we use the M-H algorithm.

3.3.2 Metropolis Hastings algorithm

In this chapter, we implement the random walk M-H algorithm given by Algorithm 2.1 in

Section 2.3.1. Further points that we consider are as follows

(i) We update parameters one at the time.

(ii) We use the logit transform for p. Let y= log(p/(1− p)), we draw ycand∼N(y(k−1),σ2
y ).

Then, in order to use the uniform distribution as a proposal distribution q(.|.) in the

acceptance ratio given by (2.18), we transform back the normal probability density

function to the probability density function of p using the following formula

fP(p) =
1

p(1− p)
fY (y),

where fP(p) and fY (y) are uniform and normal probability functions, respectively.

3.3.3 Predictive distribution

Let Z? = (Z?
1 , . . . ,Z

?
s )

T be the s index changes for the whole of next trading day which we

wish to predict. The posterior predictive distribution is defined as

fpred(Z?|z) =
∫

flike(Z?|ψ) fpost(ψ|z)dψ,
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where flike(Z?|ψ) may be given as

flike(Z?|ψ) =
s

∏
j=1

f (Z?
j |ψ).

In order to generate samples from the predictive distribution, at the kth iteration, for k =

1, . . . ,m, we add the following steps to the M-H algorithm.

For i = 1, . . . ,s repeat the following steps

(i) Obtain

λ
(k)
1,n+i = exp(α(k)

0 +α
(k)
1 z?(k)n+i−1 +α

(k)
2 log(vn+i−1)+α

(k)
3 log(∆tn+i))

and

λ
(k)
2,n+i = exp(β (k)

0 +β
(k)
1 z?(k)n+i−1 +β

(k)
2 log(vn+i−1)+β

(k)
3 log(∆tn+i)).

When i= 1, z?n+i−1 = zn, vn+i−1 = vn are the last observed index change and volume;

(ii) Draw bn+i ∼ Bernoulli(p̂):

- If bn+i = 1 let Z?
n+i = 0, otherwise draw Z?

n+i ∼ PD(λ
(k)
1,n+i,λ

(k)
2,n+i).

3.3.4 Model checking

In order to assess the performance of the ZPD model we undertake model diagnostics

using methods discussed in Section 2.3.3. The Gelman and Rubin’s convergence diag-

nostics are applied to monitor the convergence of the MCMC output (described in Sec-

tion 2.3.1.1). The next step is to investigate the goodness of fit of the ZPD model to

the data. This is undertaken using a standard χ2-test. Finally to assess the next day’s

predictions, we use the PIT discussed in Section 2.3.3.1.

Model comparison is also undertaken in order to decide how much complexity is

necessary to fit the data. That is, whether the full model fits the data properly or a model

with fewer parameters has a similar performance. For this purpose, we use the deviance
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information criterion (DIC). A numerical summary of model fit is given by the deviance

which is defined as -2 times the log-likelihood:

D(z,ψ) =−2log flike(z|ψ). (3.15)

We define two further Bayesian measures related to the deviance; the posterior mean

deviance

D̂avg(z) =
1
L

L

∑
l=1

D(z,ψ l), (3.16)

where L is the number of the MCMC iterations after burn-in, and the deviance at ψ̂ ,

Dψ̂(z) =D(z, ψ̂(z)), (3.17)

where ψ̂ is the plug-in estimate, such as the posterior mean of the parameter vector ψ .

The DIC of a model is defined as follows

DIC = pD + D̂avg(z), (3.18)

where pD represents the effect of model fitting and has been used as a measure of the

effective number of parameters of a given Bayesian model M, defined as follows

pD = D̂avg(z)−Dψ̂(z),

where D̂avg(z) and Dψ̂(z) are given by (3.16) and (3.17); see Gelman et al. (2003, Chap-

ter 6) for further details.

3.4 Results

In this section we illustrate the application of the ZPD model. We first conduct a sim-

ulation study to show how well our model diagnostics work, and then we fit the model

to the FTSE100 index changes. In the M-H algorithm we set the number of iterations to

m = 10000 and we discard the first 5000 samples as burn-in.
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Coefficients True Mean 95% credible intervals Coefficients True Mean 95% credible intervals
α0 −0.237 −0.147 −0.171 −0.122 β0 −0.263 −0.145 −0.170 −0.122
α1 −0.091 −0.092 −0.108 −0.076 β1 0.143 0.146 0.131 0.163
α2 0.014 0.017 −0.009 0.044 β2 0.067 0.049 0.025 0.074
α3 0.248 0.239 0.207 0.272 β3 0.232 0.241 0.210 0.273
p 0.256 0.253 0.242 0.264

Table 3.1: The true values, the posterior means and the 95% credible intervals of the posterior
distribution of the ZPD model parameters based on the simulated data.

Model DIC D̂θ D̂ave pD

Intercept 151701.40 151695.30 151698.40 3.05
zi−1 134416.70 134396.10 134406.40 10.28
zi−1 + log(vi−1) 134335.20 134319.10 134327.20 8.04
zi−1 + log(∆ti−1) 134341.80 134331.40 134336.60 5.21
zi−1 + log(vi−1)+ log(∆ti) 118165.40 118145.50 118155.50 9.93

Table 3.2: The DIC, the point-estimate, the average deviances and the estimated number of pa-
rameters for each of five models fitted to the simulated index change.

3.4.1 Simulation study

We simulated a set of data from a ZPD model as described in (3.10) with the following

arbitrary values for the model parameters

ψ = (−0.237,−0.097,0.014,248,−0.263,−0.143,0.067,0.232,0.25).

Let us point out that in (3.10) we assumed that the values of volume and time duration

between two consecutive transactions were the same as in the real data set.

Time series plots of the sampled values of the parameter vector ψ , are presented in

Figure B.2. Gelman and Rubin’s convergence diagnostic results are presented in Ta-

ble B.2 and Figure B.1. We can see that the obtained R statistics are less than 1.1 for

all of the nine parameters of the ZPD model which satisfying the convergence condition.

Finally, estimates of the posterior distributions of the model parameters are illustrated in

Figure B.3.

The results are summarised in Table 3.1 which provides the true value, the posterior

mean, and the 95% credible intervals of the posterior distributions of the model param-

eters. It can be seen that the posterior means, except for the intercepts, are close to the

true values of the parameters, which suggests that the fitted ZPD model can capture the

behaviour of the simulated data well.
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Coefficients Mean SD 95% credible intervals Coefficients Mean SD 95% credible intervals
α0 −0.133 0.017 −0.166 −0.098 β0 −0.136 0.017 −0.169 −0.100
α1 −0.096 0.014 −0.123 −0.069 β1 0.147 0.013 0.119 0.172
α2 0.037 0.019 −0.000 0.073 β2 0.081 0.018 0.045 0.116
α3 0.261 0.021 0.222 0.306 β3 0.253 0.021 0.210 0.295
p 0.539 0.005 0.529 0.548

Table 3.3: The posterior means, the standard deviation and the 95% credible intervals of the pos-
terior distribution of parameters of the ZPD model based on FTSE100 data.

Model DIC D̂θ D̂ave pD

Intercept 144856.00 144848.40 144852.20 3.79
zi−1 106132.20 106107.00 106119.60 12.61
zi−1 + log(vi−1) 101360.10 101343.90 101351.90 8.19
zi−1 + log(∆ti−1) 101387.20 101375.60 101381.40 5.79
zi−1 + log(vi−1)+ log(∆ti) 89719.86 89698.80 89709.33 10.52

Table 3.4: The DIC, the point-estimate, the average deviances and the estimated number of pa-
rameters for each of five models fitted to the FTSE100 index change.

Table 3.2 shows that a model with three covariates has a better fit than models with

fewer covariates. The posterior predictive distribution of the predicted values was almost

identical to the distribution of true values. The proportion of predicted values within the

interval of [−4,4] is almost 99.77% which is the same as in the case of the true values.

Also, about 0.23% of the predicted values had a magnitude of 4 ticks, which is the same

as the true value. The χ2 goodness of fit test resulted in a p-value of 0.87 which may

suggest an adequate fit. Furthermore, the Q-Q plot in Figure 3.4(a) and the p-value of 0.57

obtained from the K-S test for assessing predicted values using the PIT, both confirmed

that the model is able to characterise well the density of the simulated index changes for

the whole of the next day.

3.4.2 FTSE100 futures

This section provides the results from fitted the ZPD model to the FTSE100 index change.

The R statistics with values of 1.01 suggest that our MCMC chains are mixing very well

(Table B.3 and Figure B.4). Traces and the estimates of the posterior distributions of the

model parameters are also provided in Figures B.5 and B.6

Table 3.4 compares the values of DIC of the ZPD models with different covariates. It

suggests that the model with three covariates and nine parameters has the lowest values

of DIC, with the corresponding value of the effective parameters pD = 10.52. A summary
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of the posterior distributions of the model parameters is provided in Table 3.3. The 95%

credible intervals of the posterior distributions of the model parameters do not contain

zero which may indicate the significant effect of the covariates on index change.

We may interpret the effect of the covariates in the model as follows. The previous

index change has a larger effect on λ2 compared to λ1, which implies that in the next

transaction a switch from a positive to a negative index change is more likely than a

switch from a negative to a positive one. We can also see that the expected value of index

change tends to be negative as the volume increases, which may suggest a reduction in

the chance of getting a positive change after a transaction with a large volume. Since the

posterior means of α3 and β3 are almost the same, the mean index change at the next

transaction, irrespective of when it occurs, is expected to be zero, assuming all the other

variables (previous volume and index change) are fixed.

The predictive distribution of index change over the whole day of March 26 was pro-

duced and it resulted in an almost similar distribution to index change. The predictive

distribution of index change indicated that about 99.88% of changes may occur within

±4 which is very close to the real data set (99.68%). The goodness of fit was confirmed

by the χ2 test (p-value of 0.11). The standard uniform Q-Q plot (Figure 3.4(b)) and the

K-S test (p-value of 0.23) resulted from the PIT analysis suggest that the predictive distri-

bution is able to explain the behaviour of index change fairly well. However, a closer look

shows that 0.32% of changes in the real data set occurred with more than 4 ticks, whereas

in the case of the posterior predictive distribution this was about 0.12%. This indicates

that the ZPD model may perform poorly for values in the tails. Finally, we obtain the DIC

for the ADS model in order to compare the performance of the ADS and ZPD models.

The DIC for the ADS model was 111630.90 which, in comparison with the DIC for the

ZPD model in Table 3.4, suggests that the ZPD model performs better.

3.5 Summary

In this chapter, we provided an overview of the ZPD distribution. We proposed the ap-

plication of the ZPD model to the FTSE100 index changes in a Bayesian framework via
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(a)

(b)

Figure 3.4: A standard uniform Q-Q plot of random samples drawn from intervals based on the
cumulative predictive distribution, (a) simulated data, (b) FTSE100 index change. The
first and the last 10% of tails are shown on a larger scale.

MCMC methods. The Bayesian estimation of the parameters of interest were presented

in detail. One of our principle interests concerned the distribution of index change for the

whole trading day and we have shown that our approach models the behaviour of index
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change fairly well. Results from the real data revealed that the previous index change,

the volume of transaction and the time duration between two consecutive transactions

significantly affect the FSTE100 index change. Finally, various model diagnostics were

carried out which showed that small and moderate index changes were explained well by

the fitted ZPD model. However, there was some evidence of underestimation in the tail

of the distribution.

The ZPD model was fitted to index change assuming that the parameters are static in

time. This type of modelling is useful for the off-line analysis of the market when the

whole data set is available and our interest lies in understanding the overall behaviour of

the market. However, in practice, one would be interested in performing the analysis in

real time. As transactions occur sequentially, we would like to update our knowledge of

the market as new observations arrive. MCMC methods are not computationally feasible

for this purpose. Alternatively, we may use sequential Monte Carlo (SMC) methods for

performing online inference and prediction.

In the next two chapters, we explore ways for extending our current model. In Chap-

ter 4, we introduce a dynamic Poisson difference model and its zero inflated version using

latent processes. These models are fitted using particle filters. To address the problem of

underestimation of the tails, there are several possible alternatives to the PD distribution,

for example the distribution of the difference of two negative binomial random variables

(to capture over-dispersion) or the distribution of the difference of two generalised Poisson

random variables with unequal parameters (to capture over- or under-dispersion). Here,

we investigate the latter as the complicated structure of the former option may make the

application of such distribution infeasible. In addition, the distribution of the difference of

two generalised Poisson variables may have a wider application as it introduces over- as

well as under-dispersion and also can be considered as a generalisation of the PD distri-

bution. Thus, in Chapter 5 we investigate the generalised Poisson difference distribution

with four parameters and discuss its possible application for modelling UHF data.
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Chapter 4

Modelling via particle filters

4.1 Introduction

In the previous chapter we modelled the FSTE100 index change as a single process us-

ing the ZPD model in a Bayesian framework. In such context, we assumed that model

parameters are static in time. This type of modelling is suited for the empirical analysis

of financial markets when the whole data set is available, in other words, when the data

flows stops after the closing time of the market. However, in real life applications, one

would be interested in performing inference and prediction as a new set of information

arrives. For this purpose we need a class of dynamic models.

Dynamic models, in contemporary time series analysis, have attracted the attention of

researchers and practitioners. By allowing the study and estimation of complex dynamics,

such models enable us to model time series data for a wide range of response distributions.

In this context, using the state space models (as we explain later) has provided a very

flexible yet simple tool for analysing dynamic events. It also has led to expand the range

of the application of statistical time series analysis to include non-stationary, irregular

processes, systems with continuous-time, and discrete data (Petris et al., 2009).

Early efforts to develop inference for such models, by Harrison and Stevens (1976),

focused on an important class of state space models known as the Gaussian linear state

space models, or dynamic linear models (DLM)(Petris et al., 2009; Gamerman and Lopes,

2006). These models have been generalised for the events in which time series data
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have been generated from exponential family distributions under the dynamic generalised

linear models (DGLM) (Smith, 1979; Smith and Miller, 1986; Harvey and Fernandes,

1989; West et al., 1985); further examples can be found in Triantafyllopoulos (2009).

Since then, DGLM’s have been widely adopted for non-Gaussian and non-linear time

series modelling (Petris et al., 2009; Triantafyllopoulos, 2009; Lopes and Tsay, 2011).

To run estimation in real time, various approaches are available (Triantafyllopoulos,

2009; Lopes and Tsay, 2011). Most of these methods are applicable in the case of lin-

ear models with Gaussian errors, when the posterior distribution is analytically available.

Complex models often lead to integrals that cannot be solved analytically. This has cre-

ated an increase in the popularity of Bayesian methods that utilize Monte Carlo (MC)

based approximations. A set of MC techniques are MCMC methods which are suitable

for the purpose of off-line applications and we have already presented their implemen-

tation in Chapters 2 and 3. However, MCMC based algorithms are prohibitively costly

for the purpose of online estimation of states and parameters (Lopes and Tsay, 2011;

Gamerman and Lopes, 2006).

Sequential Monte Carlo (SMC) methods are alternative set of simulation-based algo-

rithms for online sampling which help us to approximate analytically intractable integrals.

These methods are very flexible, easy to implement, and applicable in very general set-

tings (Doucet et al., 2001). SMC methods, also known as particle filters1 (PF) mainly

consist of three basic operations: evolution, prediction and updating (Gamerman and

Lopes, 2006). In these methods, a continuous probability distribution is approximated

by a discrete distribution made of weighted draws called particles. As a new observation

arrives, particles are updated to approximate the distribution and their weights based only

on the previous step. Therefore, these methods are feasible to use as there is no need to

store the information prior to the current stage. Their application in the field of economics

was suggested by Kim et al. (1998) for studying the volatility of asset price. PF have been

widely used since then in various areas of financial studies such as option pricing (Jasra

and Moral, 2011), volatility analysis (Carvalho and Lopes, 2007) and portfolio choice

1In the literature (Doucet and Johansen, 2009) particle filters are defined as a subclass of sequential
Monte Carlo methods. Here we adopt the definition by Lopes and Tsay (2011).
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(Johannes et al., 2008); further examples can be found in Creal (2009) and Lopes and

Tsay (2011).

This chapter is organised as follows. Section 4.2 introduces the general state space

model and basic particle filters and discusses the weaknesses and strengths of such meth-

ods. In Section 4.3 we first introduce the dynamic PD model and then generalise it to the

DZPD model to capture the excess of zeros in the data. In Section 4.4, we illustrate the

application of our models on a set of simulated data as well as the FTSE100 data. Finally,

Section 4.5 concludes with some discussion and summary comments .

4.2 Inference in hidden Markov models

In this section we first introduce the notation and describe the standard inference prob-

lems that are associated with a hidden Markov model (HMM), also known as a state

space model (SSM). We then describe basic PF methods and their application in HMM

inference followed by a brief discussion on the strengths and limitations of PF methods.

Finally, we discuss the auxiliary particle filters and Liu and West (2001) algorithms as an

improvement and an extension to the basic particle filters.

4.2.1 Hidden Markov models

In the context of an HMM, a hidden Markov process {Xt}t≥0 is characterised with its

initial density X0 ∼ µθ (x0) and transition density function

Xt |(Xt−1 = xt−1)∼ fθ (xt |xt−1), (4.1)

for some static parameter θ which may be multidimensional. The process {Xt}t≥0 is only

accessible through an observed process {Yt}t≥1. We assume the observations {Yt}t≥1 are

independent given the unobserved process {Xt}t≥0 with the following marginal distribu-

tion

Yt |(Xt = xt)∼ gθ (yt |xt). (4.2)

The relation between an observed and an unobserved process is shown as a graph in

47



X0            X1             X2     ڮ            Xt-1               Xt        Xt+1            ڮ 

 

     Y1         Y2             Yt-1      Yt            Yt+1    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yt-2 Yt-1 Yt 

   

gϴሺY |X ൌ x ሻ୲ ୲ ୲Observed 

Unobserved 

 
Xt-2 

 
Xt-1 

 

 
Xt 

fϴሺX |X୲ ୲ିଵ ൌ x୲ିଵሻ 

Figure 4.1: Conditional structure for an HMM. SMC methods enable us to make inference about
the unobserved process given the observed process.

Figure 4.1. Let us, for any generic sequence {zt}, denote (zi, . . . ,z j) by zi: j, for i < j. The

figure shows any path connecting Yt with one of the Ys (s < t) or with any of the states of

Xs (s < t), has to go through Xt ; therefore, Xt separates (X0:t−1,Y1:t−1) and Yt . Similarly,

one can show that Xt and (X0:t−2,Y1:t−1) are conditionally independent given Xt−1.

We are interested in making inference about {Xt}t≥0. Thus, in this context we are able

to construct a Bayesian model, in which (4.1) and (4.2) define the prior and the likelihood

respectively as follows

pθ (x0:t) = µθ (x0)
t

∏
i=1

fθ (xi|xi−1), (4.3)

pθ (y1:t |x1:t) =
t

∏
i=1

gθ (yi|xi). (4.4)

Let us assume θ ∈ Θ is a known parameter. The inference about X0:t , given a realisation

of the observations Y1:t = y1:t , relies upon the posterior density given by

pθ (x0:t |y1:t) =
pθ (x0:t ,y1:t)

pθ (y1:t)
, (4.5)

where

pθ (x0:t ,y1:t) = pθ (x0:t) pθ (y1:t |x1:t), (4.6)

and

pθ (y1:t) =
∫

pθ (x0:t ,y1:t) dx0:t . (4.7)
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The joint distribution of x0:t and y1:t in (4.6), also known as the unnormalised posterior,

can be written as

pθ (x0:t ,y1:t) = pθ (x0:t−1,y1:t−1) fθ (xt |xt−1) gθ (yt |xt). (4.8)

Consequently, the posterior distribution in (4.5) in terms of (4.8) is given by

pθ (x0:t |y1:t) = pθ (x0:t−1|y1:t−1)
fθ (xt |xt−1) gθ (yt |xt)

pθ (yt |y1:t−1)
, (4.9)

where

pθ (yt |y1:t−1) =
∫

pθ (xt−1|y1:t−1) fθ (xt |xt−1) gθ (yt |xt) dxt−1:t . (4.10)

In the literature (Andrieu et al., 2010), approximating pθ (x0:t |y1:t) is referred to as opti-

mal filtering problem. However, here we are only interested in the marginal distribution,

pθ (xt |y1:t), which can be obtained by integrating (4.9) over x0:t−1 and is given by

pθ (xt |y1:t) =
gθ (yt |xt) pθ (xt |y1:t−1)

pθ (yt |y1:t−1)
, (4.11)

where pθ (xt |y1:t−1) is known as the prediction step and is given by

pθ (xt |y1:t−1) =
∫

fθ (xt |xt−1) pθ (xt−1|y1:t−1) dxt−1.

Thus, by computing pθ (xt |y1:t) sequentially, from pθ (x0:t |y1:t), we then are able to evalu-

ate the quantity of the marginal likelihood, pθ (y1:n), as follows

pθ (y1:t) = p(y1)
t

∏
i=2

p(yi|y1:i−1),

where p(yi|y1:i−1) is given by (4.10).

If θ is unknown, it is suggested to assign a prior density p(θ) to θ , therefore Bayesian

49



inference relies on the joint density of x0:n and θ where

p(θ ,x0:t |y1:t) ∝ pθ (x0:t ,y1:t) p(θ). (4.12)

For nonlinear and non-Gaussian models, the posterior distributions, pθ (x0:t |y1:t) and

p(θ ,x0:t |y1:t) are often impossible to obtain analytically. It is therefore necessary to em-

ploy numerical and approximation methods. Here, we use SMC methods for the purpose

of approximating posterior distribution; see Andrieu et al. (2010) for further details.

4.2.2 Sequential Monte Carlo methods

Particle filters, which is how SMC is usually referred to in the context of HMM, is easier

to understand when viewed as an extension of importance sampling. Thus, we explain

these methods in the context of importance sampling. Suppose that we are interested in

evaluating the expected value

E [hθ (x0:t)] =
∫

hθ (x0:t)pθ (x0:t |y1:t) dx0:t , (4.13)

where h is any function of x0:t . The law of large numbers confirms that sample averages

tend to population moments as the number of draws increases. For complex models, it

is generally impossible to draw samples directly from the target distribution because it is

often unknown and non-standard.

Instead, we draw from an importance or proposal distribution qθ (x0:|y1:t) which is

easier to sample from. The choice of the importance distribution will be discussed later

in this section. By substituting the importance density in (4.13), we have

E [hθ (x0:t)] =
∫

hθ (x0:t)
pθ (x0:t |y1:t)

qθ (x0:t |y1:t)
qθ (x0:t |y1:t) dx0:t

=
∫

hθ (x0:t)
pθ (y1:t |x1:t) pθ (x0:t)

pθ (y1:t) qθ (x0:t |y1:t)
qθ (x0:t |y1:t) dx0:t

=
∫

hθ (x0:t)
w̃t

pθ (y1:t)
qθ (x0:t |y1:t) dx0:t , (4.14)
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where w̃t is called the unnormalised importance weight and given by

w̃t =
pθ (y1:t |x1:t) pθ (x0:t)

qθ (x0:t |y1:t)
.

Then, (4.14) is written as

E [hθ (x0:t)] =
1

pθ (y1:t)

∫
hθ (x0:t) w̃t qθ (x0:t |y1:t) dx0:t

=

∫
hθ (x0:t) w̃t qθ (x0:t |y1:t) dx0:t∫

pθ (y1:t |x1:t) pθ (x0:t)
qθ (x0:t |y1:t)
qθ (x0:t |y1:t)

dx0:t

=

∫
hθ (x0:t)w̃t qθ (x0:t |y1:t) dx0:t∫

w̃t qθ (x0:t |y1:t) dx0:t

=
Eqθ (x0:t |y1:t) [w̃t hθ (x0:t)]

Eqθ (x0:t |y1:t) [w̃t ]
. (4.15)

Thus, by drawing N random samples, so-called particles, from qθ (.|.), we can approxi-

mate the expected value of interest as follows

E [hθ (x0:t)]≈
1
N ∑

N
i=1 w̃(i)

t hθ (x
(i)
0:t)

1
N ∑

N
i=1 w̃(i)

t

≈∑w(i)
t hθ (x

(i)
0:t), (4.16)

where the normalised importance weights are given by

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃( j)

t

,

such that
N

∑
i=1

w(i)
t = 1.

The approximation given by (4.16) holds for every well-behaved function h. Therefore,

for the sample x(1), . . . ,x(N), with the associated weights w(1), . . . ,w(N), the target distri-
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bution pθ (X) can be approximated by

p̂θ (x)≈
N

∑
i=1

w(i)
δX (i)(x), (4.17)

where δX(x) denotes the Dirac delta mass located at X .

However, in the filtering problem, the target distribution changes every time as a

new observation arrives, i.e. we move from pθ (x0:t−1|y1:t−1) to pθ (x0:t |y1:t). Note that

this does not imply that pθ (x0:t−1|y1:t−1) is a marginal density of pθ (x0:t |y1:t), although

x0:t−1 are the first components of x0:t . To efficiently update a discrete approximation of

pθ (x0:t−1|y1:t−1) when a new observation becomes available and therefore, to get a dis-

crete approximation of pθ (x0:t |y1:t),

1. draw x(i)t , for each sample path, x(i)0:t−1, in the support of p̂θ (x0:t−1|y1:t−1) to get

x(i)0:t = (x(i)0:t−1,x
(i)
t ) and then

2. update its weight w(i)
t−1 to an appropriate weight w(i)

t .

The weighted points, (x(i)0:t ,w
(i)
t ), provide a new discrete approximation p̂θ (x0:t |y1:t). If we

express the proposal distribution, qθ (x0:t |y1:t), as

qθ (x0:t |y1:t) = qθ (xt |x0:t−1,y1:t)qθ (x0:t−1|y1:t−1), (4.18)

thus we only need to sample from the importance transition density,qθ (xt |x0:t−1,y1:t) , at

each time point t and update the importance density sequentially using (4.18) (Petris et al.,

2009, Chapt. 5). This decomposition also allows us to sequentially update the weight as

we move from t−1 to t. Therefore, the ith weight at time t is given by

w(i)
t ∝

pθ (x
(i)
0:t |y1:t)

qθ (x
(i)
0:t |y1:t)

∝
pθ (x

(i)
0:t ,yt |y1:t−1)

qθ (x
(i)
0:t |y1:t)
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∝
pθ (x

(i)
t ,yt |x(i)0:t−1,y1:t−1) pθ (x

(i)
0:t−1|y1:t)

qθ (x
(i)
t |x

(i)
0:t−1,y1:t) qθ (x

(i)
0:t−1|y1:t−1)

∝
gθ (yt |x(i)t ) fθ (x

(i)
t |x

(i)
t−1)

qθ (x
(i)
t |x

(i)
0:t−1,y1:t)

w(i)
t−1. (4.19)

Therefore, for every i, after sampling from qθ (xt |x(i)0:t−1,y1:t), the unnormalised weights

can be obtained as follows

w̃(i)
t = w(i)

t−1
gθ (yt |x(i)t ) fθ (x

(i)
t |x

(i)
t−1)

qθ (x
(i)
t |x

(i)
0:t−1,y1:t)

. (4.20)

Then we scale the unnormalised weights:

w(i)
t =

w̃(i)
t

∑
N
j=1 w̃( j)

t

.

Earlier in Section 4.2.1, we mentioned that our interest in this section lies in estimat-

ing pθ (xt |y1:t) which was defined as the marginal distribution of pθ (x0:t |y1:t). Similarly,

pθ (xt |y1:t) can be approximated by discarding the first t components of each path x(i)0:t in

p̂θ (x0:t |y1:t), which leaves us only x(i)t , to obtain

pθ (xt |y1:t)≈
N

∑
i=1

w(i)
t δ

x(i)t
(x).

4.2.2.1 Degeneracy and resampling

In practice, it is often the case that after a number of updates, a few points have relatively

high weights in the support of p̂θ , while the remaining have very small weights. This

leads to a poor Monte Carlo approximation. This problem is known as weight degeneracy

and having a resampling step may prevent such a problem by eliminating unpromising

samples (Andrieu et al., 2010). Resampling might be done in several ways. The most

popular algorithms in the literature are , residual, systematic and multinomial resampling.

The first two algorithms are more efficient algorithms when our attempt is to keep the

variance increase as small as possible. The third algorithm is the simplest algorithm but
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still efficient to tackle weight degeneracy. Here we adopt the multinomial resampling

scheme which can be described as follows:

(i) Draw a random sample of size N from p̂θ (x0:t |y1:t);

(ii) Assign each sampled points equal weights and use them as the new discrete approx-

imation of the target distribution.

While the expected value of the approximating distribution p̂θ (x0:t |y1:t) stays the same,

this technique may increase the Monte Carlo variance (Doucet and Johansen, 2009; Petris

et al., 2009).

The cost of resampling at each time point t is that we introduce some additional vari-

ance (Doucet and Johansen, 2009). If particles have unnormalised weights with a small

variance then the resampling might not be necessary. Therefore, in practice, it is useful to

measure how different the proposal distribution is from the target distribution (Liu, 2001,

pp. 35-36). This is often assessed by looking at the effective sample size, Ne f f , criterion

(Liu, 2001), which at time t is given by

Ne f f =
1

∑
N
i=1

(
w(i)

t

)2 . (4.21)

In a simple importance sampling setting Ne f f can be interpreted as the inference based on

the N weighted samples is approximately equivalent to inference based on Ne f f perfect

samples from the target distribution. Therefore, Ne f f can change between N (when all

the weights are equal) and one (when one weight is equal to one) and we only resample

when Ne f f falls bellow the pre-specified threshold N0, typically N0 = N/2; see Doucet

and Johansen (2009) and references therein for further details.

4.2.2.2 Designs and issues

Importance sampling requires us to specify qθ (xt |x0:t−1,y1:t). Petris et al. (2009) has

highlighted guidelines on how best to select the importance density. A common choice

is qθ (xt |x0:t−1,y1:t) = pθ (xt |xt−1), that is sampling from the prior distributions of the

states without considering any information from the observations. Although this leads
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Algorithm 4.1 Basic particle filter algorithm

1. At time t = 0,

1.1 Sample (x(1)0 , . . . ,x(N)
0 )∼ qθ (x0) and set (w(1)

1 , . . . ,w(N)
1 ) = 1

N .

2. For t = 1, . . . ,n,

2.1 For i = 1, . . . ,N,
2.1.1 Sample x(i)t ∼ qθ (xt |x0:t−1,y1:t) and set

x(i)0:t = (x(i)0:t−1,x
(i)
t );

2.1.2 Obtain the unnormalised weights

w̃(i)
t = w(i)

t−1
gθ (yt |x(i)t ) fθ (x

(i)
t |x

(i)
t−1)

qθ (xt |x(i)0:t−1,y1:t)
;

2.2 Normalise the weights

w(i)
t =

w̃(i)
t

∑
N
k=1 w̃(k)

t

;

2.3 Obtain
Ne f f =

1

∑
N
i=1

(
w(i)

t

)2 ;

2.4 If Ne f f < N0, resample:

2.4.1 Draw a sample of size N from the discrete distribution

p(x0:t = x(i)0:t) = w(i)
t ,

for i = 1, . . . ,N, and relabel this sample

x(1)0:t , . . . ,x
(N)
0:t ;

2.4.2 Reset the weights: w(i)
t = 1

N , i = 1, . . . ,N;

2.5 Set p̂θ (x0:t |y1:t) = ∑
N
i=1 w(i)

t δ
X (i)

0:t
(x).

to a straightforward calculation, it is often the case that particles fall in regions with

low posterior density that result in poor approximations. To avoid such a problem, it is

suggested to sample xt from its condition distribution given xt−1 and y1:t . This distribution
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is referred to as the optimal kernel density.

Considering the strengths of SMC methods, they also suffer from well-known draw-

backs. Indeed, when there is an outlier, the weights wi will be extremely unevenly dis-

tributed and so it will require an extremely large value of N for draws to be close to sam-

ples from the empirical filtering density. This is of particular concern if the measurement

density gθ (yt |xt) is highly sensitive to xt (Pitt and Shephard, 1999).

4.2.3 Improvement and extension

Over the past 15 years many techniques have been suggested to improve the performance

of particle filters. These techniques are essentially categorised as

(a) techniques suggested to reduce the variance by introducing a resampling step such

as the residual (Liu, 2001, Chapt. 3) or stratified (Kitagawa, 1996) resampling

procedure, and

(b) techniques that aim to tackle the weight degeneracy problem (defined in Section 4.2.2.1)

which include, among others, the auxiliary particle filters (APF) suggested by Pitt

and Shephard (1999) and the resampling-move algorithm (Gilks and Berzuini, 2001).

Particle filters that learn about the static model parameters in a sequential manner

have attracted much attenction in recent years. Algorithms for this purpose may assume

the static parameters as a part of an unobserved process (Berzuini et al., 1997), or com-

bine MCMC within the particle filter algorithms (Andrieu et al., 1999; Fearnhead, 2002;

Storvik, 2002). Alternatively, they add random noise to the particles, therefore in this

context, static parameters are approximated by some slowly changing dynamic parame-

ters (West, 1993b; Liu and West, 2001), also see Lopes and Tsay (2011), Andrieu et al.

(2010) and references therein for recent reviews on improvement and extension of particle

filters.

We discuss the APF algorithm as an improvement to the basic particle filter algorithm.

The performance of the PF depends on the specification of importance densities. How-

ever, devising an effective importance density is a very hard problem and an inappropriate
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choice can lead to severe degeneracy of the weights. The APF algorithm helps us to over-

come this difficulty. Then, we explain the algorithm suggested by Liu and West (2001)

for estimating unknown static parameters in the model. In the literature, this algorithm is

called the LWF algorithm and considered as an extension of the APF algorithm (Lopes

and Tsay, 2011).

4.2.3.1 Auxiliary particle filters

Consider the approximation to pθ (x0:t−1|y1:t−1) at time t−1 given by

p̂θ (x0:t−1|y1:t−1) =
N

∑
i=1

w(i)
t−1δ

X (i)
0:t−1

(x).

Our interest lies in updating pθ (x0:t−1|y1:t−1) to pθ (x0:t |y1:t) when a new data point ar-

rives. We have

pθ (x0:t |y1:t) ∝pθ (x0:t ,yt |y1:t−1)

=pθ (yt |x0:t ,y1:t−1) pθ (xt |x0:t−1,y1:t) pθ (x0:t−1|y1:t−1)

=gθ (yt |xt) fθ (xt |xt−1) pθ (x0:t−1|y1:t−1)

≈gθ (yt |xt) fθ (xt |xt−1) p̂θ (x0:t−1|y1:t−1)

=
N

∑
i=1

w(i)
t−1 gθ (yt |xt) fθ (xt |x(i)t−1) δ

X (i)
0:t−1

(x), (4.22)

where (4.22) set to be our target distribution for an importance sampling step. To eliminate

the summation in (4.22), pθ (x0:t |y1:t) can be written as a joint distribution of x0:t and the

ith index,

pθ (x0:t , I = i|y1:t) ∝ w(i)
t−1 gθ (yt |xt) fθ (xt |x(i)t−1) δ

x(i)0:t−1
(x), (4.23)

where I ∈ {1,2, . . . ,N} is set to be a latent variable such that p(I = i) = w(i)
t−1. The impor-

tance density suggested by Pitt and Shephard (1999) for the auxiliary target distribution
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in (4.23) is

qθ (x0:t , I = i|y1:t) ∝ w(i)
t−1 gθ (yt |x̂(i)t ) fθ (xt |x(i)t−1) δ

x(i)0:t−1
(x), (4.24)

where x̂(i)t is a central value, such as the mean or the mode, a draw of fθ (xt |Xt−1 = x(i)t−1).

A sample from qθ (x0:t , i|y1:t) can be generated by implementing the following steps for

j = 1, . . . ,N

(i) Draw an auxiliary variable I j with

pθ (I j = i) ∝ w(i)
t−1 gθ (yt |x̂(i)t ), i = 1, . . . ,N.

(ii) Given I j = i, draw

x( j)
t ∼ fθ (xt |x(i)t−1)

and set x( j)
0:t = (x(i)0:t−1,x

( j)
t ).

The importance weight of the jth draw using (4.20), (4.23) and (4.24), is proportional to

w̃( j)
t =

w(I j)
t−1 gθ (yt |x( j)

t ) fθ (x
( j)
t |x

( j)
t−1)

w(I j)
t−1 gθ (yt |x̂

(I j)
t ) fθ (x

( j)
t |x

( j)
t−1)

=
gθ (yt |x( j)

t )

gθ (yt |x̂(I j))
.

Similar to the basic particle filter algorithm in Algorithm 4.1, a resampling is commonly

applied when the effective sample size falls below a threshold. The APF algorithm is

summarised bellow Algorithm 4.2.

4.2.3.2 Auxiliary particles filters with unknown static parameters

In real applications when θ is unknown in the model, the target distribution is replaced

by (4.12). To approximate such distribution, one might extend the state vector to include

θ , defining an imaginary state θt = θt−1 = θ , and apply either of the PF algorithms in

Sections 4.2.2 and 4.2.3.1. However, such method has a serious drawback. Since there is
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Algorithm 4.2 Auxiliary particle filter algorithm

1. At time t = 0, sample x(i)0 ∼ qθ (x0) and set w(i)
0 = 1

N , for i = 1, . . . ,N.

2. For t = 1, . . . ,n:

2.1 for j = 1, . . . ,N:
2.1.1 Draw I j, with probability p(I j = i)∼w(i)

t−1gθ (yt |x̂(i)t ), for i= 1,2, . . . ,N;

2.1.2 Sample new particle x( j)
t from pθ (xt |xt−1 = x(I j)

t−1) and set

x j
0:t = (x(I j)

0:t−1,x
( j)
t );

2.1.3 Assign each particle x( j)
t the corresponding importance weight

w̃( j)
t =

gθ (yt |Xt = x( j)
t )

gθ (yt |Xt = x̂(I j)
t )

;

2.2 Normalise the weights

w( j)
t =

w̃( j)
t

∑
N
k=1 w̃(k)

t

;

2.3 Obtain
Ne f f =

1

∑
N
k=1

(
w(k)

t

)2 ;

2.4 If Ne f f < N0, resample:

2.4.1 Draw a sample of size N from the discrete distribution

p(x0:t = x(i)0:t) = w(i)
t ,

for i = 1, . . . ,N, and relabel this sample

x(1)0:t , . . . ,x
(N)
0:t ;

2.4.2 Reset the weights: w(i)
t = 1

N , i = 1, . . . ,N;

2.5 Set p̂θ (x0:t |y1:t) = ∑
N
i=1 w(i)

t δ
X (i)

0:t
(x).

no evolution assigned to this imaginary state, draws at time t > 0, θ
(i)
t are same as draws

at time t = 0, θ
(i)
0 , for i = 1, . . . ,N. That is, samples from the prior distribution are not

representative of the posterior distribution. Therefore, though weights are updated as the

new information arrives, if the values of θ
(i)
t ’s do not represent the marginal target dis-
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tribution, p(θ |y1:t) (e.g. all happen in the tails of p(θ |y1:t)), the approximation obtained

from the algorithm is poor (Petris et al., 2009). To avoid such problem, it is suggested

to refresh the sampled values of θ by discarding the current values of θ at each time the

target distribution changes and generating new ones. The LWF algorithm suggested by

Liu and West (2001) serves this purpose and is a combination of (i) the APF algorithms,

(ii) a kernel smoothing algorithm approximation to p(θ |y1:t), via a mixture of multivari-

ate normals, and (iii) a shrinkage idea to adjust the increasing variation of θ (Lopes and

Tsay, 2011; West, 1993b,a). In their algorithm, the analysis only relies on the values of

θ sampled from the importance density at time t and one can forget about the values of

θ used at time t−1. Consider the approximation of p(x0:t−1,θ |y1:t−1) at time t−1 given

by

p̂(x0:t−1,θ |y1:t−1) =
N

∑
i=1

w(i)
t−1 δ

(x(i)0:t−1,θ
(i))
(x,θ). (4.25)

The distribution of θ is obtained as the marginal distribution of p(x0:t−1,θ |y1:t−1) as

follows

p̂(θ |y1:t−1) =
N

∑
i=1

w(i)
t−1 δ

θ (i)(θ). (4.26)

Liu and West (2001) replaced each point mass δ
θ (i)(θ) with a normal distribution, thus

the discrete approximation of p(θ |y1:t−1) becomes a continuous distribution. We may set

the normal distribution centred at θ (i). However, as we discuss it below, this may increase

the variance of the approximating distribution. Let θ̄ and Σθ be the mean vector and the

variance matrix of θ under p̂(θ |y1:t−1), and let

p̃(θ) =
N

∑
i=1

wt−1 N(θ (i),ψθ ). (4.27)

Let us introduce I as a latent classification variable which is an index in the mixture in

(4.27). We have
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E(θ) = E [E(θ |I)] = E(θ (I)) =
N

∑
i=1

w(i)
t−1 θ

(i) = θ̄ ,

and the variance is

Var(θ) =E [Var(θ |I)] + Var [E(θ |I)] = E(ψθ ) + Var(θ (I)) = ψθ +Σθ > Σθ .

Therefore, having a variance larger than Σθ results in a kernel density function that is

over-dispersed relative to the posterior samples. This results in an over-dispersed approx-

imation of p(θ |y1:t), and therefore loss of information will accumulate as the operation is

repeated over the time (Liu and West, 2001). West (1993a,b) addressed this problem by

introducing the idea of shrinkage kernel locations. By changing the definition of p̃(θ |Y1:t)

in (4.27) to

p̃(θ) =
N

∑
i=1

w(i)
t−1 N

(
m(i),

[
1−a2]

Σθ

)
, (4.28)

where m(i) = aθ
(i)
t−1 +(1−a)θ̄ for some a in (0,1), thus

E(θ) =E [E(θ |I)] = E
[
aθ

(I)
t−1 +(1−a)θ̄

]
= aθ̄ +(1−a)θ̄ = θ̄ ,

and the variance is

Var(θ) =E [Var(θ |I)] + Var [E(θ |I)]

=E [ψθ ] + Var
[
m(I)
]
= E

[(
1−a2)

Σθ

]
+ Var

[
aθ

(I)+(1−a)θ̄
]

=
(
1−a2)

Σθ + a2Var(θ (I)) =
(
1−a2)

Σθ + a2
Σθ = Σθ .

Therefore, θ has the same mean and variance under p̂(θ |y1:t) and p̃(θ |y1:t). The choice

of the shrinkage parameter, a, has considerable effect on the performance of the LWF

algorithm, because it drives both the shrinkage and the smoothness of the normal approx-

imation (Lopes and Tsay, 2011; Petris et al., 2009). In practice Liu and West (2001)

suggested to set a = (3δ − 1)/(2δ ) for a discount factor δ ∈ (0.95,0.99), which results

in an a ∈ (0.974,0.995).
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The approximation of the joint distribution in (4.25) can be replaced by p̃(x0:t−1,θ |y1:t−1)

given by

p̃(x0:t−1,θ |y1:t−1) =
N

∑
i=1

w(i)
t−1 N

(
m(i),

[
1−a2]

Σ

)
δ

x(i)0:t−1
(x). (4.29)

Hence, the target distribution p(x0:t ,θ |y1:t) can be approximated as follows

p(x0:t ,θ |y1:t) ∝p(x0:t ,θ ,yt |y0:t−1)

=p(yt |x0:t ,θ ,y1:t−1) p(xt |x0:t−1,θ ,y1:t−1) p(x0:t−1,θ |y1:t−1)

=g(yt |xt ,θ) f (xt |xt−1,θ) p(x0:t−1,θ |y1:t−1)

≈g(yt |xt ,θ) f (xt |xt−1,θ) p̃(x0:t−1,θ |y1:t−1)

=
N

∑
i=1

w(i)
t−1 g(yt |xt ,θ) f (xt |x(i)t−1,θ) N

(
m(i),

[
1−a2]

Σ

)
δ

x(i)0:t−1
(x).

So that the auxiliary target distribution in (4.23) at time t can be altered as

p(x0:t ,θ , i|y1:t) ∝ w(i)
t−1 g(yt |xt ,θ) f (xt |x(i)t−1,θ) N

(
m(i),

[
1−a2]

Σ

)
δ

x(i)0:t−1
(x). (4.30)

Liu and West (2001) suggested an appropriate choice for the importance distribution in

the following form

q(x0:t ,θ , i|y1:t) ∝w(i)
t−1 g

(
yt |xt = x̂(i)t ,θ = m(i)

)
f (xt |x(i)t−1,θ)

N
(

θ ;m(i),
[
1−a2]

Σ

)
δ

x(i)0:t−1
(x). (4.31)

where x̂(i)t is a central value, such as the mean or the mode of p(xt |xt = x̂(i)t ,θ = m(i)). At

time t, a sample of size N from the auxiliary target distribution in (4.30) can be obtained

by repeating following steps for j = 1, . . . ,N.

(i) Draw variable I j with

p(I j = i) ∝ w(i)
t−1 g(yt |xt = x̂(i)t ,θ = m(i)), i = 1, . . . ,N.
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(ii) Given I j = i, sample θ ( j) ∼ N
(

m(i),
[
1−a2]Σθ

)
and set θ = θ ( j).

(iii) Given I j = i and θ = θ ( j) obtain

x( j)
t ∼ f (xt |xt−1 = x(i)t−1,θ = θ

( j))

and set x( j)
0:t =

(
x(i)0:t−1,x

( j)
t

)
.

Thus, the unnormalised importance weight using (4.20), (4.30) and (4.31)is proportional

to

w̃(i)
t =

w(I j)
t−1 g(yt |xt = x( j)

t ,θ = θ ( j)) f (x( j)
t |x

( j)
t−1,θ

( j)) N(m(I j),(1−a2)Σθ )

w(I j)
t−1 g(yt |xt = x̂(I j)

t ,θ = m(I j)) f (x( j)
t |x

( j)
t−1,θ

( j)) N(m(I j),(1−a2)Σθ )

=
g(yt |xt = x( j)

t ,θ = θ ( j))

g(yt |xt = x̂(I j)
t ,θ = m(I j))

.

After normalising the importance weights, the approximation p(θ ,x0:t |y1:t) can be ob-

tained as follows

p̂(x0:t ,θ |y1:t) =
N

∑
i=1

w(i)
t δ

(x(i)0:t ,θ
(i))
(x,θ).

Similar to the general particle filters and APF algorithms, in Sections 4.2.2 and 4.2.3.1,

a resampling takes place if the number effective samples falls below the threshold. Let us

point out that in order to use the kernel normal methods of Liu and West (2001), it is ap-

propriate to work with real-valued parameters. Otherwise, if the parameters of interest do

not have real line domain, we transform them so that their transformed distributions have

the entire real line support. For example, in the LWF algorithm, variances are expressed

in terms of their log, or probabilities in terms of their logit.

4.3 A dynamic model

In the following sections we introduce a dynamic Poisson difference (DPD) model and

a dynamic zero inflated Poisson difference (DZPD) model for modelling index change.

We investigate model diagnostics and the predictive distribution for one step ahead pre-
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Algorithm 4.3 Liu and West’s (LW) filter algorithm

1. At time t = 0, sample (x(1)0 ,θ (1)), . . . ,(x(N)
0 ,θ (N)) from q(x0)p(θ) independently

and set w(i)
0 = 1

N .

2. For t = 1, . . . ,n:

2.1 For i = 1, . . . ,N, calculate θ̄ = Ep̂t−1(θ) and Σθ = Varp̂t−1(θ) and

m(i) = aθ
(i)+(1−a)θ̄ ,

x̂(i)t = E(xt |xt−1 = x(i)t−1,θ = m(i));

2.2 for j = 1, . . . ,N:
2.5.1 Draw I j, with probability p(I j = i)∼ w(i)

t−1g(yt |x̂(i)t ,θ = m(i));

2.5.2 Sample θ ( j) ∼ N
(

m(I j),
[
1−a2]Σ

)
;

2.5.3 Sample the new particle x( j)
t from p(xt |xt−1 = x(I j)

t−1,θ = θ ( j)) and set

x( j)
0:t = (x(i)0:t−1,x

( j)
t );

2.5.4 Assign each particle x( j)
t the corresponding importance weight

w̃( j)
t =

g(yt |Xt = x( j)
t ,θ = θ ( j))

g(yt |Xt = x̂(I j)
t ,θ = m(I j))

;

2.3 Normalise the weights

w(i)
t =

w̃(i)
t

∑
N
k=1 w̃(k)

t

;

2.4 Obtain
Ne f f =

1

∑
N
i=1

(
w(i)

t

)2 ;

2.5 If Ne f f < N0, resample:

2.2.1 Draw a sample of size N from the discrete distribution

p
[
(x0:t ,θ) = (x(i)0:t ,θ

(i))
]
= w(i)

t , fori = 1, . . . ,N

for i = 1, . . . ,N, and relabel this sample

(x(1)0:t ,θ
(1)), . . . ,(x(N)

0:t ,θ
(N));

2.2.2 Reset the weights: w(i)
t = 1

N , i = 1, . . . ,N;

2.6 Set p̂(x0:t |y1:t ,θ) = ∑
N
i=1 w(i)

t δ
(x(i)0:t ,θ

(i))
(x,θ).
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dictions.

4.3.1 Dynamic Poisson difference model

Let {Zt}n
t=1 denotes the observation process. A DPD model may be defined as follows

Observation equation

Zt |(Xt = xt)∼ PD(λ1,t ,λ2,t), (4.32)

state equation

log(λλλ t) = xt , (4.33)

xt = θθθxt−1 +ννν t , (4.34)

where

λλλ t =

λ1,t

λ2,t

 , xt =

x1,t

x2,t

 , θθθ =

θ1 0

0 θ2

 and ννν t =

ν1,t

ν2,t

∼ N(0,Σ),

such that

Σ =

σ2
1 0

0 σ2
2

 .

Let us denote the vector of parameter by ψDPD = (θ1,θ2,σ
2
1 ,σ

2
2 ), and set x0 ∼ N(0, I),

where I is an identity matrix of appropriate size, also fψDPD(xt |xt−1) = N(θθθxt−1, Σ) and

gψDPD(zt |xt) = fPD(λ1,t , λ2,t).

4.3.2 Dynamic zero inflated Poisson difference model

A DZPD model can be defined by adding the additional parameter “p” to the DPD model.

Similar to the DPD model, consider the observation process, {Zt}n
t=1. A DZPD model

may be defined as follows

65



Observation equations

Zt |(Xt = xt)∼ ZPD(λ1,t , λ2,t , p), (4.35)

state equations

log(λλλ t) = xt +h(p), (4.36)

xt = θθθxt−1 +ννν t , (4.37)

where h(p) is any function of p, for 0 < p < 1. Considering that ψDZPD =(θ1,θ2,σ
2
1 ,σ

2
2 , p)

stands for the vector of model parameters, we may assign x0 ∼ N(0, I), where I is an

identity matrix of appropriate size, fψDZPD(xt |xt−1) = N(θθθxt−1, Σ) and gψDZPD(zt |xt) =

fZPD(λ1,t , λ2,t p).

We might be able to consider p as another observed process affected by an unobserved

process in the model. However, in practice p is less likely to change within one trading

day. Thus, we consider p as a parameter in the model by having h(p). One possible

choice could be h(p) = − log(1− p) which can be explained by definition of the mean

given by

E(z) = (1− p)(λ1−λ2) = (1− p)λ1− (1− p)λ2.

We then can model log [(1− p)λ1] and log [(1− p)λ2] giving h(p) = − log(1− p) in

(4.36).

4.3.3 Predictive distribution

At time point t, we are interested in predicting zt+1, denoted as z∗t+1. According to Tri-

antafyllopoulos (2009), the one-step ahead predictive distribution,

p(zt+1|z1:t) =
∫

g(zt+1|xt+1)p(xt+1|z1:t)dxt+1,
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can be approximated by

p̂(z∗t+1|z1:t) =
N

∑
i=1

g(z∗t+1|x
(i)
t+1)w

(i)
t .

At time t, a sample from p̂(z∗t+1|z1:t) can be obtained by iterating, for i = 1, . . . ,N, the

following steps

Steps for sampling from p̂(z∗t+1|z1:t) in a DPD model:

(i) Obtain x̂(i)t+1 = θθθ
(i)x(i)t ;

(ii) Calculate λ̂λλ
(i)
t+1 = exp(x̂(i)t+1);

(iii) Draw z∗(i)t+1 ∼ PD(λ̂
(i)
1,t+1, λ̂

(i)
2,t+1).

Steps for sampling from p̂(z∗t+1|z1:t) in a DZPD model:

(i) Obtain x̂(i)t+1 = θθθ
(i)x(i)t ;

(ii) Calculate λ̂λλ
(i)
t+1 = exp(x̂(i)t+1 +h(p̂(i)));

(iii) Draw z∗(i)t+1 ∼ ZPD(λ̂
(i)
1,t+1, λ̂

(i)
2,t+1, p̂(i)) as follows

• Draw u∼ Bernoulli(p); if u = 1, let z∗(i)t+1 = 0, otherwise draw

z∗(i)t+1 ∼ PD(λ̂
(i)
1,t+1, λ̂

(i)
2,t+1).

4.3.4 Diagnostics

In order to determine whether an PF filter works in practice the main factor is considered

to be the presence or absence of degeneracy (defined in Section 4.2.2.1) which needs to be

visually checked (Doucet and Johansen, 2009). To evaluate the efficiency of the suggested

models, mean squared error (MSE) (Pitt and Shephard, 1999) and the PIT (defined in

Chapter 2) for the predicted values are calculated. In order to compare the performance

of the suggested models, we introduce a sequential version of the DIC in the following

section.
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4.3.4.1 Sequential deviance information criterion

Consider the likelihood function in an HMM context in (4.4), and the deviance in (3.15)

in Section 3.3.4. Therefore, we propose the sequential deviance at time t as follows

D(z1:t ,x1:t ,ψ) =−2
t

∑
j=1

log
[
g(z j|x j,ψ)

]
. (4.38)

Now let us consider the definition of the posterior mean deviance and the deviance at ψ̂

in (3.16) and (3.17), respectively. Using the sequential deviance in (4.38), the sequential

posterior mean deviance may be obtained as

D̂avg(z1:t) =
N

∑
i=1

w(i)
t D(z1:t |x

(i)
1:t ,ψ

(i)), (4.39)

(4.40)

where N is the number of particles,
(

x(i)1:t ,ψ
(i),w(i)

t

)
, i = 1, . . . ,N, are the particle approx-

imation to p(x1:t ,θθθ |z1:t) obtained from LWF algorithm; and the sequential deviance at ψ̂

may be given by

D̂ψ̂(z1:t) = D(z1:t , x̂1:t , ψ̂), (4.41)

where x̂1:t and ψ̂ are central values, such as the posterior mean of the target distribution.

Therefore, the sequential DIC is defined as follows

DICt = pDt + D̂avg(z1:t), (4.42)

where pDt = D̂avg(z1:t)− D̂ψ̂(z1:t). The lower value of the DICt may suggest a better fit of

a given model. Here for the simplicity, we plot the difference of the DICt from two given

models M1 (e.g. a basic model with no covariate) and M2 (e.g. a model with covariates)

(DIC2,t−DIC1,t) against time. Values close to 0 indicate that the two models are broadly

equivalent in performance whereas negative values suggest that the model M2 performs

better than the model M1.
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Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6
θ −0.9 −0.3 0.3 0.9 0.9 0.9
σ2 0.16 0.16 0.16 0.16 0.01 0.25

Table 4.1: Parameter values for the six simulated examples from the DPD model.

4.4 Results

To illustrate the application of our model, we first conduct a simulation study. For both

the simulation study and the real application, we estimate the model parameters as well

as the unobserved processes. For all our examples, we use the LWF algorithm shown

in Algorithm 4.3 in Section 4.2.3.2, set N = 5000, N0 = N
2 and the shrinkage constant

a = 0.975.

4.4.1 Simulation study

The interpretation of the model parameters may not be straightforward. Therefore, we

first see how the model behaves for different values of the parameters. Then we fit the

DPD and DZPD models to the corresponding simulated data sets. Finally, we show an

example of model mis-specification

4.4.1.1 Dynamic Poisson difference model

Six sets of data with n = 500 observations each were simulated from the DPD model

(4.32)-(4.34) with parameters shown in Table 4.1. We only considered the case of θ1 =

θ2 = θ and σ2
1 = σ2

2 = σ2, because index change is expected to be essentially symmetric

over a trading day. The first four examples are considered for studying the role of θ in

the DPD model with a fixed σ2. The two other examples help us to understand the model

behaviour as σ2 varies when θ is held fixed.

Figure 4.2 shows the simulated data {zt}n
t=1 along with {λλλ t}n

t=1 for the six models in

table 4.1. For the sake of presentation, {λ2,t}n
t=1 is illustrated as {−λ2,t}n

t=1 on the graphs.

This makes it easier to show the effect of the parameters λ1 and λ2 on the observed data.

We noticed that when |θ | is close to 1 there is a high level of variation in the values

of λλλ t whereas for small values of θ the variation in λλλ t drops significantly. The plots in

Figures 4.2(e) and (f) show that as σ2 increases, the variation in the values of λλλ t increases
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(a) Dataset 1
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(b) Dataset 2
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(c) Dataset 3
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(d) Dataset 4
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(e) Dataset 5
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(f) Dataset 6

Figure 4.2: Six sets of simulated data of size n = 500 from the DPD model. Observed values {zt},
{λ1,t} and {−λ2,t}, are shown by black points, solid red and blue lines, respectively.

substantially. We may conclude that it is generally not possible to ascertain whether high

(low) variation in the observed data was due to either a large (small) value of σ2 or a large

(small) value of |θ |.

We will now demonstrate the performance of the LWF algorithm in recovering the

latent processes and estimating the static model parameters. At time t = 0, to initialise the
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LWF algorithm, we draw samples from

x0 ∼ N(0, I), log(Σ(i))∼ N(0,4I), θθθ
(i) ∼ N(0, 0.0625I), for i = 1, . . . ,N.

Due to computational reasons the PD likelihood function becomes undefined for large

values of σ2 and |θ |, therefore we set the parameters of our initial distributions as above.

Obtained results suggest (Figures C.1-C.6) that

• for smaller values of θ , the credible intervals of the posterior distributions of the

unobserved processes were wider but follow the pattern of the unobserved process

{λλλ t};

• for larger values of θ , the credible intervals of the posterior distributions of the

unobserved processes were narrower but the true {λλλ t} generally lies within the

interval;

• for smaller values of σ2, the credible intervals of the posterior distributions of the

unobserved processes were wider but do not reflect changing pattern of {λλλ t};

• for larger values of σ2, the credible intervals of the posterior distributions of the

unobserved processes became narrower, but the true {λλλ t} generally lies within the

interval.

In addition, Figures C.1-C.6 illustrate the sequential learning for the unknown static

parameters of the model including: the true value, the posterior mean at time t along with

the 95% credible interval of the posterior distribution for each of the parameters. We can

see that how well θ was estimated depended on the true values of θ and σ2, such that

• for large values of |θ | and σ2, the convergence to the true value of θ was quite

quick;

• for small values of |θ | and σ2, the convergence to the true value of θ was very slow.

We noticed that the estimation of σ2 itself did not depend on the true value of σ2 and the

LWF algorithm estimates σ2 reasonably well.
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Figure 4.3: (a) The median (red line), the 95% credible intervals (grey area) of the posterior pre-
dictive distribution and the true observed values (black points) for Dataset 4. (b) A
uniform Q-Q plot of random samples drawn from intervals based on the cumulative
predictive distribution.

Among the six examples discussed in this section, the LWF algorithm performed the

best for Dataset 4. Thus, we undertook a Monte Carlo study to investigate the consistency

of our results. As suggested by other studies (Lopes and Tsay, 2011), we applied the

LWF algorithm to Dataset 4, each time with different initial values. Results indicated

that the LWF algorithm was able to recover well the unknown processes as well as static

parameters for different starting values (Figures C.7).

Our main interest for using dynamic models and SMC methods lies in predicting the

next index change immediately after the new observation becomes available. Thus, it is

important to obtain predictions with a reasonable degree of accuracy. Figure 4.3 (a) shows

that for Dataset 4, 94% of the values of {zt} fell within the 95% credible intervals of the

predictive distribution. The QQ-plot presented in Figure 4.3 (b) indicates that the values

obtained from the PIT have uniform distribution which can be confirmed by the K-S test

with a p-value of 0.487. This suggests that the posterior distribution was able to explain

the behaviour of the data well.

4.4.1.2 Dynamic zero inflated Poisson difference model

In this section, we fixed θ and σ2 at 0.9 and 0.16, respectively and only investigated the

effect of p on the performance of the LWF algorithm when the parameter p was added to

the model. We chose three values of p: 0.2, 0.5 and 0.7. Three data sets of size 500 each

were simulated from the DZPD model given in (4.35)-(4.37) with parameters as shown
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Dataset7 Dataset8 Dataset9
θ 0.9 0.9 0.9
σ2 0.16 0.16 0.16
p 0.2 0.5 0.7

Table 4.2: Parameter values for the three simulated examples from the DZPD model.

in Table 4.2. These data sets are shown in Figure 4.4. The plots illustrate the observed

process, {zt}, along with {λ1,t}n
t=1 and {−λ2,t}n

t=1. The initial values of the parameters

were exactly the same as in the previous section. For the parameter p, we used a logit

transform and set

log(
p

1− p
)∼ N(0,4I),

and h(p) =− log(1− p) as we discussed earlier in Section 4.3.2.

A sequential estimation of λλλ t for Datasets 7- 9 are presented in Figures C.8-C.10.

In these plots, 95% credible intervals of the posterior distribution of {λ1,t} and {λ2,t}

are illustrated along with their true values. We can see that the algorithm has produced

reasonable 95% credible intervals regardless of the value of p. The sequential learning of

model parameters for Dataset 7- 9 were obtained and may suggest that the LWF algorithm

has correctly estimated the static model parameters for all of the data sets..

For the sake of presentation, we chose Dataset 8 and obtained one-step ahead predic-

tions. The observed process and 95% credible interval of the predictive distribution are

given in Figure 4.5 (a). Similar to the DPD model we used the PIT in order to see whether

the model was correctly specified. The Q-Q plot (Figure 4.5 (b)) and the p-value of 0.85

obtained from the K-S test confirm that the DPZD model is able to model the behaviour

of data quite well.

Furthermore, we fitted a DPD model to Dataset 8 to investigate model mis-specification.

Results are presented in (Figure C.11). It can be seen that the values of {λλλ t} were mostly

outside the 95% credible intervals of the posterior distribution of {λλλ ttt}. The difference of

the sequential DIC of the DPD model from the DZPD model also indicates better perfor-

mance of the DZPD model (Figure 4.6).

In summary, we have learnt from the simulation study that the LWF algorithm
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(a) Dataset 7
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(b) Dataset 8
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(c) Dataset 9

Figure 4.4: Three sets of simulated data from the DZPD model, along with values of {λ1,t} (red
line) and {−λ2,t} (blue line).
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Figure 4.5: (a) The 95% credible intervals (grey area) of the posterior predictive distribution and
the true observed values (black points) for Dataset 8. (b) A uniform Q-Q plot of
random samples drawn from intervals based on the cumulative predictive distribution.

(i) is able to produce reliable estimates of σ2 and p regardless of the true values of the

model parameters;

(ii) performed poorly for small values of |θ | and σ2;
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Figure 4.6: Difference of the DICt of the DPD model, DICMDPD , from the DZPD model, DICMDZPD .
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Figure 4.7: One day index change from 25th of March 2008.

(iii) is able to identify model mis-specification.

4.4.2 A dynamic model for the FTSE100 index change

Let index change be represented by {z j}n
j=1, where z j is the jth index change associated

with the transaction at time t j. In this part we intend to fit the DZPD model, given by

(4.35)-(4.37), to index change. Figure 4.7 shows that index change mainly fluctuates over

the range of (−4,4).

Our preliminary analysis of the first 1000 index changes showed that the LWF algo-
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rithm performs poorly (Figure C.12). In these graphs, X-axis shows time stamp in minute,

which can be read as 8:00:00, 8:01:00 and so on. We can assign 330 transactions to each

minute on average. One can see that the sequential estimation of λλλ j hardly moves after

few seconds. In addition, the estimation of θθθ is always close to zero, with wide credible

intervals containing zero. This may imply either index change has not been affected by

the unobserved processes, or the model is not correct.

In order to improve our model we need to address the following problems.

(i) Looking back at Figure 4.7, we can see that there are two time periods during the

day, around 8 am and 2 pm, when the magnitude of index change is higher than in

the rest of the data. This may suggest that the current form of the DZPD model may

not be appropriate because the structure of data changes at these time periods.

(ii) We also noticed that as the distance between the starting point and time point t

increases the weights from the LWF algorithm become degenerate. That is, the

model approximation is based only on one particle instead of N.

We improve the model performance by adopting the following strategies in Sections 4.4.2.1-

4.4.2.3.

4.4.2.1 A DZPD model with covariates

In Figure 4.8 we aggregated data into 5-minute time intervals (resulted in 102 time in-

tervals) for March 25, 2008. From Figure 4.8(a) we can see that the market usually has

a considerable high number of trades immediately after the opening and just before the

closing hours of the market. Having a high number of transactions in a fixed time interval,

suggests that there is a high intensity in the market, which means that the time duration

between trades is very small and almost negligible (Figure 4.8(b)). Now, if we compare

the diurnal pattern graph shown in Figure 4.8(b) and the one day index change in Fig-

ure 4.7, we can see that transactions with the bigger changes (usually more than 8 ticks)

happened when the intensity in the market was high. Thus, we might be able to associate

the size of index change with the time duration between two consecutive transactions. For

this reason, we add the time duration between two consecutive transactions as a covariate

76



to the DZPD model. If we set ∆t j = t j− t j−1, thus a DZPD model with one covariate can

be set as follows

Observation equation

Z j|(X j = x j)∼ ZPD(λ1, j,λ2, j, p), (4.43)

State equation

log(λλλ j) = x j +h(p)+ααα log(∆ t j +1), (4.44)

x j = θθθx j−1 +ννν j, (4.45)

where xi, θθθ and ννν i are defined in Section 4.3.1 and ααα = (α1,α2)
T is the corresponding

parameter vector for time duration between trades. The parameter vector of the DZPD

model can be written as ψDZPD = (θ1,θ2,α1,α2,σ
2
1 ,σ

2
2 , p).

To initialise the filter, we draw samples of ααα from N(0, I), and the rest of the parame-

ters are initialised exactly in the same way as described in Section 4.4.1.2.

However, having time duration between two consecutive transactions as a covariate

did not make any difference to our results. In order to capture the volatility in the data

we may need to define the DZPD model in a way that as soon as the market condition

changes, the model adapts to it. The current DZPD model is not suitable for this purpose.

4.4.2.2 Nonlinear state equation

For a time series variable Xt , the linear class of autoregressive models of order p can be

generalised as follows

Xt = f (Xt−1,Xt−2, . . . ,Xt−p)+ωt , (4.46)

where f is some non-linear function and ωt denotes strict white noise (Chatfield, 2001,

Chapter 3). This model is called a non-linear autoregressive model of order p. In the

case of state space models described here, the nonlinear state equation may be a nonlinear
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Figure 4.8: FTSE100 transactions data from 25/03/2008, (a) the number of transactions and (b)
the time duration between two consecutive transactions, in 5-minute time intervals.

autoregressive model for the case of p = 1. Therefore, a wide range of model variety may

fall into this class of nonlinear autoregressive models. The specific feature of interest in

this section is the model with time varying coefficients, given by

Yt = βtYt−1 +ωt , (4.47)

βt = τ0 + τ1βt−1 + εt , (4.48)
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where τ0 and τ1 are constant, εt ∼ N(0,Λε) is independent from ωt ∼ N(0,Λω), and Λε

and Λω are diagonal matrices of appropriate size. In the case of τ1 = 0, the above model

reduces to what is called random coefficient model (Chatfield, 2001, Chapter 3).

Thus, in the DZPD model context, a time varying coefficient for the state model is

given by

Observation equation

Z j|(X j = x j)∼ ZPD(λ1, j,λ2, j, p), (4.49)

State equation

log(λλλ j) = x j +h(p)+ααα log(∆ t j +1), (4.50)

x j = θθθ jx j−1 +ννν j, (4.51)

θθθ j = γγγ +ωωω j, (4.52)

where x j, θθθ and ννν j are given in Section 4.3.1 and

γγγ =

γ1 0

0 γ2

 and ωωω j =

ω1, j

ω2, j

∼ N(0,εεε),

such that

εεε =

ε2
1 0

0 ε2
2

 .

Equations in (4.51) and (4.52) can be combined as follows

x j = γγγx j−1 +ωωω jx j−1 +ννν j. (4.53)

If we denote the vector of the parameters by ψNLDZPD =(γ1, γ2, α1, α2, σ2
1 , σ2

2 , ε2
1 , ε2

2 , p),

then we have x0∼N(0, I), fψNLDZPD(x j| x j−1)=N(γγγx j−1, ωωωx2
j−1+Σ) and gψNLDZPD(Z j|Xt =

x j) = fZPD(λ1, j, λ2, j, p).
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4.4.2.3 Degeneracy

It is a general case for SMC methods that as i increases, such methods become less effi-

cient (Doucet and Johansen, 2009; Petris et al., 2009). This happens because as i increases

(i) successive resampling steps lead to particle degeneracy. That is, the approximation

is based only on a single unique particle;

(ii) we are effectively targetting the joint posterior distribution p̂θ (x0: j|y1: j), so we are

trying to track a distribution in an increasingly large number of dimensions;

(iii) errors accumulate as we move from time j to j + 1 because the jth approxima-

tion at time t j is based on the ( j− 1)th approximation at time t j−1 which results in

accumulated errors;

A practical solution to this problem is to run the particle filter over a fixed time interval

of length k. The sequential data is considered in blocks of size k, such that the rth block

will consist of all observations at time points (t(r−1)k+1, . . . , trk) for r = 1,2, . . . . The PF

algorithm is applied to each block independently. However, at the beginning of each new

block t(r−1)k+1, r = 2,3, . . . , we restart the algorithm by assigning the posterior means of

the parameters obtained at the last time point t(r−1)k, r = 2,3, . . . , of the previous block

as our initial values. A problem with this procedure is that we do not know the value of

k. We might have a poor approximation for small values of k, on the other hand a large

value of k may lead to the degeneracy well before reaching the end of the chosen interval.

A practical way to choose k is to run the algorithm with different values of k to ascertain

approximately the time point from where the degeneracy sets in.

After some experimentations, we first found that for our data a good choice of k was to

be 200, which is well before the degeneracy starts. Therefore, the data is divided into 226

intervals with the first 225 containing 200 observations each and the last one containing

of the remaining 266 observations.

Before applying the above strategies to the LWF algorithm, it would be useful to

investigate the effect of the h(p) over the number of estimated zeros in the model, to make

sure the model is able to capture the excess of zeros in the data. The current choice of
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Figure 4.9: The posterior mean and 95% credible intervals (grey area) of the unobserved processes
(the first row) and the parameters of model M1 for the FTSE100 index change.

h(p) results in only positive values. Also it underestimates the number of zeros by 4%. If

we change our choice to a function over the real line, for example h(p) = log [p/(1− p)],

we may add more flexibility to the model and overcome the problem of underestimation

of the number of zero index changes.

By adopting these strategies, the LWF algorithm performance improved significantly.

Results are presented in Figures 4.9 and 4.10 which suggest that the DZPD models (i)

a basic model, i.e., a model without any covariates, M1 and (ii) a model with the time

duration between two consecutive transactions as a covariate, M2, both are correctly able

to capture the behaviour of the data.

Although, results from both the models look almost similar, we need to perform model

diagnostics to decide which of the two models fits better. For the purpose of model com-

parison we first compared the MSE from one-step ahead predictions. The MSEs were
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Figure 4.10: The posterior mean and 95% credible intervals (grey area) of the unobserved pro-
cesses (the first row) and the parameters of model M2 for the FTSE100 index change.

0.843, 0.853 for models M1 and M2, respectively. In addition, using the PIT, we saw that

both models are performing equally well (Figure 4.11). However, after comparing the

marginal predictive distribution of index change of both models over a whole day, we saw

that model M1 estimated about 68% of index changes as zero, whereas for model M2 this

proportion was about 68.8% which was closer to 69%, the observed proportion of zero

values in the real data set. Figure 4.12 illustrates the difference of the DICt for M1 from

M2. The obtained negative values suggests that M2 performed better than M1. This indi-

cates that, though M1 explained the behaviour of the data well, still the model has been

improved further by adding additional information to it.
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(a)

(b)

Figure 4.11: A uniform Q-Q plot of random samples drawn from intervals based on the cumulative
predictive distribution (a) M1, (b) M2. The first and the last 10% of tails are shown
on a larger scale.

4.5 Summary

In this chapter we provided a dynamic framework for modelling ultra high-frequency fi-

nancial data using ZPD distribution via SMC methods. For this purpose, we introduced
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Figure 4.12: The difference of the DICt of the M1 from M2. Negative values indicate a better fit
of the model M2 compare to the model M1.

SMC methods. We also discussed one well-known improvement (APF) and an exten-

sion (LWF algorithm) to the basic particle filter algorithms to overcome the problem of

degeneracy and estimating unknown static model parameters.

The main part of this chapter focused on the DZPD model and its application. We

first introduced basic the DPD and DZPD models. Using the LWF algorithm, we fitted

our models to nine sets of simulated data and identified limitations of such models and

discussed model mis-specification.

Furthermore, the DZPD model was fitted to the real data set. Our study showed that

our original model did not explain the behaviour of the data well and the algorithm suf-

fered from severe degeneracy. To improve the DZPD model we adopted a non-linear state

equation, introduced a covariate in the model and applied the LWF algorithm over a fixed

length of time. Using the sequential DIC, proposed for the sequential assessing of the

dynamic models in this chapter, we showed that the non-linear DZPD model performs

better if the time duration between two consecutive transactions is included as a covariate

in the model.

Moreover, the improved DZPD was able to capture fluctuations of index change and

perform online prediction. We would like to point out that there is a considerable scope

of extending the DZPD model which we discuss in Chapter 6.
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Chapter 5

Generalised Poisson difference distribu-
tion

5.1 Introduction

The Poisson distribution has been used in a wide variety of situations as the underlying

distribution for the purpose of modelling count data (Cameron and Trivedi, 1996; Gen-

dron and McCausland, 2005; Gourieroux et al., 1984; Tsay, 2005; McCulloch and Tsay,

2001). Such data frequently arise as outcomes of an underlying count process in continu-

ous time (Winkelmann, 2008). A Poisson distribution is characterised by one parameter,

suggesting the equal mean and variance. As the mean and variance of the Poisson dis-

tribution are equal, we say that Poisson distribution satisfies the equi-dispersion property

(Consul and Jain, 1973; Famoye, 2010; Consul, 1989; Consul and Famoye, 2006; Ismail

and Jemain, 2007). In addition, under the Poisson model, it is assumed that events sat-

isfy the principle of independence. However, there are several examples where these

principles do not hold (Consul and Jain, 1973; Famoye, 2010). For example, number of

purchased units of different commodities (Consul and Famoye, 2006), or the number of

major derogatory reports in the credit history (Greene, 1994), may be serially correlated

or have considerably greater (smaller) sample variance than the sample mean.

These problems have been identified by the literature and led to the development of so-

called generalized probability models (Consul, 1989; Consul and Famoye, 2006; Consul

and Jain, 1973; Nikoloulopoulos and Karlis, 2008). The generalised Poisson (GP) dis-
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tribution has been introduced and used when the either data is over- or under-dispersed,

as an alternative to the Poisson distribution. The main advantage of using the GP distri-

bution is that such distribution has one additional parameter. The additional parameter

introduces over-, equi- or under-dispersion which allows the variance to be greater, equal

to or less than the mean according to whether is positive, zero or negative. Both the mean

and the variance tend to increase or decrease as the rate parameter, increases or decreases.

5.2 The generalised Poisson distribution

The following form of the GP distribution is originally suggested by Consul and Jain

(1973) and discussed in detail; see (Consul and Famoye, 2006, Chapter 9) for further

details. Let us assume X is a non-negative discrete random variable and fGP(λ ,θ) denotes

the probability distribution of X = x which is defined as follows

fGP(x|λ ,θ) =

 λ (λ +θx)x−1e−λ−θx/x!, x = 0,1,2, . . . ,

0, for x > m if θ < 0,
(5.1)

where λ > 0, max(−1,−λ/m) ≤ θ ≤ 1, and m(≥ 4) is the largest positive integer for

which λ +mθ > 0 when θ < 0. This condition is considered to ensure that there are at

least five classes with non-zero probability when θ is negative. It can be seen that the GP

distribution introduces over- or under-dispersion whether θ is positive or negative. Also,

it reduces to the Poisson distribution when θ = 0.

The distribution, for all x > m, become a truncated distribution at zero when θ < 0

which results in ∑
m
x=0 fGP(x|λ ,θ) < 1. However, this truncation error is less than 0.5%

when m ≥ 4 which is negligible in practical applications. Consul and Famoye (2006,

Chapter 9) have discussed some strategies in order to modify this truncation error.

5.2.1 Generating functions

Consul and Famoye (2006) discussed the properties of the GP distribution under the class

of the general Lagrangian distributions. Let us start by defining the Lagrange expansion

and the general Lagrangian distribution.
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Consider z to be a function of u, such that z = u g(z), for −1 < z < 1. Also, let f (z)

and g(z) be two analytic functions of z, which are infinitely differentiable with respect

to (w.r.t) z and g(0) 6= 0. The Lagrange’s inversion theorem states that any function of z

can be expressed as a power series in u which converges for sufficiently small u (Consul

and Famoye, 2006, Chapter 2). According to this theorem, the following power series

expansion can be obtained

z =
∞

∑
x=1

ux

x!

[
dx−1

dzx−1 g(z)x
]

z=0
, (5.2)

f (z) = f (0)+
∞

∑
x=1

ux

x!

[
dx−1

dzx−1

(
g(z)x d

dz
f (z)

)]
z=0

. (5.3)

The expansion in (5.3) forms the probability generating function (pgf) of the discrete

general Lagrangian probability distribution (Consul and Famoye, 2006, Chapter 2). Con-

sequently, the probability mass function of such distributions is given by

P(X = 0) = f (0), (5.4)

P(X = x) = (1/x!)
[

dx−1

dzx−1

(
g(z)x d

dz
f (z)

)]
z=0

. (5.5)

In this case, the two functions g(z) and f (z) are called the transformer and the transformed

functions, respectively. Each set of g(z) and f (z), satisfying the following conditions

[
dx−1

dzx−1

(
g(z)x d

dz
f (z)

)]
z=0
≥ 0, x ∈ N,

g(0) 6= 0, g(1) = 1 and f (1) = 1, together provide a general Lagrangian distribution.

Therefore, a large number of general Lagrangian distributions can be generated.

For the case of GP distribution, Consul and Famoye (2006) suggested g(z) = eθ(z−1)

and f (z) = eλ (z−1). It can be seen that by substituting f (z) and g(z) in (5.5), the GP

87



distribution in (5.1) can be obtained. In this case, the pgf is expressed as follows

G(u) = f (z) = eλ (z−1), where z = u eθ(z−1). (5.6)

In order to obtain the moment generating function (mgf) for the GP distribution, in (5.6),

let z = es and u = eβ . Thus the mgf of the GP distribution is given by

Mx(β ) = eλ (es−1), where s = β +θ(es−1). (5.7)

Thus, the cumulative generating function (cgf) of the GP distribution can be obtained by

taking the logarithm of the mgf as follows

ψ(β ) = lnMx(β ) = θ(es−1), where s = β +θ(es−1). (5.8)

5.2.2 Moments of generalised Poisson distribution

Consider the pgf of the GP distribution in (5.6), in which z can be shown as a function

of u such that z = u g(z) = ψ(u), where ψ(u) is given by (5.2). The descending factorial

moments of the GP distribution can be obtained by successively differentiating (5.6) w.r.t

u, for z = u = 1. The first two derivatives in terms of f (z) and g(z) are

∂ f (ψ(u))
∂u

=
dz
du

f ′(z), (5.9)

∂ 2 f (ψ(u))
∂u2 =

d2z
du2 f ′′(z)+

(
dz
du

)2

f ′(z), (5.10)

where dz/du and d2z/du2 are given by

dz
du

=
g(z)

1−u g′(z)
, (5.11)

d2z
du2 =

2g(z) g′(z)
(1−u g′(z))2 +

z g(z) g′′(z)
(1−u g′(z))3 . (5.12)
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By substituting (5.11)-(5.12) in (5.9)-(5.10) and then z = u = 1, the first two descending

factorial moments µ ′(1)(u) and µ ′(2)(u) are obtained as follows

µ
′
(1)(u) = µ =

f ′(1)
1−g′(1)

, (5.13)

µ
′
(2)(u) =

f ′′(1)+2g′(1) f ′(1)

[1−g′(1)]2
+

f ′(1) g′′(1)

[1−g′(1)]3
, (5.14)

where µ is the first central moment and therefore, the mean of the GP distribution. Using

the first two factorial moments, the variance, σ2 is obtained as

σ
2 = µ

′
(2)(u)+µ

′
(1)(u)−

(
µ
′
(1)(u)

)2
,

=
f ′′(1)+g′(1) f ′(1)+ f ′(1)− ( f ′(1))2

[1−g′(1)]2
+

f ′(1) g′′(1)

[1−g′(1)]3
. (5.15)

Now let f (z) = eλ (z−1) and g(z) = eθ(z−1), thus the the mean and the variance of the GP

distribution are

µ = λ (1−θ)−1, σ
2 = λ (1−θ)−3.

Therefore, when 0 < θ < 1, θ = 0 and max[−1,−λ/m] < θ ≤ 0, the GP distribution

displays over-dispersion (σ2 > µ), equi-dispersion (σ2 = µ) and under-dispersion (σ2 <

µ), respectively. This implies that in the case of under-dispersion, the parameter space is

restricted. We can obtain the maximum likelihood estimates of λ and θ by solving the

following equations

n

∑
i=1

xi(xi−1)
x̄+(xi− x̄)

−nx̄ = 0,

λ̂ = x̄(1− θ̂),

where x1, . . . ,xn are the values of n independent random variables, X1, . . . ,Xn, with prob-

ability distribution fGP(λ ,θ) (Jiang et al., 2006, Chapter 10).

Using the recurrence formula provided by Consul and Famoye (2006, Chapter 9), the
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coefficients of skewness (β1) and kurtosis (β2) are given by

β1 =
1+2θ√
λ (1−θ)

, (5.16)

β2 = 3+
1+8θ +6θ 2

λ (1−θ)
. (5.17)

It can be seen that the skewness of the GP distribution depends on the values of λ for

any given value of θ . Any increase in the value of λ decreases the skewness of the GP

distribution and the infinitely large value of λ results in zero skewness. Also, for any

given value of λ , the skewness is infinitely large when θ is close to unity. The skewness

is negative for θ <−1
2 .

According to Consul and Famoye (2006), the GP distribution becomes leptokurtic (β2

> 3) for all values of λ and 0 < θ < 1. The values of β2 will be less than 3 resulting in a

platykurtic GP distribution when values of θ vary between−1
6

√
10− 2

3 and 1
6

√
10− 2

3 ; see

Consul and Famoye (2006) for further details on the Lagrangian distributions and recent

reviews.

5.2.3 Graphical presentation of GP distribution models

In this section we investigate the behaviour of the GP distribution for various values of λ

and θ . For the purpose of comparison, we assume only one parameter is varying in each

figure.

Figure 5.1 shows that for a given value of θ , when λ < 1 the GP has a small span and

as λ increases the spread increases and forms a bell-shaped distribution. A comparison of

the graphs in Figure 5.1, indicates that as λ decreases, the right tail shortens and results

in a one-tailed distribution.

Figure 5.2 suggests that for any given value of λ , the variation in the value of θ sub-

stantially alters the form of the GP distribution. The increase in the value of θ increases

the mean as well as the variance of the distribution. Also, the right tail of the GP distribu-

tion becomes very heavy, and the distribution tends to become flat as θ increases.
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Figure 5.1: The GP distribution for θ = 0.3

5.3 The generalised Poisson difference distribution

To overcome the underestimation of the tails in a PD model we might be able to use the

distribution of the difference of the two random GP variables. That means the additional

parameters give more control of the tails compare to the PD distribution. In this section we

introduce the generalised Poisson difference (GPD) distribution with four parameters and

investigate its properties. We then outline a possible application of the GPD distribution

in modelling UHF data sets.
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Figure 5.2: The GP distribution for λ = 4

5.3.1 Differences of two GP variates

Let us assume X ∼ GPX(λ1,θ1) and Y ∼ GPY (λ2,θ2) are independently distributed. The

joint distribution of X and Y is given by

fX,Y(x,y|λ1,λ2,θ1,θ2) = fX(x|λ1,θ1) fY(y|λ2,θ2).
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Therefore, we obtain the distribution of the difference Z = X−Y as follows

fGPD(Z = X−Y = z) =
∞

∑
y=0

fX,Y(z+ y, y)

=
∞

∑
y=0

[
λ1(λ1 +θ1(z+ y))z+y−1]

(z+ y)!
e−λ1−θ1(z+y)×

[
λ2(λ2 +θ2y)y−1]

y!
e−λ2−θ2y

= e−λ1−λ2−θ1z
∞

∑
y=0

(λ1,θ1)z+y (λ2,θ2)y e−(θ1+θ2)y, (5.18)

for any value of z ∈ Z, where

(λ ,θ)x =
λ (λ + xθ)x−1

x!
.

Similar to Section 5.2, we set lower limits for θ1 and θ2 to ensure that there are at least

five class of non-zero probabilities at both tails when θ1 < 0 or θ2 < 0. Thus, we set

max(−1,−λ1/m1)< θ1 < 1,

max(−1,−λ2/m2)< θ2 < 1,

where m1, m2≥ 4 are the largest positive integer in which λ1+m1θ1 > 0 and λ2+m2θ2 >

0. Therefore, for any z > m1 when θ1 < 0, or z <−m2 when θ2 < 0, we have

fGPD(z|λ1,λ2,θ1,θ2) = 0.

It is difficult to simplify the probability defined in (5.18) in a compact form. We gen-

erally denote this distribution by GPD(λ1,λ2,θ1,θ2) in which it can have the following

particular forms when some of the parameters are zero.

GPD(λ1,0,θ1,0) = GP(λ1,θ1) =
λ1(λ1 +λ1z)z−1

z!
e−λ1−θ1z,
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GPD(0,λ2,0,θ2) =
λ2(λ2−λ2z)−z−1

(−z)!
e−λ2+θ2z,

GPD(λ1,λ2,0,0) = PD(λ1,λ2) = e−λ1−λ2(
λ1

λ2
)z/2 I|z|(2

√
λ1λ2).

It can be seen that the third case is the PD distribution given in Chapter 3.

5.3.1.1 Cumulant generating function

Let us assume ψ(β ) = ∑
∞
i=1 β k Lk/k!, where Lk is the kth cumulant of the random vari-

able Z, is the cumulant generating function of the GPD distribution. Using the moment

generating function and probability generating function of the variable Z, we are able to

obtain cumulants as follows. Consider the pgf of the random variable X ∼ G1(u), and

Y ∼ G2(u−1), are given by

G1(u) = eλ1(t1−1), where t1 = ueθ1(t1−1),

G2(u−1) = eλ2(t2−1), where t2 = u−1eθ2(t2−1).

Thus, the pgf of a GPD random variable is given by

G(u) = G1(u)G2(u)

= eλ1(t1−1)eλ2(t2−1)

= eλ1(t1−1)+λ2(t2−1). (5.19)

By replacing t1, t2 and u by eT1 , eT2 and eβ , respectively in (5.19), and taking logarithm,

the cumulant generating function, ψ(β ), of Z = X−Y can be obtained as follows,

ψ(β ) = λ1(eT1−1)+λ2(eT2−1)

=
(T1−β )λ1

θ1
+

(T2 +β )λ2

θ2
, (5.20)
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where T1 = β + θ1(eT1 − 1) and T2 = −β + θ2(eT2 − 1). Using cumulant generating

function, we are able to obtain cumulants for the GPD distribution by differentiating w.r.t

β , θ1 and θ2.

Let us start by differentiating T1 and T2 with respect to β , θ1 and θ2 as follows

∂T1

∂β
= (1−θ1eT1)−1 and θ1

∂T1

∂θ1
=−1+(1−θ1)

∂T1

∂β
, (5.21)

∂T2

∂β
=−(1−θ2eT2)−1 and θ2

∂T2

∂θ2
=−1− (1−θ2)

∂T2

∂β
. (5.22)

Next, we partially differentiate ψ(β ) w.r.t β , θ1 and θ2. Furthermore, to simplify ψ(β )/∂β ,

we can eliminate ∂T1/∂β using (5.21)-(5.22) and obtain following equations

θ1
∂ψ(β )

∂θ1
+ψ(β ) = λ1

∂T1

∂θ1
+

(T2 +β )λ2

θ2
, (5.23)

θ2
∂ψ(β )

∂θ2
+ψ(β ) =

(T1−β )λ1

θ1
+λ2

∂T2

∂θ2
, (5.24)

(1−θ1)(1−θ2)
∂ψ(β )

∂β
− (1−θ2)λ1 +(1−θ1)λ2 = (1−θ2)λ1

∂T1

∂θ1
− (1−θ1)λ2

∂T2

∂θ2
,

(5.25)

then add (5.23), (5.24) and (5.25), which results in

(2−θ2)λ1
∂T1

∂θ1
+θ1λ2

∂T2

∂θ2
= θ1

∂ψ(β )

∂θ1
+θ2

∂ψ(β )

∂θ2

+(1−θ1)(1−θ2)
∂ψ(β )

∂β

+ψ(β )− (1−θ2)λ1 +(1−θ1)λ2. (5.26)

The partial differentiations of ψ(β ) w.r.t λ1 then θ1, and λ2, then θ2 given in (5.27) and

(5.28), are used to eliminate ∂T1/∂θ1 and ∂T2/∂θ2 in (5.26).

∂ 2ψ(β )

∂θ1∂λ1
=− 1

θ1

∂ψ(β )

∂λ1
+

1
θ1

∂T1

∂θ1
, (5.27)
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∂ 2ψ(β )

∂θ2∂λ2
=− 1

θ2

∂ψ(β )

∂λ2
+

1
θ2

∂T2

∂θ2
. (5.28)

On the elimination of ∂T1/∂θ1 and ∂T2/∂θ2, we obtain the following relation

(2−θ2)λ1

[
θ1

∂ 2ψ(β )

∂θ1∂λ1
+

∂ψ(β )

∂λ1

]
+θ1λ2

[
θ2

∂ 2ψ(β )

∂θ2∂λ2
+

∂ψ(β )

∂λ2

]
=

θ1
∂ψ(β )

∂θ1
+θ2

∂ψ(β )

∂θ2
+(1−θ1)(1−θ2)

∂ψ(β )

∂β
+ψ(β )− (1−θ2)λ1 +(1−θ1)λ2.

(5.29)

We substitute the value of the cumulant generating function by ψ(β ) = ∑k β kLk/k! in

(5.26), and obtain the following recurrence relation for the cumulants of the probability

distribution of the random variable Z.

(1−θ1)(1−θ2)Lk+1 =(2−θ2)λ1θ1
∂ 2Lk

∂θ1∂λ1
+(2−θ2)λ1

∂Lk

∂λ1
+θ1θ2λ2

∂ 2Lk

∂θ2∂λ2

+θ1λ2
∂Lk

∂λ2
−θ1

∂Lk

∂θ1
−θ2

∂Lk

∂θ2
−Lk, (5.30)

where L1 = [λ1/(1−θ1)]− [λ2/(1−θ2)]. The expression for the other cumulants of the

GPD distribution can be obtained by using (5.30) recursively for k = 1,2,3, . . . . For

example, the second cumulant, L2, is obtained as follows

(1−θ1)(1−θ2)L2 =(2−θ2)λ1

[
θ1

(1−θ1)2 +
1

1−θ1

]
−θ1λ2

[
θ2

(1−θ2)2 +
1

1−θ2

]

− θ1λ1

(1−θ1)2 +
θ2λ2

(1−θ2)2 −
λ1

1−θ1
+

λ2

1−θ2

=
(2−θ2)λ1

(1−θ1)2 −
θ1λ2

(1−θ2)2 −
λ1

(1−θ1)2 +
λ2

(1−θ2)2

=
(1−θ2)λ1

(1−θ1)2 +
(1−θ1)λ2

(1−θ2)2

=
(1−θ2)

3λ1 +(1−θ1)
3λ2

(1−θ1)3(1−θ2)3
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=
λ1

(1−θ1)3 +
λ2

(1−θ2)3 .

Now, consider the case of θ1 = θ2 = θ . We can show that the GPD distribution discussed

by Consul and Famoye (2006) is a special case of the GPD distribution we introduced

here. By substituting θ in (5.20), the cumulant generating function is obtained as

ψ(β ) =
(T1−β )λ1

θ
+

(T2 +β )λ2

θ
. (5.31)

In this case, to obtain cumulants for the random variable Z, we only need to differentiate

T1 and T2 w.r.t β and θ which are given as follows

∂T1

∂β
= (1−θeT1)−1 and θ

∂T1

∂θ
=−1+(1−θ)

∂T1

∂β
, (5.32)

∂T2

∂β
= (1−θeT2)−1 and θ

∂T2

∂θ
=−1− (1−θ)

∂T2

∂β
. (5.33)

Therefore, the differentiation of ψ(β ) w.r.t β and θ in (5.23)- (5.25) reduces to

θ
∂ψ(β )

∂θ
+ψ(β ) = λ1

∂T1

∂θ
+λ2

∂T2

∂θ
, (5.34)

(1−θ)
∂ψ(β )

∂β
−λ1 +λ2 = λ1

∂T1

∂θ
−λ2

∂T2

∂θ
. (5.35)

In the next step, (5.34) and (5.35) are added and result in

2λ1
∂T1

∂θ1
= (1−θ)

∂ψ(β )

∂β
+θ

∂ψ(β )

∂θ
+ψ(β )−λ1 +λ2. (5.36)

To eliminate ∂T1/θ , we then differentiate ψ(β ) first w.r.t λ1 and then θ and obtain

∂ 2ψ(β )

∂θ∂λ1
=− 1

θ

∂ψ(β )

∂λ1
+

1
θ

∂T1

∂θ
, (5.37)
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and substitute the resulting equation in (5.36),

2λ1θ
∂ 2ψ(β )

∂θ∂λ1
+2λ1

∂ψ(β )

λ1
= θ

∂ψ(β )

∂θ
+(1−θ)

∂ψ(β )

∂β
+ψ(β )−λ1 +λ2. (5.38)

Similarly, by replacing ψ(β ) by its definition in (5.38), the following recurrence is ob-

tained.

(1−θ)Lk+1 =2θλ1
∂ 2Lk

∂θ∂λ1
+2λ1

∂Lk

∂λ1
−θ

∂Lk

∂θ
−Lk, (5.39)

where L1 = (λ1−λ2)/(1−θ). Therefore, the first four cumulants are given by

L1 =
λ1

1−θ
− λ2

1−θ
,

L2 =
λ1

(1−θ)3 +
λ2

(1−θ)3 ,

L3 =
(λ1−λ2)(1+2θ)

(1−θ)5 ,

L4 =
(λ1 +λ2)(1+8θ +6θ 2)

(1−θ)7 ,

Consul and Famoye (2006, Chapter 9) has obtained the coefficients of skewness and kur-

tosis for the random variable Z, for the case of θ1 = θ2 = θ as follows

β1 =
(λ1−λ2)

2

(λ1 +λ2)3
(1+2θ)2

(1−θ)
and β2 = 3+

1+8θ +6θ 2

(λ1 +λ2)(1−θ)
. (5.40)

5.3.2 Graphical presentation of GPD distribution models

The behaviour of the GPD distribution for a random variable Z with different values of

the λ1, λ2, θ1 and θ2 is illustrated in this part. To study only the effect of θ1 and θ2

on the GPD distribution, first, we assume λ1 = λ2 = λ and change the values of θ1 and
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(b) θ1 =−0.1, θ2 =−0.3
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(c) θ1 = 0, θ2 =−0.3
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(d) θ1 = 0.1, θ2 =−0.3
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(f) θ1 = 0.3, θ2 = 0.3

Figure 5.3: The GP distribution for λ1 = λ2 = 2

θ2 (Figure 5.3). In general, the distribution has a wider span over Z as either θ1 or θ2

increases. The distribution also becomes short tailed as either of the parameters decrease.

For a fixed λ , the sign of the of [λ/(1−θ1)]− [λ/(1−θ2)] determines the skewness of

the GPD distribution.

Now, let us assume θ1 = θ2 = θ . It can be seen from Figure 5.4 that when λ1 < λ2,

the GPD distribution become a skewed distribution to the left. For any given value of

θ , when λ1 decreases, the GPD tends to have a shorter tail. Assuming the same type of
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(b) λ1 = 1, λ2 = 2
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(c) λ1 = 1, λ2 = 3
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(d) λ1 = 1, λ2 = 4
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(f) λ1 = 1, λ2 = 6

Figure 5.4: The GP distribution for θ = 0.4

symmetry in (3.4) in Section 3.2.1 holds for the GPD distribution, thus for a given value

of θ the GPD distribution tends to be skewed to the right when λ1 > λ2 (not illustrated).

Similar to the GP distribution, for any given values of λ1 and λ2, the form of the GPD

is substantially altered by varying θ . Figure 5.5 suggests that an increase in the value

of θ increases the variance of the distribution and both the tails of the GPD distribution

become long and thin. For any value of λ , when θ becomes smaller, most of the mass

becomes concentrated on Z = 0.
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(a) λ1 = λ2 = 0.5, θ =−0.2

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

X−Y

P
X

−Y

(b) λ1 = λ2 = 2, θ =−0.2
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(c) λ1 = λ2 = 0.5, θ = 0
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(d) λ1 = λ2 = 2, θ = 0
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(e) λ1 = λ2 = 0.5, θ = 0.5
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(f) λ1 = λ2 = 2, θ = 0.5

Figure 5.5: The GPD distribution for different values of λ1 = λ2 = λ and θ

5.3.3 Application: a model for index change

The GPD distribution is useful in fitting over-dispersed as well as under-dispersed integer

data. We outline below a potential application of the GPD distribution for modelling UHF

data. The application in this chapter is based on the assumption that only the difference

of two variables are observed.

Let Zi ∼GPD(λ1,i,λ2,i,θ1,i,θ2,i) index change, where i = 1, . . . ,n and n is the number

of index changes in a given trading day, be the response variable. We start by introducing
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the zero inflated version of the GPD (ZGPD) distribution, to capture the excess of zeros

in the FTSE100 data set, as follows

fZGPD(z|λ1,λ2,θ1,θ2, p) =

 p+(1− p) fGPD(z | λ1, λ2, θ1, θ2) if z = 0,

(1− p) fGPD(z | λ1, λ2, θ1, θ2) if z 6= 0,
(5.41)

for z ∈ Z, where fGPD(z|λ1,λ2) is defined by (5.18), λ1,λ2,θ1 and θ2 are given by (5.42)-

(5.45), and p ∈ (0,1) is the proportion of extra zeros. The model parameters, λ1, λ2, θ1

and θ2, may adopt a similar structure to the ZPD model in Chapter 3. Therefore, we may

set

log(λ1) = xα, (5.42)

log(λ2) = xβ , (5.43)

log(1−θ1) = xγ, (5.44)

log(1−θ2) = xφ , (5.45)

where α, β , γ and φ are vectors of parameters of the ZGPD model of size p×1, x a the

matrix of covariates of size n× p. Thus, the likelihood for the ZGPD distribution in terms

of the model parameters, (5.42)-(5.45), can be obtained as follows

L(λ1,λ2,θ1,θ2, p) =
n

∏
i=1

(
p I{0}+(1− p) fGP(zi|λ1,i, λ2,i, θ1,i, θ2,i)

)
=

n

∏
i=1

(
p I{0}+(1− p) fGPD [zi| exp(xi α) , exp(xi β ) , 1− exp(xi γ) , 1− exp(xi φ)]

)
,

(5.46)

where xi is the ith row of the covariance matrix and I{0} is given by (3.7) in Section 3.3.1.

The model can be fitted to the FTSE100 index changes using Bayesian methods exactly

in the same way as in Section 3.3.1. Similar to the case of the ZPD model, the posterior

distribution will not be explicitly known, therefore we may need to use MCMC methods

in order to generate samples from the posterior distribution. However, in order to evaluate

the likelihood in (5.46), currently there are no computational algorithms available. Thus,
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the development of an efficient and suitable algorithm for this purpose may be considered

as a possible extension.

5.4 Summary

The Poisson distribution has been widely used in different fields of applications such as

finance and medicine. The underlying assumption for application of the Poisson distri-

bution is the independency of the successive events. However, this assumption might be

violated in the real life, and therefore, the use of the Poisson model leads to the overesti-

mation or underestimation of the reality. The generalised Poisson (GP) distribution may

be a possible way to handle this problem.

In this chapter we looked at the GP distribution proposed by Consul (1989) with a

second parameter which can account for the over- or under-dispersion in the data and

discussed its characteristics. In order to overcome the problem of underestimation of the

Poisson difference model, we introduced the generalised Poisson difference (GPD) dis-

tribution with four parameters. We obtained the probability generating function and the

cumulant generating function for the GPD distribution and explored the theoretical char-

acteristics of such distribution. We established a recurrence relation for all the cumulants

of a GPD random variable and derived the first two cumulants. Moreover, we showed

that the GPD distribution suggested by Consul and Famoye (2006) is a special case of our

GPD distribution.

Furthermore, we suggested a possible application of the GPD distribution for mod-

elling UHF data and also introduced a zero inflated version of the GPD distribution. Due

to computational difficulties the model was left at the formal level. There is, however, a

great potential for using this distribution to model UHF data. The development of suitable

algorithms for this purpose may be considered as a possible future work.
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Chapter 6

Conclusion

6.1 Summary

The availability of (ultra) high-frequency (UHF/HF) data on transactions, in the recent

decade, has revolutionized data processing and statistical modelling techniques in finance

and introduced new theoretical and computational challenges. Research in a variety of

issues related to trading process and market microstructure studies has become possible

by the advent of UHF/HF data sets. However, the unique characteristics of UHF data,

such as the discrete structure of price change and unequally spaced time intervals, has

introduced a new challenge to both statistical and financial studies.

Our concern in this study was to develop an appropriate Bayesian methodology for

modelling the discrete price change. Two days of the FTSE100 index futures contract

were available for this study (March 25 and 26, 2008). One day of the two trading days

was used for the purpose of modelling and the other was used in order to validate the fitted

models.

We started by looking at the ADS model suggested by Rydberg and Shephard (2000,

2003) in Chapter 2. The ADS model considered price change as a combination of three

components: an indicator for price activity (A), the direction of price change (D) and the

size of price change (S). This chapter adopted a Bayesian framework for inference and

prediction and implemented using MCMC methods. Furthermore, we investigated the

effect of the previous index change, the volume of the previous transaction and the time
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duration between two consecutive transactions (time duration) on the probability of index

change at the next transaction for each of the components of price change. Our results

from the analysis of one day’s transactions of FTSE100 suggested the existence of high

liquidity in the market.

However, the ADS model has some limitations. For example, our interpretation from

the model is only valid when results from all the three components are available, or mod-

elling each component of price change separately leads to us ignoring the simultaneous

effect of one component on another. Thus, our main concern in this study was dealing

with price change as a single process.

In Chapter 3 we introduced the zero inflated Poisson difference (ZPD) distribution

and its Bayesian application for modelling the FTSE100 index change. The Poisson dif-

ference distribution provided an integer range for index change and, by considering its

zero inflated version, we were able to consider the excess of zeros in the model. We

assessed the effect of the previous index change, the volume of the previous transaction

and the time duration between two consecutive transactions on the index change for the

next transaction. Our results indicated that index change was significantly affected by the

covariates in the model.

In order to assess the performance of the MCMC fitting algorithm for both the ADS

and the ZPD models in Chapters 2 and 3, Gelman and Rubin’s convergence diagnostics

was implemented and suggested that we could assume the convergence of the MCMC

chains. In addition, one-step ahead predictions for the next trading day were obtained by

assuming that time duration and volume were known. Based on the probability integral

transform (PIT) modified for the case of discrete random variables, we show that the ADS

and ZPD models are both capable of explaining well the observed distribution of index

change. However, a comparison between the deviance information criterion (DIC) of the

ADS and the ZPD models suggested that the ZPD model performed significantly better

than the ADS model.

In Chapter 4 we introduced a dynamic zero inflated Poisson difference model with

parameters varying over time. In this context, we assumed that index change was influ-
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enced by latent processes. Unlike the (off-line) ZPD model in Chapter 3, the DZPD model

enabled us to update our inference from the data as new transactions took place. We re-

ferred to this type of analysis as online analysis data processing. MCMC methods were

not computationally feasible for this purpose. Instead, the analysis was carried out using

sequential Monte Carlo methods. For the purpose of model comparison we introduced

a sequential form of the DIC, which suggested that the model performs better if time

duration is included as a covariate in the model. Finally, we obtained one-step ahead pre-

dictions. Results from the PIT suggested that the marginal predictive distribution is able

to explain the behaviour of the data well. However, the model slightly underestimated the

number of zero index changes.

In our modelling, we noticed that the ZPD distribution had a tendency to underesti-

mate the extreme values in the tail of the distribution of index change. Therefore, to add

more flexibility to the tails of the ZPD distribution, we introduced the GPD distribution

with four parameters and its zero inflated version in Chapter 5. We obtained the proba-

bility generating function and the cumulant generating function for the GPD distribution

and established a recurrence relation for all the cumulants. Furthermore, we outlined a

possible model for index change with the ZGPD distribution. However, we left the model

at the formal level due to computational difficulties.

6.2 Further developments and outlook

In this thesis we investigated the problem of modelling price change as a single process.

While the ZPD distribution has enabled us to model price change as an integer-valued

variable and provided the first step of analysing price change as a single process, there are

still opportunities for extending our study. We list below some of the potential extensions.

Sections 6.2.1-6.2.3 provide possible extensions that apply to both off-line and online

modelling. Section 6.2.4 suggests alternative choices for the state equation in the dynamic

model. Improvements for some of the computational algorithms implemented in this

thesis has been provided in Section 6.2.5, followed by possible extensions from a financial

perspective in Section 6.2.6.
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Let us point out that the ZPD model in this work was fitted to index change using

the same framework as suggested by Karlis and Ntzoufras (2009). However, it would be

interesting to investigate more general frameworks, such as Generalised additive mod-

els for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos, 2005) in which

the model is characterised by shape parameters, in addition to the location and scale pa-

rameters. Developing an appropriate methodology for setting the ZPD distribution in a

GAMLSS class can be considered as an alternative modelling framework for a future

study.

6.2.1 Bivariate models for price change and time duration

Joint modelling of price change and time duration has been the main interest of many

studies (Russell and Engle, 1998; Darolles et al., 2000; McCulloch and Tsay, 2001). How-

ever, earlier studies either limited price change over a finite range or had to decompose

price change. An extension to the ZPD model (in off-line as well as online applica-

tions) is to jointly model price change and time duration. Let Pti be the transaction price,

Zi = Pti−Pti−1 the ith price change, and ∆ ti = ti− ti−1 the time duration between two con-

secutive transactions, for i = 1, . . . ,n, where n is the number of price changes in a given

trading day.

A ZPD duration model will be concerned with the joint analysis of (∆ ti, Zi). We may

propose a decomposition1 of the conditional joint distribution of (∆ ti, Zi) as follows

f (∆ ti,Zi|Fi−1) = f (Zi|∆ ti,Fi−1) f (∆ ti|Fi−1). (6.1)

where Fi−1 denotes all information available up to time ti−1 which may contain all possi-

ble covariates. The decomposition in (6.1) simplifies the modelling task by allowing us

to specify suitable models for the conditional distribution of Zi and the distribution of ∆ ti

separately. There are many ways to specify models for distributions in (6.1). A proper

specification might depend on the data under study. In the two following sections we

1A similar decomposition has been proposed by McCulloch and Tsay (2001) in which price change was
decomposed into two components: direction and size. In that model other components, such as number of
transactions within ∆ ti, were also considered.
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Figure 6.1: A ZPD duration model jointly models the duration and index change.

briefly outline model specification for off-line and online frameworks.

6.2.1.1 Off-line modelling

The ZPD duration model in an off-line framework may be set by assigning a generalised

linear model (GLM) to ∆ ti and a ZPD model to Zi. In the ZPD duration model let α and

β denote the parameter vectors of appropriate sizes, corresponding to time duration and

price change, respectively. Figure 6.1 illustrates the conditional structure of price change

on time duration and the parameter vector β . Depending on the data under study, for

example, we may consider

∆ ti ∼ P(θi), (6.2)

log(θ) = Xα, (6.3)

where P(θi) is a Poisson distribution with parameter θi such that θ = (θ1, . . . ,θn)
T, X is

a matrix of covariates. Then, we may fit a ZPD model to the price change as described in

Chapter 3.

Furthermore, the Bayesian analysis of the joint distribution may be undertaken by

obtaining the posterior distribution. Using the decomposition in (6.1), the posterior dis-

tribution also can be decomposed as follows

fpost(α,β |Z,∆ t) ∝ flike(∆ t,Z|α,β ) fprior(α) fprior(β )

= flike(Z|∆ t,β ) flike(∆ t|α) fprior(α) fprior(β )

∝ fpost(β |Z,∆ t) fpost(α|∆ t), (6.4)

where fpost(α,β |Z,∆ t) is the joint posterior distribution, flike(∆ t,Z|α,β ), flike(Z|∆ t,β )
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and flike(∆ t|α) are the joint likelihood for price change and time duration, the likeli-

hood function for price change and the likelihood function for time duration, respectively.

Therefore, further work will be involved in obtaining the posterior distribution of each of

the components, ∆ t and Z, and developing an MCMC algorithm in order to sample from

the posterior distributions.

6.2.1.2 Online modelling

In order to jointly model (∆ ti,Zi) in a dynamic structure, we may assign a dynamic model

to ∆ ti. Consider the hidden Markov model described in Chapter 4 and the decomposition

shown in (6.1). Let {∆ ti}i≥1 be the observed process and {Yi}i≥0 be a hidden Markov

process with its initial density Y0 ∼ g(y0). Then we can set

Observation equation

∆ ti|(Yi = yi)∼ P(θi), (6.5)

State equation

log(θi) = hψ(yi), (6.6)

Yi|(Yi−1 = yi−1)∼ gψ(yi|yi−1), (6.7)

where P(θi) is a Poisson distribution with parameter θi, h(.) is any function of yi, g(yi|yi−1)

denotes the probability density associated with moving from yi−1 to yi and ψ is a vector

of unknown static parameters of the model. Consequently, we can use the DZPD model in

order to characterise price change. Choosing an appropriate state equation and a suitable

particle filter algorithm in order to update both models for time duration and price change

can be considered as the next stage of dynamic modelling of price change.

6.2.2 Modelling the proportion of excess of zeros

We assumed in both off-line and online models in Chapters 3 and 4, the probability of

the excess of zero values, p, as a fixed parameter over a trading day. In practice, p might

be influenced by some of the covariates (e.g. price change, the volume of transaction and
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time duration). Therefore, p may be considered as a function of covariates in both off-line

and online applications as follows

log
(

pi

1− pi

)
= hψ(xi), for i = 1, . . . ,n, (6.8)

where xi is the ith row of a matrix of covariates, ψ is a vector of parameters and n is the

number of index changes within a given trading day.

6.2.3 Extending the analysis to more than one trading day

In this study we modelled the index changes of one trading day. In practice, we would be

interested in extending our analysis to more than one day’s transactions. In this case, we

may model each trading day separately or put the data from all trading days together into

one long series and then fit a single model. The first option does not combine information

from all trading days and also may not be computationally feasible over a long period of

time. On the other hand, in the second option we fit the same model to several days of

data, thus ignoring the dynamics between trading days. We can extend our analysis in

order to address this problem using off-line or online models.

6.2.3.1 Hierarchical models

For models with static parameters, such as the (off-line) ZPD model in Chapter 3, hier-

archical modelling can be used in order to extend the analysis to more than one trading

day. Consider the decomposition of the joint distribution of (∆ ti,Zi) shown in (6.1). In

a Bayesian hierarchical modelling framework we may set the posterior distribution as

follows

fpost(α, β , γ, ϑ |Z, ∆ t) ∝ flike(∆ t, Z|α, β , γ, ϑ) fprior(α| γ) fprior(γ) fprior(β |ϑ) fprior(ϑ)

= flike(Z|β , ϑ , ∆ t) fprior(β | ϑ) fprior(ϑ)×

flike(∆ t|α, γ) fprior(α| γ) fprior(γ)

∝ fpost(β ,ϑ |Z, ∆ t) fpost(α, γ|∆ t), (6.9)
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where γ and ϑ are hyperparameters corresponding to α and β , respectively, in an hier-

archical ZPD duration model. Therefore, by conditioning the parameter vectors of the

model for n trading days on another set of hyperparameters, we allow for variation in the

parameters of the model from one trading day to another.

6.2.3.2 Dynamic models

Having a dynamic structure, the DZPD model in Chapter 4 can be easily extended to the

next trading day. In order to avoid the weight degeneracy problem mentioned in Sec-

tion 4.4.2.3 and initialise the algorithm for the next trading day, we may run an MCMC

sampler overnight when the data flow stops. Alternatively, we may implement a smooth-

ing algorithm. The smoothing problem refers to the case when we aim to obtain estimates

of the previous states given a block of observations y1:T . Further investigation of how to

use an MCMC algorithm for this purpose or finding a smoothing algorithm that may be

appropriate for our analysis provides another scope for further developing the dynamic

modelling of price change.

6.2.4 Alternative state space processes

The dynamic modelling of index change can be extended by considering more compli-

cated processes for the state equation in (4.49)-(4.52) than the nonlinear AR(1) model that

we have used. Diffusion and Dirichlet processes have been suggested for analysing high-

frequency data in other applications, e.g. physics and genetics, (Fearnhead et al., 2010;

Yau et al., 2011). We can consider similar processes in the DZPD model for modelling

UHF financial data.

6.2.5 Improvements for computational algorithms

The computational algorithms implemented in this study can be also developed further.

The LWF algorithm implemented in Chapter 4 can be replaced by other sequential learn-

ing algorithms. There are some new algorithms, for example, the sequential parameter

learning algorithm by Polson et al. (2008) which claims that the weight degeneracy is

prevented by avoiding reweighting particles. In addition, by considering the above de-
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velopments of the DZPD model (modelling time), our algorithm can be improved and

made accessible to researchers as well as traders for the purpose of online prediction of

the market.

In Chapter 5, in order to apply the GPD distribution, we needed to develop a compu-

tational algorithm to evaluate the likelihood function. To obtain a better understanding of

the likelihood function, we may need to set up a simulation study. The summation in the

probability distribution function of the GPD distribution in (5.18) may be considered as

a generalisation of the modified bessel function in (3.3) when θ1,θ2 6= 0. Therefore, we

may be able to evaluate the likelihood function in (5.18) by modifying the algorithm used

for computing the modified Bessel function. Furthermore, it would be useful to check the

derivatives in a symbolic algebraic package e.g. Mathematica.

6.2.6 General remarks

Other interesting open issues relating to various financial aspects of our study may include

some of the following:

(i) Assessing the effect of bid-ask spread on price change. Chapter 1 pointed out that

in futures markets there is no market maker. Therefore, bid and ask prices may

influence the transaction price process in a different way compared to other markets.

For this study, bid and ask quotes were not available. However, in the case of the

availability of bid and ask quotes, investigating the effect of their dynamics on the

price process in the FTSE100 futures market may be considered an interesting area

of study in its own right.

(ii) Studying price change process in other futures markets (e.g. DAX futures (German

stock index), WTI (West Texas Intermediate) futures).

(iii) Finally, applying the analysis proposed in this study to other types of UHF data

such as share prices and foreign exchanges.
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Appendix A

ADS model: Gelman and Rubin’s con-
vergence diagnostics, and traces of the
MCMC chains

Potential scale reduction factors:
Point est. 97.5 quantile

β0 1.00 1.00
β1 1.00 1.00
β2 1.00 1.00
Multivariate psrf 1.00

Table A.1: Gelman and Rubin’s R statistics for the parameter vector β of model MA in (2.3). Values
less than 1.1 suggest that we could assume the convergence of the MCMC chains.

Potential scale reduction factors:
Point est. 97.5 quantile

γ0 1.00 1.00
γ1 1.00 1.00
Multivariate psrf 1.00

Table A.2: Gelman and Rubin’s R statistics for the parameter vector γ of model MD in (2.4). Values
less than 1.1 suggest that we could assume the convergence of the MCMC chains.

Potential scale reduction factors:
Point est. 97.5 quantile

θ0 1.00 1.00
θ1 1.00 1.00
θ2 1.00 1.00
θ3 1.01 1.01
Multivariate psrf 1.00

Table A.3: Gelman and Rubin’s R statistics for the parameter vector θ of model MS. Values less
than 1.1 suggest that we could assume the convergence of the MCMC chains.
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Figure A.1: Gelman and Rubing’s R statistics over 10000 iterations for the parameter vector β of
model MA in (2.3). Solid black line is the median and dashed red line represents the
95% credible intervals for R statistics.
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Figure A.2: Traces of the sampled values of the vector of parameters β (left) and the estimates of
their posterior distributions (right) for model MA in (2.3) fitted to the FTSE100 index
change. We set m = 10000 and discarded the first 5000 samples as burn-in.
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Figure A.3: Gelman and Rubing’s R statistics over 10000 iterations for the parameter vector γ of
model MD in (2.4). Solid black line is the median and dashed red line represents the
95% credible intervals for R statistic.
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Figure A.4: Traces of the sampled values of the vector of parameters γ (left) and the estimates of
their posterior distributions (right) for model MD in (2.4) fitted to the FTSE100 index
change. We set m = 10000 and discarded the first 5000 samples as burn-in.
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Figure A.5: Gelman and Rubing’s R statistics over 10000 iterations for the parameter vector θ of
model MS in (2.5). Solid black line is the median and dashed red line represents the
95% credible intervals for R statistic.
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Figure A.6: Traces of the sampled values of the vector of parameters θ (left) and the estimates of
their posterior distributions (right) for model MS in (2.5) fitted to the FTSE100 index
change. We set m = 10000 and discarded the first 5000 samples as burn-in.
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Appendix B

ZPD model: Gelman and Rubin’s con-
vergence diagnostics, and traces of the
MCMC chains
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Coefficients Simulated data FTSE100 index change
α0 0.59 0.45
α1 0.60 0.41
α2 0.60 0.44
α3 0.60 0.46
β0 0.63 0.59
β1 0.48 0.30
β2 0.63 0.51
β3 0.60 0.65
p 0.58 0.44

Table B.1: Acceptance rate of the MCMC chains for the ZPD model in (3.10) fitted to the simu-
lated data and the FTSE100 index change.

Potential scale reduction factors:
Point est. 97.5 quantile

α0 1.00 1.00
α1 1.00 1.00
α2 1.00 1.00
α3 1.00 1.00
p 1.00 1.01
Multivariate psrf

Potential scale reduction factors:
Point est. 97.5 quantile

β0 1.00 1.00
β1 1.00 1.00
β2 1.00 1.00
β3 1.00 1.00

1.00

Table B.2: Gelman and Rubin’s R statistics for the parameter vectors, α and β , of the ZPD model
in (3.10) for the simulated data set. Values less than 1.1 suggest that we could assume
the convergence of the MCMC chains.

Potential scale reduction factors:
Point est. 97.5 quantile

α0 1.01 1.02
α1 1.00 1.02
α2 1.01 1.02
α3 1.01 1.02
p 1.01 1.02
Multivariate psrf

λ1

Potential scale reduction factors:
Point est. 97.5 quantile

β0 1.01 1.02
β1 1.01 1.04
β2 1.01 1.01
β3 1.01 1.01

1.01

λ2

Table B.3: Gelman and Rubin’s R statistics for the parameter vectors, α and β , of the ZPD model
in (3.10) for FTSE100 data set. Values less than 1.1 suggest that we could assume the
convergence of the MCMC chains.
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Figure B.1: Gelman and Rubing’s R statistics over 10000 iterations for the model parameter vector
ψ , for simulated data set. Solid black line is the median and dashed red line represents
the 95% credible intervals for R statistics.
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Figure B.2: Traces of the sampled values of the vector of parameters ψ of the ZPD model fitted
to a set of simulated data. We set m = 10000 and discarded the first 5000 samples as
burn-in.
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Figure B.3: The the estimates of the posterior distributions of the vector of parameters ψ of the
ZPD model fitted to a set of simulated data after discarding the first 5000 samples as
burn-in.
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Figure B.4: Gelman and Rubing’s R statistics over 10000 iterations for the model parameter vector
ψ , for FTSE100 data set. Solid black line is the median and dashed red line represents
95% credible intervals for R statistics.
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Figure B.5: Traces of the sampled values of the vector of parameters ψ of the ZPD model fitted
to the FTSE100 index change. We set m = 10000 and discard the first 5000 iterations
samples as burn-in.
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Figure B.6: The estimates of the posterior distributions of the vector of parameters ψ of the ZPD
model fitted to the FTSE100 index change after discarding the first 5000 samples as
burn-in.
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Appendix C

Dynamic zero inflated Poisson difference
model: the graphical presentation
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C.1 DPD model: Graphical presentation of the results
for the six simulated sets
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Figure C.1: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 1
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Figure C.2: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 2
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Figure C.3: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 3
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Figure C.4: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 4

131



0 100 200 300 400 500

0
2

4
6

8

t

λ 1

0 100 200 300 400 500

0
2

4
6

8

t

λ 2

0 100 200 300 400 500

−
0.

5
0.

5

t

θ 1

0 100 200 300 400 500

0.
0

1.
0

t

θ 2

0 100 200 300 400 500

0
2

4

t

σ 12

0 100 200 300 400 500

0
2

4

t

σ 22

Figure C.5: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 5
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Figure C.6: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DPD model for Dataset 6
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Figure C.7: The DPD model, a total of 20 replications of the LWF algorithm, each one based on
N = 5000
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C.2 DZPD model: Graphical presentation of the results
for the three simulated data sets
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Figure C.8: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DZPD model for Dataset 7.
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Figure C.9: True value (black line), the posterior mean (red line) and the 95% credible intervals
(grey area) of the unobserved processes (the first and the second rows) and the param-
eters of the DZPD model for Dataset 8.
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Figure C.10: True value (black line), the posterior mean (red line) and the 95% credible inter-
vals (grey area) of the unobserved processes (the first and the second rows) and the
parameters of the DZPD model for Dataset 9.
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Figure C.11: True value (black line), the posterior mean (red line) and the 95% credible inter-
vals (grey area) of the unobserved processes (the first and the second rows) and the
parameters of the DPD model fitted to the Dataset 8.
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C.3 DZPD model: Graphical presentation of the results
for the the FTSE100 data set
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Figure C.12: The posterior mean, the 95% credible intervals (grey area) of the unobserved pro-
cesses (the first row) and the DZPD model parameters for the first 1000 index
changes of the FTSE100 data set.
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Appendix D

R codes
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D.1 ADS model

Following R codes (R.Code 2) are presented for the M-H algorithm for the activity of

index. Same R codes were applied for the case of the direction of price change with two

parameters. Also, for the size of index change same algorithm have been implemented

except codes in R.Code 1 were replaced for the log-likelihood function and the posterior

distribution.Tinn-R - [C:\Documents and Settings\gshahtahmassebi\Desktop\Thesis\UoPThesisClass\RCodes\ADS-S.r] 1/1

1: ## Likelihood function  for the size of price change. 
2: 
3: 
4: 
5: f<- function(t0, t1, t2, t3,t4){
6:    sum(-(t0 + t1*x.var + t2 * t.var + t3 * v.var + t4 * d.var))-
7:    sum((y.var+1)*
8:    log(1+exp(-(t0 + t1*x.var + t2 * t.var + t3 * v.var + t4 * d.var))))
9:   }

10: 
11: ## Posterior distribution
12: posterior<- function(beta0, beta1, beta2, beta3, beta4){
13:                     betas<-cbind(beta0, beta1, beta2, beta3, beta4)
14:                     f(beta0, beta1, beta2, beta3, beta4) + dmvnorm(betas,
15:                     rep(0,5), diag(100, 5), log = TRUE )
16: }

## We use a same function for the Metroplis-Hastings algorithm for the  

## to replace the following codes in "R Code2", lines 5-15. 
## size f price change as the activity and direction. We only need 

R.Code 1: The log-likelihood and posterior distribution for the size of index change.
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1/1 Tinn-R - [C:\Documents and Settings\gshahtahmassebi\Desktop\Thesis\UoPThesisClass\RCodes\ADS-A.r]

1: ## Bayesian ADS model, model for the Activity of price and direction of 
price change.

2: ### First step is to evaluate the posterior distribution
3: ## Note: MCMCpack results in very similar values, but we construct our own 
4: # functions
5: ## Posterior distribution
6: f<- function( beta0, beta1, beta2){
7: sum(y.var*(beta0 + beta1 * x.var + beta2 * t.var)-
8: log(1 + exp(beta0 + beta1 * x.var + beta2 * t.var)))
9:    }

10: 
11: posterior<- function(beta0, beta1, beta2){
12:                     betas<-cbind(beta0, beta1, beta2)
13:                     f(beta0, beta1, beta2) + dmvnorm(betas
14:                     , rep(0,3), diag(100, 3), log = TRUE )
15: }
16: ## R function to run the M-H algorithm
17: m.h.function<- function(m,s1,  beta01, beta11, beta21, tune){
18: beta0<- numeric(m)
19: beta1<- numeric(m)
20: beta2<- numeric(m)
21: ## Initialise the algorithm
22: beta0[1]<-beta01
23: beta1[1]<-beta11
24: beta2[1]<-beta21
25: mu<- rbind(beta01, beta11, beta21)
26: 
27: ### Set the counter to zero
28: k<-0
29: ### For i = 2, ...,n repeat the following steps
30: for(i in 2:m){
31:   betas<- c(beta0[i-1],beta1[i-1],beta2[i-1])
32: ### Sample candidates from the normal proposal distribution
33: ## centred at the values from the previous interation
34: ## tune is the tuning parameter which 2.4/sqrt(3)
35:   y<- rmvnorm(1, betas, s1 * tune)
36:   a<-posterior(y[1],y[2], y[3])-
37:   posterior(beta0[i-1],beta1[i-1], beta2[i-1] )
38:   d<- dmvnorm(betas,y,s1, log = TRUE) - dmvnorm(y,betas,s1, log= TRUE)
39: 
40:   ratio1<- exp(d + a)
41:   ratio1<- min(1, ratio1)
42:   u1<-runif(1)
43: ## Accept or reject the move
44:   if (ratio1 <= u1) {
45:     beta0[i]<- beta0[i-1]
46:     beta1[i]<- beta1[i-1]
47:     beta2[i]<- beta2[i-1]
48:     }
49:     else{
50:     beta0[i]<- y[1]
51:     beta1[i]<- y[2]
52:     beta2[i]<- y[3]
53: ## Count the number of accepted moves
54:     k1<- k1+1
55:    }
56: print(i)
57: }
58: print(k1)
59: return(cbind(beta0, beta1,beta2))
60: }
61: 

## Obtain the log acceptance ratio

R.Code 2: The M-H algorithm R codes, modelling index activity A.
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1/1Tinn-R - [C:\Documents and Settings\gshahtahmassebi\Desktop\Thesis\UoPThesisClass\RCodes\ADS-Preds.r]

1: ### One-step ahead predictions for the whole next trading day's index 
changes

2: ## This function has the following arguments:
3: ## m: number of preditions; a, b, c: vector of parameters of A, D and S 

models;
4: ## a.v, a.dt: coresponding covariates for index activity and,
5: ## d.v, d.dt: direction and size of index change. 
6: simu<- function(m, a,b,c, a.v, a.dt, d.v, d.dt){
7: ### "Index" represents the predicted index change of the next trading day
8: Index<- rep(0,m)
9: ### "active" is the preditced index activity

10: active<- rep(0,m)
11: active[1]<- 0
12: size<- 0
13: ## We set counter in order to keep track on the active indices
14: k<-0
15: direction<- 0
16: #pp.d<- NULL
17: nn<- length(d.v)
18: for(i in 2:m){
19:           p.a<- exp(a[1] + a[2] * active[i-1] + a[3]* a.v[i-1]  + a[4]*

a.dt[i-1] )/(1+exp(
20:                     a[1] + a[2] * active[i-1] + a[3] * a.v[i-1] + a[4]*

a.dt[i-1]))
21:           active[i] <- rbinom(1,1,p.a)
22: ######## First we decide wether the next index change is active or not:
23:           if(active[i] == 1){
24: ##If a change occurs, repeat the following steps
25:                     k<- k+1
26:                     if(k > nn) k<- 1
27:                     ## Obtain the p.d = p(D = 1| a = 1)
28:                     p.d<- exp(b[1] + b[2] * direction+ b[3] * d.v[k]+ b[4]*

d.dt[k] )/(1+exp(
29:                               b[1] + b[2] * direction+ b[3] * d.v[k]+ b[4]*

d.dt[k]))
30:                     ## Sample "direction" with prbability p.d from a 

Bernoulli distribution
31:                     direction<- rbern(1,p.d)
32:                         ifelse(direction== 0, direct<- -1, direct<- 1)
33:                     ## Obtain p.s = p(S' = s')
34:                     p.s<- exp(- c[1] - c[2] * size- c[3] * d.v[k] - c[4]*

d.dt[k])/(1+exp(
35:                               - c[1] - c[2] * size- c[3] * d.v[k] - c[4]*

d.dt[k]))
36:                     ## Sample "size - 1" with prbability p.s from a 

geometric distribution
37:                     size<- rgeom(1,p.s)
38:                     ## Obtain the value of index change 
39:                     Index[i]<- (size+1) * direct
40:          }
41:           else{
42:                     Index[i]<- 0
43:           }
44: }
45: return(Index)
46:        }

R.Code 3: One-step ahead prediction for the next trading day using the ADS model.

144



D.2 Zero inflated Poisson difference model
Tinn-R - [C:\Documents and Settings\gshahtahmassebi\Desktop\Thesis\UoPThesisClass\RCodes\ZPDCodes.r] 1/4

1: ## Bayesian ZPD model with 9 parameters
2: ## Version 9, modified on 21/10/2010
3: ##
4: ### We start by evaluating the Log-likelihood function in two parts, 
5: ## 1 - Non zero index changes
6: PD.l<- function(a0, a1, a2,  a3, b0, b1, b2, b3,  p){ #
7:                   y.var1<- y.var[y.var!= 0]
8:                   if(p <1 & p >0){
9:                       n<- length(y.var1)

10:                       mu1 <- exp(a0 + a1 *( x.var[y.var!= 0]-x.bar) +
a2*(log(v.var[y.var!= 0]) - v.bar) + a3*(t.var[y.var!= 0] - t.bar))

11:                       mu2<-  exp(b0 + b1 * ( x.var[y.var!= 0]-x.bar) +
b2*(log(v.var[y.var!= 0]) - v.bar) + b3*(t.var[y.var!= 0] - t.bar))

12:                       bessel<- besselI(2*sqrt(mu1 * mu2),abs(y.var1))
13:                       n * log(1-p) + sum(-(mu1 + mu2) + (y.var1)/2 *

(log(mu1) - log(mu2)))+
14:                           sum(log(bessel))
15:                  }
16:       }                         
17: 
18: 
19: ## 2 - Zero index changes
20: ZPD.l<- function(a0, a1, a2,a3, b0, b1, b2, b3, p ){  #
21:       y.var2<- y.var[y.var== 0]
22:       if(p <1 & p >0){
23:                       mu1 <- exp(a0 + a1 * ( x.var[y.var== 0]-x.bar) +

a2*(log(v.var[y.var== 0]) - v.bar) + a3*(t.var[y.var== 0]- t.bar))
24:                       mu2<-  exp(b0 + b1 * ( x.var[y.var== 0]-x.bar) +

b2*(log(v.var[y.var== 0]) - v.bar) + b3*(t.var[y.var== 0] -t.bar))
25:                bessel<- besselI(2*sqrt(mu1 * mu2), 0 )
26:               f_0PD <- exp(-(mu1 + mu2)) * bessel
27:               sum(log( p + (1-p) * f_0PD))
28:       }
29:    }                       
30: ###########################################################################

#####
31: ### The posterior distribution distribution is obtained as follows:
32: ###
33: posterior<- function(a0,a1,a2,a3,b0,b1,b2, b3, p){
34: ## log likelihoods
35:         PD.l(a0,a1,a2,a3,b0,b1,b2,b3,p) + ZPD.l(a0,a1,a2,a3,b0,b1,b2,b3,p)+
36: ## log of prior distributions, normal for the parameters of "lambda1" and 
37: # "lambda2" and uniform for the porportion of excess of zeros "p"
38:         dnorm(a0, 0,100, log = TRUE) + dnorm(a1, 0,100, log = TRUE) +
39:         dnorm(a2, 0,100, log = TRUE) + dnorm(a3, 0,100, log = TRUE) +
40:         dnorm(b0, 0,100, log = TRUE) + dnorm(b1, 0,100, log = TRUE) +
41:         dnorm(b2, 0,100, log = TRUE)+ dnorm(b3, 0,100, log = TRUE)+dunif(p,

0,1,log = TRUE)
42: 
43:     }
44: posterior(a0,a1,a2, a3,b0,b1,b2,b3, p)#     
45: ## The following function evaluate the ratio in order to decide accepting 
46: ## or rejecting draws at "i"th  iteration . It just save some lines within 

the 
47: ## the M-H algorithm.
48: ###
49: ### Ratio function for the M-H algorithm
50: ratio<- function(post.cand, post.old, x1, y, k){
51:                   ratio1 <-  post.cand - post.old
52:                             ratio1<- min(0 , ratio1)
53:                             u<- log(runif(1))
54:                             if (ratio1 <= u) {
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55:                                x2<- x1
56:                             }
57:                             else{
58:                               x2<- y
59:                               k<- k+1
60:                            }
61:                 return(c(x2,k))
62:               }
63: #
64: ## 
65: ### The M-H algorithm
66: ##
67: #
68: Bayesian.Skellam2<- function(m, vc.matrix, tune, a, b, p.i, Var.p){
69: ## We update one parameter at the time, thus for each of the parameters
70: # we set one counter
71:       k1<-0;k2<- 0  ;k3<-0 ;k4<-0
72:       k5<-0;k6<- 0 ; k7 <- 0 ;k8<-0 ;k9<-0
73: 
74:       alpha0<- numeric(m)   # ### Define 9 vectors for the model 

parameters, 
75:       alpha1<- numeric(m)   # ##  each with length m
76:       alpha2<- numeric(m)   #
77:       alpha3<- numeric(m)   #
78:       beta0<- numeric(m)    ##  
79:       beta1<- numeric(m)    #
80:       beta2<- numeric(m)    #
81:       beta3<- numeric(m)    #
82:       p <-  numeric(m)      #
83: 
84:       alpha0[1]<- a[1]      # ### Initialise the algorithm
85:       alpha1[1]<- a[2]      #
86:       alpha2[1]<- a[3]      #
87:       alpha3[1]<- a[4]      #
88:       beta0[1] <- b[1]      # 
89:       beta1[1] <- b[2]      #
90:       beta2[1] <- b[3]      #
91:       beta3[1] <- b[4]      #
92:       p[1] <- p.i           #
93: ### tune is the tuning parameter in our case is 2.4/sqrt(1) for each
94: ##  of the parameters
95: for(i in 2:m){
96: y10 <- rnorm(1,alpha0[i-1], vc.matrix[1,1]* tune)     ## Sample from 

candidate distribution
97: y11 <- rnorm(1,alpha1[i-1], vc.matrix[2,2]* tune)
98: y12 <- rnorm(1,alpha2[i-1], vc.matrix[3,3]* tune)
99: y13 <- rnorm(1,alpha3[i-1], vc.matrix[4,4]* tune)

100: y20 <- rnorm(1,beta0[i-1], vc.matrix[5,5]* tune)     ## Sample from 
candidate distribution

101: y21 <- rnorm(1,beta1[i-1], vc.matrix[6,6]* tune)
102: y22 <- rnorm(1,beta2[i-1], vc.matrix[7,7]* tune)
103: y23 <- rnorm(1,beta3[i-1], vc.matrix[8,8]* tune)
104: x.j1<- log(p[i-1]/(1 - p[i-1]))
105: ### The next 9 parts perform updates one parameter at the time.
106: ## For example we sample for "p", obtain the ratio and accept or reject the
107: ## sampled value and move to alpha1, and so. 
108: ## Each part provide a separate acceptance ratio.
109: #########################################################################
110: x.j<- rnorm(1, x.j1, Var.p*tune )
111: p.cand<- exp(x.j)/(exp(x.j) + 1)#rbeta(1, beta.a, beta.b)
112: post.cand5<- posterior(alpha0[i-1], alpha1[i-1], alpha2[i-1],alpha3[i-1]
113:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
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114:            ,p.cand) + log(p.cand*(1- p.cand)) +
115:            dnorm(x.j1, x.j,Var.p *tune, log = TRUE )
116: post.old5 <- posterior(alpha0[i-1], alpha1[i-1], alpha2[i-1],alpha3[i-1]
117:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
118:            ,p[i-1]) + log(p[i-1]*(1- p[i-1]))+
119:             dnorm(x.j,x.j1,Var.p, log = TRUE )
120: x1<-  ratio(post.cand5, post.old5, p[i-1], p.cand, k5)
121: p[i]<- x1[1]
122: k5<- x1[2]
123: ##########################        lambda1     ####################
124: post.cand1<- posterior(y10, alpha1[i-1], alpha2[i-1], alpha3[i-1]
125:            , beta0[i-1],beta1[i-1], beta2[i-1], beta3[i-1]
126:            ,p[i]) + dnorm(alpha0[i-1],y10, vc.matrix[1,1] *tune, log =

TRUE )
127: post.old1<- posterior(alpha0[i-1], alpha1[i-1], alpha2[i-1],alpha3[i-1]
128:           , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
129:           ,p[i]) + dnorm(y10,alpha0[i-1], vc.matrix[1,1] *tune , log =

TRUE  )
130: x2<- ratio(post.cand1, post.old1, alpha0[i-1], y10, k1)
131: alpha0[i]<- x2[1]
132: k1<- x2[2]
133: ####################################
134: post.cand2<- posterior(alpha0[i], y11, alpha2[i-1],alpha3[i-1]
135:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
136:            ,p[i]) + dnorm(alpha1[i-1],y11, vc.matrix[2,2] *tune, log =

TRUE )
137: post.old2<- posterior(alpha0[i], alpha1[i-1], alpha2[i-1],alpha3[i-1]
138:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
139:            ,p[i]) + dnorm(y11,alpha1[i-1], vc.matrix[2,2] *tune , log =

TRUE  )
140: x3<- ratio(post.cand2, post.old2, alpha1[i-1], y11, k2)
141: alpha1[i]<- x3[1]
142: k2<- x3[2]
143: #####################################
144: post.cand3<- posterior(alpha0[i], alpha1[i], y12,alpha3[i-1]
145:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
146:            ,p[i])+ dnorm( alpha2[i-1],y12, vc.matrix[3,3] *tune, log =

TRUE )
147: post.old3<- posterior(alpha0[i], alpha1[i], alpha2[i-1],alpha3[i-1]
148:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
149:            ,p[i]) + dnorm(y12,alpha2[i-1], vc.matrix[3,3] *tune , log =

TRUE  )
150: x4<- ratio(post.cand3, post.old3, alpha2[i-1],  y12, k3)
151: alpha2[i] <- x4[1]
152: k3<- x4[2]
153: #####################################
154: post.cand4<- posterior(alpha0[i], alpha1[i], alpha2[i]
155:            ,y13, beta0[i-1],beta1[i-1], beta2[i-1]
156:            ,beta3[i-1],p[i]) + dnorm(alpha3[i-1],y13, vc.matrix[4,4] *tune,

log = TRUE )
157: post.old4<- posterior(alpha0[i], alpha1[i], alpha2[i]
158:            ,alpha3[i-1], beta0[i-1],beta1[i-1], beta2[i-1]
159:            ,beta3[i-1],p[i]) + dnorm(y13,alpha3[i-1], vc.matrix[4,4] *tune,

log = TRUE  )
160: x5<- ratio(post.cand4, post.old4, alpha3[i-1], y13, k4)
161: alpha3[i]<- x5[1]
162: k4<- x5[2]
163: 
164: #########################   lambda2     ######################
165: post.cand6<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
166:            , y20,beta1[i-1], beta2[i-1],beta3[i-1]
167:            ,p[i]) + dnorm(beta0[i-1],y20, vc.matrix[5,5] *tune, log = TRUE

)
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168: post.old6<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
169:            , beta0[i-1],beta1[i-1], beta2[i-1],beta3[i-1]
170:            ,p[i]) + dnorm(y20,beta0[i-1], vc.matrix[5,5] *tune , log =

TRUE  )
171: x6<- ratio(post.cand6, post.old6, beta0[i-1], y20, k6)
172: beta0[i]<- x6[1]
173: k6<- x6[2]
174: ####################################
175: post.cand7<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
176:            , beta0[i],y21, beta2[i-1],beta3[i-1]
177:            ,p[i]) + dnorm( beta1[i-1],y21, vc.matrix[6,6] * 2.4, log =

TRUE )
178: post.old7<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
179:            , beta0[i],beta1[i-1], beta2[i-1],beta3[i-1]
180:            ,p[i]) + dnorm(y21,beta1[i-1], vc.matrix[6,6] * 2.4 , log =

TRUE  )
181: x7<- ratio(post.cand7, post.old7, beta1[i-1], y21, k7)
182: beta1[i]<- x7[1]
183: k7<- x7[2]
184: #####################################
185: post.cand8<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
186:            , beta0[i],beta1[i], y22 ,beta3[i-1]
187:            ,p[i])+ dnorm( beta2[i-1],y22, vc.matrix[7,7] *tune, log = TRUE

)
188: post.old8<- posterior(alpha0[i], alpha1[i], alpha2[i],alpha3[i]
189:            , beta0[i],beta1[i], beta2[i-1],beta3[i-1]
190:            ,p[i]) + dnorm(y22,beta2[i-1], vc.matrix[7,7] *tune , log =

TRUE  )
191: x8<- ratio(post.cand8, post.old8, beta2[i-1],  y22, k8)
192: beta2[i] <- x8[1]
193: k8<- x8[2]
194: #####################################
195: post.cand9<- posterior(alpha0[i], alpha1[i], alpha2[i]
196:            ,alpha3[i], beta0[i],beta1[i], beta2[i]
197:            ,y23,p[i]) + dnorm(beta3[i-1],y23, vc.matrix[8,8] *tune, log =

TRUE )
198: post.old9<- posterior(alpha0[i], alpha1[i], alpha2[i]
199:            ,alpha3[i], beta0[i],beta1[i], beta2[i]
200:            ,beta3[i-1],p[i]) + dnorm(y23,beta3[i-1], vc.matrix[8,8]*tune,

log = TRUE  )
201: x9<- ratio(post.cand9, post.old9, beta3[i-1], y23, k9)
202: beta3[i]<- x9[1]
203: k9<- x9[2]
204: 
205: 
206: ###
207: print(c(i,alpha0[i],alpha1[i], alpha2[i],alpha3[i]
208:     ,beta0[i],beta1[i],beta2[i],beta3[i], p[i]))
209: }
210: 
211: print(c(k1/m,k2/m,k3/m,k4/m,k5/m, k6/m,k7/m,k8/m,k9/m))
212: return(cbind(alpha0, alpha1,alpha2,alpha3,beta0,beta1,beta2,beta3, p))
213: }

R.Code 4: The log-likelihood, the posterior distribution and the M-H algorithm for the
ZPD model with 9 parameters.
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1: ### Probability distribution function for ZPD distribution
2: library(VGAM)
3: dzskellam<- function(z, mu1, mu2, p, log =FALSE){
4:           ifelse(z == 0, u <- 1, u<- 0)
5:           dzpd <- p * u + (1 - p) * dskellam(z, mu1, mu2)
6:           if(log) dzpd <- log(dzpd)
7:           return(dzpd)
8: }
9: ############################################################################

#####
10: #####
11: #mu<- (1-p) * (lambda_1 - lambda_2)
12: ### Simulation codes where z_i ~ ZPD(lambda_1, \lambda_2, p), when p = 0 we
13: ## we similuate from a PD distribution
14: zpd.lambda<- function(n,theta1, theta2, sigma1 , sigma2, p){
15:              x1<- numeric(n+1)
16:              x2<- numeric(n+1)
17:              index<- numeric(n+1)
18:              l.lambda1<- numeric(n+1)
19:              l.lambda2<- numeric(n+1)
20:              x1[1]<- rnorm(1, 0,1)
21:              x2[1]<- rnorm(1, 0,1)
22:              l.lambda1[1] <- x1[1]
23:              l.lambda2[1] <- x2[1]
24:             for(i in 2:(n+1)){
25:              x1[i]<- rnorm(1, theta1 * x1[i-1], sd = sigma1)
26:              x2[i]<- rnorm(1, theta2 * x2[i-1], sd = sigma2)
27:              l.lambda1[i] <- x1[i] + my.const
28:              l.lambda2[i] <- x2[i] + my.const
29:              u<- rbinom(1,1,p)
30:              ifelse(u == 1, index[i] <- 0 , index[i]<- rskellam(1,

exp(l.lambda1[i]), exp(l.lambda2[i])))
31:              

32:              }
33: 
34: return(list(x1 =x1, x2 = x2,l.lambda1 = l.lambda1, l.lambda2 = l.lambda2,

index = index,theta1 = theta1
35:             ,theta2 = theta2, sigma2 = sigma2, sigma1 = sigma1))
36: }
37: 

 

R.Code 5: R codes for simulating from the DZPD model.
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1: ## Sequential Monte Carlo methods: Liu and West's particle filter algorithm
2: ## Version 12, last modified: 30/09/2011
3: ## z is our observed, X1 and X2 are unobserved processes
4: ##A DZPD model  z ~ ZPD(lambda1, lambda2) where
5: ## log(lambda) = X_t + h(p)     and X_t = X_{t-1} + sigma^2
6: n<- length(z) - 1       ## number of time points
7: N<- 5000                ## number of particles
8: a<- 0.975               ## Shrinkage constant
9: N0<- N/2                ## Threshold for the number of effective sample 

size
10: #
11: # Initialise values
12: # NOTE: logp denotes -log(1-p) > 0
13: ess<- rep(NA, n+1)
14: X1<- matrix(NA_real_, nrow = N, ncol = (n+1))
15: X2<- matrix(NA_real_, nrow = N, ncol = (n+1))
16: ## l.sigma1 = log(sigma1), l.sigma2 = log(sigma2)
17: l.sigma1<- matrix(NA_real_, nrow = N, ncol = (n+1))
18: l.sigma2<- matrix(NA_real_, nrow = N, ncol = (n+1))
19: t1<-  matrix(NA_real_, nrow = N, ncol = (n+1))
20: t2<-  matrix(NA_real_, nrow = N, ncol = (n+1))
21: ## P.est   is the logit(p)
22: p.est<- matrix(NA_real_, nrow = N, ncol = (n+1))
23: ## Weights
24: w<- matrix(NA_real_, nrow = N, ncol = (n+1))
25: ## One-step ahead redictions
26: Preds<- matrix(NA_real_, nrow = N, ncol = (n+1))
27: #
28: # Initilise the algorithm
29: X1[,1]<- rnorm(N, 0, 1)
30: X2[,1]<- rnorm(N, 0, 1)
31: l.sigma1[,1]<- rnorm(N, 0,2)
32: l.sigma2[,1]<- rnorm(N, 0,2)
33: t1[,1]<- rnorm(N, 0,0.25)
34: t2[,1]<- rnorm(N, 0,0.25)
35: p.est[,1]<- rnorm(N, 0,1)
36: w[,1]<- rep(1/N, N)
37: Preds[,1]<- z[2]
38: 
39: i<-2
40: #
41: # set i = 2 to n+1
42: #
43: for(i in 2:(n+1)){
44: ### Obtain plug-in extimates of theta1 and theta2
45: meant1<- weighted.mean(t1[,i-1], w[,i-1])
46: vart1<- weighted.mean((t1[,i-1] - meant1)^2, w[,i-1])
47: meant2<- weighted.mean(t2[,i-1], w[,i-1])
48: vart2<- weighted.mean((t2[,i-1] - meant2)^2, w[,i-1])
49: 
50: mut1<- a * t1[,i-1] + meant1 * (1 - a)
51: sigma2t1 <- (1 - a^2) * vart1
52: mut2<- a * t2[,i-1] + meant2 * (1 - a)
53: sigma2t2 <- (1 - a^2) * vart2
54: ### Obtain plug-in extimates of l.sigma1 and l.sigma2
55: meansigma1<- weighted.mean(l.sigma1[,i-1], w[,i-1])
56: varsigma1<- weighted.mean((l.sigma1[,i-1] - meansigma1)^2, w[,i-1])
57: meansigma2<- weighted.mean(l.sigma2[,i-1], w[,i-1])
58: varsigma2<- weighted.mean((l.sigma2[,i-1] - meansigma2)^2, w[,i-1])
59: ##
60: musigma1<- a * l.sigma1[,i-1] + meansigma1 * (1 - a)
61: sigma2sigma1 <- (1 - a^2) * varsigma1
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62: musigma2<- a * l.sigma2[,i-1] + meansigma2 * (1 - a)
63: sigma2sigma2 <- (1 - a^2) * varsigma2
64: 
65: 
66: ###  Obtain plug-in extimates of  logit(p)
67: meanp <- weighted.mean(p.est[,i-1], w[,i-1])
68: varp <- weighted.mean((p.est[,i-1] - meanp)^2, w[,i-1])
69: 
70: mup<- a * p.est[,i-1] + (1 - a) * meanp
71: sigma2p<- (1 - a^2) * varp
72: ########
73: #
74: # Draw auxilary indicator variable "aux"
75: #
76: p.hat<- exp(mup)/(1 + exp(mup))
77: const.est <- -log(1 - p.hat)
78: lambda1.hat<- exp(mut1 * X1[,i-1] + const.est)
79: lambda2.hat<- exp(mut2 * X2[,i-1] + const.est)#(f2 * theta2 * X2[,i-1])^2
80: prob1<- w[,i-1] * dzskellam(z[i], lambda1.hat, lambda2.hat, p.hat)
81: aux<-  sample(1:N, N, replace = TRUE, prob = prob1)
82: 
83: #
84: #
85: ## Draw samples from proposal distributions
86: #
87: p.est[,i]<- rnorm(N, mup[aux], sqrt(sigma2p))
88: x.ests<-  exp(p.est[,i])/(1 + exp(p.est[,i]))
89: l.sigma2[,i] <- rnorm(N, musigma2[aux], sqrt(sigma2sigma2))
90: l.sigma1[,i] <- rnorm(N, musigma1[aux], sqrt(sigma2sigma1))
91: t1[,i] <- rnorm(N, mut1[aux], sqrt(sigma2t1))
92: t2[,i] <- rnorm(N, mut2[aux], sqrt(sigma2t2))
93: const.new<- -log(1 - x.ests)
94: X2[,i]<- rnorm(N, mean = t2[,i] * X2[aux,i-1], sd = sqrt(exp(l.sigma2[,

i])))
95: X1[,i]<- rnorm(N, mean = t1[,i] * X1[aux,i-1], sd = sqrt(exp(l.sigma1[,

i])))
96: lambda1.h<- exp(X1[,i] + const.new)
97: lambda2.h<- exp(X2[,i] + const.new)
98: ## Obtainun-normalised weights
99: w[,i]<- exp(dzskellam(z[i], lambda1.h, lambda2.h,x.ests, log = TRUE) -

100:        dzskellam(z[i], lambda1.hat[aux], lambda2.hat[aux],p.hat[aux], log
= TRUE))

101: ## Normalise weights
102: w[,i] <- w[,i] / sum(w[,i])      
103: #
104: ## Calcualte the effective sample
105: #
106: N.eff<- 1/crossprod(w[,i])  
107: ess[i]<- N.eff
108: ## Perform resampling if ess < N0
109: if(N.eff < N0) {
110:         resample<- sample(1:N, N, replace = TRUE, prob  = w[,i])
111:         X1[,1:i]<- X1[resample, 1:i]
112:         X2[,1:i]<- X2[resample, 1:i]
113:         l.sigma1[,1:i]<- l.sigma1[resample,1:i]
114:         l.sigma2[,1:i]<- l.sigma2[resample,1:i]
115:         t1[,1:i] <- t1[resample,1:i]
116:         t2[,1:i] <- t2[resample,1:i]
117:         p.est[,1:i]<- p.est[resample,1:i]
118:         w[,i]<- rep(1/N, N)
119: 
120: }
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121: ### One-step ahead predictions
122: p.new<-  exp(p.est[,i])/(1 + exp(p.est[,i]))
123: c.new<- -log(1 - p.new)
124: lambda1.new<- exp(X1[,i] * t1[,i] + c.new)
125: lambda2.new<- exp(X2[,i] * t2[,i] + c.new)
126: pred<- ZPD.sims(lambda1.new, lambda2.new, p.new)
127: Preds[,i]<- pred
128: print(c(i, ess[i]))
129: }

R.Code 6: R codes the LWF algorithm for the basic DZPD model. Same codes can be
implemented for the DPD model when p = 0.
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1: ## Sequential Monte Carlo methods: Liu and West's particle filter algorithm
2: ## Version 4, last modified: 30/09/2011
3: ## z is our observed, X1 and X2 are unobserved processes
4: ##A DZPD model  z ~ ZPD(lambda1, lambda2) where
5: ##
6: ## log(lambda) = X_t + h(p) + alpha * log(d.t + 1)   
7: ## and X_t = gamma * X_{t-1}+ v * X_{t-1} + sigma^2
8: ##
9: n<- length(z) - 1       ## number of time points

10: N<- 5000                ## number of particles
11: a<- 0.975               ## Shrinkage constant
12: N0<- N/2                ## Threshold for the number of effective sample 

size
13: ## The ff package provides data structures that are stored on disk but 

behave 
14: # (almost) as if they were in RAM by transparently mapping only a section
15: # (pagesize) in main memory
16: library(ff)
17: ####################
18: ## In order to define a data set with "ff" format we need first to save it 

as an "ff" file:
19: X1<-ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/X1-
oneCov.ff"

20: ,vmode="double", dim=c(N,Total.n))
21: X2<-ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/X2-
oneCov.ff"

22: ,vmode="double", dim=c(N,Total.n))
23: Preds<-ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/oneCovPre
24: ,vmode="double", dim=c(N,Total.n))
25: gamma1.est<-ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/g1-
oneCov.ff"

26: ,vmode="double", dim=c(N,Total.n))
27: gamma2.est<- ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/g2-
oneCov.ff"

28: ,vmode="double", dim=c(N,Total.n))
29: l.v1<- ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/v1-
oneCov.ff"

30: ,vmode="double", dim=c(N,Total.n))     ## variance for the second state 
equation

31: l.v2<-ff(filename="C://Documents and 
Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/v2-
oneCov.ff"

32: ,vmode="double", dim=c(N,Total.n))      ## variance for the second state 
equation

33: l.sigma1<- ff(filename="C://Documents and 
Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/s1-
oneCov.ff"

34: ,vmode="double", dim=c(N,Total.n))
35: l.sigma2<- ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/s2-
oneCov.ff"

36: ,vmode="double", dim=c(N,Total.n))
37: p.est<- ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/p-
oneCov.ff"

38: ,vmode="double", dim=c(N,Total.n))
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39: cov1.est<- ff(filename="C://Documents and 
Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/cov1-
oneCov.ff"

40: ,vmode="double", dim=c(N,Total.n))
41: cov2.est<- ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/cov2-
oneCov.ff"

42: ,vmode="double", dim=c(N,Total.n))
43: w<-ff(filename="C://Documents and 

Settings/gshahtahmassebi/Desktop/OneDayAnalysis/Codes/SMC/Results/weightsCo
44: ,vmode="double", dim=c(N,Total.n))
45: 
46: #
47: # Initilise sampling from the prior
48: #
49: # Initilise sampling from the prior
50: Preds[,1]<- rep(z[2], N)
51: k<- seq(0,44800, by = 200)
52: d <- rev(k)
53: #
54: for(j in 1:length(k)){
55: ## After k = 200 observations initialise the PF algorithm ,
56: ## "aa" and "dd" are counters
57: aa<- (2+ k[j])
58: dd<-((n-d[j]))
59: X1[,1+k[j]]<- rnorm(N, X1.mean, X1.sd)
60: X2[,1+k[j]]<- rnorm(N, X2.mean, X2.sd)
61: p.est[,1+k[j]]<-  rnorm(N,p.mean, p.max)
62: ## 
63: gamma1.est[,1+k[j]]<-  rnorm(N, g1.mean, g1.sd)
64: gamma2.est[,1+k[j]]<-  rnorm(N, g2.mean, g2.sd)
65: ## l.v1 = log(v1), l.v2 = log(v2), l.sigma1 = log(sigma1), l.sigma2 = 

log(sigma2)
66: l.v1[,1+k[j]]<- rnorm(N, v1.mean, v1.sd)
67: l.v2[,1+k[j]]<- rnorm(N, v2.mean, v2.sd)
68: l.sigma1[,1+k[j]]<- rnorm(N, s1.mean,s1.sd)
69: l.sigma2[,1+k[j]]<- rnorm(N, s2.mean,s2.sd)
70: ## Coeficients for the covariates in the model
71: cov1.est[,1+k[j]]<- rnorm(N, cov1.mean, cov1.sd)
72: cov2.est[,1+k[j]]<- rnorm(N, cov2.mean, cov2.sd)
73: w[,1+k[j]]<- rep(1/N, N)
74: 
75: for(i in aa:dd){
76: ## The following codes obtain plug-in estiamtes of the model parameters
77: #### coefficients  for lambda1
78: meancov1 <- weighted.mean(cov1.est[,i-1], w[,i-1])
79: varcov1 <- weighted.mean((cov1.est[,i-1] - meancov1)^2, w[,i-1])
80: 
81: mucov1<- a * cov1.est[,i-1] + (1 - a) * meancov1
82: sigma2cov1<- (1 - a^2) * varcov1
83: 
84: cov1.hat<-  mucov1 *  log.time[i]  #   log.volume[i]
85: #### coefficients  for lambda2
86: meancov2 <- weighted.mean(cov2.est[,i-1], w[,i-1])
87: varcov2 <- weighted.mean((cov2.est[,i-1] - meancov2)^2, w[,i-1])
88: 
89: mucov2<- a * cov2.est[,i-1] + (1 - a) * meancov2
90: sigma2cov2<- (1 - a^2) * varcov2
91: 
92: cov2.hat<- mucov2 * log.time[i]
93: #### gamma1 and gamma2
94: meang1 <- weighted.mean(gamma1.est[,i-1], w[,i-1])
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95: varg1 <- weighted.mean((gamma1.est[,i-1] - meang1)^2, w[,i-1])
96: 
97: mug1<- a * gamma1.est[,i-1] + (1 - a) * meang1
98: sigma2g1<- (1 - a^2) * varg1
99: 

100: meang2 <- weighted.mean(gamma2.est[,i-1], w[,i-1])
101: varg2 <- weighted.mean((gamma2.est[,i-1] - meang2)^2, w[,i-1])
102: 
103: mug2<- a * gamma2.est[,i-1] + (1 - a) * meang2
104: sigma2g2<- (1 - a^2) * varg2
105: ### v1 and v2
106: meanv1<- weighted.mean(l.v1[,i-1], w[,i-1])
107: varv1<- weighted.mean((l.v1[,i-1] - meanv1)^2, w[,i-1])
108: meanv2<- weighted.mean(l.v2[,i-1], w[,i-1])
109: varv2<- weighted.mean((l.v2[,i-1] - meanv2)^2, w[,i-1])
110: 
111: muv1<- a * l.v1[,i-1] + meanv1 * (1 - a)
112: sigma2v1 <- (1 - a^2) * varv1
113: muv2<- a * l.v2[,i-1] + meanv2 * (1 - a)
114: sigma2v2 <- (1 - a^2) * varv2
115: ###sigma1 and sigma2
116: meansigma1<- weighted.mean(l.sigma1[,i-1], w[,i-1])
117: varsigma1<- weighted.mean((l.sigma1[,i-1] - meansigma1)^2, w[,i-1])
118: meansigma2<- weighted.mean(l.sigma2[,i-1], w[,i-1])
119: varsigma2<- weighted.mean((l.sigma2[,i-1] - meansigma2)^2, w[,i-1])
120: 
121: musigma1<- a * l.sigma1[,i-1] + meansigma1 * (1 - a)
122: sigma2sigma1 <- (1 - a^2) * varsigma1
123: musigma2<- a * l.sigma2[,i-1] + meansigma2 * (1 - a)
124: sigma2sigma2 <- (1 - a^2) * varsigma2
125: ### p.hat
126: meanp <- weighted.mean(p.est[,i-1], w[,i-1])
127: varp <- weighted.mean((p.est[,i-1] - meanp)^2, w[,i-1])
128: 
129: mup<- a * p.est[,i-1] + (1 - a) * meanp
130: sigma2p<- (1 - a^2) * varp
131: alphap <- (((1 - mup)*mup^2)/sigma2p) - mup
132: betap <- (((1 - mup)^2*mup)/sigma2p) -(1- mup)
133: ########    Here we draw auxiliary variable with  the following 

probability:
134: ##   w[,i-1] * dzskellam(z[i], lambda1.hat, lambda2.hat, p.hat)
135: #
136: # Draw auxilary indicator variable
137: #
138: const.est <- mup#-log(1-p)
139: lambda1.hat<- exp(mug1 * X1[,i-1] + const.est + cov1.hat)
140: lambda2.hat<- exp(mug2 * X2[,i-1] + const.est + cov2.hat)
141: p.hat<- exp(mup)/(1 + exp(mup))
142: prob1<- w[,i-1] * dzskellam(z[i], lambda1.hat, lambda2.hat, p.hat)
143: aux<-  sample(1:N, N, replace = TRUE, prob = prob1)
144: 
145: #
146: #
147: ## Draw the samples from proposal densities for each of the model 

parameters:
148: #
149: cov1.est[,i]<- rnorm(N, mucov1[aux], sqrt(sigma2cov1))
150: cov2.est[,i]<- rnorm(N, mucov2[aux], sqrt(sigma2cov2))
151: p.est[,i]<- rnorm(N, mup[aux], sqrt(sigma2p))
152: l.sigma1[,i] <- rnorm(N, musigma1[aux], sqrt(sigma2sigma1))
153: l.sigma2[,i] <- rnorm(N, musigma2[aux], sqrt(sigma2sigma2))
154: l.v1[,i] <- rnorm(N, muv1[aux], sqrt(sigma2v1))
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155: l.v2[,i] <- rnorm(N, muv2[aux], sqrt(sigma2v2))
156: gamma1.est[,i] <- rnorm(N, mug1[aux], sqrt(sigma2g1))
157: gamma2.est[,i] <- rnorm(N, mug2[aux], sqrt(sigma2g2))
158: const.new<- p.est[,i]
159: var.est1<- exp(l.sigma1[,i]) + exp(l.v1[,i])*( X1[aux,i-1])^2
160: var.est2<- exp(l.sigma2[,i]) + exp(l.v2[,i])*( X2[aux,i-1])^2
161: X1[,i]<- rnorm(N, mean = gamma1.est[,i] * X1[aux,i-1], sd = sqrt(var.est1))
162: X2[,i]<- rnorm(N, mean = gamma2.est[,i] * X2[aux,i-1], sd = sqrt(var.est2))
163: coef1.new<- cov1.est[,i] * log.time[i]
164: coef2.new<- cov2.est[,i] * log.time[i]
165: lambda1.h<- exp(X1[,i] + const.new + coef1.new)
166: lambda2.h<- exp(X2[,i] + const.new + coef2.new)
167: p.hat2<- exp(p.est[,i])/(1 + exp(p.est[,i]))
168: ###
169: # Calculate the un-normalised weight
170: w[,i]<- exp(dzskellam(z[i], lambda1.h, lambda2.h, p.hat2 , log = TRUE) -
171: dzskellam(z[i], lambda1.hat[aux], lambda2.hat[aux], p.hat2, log = TRUE))
172: #
173: w[,i] <- w[,i] / sum(w[,i])     ## Normalise the weight
174: #
175: ## effective sample
176: #
177: N.eff<- 1/crossprod(w[,i])
178: 
179: ess[i]<- N.eff
180: 
181: if(N.eff < N0) {
182: resample<- sample(1:N, N, replace = TRUE, prob  = w[,i])
183: X1[,(aa):i]<- X1[resample, (aa):i]
184: X2[,(aa):i]<- X2[resample, (aa):i]
185: gamma1.est[,(aa):i]<- gamma1.est[resample,(aa):i]
186: gamma2.est[,(aa):i]<- gamma2.est[resample,(aa):i]
187: l.sigma1[,(aa):i]<- l.sigma1[resample,(aa):i]
188: l.sigma2[,(aa):i]<- l.sigma2[resample,(aa):i]
189: l.v1[,(aa):i]<- l.v1[resample,(aa):i]
190: l.v2[,(aa):i]<- l.v2[resample,(aa):i]
191: p.est[,(aa):i]<- p.est[resample,(aa):i]
192: cov1.est[,(aa):i]<- cov1.est[resample,(aa):i]
193: cov2.est[,(aa):i]<- cov2.est[resample,(aa):i]
194: w[,i]<- rep(1/N, N)
195: 
196: }
197: print(c(i, ess[i]))
198: ### one-step ahead prediction
199: const.n<- p.est[,i]
200: cov1.n<- cov1.est[,i] *  log.time[i+1]
201: cov2.n<- cov2.est[,i] *  log.time[i+1]
202: lambda1.new<- exp(gamma1.est[,i] *X1[,i] + const.n + cov1.n)
203: lambda2.new<- exp(gamma2.est[,i] *X2[,i] + const.n + cov2.n)
204: p.new<- exp(p.est[,i])/(1 + exp(p.est[,i]))
205: Preds[,i]<- ZPD.sims(lambda1.new, lambda2.new, p.new)
206: }
207: ### After k = 200 time points, summarize the latest sampled values  and 

start the 
208: ## algorithm again
209: X1.mean  <- weighted.mean(X1[,i-2], w[,i-2])
210: X2.mean  <- weighted.mean(X2[,i-2], w[,i-2])
211: g1.m       <- weighted.mean(gamma1.est[,i-2], w[,i-2])
212: g2.m       <- weighted.mean(gamma2.est[,i-2], w[,i-2])
213: g1.s      <- sqrt(wt.var(gamma1.est[,i-2], w[,i-2]))
214: g2.s      <- sqrt(wt.var(gamma2.est[,i-2], w[,i-2]))
215: g1.sd  <- g1.s
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216: g2.sd  <- g2.s
217: g1.mean  <-  g1.m
218: g2.mean  <-  g2.m
219: cov1.mean       <- weighted.mean(cov1.est[,i-2], w[,i-2])
220: cov2.mean       <- weighted.mean(cov2.est[,i-2], w[,i-2])
221: cov1.sd      <- sqrt(wt.var(cov1.est[,i-2], w[,i-2]))
222: cov2.sd      <- sqrt(wt.var(cov2.est[,i-2], w[,i-2]))
223: v1.mean  <- weighted.mean(l.v1[,i-2], w[,i-2])
224: v2.mean  <- weighted.mean(l.v2[,i-2], w[,i-2])
225: s1.mean  <- weighted.mean(l.sigma1[,i-2], w[,i-2])
226: s2.mean  <- weighted.mean(l.sigma2[,i-2], w[,i-2])
227: p.mean  <- weighted.mean(p.est[,i-2], w[,i-2])
228: p.sd  <- sqrt(wt.var(p.est[,i-2], w[,i-2]))
229: X1.sd  <- sqrt(wt.var(X1[,i-2], w[,i-2]))
230: X2.sd  <- sqrt(wt.var(X2[,i-2], w[,i-2]))
231: v1.sd  <- sqrt(wt.var(l.v1[,i-2], w[,i-2]))
232: v2.sd  <- sqrt(wt.var(l.v2[,i-2], w[,i-2]))
233: s1.sd  <- sqrt(wt.var(l.sigma1[,i-2], w[,i-2]))
234: s2.sd  <- sqrt(wt.var(l.sigma2[,i-2], w[,i-2]))
235: }
236: 

R.Code 7: R codes for the LWF algorithm for the DZPD model with a non-linear state
equation and covariate.
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1: ## Generalised Poisson distribution: following codes evaluate the density 
of the

2: # GP distribution and draw random sample from it.
3: ## Version 4, modified on 23/03/2011
4: ##
5: G.p<- function(x, lambda, theta){
6: (lambda * (lambda + x * theta)^(x-1) * exp(-lambda - x * theta))/

factorial(x)
7: }
8: ### Function "rgpoisson" draws samples from the GP distribution, with the
9: ##  following arguments:

10: ## "n" the size of the random verctor, "lambda" and "theta" parameters of 
the

11: ## GP distribution
12: rgpoisson <- function(n , lambda, theta){
13:         rands<- rep(0, n)
14:         lambda <- lambda
15:         theta <- theta
16:         for( i in 1:n){
17:               N<- 0
18:               p<- G.p(N, lambda, theta)
19:               F.p <- p
20:               U<- runif(1, 0, 1)
21:               while(U > F.p){
22:                       N<- N+1
23:                       p<- G.p(N, lambda, theta)
24:                       F.p <- F.p + p
25:                 }
26:              rands[i]<- N
27:           }
28:         return(rands)
29:   }

R.Code 8: R codes for evaluating the density of the GP distribution and draw random
samples from it.
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1: ## Generalised Poisson difference distribution (GPD)
2: #  Version 4, modified on 24/07/2011, modified for thesis on 30/11/2011
3: #
4: ## The following function evaluates the GPD density :
5: ##  at point "d" over an infinit range of "aa"
6: ## with parameters of lambda1 , theta1 and lambda2, theta2
7: d.GPD1<- function(d, aa, lambda1, lambda2, theta1, theta2, log = FALSE){
8: ## Note for negative values of "d", "y" cannot start from 0.
9: # Thus we set the following condition.

10:                 ifelse(d < 0, y <- abs(d):aa[length(aa)], y<-aa)
11: ## The density of the GPD distribution at point "d" is calculated in the
12: ## following four parts
13:                 part1<- (lambda1 *(lambda1 + (y+d) * theta1)^(y + d -

1))/gamma(y+d+1)
14:                 part2<- (lambda2 * (lambda2 + y * theta2)^(y-1))/ gamma(y+1)
15:                 part3<-  exp(-y * (theta1 + theta2))
16:                 Total<- sum(part1 * part2 * part3) * exp(-lambda1 - lambda2

- d *  theta1 )
17: ## Resturn the value of GPD density
18:                 ifelse(log = TRUE, GPD<- log( Total),
19:                 GPD<- Total )
20:                 return(GPD)
21:          }
22:          
23: ## A function for evaluating the GPD density over a range of "d"
24: # Input "d" as a vector e.g. d<- -10:10
25: GPD.d<- function(d, aa, lambda1, lambda2, theta1, theta2, log = FALSE){
26: ## let length(d) = nd
27:       nd<- length(d)
28:       f.ds<- rep(0,nd)
29:       for(i in 1:nd){

FALSE)
31:       }
32:       return(f.ds)
33:       }

30:         f.ds[i]<- d.GPD1( d[i], aa, lambda1, lambda2, theta1, theta2, log =

R.Code 9: R codes for evaluating the density of the GPD distribution.
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Glossary of terms

This glossary of terms was constructed using definitions from O’Hara (2006), Tsay

(2005), Hull (2008) and Pass et al. (2005).

Ask Price The price that a dealer is offering to sell an asset.

Bid Price The price that a dealer is prepared to pay for an asset.

Bid-Ask Spread The amount by which the ask price exceeds the bid price.

Futures Contract A contract that obliges the holder to buy or sell an asset at a predeter-

mined delivery price during a specified future time period. The contract is settled

daily.

Futures Price The delivery price currently applicable to a futures contract.

Hedge Fund A pool of capital which fund managers (for example, international banks)

used to speculate on the foreign exchanges, stock and commodity markets. Fund

managers aim to make windfall profit by “correctly” guessing future price move-

ments. Their activities, which become increasingly global and largely unsuper-

vised by national regulatory frameworks, have on occasion, served to destabilise

the financial markets.

Hedge A trade design to reduce risk.

Index Futures A futures contract on a stock index or other index.

Market Liquidity The ability to buy or sell significant quantities of a security quickly,

anonymously, and with little price impact.
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Market Maker A trader who is willing to quote both bid and offer prices for an asset.

Market Microstructure The study of the process and outcomes of exchanging assets

under explicit trading rules.

Maturity Date The end of the life of a contract.

Open Outcry System of trading where traders meet on the floor of the exchange.

Option The right to buy or sell an asset.

Tick The minimum change in price that a security can have, either up or down. Price

changes in high-frequency data only happen at multiple of tick.
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