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ABSTRACT 

Name: Javier Abanades Tercero 

Title: Impacts of wave energy exploitation 

Wave energy has a great potential in many coastal areas thanks to a number of 

advantages: the abundant resource, the highest energy density of all renewables, the 

greater availability factors than e.g. wind or solar energy; and the low environmental 

and particularly visual impact. In addition, a novel advantage will be investigated in this 

work: the possibility of a synergetic use for carbon-free energy production and coastal 

protection.  

In this context, wave energy can contribute not only to decarbonising the energy 

supply and reducing greenhouse emissions, but also to mitigating coastal erosion. In 

effect, wave farms will be deployed nearshore to generate electricity from wave energy, 

and therefore the leeward coast will be exposed to a milder wave climate, which can 

potentially mitigate coastal erosion.  

This thesis aims to determine the effectiveness of wave farms for combating coastal 

erosion by means of a suite of state-of-the-art process-based numerical models that are 

applied in several case studies (Perranporth Beach,UK; and Xago Beach, Spain) and at 

different time scales (from the short-term to the long-term). A wave propagation model, 

SWAN, is used to establish the effects of the wave farm on the wave conditions. The 

outcomes of SWAN will be coupled to XBeach, a costal processes model that is applied 

to analyse the effects of the milder wave conditions on the coast. In addition to these 

models, empirical classifications and analytical solutions are used as well to characterise 

the alteration of the beach morphology due to the presence of a wave farm.  
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The analysis of the wave farm impacts on the wave conditions and the beach 

morphology will be carried out through a set of ad hoc impact indicators. Parameters 

such as the reduction in the significant wave height, the performance of the wave farm, 

the effects on the seabed level and the erosion in the beach face area are defined to 

characterise these impacts. Moreover, the role played by the key design parameters of 

wave farms, e.g. farm-to-coast distance or layout, is also examined.  

The results from this analysis demonstrate that wave farms, in addition to their main 

purpose of generating carbon-free energy, are capable of reducing erosion at the coast. 

Storm-induced erosion is significantly reduced due to the presence of wave farms in the 

areas most at risk from this phenomenon. However, the effects of wave farms on the 

coast do not lend themselves to general statements, for they will depend on the wave 

farm design (WEC type, layout and farm-to-coast distance) and the characteristics of the 

area in question, as shown in this document for Perranporth and Xago.  

In summary, this synergy will improve the economic viability of wave farm projects 

through savings in conventional coastal defence measures, thereby fostering the 

development of this nascent renewable, reducing greenhouse gas emission and 

converging towards a more sustainable energy model. Thus, wave energy contributes to 

mitigating climate change by two means, one acting on the cause, the other on the 

effect: (i) by bringing down carbon emissions (cause) through its production of 

renewable energy, and (ii) by reducing coastal erosion (effect). 
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1. INTRODUCTION 

This chapter deals with the foundation for the thesis and the work that is presented 

in the following sections. The framework of the thesis is introduced starting with the 

motivation; following this, the overarching aims and objectives are presented defining 

the main lines of the research; and finally, a summary of key research and relevant 

literature is provided, highlighting the principal areas relevant to the present study. 

1.1 MOTIVATION 

The adverse effects brought about by the world’s reliance on fossil fuels are well 

known: (i) greenhouse gas emissions that exacerbate climate change, (ii) diminished 

reserves of carbon fuels, and (iii) geopolitical wrangling over the control of the oil and 

gas reserves, which has led to many conflicts and all-out wars in the last decades. In 

addition, the variability in oil and gas prices has a deleterious effect on the global 

economy. These arguments, and the international treaties and protocols signed to foster 

the efforts against climate change, call for the development of renewable energy 

sources. 

Among renewable energies, the potential for development of Marine Renewable 

Energy
1
 (MRE) is widely recognised (Bahaj, 2011; Iglesias & Carballo, 2009), so much 

so that it is poised to become a fundamental pillar in the EU energy policy, cf. the 

European Strategic Energy Technology Plan (SET-Plan) described in European 

Commission (2007). In fact, the MRE industry has established for ocean energy (wave 

and tidal) and offshore wind a target of installed capacity for 2050 of 188 GW and 460 

GW respectively (EU-OEA, 2010; Jeffrey & Sedgwick, 2011; Moccia et al., 2011), 

which are ambitious goals given that the figures for 2020 are 3.6 GW and 40 GW 

                                                 
1 Marine renewable energies include both ocean energy and offshore wind energy. Ocean energy comprises essentially wave 

and tidal energy, but also Ocean Thermal Energy Conversion (OTEC) and salinity gradient energy.  
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(EWEA et al., 2012). In the UK’s perspective, the Low Carbon Innovation Co-

Ordination Group (LCICG) signalled that wave energy could make a meaningful 

contribution to the energy mix from around 2025, with the potential to deliver over 50 

TWh per year, i.e. around 10% of the UKs forecast electricity needs in 2050 (LCICG, 

2012).  

Furthermore, wave energy exploitation presents a number of advantages in relation 

to other renewable energies (Drew, Plummer & Sahinkaya, 2009a): 

1. The resource: Sea waves offer the highest average energy density among 

renewable energy sources (Clément et al., 2002a) and the resource is very 

abundant in many coastal areas.  

2. Availability: Wave can generate power up to 90 % of the time, compared to 

∼20–30 % for wind and solar devices (Pelc & Fujita, 2002).   

3. No losses in depth water: Waves are propagated from large distance without 

any losses in depth water. 

4. The environmental impact: A wave farm operating nearshore causes a 

limited negative environmental impact (Halcrow, 2006). In general, offshore 

devices have the lowest environmental impact. The impact on the 

biodiversity is quite low, and just the species that reside near the surface 

could be slightly affected by the deployment of wave farms. Although the 

main advantage in this aspect is the negligible visual impact as wave farms 

are deployed far away from the coastline (generally between 5 and 10 km), 

especially in comparison with offshore wind parks.  

5. Seasonality: Wave energy resource varies according to the electricity 

demand in temperate climates.  
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However, and despite of all the advantages of wave energy, the viability of wave 

energy projects needs to be enhanced in order to achieve the aforementioned goals. For 

this purpose, it is necessary to reduce the Levelised Cost of Energy (LCoE), which 

defines a unit cost for electricity by dividing the total energy production by the costs 

involved in developing projects. Wave energy’s LCoE may be expected to fall in the 

years to come given the relatively immature stage of the technology. The process 

whereby the development of an incipient technology, improvements by practice and 

economies of scale lead to savings is exemplified by the so-called learning curve. The 

greatest opportunities for cost reduction in wave energy as a stand-alone energy source 

at present are related to the installation and construction processes (Astariz & Iglesias, 

2015a) and the optimisation of the design. 

In addition to the previous options, two “strategic” approaches for reducing the cost 

are: (i) combining wave energy with other forms of marine renewable – notably, 

offshore wind (Astariz et al., 2015a; Astariz et al., 2015b; Astariz et al., 2015c; Perez 

Collazo et al., 2014; Stoutenburg, Jenkins & Jacobson, 2010), and (ii) using wave farms 

for coastal defence in synergy with their main function of generating carbon-free energy 

(Abanades, Greaves & Iglesias, 2014a; 2014b; 2015b; 2015a).  

Regarding the former, the author of this thesis has collaborated in the investigation 

of the advantages that combining wave and offshore wind energy present, which are 

detailed in Astariz et al. (2015a); (2015b; 2015c). In sum, combined wave-offshore 

wind energy brings down costs through shared electrical infrastructure (cables, 

substation, grid connection), foundations and substructures (hybrid systems) or 

moorings, and maintenance (crews, boats and other equipment). These items represent a 

substantial portion of the total cost, and therefore sharing them with an offshore wind 

farm would be effective in improving the economic viability of wave energy. Additional 
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advantages of combined offshore wind and wave energy are: (i) optimised use of the 

scarce marine space, with an enhanced energy yield per unit area; (ii) smoother power 

output; and (iii) a less energetic wave climate within the offshore wind farm, which will 

reduce the loads on foundations and, importantly, increase the weather windows for 

maintenance, which will in turn reduce downtime (Astariz et al., 2015b; Pérez-Collazo, 

Greaves & Iglesias, 2015).  

Regarding the latter, determining the effectiveness of wave farms to protect the 

coast is the main objective of this document. As waves propagate through the Wave 

Energy Converters (WECs) that form a wave farm, the wave height is reduced. Then, 

the coast in the lee of the farm is exposed to a milder wave climate, which in turn may 

result in a modification of the coastal processes that occur nearshore. Whether this 

modification can lead to a reduction of the erosion needs to be investigated given that 

the potential application of wave farms as a complement, or in certain locations as an 

alternative, to coastal defence presents numerous advantages, not least in the current 

transition environment.  

The conventional approach to defending the coast against flooding and erosion 

involves coastal structures – this is the so-called “hard engineering” approach. The 

downsides of this approach are well known, particularly in the context of transition 

coasts, owing to the inability of structures to adapt to sea-level rise. Indeed, there have 

been recently many cases of coastal structures failing to cope with the increased 

pressures of climate change (Castelle et al., 2015; Kendon & McCarthy, 2015; Senechal 

et al., 2015; Sibley, Cox & Titley, 2015; Slingo et al., 2014; Spencer et al., 2015). These 

examples of failures of coastal structures – due to either structural collapse or excessive 

overtopping – expose the dramatic consequences of the inadequacy of many of the 

existing structures in the current transition scenario. The conventional approach to 
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solving this problem entails upgrading the existing structures or building new ones, in 

both cases at a large cost. 

On these grounds, nearshore wave farms present three main advantages relative to 

conventional coastal structures. First, by providing renewable, carbon-free energy, wave 

farms contribute to decarbonising the energy supply and thereby combatting the man-

made causes of climate change. Second, the environmental impact of wave farms on the 

littoral – the single most sensitive environment in the planet – is considerably lower 

than that of coastal structures. Last, but not least, wave farms consisting of floating 

WECs (e.g. WaveCat, WaveDragon, DEXA – see Section 2.3.2 WEC technologies) 

adapt naturally to sea level rise, and therefore can cope well with the main impact on the 

littoral of climate change.  

Thus, rather than resorting to the conventional approach (more structures) to fix 

obsolete, underperforming structures, deploying wave farms to generate carbon-free 

energy as their main purpose and, in synergy with it, defending the coastline against 

erosion and flooding is a new alternative that warrants consideration. Incidentally, their 

application to coastal defence would enhance their economic viability through the 

savings achieved in conventional defence schemes. 

This alternative to conventional coastal defence schemes (based on structures such 

as groynes, detached breakwaters, etc.) is in fact a new paradigm to mitigating climate 

change and confronting two global challenges: the environmental repercussions of the 

current energy model and the risks to properties and infrastructure posed by coastal 

erosion. As explained, these two challenges are connected, for climate change is set to 

exacerbate coastal erosion through its effects of sea level rise and increased storminess.  
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1.2 AIMS AND OBJECTIVES 

The advent of wave energy warrants the investigation of using wave farms as an 

alternative to coastal defence, not least in this climate change scenario. In this sense, the 

overarching objective of this document is to analyse the effects of wave farms on the 

coast, and subsequently, to determine their effectiveness as part of a coastal protection 

scheme.  

The fundamental objectives of this thesis are:  

 Determination of the impacts of wave farms on the nearshore wave 

conditions. The manner in which the extraction of wave energy by the 

WECs that form the wave farm affects the wave patterns in the lee of the 

farm will be investigated. 

 Quantification of the wave farm impacts on the beach profile (1DH or 2D) 

and on the beach morphology (2DH or 3D) based on the modified wave 

conditions in the lee of the farm.  

 Evaluation of the modal state of the beach (e.g. dissipative, reflective and 

intermediate beach) in the presence and in the absence of a wave farm 

operating nearshore.  

 Establishment of the effectiveness of wave farms to protect the coast. In 

view of the results from the points above, the degree of coastal protection 

offered by nearshore wave farms will be determined.  

 Assessment of the effects at different time scales from the short (days) to the 

medium (months). The former allows primary the assessment of storm-

induced erosion, while with the latter the morphological changes in beaches, 

such as profile erosion and accretion; and the modal state of the beach can 

be examined (Cowell & Thom, 1994).  
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 Identification of the role played by the key parameters of the design of wave 

farms, e.g. farm-to-coast distance and layout, in the synergetic application of 

wave farms. 

The novelty of this thesis lies in the quantification of the wave farm effects on the 

beach. For the first time, the response of the beach with a wave farm operating 

nearshore will be analysed through the application of state-of-the-art process-based 

numerical models: a third-generation spectral wave model (SWAN) and a coastal 

process model (XBeach). Thus, this study will answer a fundamental scientific question: 

the response of the coastal environment under different wave conditions, in this case 

associated with the wave energy extraction by wave farms; bearing in mind that coastal 

environments are the most rapidly changing environments in the planet and wave 

energy is their main driving agent. 

For this purpose, two case studies representative of the effects of climate change on 

the coast are considered: Perranporth Beach (UK) and Xago Beach (Spain).  

Perranporth Beach has experienced significant erosion over the last years, not least 

during the harsh winter 2013/14. Indeed, the Shoreline Management Plan has identified 

the area as subject to significant erosion risk, and a number of options are being 

assessed to confront this challenge (CISCAG, 2011). For its part, Xago has also 

experienced increased erosion on its dune system – evidenced by the recession of the 

dune toe, between 3.1 m and 11.5 m – under the heightened storminess of recent years 

(Flor-Blanco, Flor & Pando, 2013; Flor, Flor-Blanco & Flores-Soriano, 2015). In view 

of these risks, these areas constitute a prime location for using such wave farms for 

coastal protection. 

A set of ad hoc indicators is developed in the frame of this work to quantify the 

effects of wave energy absorption by the farm on the wave conditions and the coastal 
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morphology and, subsequently, the degree of protection afforded by the wave farm in 

the different scenarios.  

1.3 THESIS STRUCTURE 

The structure of this thesis is as follows. First, in the following section the main 

aspects of wave energy and its current state-of-the-art will be included in order to 

identify the gaps in the knowledge and select the best methods to accomplish the 

objectives of this thesis. On this basis, the methodology will be presented in Section 3, 

which will be consisted of: (i) a description of the numerical models applied and their 

advantages against other state-of-the-art models; and (ii) the development of a set of ad 

hoc indicators to quantify the impacts of wave farms on the wave conditions and the 

beach morphology. Following this, the main characteristics of the two case studies 

considered: Perranporth and Xago Beach will be described in Section 4. The results of 

the wave farm impacts on the coast will be described in the following sections: in 

Section 5 the evolution of the beach profile at Perranporth Beach (2D) in the medium 

term, in Section 6 the response of the beach (3D) at Perranporth and Xago Beach in the 

short term, the role played at Perranporth by the farm-to-coast distance and the layout 

will be analysed in Section 7 and 8, respectively; and finally the evolution of the modal 

state of a beach at Perranporth will be studied in Section 9. To summarise and conclude, 

in Section 10 the main results will be synthesised, the future directions for wave energy 

outlined and conclusions drawn as to the effectiveness of wave power to combat climate 

change, with a focus on the mitigation of its effects on the double front of its roots 

(greenhouse gas emissions) and its consequences (sea-level rise and increased 

storminess).
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2. STATE-OF-THE ART 

Marine Renewable Energy (MRE) can substantially contribute to increasing the 

proportion of renewables in the energy mix, and subsequently, reducing the carbon 

footprint. The great potential of marine renewable energies has been addressed in 

different studies (Bahaj, 2011; Clément et al., 2002a; Pelc & Fujita, 2002; Thorpe, 

1999; Twidell, 2005) and lies in the large variety of methods to harness the resource, 

including (i) tidal barrage power, using potential energy (head) difference; (ii) tidal 

stream power, using the kinetic energy in tidal flows; (iii) wave power, which captures 

the energy in wave motion; (iv) ocean circulation; (v) salinity or (vi) thermal gradients. 

Among them, wave energy is one of the most promising renewable since it presents 

a large number of advantages: the abundance and high density of the resource in many 

coastal areas, leading to high availability values (approx. 90% vs. 30% in the case of 

wind or solar energy) and, importantly, the low environmental impacts and, in 

particular, the visual impact of wave energy converters, not least in the case of offshore 

floating WECs. However, on the downside, the levelised cost of wave energy 

conversion is high. On this basis, this thesis will analyse the effectiveness of applying 

wave farms for protecting the coast in synergy with their primary role, generating 

electricity; which would enhance the economic viability of wave energy. The following 

sections will focus on the main aspects of wave energy, which will be of relevance for 

the aim of this work. 

2.1 FUNDAMENTALS OF WAVE ENERGY  

In the following ocean waves and the wave resource are presented, followed by a 

brief summary of their mathematical treatment. 
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2.1.1 WAVES AND THE WAVE RESOURCE 

The process of wind wave generation, whereby energy is transferred from the wind 

to the sea surface, is controlled by the wind speed under a quadratic relationship – 

meaning that, although stricto sensu any wind is capable of generating waves, in 

practice it is only the strong (storm) winds that generate wave fields of relevant power 

for energy conversion. This occurs primarily in the high seas, far from the coast. The 

waves thus generated travel over thousands of miles of open ocean in an extraordinarily 

efficient process of energy transmission – with very small energy losses – until they 

eventually reach a coastline. In approaching the shoreline waves leave deep water, 

propagating over intermediate and, subsequently, shallow water. Whereas waves in 

deep water do not interact with the seabed, in intermediate water they start interacting 

(“feeling”) the seabed, and this interaction intensifies as water depths decrease, 

consisting of two fundamental processes, refraction and shoaling, which modify wave 

properties (Holthuijsen, 2007).  

Ultimately, waves reach the shoreline, where they are extinguished, being their 

energy in part dissipated through breaking and in part reflected back. In areas sheltered 

by natural or man-made structures (headlands or breakwaters and groynes, 

respectively), another process is to be added to the former: diffraction. As a result of 

these nearshore processes, wave patterns in intermediate and shallow water are 

generally more complex than offshore – all the more so where the bottom contours are 

irregular. Indeed, an uneven bathymetry typically leads to wave energy concentrations 

in certain areas (Figure 2.1) – the so-called nearshore hotspots  (Iglesias & Carballo, 

2010a), and areas where the resource is comparatively very weak (e.g. bays). The 

typical spatial extent of nearshore hotspots is O(10
2
 – 10

3
 m), and therefore a detailed 

study (usually involving numerical modelling) must be carried out to determine the 
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optimum locations for a wave farm (Carballo & Iglesias, 2012; Veigas, López & 

Iglesias, 2014). 

 

Figure 2.1 Annual mean wave energy concentration of NW Spain (Iglesias & Carballo, 2009). 

The complexity of the wave energy resource stems not only from its spatial 

variability but also from its temporal fluctuations, which occur at different time scales 

(Carballo et al., 2015). At the shortest (wave) time scale, an individual wave is generally 

different from the next, only some seconds later; at longer time scales (monthly, 

seasonal) the wave resource will typically differ markedly, with values in winter bearing 

little resemblance to those in summer (Figure 2.2); at even longer time scales 

(hyperannual) oscillations (Iglesias & Abanades, 2014; Neill et al., 2009; Neill et al., 

2014) such as ENSO (El Niño-Southern Oscillation) or NAO (North-Atlantic 

Oscillation). This remarks the importance of studying the wave farm impacts not just in 

the short-term scale (days), but also in longer time scales, such as medium (months) to 

large (years). In this sense this document will consider time scales ranged from hours 

(24 hours in the analysis of frequent storms – Section 7 and 8), to days (7 days in the 

study of storm clustering – Section 6), to months (6 months to analyse the medium-term 
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impacts – Section 5), to a year (to analyse the evolution of the modal state of the beach 

– Section 9). 

 

Figure 2.2 Seasonal wave height roses at La Isla Bonita in the Island of La Palma (Iglesias & Carballo, 2010c) 

[Hm0, significant wave height]. 

In view of the variability of the wave resource – spatial and temporal – a 

fundamental requirement for its exploitation is a detailed assessment of this variability 

in the areas or regions of interest. The variability of the wave climate has long been 

investigated for other purposes, including navigation, port and coastal engineering, 

offshore engineering and naval architecture – incidentally, fields in which wave energy 

is a source of concern (of loading, in technical terms) rather than a benefit. For this 

reason, the outcome of previous work, albeit informative, is often insufficient for 

purposes of assessing the wave resource, and an ad hoc characterisation of the wave 

resource is necessary. 
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The areas with realistic potential for the development of wave energy present 

average power values above 20 kWm
–1

, and tend to be located in the Ecuador and high 

latitudes owing to the global atmospheric circulation. Furthermore, the seasonal 

variability of the wave resource is typically lower in the Southern Hemisphere than in 

the Northern. On this basis, many coastal areas of South America, Africa and Australia 

would be particularly attractive for wave energy exploitation – with the downside of 

their distance to the energy consumption centres. The characterisation of the wave 

resource has been undertaken recently in a number of areas with potential for the 

deployment of wave farms, and will be described in more detailed in Section 2.2 Wave 

energy resource characterisation. 

2.1.2 MATHEMATICAL ASPECTS OF OCEAN WAVES 

Ocean waves consist of a superposition of a very large number of individual 

sinusoidal (harmonic) waves, each with its own amplitude, frequency and direction. 

This superposition is expressed mathematically as a Fourier series, which can represent 

any sea state (Holthuijsen, 2007). The Fourier series, a time domain concept, has its 

counterpart in the frequency domain in the wave energy density spectrum, usually 

referred to for brevity as the wave spectrum, which quantifies the distribution of wave 

energy over the different frequencies. Often, the directional information is contained in 

the spectrum, which is then a directional spectrum. 

On the basis of the directional wave energy spectrum it is possible to compute the 

wave parameters of interest, some of which are presented below (Dalrymple & Dean, 

1991).  

If the directional wave energy density is denoted by S(f,), with f the wave 

frequency, the spectral moments may be defined as 
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The significant wave height is then given by 
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and the peak wave period may be computed as the inverse of the frequency at the 

spectral peak (fp), 
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The mean wave direction may be obtained from the directional wave energy 

spectrum through 
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The wave power, or wave energy flux, is given by 

 

2

0 0

( , ) ( , )gJ g c f h S f df d



  


     (2.5) 

where  is the seawater density, g is the gravitational acceleration, and cg is the 

group celerity, i.e. the velocity at which wave energy propagates, which is a function of 

the wave frequency and water depth. Seawater density depends on salinity and 

temperature, which vary in time and space; an average value was taken for this work,  

= 1025 kg/m
3
.  

Naturally the actual power output will depend on the converter efficiency, equation 

(1.6) yields the wave power per unit width of wave front; if a certain wave energy 
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converter (WEC) captures the energy of a width b of wave front, the corresponding 

power is 

 WECP Jb   (2.6) 

In many cases, the detailed shape of the spectrum is unknown, and only some of the 

characteristic wave parameters are given. In this case, the wave power, also known as 

wave energy flux, can be computed from the following approximation: 

  ,  (2.7) 

where  is the water density, g is the acceleration due to gravity, Hs is the 

significant wave height (m) and Tm01 (s
-1

) the wave energy period, defined as  
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m
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m
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Further analysis describing the equations that govern the extraction for specific 

devices can be found in the literature, e.g. Falcão (2010b); however this is not the aim 

of the present study.   

2.2 WAVE ENERGY RESOURCE CHARACTERISATION 

The generation of wave energy resource, as explained in Section 2.1.1 Waves and 

the wave resource, depends directly on wind and indirectly on sun, which characterise 

this resource as stochastic. Then, the characterisation of the resource is essential to 

assess the economic viability of a wave farm at a selected location. Most of the wave 

climate characterisations conducted so far have focussed on extreme conditions 

corresponding to return period of interest for the design of structures, and do not 

comprise the information required for the resource characterisation.  

2
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The lack of onsite wave buoy data limits the assessment of the wave energy 

resource characterisation; however, this shortcoming can be overcome through the 

application of numerical models, ideally calibrated and validated with wave data from 

wave buoys or other sources.  

The offshore wave resource must be properly characterised as a prerequisite, for 

offshore wave conditions are required to prescribe the boundary conditions. The 

offshore wave resource can be described through: (i) deep water wave buoy data, where 

available; (ii) numerical models that account for wave generation and propagation in 

deep water (e.g., WAVEWATCH III); (iii) remote sensing (satellite, HF-RADAR, etc.); 

(iv) hindcast datasets; or a combination of the above. A detailed guide for characterising 

the resource can be found in Iglesias and Abanades (2014), which will not be presented 

in this document as it is out of its scope. The objective of this section is to identify the 

case studies for the analysis of the wave farm impacts where the resource is sufficiently 

large to justify the deployment of a wave farm. 

The resource characterisation has been established at different scales: global, 

continental, national and regional, being the last one recommended for determining the 

best location for a wave farm. Regarding the global scale, Cornett (2008) assessed the 

global wave energy resource during 10 years, from 1997 to 2006, using the hindcast 

generated by the offshore third generation wave model WAVEWATCH-III  (Tolman, 

2002a; Tolman, 2002b), which consists of global and regional nested grids with a 

resolution of approx. 50 km. A weather model Global Forecast System (GFS) is coupled 

to implement wind data. The seasonality and variability of wave resource was 

quantified by means of several indicators, finding January and July with the greatest 

values of resource for the North and South Hemisphere respectively. Although the 

resolution of the study did not allow the identification of the best location for a wave 
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farm, the relevance of this work lies in the first approximation to determine the areas 

with greatest potential for wave energy exploitation (Figure 2.3). 

 

Figure 2.3 Global distribution of annual mean wave power (Cornett, 2008) 

 The greatest resource (over 120 kW/m) was found in the South Hemisphere, but in 

areas remote from the population. The coastal areas with the highest values of resource 

(over 70 kW/m) were the following: (i) the Atlantic façade of Europe, (ii) the Patagonia 

Coast (south of Chile); and (iii) the south of Australia Coast and New Zealand. While a 

significant proportion of the population live near the Atlantic Coast in Europe, the 

population density of the other two areas is very low, particularly in the Patagonia, 

which is practically uninhabited.  To a less extent, with a mean value of the annual 

resource between 40-70 kW/m, the areas of South Africa and North Pacific Coast 

(United States and Canada) could be included.  

According to these results and the population of the above areas, the Atlantic façade 

of Europe constitutes a prime area for wave energy exploitation. This has been 

corroborated by a number of studies focussed on the resource characterisation in 

Europe, which are described in the following paragraphs.  
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As regards the European scale, Pontes et al. (1996) presented WERATLAS (Wave 

Energy Resource Atlas), which is a user-friendly software that contains wave climate 

information of offshore locations in the North-Eastern Atlantic Ocean and the North, 

Norwegian, Barents and Mediterranean Sea. These data were extracted from the 

numerical wind-wave WAM model (Günther, Hasselmann & Janssen, 1992) in 

conjunction with the European Centre for Medium-Range Weather Forecast (ECMWF). 

This large area is divided into 5 smaller regions and consists of information recorded at 

85 locations. The atlas results are in line with the results presented above for the global 

assessment, highlighting the predictions for the Atlantic Ocean façade.  

 

Figure 2.4 ONDATLAS in the Portuguese coast showing the mean winter resource and the summer resource 

(Pontes, Aguiar & Pires, 2005) 

In a national scale, the ONDATLAS is a detailed nearshore wave energy atlas for 

Portugal (Pontes, Aguiar & Pires, 2005), which followed the same approach applied in 

WERATLAS, but in this case studying the nearshore area in Portugal. Figure 2.4 shows 

the seasonal variability of the wave resource along the coast, remarking the resource in 

the North Coast of Portugal. In the case of UK, ABPmer (2008) produced an atlas for 
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the characterisation of all renewable energies in UK (wave, wind and tidal). The wave 

energy resource atlas was conducted applying the UK Waters Wave Model with a 

resolution of 12 km and a Global Wave Model with a resolution of 60 km. These 2
nd

 

generation models are valid offshore since they are not able to calculate the coastal 

processes influenced by the bottom friction. Hindcast wave data were implemented in 

the model to provide wave datasets (and associated analysis) of up to 30 years temporal 

length along the UK coast.  

 

Figure 2.5 Annual mean wave power in the UK (ABPmer, 2008) 

Figure 2.5 shows the annual mean wave power considering the contributions of the 

wind-wave and swell components. The wave energy resource was found to be of 

relevance in two main areas (Neill et al., 2014; Reeve et al., 2011a; Smith, Pearce & 

Millar, 2012): Orkney (N Scotland) and Cornwall (SW England). In the former, 

numerous tests of marine renewable energies (both tidal and wave) have been conducted 

by the European Marine Energy Centre (EMEC). In the latter, the Wave Hub, a testing 
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facility for wave, tidal and offshore wind technologies, was installed and presents the 

advantage of being closer to a more populated area. 

Finally, the characterisation of the resource at regional scales was generally carried 

out using finer resolutions. For this purpose, spectral wave models, e.g. in Iglesias and 

Carballo (2010c) and Rusu and Guedes Soares (2012), and less frequently Boussinesq-

type wave models, e.g. in Vicinanza, Contestabile and Ferrante (2013), are generally 

applied in lieu of the hindcast models (WAM, WWWIII, etc.) that were used in the 

global, continental and national scales. A review of the different numerical models to 

study wave energy will be presented in Section 3.  

These regional studies were conducted worldwide, from areas in the Pacific Coast 

(Lenee-Bluhm, Paasch & Özkan-Haller, 2011; Stopa, Cheung & Chen, 2011), to Islands 

in the Atlantic Coast (Gonçalves, Martinho & Guedes Soares, 2014a; Iglesias & 

Carballo, 2011; Veigas & Iglesias, 2013), to sheltered coasts such as the Mediterranean 

and Baltic ones (Bernhoff, Sjöstedt & Leijon, 2006; Liberti, Carillo & Sannino, 2013) to 

the Atlantic Coast in Europe and America (Defne, Haas & Fritz, 2009; Gonçalves, 

Martinho & Guedes Soares, 2014b; Iglesias et al., 2009). Between these areas, it is 

noteworthy to mention the north coast of Spain, which was well characterised from 

Galicia (NW) to the Basque Country (N) by Iglesias and Carballo (2009); (2010b; 

2010a). 

Figure 2.6 shows the wave energy resource in Asturias at two locations. The 

characterisation was carried out using a 44-year data series. The most likely scenarios 

were found around the isoline of 50 kW/m, and the mean annual wave power in these 

nearshore points was found to be over 30 kW/m. This constituted Asturias as a prime 

location for the deployment of a wave farm, as was corroborated by the Asturian 

Institution for Energy Development (Flor-Blanco et al., 2011).  
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Figure 2.6 Combined scatter and energy diagrams in terms of significant wave height (Hm0) and energy period 

(Te) at points 3 and 5 using 44 years of data (1958-2001). The colour scale represents annual wave energy, and 

the numbers the occurrence of the different sea states in hours per year (Iglesias & Carballo, 2010b). 

Finally, several studies focused on determining the optimum location for a wave 

farm. As explained in Section 2.1, during the propagation of the waves to the coast their 

properties change as a result of the bottom friction experiencing refraction and shoaling. 

In the presence of irregular bottoms this interaction increases and results in areas of high 

energy concentration (hot spots – Figure 2.7) and, on the other side, areas of relatively 

low energy (cold spots). The relevance of this concept will be shown alongside this 
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thesis, in particular, in the comparison of the wave energy resource between the two 

case studies analysed – Section 10. 

 

Figure 2.7 Nearshore hot spots off the coast of NW Spain (Iglesias & Carballo, 2009). 

Based on the characterisation of the resource in conjunction with the distance to 

populated areas, the availability of data (both wave and bathymetric), and importantly, 

the erosion threat in the adjacent beaches, two case studies are selected along the 

Atlantic façade of Europe: Perranporth Beach in the SW of England and Xago Beach in 

the N of Spain. Therefore, these locations are primer areas for investigating the 

synergetic application of wave farms: carbon free energy generation and the mitigation 

of the climate change impacts. 

2.3 WAVE ENERGY CONVERSION 

At this time, wave energy is regarded as expensive – which can only be considered 

as natural at this point in time given its early stage of development and the difficulties 

posed by the harsh marine environment. It is clear, however, that for wave energy to 

truly take off, its costs must decrease. Over time it may be expected that, as the 

technology develops and larger investments are made, economies of scale will be 
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achieved, which will eventually lead to reductions in costs, especially related to the 

fabrication and optimisation of WECs.  

The objective of this section is to identify and classify the different technologies to 

harness the wave motion; and based on this technology review, a Wave Energy 

Converter will be selected for the study of the wave farm impacts. At present no single 

technology can be deemed to be the definitive technology. A number of crucial aspects 

– from the energy performance to survivability under storm conditions – require further 

investigation. In addition to the existing technologies, new patents continue to appear. 

This interest in the sector is driven by the fact that the global wave resource is vast, and 

more than sufficient to set wave energy on a par with other renewables such as 

hydropower or wind energy.  

Research and development of wave energy conversion, as many other renewables, 

gained momentum after the oil crisis in the 1973; however, the failure of several 

technologies during their testing resulted in a partial vanishing of the interest. The 

aspects that limited the development of wave energy at the time were (Kerr, 2007): (i) 

the low performance of the devices, (ii) the large electrical losses; and (iii) the lack of 

studies characterising the wave energy resource, which led to the installation of devices 

in areas with energetic resource but remote to the population. Then the high cost for the 

grid connection and the fabrication costs brought about the interruption of the wave 

energy development until the new century.  

In this century, the appearance of new technologies that improved the efficiency 

and feasibility of the devices, a better understanding of the wave resource and the 

reduction of the grid connection costs increased the interest in wave energy. In 2000, 

Islay LIMPET, deployed in Scotland, was the first WEC prototype connected to the 

national grid of United Kingdom. In that decade, the Pelamis device was strongly 
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developed through numerical modelling and laboratory tests under extreme conditions 

to assess its reliability. Between 2004 and 2007, full-scale prototype tests were carried 

out at the European Marine Energy Centre (EMEC) in Scotland. After this testing 

phase, the first wave farm operating nearshore was installed in the northwest coast of 

Portugal at Aguçadoura, although after some problems the wave farm was 

decommissioned. Other projects conducted at different locations with different 

technologies can be seen in Table 2.1. 

Wave Farm Name Country MW Commissioned 

Mutriku Breakwater Wave Plant Spain 0.3 2009 

Agucadoura Wave Farm Portugal 2.25 2008 

Islay Limpet UK 0.5 2000 

Orkney Wave Power Station UK 2.4 2011 

SDE Sea Waves Power Plant Israel 0.04 2009 

Siadar Wave Power Station UK 4 2011 

Table 2.1 List of wave farms, the country, the power installed and the commissioned year (European 

Commission, 2009)  

The following subsection classifies the different WEC technologies according to 

different criteria: (i) installation site, (ii) dimensions relative to the wave length, and (iii) 

principle of operation. The latter is arguably the most usual, and will be developed in 

more detail. After, a review of the most relevant technologies will be presented in order 

to select the most appropriate WEC for the analysis of the wave farm impacts on the 

coast. 

2.3.1 CLASSIFICATION OF WECS 

Classification according to the installation site: Three types of WECs can be 

distinguished according to this criterion:  

 Onshore WECs, located entirely on land. 

 Onshore-offshore WECs, which capture wave energy in the nearshore and 

transform it into electricity in an onshore facility. 
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 Offshore WECs, which are deployed in the sea. This group may be further 

divided according to whether the WECs are floating or resting on the 

seabed.  

The most common location for WECs is offshore despite of the higher costs for the 

grid connection. The onshore technologies are characterised by their relatively simple 

and inexpensive maintenance, a result of both their good accessibility as onshore 

devices and the fact that they are less exposed to the harsh marine environment than the 

other categories. Another substantial advantage is the absence of a submarine cable – 

unlike offshore devices. On the downside, the wave resource that onshore WECs can 

exploit is smaller due to bottom friction and depth-induced wave breaking. A further 

disadvantage is the occupation of land and the corresponding environmental impact on 

the coastline, which can be more or less significant depending on the type of shoreline 

and the actual design of the device. 

Classification according to the dimensions relative to wave length: This criterion 

distinguishes between two types of WECs: point absorbers and line absorbers. The 

dimensions of point absorbers are at least one order of magnitude smaller than the wave 

length, whereas the predominant dimension of line absorbers is of the same order of 

magnitude as the wave length. Line absorbers can be orientated transversally or 

longitudinally to the incoming wave direction. 

Classification according to the principle of operation: There are three categories within 

this classification: 

 Overtopping devices, based on waves overtopping a barrier, and the 

overtopping flowrate being stored at a reservoir and subsequently used to 

drive a turbine. 
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 Wave-activated bodies, which capture wave energy through the heaving 

motion of a floater. 

 Oscillating Water Columns (OWCs), which – as indicated above – use a 

water column as a piston to create an air flow, which in turn drives a 

turbine-generator group. 

2.3.2 WEC TECHNOLOGIES 

A wave energy converter is a technology that uses the motion of ocean surface 

waves to create electricity. Energy capture is achieved by means of a Power Take Off 

(PTO) incorporated in the device that converts the mechanical energy into electricity. 

The PTO is different according to the WEC technology and its principle of operation. 

These technologies were reviewed by a large number of authors (Clément et al., 2002b; 

Drew, Plummer & Sahinkaya, 2009b; Falcão, 2010a; Falnes, 2007; Iglesias, Alvarez & 

García, 2010; McCormick, 1981; Thorpe, 1999).   

Having put forward different criteria on which WEC technologies can be classified, 

in this section the state-of-the-art is reviewed through notable WECs. The last criterion 

of classification (principle of operation) is followed to systematise the review (Figure 

2.8). 
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Figure 2.8 Classification of wave energy technologies in function of the location and the method of absorption 

(Falcão, 2010b) 

Oscillating water columns (OWCs): The water column is housed in a 

semisubmerged concrete or less commonly steel chamber connected to the sea by an 

underwater opening. The lower part of the chamber is flooded with sea water, and its 

upper part contains air. The oscillation of the water inside the chamber (the “water 

column”) induced by the waves outside causes the alternate compression and 

decompression of the air above, which is used to drive a bidirectional air turbine 

coupled to an electrical generator.  

Onshore OWC is the most advanced technology. Figure 2.9 shows two devices that 

are currently in operation: Mutriku (Spain) or Pico (Acores, Portugal). Although the 

principle is very similar in both devices, the main difference lies in the installation of 

the chamber. While Mutriku is mounted on a breakwater, LIMPET is a fixed structure. 

Following a similar approach, floating OWCs are also installed offshore, e.g. Oceanlinx 

MK1 and Sperboy, but their level of development is lower compared to onshore WECs.  
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Figure 2.9 Schematic of the LIMPET WEC (left) and Mutriku breakwater-mounted OWC (right). Sources: 

EVE (2014) and Wavegen 

In this context, this technology will not be considered for the study as the 

technology has been mostly developed onshore and therefore they could not be used in 

synergy for coastal protection. 

Wave-activated bodies, also known as body system, are offshore devices generally 

comprised of a one or several floating bodies equipped with a power take-off (PTO) 

mechanism. The method of energy conversion is based on the body motion (in one or 

more degrees of freedom) as a response to the incoming waves. They can be either 

floating or fully submerged.  

One example of a floating wave-activated body is the Pelamis device, which 

consists of a semi-submerged device composed of five cylindrical sections held together 

by cardan joints. As waves pass, the cylinders are displaced up and down by the 

buoyancy force, thereby activating the joints (Figure 2.10). They are usually located at 

water depths over 50 m at distances between 2 and 10 km from the coast.  
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Figure 2.10 Scheme of Pelamis WEC. Source: (Pelamis Wave Power Ltd) 

Other group of devices in this category are those composed of floatation elements 

oscillating on the sea surface. Among these is PowerBuoy (Figure 2.11), a point 

absorber consisting of a floating element that reacts against a submerged cylindrical 

body, terminated at its bottom end by a large horizontal damper plate that aims at 

increasing the inertia through the added mass of the surrounding water. The relative 

heaving motion between the two bodies is converted into electrical energy by means of 

a hydraulic PTO. 

  

Figure 2.11 The floating PowerBuoy prototype (left) and submerged Archimedes Wave Swing (right). Sources: 

Ocean Power Technologies Inc (2014) and AWS Ocean Energy (2015) 

Submerged offshore WECs are less common than floating ones, the reason being 

that underwater components add a new level of complexity. Designs are mostly at an 

early stage of development. The most developed device might be the Archimedes Wave 
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Swing (Figure 2.11). These devices cannot be seen on the surface of the sea, for it is 

located at a depth of 6 m – which reduces its visual impact. However, the maintenance 

of this device is relatively complex, as all the equipment is underwater.   

In sum, the technology of these devices is more developed than the offshore OWC, 

however, although the performance of these devices can justify their deployment in 

wave farms, their principle of operation, either translation or rotation, does not bring 

about sufficient reductions of wave height in their lee to protect the coast. Therefore, 

these WECs will not be selected for studying their impacts on the coast. 

Overtopping devices: An overtopping device captures sea water of incident waves 

in a reservoir above the sea level. This difference in elevation between the water in the 

reservoir and the sea surface is used to drive the PTO, generally a turbine. Overtopping 

devices have been designed and tested for both onshore and floating offshore.  

Among the onshore devices, the Seawave Slot-Cone Generator harnesses the wave 

run-up over a sloping ramp, in principle on a rubble-mound breakwater. The water is 

captured through horizontal slots at three different levels, each connected with a 

reservoir. Nevertheless, these devices will not be considered in this thesis as its purpose 

is to investigate the impacts of an offshore wave farm on the coast in its lee.  

However, the principle of operation allows the production of large amounts of 

energy and, at the same time, reduces significantly the wave height in the lee of the 

device. Therefore, offshore overtopping converters are suitable for the purpose of this 

thesis. In this context, two WECs should be outlined: the Wave Dragon (Kofoed et al., 

2006; Tedd & Kofoed, 2009) and WaveCat (Fernandez et al., 2012; Iglesias et al., 

2008).  These devices are installed in relatively deep water, between 25 m and 40 m, to 

take advantage of the ocean waves. 
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In the case of Wave Dragon (Figure 2.12), overtopping occurs at a ramp 

perpendicular to the direction of the incoming waves.  In order to capture a wave front 

length larger than the ramp itself, two deflectors protrude from the ramp sides; they 

focus the waves towards the ramp, thereby enhancing wave height. Overtopping water 

is collected in a reservoir above the sea level; the difference in elevation between the 

water in the reservoir and the outside (sea) water is used to propel an ultra-low head 

Kaplan turbine. Freeboard and draft are varied according to the wave conditions. Wave 

Dragon is one of the heaviest WECs, with a structure around 30,000 tons, which would 

require a substantial mooring system. The first prototype connected to the grid is 

currently deployed in Nissum Bredning, Denmark. Long term testing is carried out to 

determine system performance; i.e. availability and power production in different sea 

states. 

 

Figure 2.12 Scheme of Wave Dragon device (left) and the prototype installed in Nissum Bredning. Courtesy of 

Wave Dragon AS (2005), 

The WaveCat (Figure 2.13) differs from the Wave Dragon in its structure and in the 

way overtopping occurs. Like a catamaran – from which it takes its name – WaveCat 

consists of two hulls. Unlike a catamaran, however, the hulls are convergent rather than 

parallel, so that from above they form a wedge. With a single-point mooring system 

(e.g., CALM, catenary anchor leg mooring) WaveCat swings so that it is always 

orientated in the direction of the incoming waves, which propagate into the wedge. As a 

wave crest advances between the two hulls, the wave height is enhanced by the tapering 
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channel until, eventually, the inner hull sides are overtopped. Unlike Wave Dragon, in 

which the overtopping wave crest impinges normally on a ramp, in the case of WaveCat 

the overtopping crest impinges obliquely on the hull side. Overtopping water is 

collected in three reservoirs on each hull, at different levels – all above the mean sea 

level. The difference in elevation with respect to the exterior (sea) level is used to drive 

a turbine for each reservoir as the water is let out back to sea. Freeboard and draft, as 

well as the wedge angle, can be varied according to the sea state. 

  

Figure 2.13 WaveCat scheme (left) and the tests conducted at the laboratory of Porto (right) at a scale of 1:50  

(Fernandez et al., 2012). 

The advantages of WaveCat are threefold. First, overtopping occurs along the hull 

sides, so the WEC motions do not significantly affect the overtopping volumes but 

merely shift the point along the hull where overtopping starts. Second, the oblique 

overtopping signifies that the wave loads on the structure are considerably lower than in 

the case of normally incident waves. Last, but not least, the wedge between the hulls can 

be closed so WaveCat becomes a conventional (monohull) ship – a useful survivability 

strategy. Maintenance costs are expected to be low, similar to those of a ship, and the 

fact that it can be towed to a dry dock in its closed configuration (monohull) and 

repaired using the same installations is an added advantage. On these grounds, the 

WaveCat WEC is selected for studying the impacts of wave energy on the coast.  
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2.4 WAVE FARM IMPACTS 

Wave Energy Converters (WECs) will be deployed forming arrays, also known as 

wave farms, because single devices will not be able to provide the amounts of energy 

that are required. Within the farm, the incident waves are reflected, transmitted and 

absorbed by the WECs, which in turn, may affect the overall performance of the farm as 

the wave resource is altered. In other words, the incident wave power is partly absorbed 

and redistributed around the WECs that form the wave farm, and this can result in a 

positive or negative effect on the power absorption of the neighbouring WECs.  

Subsequently, as the wave is partially absorbed by the WEC, the wave height in the 

lee of the farm is considerably reduced and this modification of the wave conditions can 

affect positively or negatively the morphodynamics and morphology of the beach. This 

is particularly relevant in wave farms formed by offshore overtopping devices (e.g. 

WaveCat and Wave Dragon), which are based on waves overtopping a barrier.  

In this heading the studies focused on assessing the impacts of the wave farms will 

be presented.  The review will be divided in 3 sub-sections: first, the studies focussed on 

the WEC-wave interaction in the wave farm scale; second, those that assessed the wave 

farm impacts on the wave conditions; and, thirdly, the works that outlined the idea of 

using wave farms for coastal protection.  

2.4.1 WEC-WAVE INTERACTION 

The primary objective of most of the studies that analysed the WEC-wave 

interaction was to determine the optimal array configuration in order to minimise the 

negative interactions between WECs, and therefore maximise the overall performance 

of the wave farm. For this purpose, sensitivity analyses were carried out applying 

different numerical models. However, an optimum layout cannot be generalised as it 

will vary as a function of: (i) the boundary conditions of the wave farm, i.e. wave 
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climate, (ii) the location of the wave farm, e.g. distance to the coast and the water depth, 

and (iii) the type of wave energy converter. 

The type of WEC is likely the most important aspect since the processes that govern 

the WEC-wave interaction vary as a function of the WEC. For instance, in the case of 

Oscillating Water Column (OWC) systems (e.g. Sperboy, Ocean Energy) or oscillating 

bodies (e.g. PELAMIS, AquaBouy), the incident wave is partly diffracted, also called 

scattered, and partly absorbed due to the destructive interference with the generated 

(also called radiated) wave. Consequently, the performance of the adjacent WECs in the 

farm is influenced by the scattered incident wave and the radiated wave from the 

oscillating device. For its part, absorption is the prevalent process that governs the 

interaction between overtopping WECs and the wave field, as the devices absorb wave 

energy by capturing the water volume of overtopped waves in a reservoir, and then, 

creating a hydraulic head. This generates a shadow in the lee of the devices, which can 

affect the performance of the WECs installed in the next rows. In sum, the redistribution 

of wave energy in the farm will vary according to the type of WEC deployed (Beels et 

al., 2010a).  

Child and Venugopal (2010), on the basis of their first work (Child & Venugopal, 

2007), pioneered the optimisation of wave farm layouts. They analysed different array 

configurations under different wave conditions. The optimisation process is 

accomplished with arrays of five wave-activated floating devices, identical in geometry 

and power take-off characteristics. The interaction of each array was determined 

applying a numerical model that accounted for the incident, the scattered and the 

radiated wave in conjunction with the motion of the device. In addition, a genetic 

algorithm (G) and the parabola intersection (PI) method were used to obtain the optimal 
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configurations. The results showed that the staggered formations maximised the 

resource of the wave farm (Figure 2.14). 

 

Figure 2.14 Optimum array configuration (units: m). The G and P denote the method applied to optimise the 

layout and correspond to general algorithm and parábola intersection, respectively.  The number signify the 

objective pursued: (1) to maximise power in an array of real-tuned devices, (2) to maximise power in an array 

of reactively tuned devices, and (3) to minimise power in an array of reactively tuned devices.(Child & 

Venugopal, 2010) 

Babarit (2010) studied the WEC-wave interaction as a function of the distance 

between devices. For practical reasons, e.g. grid connection and moorings costs, 

distances between devices around hundreds of meters were considered. The different 

array configurations were studied at deep water to simplify the problem, by means of a 

Boundary Element Model (BEM) based on the linear potential flow theory under 

regular and irregular wave conditions. Based on the results presented, locating wave 

devices at distances shorter than 100 m is not recommended due to the negative 

interaction between devices. For greater distances, between 100 and 500 m, 

recommendations are difficult to establish since the wave interaction varied depending 

on the array configuration, particularly when the direction of the incident waves were 

not aligned with the array. This is one of the main disadvantages of oscillating devices 

in relation to overtopping devices since the latter have a degree of liberty to move in 

order to be always aligned with the wave direction and then maximise their 

performance. 

Similarly, Borgarino, Babarit and Ferrant (2012) assessed the influence of the 

interactions between WECs in the energy production of the array. Two WECs were 



State-of-the-art 

39 

 

considered: heaving cylinder and surging barge, which were arranged in 9-body arrays 

with regular patterns, forming either square or triangular grids. This study revealed that 

locating WECs in wave farms forming square configurations is not appropriate, 

particularly for short spacing between devices, as the masking effect is exacerbated. In 

this line, the study corroborates that the triangle-based arrays, also called staggered 

formations, may be the most suitable configuration, as they minimise the destructive 

interactions between WECs.  

 

Figure 2.15  Wave amplitude around a set of 1 (a) or 3 (b) heaving cylinders in a view of a 9-body array. The 

figure a shows the wave amplitude around the white cylinder; and the figure b, the wave amplitude around the 

three white cylinders in interaction. (Borgarino, Babarit & Ferrant, 2012) 

To complement the result from the numerical models, physical modelling has also 

been conducted to determine the interaction between converters. Stratigaki et al. (2014) 

analysed the effects in large arrays of up to 25 heaving point absorber WECs for a range 

of configurations and wave conditions. Although all the configurations have not been 

analysed, the results of the 5 × 5-WEC rectilinear array showed the wave height 

attenuation in the lee of the WEC array. Figure 2.16 illustrates the modification of the wave 

field with the devices for large-crested waves. While in the first rows of devices the wave 

height increased, in the lee of the device attenuation, up to 18.10% at a distance of 30D – 

with D indicating the diameter of the device – was found. The future analysis of the other 
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array configurations will allow the determination of the best layout to minimise the 

destructive interaction between devices. 

 

Figure 2.16 Perturbed wave field normalized by recorded undisturbed wave field for the 5 x 5 WEC array 

configuration (Stratigaki et al., 2014). The basin width (X, columns) and length (Y, rows) are expressed in 

number of WEC unit diameters, D = 0.315 m. 

Regarding offshore overtopping converters, the studies have been mainly focused 

on the aforementioned devices: Wave Dragon and WaveCat WECs. Beels et al. 

(2010a); (2010b) implemented the Wave Dragon WEC in a time-dependent mild-slope 

equation model (MILDwave) to establish the optimum wave farm. To model the 

combined effects of reflection, transmission and consequently absorption of a WEC, 

laboratory tests of a single device were conducted to determine the wave transmission 

coefficient.  

The optimisation of the layout was carried out by means of the assessment of two 

key parameters: (i) the distribution of the WECs and (ii) the spacing between WECs. 

Regarding the former, both staggered and aligned (also called square) were studied in a 

9-WECs array arranged in 3 lines. The representation of the effects on the wave height 
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in the adjacent WECs and the lee of the devices was carried out by means of an 

absorption coefficient, KD, which represented the ratio between the disturbed significant 

wave height and the incident significant wave height at the wave generation boundary. 

Figure 2.17 illustrates that the reduction of the significant wave height is higher in 

front of the devices situated in the second and third row in the case of the aligned 

formation, and therefore the staggered formation presents better performance than the 

square grid. While, the capture ratio in the second and third row of devices was 45% 

and 35%, respectively for the staggered grid, in the case of the aligned grid both rows 

presented ratios of 30% (Beels et al., 2010a). However, it is noteworthy to highlight that 

this finding does not imply that the attenuation of the wave height in the lee of the wave 

farm formed by staggered grids is less than with aligned grids.  

 

Figure 2.17 Calculated disturbance coefficient, KD, of an aligned (left) and staggered (right) array formed by 9 

Wave Dragon WECs for irregular long-crested waves (Beels et al., 2010a) 

Secondly, and considering a staggered formation, the influence of the distance 

between devices is analysed. A 5 Wave Dragon farm was studied with three spacings: 

D, 2D and 3D, with D = 260 m, i.e. the distance between the twin bows of the device. 

For overtopping converters, the greater the spacing, the lesser the interaction; however, 
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it also needs to take into account that the smaller the distance, the cheaper the cost of the 

farm. The results showed that the layout with a distance between devices of 2D was the 

optimal farm layout (Figure 2.18), taking cost and spatial considerations into account. 

Furthermore, it was observed that five Wave Dragon WECs installed in a staggered grid 

at a distance of 2D, would produce practically five times more than a single Wave 

Dragon WEC, as the incident wave power in the second row is barely affected by the 

first row (Beels et al., 2010b).  

 

Figure 2.18 Calculated disturbance coefficient, KD, of a 5 Wave Dragon array arranged in two rows with a 

spacing of D (left – a), 2D (middle – b) and 3D (right -- c), with D = 260 m, for irregular long-crested waves 

(Beels et al., 2010b). 

As regards the WaveCat, Carballo and Iglesias (2013) studied two different 12-

WaveCat array configurations, the first with the WECs arranged in just one row, and the 

second with the devices in two rows in a staggered formation. This work aimed at 

proving that the performance of the wave farm is not drastically affected by the 

absorption of the first row of devices. For this purpose, the phase-averaged spectral 

model SWAN (Booij, Holthuijsen & Ris, 1996) was applied using the values gathered 

in the experimental campaign carried out to determine the WaveCat WEC-wave 

interaction under different wave conditions (Fernandez et al., 2012). 

Based on previous studies, a separation of 2.2D – with D equal to 90 m and 

corresponding to the distance between the twin bows of the device – was considered. In 
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this case, the results (Figure 2.19) showed that the wave height in front of the devices in 

the second row was lower than the first, and therefore the overall performance of the 

wave farm was greater with just one line. On the other hand, the one-row layout is less 

appropriate than the two-rows given that its greater performance does not justify the 

increase of the costs (maintenance, cable, space occupied, among others).  

 

 

Figure 2.19 Spatial distribution of the wave power in a row (above) and two rows (below) configuration with 

Hs = 3m, Te = 10.8s and Direction = NW (Carballo & Iglesias, 2013). 
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In sum, although there is no prevailing layout, which is in line with the absence of a 

prevailing WEC, a number of recommendations can be extracted from this section. 

Spacing between devices below 100 m are completely inappropriate, especially for 

overtopping devices, in which the absorption by the WEC is the most relevant process. 

The works reviewed showed that avoiding the destructive interference between devices 

is essential in the design of the wave farm layouts in order to not decrease their 

performance and, therefore, their economic viability. On the other hand, distances 

between WECs over 300 - 400 m, are not recommended since they would increase 

significantly the costs of the wave farm.  

2.4.2 WAVE FARM IMPACTS ON THE WAVE CONDITIONS 

The knowledge of the impacts of wave farms is a fundamental prerequisite for the 

development of wave energy and this is reflected in the number of studies investigating 

the effects of wave farms on the wave conditions in their lee.  

First, Millar, Smith and Reeve (2007) used the spectral wave model SWAN to 

investigate the effects of a wave farm in the Wave Hub project (UK). A fine grid was 

nested in a coarse computational grid with a resolution of 200 and 5000 m, respectively. 

The wave field-wave farm interaction was studied by means of different notional energy 

absorption coefficients: (i) 0% that represents complete absorption of all incoming wave 

energy at the obstacle (an unachievable scenario); (ii) 70% that corresponds to an array 

of densely spaced with high-efficiency WECs, (iii) 90% that represents lower 

efficiency, widely spaced WECs, and (iv) 40%, included in the study to enable the 

establishment of trends. The study analysed the reduction of the wave height brought 

about by the Wave Hub along the 300 km of shoreline in the SW Coast of England 

under different wave conditions.  



State-of-the-art 

45 

 

The results (Figure 2.20) showed that the reduction of the significant wave height 

on the coastline reached values around 5% in the case of the scenario with a 

transmission coefficient of 40%; while in the scenarios with lower efficiencies (e.g. 

90%), the changes were practically negligible.  

  

Figure 2.20 On the left hand, location of the Wave Hub and the points studied along the coastline, from 

Pendeen (W) to Harlyn Bay (E). On the right hand, (a) ΔHs and (b) ΔHs/Hs along the coastline varying wave 

energy transmission percentages for the reference sea state: Hs = 3.3 m, Tm = 11 s and Direction = N. 

This work pioneered the analysis of the impacts of the wave farm on the wave 

conditions, but the validity of the results warrants discussion. Three shortcomings of the 

model are detected: (i) the resolution of the model limited the accuracy of the results as 

the assessment was carried out with a grid of 200 m, (ii) the wave farm was modelled as 

a single element, and finally (iii) the values of the wave absorption coefficient were 

notional. In spite of that, this work represented a scientific breakthrough in the study of 

the wave farm impacts.  

Smith, Pearce and Millar (2012) followed a similar procedure, although some 

changes were adopted to obtain more realistic results. The most relevant upgrade was 

the use of a wave absorption coefficient that varies as a function of the frequency. The 

SWAN source code was modified to apply an individual transmission coefficient to 
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each of the frequency bins of the spectrum, thus allowing variation in energy absorption 

across the spectrum. 

Every WEC has its own response function (Power Transfer Function, PTF) that 

defines the proportion of power extracted from the waves as a function of the wave 

frequency. The wave farm was represented in three configurations: (1) a continuous 

barrier of 4 km as it was defined by Millar, Smith and Reeve (2007), (2) a series of 

smaller 100 m width barriers with 200 m spacing between them, and (3) two staggered 

rows of 100 m barriers with an inter- and intra-row spacing of 200 m and 500 m, 

respectively (Figure 2.21).  

 

Figure 2.21 Impacts of a wave farm on the wave conditions with a series of smaller 100 m barriers arranged in 

a row (left) and two staggered rows of 100 m barriers (Smith, Pearce & Millar, 2012). 

The results were analysed at different distances from the wave farm: 1, 5 and 10 km 

with a grid spacing of 100 m across the grids (Figure 2.22). Two scenarios were 

considered: low-efficient (narrow PTF) and high-efficient (wide PTF) WECs. Whereas, 

a wide bandwidth PTF captured power across a wider range of the spectrum but, 

potentially, with a lower maximum absorption; a narrow bandwidth PTF, captured 

higher power at the peak, but which can only convert the power of the waves across a 

narrow section of the spectrum. 
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Figure 2.22 shows that the low-efficient scenario presented negligible reductions of 

the wave height in the lee of the farm, with values around 1% at a distance of 10 km 

from the farm. On the other hand, the attenuation of wave energy for the high-efficient 

case cannot be overstated, with reductions over 5% at distances of 5 km in the lee of the 

farm. However, this work did not overcome the main shortcomings of the previous 

paper: the absorption in the farm was still modelled with notional values (motivated by 

the lack of data at that time), and the resolution of the grid. 

 

Figure 2.22 Results along the grid transect at 100 m intervals at distances of 1, 5 and 10 km in the lee of the 

wave farm for the different array layouts: continuous barrier (left – barrier 1), single row of 100 m barriers 

(middle – barrier 2) and two staggered rows of 100 m barriers (right – barrier 3) (Smith, Pearce & Millar, 

2010). 

Following a different approach, Venugopal and Smith (2007) applied a nonlinear 

Boussinesq wave model (MIKE 21) to assess the manner in which the modification of 

the wave absorption coefficient affected the wave conditions in the Orkney Islands 

(Scotland). The devices were modelled as solid structures and porous structures. As for 

the former, the devices mainly reflected waves (as a vertical breakwater) and did not 

allow any wave energy absorption or transmission through them. As for the latter, the 

modification of the porosity values enabled the representation of different degrees of 
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reflection, absorption and transmission. The wave farm was modelled with 5 WECs, 

whose dimensions were 160 m length and 10 m width, with a spacing of 160 m.  

 

Figure 2.23 Modification of the significant wave height in the following scenarios: (a) no structure placed, (b) 

solid structure and (c) structure with porosity = 0.7 (Venugopal & Smith, 2007). 

Figure 2.23 shows the comparison between the baseline scenario (no farm) and the 

wave farm scenarios. While the devices ‘non-absorbent’ (i.e., solid structure, n = 0) 

presented results that are unachievable, with reductions of wave height of up to 70%, 

the devices modelled with a porosity coefficient of 0.7 significantly reduced the wave 

height in the lee of the coast, with reductions of over 10% at the shoreline. The 

disturbance coefficient, KD, is illustrated in Figure 2.24 along the line that crossed the 

device 3 from offshore to the coast for different porosities. The highest reductions were 

found for values of porosity equal to 0.5 and 0.6; as the non-porous or solid scenario led 

to an increase of the reflection and diffraction. For its part, with higher values of 

porosity the device acted like a transparent structure, resulting in less reflection and less 

absorption as indicated by a maximum reduction of only about 13% in wave height 

behind the device for n = 0.9.  

However, although the model represented better the impacts as high-resolution 

grids were implemented, the approach to model the wave energy extraction caused by 

the WECs was very poor. Furthermore, the variation of the results as a function of the 
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absorption was not clear, with smaller porosities providing greater reductions in the lee 

of the device than solid structures.  

 

Figure 2.24 Disturbance coefficient ratio for the different porosity values along the line from offshore to the 

coast crossing the device 3 (Venugopal & Smith, 2007). 

Palha et al. (2010) used the parabolic mild slope wave model REFDIF to 

accomplish a sensitivity analysis of different array configurations formed by Pelamis 

WECs to analyse their impact on the wave conditions at the West coast of Portugal. The 

main difference from the previous works was the approach taken in modelling the 

energy absorption. Instead of using notional values of wave energy extraction by the 

WEC, estimated coefficients were provided by the developer. The REFDIF model was 

adapted to consider the effects of the WECs, but the model could only be run under 

monochromatic wave conditions. 

Five wave farm configurations were tested, named A to E (cases b to f in Figure 

2.25). In configurations A to C, the wave farms were positioned along a single row 

perpendicular to the wave propagation direction. In D and E the WECs were arranged in 

three and two staggered rows, respectively. Values of up to 23% of wave energy 

extraction were found within the wave farm. The configurations A to C and E presented 
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the lower variation on the significant wave height in points near the coast in relation to 

the array configuration D. Along the contour of 10 m water depth it was found that the 

E configuration, despite its less reduction of wave height (~15%) in the lee of the farm 

than the D layout (~20%), extended its impact along a wider area (Figure 2.26). This 

work revealed that the attenuation of wave height is very significant in the lee of the 

farm, especially considering that the PELAMIS device is a wave-activated body and the 

main process that govern its interaction with the wave field is not the wave absorption, 

as it is in the case of overtopping wave converters (which leads to greater reductions of 

wave height in the lee of the devices). 

 

Figure 2.25 Values of the significant wave height and wave direction on the domain for the different 

configurations under January offshore wave condition: Hs = 2.9 m, Te = 11.1 s, Direction = NW (Palha et al., 

2010). 
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Figure 2.26 Wave height (left) and variation of the wave height (right) along the contour of 10 m for the 

following scenarios: without (configuration X) and with wave farms (configurations A to E) (Palha et al., 

2010). 

Iglesias and Carballo (2014) analysed the influence of another key design 

parameter: the farm-to-coast distance. Based on the layout presented by Carballo and 

Iglesias (2013), the wave farm was located at three farm-to-coast distances: 2, 4 and 6 

km from the 10 m contour (Figure 2.27), at water depths of 30, 50 and 80 m, 

respectively. The aforementioned shortcomings were overcome with the 

implementation of the wave farm in a high-resolution grid and modelling the wave-

WEC interaction with the wave transmission coefficient obtained in laboratory tests.  

 

Figure 2.27 Wave power pattern with the farm located at a distance from the 10 m water depth contour of 6 

km (left), 4 km (middle) and 2 km (right) under winter conditions. The wave farm area is marked with a box 

(Iglesias & Carballo, 2014). 
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The results showed that the greatest attenuation of wave energy was found with the 

closest wave farm to the coast, with values over 20%. The farm at an intermediate 

distance also reduced significantly the wave height (~18%) and the furthest wave farm 

presented the lowest attenuation (~10%). On the other hand, the resource for the furthest 

wave farm was larger than the other two scenarios. This work demonstrated the 

important role played by the distance to the coast, and that a detailed impact assessment 

must be carried out for any wave farm project to determine the optimum location based 

on a series of parameters: resource, impact, costs (the greater the distance the greater the 

cost due to moorings and cables, among others), etc. 

In summary, two main recommendations can be extracted from these works: (i) the 

necessity of using high-resolution grids to define correctly the position of the WEC in 

the farm, and to resolve the individual wakes caused by the devices and their interaction 

each other; and (ii) the use of data obtained from real models, prototypes or laboratory 

tests to predict the wave-WEC interaction with accuracy.  

2.4.3 WAVE FARMS FOR COASTAL PROTECTION? 

In view of the effectiveness of wave farms to reduce the wave energy in their lee, 

the possibility of protecting the coast through wave farms has attracted the interest of a 

number of studies. One of the first works on this issue was conducted by Vidal et al. 

(2007) and analysed the impacts of a wave farm formed by 10 OPT PB150 buoys 

located at Santona (N Spain) at a water depth of 50 m. The wave propagation was 

conducted by means of the OLUCA-SP model, that solves the parabolic version of the 

mild slope equation, and the results were coupled to the EROS-SP, which was applied 

to determine the sediment transport.  

The results of the wave height attenuation in the lee of the farm (Figure 2.28) were 

not in line with the results presented above; with reductions either in the lee of the farm 
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or at the coastline found to be practically negligible (as sediment transport is driven by 

wave energy). Thus, the modification of the sediment transport was insignificant. In any 

case, the results of the study cannot be generalised, considering that the wave farm was 

composed of buoy-type WECs, whose interaction with the waves is not governed by the 

absorption, and therefore, the degree of protection afforded is less than in the case of 

overtopping devices.  

  

Figure 2.28 Variation of the wave height (left) and the transport flux (right) under the following wave 

conditions: HS = 6 m, Tp = 15 s and Direction = NW (Vidal et al., 2007).   

Ruol et al. (2011) studied the impacts of a wave farm consisting of one line of 

DEXA WECs (wave activated bodies) at a distance to the coast of 650 m in Milano 

Marittima (Italy), a beach that is maintained periodically by beach nourishment. For this 

purpose, experimental tests of the device were carried out in order to determine the 

wave transmission coefficient (KT) as a function of the length of the device and the 

length of the incident wave. On this basis, the variations in the longshore sediment 

transport were assessed using the CERC formula (US Army Corps Of Engineers, 1984).  

For the wave conditions analysed the wave transmission coefficient was approx. 

0.8, and this resulted in a decrease of the sediment transport of 43%. Figure 2.29 shows 

the evolution of the sediment along the coastline in the presence and in the absence of 

the wave farm. The green lines (right image) show the net sediment transport, north 
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(positive) minus south (negative). It is interesting to notice that the reduction of the two 

components (North and South) is not proportional, and the distribution of the net 

transport in presence and in absence of the WEC is quite different. These results are 

very promising but need to be corroborated with more accurate studies. Furthermore, 

the distance of the farm to the coast contributed to reaching this degree of coastal 

protection.  

 

Figure 2.29 On the left hand, the distribution of sediment transport with the presence of the wave farm. On the 

right hand, the results with the farm (dashed line) are shown alongside the baseline scenario (solid line), with 

the green lines showing the net sediment transport, northward minus southward contribution (Ruol et al., 

2011). 

Nørgaard, Andersen and Kofoed (2011) analysed the possibility of using a 3-Wave 

Dragon wave farm for coastal protection in the North Coast of Spain. For this purpose, a 

Boussineq-type wave model, MIKE21, was applied to analyse the impact of the wave 

farm using the transmission values obtained in the laboratory tests of a single Wave 

Dragon WEC. The impact of the wave farm was significant (Figure 2.30), corroborating 

the great potential of wave farms to reduce the wave height in their lee; with reductions 

by up to 21%. However, although the study outlined the possibility of using wave farms 

for protecting the coast, the effects on the coast were not assessed.  
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Figure 2.30 3-Wave Dragon wave farm layout (left) and effects on the wave conditions by means of the 

disturbance coefficient, KD, under the following wave conditions: Hs = 5m, Te = 10s and Direction = N 

(Nørgaard, Andersen & Kofoed, 2011) 

Similarly, Zanuttigh and Angelelli (2013) studied the synergetic application of 

wave farms analysing the impacts of a wave farm formed by floating DEXA WECs in 

Santander (Spain). The investigation consisted of physical and numerical modelling. 

Regarding the former, tests of a single device (in a scale of 1:30) and a 3-WEC array (in 

a scale of 1:60) were carried out to determine the transmission coefficients. As for the 

latter, the impacts on the wave conditions were assessed applying MIKE21. 

The results showed that the transmission coefficient of a single device was approx. 

0.8, while in the case of the array the transmission coefficients in the lee of the device 

located in the second row varied from 0.6 to 0.9 as a function of the wave conditions. 

Based on these coefficients, the analysis of the wave farm impacts through numerical 

modelling showed a reduction of the wave height of up to 20% in some sections of the 

coastline (Figure 2.31). These results were of relevance as a wave-activated body was 

considered to protect the coast (as mentioned above, overtopping WECs are generally 

the most effective for this purpose) and their efficiency to attenuate the wave height in 

the lee of the farm was proven by means of physical and numerical modelling; however, 

the effects of the wave energy extraction on the coast were not quantified. 
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Figure 2.31 Ratio between local and incoming (target) wave height in presence of the wave farm. The white 

area represents the emerged beach extension (Zanuttigh & Angelelli, 2013). 

Neill and Iglesias (2012) applied the cross-shore profile model, UNIBEST-TC, to 

analyse the impacts of extracting wave energy on the beach profile. Energy was 

extracted from the model boundary considering a 10% reduction in wave energy due to 

WEC array operation. Although this was a relatively simple approach to account for 

WEC array operation at the model boundary, it was sufficient to enable a first order 

examination of the environmental impact on nearshore processes.  

 

Figure 2.32 Natural change in bed level after 6 months of simulation (left) and considering the 10% reduction 

of wave energy due to the operation of a wave farm (right). Grey shading indicates position of sand bar at the 

beginning of each simulation. 

The results shown above outline the capability of a wave farm to protect the coast 

by means of enhancing the sand bar formation. Since reduced water depth over the bar 

enhances depth-induced wave breaking, WEC array operation could provide enhanced 

coastal protection from storm waves. However, this statement needed to be tested for 



State-of-the-art 

57 

 

variable wave forcing over seasonal timescales, and for more realistic WEC array 

energy extraction scenario. 

Finally, Mendoza et al. (2014) investigated the effects of 4 different wave farms 

composed of 3 Wave Dragons arranged in 2 rows (overtopping), 8 Blow jets arranged in 

one row (hybrid system, whose main principle is overtopping), 45 DEXA arranged in 5 

rows (wave-activated body) and 18 Seabreathe arranged in 2 rows (offshore OWC). The 

first two wave farms were located at Santander Bay (Spain) and the other two at Las 

Glorias Beach (Mexico). The impacts on the wave conditions were analysed by means 

of a 2D elliptic modified mild-slope model, WAPOQP; and the effects on the coast by 

applying the analytical solution presented in Kamphuis (1991b) for calculating Long-

Shore Sediment Transport (LST). According to the type of WEC, the wave farms were 

located at different farm-to-coast distances, and consequently, water depths. Figure 2.33 

shows the results at Santander bay, and can be readily observed the different effects on 

the wave patterns as a function of the WEC. The greater dimensions of the Wave 

Dragon resulted in a greater shadow in the lee of the farm. 

Based on these results, the impact of the wave farm was analysed by means of the 

LST formula. In the case of Santander the beach studied was Somo (on the right hand of 

Figure 2.33). Using the rates of longshore sediment transport, an index was developed 

to compare the impact between the baseline and wave farm scenarios, xp/xu, which 

indicates the accretion (positive) or the erosion (negative) induced by the wave farm. 

Figure 2.34 shows the longshore sediment transport rates and the results for the index 

xp/xu, finding that the Wave Dragon and the DEXA WECs offered the greatest degree of 

coastal protection. However, if their effectiveness to protect the coast is analysed in 

terms of number of devices, it is clear that the overtopping device is the most 

appropriate for this purpose, as the array of DEXA WECs consisted of 45 devices, 



Chapter 2 

58 

 

while the Wave Dragon was formed by only 3. In any case, although these results were 

very promising they were based on the longshore sediment transport and the storm-

induced erosion was not quantified. For this purpose, a coastal process model is needed.  

 

Figure 2.33 Wave farm effects on the wave conditions at Santander Bay: in the left column, a 3-Wave Dragon 

wave farm and in the right column a 8-Blow-Jet wave farm (right column). The wave conditions are indicated 

in the upper line (Mendoza et al., 2014) 

 

Figure 2.34 Coastline evolution trends for Santander and Las Glorias beaches under different wave farm 

scenarios (Mendoza et al., 2014) 
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In summary, even though most of the works presented praised the effectiveness of 

wave farms for protecting the coast, this has not been deeply analysed so far. A clear 

attenuation of the wave height in the lee of the device was observed in practically all 

cases, which decreased towards the coastline, but was still significant at water depths 

below 10 m. Furthermore, analytical solutions have demonstrated that wave farms 

would reduce the longshore sediment transport in sandy beaches, which in turn, would 

result in savings from beach nourishment. However, the manner in which wave energy 

extraction by WECs affects the coastal processes, and in particular storm-induced 

erosion, have not been analysed yet, and this aspect is crucial, not least for being 

required for any Environmental Impact Assessment, but also to establish the degree of 

coastal protection that a wave farm can offer. On this basis, assessing wave farm 

impacts, both on the wave conditions and on the coastal processes, is the main focus of 

the present thesis.  
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3. METHODOLOGY 

This section presents the methods followed to bridge the gap in the knowledge of 

the wave farm impacts on the coast, and subsequently to establish the degree of coastal 

protection offered by wave farms. It will be divided in three sections: the first two will 

describe the numerical models applied to analyse the impacts on the wave conditions 

(Section 3.1) and the beach morphology (Section 3.2) and will be followed by the 

definition of a series of ad hoc impact indicators, most of them developed in the frame 

of this thesis to analyse the impacts of wave farms (Section 3.3). The numerical 

modelling sections will include a review of the main techniques and models to 

determine the optimum models for the purpose of the thesis. 

3.1 MODELLING WAVE FARM IMPACTS ON THE WAVE CONDITIONS 

Numerical modelling, in conjunction with laboratory tests, is one of the pillars to 

study the effects of wave farms. The wave farm-wave field interaction can be studied by 

means of phase-resolving or phase-averaged models. Phase-resolving techniques 

include potential flow models and those that resolve equations such as Navier-Stokes, 

Boussinesq and mild slope. On the other hand, phase-averaged methods are spectral 

wave models that resolve the wave action balance equation. In this context, a brief 

review of the different methods to model wave energy exploitation will be presented, 

illustrating with examples the applicability of the different models. The different 

methods and the main equations will be presented; nevertheless, a full description of the 

models will not be accomplished as it is out of the scope of this section, which actually 

aims to select the proper tool for studying the wave farm impacts on the wave 

conditions.  
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3.1.1 NAVIER-STOKE SOLVERS (CFD) 

The term CFD stands for Computational Fluid Dynamics (CFD), and therefore, 

would encompass any model that resolves fluid mechanics; however, it is well known 

that this term is used to refer non-linear Navier-Stoke Solvers. The Navier-Stoke 

equations are based on the mass and momemtum conservation, accounting for processes 

as turbulence of viscous effects. They can be classified into two categories: (i) direct 

numerical simulation and (ii) CFD codes, in which some of the processes are resolved 

through parameterisation rather than being directly resolved.  

CFD models present a large number of advantages, e.g. accounting for turbulence 

and two-phase flow, which indicate the model as the most appropriate for assessing 

breaking conditions or flows containing gas. For instance, these models are particularly 

relevant to study OWC WECs (López et al., 2014). On the downside, the main 

disadvantage of these models is their computational demand even in reduced scales due 

to the very fine mesh required for these models. As a consequence, CFD models were 

applied to determine the response of single WECs, and, therefore, their utilisation for 

investigating the effects of wave extraction in the lee of the devices is not suitable. 

3.1.2 POTENTIAL FLOW MODELS 

Among potential flow models, Boundary Element Method (BEM) has been the 

method most applied for marine renewable energy. They are primary based on the 

following assumptions:  

 The fluid is invicid (i.e. frictionless)  

 The flow is irrotational (i.e. the fluid particles are not rotating). Then, if 

ϕ(x,y,z,t) is the velocity potential function, the velocity can be derived at any 

point of the fluid domain as: 

 ( , , , ) ( , , , )V x y z t x y z t   (3.1) 
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 The flow is incompressible, which leads to  

 
2 ( , , , ) 0x y z t  ,  3.2) 

in order to satisfy the Laplace's equation.  

Nonetheless as the flow is irrotational, processes such as wave breaking cannot be 

accounted for. Furthermore, water depth is usually assumed constant along the array to 

simplify the problem, as the accurate representation of the bottom friction effects would 

increase considerably the computational time. In this line, BEM models have been 

generally applied to determine the WEC-wave field interaction within the wave farm 

(Babarit, 2010; Borgarino, Babarit & Ferrant, 2012; Child & Venugopal, 2007; Child & 

Venugopal, 2010), in most of them with the purpose of identifying the optimal layout 

for wave farms, as seen in Section 2.4 Wave farm impacts. 

In sum, these models despite of numerous advantages are not recommended to 

describe the impacts of wave energy extraction on the coast in the lee of the farm, 

especially in shallow waters when coastal processes such as wave breaking, shoaling 

and refraction occur.  

3.1.3 BOUSSINESQ MODELS 

Boussinesq-type wave models are based on the classic Boussinesq equations 

(Peregrine, 1967), which basically do not account for the vertical component of 

velocity, assume the horizontal velocity constant along the depth, the fluid 

incompressible and the flow irrotational, in order to approximate wave propagation. 

This approximation is not accurate in shallow waters due to the non-linearity and 

dispersion properties of waves. Therefore, the depth averaging limits their application to 

water depths of up to 0.25 times the deep water wave length.  
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In view to improving the applicability of these equations in both shallow water and 

deep water the classic Boussinesq equations were enhanced to account for the effects of 

deeper water depths, varying bathymetries, frequency dispersion, wave breaking, among 

others. Then, one of the most representative models, MIKE21BW, is based on the 

enhanced Boussinesq equations and calculates the free surface elevation from the flux 

density, rather velocities as potential flow models do. The model accounts for the most 

important wave transformation such as shoaling, refraction, diffraction, wave breaking 

and non-linear wave-wave interaction. On the other hand, the complexity of Boussinesq 

models limit their application for running time series of several hours and the model can 

become unstable under some circumstances.  

Regarding their applicability to marine renewable energy, the model has been 

applied to determine the impact of wave farms on the wave conditions in their lee under 

different wave conditions (Nørgaard, Andersen & Kofoed, 2011; Venugopal & Smith, 

2007; Vidal et al., 2007; Zanuttigh & Angelelli, 2013), but its applicability for time 

series is not recommended due to the computational costs associated.  

3.1.4 MILD SLOPE WAVE MODELS 

Mild-slope models receive their name as were developed to describe the 

propagation of the waves over low gradient bathymetries. They are based on the Mild-

slope equations (Berkhoff, 1974), which are a type of depth-averaged equation derived 

from the potential flow theory. The simplicity of the original equation presented several 

limitations given that only linear and monochromatic waves were propagated over 

mildly varying bathymetries; nonetheless the recent enhanced forms of the equation 

allow the consideration of processes such as wave breaking, diffraction, nonlinearity of 

waves and bottom friction. The equation can be presented in its fully-fledged elliptical 

version (the most complex) or in its parabolic and hyperbolic incarnations.  
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Several models based on the different forms of the equation (MILDwave, OLUCA-

SP, WAPOQP, REFDIF) have been used to study the effects of wave farms within the 

wave farm as well as in its lee (Beels et al., 2010a; Beels et al., 2010b; Mendoza et al., 

2014; Palha et al., 2010). The model is considerably faster solving wave propagation 

than the aforementioned ones; nonetheless, as it depends on the potential wave theory, it 

has insufficient theoretical foundation to deal with physical processes as reflection and 

diffraction.  

3.1.5 SPECTRAL MODELS 

Finally, spectral wave models are phase-average models, which rather than 

predicting the surface elevation of the waves through a suite of equations, resolve the 

evolution of the directional spectrum as waves propagate over varying water depths by 

means of the energy conservation equation (Hasselmann, 1971; Longuet-Higgins & 

Stewart, 1961). Hence, these models compute the wave action, which consists of the 

spectral energy density divided by the intrinsic frequency. The new third-generation of 

wave models (which refers to those that account for all the physics relevant for the 

development of the sea state) predicts accurately the growth, decay and transformation 

of wind-generated waves and swells in the deep waters and shelf-seas. Thus, spectral 

models are capable of representing most of the wave transformation processes: shoaling, 

depth- and current-induced refraction, wind forcing, whitecapping, bottom friction 

dissipation, depth-induced breaking and non-linear quadruplet and triad wave-wave 

interactions. On the downside, as phase-averaged models, the diffraction cannot be 

calculated explicitly; nevertheless, in the case of SWAN (one of the most used wave 

propagation models) it can be modelled through a phase-decoupled refraction-

diffraction approximation.  

Regarding their applicability to study wave farm impacts, wave spectral models, 

and particularly SWAN, have been the most used numerical method (Carballo & 
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Iglesias, 2013; Gonzalez, Zou & Pan, 2012; Iglesias & Carballo, 2014; Millar, Smith & 

Reeve, 2007; Reeve et al., 2011b; Rusu & Guedes Soares, 2013; Smith, Millar & 

Reeve, 2007; Smith, Pearce & Millar, 2010). As they solve the energy conservation 

equation, the implementation of the wave farms into the model is carried out by means 

of transmission coefficients that represent the absorption of wave energy brought about 

by the WECs. This approach does not account for the energy radiated, which will be of 

relevance in the case of wave-activated bodies. However, for overtopping devices, it can 

be assumed negligible, especially to study the effects of a wave farm on the coast.  

Hence, in view of the aims and objectives of this thesis (Section 1.2) and 

considering the efficiency of wave spectral models to propagate long time series, the use 

of these models, in this case SWAN, is the most appropriate approach. A brief 

introduction of the model will be presented in the following section. 

3.1.5.1 SWAN 

Mathematical model 

Simulating WAves Nearshore, SWAN (Booij, Ris & Holthuijsen, 1999), is a third-

generation wave model that estimates the characteristics of the waves (significant wave 

height, peak period, mean direction, etc., or even more accurately, the directional wave 

spectrum) in coastal areas, lakes and estuaries from given wind, bottom and current 

conditions.  

The model solves the spectral wave action balance equation without a priori 

assumptions on the shape of the wave spectrum. The wave field is described by the two-

dimensional wave action density spectrum, N(,θ), where  is the angular wave 

frequency and θ is the wave direction. The wave action density spectrum is used in lieu 

of the energy density spectrum, for action density is conserved in the presence of 

currents whereas energy density is not; in any case, the wave energy spectrum may be 
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computed from the wave action spectrum. The wave action balance equation is 

discretised by means of the finite difference method in time, geographic space (x,y), and 

spectral space (ω,θ). 

The spectral wave action balance equation reads 

 
( )( ) ( ) ( )yx
c Nc N c N c NN S

t x y

 

  

  
    

    
  (3.3) 

The first term on the left-hand side represents the local rate of change of wave 

action density in time; the second and third terms stand for the propagation of wave 

action over geographical space, with propagation velocities  and  in the  and

directions respectively; the fourth term quantifies the shifting of the relative frequency 

due to variations in depths and currents, with propagation velocity c in the  direction; 

finally, the fifth term represents the effects of refraction induced either by depth 

variations or by currents, with propagation velocity  in the  direction. The 

expressions of the above propagation velocities are derived from linear wave theory. As 

for the right-hand side of the equation, S includes the source and sink terms of physical 

processes which generate, dissipate or redistribute wave energy: 

 4 3nl nl in wc bot brkS S S S S S S        (3.4) 

where Snl4 refers to the redistribution of energy by nonlinear quadruplet wave–wave 

interactions, Snl3 the non-linear triad redistribution of wave energy, Sin the transfer of 

energy from the wind to the waves and the dissipation of wave energy due to 

whitecapping, Sbot the sink term of energy dissipation by bottom friction and Sbrk the 

energy dissipation in random waves due to depth-induced breaking.  

xc yc x y

c 
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The wave energy flux, also called wave power, is computed on its x− and y− 

components with the two following expressions: 

   (3.5) 

   (3.6) 

where E(σ,) is the directional spectral density, which specifies how the energy is 

distributed over frequencies (σ) and directions (). The wave power magnitude is then 

calculated as 

  . (3.7) 

The whole set of the governing equations regarding the spectral description of wind 

waves, the propagation of wave energy, the source and sinks, the influence of ambient 

current on waves, the modelling of obstacles and the wave-induced set-up can be found 

at SWAN’s manual (SWAN, 2007). 

Numerical model application 

SWAN has been developed to simulate coastal wave condition, and for this purpose 

the essential input data consists in a detailed bathymetry and the incident wave and 

wind field. The wave and wind data can be prescribed offshore coupling SWAN with 

larger scale models. In the case of the present document, the wave data is obtained with 

a three-hourly frequency from WaveWatch III, a third-generation offshore wave model 

consisting of global and regional nested grids with a resolution of approx. 50 km 

(Tolman, 2002b). In the same line, the wind data was provided from the Global Forecast 

System (GFS) weather model. 
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The best practice to apply the model efficiently is through various grids, refining the 

grid towards the area of interest. In this line, the nesting concept is a very important 

implementation in order to reduce computational time and enhance accuracy, and it 

refers to computations conducted first on a coarse grid for a larger region and using the 

results as boundary conditions for a finer grid in the region of interest. The same types 

of coordinates (cartesian or spherical) have to be used in order to apply nesting. It is 

important to mention that curvilinear grids can be used for nested computations, but the 

boundaries should always be rectangular. Moreover, SWAN can also simulate 

unstructured grids, also called irregular grids and consists of triangles or tetrahedrons in 

an irregular pattern. This is relevant for complex bottom topographies in shallow areas 

and irregular shorelines. 

Hence, as calculations are performed on a grid, SWAN is an Eulerian model that 

accounts for refractive propagation over varying bathymetries and current fields by 

solving the discrete balance equation. SWAN provides a representation of directional 

and non-directional spectrum at any point of the computational grids through spectral 

and time-dependant parameters of waves, e.g. wave height, peak or mean period, wave 

direction and energy transport.  

On these grounds, the application of SWAN in this thesis will be conducted using 

two computational grids, a coarse grid from offshore to the coast and a high-resolution 

nested grid in the area of interest. The resolution of the nested grid allows the precise 

definition of the WEC position in the array and the simulation of their individual wakes 

with accuracy. This is a prerequisite to a detailed assessment of the wave farm effects 

(Carballo & Iglesias, 2013). The device that will be considered for the study is the 

WaveCat Overtopping WEC, as explained in Section 2.3.2 WEC technologies. The 

WEC-wave field interaction will be modelled by means of the wave transmission 
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coefficients obtained in the laboratory tests (Figure 2.13) conducted at the laboratory of 

Porto by Fernandez et al. (2012). The transmission coefficients were calculated as the 

ratio between the wave heights measured in the lee and in front of the device under 

different wave conditions. The results showed that the wave transmission coefficient 

presented very small variability (Kt ~ 0.76), and therefore a constant value will be used 

in the medium- and long-term analysis. The limited range of wave conditions impeded 

the development of a frequency-dependant model; however, this is included in the 

future lines of research as part of the European WAVEIMPACT project lead by Prof 

Gregorio Iglesias and that is focussed on the interaction between a wave farm and the 

ocean through laboratory tests and numerical modelling (vid Section 10.2 Future 

Research lines) 

3.2 MODELLING WAVE FARM IMPACTS ON THE BEACH MORPHOLOGY 

The results of the wave propagation model will be coupled to a coastal processes 

model for the first time for this purpose. Applying a coastal processes model, the natural 

coastal response during time-varying storm conditions can be assessed. In this sense, the 

effects on the coast of the modification of the wave conditions caused by the wave farm 

will be studied in this thesis in order to establish the effectiveness of wave farms to 

protect the coast.  

While the number of wave models and theories is large, the number of models to 

describe the beach morphodynamics is limited. The coastal processes models could be 

classified in two categories: depth-averaged and depth-resolving models. The latter 

correspond with phase-resolving models, primarily Boussinesq models; which resolve 

the wave field on the time scale of individual waves and are capable to model the non-

linear evolution of the wave field with accuracy. However, despite of their advantages 

to simulate the wave field, their representation of the coastal processes is less efficient. 
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Furthermore, depth-integrated models require higher computational costs and this make 

them not appropriate for simulating storm clustering.  

On the other hand, depth-averaged models have evolved from 1DH (2D) to 2DH 

(3D). The Storm-induced BEAch Change, SBEACH (Larson & Kraus, 1989) model 

was one of the first numerical models to analyse beach erosion and is cross-shore beach 

numerical model to analyse berm, and dune storm-induced erosion. The model is 

limited to cross-shore given that to account for the landward transport, heuristic 

approaches can be adopted, but their application to analyse the beach morphology (3D) 

is very complicated. In this context, XBeach is a three-dimensional model for wave 

propagation, long waves and mean flow, sediment transport and morphological changes 

of the nearshore area, beaches, dunes and back barrier during storms.  

Moreover, the model has been widely and successfully applied to simulate the 

beach response under storm conditions (Callaghan, Ranasinghe & Roelvink, 2013; 

McCall et al., 2010; Pender & Karunarathna, 2013; Roelvink et al., 2009; Splinter et al., 

2014), so XBeach is the most appropriate coastal processes model to analyse the effects 

of wave energy extraction on the beach. 

3.2.1 XBEACH 

Model equations 

The model solves coupled 2D horizontal equations for wave propagation, flow, 

sediment transport and bottom changes, for varying (spectral) wave and flow boundary 

conditions. Wave processes are solved with the time dependent wave action balance 

equation (2.4) coupled to the roller energy equations and the nonlinear shallow water 

equations of mass and momentum; and sediment transport are modelled with a depth-

averaged advection diffusion equation on the scale of wave groups.  
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The wave group forcing is derived from the time-varying wave action balance with 

a dissipation model different to the presented for the wave propagation model and 

allows the combination with wave groups. A roller model is used to represent 

momentum stored in surface rollers which leads to a shoreward shift in wave forcing. 

The wave-group forcing drives infragravity motions and both longshore and cross-shore 

currents. To model these infragravity waves and unsteady wave-induced currents, in 

addition to surface elevations and flows, the shallow water momentum and mass 

balance equations are implemented by means of the Generalized Lagrangian Mean 

formulation. These equations are not presented given that are out of the scope of this 

thesis and can be found in the XBeach’s manual (Roelvink et al., 2006), however the 

depth-averaged advection diffusion equation (Galappatti & Vreugdenhil, 1985) is 

presented below due to its importance in the erosion process, 

( ) ( ) ( )
   

E E
eq

s s
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hC hChC hCu C hCv C
D h D h
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      

         
 (3.8) 

where the x- and y-coordinate represent the cross-shore and longshore direction, 

respectively, C is the depth-averaged sediment concentration, Ds is the sediment 

diffusion coefficient, the terms u
E
 and v

E
 represent the Eulerian flow velocities, Ts is the 

sediment concentration adaptation time scale that depends on the local water depth and 

the sediment fall velocity, and Ceq is the equilibrium concentration according to the Van 

Rijn-Van Thiel formulation (Van Thiel de Vries, 2009), thus representing the source 

term in the sediment transport equation. 

The novelty of this model lies in the computation of the sediment transport in the 

time-scale of wave groups since they dominate the flow during overwash in conjunction 

with a robust momentum conserving drying/flooding formulation regimes. Furthermore, 

as the model takes into account the variation in wave height in time it resolves the long 



Chapter 3 

74 

 

wave motions created by this variation, so-called ‘surf beat’, and is responsible for most 

of the swash waves that actually hit the dune. Hence, XBeach is more capable to model 

the development of the onshore/offshore sediment transport. 

Numerical model application 

Similarly to SWAN, the necessary data to simulate the beach response using 

XBeach is bathymetry data and wave and water level conditions. The bathymetric data, 

gathered during field campaigns, is interpolated onto the grids. In the case of coastal 

processes models, it is not common to use the concept of nested grids to study the 

response of beaches. Regarding the water levels and wave conditions, the model allows 

the implementation of water level time series to all four corners of the model domain 

and wave forcing on the offshore boundary. In this line, the definition of the grid should 

be aligned with the direction of the beach in order to cover with one of the contours the 

beach area, and with the opposite the offshore one. Thus, the offshore wave conditions, 

extracted from SWAN, will be prescribed in this offshore boundary. Finally, the results 

of the bed levels, water levels, water depths and concentrations are defined in the cell 

centres, and velocities and sediment transports are defined at the cell interfaces.  

3.3 IMPACT INDICATORS 

The wave farm impacts on the nearshore wave conditions and the beach 

morphology were analysed be means of a series of impact indicators. 

3.3.1 WAVE CONDITION INDICATORS 

The farm impacts on the nearshore wave conditions were analysed by means of the : 

(i) the Reduction in the Significant wave Height, RSH, and (ii) the average wave power 

of the wave farm, WECJ . These indicators are applied to the results of the wave 

propagation model.  
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The quantification of the attenuation of the wave height in the lee of the device is 

carried out by means of the Reduction in the Significant wave Height (RSH) index, 

defined by  

 
, ,

,

( ( , ) ( , ))
( , )

( , )

s b s f
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H x y H x y
RSH x y

H x y


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where Hs,f  and Hs,b are the significant wave height with and without the wave farm, 

respectively, at a point in the coast designated by its coordinates (x,y), with the x-

coordinate referring to the easting and the y-coordinate to the northing of the 

computational grids of the wave propagation model.  

The average wave power of a WEC, WECJ , quantifies the average resource available 

in front of a generic WEC of the wave farm. This indicator is defined to compare the 

resource found at different locations and varying the key design wave farm parameters, 

e.g. farm-to-coast distances and spacing between devices. WECJ , in units of Wm
-1

 in the 

SI, is defined as 

 ,1 1

1 N M

WEC n mn m
J J

M N  
     (3.10) 

where the index n = 1…N refers to the WEC, with N the total number of WECs in 

the farm, m = 1…M refers to the point in time, based on the discretisation  

 t m t    (3.11) 

where t is time and M is the total number of time points studied and Jn,m is the wave 

power incident on the n-th WEC at the m-th point in time, which is calculated applying 

the equation (2.7). 
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 Finally, the total incident power in the device is calculated through the capture 

width, which computes the wave crest captured by the device. This factor varies 

according to the type of WEC and for the case of the WaveCat is the distance between 

its twin bows, equal to 90 m. 

3.3.2 BEACH INDICATORS 

The ad hoc impacts on the coastal morphodynamics were studied applying the 

impact indicators developed in the framework of this thesis: (i) Bed Level Impact (BLI), 

(ii) beach Face Eroded Area (FEA), (iii) Non-dimensional Erosion Reduction (NER), 

and (iv) mean Cumulative Eroded Area (CEA). These impact indicators are applied to 

the results of the coastal propagation model and allow the quantification of the 

offshore/onshore and alongshore sediment transport. 

The bed level impact (BLI), with units of m in the S.I., represents the change in bed 

level caused by the wave farm and is defined as  

      , , , ,f bBLI x y x y x y     (3.12) 

where ζf(x,y) and ζb(x,y) are the seabed level with the farm and without it (baseline), 

respectively, at a generic  point of the beach designated by its coordinates (x,y) in the 

computational grid of the coastal processes model. The y-coordinate axis follows the 

general coastline orientation, with the y-coordinate increasing towards the eastern end of 

the beach, and the x-coordinate represents the beach profiles with x-values increasing 

towards the landward end of the profile. A positive value of BLI signifies that the 

seabed level is higher with the farm than without it. 

The storm-induced erosion in the beach face area, which corresponds to the seaward 

section of the beach exposed to and shaped by the action of waves, is quantified by the 
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beach face eroded area (FEA) indicator, with units of m
2
 in the S.I., and it is defined in 

both scenarios, baseline (FEAb) and with the wave farm (FEAf): 
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where ζ0(x,y) is the initial bed level at the point of coordinates (x,y), and x1 and xmax 

are the values of the x-coordinate at the seaward end of the beach face and landward end 

of the profile, respectively. The FEA indicator is a profile function, and hence depends 

on only the y-coordinate. 

The non-dimensional erosion reduction (NER) is also a profile function, in this case 

non-dimensional, defined as 

 ( )
b f

b

FEA FEA
NER y

FEA


 . (3.15) 

It expresses the variation in the eroded area of a generic profile (y) brought about by 

the wave farm as a fraction of the total eroded area of the same profile. A positive or 

negative value implies a reduction or increase in the eroded area as a result of the wave 

farm. 

Finally, the mean cumulative eroded area (CEA), with units of m
2
 (or m

3
 per linear 

metre of beach) in the S.I., was also determined in the baseline (CEAb) and with the 

wave farm (CEAf) scenario. For its definition, three reference profiles were considered: 

P1, P2 and P3 (Figure 3.14). For each of these the beach was divided into two parts, to 
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the north (CEAb
N
 and

N

fCEA ) and south (CEAb
S
 and

S

fCEA ) of the reference profile, and 

the corresponding indicators were computed from 
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where χ is the variable of integration representing the coordinate along the profile, 

and x and x0, and y0, ymax and yP are the limits of integration along the profile and along 

the coast, respectively. x0 is the value of the x-coordinate corresponding to the first point 

of the profile and x takes values from x0  to xmax. Along the beach, y0 is the value of the 

y-coordinate corresponding to the westernmost point of the beach, ymax the easternmost 

point and yP the value corresponding to the reference profile. The factor represents the 

average cumulative eroded area of the two sections of the beach along the profile (x). A 

positive value signifies that the mean volume of material along the section of the beach 

is reduced compared with the initial situation (erosion). 
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4. CASE STUDIES 

A number of aspects are considered in the selection of the cases studies: the wave 

energy resource, the threat of coastal erosion in the adjacent beaches, the distance to 

populated areas and the availability of data (water level, wave field and bathymetric). 

Following this, two case studies are selected along the Atlantic façade of Europe: 

Perranporth and Xago Beach, located in the SW England and N Spain, respectively.  

While at Xago Beach the location of the wave farm is delimited by the Asturian 

Institution for Energy Development (FAEN), at Perranporth Beach there is no defined 

area, which allows the study of the role played by several key design parameters, e.g. 

the farm-to-coast distance and the farm layout (vid Chapter 7, 8 and 9). 

In this chapter, the main features and data of both beaches will be presented. 

4.1 PERRANPORTH BEACH 

Perranporth Beach is a 3.6 km sandy beach located in Cornwall, SW England 

(Figure 4.1). The selection of this case study is motivated by two main reasons: (i) the 

erosion experienced by the beach over the last years, and particularly under the storms 

of February 2014; and (ii) the interest of the area for wave energy development, as 

shown e.g. by the nearby Wave Hub – a grid-connected offshore facility for WEC 

testing.  
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Figure 4.1 Location of Perranporth Beach and the Wave Hub in SW England [left; water depths in m], and 

aerial photo of the beach [right; courtesy of Coastal Channel Observatory]. 

Regarding the coastal erosion issues, the dune erosion during the storms of winter 

13/14 threatened the foundations of many properties in the waterfront as can be seen in 

Figure 4.2. The Cornwall Council estimated that 1x10
6
 tonnes of sand were washed out 

at Perranporth Beach, i.e. 210.28 m
3
/m (cubic metres per metre width of beach) were 

eroded during that winter (Watknis, 2014). Furthermore, these figures are set to increase 

as a result of sea-level rise and increased storminess due to climate change, e.g. Pugh 

(2004), Stocker et al. (2014) and Chini et al. (2010). Then, it is hard to overstate the 

economic and environmental consequences of coastal erosion: loss or damage to 

property and infrastructure, losses through decreased revenues in the tourist and 

recreational sectors, etc. 

In this line, the Cornwall and the Isles of Scilly Coastal Advisory Group declared 

Perranporth subject to flooding and erosion in the latest Shoreline Management Plan 

(CISCAG, 2011) and, stated that, although it is not recommended to carry out any short-

term action, it is necessary to monitor the beach as current erosive trends could risk 

many properties, and therefore intervention would be required in the near future. For 
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these purposes, a substantial investment (over £3.2 billion from April 2010 to March 

2015) has been and will be undertaken by the Department for Environment, Food & 

Rural Affairs (DEFRA) to manage areas in flood and coastal erosion risk (DEFRA, 

2015b).  

 

Figure 4.2 Damages at Perranporth Beach after storms in winter 2013/14. Courtesy of West Briton. 

Regarding the resource, the area has been identified as a prime region for the 

development of wave energy, as explained in Section 2, and has attracted research 

attention from the characterisation of the resource (Martinho & Soares, 2011; van 

Nieuwkoop et al., 2013) to the determination of the wave farm impacts on the wave 

conditions (Gonzalez-Santamaria, Zou & Pan, 2013; Millar, Smith & Reeve, 2007; 

Reeve et al., 2011b; Smith, Pearce & Millar, 2010). 

As for the beach, Perranporth is located on the north coast of Cornwall and faces the 

Atlantic Ocean and Perran Bay. It lies between two rocky headlands and is oriented 

northeast-southwest. The beach is backed by a sandy dune, which has been designated 

as a Special Area of Conservation by the European Union. The beach has a relatively 

flat intertidal area, tan β = 0.015 – 0.025, and a medium sand size, D50 = 0.27 – 0.29 

mm, derived from the erosion of rocky shores and cliffs (Austin et al., 2010). The Mean 

Spring tidal Range (MSR) is 6.3 m (macro-tidal beach) and the tidal regime is 

semidiurnal.   
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The beach is characterised by the occasional presence of a submarine bar, at water 

depths between -5 and -10 m, particularly in winter, which forms part of the response 

mechanism of the natural system to protect the beach face from increased wave attack. 

It has a bearing on behaviour of the beach; under energetic waves and increased 

offshore sediment transport, it grows at the expense of the intertidal beach face. This 

causes that waves break over the bar and create rip circulation. These rip currents are 

anti-clockwise and are controlled by the gaps in the bar. In this sense, the beach has 

been described as dissipative (Butt, Russell & Turner, 2001; Masselink et al., 2005) and 

as a low-tide bar rip system (Scott, Masselink & Russell, 2011; Scott et al., 2007), with 

Austin et al. (2010) indicating that it is at the transition between the low tide bar/rip and 

dissipative beach.  

The beach profiles used in this document were obtained through field surveys 

conducted by the Coastal Channel Observatory. The surveys conducted at the end of 

summer at Perranporth Beach, are generally associated with less energetic wave 

conditions. The beach profile evolution is characterised during the summer by an 

increase of the sediment transport onshore. In contrast, offshore movement of sediment 

is the predominant phenomenon during the winter owing to the more energetic wave 

conditions, which results in a lowering of the intertidal beach face. Indeed, most of the 

profile changes at Perranporth Beach occur in the lower intertidal to sub-tidal active 

regions (Scott, Masselink & Russell, 2011).  

The wave conditions are described using half-hourly data from the directional wave 

buoy off Perranporth, in approximately 10 m of water, operated by the Coastal Channel 

Observatory. The analysis of these reflects the exposure of the area to heavy swells 

generated by the long Atlantic fetch, as well as to locally generated wind seas. The 

average significant wave height (Hs), peak period (Tp) and peak direction (θp) in the 
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period covered by the wave buoy data (2006 – 2014) were: 1.79 m, 10.36 s and 280°, 

respectively. 

  

Figure 4.3 Location of the wave buoy deployed off Perranporth at a water depth of 10m. Chart (left) and 

photo (right) courtesy of Marine Digimap and Coastal Channel Observatory. 

 

Figure 4.4 Significant wave height rose (m) at the offshore wave buoy off Perranporth from 18/12/2006 - 

31/12/2015. Source: Coastal Channel Observatory 
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The wave rose off Perranporth (Figure 4.4) illustrates that waves come 

predominantly from the IV quarter (W-N). The mild waves (the most common) come 

from directions around the East, while the greatest waves are more likely from 

directions around the NW. This is also shown in Figure 4.5; where the wave heights 

over 4 m generally come from directions around 300°. Observing the period, the waves 

can be distinguished between swell and wind waves. The former and more frequent are 

associated to higher periods, in general peak periods over 10 s and are the result of the 

orientation of the coastline and its exposure to the long Atlantic fetch. Whereas the 

latter corresponds with periods around 5 s and are consequence of the strongest winds, 

usually from the NW, with the mean wind speed at a height of 10 m above the sea 

surface, u10, over 20 ms
−1

. 

 

Figure 4.5 Joint distribution (% of occurrence) from 18/12/2006 - 31/12/2015 of the main wave parameters: 

Direction, Peak Period (Tp), Mean Period (TZ) and Significant Wave Height (HS). Source: Coastal Channel 

Observatory. 
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The wave data from the offshore buoy will be used to validate the results of the 

wave propagation model, which will be forced with the hindcast data from WaveWatch 

III, as explained in the Methodology (Section 3.1.5.1).  

In addition, as the SW coast of England is characterised by a large tidal range, tide 

was included into the morphodynamic model with constituents obtained from the TPXO 

7.2 global database, a global model of ocean tides that solves the Laplace equations 

using data from tide gauges and the TOPEX/Poseidon Satellite (Egbert, Bennett & 

Foreman, 1994) . 

 

4.2 XAGO BEACH 

Xago Beach, an approx. 2 km sandy beach located on the coast of Asturias (N 

Spain), was selected based on the studies of the Asturian Institution for Energy 

Development (FAEN), which defined two locations for the installation of the first 

offshore wave farm on the Spanish Coast (Figure 4.6): Xago and Llumeres Beach (Flor-

Blanco et al., 2011). The determination of these areas for wave energy exploitation were 

motivated by the large wave energy resource found in the characerisation of their 

resource (Iglesias & Carballo, 2010b) and the ad hoc morphologic and bathymetric 

study to select the adequate area for the deployment of a wave farm.  

Xago was selected rather than Llumeres for three reasons: (i) the resource was 

greater in Xago than Llumeres, which is sheltered to the waves from the IV quarter by 

Cabo de Peñas; (ii) while the Xago area is located in front of Aviles, the third biggest 

city of Asturias with a population over one hundred thousand people, the population of 

the cities near Llumeres do not exceed ten thousand people; and finally (iii) in the lee of 

the area defined in Xago, it is found Xago Beach, a very touristic place that has 
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experienced significant erosion over the last lustrum, which may affect the economy of 

the area. In contrast, in the lee of the area defined in Llumeres, it is found Llumeres 

Beach, a 500 m gravel beach whose relevance is not as significant as Xago Beach. 

 

Figure 4.6 Location of Xago Beach in Asturias, N Spain. The squares on the right-hand side of the figure 

delimit the areas selected for the deployment of wave farms: Xago and Llumeres beaches. 

Xago is a large, embayed and mostly dissipative beach, which is transformed into 

low-tide bar/rip channel systems at times of low wave conditions. The beach, 

characterised by a flat intertidal area, is practically rectilinear with an orientation 

southwest-northwest and a medium siliciclastic sand size. A number of samples were 

collected in the intertidal area to determine the grain size distribution – an essential 

prerequisite for the coastal processes model. The values of D50 (= 0.27 mm) and D90 

(= 0.43 mm) and are obtained by means of the GRADISTAT model (Blott & Pye, 

2001).  

With a semidiurnal tidal regime and a Medium Spring tidal Range (MSR) of 2.66 

m, Xago lies at the transition between a lower mesotidal and a macrotidal beach (Flor-

Blanco, Flor & Pando, 2013). The wave conditions are analysed using the wave data 

from the SIMAR-44 dataset, a suite of hindcast points along the Spanish coast that 

analyse the wave conditions during the last 44 years. Particularly, the SIMAR point 

3085039 located off Xago Beach is used for this purpose (Figure 4.7). The wave rose in 
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this point (Figure 4.8) shows that the beach is exposed primarily to waves from the IV 

quarter, particularly from the NW, with a probability of occurrence greater than 70%.  

Finally, high-resolution bathymetric data of the study area, obtained in ad hoc 

surveys conducted by the University of Oviedo, are used as input for the coastal 

processes and wave propagation numerical models. Importantly, this dataset covered 

not only the submarine beach but also the subaerial, including the dune system, with 

elevation values ranging from –20 m to +15 m (relative to the Spanish National 

Geodetic Vertical Datum). 

 

Figure 4.7 Location and relevant information of the SIMAR point 3085039. Courtesy of Google Earth. 
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Figure 4.8 Wave rose of the SIMAR point 3085039. Courtesy of Puertos del Estado. 
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5. WAVE FARM IMPACTS ON THE BEACH PROFILE 

If a wave farm is to be used for protecting the coast, in addition to its primary 

objective of generating free-carbon energy, it is essential to understand its impact on the 

beach profile – an aspect of great practical relevance that has not been investigated so 

far. This is the main objective of the present chapter, which is conducted through a case 

study: Perranporth Beach. The following contents are published in the paper of Coastal 

Engineering (5-year impact factor: 2.757): “Wave farm impact on the beach profile: 

a case study”, which was accepted for publication on the 13 January 2014.  

This chapter is structured as follows. In section 5.1, the specific methods and data 

used to study the impacts in the medium term are presented. This is followed by the 

results describing the impact of the wave farm on the wave conditions and the evolution 

of the beach profiles in Section 5.2. Finally, in Section 5.3, conclusions are drawn 

concerning the effects of a wave farm on the beach profile. 

5.1  MATERIALS AND METHODS 

The study covered the period from November 2007 to May 2008, corresponding to 

the part of the annual cycle with the highest frequency of storms based on the onsite 

wave buoy data. This time scale allows the assessment of the morphological changes in 

beaches, such as scarp formation, profile erosion and accretion, and bar evolution 

(Cowell & Thom, 1994). 

The wave data used for this study were hindcast and onsite wave buoy data. The 

directional wave buoy of the Coastal Channel Observatory located in front of 

Perranporth beach, in approximately 10 m of water depth with reference to the local 

chart datum (LCD), provided half-hourly data. The wave buoy data were used in 

conjunction with hindcast data from WaveWatch III to validate the high-resolution 
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nearshore wave propagation model from November 2007 to November 2008. During 

the period studied, the mean values of significant wave height, Hs, and peak wave 

period, Tp, were 2.4 m and 13 s, respectively. Given the orientation of the coastline and 

its exposure to the long Atlantic fetch, the relevant wave directions come from the IV 

quarter (from W to N), prevailing NW.  

Wind data with a three-hourly frequency obtained from the Global Forecast System 

(GFS) weather model were used as input of the wave model. In the period covered in 

the study the mean wind velocity magnitude at a height of 10 m above the sea surface 

was u10 = 9.5 ms
−1

. The strongest winds came from the NW, with u10 values exceeding 

20 ms
−1

. 

 

Figure 5.1 Initial beach profiles (P1 and P2) including their location and the position of the wave buoy. Water 

depth in relation to local chart datum 

As mentioned in Section 3, the methodology is based on coupling two numerical 

models: a nearshore wave propagation model (SWAN) and a morphodynamic model 

(XBeach), which are run in two scenarios, both with and without the wave farm. 
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Regarding SWAN, a high-resolution grid is essential in this work in order to: (i) 

implement the WECs that formed the wave farm in their exact position, (ii) represent 

accurately the impact of the wave farm on the wave conditions in its lee, and (iii) 

determine the wave conditions to establish the morphodynamical state of the beach. On 

this basis, two computational grids are defined (Figure 5.2): (i) an offshore grid 

covering approx. 100 km × 50 km with a grid size of 400 × 200 m, and (ii) a high-

resolution nearshore (nested) grid covering the study area, with dimensions of approx. 8 

km × 6 km and a grid size of 16 m × 12 m. 

 

Figure 5.2 Computational grids of the wave propagation [water depths in m]. 

To study the effects of wave energy exploitation on the beach profile an array of 11 

WaveCat WECs arranged in two rows was considered. Following Carballo and Iglesias 

(2013), the array was located in a water depth of 35-40 m (Figure 5.3). The distance 

between devices was 2.2D, where D = 90 m is the distance between the twin bows of a 

single WaveCat WEC. Finally, the wave transmission coefficient of the WECs, 

obtained from the laboratory tests carried out by Fernandez et al. (2012), was input into 

the coastal propagation model. Based on the results of these tests, which showed a very 

small variability in the wave transmission coefficient, the value Kt = 0.76 was adopted.  
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Regarding XBeach, this model is generally applied to analyse the response of the 

beach under storm conditions (Armaroli et al., 2013; McCall et al., 2010), however in 

this case analyses the beach profile evolution in the medium term. For this purpose, the 

approach used in Pender and Karunarathna (2012, 2013) is followed, as they 

demonstrated that XBeach is capable of modelling the medium-term evolution of the 

beach profile of a sandy beach. Their results showed a good fit to the measured profiles 

after each storm period.  

 

Figure 5.3 Schematic of the wave farm considered off Perranporth Beach, at a distance of 6 km from the 10 m 

water depth contour. Profiles P1 and P2 are shown. 

From the results of the nearshore wave propagation model, spectra with a frequency 

of 6 hours are obtained with and without the wave farm to compare the impact on the 

coast. These spectra were the input of the morphodynamic model, which provided beach 

profile results every 6 minutes to compare their evolution in both cases. 

A varying grid size was employed in the morphodynamic model: the resolution was 

defined as a function of the water depth and the offshore wave conditions, and subjected 
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to the grid size smoothness constraints. On these grounds, the Courant condition was 

applied to find the optimal grid size. The optimised grid was coarser in high water 

depths and finer in the intertidal zone, where a size of 1 m was adopted so as to 

accurately characterise the evolution of the profile.  

 

Figure 5.4 Optimised X-Beach grid 

Finally, to describe properly the behaviour of the beach, the time series of wave 

data was broken down into a number of segments (Table 5.1). These segments were 

grouped into two types, Type A (Accretion) and Type E (Erosion), depending on the 

values of the wave parameters and the consequent nature of the beach profile changes, 

either accretionary or erosionary. Type A, associated with calm conditions, was set with 

a stationary constant wave energy distribution, based on given values of root mean 

square wave height (Hrms), mean absolute wave period (Tm01), mean wave direction (θm) 

and directional spreading coefficient (s), obtained from the nearshore wave propagation 

model. Type E, associated with storm periods, used the parametric spectra as input to 

create time-varying wave amplitudes, i.e., the envelopes of wave groups (Van 

Dongeren, Battjes & Svendsen, 2003). The difference in approach between the two 

categories is the way that wave groups were treated. Type A segments included wave 

groups, as they are important to describe the behaviour of the beach during erosion 
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conditions. In contrast, wave groups were not taken into account in Type E segments 

because this would result in an overestimation of erosion (Baldock, Manoonvoravong & 

Pham, 2010). 

Table 5.1 Accretionary and erosionary periods with their corresponding average wave conditions 

 

5.2 RESULTS 

First, the model was validated using the wave buoy data at Perranporth Beach from 

November 2007 to October 2008, missing out January 2008 owing to the lack of data. 

Figure 5.5 and Figure 5.6 show the good fit achieved between the significant wave 

height computed by SWAN and the values from the wave buoy. The coefficient of 

determination, R
2
, and the Root Mean Square Error, RMSE, confirm the goodness of the 

fit: R
2 

= 0.94 and RMSE = 0.38 m.  

Type Period 
Number of 

days 

Wave conditions  

SH (m) PT (s) 

Accretion 
01/11/2007- 

30/11/2007 
30 1.017 7.672 

Erosion 
31/11/2007- 

10/12/2007 
10 3.918 11.444 

Accretion 
11/12/2007- 

23/12/2007 
13 1.369 10.047 

Erosion 
23/12/2007- 

07/02/2008 
44 2.563 10.257 

Accretion 
08/02/2007- 

23/02/2008 
15 1.387 10.841 

Erosion 
24/02/2007- 

01/04/2008 
38 2.359 9.838 

Accretion 
02/04/2007- 

30/04/2008 
29 1.278 8.491 
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Figure 5.5 Time series of simulated (Hs, SWAN) and measured (Hs, buoy) significant wave height. The vertical lines 

depicted in the graph show the months 1, 3 and 6 after the first point of the simulation. 

 

 

Figure 5.6 Scatter diagram: simulated (Hs, SWAN) vs. measured (Hs, buoy) significant wave height. 

Second, having validated the numerical model, it was used to compare the wave 

patterns with and without the wave farm and to determine the wave conditions to be 

used as input to the morphodynamic model. As an example of the effects of the wave 

farm on the wave patterns, the wave propagation corresponding to the peak of a storm 

on 10 March 2008 is shown in Figure 5.7. The deep water wave conditions were: 

significant wave height, Hs0 = 10.01 m; peak wave period, Tp = 15.12 s; and peak wave 

direction, θp = 296.38°. A substantial decrease of the significant wave height was 

M1 M3 M6 
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apparent in the lee of the wave farm. This decrease was less marked on the beach itself 

due to the wave energy diffracted from the edges into the shadow of the farm. In the 

northern section of the beach the reduction of wave height was more pronounced than 

elsewhere owing to the deep water wave direction (approx. WNW). For waves coming 

from northern direction the shadow brought about by the wave farm was expanded to 

southern sections of the beach, although the greatest impact was still found in the north 

part of the beach.  

 

Figure 5.7 Significant wave height in the baseline scenario (Hs,b) and in the presence of the farm (Hs,f) at the 

peak of a storm (10 Mar 2008, 18:00 UTC) [Deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp = 

296.38 °].  

For a better quantification of the impacts of the wave farm on the wave conditions, 

the RSH index is applied, which refers to the reduction of the significant wave height in 

the lee of the wave farm (Figure 5.8). The greatest impact was found in the lee of the 

second row of devices, with RSH values exceeding 0.5. The reduction reached another 

peak towards the coastline as a result of the merging of the wakes caused by the WECs, 

with values of approx. 0.4. As mentioned above, these values decreased towards the 

coastline, however the alteration of the wave conditions cannot be overlooked and have 

a significant bearing on the evolution of the beach profile. 
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Figure 5.8 Reduction of the significant wave height (RSH) brought about by the wave farm at the peak of a 

storm (10 Mar 2008, 18:00 UTC) [Deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp = 296.38 °].  

The modification of the wave patterns in the lee of the wave farm could be affected 

by the division of the spectral space carried out by the wave propagation model, in 

which elementary bins with a constant directional resolution Δθ are employed (Zijlema, 

2010). A priori this should not affect the accuracy of the results, as the number of 

directions used in this documents were 36; i.e. a directional resolution of 5 degrees. This 

value is recommended in the literature (SWAN, 2007), but even higher values (30 

degrees) have been applied to conduct successfully wave propagations (Monbaliu et al., 

2000). In addition, the wave energy is not just concentrated in one directional sector, as 

due to refraction and nonlinear interactions, wave energy shifts in the spectral space 

from one directional sector to another. Therefore, the results seem not to be altered by 

the spectral resolution, as can be seen in Figure 5.8, where the wakes caused by the 

WECs are smaller than the 5 degrees and are represented in the space domain.  

Observing the effects on the wave power (J), similar patterns can be observed, with 

the greatest impact taking place in the north section of the beach (Figure 5.9). The 
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average reduction of the wave power during the period studied at different points along 

the 10 m contour is shown in Table 5.2. In line with the results previously presented, the 

areas most sheltered by the wave farm are the middle and, especially, the north section 

of the beach. On these grounds two profiles in the north and middle sections of 

Perranporth Beach are selected for the analysis of the impacts of the wave farm on the 

beach profile (Figure 5.1). 

 

Figure 5.9 Wave power in the baseline scenario (Jb) and in the presence of the farm (Jf) at the peak of a storm 

(10 Mar 2008, 18:00 UTC) [Deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp = 296.38 °]. 

 

Beach Point 
Coordinates 

ΔHs (%) ΔJ (%) 
Easting (°) Northing (°) 

North -5.17 50.36 3.26 12.82 

Middle -5.18 50.35 1.75 6.80 

South -5.21 50.34 0.70 1.52 

Table 5.2 Significant wave height reduction (ΔHs) and wave power reduction (ΔJ) caused by the wave farm at 

different points along the 10 m contour. 

The evaluation of the resource in the wave farm was carried out by means of the 

 indicator, which represents the annual mean wave power incident on a generic 

WEC of the wave farm. The resource was evaluated during the year used for the 

validation purposes (Nov 2007 – Oct 2008) to consider both summer and winter period. 

WECJ



Chapter 5 

102 

 

The average resource found in the case of locating the wave farm at a distance of 6 km 

from the coast was 17.26  kW/m. Considering the 11 WECs that form the wave farm 

and the capture width of the WaveCat (90 m), the annual mean of the total incident 

wave power at the wave farm was 17 MW. Applying the values obtained in Fernandez 

et al. (2012) for the efficiency of the WaveCat, the annual mean production of a wave 

farm of 11 WECs would be 4 MW. As this technology is in a nascent stage, the 

performance of wave farms would be further discussed further in Section 10.1.3, 

comparing the performance presented with other WECs.  

Third, the impact of the wave power reduction on the beach was studied through the 

evolution of the two profiles of Perranporth Beach. This was carried out using the 

spectra generated by the wave propagation model with and without the wave farm in the 

morphodynamic model. The series were split, as explained in the methodology, to 

describe suitably the behaviour of the beach in different periods. The results showed 

that type E segments are mainly responsible for the erosion of the profiles.  

Figure 5.10 shows the evolution of the beach profiles 1 (P1) and 2 (P2) after a 

storm. The graph compares the initial beach profiles with those after three months of 

operation of the wave farm. Both graphs illustrate that the erosion of the profiles is 

concentrated mainly in the beach face, which is the section of the profile exposed to 

wave uprush. The eroded material was moved to lower sections of the profile. 
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Figure 5.10 Bed level at beach profile P1 and P2: initial [1 Nov 2007, 0000 UTC] and after three months with 

and the wave farm [22 Jan 2008, 15:47 UTC]. The average wave conditions between these two points in time 

were: Hs = 2.02 m and Tz = 939 s. 

To better visualise the effect of wave energy extraction, the situation of profile P2 

with and without the farm is shown in Figure 5.11. The reduction of the significant 

wave height in the lee of the wave farm led to a substantial reduction (of the order of 3 

m) in the erosion of the dune delineating the landward limit of the beach. It is also 

noteworthy that the wave farm not only reduced the volume of material eroded, but also 

altered the sediment transport patterns, displacing the landward end of erosion towards 

the sea around 10 m after 3 months of simulation. 
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Figure 5.11 Beach face level at Profile P2: initial [1 Nov 2007, 0000 UTC] and after three months with and 

without the wave farm [22 Jan 2008, 15:47 UTC]. The average wave conditions between these two points in 

time were: Hs = 2.02 m and Tz = 939 s.  

The impact of the wave farm on the beach profile was analysed through the 

parameters defined in Section 3.3.2. The Bed Level Indicator (BLI) along Profiles P1 

and P2 is illustrated in Figure 5.12 for three different points in time: 1 month (M1), 3 

months (M3) and 6 months (M6) after the beginning of the study period. The results for 

both profiles show a significant reduction of the erosion in the beach face and in the 

submarine bar (around x = 600 m). The bar forms part of the response mechanism of the 

natural system to protect the beach face from increased wave attack. Figure 5.12 proves 

that the effect of the wave farm was a reinforcement of the bar, and therefore enhanced 

protection for the beach face in storms. Advancing in time, the BLI values increased in 

the bar area, i.e., the aforementioned effect was intensified; results that go in line with 

the stated by (Neill & Iglesias, 2012).  

Regarding the beach face area, the BLI values for both profiles were also significant 

and showed that the wave farm contributed to mitigating the erosion in that section. 

This is nowhere more apparent than on the dune at the landward end of the profile, 

where BLI values exceed 1 m. In view of the importance of erosion on the beach face 

the FEA and NER indicators are applied. Table 5.3 shows the values of the eroded areas 
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on the beach face (FEA) at the same points in time as in Figure 5.12. It is observed for 

both profiles, and particularly in Profile P1, that the erosion is higher at the first two 

points in time (M1 and M3) than at the last one, which is associated with less energetic 

conditions (Figure 5.7). Although the points M1 and M3 were associated to erosionary 

periods, they did not coincide with the end of these periods, where generally the greatest 

values of storm-induced erosion were found. This is reflected in the values of erosion 

found on the beach face, with the greatest FEA values found at the end of the period 

studied.  

 

Figure 5.12 Evolution of BLI along Profiles P1 and P2 at different points in time: 1 month (M1), 3 months (M3) 

and 6 months (M6) after the beginning of the study period. 

The reduction of the erosion brought about by the wave farm is studied by means of 

the NER indicator, which showed reductions over 30% in the profile P1 (located in the 

north section of the beach – the most sheltered by the farm) during the erosionary 

periods (M1 and M3). It is also noted that the effect of the wave farm was more 
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significant in the north of the beach (Profile P1) than in the middle (Profile P2), as may 

be seen in Table 5.1. Analysing the evolution of the NER values over time, it is 

observed that the wave farm was more effective to mitigate storm-induced erosion 

during erosionary periods than accretionary, although still significant values (NER > 

20% in the north section of the beach) are found at the end of the simulation for both 

profiles. 

Profiles 

M1 M3 M6 

FEAb 

(m
2
) 

FEAf 

(m
2
) 

NER 

(%) 

FEAb 

(m
2
) 

FEAf 

(m
2
) 

NER 

(%) 

FEAb 

(m
2
) 

FEAf 

(m
2
) 

NER 

(%) 

Profile 

P1 
20.53 14.11 31.27 16.3 10.42 36.07 23.85 18.66 21.76 

Profile 

P2 
15.69 12.91 17.72 21.31 16.85 20.93 25.53 21.42 16.10 

 

Table 5.3 Eroded area in the baseline scenario (A), in the presence of the farm (Af), and Erosion Impact (EI) 

index for Profiles P1 and P2 at different points in time: 1 month (M1), 3 months (M3) and 6 months (M6) after 

the beginning of the study period 

5.3 CONCLUSIONS 

The results showed a significant reduction of the erosion along profiles P1 and P2, 

which may indicate some degree of coastal protection owing to the presence of the wave 

farm nearshore. The extraction of wave energy by the WECs resulted in significant 

reductions of erosion, with values in the north section of the beach varying from 36% 

during storm conditions, to 22% at the end of the simulation, which corresponded to 

accretionary conditions.  

This substantial reduction in the erosion of the profiles constitutes an added benefit 

of the wave farm. However, this chapter was framed as the first step in the assessment 

of the impact of wave farms on the beach, and consequently to prove that a wave farm 

can be considered a complement to conventional forms of coastal protection, the 

response of the beach in 3D must be evaluated, which is the aim of the following 

chapter. 
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6. WAVE FARM IMPACTS ON THE BEACH 

MORPHOLOGY 

This chapter presents the impacts of wave farms on the beach morphology (3D) in 

the short-term. Two case studies are presented in this chapter: Perranporth Beach (SW 

England) and Xago Beach (N Spain). The following contents are published in the paper 

of Coastal Engineering: “Coastal defence through wave farms” in the case of 

Perranporth Beach (accepted for publication on 26 June 2014); and under review in the 

paper of Coastal Engineering Journal (2016): “Mitigating dune erosion through wave 

farms” in the case of Xago Beach. 

In view of the promising results presented in the Chapter 4, this chapter goes a step 

further by transcending the cross-shore (2D) analysis and examining the impact of wave 

energy exploitation on beach morphology (3D) – an aspect whose importance can 

hardly be overstated. On this basis, the chapter has a threefold objective: (i) to compare 

the response of the beaches under storm conditions (short term) with and without a 

wave farm; (ii) to assess whether the nearshore attenuation of wave energy caused by 

the wave farm results in a reduction in the erosion on the beach; and, on these grounds, 

(iii) to establish whether a wave farm can contribute to coastal protection.  

6.1 PERRANPORTH BEACH 

6.1.1 MATERIALS AND METHODS 

This section analyses the period from 5 December 2007 UTC 00:00 to 10 December 

2007 UTC 18:00 (Figure 6.1), a stormy period with the following average wave 

conditions: Hs = 4.2 m, Tp = 12.1 s and θp = 295°. 
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Figure 6.1 Time series of simulated (Hs,SWAN) and measured (Hs,buoy) significant wave height used to 

validate the wave propagation model. The storm conditions studied from 5 Dec 2007, 00:00 UTC; to 10 Dec 

2007, 18:00 UTC are highlighted. 

To determine the wave farm impacts on the wave conditions and the coastal 

processes, the wave propagation model (SWAN) is coupled to the coastal processes 

model. The response of the beach during the storm period studied was investigated in 

both scenarios: (i) in the baseline scenario (without the wave farm), and (ii) with the 

wave farm, to compare the evolution of the beach and establish the contribution of a 

wave farm to protect the coast. 

Regarding the wave propagation model, the successfully validated high-resolution 

nested grids and model set up applied in the previous chapter were used. Likewise, the 

same wave farm configuration and distance to the coast (6 km from the 10 m water 

depth contour) was considered (Figure 5.3), which allows the comparison of the wave 

farm impacts between the short and middle term.  

As for the coastal processes model, in this case it is applied in 2DH mode (x, y, z), 

with a grid extending 1250 m across shore and 3600 m alongshore with a resolution of 

6.25 m and 18 m, respectively (Figure 6.2). The model used a number of spectral 

parameters obtained from the nearshore wave propagation model (the root-mean-square 

wave height, Hrms, mean absolute wave period, Tm01, mean wave direction, θm, and 

directional spreading coefficient, s) as input to create time-varying wave amplitudes, 

i.e., the envelopes of wave groups, which have crucial importance in describing the 

behaviour of a beach during erosion conditions (Baldock et al., 2011). The bathymetry 

of the beach was based on the data provided by the Coastal Channel Observatory. The 
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elevation values implemented in the model ranged between –20 m and 25 m (Figure 

6.3) with reference to the local chart datum (LCD).  

 

Figure 6.2 Computational grids of the wave propagation (SWAN) and coastal processes (XBeach) models 

[water depths in m] 

 

Figure 6.3 Bathymetry of Perranporth Beach for the coastal processes model. Profiles P1, P2 and P3 included. 

Water depth in relation to local chart datum [in m]. 
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6.1.2 RESULTS 

The results of the wave propagation model were studied in both scenarios: baseline 

and in the presence of the wave farm, to observe the impact of the wave farm on the 

wave conditions. The reduction of the significant wave height in the lee of the farm is 

shown in Figure 6.4, in which the shadow zone downstream of each WEC is apparent. 

The greatest impact occurred in the lee of the second row of devices. On the coast, the 

impact was mainly focused on the north section of the beach as the offshore wave 

direction was west (268 °).  

 

Figure 6.4 Significant wave height in the baseline scenario (Hs) and with the wave farm (Hsf) at the first peak 

of the stormy period studied (5 Dec 2007, 18:00 UTC). [Deep water wave conditions: Hs0 = 6.89 m, Tp = 15.64 s, 

θp = 268.45 °]. The line AA’ is shown. 

This can be observed applying the reduction of the significant wave height (RSH) 

factor. The shadow in the lee of the farm with waves coming from the NW (Figure 5.8) 

was wider than waves from the W (Figure 6.5). However, on the other hand the 

reduction of the wave height with waves from the W was higher in certain sections of 

the beach, such as the north, with values over 10 % along the 20 m contour. 
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Figure 6.5 Reduction of the significant wave height (RSH) brought about by the wave farm at the first peak of 

the stormy period studied (5 Dec 2007, 18:00 UTC). [Deep water wave conditions: Hs0 = 6.89 m, Tp = 15.64 s, θp 

= 268.45 °].  

The wave conditions along the line AA’ (Figure 6.4), in approximately 20 m of 

water depth, were input to the coastal processes model. The significant wave height (Hs) 

across AA’ in both scenarios is shown in Figure 6.6, where the shadow due to the wave 

energy absorption of each device can be readily identified. It is also remarkable in 

which manner the reduction of the wave height increased towards the north section of 

the beach (A’ in the figure).  

 

Figure 6.6 Significant wave height in the baseline scenario (Hs) and in the presence of the farm (Hsf) across the 

line AA’ at the first peak of the storm studied (5 Dec 2007, 18:00 UTC). [Deep water wave conditions: Hs0 = 

6.89 m, Tp = 15.64 s, θp = 268.45 °]. 
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Applying the suite of core impact indicators, defined in Section 3.3.2, to the results 

of the coastal processes model, the alteration caused by the wave farm on the longshore 

and offshore/onshore sediment transport was quantified. First, the response of the beach 

without the wave farm (baseline scenario) was analysed so as to understand in which 

manner the wave farm affects the beach. The sea bed level difference between the first 

and the last point of the simulation (Figure 6.7) shows that there are two main areas 

affected by the storm-induced erosion: the submarine bar and the beach face area. The 

greatest values were found at the toe of the dune in the central section of the beach, 

although these values were associated with the isolated response of some profiles. With 

less significant erosion rates, a long stretch of the beach was affected on the beach face 

in the north section of the beach. This response of the beach under storm conditions 

goes in line with the behaviour observed at Perranporth in previous studies (Scott et al., 

2008). 

 

Figure 6.7 Bed level difference between the first (ζb) and the last point (ζ0) of the simulation. 

The alteration of the sea bed level by the wave farm was analysed through the BLI 

factor (Figure 6.8). The reduction of the erosion was observed mainly in the dune at the 
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back of the beach, reaching values greater than 4 m in the middle section of the beach, 

as result of the wave energy extraction by the wave farm. A reduction of the erosion 

was also found along the bar, especially in the middle section of the beach where the 

BLI parameter reached values of 0.5 m. On the other hand, the material eroded from the 

dune was moved to lower sections of the profile, between the bar and the dune, which 

resulted in the BLI parameter taking negative values in the region of –0.5 m. 

 

Figure 6.8 Bed level impact (BLI) at the end of the time period studied [10 Dec 2007, 06:00 UTC].  

On this basis, the impact of the wave farm on the bed level is shown in Figure 6.9 

along three profiles: P1 (south), P2 (middle) and P3 (north), located in Figure 6.3. The 

initial profile (ζ0) was compared with the profiles at the end of the storm studied in both 

scenarios: the baseline (ζb) and in the presence of the farm (ζf). The results show a more 

significant effect on profiles P3 and P2 (northern and middle areas of the beach) than on 

P1, in accordance with the wave conditions shown in Figure 6.4. As may be observed in 

Figure 6.8, the effects of the wave farm are more pronounced in the intertidal area over 

the mean water level (at the landward end of the profiles) and over the bar. Furthermore, 

Profile P3 shows that the wave farm not only reduced the eroded area but also altered 
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the sediment transport pattern, moving the landward end of erosion by up to 30 m 

towards the sea in the case of the north of the beach.  

 

Figure 6.9 Bed level at Profiles P1, P2 and P3: initial (ζ0) [05 Dec 2007, 00:00 UTC] and at the end of the 

simulation in the baseline scenario (ζb) and with the wave farm (ζf) [10 Dec 2007, 06:00 UTC].  

The volume of material moved per linear metre along the beach (y) was studied 

through the mean Cumulative Eroded Area (CEA). This indicator showed the difference 

in material eroded along the profile (x) between the initial and final points of the time 

period studied in both scenarios: baseline (CEAb) and with the wave farm (CEAf).  
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Figure 6.10 shows the results in the southern and northern areas across the different 

reference profiles P1 (south), P2 (middle) and P3 (north). In the case of profile P2, the 

wave farm modified the sediment transport patterns significantly: whereas erosion was 

reduced in the northern area of the beach, in the southern area the material eroded 

increased for water depths below 5 m. As for profile P1, the northern area of the beach 

presented less sediment transport in the presence of the wave farm for water depths over 

7 m, while accretion occurred for water depths below 7 m. In the case of profile P3, the 

sediment transport patterns were hardly affected by the wave farm for water depths over 

5 m, but in water depths below 5 m erosion decreased in the southern area of the beach. 

In summary, in the baseline scenario (without the wave farm) accretion was found to 

occur in the deeper sections of the profile in the northern area owing to the offshore 

sediment transport from the beach face and the submarine bar. In the presence of the 

wave farm, however, the erosion of the beach face and submarine bar was significantly 

reduced. As a result of this, and of the increase of the southward sediment transport, the 

accretion of the deeper sections of the profile in the northern area that occurred in the 

baseline scenario was replaced by accretion in the southern area of the beach for values 

of the x coordinate greater than 600 m (as may be seen on profiles P2 and P3). 
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Figure 6.10 Mean cumulative eroded area in the baseline scenario (CEAb) and in presence of the wave farm 

(CEAf) in the southern area (in red) and northern area (in black) across each of the reference profiles P1, P2 

and P3, at the end of the time period studied [10 Dec 2007, 06:00 UTC]. The x-coordinate represents the 

distance along the profile, with x = 0 the most offshore point. 
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Finally, the results of the beach face eroded area (FEA) confirmed the contribution 

of the wave farm to reducing erosion. Figure 6.11 shows the evolution of the erosion on 

the beach face along Perranporth Beach (y = 0 corresponds to the southernmost point of 

the beach). The most severe erosion took place in the southernmost area of the beach, 

which is not backed by the dune system, and the northern area, where the waves were 

higher (Figure 6.3). As regards the efficacy of the wave farm for coastal protection, the 

reduction in erosion was more significant in the northern area of the beach than in the 

south and in the middle. In Figure 6.12, the non-dimensional erosion reduction (NER) is 

represented on the basis of the results of the eroded area in the beach face, confirming 

that the wave farm attenuated the erosion in the north of the beach, with values over 

40% in a 1 km stretch of the beach. As regards the southern area of the beach, 500 m < 

y < 1500 m, the NER factor fluctuated strongly, due to isolated responses of different 

points of the profiles.  

 

Figure 6.11 Beach face eroded area in two scenarios: baseline (FEAb) and with the wave farm (FEAf) along 

Perranporth Beach (y - coordinate, with y increasing towards the north of the beach) at the end of the time 

period studied [10 Dec 2007, 06:00 UTC]. 
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 Figure 6.12 Non-dimensional erosion reduction (NER) at the beach face along Perranporth Beach (y - 

coordinate, with y increasing towards the north of the beach) at the end of the time period studied [10 Dec 

2007, 06:00 UTC]. 

The results obtained in this work seem to lend credence to the hypothesis 

formulated at the outset, namely that a wave farm can serve as a coastal defence 

measure. It is important to bear in mind, however, that these results, and in particular 

their quantitative aspects, were derived for a specific case study: a beach with a bar 

between -5 m and -10 m backed by a well-developed dune system and under the attack 

of a storm of certain characteristics. On this basis, another case study with different 

characteristics (e.g. no presence of a submarine bar, different wave resource and grain 

size distribution) is presented in the following section to corroborate the degree of 

coastal protection afforded by wave farms.  

6.2 XAGO BEACH 

The case study of Xago Beach (Figure 4.6) is of particular relevance as this area 

was selected by the Asturian Institution for Energy Development (FAEN) for the 

deployment of the first offshore wave farm in Spain based on the characterisation of the 

wave energy  resource, in conjunction with a morphologic and bathymetric study of the 
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area (Flor-Blanco et al., 2011). Furthermore, Xago has experienced increased erosion 

on its dune system – evidenced by the recession of the dune toe, between 3.1 m and 

11.5 m (Figure 6.13) – under the heightened storminess of recent years (Flor-Blanco, 

Flor & Pando, 2013; Flor, Flor-Blanco & Flores-Soriano, 2015). In this context, the 

possibility of protecting the coast through a nearshore wave farm is of great interest – 

and therein lies the motivation of this case study. 

 

Figure 6.13 Dune toe recession at Xago Beach 

6.2.1 MATERIALS AND METHODS 

Xago is a lower mesotidal beach, with a semidiurnal tidal regime and a Medium 

Spring Range (MSR) of 2.66 m (Flor-Blanco, Flor & Pando, 2013). In the period 

considered for validation purposes (January 2010 - December 2010), the average values 

of significant wave height (Hs), mean period (Tm) and wave direction (θ) were: 1.40 m, 

6.02 s and 317.1°, respectively. In the case of the stormy period considered for the 

assessment of the wave farm effects on the beach (7 November 2010 – 16 November 

2010) the average wave conditions off Xago Beach were: Hs = 3.72 m, Tm = 7.49 s and 
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θ = 299.9°. Finally, three-hourly values of wind speed and direction obtained from the 

Global Forecast System (GFS) weather model are input into the wave propagation 

model. In the year studied there was no clearly prevailing wind direction – the highest 

probability of occurrence (22.4%) corresponded to S winds (from 157.5° to 202.5°). The 

strongest winds were associated with NW directions (from 292.5° to 337.5°), with wind 

speed values (u10) exceeding 20 ms
–1

. 

The wave model is forced using the aforementioned data and validated during a 

year (January-December 2010) using the buoy data off Salinas Beach (Aviles Buoy 

located approx. 1 km to the west of Xago Beach) in conjunction with the SIMAR-

3085039 point (off Xago Beach) from the SIMAR-44 dataset provided by Puertos del 

Estado (Spain). 

In order to locate precisely the position of the WECs and simulate the wave farm 

impacts on the wave conditions in its lee, two computational grids with different 

resolutions were defined in SWAN (Figure 6.14): (i) the coarser grid with a spacing of 

50 × 50 m extended 25 × 25 km, covering part of the Avilés canyon System (including 

the Avilés Canyon itself) with water depths over 900 m in the grid; and (ii) the finer 

(nested) grid with a spacing of 12 × 15 m extended 5.4 km offshore and 4.5 km from 

east to west, covering the area of interest. The wave farm was located in the area 

defined in the project at a water depth of ~30 m. The same layout than the one 

considered at Perranporth (consisting of 11 converters arranged in two rows) is studied 

in order to compare the results between the two case studies (Figure 6.15). 
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Figure 6.14 Computational grids for the SWAN and XBeach models, and wave buoy locations [Water depths 

in m]. 

 

Figure 6.15 Wave farm layout off Xago Beach [Water depths in m]. 
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The energy density output files (wave height, period, direction and spreading) from 

SWAN are used to prescribe the offshore boundary condition for XBeach. The grid in 

this model was extended approx. 1.7 km alongshore and 2 km offshore, from the dune 

system to water depths of 20 m, with a resolution of 7.5 and 5 m, respectively.  

The high-resolution bathymetric data of the study area, obtained in ad hoc surveys 

by the University of Oviedo, were used as input for the coastal processes and wave 

propagation numerical models (Figure 6.16). Importantly, this dataset covered not only 

the submarine beach but also the subaerial, including the dune system, with elevation 

values ranging from –20 m to +15 m in the case of the coastal processes grid (relative to 

the Spanish National Geodetic Vertical Datum). 

 

Figure 6.16 Bathymetry of Xago Beach for the coastal processes model with Profiles P1, P2 and P3. [Water 

depths in m]. 
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6.2.2 RESULTS 

First, the model was validated using the data from the wave buoy off Avilés (with 

available data from 1 March 2010 – 1 September 2010) and the point SIMAR44-

3085039 (1 January 2010 – 31 December 2010). The model results were in excellent 

agreement with the observations (Figure 6.17 and Figure 6.18), as corroborated by the 

root mean square error and coefficient of determination (Table 6.1).  

Data Data available 

Error statistics 

Root Mean Square Error 

(RMSE)  [in m] 

Coefficient of 

determination (R
2
) [-] 

Buoy data off 

Avilés 

1
st
 March 2010 – 

1
st
 September 

2010 

0.33 0.89 

SIMAR44-

3085039  

1
st
 January 2010 – 

1
st
 January 2011 

0.45 0.92 

Table 6.1 Wave data used to validate the wave propagation model and values of the error statistics: Root 

Mean Square Error (RMSE) and the coefficient of determination (R2).  

 

Figure 6.17 Validation of wave propagation model with the Aviles buoy data: observed (HS, BUOY) vs. calculated 

(HS, SWAN) time series of significant wave height. The dashed lines delimit the stormy period used for the study. 
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Figure 6.18 Validation of wave propagation model with the point SIMAR44-3085039 off Xago Beach: observed 

(HS, SIMAR) vs. calculated (HS, SWAN) time series of significant wave height. The dashed lines delimit the stormy 

period used for the study. 

The impacts of the wave farm on the coast were analysed during the stormy period 

from 7 November 2010, 12:00 UTM to 16 November 2010, 06:00 UTM (delimited by 

dashed lines in Figure 6.17 and Figure 6.18). The significant wave height patterns at 

18:00 on 9 November 2010 (Figure 6.19) display a conspicuous concentration of wave 

energy – indeed, the area defined in the project for the installation of the wave farm is a 

nearshore hotspot (Iglesias & Carballo, 2010a), i.e. an area with a concentration of wave 

energy due to wave interaction with the irregular bathymetry.  

To put the area into perspective, it can be compared with the wave energy resource 

found at Perranporth. While the value of .at Perranporth during a year was 17.26 

 kW/m, in the case of Xago it was 20.21 kW/m, albeit the wave farm was located at a 

smaller farm-to-coast distance (1.7 km) than at Perranporth (6 km). This difference 

(approx. 15%) in the wave energy resource reflects the large wave resource available in 

the area defined by the project. 

 

WECJ
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Figure 6.19 Significant wave height in the baseline scenario (Hsb) and with the wave farm (Hsf) on 9 Nov 2010, 

18:00 UTC. [Deep water wave conditions: Hs0=10.28 m, Tp = 16.19 s, θp = 314.94 °].  

 

 

Figure 6.20 Significant wave height in the baseline scenario (Hsb) and with the wave farm (Hsf) along the 20 m 

water depth contour on 9 Nov 2010, 18:00 UTC. [Deep water wave conditions: Hs0=10.28 m, Tp = 16.19 s, θp = 

314.94 °].  

The impacts of the wave farm on the wave patterns were especially significant in 

the lee of the wave farm, where the reduction of the significant wave height (RSH) 

reached the greatest values (over 50%). This reduction decreased towards the coastline 



Wave Farm Impacts on the Beach Morphology 

127 

 

due to the energy diffracted into the shadow of the WECs; however, the impact cannot 

be overlooked, with values exceeding 15% along the 10 m contour. The farm was not 

directly in front of the beach but displaced somewhat to the east, which reduced its 

impact on the west section of the beach. Figure 6.20 illustrates the reduction in the 

significant wave height along the 20 m contour depicted in Figure 6.15, which was used 

as input for the coastal processes model. The shadow caused by the farm extended over 

approx. 3 km (Figure 6.21), with an average RSH value exceeding 50% in the lee of the 

farm over. Owing to the position of the farm, this reduction in nearshore wave height 

extended some distance east of Xago Beach.  

 

Figure 6.21 Reduction of the significant wave height (RSH) parameter along the 20 m water depth contour on 

9 Nov 2010, 18:00 UTC. [Deep water wave conditions: Hs0=10.28 m, Tp = 16.19 s, θp = 314.94 °].  

The spectral wave conditions along the 20 m contour were input into the coastal 

processes model by means of energy density output files to study the response of the 

beach under storm conditions with and without (baseline) the wave farm and, on these 

grounds, quantify the degree of coastal protection afforded by the wave farm. First, the 

erosion and accretion patterns at Xago Beach are analysed in the baseline scenario. 

Three main sections can be observed (Figure 6.22): (i) the west section, which 

experiences significant storm-induced erosion; (ii) the middle section, characterised by 
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deposition in the intertidal area of the material eroded in the previous section, and some 

erosion on the dune front; and (iii) the east section of the beach, characterised by intense 

erosion of the dune. It is also noteworthy how the evolution of the foredune front seems 

to have varied over the last years relative to the previous decades: whereas the dune 

limit advanced from 1970 to 2011 (Figure 6.22), it receded from 2011 to 2014 (Figure 

6.13). This change from progradation to recession may well be related to the severe 

winter gales experienced in the 2011-2014 period (Flor-Blanco, Flor & Pando, 2013). 

 

 

Figure 6.22 Simplified dynamic and sedimentary model of Xago Beach (Flor-Blanco, Flor & Pando, 2013) 

The model results in the baseline scenario (Figure 6.23) are in good agreement with 

the general sedimentary dynamics of the beach. In effect, the difference in bed level 

elevation between the beginning and the end of the simulation period corresponds well 

with the sections previously identified (Figure 6.22). The most acute erosion occurs in 
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the east section of the beach, with bed level differences of up to 2.5 m. In the west 

section erosion was also considerable, in line with the general dynamics. For its part, in 

the middle section erosion of the dune was found to be less significant, and sediment 

deposition occurred in the intertidal area.  

 

Figure 6.23 Bed level difference between the first (ζb) and the last point (ζ0) of the simulation. 

For the analysis of both scenarios with and without the wave farm, the impact 

indicators are applied. Figure 6.24 shows the BLI values (the bed level difference 

between the wave farm and the baseline scenarios) at the end of the storm period 

analysed. Three main areas can be distinguished: the first two, the dune front along the 

entire beach and the low tide terrace in the east section, with positive BLI values, i.e. 

reduction of erosion due to the wave farm; and the third area, the low tide terrace in the 

west and middle sections, with negative BLI values, i.e. reduction of accretion due to 

the wave farm.  

The greatest BLI values (over 2 m) were found in the first area, the dune front, and 

especially in the east section of the beach, which experienced the greatest erosion in the 

baseline scenario. As regards the west section of the dune front, which also underwent 
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significant storm-induced erosion, the wave farm contributed to reducing the erosion by 

up to 1.5 m. Finally, in the middle section, with lower values of erosion in the baseline 

scenario, the reduction of the erosion on the dune front caused by the wave farm was 

also lower, below 1 m. In sum, the wave farm contributed significantly to reducing 

storm-induced erosion on the dune front. 

In the second area, the low-tide terrace in the east section of the beach, the 

maximum BLI values were smaller than on the dune front but nevertheless relevant – 

with storm-induced erosion decreasing by up to 1 m over a large area. Thus, in the east 

section of the beach, both on the dune front and the low-tide terrace, erosion is 

significantly mitigated, which can be explained by the fact that this area is directly in 

the lee of the wave farm, with consequential reductions in significant wave heights – 

over 50% at the 20 m contour. 

Finally, in the third area, the west and middle sections of the low-tide terrace, 

negative BLI values are found due to the greater volume of material eroded in the 

baseline scenario from the dune front and to the contributions of material eroded from 

the east section.  

As mentioned above, the dune front experienced the greatest reductions of erosion, 

importantly the landward end of erosion was displaced seaward by over 10 m along the 

three profiles considered, representative of the three sections of the beach (Figure 6.25): 

P1 (west), P2 (middle) and P3 (east). In the east section this seaward displacement 

reached a very substantial 25 m, which is indicative of the efficiency of the wave farm 

in countering the storm-induced erosion that affected Xago in the last lustrum (Figure 

6.13).  
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Figure 6.24 Bed level impact (BLI) in the area of interest at Xago Beach at the end of the time period studied 

[16 Nov 2007, 06:00 UTC]. 

 

Figure 6.25 Bed level at profiles P1, P2 and P3: initial (ζ0) [07 Dec 2007, 12:00 UTC] and at the end of the 

simulation in the baseline scenario (ζb) and with the wave farm (ζf) [16 Nov 2007, 06:00 UTC]. 

As regards the erosion on the beach face, two impact factors were applied: FEA and 

NER. The FEA values (Figure 6.26) confirmed that the most sensitive area to storm-

induced erosion is the east section of the beach and consequently the greatest volumes 
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of material eroded occurred there. Significant erosion also occurred in the west section 

of the beach, although in the case of the westernmost section the area eroded in the 

beach face was less significant than on the front dune (Figure 6.24). On the other hand, 

in the central and east section of the beach, erosion was less pronounced on the front 

dune than on the beach face, where it reached values similar to the west part of the 

beach. This pattern can be observed in Figure 6.25, with profiles P1 (west) and P3 (east) 

more affected by the erosion at the toe of the dune than profile P2 (middle), but with 

similar impacts along the beach face.  

 

Figure 6.26 Beach face eroded area at the end of the time period studied [16 Nov 2007, 06:00 UTC] in two 

scenarios: baseline (FEAb) and with the wave farm (FEAf). The y- coordinate represents the beach profile, with 

y increasing eastwards. 

In order to analyse globally the effects of the wave farm, the NER index is applied, 

which represents the change in the eroded area caused by the wave farm as a percentage 

(Figure 6.27). The wave farm was found to reduce erosion (NER > 0) in most of the 

beach, with the highest values in the east section (NER > 60%). This is precisely the 

area where the erosion of the beach face was more pronounced; hence it is an excellent 

indicator of the effectiveness of wave farms to protect the coast in erosion-prone areas. 

This drastic decrease in erosion in the east section, for all its importance, must not 
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obscure the relevant effect reductions elsewhere, with an average NER value along the 

entire beach of 17.64%.   

 

Figure 6.27 Non-dimensional erosion reduction (NER) on the beach face at the end of the time period studied 

[16 Nov 2007, 06:00 UTC]. The y- coordinate represents the beach profile, with y increasing eastwards. 

6.3 CONCLUSIONS 

Comparing the effects of the wave farm at Xago with those at Perranporth Beach, 

UK, (Abanades, Greaves & Iglesias, 2014a; 2014b; 2015b), significant differences were 

found; which reflects the need for site-specific assessment of the effects of wave farms 

on the beach. These differences lied in part to the presence of a submarine bar at 

Perranporth, which provided a degree of protection to the beach. This was not the case 

at Xago, where storm-induced erosion was consequently more pronounced. On these 

grounds, the wave farm was more effective to mitigate erosion on the dune front at 

Xago, as reflected by the very substantial seaward displacement of the landward end of 

erosion by up to 25 m in large sections of the beach. This shows a clear contribution of 

the farm to arresting the erosive trends affecting the dune system. Regarding the erosion 

patterns in the beach face, the reduction afforded by the wave farm was greater at 
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Perranporth, as a larger section of the beach was protected (NER > 40% in a section of 

1500 m, nearly half of the beach), while in Xago greater values where found (NER > 

60%) but in smaller sections of the beach. Therefore, in both cases, Xago and 

Perranporth, the results vindicate the initial hypothesis that wave farms can contribute to 

protecting the coast and, particularly, mitigating dune erosion. 

Having determined the effectiveness of wave farms to protect the coast in the 

medium and the short term, the following chapters will investigate the wave farm 

impacts on the coast and on the wave conditions as a function of the key design 

parameters: the farm-to-coast distance in Chapter 7 and the wave farm layout in Chapter 

8. 
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7. INFLUENCE OF THE FARM-TO-COAST DISTANCE 

The location of a wave farm, and, in particular, its distance to the coast is one of the 

key aspects in a wave energy project. In the selection of the location a number of 

variables are typically taken into account, from the wave resource to the maintenance 

and infrastructure costs; however, the effects of the farm on the coast, which can be 

instrumental in mitigating storm-induced erosion and thus contribute to coastal defence, 

are seldom, if ever, considered. Furthermore, these impacts can be controlled by 

locating the wave farm closer to or further from the coastline. In this context, the 

objective of this chapter is to establish the dependence of the degree of coastal 

protection offered by the farm on its distance from the coastline by means of a 

sensitivity analysis focused on Perranporth Beach (SW England). The following 

contents are published in the paper of Renewable Energy (5-year impact factor: 3.982) 

“Coastal defence using wave farms: The role of farm-to-coast distance”, which was 

accepted for publication on the 20 October 2014.  

7.1 MATERIALS AND METHODS 

In this chapter, four scenarios were compared, corresponding to three locations of 

the wave farm at different distances from the coast, plus the baseline (no farm) scenario, 

under different wave conditions. Based on the work of Iglesias and Carballo (2014) that 

analysed the influence of the farm-to-coast distance in the impact of wave farms on the 

wave conditions, the following distances were considered in this chapter: 2 km, 4 km 

and 6 km from the reference (10 m water depth) contour – corresponding to water 

depths of approx. 25 m, 30 m and 35 m, respectively (Figure 7.1). These wave farms 

were implemented on the high-resolution grid of the wave propagation model described 

and validated in Section 5.1. 
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Figure 7.1 The three locations considered for the wave farm, at distances of 2 km, 4 km and 6 km from the 

reference (10 m water depth) contour [water depth in m]. 

In this chapter, following Kenney (2009) and based on the analysis of the offshore 

wave climate in the area, two frequent wave conditions (Table 7.1) were prescribed at 

the outer (ocean) boundary of the SWAN offshore grid. The results from this model 

were coupled to XBeach, which was used to analyse the response of the beach with and 

without the wave farm during 24 hours, the typical duration of these wave conditions at 

Perranporth.  

Case study Hs (m) Tp (s) θ (°) s (°) Kt 

CS1 3 12 315 (NW) 26.50 0.76 

CS2 3.5 11 315 (NW) 26.34 0.78 
 

Table 7.1 Offshore wave conditions: significant wave height (Hs), peak period (Tp), mean direction (θ), 

spreading (s) and transmission coefficient (Kt) for the different case studies. 

7.2 RESULTS 

The results obtained from the nearshore wave propagation model were analysed to 

study the impact of the wave farm on the wave conditions. The nearshore significant 

wave height (Hs) for the different scenarios (baseline and with the wave farm at 



Chapter 7 

138 

 

distances of 2 km, 4 km and 6 km from the reference contour) is shown in Figure 7.2 for 

CS1 (Table 7.1). The reduction in the significant wave height in the lee of the farm 

caused by the energy extraction is apparent. This reduction was assessed by means of 

the impact indicator RSHi (Figure 7.3). The maximum value of the indicator was 

achieved within the second row of WECs with values of up to 50%. At a distance of 1.5 

km from the second row of devices, the reduction reached a peak of 40% due to the 

merging of the shadows caused by the first and the second row of devices. However, 

this reduction decreased moving towards the coast due to the redistribution of the 

energy from the edges into the shadow caused by the wave farm. At a water depth of 

10 m, the average reduction caused by the wave farm closest to the coast (2 km) was 

approx. 25%, whereas for the wave farm at 4 and 6 km the average reduction was 

approx. 15% and 9%, respectively. 

 

Figure 7.2 Significant wave height [m] in the baseline scenario and in the presence of the farm at distances of 2 

km, 4 km and 6 km from the reference (10 m water depth) contour in CS1 (clockwise from above left). 
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Figure 7.3 Reduction of the significant wave height (%) with the wave farm at a distance of: 2 km (RSH2km), 4 

km (RSH4km) and 6 km (RSH6km) from the reference (10 m water depth) contour in study CS2 [in m]. 

The relevance of the farm-to-coast distance may be readily observed in the shadows 

caused by the wave farm at different distances. The area affected at the coastline by the 

wave farm furthest to the coast (6 km) was greater than 7 km, however the average 

reduction of the significant wave height in this area was less than 5%. On the other 

hand, the wave farm at 2 km affected a smaller area in the coastline, around 4 km, but 

the reduction exceeded 10%. Figure 7.4 shows this reduction for CS1 (above) and CS2 

(below) along the line AA´, located in Figure 7.2, which corresponded to the area of 

interest at Perranporth Beach and was used as input for the coastal processes model.  

This figure confirmed the different shadow pattern brought about by the wave farm at a 

distance of 4 and 6 km compared with the 2 km. In the latter, the reduction mainly 

occurred in the central section of the beach, being less significant in the north area of 

the beach. However, for the other two scenarios, the reduction was found to be approx. 

constant along the line AA´. 
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Figure 7.4 Significant wave height [in m] in the baseline scenario (Hs, b) and in the presence of the farm at a 

distance of: 2 km (Hs,2 km), 4 km (Hs,4 km) and 6 km (Hs,6 km) from the reference (10 m water depth) contour 

across the line AA’ in CS1 (above) and CS2 (below). 

In terms of wave power, the resource was evaluated at the location of each of the 

WECs in the wave farm. Table 7.2 shows the average wave power incident on a generic 

WEC of the wave farm for the different distances, it was found that the closer the wave 

farm to the coast, the lesser the resource, due to the dissipation caused by the different 

coastal processes that occur in intermediate and shallow water. For the wave farm 

closest to the coast the reduction of the wave power compared to the scenario with the 

wave farm at a distance of 6 km was 10.5% and 8.7% for CS1 and CS2, respectively. In 

the case of the wave farm at 4 km the reduction compared with the scenario at 6 km is 

5.7% and 7.3% for CS1 and CS2, respectively.  

 

 Case study  

(Hs) 
WECJ  

2 km 4 km  6 km  

CS1: 3 m 17.95 18.91 20.07 

CS2: 3.5 m 30.89 31.37 33.83 

Table 7.2 Average wave power on a generic WEC of the wave farm ( WECJ ) for the different case studies 

[kW/m] 
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In order to obtained a better characterisation of the wave energy resource as a 

function of the farm to coast distance, the WECJ  values for the different wave farm 

scenarios were analysed during the time series used for validation purposes (Nov 2007 – 

Oct 2008). Similarly, the resource found for the wave farm at 2 km was 15% lower than 

that for the farm at 6 km (Table 7.3). The difference in terms of the available resource is 

less between the farm at 4 km and 6 km (5%). In summary, on the one hand the wave 

farm closest to the beach caused the greatest reduction in the significant wave height, 

but, on the other hand, the resource in that area was lower than in deeper areas, and, 

therefore, a comparative study of the response of the beach under storm conditions is 

necessary to determine the best location for a wave farm in terms of wave energy 

resource and coastal protection. 

Wave farm 

scenario WECJ (kW/m) 

2 km 14.46 

4 km 16.44 

6 km 17.26 

Table 7.3 Average wave power on a generic WEC of the wave farm ( WECJ ) from Nov 2007 to Oct 2008 

[kW/m] 

The alteration of the beach morphology by the wave farm was quantified by means 

of the impact indicators. The first indicator was the bed level difference, BLI, which 

represented the difference of the bed level between the baseline and the wave farm 

scenarios at a point in time. Figure 7.5 shows BLI values at the end of the storm for CS1 

with the wave farm at a distance of 2 km (left), 4 km (middle) and 6 km (right). It was 

observed that the main impact caused by the wave farm was located at the beach face, 

where reductions of the erosion up to 1.5 m were found.  
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Figure 7.5 Bed level impact with the wave farm at a distance of 2 km (BLI2km), 4 km (BLI4km) and 6 km 

(BLI6km) at the end of the storm in CS1. 

Figure 7.6 illustrates the evolution of three profiles at the end of the storm for CS2, 

corresponding with three section of the beach that were identified by their different 

responses under the storms: (i) the southern section of the beach (P1 in Figure 7.6) with 

a smooth slope in the intertidal area; (ii) the area backed by a very steep dune (P2 in 

Figure 7.6) where the mean water level was close to the toe of the dune; and (iii) the 

northern section of the beach (P3 in Figure 7.6) also backed by the dune, but with a 

greater distance from the toe of the dune to the mean water level. In the case of P1 and 

P3 the main erosion occurred on the beach face and this material was moved to lower 

sections of the beach, however in the case of P2 accretion was detected in the intertidal 

area due to the material eroded in the steep dune for the proximity of the mean water 

level to it.  In the area of P3 were found the greatest values of the BLI indicator, with 

reductions greater than 1 m, while in the section P1 the reduction took values of approx. 

0.5 m.  
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Figure 7.6 Bed level at Profiles P1, P2 and P3: initial (ζ0) and at the end of the storm in CS2 in the baseline 

scenario (ζb) and with the wave farm at a distance of 2 km (ζf2km), 4 km (ζf4km) and 6 km (ζf6km). 

In the comparison between scenarios, the wave farm at a distance of 2 km caused 

greater reduction of the erosion in the beach along the beach than the other scenarios, in 
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which areas with significant reductions of erosion were combined with negligible values 

or even accretion. In the lower sections of the beach, accretion occurred due to the 

amount of material eroded in the beach face. In the scenario with the wave farm closest 

to the coast the BLI took negative values of -0.5 m in the southern area of the beach, 

which meant that the accretion without the farm was bigger than with it, due to the 

greater erosion produced in the intertidal area in the baseline scenario. This reduction of 

the accretion with the wave farm at a distance of 4 km and 6 km took place only in a 

few sections of the beach with BLI values less than 0.3 m.  

The impact factor FEA was defined to quantify the erosion in the beach face along 

the beach (Figure 7.7). The greatest values of this indicator along the beach were 

focussed in the southern area because this section was not backed by the dune. The 

erosion in the baseline scenario was, in general, greater than the scenarios with the wave 

farm, especially in the middle and northern area of the beach, y–coordinate (along the 

beach) > 1250 m. To compare the reduction between the different wave farm scenarios 

the indicator NER was defined, which showed the variation of the erosion in terms of 

the eroded area in the baseline scenario (Figure 7.8). The NER values fluctuated 

considerably along the beach, but it was observed that the reduction using a wave farm 

at a distance of 2 km was greater than the other two scenarios.  

In the area of the steep dune (500 m < y–coordinate < 1250 m), the erosion in the 

beach face was very low (negligible in some sections), and very few profiles presented 

an isolated response taking the NER factor negative values (greater erosion with the 

farm than without it). However, in terms of the average reduction of the beach face 

erosion along the whole beach, it was confirmed that the wave farm at 2 km offered a 

greater degree of coastal protection, around 15% in both case studies, than the scenario 

with the wave farm at 4 and 6 km, which presented an approximate reduction of approx. 
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10%. Considering particular sections of the beach, the impact was much more 

significant, for instance, the reduction exceeded 20% for the wave farm at 2 km for 

values of the y – coordinate between 1200 and 2000 m in CS2, which was the area most 

affected by the reduction of the significant wave height. The results for the wave farm at 

4 and 6 km did not present large differences in terms of the reduction of the erosion 

along the whole beach; however the average reduction for the farm at 4 km was slightly 

greater (13%) than the farm at 6 km (11%) in the area backed by the dune (y > 1250 m). 

 

Figure 7.7 Beach face eroded area in the following scenarios: baseline (FEAb) and with the wave farm at a 

distance of 2 km (FEA2km), 4 km (FEA4km) and 6 km (FEA6km) along Perranporth Beach (y - coordinate, with y 

increasing towards the north of the beach) at the end of the storm in CS1 (above) and CS2 (below). 

 

Figure 7.8 Non-dimensional erosion reduction (NER) at the beach face in the following scenarios: with the 

wave farm at a distance of 2 km (NER2km), 4 km (NER4km) and 6 km (NER6km) along Perranporth Beach (y-

coordinate, with y increasing towards the north of the beach) at the end of the storm in CS1 (above) and CS2 

(below). 
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Finally, the CEA was applied to the northern (CEA
N
) and southern (CEA

S
) section of 

the beach taking as reference for each case the profiles considered in Section 6.1 (see 

Figure 6.3): P1 (south), P2 (middle) and P3 (north), which allowed the variations in the 

longshore sediment transport to be studied. Figure 12 shows the evolution of this factor 

along the profile (x) for CS1, where the negatives values represented an increase in the 

volume of material with respect to the initial conditions (accretion). In the lowest 

section of the profile, the volume of material for the scenarios studied was larger than 

the initial volume due to the material eroded, mainly from the following sections along 

the profile: (i) the beach face (1200 m < x-coordinate < 1300 m) and (ii) the area that 

faced the storms in low tide (800 m < x-coordinate < 1000 m), which was more 

significant in the southern area of the reference profiles. The geomorphological 

complexity of the southern section of the beach resulted in very different behaviour 

between the different scenarios.  

 

Figure 7.9 Mean cumulative eroded area in the baseline scenario (CEAb) and in presence of the wave farm at a 

distance of 2 km (CEA2km), 4 km (CEA4km) and 6km (CEA6km) from the reference (10 m water depth) contour in 

the northern area (above) and southern (below) across each of the reference profiles P1, P2 and P3 (Figure 6.3) 

at the end of the storm in CS1. The x- coordinate represents the distance along the profile, with x = 0 the most 

offshore point. 
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The wave farm at a distance of 2 km presented a significant rise in the volume of 

material in the southern area of the beach, especially taking as reference the profiles P1 

and P2. This could be associated to the modification of the wave patterns brought about 

by the wave farm, given that the main reduction of the significant wave height occurred 

in the southern and middle area of the beach. Therefore, part of the material eroded in 

the northern section, where the reduction of the significant wave height was less, could 

be moved to the southern part of the beach, increasing the volume in this section. As for 

the wave farm at 4 and 6 km, they did not present significant differences compared with 

the baseline scenario, nonetheless the erosion caused in the absence of the farm was 

greater. For instance, in the northern area of the different profiles, it is observed that the 

greatest accretion at x = 1250 m occurred in the baseline scenario due to the largest 

amount of material eroded at the beach face. In the case of the profile P1, this was 

followed by the scenario with the wave farm at a distance of 2 km, associated with the 

material moved from the north of the beach, but for the profiles P2 and P3, the greatest 

values of accretion, after the baseline scenario, occurred with the wave farm at 4 and 6 

km given that the farm at these distances reduced the erosion less than the scenario at 2 

km. To sum up, a wave farm can alter not just the wave conditions in its lee but also the 

morphology and the sediment transport of the beach. 

7.3 CONCLUSIONS 

The selection of the location for a wave farm is not trivial. This chapter proved that 

the degree of coastal protection afforded by a wave farm varies significantly as a 

function of its distance to the coastline. It was observed that the effects on the beach 

morphology of the wave farm closest to the coast were more pronounced than in the 

other scenarios, with average reductions of erosion on the beach face of 15% when the 

other scenarios did not exceed 10%. Nevertheless, the overall wave energy resource for 
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the closest farm was 10 % less than with the case of the furthest farm due to the 

attenuation of wave energy caused by the coastal processes that occur in shallow waters. 

On these grounds, the effects of the wave farm on the coast ought to be one of the main 

considerations, alongside the energy resource, in the selection of the wave farm 

location, not least in areas subject to erosion risks, where the wave farms can contribute 

considerably to its mitigation.   
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8. INFLUENCE OF THE WAVE FARM LAYOUT 

The previous chapter showed that understanding the wave farm impacts on the 

wave conditions and the coastal morphology as a function of the key design parameters 

of wave farms is essential for the development of wave energy. In this context, this 

chapter evaluates the influence of the layout in the wave farm impacts. The role played 

by the wave farm layout of a co-located wave-wind farm has been examined by Astariz 

et al. (2015b) in order to study the reduction of the wave height within a wind park, 

however these results cannot be extrapolated to the coast given that co-located wave-

wind farms are in general located in further distances from the coast, and consequently 

the effects on the coast were not addressed. Therefore, the aim of this chapter is to 

analyse the influence of varying the intra- and inter-row spacings between devices in the 

performance of the wave farm and in the coastal protection offered by the different 

layouts through a case study at Perranporth Beach. 

8.1 MATERIALS AND METHODS 

The wave farm was located at a distance of 3 km to the water depth contour of 10 

m. This distance complements the results presented in the previous chapter, where 

distances of 2, 4 and 6 km were analysed. Four wave farm layouts were evaluated in 

this chapter plus the baseline scenario, combining the following intra- and inter-row 

distances: 2.2D (hereafter named 2D) – the most recommended in the bibliography 

(Beels et al., 2010b; Carballo & Iglesias, 2013), 3D and 4D, with D the distance 

between the twin bows of an overtopping device, in this case D = 90 m for a WaveCat 

WEC (Iglesias et al., 2008). Table 8.1 shows the configurations proposed, which were 

located around the water depth contour of 30 m.  
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Array 

configuration 

Spacing (m) 

Intra row Inter row 

2D-2D 198 198 

2D-3D 198 270 

3D-3D 270 270 

4D-4D 360 360 
Table 8.1 Array configurations, including intra- and inter-row spacing 

 

Figure 8.1 Wave farm layout. Water depth in relation to local chart datum [water depth in m] 

A number of layouts are defined in order to analyse the sensitivity of the following 

two parameters in the design of wave farrms: the intra- and inter-row distance, i.e. the 

distance between WECs in the same row and the spacing between the rows of the wave 

farm, respectively. The 2D-2D configuration was used in the previous chapters and has 

been the most studied in the literature review (Carballo and Iglesias, 2013; Iglesias and 

Carballo, 2014). The configuration 2D-3D is  selected to assess the effects of increasing 

the inter-row spacing. As the principle parameter for overtopping devices is the wave 

absorption, the incident wave power in the second row of devices is reduced by up to 

25%. Then, whether this “destructive interaction” can be reduced by increasing the 

distance between rows will be analysed by comparing this configuration with the 2D-
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2D layout. For their part, the layouts 3D-3D and 4D-4D allowed the influence of the 

intra- and inter-row spacings between WECs on wave conditions and beach morphology 

to be established (Figure 8.1).  

The different wave farm layouts were implemented in the high-resolution grids of 

the wave propagation model at Perranporth. In order to compare the effects of varying 

the layout and the farm-to-coast distance on the coast, the wave conditions of the case 

study CS1 (defined in Table 7.1) were selected, with offshore values of significant wave 

height, peak period and direction equal to 3.5 m, 11 s, 315° (NW), respectively. 

 

8.2 RESULTS 

The impacts of the different array configurations on the nearshore wave conditions 

were presented based on the results of the wave propagation model. Figure 8.2 shows 

the modification of the significant wave height patterns varying the intra- and inter-row 

spacings, i.e. for the 2D-2D, 3D-3D and 4D-4D configurations. It was found that the 

increase of both intra- and inter-row spacings had a bearing on the shadow caused by 

the wave farm. The main difference in the impacts on the wave conditions between the 

array configurations lied in the area occupied by the farm, the larger the spacing 

between devices, the greater the area occupied by the farm and therefore the greater the 

shadow in its lee. However, the greatest shadows were not associated with the greatest 

reductions in wave height, which were more pronounced in the cases of lower spacing 

since this distance between WECs led to the merge of the individual wakes, increasing 

the reduction in wave height in the lee of the farm.  
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Figure 8.2 Significant wave height (m) in the baseline scenario and in the presence of the farm with the 

following configurations 2D-2D, 3D-3D and 4D-4D (clockwise from above left). 

In the case of the 2D-2D configuration, the reduction of the significant wave height 

peaked at a distance of 1 km from the second row of WECs, while the peak values in 

the 3D-3D and 4D-4D configuration occurred at distances of 2 and 3 km, respectively, 

with less significant values. In the case of keeping constant the intra-row spacing (2D), 

but increasing the inter-row distance (3D instead of 2D), the differences of the effects 

on the wave patterns between both layouts were practically negligible (Figure 8.3). 

 

Figure 8.3 Significant wave height (m) in the presence of the farm with the following configurations 2D-2D 

(left) and 2D-3D (right). 
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To analyse the shadows caused by the different array configurations, the significant 

wave height along the 20 m water depth contour was studied (Figure 8.4). It was found 

that the wakes generated by the WECs that form the 4D-4D configuration achieved the 

greatest values of reduction of significant wave height at this water depth given that the 

wakes converged at greater distances than the other layouts. However, the impact was 

reduced to the isolated wakes caused by the WECs, with distances between peaks over 

500 m, and with negligible reduction between them. Reducing the intra-row spacing 

between WECs, the distance between the wake peaks was reduced – approx. 400 m and 

250 m in the case of 3D-3D and 2D-3D configurations, respectively. At this water 

depth, the influence of the inter-row spacing was more evident, while in the 2D-3D 

layout the wakes could be easily identified, in the 2D-2D the shadows merged into a 

large one.   

 

Figure 8.4 Significant wave height [in m] in the baseline scenario (Hs,b) and in the presence of the farm with the 

following array configurations: 2D-2D (Hsf,2D-2D), 2D-3D (Hsf,2D-3D), 3D-3D (Hsf,3D-3D) and 4D-4D (Hsf,4D-4D) along 

the 20 m water depth contour  

Other relevant difference in the impact was the area affected by the wave farm in its 

lee, in the case of the 3D-3D and 4D-4D configurations the shadow was extended 

practically along the same area (approx. 4 km) despite the wave farms occupied 
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different spaces (the 4D-4D configuration area was 500 m larger). This shadow was 

extended along a smaller section in the case of the 2D-2D and 2D-3D layouts, with a 

wide of approx. 2.5 km.  

In order to quantify the wave farm impacts on the wave conditions the indicator 

RSHXD-XD (Reduction in the Significant wave Height) was applied. The results (Figure 

8.5) illustrated that the greatest values of reduction were found for the intra- and inter-

row distances of 2D, exceeding 50% at a distance of 1 km from the second row of 

WECs. These peaks corresponded with the merge of the wakes mentioned above. 

Although, this reduction was less significant towards the coastline owing to the energy 

diffracted into the shadow, it cannot be overlooked, with values at the 10 m water depth 

contour over 15%. In the cases of larger intra-row spacings, the peaks of wave height 

reduction did not exceed 35% and took place close to the coast.  

 

Figure 8.5 Reduction of the significant wave height (%) for the following wave farm layouts: 2D-2D (RSH2D-

 2D), 2D-3D (RSH2D-3D), 3D-3D (RSH3D-3D) and 4D-4D (RSH4D-4D) [clockwise from above left]. 
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One of the advantages of increasing the inter- and intra-row spacings was the larger 

resource available. The larger distance between devices reduced the shadow effects 

caused by the wave energy extraction of the first row of devices on the second row. In 

view to having a more detailed wave energy resource within the wave farm, the 

available average resource in front of a generic WEC of the wave farm ( WECJ ) was 

analysed during a year (Nov 2007 – Oct 2008), which allowed the comparison with the 

results found in the previous section varying the farm-to-coast distance (Table 8.2). It 

was found that from the farm-to-coast distance of 3 km (relative to the 10 m water depth 

contour) the available resource did not increase significantly with the distance for the 

2D-2D layout, with practically the same resource for the distances of 3 and 4 km.  

Farm to coast 

distance 

Farm layout 

WECJ  Intra-row 

spacing 

Inter-row 

spacing 

2 km 2D 2D 14.46 

3 km 

2D 2D 16.47 

2D 3D 17.24 

3D 3D 17.11 

4D 4D 18.34 

4 km 2D 2D 16.44 

6 km 2D 2D 17.26 

Table 8.2 Average resource available in a WEC of the wave farm ( WECJ ) for the different coast-to-farm 

distances and layout scenarios from Nov 2007 to Oct 2008 [kW/m]. 

However, the WECJ  values varied considerably as a function of the layout, obtaining 

the same resource at 3 km with a greater distance between rows (2D-3D) than at 6 km 

with the 2D-2D layout. As the absorption coefficient of the second row of devices is 

modelled with the same value as the first row, increasing the distance between rows 

reduces the “destructive” interaction induced by the WEC absorption. For instance, 

although the differences in the incident wave power at the first row of devices between 

the scenario with the farm at 3 km and at 6 km was 4%, Table 8.2 shows that the annual 

mean power is practically the same for both scenarios when considering the inter-row 
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spacing of 3D at a distance of 3 km. This means that 4% is the percentage brought about 

by placing the rows 90 m further away from the first row (3D instead of 2D).   

In this context, the scenario at 3 km with intra- and inter-row spacings of 4D 

presented the greatest resource, which was 21% greater than the one with the farm at 2 

km (2D-2D), 10% more than with the 2D-2D layout at 3 and 4 km, and 6% more than 

with the farm layouts of 2D-3D, 3D-3D at 3 km and the 2D-2D layout at a distance of 6 

km. This finding showed that in certain areas where the area occupied by the wave farm 

is not an issue, it is not necessary to place wave farms at further distances to increase the 

resource available within it, but thus can also be achieved by increasing the spacing 

between devices, especially the inter-row one. 

Having analysed the role played by the layout in the effects on the wave patterns, 

the response of the beach with a wave farm operating nearshore was analysed. The 

results from the wave propagation model along the 20 m water depth contour were the 

input on the coastal processes model. The storms were studied during a day that was the 

average duration of these frequent wave conditions based on the analysis of the data 

from the wave buoy off Perranporth. 

Figure 8.6 shows the BLI results for the different layout configurations in the area 

of interest at Perranporth Beach. It was observed that the scenarios with an intra-row 

spacing of 2D did not present significant differences, with the greatest reductions of 

erosion found on the beach face. This reduction of the erosion led to less deposition of 

the eroded material in the lower sections of the beach in relation to the baseline 

scenario. Thus, negative values of BLI where found in deeper sections with values up to 

-1.2 m in these two scenarios. Both positive and negative BLI values were less 

remarkable in the scenario with an intra- and inter-row spacing of 3D, and nearly 

negligible with the 4D-4D layout.  
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Figure 8.6 Bed Level Impact (BLI, in m) in the area of interest with the different wave farm configurations: 

2D-2D (BLI2D-2D), 2D-3D (BLI2D-3D), 3D-3D (BLI3D-3D) and 4D-4D (BLI4D-4D). 

These erosion patterns can be better identified analysing the evolution of the 

profiles P1, P2 and P3 (identified in Figure 6.3). The material eroded on the beach face 

area in the different scenarios was redistributed along the lower sections of the profile, 

with the greatest volumes of erosion on the beach face corresponding to the no farm 



Influence of the Wave Farm Layout 

159 

 

scenario and the 4D-4D layout (Figure 8.7). The profiles P2 and P3 showed similar 

patterns of erosion as the morphology of these profiles – smooth slope and back by a 

well-developed dune system – did not present significant differences. A different case 

was the profile P1, which despite being back by the dune system, was formed by a very 

flat intertidal area and a steepness dune that started at a bed level of 1 m. These features 

led to different erosion patterns: while in profiles P2 and P3, beach face erosion 

occurred mainly at bed levels of approx. 3 m; in the section with the advanced dune 

(P1) it mainly occurred from the toe of the dune to bed levels of approx. 5 m. In the 

comparison between scenarios, it was observed that the wave farm with an intra- and 

inter-row spacing of 2D presented the lowest values of erosion in the beach face. The 

results varied as a function of the profile but in some sections the reduction in the 

erosion for the 3D-3D and especially the 2D-3D layout was very close to the results 

obtained for the 2D-2D layout. 

For a better understanding of the role played by the layout in the area eroded on the 

beach face, the impact indicators FEA and NER were applied. As found in previous 

chapters, the greatest FEA (Figure 8.8) values were found in the southernmost points 

section of the beach, which corresponded to the area not backed by the dune. The other 

area that also presented different patterns compared to the general response of the beach 

was the section of the steepness and advanced dune (500 m < y < 1100 m). In these two 

sections the influence of the wave farm was not as significant as in the rest of the beach, 

where in general the scenario without the wave farm presented the greatest values of 

erosion in the beach face, just exceeded in some areas by the wave farm with an intra- 

and inter-row spacing of 4D. The results between the wave farms with intra-row spacing 

of 2D (2D-2D and 2D-3D) and 3D (3D-3D) presented very similar patterns, although 

the FEA values of the scenario 2D-2D were slightly smaller than the other two 

scenarios. 
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Figure 8.7 Bed level at Profiles P1, P2 and P3: initial (ζ0) and at the end of the storm in the baseline scenario 

(ζb) and with the wave farm with the different wave farm configurations: 2D-2D (ζ2D-2D), 2D-3D (ζ2D-3D), 3D-3D 

(ζ3D-3D) and 4D-4D (ζ4D-4D). SWL included in the plots. 



Influence of the Wave Farm Layout 

161 

 

 

Figure 8.8 Beach face eroded area in the baseline scenario (FEAb) and with the different wave farm 

configurations: 2D-2D (FEA2D-2D), 2D-3D (FEA2D-3D), 3D-3D (FEA3D-3D) and 4D-4D (FEA4D-4D). 

The NER factor allowed the comparison between the wave farm and the baseline 

scenarios (Figure 8.9). This impact indicator corroborated the erosion patterns in the 

different sections of the beach identified through the application of the FEA indicator. 

The area with the steepness dune (500 m < y < 1100 m) presented high variability in the 

FEA values due to the isolated response of some profiles, for instance a few profiles 

presented no erosion in the baseline scenario and this conducted to negative NER 

values. However, to a greater or lesser extent, the wave farms contributed to reducing 

the erosion in the beach farm as can be concluded from the analysis of the average 

reduction of the erosion along the whole beach with values of approx. 16%, 10%, 5% 

and 1% for the scenarios 2D-2D, 2D-3D, 3D-3D and 4D-4D, respectively. These values 

showed that despite the similar trends between the three first scenarios, the 2D-2D 

scenario offered the highest degree of coastal protection in the coast. Analysing only the 

north section of the beach (y > 1200 m) the reduction of the erosion increased with NER 

values of approx. 18% for the 2D-2D scenario, 14% for the 2D-3D and 3D-3D and 3% 

for the 4D-4D. Thus, it was observed that without accounting for the section of the 
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steepness dune, the reduction of the erosion was larger for all the scenarios, particularly 

remarkable for the 3D-3D scenario, where the NER values were practically 10% greater.  

 

Figure 8.9 Non-dimensional erosion reduction at the beach face in the baseline scenario (NERb) and with the 

different wave farm configurations: 2D-2D (NER2D-2D), 2D-3D (NER2D-3D), 3D-3D (NER3D-3D) and 4D-4D 

(NER4D-4D). 

Finally, the comparison of the sediment transport patterns between the different 

scenarios was studied by means of the Cumulative Erosion Area (CEA) impact factor. 

The CEA factor represents the difference between the average cumulative volume of 

material along the profile at the initial and the final point in time for the different 

scenarios in the northern (CEA
N
) and southern section (CEA

S
) of the beach taking as 

reference one of the following profiles: P1, P2 and P3. The results of the CEA factor are 

shown in Figure 8.10 for the scenarios with an intra-row spacing of 2D (2D-2D and 2D-

3D) and in Figure 8.11 for the scenarios with greater spacing between devices (3D-3D 

and 4D-4D). While the greatest average values of erosion (CEA > 0) were found 

northern to the profile P3 and southern to the profile P1, the central section of the beach, 

in particular the area of the steepness dune presented the greatest values of deposition 

(CEA < 0). In general, in the deepest sections of the beach deposition occurred as 

consequence of the material eroded from the beach face. This pattern peaked in the 
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sections that accounted for the steepness dune (northern to the Profile P1 and southern 

to the profiles P2 and P3) at the toe of the dune (x ~ 1250 m) and turned into erosion for 

the southern and northern areas of the beach from water depths of 5 m (x ~ 800 m). The 

erosion reached the greatest values in the area of the beach face (1200 m < x < 1400 m), 

which was followed in deeper sections by a drop of these values as a result of the 

deposition of the material eroded. In the case of the Profile P1 this peak took place at x ~ 

1200 m given that most part of the south section is not back by the dune. On the other 

hand, for the profiles P2 and P3 the greatest values were found at x ~ 1500 m, which 

corresponded to the toe of the sandy dune. 

In the comparison between scenarios, it was observed that the differences of 

material moved into the deepest sections of the profile (x < 600 m) between the farm 

and the baseline scenarios were larger with the intra-row spacing of 2D (less deposition 

due to less material eroded in the beach face area) than with 3D and 4D, where similar 

amounts of materials were moved in relation to the baseline scenario. Taking as 

reference the profile P2 and analysing the northern section, it was found that the wave 

farm scenarios with intra-row distance of 2D presented the greatest reductions of 

erosion (approx. 2 m
3
/m), while in the scenario with the 3D-3D layout the erosion was 

less and with 4D-4D the results were very similar to the baseline scenario. These results 

are similar to the northern section of Profile P1, where the erosion at the toe of the dune 

in the baseline scenario was greater than the wave farms with intra-row spacing of 2D, 

in which the volume of material was practically the same than the initial one.   
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Figure 8.10 Mean cumulative eroded area in the baseline scenario (CEAb) and in presence of the wave farm 

with 2D-2D (NER2D-2D)  and 2D-3D (NER2D-3D) layout across each of the reference profiles P1, P2 and P3. The 

x-coordinate represents the distance along the profile, with x = 0 the most offshore point. 

The scenario with an intra- and inter-row distance of 3D presented the greatest 

modifications of the sediment transport patterns with the greatest volumes of erosion in 

the southern section of the beach (Profile P1), but with values of the average erosion in 

the northern section similar to the 2D-2D and 2D-3D scenarios, and in some sections 

offering even a greater degree of coastal protection (see Profile P3). In these two latter 

scenarios, higher volumes of material of deposition were found at distances along the 

profile between 800 and 1000 m despite having less volumes of erosion in relation to 

the baseline scenario. However, the deposition in the baseline scenario in the deepest 

sections of the profile was higher than in any scenario with the wave farm, which would 

indicate that the reduction of wave height contributed to maintaining the sediment in the 

surf zone. This could be also complemented in some sections with longshore sediment 

transport, for instance the central section of the beach receiving part of the material 

eroded in the south, which is in line with the results presented for the NER indicator 

(e.g. an increase of 10% was observed in the reduction of the beach face erosion for the 

3D-3D scenario when the indicator was applied just to the north section of the beach).  
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Figure 8.11 Mean cumulative eroded area in the baseline scenario (CEAb) and in presence of the wave farm 

with 3D-3D (CEA3D-3D) and 4D-4D (CEA4D-4D) layout across each of the reference profiles P1, P2 and P3. The x-

coordinate represents the distance along the profile, with x = 0 the most offshore point. 

8.3 CONCLUSIONS 

This chapter revealed that the degree of coastal protection offered by a wave farm 

and the wave energy resource varied considerably as a function of the layout. It was 

found that the greater the intra-row distance, the lesser the degree of coastal protection 

but also the greater the resource available. By comparing with the results obtained in the 

previous chapter, it was found that from certain distances it is most effective to increase 

the spacing between devices than locating the wave farm in further distances to the 

coast. However, although these wave farm layouts would maximise the available 

resource, they would also result in an increase of the wave farm infrastructure costs, 

such as the cable costs. Therefore, it is essential to determine whether the increase of the 

wave energy resource, and consequently the electricity generated, is enough to cover the 

rise of the wave farm costs. Other aspect that needs to be accounted in amortising this 

increase of the costs, it is the degree of coastal protection offered when the intra- and 

inter-row spacing is increased in relation to the most studied layout (2D-2D), which is 

of special interest in areas with erosion issues. In this context, it was found that the 
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effectiveness of the wave farm with a spacing of 4D was practically negligible in 

relation to the baseline scenario. On the other hand, the scenarios 3D-3D and especially 

2D-3D reduced considerably the erosion, although in some sections the results were far 

from the degree of coastal protection offered by the 2D-2D layout.  
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9. IMPACTS ON THE MODAL STATE OF THE BEACH 

Finally, having established the impacts of wave farms on the sediment transport 

patterns at different time scales, this chapter aims to determine whether the beach 

morphology can be altered by the operation of the wave farm, and if so, to quantify this 

alteration. This alteration of the beach morphology is conducted by means of the modal 

state of the beach, which is defined based on an empirical classification that accounts 

for wave conditions, tidal regime and sediment size. As a beach typically goes through 

different modal states, the percentages of time in an average year corresponding to each 

state in the baseline scenario and with the wave farm are determined. The contents 

presented in this chapter, which focusses on a case study at Perranporth Beach, are 

published in the paper of Marine Geology (5-year impact factor: 3.375): “Wave farm 

impact on beach modal state”, which was accepted for publication on the 28 January 

2015.  

9.1 MATERIAL AND METHODS 

To analyse the spatial variability of the beach three beach profiles were selected to 

determine the beach modal state. Their relevant features can be readily observed (Figure 

9.1): a submarine bar at a water depth between 5 and 10 m and a well-developed dune 

system that backs the landward end of the beach. The latter aspect does not play a role 

in the modal state, which only considers the intertidal area, but the bar system does – 

and is indicative of a dissipative or intermediate state. In the case of profile P3, two 

submarine bars are distinct – typical of a barred dissipative state. 
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Figure 9.1 Three different profiles at Perranporth Beach and their respective localisation. Water depth in 

relation to local chart datum [in m]. 

In this context, the characterisation obtained in the present chapter contributes to 

understanding the behaviour of Perranporth by providing quantitative estimates of its 

morphodynamical variability throughout a year, as Perranporth has been described as 

dissipative (Butt, Russell & Turner, 2001; Masselink et al., 2005) and as a low-tide bar 

rip system (Scott, Masselink & Russell, 2011; Scott et al., 2007), with Austin et al. 

(2010) indicating that it is at the transition between the low tide bar/rip and dissipative 

beach.  

To analyse the seasonal variability, the modal state of the beach was quantified 

during a year (from 1
st
 of November 2007 to 31

st
 of October 2008) and during its 

“winter” (Nov 2007 – Apr 2008) and “summer” (May 2008 – Oct 2008) periods. The 

average values of the significant wave height, peak period and direction during the year 

were 1.60 m, 10.37 s and 282.59 °, respectively. The values in “winter” of the 

significant wave height, peak period and direction were 1.98 m, 11.30 s and 285.23 °, 

respectively, and in “summer” 1.32 m, 9.62 s and 279.95°.  
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Regarding the wave farm scenarios, the three farm-to-coast distances analysed in 

Section 7 (2, 4 and 6 km from the 10 m contour) were considered in this chapter (Figure 

7.1).   

In this case a different methodology was used and to characterise the modal state of 

the beach, process-based modelling (SWAN), analytical solutions (breaking wave 

formulation) and empirical classifications (conceptual beach model) were applied, 

which will be described in the following headings. 

9.1.1 CONCEPTUAL BEACH MODEL 

The conceptual beach classifications are empirical models based on the 

relationships between the characteristics of different types of beaches (wave climate, 

sediment size and tidal regime) and field observations. Therefore, these models allow 

the evolution of beach dynamics as a function of the beach features to be predicted, and 

also, the quantification of the potential changes induced by a modification of these, such 

as the reduction of wave energy brought about by a wave farm.  

The classification presented by Wright and Short (1984), also called the Australian 

beach model, is based on the field observations collected in Australia for microtidal 

beaches. This classification indicates the prevailing conditions in the surf zone: 

dissipative, intermediate or reflective, as a function of the dimensionless fall velocity 

parameter (Ω), also known as Dean’s number (Dean, 1973), 
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w T
     (9.1) 

where Hb is the breaking wave height, T is the wave peak period corresponding to 

the breaking conditions and ws is the sediment fall velocity, which is defined for the 
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present paper according the Shore Protection Manual (US Army Corps Of Engineers, 

1984), 
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where γs and γw is the density of the sediment and water, respectively, g the 

gravitational acceleration, D50 the sediment grain size and ν the fluid kinematic 

viscosity.  

This model represents the evolution of microtidal beaches well; however, it does 

not account for the influence of the tide on the swash, surf zone and shoaling wave 

processes (Davis & Hayes, 1984). This was corrected with the introduction of another 

parameter: the Relative Tide Range (RTR), which allows the characterisation of all 

wave-dominated beaches in all tidal ranges (Masselink & Short, 1993): 

 
b

MSR
RTR

H
  , (9.4) 

where MSR is the Mean Spring tidal Range.  

Figure 9.2 shows the relationships between the dimensionless fall velocity and the 

relative tide range parameters that are used to establish the modal beach state. As the 

RTR parameter increases the beach evolves from a classic reflective state through the 
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formation of a low tide terrace at the toe of the beach face and low tide rips to a steep 

beach face fronted by a dissipative low tide terrace. In the case of an intermediate barred 

beach, the increase in the tidal range moves the bar down to the low tide level 

generating a low tide bar and rips. Finally, for barred dissipative beaches characterised 

by multiple subdued bars at different water depths, the increase of RTR results in the 

disappearance of these bars. The latter two groups shift to ultra-dissipative beaches with 

values of RTR between 7-15. For values of RTR greater than 15 the resulting beach is 

fully tide-dominated.   

 

Figure 9.2 Conceptual beach model (Masselink & Short, 1993). 

9.1.2 WAVE PROPAGATION MODEL 

The wave conditions necessary to establish the morphological beach state – 

breaking wave height (Hb) and peak period (Tp) – were determined by coupling the 
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previously described wave propagation model to the Kamphuis’ formulae (Kamphuis, 

1991a), a breaking criterion for irregular waves based on the following expressions:  
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where Hsb represents the breaking significant wave height, m the beach slope, Lbp 

the breaking wave length and db the breaking water depth. Once the breaking wave 

height was determined, the corresponding period was selected. 

9.2 RESULTS 

Based on the results of the wave propagation model the modal state of the beach is 

determined. In order to investigate the spatial variability of the impact along with its 

seasonal variability, three profiles (Figure 9.1) are selected: profiles P1, P2 and P3 

corresponded with the south, middle and north section of the beach. 

First, the results for the south section of the beach are shown in Table 9.1. This 

section of the beach is predominantly dissipative (third column in the table), although 

the percentage that the beach is found to be intermediate (second column) is far from 

negligible. Indeed, in the case with the farm at a distance of 2 km, the low tide bar/rip 

becomes the most frequent state. The comparison between the baseline and farm 

scenarios reflects a slight modification of the modal state of the beach owing to the low 

impact of the wave farm on the wave conditions in this area. The maximum difference 

between the baseline and the farm scenarios is the case of the non-barred dissipative 

state, in which the reduction does not exceed 1%.  In any case, the trends due to the 

reduction of the significant wave height are shown in the results; for instance, the 
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percentage of low tide bar/rip state increases as the wave farm become closer, because 

the Relative Range Tidal parameter (RTR) is inversely proportional to the breaking 

wave height. On the other hand, the dimensionless fall velocity parameter (Ω) is directly 

proportional to the breaking wave height, and, therefore the barred dissipative state 

occurred more frequently in the baseline scenario than in the cases with the farm. 

Profile P1: South section  

Reflective Barred Barred dissipative 

Baseline 0.00 Baseline 0.07 Baseline 16.04 

6 km 0.00 6 km 0.07 6 km 15.96 

4 km 0.00 4 km 0.07 4 km 15.90 

2 km 0.00 2 km 0.07 2 km 15.70 

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative 

Baseline 0.00 Baseline 25.50 Baseline 26.59 

6 km 0.00 6 km 25.70 6 km 26.39 

4 km 0.00 4 km 25.98 4 km 26.18 

2 km 0.00 2 km 26.18 2 km 25.77 

Low tide terrace Ultra-dissipative 

Baseline 3.36 Baseline 22.89 

6 km 3.36 6 km 22.89 

4 km 3.43 4 km 22.82 

2 km 3.36 2 km 23.24 

Transition to tide-dominated tidal flat 

Baseline 5.55 

6 km 5.63 

4 km 5.62 

2 km 5.69 
Table 9.1 Percentages of the beach modal state for the south section of the beach (Profile P1) from 1st 

November 2007 to 31st October 2008. In green shaded the most frequent modal state for each scenario. 

Second, in the case of the middle of the beach (Table 9.2), the results were slightly 

different compared with the south section, due to the morphological differences between 

them (see Figure 9.1). In this area, the wave farm impacts are greater compared to the 

south section. Whereas the wave farm at 4 km and 6 km do not present significant 

differences compared with the baseline scenario, the wave farm at 2 km changes the 

behaviour of the beach significantly, reducing the barred dissipative state by more than 

5% or 20 days per year, and increasing the ultradissipative state by more than 15 days. 
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Overall, with the wave farm at 2 km the most frequent state shifted from non-barred 

dissipative (baseline) to ultra-dissipative due to the reduction of breaking wave height. 

Profile P2: Middle section 

Reflective Barred Barred dissipative 

Baseline 0.00 Baseline 0.07 Baseline 21.73 

6 km 0.00 6 km 0.07 6 km 20.90 

4 km 0.00 4 km 0.07 4 km 20.29 

2 km 0.00 2 km 0.00 2 km 16.04 

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative 

Baseline 0.00 Baseline 22.76 Baseline 26.11 

6 km 0.00 6 km 22.69 6 km 25.63 

4 km 0.00 4 km 22.62 4 km 25.29 

2 km 0.07 2 km 23.85 2 km 25.29 

Low tide terrace Ultra-dissipative 

Baseline 2.06 Baseline 22.69 

6 km 2.19 6 km 23.85 

4 km 2.19 4 km 24.81 

2 km 3.29 2 km 26.32 

Transition to tide-dominated tidal flat 

Baseline 4.59 

6 km 4.66 

4 km 4.73 

2 km 5.14 
Table 9.2 Percentages of the beach modal state for the middle section of the beach (Profile P2) from 1st 

November 2007 to 31st October 2008. In green shaded the most frequent modal state for each scenario. 

Third, the north section of the beach is the area that presented the greatest 

differences between the baseline and the farm scenarios (Table 9.3). The trends 

mentioned in previous paragraphs are accentuated in this area, the reduction in the 

barred and non-barred dissipative states results in a greater occurrence of the ultra-

dissipative beach, from 5 days to 36 days per year in the case of the farm at 6 and 2 km, 

respectively – a very substantial change in the morphological behaviour of the beach. 

As regards the Ω parameter, it is observed that the closest wave farm make the low tide 

terrace and the low tide bar and rip states more frequent by 10 and 12 days per year, 

respectively, compared with the baseline scenario.  
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Profile P3: North section 

Reflective Barred Barred dissipative 

Baseline 0.00 Baseline 0.14 Baseline 16.59 

6 km 0.00 6 km 0.07 6 km 15.49 

4 km 0.00 4 km 0.07 4 km 14.39 

2 km 0.00 2 km 0.07 2 km 6.18 

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative 

Baseline 0.00 Baseline 28.10 Baseline 28.71 

6 km 0.00 6 km 27.55 6 km 28.92 

4 km 0.00 4 km 28.24 4 km 28.71 

2 km 0.00 2 km 31.11 2 km 22.62 

Low tide terrace Ultra-dissipative 

Baseline 0.89 Baseline 22.68 

6 km 0.96 6 km 23.99 

4 km 1.03 4 km 24.40 

2 km 3.49 2 km 32.28 

Transition to tide-dominated tidal flat 

Baseline 2.89 

6 km 3.02 

4 km 3.16 

2 km 4.25 
Table 9.3 Percentages of the beach modal state for the north section of the beach (Profile P3) from 1st 

November 2007 to 31st October 2008. In green shaded the most frequent modal state for each scenario. 

Finally, regarding the seasonal variability, significant differences between 

“summer” and “winter” are found. These differences are analysed with reference to the 

north section (Table 9.4) for the sake of space – similar trends were found in the other 

sections. The main feature that distinguishes the winter from the summer is the presence 

of the bar in the baseline scenario. In winter, the beach is predominantly barred 

dissipative, what is usually called a “winter” or “storm” profile. The more energetic 

conditions increase the erosion, and lower the beach face as sand is moved offshore and 

deposited on submarine bars, which help to protect the beach by causing the waves to 

break further offshore. In summer, the state of the beach shifts from barred to non-

barred – non-barred dissipative or ultra-dissipative – due to the milder wave conditions, 

and, therefore, the reduction of offshore sediment transport. 
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Profile P3: North section 

Reflective Barred Barred dissipative 

Scenario  Summer  Winter Scenario  Summer  Winter Scenario  Summer  Winter 

Baseline 0.00 0.00 Baseline 0.00 0.27 Baseline 4.66 28.53 

6 km 0.00 0.00 6 km 0.00 0.14 6 km 4.11 26.89 

4 km 0.00 0.00 4 km 0.00 0.14 4 km 3.42 25.38 

2 km 0.00 0.00 2 km 0.00 0.14 2 km 0.68 11.66 

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative 

Scenario  Summer  Winter Scenario  Summer  Winter Scenario  Summer  Winter 

Baseline 0.00 0.00 Baseline 29.86 26.34 Baseline 29.59 27.85 

6 km 0.00 0.00 6 km 29.59 25.51 6 km 29.18 28.67 

4 km 0.00 0.00 4 km 30.00 26.48 4 km 28.63 28.81 

2 km 0.00 0.00 2 km 27.67 34.57 2 km 18.77 26.47 

Low tide terrace Ultra-dissipative 

Scenario  Summer  Winter Scenario  Summer Winter 

Baseline 0.27 1.51 Baseline 33.15 12.21 

6 km 0.27 1.65 6 km 34.25 13.72 

4 km 0.41 1.65 4 km 34.79 13.99 

2 km 4.66 2.33 2 km 44.66 19.89 

Transition to tide-dominated tidal flat 

Scenario  Summer Winter 

Baseline 3.29 2.47 

6 km 3.43 2.60 

4 km 3.57 2.74 

2 km 4.94 3.56 
Table 9.4 Percentages of the beach modal state for the north section of the beach (Profile P3) in “summer” (1st 

November 2007 - 31st April 2008) and “winter” (1st May 2008 - 31st October 2008). In green and brown shaded 

the most frequent modal state during the winter and summer period, respectively.  

In the scenarios with the farm this seasonal behaviour changes specially with the 

farm at 2 km. In winter, the barred dissipative state becomes less frequent in favour of 

ultra-dissipative and low tide bar/rip states. In the latter, the beach keeps the bar system 

but enlarges the intertidal flat, with the result that the system behaves as an intermediate 

beach at mid tide, reflective at high tide and dissipative at low tide. By contrast, in 

summer, the increase of the occurrence of ultra-dissipative state is very significant given 

that the beach behaves according this state during almost half of the summer.   

In summary, Perranporth beach is found to be at the transition between the low tide 

bar/rip and dissipative beach states in the scenario without the farm. Despite the spatial 
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variations between the different profiles, the greatest differences are observed in the 

seasonal study. The absence of the bar distinguished the behaviour of the beach during 

summer from winter. However, the presence of the wave farm affects the modal state of 

the beach drastically, decreasing the occurrence of wave-dominated states (barred and 

non-barred dissipative states) in the favour of tide-dominated (low tide bar and rip in 

winter and ultra-dissipative in summer). The reduction of the breaking wave height 

brought about by the wave farm (~18%, comparing the baseline scenario with the 

nearest farm) results in a significant modification of the morphological response of the 

beach.  The reduction of the wave-dominated states would seem to lead to an increase in 

the onshore sediment transport and the removal of the offshore bar, the materials of 

which would cause accretion on the beach – in line with the findings showed in the 

previous chapters.  

9.3 CONCLUSIONS 

The modal state at Perranporth varies along the beach, although large spatial 

differences are not observed concurrently. However, the seasonal variability is far more 

pronounced. In winter the beach is wave-dominated, the energetic wave conditions 

increasing offshore sediment transport and forming a submarine bar. In summer, under 

milder wave conditions, the beach is tide-dominated.  

The milder wave conditions in the lee of the wave farm, especially apparent in the 

north and middle section, can lead to an alteration of the predominantly wave-

dominated character of the beach during winter to tide-dominated. This would imply a 

significant modification of the morphological behaviour of the beach. For instance, in 

the north section the predominant state is a low tide bar/rip in the baseline scenario, 

which turns into an ultra-dissipative system in the case of the nearest (2 km) wave farm 

to the coast. In this case, the wave-dominated states are reduced by over 10%, or over 
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36 days per year. This modification also is predicted in the cases with farm-to-coast 

distances of 4 km and 6 km, albeit to a lesser extent: the barred dissipative states 

become less frequent (by up to 10 days per year) and accordingly, the tide-dominated 

states, e.g., ultra-dissipative or transition to tide-dominated tidal flat, occur more often. 

The reduction in the occurrence of the barred states corresponds to an increase in the 

onshore sediment transport and the removal of the offshore bar, which in turn would 

lead to accretion of the beach.  

In sum, this work showed that a wave farm can alter the behaviour of a beach in its 

lee considerably. This in itself need not be regarded as a negative impact; on the 

contrary, the wave farm can lead to beach accretion and thus serve to counter erosional 

trends. Moreover, the effects of the wave farm on the beach can be controlled by 

locating the farm closer to, or further from, the shoreline.  
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10. SYNTHESIS AND CONCLUSIONS 

10.1 DISCUSSION  

Wave energy is generally considered as an expensive form of renewable energy. 

This is due, in part, to the early stage of development of the technology, and in part, to 

the difficulties posed by the harsh marine environment. In any case, for wave energy to 

truly take off, its costs must decrease substantially. In addition to the cost reductions 

which can be obtained by optimising the installation and construction processes (Astariz 

& Iglesias, 2015a) and the WEC design, there is a “strategic” approach for reducing the 

costs: the synergetic application of wave farms to generate carbon-free energy and 

coastal protection. This synergy would enhance the economic viability of wave farms 

through savings in conventional defence schemes. In this sense, this PhD Thesis has 

proven that wave farms can effectively protect the coast at different locations, and that 

the degree of coastal protection can be controlled by the key design parameters of the 

wave farms, such as the farm-to-coast distance and the layout. 

Importantly, the case studies showed that wave farms would be particularly 

effective in mitigating beach erosion, which is one of the major threats affecting 

beaches worldwide in the current transition scenario. Figure 10.1 shows the magnitude 

of beach erosion after storm events during the winter 2013/2014 at Perranporth (UK) 

and Soulac-sur-Mer (France), with dramatic environmental and socioeconomic 

consequences in the latter case, in which where the erosion in the dune affected the 

foundation of the property illustrated in the picture, and consequently, led to the 

demolition of the building.  

Wave farms were found to not only reduce beach erosion, but also to alter the 

sediment transport patterns, displacing the landward extreme of the eroded area by up to 

30 m towards the sea. This displacement can be of particular relevance in cases such as 
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Soulac-sur-Mer, where some buildings were at risk due to storm-induced erosion at the 

toe of the foundations. Had a wave farm been deployed off that section of the coast, the 

demolition of many a building might well have been avoided. 

 

Figure 10.1 Consequences of 13/14 winter storms at Perranporth Beach (UK) and Soulac-sur-Mer (France) on 

the left and right hand, respectively 

However, the effects of wave farms on the coast do not lend themselves to general 

statements, for they will depend on the characteristics of the area in question (wave 

energy resource, wave climate and grain size distribution, among others), of the WECs 

and their layout. The results obtained for the different locations and layouts are 

discussed below, in addition to the importance of the wave farm performance and the 

type of WEC. 

10.1.1 INTER-SITE COMPARISONS 

Two locations along the Atlantic façade of Europe were selected to analyse and 

compare wave farm impacts on the coast: Perranporth Beach in SW England and Xago 

Beach in N Spain. The selection was based on the resource characterisation (Iglesias & 

Carballo, 2010b; Martinho & Soares, 2011) in conjunction with the distance to 

populated areas, the availability of data (both wave and bathymetric), and importantly, 

the need for enhancing coastal protection.  

The site for the wave farm off Xago beach was selected by the Asturian Institution 

for Energy Development (Federacion Asturiana de ENergia, FAEN) for the deployment 
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of the first offshore wave farm in Spain. For its part, in the case of Perranporth there is 

no defined location for the wave farm, which prompted the investigation of relevant 

parameters, e.g. the role played by the farm-to-coast distance.  

Regarding the wave energy resource, the offshore average power in both areas was 

found to be well above 20 kWm
–1

; which represents the threshold for commercial scale 

resource according to the literature (The Crown State, 2013). The analysis, which 

covered a 12-month period, yielded the following values: significant wave height and 

mean period of 2.28 m and 9.83 s, respectively, at Perranporth; and 2.11 m and 10.07 s 

at Xago. In terms of average offshore wave power the values were approx. 29 kW/m 

and 26 kW/m at Perranporth and Xago, respectively.  

As regards the wave resource at the farm sites, the average wave power available to 

a generic WEC ( WECJ ) was 20.21 kW/m in the case of Xago (with a farm-to-coast 

distance of 1.7 km, at a water depth of 30 m) and 14.46 kW/m at Perranporth (with the 

farm at a similar distance from the coast and water depth). The resource at Xago was 

found to be even higher than at Perranporth with a farm-to-coast distance of 6 km 

(17.26 kW/m).  

The significantly higher resource at Xago is explained by the irregular bathymetry 

in the area, which effectively creates a nearshore hotspot at the site (Hadadpour et al., 

2014; Iglesias & Carballo, 2010a). It can be observed that the average offshore resource 

(26 kW/m) was similar to the resource found in the WECs located in the first row of the 

wave farm (25 kW/m), so the energy dissipation associated to the wave propagation 

from offshore to nearshore is compensated by the irregular bathymetry of the area 

selected for the wave farm at Xago. These nearshore hotspots are strongly 

recommended for the deployment of wave farms given that high wave energy resources 

can be found in locations relatively close to the coast.  
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The overall mean incident power of the wave farm consists of multiplying the 

annual mean values by the capture width (90 m, the distance between the twin bows) 

and the number of WECs (11). In order to obtain the total production of the farm, the 

efficiency of the device needs to be considered. This value is generally extracted from 

physical campaigns at prototype scale to prove the viability of the technology, as will be 

shown in the following subsection; however, the nascent state of this renewable 

technology limits the number of WECs deployed on the sea. On this basis, the values 

presented in Fernandez et al. (2012) during laboratory tests at a scale of 1:50 are used. 

Considering this, the total production of the wave farm would be 4.7 and 3.4 MW for 

the cases of Xago and Perranporth (with the farm at 2 km from the coast), respectively. 

The contribution of each WEC would be 0.4 and 0.3 MW for both locations. Translating 

this to the monthly mean production of the wave farm, at Xago the production would be 

3.4 GWh and at Perranporth it would vary from 2.9 GWh for the farm at 6 km from the 

coast to 2.4 GWh for the closest farm to the shore. The economic viability of wave 

farms compared to other sources of energy will be also discussed in the following 

section. 

Regarding the impact on the sediment transport, although in both locations the wave 

farm contributed to reducing storm-induced erosion; significant differences in the 

response of the beach to the wave farm were found between places. While in the case of 

Perranporth, the reduction in erosion occurred mainly on the beach face and to a lesser 

extent on the submarine bar, in the case of Xago it was particularly evident on the dune.  

It is important to consider that the comparison is carried out with different wave 

conditions and time duration. In the case of Perranporth, the response of the beach was 

studied during a week with average values of significant wave height and peak period of 
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4.2 m and 12.1 s, respectively. For its part, Xago was forced with a storm of 9 days with 

the following average conditions: Hs = 3.72 m and Tp = 10.5 s. 

The results obtained applying the Bed Level Indicator (BLI), which refers to the bed 

level difference at the end of the storm period between the baseline and the wave farm 

scenario, presented significant differences. Although the maximum BLI values at 

Perranporth (BLI > 4 m) were greater than at Xago (BLI > 2 m); analysing the 3D 

response of the beach it is found that these peak values at Perranporth are the 

consequence of the isolated response of some profiles since the average value along the 

beach was around 1 m. On the other hand, the erosion reduction at Xago was practically 

constant along the entire beach, with values around 2 m, with the exception of the 

central section of the beach. There are two main reasons for this: first, the smaller farm-

to-coast distance at Xago (1.7 km) in relation to Perranporth (6 km), in the case of the 

short-term 3D analysis (Chapter 5); and second, the presence of the submarine bar at 

Perranporth, which forms part of the response mechanism of the natural system to 

protect the beach and thus led to lesser values of erosion in the baseline scenario.  

It is also remarkable that the greatest reductions in erosion were found at 

Perranporth in the beach face. Indeed, the Non-dimensional Erosion Reduction (NER) 

indicator at the beach face presented values over 40% along a stretch of 1500 m 

(practically half of the beach). For its part, at Xago although the maximum NER values 

were even higher than at Perranporth (with reductions over 60%), they were found in a 

smaller section of the beach. In the rest, the protection afforded by the farm was 

practically constant with values around 20%.  

In any case, the impacts identified at both places are beneficial for the beach, as the 

main threats found at Perranporth and Xago Beach are the erosion of the beach face and 
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the dune, respectively; and the location of a wave farm nearshore was found to be 

effective in protecting the beach in both cases.  

10.1.2 INTRA-SITE COMPARISON 

The previous heading showed that the effects of wave farms varied according to the 

area in question; however, these effects can also vary at the same location. In this sense, 

the objective of this section is to discuss the results obtained in the short- and medium-

term analysis at Perranporth Beach, and the role played by the farm-to-coast distance 

and layout.  

10.1.2.1 Short term vs long term 

The results of the short- and medium-term analysis show that the wave farm is more 

effective in protecting the coast under storm conditions. This can be regarded as a 

controversial aspect, as generally many of the WECs adopt survival strategies under 

storm conditions so as to reduce the probability of damage through mechanical or 

mooring failure. However, during the laboratory tests of the WaveCat WEC conducted 

at the COAST Lab of Plymouth in the framework of the EU WAVEIMPACT project, it 

was found that in the case of the WaveCat, the device can cope effectively with large 

wave heights by means of varying the angle between the twin hulls of the model (the 

greater the wave height, the smaller angle and consequently the wave loading on the 

device). This aspect will be discussed in Section 10.2. 

 In the medium-term analysis, the greatest reductions in eroded area in the beach 

face (NER) coincided with stormy periods. For instance, after 1 month (December) and 

3 months (February) of simulation the NER values exceed 30% and 35% respectively in 

the case of the beach profile in the north section of the beach. However, at the end of the 

simulation (April), with milder wave conditions, the NER values dropped to 20%. In 

any case, this is still a significant erosion reduction, which cannot be overlooked. 
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Although the medium-term analysis was conducted in a 2D (x,z) mode, two profiles 

were considered to evaluate the alongshore variability. This was found of relevance, 

with greater reductions of erosion in the north section of the beach (approx. 10% more 

than the central section of the beach) - the area most sheltered by the wave farm. This 

fact was corroborated by the 3D (x,y,z) study, in which the greater reduction in erosion 

(NER ~ 40%) was found in the north area of the beach. It can be observed that the 

values of reduction of erosion (NER) at the end of storm periods in the short- and long-

term analysis are very similar.  

Therefore, considering that the section with reductions over 40% exceeded 1500 m 

(~40% of the total length of the beach) and the similarities between the results in the 

short- and long-term analysis, it may be estimated that the wave farm would protect 

most of the beach effectively, and would have a less significant but still considerable 

effect on the rest of the beach. However, before the actual deployment of wave farms, 

their long-term effects on the coast and the multi-decadal response of the beach with a 

wave farm operating nearshore must be quantified, and this will form part of the future 

investigations that will be explained further in the future research lines. 

10.1.2.2 Influence of the key design parameters of wave farms 

The definition of an optimum location for a wave farm is crucial in the performance 

of the wave farm and the degree of coastal protection associated. The role played by the 

wave farm layout and the farm-to-coast distance in the beach evolution (sediment 

transport and modal state of the beach) is discussed in this section. 

Regarding the farm-to-coast distance, the wave farm located 2 km off the beach 

afforded the greatest degree of coastal protection based on both the sediment transport 

and the modal state of the beach. There is a clear connection between these two aspects 

given that, in order to interpret the evolution of the modal state of the beach, it is 
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essential to understand in which manner wave energy extraction affects the sediment 

transport patterns. 

In this sense, the previous finding that wave farms were particularly effective in 

reducing the erosion at the beach face in the case studies is amplified in the case of a 

wave farm at a distance of 2 km (as seen at Xago as well). Thus, the lower volume of 

storm-induced erosion in the beach results in a less steep beach face and in a flatter 

beach profile. This modification of the sediment transport would change the 

morphology of the beach, which was corroborated in the analysis of the beach modal 

state during an average year. Perranporth, which in the baseline scenario is in the 

transition between the low tide bar and rip state and the barred and non-barred 

dissipative states, would change its predominant state to ultra-dissipative, which is 

characterised by the absence of features and a flat beach profile (Figure 10.2). 

 

Figure 10.2 Evolution of the modal state of the beach with a wave farm operating nearshore 

This change would be associated to the reduction in erosion in the beach face, and 

may have positive effects on the beach dynamics such as beach accretion. The milder 

wave climate nearshore would bring about the deposition of the material from the 
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submarine bar (typical of barred dissipative and low tide bar and rip states) onto the 

beach face, resulting in a smoother and featureless beach profile. 

Regarding the other two farm-to-coast distances, similar beach responses were 

found. Although, the reduction of the erosion was less significant than with the farm at 

2 km, the average reduction of erosion at the beach face along the whole beach for both 

distances was around 10%, value that cannot be overstated considering that the model 

was run under frequent storm conditions. This lower degree of coastal protection 

afforded by the farm at these distances was reflected in the modal state of the beach. 

While with the closest wave farm certain modal states of the beach varied by up to 40 

days per year, with the farm at distances of 4 and 6 km this modification did not exceed 

10 days per year.  

Regarding the wave farm layout, it was found to be particularly relevant in the wave 

energy resource, for instance increasing the inter-row distance between devices (farm 

configuration 2D-3D) the same resource in a generic WEC of the wave farm can be 

found locating it at a distance of 3 km to the coast than at 6 km with a farm 

configuration of 2D-2D. However, although these wave farm layouts would maximise 

the available resource, they would also result in an increase of the wave farm 

infrastructure costs, such as the cable costs, which would be increased by approx. 

0.7 M € in the 2D-3D scenario in relation to the 2D-2D configuration, following the 

data provided by Astariz et al. (2015a).  

Furthermore, the degree of coastal protection offered by the wave farms with 

greater spacing between WECs is lower. For instance, placing the wave farm at a 

distance of 3 km to the coast, the average reduction of the erosion on the beach face 

with a layout configuration of 2D-2D was 20%, while with a 2D-3D configuration it 

was 10%.  
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10.1.3 PERFORMANCE OF WAVE FARMS AND THEIR ECONOMIC VIABILITY 

Although the focus of this thesis is to establish the impacts of wave farms on the 

coast, and consequently determine their performance to protect the coast, needless to 

say that the main purpose of wave energy is to generate carbon-free energy, and its 

probability to truly take off will fully depend on accomplishing this primary objective. 

Thus, this section will discuss about the performance of wave farms according the type 

of WEC, and their economic viability, including its potential enhancement due to their 

synergetic applications: wave farm to protect the coast and co-located wave-wind farms.  

As mentioned in the previous section, the premature stage of wave energy leads the 

author to consider that it is a more expensive form of renewable energy than others, 

such as wind, tidal and solar energy with a more mature status of the technology. 

Generally, this is supported by economic studies that are usually oversimplified and 

whose results might generate erroneous conclusions about the wave energy 

competitiveness. However, including key issues in an economic analysis, namely 

externalities, the gap between the LCOE of wave energy and other sources is practically 

negligible, as shown in Astariz et al. (2015a). Externalities refer to the damage 

provoked to third parties when a product or service is consumed. In other words, the 

approach to achieve an accurate comparison between the LCOE of different energy 

sources lies in internalizing these external costs in the energy price, which will be 

assumed by the consumer. This study places the levelised cost of wave energy very 

close to traditional and very well developed forms of producing energy, such as coal-

fired plants (Figure 10.3).  
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Figure 10.3 Levelised cost (€/MWh) of different technologies including external costs (Astariz et al., 2015a) 

An important aspect that was also taken into account in the study was the learning 

curve, a parameter that identifies cost reductions arising through economies of scale and 

technological effects, such as technological advances and improvements by practice. 

The LCOE for wave energy depicted in the graph (114.81 €/MWh) considered an 

optimistic scenario of this learning curve. However, if we consider the current status of 

wave energy the levelised cost value presents a broad range from 185.45 €/MWh to 

1,595.66 €/MWh. In this sense, the cost of 1 MWh produced by a wave farm would be 

more expensive than with any non-renewable energy technology, and even more 

expensive than with most other renewables. Thus, these figures show the necessity of 

enhancing the viability of wave farms through their synergetic application either: (i) to 

protect the coast and/or (ii) to share costs and infrastructure with wind energy (co-

located offshore wind and wave farms).  

An aspect that warrants discussion is the large variability in the LCOE of wave 

energy at the current status. This is related to several aspects: (i) the type of WEC, (ii) 
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the wave farm layout and (iii) the site characterisation, which includes water depth, 

wave conditions and farm-to-coast distance. While the second and the third aspects 

were already studied under the two previous headings, the performance of the wave 

farm according to the type of WEC will be discussed below.  

The performance of wave energy depends on two main aspects: the efficiency of the 

device and the capacity factor of the wave farm. The former refers to the ratio between 

the installed power and the absorbed energy and the latter is the ratio between the 

average annual energy and the theoretical maximum energy (Astariz & Iglesias, 2015b). 

The efficiency of the device depends on its rated power, which varies significantly 

according to the type of WEC. Table 10.1 shows the rated power for four types of 

WEC: two oscillating bodies, Aquabuoy and Pelamis; and two overtopping devices, 

Wave Dragon and WaveCat. It is readily observed that the oscillating bodies present a 

lower rated power than the overtopping devices; although there is no clear relationship 

between the rated power and the estimated cost per MW, as this analysis places 

WaveCat and Aquaboy as the most efficient devices.   

Technology Wave Dragon WaveCat Aquabuoy Pelamis 

Rated power (kW) 7,000 1,200 250 750 

Estimated cost (€/MW) 2,100 687 720 3,000 

Table 10.1 Rated power and estimated cost of WaveDragon, Pelamis and Aquabuoy (Astariz & Iglesias, 

2015b; Astariz et al., 2015a; Barrero, 2011) 

The efficiency of the devices depends on the mechanical performance of converting 

the hydrodynamic power into electrical energy and the efficiency of the electrical 

energy transmission. To obtain this ratio more accurately it is necessary to deploy 

prototypes in the water, and unfortunately due to the nascent stage of the technology, 

the number of them is not abundant. In any case, the information presented in Table 
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10.2 summarises the data from the most relevant WECs installed, revealing that their 

efficiency is rather high.  

Device Efficiency (%) Capacity factor (%) 

SWAN DK3 54 11 

Point absorber 72 8 

Bolgehovlen 81 2 

Bolgemollen 85 20 

Wave Dragon 81 11 

Bolgeturbinen 85 1 

Wave Plunge 72 9 

Bolgemollen 72 1 

DWP 72 14 

Planta de Pico 54 18 

Pelamis 72 5 

Mighty Whale 54 3 

Table 10.2 Efficiency and capacity factor of different WECs using data extracted from prototypes (Fernandez 

Diez, 2004) 

However, the results from the capacity factor of the wave farms reveal that at this 

time of development, standalone wave energy is not viable. With the aim of bridging 

this gap appears the idea of co-located wave and wind farms, which would share the 

costs of the infrastructure and the transmission of the electricity. Astariz et al. (2015a) 

found that in a co-located wave and wind farm the cost of the energy was around 

300 €/MWh, which would involve reductions about 55% with regard to the cost of the 

isolated wave farm for the case of the WaveCat. Furthermore, if the expected learning 

curve within ten years was considered, the cost would be reduced to approx. 150 

€/MWh, a similar cost of other novel renewables like offshore wind energy. 

Another possibility exists whereby the economic viability of wave energy extraction 

may be enhanced, which was the main focus of this document: protecting the coast in 
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conjunction with generating carbon-free energy. Moreover this synergetic application is 

compatible with the co-located wave-wind farm, which would even make wave energy 

a more competitive renewable.  

If a wave farm was deployed with the aim of protecting the coast, its cost would be 

reduced thanks to the savings in coastal protection. Table 10.3 shows the costs in 

thousands of pounds of the most common coastal protection means per linear meter of 

coastal structure or per linear meter of beach. It is important to highlight that the service 

life of some of these means are equivalent to the one of the wave farm (25-50 years), 

but others, such as the beach nourishment needs to be conducted periodically (e.g. each 

5 years), which increases the budget devoted for protecting the coast.  

Taking into account these figures and considering as a case study Perranporth with 

a beach length of approximately 4 km, the cost of a coastal protection project would 

range from £30M (hard structure) to £80M (periodic beach nourishment). While the 

latter is a soft engineering measure, i.e. its environmental impacts are very low; the 

former, whose price is lower, will have a very significant impact on the location, not 

only the species that habit there, but also on the coastal morphology due to the drastic 

change of the morphodynamics. Indeed, the current trends followed by coastal 

practitioners for coastal management prefer the application of soft engineering means 

due to the reduction of the aforementioned externalities (Borsje et al., 2011; French, 

2004; Grooatert et al., 2006; Hanson et al., 2002).  
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Coastal protection 

mean 

Significance 

Indicative 

cost (£k/m) 
Enabling 

costs 

Capital 

costs 

Maintenance 

costs 

Beach recharge and 

breakwater 
Medium High Medium 2.7-7.3 

Beach recharge and 

groynes 
Medium High Medium 1.6-4.7 

Rock armour Medium High Low 1.3-6 

Seawalls Medium High Low 0.7-5.4 

Rock revetments Medium High Low 0.6-2.8 

Nearshore breakwaters Medium Medium Low 1.7-4.3 

Beach nourishment Medium Medium Medium 0.4-6.4 

Table 10.3 Indicative costs associated with the cost of coastal protection (DEFRA, 2015a) 

Thus, to obtain the reduction of the cost in the MW per hour due to the savings in 

coastal protection, it is necessary to discount the cost of these means to the total cost of 

the wave farm project. Considering the above and using the WaveCat as a reference 

WEC (with a cost per MWh of 687 €), the savings in coastal protection would suppose a 

reduction of 25% in the case of the beach nourishment and a reduction of 10% in the 

case of a detached offshore breakwater. In sum, considering these reductions and an 

optimistic scenario of the learning curve, the cost of the standalone wave energy could 

be around 300 MWh, a considerably lower figure. 

Furthermore, the environmental impacts of deploying WECs to protect the coast are 

lower than the aforementioned solutions. Although the greatest advantage of wave 

farms comprised of floating WECs against the traditional means of coastal protection is 

their adaptability to climate change, particularly to sea level rise. While coastal 

structures can become obsolete due to the higher water levels and beach nourishment 
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can increase the number of periodical campaigns, WECs would adapt to this water level 

rise without any external cost, either economical or environmental.  

On the other hand, it is important to mention that these results have been extracted 

from a scenario where the wave farm itself would be capable of protecting the whole 

beach, case that was not observed in the previous chapters. In any case, if a wave farm 

was deployed to protect the coast in conjunction with soft engineering means, for 

instance beach nourishment, but with larger periods of beach regeneration, e.g. 10 years 

instead of 5, the reduction would be still considerable, at least greater than 10%. 

These reductions in the LCOE of wave energy have been obtained considering a 

wave farm comprised of WaveCat WECs. Although the results of this specific WEC 

cannot lead to general conclusions, it is observed in the literature review that, at least for 

overtopping WECs, the results of energy absorbed are very similar (Verbrugghe et al., 

2016). An example of this is the Wave Dragon WEC, an overtopping type, whose 

transmission coefficients were studied either physically or numerically by Nørgaard and 

Andersen (2012). Both sources indicated that the transmission coefficient of these 

devices presented low variability; despite they were tested for a wide range of wave 

conditions, ranged from Hs = 1 m and Tp = 5.2 s to Hs = 5 m and Tp = 11 s. Values of 

transmission coefficients very similar to the WaveCat (Kt ~ 0.75) were found, from 0.6 

to 0.8. 

Then, the impacts on the nearshore wave conditions of wave farms comprised by 

Wave Dragons WEC were very similar results to the result presented in this document. 

For instance, Figure 2.19 show that the disturbance of the wave conditions, i.e. the wave 

height difference between the baseline and the wave farm scenario, at a distance of 1 km 

from the wave farm peaked in 0.45, trend that was observed for the WaveCat at both 

locations considered in this thesis: Perranporth in Figure 6.4 and Xago in Figure 6.19.  



Chapter 10 

198 

 

 However, when it comes to the impacts on the beach morphology results, it is 

impossible to compare and generalise the impacts caused by the wave farms, as the 

novelty of this thesis lies in the evaluation for the first time of the reduction in storm-

induced erosion brought about by wave farms due to the absorption of wave energy. 

Although, it could be stated that whether the impacts on the wave patterns between 

overtopping devices are analogous despite the different site characteristics, the results 

expected on the beach morphology should follow this trend.  

Extrapolation to other type of devices, namely Oscillating Water Columns and 

Oscillating bodies, is not that straightforward. While the working principle of 

overtopping devices is mainly wave energy absorption, the other two types of WECs are 

mainly governed by processes such as radiation and diffraction, which make more 

complex the resolution of the wave patterns in the lee of the farm. As seen in Figure 

2.16Figure 2.16 Perturbed wave field normalized by recorded undisturbed wave field 

for the 5 x 5 WEC array configuration (Stratigaki et al., 2014). The basin width (X, 

columns) and length (Y, rows) are expressed in number of WEC unit diameters, D = 

0.315 m., the evolution of the disturbed wave field varied significantly compared to the 

cases with overtopping WECs; with an increase of the wave height in the points near the 

WECs due to the effects of the radiated waves. Nevertheless, mowing towards the coast, 

a reduction of the wave height is found to not exceed 20%, very different to the 

aforementioned 45%.  

As for the coastal impacts, the comparison of the effects on the longshore sediment 

transport between different types of devices show that overtopping devices are the most 

efficient type of WECs to protect the coast, though the other type of WECs can reach 

the same level of protection increasing the number of WECs deployed in the farm. For 

instance, in the study carried out by Mendoza et al. (2014), a wave farm form by 3 
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Wave Dragon WECs was capable to protect the beach as much as a farm comprised of 

45 DEXA devices (oscillating body). 

Last but not least, the survivability of the WECs under extreme events is one of the 

most important topics in wave energy. Brown et al. (2010) defined WEC survivability 

as “the ability of a marine energy system to avoid damage, during sea states that are 

outside of intended operating conditions, that results in unplanned down time and the 

need for service”. The complexity of the problem lies in the large number of mode of 

failures that can occur. For any moored device, loads within the mooring system, 

including anchors, mooring lines and connection points must be considered. As a result, 

the vulnerability of WECs in most of the cases depends more on the survivability of the 

anchor system rather than the WEC itself (Coe & Neary, 2014; Ransley et al., 2013).  

The primary goal of a WEC when waves get larger is to transition from efficient 

energy production to survival. The nature of this transition and under what wave 

conditions this must occur is completely dependent on the type of device. Then, the 

question that emerges is whether this reduction of effectiveness in the energy 

production can affect the wave energy absorption, and, therefore, the degree of coastal 

protection provided by the wave farm.  

During these extreme events, generally WECs adopt survival strategies in order to 

reduce the chance of damage, mechanical failure or devices breaking free from 

moorings. These mechanisms might include disengaging the power take-off, changing 

the mooring orientation, or pulling the device underwater. In the case of the WaveCat, 

the model adapts the angle between the hulls of the device to reduce the wave loading, 

i.e. the greater the wave height, the smaller the angle. As a result, the farm effectiveness 

as wave energy absorber might be reduced, although never completely, as the device 

will stand there and will have an impact on the wave patterns. However, it is hard to 
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estimate in the degree to which coastal protection could be diminished compared to the 

operational conditions. For this purpose, it is necessary to conduct physical tests that 

allow this determination, which is the objective of the EU WaveImpact project that will 

be described in the following section. 

 

10.2 FUTURE RESEARCH LINES 

From the promising results presented above, a question emerges: can wave farms 

complement, or even substitute in certain locations, typical coastal protection measures 

such as groynes and detached breakwaters? The reduction of storm-induced erosion 

found in this document can lead to a positive answer; however prior to actually 

developing wave farms with a view to generating carbon-free renewable energy and 

protecting the coast, the following aspects must be addressed in the future: (i) the 

assessment of the effectiveness of wave farms under extreme events to absorb energy, 

and consequently to protect the coast; (ii) the quantification of the wave farm impacts 

on the coast in the long term (multi decadal scale); and (iii) the evaluation of the 

effectiveness of wave farms to reduce the flooding and its effects on coastal structures. 

The wave field-wave farm interaction must be characterised under a larger number 

of case studies. In the present document the WEC-wave interaction was modelled using 

the transmission coefficients obtained during the laboratory tests reported by Fernandez 

et al. (2012). This study showed the low variability of the coefficient transmission under 

operational conditions (κt ~ 0.76); however extreme wave conditions were not tested. 

On these grounds, the ongoing EU WaveImpact project aims to characterise the 

interaction of the WaveCat WEC with the wave field in both the operational and the 

survival mode by means of laboratory tests.  
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As mentioned above, a number of distinct survival modes and strategies have been 

developed for WECs. A robust WEC survival design process requires a set of modeling 

tools, particularly with regard to the physical modeling that allows a well-targeted 

validation, consequently, identifying in which manner survival modes can vary the 

effectiveness of WECs to extract energy is one of the major objectives of the 

WaveImpact project. Moreover, this upgraded WEC-wave interaction can be 

incorporated into wave propagation models accounting for frequency-dependent wave 

transmission coefficients (Ruehl et al., 2013; Smith, Pearce & Millar, 2012) and thus 

lead to more accurate representations of the impacts, especially in the long-term.  

A case that reflects the importance of the long-term evolution is how reduction in 

wave energy in certain sections of the beach (e.g. north part in Perranporth) which will 

affect beach dynamics in the long term, as the beach could begin an anticlockwise 

rotation similar to those seen in pocket beaches affected by ENSO oscillations 

(Ranasinghe et al., 2004; Storlazzi & Griggs, 2000). This rotation may well cause 

permanent erosion at the south end of the beach and permanent accretion at the north 

end. 

For this purpose, new modelling techniques are necessary, as in this document, 

process-based models have been used to determine the impacts on the coast in the short- 

and medium-term scale; and the long-term analysis cannot rely on the extrapolation of 

the current results owing to the highly nonlinear processes involved, the lack of an up-

scaling closure theory and the relevance of wave-induced beach recovery between storm 

events (Houser, 2009). Although process-based models, which iteratively resolve the 

hydrodynamics, sediment transport and bathymetric evolution, are successfully used to 

assess the beach response under storm conditions, they struggle to simulate post-storm 

beach recovery (Kobayashi, Payo & Schmied, 2008; Plant et al., 2004) – a fundamental 
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shortcoming when it comes to simulating long-term coastal behaviour. For these 

reasons, this aspect needs to be addressed through behavioural models, which simulate 

known behaviours, such as the tendency for a beach to develop towards an equilibrium 

form. The results of this future research line will be essential to determining whether 

wave farms can be used for protecting the coast in synergy with their main purpose of 

generating carbon-free energy. 

Finally, the last research line considered key in the assessment of the wave farm 

impacts impact is their effects on water levels, and subsequently the determination of 

their effectiveness to reduce coastal flooding. This topic is of particular relevance in the 

current transition scenario, where sea-level rise and, potentially, increased storminess 

(Pye & Blott, 2008) will exponentially increase coastal flood risks (Lewis et al., 2011). 

Furthermore, many of the existing coastal defence structures will quickly become 

obsolete, and this will lead to the necessity of enhancing coastal protection.  

 

10.3 CONCLUSIONS 

The thesis provides a comprehensive assessment of the wave farm impacts on the 

beach morphology at two different locations (Perranporth and Xago), constituting the 

first document that quantifies the impacts on the coast. The degree of coastal protection 

afforded by a wave farm was investigated in the short and medium term. Although the 

study was focussed on a type of WEC, WaveCat, the results could be arguably 

extrapolated at least for overtopping-type devices. Thus, from the different areas and 

wave conditions analysed the following points are distilled to address the central aim of 

the document, in which manner the wave energy extraction caused by the WaveCat 

WECs that form a wave farm affects the coast: 



Synthesis and Conclusions 

203 

 

 The reduction of wave height peaks in the lee of the wave farm, and 

although it decreases towards the coastline due to the wave energy diffracted 

from the edges of the shadow, the values found on the coast are still 

significant and capable to alter the morphology of the beach located in the 

lee of the farm.  

 Wave farms are particularly effective in reducing storm-induced erosion in 

the areas most at risk from this phenomenon. For instance, while in 

Perranporth the main reduction of erosion is found at the beach face, in 

Xago Beach the sandy dune that backs the beach experienced the greatest 

attenuations. 

 The greatest degree of coastal protection afforded by the wave farms occurs 

under storm conditions, however the protection provided in the medium 

term, with reductions of erosion greater than 20%, cannot be overlooked.  

 Wave farms not only reduce the volume of storm-induced erosion, but also 

modify the sediment transport patterns. The landward extreme of the eroded 

area is displaced significantly towards the sea side at the end of storm 

conditions, which is of particular relevance to avoid damages in the 

foundations of buildings in the waterfront.  

 The modal state of the beach is also altered by the presence of a wave farm, 

transforming the predominant wave-dominated character of the beach to 

tide-dominated. The reduction of the wave-dominated states in addition to 

the potential removal of the offshore bar would lead to an increase of the 

onshore sediment transport: beach accretion. 

 The wave energy resource and subsequently the performance of the wave 

farm highly depend on the distance of the farm to the coast and the wave 

farm layout. Although, the statement: “the greater farm-to-coast distance, 
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the greater the available resource” is generally valid, the relationship 

between these two parameters is not proportional. Indeed, in some cases 

placing the wave farm the furthest possible is not the best solution 

considering the increase of costs in submarine cable and mooring lines, 

among others. Furthermore, it is observed that increasing the distance 

between devices, similar wave energy resource to the one obtained placing 

the wave farm at further distances can be achieved.  

 The farm-to-coast distance is also a key element in the degree of coastal 

protection afforded by the farm: The closer the wave farm to the coast, the 

greater the reduction of erosion. Therefore, the effects of the wave farm on 

the beach can be controlled by locating the farm closer to, or further from, 

the shoreline. 

In sum, this document presents how a wave farm can alter the behaviour and 

response of a beach in its lee based on the results of two case studies. This knowledge 

of the wave energy impacts is essential for the consolidation of one of the most 

promising marine renewable energies, particularly when its impacts need not be 

regarded as negative; on the contrary, it can contribute to reducing the erosion on the 

beach, and thus serve to counter erosion. Moreover, wave energy is essential to meeting 

the objectives of greenhouse gas reduction established by the Kyoto protocol and other 

treaties. Therefore, this thesis illustrated that wave energy is emerging as a renewable 

resource capable of tackling climate change on the double front of its causes (through 

reduced carbon emissions) and effects, particularly on the coast (erosion). 
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If wave energy is to become a fully-fledged renewable, its environmental impacts must be fully understood. The
objective of the present work is to examine the impact of a wave farm on the beach profile through a case study.
The methodology is based on two coupled numerical models: a nearshore wave propagation model and a
morphodynamic model, which are run in two scenarios, both with and without the wave farm. Wave data
from a nearby coastal buoy are used to prescribe the boundary conditions. A positive effect on the wave climate,
the cross-shore sediment transport and, consequently, the evolution of the beach profile itself due to the pres-
ence of the wave farm was found. The wave farm leads to a reduction in the erosion of the beach face. This
work constitutes the first stage of the investigation of the effectiveness of a wave farm as a coastal defence mea-
sure, and the accuracy of the quantification of the erosion reduction will be enhanced in future research. In any
case, the overarching picture that emerges is thatwave farms, in addition to providing carbon-free energy, can be
used as elements of a coastal defence scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Marine renewable energy and, in particular, wave energy is called to
play a major role in achieving the renewable energy targets of the
European Union for 2020 — the so-called 20-20-20 targets (European
Commission, 2007). Among other advantages, wave energy boasts
one of the highest energy densities of the renewable energy sector
(Clément et al., 2002). At present, the main research areas in wave
energy are: (i) the characterisation of the resource (Cornett, 2008;
Iglesias and Carballo, 2009, 2010, 2011; Pontes et al., 1996; Vicinanza
et al., 2013); (ii) the development of the technology (Falcão, 2007;
Falcão and Justino, 1999; Kofoed et al., 2006); and, finally (iii) the envi-
ronmental impact of wave farms, including the impact on the physical
environment with which this work is concerned.

Knowledge of the impacts, positive or negative, is important for the
development of the different types of marine energy because an Envi-
ronmental Impact Assessment (EIA) is required for any such project.
In the case of wave energy, the studies so far have dealt with the impact
of a wave farm on the wave conditions in its lee. As waves propagate
through the wave farm, their height is reduced according to an energy
transmission coefficient. This coefficient depends on the performance
of the Wave Energy Converters (WECs) selected. Millar et al. (2007)
used SWAN (Booij et al., 1999), a phase-averaged spectral model, to
quantify the impact on the wave climate and the shoreline changes for
the Wave Hub project (UK). Notional values of the transmission coeffi-
cient (0, 40, 70 and 90%)were used due to the lack of information about
the performance of the WECs at the time. In the same vein, Palha et al.

(2010) used the parabolic mid slope wave model REFDIF to perform a
sensitivity analysis to study the impact on the shoreline using different
layouts for thewave farm; andVidal et al. (2007) studied the impact of a
small wave farm on the wave climate and the nearshore sediment
transport.

Another line of work used physical modelling to investigate the
wave–WEC interaction. Carballo and Iglesias (2013) studied themodifi-
cation of the nearshore wave climate using values of the energy trans-
mission coefficient obtained from ad hoc physical model tests of a
WaveCatWEC (Iglesias et al., 2008). Taking into account of these values,
a sensitivity analysis was performed with different layouts of the wave
farm to assess its impact on the nearshore wave conditions. Mendoza
et al. (in press) compared the impact of two wave farms with different
WECs on the coastline. The results showed that a wave farm nearshore
could produce accretion to some extent in some sections of the beach. In
this context, Ruol et al. (2011), Nørgaard et al. (2011) and Zanuttigh and
Angelelli (2013) put forward the idea of using a wave farm for shore
protection based on the reduction of the nearshore wave height caused
by the wave farm.

If a wave farm is to be used for the purpose of coastal protection, it is
essential to understand its impact on the beach profile — an aspect of
great practical relevance that has not been investigated so far. This is
the main objective of the present work, which is conducted through a
case study: Perranporth Beach.

Perranporth Beach is a 3 km sandy beach located in Cornwall, SW
England (Fig. 1). Composed of medium quartz sand (Austin et al.,
2010), it has a semi-diurnal tidal regime and a tidal range of 6.3 m
(macrotidal). The area has a great potential for wave energy (Thorpe,
2001); indeed, it was selected as the site for the Wave Hub Project, a
grid-connected offshore facility for sea trials of WECs (Gonzalez et al.,
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2012; Reeve et al., 2011). The study covered the period from November
2007 to May 2008, corresponding to the part of the annual cycle with
the highest frequency of storms based on the onsite wave buoy data
(Section 2.1). This time scale allows the assessment of the morphologi-
cal changes in beaches, such as scarp formation, profile erosion and ac-
cretion, and bar evolution (Cowell and Thom, 1994).

Wave propagationwas simulated using SWAN and the beach profile
evolution with XBeach, a numerical model of nearshore processes
(Roelvink et al., 2006). XBeach was successfully applied in a number
of studies to describe the behaviour of beach profiles. Roelvink et al.
(2009) assessed the beach erosion due to storms and McCall et al.
(2010) focussed on the impact caused by hurricanes. Other authors,
such as Jamal et al. (2011) andWilliams et al. (2012), used XBeach to in-
vestigate gravel beaches. More recently, Pender and Karunarathna
(2012, 2013) demonstrated that XBeach is capable of modelling the
medium-term evolution of the beach profile of a sandy beach. Their re-
sults showed a good fit to themeasured profiles after each stormperiod.
On these grounds, XBeach is used in the present work to compare the
evolution of the beach profile with and without the presence of a
wave farm situated close to Perranporth Beach.

This article is structured as follows. In Section 2, the main character-
istics of the data sets –which includewave, wind, tide and beach profile
data – are presented, and the models are briefly described. This is
followed by Section 3, in which the results describing the impact of
the wave farm on the wave conditions and the evolution of the beach
profiles are presented and discussed. Finally, in Section 4, conclusions
are drawn concerning the effects of a wave farm on the beach profile
and, on these grounds, its applicability for coastal protection purposes.

2. Materials and methods

2.1. Data

The wave data used for this study were hindcast and onsite wave
buoy data. The directional wave buoy of the Coastal Channel Observato-
ry located in front of Perranporth beach (Fig. 2), in approximately 10 m
of water depth with reference to the local chart datum (LCD), provided
half-hourly data. The wave buoy data were used in conjunction with
hindcast data from WaveWatch III, a third-generation offshore wave
model consisting of global and regional nested grids with a resolution

Fig. 1. Bathymetry of SW England including the location of Perranporth Beach and the WaveHub Project [water depths in m].

Fig. 2. Initial beach profiles (P1 and P2) including their location and the position of the wave buoy. Water depth in relation to local chart datum.
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of 100 km (Tolman, 2002), to validate the high-resolution nearshore
wave propagation model. In the period selected for the study, from
November 2007 to April 2008, a number of storms with significant
wave heights over 6 m occurred (Fig. 5). The mean values of significant
wave height, Hs, and peak wave period, Tp, were 2.4 m and 13 s, respec-
tively. Given the orientation of the coastline and its exposure to the long
Atlantic fetch, the relevant wave direction is from the IV quarter (from
W to N), prevailing NW.

Wind data with a three-hourly frequency obtained from the Global
Forecast System (GFS) weather model were used as input of the wave
model. In the period covered in the study themeanwind velocitymagni-
tude at a height of 10 m above the sea surface was u10 = 9.5 ms−1. The
strongest winds came from the NW, with u10 values exceeding 20 ms−1.

The SW coast of England is characterised by a large tidal range,
which may affect the beach morphodynamics. For this reason, the tide
was included into themorphodynamicmodel with constituents obtain-
ed from the TPXO 7.2 global database, a globalmodel of ocean tides that
solves the Laplace equations using data from tide gauges and the
TOPEX/Poseidon Satellite (Egbert et al., 1994).

The beach profiles were obtained through field survey by the Coastal
Channel Observatory. The initial profiles (Fig. 2), typical of the end of
summer at Perranporth Beach, are associated with less energetic wave
conditions. The beach profile evolution is characterised during the sum-
mer by an increase of the sediment transport onshore. In contrast, off-
shore movement of sediment is the predominant phenomenon during
the winter owing to the more energetic wave conditions, which results
in a lowering of the intertidal beach face. Indeed, most of the profile
change at Perranporth Beach occurs in the lower intertidal to sub-tidal
active regions (Scott et al., 2011).

2.2. Wave propagation model

The assessment of thewave height reduction on the shore due to the
wave farmwas carried out using SWAN (SimulatingWAvesNearshore),
a third-generation numerical wave model developed to model near-
shore wave climate transformations. SWAN computes the evolution of
thewave spectrum based on the spectral wave action balance equation,

∂N
∂t þ∇ � C

!
N

� �
þ ∂ CθNð Þ

∂θ þ ∂ CσNð Þ
∂σ ¼ S

σ
ð1Þ

whereN is thewave action density, t the time, C
!

the propagation veloc-
ity in the geographical space, θ the wave direction, σ the relative fre-
quency, and Cθ and Cσ the propagation velocity in the θ- and σ-space,

respectively. Therefore, on the left-hand side of Eq. (1), the first term
represents the rate of change of wave action in time, the second term
describes the spatial propagation of wave action, and the third and
fourth terms stand for the refraction and changes in the relative fre-
quencies respectively induced by depth and currents. Finally, on the
right-hand side, S is the source term representing the generation and
dissipation of energy density by the different processes involved.

In the present study two computational grids were used (Fig 3):
(i) a coarse grid from offshore to the coast encompassing an area of
approx. 100 km × 50 kmwith a resolution of 400 m × 200 m; and (ii)
a fine, nested grid focussed on Perranporth Beach, covering an area of
approx. 15 km × 15 kmwith a resolution of 20 m × 20m. The high reso-
lution of the nested grid is allowed in defining the position of theWECs in
the array and simulates their individual wakes with accuracy. This is a
prerequisite to a detailed assessment of the wave farm effects on the
beach profile (Carballo and Iglesias, 2013). The bathymetric data, from
the UK data centre Digimap, were interpolated onto this grid.

To study the effects of wave energy exploitation on the beach profile
an array of 11 WaveCat WECs arranged in two rows was considered.
With the same layout as in Carballo and Iglesias (2013), the array was
located in a water depth of 35–40 m (Fig. 4). The distance between de-
vices was 2.2D, whereD= 90m is the distance between the twin bows
of a single WaveCat WEC. Finally, the wave transmission coefficient of
the WECs, obtained from the laboratory tests carried out by Fernandez
et al. (2012), was input into the coastal propagation model. Based on
the results of these tests, which showed a very small variability in the
wave transmission coefficient (with the exception of an outlier), the
value Kt = 0.76 was adopted. This constitutes an approximation in
that the tests carried out by Fernandez et al. (2012) did not cover all
the wave conditions simulated in the present work; in future work, as
more experimental data on WEC behaviour become available, this
approximation will be refined.

2.3. Morphodynamic model

The input conditions toXBeachwere obtained from theoutput of the
SWAN wave propagation model. XBeach is a two-dimensional model
for wave propagation, long waves and mean flow, sediment transport
and morphological changes of the nearshore area, beaches, dunes and
back barrier during storms. XBeach concurrently solves the time-
dependent short wave action balance, the roller energy equations, the
nonlinear shallow water equations of mass and momentum, sediment
transport formulations and bed update on the scale of wave groups
(Roelvink et al., 2006).

Fig. 3. Computational grids of the wave propagation model [water depths in m]. Profiles P1 and P2 are shown.
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The sediment transport is modelled with a depth-averaged advec-
tion diffusion equation (Galappatti and Vreugdenhil, 1985). The equa-
tion is:

∂ hCð Þ
∂t þ

∂ hCuE
� �
∂x þ ∂

∂x Dsh
∂C
∂x

� �
þ
∂ hCvE
� �
∂y þ ∂

∂y Dsh
∂C
∂y

� �

¼ hCeq−hC
TS

ð2Þ

where C represents the depth-averaged sediment concentration, which
varies on the wave-group time scale, Ds is the sediment diffusion coeffi-
cient, the terms uE and vE represent the Eulerian flow velocities, Ts is the
sediment concentration adaptation time scale that depends on the local
water depth and the sediment fall velocity, and Ceq is the equilibriumcon-
centration, thus representing the source term in the sediment transport
equation. The sediment transport formula defined by Van Thiel de Vries
(2009) was used to determine the sediment equilibrium concentration.

In the present study, the model was applied in 1DH mode (x, z) to
simulate the beach profile evolution. From the results of the nearshore
wave propagationmodel, spectra with a frequency of 6 hwere obtained
with and without the wave farm to compare the impact on the coast.
These spectra were the input of themorphodynamic model, which pro-
vided beach profile results every 6 min to compare the evolution of the
profile in both cases.

A varying grid sizewas employed in themorphodynamicmodel: the
resolutionwas defined as a function of thewater depth and the offshore
wave conditions, and subjected to the grid size smoothness constraints.
On these grounds, the Courant conditionwas applied tofind the optimal
grid size. The optimised grid was coarser in high water depths and finer
in the intertidal zone, where a size of 1mwas adopted so as to accurate-
ly characterise the evolution of the profile.

Finally, to describe properly the behaviour of the beach, the time se-
ries of wave data was broken down into a number of segments. These
segments were grouped into two types, Type A (Accretion) and Type
E (Erosion), depending on the values of the wave parameters and the
consequent nature of the beach profile changes, either accretionary or
erosionary. Type A, associated with calm conditions, was set with a sta-
tionary constantwave energy distribution, based on given values of root
mean square wave height (Hrms), mean absolute wave period (Tm01),
mean wave direction (θm) and directional spreading coefficient (s), ob-
tained from the nearshore wave propagation model. Type E, associated
with stormperiods, used the parametric spectra as input to create time-
varying wave amplitudes, i.e., the envelopes of wave groups (Van
Dongeren et al., 2003). The difference in approach between the two cat-
egories is the way that wave groups were treated. Type A segments in-
cluded wave groups, as they are important to describe the behaviour of
the beach during erosion conditions. In contrast, wave groups were not
taken into account in Type E segments because this would result in an
overestimation of erosion (Baldock et al., 2010).

Fig. 4. Schematic of wave farm considered off Perranporth Beach, at a distance of approx. 7 km from the shoreline [water depths in m]. Profiles P1 and P2 are shown.

Fig. 5. Time series of simulated (Hs, SWAN) and measured (Hs, buoy) significant wave height.
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2.4. Assessment of the impact of the wave farm on the beach profile

To quantify the impact of thewave farm on the beach profile the fol-
lowing parameterswere defined: the Bed Level Impact (BLI), the eroded
area in the baseline scenario (A), the eroded area in the presence of the
farm (Af), and the Erosion Impact (EI) index.

The Bed Level Impact (BLI, in m) was defined as

BLI xð Þ ¼ ζ f xð Þ−ζ xð Þ; ð3Þ

where x is the horizontal coordinate along the profile, ζf(x) is the bed
level in the presence of the farm, and ζ(x) is the bed level in the baseline
scenario. The BLI index represents the change in the bed level drop due
to the shelter afforded by the wave farm.

For their part, the eroded area in the baseline scenario (A, in m3 per
linearmetre of beach) and the eroded area in presence of the farm (Af, in
m3 per linear metre of beach) were defined as

A ¼
Zxmax

x0

ζ0 xð Þ−ζ xð Þ½ �dx; ð4Þ

Af ¼
Zxmax

x0

ζ0 xð Þ−ζ f xð Þ
h i

dx; ð5Þ

where ζ0(x) is the initial bed level and xmax and x0 are the limits of
integration, with xmax the maximum value of the x coordinate (which
corresponds to the landward end of the profile) and x0 the value corre-
sponding to a bed level of 0, i.e., ζ(x0) = 0.

Finally, the Erosion Impact (EI, in %) index was defined as

EI ¼ 1
xmax−x0ð Þ

Zxmax

x0

ζ f xð Þ−ζ xð Þ
h i

ζ0 xð Þ−ζ xð Þ½ �−1dx: ð6Þ

EI index is a dimensionless parameter that represents the reduction
of the eroded area brought about by the wave farm as a fraction of the
total eroded area.

3. Results and discussion

3.1. Wave propagation model

The results obtained from the nearshore wave propagation model
were validated with the wave buoy data during the period from
November to December 2007 and February to April 2008 owing to the
lack of data during January. A very good fit was achieved between the
simulated and measured time series (Figs. 5 and 6). This is further con-
firmed by the error statistics: RMSE = 0.46 m and R2 = 0.84 (with RMSE
the Root Mean Square Error and R2 the coefficient of determination).

Having validated the numerical model, it was used to compare the
wave patterns with and without the wave farm and to determine the
wave conditions that were used as input to the morphodynamic
model. As an example of the effects of the wave farm on the wave pat-
terns, thewave propagation corresponding to the peak of a storm on 10
March 2008 is shown in Fig. 7. The deep water wave conditions were:
significant wave height, Hs0 = 10.01 m; peak wave period, Tp =
15.12 s; and peak wave direction, θp = 296.38°. A substantial decrease
of the significant wave height, exceeding 30% along the wakes of the
WECs, is apparent in the more detailed graph of the wave farm area
(Fig. 8). This decrease is less marked on the beach itself. In the northern
section of the beach the reduction of wave height is more pronounced
than elsewhere owing to the deep water wave direction (approx.
WNW).

The average reduction of the wave energy flux, J, during the period
studied at different points along the 10 m contour is shown in Table 1.
The areasmost sheltered by thewave farm are themiddle and, especial-
ly, the northern sections of the beach. On these grounds two profiles in
the northern and middle sections of Perranporth Beach were selected
for the analysis of the impacts of the wave farm (Fig. 2).

3.2. Morphodynamic model

The impact of the wave power reduction on the beach was studied
through the evolution of the two profiles of Perranporth Beach. This
was carried out using the spectra generated by the wave propagation
model with and without the wave farm in the morphodynamic model.
The series were split, as explained in Section 2.3, to describe suitably

Fig. 6. Scatter diagram: simulated (Hs, SWAN) vs. measured (Hs, buoy) significant wave height.
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the behaviour of the beach in different periods. The results showed that
type E segments are mainly responsible for the erosion of the profiles.

Fig. 9 shows the evolution of the initial Profiles 1 (P1) and 2 (P2)
after a storm. The graph compares the initial beach profiles with those
after three months of operation of thewave farm. Both graphs illustrate
that the erosion of the profiles is concentratedmainly in the beach face,
which is the section of the profile exposed to wave uprush. The eroded
material is moved to a lower section of the profile.

To better visualise the effect of wave energy extraction, the situation
of profile P2 with and without the farm is shown in Fig. 10. The reduc-
tion of thewave energy flux at the beach leads to a substantial reduction
(of the order of 3m) in the erosion of the dune delineating the landward
limit of the beach.

The impact of the wave farm on the beach profile was analysed
through the parameters defined in Section 2.4. The BLI parameter along
Profiles P1 and P2 is illustrated in Fig. 11 for three different points in
time: 1 month (M1), 3 months (M3) and 6 months (M6) after the begin-
ning of the study period. The results for both profiles show a significant
reduction of the erosion in the beach face and in the bar (around x =
600m). The bar forms part of the responsemechanism of the natural sys-
tem to protect the beach face from increased wave attack. Fig. 11 proves
that the effect of the wave farm is a reinforcement of the bar, and there-
fore enhanced protection for the beach face in storms. Advancing in
time, the BLI values increase in the bar area, i.e., the aforementioned effect
is intensified.

As regards the beach face, theBLI values for both profiles are also sig-
nificant and show that the wave farm reduces the erosion. This is no-
where more apparent than on the dune at the landward end of the
profile, where BLI values exceed 1 m. Table 2 shows the values of the
eroded areas at the beach face at the same points in time as in Fig. 11.
It is observed for both profiles and especially in Profile P1 that the ero-
sion is higher at the first two points in time (M1 and M3) than at the
last one, which is associated with less energetic conditions (Fig. 5). Fur-
ther, the EI values confirm the significant reduction in the erosion owing
to the presence of the wave farm. It is also noted that the effect of the
wave farm is more significant in the north of the beach (Profile P1)
than in the middle of the beach (Profile P2), as may be seen in Table 1.

The results showed a significant reduction of the erosion along Pro-
files P1 and P2, which may indicate some degree of coastal protection
owing to the presence of the wave farm nearshore. The present work
was framed as the first step in the assessment of the impact of wave
farms on the beach profile – a relevant aspect for the development of

Fig. 7. Significant wave height in the baseline scenario (Hs) and in the presence of the farm (Hsf) at the peak of a storm (10 Mar 2008, 18:00 UTC) [deep water wave conditions: Hs0 =
10.01 m, Tp = 15.12 s, θp = 296.38°]. Profiles P1 and P2 are shown.

Fig. 8. Significant wave height (Hsf) within the wave farm at the peak of a storm (10 Mar
2008, 18:00 UTC) [deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp =
296.38°].

Table 1
Significant wave height reduction (ΔHs) and wave power reduction (ΔJ) caused by the
wave farm at different points along the 10 m contour.

Beach Point Coordinates ΔHs (%) ΔJ (%)

Easting (°) Northing (°)

North −5.17 50.36 3.26 13.25
Middle −5.18 50.35 1.75 7.90
South −5.21 50.34 0.70 0.93
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wave energy, and one which was not investigated to date – and the
accuracy of its results will likely be enhanced in future research.

4. Conclusions

In this paper, the impact of a wave farm consisting of 11 WaveCat
WECs on the beach profile was investigated through a case study. This
is thefirst study focussed on the effect of wave energy on the beach pro-
file evolution. A high-resolution nearshore wave propagation model
was coupled to a morphodynamic model to assess the wave farm im-
pacts over a medium-term period.

First, to study the effect of the wave farm a high-resolution grid was
employed on Perranporth beach to describe properly the interaction of
the wave farm and the sea. The transmission coefficient of the WEC
employed was obtained through laboratory tests.

It was found that the wave farm effect varies in the different areas of
the beach, affecting, in particular, the northern section of the beach and
reducing its wave energy flux up to 12%. This extraction of energymod-
ifies the coastal processes in the nearshore.

Second, a morphodynamic model was employed to investigate the
impact of the wave energy extraction. Two profiles were studied, the
first in the north of the beach and the second in the middle. The impact
of the wave energy exploitation on the profiles was analysed through
several parameters. These allowed the assessment of the impact of the
wave farm on the bed level and the eroded area compared to the base-
line scenario. The Bed Level Impact (BLI) parameter showed a substan-
tial effect on the bar and on the beach face. BLI values exceeded 1 m at
some points in time. Concerning the Erosion Impact (EI) parameter,
the reduction of the eroded area reached values of up to 35% at the
first points in time (M1 and M3) and 21% at the last (M6) in the north

Fig. 9. Bed level at Profile P1 and P2: initial [1 Nov 2007, 0000 UTC] and after three months with and the wave farm [22 Jan 2008, 15:47 UTC].

Fig. 10. Beach face level at Profile P2: initial [1 Nov 2007, 0000 UTC] and after three months with and without the wave farm [22 Jan 2008, 15:47 UTC].
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of the beach. In the middle of the beach the reduction was lower,
reaching values up to 20% at the first points in time (M1 and M3) and
16% at the end of the period studied (M6).

This substantial reduction in the erosion of the profiles constitutes an
added benefit of the wave farm. This is corroborated by the results of the
present work, which dealt with the impacts of a relatively small, hypo-
thetical wave farm (with 11 WECs distributed in an area of 1.5 km2);
despite its size, the wave farm was shown to have a significant effect in
reducing the erosion of the beach face. This effect would likely be even
more significant in the case of a larger wave farm.

In conclusion, a wave farm can be considered a green alternative to
conventional forms of coastal protection, in the sense that it provides
not only some degree of coastal protection but also green (carbon-free)
energy. This synergy enhances the viability of wave farms.
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The possibility of using wave farms for coastal defence warrants investigation because wave energy is poised to
become a major renewable in many countries over the next decades. The fundamental question in this regard is
whether a wave farm can be used to reduce beach erosion under storm conditions. If the answer to this question
is positive, then a wave farm can have coastal defence as a subsidiary function, in addition to its primary role of
producing carbon-free energy. The objective of thiswork is to address this question by comparing the response of
a beach in the face of a storm in two scenarios: with and without the wave farm. For this comparison a set of ad
hoc impact indicators is developed: the bed level impact (BLI), beach face eroded area (FEA), non-dimensional
erosion reduction (NER), and mean cumulative eroded area (CEA); and their values are determined by means
of two coupled models: a high-resolution wave propagation model (SWAN) and a coastal processes model
(XBeach). The study is conducted through a case study: Perranporth Beach (UK). Backed by a well-developed
dune system, Perranporth has a bar between −5 m and −10 m. The results show that the wave farm reduces
the eroded volume by as much as 50% and thus contributes effectively to coastal protection. This synergy be-
tween marine renewable energy and coastal defence may well contribute to improving the viability of wave
farms through savings in conventional coastal protection.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A wave farm extracts energy from the waves through Wave Energy
Converters (WECs). The previous studies on the impact of wave farms
on wave conditions (Beels et al., 2010; Iglesias and Carballo, 2014;
Mendoza et al., 2013; Millar et al., 2007; Monk et al., 2013; Palha et al.,
2010; Ruol et al., 2011; Rusu and Guedes Soares, 2013; Zanuttigh and
Angelelli, 2013) demonstrated a significant reduction in the wave
height in the lee of thewave farm. A sensitivity analysis of this reduction
with differentwave farm layoutswas conducted byCarballo and Iglesias
(2013). Abanades et al. (2014) studied the effects of the energy extrac-
tion by thewave farm on the beach profile (2D), analysing the evolution
of several profiles during 6 months. This paper goes a step further by
transcending the cross-shore (2D) analysis and examining the impact
of wave energy exploitation on beach morphology (3D) — an aspect
that has not been addressed so far, and whose importance can hardly
be overstated in view of the intensive development of this novel
renewable.

In this context, this work has a threefold objective: (i) to compare
the response of a beach under storm conditions with and without a
wave farm through a case study; (ii) to assess whether the nearshore
attenuation of wave energy caused by the wave farm results in a

reduction in the erosion on the beach; and, on these grounds, (iii) to es-
tablish whether a wave farm can contribute to coastal protection.

For the case study, a high-resolution wave propagation model
coupled to a 2DH coastal processes model was applied in an area
earmarked for wave energy development (Perranporth Beach, UK).
First, the nearshore wave propagation model SWAN (Booij et al.,
1996) was implemented on a high-resolution grid to resolve wave
propagation past an array ofWECs. The values of thewave transmission
coefficients were obtained from laboratory tests (Fernandez et al.,
2012). Second, the coastal processes model XBeach (Roelvink et al.,
2006) was used to study the effect of the nearshore wave energy reduc-
tion on beachmorphology. The suitability of XBeach tomodel storm im-
pact on beaches has been proven in the recent work (Callaghan et al.,
2013; McCall et al., 2010; Pender and Karunarathna, 2013; Roelvink
et al., 2009; Splinter et al., 2014). In this paper the response of the
beach under storm conditions was examined in two scenarios: without
(baseline) andwith thewave farm. Finally, to analyse the results, a new
suite of core impact indicators was developed and applied.

This article is structured as follows: in Section 2, the case study and
data set are presented. In Section 3, the models and impact factors are
described. In Section 4, the results are analysed and discussed. Finally,
conclusions are drawn in Section 5.

2. Case study: Perranporth Beach

The impact of wave energy exploitation on the beach was carried
out through a case study. The wave resource played a major role in
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the selection of the study site. A number of wave resource assessments,
conducted at different scales and areas (Bernhoff et al., 2006; Defne
et al., 2009; Gonçalves et al., 2014; Iglesias and Carballo, 2009; 2010a;
2010b; 2011; Pontes et al., 1998; Rusu and Guedes Soares, 2012; Stopa
et al., 2011; Thorpe, 2001; Vicinanza et al., 2013), highlighted the re-
source in the Atlantic façade of Europe. For the present study,
Perranporth Beach (Fig. 1) was selected; the nearby Wave Hub – a
grid-connected offshore facility for sea tests of WECs – is testimony to
the potential of this area for wave energy exploitation (Gonzalez-
Santamaria et al., 2013; Reeve et al., 2011). Perranporth (Austin et al.,
2010; Masselink et al., 2005) is a 4 km beach with a relatively flat inter-
tidal area, tan β = 0.015–0.025, and a medium sand size, D50 = 0.27–
0.29 mm. The tidal range is 6.3 m (macro-tidal beach) and the tidal re-
gime is semidiurnal.

As regards the wave climate, Perranporth is exposed to the Atlantic
swell, and also receives locally generated wind waves. The average sig-
nificant wave height (Hs), peak period (Tp) and peak direction (θp) from
2006 to 2012 (the available data) were: 1.79 m, 10.36 s and 280°, re-
spectively. During the storm studied, from 5 December 2007 UTC
00:00 to 10 December 2007 UTC 06:00, the average wave conditions
were: Hs = 4.2 m, Tp = 12.1 s and θp = 295°.

The bathymetry of the beach was based on the data provided by the
Coastal Channel Observatory. The elevation values ranged between
−20 m and 25 m (Fig. 2) with reference to the local chart datum (LCD).
A conspicuous feature of the profile is the submarine bar between −5
m and −10 m, which will be shown to be of relevance to the dynamics
of the system. The bar is generally associated with the more energetic
(winter) wave conditions and the consequent increase of offshore sedi-
ment transport, which results in a lowering of the intertidal beach face.
Another feature of Perranporth Beach is the well-developed dune system
(Fig. 10).

3. Materials and methods

3.1. Wave propagation model

The wave propagation was computed using the SWAN v40.41 (Sim-
ulatingWAves Nearshore), a third-generation spectral wavemodel that

solves the conservation of wave action equation considering the rele-
vant wave generation and dissipation processes,

∂N
∂t þ∇ � C

!
N

� �
þ ∂ CθNð Þ

∂θ þ ∂ CσNð Þ
∂σ ¼ S

σ
; ð1Þ

where t is the time, N is the wave action density, C
!

is the propagation
velocity in the geographical space, θ is the wave direction, σ is the rela-
tive frequency, and Cθ and Cσ are the propagation velocity in the spectral
space, θ- and σ-space, respectively. Therefore, the first term on the left-
hand side of Eq. (1) represents the rate of change ofwave action in time,
the second term describes the propagation in the geographical space,
and the third and fourth terms stand for the refraction and changes in

Fig. 1. Bathymetry of SW England [water depths in m] including the location of Perranporth Beach, the WaveHub Project and an aerial photo of Perranporth Beach.
Source: Coastal Channel Observatory.

Fig. 2. Bathymetry of Perranporth Beach for the coastal processes model. Profiles P1, P2
and P3 included. Water depth in relation to local chart datum [in m].
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the relative frequencies respectively induced by depth and currents. On
the right-hand side, S is the source term representing the effects of gen-
eration, dissipation, and nonlinear wave–wave interactions.

Themodelwas validated using data fromawave buoy at Perranporth
Beach covering the period November 2007 to April 2008. The input con-
ditions implemented in the SWAN model were: (i) the hindcast wave
data from WaveWatchIII (Tolman, 2002), a third-generation offshore
wavemodel consisting of global and regional nested grids with a resolu-
tion of approx. 100 km; and (ii) the hindcastwind data fromGlobal Fore-
cast System (GFS), a global numerical weather prediction system.

The computational grid consisted of two grids with different spac-
ings (Fig. 3): (i) the coarser grid extended approx. 100 km offshore
and 50 km from north to south with a grid size of 400 × 200 m, respec-
tively; and (ii) the finer (nested) grid covered the area of interest of
approx. 15 × 15 km, with a resolution of 20 × 20 m, which allowed
the exact position of theWECs to be definedwithin the array and the in-
dividual wake of each device to be resolved accurately. The energy
transmission coefficient of the devices was input into the coastal prop-
agation based on ad hoc laboratory tests (Fernandez et al., 2012). The
wave farm layout was consisted of 11 WaveCat WECs arranged in two
rows (Fig. 4), with a distance between devices of 2.2D, where D = 90
m is the distance between the twin bows of a single WaveCat WEC
(Carballo and Iglesias, 2013).

3.2. Coastal processes model

Second, the coastal processes model, XBeach v1.20.3606, was
coupled to the wave propagation model. XBeach is a two-dimensional
model to study wave propagation, sediment transport and morpholog-
ical changes of the coast. Wave processes are solved with the time-
dependent wave action balance equation coupled to the roller energy
equations and the nonlinear shallow water equations of mass and mo-
mentum and sediment transport are modelled with a depth-averaged
advection diffusion equation (Galappatti and Vreugdenhil, 1985) on
the scale of wave groups (Eq. (2)). The complete description of XBeach
is given by Roelvink et al. (2006) or Roelvink et al. (2009).

∂ hCð Þ
∂t þ

∂ hCuE
� �
∂x þ ∂

∂x Dsh
∂C
∂x

� �
þ
∂ hCvE
� �
∂y þ ∂

∂y Dsh
∂C
∂y

� �
¼ hCeq−hC

Ts

ð2Þ

where the x- and y-coordinate represent the cross-shore and longshore
direction, respectively, C is the depth-averaged sediment concentration,

Ds is the sediment diffusion coefficient, the terms uE and vE represent the
Eulerianflowvelocities, Ts is the sediment concentration adaptation time
scale that depends on the local water depth and the sediment fall veloc-
ity, and Ceq is the equilibrium concentration according to the Van Rijn–
Van Thiel formulation (Van Thiel de Vries, 2009), thus representing the
source term in the sediment transport equation.

In the present study, the model was applied in a 2DHmode (x, y, z)
to study the impact of thewave farmon Perranporth Beach using the re-
sults of the wave propagation model. The response of the beach during
the storm period studied was investigated in both scenarios: (i) in the
baseline scenario (without the wave farm), and (ii) with the wave
farm, to compare the evolution of the beach and establish the contribu-
tion of a wave farm to protect the coast.

The grid covered Perranporth Beach, extending 1250m across shore
and 3600 m alongshore with a resolution of 6.25 m and 18 m, respec-
tively. The model used a number of spectral parameters obtained from
the nearshore wave propagation model (the root-mean-square wave
height, Hrms, mean absolute wave period, Tm01, mean wave direction,
θm, and directional spreading coefficient, s) as input to create time-
varying wave amplitudes, i.e., the envelopes of wave groups, which
have crucial importance in describing the behaviour of a beach during
erosion conditions (Baldock et al., 2011).

Fig. 3. Computational grids of the wave propagation and the coastal processes model [water depths in m].

Fig. 4. Schematic of wave farm considered off Perranporth Beach, at a distance of approx.
7 km from the shoreline [water depths in m].

301J. Abanades et al. / Coastal Engineering 91 (2014) 299–307



3.3. Impact indicators

The importance of monitoring and controlling coastal erosion is
reflected in the number of projects delving on these matters, such as
CONSCIENCE and EUROSION. In these projects, different groups of im-
pact indicators were proposed to assess the erosion during the
medium- and long-term in pilot sites. On these grounds, and taking
into account the specific needs of this work, a suite of impact indicators
was developed ad hoc to analyse the effects of the wave farm on the
beach and establish the corresponding degree of coastal protection:
(i) bed level impact (BLI), (ii) each face eroded area (FEA), (iii) non-
dimensional erosion reduction (NER), and (iv)mean cumulative eroded
area (CEA).

The bed level impact (BLI), with units of m in the S.I., was defined as

BLI x; yð Þ ¼ ζ f x; yð Þ−ζb x; yð Þ; ð3Þ

where ζf(x, y) and ζb(x, y) are the seabed levels with the farm and with-
out it (baseline), respectively, at a generic point of the beach designated
by its coordinates (x, y) in the horizontal reference plane.With this def-
inition the datum for the seabed level (the elevation of the reference
plane) is arbitrary, for it is the difference between the values of seabed
level with and without the farm rather than their absolute values that
determine the BLI indicator, Eq. (3). Within the reference horizontal
plane the y-coordinate axis follows the general coastline orientation,
with the y-coordinate increasing towards the northern end of the
beach. A beach profile is defined as a section of the beachwith y= con-
stant, and a particular point of the profile is defined by its x-coordinate;
the orientation of the x-axis is taken such that x-values increase towards
the landward end of the profile. The BLI indicator thus defined repre-
sents the change in bed level caused by the wave farm. A positive
value signifies that the seabed level is higherwith the farm thanwithout
it.

The beach face eroded area (FEA), with units ofm2 in the S.I., was de-
fined in both scenarios, baseline (FEAb) and with the wave farm (FEAf):

FEAb yð Þ ¼
Zxmax

x1

ζ0 x; yð Þ−ζb x; yð Þ½ �dx; ð4Þ

FEAf yð Þ ¼
Zxmax

x1

ζ0 x; yð Þ−ζ f x; yð Þ
h i

dx; ð5Þ

where ζ0(x, y) is the initial bed level at the point of coordinates (x, y),
and x1 and xmax are the values of the x-coordinate at the seaward end
of the beach face and landward end of the profile, respectively. It should
be noted that, unlike the bed level impact, which is a point function and
therefore depends on two coordinates, BLI = BLI(x, y), the beach face
eroded area is a profile function, and hence depends on only one coor-
dinate, FEA= FEA(y). The FEA indicator can be seen as a (dimensional)
parameter measuring the impact of the farm on the beach face.

The non-dimensional erosion reduction (NER) is also a profile func-
tion, in this case non-dimensional, defined as

NER yð Þ ¼ 1− xmax−x1ð Þ−1
Zxmax

x1

ζ0 x; yð Þ−ζ f x; yð Þ
h i

ζ0 x; yð Þ−ζb x; yð Þ½ �−1dx:

ð6Þ

It expresses the variation in the eroded area of a generic profile (y)
brought about by the wave farm as a fraction of the total eroded area
of the same profile. A positive or negative value implies a reduction or
increase in the eroded area as a result of the wave farm.

Finally, the mean cumulative eroded area (CEA), with units of m2

(or m3 per linear metre of beach), was determined both in the baseline
scenario (CEAb) and with the wave farm (CEAf). For its definition three
reference profiles were considered: P1, P2 and P3 (Fig. 2). For each of
these the beach was divided into two parts, to the north (CEAb

N and
CEAf

N) and south (CEAb
S and CEAf

S) of the reference profile, and the corre-
sponding indicators were computed from

CEAS
b xð Þ ¼ yP−y0ð Þ−1

ZyP
y0

Zx

x0

ζ0 χ; yð Þ−ζb χ; yð Þ½ �dχdy; ð7Þ

CEAS
f xð Þ ¼ yP−y0ð Þ−1

ZyP
y0

Zx

x0

ζ0 χ; yð Þ−ζ f χ; yð Þ
h i

dχdy ð8Þ

CEAN
b xð Þ ¼ ymax−yPð Þ−1

Zymax

yP

Zx

x0

ζ0 χ; yð Þ−ζb χ; yð Þ½ �dχdy; ð9Þ

CEAN
f xð Þ ¼ ymax−yPð Þ−1

Zymax

yP

Zx

x0

ζ0 χ; yð Þ−ζ f χ; yð Þ
h i

dχdy; ð10Þ

where the variable of integration χ represents the coordinate along the
profile, and x and x0, and y0, ymax and yP are the limits of integration
along the profile and along the coast, respectively. x0 is the value of
the x-coordinate corresponding to the first point of the profile and x
takes values from x0 to xmax. Along the beach, y0 is the value of the y-
coordinate corresponding to the southernmost point of the beach,
ymax the northernmost point of the beach and yP the value correspond-
ing to the reference profile. The factor represents the average cumula-
tive eroded area of the two sections of the beach along the profile (x).
A positive value signifies that the mean volume of material along the
section of the beach is reduced compared with the initial situation
(erosion).

Fig. 5. Time series of simulated (Hs, SWAN) andmeasured (Hs, buoy) significantwave height to validate the high resolutionwave propagationmodel. The storm conditions studied (from5
Dec 2007, 00:00 UTC; to 10 Dec 2007, 18:00 UTC) to assess the impact of the wave farm are highlighted.
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4. Results and discussion

The validation of the high-resolution wave propagation model was
carried out using the significant wave height (Hs) values from the
wave buoy at Perranporth Beach from November 2007 to April 2008
(Abanades et al., 2014). Fig. 5 shows the good fit achieved by the
model. The error statistics studied for the validation confirmed that
the correlation between the series achieves a Root Mean Square Error
(RMSE) of 0.46 m and a coefficient of determination (R2) of 0.84.

The results of thewave propagationmodel were studied in both sce-
narios: baseline and in thepresence of thewave farm, to observe the im-
pact of the wave farm on the wave conditions. The reduction of the
significant wave height in the lee of the farm is shown in Fig. 6, in
which the shadow zone downstream of each WEC is apparent.

Using this data, Fig. 7 shows the reduction of the significant wave
height between the scenario in the presence of the farm and the base-
line scenario. The reduction within the wave farm was greater than
30%, although advancing towards the coastline from the wave farm,
the difference decreased due to the wave energy being diffracted from
the edges into the shadow of the farm. However, this energy was not
enough tomitigate the effect of thewave farmnearshore; indeed the re-
duction was greater than 10% along the 20 m contour in the northern
area of the grid, which was the area most sheltered by the wave farm.

Having investigated the effects of the wave farm on thewave condi-
tions in its lee, the results along the lineAA′ (Fig. 6), in approximately 20
m of water depth, were input to the coastal processesmodel. The signif-
icant wave height (Hs) across AA′ in both scenarios is shown in Fig. 8,

where the shadow due to the wave energy absorption of each device
can be readily observed. The impact of the wave farm was found to be
more significant in the northern and middle areas of the beach.

The coastal processes model used the output of the wave propaga-
tion model to study how modification of the wave conditions affected
the coastal processes and, consequently, the beach morphology during
the period studied. The longshore and offshore/onshore sediment trans-
port was studied through a suite of core impact indicators, defined in
Section 3.2, to assess the impact of the wave farm.

The sea bed levelwas studied at the endof the timeperiod studied in
both scenarios: in the presence of the farm and in the baseline scenario,
through the BLI factor (Fig. 9). The reduction of the erosion was ob-
served mainly in the dune in the back of the beach, reaching values
greater than 4 m, a result of the wave energy extraction by the wave
farm. A reduction of the erosion was also found along the bar in water
depth between 5 and 10 m, especially in the middle area of the beach
where the BLI parameter reached values of 0.5 m. On the other hand,
the material eroded from the dune was moved to the lower section of
the profile, between the bar and the dune, which resulted in the BLI pa-
rameter taking negative values in the region of −0.5 m.

On this basis, the impact of the wave farm on the bed level is shown
in Fig. 10 along three profiles: P1 (south), P2 (middle) and P3 (north),
shown in Fig. 2. The initial profile (ζ0) was compared with the profiles
at the end of the storm studied in both scenarios: the baseline scenario
(ζb) and in the presence of the farm (ζf). The results show amore signif-
icant effect on profiles P3 and P2, in the northern and middle areas of
the beach, than on P1, in accordance with the wave conditions shown
in Fig. 8. As may be observed in Fig. 9, the effects of the wave farm are

Fig. 6. Significantwave height in the baseline scenario (Hs) andwith thewave farm (Hsf) at thefirst peak of the storm studied (5Dec 2007, 18:00UTC). [Deepwaterwave conditions:Hs0=
6.89 m, Tp = 15.64 s, θp = 268.45°]. The line AA′ is shown.

Fig. 7. Significant wave height difference between the baseline scenario (Hs) and with the
wave farm (Hsf) at the first peak of the storm studied (5 Dec 2007, 18:00 UTC). The black
line represents the shoreline [Deep water wave conditions: Hs0 = 6.89 m, Tp = 15.64 s,
θp = 268.45°].

Fig. 8. Significantwave height in the baseline scenario (Hs) and in the presence of the farm
(Hsf) across the line AA′ at the first peak of the storm studied (5 Dec 2007, 18:00 UTC).
[Deep water wave conditions: Hs0 = 6.89 m, Tp = 15.64 s, θp = 268.45°].
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more pronounced in the intertidal area over the mean water level (at
the landward end of the profiles) and over the bar. Furthermore, profile
P3 shows that the wave farm not only reduced the eroded area but also
altered the sediment transport pattern, moving the initial erosion point
up to 30 m towards the shoreline.

The volume of material moved per linear metre along the beach (y)
was studied through themeanCumulative ErodedArea (CEA). This indi-
cator showed the difference in material eroded along the profile (x) be-
tween the initial and final points of the time period studied in both
scenarios: baseline (CEAb) and with the wave farm (CEAf). Fig. 11

Fig. 9. Bed level impact (BLI) at the end of the time period studied [10 Dec 2007, 06:00 UTC].

Fig. 10.Bed level at profiles P1, P2 and P3: initial (ζ0) [05Dec 2007, 00:00UTC] and at the endof the simulation in the baseline scenario (ζb) andwith thewave farm (ζf) [10Dec 2007, 06:00
UTC].
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shows the results in the southern and northern areas across the differ-
ent reference profiles P1 (south), P2 (middle) and P3 (north). In the
case of profile P2, the wave farm modified the sediment transport pat-
terns significantly: whereas erosion was reduced in the northern area
of the beach, in the southern area the material eroded increased for
water depths below 5 m. As for profile P1, the northern area of the
beach presented less sediment transport in the presence of the wave
farm for water depths over 7 m, whilst accretion occurred for water
depths below 7 m. In the case of profile P3, the sediment transport

patterns were hardly affected by the wave farm for water depths over
5 m, but in water depths below 5 m erosion decreased in the southern
area of the beach. In summary, in the baseline scenario (without the
wave farm) accretion was found to occur in the deeper sections of the
profile in the northern area owing to the offshore sediment transport
from the beach face and the submarine bar. In the presence of the
wave farm, however, the erosion of the beach face and submarine bar
was significantly reduced. As a result of this, and of the increase of the
southward sediment transport, the accretion of the deeper sections of
the profile in the northern area that occurred in the baseline scenario
was replaced by accretion in the southern area of the beach for values
of the x coordinate greater than 600 m (as may be seen on profiles P2
and P3).

Finally, the results of the beach face eroded area (FEA) confirmed the
contribution of the wave farm to reducing erosion. Fig. 12 shows the
evolution of the erosion along Perranporth Beach (y = 0 corresponds
to the southernmost point of the beach). The most severe erosion took
place in the southernmost area of the beach, which is not backed by
the dune system, and the northern area, where the waves were higher
(Fig. 8). As regards the efficacy of the wave farm for coastal protection,
the reduction in erosion was more significant in the northern area of
the beach than that in the south and in the middle. In Fig. 13, the non-
dimensional erosion reduction (NER) is represented on the basis of the
results of the eroded area in the beach face, confirming that the wave
farm attenuated the erosion in the north of the beach, with values
over 50%. As regards the southern area of the beach, 500 m b y
b 1500 m, the NER factor fluctuated strongly, due to isolated responses
of different points of the profiles.

The results obtained in this work seem to lend credence to the hy-
pothesis formulated at the outset, namely that a wave farm can serve
as a coastal defence measure. It is important to bear in mind, however,
that these results, and in particular its quantitative aspects, were de-
rived for a specific case study: a beach with a bar between −5 m and
−10 m backed by a well-developed dune system and under the attack
of a storm of certain characteristics. Needless to say, these quantitative
resultsmay not apply to other situations. Furthermore, the study consti-
tutes a first approximation to the potential of wave farms for coastal de-
fence, a complex question owing to the many processes involved. On
open oceanic coasts, such as the present case study, most sediment
transport takes place in the surf zone, with wave-induced currents
playing the main role. It is well known that on these coasts the funda-
mental effect of the tide as regards sediment dynamics is a direct result
of the variation of thewater level, namely the extension of the section of
the beach profile onwhich the energy of the breakingwaves is dissipat-
ed. This fundamental effect of the tide was taken into account in this
work by including the tide in the morphodynamic model. As regards
the interaction between the waves and tidal currents in the area,

Fig. 11.Mean cumulative eroded area in the baseline scenario (CEAb) and in the presence
of the wave farm (CEAf) in the southern area (in red) and northern area (in black) across
each of the reference profiles P1, P2 and P3, at the end of the time period studied [10 Dec
2007, 06:00 UTC]. The x-coordinate represents the distance along the profile, with x = 0
the most offshore point.

Fig. 12. Beach face eroded area in two scenarios: baseline (FEAb) and with the wave farm
(FEAf) along Perranporth Beach (y— coordinate,with y increasing towards thenorth of the
beach) at the end of the time period studied [10 Dec 2007, 06:00 UTC].
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highlighted in a recent work by Gonzalez-Santamaria et al. (2013), the
authors look forward to continuing this line of work in the near future
by considering the effects that such interaction could have on wave
propagation and, consequently, on the sediment transport patterns at
Perranporth. So far this interaction has not been considered, and could
be a source of uncertainty in the results. Other sources of uncertainty
could be the limitations of the 2DHmodelling approach and the opera-
tional procedures of the wave farm under storm conditions, which are
not easy to establish at this point, when no wave farm is operational
yet. As indicated, the investigation of the applicability of wave farms
to coastal defence is far fromfinished, and these uncertaintieswill hope-
fully be tackled as wave energy progresses to become a fully-fledged re-
newable energy source.

5. Conclusions

This paper dealt with the impact of a wave farm on a sandy coast
through a case study. A coastal wave model was coupled to a coastal
processes model to investigate how the attenuation of wave energy
caused by the wave farm affects the morphology of a beach in its lee.
The wave propagation model was used to study the interaction of the
wave farm with the wave field. It was implemented on a high-
resolution computational grid, which enabled to resolve the wakes of
the individual WECs forming the farm. Energy extraction by the WECs
led to a reduction of the significant wave height, which exceeded 30%
of the incident significant wave height immediately in the lee of the
farm, decreased towards the shoreline; in a water depth of 20m this re-
duction was approximately 10%. The impact of the farm on the near-
shore wave conditions was found to be more significant in the
northern area of the beach owing to the incoming wave direction and
local bathymetry. Based on the results of the wave propagation model,
the coastal processes model was applied to assess the response of the
beach under storm conditions in two scenarios: without the wave
farm (baseline) and with it. By comparing both scenarios the effects of
the wave farm on the beach morphology were established.

For this purpose a new suite of core impact indicators was devel-
oped: the bed level impact (BLI), beach face eroded area (FEA), non-
dimensional erosion reduction (NER) and cumulative eroded area
(CEA). The bed level impact (BLI) evidenced the capacity of the wave
farm to significantly reduce erosion in two sections of the beach profile:
(i) over the submarine bar, where the seabed drop caused by erosion
was reduced by more than 0.5 m (BLI greater than 0.5 m); and (ii) at
the beach face, where the BLI exceeded 4 m at different positions
along the beach. The variation along the 3.6 km long beach in the area
eroded from the beach face was assessed by means of the FEA and NER
indicators. The wave farm was found to result in a non-dimensional

erosion reduction above 50% along a 1.5 km stretch in the north section
of the beach. This pronounced impact of wave energy extraction was
confirmed with the CEA indicator.

For each of the reference profiles P1, P2 and P3, the north and south
sections experience different behaviour. In the north sections, in the ab-
sence of the farm accretion occurred in the deeper section of the profile
at the expense of erosion over the bar and intertidal areas; in contrast,
no accretion in the deeper section was observed in the presence of the
wave farm —in line with the aforementioned reduction in the erosion
over the bar and beach face. In the south sections, whilst there are
small differences in the deeper parts of the profile, in the upper parts
(intertidal areas) an increase of the accretion was found with the
wave farm. This would appear to indicate that, whereas in the baseline
scenario substantial offshore sediment transport occurs, in particular in
the north sections, leading to accretion in the deeper section of the pro-
file at the expense of the material eroded from the beach face and the
bar, the wave farm modifies this pattern by reducing the offshore sedi-
ment transport and increasing the southbound longshore sediment
transport, resulting in accretion throughout the profile in the southern
part of the beach.

To sum up, the nearshore wave farm was found to cause a substan-
tial impact on the beach dynamics. Erosion, especially at the beach face,
was significantly reduced,which lends credence to the hypothesis that a
wave farm can serve as a coastal defence measure. This synergy be-
tween coastal protection and energy production enhances the economic
viability of wave energy. Furthermore, the application of wave farms to
coastal protection has an advantage from the standpoint of coastalman-
agement, at least if floating wave energy converters are considered (as
in this work) —the effectiveness of the wave farm as a coastal defence
mechanism is not affected by sea level change.
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a b s t r a c t

The location of a wave farm and, in particular, its distance to the coast is one of the key aspects in a wave
energy project. The effects of the farm on the coast, which can be instrumental in mitigating storm-
induced erosion and thus contribute to coastal defence, are sometimes disregarded in selecting its
location, possibly due to the inexistence of an ad hoc methodology. In this context, the objective of this
work is to examine the influence of the farm-to-coast distance through a sensitivity analysis in a case
study: Perranporth (UK). The impacts of a wave farm on the beach morphology are examined in four
scenarios with different farm-to-coast distances using a high-resolution suite of numerical models. The
results show that a wave farm closest to the beach offers the highest degree of coastal protection (up to
20% of beach erosion reduction). The downside of this enhanced coastal protection is that the wave
resource available at this location would be slightly smaller (approx. 10%) than in the case of the wave
farms further from the coast. More generally, we find that the farm-to-coast distance is a critical variable
in determining the effectiveness of a wave farm for coastal defence.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of wave energy is reflected in the number of
very active research lines: the resource characterisation [1e17],
the technology development [18e29] or the environmental im-
pacts [30e43]. Conventionally, the main criterion to establish the
optimum location for wave farms was the maximisation of wave
power [44,45], and other important aspects were often dis-
regarded, such as the effects on the nearshore wave conditions
[46,47] and, in particular, the eventual contribution to coastal
protection provided by a wave farm. Abanades et al. [48,49],
proved that a nearshore wave farm reduced the erosion at the
beach face by as much as 35% after storm events due to the
extraction of wave energy by Wave Energy Converters (WECs).
On this basis, the objective of this work is to establish the
dependence of the degree of coastal protection offered by the
farm on its distance from the coastline by means of a sensitivity
analysis.

To accomplish this objective, four scenarios are compared,
corresponding to three locations of the wave farm at different
distances from the coast, plus the baseline (no farm) scenario,

under different wave conditions. First, the impacts of the wave
farm on the wave conditions are examined using a nearshore
wave model, SWAN, Simulating Waves Nearshore [50]. This is a
phase-averaged spectral model that computes the effects of the
wave farm using an energy transmission coefficient, whose
values are obtained from the laboratory tests carried out by
Fernandez et al. [27]. The wave farm is implemented on a high-
resolution grid at different distances from a reference (10 m
water depth) contour: (i) 2 km, (ii) 4 km; and (iii) 6 km. Second,
based on the results of the aforementioned scenarios a coastal
processes model, XBeach [51], is used to compare the effects of
the wave farm at the different locations with the baseline sce-
nario. A set of impact indicators is developed, specifically, to
quantify these effects and establish the role played by the farm-
to-coast distance.

This methodology is applied to a case study at Perranporth
Beach (Fig. 1), Cornwall (UK). A 3.5 km long sandy beach facing
directly toward the North Atlantic Ocean, Perranporth is in an area
with a great potential for marine renewable energy [52] e as
corroborated by the Wave Hub pilot test site. The extremely ener-
getic storms of February 2014 proved that Perranporth is subject to
increased erosion risks from rising sea level and storminess [53]. In
viewof these risks, and given that awave farm consisting of floating
WECs adapts naturally to any sea level changes [54], Perranporth
constitutes a prime area for using such wave farms for coastal
protection.
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2. Materials and methods

2.1. Wave model

The wave propagation was computed using SWAN v40.41, a
third-generation spectral wave model based on the action balance

equation that can be solved in spherical or geographical co-
ordinates [55]:

vN
vt

þ vðcxNÞ
vx

þ v
�
cyN

�
vy

þ vðcqNÞ
vq

þ vðcsNÞ
vs

¼ S
s

(1)

Nomenclature

N wave action density
cx and cy velocity propagation in the x- and y-space, respectively
cq and cs velocity propagation in the direction and s the relative

frequency space, respectively
S source term
r water density
g gravity acceleration
h water depth
Hs significant wave height
Tp wave peak period
q wave direction
Kt wave transmission coefficient
t time
RSH reduction in the significant wave height
D distance between the twin bows of a WEC
Hs,b significant wave height in the baseline scenario
Hs,fi significant wave height in the i-th wave farm scenario
J wave power

E(s,q) directional spectral density
Hrms root mean square wave height
Tm01 mean absolute wave period
qm mean wave direction
s directional spreading coefficient
C wave group varying depth averaged
Dh sediment diffusion coefficient
uE and vEdepth-averaged velocities
Ceq equilibrium concentration
MSR mean spring tide range
LCD local chart datum
BLI bed level impact in the i-th wave farm scenario
FEAb beach face eroded area in the baseline scenario
FEAi beach face eroded area in the i-th wave farm scenario
NERi non-dimensional erosion reduction in the i-th wave

farm scenario
CEAb mean cumulative eroded area in the baseline scenario
CEAi mean cumulative eroded area in the i-th wave farm

scenario
z seabed level

Fig. 1. Bathymetry of SW England [water depths in m] including the location of Perranporth Beach, Wave Hub Project and an aerial photo of Perranporth Beach [source: Coastal
Channel Observatory].
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in which the first term on the left-hand side of this equation rep-
resents the variation of wave action density (N) e the wave energy
density divided by the relative frequency e in time (t), the second
and third term the velocity propagation in the geographical space
(with cx and cy the propagation velocity in x- and y-space, respec-
tively) and the fourth and fifth term the propagation velocity in the
q- and s-space, respectively (where q represents the direction and s

the relative frequency). On the right-hand side of Equation (1), the
source term S represents the effects of generation, dissipation and
nonlinear waveewave interactions.

In the present study the wave model was set up to account the
following wave processes: shoaling, refraction due to current and
depth, whitecapping, bottom friction and depth induced wave
breaking [56]; using two computational grids with different res-
olutions (Fig. 2): (i) an offshore grid covering an area of approx.
100 km � 50 km with a grid size of 400 � 200 m, and (ii) a high-
resolution nearshore (nested) grid covering the study area, with
dimensions of approx. 8 km � 6 km and a grid size of 16 m � 12 m.
Onto the latter grid was implemented thewave farm, whose layout
was chosen based on the sensitivity analysis carried out by Car-
ballo and Iglesias [46]. It consisted of 11 WaveCat WECs [27,57]
arranged in two rows, with a spacing between devices of 2.2D,
where D ¼ 90 m is the distance between the twin bows of a single
device, occupying an area approx. of 1500 m � 350 m. Following
Kenney [58] and based on the analysis of the offshorewave climate
in the area, two wave conditions (Table 1) were prescribed at the
outer (ocean) boundary of the offshore grid. Wave transmission
through the wave farm was modelled using the transmission co-
efficients obtained in the laboratory tests reported by Fernandez
et al. [27]. For the purposes of the sensitivity analysis three loca-
tions of the wave farmwere considered, at distances of 2 km, 4 km
and 6 km from the reference (10 m water depth) contour e cor-
responding to water depths of approx. 25 m, 30 m and 35 m,
respectively (Fig. 3).

To measure the impact of the wave farm on the wave conditions
in its lee an impact indicator was defined: the Reduction in the
Significant wave Height, RSHi,

RSHi

�
x; y

�
¼Hs;bðx; yÞ�1

�
Hs;b

�
x; y

�
� Hs;fi

�
x; y

��
;

with i ¼ 2 km; 4 km or 6 km;
(2)

where the subindex i refers to the position of the wave farm, and
Hs,b and Hs,fi are the significant wave height in the baseline scenario
and with the wave farm, respectively, at a point of the coast
designated by its coordinates (x,y), with the x-coordinate referring
to the easting and the y-coordinate to the northing. This non-

dimensional indicator quantifies the shadow caused by the wave
farm in its lee.

The performance of the wave farm at the different positions was
also analysed by means of the wave power (J, in units of W m�1 in
the SI), which is computed in SWAN from its x- and y-components:

Jx ¼
Z2p

0

Z360

0

rgcxEðs; qÞ ds dq (3)

Jy ¼
Z2p

0

Z360

0

rgcyEðs; qÞ ds dq (4)

where r is thewater density, g is the acceleration due to gravity, and
E(s,q) is the directional spectral density, which specifies how the
energy is distributed over frequencies (s) and directions (q). The
wave power magnitude is then given by

J ¼
�
J2x þ J2y

�1
2
: (5)

2.2. Coastal processes model

Based on the results of the wave model, the coastal processes
model, XBeach v1.20.3606, was used to compute the impact of the
wave farm on beach morpholology. XBeach is a 2DH (two-dimen-
sional horizontal) time-dependent model that solves coupled
cross-shore and alongshore equations for wave propagation, flow,
sediment transport and bottom changes. The full description of the
model can be found in Roelvink et al. [51].

The sediment transport module solves the depth-averaged
advection diffusion equation [59] on the time scale of wave
groups [60],

Fig. 2. Computational grids of the wave propagation (SWAN) and coastal processes (XBeach) model [water depths in m].

Table 1
Wave conditions: significant wave height (Hs), peak period (Tp), direction (q) and
directional spreading (s); and wave transmission coefficient (Kt) for the different
case studies.

Case study Hs (m) Tp (s) q (�) s (�) Kt

CS1 3 12 315 (NW) 26.50 0.76
CS2 3.5 11 315 (NW) 26.34 0.78
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vðhCÞ
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vx
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hCvE
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vy

þ
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vC
vx

�

vx
þ
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vC
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�

vy

¼ hCeq � hC
TS

(6)

where C is the wave group varying depth averaged, sediment
concentration, Dh is the sediment diffusion coefficient, which is
represented by an adaptation time, Ts, that is based on the local
water depth, h, and sediment fall velocity. The terms uE and vE

represents the depth-averaged velocities and Ceq the equilibrium
concentration, representing the source term in the right hand side
of the equation. The sediment transport formula defined by Van
Thiel de Vries [61] was chosen to determine the sediment equi-
librium concentration.

XBeach has been widely validated to determine the impact of
storms on sandy [62e64] and gravel beaches [65e68] at different
locations. In this case, the impact of the wave farm on the beach

morphology (3D) was compared to the baseline scenario at Per-
ranporth Beach following the model set up applied by Abanades
et al. [48] at the same location to study the evolution of the beach
profile (2D). The high-resolution grid implemented on XBeach
covered an area of 1.4 km cross-shore and 3.0 km alongshore at
Perranporth Beach with a resolution of 6 m and 12.5 m, respec-
tively. The bathymetry data, from the Coastal Channel Observatory,
were interpolated onto this grid (Fig. 4), which comprised elevation
values from �20 m to more than 30 m with reference to the local
chart datum (LCD).

The following parameters obtained from the wave model along
the line AeA0 (Fig. 5) were the input of XBeach for the analysis of
the beach response under the storm events: root mean squarewave
height (Hrms), mean absolute wave period (Tm01), mean wave di-
rection (qm) and directional spreading coefficient (s). As for tidal
effects, Perranporth is a macrotidal beach with a Mean Spring tidal
Range, MSR, of 6.3 m [69], and consequently their influence on the
response of the beach ought to be considered [70]. The MSR was
included in the model with a semi-diurnal tidal regime (two low
and two high tides each day).

The effects of the wave farm on the beach morphology were
determined based on a comparison of the different wave farm
scenarios with the baseline (no farm) case. The following impact
indicators were defined: (i) bed level impact (BLIi), (ii) beach face
eroded area (FEAb or FEAi), (iii) non-dimensional erosion reduction
(NERi), and (iv) mean cumulative eroded area (CEAb or CEAi). The
indicators corresponding to the baseline and wave farm scenarios
were denoted with the subscripts b or i, respectively, with i indi-
cating the farm-to-coast distance (i ¼ 2 km, 4 km or 6 km).

The bed level impact (BLIi), with units of m in the S.I., was
defined as

BLIiðx; yÞ ¼ zf ;iðx; yÞ � zbðx; yÞ; with i ¼ 2 km; 4 km or 6 km;

(7)

where zf,i(x,y) and zb(x,y) are the seabed level in the wave farm and
baseline scenarios, respectively, at a generic point of the beach
designated by its coordinates (x,y) in the horizontal reference
plane. The y-coordinate axis follows the general orientation of the
beach, with values increasing towards the northern end of the
beach, and the x-coordinate is the horizontal coordinate along the
profiles, with values increasing towards the landward end of the
profile. Thus, the BLIi indicator represents the change in bed level in
the i-th scenario. A positive value signifies that the seabed level is
higher in the presence of the wave farm.

The beach face is the area over the mean water level exposed to
the action of the waves. In order to quantify the wave farm effects
on this particularly relevant area of the beach, the beach face
eroded area (FEA), with units of m2 in the S.I., was defined in the
wave farm (FEAf,i) and baseline (FEAb) scenarios by

FEAbðyÞ ¼
Zxmax

x1

½z0ðx; yÞ � zbðx; yÞ�dx; (8)

FEAf ;iðyÞ ¼
Zxmax

x1

h
z0

�
x; y

�
� zf ;i

�
x; y

�i
dx;

with i ¼ 2 km; 4 km or 6 km;

(9)

where z0(x,y) is the initial bed level at the point of coordinates (x,y),
and x1 and xmax are the values of the x-coordinate at the seaward
end of the beach face and landward end of the profile, respectively.
These indicators are profile functions (the profile being designated

Fig. 4. Bathymetry of Perranporth Beach computed in XBeach. Profiles P1, P2 and P3
included. Water depth in relation to local chart datum [in m].

Fig. 3. The three locations considered for the wave farm, at distances of 2 km, 4 km
and 6 km from the reference (10 m water depth) contour [water depth in m].
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by the y-coordinate) that evaluate the erosion caused by the storms
at the beach face, thus enabling to compare the reduction of the
erosion obtained in each of the three wave farm scenarios relative
to the baseline case.

The non-dimensional erosion reduction,

NERiðyÞ ¼1� ðxmax � x1Þ�1
Zxmax

x1

h
z0

�
x; y

�
� zf ;i

�
x; y

�i

� ½z0ðx; yÞ � zbðx; yÞ��1dx;

(10)

is also a profile function, in this case non-dimensional, which
computes the variation in the eroded area of a generic profile (y) as
a fraction of the total eroded area of the same profile brought about
by the wave farm. A positive or negative value implies a reduction
or increase in the eroded area, respectively, as a result of the wave
farm.

Finally, themean cumulative eroded area (CEA), with units of m2

(or m3 per linear metre of beach), was determined as well in the
baseline scenario (CEAb) and with the different wave farms (CEAf,i).
For its definition three reference profiles were considered: PA, PB
and PC (Fig. 2). For each of these the beach was divided into two
parts, to the north (CEAN

b andCEAN
f ;i) and south (CEAS

b andCEAS
f ;i) of

the reference profile, and the corresponding indicators were
computed from

CEAS
bðxÞ ¼ ðyP � y0Þ�1

ZyP
y0

Zx

x0

½z0ðc; yÞ � zbðc; yÞ� dc dy; (11)

CEAS
f ;iðxÞ ¼ ðyP � y0Þ�1

ZyP
y0

Zx

x0

h
z0

�
c;y

�
� zf ;i

�
c;y

�i
dc dy; (12)

CEAN
b ðxÞ ¼ ðymax � yPÞ�1

Zymax

yP

Zx

x0

½z0ðc;yÞ � zbðc;yÞ� dc dy; (13)

CEAN
f ;iðxÞ ¼ ðymax � yPÞ�1

Zymax

yP

Zx

x0

h
z0

�
c; y

�
� zf ;i

�
c; y

�i
dc dy;

(14)

where the integration variables c and y correspond to integration
along the profile and the beach, respectively. The integration limits
along the profile are: x0, the value of the x-coordinate corre-
sponding to the first point of the profile (seaward end); xmax, the
(landward) end of the profile. Along the beach, the integration
limits are: y0 and ymax, the values of the y-coordinate corre-
sponding to the southernmost and northernmost points of the
beach, and yP the value corresponding to the reference profile. The
CEA indicator represents the average cumulative eroded area of the
two sections of the beach along the profile (x). A positive value
signifies that the mean volume of material along the section of the
beach is reduced compared with the initial situation (erosion).

3. Results and discussion

First, the results obtained from the nearshore wave model were
analysed to study the impact of the wave farm on the wave con-
ditions. The nearshore significant wave height (Hs) for the different
scenarios (baseline and with the wave farm at distances of 2 km,
4 km and 6 km from the reference contour) is shown in Fig. 5 for
CS1 (Table 1). The reduction in the significant wave height in the lee
of the farm caused by the energy extraction is apparent. This
reduction was assessed by means of the impact indicator RSHi

(Fig. 6) defined in Section 3.1. The maximum value of the indicator
was achieved within the second row of WECs with values of up to
50%. At a distance of 1.5 km from the second row of devices, the
reduction reached a peak of 40% due to the merging of the shadows
caused by the first and the second row of devices. However, this
reduction decreased moving towards the coast due to the redis-
tribution of the energy from the edges into the shadow caused by
the wave farm. At a water depth of 10 m, the average reduction
caused by the wave farm closest to the coast (2 km) was approx.
25%, whereas for thewave farm at 4 and 6 km the average reduction
was approx. 15% and 9%, respectively.

Fig. 5. Significant wave height [m] in the baseline scenario and in the presence of the farm at distances of 2 km, 4 km and 6 km from the reference (10 m water depth) contour in
CS1 (clockwise from above left).
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The relevance of the farm-to-coast distance may be readily
observed in the shadows caused by the wave farm at different
distances. The area affected at the coastline by the wave farm
furthest to the coast (6 km) was greater than 7 km, however the
average reduction of the significant wave height in this area was
less than 5%. On the other hand, the wave farm at 2 km affected a
smaller area in the coastline, around 4 km, but the reduction
exceeded 10%. Fig. 7 shows this reduction for CS1 (above) and CS2
(below) along the line AA0 , located in Fig. 5, which corresponded to
the area of interest at Perranporth Beach and was used as input for
the coastal processes model. This figure confirmed the different
shadow pattern brought about by the wave farm at a distance of 4
and 6 km compared with the 2 km. In the latter, the reduction
mainly occurred in the central section of the beach, being less
significant in the northern area of the beach. However, for the other
two scenarios, the reduction was found to be approx. constant
along the line AA0 .

In terms of wave power, the resource was evaluated using
Equations (2)e(4) at the location of each of the WECs in the wave
farm. Table 2 shows the overall wave power incident on the wave
farm for the different distances, it was found that the closer the
wave farm to the coast, the lesser the resource, due to the
dissipation caused by the different coastal processes that occur in
intermediate and shallow water. For the wave farm closest to the

coast the reduction of the wave power compared to the scenario
with the wave farm at a distance of 6 km was 10.5% and 8.7% for
CS1 and CS2, respectively. In the case of the wave farm at 4 km
the reduction compared with the scenario at 6 km is 5.7% and
7.3% for CS1 and CS2, respectively. In summary, on the one hand
the wave farm closest to the beach caused the greatest reduction
in the significant wave height, but, on the other hand, the
resource in that area is lower than in deeper areas, and, there-
fore, a comparative study of the response of the beach under
storm conditions is necessary to determine the best location for a
wave farm in terms of wave energy resource and coastal
protection.

Second, the coastal processesmodel used the output of thewave
model to study in which manner the modification of the wave
patterns affected the coastal processes and, consequently, the
beach morphology. To quantify this alteration the results were
analysed by means of the impact indicators defined in Section 3.2.
The first indicator was the bed level difference, BLI, which repre-
sented the difference of the bed level between the baseline and the
wave farm scenarios at a point in time. Fig. 8 shows BLI values at the
end of the storm for CS1 with the wave farm at a distance of 2 km
(left), 4 km (middle) and 6 km (right). It was observed that themain
impact caused by the wave farm was located at the beach face,
where reductions of the erosion up to 1.5 m were found.

Fig. 6. Reduction of the significant wave height (%) with the wave farm at a distance of: 2 km (RSH2 km), 4 km (RSH4 km) and 6 km (RSH6 km) from the reference (10 m water
depth) contour in study CS2 [in m].

Fig. 7. Significant wave height [in m] in the baseline scenario (Hs, b) and in the presence of the farm at a distance of: 2 km (Hs, 2 km), 4 km (Hs, 4 km) and 6 km (Hs, 6 km) from the
reference (10 m water depth) contour across the line AA0 in CS1 (above) and CS2 (below).
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Fig. 9 illustrates the evolution of three profiles at the end of the
storm for CS2, corresponding with three section of the beach that
were identified by their different responses under the storms: (i)
the southern section of the beach (P1 in Fig. 9) with a smooth slope
in the intertidal area; (ii) the area backed by a very steep dune (P2
in Fig. 9) where the mean water level was close to the toe of the
dune; and (iii) the northern section of the beach (P3 in Fig. 9) also
backed by the dune, but with a greater distance from the toe of the
dune to the mean water level. In the case of P1 and P3 the main
erosion occurred on the beach face and this material was moved to
lower sections of the beach, however in the case of P2 accretionwas
detected in the intertidal area due to the material eroded in the
steep dune for the proximity of the mean water level to it. In the
area of P3 were found the greatest values of the BLI indicator, with
reductions greater than 1 m, while in the section P1 the reduction
took values of approx. 0.5 m.

In the comparison between scenarios, the wave farm at a dis-
tance of 2 km caused greater reduction of the erosion along the
beach than the other scenarios, in which areas with significant
reductions of erosionwere combinedwith negligible values or even
accretion. In the lower sections of the beach, accretion occurred due
to the amount of material eroded in the beach face. For instance, in
the scenario with the wave farm closest to the coast the BLI took
negative values of �0.5 m in the southern area of the beach, which
meant that the accretion without the farm was bigger than with it,
due to the greater erosion produced in the intertidal area in the
baseline scenario. This reduction of the accretion with the wave
farm at a distance of 4 km and 6 km took place only in a few sec-
tions of the beach with BLI values less than 0.3 m.

The impact factor FEAwas defined to quantify the erosion in the
beach face along the beach (Fig. 10). The greatest values of this
indicator along the beach were focussed in the southern area
because this sectionwas not backed by the dune. The erosion in the
baseline scenario was, in general, greater than the scenarios with

the wave farm, especially in the middle and northern area of the
beach, yecoordinate (along the beach) > 1250 m. To compare the
reduction between the different wave farm scenarios the indicator
NER was defined, which showed the variation of the erosion in
terms of the eroded area in the baseline scenario (Fig. 11). The NER
values fluctuated considerably along the beach, but it was observed
that the reduction using a wave farm at a distance of 2 km was
greater than the other two scenarios.

In the area of the steep dune (500 m < yecoordinate < 1250 m),
the erosion in the beach face was very low (negligible in some
sections), and very few profiles presented an isolated response
taking the NER factor negative values (greater erosion with the
farm thanwithout it). However, in terms of the average reduction of
the beach face erosion along thewhole beach, it was confirmed that
the wave farm at 2 km offered a greater degree of coastal protec-
tion, around 15% in both case studies, than the scenario with the
wave farm at 4 and 6 km, which presented an approximate
reduction of approx. 10%. Considering particular sections of the
beach, the impact was much more significant, for instance, the
reduction exceeded 20% for the wave farm at 2 km for values of the
y e coordinate between 1200 and 2000 m in CS2, which was the
area most affected by the reduction of the significant wave height
(Fig. 7). The results for the wave farm at 4 and 6 km did not present
large differences in terms of the reduction of the erosion along the
whole beach; however the average reduction for the farm at 4 km
was slightly greater (13%) than the farm at 6 km (11%) in the area
backed by the dune (y > 1250 m).

Finally, the CEA indicator computed the volume of material
moved per linear metre along the beach between the initial con-
ditions and the last point of the simulation for the different sce-
narios. This indicator was applied to the northern (CEAN) and
southern (CEAS) section of the beach taking as reference for each
case the following profiles (Fig. 4): PA (south), PB (middle) and PC
(north), which allowed the variations in the longshore sediment
transport to be studied. Fig. 12 shows the evolution of this factor
along the profile (x) for CS1, where the negative values represented
an increase in the volume of material with respect to the initial
conditions (accretion). In the lowest section of the profile, the
volume of material for the scenarios studied was larger than the
initial volume due to the material eroded, mainly from the
following sections along the profile: (i) the beach face (1200 m < x-
coordinate < 1300 m) and (ii) the area that faced the storms in low

Table 2
Overall wave power incident in the wave farm [kW/m].

Case study (Hs) Wave farm scenario

2 km 4 km 6 km

CS1: 3 m 197.52 208.02 220.75
CS2: 3.5 m 339.80 345.09 372.13

Fig. 8. Bed level impact with the wave farm at a distance of 2 km (BLI2 km), 4 km (BLI4 km) and 6 km (BLI6 km) at the end of the storm in CS1.
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tide (800 m < x-coordinate < 1000 m), which was more significant
in the southern area of the reference profiles. The geomorpholog-
ical complexity of the southern section of the beach resulted in very
different behaviour between the different scenarios.

The wave farm at a distance of 2 km presented a significant rise
in the volume of material in the southern area of the beach, espe-
cially taking as reference the profiles PA and PB. This could be
associated to the modification of the wave patterns brought about
by the wave farm, given that the main reduction of the significant
wave height occurred in the southern andmiddle area of the beach.
Therefore, part of the material eroded in the northern section,
where the reduction of the significant wave height was less, could
be moved to the southern part of the beach, increasing the volume
in this section. As for the wave farm at 4 and 6 km, they did not

present significant differences compared with the baseline sce-
nario, nonetheless the erosion caused in the absence of the farm
was greater. For instance, in the northern area of the different
profiles, it is observed that the greatest accretion at x ¼ 1250 m
occurred in the baseline scenario due to the largest amount of
material eroded at the beach face. In the case of the profile PA, this
was followed by the scenario with the wave farm at a distance of
2 km, associated with the material moved from the north of the
beach, but for the profiles PB and PC, the greatest values of accretion,
after the baseline scenario, occurred with the wave farm at 4 and
6 km given that the farm at these distances reduced the erosion less
than the scenario at 2 km. To sum up, a wave farm can alter not just
the wave conditions in its lee but also the morphology and the
sediment transport of the beach.

Fig. 9. Bed level at Profiles P1, P2 and P3: initial (z0) and at the end of the storm in CS2 in the baseline scenario (zb) and with the wave farm at a distance of 2 km (zf2 km), 4 km (zf4 km)
and 6 km (zf6 km).
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A previous study conducted by Abanades et al. [49] analysed the
applicability of a wave farm to coastal defence. The present work,
while confirming the suitability of wave farms as a coastal defence
means, considers for the first time the influence of the farm-to-
coast distance. By proving the importance of this parameter and
giving quantitative data on the variation of the beach morphody-
namics induced by the wave farm at different distances, this work
contributes to the applicability of wave farms to coastal defence.
Furthermore, wave farms present the following advantages versus
traditional measures of coastal protection: (i) the generation of
carbon-free electricity e their main purpose, with coastal defence
as a secondary benefit; and (ii) in the case of floating WECs such as
WaveCat, the effectiveness of the wave farm is not affected by sea
level change.

4. Conclusions

The role played by the distance in the impact of a wave farm on
the beach morphology was analysed in this paper. To investigate
this, a wave farm formed by 11 WECs was located at different dis-
tances: 2 km, 4 km and 6 km from a reference (10 m water depth)
contour in a high-resolution suite of numerical models. This suite
consisted of a nearshore wavemodel coupled to a coastal processes

model, which allowed the impacts of the wave farm on wave
conditions and coastal processes to be assessed.

The wave farm extracted energy from the waves, which was
characterised bymeans of wave transmission coefficients that were
obtained in laboratory tests. The comparison between the baseline
and the wave farm scenarios showed the importance of the farm-
to-coast distance, given that, depending on the location, the area
affected by the farm and the magnitude of the wave height
reduction varied considerably. In the case of the wave farm at a
distance of 6 km, the impact of the farm covered an area of 7 km
along the coast but the reduction of the significant wave height at a
water depth of 10 m was less than 10%; nonetheless, the area
affected by the wave farm closest to the farm was 4 km and the
reduction approx. 25% due to less energy being diffracted into the
shadow of the farm situated closer to the beach.

The impact of the wave farm on the wave conditions resulted in
an alteration of the coastal processes nearshore, and therefore, of
the beach morphology. To quantify this, a suite of impact indicators
was developed and applied to the results of the different scenarios.
The reduction of the erosion brought about by the different wave
farms was mainly in two areas of the beach: (i) the area at a water
depth of approx. 3 m, which faced the storms during the low tide;
and (ii) the beach face of the beach. Whereas in the former, the

Fig. 11. Non-dimensional erosion reduction (NER) at the beach face in the following scenarios: with the wave farm at a distance of 2 km (NER2 km), 4 km (NER4 km) and 6 km (NER6

km) along Perranporth Beach (y-coordinate, with y increasing towards the north of the beach) at the end of the storm in CS1 (above) and CS2 (below).

Fig. 10. Beach face eroded area in the following scenarios: baseline (FEAb) and with the wave farm at a distance of 2 km (FEA2 km), 4 km (FEA4 km) and 6 km (FEA6 km) along
Perranporth Beach (y e coordinate, with y increasing towards the north of the beach) at the end of the storm in CS1 (above) and CS2 (below).
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reduction did not exceed 0.5 m, in the latter it reached 1.5 m. In the
comparison between scenarios, the wave farm at 2 km offered
greater reductions of the erosion than the farm at 4 and 6 km,
which presented similar responses. The overall reduction of the
erosion on the beach face compared to the baseline scenario was
15% for the closest wave farm and approx. 10% for the other two.
These values fluctuated significantly along the beach, and in some
sections, especially in the northern area of the beach, exceeded 40%.

Lastly, it was also found that the wave farm may change the
distribution of sediment along the beach. The alteration of thewave
conditions with the farm at 2 km modified the sediment transport
patterns, increasing the volume of material moved to the southern
area of the beach. This confirmed that the effects on the beach
morphology of the wave farm closest to the coast were more pro-
nounced than in the other scenarios; nevertheless, the overall wave
resource in this area was 10% less than with the case with the
furthest farm (6 km) due to the attenuation of wave energy caused
by the coastal processes that occur in shallow waters. When
comparing the scenarios at 4 km and 6 km, the impact on the beach
morphology did not present significant differences but there were
differences in the overall resource at the wave farm: 8% less at 4 km
than at 6 km.

In summary, the selection of the location for a wave farm is not
trivial. This work proved that the degree of coastal protection
afforded by a wave farm varies significantly as a function of its
distance to the coastline. On these grounds, the effects of the wave
farm on the coast ought to be one of the main considerations
(alongside the energy resource) in this selection, not least in areas
subject to erosion risks, where the wave farms can contribute
considerably to its mitigation.
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The extraction of wave energy by the Wave Energy Converters (WECs) forming a wave farm results in a milder
wave climate in its lee, which can have an impact on coastal processes. The objective of this work is to determine
whether the beachmorphology can be altered by the operation of thewave farm, and if so, to quantify this alter-
ation. For this purpose,we examine how the farmaffects themodal state of the beachwith reference to a baseline
(no farm) scenario. The modal state is defined based on an empirical classification that accounts for wave condi-
tions, tidal regime and sediment size. As a beach typically goes through different modal states, we determine the
percentages of time in an average year corresponding to each state in the baseline scenario, and how these per-
centages are altered by a wave farm as a function of its distance from the coast. This methodology is illustrated
through a case study: Perranporth Beach (UK), an area of great potential for wave energy development. High-
resolution numerical modelling is used, with two levels of grid refinement. We find that the wave farm has a
relevant impact on themodal state of the system, which passes fromwave-dominated to tide-dominated during
significant periods of time. The sensitivity analysis, involving three caseswith the farm at distances of 2 km, 4 km
and 6 km from the beach, showed that the farm-to-coast distance plays amajor role. Thus, the shift from awave-
to a tide-dominated beach is exacerbated in the case of thewave farm closest to the coastline,with the submarine
bar vanishing over long periods of time. We conclude that the presence of the wave farm drastically alters the
morphological response of the beach, and that this alteration is strongly dependent on the farm-to-coast
distance.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wave energy is poised to become one of the major renewable ener-
gies in a number of coastal regions around the world (Bernhoff et al.,
2006; Carballo et al., 2014; Cornett, 2008; Defne et al., 2009; Gonçalves
et al., 2014; Iglesias and Carballo, 2010a; Iglesias et al., 2009c;
Lenee-Bluhm et al., 2011; Liberti et al., 2013; Stopa et al., 2011; Veigas
et al., 2014a; Veigas and Iglesias, 2013, 2014; Vicinanza et al., 2013).
The influence ofwave energy extraction by theWave Energy Converters
(WECs) forming a wave farm on the nearshore wave conditions was
recently shown by different authors (Carballo and Iglesias, 2013;
Iglesias and Carballo, 2014; Mendoza et al., 2014; Millar et al., 2007;
Palha et al., 2010; Ruol et al., 2011; Smith et al., 2012; Veigas et al.,
2014b,c; Vidal et al., 2007; Zanuttigh and Angelelli, 2013). Abanades
et al. (2014b) proved that this extraction resulted in a medium-term
reduction of the erosion exceeding 20% in some sections of the beach
profile (2D). In further studies, Abanades et al. (2014a, 2015) consid-
ered the 3D response of the beach under storm conditions in order to
establish the applicability of wave farms to coastal defence. Erosion
was found to decrease by more than 50% in certain areas of the beach.
In the wake of these studies, which evidence the impact of wave

farms on beach morphology, the question arises as to whether a wave
farm can modify the modal state of a beach, and, if so, in what manner.

The objective of the present study is to answer this fundamental
question bymeans of a case study: Perranporth Beach (UK). To quantify
the effects of the wave farm on the modal state of the beach, scenarios
with and without the farm were compared and the percentage of time
corresponding to the different modal states during the period from 1st
of November 2007 to 31st of October 2008was determined. In addition,
the seasonal variability: “winter” (Nov–Apr) vs “summer” (May–Oct)
was also examined. The modal states were established following the
empirical classification presented by Masselink and Short (1993),
based on Wright and Short (1984). The modal states vary as a function
of the wave climate (breaking wave height and peak period), the beach
sediment characteristics (sediment fall velocity) and the tidal regime
(mean spring tidal range).

The effects of the wave farm on the coast are characterised using a
wave propagation model, SWAN (Booij et al., 1996). The wave farm,
which consists of elevenWaveCatWECs arranged in two rows, is imple-
mented on a high-resolution grid so as to accurately resolve the wakes
of the individual WECs, and hence that of the wave farm as a whole.
Four scenarios are examined: three with the wave farm at different
distances from a reference contour (10 m water depth): 2 km, 4 km
and 6 km, following Abanades et al. (2015), plus the baseline scenario
(without the wave farm). Thanks to the three distances considered it

Marine Geology 361 (2015) 126–135

⁎ Corresponding author.
E-mail address: javier.abanadestercero@plymouth.ac.uk (J. Abanades).

http://dx.doi.org/10.1016/j.margeo.2015.01.008
0025-3227/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Marine Geology

j ourna l homepage: www.e lsev ie r .com/ locate /margeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.margeo.2015.01.008&domain=pdf
http://dx.doi.org/10.1016/j.margeo.2015.01.008
mailto:javier.abanadestercero@plymouth.ac.uk
http://dx.doi.org/10.1016/j.margeo.2015.01.008
http://www.sciencedirect.com/science/journal/00253227
www.elsevier.com/locate/margeo


is possible to analyse the role of the farm-to-coast distance in the impact
on the beach morphology. TheWEC–wave field interaction is modelled
by means of the wave transmission coefficient, obtained through labo-
ratory tests as reported by Fernandez et al. (2012). The numerical
model, successfully validated with wave buoy data, is used to calculate
the wave conditions and on this ground establish the modal state of
the beach.

The understanding and modelling of beaches are essential to coastal
management (Budillon et al., 2006; Cowell et al., 1995; De Vriend et al.,
1993; Hughes et al., 2014; Iglesias et al., 2009a,b; Ortega-Sánchez et al.,
2014; Ortega Sanchez et al., 2003; Poate et al., 2014). In the case of
Perranporth, the beach was described as dissipative (Butt et al., 2001;
Masselink et al., 2005) and as a low-tide bar rip system (Scott et al.,
2007, 2011), with Austin et al. (2010) indicating that it is at the transi-
tion between the low tide bar/rip and dissipative beach. In this context,
the characterisation obtained in the present work contributes to under-
standing the behaviour of Perranporth by providing quantitative
estimates of its morphodynamical variability throughout a year.

2. Material and methods

2.1. Conceptual beach model

The conceptual beach classifications are empirical models based
on the relationships between the characteristics of different types
of beaches (wave climate, sediment size and tidal regime) and field
observations. Therefore, these models allow the evolution of beach
dynamics as a function of the beach features to be predicted, and
also, the quantification of the potential changes induced by a modi-
fication of these, such as the reduction of wave energy brought
about by a wave farm.

The classification presented byWright and Short (1984), also called
the Australian beach model, is based on the field observations collected
in Australia for microtidal beaches. This classification indicates the
prevailing conditions in the surf zone: dissipative, intermediate or
reflective, as a function of the dimensionless fall velocity parameter
(Ω), also known as the Dean's number (Dean, 1973),

Ω ¼ Hb

wsT
ð1Þ

where Hb is the breaking wave height, T is the wave peak period corre-
sponding to the breaking conditions andws is the sediment fall velocity,
which is defined for the present paper according the Shore Protection
Manual (US Army Corps Of Engineers, 1984),
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ð3Þ

whereγs andγw are thedensities of the sediment andwater, respective-
ly, g the gravitational acceleration,D50 the sediment grain size and ν the
fluid kinematic viscosity.

This model represents the evolution of microtidal beaches well;
however, it does not account for the influence of the tide on the
swash, surf zone and shoaling wave processes (Davis and Hayes,
1984). This was corrected with the introduction of a new parameter:
the relative tide range (RTR), which allows the characterisation of all

wave-dominated beaches in all tidal ranges (Masselink and Short,
1993):

RTR ¼ MSR
Hb

; ð4Þ

where MSR is the mean spring tidal range.
Fig. 1 shows the relationships between the dimensionless fall veloc-

ity and the relative tide range parameters that are used to establish the
modal beach state. As the RTR parameter increases the beach evolves
from a classic reflective state through the formation of a low tide terrace
at the toe of the beach face and low tide rips to a steep beach face
fronted by a dissipative low tide terrace. In the case of an intermediate
barred beach, the increase in the tidal range moves the bar down to
the low tide level generating a low tide bar and rips. Finally, for barred
dissipative beaches characterised by multiple subdued bars at different
water depths, the increase of RTR results in the disappearance of these
bars. The latter two groups shift to ultra-dissipative beaches with values
of RTR between 7 and 15. For values of RTR greater than 15 the resulting
beach is fully tide-dominated.

2.2. Case study: Perranporth Beach

The characterisation of the changes induced by a wave farm in the
morphodynamical behaviour of a beach is conducted at Perranporth
Beach (Fig. 2), a prospective site for wave energy exploitation for its
prime location on the Atlantic façade of Europe, which has been
highlighted for its wave energy resource (Guedes Soares et al., 2014;
Iglesias and Carballo, 2009, 2010b, 2011; Pontes et al., 1996). An exam-
ple of this potential is the Wave Hub project (Gonzalez-Santamaria
et al., 2013; Reeve et al., 2011), a grid-connected offshore facility for
sea tests ofWECs, located in SW England. In addition to its wave energy
potential, a further reason for choosing Perranporth is that this beach,
facing directly the North Atlantic Ocean, has experienced increased
erosion due to rising sea level and storminess — as corroborated by
the extremely energetic storms of February 2014. Therefore, this
would be a prime area for using a wave farm to control the storm-
induced erosion (Abanades et al., 2014a,b, 2015).

Perranporth is an approx. 4 km beach composed by a medium sand
size, D50 = 0.27–0.29 mm, and characterised by a low intertidal slope,
tan β = 0.015–0.025. In the present study, the offshore bathymetric
data, from the UK data centre Digimap, and the beach profile data,
obtained through field survey by the Coastal Channel Observatory, are
implemented onto thewave propagationmodel. In the three beach pro-
files selected to determine the beach modal state the relevant features
can be readily observed (Fig. 3): a submarine bar at a water depth
between 5 and 10 m and a well-developed dune system that backs
the landward end of the beach. The latter aspect does not play a role
in the modal state, which only considers the intertidal area, but the
bar system does — and is indicative of a dissipative or intermediate
state. In the case of profile P3, two submarine bars are distinct— typical
of a barred dissipative state.

As regards thewave conditions, wave buoy data are used in conjunc-
tion with hindcast data to force the wave propagation model. Hindcast
data from WaveWatch III, a third-generation offshore wave model
consisting of global and regional nested grids with a resolution of
100 km (Tolman, 2002), are used to prescribe the offshore boundary
conditions. The validation is carried out with the wave buoy located
off Perranporth Beach at a water depth of approx. 10 m. The average
values of the significant wave height, peak period and direction from
November 2007 to October 2008 were 1.60 m, 10.37 s and 282.59°, re-
spectively. Dividing this period into “winter” (Nov–Apr) and “summer”
(May–Oct) to analyse the seasonal variability of the beach, the values in
“winter” of the significant wave height, peak period and direction were
1.98 m, 11.30 s and 285.23°, respectively, and in “summer” 1.32 m,
9.62 s and 279.95°.
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Fig. 1. Conceptual beach model (Masselink and Short, 1993).

Fig. 2. Bathymetry of SW England [water depths in m] including the location of Perranporth Beach, the WaveHub Project and an aerial photo of Perranporth Beach.
Source: Coastal Channel Observatory.
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Wind data from the Global Forecast System (GFS) weather model
are also used as input of the wave model. In the period covered in the
study the mean wind velocity magnitude at a height of 10 m above
the sea surface (u10) was 8.46 ms−1. Strictly speaking there is no pre-
vailing direction for the wind but the strongest winds, with velocities
over 20 ms−1 come from the quarter between NE to NW.

Finally, the tide is also included in the model. As mentioned in the
Introduction section, the large tidal range typical of SW England has a
considerable effect on the beach morphodynamics. Perranporth is a
macrotidal beach (MSR=6.3m) characterised by a semidiurnal regime.

2.3. Wave propagation model

Thewave propagation is carried out using SWAN, a third-generation
phase-averaged wave model for the simulation of waves in waters of
deep, intermediate and shallow depth. SWAN computes the evolution
of the wave spectrum based on the spectral wave action balance
equation,

∂N
∂t þ∇ � c!N

� �
þ ∂ cθNð Þ

∂θ þ ∂ cσNð Þ
∂σ ¼ S

σ
ð5Þ

whereN is thewave action density, t the time, c! the propagation veloc-
ity in the geographical space, θ the wave direction, σ the relative fre-
quency, and cθ and cσ the propagation velocity in the θ- and σ-space,
respectively. The rate of change of wave action in time is given by the
first term of Eq. (1), the second term represents the spatial propagation
of wave action and the third and fourth terms stand for the refraction
and changes in the relative frequencies respectively induced by depth
and currents. Finally, on the right-hand side, S is the source term and
represents the generation and dissipation of energy density by the
different processes involved.

A high-resolution grid is essential in this work in order to:
(i) implement theWECs that formed the wave farm in their exact posi-
tion, (ii) represent accurately the impact of the wave farm on the wave
conditions in its lee, and (iii) determine thewave conditions to establish
the morphodynamical state of the beach. On this basis, two computa-
tional grids are defined (Fig. 4): (i) an offshore grid covering approx.
100 km × 50 km with a grid size of 400 × 200 m, and (ii) a high-

resolution nearshore (nested) grid covering the study area,with dimen-
sions of approx. 8 km × 6 km and a grid size of 16 m × 12 m.

The wave farm consists of 11 WaveCat WECs arranged in two rows,
with a spacing between devices equal to 2.2D, where D = 90 m is the
distance between the twin bows of a single WaveCat WEC. The farm
was located at distances of 2 km, 4 km, and 6 km (Fig. 5) from a refer-
ence contour (10 m water depth), which corresponds to water depths
of approx. 25 m, 30 m and 35 m, respectively (Carballo and Iglesias,
2013; Iglesias and Carballo, 2014). The WEC–wave field interaction is
modelled by means of the results obtained for the wave transmission
coefficient in the lee of the device in the laboratory tests carried out
by Fernandez et al. (2012). Compared with wave transmission, diffrac-
tion plays a minor role in analysing the effects of the WECs on the
beach— the distance between theWECs and the reference 10mcontour
(2000m, 4000mand 6000m)being oneorder ofmagnitude larger than
the width of the WECs (90 m). Therefore, the approximate solution of
diffraction implemented on SWAN is sufficient for our purposes in this
work.

The resource available is compared between the different scenarios
through the average wave power of the wave farm, J , in units of
Wm−1 in the SI,

J ¼
PN

n¼1

XT
t¼1

Jnð Þ
t

T
; ð6Þ

where the index n represents a generic WEC of the wave farm, N is the
total number ofWECs (11), t a point in time, T the total number of time
points studied (1 year) and ( Jn)t the wave power at the n-WEC location
at the t point of time, which is computed in SWAN as

J ¼
Z2π

0

Z360

0

ρgcE σ ; θð Þ dσ dθ; ð7Þ

where ρ is the water density, g is the acceleration due to gravity, and
E(σ, θ) is the directional spectral density, which specifies how the ener-
gy is distributed over frequencies (σ) and directions (θ).

The effects caused by the farm in the different scenarios are
assessed by means of the average relative nearshore impact, RNI

Fig. 3. Three different profiles at Perranporth Beach and their respective localisation. Water depth in relation to local chart datum [in m].
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(Iglesias and Carballo, 2014), a non-dimensional impact indicator
defined by

RNIi ¼
1
T
1
S

XT
t¼1

XS
s¼1

J20b s; tð Þ− J20 f ;i s; tð Þ
J20b s; tð Þ ; ð8Þ

where J20 f ;i s; tð Þ is the wave power in the presence of the farm at a
generic point (s) of the 20 m contour at a point of time (t), with
the subindex i indicating the farm-to-coast distance (i = 2 km,

4 km or 6 km) and J20b s; tð Þ is the baseline wave power (without
the farm) at the same point, with S and T the total number of points
along the contour and in time, respectively.

Finally, the wave conditions necessary to establish the morphologi-
cal beach state – breaking wave height (Hb) and peak period (Tp) – are
determined coupling the results from SWAN to the Kamphuis' formulae

(Kamphuis, 1991), a breaking criterion for irregular waves based on the
following expressions:

Hsb ¼ 0:095e4mLbp tanh
2Πdb
Lbp

 !
; and ð9Þ

Hsb

db
¼ 0:56e3:5m ; ð10Þ

where Hsb represents the breaking significant wave height,m the beach
slope, Lbp the breaking wave length and db the breaking water depth.
Once the breaking wave height was determined, the corresponding
period was selected.

Fig. 5.Wave farm located at different distances: 2 km, 4 km and 6 km to the 10 m water depth contour at Perranporth Beach [water depth in m].

Fig. 4. Computational grids of the wave propagation and the coastal processes model [water depths in m].
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3. Results and discussion

First, themodel is validated using thewave buoy data at Perranporth
Beach from November 2007 to October 2008, missing out January 2008
owing to the lack of data. Fig. 6 and Fig. 7 shows the good fit achieved
between the significantwave height computed by SWANand the values
from the wave buoy. The coefficient of determination, R2, and the root
mean square error, RMSE, confirm the goodness of the fit: R2 = 0.94
and RMSE = 0.38 m.

Second, the effects on the wave conditions of the wave farm scenar-
ios are analysed and compared to the baseline scenario. Fig. 8 shows the
reduction of the significant wave height in the lee of the farm at a point
in time. The greatest values of the reduction are found behind the
second row of devices with values of approx. 40%, although these
decrease towards the coast due to the wave energy diffracted from the
sides into thewake of the farm. In the case of thewave farmat a distance
of 2 km from the shoreline the reduction of the significant wave height
at a water depth of 10 m at this point in time is 25%, whilst for the farm
at 4 and 6 km the values are 12% and 5%, respectively. (See Fig. 7.)

As regards the shadow caused by the wave farm, the area affected
varies according to the wave direction, especially in the cases with a
farm-to-coast distance of 4 and 6 km. The impact with waves coming
from the east (Fig. 8) is mainly focussed on the north area of the
beach, whilst with waves from the NW the impact covers practically
all the beach. In contrast, the impact of the wave farm closest to the

beach does not vary with the wave conditions due to its proximity to
the coast. Fig. 9 illustrates the modification of the significant wave
height in the different scenarios along the 20 m contour. It is observed
that the greater the farm-to-coast distance, the larger the extension of
the shadow; in the cases of the furthest and closest farm the shadow
covers over 8 km and 3 km, respectively. However, the greatest impact
of the furthest farm is outside of the beach limits for these offshorewave
conditions.

In terms of wave power reduction, the relative nearshore impact in-
dicator, RNIi, was defined to assess the average impact at a water depth
contour of 20 m. The values for the different farm-to-coast distances
are:RNI2 km = 25.59%,RNI4 km=7.34% andRNI6 km=2.66%. The reduc-
tion inwave energy is muchmore significant for thewave farm at 2 km,
however, the overall resource for the wave farm at 2 km is 15% lower
than that for the farm at 6 km (Table 1). The difference in terms of the
available resource is less between the farm at 4 km and 6 km (5%).
The results are also divided into “winter” (1st November–31st April)
and “summer” (1st May–31st October) to assess the seasonal
variability of wave power (approx. 70%), which, will be shown to affect
the modal state of the beach.

Based on the results of the wave propagation model themodal state
of the beach is determined. In order to investigate the spatial variability
of the impact along with its seasonal variability, three profiles (Fig. 3)
are selected: profiles P1, P2 and P3 correspondedwith the south,middle
and north section of the beach.

Fig. 7. Scatter diagram: simulated (Hs, SWAN) vs. measured (Hs, buoy) significant wave height.

Fig. 6. Time series of simulated (Hs, SWAN) and measured (Hs, buoy) significant wave height.
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First, the results for the south section of the beach are shown in
Table 2. This section of the beach is predominantly dissipative (third
column in the table), although the percentage that the beach is found
to be intermediate (second column) is far from negligible. Indeed, in
the case with the farm at a distance of 2 km, the low tide bar/rip
becomes themost frequent state. The comparison between the baseline
and farm scenarios reflects a slight modification of the modal state of

the beach owing to the low impact of the wave farm on the wave
conditions in this area. The maximum difference between the baseline
and the farm scenarios is the case of the non-barred dissipative state,
in which the reduction does not exceed 1%. In any case, the trends due
to the reduction of the significant wave height are shown in the results;
for instance, the percentage of low tide bar/rip state increases as the
wave farm become closer, because the relative range tidal parameter

Fig. 9. Significant wave height [m] in the baseline scenario (Hs, b) and in the presence of the farm at distances of 2 km (Hs, 2 km), 4 km (Hs, 4 km) and 6 km (Hs, 6 km) along the 20 m water
depth contour at 19th January 2014, 18:00 UTC [deep water wave conditions: Hs = 4.69 m, Tp = 11.86 s and θ = 252.41°].

Fig. 8. Significantwave height [m] in the baseline scenario (Hs, b) and in the presence of the farm at distances of 2 km (Hs, 2 km), 4 km (Hs, 4 km) and 6 km (Hs, 6 km) from the reference (10m
water depth) contour at 19th January 2014, 18:00 UTC [deep water wave conditions: Hs = 4.69 m, Tp = 11.86 s and θ= 252.41°].
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(RTR) is inversely proportional to the breaking wave height. On the
other hand, the dimensionless fall velocity parameter (Ω) is directly
proportional to the breaking wave height, and, therefore the barred
dissipative state occurred more frequently in the baseline scenario
than in the cases with the farm.

Second, in the case of the middle of the beach (Table 3), the results
were slightly different compared with the south section, due to the
morphological differences between them (see Fig. 3). In this area, the
wave farm impacts are greater compared to the south section.Whereas
thewave farm at 4 kmand 6 kmdoes not present significant differences
compared with the baseline scenario, the wave farm at 2 km changes
the behaviour of the beach significantly, reducing the barred dissipative
state by more than 5% or 20 days per year, and increasing the
ultradissipative state by more than 15 days. Overall, with the wave
farm at 2 km the most frequent state shifted from non-barred dissipa-
tive (baseline) to ultra-dissipative due to the reduction of breaking
wave height.

Third, the north section of the beach is the area that presented the
greatest differences between the baseline and the farm scenarios
(Table 4). The trends mentioned in previous paragraphs are accentuat-
ed in this area, the reduction in the barred and non-barred dissipative
states results in a greater occurrence of the ultra-dissipative beach,
from 5 days to 36 days per year in the case of the farm at 6 and 2 km, re-
spectively — a very substantial change in the morphological behaviour
of the beach. As regards theΩ parameter, it is observed that the closest
wave farmmakes the low tide terrace and the low tide bar and rip states
more frequent by 10 and 12 days per year, respectively, compared with
the baseline scenario.

Finally, regarding the seasonal variability, significant differences be-
tween “summer” and “winter” are found. These differences are analysed
with reference to the north section (Table 5) for the sake of space —

similar trendswere found in the other sections. Themain feature that dis-
tinguishes the winter from the summer is the presence of the bar in the
baseline scenario. In winter, the beach is predominantly barred dissipa-
tive, what is usually called a “winter” or “storm” profile. The more ener-
getic conditions increase the erosion, and lower the beach face as sand
is moved offshore and deposited on submarine bars, which help protect
the beach by causing the waves to break further offshore. In summer,

Table 2
Percentages of the beach modal state for the south section of the beach (Profile P1) from
1st November 2007 to 31st October 2008.

Profile P1: South section

Reflective Barred Barred dissipative

Baseline 0.00% Baseline 0.07% Baseline 16.04%
6 km 0.00% 6 km 0.07% 6 km 15.96%
4 km 0.00% 4 km 0.07% 4 km 15.90%
2 km 0.00% 2 km 0.07% 2 km 15.70%

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative

Baseline 0.00% Baseline 25.50% Baseline 26.59%
6 km 0.00% 6 km 25.70% 6 km 26.39%
4 km 0.00% 4 km 25.98% 4 km 26.18%
2 km 0.00% 2 km 26.18% 2 km 25.77%

Low tide terrace Ultra-dissipative

Baseline 3.36% Baseline 22.89%
6 km 3.36% 6 km 22.89%
4 km 3.43% 4 km 22.82%
2 km 3.36% 2 km 23.24%

Transition to tide-dominated tidal flat

Baseline 5.55%
6 km 5.63%
4 km 5.62%
2 km 5.69%

Table 1
Average resource available in the wave farm for the different scenarios divided into
“summer” (1st May–31st October) and “winter” (1st November–31st April).

Scenario J (kW/m)

“Winter” “Summer” Average

2 km 239.98 78.15 159.01
4 km 275.72 86.07 180.83
6 km 288.28 91.49 189.82

Table 3
Percentages of the beachmodal state for themiddle section of the beach (Profile P2) from
1st November 2007 to 31st October 2008.

Profile P2: Middle section

Reflective Barred Barred dissipative

Baseline 0.00% Baseline 0.07% Baseline 21.73%
6 km 0.00% 6 km 0.07% 6 km 20.90%
4 km 0.00% 4 km 0.07% 4 km 20.29%
2 km 0.00% 2 km 0.00% 2 km 16.04%

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative

Baseline 0.00% Baseline 22.76% Baseline 26.11%
6 km 0.00% 6 km 22.69% 6 km 25.63%
4 km 0.00% 4 km 22.62% 4 km 25.29%
2 km 0.07% 2 km 23.85% 2 km 25.29%

Low tide terrace Ultra-dissipative

Baseline 2.06% Baseline 22.69%
6 km 2.19% 6 km 23.85%
4 km 2.19% 4 km 24.81%
2 km 3.29% 2 km 26.32%

Transition to tide-dominated tidal flat

Baseline 4.59%
6 km 4.66%
4 km 4.73%
2 km 5.14%

Table 4
Percentages of the beach modal state for the north section of the beach (Profile P3) from
1st November 2007 to 31st October 2008.

Profile P3: North section

Reflective Barred Barred dissipative

Baseline 0.00% Baseline 0.14% Baseline 16.59%
6 km 0.00% 6 km 0.07% 6 km 15.49%
4 km 0.00% 4 km 0.07% 4 km 14.39%
2 km 0.00% 2 km 0.07% 2 km 6.18%

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative

Baseline 0.00% Baseline 28.10% Baseline 28.71%
6 km 0.00% 6 km 27.55% 6 km 28.92%
4 km 0.00% 4 km 28.24% 4 km 28.71%
2 km 0.00% 2 km 31.11% 2 km 22.62%

Low tide terrace Ultra-dissipative

Baseline 0.89% Baseline 22.68%
6 km 0.96% 6 km 23.99%
4 km 1.03% 4 km 24.40%
2 km 3.49% 2 km 32.28%

Transition to tide-dominated tidal flat

Baseline 2.89%
6 km 3.02%
4 km 3.16%
2 km 4.25%
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the state of the beach shifts from barred to non-barred – non-barred dis-
sipative or ultra-dissipative – due to the milder wave conditions, and,
therefore, the reduction of offshore sediment transport.

In the scenarios with the farm this seasonal behaviour changes
specially with the farm at 2 km. In winter, the barred dissipative state
becomes less frequent in favour of ultra-dissipative and low tide bar/
rip states. In the latter, the beach keeps the bar system but enlarges
the intertidal flat, with the result that the system behaves as an inter-
mediate beach at mid tide, reflective at high tide and dissipative at
low tide. By contrast, in summer, the increase of the occurrence of
ultra-dissipative state is very significant given that the beach behaves
according this state during almost half of the summer.

In summary, Perranporth beach is found to be at the transition be-
tween the low tide bar/rip and dissipative beach states in the scenario
without the farm. Despite the spatial variations between the different
profiles, the greatest differences are observed in the seasonal study. The
absence of the bar distinguished the behaviour of the beach during sum-
mer from winter. However, the presence of the wave farm affects the
modal state of the beach drastically, decreasing the occurrence of wave-
dominated states (barred and non-barred dissipative states) in the favour
of tide-dominated (low tide bar and rip in winter and ultra-dissipative in
summer). The reduction of the breaking wave height brought about by
the wave farm (~18%, comparing the baseline scenario with the nearest
farm) results in a significant modification of the morphological response
of the beach. The reduction of the wave-dominated states would seem to
lead to an increase in the onshore sediment transport and the removal of
the offshore bar, the materials of which would cause accretion on the
beach — in line with the findings by Abanades et al. (2014a,b).

4. Conclusions

In view of the accelerated pace of development of wave energy, a
thorough understanding of the effects of nearshore wave farms on

beach morphodynamics will soon be fundamental to coastal manage-
ment. This paper examines these effects with reference to the modal
state of the beach using an empirical classification based onwave condi-
tions, sediment size and tidal regime. The spatial and temporal changes
to themodal state of the beach induced by thewave farm are investigat-
ed. To resolve accurately the wake of the individualWECs in the farm, a
state-of-the-art wave propagation model is implemented on a high-
resolution grid. To assess the influence of the farm-to-coast distance, a
sensitivity analysis is carried out with a wave farm located at different
distances from the coast.

We find that the farm-to-coast distance plays a major role, and that
the wave farm closest to the shoreline (2 km) substantially alters the
nearshore wave conditions. For instance, the reduction of wave power
along the 20 m contour exceeds 25% over a 3 km stretch of coastline.
In contrast, the reduction in the case of the furthest wave farm is
under 10%, extending over 8 km of coastline. This milder nearshore
wave climate, brought about by the wave farm, is shown to modify
the morphological behaviour of the beach. In the baseline scenario,
Perranporth Beach is at the transition between the low tide bar/rip
and dissipative states. The modal state varies along the beach, although
large spatial differences are not observed concurrently. However, the
seasonal variability is far more pronounced. In winter the beach is
wave-dominated, the energetic wave conditions increasing offshore
sediment transport and forming a submarine bar. In summer, under
milder wave conditions, the beach is tide-dominated.

We also find that the wave farm modify the morphological behav-
iour of the beach significantly, especially in its north andmiddle section,
where the wave height reduction is more apparent. The predominant
character of the beach is transformed from wave- to tide-dominated.
For instance, in the north section the predominant state is a low tide
bar/rip in the baseline scenario, which turns into an ultra-dissipative
system in the case of the nearest (2 km) wave farm. In this case the
wave-dominated states are reduced by over 10%, or over 36 days per

Table 5
Percentages of the beachmodal state for the north section of the beach (Profile P3) in “summer” (1st November 2007 - 31st April 2008) and “winter” (1st May 2008 - 31st October 2008).

Profile P3: North section

Reflective Barred Barred dissipative

Scenario Summer Winter Scenario Summer Winter Scenario Summer Winter

Baseline 0.00% 0.00% Baseline 0.00% 0.27% Baseline 4.66% 28.53%
6 km 0.00% 0.00% 6 km 0.00% 0.14% 6 km 4.11% 26.89%
4 km 0.00% 0.00% 4 km 0.00% 0.14% 4 km 3.42% 25.38%
2 km 0.00% 0.00% 2 km 0.00% 0.14% 2 km 0.68% 11.66%

Low tide Terrace + rip Low tide bar/rip Non-barred dissipative

Scenario Summer Winter Scenario Summer Winter Scenario Summer Winter

Baseline 0.00% 0.00% Baseline 29.86% 26.34% Baseline 29.59% 27.85%
6 km 0.00% 0.00% 6 km 29.59% 25.51% 6 km 29.18% 28.67%
4 km 0.00% 0.00% 4 km 30.00% 26.48% 4 km 28.63% 28.81%
2 km 0.00% 0.00% 2 km 27.67% 34.57% 2 km 18.77% 26.47%

Low tide terrace Ultra-dissipative

Scenario Summer Winter Scenario Summer Winter

Baseline 0.27% 1.51% Baseline 33.15% 12.21%
6 km 0.27% 1.65% 6 km 34.25% 13.72%
4 km 0.41% 1.65% 4 km 34.79% 13.99%
2 km 4.66% 2.33% 2 km 44.66% 19.89%

Transition to tide-dominated tidal flat

Scenario Summer Winter

Baseline 3.29% 2.47%
6 km 3.43% 2.60%
4 km 3.57% 2.74%
2 km 4.94% 3.56%
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year. This modification also occurs in the cases with farm-to-coast dis-
tances of 4 km and 6 km, albeit to a lesser extent: the barred dissipative
states become less frequent (by up to 10 days per year) and accordingly,
the tide-dominated states, e.g., ultra-dissipative or transition to tide-
dominated tidal flat, occur more often. The reduction in the occurrence
of the barred states corresponds to an increase of the onshore sediment
transport and the removal of the offshore bar, which would in turn lead
to accretion of the beach.

In sum, this work showed that a wave farm can alter the behaviour
of a beach in its lee considerably. This in itself need not be regarded as
a negative impact; on the contrary, the wave farm can lead to beach
accretion and thus serve to counter erosional trends. Moreover, the
effects of the wave farm on the beach can be controlled by locating
the farm closer to, or further from, the shoreline.
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