Trace elements in fragments of fishing net and other filamentous plastic litter from two beaches in SW England

Turner, Andrew

http://hdl.handle.net/10026.1/8745

10.1016/j.envpol.2016.11.034
Environmental Pollution
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Trace elements in fragments of fishing net and other filamentous plastic litter from two beaches in SW England

Andrew Turner*

School of Geography, Earth and Environmental Sciences
Plymouth University
Drake Circus
Plymouth PL4 8AA
UK

*Corresponding author. Tel: +44 1752 584570; Fax: +44 1752 584710; e-mail: aturner@plymouth.ac.uk

Accepted: 11 November 2016
http://dx.doi.org/10.1016/j.envpol.2016.11.034
Embargo period 11 November 2018
Abstract

Filamentous plastic litter collected from two beaches in south west England has been characterized by FTIR and XRF. The majority of samples were constructed of polyethylene and consisted of twisted or braided strands of a variety of colours that appeared to be derived from commercial fishing nets. A number of different elements were detected among the samples but, from an environmental perspective, the regular occurrence of Cr and Pb and the occasional or isolated occurrence of Br, Cd and Se were of greatest concern. The highest total concentrations of Br (2420 μg g⁻¹), Cd (1460 μg g⁻¹), Cr (909 μg g⁻¹), Pb (3770 μg g⁻¹) and Se (240 μg g⁻¹) were always encountered among orange samples and are attributed to the presence of lead chromates and cadmium sulphoselenide as colourants and to brominated compounds as flame retardants. Element bioaccessibility was evaluated by ICP-MS following an acidic extraction test that mimics the digestive tract of seabirds, with maximum values after a seven-day incubation period and relative to respective total concentrations of 0.2 to 0.4% for Cd, Cr and Pb and about 7% for Br. In addition to the well-documented impacts on wildlife through entrapment, filamentous plastic waste may act as a significant source of hazardous chemicals into the marine foodchain through ingestion.

Keywords: filamentous plastic litter; fishing gear; FP-XRF; heavy metals; bromine; seabirds
Capsule: Many fragments of beached filamentous plastic litter contain elevated concentrations of hazardous elements and pose a chemical threat to wildlife.

1. Introduction

Marine plastic litter is a global problem that has a variety of environmental, social, aesthetic and economic impacts. Amongst the risks of floating, deposited or beached plastics to marine wildlife, the most serious result from entanglement and ingestion. Entanglement may cause suffocation, impair swimming or mobility, disrupt feeding, and result in maiming-amputation and infection (Votier et al., 2011; Lawson et al., 2015), while ingestion may obstruct or damage the linings of digestive tracts, reduce feeding drive and lower fat deposition (Verlis et al., 2013; Welden and Cowie, 2016).

Filamentous plastic material, including twine, netting, rope, cord, line and fibres, and ranging in length from a few hundred microns to several metres, is particularly significant in these respects, being responsible for the majority of entanglements of many animals (Gilardi et al., 2010; McIntosh et al., 2015) and frequently representing the dominant type of synthetic material retrieved from the digestive tracts of dissected organisms (Devriese et al., 2015; Nadal et al., 2016).

Despite the well-documented physical impacts incurred by synthetic filamentous products and fragments, there is little understanding of the chemical makeup of such material, and in particular the presence and mobility of potentially hazardous additives within the polymeric matrix. Inorganic and organic compounds are added to plastics to improve or modify processing, performance, safety, cost, strength, flexibility, appearance, colour, stability and durability, and, aside from reactive
organics, such as some flame retardants, are not chemically bound to the polymeric matrix (Hansen et al., 2010).

The present study, therefore, seeks to determine the presence, abundance and bioaccessibility of trace metals, metalloids and other elements that are either intrinsically harmful or that are indicative of harmful substances in samples of filamentous plastic litter collected from sections of two beaches in south west England. A technique based on x-ray fluorescence (XRF) configured in a low-density, ‘plastics’ mode is employed as a direct, non-destructive means of determining elemental content, while bioaccessibility is evaluated using a physiologically-based extraction test (PBET) that is based on the digestive environment of plastic-ingesting seabirds.

2. Materials and methods

2.1. Sampling and sample processing

Samples were collected from two high-energy, macrotidal, sandy beaches in Cornwall (Figure 1). Whitsand Bay, on the south (English Channel) coast of the county, is located about 10 km to the west of Plymouth; its expansive, south west-facing beach is backed by steep cliffs that fragment the region at high tide into a series of rocky coves. Constantine Bay is located on the north (Atlantic) coast of the county and about 60 km to the north west of Plymouth; its arcing, north west-facing beach is backed by shallow, grassy dunes.

The two beaches were sampled on single occasions and about an hour after high water during the autumn of 2015. Pieces of rope, netting, cord and fishing line that were
visible to the naked eye were collected by hand from a ~50 m transect of the high
water line, evident from the recent accumulation of macroalgae and debris. Samples
were transported in polyethylene zip-lock bags to the laboratory at Plymouth
University where they were cleared of sand and algae under running tap water and
with the aid of a Nylon brush before being dried at 40 °C in an oven for about 12 h.
Samples were then weighed on a five-figure balance before being stored individually
in labelled polyethylene specimen bags and in the dark pending analysis.

2.2. FTIR analysis
The component polymers of the filamentous plastic samples were determined by
Fourier transform infra-red (FTIR) spectroscopy using a Bruker ALPHA Platinum
attenuated total reflection QuickSnap A220/D-01 spectrometer. Samples were cut to a
suitable size using a stainless steel scalpel or scissors before being firmly clamped
down on to the ATR diamond crystal. Measurements, consisting of 16 scans in the
range 4000 to 400 cm\(^{-1}\) and at a resolution of 4 cm\(^{-1}\), were activated via Bruker OPUS
spectroscopic software, and identification involved a comparison of sample
transmittance spectra with libraries of reference spectra.

2.3. XRF analysis
Samples were analysed for a suite of elements (As, Ba, Bi, Br, Cd, Cl, Cr, Cu, Hg, Ni,
Pb, Se, Sb, Sn and Zn) by energy dispersive field portable-XRF using a battery-
powered Niton XRF analyser (model XL3t 950 He GOLDD+) according to protocols
described in detail elsewhere (Turner and Solman, 2016) and summarised below.
Thus, the instrument was used in the laboratory in a bench-top accessory test stand
and was connected to a laptop computer via USB and a remote trigger. The XRF was
operated in a plastics mode that employs a compensation for mass absorption coefficient based on Compton scatter and corrects for sample thickness down to 0.05 mm. Whole samples, offcuts or sections of monofilamentous material that had been manually intertwined were measured for thickness using digital callipers before being placed on 3.6 μm polyester film and positioned centrally and with the measurement surface face downwards over the XRF detector window. On closing the steel shield of the stand, measurements, with appropriate thickness correction, were activated through the laptop for a total period of 120 seconds (60 seconds each at 50 kV/40 μA and 20 kV/100 μA). Spectra were quantified by fundamental parameters to yield elemental concentrations on a dry weight basis (in μg g⁻¹) and a counting error of 2σ (95% confidence) that were downloaded to the laptop using Niton data transfer (NDT) PC software.

Limits of detection, calculated by fundamental parameters, varied according to the precise density, shape and thickness of sample, but median concentrations ranged from < 10 μg g⁻¹ for As, Br and Pb to > 300 μg g⁻¹ for Ba and Cl. Multiple analyses (n = 5) of two Niton reference plastics that had been impregnated with Br, Cd, Cr, Hg and Pb (PN 180-554, batch SN PE-071-N) and As, Ba, Cd, Cr, Hg, Pb, Sb and Se (PN 180-619, LOT#T-18) revealed measured concentrations that were within 10% of certified values.

2.4. PBET

In order to evaluate element bioaccessibility, nine samples of varying colour, appearance and elemental composition (based on XRF analysis) were subjected to a marine avian physiologically-based extraction test (PBET) (Turner and Lau, 2016).
The extraction was modelled on the digestive characteristics of the proventriculus-gizzard (but not the intestine) of the northern fulmar, *Fulmarus glacialis*, a procellariform known to ingest substantial quantities of plastics, including filamentous waste.

Briefly, digestive fluid was prepared by dissolving 10 g of pepsin (lyophilised powder from porcine gastric mucosa; Sigma-Aldrich) into one litre of 0.1 M NaCl solution and adjusting the pH by addition of 1 M HCl to 2.5. Between 50 and 100 mg of 5 to 10 mm strands of each selected sample, cut with stainless steel scissors, were weighed into individual 60 ml screw-capped polypropylene centrifuge tubes. After the addition of 40 ml of extraction fluid, all tubes, including a control containing no solid material, were capped and incubated in a shaking water bath set at 100 rpm and at 40 °C for a period of about seven days (168 h). At pre-determined time-intervals, 1 ml aliquots of extract were pipetted into individual Sterilin tubes where they were diluted to 5 ml with 2% HNO₃ and stored at 4 °C and in the dark pending analysis.

2.5. Analysis of extracts

Elements detected directly in the rope samples by XRF (with the exception of Cl) were determined in the PBET extracts by collision cell-inductively coupled plasma-mass spectrometry (ICP-MS) using a Thermo X-series II (Thermoelemental, Winsford UK) with a concentric glass nebuliser and conical spray chamber. The ICP was calibrated externally using five mixed standards and five blanks prepared in 2% HNO₃ and operated under conditions described elsewhere (Turner and Holmes, 2015). Limits of detection, based on three standard deviations arising from blank measurements, ranged from about 0.05 μg L⁻¹ for Pb to about 10 μg L⁻¹ for Br and Fe.
3. Results

3.1. Sample characteristics

In total, 153 samples of filamentous plastic litter were collected (100 from Whitsand and 53 from Constantine), a selection of which is illustrated in Figure 2. Sample length ranged from about 2 to 15 cm and sample thickness from about 0.1 to 20 mm. Dry sample mass ranged from about 90 mg to 6 g, and the total mass of material collected was 167 g (126 g from Whitsand and 41 g from Constantine).

The majority of samples \((n = 149)\) consisted of twisted or braided strands that exhibited various degrees of fraying at the ends and disintegration throughout but with little evidence of fouling. Braided samples were usually flat but occasionally rounded and lacked a distinct or hollow core; many of these samples were kinked, hockled and/or knotted. Other samples consisted of monofilament line that was entangled and, in one case, bundled and knotted. FTIR analysis revealed that the majority (> 90%) of twisted and braided samples and two of the monofilament lines were polyethylene; remaining twisted and braided samples were polypropylene or a combination of polyethylene and polypropylene while remaining monofilament lines were polyamide.

Table 1 provides a classification of filamentous plastic litter by colour for both beaches. (Note that where braided samples were constructed of strands of two or more colours, the dominant colour was used for categorisation purposes.) Overall, green and blue were the principal colours on both a number and mass basis, with orange and yellow samples encountered on both beaches but black and white samples restricted to Whitsand and a single red sample encountered at Constantine. Monofilament line was
either green or orange, while all other green samples and the single red sample were
braided; remaining colours were distributed between both braided and twisted types of
filamentous litter.

3.2. Elemental concentrations

Also shown in Table 1 are summary statistics for each trace element on both beaches.
Among the elements analysed, Hg was never detected and As, Ba, Bi, Cd, Ni, Sb, Se
and Sn were detected in six cases or less; regarding the latter group, Ni was detected
only in samples from Constantine while remaining elements were detected only in
samples from Whitsand. Bromine, Cr and Cu were detected in more than half and Pb
and Zn in just under half of all samples. These elements were distributed across all
colour categories that contained multiple samples, but Cu was only detected in one
orange sample and Br exhibited limited occurrence in yellow and orange samples.
Median and maximum concentrations of Cr and Pb were considerably higher in the
orange category than in the remaining colours, and the highest individual
concentrations of Cr, Pb and Br and the only case in which Cd and Se were detected
also occurred among the orange samples.

3.3. PBET results

There were only four cases in which extractable trace elements were detectable
throughout the PBETs; namely, Br in an orange polyethylene braided fragment
containing the highest total Br content, Cd in a bundle of orange, polyethylene strands
knotted together and representing the only sample in which the metal was detectable
by XRF (see below and Figure 3), and Cr and Pb in an orange polyethylene twisted
fragment containing the highest contents of both elements. Extracted concentrations,
shown in Figure 4, exhibit a biphasic distribution consisting of a period of relatively rapid increase over the first few hours followed by a more protracted period of slower release. With no evidence of equilibrium being approached, data were fitted empirically with an equation of the following form (Turner and Lau, 2016):

\[X(t) = kt^{1/b} \]

(1)

where \(t \) and \(X(t) \) represent time and w/v time-dependent extractable elemental concentration, respectively, and \(k \) and \(b \) are constants. Concentrations and constants defining the kinetics of elemental mobilisation and derived from best-fit power equations to the timed data are given in Table 2. Here, \(X_T \) is the total, w/w concentration as returned by the XRF, \(X_{\text{max}} \) is the maximum w/w concentration at the termination of the PBET, and \(X_{\text{max}} \) relative to \(X_T \) represents the avian bioaccessibility after a period of seven days, with percentages ranging from < 0.5 for Cd, Cr and Pb to about 7 for Br.

4. Discussion

Although a few samples exhibited an appearance consistent with packaging or bale twine, it is suspected that the majority of filamentous plastic debris sampled in the present study originated from commercial fishing. Specifically, pieces of line or braided or twisted rope are generated during the damage, repair and abandonment of netting, and protective threads of dolly rope (chafer) are fractured as trawl nets are dragged along the seabed (Murray and Cowan, 2011). With samples being mostly constructed of polyethylene and polypropylene, whose densities (0.92 to 0.96 g cm\(^{-3}\)) are less than that of sea water (1.02 to 1.03 g cm\(^{-3}\)), and devoid of significant fouling,
this material is readily washed up on beaches. By the same reasoning, lack of samples retrieved that were composed of polyester, another common polymer used in fishing nets, can be explained by its higher density (about 1.4 g cm$^{-3}$) and propensity to sink when lost or discarded at sea.

The presence of trace elements in the samples is the result of additives or polymerisation catalyst residues in the plastic matrix. Depending on the application of the plastic, organic and inorganic additives may serve as fillers, pigments for colour, thermal stabilisers, UV-light stabilisers, flame retardants or antimicrobials (Ranta-Korpi et al., 2014). Regarding fishing rope and line, UV resistance is a particular requirement and specific colours may be needed for visibility, contrast and visual stimulus. Of concern from an environmental perspective is the addition of trace elements that are intrinsically hazardous (e.g. Cd, Cr and Pb) or that are a component of hazardous substances (e.g. Br) to achieve these requirements. Hazardous elements were most abundant in or restricted to filamentous material that was orange, a colour that is often employed to minimise horizontal contrast between netting and a grey-green water background (Wardle, 1986).

Where both Cr and Pb were detected in orange and yellow samples (that were all polyethylene), concentrations of the metals were significantly correlated (Figure 5), with all data points lying close to or below the slope defining the mass ratio of Pb to Cr in the pigment, lead chromate (PbCrO$_4$). Lead chromate itself is bright yellow but mixing with lead molybdate and lead sulphate produces a more light- and acid-resistant orange pigment (Maier and Calafut, 1998). While chromates have been used in many polymers and in a variety of applications for colour, brightness, opacity and
fastness, concerns about the toxicities and health impacts of Pb and hexavalent Cr have resulted in these compounds being restricted or phased out by the paint and plastic industries. Under the EU’s REACH Regulation (EC 1907/2006 on the Registration, Evaluation, Authorisation and Restriction of Chemicals), for example, lead chromate has recently been banned following its identification as a substance of very high concern (SVHC) (ECHA, 2009). This classification requires suppliers of products containing more than 1000 µg g$^{-1}$ of the substance to provide guidance on the safe use and disposal of the material. Because lead chromate appears to be, or to have been, commonly employed in fishing nets and line, and at concentrations often well in excess of 1000 µg g$^{-1}$, such guidance would also be applicable to the fishing industry.

Cadmium was detected in one sample that, visually, was distinctly different to all other samples collected. Specifically, it consisted of about 15 bright orange polyethylene threads, of about 7 cm in length and 1 mm in diameter, that had not been intertwined but tied together as a bundle (Figure 3). It is suspected that this sample is a fragment of protective dolly rope that had been torn off on the sea bed or cast overboard during cutting or repair. The presence of Se in this sample suggests that the pigment employed for colour is cadmium sulphoselenide, a brilliant orange solid solution of CdS and CdSe. Although no hazards have been classified by the European Chemicals Agency for the pigment itself, compounds of both Cd and Se are highly toxic. According to the REACH Regulation, Cd is only permitted for use in plastics at concentrations below 100 µg g$^{-1}$ with the exception of articles constructed for safety reasons and where environmental or operating conditions are extreme or colour fastness and lifespan are critical (ECHA, 2012).
There are very few Br-containing colour pigments used in plastics, the principal one being based on halogenated copper phthalocyanine. Here, the ratio of Cl to Br is varied to effect different shades of green (Lewis, 2000), with the maximum Br content of the pigment being about 60% by weight and typical Br residue concentrations in plastics ranging from 60 to 3000 μg g\(^{-1}\) (Ranta-Korpi et al., 2014). Consistent with these characteristics, Br was most frequently encountered in green ropes at concentrations up to about 80 μg g\(^{-1}\), and in all but two of these samples Cu was detectable and at concentrations up to about 700 μg g\(^{-1}\). A more important use of Br in polymers, however, is as a component of various aromatic and aliphatic brominated flame retardants, such as polybrominated diphenyl ethers, polybrominated biphenyl, tetrabromobisphenol A and hexabromocyclododecane. Flame retardants may be additive or reactive and occur in plastics at concentrations of up to a few per cent by weight (Leslie et al., 2016). Many of the more toxic retardants have been classified as SVHC under the REACH classification and as such have been restricted, phased out or banned. Neither FP-XRF nor FTIR are able to directly identify or discriminate brominated species in plastics unless molecular concentrations exceed a few percent. However, the three rope samples (one orange and two white) containing Br in excess of 500 μg g\(^{-1}\) but with no detectable Cu and, in one case, the highest measured concentration of Sb (a component of the flame retardant synergist, antimony trioxide), are suspected to have been impregnated with brominated retardants.

Clearly, the impacts of toxic elements in filamentous plastic litter on wildlife depend on the scope for material to be ingested and the propensity of compounds to migrate from the polymeric matrix. Ingestion of synthetic fibres arising from the deterioration, degradation or abrasion of debris is known to occur in birds (Tanaka et al., 2013),
turtles (De Carvalho-Souza et al., 2016), invertebrates (Mathalon and Hill, 2014), crustaceans (Watts et al., 2015) and fish (Dantas et al., 2012), and there is evidence that orange material is preferentially ingested over other colours. For example, De Witte et al. (2014) observed a high proportion of orange fibres in the bodies of mussels from quayside mussels, while photographs of plastics retrieved from the stomachs of the short-tailed shearwater presented in Tanaka et al. (2013) illustrate filamentous debris that is orange. Although not empirically tested, it has been suggested that such colours could be popular due to food/prey resemblance (as, for example, fish eggs, larvae and zooplankton) (Kawamura et al., 2010; De Witte et al., 2014). Once ingested, filamentous material tends to remain in the digestive tract for longer periods than other plastic debris, and in particular in the less acidic gastric environments of small invertebrates, crustaceans and fish. This is because of both the requirement of individual strands having to orientate ‘end-on’ to pass through the gut and an increase in the effective size of strands through filament ‘balling’ (Murray and Cowie, 2011).

Regarding elemental mobilisation, lead chromate is sparingly soluble ($K_{sp} = 1.8 \times 10^{-14}$ at 25 °C) but dissolution is facilitated in saline solutions, with Pb appearing to leach more rapidly than Cr (White et al., 2014). Differential leaching under saline conditions may explain why many weathered, orange and yellow filamentous fragments retrieved from beaches have Pb to Cr ratios below the value defining pure lead chromate (Figure 5). With respect to mobilisation under the simulated acidic avian gastric conditions, we estimate seven-day bioaccessibilities of about 0.4% and 0.2% for Cr and Pb, respectively (Table 2).
Although both cadmium selenide and cadmium sulphide are negligibly soluble ($K_{sp} = 6.3 \times 10^{-36}$ and 8.0×10^{-28} at 25 °C, respectively), Cd, but not Se, was detected throughout the time-course of the PBET, with a bioaccessibility relative to total Cd of about 0.3% at the end of the experiment (Table 2). In contrast, the bioaccessibility of Br at the end of the corresponding time-course was about 7%, from which we may infer that brominated flame retardants in this particular polyethylene were physically added to the polymer rather than being chemically bonded to it.

While the physical hazards to marine life arising from filamentous plastic, ranging from microscopic fibres to large fragments of fishing nets, are well-documented (Jacobsen et al., 2010; Denuncio et al., 2011; Benemann et al., 2016; Watts et al., 2014), this study has highlighted the potentially hazardous nature of such waste from a chemical perspective. Of particular concern is the occurrence of substances that have been restricted or banned in orange-yellow fragments derived from fishing activities. That these substances have been employed in (an albeit) decreasing range of plastic products over the past few decades (Hansen et al., 2010) suggests material for netting and rope is sourced from a variety of suppliers that are not necessarily tailored to the fishing industry. Among the most hazardous elements considered, Pb exhibited the highest abundance overall but Br exhibited the greatest avian bioaccessibility. This observation is consistent with the propensity of sea birds to accumulate congeners of brominated flame retardants that are not present in natural prey (pelagic fish) but in plastic fragments that have been ingested (Tanaka et al., 2013). Although the avian bioaccessibilities of Cd, Cr and Pb are relatively low, it must be borne in mind that kinetic profiles indicate continuous release from filamentous plastic and that synthetic material may be trapped in the digestive system.
of some seabirds for periods of months or even years (Laist, 1987; Avery-Gomm et al., 2012).

Acknowledgements

Mr Kev Solman, Mr Andy Arnold, Mr Oliver Leach, Mr Andrew Tonkin, Dr Dave Harwood and Dr Andrew Fisher (UoP) are thanked for technical assistance and advice during the study. This work was funded by a UoP Marine Institute HEIF V grant.

References

ECHA, 2009. Member state committee support document for identification of lead sulfochromate yellow (CI Pigment Yellow 34) as a substance of very high concern because of its CMR properties. European Chemicals Agency, Helsinki.

Nadal, M.A., Alomar, C., Deudero, S., Deudero, S., 2016. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands. Environmental Pollution 214, 517-523.

Welden, N.A.C., Cowie, P.R., 2016. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environmental Pollution 218, 895-900.

Table 1: Summary statistics for the concentrations of trace elements (μg g⁻¹) among the different colours of beached filamentous plastic litter sampled from Whitsand and Constantine.

<table>
<thead>
<tr>
<th>beach</th>
<th>As</th>
<th>Ba</th>
<th>Bi</th>
<th>Br</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Ni</th>
<th>Pb</th>
<th>Sb</th>
<th>Se</th>
<th>Sn</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Whitsand</td>
<td></td>
</tr>
<tr>
<td>black (n=9)</td>
<td>median</td>
<td>19.2</td>
<td>89.9</td>
<td>128</td>
<td>998</td>
<td>83.5</td>
<td>61.4</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>5.5</td>
<td>36.1</td>
<td>11.6</td>
<td>267</td>
<td>11.9</td>
<td>9.0</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>365</td>
<td>314</td>
<td>195</td>
<td>15,400</td>
<td>1010</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue (n=25)</td>
<td>median</td>
<td>11.3</td>
<td>20.1</td>
<td>122</td>
<td>119</td>
<td>1620</td>
<td>90.8</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>10.4</td>
<td>3.8</td>
<td>23.1</td>
<td>35.4</td>
<td>338</td>
<td>7.6</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>12.2</td>
<td>72.1</td>
<td>591</td>
<td>367</td>
<td>7790</td>
<td>834</td>
<td>568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>2</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>25</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green (n=39)</td>
<td>median</td>
<td>4.4</td>
<td>149</td>
<td>6.5</td>
<td>18.9</td>
<td>44.4</td>
<td>67.8</td>
<td>1360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>5.0</td>
<td>23.2</td>
<td>22.0</td>
<td>242</td>
<td>11.6</td>
<td>29.5</td>
<td>37.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>63.7</td>
<td>219</td>
<td>671</td>
<td>8090</td>
<td>376</td>
<td>341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>17</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>orange (n=8)</td>
<td>median</td>
<td>23.2</td>
<td>21.4</td>
<td>1460</td>
<td>420</td>
<td>713</td>
<td>806</td>
<td>75.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>11.2</td>
<td>160</td>
<td>92.5</td>
<td>336</td>
<td>11.6</td>
<td>29.5</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>2420</td>
<td>786</td>
<td>4900</td>
<td>2570</td>
<td>111</td>
<td>1310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>2</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>25</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white (n=17)</td>
<td>median</td>
<td>1340</td>
<td>74.5</td>
<td>73.4</td>
<td>51.7</td>
<td>4080</td>
<td>35.1</td>
<td>795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>5.3</td>
<td>24.9</td>
<td>37.9</td>
<td>789</td>
<td>8.0</td>
<td>276</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>681</td>
<td>431</td>
<td>60.9</td>
<td>18,900</td>
<td>348</td>
<td>1310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow (n=2)</td>
<td>median</td>
<td>157</td>
<td>235</td>
<td>658</td>
<td>653</td>
<td>24.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>31.9</td>
<td>607</td>
<td>607</td>
<td>607</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>282</td>
<td>709</td>
<td>709</td>
<td>709</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all (n=100)</td>
<td>median</td>
<td>1340</td>
<td>74.5</td>
<td>73.4</td>
<td>51.7</td>
<td>4080</td>
<td>35.1</td>
<td>795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>5.3</td>
<td>24.9</td>
<td>37.9</td>
<td>789</td>
<td>8.0</td>
<td>276</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>681</td>
<td>431</td>
<td>60.9</td>
<td>18,900</td>
<td>348</td>
<td>1310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constantine</td>
<td></td>
</tr>
<tr>
<td>blue (n=7)</td>
<td>median</td>
<td>30.2</td>
<td>69.5</td>
<td>85.6</td>
<td>2630</td>
<td>123</td>
<td>34.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>17.4</td>
<td>27.8</td>
<td>30.7</td>
<td>513</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>90.9</td>
<td>109</td>
<td>808</td>
<td>3820</td>
<td>74.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green (n=26)</td>
<td>median</td>
<td>18.4</td>
<td>35.9</td>
<td>58.7</td>
<td>1190</td>
<td>735</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>8.7</td>
<td>25.3</td>
<td>26.8</td>
<td>155</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>82.3</td>
<td>69.8</td>
<td>538</td>
<td>29,200</td>
<td>314</td>
<td>35.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>12</td>
<td>8</td>
<td>24</td>
<td>26</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>orange (n=8)</td>
<td>median</td>
<td>14.8</td>
<td>530</td>
<td>95</td>
<td>938</td>
<td>37.2</td>
<td>1570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>71.8</td>
<td>1465</td>
<td>216</td>
<td>216</td>
<td>22.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>909</td>
<td>1560</td>
<td>3770</td>
<td>47.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red (n=1)</td>
<td>median</td>
<td>22.8</td>
<td>56.3</td>
<td>3690</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow (n=21)</td>
<td>median</td>
<td>21.1</td>
<td>318</td>
<td>67.7</td>
<td>925</td>
<td>203</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>15.2</td>
<td>25.7</td>
<td>43.5</td>
<td>278</td>
<td>72.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>27.1</td>
<td>391</td>
<td>362</td>
<td>2110</td>
<td>838</td>
<td>66.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all (n=53)</td>
<td>median</td>
<td>16.9</td>
<td>56.3</td>
<td>71.2</td>
<td>1160</td>
<td>386</td>
<td>182</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>8.7</td>
<td>25.3</td>
<td>26.8</td>
<td>155</td>
<td>37.2</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>90.9</td>
<td>909</td>
<td>808</td>
<td>29,200</td>
<td>735</td>
<td>3770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1</td>
<td>19</td>
<td>23</td>
<td>38</td>
<td>53</td>
<td>2</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Constants and concentrations defining the mobilisation of Br, Cd, Cr and Pb from three samples of orange, filamentous polyethylene (W = Whitsand; C = Constantine) whose kinetic profiles are illustrated in Figure 4. Note that an explanation of terms is given in the text.

<table>
<thead>
<tr>
<th>sample</th>
<th>X</th>
<th>$[X_T]$, $\mu g , g^{-1}$</th>
<th>$[X_{max}]$, $\mu g , g^{-1}$</th>
<th>$[X_{max}]/[X_T]$, %</th>
<th>k, $\mu g , L^{-1} , h^{-1}$</th>
<th>b</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>W100</td>
<td>Br</td>
<td>2420</td>
<td>168</td>
<td>6.94</td>
<td>18.2</td>
<td>2.04</td>
<td>0.804</td>
</tr>
<tr>
<td>W86</td>
<td>Cd</td>
<td>1460</td>
<td>3.94</td>
<td>0.27</td>
<td>0.899</td>
<td>3.69</td>
<td>0.948</td>
</tr>
<tr>
<td>C51</td>
<td>Cr</td>
<td>909</td>
<td>3.28</td>
<td>0.36</td>
<td>9.17</td>
<td>14.6</td>
<td>0.276</td>
</tr>
<tr>
<td>C51</td>
<td>Pb</td>
<td>3770</td>
<td>8.40</td>
<td>0.22</td>
<td>13.7</td>
<td>6.17</td>
<td>0.813</td>
</tr>
</tbody>
</table>
Figure 1: Sampling locations for the filamentous plastic litter analysed in the present study.
Figure 2: A selection of filamentous plastic samples collected in the present study.

Figure 3: Orange polyethylene strands of approximately 7 cm in length that had been knotted together and in which Cd and Se were detected (sample W86).
Figure 4: Kinetic profiles for the mobilisation of Br, Cd, Cr and Pb from three samples of orange, filamentous polyethylene (W = Whitsand; C = Constantine) by the avian PBET. Annotated are best-fits to the data according to equation 1. Constants and concentrations (in μg g$^{-1}$) defining the samples and profiles are given in Table 2.
Figure 5: Concentration of Pb versus concentration of Cr in the orange (filled) and yellow (open) samples from Whitsand (triangles) and Constantine (squares). The solid line represents the ratio of Pb to Cr in lead chromate (3.98).