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Chapter 8: Machine Motivations and the Drive Object 

8.1 Introduction 

Interactive composing implies the exchange of musical information between man 

and machine. A musical discourse develops form the approval of material contributed 

by both parties. Improvisation becomes an abstract conversation that features variable 

levels of agreement between the human player (HP) and the machine player (MP). As 

identified in the previous chapter, this may be viewed as a process of attraction and 

repulsion. The confrontation is a result of the coupling that exists between two 

musical identities leading to complex temporal forms of conflict and agreement. 

Provided that Oscar aspires autonomous behaviour one cannot accept its identity 

to be designed completely by an external human designer. In fact, explicit design is 

strongly discouraged throughout the whole thesis. The musical initiative of the MP 

should be unpredictable yet coherent: we are interested in the on-line development of 

behavioural profiles that document musically interesting interactions between MP and 

HP. In other words, one expects order to emerge from initial disorder. Order implies 

the detection of musical patterns that provide an apparent indication of either relative 

agreement or conflict. Disorder refers to the absence of such a clear opinion. A 

dynamic mechanism is needed that can make up criteria to interpret external agitation 

in terms of positive (agreement) or negative (conflict) impact. It must be robust and 

create an opinion by itself according to demands generated by its own internal 

dynamics. The drive object aims to provide such a structure. 

A drive is a computational object that specifies a simple psychological orientation 

for a machine player. It can be considered an absfract suggestive speculation issued 

by that object. It has two options: integration or expression. Integration means that the 



326 

MP aims to produce music that integrates well with the last sequence played by the 
human player. In contrast, expression implies that the drive prefers to move away 
from the musical style suggested by the HP. The options are not mutually exclusive. 
They are viewed as two competing alternatives represented by two fluctuating 
quantities on a scale of 0 to 100. The drive object helps towards the materialisation of 
a first principle: the appreciation and accommodation of change (chapter 1, section 
1.3.8). 

Important information becomes available when either the MP or HP just finished 

playing their current melody. (For a discussion of the prediction algorithm used to 

make out i f the HP is considered just finished playing, please refer to chapter 9). A 

first order quantity in Oscar is the current melodic distance between the last sequences 

produced by man and machine. More pertinent, the intention is to find out i f that 

distance increases, decreases or remains the same over time. For instance, when the 

MP just finished, its effect on the situation can be computed. I f the new distance is 

higher than the previous distance, one knows that the MP has contributed to the 

increase of the musical contrast between MP and HP. I f the new distance is lower, 

then we know that both parties are musically getting closer together. Consecutive 

differences (delta-similarities) are tracked in time. I f many such consecutive delta-

similarities have the same sign, it is inferred that the MP and HP are either engaged in 

an escalating process of incremental contrast (negative sign) or apparent mutual 

understanding (positive sign). 

Given a specific perception of behavioural changes in the HP, the MP must learn 

which behavioural motivation (integration or expression) should dominate. From this 

knowledge, an appropriate musical processing fiinction can be selected to fu l f i l that 

specific orientation. 
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As explained in chapter 5, Oscar uses the notion of a relationship to specify a 
qualitative link between observed external changes and an internal quantity. This 
quantity represents the strength of an internal motivation. Internal motivations and 
external pressures are thus operationally connected as a complex dynamical system. 

Recall that four types of relationships are employed; each specifies a different 

coupling between changes in input level Qi and changes in output level Qo. Both 

increments and decrements of input and output levels are considered yielding four 

relationships: (1) + +, (2) + -, (3) - +, (4) - -. Values evolve by way of multiplicative 

operators. The activation-multiplier used here are between 1.0 and 2.0 while the 

inhibition-multiplier is between 0.5 and 1.0. 

8.2 Implementation of the Drive Object 

A drive has three sensors, it is sensitive for three kinds of changes: (1) the first 

derivative of the similarity between the most recent melody produced by man and 

machine and (2) the first derivative of the quality and (3) quantity of the contents of 

the most recent man produced melody. A l l input changes are computed and 

normahzed in a range -100 to +100. 

A single drive is characterized by the following instance variables: 

d r i v e - I D 

n r - r u n s 

c u r r e n t - o r i e n t a t i o n 

r e l a t i o n s h i p s Exp 

r e l a t i o n s h i p s I n t 

f i r i n g - s l o t 

e x p r e s s i o n - l e v e l 

i n t e g r a t i o n - l e v e l 

e f f i c i e n c y - v a l u e 

e f f i c i e n c y - s u m 

4 

8 

EXPRESSION 

1 0 1 0 1 1 0 1 0 0 1 0 

1 0 1 1 1 0 0 0 1 0 0 0 

0 

80.86634 

31.14185 

2.24824 

8.50325 
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u n d e r s t a n d i n g - l e v e l : 45.21349 

single drive 

integration *• 
expression > 

' ^Quantity ' AQuality | ASimilarity AQuantity ' AQuality | ASimilarity ' 

1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 
A A i|k ifl 

relation type 3 (- -): on 

relation type 2 (- +): on 

relation type 1 (+-):off 

relation type 0 (+ +): on 

Figure 8.1: Topology of a single drive object showing three groups of four bits 

per motivation. 

Relationships are specified as two 12-bit vectors. Since there are three types of 

input sensors each feeding four types of relationships, one must accommodate twelve 

potential effects of external change - three blocks of four bits. For instance, bits 0-3 

account for delta-similarities, bits 4-7 account for delta-quality and bits 8-11 account 

for delta-quantity. Both primitive motivations must be included: integration and 

expression resulting in a total of 24 bits. I f a bit equals to 1, it means that its 

relationship is active, i f the bit equals to zero, its relationship is not accounted for. 

Note that many relationships can be active (bit on) in a single block. The output wil l 

reflect the contributions of all active relationships. When simultaneous relationships 

confribute opposite pressure, they may neufralise their mutual effect. This 

phenomenon contributes to non-linearity in the network. 

Intuitively, it is understood that the density of "on" bits in the vector wil l 

condition the global responsiveness of the drive. Too many "on" bits may potentially 

produce over-stimulation leading to erratic output. In contrast, too few "on" bits lead 
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to under-stimulation, in this case, significant changes in input may get lost. We turn to 
a learning algorithm that learns to the appropriate couplings between input changes 
and internal motivations. 

The behavioural motivation of a drive - its current orientation - depends on the 

strength of the two competing levels (0-100) for integration and expression. A 

minimum contrast should exist between both values; a threshold of 10 is infroduced. 

I f the difference between the levels for integration and expression is higher than 10, 

then the higher value decides on the orientation else the current orientation is decided 

at random. Therefore, the current orientation in the example above is expression. This 

has a double impact on further computations. First, the expression-vector becomes the 

source of temporary relationships and second, the output value affected by these 

relationships is the expression-level. 

As an example, consider the first block of 4 bits of the Integration relationships: (1 

0 1 1). Since the first bit is "on", relationship type 1 (+ +) takes effect. Thus when the 

input level increases the output level follows. Relationships type 2 (+ -) is not 

considered since the second bit i f zero. The third bit is "on" meaning that the 

contribution of a relationship type 3 (- +) is added to the previous. In other words, 

when delta-similarity is either positive or negative, the output level wi l l increase. In 

addition, the relationship type 4 (- -) says that i f input level decreases the output level 

wi l l follow in the same direction. 

It is important to know how efficient a given drive actually is. When the external 

changes are processed by the relationships, they receive a qualitative interpretation 

because of non-linear couplings take place between the dynamics of external higher 

level quantifies (similarity, quality and quantity) and competing internal behavioural 

motivations (integration and expression). Given the current orientation, we analyse i f 
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MP and HP are coming together or drifting apart - according to their melodic 
similarity. For example: 

a c t i v a t i o n - w e i g h t = 1.15 

i n h i b i t i o n - w e i g h t = 0.85 

p e n a l i s e - w e i g h t = 0.98 

when 

c u r r e n t - o r i e n t a t i o n e q u a l s i n t e g r a t i o n 

and 

( c u r r e n t - d i s t a n c e - p r e v i o u s - d i s t a n c e ) > 0 

then 

e f f i c i e n c y - v a l u e = 

(min 100 (max 2 ( e f f i c i e n c y - v a l u e * i n h i b i t i o n - w e i g h t ) ) ) 

I f the current orientation equals integration and the distance decreases, the 

efficiency-value is updated by the activation-weight (1.0 < weight < 2.0) and clipped 

to a maximum value of 100. The drive becomes more efficient because the sensed 

data confirms the present orientation. 

when 

c u r r e n t - o r i e n t a t i o n e q u a l s i n t e g r a t i o n 

and 

( c u r r e n t - d i s t a n c e - p r e v i o u s - d i s t a n c e ) < 0 

then 

e f f i c i e n c y - v a l u e = 

(min 100 (max 2 ( e f f i c i e n c y - v a l u e * a c t i v a t i o n - w e i g h t ) ) ) 

I f the current orientation equals integration and the distance increases, the 

efficiency-value is updated by the inhibition-weight (0.0 < weight < 1.0). In addition, 

when current and previous distances do not change, the drive is slightly penalized -

the efficiency-value is multiplied by factor 0.98. 
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Every time a drive is run, the efficiency-sum is incremented by the current 
efficiency-value. At any point in time, the actual efficiency equals the efficiency-sum 
divided by the nr-runs. 

8.3 Detection of Changes in Human-Machine Similarity 

Two methods to compute melodic similarity were implemented. The first method 

is based on a series of transition tables that trace interval changes (not absolute 

values) for the dimensions of pitch, velocity and duration. Melodic similarity is 

inferred by summing the global differences for every cell in every transition table. 

The results are averaged and normalised to 0-100. Note that the Markov type 

transition tables are adaptive. When the contents of any array location hits a value of 

100, all cells of the array are downscaled proportionally so that the maximum value in 

the array becomes 50 rather than 100. This creates a different yet still accurate content 

of the array while there is room to receive new input. 

The matrix-comparator-element class holds three matrixes of different size; the 

pitch-matrix is 25 by 25, velocity-matrix is 16 by 16 and the duration matrix is 20 by 

20 elements. It also holds a pointer to the melody that is currently subject to analysis. 

The matrix-comparator class keeps two instances of the matrix-comparator-element 

and keeps track of the previous and current total similarity so that amplitude and 

direction of change may be inferred. Pitch intervals are clipped to a range of -12 to 

+12 semitones, velocities (ranging 0 to 127) are normalised to 16 values and durations 

are clipped and scaled as to reside in a range of 20 units. 

The difference-matrixes visualised below shows the difference between the 

contents of both matrix-comparator-elements - for the dimensions of pitch-intervals, 

velocity-intervals and duration-intervals. 
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Three options exist: 

A) One of the matrix locations holds a positive value, but not both. When the first 

matrix value is positive, a -1 is shown. 

B) Same situation as above, however, the second matrix holds a positive value and 

the first matrix holds zero, then a -2 is shown. The values -1 and -2 are only used 

to highlight critical locations in the matrix; they add no weight to the fmal 

compute-similarity method. 

C) In case the respective matrix locations both provide positive values, the effective 

ratio is shown, normalised to a values between 0 and 100. This value is taken into 

account to compute global similarity. 

The example below reflects the difference of the contents of working memory and the 

first fiinction in the compound-fiinction-pool: 

P i t c h - i n t e r v a l s t r a n s i t i o n m a t r i x 

. . . . -1 . . . -2 . . 

. . . -1 

. -1 . -1 -1 . -2 . -1 . . 

. -2 . 50 

. . . . -2 
-2 . -1 . -1 . 

-1 -1 -1 . . -1 

V e l o c i t y - i n t e r v a l s t r a n s i t i o n m a t r i x 

-1 . . . . -1 
. . -1 . . . 
. . -1 . . . 

-1 
. -1 . . . -1 34180 

-1 . . . . -1 -1 50 -2 
50 . -1 -1 . . . . 

-1 
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-1 . . . -1 

-2 

D u r a t i o n - i n t e r v a l s t r a n s i t i o n m a t r i x 

6 25 . . . . -2 
1 0 0 - 1 - 1 
-1 -2 

-2 

-2 

The total similarity for a given parameter is computed according to the following 

algorithm: 

(defmethod c o m p u t e - s i m i l a r i t y ( ( s e l f m a t r i x - c o m p a r a t o r ) p a r a m e t e r ) 

( l e t ( ( s ( a c t i v e - l o c a t i o n s - s u m s e l f p a r a m e t e r ) ) ;; sum o f abs v a l u e s 

(na ( n r - a c t i v e - l o c a t i o n s s e l f p a r a m e t e r ) ) ) 

( i f ( p l u s p s ) 

(round (/ ( l o o p w i t h a l = ( f u n c a l l parameter ( c a r ( c o m p a r a t o r s s e l f ) ) ) 

w i t h a2 = ( f u n c a l l parameter ( s e c o n d ( c o m p a r a t o r s s e l f ) ) ) 

w i t h n = (- ( c a r ( a r r a y - d i m e n s i o n s a l ) ) 1) 

i n i t i a l l y (format t "-% s i m i l a r i t y f o r para m e t e r : - a . Sum a c t i v e - l o c a t i o n s -

sum: -d N r - a c t i v e - l o c : ~d." 

parameter s na) 

f o r i from 0 t o n sum 

( l o o p w i t h v 

f o r j from 0 t o n do 

( i f ( z e r o p (+ ( a r e f a l i j ) ( a r e f a2 i j ) ) ) 

;; no c o n t r i b u t i o n 

( s e t q V 0) 

( i f ( o r ( z e r o p ( a r e f a l i j ) ) 

( z e r o p ( a r e f a2 i j ) ) ) 

;; o n l y one l o c a t i o n non-zero, n e g a t i v e v a l u e 
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( s e t q V (round (• -1 (* 100 (/ (max ( a r e f a l i j ) 

( a r e f a2 i j ) ) 

s ) ) ) ) ) 

;; both non-zero 

( s e t q V (* 100 (/ (- (max ( a r e f a l i j ) ( a r e f a2 i j ) ) 

(abs (- ( a r e f a l i j ) ( a r e f a2 i j ) ) ) ) 

(max ( a r e f a l i j ) ( a r e f a2 i j ) ) ) ) ) ) ) 

sum V ) ) 

n a ) ) 

1 0 0 ) ) ) 

The algorithm active-locations-sum first computes S, the sum of the absolute 

values of the pair wise differences of all matrix locations for a given parameter - for 

instance, pitch. In other words, the sum S represents the total contrast of the current 

comparator contents. The nr-active-locations simply counts the number of matrix 

locations, again pair wise, where either one of the two matrixes holds a non-zero 

value. Next, the compute-similarity algorithm loops through both matrixes and sums 

the value V. 

In case only one location is non-zero, a negative value is added to reflect the 

problem that both matrix locations are produce conflicting information. The amount 

of negative weight is computed proportional to the amplitude of the absolute value of 

single non-zero values. The result is normalised on a scale from 0 to 100 percent and 

multiphed by - 1 . 

When the respective matrix locations in both matrixes hold non-zero values, we 

are in a position to evaluate exactly how they contribute to global similarity. The 

value V is computed as a ratio: the maximum-value minus the (abs difference) divided 

by the maximum-value. Again the result is normalised. Finally, the similarity is 

obtained by dividing the sum by the number of active locations. 
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Note that this method may return a negative value proportional to the amplitude of 
values in pairs of matrix locations where only one of these locations holds a positive 
number. The average of the contributions of the three parameters represents a global 
degree of relative similarity, the exact value of the similarity levels are not crucial in 
this particular case since we are only interested in changes between successive 
similarities. 

The similarities for the matrixes in the example above are as follows: 

s i m i l a r i t y PITCH: a c t i v e - s u m : 34, N r - a c t i v e - l o c : 25. S i m i l a r i t y = -1.9600 

S i m i l a r i t y VELOC: active-sum: 30, N r - a c t i v e - l o c : 22. S i m i l a r i t y = 6.8333 

S i m i l a r i t y DURAT, act i v e - s u m : 32, N r - a c t i v e - l o c : 10. S i m i l a r i t y = 9.7263 

After input of four new M I D I events to the contents of working-memory (number 

of event remains unchanged because of the FIFO-type memory structure) still with 

the first function in the compound-fLmction-pool offers the following results: 

S i m i l a r i t y PITCH: a c t i v e - s u m : 9, N r - a c t i v e - l o c : 11. S i m i l a r i t y = -1.7500 

s i m i l a r i t y VELOC: active-sum: 15, N r - a c t i v e - l o c : 14. S i m i l a r i t y = 6.5600 

s i m i l a r i t y DURAT, act i v e - s u m : 11, N r - a c t i v e - l o c : 12. S i m i l a r i t y = 7.1349 

This new input seemingly contained overlapping pitch-intervals with melodic 

material in the compound-function; a less negative similarity signals an increase in 

pitch similarity, similarities for the parameters velocity and duration become lower. 

The normalised (0-100) total change in similarity is obtained fi-om: 

(/ (+ (* -1 (* 100 (/ (- 1.9600 1.7500) 1.9600))) 

(* 100 (/ (- 6.8333 6.5600) 6.8333)) 

(* 100 (/ ( - 9.7263 7.1349) 9.7263))) 

3) 
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The resulting increase in global similarity is 6.6428 percent. 

An alternative method is to compare the contents of the histograms for the same 

four dimensions of the two melodies under observation. The more the histograms 

overlap, the lower the melodic distance between the two source melodies. This 

method is slightly less computationally expensive as it does not need adaptation. 

8.4 Learning in the Drive Object 

Our learning method is very similar to Reinforcement Learning (RL) (Sutton and 

Barto 1998). In RL, the learning agent receives feedback about how appropriate its 

actions are in order to achieve a given goal. RL provides only information that the 

previous action was not appropriate but does not offer instructions of what should be 

done in order to learn. Therefore, RL is a form of unsupervised learning. 

RL is most frequently encountered in nature. An organism aims to maximize its 

rewards by undertaking the right action in response to the perception of particular 

states of the world. The organism (agent) learns a policy to map states to actions. 

However, the agent does not have access to a complete model of the environment. In 

addition, the agent has no initial knowledge of the kind of rewards to expect from 

interactions with the environment. RL is typically applied in real-world problems 

characterised by a huge state space. A l l of this seems to fi t the essence of interactive 

composing: man and machine must learn to behave successfiiUy without any a priori 

information about their mutual personalities. 

Oscar's two-stage learning algorithm is depicted in figure 8.2. Stage one updates 

the levels of integration and expression from the evaluation of the current 

relationships. Stage two updates the efficiency according to the current orientation. 
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Let us tackle stage one in detail. For every delta value, the respective slot of the 
relationships-vector is evaluated. 

Stage one encloses two nested loops; the arguments are the current gradients 

{delta-values) in human-machine melodic similarity and the changes in quality and 

quantity of the contents of working memory. A l l 24 bits of the relationships-vector 

are addressed (refer to figure 8.1). The levels are scaled up (activation) or down 

(inhibition) according to the type of relationship and the delta value. In the end, the 

integration and expression levels wil l reflect the accumulated impact of the 

combination of vector on-bits and the sign of the respective delta-values. Please refer 

to chapter 5, section 5.2 for a detailed account of the notion of relationships. 

Stage two evaluates the resulting (potentially changed) drive-orientation, decided 

on by taking the highest value of the two competing levels as the winning current 

orientation. Take note that we exploit only the delta-similarity at stage two. This delta 

value and its sign provide information as to whether the current relationships were 

helpful to steer the drive towards the optimal orientation. The intended optimal 

orientation (integration or expression) is the one that is consistent with the last change 

in human-machine similarity. For example, when the human-machine melodic 

distance decreases and the orientation is integration, we conclude that the drive is 

indeed resourceful towards the fulfilment of this drive's orientation - therefore, its 

efficiency-level is scaled up using the activation-factor. In similar vein, in case the 

melodic distance increases and the orientation is expression, the efficiency level is 

also scaled up. Efficiency-level is inhibited when the changes in distance are in 

conflict with the orientation; i.e., either a combinarion of integration and increasing 

distance or expression with decreasing distance. 



338 

Remember, a given orientation is considered a machine suggestion to temporarily 
approach musical interaction from a given perspective; i.e., either a wish for man and 
machine drifting apart (expression) or narrowing the human-machine melodic 
distance (integration). The rationale is that a suggestion is first generated at random 
and subsequently adjusted according to the evaluation of the data gathered during 
actual interaction. 

In total, four situations are considered combining two orientation and two delta 

signs - the efficiency levels are activated or inhibited according to the motivation 

explained above. At last, when the orientation is NIL; i.e., when there is less than 

10% contrast between integration and expression levels, the efficiency of the drive is 

slightly downscaled using a typical inhibition-factor2 value of 0.96. 
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Evaluate relationships Adjust efficiency 

loop: 
ASimilarity.AQuality, ^Quantity 

activation-factor = 1.25 
inhibition-factor = 0.87 
inhibition-factor2 = 0.96 

loop: 
i = 0,1.2,3 

foili] = 1 and 
delta <0 

Update integration level 

I 
i (iring-slot = 0 act(int) 

roili] = 1 and 
delta > 0 act(int) 

.—., _ —}j 

roili] = 1 and 
delta > 0 act(int) 

.—., _ —}j 

to\\\] = 1 and 
delta <0 inh(int) to\\\] = 1 and 
delta <0 i ' 

inh(int) 

rclll] = 1 and 
delta > 0 inh(int) 

firing-slot = 1 

firing-slot = 2 

firing-slot = 3 

Update expression level 

rcl[il = 1 and 1 ^ act(exp) 1 firing-slot = 0 delta <0 1 * act(exp) 1 firing-slot = 0 

roill] = 1 and act(exp) j firing-slot = 1 delta > 0 
! • 

act(exp) j firing-slot = 1 

roill] = 1 and 
delta <0 H inh(exp} firing-slot = 2 

" • " " " " " " • " ^ 

firing-slot = 2 

roll!] = 1 and 
delta >0 ! ^ 

I ; 
inh(exp) j firing-slot = 3 

current orientation 

delta = /Similarity 

Integration 
delta < 0 1 

act(efflcleny) 

expression 
delta > 0 h act(efficieny) 

Integration 
delta > 0 h inh(eff!cieny) 

expression 
delta < 0 1 1 

inh(efficieny) 

' < 

ortontatlon = 
NIL h 

inh2 
(efficieny) 

Figure 8.2: Manipulation of levels of integration and expression according to the 

evaluation of the drive's current relationships and adjusting the efficiency of the drive 

according to perceived changes; i.e., the delta value and its sign. 
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8.5 Definition of the Drives Pool 

A drive is expected to develop relationships autonomously: the layout and strength 

of the couplings between changes in musical input by the human performer (HP) and 

internal changes influencing motivational levels ultimately guiding behaviour. The 

scope of the interplay of man and machine becomes virtually infinite because the HP 

behaves unpredictably and the non-linearity in the drive produces equally 

unpredictable orientations. However, we require a gradual acquisition of competence 

through the act of interaction itself The drive learns the effect of external changes by 

adjusting its integration and expression levels. In a later phase, these levels can be 

addressed and exploited. For instance, i f the integration-level dominates over the 

expression-level, the drive wi l l instruct the compound-function-pool to exploit 

musical processing functions that help man and machine to integrate in the future. 

A critical mass of drives is needed to guarantee the potential development of many 

different types of interactions. In the current implementation, the drives-pool contains 

between eight and 30 drives. The initial relationships are random with a density of 50 

percent, and both orientation levels receive a value between 40-60. The rationale is to 

provide initial momentum for change in either positive or negative directions. Now, 

the idea is to select and run all drives using a random selection scheme. However, the 

chance for a drive to be selected is inverse proportional to the number of times it ran 

in the past. Thus, all drives get a chance to perform but not in any specific explicit 

order. For now, we only consider the learning process that takes place between any 

two points in time where the genetic operators are applied - typically several minutes. 

At the beginning of the learning period, any drive can be selected because none has 

developed an efficient behavioural orientation. Exploration takes place: the pool of 

drives is sampled at random and the orientation levels are pushed up or down. When a 
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clear contrast gradually emerges, one may decide to actually exploit the knowledge 
that was acquired online. So first, many options are given a chance to develop while 
later on, the promising ones are applied. A probabilistic ranking scheme is used that 
conditions efficient drives to be selected proportional to their actual efficiency level. 
Once the learning period is finished, the genetic operators are applied. The drive's 
efficiency-level is viewed as equivalent to fitness. The newly bred generation wil l 
thus reflect the knowledge gathered during the learning period. 

The procedure to select a drive depends on three elements: the learning-mode, the 

performance-mode and an input parameter (0 to 100). The selection procedures is 

summarised in figure 8.4. Whatever the learning-mode, the input parameter is 

interpreted as a threshold to compare random numbers between 0 and 100 (the coin 

fiinction). In other words, the input parameter represents a probabilistic value to 

favour exploration or exploitation; meaning, respectively, selecting a random drive 

from the current drives-pool or selecting a specific drive from the current group of 

efficient drives, i f any. 

A subtle selection mechanism is at work when performance mode equals 

evolution-and-learning. A second random number decides whether a selection wil l be 

based on (1) the argument of efficiency or (2) on the argument of the accumulated 

understanding-level. This second, higher-level selection level thus takes learning into 

account. In this case, exploitation means to make good use of very short-term 

information; the understanding-level as it is being conditioned by the current degree 

of human-machine understanding. 
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1: Learning mode: explicit 
Input = PC (process counter) 

2: Learning mode: real-time 
input = Exploratlon/Explollation ratio 

learning and evolution on / 
1 performance \ 

\ mode J i 

Input: 0~100 

evolution only 

exploit explore / \ ^ 
com inpul J: • 

— ^ coin inpul ^ — 

undersUnding 
drives 

sort according 
understanding 

eoCed efficient 
drives 

select 
drive 

select 
drive 

select 
random drive 

exploit explore 

_ y • . 
— I coin input 

ooCect efficient 
drives 

select 
drive 

seied 
random drive 

Figure 8.4: Drives are selected according to the current learning mode and an input 

value between 0 and 100. This value operates as a stochastic threshold to decide 

about the invocation of an exploration or exploitation oriented selection procediu-e. 

When performance-mode equals learning-and-evolution, then: 

i f (random 100) < e x p l o r a t i o n - e x p l o i t a t i o n - r a t i o 

i f (random 100) < e x p l o r a t i o n - e x p l o i t a t i o n - r a t i o 

s e l e c t e f f i c i e n t d r i v e 

e l s e 

s e l e c t u n d e r s t a n d i n g d r i v e 

e l s e 

s e l e c t random d r i v e 

then 

When performance-mode equals evolution-only, then: 

i f (random 100) < e x p l o r a t i o n - e x p l o i t a t i o n - r a t i o 
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s e l e c t e f f i c i e n t d r i v e 

e l s e 

s e l e c t random d r i v e 

then 

then 

8.6 Human-machine Common Understanding 

Patch Drive 

mpare 
levels / ; 

y e s ^ s a m e s i g n ? ^ no 

agreement 

1 1 
conflict 

Figure 8.5: Top-level system-common-understanding is obtained by comparing 

the level and sign of the current output levels of patch and drive objects. 

It is of vital interest to see whether the human and machine performers produce 

similar or contrasting information. To this purpose, the output of the current patch and 

the output of the current drive are compared. Both objects provide an output scalar 

between -100 and +100 for normalised evaluation. One needs a function to compute 

the global orientation of a drive or patch. It accepts contributions of the two 

competing forces, represented as levels for integration and expression. The global-

orientation function also returns a value between -100 and 100. For example, the 

global-orientation for a drive is computed as follows: 

(defmethod g e t - g l o b a l - o r i e n t a t i o n ( ( s e l f d r i v e ) Skey ( p r i n t n i l ) ) 

(when (and ( p l u s p ( e x p r e s s i o n - l e v e l s e l f ) ) 
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( p l u s p ( i n t e g r a t i o n - l e v e l s e l f ) ) ) 

;; i f both a r e z e r o t h e n g l o b a l - o r i e n t a t i o n = undecided 

( l e t ( ( l e v e l - s u m (+ ( e x p r e s s i o n - l e v e l s e l f ) 

( i n t e g r a t i o n - l e v e l s e l f ) ) ) 

( o r i e n t ) ) 

( s e t q o r i e n t 

( i f (> ( i n t e g r a t i o n - l e v e l s e l f ) 

( e x p r e s s i o n - l e v e l s e l f ) ) 

;; r e t u r n n o r m a l i s e d v a l u e ( s t r e n g t h ) 0-100 

(round (* 100 (/ ( i n t e g r a t i o n - l e v e l s e l f ) 

l e v e l - s u m ) ) ) 

;; i n t e g r a t i o n = p o s i t i v e v a l u e 

(round (* -1 (* 100 (/ ( e x p r e s s i o n - l e v e l s e l f ) 

l e v e l - s u m ) ) ) ) ) ) 

; ; e x p r e s s i o n = n e g a t i v e v a l u e 

(when p r i n t 

( f o r m a t t " - % D r i v e - s e t g l o b a l o r i e n t a t i o n : - a . " o r i e n t ) ) 

o r i e n t ) ) ) ;; r e t u r n s i g n e d v a l u e 

This function first checks whether both levels are positive, when either is zero, it 

is assumed there is no ground to compare the two competing levels. In the latter case, 

the function returns nil, denoting the orientation to remain undecided. The level-sum 

variable contains the sum of both levels. In case the integration-level supersedes the 

expression-level, this function returns a positive value; the integration-level as 

normalised (0-100) in relation to the level-sum value. In case the expression-level is 

higher that the integration-level, a negative normalised value is returned (-100-0), 

also respective to the level-sum. A positive global-orientation value thus denotes 

integration while a negative value denotes expression. 

I f one compares the global-orientation of both drive and patch, then a value 

designated as the temporary system-common-understanding is obtained. This value 

reflects the status of the complete system given the relationships articulated by the 

current user input (the patch) and the relationships articulated by the delta values 
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acting in the present drive. At this point we acquire an impression of system's 
behaviour as a whole: a weighted indication of agreement or conflict in the current 
human-machine interplay. The level of common understanding is computed as 
follows: 

(defmethod get-coiranon-understanding ( ( s e l f i m p r o v i s e r - c l a s s ) ) 

;; compute c o n f l i c t o r agreement p l u s s t r e n g t h 

( l e t * ( ( e a r ( i n t e r f a c e s e l f ) ) 

( p a t c h - o r i e n t a t i o n ( g e t - g l o b a l - o r i e n t a t i o n 

( c u r r e n t - p a t c h ( p a t c h e r e a r ) ) ) ) 

( d r i v e - o r i e n t a t i o n ( g e t - g l o b a l - o r i e n t a t i o n 

( c u r r e n t - d r i v e s - s e t ( d r i v e s - p o o l e a r ) ) ) ) 

( u n d e r s t a n d i n g n i l ) 

( d i f f n i l ) ) 

( i f (and p a t c h - o r i e n t a t i o n 

d r i v e - o r i e n t a t i o n ) 

(progn ( s e t q 

u n d e r s t a n d i n g 

( i f ( e q l ( s i g n u m p a t c h - o r i e n t a t i o n ) 

(signum d r i v e - o r i e n t a t i o n ) ) 

'agreement 

' c o n f l i c t ) 

d i f f 

( i f ( e q l (signum p a t c h - o r i e n t a t i o n ) 

(signum d r i v e - o r i e n t a t i o n ) ) 

(round (/ (+ (abs p a t c h - o r i e n t a t i o n ) 

(abs d r i v e - o r i e n t a t i o n ) ) 2)) 

(round (/ (- p a t c h - o r i e n t a t i o n d r i v e - o r i e n t a t i o n ) 2 ) ) ) ) 

(format t "-% I m p r o v i s e r common u n d e r s t a n d i n g : -d p e r c e n t - a . " 

d i f f u n d e r s t a n d i n g ) ) 

(format t "-% I m p r o v i s e r common u n d e r s t a n d i n g i s N I L . " ) ) 

d i f f ) ) ;; r e t u r n s i g n e d v a l u e ( m i n u s = c o n f l i c t , p l u s = agreement) or NIL 

The following four combinations potentially exist: 
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Patch global orientation Drive global orientation System common understanding 

integration integration agreement 

integration expression conflict 

expression integration conflict 

expression expression agreement 

Table 8.1: System common understanding as a function of the patch and drive global 

orientation. 

When patch and drive global-orientations carry the same sign, system-common-

understanding becomes the average of the absolute values of both objects, in case the 

signs are disagreeing, system-common-understanding is proportional to the difference 

of the signed orientations. 

Conflict results when patch and drive present contrasting output. Otherwise, when 

patch and drive generate values with the same sign (both positive or negative), they 

aim to behave according to the same articulation; i.e., either integration or expression. 

Therefore, it is concluded that man and machine are in relative agreement of the 

current situation. 

The common-understanding value is fiirther used to adjust the level of 

appropriateness of the drive that contributed to the current level of common 

imderstanding as detailed next. 

The drive object is the only object in the system that has the ability to learn. 

Drives feature an understanding-level instance variable, its level (0 to 100) is adjusted 

according to the following fiinction: 

(defmethod a d j u s t - u n d e r s t a n d i n g - l e v e l ( ( s e l f d r i v e - s e t ) c u) 

;; a d j u s t l e v e l a c c o r d i n g t o common-understanding 
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( l e t ( ( f a c t o r ( i f ( p l u s p cu) 

(remap cu 0 100 1 3) 

(remap c u 0 -100 1 0 . 3 ) ) ) ) 

( s e t f ( u n d e r s t a n d i n g - l e v e l s e l f ) 

(max 2 (min 100 (* ( u n d e r s t a n d i n g - l e v e l s e l f ) f a c t o r ) ) ) ) ) ) 

The level of system-common-understanding is remapped according to its sign. I f 

the system-common-understanding argument is positive, its value (1 ~ 100) is scaled 

to the range 1 to 3. That value is used as a multiplier to scale the understanding-level. 

Likewise, negative common understanding values (0 ~ -100) proportionally remap to 

a multiplier of 1 to 0.3. 

The understanding-level is a learned indication of how successful the drive 

contributes to an interaction climate characterized by human-machine agreement. 

Finally, one may derive a global conclusion about the nature of the current social 

relationship between the machine and human performer and compute the system-

global-orientation. The latter reflects the momentary human-machine correlation and 

is easily derived by averaging of the global orientation of current patch and current 

drive: 

S y s t e m - g l o b a l - o r i e n t a t i o n = ( p a t c h - o r i e n t a t i o n + d r i v e - o r i e n t a t i o n ) / 2 

Two exemplary printouts of momentary human-machine interaction exposed in the 

improviser global orientation and common understanding: 

p a t c h - o r i e n t a t i o n : 100 INTEGRATION, 

d r i v e - o r i e n t a t i o n : -46 EXPRESSION, 

s y s t e m - g l o b a l - o r i e n t a t i o n : 27 INTEGRATION, 

system-common-understanding : 73 p e r c e n t CONFLICT. 



348 

p a t c h - o r i e n t a t i o n : -37 EXPRESSION, 

d r i v e - o r i e n t a t i o n : -45 EXPRESSION, 

s y s t e m - g l o b a l - o r i e n t a t i o n : -41 EXPRESSION, 

system-common-understanding : 41 p e r c e n t AGREEMENT. 

As an example, consider the data in figure 8.6, it shows a history trace of levels of 

global-orientation for the patch and drive objects. Both levels start with negative 

values; i.e., they both agree on the common objective of expression. At first, the two 

polynomials move in similar motion but end up moving in a phase difference of 180 

degrees towards the end of the experiment. Note this profile is characteristic and 

extends over the duration of the experiment^. When zooming in on the data, 

interesting oscillatory behaviour is observed. Figure 8.7 shows global-orientations 

over a data block of 100 samples, about halfway through experiment e7. Both levels 

develop gradually variable phase relationships which results in zones of human-

machine cooperation towards common ends or otherwise, the appearance of 

egocentric behaviour potentially resulting in conflicting objectives. The global 

emergent effect is a propagation of weighted zones of variable social pressure 

between both interacting parties. 

Chapter 10, section 10.4.8 provides additional examples of correlation analysis 

between the drives global orientation and system common understanding. 

^ The total duration of experiment e7 is 38 minutes 24 seconds. 
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Exp e7 Polynomials of patch (blue) vs. drive (red) levels 
of global-orientation 

800 

time 

Figure 8.6: Experiment e7, patch vs. drive levels of global orientation. 

Exp e7 Polynomials of patch (blue) vs. drive (red) levels 
of global-orientation samples 300 to 399 

time 

Figure 8.7: Experiment e7, patch vs. drive levels of global orientation - detail. 
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8.7 Optimisation of the Drives Pool 

In terms of genetic evolution, the fitness of a drive is equivalent to its efficiency. 

The breeding procedure is similar to the procedures used with listening brains (SAN 

objects) and the patcher objects. Optimisation using genetic operators aims to modify 

the relationships inside the drives to make them better adapted to the variable external 

pressures; i.e., the changes in human-machine similarity and the changes in quality 

and quantity of the material provided by the human performer. 

Breeding is organised as follows; 

1) The drives population is sorted according to fitness 

2) The two fittest drives are considered parents 

3) A new population is created: the relafionship-vectors of both parents are 

considered genotype and new vectors are computed using a single point 

crossover operator 

4) A small amount of mutation is applied to all drives in the new population, 

mutation level is 5% in all experiments 

5) A l l instance variables of every new drive are reset and the integration- and 

expression levels are set to a random centre value between 40 and 60. 

8.8 Conclusion 

The drive object exemplifies a dynamic structure that generates temporal machine-

propositions that instruct the system to either (1) assimilate the current context 

suggested by the human interactor or (2) generate autonomous responses irrespective 

of context. The two competing orientations are identified as respectively integration 

and expression. A drive contains a network of relationships that provide a qualitative 

interpretation of impinging changes; the competing integration and expression levels 
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inside a drive adapt according to the nature of its relationships and the incoming 
signals. The efficiency of a given drive is defined as proportional to how well its 
relationships contribute to the achievement of its current orientation, that is, the 
orientation with the highest level. In addition, a drive has a learning component. Its 
understanding-level is updated proportional to how effective its current relationships 
actually are in serving its implied goal: integration or expression. 

The maintenance of variable machine motivation differs sharply with explicit 

systems design that typically builds on conventional mapping procedures. In confrast, 

a drive is a flexible data structure that adapts its integration and expression levels 

according to its relationships and the accommodation of external changes. 
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Chapter 9: Interaction Tracking, Analysis and 
Coordination of Breeding and Learning 

The present chapter details the complex chain of decision-making coordinated by 

Oscar's background analysis-process. The inference of temporal interaction patterns 

is described, that is, how they manage to identify pivotal moments in human-machine 

interplay. An adaptive algorithm is developed that aims to predict the starting and 

halting behaviour of a human interactor; it is instrumental in guiding the output 

scheduler to play according to the current machine orientation; i.e., integration or 

expression. Next, we address the functions that coordinate learning in the drive 

objects and breeding of fresh populations of all four system components subject to 

evolution: sensor-activator-networks, patches, compound-functions and drives. 

9.1 Introduction 

The analysis-process is one of the six concurrent LISP processes running in the 

background (please refer to chapter 3, section 3.4.2). The sampling rate of the analysis 

process is set between 500 and 2000 milliseconds. The analysis-process schedules the 

analyse-function consisting of a sequence of the six procedures listed next. A detailed 

description follows in the subsequent sections. 

1) Update the info string in the GUI reflecting information on the last event 

performed by the human interactor: pitch, velocity, duration, pitch-interval, 

event counter and the result of the zones-sensor. See chapter 4, section 4.4.2. 
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2) The handle-ear-analysis (ear method) runs the listening network incorporating 
the current sensor-activator-network and the current patch - see this chapter, 
section 9.2. 

3) Update higher-level context; four continuous values: quantity, quality, human-

responsiveness and exploration-exploitation ratio. Quantity and quality levels 

and human-responsiveness are visualised in the GUI. See chapter 4 section 

4.5.8. 

4) Update the interaction-trail; the interaction-trail variable is a 16-element vector 

and holds the recent history documenting temporal synchronisation within the 

interplay of man and machine. This information is addressed to compute a 

number of significant temporal interaction patterns (TIP) - see this chapter, 

section 9.3. 

5) Evaluate interaction; the program guides further decision making according to 

the detection of four specific types of temporal interaction patterns. The 

evaluate-interaction-function is itself a sequence of seven sub-functions as 

depicted in figure 9.1. See section 9.4. 

6) Run predictor; the predictor attempts to predict the fiiture start-time of the 

human improviser. See section 9.5. 
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Anarysls-functlon Evaluate-lnteraction-function 

update info string in GUI 

run tister\ing nehvorks 

run higher level analysis 

-

update interaction-trail 

i 
! evaiuate-interaction-function 

t 

run predictor 

\ 

. - - > 
update contexts 

update intenrals-oounts 

evaluate sensors 

evaluate brain 

update neural 
activalion/Lntvibition 

feedback patch to brain 

update start/stop flags 

Figure 9.1: The analysis-function (on the left) is scheduled by the background 

analysis-process, typically every 1000 milliseconds. The evaluate-interaction-fiinction 

itself evaluates a sequence of sub-functions as depicted on the right hand side. 
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9.2 The Top- level A n a l y s i s Funct ion 

The evaluate-interaction-function (ear method) procedure coordinates the 

listening network that consists of the current SAN feeding its results to the current 

patch and finally, the patch sending part of its output as feedback back into the SAN. 

A closed loop is thus created. It guarantees non-linear behaviour of the SAN/Patch 

tandem. Interesting oscillatory behaviour may develop because of the positive 

feedback and, at the same time, input from the human interactor is accommodated 

equally well (see chapter 5, section 5.1 for details). The evaluate-interaction-function 

function first updates the context as explained next. 

9.2.1 Consideration of Context 

Oscar provides six level sensors that adapt relative to the most recent input 

context. This context resides in the last few events entered by the human interactor 

and is typically much sorter than the duration of working memory - thus more 

accurately reporting the current state of affairs. A simple context sensitive algorithm 

traces the dynamics of pitch, velocity and duration of the last incoming event. The 

edges of the current context window are adjusted; the min and max values change, 

using a multiplicative operator, according whether the event parameter is above, 

below or inside the context window. This entails a functionality that zooms in into the 

most recent event. The value of the multiplier (0.5 < m < 1.5) controls the speed of 

adaptation or, in other words, the context sensitivity. 

The context object is designed as follows: 

c l a s s c o n t e x t 

; i n s t a n c e - v a r i a b l e s 

name ; dimension name e.g. p i t c h 

s t a t u s ; above, below or i n s i d e 

h i s t o r y ; 100 element v e c t o r 
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min-value ; low r e f e r e n c e v a l u e 

max-value ; high r e f e r e n c e v a l u e 

Three context objects are instantiated respectively for handling the sensors low-p and 

high-p for the dimensions of pitch, velocity and duration. Consider, for example, the 

update-pitch-context method in pseudo code: 

u p d a t e - p i t c h - c o n t e x t ( e a r method) 

i f l a s t - p i t c h < min-value 

s t a t u s = 'below 

min-value = l a s t - p i t c h — 2 

e l s e 

i f l a s t - p i t c h > max-value 

s t a t u s = 'above 

max-value = max-value + 2 

e l s e 

s t a t u s = ' i n s i d e 

;; always 

a c t i v a t i o n = 1.0 + (remap l a s t - v e l o c i t y 1 127 0.1 0.5) 

i n h i b i t i o n = 1.0 - (remap l a s t - v e l o c i t y 1 127 0.1 0.5) 

min-value = (min (max-value - 2) 

(min-value * a c t i v a t i o n ) ) 

max-value = (max (min-value + 2) 

(max-value * i n h i b i t i o n ) ) 

The context status equals below, above or inside, according to the whether the last 

input value is higher than the ceiling of the reference window, lower than the 

minimum value or inside the reference window. When above, the context window 

wil l expand in the upper direction in an effort to incorporate the new extreme. When 

below, the min-value wil l decrease in a similar attempt. Whatever the result, the 
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context object wi l l try to minimise the size of its discrimination window and thus 
enhance its specificity. The net effect is continuous zooming behaviour of the context 
object. 

The activation and inhibition scaling factors are proportional to the velocity of the 

last received MIDI input event implying that loud events wi l l exercise more pressure 

and thus contribute to faster adaptation. 

The update-velocity-context and update-duration-context functions are 

functionally equivalent to the function depicted above and accommodate the last 

values of the velocity and duration dimensions of the last M I D I input event, however 

using fixed multipliers 1.1 and 0.9 for respectively activation and inhibition. Typical 

behaviour of the context-tracking algorithm is visualised in chapter 4, figure 4.3. 

9.2.2 Consideration of Intervals 

The intervals-counts-list is a melody object instance variable addressed by a 

number of sensors that examine motion in the data in working memory. It is a 3-

element vector that holds the number of pitch intervals that are negative, positive and 

equal zero. By comparing these three values, one may extract second order 

information such as eventual melodic profile or ascending or descending pitch 

tendencies inside that melody. 

9.2.3 Handling the Listening Network: Sensors, Brain and Patch 

The handle-ear-analysis method finally evaluates all 64 current Boolean sensors, 

updates the sensor graphic user interface so the colour of all LED objects reflects the 

status of their associated sensors and the neural-activation-inhibition display is 

equally updated. Next, the fiinction vector-input-from-san wi l l feedback part of the 
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output of the current patch back to the input of the current SAN. A detailed functional 
description of the listening network is given in chapter 4. 

9.2.4 Detection of Halting Behaviour of the Human Improviser 

Finally, the human-considered-just-stopped-p flag is updated. This information is 

put to good use in the interaction-trail inference process and the prediction algorithm. 

In pseudo code: 

human-considered-just-stopped-p ( e a r c l a s s method) 

mel = b u f f e r ; working memory, v i s u a l i s e d i n the e a r GUI 

cur-gap = cur r e n t - n o - i n p u t - g a p ; i n m i l l i s e c o n d s 

average-gap = (sum (gapsO m e l ) ) / ( n r - e v e n t s mel) 

(and (cur-gap > (average-gap * 1.5)) 

(cur-gap < (average-gap * 1.5) + 2 0 0 0 ) ) ) 

The above function attempts to collect evidence in order to potentially conclude 

that the human improviser can be considered "just stopped". At any time, the current-

no-input-gap fiinction returns the time delay since the last note-off event was 

received from the human improviser. We receive incremental confirmation while we 

wait for a long enough silence to build up. After having waited for some time, it is 

concluded that the human performer has indeed just played the last event of the 

current input sequence. This exact moment in time needs to be captured with 

sufficient precision. A statistical method was developed by trial and error. The 

function returns true i f the current-gap falls inside a two seconds discrimination 

window. The window edges follow the average-gap scaled by 150 percent. 

Experiments confirm robust performance facing totally unpredictable input behaviour 

of the human performer, in particular, given the idiom of open, non-idiomatic 

improvisation (Bailey 1980). 
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9.3 Updating the Interaction-trail 

The update-interaction-trail function (improviser method) computes the 

interaction status of the improviser; it returns a value of 0, 1, 2 or 3. 

h = human-considered-stopped-p 

m = p l a y e r - f i n i s h e d - p ; u s i n g g l o b a l p l a y e r o b j e c t 

r e s u l t = 

i£ h and m 

r e t u r n 0 ; both j u s t f i n i s h e d 

i f (not h) and (not m) 

r e t u r n 3 ; both j u s t s t a r t e d 

i f (not h) and m 

r e t u r n 1 ; on l y human j u s t f i n i s h e d 

e l s e 

r e t u r n 2 ; only machine j u s t f i n i s h e d 

i f r e s u l t not = p r e v i o u s - i n t e r a c t i o n - s t a t u s 

p r e v i o u s - i n t e r a c t i o n - s t a t u s = r e s u l t 

; update i n t e r a c t i o n - t r a i l h i s t o r y ; i . e . , 

; s h i f t 15 v a l u e s l e f t i n i n t e r a c t i o n - t r a i l v e c t o r 

; s e t l a s t element i n v e c t o r t o r e s u l t 

( i n t e r a c t i o n - t r a i l 15) = r e s u l t ; l a s t element of 16-element v e c t o r 

The human-considered-stopped-p function returns true as soon as the current-no-

input-gap value exceeds 150 percent of the average value of all duration gaps in the 

ear's buffer (working memory). The trail is updated only i f a transition in value 

occurs. Temporal interaction patterns are collected from the observation of the tail of 

the interaction-trail vector as it reflects the most recent history of the human-machine 

interaction pattern. 
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9.4 Evaluat ion of Human-Machine Interaction 

9.4.1 Detection of Temporal Interaction Patterns 

The purpose of the evaluate-interaction function (improviser class method) is first 

to check whether any specific situation occurred - for instance, i f HP and MP just 

finished playing at the very same moment in time (given a small tolerance time 

window) - and, i f positive, take the necessary actions accordingly. The number of 

noteworthy situations is reflected in a set of significant temporal interaction patterns 

{TIP). The analysis-process samples transitions in the activity of both man and 

machine and how their actions happen to synchronise in time. A pattern recognition 

algorithm can discriminate 16 relevant TIP, documented in figure 9.2. A l l TIP are 

organised into four functional families: detection of response behaviours of MP vs. 

HP and HP vs. MP, detection of the end of soloist behaviour and, finally, detection of 

the beginning of a new sequence being played by either HP or MP. The evaluate-

interaction method wil l canalize the information flow into four potential paths 

according to the detection of a pattern belonging to one of the four pattern families. 

For example, any pattern belonging to the list: ((1 0 2 x) (1 2 x) (3 2 x) (1 3 0) (1 3 

1) (0 2 0)) signals a "machine just finished playing a response" message. The "x" 

symbol means "don't care". At this point, one can compute the new similarity 

between the last sequence performed by HP and the sequence that the MP just 

finished playing, handle history tracking and run many additional fiinctions. A 

systematic, detailed description of the four significant situations follows. 
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Figure 9.2: Identification of 16 significant temporal interaction micro-patterns. 

Activity in the human performer (HP) and the machine player (MP) is visualised as 

two parallel tracks, green denotes human-active, blue denotes machine-active, yellow 

denotes neither is active; i.e., silence. 
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9.4.2 Deployment of Temporal Interaction Patterns 

9.4.2.1 Pattern nr. 1 

We infer that the MP just finished playing its current melody when the analyser 

detects a TIP belonging to the following list: ((1 0 2 x) (1 2 x) (3 2 x) (1 3 0) (1 3 1) 

(0 2 0)). The following actions are then taken: 

1) Compute the similarity between working memory and the current compound 

function (CF). The CF holds the result of its current musical processing 

functions in its melody object. 

2) Compute the quantity and quality levels of working memory. 

3) Update the SQQ-trail, argument equals "machine". The SQQ-trail is a 16 by 4 

element array (used as a FIFO structure) keeping track of the sixteen most 

recent value sets. The four dimensions 0 to 3, keep values of respectively, 

similarity, quality, quantity and the symbol HP or MP - indicating whether the 

values were obtained by either Human or Machine activity. The information in 

the SQQ-trail - in particular the difference between the last two entries - is 

consulted throughout the program. The signed difference between the last two 

entries may provide evidence of MP and HP getting closer together or drifting 

further apart. 
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4) Adjust the fitness of the current compound function according to the 
difference between current and previous similarity. In addition, the current 
orientation (integration or expression) of the current drive is considered, it acts 
as a reference to judge the usefialness of the changes in similarity. See chapter 
8 for a detailed description. 

5) Adjust the machine-agreement vector (improviser class instance variable) as a 

function of the difference in HP-MP similarity. This two-element vector keeps 

a two-step history of machine-agreement. The rationale is simple; i f the 

current similarity is higher that the previous similarity, the current machine 

agreement is scaled by a factor of 1.25 otherwise; it is scaled by a factor of 

0.75. The functionally related vector is human-agreement. 

6) Run the current drive (improviser class method). This method holds two 

actions: first compute the new activation levels for the competing suggestions 

(integration and expression) inside the current drive object as a ftmction of the 

changes in quaUty, quantity and similarity and, second, compute the efficiency 

of the current speculation (integration or expression) of the current drive given 

the change in similarity. Please refer to the details in chapter 8. 

7) Handle-main-function (improviser class method). This method handles the 

timing of learning and breeding cycles. For clarity, it was decided to run the 

main function only when the machine just finished playing a response. The 

understanding-level of the current drive is adjusted according to the common-

understanding level (improviser class method), a value between -100 and 
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machine and trigger specific fiirther processing. 
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+100, reflecfing a scale of human-machine understanding from 100 percent 
conflict to 100 percent agreement. With values around zero, no clear opinion 
is available. Details on the handle-main-function function are in section 9.7. 

9.4.2.2 Pattern nr. 2 

It is inferred that the human interactor just finished playing his response to the 

most recent machine generated melody, when any temporal interaction pattern is 

detected belonging to the following set: ((2 0 1 x) (2 1 x) (3 1 x) (2 3 0) (2 3 2) (0 1 

0)). In other words, one concludes that the human is considered "just stopped" - this 

moment in time of transitive value, has to be captured. A variety of real-time 

segmentation algorithms were implemented to chase this instant in time (please refer 

to chapter 4, section 4.5.7). The subsequent actions are taken: 

1) The \ast-seguence-just-stopped flag (ear instance variable) is set. This flag is 

consulted in the prediction algorithm that tries to predict the exact moment 

when the HP wil l start playing in the future. 

2) Update the SQQ-trail, argument equals "human". Functionally equivalent to 

step 3 in pattern nr. 1. 

3) Adjust the fitness of the current compound function according to the 

difference between current and previous similarity. The delta-similarity here is 

the result of human initiative - in contrast to the equivalent action taken in step 

4 of pattern nr 1 where the effect follows from the most recent machine-

generated initiative. 

4) Adjust the human-agreement vector, similar to step 5 in pattern nr. 1. 



366 

9.4.2.3 Pattern nr. 3 

Any pattern in the list ((0 1) (2 1)) indicates that the HP is performing the first 

event of a new sequence. The last-sequence-just-started flag (ear instance variable) is 

set. It is consumed and reset in the prediction algorithm briefly introduced above and 

fully documented in chapter 9. 

9.4.2.4 Pattern nr. 4 

Any pattern in the set '((0 2) (1 2)) reflects that the machine just started playing. 

This pattern is slightly redundant because one has explicit control over the global 

player function - a fiinction written on top of the functionality provided by Common 

Music (Taube 2004) and Midishare. (Orlaley et al. 2004). However, it was kept for 

completeness and possibly future use. 

9.4.3 Analysis of Temporal Interaction Patterns 

Figure 9.4 shows a typical histogram of temporal interaction patterns in a given 

experiment. In short, this experiment uses a test-player; an internal sequence 

generator that activates the system for test purposes in the absence of a human 

performer. The occurrence of the first 14 basic micro-patterns from which the three 

resulting patterns (pattern nr. I to pattem nr. 3) are extracted is examined. 

Two micro-patterns dominate: (1 2 x) meaning "machine just finished" and (2 0 1 

x) meaning "human just stopped". 

When summing the number of occurrences of the first three groups of micro-

patterns we get respectively: 189, 183 and 27. Thus, a grand total of 399 micro-

patterns were captured. The frequency of pattem-1 signalling "machine just finished" 
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and pattem-2 signalling "human just finished" is nearly the same. Pattem-3 meaning 
"human just started" is detected only 27 times. This low value reflects a low ratio of 
the play/rest probability in the test-player. 

Exp 23 Interaction patterns histogram 
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Figure 9.4: Histogram of temporal interaction patterns. 

9.5 Prediction and Interaction Schedu l ing 

The purpose of the predictor algorithm is to perform forward planning. The results 

of the predictor are consumed in a concurrent LISP process responsible for 

coordinating MIDI output (documented in chapter 3, section 3.4.2). The scheduler is 

organised as to guarantee optimal control of machine playing behaviour. For instance, 

i f the machine player (MP) aspires to integrate with the human performer (HP) the 

rationale is to anticipate that HP and MP start playing together at the next occasion. 

Thus, the ftiture start-time of the HP should be predicted so that the next MP response 

can be scheduled exactly at that point in time. 

In case the MP aims for expression, it must wait until the exact moment that HP 

has finished performing; the MP wil l start playing at the predicted-stop-time of HP. 
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Whatever the orientation of the MP, the MP response melody wil l only start after 
waiting for a delay determined by the current value of the predicted-start-time or the 
predicted-stop-time. The adaptation thrives on three instance variables: predicted-
sequence-duration, predicted-start-time and predicted-stop-time all relating to the HP. 

r u n - p r e d i c t o r ( i m p r o v i s e r - c l a s s method) 

now = ( g e t - t i m e ) ; c u r r e n t time 

qt = q u a n t i z e now 1000 ; c u r r e n t time q u a n t i z e d t o 1 second 

qstop = q u a n t i z e p r e d i c t e d - s t o p - t i m e 1000 

q s t a r t = q u a n t i z e p r e d i c t e d - s t a r t - t i m e 1000 

; Human performer j u s t - s t o p p e d ? 

when l a s t - s e q u e n c e - j u s t - s t o p p e d ; consume the f l a g s s e t by o t h e r f u n c t i o n 

; e v a l u a t e the p r e s e n t 

i f ( q t < qstop) 

; D u r a t i o n s h o r t e r than p r e d i c t e d : q t - p r e d i c t e d - s t o p - t i m e 

p r e d i c t e d - s e q u e n c e - d u r a t i o n = 

p r e d i c t e d - s e q u e n c e - d u r a t i o n * 0.80 

e l s e 

i f ( q t > qstop) 

; D u r a t i o n longer than p r e d i c t e d : now - p r e d i c t e d - s t o p - t i m e 

p r e d i c t e d - s e q u e n c e - d u r a t i o n = 

p r e d i c t e d - s e q u e n c e - d u r a t i o n * 1.20 

e l s e 

; C o r r e c t p r e d i c t i o n : now - p r e d i c t e d - s t o p - t i m e 

; p r e d i c t next stop time 

; when t h e human s t a r t s , t h e machine makes a p r e d i c t i o n of 

; how long the human w i l l p l a y 
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p r e d i c t e d - s t o p - t i m e = now + p r e d i c t e d - s e q u e n c e - d u r a t i o n 
; Human performer j u s t - s t a r t e d ? 

when l a s t - s e q u e n c e - j u s t - s t a r t e d ; consume the f l a g s s e t by o t h e r f u n c t i o n 

; e v a l u a t e the p r e s e n t 

i f ( q t < q s t a r t ) 

; Delay s h o r t e r than p r e d i c t e d : qt - p r e d i c t e d - s t a r t - t i m e 

p r e d i c t e d - s e q u e n c e - d u r a t i o n = 

pr e d i c t e d - s e q u e n c e - d e l a y * 0.80 

e l s e 

i f ( q t > q s t a r t ) 

; Delay longer than p r e d i c t e d : now - p r e d i c t e d - s t a r t - t i m e 

p r e d i c t e d - s e q u e n c e - d u r a t i o n = 

pr e d i c t e d - s e q u e n c e - d e l a y * 1.20 

e l s e 

; C o r r e c t p r e d i c t i o n : now - p r e d i c t e d - s t a r t - t i m e 

; p r e d i c t next s t a r t time 

; when the human s t o p s , the machine makes a p r e d i c t i o n of how long 

; the human w i l l be s i l e n t 
p r e d i c t e d - s t a r t - t i m e = now + p r e d i c t e d - s e q u e n c e - d e l a y 

The above pseudo code shows two possible points where adaptation takes place. 

1) The last-sequence-just-stopped fiinction signals that the HP just performed 

the last event of the current last-sequence; i.e., the contents of short-term-

memory are considered completely updated. Oscar checks whether the 

quantised current time is lower, higher or exactly equals the stop-time. Of 

course, quantisation to one second also implies a discrimination window of 
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just one second - which is quite a demanding constraint. According to the 
conclusion, the predicted-sequence-duration is shghtly scaled using a 
multiplicative operator. 

2) In case last-sequence-just-started function returns true, Oscar verifies 

whether the predicted-sequence-delay requires adaptation. I f the HP started 

premature, the predicted-sequence-delay should be decreased, in contrast, 

when the HP does not start a new sequence before the delay expires, that 

delay should be increased accordingly. Whatever the outcome, the predicted-

start-time is incremented by the currently computed delay. 
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Figure 9.9: Motivation equals expression, correct prediction of the duration of the 

human performer's response. 

The results of the prediction algorithm are helpful to coordinate the playing 

activity in the players agency. A LISP background process, the improviser-player-

process, computes the exact moment in time when a machine response fires off (see 

implementation details in chapter 3). In LISP-like pseudo code: 

i f c u r r e n t - o r i e n t a t i o n e q u a l s i n t e g r a t i o n 

w a i t i n g - t i m e = ( c m : i m i d i g e t t i m e ) - ( p r e d i c t e d - s t a r t - t i m e s e l f ) ) ) 

i f (cm::midigettime) > p r e d i c t e d - s t a r t - t i m e 

(format t "-% I n t e g r a t i o n - p l a y , -12a min-sec-msec behind 

p r e d i c t e d START time." w a i t i n g - t i m e ) 

( r u n - p l a y e r - a g e n c y ) 

i f (abs w a i t i n g - t i m e ) > *max-waiting-time*) 

(progn (format t "-% I n t e g r a t i o n - p l a y , a b o r t w a i t i n g " ) 

(run-agency) 

e l s e 

(format t "-% I n t e g r a t i o n - p l a y , c o n t i n u e w a i t i n g : -d" w a i t i n g - t i m e ) 

e l s e 

;; c u r r e n t - o r i e n t a t i o n e q u a l s e x p r e s s i o n 

w a i t i n g - t i m e = (cm::midigettime) - p r e d i c t e d - s t o p - t i m e 

i f (cm::midigettime) > p r e d i c t e d - s t o p - t i m e 

(format t "-% E x p r e s s i o n - p l a y , -12a min-sec-msec behind 

p r e d i c t e d STOP time." (cm::midigettime) - p r e d i c t e d - s t o p - t i m e 

( r u n - p l a y e r - a g e n c y ) 
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i f (abs w a i t i n g - t i m e ) > *max-waiting-time* 

(format t "-% E x p r e s s i o n - p l a y , a b o r t w a i t i n g " ) 

(run-agency) 

e l s e 

(format t "-% E x p r e s s i o n - p l a y , c o n t i n u e w a i t i n g : -d" w a i t i n g - t i m e ) 

When current-orientation equals integration, the player agency waits until the 

expected start-time of the human player, however with a tolerance of *max-waiting-

time*; when the HP remains silent the run-agency function wil l fire anyway. A 

similar fiinctionality is available to keep track of the expected stop time of the HP. 

The *max-waiting-time* global variable is typically 5000 milliseconds. 

9.6 Coordination of learning and evolution 

The handle-main-function function (highlighted in figure 9.3 and detailed in figure 

9.10) plays a central role in timing the learning and breeding activity in the system. 

The following sequence of actions takes effect. First, the understanding-level of the 

current drive is updated according to the current system-common-understanding; i.e., 

the degree of conflict or agreement that typifies the current interaction (chapter 8, 

section 8.6). Two interlocking counters are considered next: the breeding-counter and 

the learning-counter - a schematic representation is given in chapter 10, figure 10.1. 

Learning activity is addressed first. 

9.6.1 Coordinat ion of Learning 

When it is time to learn, the evolution-data collector is put to work, the data block 

summarized in chapter 10, table 10.2 is saved to disk with a header equal to Learn -

when breeding the header equals Breed - the headers provide additional information 

as to at what point in time a given data block was acquired. 
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The exploration-exploitation-ratio is computed next. When learning-mode equals 
explicit, the current value of the performance-counter, as it moves from zero to 100 
during any experiment, wi l l function as exploration-exploitation-ratio. When the 
learning-mode is real-time, the ratio is computed from the momentary relationship 
between the system's accumulated values of exploration-pressure and exploitation-
pressure as follows: 

( s e t q e x p l o i t a t i o n - e x p l o r a t i o n - r a t i o 

(round ( i f (> ( e x p l o i t a t i o n - p r e s s u r e s e l f ) 

( e x p l o r a t i o n - p r e s s u r e s e l f ) ) 

(- 100 (* 100 (/ ( e x p l o r a t i o n - p r e s s u r e s e l f ) 

( e x p l o i t a t i o n - p r e s s u r e s e l f ) ) ) ) 

(* 100 (/ ( e x p l o i t a t i o n - p r e s s u r e s e l f ) 

( e x p l o r a t i o n - p r e s s u r e s e l f ) ) ) ) ) ) 

The exploration-exploitation-ratio plays a crucial role in the selection procedures 

that address four populations of evolved objects: the collection of sensor-activator-

networks held inside the brain object, the collection of patches held inside the patcher, 

the drives inside the drives-pool and finally, the list of compound-functions inside the 

compound-function-pool. The objective is to select the best object - not necessarily 

the fittest but the most promising one; this makes the difference between counting on 

short-term effectiveness; i.e., selecting the fittest through the act of exploitation - or, 

in contrast, expressing trust in exploration; i.e., hoping to discover even fitter objects 

by random selection. The exploration-exploitation-ratio controls the balance between 

the relevance of both alternatives. 

The value of the exploration-exploitation-ratio acts as a probabilistic specification 

for either choice; when random(lOO) < exploration-exploitation-ratio then exploit else 

explore. 
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Exploitation can only be successful when enough objects in the current population 
have managed to develop non-zero fitness levels - at least half of the population size 
in most of my experiments. Too few fit objects entail the risk of premature 
convergence; the search gets stuck in a local minimum of the fitness landscape. In 
practice, the list of objects is sorted according decremental fitness; as a result the first 
two objects of the sorted list deHver genetic material to breed the next population. In 
case of insufficient fit candidates, exploration takes effect anyhow. Exploration 
simply selects random parents without considering fitness. 

The selection scheme described so far is applied to sensor-activator-netwbrks and 

patches. The selection process of the third kind of objects - the drives - is, however, 

slightly more complex. Since drives are objects endowed with the faculty to learn, 

they receive particular treatment as described in chapter 8, section 8.5. 

Finally, every agent in the players agency wil l be associated with a given 

compound-function as selected from the compound-function-pool, this process is 

pictured in chapter 7, figure 7.1. A function called set-agents-CF-according-

understanding creates a list of potential CF by considering the current orientation of 

the current drive, for instance, i f that drive aims integration, the algorithm wil l search 

for CF that have proven to provide functionality for narrowing the musical gap 

between man and machine; i.e., CF that have developed high integration-fitness levels 

during previous interactions. 
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Figure 9.10: Handle-main-function coordinates timing of learning and breeding 

activity, the selection of fi-esh instances fi-om the respective populations and the 

distribution of compound-fiinctions to the players-agency. 
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It is assumed the drive effectively developed an orientation; the contrast between 
integration-level and expression-level must indeed be at least 10%. In case the drive's 
orientation equals NIL, CF are distributed at random. 

Otherwise, CF's are distributed according the select-specific-function algorithm 

(figure 9.11) that takes four arguments: 

1) Explorafion-exploitation-ratio: as detailed at the start of the current section. 

2) The current global orientation of the current drive: a value between -100 and 

100, indicating a range firom total expression to total integration. 

3) A stringency parameter: a value between 0 and 100, it specifies which 

particular objects wil l be selected from the list of potential fit candidates. In 

other words, the list of objects with positive fitness is further restricted as to 

provide an indication of the required relative fitness strength of the 

candidates. In case stringency equals zero, any fit candidate may be selected, 

irrespective of its actual fitness level. In case stringency equals 100, only the 

fittest candidate is subject to election. When stringency equals 50, only the 

first half of the candidates can be subject of further selection. 

4) Operation mode: either linear or random. Given a linear mode, for instance, 

when stringency equals 100, the fittest object wi l l be chosen, when zero, the 

item with lowest fitness is taken, when stringency equals 50, the median value 

of the list is selected. When mode equals random, the algorithm creates a 

partial list of all candidates - the length of that list being proportional to 

stringency. 
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Figure 9.11: Select-specific-fiinction: the algorithm selects a compound-function from 

the compound-fiinction-pool according to four parameters. 

Note that the parametric exploration-exploitation-ratio is set as ratiol. It is competing 

for attention with a second, internal ratio2, it is computed as follows: 

r a t i o 2 = (number-of-fit-compound-functions / p o p u l a t i o n - s i z e ) * 100 



379 

Ratio2, in percent, is thus relative to the number of CF that succeeded in developing 
non-zero fitness levels. The ratio that becomes effective is computed as: 

a c t u a l - r a t i o = (max r a t i o l r a t i o 2 ) . 

hi other words, when facing a highly fit CF-pool, ratio2 wil l supersede ratiol; i.e., 

exploitation wil l be favoured over exploration - irrespective of the value of ratiol. hi 

contrast, given a low percentage of fit CF in the CF-pool, the external exploration-

exploitation-ratio might be decisive. The rationale is to condition selection by the 

highest ratio on hand. 

9.6.2 Coordinat ion of Breeding 

Let us now consider reproduction when the breeding-counter instructs the system 

it is time to breed; i.e., time to breed? in figure 9.10 fires j^e^. The evolution-data is 

first saved including a Breed header. The genotype in all four populations (sensor-

activator-networks, the patcher, the drives-pool and the CF-pool) is now subject to 

crossover and mutation, a random object is selected from the fresh respective 

populations, a number of bookkeeping counters are reset and the system embarks on 

the next evolutionary epoch - until the end of the experiment; i.e., when the 

performance-counter hits its maximum value. Please refer to the individual chapters 

for more details on the respective breeding processes. 

9.7 Conclusion 

Four temporal interaction patterns manage to organize decision-making according 

to starting and halting behaviour of both human and machine. However, pattern 

number 1, indicative of machine-just-finished, plays a special role as it channels the 

handle-main fimction, a function that coordinates the timing of learning and breeding. 
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Experiments prove that the prediction algorithm is quite successfiil in adapting to 
large variations in articulations of human input. Consider the following LISP listener 
trace from experiment elO (fully documented in chapter 10), an experiment featuring 
human input (not the internal test-player): 

E x c e r p t of i n f o r m a t i o n t r a i l as p r i n t e d i n the L I S P l i s t e n e r : 

I m p r o v i s e r common und e r s t a n d i n g : 19 p e r c e n t CONFLICT. 

E x p r e s s i o n - p l a y , 2 s e c 435 msec behind p r e d i c t e d STOP time. 

Segmentation process -> Beginning of new phrase iot: 479, phrase-

detection-threshold: 407. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (2 0 1 -1) — time: 290847. 

D u r a t i o n longer than p r e d i c t e d : 3411 msec. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : ( 1 2 - 1 ) — time: 296325. 

I m p r o v i s e r common und e r s t a n d i n g : 32 p e r c e n t AGREEMENT. 

Segmentation process -> Beginning of new phrase iot: 265, phrase-

detection-threshold: 194. 

I m p r o v i s e r common und e r s t a n d i n g : 24 p e r c e n t AGREEMENT. 

E x p r e s s i o n - p l a y , 2 s e c 608 msec behind p r e d i c t e d STOP time. 

Segmentation process -> Beginning of new phrase iot: 390, phrase-

detection-threshold: 304. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 1 -1) — time: 300570. 

D u r a t i o n longer than p r e d i c t e d : 3344 msec. 
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Segmentation process -> Beginning of new phrase iot: 752, phrase-

detection-threshold: 652. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 2 -1) — time: 304395. 

I m p r o v i s e r common understanding: 25 p e r c e n t AGREEMENT. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (2 3 0) — time: 304968. 

Duration s h o r t e r than p r e d i c t e d -4243 msec. 

HUMAN j u s t s t a r t e d : P a t t e r n d e t e c t e d : (0 1) ~ time: 305502. 

Delay longer than p r e d i c t e d 13292 msec. 

Segmentation process -> Beginning of new phrase iot: 620, phrase-

detection-threshold: 611. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (0 1 0) — time: 307163. 

Duration s h o r t e r than p r e d i c t e d -5113 msec. 

I m p r o v i s e r common understanding: 28 p e r c e n t CONFLICT. 

HUMAN j u s t s t a r t e d : P a t t e r n d e t e c t e d : (0 1) — time: 308216. 

Delay s h o r t e r than p r e d i c t e d -2076 msec. 

I m p r o v i s e r common understanding: 27 p e r c e n t CONFLICT. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 2 -1) — time: 311577. 

I m p r o v i s e r common understanding: 32 p e r c e n t CONFLICT. 

Segmentation p r o c e s s -> Beginning of new phrase iot: 1031, phrase-

detection-threshold: 1000. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (2 3 2) — time: 314882. 
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MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 2 -1) — time: 315428. 

I m p r o v i s e r common und e r s t a n d i n g : 53 p e r c e n t CONFLICT. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (2 3 0) — time: 315985. 

Du r a t i o n s h o r t e r than p r e d i c t e d -4780 msec. 

I m p r o v i s e r common und e r s t a n d i n g : 23 p e r c e n t AGREEMENT. 

HUMAN j u s t s t a r t e d : P a t t e r n d e t e c t e d : (0 1) — time: 316539. 

Delay longer than p r e d i c t e d 4434 msec. 

I m p r o v i s e r common und e r s t a n d i n g : 25 p e r c e n t AGREEMENT. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 2 -1) — time: 319328. 

I m p r o v i s e r common und e r s t a n d i n g : 53 p e r c e n t AGREEMENT. 

Segmentation process -> Beginning of new phrase iot: 1079, phrase-

detection-threshold: 1000. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 1 -1) — time: 321005. 

C o r r e c t p r e d i c t i o n : e r r o r i s 322 msec. 

I m p r o v i s e r common underst a n d i n g : 69 p e r c e n t AGREEMENT. 

HUMAN j u s t s t a r t e d : P a t t e r n d e t e c t e d : (0 1) — time: 321617. 

C o r r e c t p r e d i c t i o n : e r r o r i s 604 msec. 

D u r a t i o n : 0 min 5 s e c 100 msec. 

MACHINE j u s t s t a r t e d : P a t t e r n d e t e c t e d : (1 2) — time: 322119. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (1 2 -1) — time: 322636. 
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I m p r o v i s e r common underst a n d i n g : 62 p e r c e n t AGREEMENT. 

Segmentation process -> Beginning of new phrase iot: 1045, phrase-

detection-threshold: 1000. 

HUMAN j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (2 3 2) ~ time: 325463. 

C o r r e c t p r e d i c t i o n : e r r o r i s -238 msec. 

I m p r o v i s e r common understanding: 53 p e r c e n t AGREEMENT. 

MACHINE j u s t f i n i s h e d : P a t t e r n d e t e c t e d : (3 2 -1) ~ time: 327065. 

I m p r o v i s e r common underst a n d i n g : 51 p e r c e n t AGREEMENT. 

MACHINE j u s t S t a r t e d : P a t t e r n d e t e c t e d : (0 2) — time: 331910. 

I m p r o v i s e r common underst a n d i n g : 37 p e r c e n t AGREEMENT. 

E x p r e s s i o n - p l a y , 4 s e c 69 msec behind p r e d i c t e d STOP time. 

It is tempting to echo minute information reflecting the behaviour of each and 

every algorithm comprising the system, however, such an approach yields a massive, 

overwhelming amount of data that proves very difficult to follow and interpret while 

the system is miming. 

The trace above is a filtered list of information; it includes the current degree of 

human-machine understanding (improviser common understanding), the kind of 

orientation of the machine responses - expression-play means a given player agent 

performs a compound-function that has the intention to express itself irrespective of 

the human-suggested context, information on the background input segmentation-
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process that runs independently of the analysis-process and, finally, information on 
starting and stopping activity in man and machine. 

The behaviour of the prediction algorithm is highlighted by red text. The 

quantisation of the clock times in experiment elO equals 2 seconds; the system thus 

adapts until the intended start and/or stop times fall within an error-zone of less than 2 

seconds. The precise moment the human wil l stop playing his/her current sequence is 

accurately predicted the first time - with an overestimation of 622 milliseconds, the 

last correct prediction yields an underestimation of 238 milliseconds. 

Also observe the delicate balance in degrees of human-machine understanding; 

extended zones of continuous values of agreement or conflict intermingle with sudden 

discontinuities, typical behaviour of a complex dynamical system indeed. 
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Chapter 10: Experiments 

The objective of the experiments documented in this chapter is to offer an analysis 

of general system behaviour from a two different perspectives. Firstly, we are 

interested to study the overall behaviour of the system components, how the three 

major sub networks (figure 1.1) individually behave in time and how they mutually 

interact. We look for macroscopic patterns that may emerge as the system evolves 

over time. Secondly, on a more microscopic level, the actual musical output of the 

system is analysed. We examine the relationship between the various systems 

parameters that have direct impact on the nature of the outcome of the player agency. 

10.1 Organization of the exper iments 

We first comment on a significant series of systematic experiments conducted to 

examine and characterize the behavioural complexity of the system relation to 

different high-level system parameters. A l l experiments take place in a given time 

frame; a timing scheme was developed to run experiments and collect behavioural 

data at specific points in time. Referring to figure 10.1 - a single performance cycle 

includes a number of breeding cycles and every breeding cycle contains a number of 

learning cycles. 

Let us first address the system parameters: 

1) The performance-mode affecting the management of the drives objects: the 

application of evolution only or a combination of evolution and learning 

(chapter 8, section 8.5). 

2) In case learning is switched on: the type of learning can be either explicit or 

real-time. The learning type instructs what information is used to compute the 

exploration-exploitation-ratio - this ratio (0 to 100%) acts as a stochastic 
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threshold to select either from fit members of a given population (exploit) or 
search for possible even fitter individuals (explore). Given explicit learning, 
the linear progression depicted in figure 10.1 is employed - the ratio 
corresponds to the performance-pointer as it moves fi"om 0 to 100 during the 
course of the experiment. Real-time learning implies that the exploration-
exploitation-ratio is sensitive to the momentary relationship between Oscar's 
present exploitation-pressure and exploration-pressure. It is computed as 
follows: 

( s e t q e x p l o i t a t i o n - e x p l o r a t i o n - r a t i o 

(round ( i f (> ( e x p l o i t a t i o n - p r e s s u r e s e l f ) 

( e x p l o r a t i o n - p r e s s u r e s e l f ) ) 

(- 100 (* 100 (/ ( e x p l o r a t i o n - p r e s s u r e s e l f ) 

( e x p l o i t a t i o n - p r e s s u r e s e l f ) ) ) ) 

7 I 

(* 100 (/ ( e x p l o i t a t i o n - p r e s s u r e s e l f ) 

( e x p l o r a t i o n - p r e s s u r e s e l f ) ) ) ) ) ) 

3) The timing of the experiments: the number of process cycles employed for 

learning, evolution and performance. Referring to figure 10.1, the learning-

cycle equals 2 implying that the present system objects (the current sensor-

activator-network, patch, drive and compound-fiinction) are all applied twice; 

i.e., during two consecutive process cycles. The breeding-cycle equals 10 

meaning that potentially 10 different objects can be selected from the 

respective object pools.^ The ratio of the performance-cycle and the breeding-

3 The relationship between the pool size (eight to maximum 30 objects, typically eight 
to 16) and the breeding-cycle influences the degree to which the individual objects in 
the pool are actually put to work. For example, given a breeding-cycle of 8 and a pool 
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cycle determines the amount of genetic activity in tlie system; thus, in figure 

10.1, the number of evolutionary epochs is 10. 

4) The top-level inclination of Oscar: selfish or social. For details, please refer to 

chapter 6, respectively figure 6.10 and figure 6.11. 

5) Two input options: two types of input stimuli are employed to activate the 

listening network. Some experiments capture external MIDI events input by a 

human performer, some use an internal test-player. The test-player addresses 

the following bottleneck: since our computational strategy is based on 

selectionism driven by human-provided aesthetic criteria, one would 

seemingly require long lasting sessions of human-machine interaction while 

one gathers behavioural data for later, offline analysis. The test-player makes 

it feasible to run unsupervised experiments for many hours. The test-player 

acts as an internal generator of M I D I sequences sent directly to the current 

sensor-activator network. Two types of generative algorithms were 

investigated; a simple Lindenmayer-systems based algorithm (Prusinkiewicz 

and Lindenmayer 1990) and a generator using weighted randomness. Both 

algorithms offer a simple means to generate a wide spectrum of different MIDI 

sequences while still operating in a stylistically coherent niche. The output of a 

human performer is also considered coherent in terms of style, though 

obviously equally subject to utterly unpredictable changes in behaviour. Since 

our implicit aim is to explore of structural coupling in a collection of 

interacting networks, the assumption is that the actual nature of the input 

size of 8, statistically speaking, all pool objects have equal chance to be chosen just 
once though many may apply many times while some may not apply at all. 
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sequences is less critical than the structural changes they create inside the 
system. Therefore, we focus on charting the systems' behavioural complexity 
rather than studying the effects of exhaustive exploration of the state space of 
all potential input sequences. 

0% 

Exploration 

Exploitation 

time 

M M M M t M t H t H t t H t t t 
0 2 4 6 8 10 12 14 94 98 98 100 

I I learning 
cycle 

breeding cycle 

performance cycle 

start stop 

Figure 10.1: Prototypical experimental setup showing a gradual transition from only 

exploration towards novel resources at the begiiming to only exploitation of existing 

resources at the end. 

Figure 10.1 shows a schematic overview of the orientation of the activity in a 

genetic selectionist algorithm. These algorithms are operational in the SAN, the 

patcher, the compound-function-pool and the drives objects. 

Note that the actual duration of the performance-cycle depends on the musical 

material produced by man and machine and the actual scheduling activity as 

coordinated by the prediction algorithm described in chapter 9, section 9.5. 
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10.2 Data Acquis i t ion {Methods 

Oscar contains functionality to trace the internal system activity by monitoring a 

large number of vital systems variables. Two data acquisition modules are in 

operation: (1) the tracer-data collector algorithm (in short, the tracer module) and (2) 

the evolution-data collector. The accumulated content of both data structures is saved 

as individual data files targeting posterior off-line analysis. Let us first address the 

tracer-data. 

10.2.1 The Tracer-Data Collector 

The tracer software module collects and visualises its data in a private interface 

containing nine panes (figure 10.2). The tracer offers immediate inspection of a 

number of critical systems variables. 

The data logging activity is handled by Oscar's analysis-process, a background 

LISP process that typically wakes up every second. However, the next data sample is 

collected only when a new interaction pattern appears. As explained in chapter 9, 

interaction patterns signal significant events, for instance, when man and/or machine 

just finished performing their most recent sequence. These potentially pivotal points 

during interaction are considered instrumental for tracking changes in huhuman-

machine melodic distance as well as changes in many system components. The 

system is fast enough to write samples to disk without jeopardizing real-time 

performance. 
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Figure 10.2: A nine-pane tracer window reveals distinctive systems behaviour. This figure 

documents data acquisition over the first 400 steps of a typical test run of Oscar. 

Referring to their label (upper left comer) in figure 10.2, the panes are organised 

as follows: 

1) PVD distance: the distance between the last sequence produced by the human 

interactor and the most recently performed machine-generated melody. This 

graph thus reflects the similarity between the current contents of the last-

sequence and the contents of the most recently played compound-function. 

The distance is computed using a matrix overlap algorithm (chapter 8, section 

8.3), individual dimensions of the MIDI events are considered (and visualised) 
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separately; pitch (red), velocity (blue) and duration (green). The total distance 
is computed from a weighted average of all three dimensions (for clarity, not 
shovm in the graph). 

2) Quantity-quality: this pane provides a picture of how the MIDI input stream 

changes over time. Quantity (red) mirrors the loudness of the most recent input 

event and the general density of the input stream. Quality (blue) is computed 

from the consideration of melodic diversity in the input stream. Both values 

are subject to multiplicative increments/decrements at every process cycle. 

Further details are found in chapter 4, section 4.6.8. 

3) Compound-function IE fitness: this pane shows the global average fitness of all 

the compound-fiinctions in the current compound fiinction pool. There are two 

competing fitness values; the first (red) shows total fitness for the intention of 

integration with the human interactor and the second (blue) value shows the 

current fitness level for the purpose of expression; i.e., producing musical 

output in conflict with the human proposed context. 

4) Drive IE levels and efficiency: this pane shows two competing machine 

motivations; one is pushing towards integration, the other towards expression. 

Both motivation pressures are modulated around a centre value of 50 percent. 

The final motivation - basically thought of as a machine suggestion to 

integrate or express - is decided by the highest bidding value. The efficiency 

of the drives (green) reflects how well their current relationships actually 
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contributed to the realisation of their intentions. Note the unpredictable, non
linear interactions between both levels. Details are found in chapter 9. 

5) Patch-drive orientations: this pane documents the levels of the global-

orientations (-100 to 100, for visualisation, scaled to a value between 0 and 

100) of respectively the patch (red) and the drive (blue). (Note that some detail 

gets lost because of scaling). 

6) The exploration-exploitation levels documented in pane 6 show the 

exploration and exploitation pressures as manipulated by the nature of the 

input signal to the listening network. In particular, changes in human-

responsiveness control the scaling algorithm as explained in chapter 4, section 

4.5.8. The actual momentary levels of the exploration and exploitation 

pressures wil l guide the selectionist activity in all current object populations 

given a learning-mode equalling real-time. 

7) HM-activity in pane 7 documents three elements: the level of human activity 

as reflected in the human-responsiveness level (red line), the level of machine 

activity (blue) as suggested by the number of events in the melody performed 

by the reference agent in the current players agency and, finally, the ID of the 

current interaction pattern (green). Again, some detail gets lost because of the 

low resolution of the panes in the GUI - yet the global picture still 

communicates a lot of data. Finally, the fourth data item (pink colour) shows a 

signal alternating between two values (low and high), they reflect the 

momentary orientation of the players agency - the option of responsive 
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performance (high) or autonomous performance (low). Note that the options 
are not just binary opposites but just indicative orientations that provide 
opportunities for weighted performance merging aspects of autonomous and 
responsive behaviour (chapter 7, section 7.3). 

8) The pane labelled SAN depicts activity in the listening network. The red line 

shows the current sum of the activation-inhibition-vector (see chapter 5, 

section 5.5) of the current SAN, the blue line reflects the number-of-neurons-

changed, it is therefore indicative of the present fitness of the current SAN. 

9) The bottom pane shows the competing levels for integration and expression of 

the patch. Two values accumulate the sum of respectively all positive levels 

(objective is integration) and all negative levels (objecfive is expression) of the 

output levels of the patch. The winning orientation and its strength follows 

from the ratio between both resulting values. 

The following system variables are effective in the test run documented in figure 

10.2: population-size = 16, learning-cycle = 5, breeding-cycle = 50, performance-

cycle = 500, top-level system inclination is selfish, both learning and evolution are in 

use and the experiment employs the internal test-player. Thus, the experiment 

includes 10 epochs of 50 cycles each. The total experiment duration is 57 minutes and 

50 seconds. 
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1 Time in milliseconds since start of program 

2 Total man-machine similarity 

3 Man-machine similarity for the dimension of pitch 

4 Man-machine similarity for the dimension of velocity 

5 Man-machine similarity for the dimension of duration 

6 Global orientation of current patch 

7 Global orientation of current drive 

8 Quantity of human (or test-player) input 

9 Quality of human (or test-player) input 

10 Total fitness of compound fiinction pool for the purpose of integration 

11 Total fitness of compound function pool for the purpose of expression 

12 Integration level of current drive 

13 Expression level of current drive 

14 Efficiency level of current drive 

15 Human agreement level 

16 Machine agreement level 

17 Global orientation of current patch 

18 Global orientation of current drive 

19 System exploitation level 

20 System exploration level 

21 Human-responsiveness 

22 Number events in current compound-function of current reference agent 

23 Sum of neural-activation-inhibition levels of current sensor-activator-network 

24 Number of neurons changed in current sensor-activator-network 

25 Integration level of current patch 

26 Expression level of current patch 

27 Input-pressures-adapted vector of every agent in the players agency 

28 List of the ID of the compound-function resident in every agent of the agency 

Table 10.1: List of systems variables collected by the tracer-data collector. 

Interesting correlations are observed between the various parallel data streams. In 

addition, the complexity of the data in figure 10.2 echoes the capacity of the test-

player algorithm (using simple weighted randomness in all four M I D I dimensions) to 

produce considerable musical consistency while still managing to influence the 
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listening network in significant ways. For instance, the second pane labelled Quantity-
Quality, shows a wide range of orientations - large scale oscillations as well as a 
forced plateau of nearly 100 % quality of the input M I D I stream erecting at sample 
175. The third pane. Compound-function IE fitness, shows how different areas of 
populations of musical processing functions develop that excel for the purpose of 
expression (blue line). Pane 6 proves that exploration and exploitation pressures also 
interact in intricate ways. In addition, a complex relationship is evident between 
human input activity (pane 7) and the data in pane 6. 

Our current implementation offers immediate data inspection as shown in figure 

10.2. However, another similar tracer algorithm tracks additional systems variables 

into a temporary data structure and intermittingly writes its contents to disk. In effect, 

the tracer-data collector tracks 28 variables as listed in table 10.1. 

The save-improviser-tracer-data fimction appends the new data block to the 

current file; the function takes effect whenever a significant interaction pattern occurs 

as clarified in chapter 9. 

10.2.2 The Evolution-Data Collector 

As explained above, two types of data are gathered during an experiment; the 

tracer-data and the evolution-data, both reflect significant information at different 

moments during an interactive session either using a human interactor or the internal 

test-player. The save-improviser-evolution-data function - reporting data gathered by 

the evolution-data collector - fires less often than the save-improviser-tracer-data 

function - it is only executed at the end of every learning cycle - thus also just before 

breeding the next population; i.e., Vv'hen the last learning cycle finishes within a given 

breeding cycle. As such, the evolution-data reflects information that happens to be 
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accumulated during the course of a single epoch - as a consequence, it informs on the 

impact of learning and reports on the genetic activity in the system. The following 

items are saved to disk: 

1 Time in milliseconds since start of program 

2 Interaction-counter 

3 Performance-counter 

4 Number of runs of every SAN in current SAN-pool 

5 Fitness of every SAN in current SAN-pool 

6 Nimiber of runs of every patch in current patcher 

7 Fitness of every patch in current patcher 

8 Number of runs of every drive in current drives-pool 

9 Efficiency of every drive in current drives-pool 

10 Integration-level of every drive in current drives-pool 

12 Expression-level of every drive in current drives-pool 

13 Understanding-level of every drive in current drives-pool 

14 Number of runs of every CF in current compound-function-pool 

15 Integration-fitness of every CF in current compound-function-pool 

16 Expression-fitness of every CF in current compound-fiinction-pool 

17 Global-orientation of current patch 

18 Global-orientation of current drive 

19 System global-orientation 

20 System common understanding 

21 Current interaction-trail (16 element vector) 

22 List of the ID of the compound-function resident in every agent of the agency 

Table 10.2: List of systems variables collected by the evolution-data collector. 

A l l experiments reported here address the data brought together by the tracer-data 

and evolution-data collectors. In order to grasp the state space of the system, we ran a 

number of pilot experiments. Then, a series of systematic experiments was developed 

with the objective of analysing the behaviour of Oscar in more detail with respect to 

the various parameter settings, in particular, studying the effect of system inclination 
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(social or selfish) and leaning-mode (explicit or real-time). The next section describes 

the results of the inirial experiments. 

10.3 Initial exper iments 

10.3.1 Experiments e l to e4: A Comparative Study of System Consistency 

Steps Steps Steps System Learn Input Learning-

N learn breed perform inclination mode 

16 2 20 400 Social Yes Test-player Explicit 

Table 10.3: Parameter settings for experiments el to e4. 

The goal of this series of experiments was to assess the consistency of the 

behaviour of the system - in particular the compound-function pool. Given the same 

parameter settings for all components and given the same input stimuli, we would 

expect a certain degree of similarity in the behaviour of the networked components. 

Four simulations are set up in order to compare the respective interaction patterns 

over time. The simulation parameters are given in the table above. 

Since the total simulation takes 400 steps and one epoch takes 20 steps, the 

number of epochs is also 20. The number of significant temporal interaction patterns 

captured by the tracer and total duration, respectively for the four experiments was as 

follows: 

Experiment el e2 e3 e4 

Nr pattems 957 985 962 1011 

Duration 43 m 2 s 40 m 48 s 39m 31 s 41 m 14 s 

Table 10.4: Number of pattems and durations of experiments el to e4. 
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The test-player generates short input sequences (between three and eight MIDI 
events) by randomly selecting values - for pitch, velocity, duration and inter-onset-
times - from user specified lists. The list values together form a small stylistic 
database. This experiment addresses the compound-function pool, the patcher and the 
drives. Only the tracer-data is addressed in the analysis described next. 

1) Fitness of the compound-function pool. 

Figures 10.3 to 10.6 reveal quite interesting behaviour. Fitness levels fluctuate in 

episodes; more or less regularly spaced at the beginning and more irregular 

towards the end. Levels develop momentum inside single episodes and an overall 

incremental fitness for both orientations in the long run. The compound-function 

pool hence manages to optimise all functions collectively; fitness levels maintain 

relative stability between epochs. Generally speaking, the expression level 

supersedes the integration level. Logically, we may conclude that it requires more 

evolved expertise to integrate with an unpredictable input source and less 

expertise to express a personal character, that is, sound very different than that 

input source. 

Figure 10.3 develops an incremental expression fitness starting around sample 480 

and lasting t i l l sample 880 while integration remains exceptionally steady. Nearly 

50% of the evolutionary process (about ten epochs of 20 in total) behaves in a 

remarkably linear fashion. This is evidence that the CF-pool is able to adapt 

gracefully facing irregular input. The integration fitness level suddenly boosts at 

sample 840 and sample 880 signals complete breakdown of expression and 

integration fitness. Evolution is thus a process of gradual modification and abrupt 

changes as reflected in this experiment. 
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Figure 10.4 shows more dramatic effects of the mutafion operator. Expression 

fitness suddenly peaks to 90 % at sample 760 and then manages to keep sustained 

at just over 20 %. Integration level increases at sample 800 and stabilises around 

30 %. Similar behaviour is noticed in figure 10.4 and to a lesser extends in figure 

10.5. It is concluded that genetic programming applied to the musical processing 

fiinctions inside the CF-pool is successful. After many generafions of irregular 

lower fitness values, both values increase and settle into a more or less stable 

pattern. The CF-pool adapts into a dynamic equilibrium. 

2) Patcher global orientation level. 

Every sample in figures 10.7 and 10.8 shows the momentary total average of all 

output values of all 16 patches in the current patcher. The values fluctuate 

between approximately +20 and -30. The global result is either positive or 

negative; the current relationships interpret the current sensor output via the 

current relationships. Positive output is interpreted as an attitude of the input 

source (human or test-player) to integrate, a negative output denotes a wish for 

expression. Notice that the negative values are rather more apparent, this implies 

that expression slightly dominates over integration. This observation agrees with 

the conclusions made above. Notice that the polynomials (black curves) in both 

figures are a sign of slow wave-like behaviour; the peaking patcher output 

oscillates at a very low frequency. It is natural to expect emergent dynamic 

stability in a living system through the presence of many simultaneous oscillafing 

components. The patcher, as part of the global listening network, is subject to 

quite errafic peaking activity, yet its construcfive effect results in a gentle 
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behavioural drift that is also clearly observed. The last 200 samples in figure 10.8 
tend to become positive signalling an interpretation of the input source to provide 
more pressure to integrate rather than to express. This observation correlates 
exactly with the evolution of the data in the compound-function pool above. 

3) Drives global orientation level. 

Figures 10.9 and 10.10 show further evidence of the existence of underlying 

wave-like behavioural patterns. The global average output values of all current 

drives in the drives pool are shown. The patterns oscillate between -10 and +10. 

The signal reveals areas of relative continuity in between sharply peaking swings. 

The polynomial in figure 10.9 documents a mainly negative orientation at first; 

this implies an initial tendency for the machine motivation to prefer expression. 

After sample 800, the orientation becomes integration. Again this correlates with 

the findings in figures 10.6 and 10.8. In conclusion, for both the patcher and the 

drives-pool negative values dominate indicating structures that are fitter for the 

purpose of expression than integration. 
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Figure 10.3: Compound-function pool integration vs. expression fitness levels in e l . 
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Figure 10.5: Compound-function pool integration vs. expression fitness levels in e3. 
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Exp e l Patcher global orientation 

30 

20 

10 

<̂  J 

- -10 

-20 

•30 

-40 

lUU iTJ t r 300 400 SOO 600 700 fflSo 900 11 ODD 

t i n e 
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Figure 10.8: Patcher global orientation levels in e2. 
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Figure 10.10: Drives global orientation levels 

10.3.2 Experiments e5 and e6: a comparative study of system inclination 

N Steps Steps Steps System Leam Input Learning-

Leam Breed Perform Inclination mode 

e5 16 1 20 200 Social Yes Human Explicit 

e6 16 1 20 200 Selfish Yes Human Explicit 

Table 10.5: Parameter settings for experiments e5 and e6. 

The objective here is to compare the impact of the global machine orientation 

parameter: the system inclination set either to social or selfish. In case of social 

inclination, the system wil l compare the outputs of the ciurent patch and current drive. 

I f both values carry the same sign, man and machine are considered in agreement else 

they are viewed as in conflict. The amplitude of the agreement may then condition the 

increment in fitness of the current compound-function. 

In case of selfish inclination, the output of the patch is not considered. The 

comparator takes the output of the drive (the current machine motivation) as a 

reference to guide the fitness of the compound-fiinction that was executed last; i.e., 

the one that contributed most recently to obtain the current situation. 

Experiment e5 e6 

Tracer patterns 508 523 

Evolution patterns 105 105 

Duration 26 m 7 s 25 m 13 s 

Table 10.6: Number of tracer and evolution patterns and durations of experiments e5 

and e6. 
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Both experiments employ input from a human interactor, use a single learning 
step, feature ten epochs of 20 cycles and combine evolution and learning. One 
examines whether just ten epochs generates enough evolutionary momentum to 
acquire interesting interaction patterns. The tracer is addressed with an analysis of the 
data provided by the currently performing objects - not the average data of all 16 
objects in a given population. 

Figures 10.11 and 10.12 document the orientation of the currently selected patch. 

The polynomial shows that the orientation levels remains slightly negative throughout 

the experiment. However, the signals are widely spiking (fiiU range -100 to +100 in 

experiment e5) though some oscillations stay positive or negative for almost 50 

process cycles. 

Figure 10.13, 10.14, 10.15 and 10.16 illustrate the integration and expression 

levels of the current drive. The polynomials show that the underlying oscillations of 

integration and expression levels are slightly out of phase. Both levels seem to 

"follow" each other's activity with a given delay; for example, the activity in figure 

10.13 just before cycle 400 and the activity in figure 10.15 just after cycle 400. 
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Figure 10.11: Current patch orientation levels in e5. 

Exp e6 Current patch orientation 

60 

60 

40 

20 

I ° 

-20 

-40 

-60 

-60 

400 > K i p 

1 1 
t i n e 

Figure 10.12: Current patch orientation levels in e6. 
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Exp e5 Current drive integration-level 
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Figure 10.13: Current drive integration level in e5. 
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Figure 10.14: Current drive integration level in e6. 
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Exp e5 Current drive expression-level 
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Figure 10.15: Current drive expression level in e5. 

80 

70 

60 

50 

> 40 

30 

20 

10 

u 

Exp e6 Current drive expression-level 

100 200 300 
t ine 

400 

y i 
. 1 ^ — 7 -. 1 ^ — 

1 1 1 1 1 

500 

Figure 10.16: Current drive expression level in e6. 
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Exp e5 Current drive orientation 
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Figure 10.17: Current drive orientation level in e5. 
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Figure 10.18: Current drive orientation level in e6. 



411 

Figures 10.17 and 10.18 show the history of the drive orientations, a value 
between -50 and 50. The drives alternate between strong negative values (expression) 
and strong positive (integration) with short areas of relative stability. The polynomials 
in figures 10.17 and 10.18 are about 180 degrees out of phase relative to each other. 
This illustrates the competitive nature of the orientation process. In addition, the 
tendency in figure 10.17 is to increment, in figure 10.18 the opposite is noticed. In 
experiment e5, the global system inclination is social as the incremental nature of the 
drive seems to confirm; the drive in e5 moves in the direction of more integration 
indeed. Likewise, the drive orientation level gradually moving to -50 (maximum 
expression) confirms the selfish inclination in experiment e6. 
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Figure 10.19: Level of human agreement in e5. 

100 

90 

80 

70 

60 

y 50 

^ 40 

30 

20 

10 

i j 

Exp e6 Human agreement 

100 200 300 
time 

400 500 

Figure 10.20: Level of human agreement in e6. 
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Figure 10.21: Level of machine agreement in e5. 
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Figure 10,22: Level of machine agreement 
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Exp eS total H/M similarity 
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Figure 10.23: Total human/machine similarity in e5. 
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Figure 10.24: Total human/machine similarity in e6. 
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Figures 10.19 to 10.22 demonstrate the relationship between the levels of human 
and machine agreement. Both levels are computed by considering the similarity of the 
most recent sequence produced by the human interactor and the very last machine 
produced sequence; i.e., the contents of the melody constructed by the reference agent 
in the agents society. 

The agreement levels are either scaled up or down according to the change in 

similarity; for instance, machine-agreement is scaled up (factor 1.5) when current 

similarity is higher than the previous similarity, when smaller it is scaled down (factor 

0.75). Thus agreement is directly coupled to a change in melodic similarity at a given 

process step (see also chapter 9, section 4.2) . A l l agreement levels build up at the 

beginning and enter an oscillatory pattern. Both agreement levels are computed at two 

different points in time: at the clock tick when the respective players just finished 

playing. Still, the agreement levels in figure 10.19 and 10.21 are complementary 

signals out of phase by nearly 180 degrees. This emergent association follows from 

the relationships that are active inside the current drive. Remember that changes in 

similarity are interpreted by these relationships and so lead to a machine motivation to 

get either closer to the human performer (integrate) or move away (expression). The 

different drives in the drives pool offer many graded options; the statistical effect is 

that man and machine happen to fiinction at a fluctuating average musical distance. 

The agreement algorithm is quite sensitive and adapts very quickly to changes in 

the input style of the human performer as seen in figure 10.20. 

The total similarity between man and machine is shown in figures 10.23 and 

10.24. Similarity is computed using the matrix comparator method (see chapter 8, 

section 8.3). 
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Figure 10.26: Histogram of levels of human-machine similarity in e6. 
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The data is reminiscent of Brownian noise but also reveals a certain low level 
periodicity. The relative strength of the periodicity is disclosed in the histograms in 
figures 10.25 and 10.26. The cumulative percentage stabilizes after the first nine 
sample ranges; after 90 percent of the data has been considered. As expected, zero 
values dominate in both experiments. An unanticipated characteristic minor peak 
occurs at the end of the incrementing cumulative percentage. In between the two 
peaks, the data shows a Gaussian-like distribution, as to be expected. 

Figures 10.27 to 10.30 show data gathered at the end of every evolutionary epoch, 

just before a new population is generated. At those particular points in time, one may 

evaluate the efficiency of the motivations generated by the drives. Figure 10.27 shows 

a remarkable relationship of the drives total (averaged) integration levels for the two 

different system inclinations, social (blue) and selfish (red). The complementary 

nature of both signals proves a remarkable consistency in drives behaviour - and 

consequently assures coherent operation of how the drive selects functions in the 

compound-fiinction pool. Both experiments use the same algorithm in the test-player; 

the melodies generated are thus not identical but only statistically similar. In most 

cases, the integration levels move in opposite directions, most prominent and 

consistent around generation 40. Both experiments are run individually yet the 

amplitudes of the changes nearly always synchronize perfectly. This reveals that the 

system has the capacity to repeatedly position itself at particular points in state space. 

Therefore, the system exhibits a certain musical personality since characteristic 

patterns occur in a consistent way. Also surprisingly, the complementary 

psychological nature of the two inclinations is made explicit by the behaviour of the 

drives pool. 
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Figure 10.27: Drives total integrations level in e5 and e6. 
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Figure 10.28: Drives total expression level in e5 and e6. 
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Figure 10.29: Drives total efficiency level in e5 and e6. 
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Figure 10.30: Drives total human/machine understanding in e5 and e6. 
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When turning to figure 10.28 one notices less articulation of the activity of the 
drives expression levels. Experiment e5 (social system incHnation) shows extended 
areas of a relatively flat, continuous drive expression level. The drives pool as a 
whole stabilizes on a point attractor. Experiment e6 (selfish inclination) clearly 
suggests expression levels that gradually decrement in between any two breeding 
points. 

Integration and expression levels generated from a selfish inclination manage to 

globally supersede the levels given a social inclination. This observation suggests that 

selfish inclinafion provides the best results; i.e., the maximum signal amplitudes, 

whatever the systems' orientation. In other words, both experiments prove that the 

drive object can tune itself to be in harmony with its implied orientation (integration 

or expression). 

Figure 10.29 shows the history of the total efficiency of all drives in the drives 

pool. Both polynomials suggest a low frequency oscillation pattern with 1 or 2 cycles 

over 105 evolutionary steps. The efficiency levels are much slower to adapt than the 

integration or expression levels. The same observahon goes for the drives total 

human/machine understanding as depicted in figure 10.30. Social inclination involves 

an arch-like evolution of the understanding level. The blue polynomial shows an 

initial strong increase of understanding level followed by a prompt descent. The 

uimiistakable shape of his pattern underpins the instability and competitive nature of 

the underlying tension in the man-machine interaction. Given a selfish systems 

inclination (red polynomial), the signal is of much lower amplitude and slowly moves 

up in a near linear way. This piece of evidence corresponds remarkably with the idea 

of a selfish oriented system; the level of understanding manages to increase very 

slowly on a relative scale from 50 to about 150. 
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10.4 Experiments e7 to e10: A Series of Systematic Experiments 
10.4.1 Introduction 

The following experiments aim to acquire understanding of Oscar's behavioural 

space given a human interactor while considering the impact of two main parameters; 

the system inclination and whether learning is enabled or not. Additional parameters 

are as follows; the performance-cycle (figure 10.1) equals 320 with 16 breedmg-steps 

implying an evolutionary process spaiming a total of 20 epochs. The population size 

(N) of all system components (SAN, patcher, CF-pool, and the drives-pool) is eight 

objects. 

Interaction is evaluated according to the real-time learning-mode; the learning 

process is informed by the exploration/exploitation ratio in real-time. This ratio 

decides on how a drive is selected, it influences the relafionship between the amount 

of time the system focuses on the drives that proved to give rise to productive results 

in the past (drives having fitness greater that zero) and, on the other hand, selecting 

drives at random hoping for the discovery of the potentially interesting results they 

might entail. 

The learning-cycle parameter is one, thus every C F is applied only once per 

learning-step. The same human subject provides input for all four experiments via a 

standard MIDI keyboard. A large number of state variables reflecting the current 

system's activity is fraced in real-time and written to disk. As explained above, the 

tracer-file and the evolution-file offer two perspectives of the system's behaviour in 

time. Only information from the evolution-file is taken up here; all four experiments 

providing 169 data samples. In addition, the music input to the system and the output 

of the system are also captured and saved as MIDI files for later analysis. Each 
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interactive session took approximately 40 minutes. Parametric conditions and the 
number of collected output data samples are summarized in tables 10.7 and 10.8. 

Exp N Steps Steps Steps System Learn Input Learning-

Learn Breed Perform Inclination mode 

e7 8 1 16 320 Social Yes Human Real-time 

e8 8 1 16 320 Selfish Yes Human Real-time 

e9 8 1 16 320 Social No Human n.a. 

elO 8 1 16 320 Selfish No Human n.a. 

Table 10.7: Parameter settings for experiments e7 to elO. 

Experiment e7 e8 e9 elO 

Tracer samples 755 776 797 787 

Evolution samples 169 169 169 169 

Session duration 38'24" 44'23" 39'04" 4r57" 

Table 10.8: Number of samples and durations of experiments e7 to elO. 

10.4.2 Experiments 7 and 8: Visualisation of Tracer Data 

This section presents a visualisation of the tracer data gathered during the four 

interaction experiments shown in table 10.8. The subsequent section (10.4.3) provides 

a visualisation of the evolution data collected from the same experiments. Finally, the 

next following section (10.4.4) addresses analysis and interpretation of the actual data 

in a variety of ways. 
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Figure 10.31: History of human-machine total similarity in e7. 
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Figure 10.32: History of human-machine total similarity in e8. 
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Exp e7 Human responsivenes 

Figure 10.33: History of human responsiveness in e7. 
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Figure 10.34: History of human responsiveness in e8. 
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Exp e? Exploitation vs. exploration history 
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Figure 10.35: Exploitation vs. exploration pressures in e7. 
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Figure 10.36: Exploitation vs. exploration pressures in e8. 
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Exp e7 Input quantity-quality history 
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Figure 10.37: Quantity vs. quality o f human input in e7. 
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Figure 10.38: Quantity vs. quality o f human input in e8. 
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Exp e? Patcher global orientation 
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Figure 10.39: Patcher global orientation in e7. 
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Figure 10.40: Patcher global orientation in e8. 
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Figure 10.41: Drives-pool global orientation in e7. 
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Figure 10.42: Drives-pool global orientation in e8. 
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Figure 10.43: Number of events in the compound-function held by the reference agent in el. 
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Figure 10.44: Number of events in the compound-function held by the reference agent in e8. 
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Figure 10.45: Human vs. machine agreement in e7. 
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Figure 10.46: Human vs. machine agreement in e8. 
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10.4.3 Experiments e7 and eS: Visualisation of Evolution Data 
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Figure 10.47: History o f drives-pool efficiency in e7. 
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Figure 10.48: History o f drives-pool efficiency in eS. 
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Exp e7 Drives-pool levels 
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Figure 10.49: Drives-pool output levels in el. 
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Figure 10.50: Drives-pool output levels in e8. 
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Exp e7 Drives-pool understanding level 
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Figure 10.51: History of drives-pool understanding in e7. 
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Figure 10.52: Historj' of drives-pool understanding in e8. 
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Figure 10.53: History of patcher fitness in eV. 
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Figure 10.54: History of patclier fitness in e8. 
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Exp e7 CF-pool levels 
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Figure 10.55: Compound-function pool fitness history in el. 
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Figure 10.56: Compound-function pool fitness history in e8. 
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Exp e7 CF-pool application density 
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Figure 10.57: Compound-function pool application density in e7. 
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Figure 10.58: Compound-function pool application density in e8. 
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Exp e7 CF-pool application density histogrann 
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Figure 10.59: Compound-function pool application density histogram in e7. 
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Figure 10.60: Compound-function pool application density histogram in e8. 
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Exp e7 Percentage unique agent's C F ID 'S 

Figure 10.61: Percentage unique agent's CF ID's in e7. 
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Figure 10.62: Percentage unique agent's CF ID's in e8. 
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Exp e7 S y s t e m common understanding 
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Figure 10.63: System common understanding in el. 

Exp e8 S y s t e m common understandrng 

Figure 10.64: System common understanding in e8. 
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Figure 10.65: System global orientation in e7. 
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Figure 10.66: System global orientation in e8. 
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10.4.4 Experiments e9 and e10: Visualisation of Tracer Data 
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Figure 10.67: History of human-machine total similarity in e9 

Exp e l O H/M total similarity 

Figure 10.68: History of human-machine total similarity in elO. 
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Exp e9 Human respons ivenes 
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Figure 10.69: History of human responsiveness in e9. 

Exp e l O Human respons ivenes 

Figure 10.70: History of human responsiveness in elO. 
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Exp e9 Exploitation vs . exploration history 

exp lo i t exp lo re Po l ynomia l ( e x p l o i t ) Po lynomia l ( e x p l o r e ) 

100 

CJ 
> 
CI -

200 400 

t i m e 

600 800 

Figure 10.71: Exploitation vs. exploration pressures in e9. 
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Figure 10.72: Exploitation vs. exploration pressures in elO. 
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Exp 9 Input quantity-quality history 
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Figure 10.73: Quantity vs. quality of human input in e9. 

Exp 10 Input quantity-quality history 

Quantity qua l i t y Po l ynom ia l ( q u a n t i t y ) Po l ynom ia l ( qua l i t y ) 

100 

a 
> 

8 0 0 

Figure 10.74: Quantity vs. quality of human input in elO. 
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Exp e9 Patcher global orientation 
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Figure 10.75: Patcher global orientation in e9. 
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Figure 10.76: Patcher global orientadon in elO. 
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Exp e9 Dnves global orientation 
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Figure 10.77: Drives-pool global orientation in e9. 
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Figure 10.78: Drives-pool global orientation in elO. 
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Exp e9 Nr-events C F reference agent 
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Figure 10.79: Number of events in the compound-fijnction held by the reference 

agent in e9. 
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Figure 10.80: Number of events in the compound-function held by the reference 

agent in elO. 
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Exp e9 Human vs . machine agreement 
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Figure 10.81: Human vs. machine agreement in e9. 
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Figure 10.82: Human vs. machine agreement in elO. 
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10.4.5 Experiments e9 and e10: Visualisation of Evolution Data 

Exp e9 Drives-pool efficiency history 
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Figure 10.83: History o f drives-pool efficiency in e9. 

Exp e l O Drives-pool efficiency history 
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Figure 10.84: History o f drives-pool efficiency in elO. 
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Exp e9 Drives-pool levels 
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Figure 10.85: Drives-pool output levels in e9. 
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Figure 10,86: Drives-pool output levels in elO. 
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Exp e9 Drives-pool understanding level 
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Figure 10.87: History o f drives-pool understanding in e9. 
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Figure 10.88: History o f drives-pool understanding in elO. 
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Figure 10.89: History o f patcher fitness in e9. 
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Figure 10.90: History o f patcher fitness in elO. 
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Exp e9 CF-pool f i tness history 
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Figure 10.91: Compound-function pool fitness history in e9. 
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Figure 10.92: Compound-function pool fitness history in elO. 
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Figure 10.93: Compound-function pool application density in e9. 
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Figure 10.94: compound-function pool application density in elO. 
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Exp e9 CF-pooi application density histogram 
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Figure 10.95: CP pool application density histogram in e9. 

Exp e l O CF-pool application densi ty histogram 

[ Z Z D f - f o c u e n c y C u m u l a t i v e % 

45 

40 

35 

:- 30 
U c 25 
3 • J 20 

lb 

10 

b 

ij 

41 

30 
32 

^36 

t3 ,2 l% 

28 

*2,2fe'« 

-+-

B8,9B% 

- 4 -

83,33% 

94,05%'*7'S2% lOb 

18 

-+-

120% 

80% 

60% 

40% 

20% 

0% 
3 4 5 6 

Sanpling range 

Figure 10.96: CF pool application density histogram in elO. 
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Exp e9 Percentage unique agent 's C F ID'S 

Figure 10.97: Percentage unique agent's CF ID 's in e9. 
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Figure 10.98: Percentage unique agent's CF ID 's in elO. 
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Exp e9 Systenn conr»nnon understanding 
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Figure 10.99: System common understanding in e9. 

100 

E30 

60 

40 

•40 

•60 

•80 

Exp e l O S y s t e m comnaon understanding 

t ime 

100 125 150 175 

Figure 10.100: System common understanding in elO. 
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Exp e9 S y s t e m global orientation 

Figure 10.101: System global orientation in e9. 
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Figure 10.102: System global orientation in elO. 
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10.4.6 Overview and Interpretation of Data of Experiments e7 to e10 

History o f man-machine total similarity: figures 10.31, 10.32, 10.67 and 10.68. 

Figures nr. 10.31, 10.32, 10.67 and 10.68 show the history o f man-machine 

total similarity. A l l figures display spiking behaviour wi th occasional zones o f 

more stability. The erratic pulsing o f the similarity between the last input 

sequence provided by the human performer and the last contents o f the 

reference agent's compound-function (CF, also a melody object) reveals a 

relative weakness o f CF. Selecting another CF from the current CF-pool 

introduces new musical processing fimctions that differ from the current ones 

in significant ways. Thus large steps are taken in the state space defmed by the 

CF. In other words, the musical operators in the CF are too discrete, one 

would wish for more continuity. In addition, noise is introduced because the 

real-time segmentation algorithm does not always make a correct decision. In 

such cases, the most recent human input is not entirely captured correctly. 

The polynomials disclose slowly undulating behaviour; this proves that man 

and machine are actually involved in a process mutual influence. Considering 

figure 10.31, the dip around sample 650 coincides wi th the dip at sample 160 

in figure 10.55. This observation generates evidence o f the inability o f the CF-

pool to develop f i t processing ftinctions facing impredictable and rapidly 

changing human input. 
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History o f human responsiveness: figures 10.33, 10.34, 10.69 and 10.70, history o f 
the exploitation vs. exploration pressures generated by human input: figures 10.35, 
10.36, 10.71 and 10.72 and history o f the quantity/quality ratio o f human input: 
figures 10.37, 10.38, 10.73 and 10.74. 

As a reminder, human responsiveness is computed by tracking the strength 

and frequency o f the activity o f the human performer; i t is proportional to the 

quantity and quality o f the human input and inverse proportional to the 

current-no-input-gap. The exploration/exploitation ratio is updated according 

to the amount and sign o f the changes in human responsiveness. For example, 

i f human responsiveness decreases, exploitation pressure increments using a 

multiplier. Consequently, exploitation and exploration interact in non-linear 

ways while the exploitation/exploration ratio only conditions the selection o f 

compound-fiinctions and drives. 

Considering figures 10.34 and 10.36, the incremental tendency o f human 

responsiveness - indicating an aggressive human interactor - is paralleled by a 

sharp decrease in exploitation level. Only exploration pressure remains 

positive. The data in figure 10.38 confirms a significant boost o f the quality o f 

human input. The strong waving quantity polynomial echoes the powerful 

dynamics o f the human performer. 

Taking figures 10.69 and 10.71 into consideration; relative stability wi th 

minor oscillations (around a centre value o f 50) at sample 500 of human 

responsiveness entails a narrowing distance between exploration and 
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exploitation, meaning equal pressures, or a relative impasse for this 
behavioural activity. This observation demonsfrates a successfiil continuous, 
(rather than discrete) coupling between features o f a real-time M I D I input 
stream and the consequent appropriate adaptation o f internal system pressures. 

Patcher global orientation and drives-pool global orientation: figures 10.39, 10.40, 

10.41, 10.42, 10.75, 10.76, 10.77 and 10.78. 

Since patches and drives are fiinctionally complementary, both are addressed 

simultaneously. In figure 10.39, the patcher orientation polynomial slowly 

oscillates between positive (integration) and negative (expression) values. I n 

figure 10.40, expression dominates throughout which is congruent wi th a 

selfish systems inclination. However, the exceptional character o f the data 

solicits an alternative explanation. It might be that relationships inside most 

patches were inappropriate at instantiation time. Therefore, the patcher was 

unable to develop integration pressure. However, a gradual increase towards 

value zero is also clearly observed. Strikingly, such exceptional results were 

only encountered in experiment e8. The data in figm-e 10.75 gradually 

develops a tendency for integration, again congruent with a social systems 

inclination. 

The drives in figures 10.41 and 10.42 show an ascending data profile while the 

data in figures 10.77 and 10.78 display a descending profile. This might 

indicate that when learning is off , the drives develop negative values; i.e., a 

tendency for expression. 
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Number o f events in the compound fiinction that resides in the reference agent o f the 

machine players' agency: figures 10.43, 10.44, 10.79 and 10.80. 

The number o f events o f a machine-generated response depends on the current 

values o f the input-pressuxes-vector inside the current reference agent, more 

precisely on the contrast between the vector's three values (see chapter 6, 

section 6.6.2). A t any time, the CF creates a sequence o f between 1 and 20 

events, clearly oscillating around a centre value o f 10. 

Human vs. machine agreement: figures 10.45, 10.46, 10.81 and 10.82. 

These figures monitor the relationship between two independent values; they 

are modified respectively when the human and the machine just finished 

playing their most recent sequence. The values are updated according to the 

new man-machine melodic distance; i.e., the interval in difference between 

both sequences. A l l values are initially zero and increment as soon as the 

interaction gets going. Remarkably, figure 10.45 and figure 10.46 (somewhat 

less so) demonstrates a steady increase in agreement for both man and 

machine. Figures 10.81 and 10.82 show oscillating values. When both values 

are highly similar and o f a high value there is evidence that both parties 

managed to develop musical functionality to perform in a common effort wi th 

shared objectives. In other words, human and machine expose adaptive 

behaviour. In conclusion, these observadons reveal emergent goal 

directedness when learning is on. 
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Activi ty in the drives-pool: figures 10.47 to 10.52 and figures 10.83 to 10.88. 

Let us consider the drives-pool efficiency levels o f all four experiments as 

shown in figiu^es 10.47 and 10.48 (experiments include learning) and figures 

10.83 and 10.84 (experiments exclude learning). Since the drive efficiency 

level echoes how wel l the relationships inside a given drive actually contribute 

to the f i i l f i lment o f its current objective; i.e., integration or expression -

changes in that efficiency level might reveal complex oscillatory behavioiu. 

The complexity follows f rom positive and negative feedback inside the 

motivation network and how it interacts on a macroscopic level in the global 

systems architecture. Now, the drives endowed wi th learning produce a quite 

constrained, sawtooth-like pattern. Drives without learning create much wider 

and irregular oscillations. Leaming seemingly helps to guide the evolutionary 

process - in particular given the incremental trend o f the data collected in 

figure 10.47. 

Figures 10.49, 10.50, 10.85 and 10.86 document drives-pool output levels. 

When leaming is on (figures 10.49 and 10.50) both competing levels remain 

more or less in the same relationship, in figure 10.49, integration pressiue 

persistently dominates though both figures also reveal the steady rhythm o f the 

evolutionary process. The polynomials disclose a slowly undulating data 

profile o f low amplitude. The picture is slightly different in figures 10.85 and 

10.86; the difference between integration and expression levels is more 
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differentiated. Again, learning seems to impose a stabilizing effect on the 
levels' competition. 

In addition, the data in figures 10.85 and 10.86 evolves from primarily 

integration towards mainly expression at the end. When taking this 

information in relation to the ascending data profile depicted in figures 10.99 

and 10.100; i.e., the incremental nature of the system common understanding 

levels, expression levels and understanding clearly demonstrate positive 

correlation. Therefore, it is concluded that human and machine opt for 

expressive behaviour towards the end of experiment e9 and elO. 

The drives-pool understanding levels (figures 10.51, 10.52, 10.87 and 10.88) 

show a relatively flat data profile, except for figure 10.87. The latter shows a 

strong incremental data curve, which coincides with the incremental nature of 

the data in figure 10.99, the system common understanding record. The 

correlations in the other experiments - relatively flat, low frequency 

polynomials for understanding-level and system common understanding -

confirm this conclusion. In other words, the data in both figures should be 

congruent because the understanding level of the drives-pool is scaled up or 

down according to the degree of common understanding (see chapter 8, 

section 8.6). 

A clear correlation is also observed between the drives pool output levels and 

the compound-function pool fitness histories documented in figures 10.55, 

10.56, 10.91 and 10.92. The polynomials in the respective data sets are 
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complementary, for instance, the crossings of red and blue polynomials in 
figures 10.85 and 10.86 (drives-pool levels) and the swings in the polynomials 
of respectively figures 10.91 and 10.92 are complementary. In all figures, the 
tendency is towards more expression and the turning points (for instance, at 
generation 80 in experiment 10) are perfectly synchronized. 

Patcher fitness history: figures 10.53, 10.54, 10.89 and 10.90. 

Patcher fitness data shows very irregular patterns with occasional peaks. The 

positive feedback inside the listening network in combination with the firing 

activity in sensors and neurons introduces quite impredictable output; more 

precisely, it proves extremely difficult to uncover correlations with other 

datasets. 

Data levels in the compound-fiinction-pool: figures 10.55 to 10.60 and figures 10.91 

to 10.96. 

The evolution of fitness in the CF-pool follows a regime of clustering 

preferences. For instance, in figure 10.55, the CF-pool develops areas of very 

high expression fitness; i.e., musical processing functions that work very well 

for the purpose of expression, at the beginning of the interaction. Figure 10.91 

shows an evolution fi-om integration towards mainly expression. The 

clustering nature of the data entails a high amount of consistency in machine 

responses. A social machine inclination (figures 10.55 and 10.91) reveals 

more consistency than selfish inclination; the latter seemingly fostering more 
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competition between integration and expression fitness causing more erratic 
level changes. 

Observe the exploration boost at generation 600 (tracer data) in the 

exploration-exploitation pressures data (figure 10.71) to coincide with an 

evident transition in the CF-pool fitness history (figure 10.91) fi-om a flat 

integration regime to a sudden peaking winning fitness for expression at 

generation 150 (evolution data). This observation is further confirmed by a 

comparative transition from integration to expression in the drives-pool levels 

(figure 10.85). 

Figures 10.57, 10.58, 10.93 and 10.94 document the oscillations in CF-pool 

application density; i.e., how many compound-functions are distributed to the 

players' agency - this number also reflects the number of agents inside the 

current agents cluster. Clusters of seven agents are extremely rare. Also, 

coherent micro-oscillations are spotted suggesting self-organised behaviour 

constrained by temporal regularity in the agents' pattern formation. The wave

like outline of the black curve (the floating average grouping eight data 

samples) suggests a similar regularity of spatiotemporal structures on a larger 

scale. This observation echoes the fi-actal-like nature of the general networked 

architecture proposed in chapter 1, section 1.2. 

Figures 10.59, 10.60, 10.95 and 10.96 show CF-pool application density 

histograms; how many times every CF in the pool is actually put to work, a 

number that also reveals information on the relative divergence in usefulness 

(fitness) of all CF in the pool. A sharper profile emerges given that learning is 
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on (figures 10.59 and 10.60), compound-function nr. 4 is the more popular 
one. The data shows a Gauss-like distribution. Not so in figures 10.95 and 
10.96 where learning is off. The data shows far less contrast; in particular 
figure 1095 shows a nearly flat distribution, also, fiinction nr. 8 is never 
applied. Learning thus promotes idiosyncratic machine behaviour because it 
develops temporal biased preferences for the selection of specific musical 
processing functions - another form of emergent functionality. 

Number of unique compound-function ID's in the players' agency: figures 10.61, 

10.62, 10.97 and 10.98. 

Specificity of CF selection is conditioned primarily by three factors: (1) the 

indented orientation to take next (instructed by the current drive), (2) the 

quality of the contents of the CF-pool; i.e., the current contrast and proportion 

of numerical availability between the functions fit for expression and those fit 

for integration and (3) the current exploration-exploitation-ratio (for details, 

please see chapter 9, figure 9.11). Specificity of 100% results when only a 

single candidate function exists to be distributed to every agent. Zones of 

regular spiking of maximum specificity demonstrate sustained interactions 

between the motivation network and the players' agency. 

Global output: figures 10.63 to 10.66 and figures 10.99 to 10.102. 

This group of figures documents system behaviour at the highest level of 

generalization. System common understanding shows areas of relative 
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stability and areas of oscillations constrained between specific upper and 
lower levels. Figures 10.63 (learning is on) maintain a remarkable interaction 
climate characterized by man-machine agreement. From figure 10.65 it is 
discovered that system global orientation values remain primarily negative 
throughout, thus both man and machine are engaged in an extended process of 
mutual expression. A similar picture shows up for experiment e8. 
Data profiles for experiments e9 and elO are in sharp contrast to the data in the 
previous experiments; system common understanding equally develops 
agreement, however, given an orientation of integration throughout 
(experiment e9) and an orientafion oscillating around zero (experiment elO). 
A strong correlation exists between the incremental nature of the drives-pool 
imderstanding level (figure 10.87) and a similar profile in system common 
understanding level (figure 10.99). 

System-global-orientation level and the level of man-machine understanding 

receive further comparative examination in the next section. 
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10.4.7 Consideration of Global Comparative Results 

10.4.7.1 Comparative Visualisation of Results 

The system-global-orientation level and the level of system-common-

understanding are important indicators of Oscar's global behaviour. This section 

provides a comparative analysis by way of histograms. 

Figures 10.103 to 10.110 are organised in two columns. The left column compares 

all four experiments while making the sum of all data samples that are positive (light 

blue) and the absolute sum of all negative samples (red). The right column addresses 

the same samples however counting the number of positive and negative samples. 

Both values are averages taken over the data in all eight objects in the current 

population. 

First of all, the activity in the patcher and the drives-pool is taken up because both 

collections of objects reflect the activity of respectively the human interactor and the 

synthetic performer, Oscar itself. This information is further employed to compute 

the two top-most behavioural data: (1) the system global orientation and, (2) the 

degree of system-common-understanding. 

Remember, a patch and a drive both contain relationships whose continuous action 

results in the formulation of two competing output variables, one holding positive, 

and the other holding negative values. These values are interpreted as competing 

pressures; positive values aim for human-machine integration, negative values reflect 

the expression level. The system-global-orientation is computed from the ratio 

between the orientations of patcher and drives-pool. Finally, the degree of human-

machine understanding - the system common understanding - is the amount of 
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contrast between levels of agreement and conflict. For a complete discussion, please 
refer to chapter 8, section 8.6. 

The system-common-understanding represents the top-most impression of the 

global systems behaviour. As introduced in chapter 1, the implicit intention of Oscar 

is to develop networks and musical processing functions that are optimised towards 

generating agreement between human and machine as musical partners. Agreement 

implies that both man and machine are competent to develop functionality that 

contributes to sustain the current system-global-orientation, irrespective of whether it 

is integration or expression. We shall see that the experiments reported here show 

strong evidence that the current systems architecture manages to support such 

functionality successfully. 

Let us try to infer the effect of (1) learning and (2) system inclination fi-om 

inspection of the data exposed in these figures. In order to develop a formal ground to 

compare data pairs, a measure of contrast between the respective values is computed 

'* Dividing the absolute value of the difference of the two values by their sum and multiplying 
the result by 100 computes the amount of contrast, in percent. 
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Figure 10.103: Sum of patch pressures in e7 to elO. 
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Figure 10.104: Count of patch pressures in e7 to elO. 
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Figure 10.106: Count of drive activation in e7 to elO. 
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Figure 10.108: Count of system orientation in e7 to elO. 
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Figure 10.109: Sum of common understanding in e7 to elO. 
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10.4.7.2 Evaluation of Results 

Figures 10.103 to 10.110 document global results obtained from the four 

systemafic experiments e7 to elO. Every figure compares two numerical values 

reflecting the status of a given measurement, given the results from the four 

experiments. A l l numerical values are evaluated against a relative scale; all data 

samples are scaled by a factor 10, 100 or 1000 in order to derive consequent values 

prepared for visualisation. 

Figure 10.103: Patcher global orientation, observing the sum of all patch pressures. 

The results from experiments e7 and e8 are highly dissimilar; they reveal the 

complete inability of the patcher to develop integration pressure when the 

system is configured as selfish (e8). Only 64 samples (2, 75%) provide a 

positive value and 2270 samples (97,25%) are negative. When configured as 

social (experiment e7), integration pressure supersedes expression pressure 

according to the following ratio: 54,4% positive samples, 45,6% negative 

samples. 

Important, a patch object is not in any way directly linked to the system 

inclination parameter. Only the adjust-fitness method associated with the 

compound-fimction-pool addresses the system inclination parameter (chapter 

6). Remarkably, the individual activity in the different system components 

develops an emergent peaking of negative values - the conclusion is that 

expression pressure wins which seems logical given a selfish systems 

orientation. This outcome is not programmed in any way; in this case, it 

proves that the motivation network (incorporating the CF-pool) manages to 

favourably propagate information to the perception network (chapter 1). In 
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addition, this proves the ability of a patch to develop favourable relationships 
in time, relationships that implicitly contribute to the improvement of man-
machine understanding in the long run. Globally speaking, the effect is the 
development of distinctive systems behaviour. 

Learning is disabled in experiment e9 and elO. Both experiments offer 

divergent results, however, less contrasting than experiments e7 and e8. 

Experiment e9 with social system inclination develops more integration than 

expression pressure. Experiment elO with selfish inclination, it is just the other 

way round. Both observations are congruent with the understanding that a 

social inclination should generate listening networks that offer more potential 

to integrate than express. 

When considering contrast in figure 10.103, the patch global orientations 

contrast for experiments e7 to elO are respectively, 8.6%, 94.5%, 27.2% and 

31.1%. In experiment e8, the human performer remains helpless to develop 

positive patch levels; since patch objects do not feature learning, the 

evolutionary chain clearly escalates into an only expression point attractor 

regime. Interestingly, for experiment e8, the highest patch level contrast 

coincides with the lowest contrast (yet still substantial global agreement) in 

system common imderstanding (26.8%) - as displayed in figure 10.109. This 

proves that the listening and the motivation networks do effectively interact 

and that the system, as a whole, manages to accommodate the unsolicited 

effect of point attractors successfully, clearly another instance of emergent 
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fimctionality. In other words, the networked architecture developed in this 
thesis fosters internal spontaneous cooperation amongst system components. 

Figure 10.104: Patcher global orientation, observing the count of all positive and 

negative patch pressures. 

The results in figure 10.104 follow the data in figure 10.103. Considering 

experiment elO, the number of positive and negative samples is nearly 

identical, 82 to 84; i.e., a difference of only 0.6 percent. The divergence for 

experiment elO in figure 10.103 is 960 (sum of positive samples) to 1830 

(sum of negative samples) or a ratio of 35% to 65%. Therefore, a patch 

features few strong negative peaks as opposed to many but weaker positive 

ones. 

Figure 10.105: Drives-pool global orientation, observing the sum of all pressures. 

Considering figure 10.105, the drives competing orientation levels - what is 

the impact of learning? In experiment e7 and e8, expression supersedes 

integration given a contrast of respectively 42.9% and 24.5% - learning thus 

promotes the development of expression rather than integration, irrespective 

of system inclination. 

Experiment e9 - with social inclination and learning disabled - integration is 

the winning force with a contrast of 34.3%. This profile looks similar to the 

data of e9 in figure 10.103; the pressures in the patch and the drive produce 

comparable levels, again the effect of coupling between patch and drive 
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surpasses the effect of learning. In experiment elO - with selfish system 
inclination and without learning - the system does not develop a clear attitude; 
contrast is only 2.9 %, signalling an impasse in the drives pool. 
Generally speaking, contrast between posifive and negative samples is more 
prominent in a patch than in a drive. 

Figure 10.106: Drives-pool global orientation, observing the count of all pressures. 

The data in figure 10.105 is confirmed. However, the data in experiment elO 

seems out of balance; the count positive/negative ratio is 86/83 while the sum 

positive/negafive ratio is 3160/3348. Therefore, more attempts to integrate 

were undertaken as opposed to attempts to express - however, the amplitude 

of the former being inferior to the strength of the latter. Thus, selfish 

inclination with no learning leaves the drives in a global symmetry. 

Figure 10.107: System global orientation, observing the sum of all pressures. 

The contrast between integration and expression is maximal in experiment e7, 

e8 and e9. Only in experiment e9, (social inclination, no learning) integration 

supersedes expression, explained by the cumulative effect of patcher and 

drives-pool. The strongest global orientation occurs in experiment e8, a ratio 

of 850/2833 or 23% integration and 77% expression. Experiment elO (selfish 

inclination, no learning) features the least contrast: a ratio of 1432/2021 or 

41% integration and 59% expression. 
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Given a selfish inclination (data pairs e8 and elO), expression is the winning 
force with a contrast of respectively 53.8% and 17%. However, the condition 
of social inclination and learning enabled (e7) also generates a system 
orientation focussing on expression with a contrast of 36.4%. Again, the effect 
of learning remains unclear. 

Figure 10.108: System global orientation, observing the count of all pressures. 

The general tendencies of figure 10.107 are reflected here as well. However, 

the confrast between integration and expression is less prominent than in 

figure 10.107. Only experiment e9 develops a clear preference for integration. 

Experiment elO shows approximately equal values; this echoes the values in 

figures 10.104 and 10.106. 

Figure 10.109: System common understanding, observing the sum of all pressures. 

This figure provides system information at the highest level of abstraction; 

how well man and machine adapt to one another in order to maximize mutual 

agreement. Maximum agreement is manifest in experiment e7 and all four 

experiments show evidence that Oscar exhibits a capacity to manipulate its 

system components in order to agree with the human interactor. Figure 10.109 

illustrates the following agreement/conflict ratios (in percent): 
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Experiment e7 e8 e9 elO 

Agreement 89 63 75 75 

Conflict 11 37 25 25 

Table 10.9: Levels of human-machine agreement and conflict in experiments e7 to 
elO. 

Experiment e7 (combining social system inclination and learning) features the 

highest score. Contrast in experiment e7 is 77.9%. Consequently, social 

system inclination and the inclusion of learning seem to provide the basis for 

successftil human-machine interaction, where the system as a whole aims to 

optimise towards maximum agreement. 

The lowest contrast is spotted in the second data pair (experiment e8); 26.8% 

contrast between the levels of agreement and conflict given a selfish system 

inclination. The difference in contrast of experiment e7 vs. experiment e8 

makes it clear that a selfish attitude - which aims to optimise global system 

performance only considering the competing levels in the drives - is less 

suited to evolve fruitful interaction. 

A social inclination exploits the momentary relationships between the outputs 

of patch (human pressure) and drive (machine pressure) in order to compute a 

global orientation. The result updates the fitness of the current compound-

fiinction - expressing a preference towards the musical material currently 

produced by the machine performer. A selfish inclination (experiment e8) 

aims to optimise the drive fitness by only taking its current orientation into 

account. So it seems logical to expect more agreement in the first case. 
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The results for experiment e9 and elO are of nearly identical contrast; 
respectively 49.4% and 50.6%. This means that the constructive impact of a 
social orientation is no longer operational when learning is disabled. In 
addition, it shows that the inclusion of learning plays a much more significant 
role than a particular specification of the system inclination. 

Figure 10.110: System common understanding, observing the count of all pressures. 

Again the results of the previous figure are confirmed. Strikingly, the results 

for experiment e9 and elO are virtually identical. It means that the system as a 

whole settles itself in a given behavioural niche when learning is disabled - let 

us refer to this as the capacity of Oscar to develop a functional behavioural 

identity. Keep in mind, this figure reflects the history of the fluctuations of 

agreement and conflict levels inside the system - the dynamics of this process 

are visualised in figures 10.63, 10.64, 10.99 and 10.100. At every step in time, 

these are computed by counting all positive and negative understanding levels. 

Figure 10.110 shows the actual total sum of these values gathered over a time 

span of approximately 40 minutes of man-machine interaction. Therefore, it is 

not easy to explain the unusual correlation between the values in experiment 

e9 and experiment elO. A general conclusion is that the inclusion of learning 

is instrumental to keep the system from an orientation impasse and helps to 

develop contrast between social and selfish behaviour. 
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In conclusion, the data in the figures 10.103 to 10.110 is often obscure to 
understand and difficult to interpret. However, there is ample evidence that learning 
plays a less vital role than the consequences of the non-linear couplings between 
system components and in a more general sense, between Oscar and the human 
interactor (chapter 1, figure 1.1). Further correlation analysis, detailed next, aims to 
shed light on the kind of coupling between the drives global orientation and the level 
of system common understanding. 



10.4.8 : Correlation Analysis of Experiments e7 to e10 
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Figure 10.111: Correlation between the drives global orientation and system common 

understanding in experiment e7: social inclination, evolution and learning. 
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Figure 10.112: Correlation between the drives global orientation and system common 

understanding in experiment e8: selfish inclination, evolution and learning. 
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Figure 10.113: Correlation between the drives global orientation and system common 

understanding in experiment e9: social inclination, evolution only (no learning). 
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Figure 10.114: Correlation between the drives global orientation and system common 

understanding in experiment elO: selfish inclination, evolution only (no learning). 
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Figures 10.111 to 10.114 show a comparative analysis of the results of the four 

experiments in terms of correlation between the drives global orientation and the 

system common understanding. The respective signals (169 samples in every 

experiment) were collected in the evolution process, just before breeding the next 

populations. The drives output signal is between -100 and +100, equivalent to a drive 

aiming exclusively expression (no attention to the human suggested context) and, at 

the other end of the scale, total integration (full attention to current context). 

System global orientation (see chapter 8, section 8.6) also oscillates between -100 

and +100 - implying a scale fi-om total conflict to complete agreement during man-

machine interaction. 

Following the language of complex dynamical systems (Thomson and Stewart 

1986), the figures above may be interpreted as phase portraits. The output behaviour 

of the system is reflected in the topological structure of the phase space of dynamical 

trajectories. 

The strength and the direction of the correlations between the two variables are 

visualised as scatter-plots. Perfect correlations show up as straight lines. Whatever the 

system settings for inclination and learning, all experiments reveal a strong 

correlation between negative global orientations; i.e., system prefers expression, and 

positive values for system common understanding; i.e., system manages to evolve an 

interaction regime characterised by agreement rather than conflict. 

With the exception of figure 10.112, all figiu-es exhibit a strong positive 

correlation between agreement and expression. More precisely, human-machine 

agreement suggests itself given oscillatory behaviour in the dimension of system 

global orientation. In addition, various data points cluster in irregular places. In 



486 

particular, there seems to be no correlation given a system orientation of integration 
and negative common understanding; i.e., a situation of conflict. This observation 
proves that Oscar has more trouble to develop an attitude of integration than an 
attitude of expression. Incidentally, figure 10.112 shows uncorrelated data given 
conflict and integration. This figure, documenting an experiment with selfish 
inclinafion and learning enabled, offers the most explicit phase portrait; just two 
behavioural regimes. Firstly, nearly perfect correlation given positive common 
understanding (agreement) and negative global orientation (system prefers 
expression). Secondly, we observe practically no correlation at all given negative 
common understanding (conflict) and positive global orientation (system prefers 
integration). In other words, the system oscillates between, on the one hand, 
behaviour based on relatively linear relationships and, on the other hand, quite chaotic 
behaviour. 

However, the mutual divergence between these figures remains quite subtle. A 

social inclination entails the strongest oscillations between both system orientations. 

In addition the phase portraits in figures 10.111 and 10.114 are virtually identical. 

Also it proves impossible to develop a clear idea of the impact of learning from the 

interpretation of the figures above. 

10.5 Experiment e7: Analysis of a Limited Interaction Context 

A short excerpt from the two M I D I files documenting respectively the activity of 

man and machine in experiment e7 is analysed in detail. The agents activity was taken 

as a point of departure; the M I D I file (8 individual tracks, one track per agent) was 

dissected in terms of pitch, velocity, duration and rhythm - rhythm refers to the time 

span of the sounding events and the duration of the inter-event rests. In summary: 
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Total number of samples in pitch, velocity and duration: 6585. 
Total number of samples in rhythm: 7082. 

To start, a zone of 500 samples is located in a total of 6585 samples - starting at 

sample 1600 and reading to sample 2100; i.e., start-pointer is at 24.29% of the total 

dataset and the end-pointer is at 31.89% of the total dataset. As a result, a momentary 

interaction context of 7.6% of the total data is reflected on. 

The global agents dataset as a whole is not visualised because, when shown as a 

linear list, the behavioural data merge and become meaningless. However, we may 

examine a few agents in isolation; agents nr. 1 and 3 are taken as examples. 

10.5.1 Data Visualisation of Interaction Context 

Four data sets are visualised as individual information strata in figures 10.119 to 

10.122 and 10.123 to 10.126. Note that the rhythm data carries more samples than 

duration since the equivalent percentage time span includes acfive as well as passive 

(rests) durations. 

The M I D I file holding the events produced by the human interactor is addressed 

next. Analysis of pitch, velocity and duration yields 1613 samples, rhythms yields 

2602 samples. Extracting the same 7.6 percent as above, one gets respectively 166 

and 242 samples. Information derived from human input is depicted in figures 10.115 

to 10.118. 

The next seven figiu-es (10.127 to 10.133) address data gathered by the tracer-data 

collector. A region of 58 samples is taken fi-om a total of 755 samples, again 

following a start-pointer at 24.29% of the total dataset to the end-pointer at 31.89% of 

the total dataset. The remaining figures (figure 10.134 to 10.138) display information 

gathered fi^om the evolution-data collector; i.e., data available at the end of every 
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learning-cycle and just before genetic breeding takes place. This small dataset of just 
14 samples reveals a remarkable amount of information. 

The final pages show a 19-segment sequence of a 9-track score in common music 

notation; the top track documents human input, the next eight document machine-

generated music, a single track is associated with a single agent. The excerpt shown 

covers 36 measures taken from a total of 469 measures, again according to the start 

and stop pointers as explained above. 

The remaining sections are organised as follows: (1) comments are offered on the 

subject matter of the respective figures which document the source material for the 

analysis in question, and (2) the musical rendering is analysed (rather than the 

independent information strata) in an attempt to infer a deeper implication from the 

observation of the musical events in the 19-page score excerpt. 

Figure 10.115: Human input, dimension of pitch; 166 samples. 

Human input (figure 10.115) is mainly characterized by long sequences of 

consistently large, alternating positive and negative pitch intervals with occasional 

leaps. Such behaviour is bound to return a Boolean true for the angular-pitch sensor. 

It wi l l also lower the quality-level of the data in working memory because of the 

relatively low diversity of pitch intervals. Other zones reveal arpeggios and recurring 

patterns with variations. 
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Figure 10.116: Human input, dimension of velocity; 166 samples. 

The loudness of the events produced by the human interactor fluctuates in more 

erratic conduct (figure 10.116). Yet one may spot both unusual peaks as well as areas 

of more or less stationary input. 
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Figure 10.117: Human input, dimension of duration; 166 samples. 

Figure 10.117: the human interactor mainly produces short events (duration < 500 

milliseconds), with the exception of a few occasional very long events. The 2.5 

seconds event (sample 75) happens to coincide with a repetition of pitch (MIDI pitch 

74) signalling the end of a history of steadily oscillating pitches. This situation is sure 

to trigger the reflex sensor (see chapter 4, section 4.4.1.2). 
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Figure 10.118: Human input, dimension of rhythm; 242 samples. 
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When considering the rhythm data in figure 10.118; positive values document 

active event durations, negative values reflect inter-event rests. This figure reveals 

mainly short durations and rests (a relatively fast input sequence) in addition to a few 

extended periods of rest. Incidentally, some exceptional data levels in the respective 

dimensions happen to coincide: consider the transition of a long event (sample 122, 

the highest peaking duration of 2500 milliseconds) to the occurrence of a very long 

silence (sample 123, a rest of 5360 milliseconds). In addition, this situation also 

matches the sudden occurrence of a zero pitch interval as shown in figure 10.115. 

Again, without doubt, such a dramatic change in context wi l l trigger a considerable 

family of sensors. 

As an example, agents 1 and 3 are visualised next. 

\ ' ^ " " V - N V-v / \ 

U - V \ 1 \j vJ 

Figure 10.119: Agent 1, dimension of pitch; 84 samples. 

Figure 10.120: Agent 1, dimension of velocity; 84 samples. 
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Figure 10.121: Agent 1, dimension of duration; 84 samples. 
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Figure 10.122: Agent 1, dimension of rhythm; 146 samples. 

Figure 10.119 shows the dimension of pitch of agent 1. While this was not 

anticipated, a natural interpretation of the pitch contour is to attribute qualities of 

Brownian motion; occasional large, intermittingly positive and negative intervals 

alternate with zones of more coherent nearly periodic oscillations. In addition, small 

melodic figures that gradually move up or down are easily detected. As such, 

remarkable idiosyncratic pitch behaviour is revealed. 

Figure 10.120 displays the coordinated activity of the agents-based orchestration 

algorithm in the dimension of velocity. Pivotal changes in the dimensions of pitch and 

velocity sometimes clearly coincide, at other times important changes are not 

synchronized. This reflects the variable pressures in coordinated action exercised by 

the principle of multiple influences (see chapter 6, section 6.4). 
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Figure 10.123: Agent 3, dimension of pitch; 66 samples 
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Figure 10.124: Agent 3, dimension of velocity; 66 samples 
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Figure 10.125: Agent 3, dimension of duration; 66 samples 
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Figure 10.126: Agent 3, dimension of rhythm; 127 samples 

Figure 10.121 shows how the duration of machine generated events cluster in 

specific value zones. The episodic nature of the data reflects the changes in 

compound-functions. Eventual continuity in the data may follow from the similarity 

between consecutively operafional compound-functions, from the interactions of 
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agents equipped with similar duration data or fi-om continuity introduced by an agent 
acting in isolation; an agent only relying on its own private data set. 

Also figure 10.122 shows a great deal of regularity in the articulation of rests and 

active durations, values oscillate around zero with a relatively high degree of 

periodicity. Such resulting regularity is typically generated by the repeated application 

of short data lists; agents borrow small excerpts of data fi"om working memory (the 

human performer or from neighbouring agents, i f any) again according to the 

principle of multiple influences. Note how recognized behavioural regimes in some 

dimension (pitch, velocity and duration) are clearly delineated by significant 

contextual changes in another dimension - the peaking negative values in the 

dimension of rhythm. 

Let us consider the output of agent nr. 3. Agent 3 produces less output than agent 

1 but the data reveals a much higher degree of periodicity. This implies that the 

source data from which agent 3 generates its content remains more or less the same 

over the complete duration of the short interaction excerpt documented here. Also, the 

interference of the individual source patterns is clearly observed because the patterns 

for pitch, velocity and duration are of slightly different length. 

Figure 10.127:Agents input-pressure, single dimension (human), 58 samples. For 

clarity, only the data reflecting the six agents (out of 8) that actually engage in 

interaction are visualised. 
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Figure 10.127 shows how an agent swiftly adapts to human input. The input-
deliberation algorithm manipulates the respective sensitivities according to extemal 
human pressures and according to changes in proximity of neighbouring agents (see 
chapter 6, section 6.5.5). Increased sensitivity in one agent (red curve) seems to 
coincide with a major peak in velocity - as noticed in figure 10.116. 

Figure 10.128: Human-machine total similarity), 58 samples. 

A moderate increase in man-machine similarity characterises figure 10.128. 

Figure 10.129: Human (green curve) vs. machine (red curve) agreement, 58 samples. 
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Figure 10.130: Drives global orientation, 58 samples. 

The drives global orientadon profile evolves from slightly positive values to foremost 

negative values, thus Oscar develops a preference for expression in this data block. 
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Figure 10.131: Patcher global orientation, 58 samples. 

The patcher data in figure 10.131 first develops positive values (a wish to integrate) 

and then settles on an oscillating regime with occasional negafive (expressive) peaks. 
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Figure 10.132: Exploitation (green curve) vs. exploration (red curve), 58 samples. 

Figure 10.132 documents the competing levels of exploration and exploitation as 

they adapt according to changes in human-responsiveness (see chapter 4, section 

4.5.8). The momentary values are brought into play when real-time learning is active. 

Figure 10.133: Human-responsiveness, 58 samples. 

When comparing the incremental nature of human-responsiveness in figure 10.133 

to the data in figure 10.132 one observes the following: while exploitation level has 

developed a first peak around sample 25, human-responsiveness must gain 
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considerable momentum before it succeeds in pushing the exploitation level down and 
the exploration level slightly up. A correlation is certainly observed. However the 
influence on exploration/exploitation levels is delayed and obscured by the non-linear 
couplings inside the system's networked architecture. 

Figure 10.134: Compound-funcdon-pool levels: integration (red), expression (green), 

14 samples. 

Figure 10.135: Compound-function-pool, function application frequency, 14 samples 

Figure 10.134 and 10.135 documents the effect of evolution in the compound-

function pool in a limited span of just 14 learning sections, the onset of a fresh 

population by genetic breeding is observed at the start of phase number 6. 

Figure 10.136: System-global-orientadon, 14 samples. 
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The system-global-orientation level in figure 10.136 initially oscillates with a 
cycle of approximately one sample and progressively slows down its frequency to a 
cycle of about three samples. The net effect is a transition from near zero values to 
mildly peaking negative samples; i.e., the inception of a system oriented towards 
expressive behaviour. 

Figure 10.137: System common understanding, 14 samples. 

Figure 10.137: System common understanding advances from agreement (30%) at 

the beginning to minor conflict at phase 6 (5%) to peaking agreement (40%) at phase 

11. The peaking is explained by the global trend towards negative values in patch and 

drive (see respectively figures 10.130 and 10.131). 
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Figure 10.138: Percentage unique agents' ID's, 14 samples. 

The percentage of unique agents' ID's is proportional to the specificity of the 

compound-function pool selection procedure, a procedure that picks certain ftinctions 

from the current population and attributes a single ftinction to every agent in the 

players agency. The orientation of the current drive (integration or expression) 
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determines what kind of CF will be considered for selection; i.e., only the functions 
that have developed positive fitness of that drives' current orientation. Thus, a list of 
candidate CF is generated and sorted by fitness given the current purpose; i.e., help to 
integrate or offer expression. In case few candidates exist, specificity is high, when 
only one CF provides functionality for the present objective, specificity equals 100% 
(see chapter 9). Specificity tops 100% at phase 5 and phase 10. 
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10.5.2 Analysis of the Musical Score 

The previous pages show an excerpt of an interaction session as the combination 

of two M I D I files; (1) the output of the human interactor (top stave) and (2) the output 

of the eight player agents performing on their respective M I D I channels (1 to 8). 

The top stave shows human input, the eight subsequent staves document player 

activity in the players' agency, one agent per stave. The excerpt encompasses measure 

114 to measure 149. 

It is tempting to focus analysis on the detection of highly similar patterns in the 

output of man and machine. However, as Oscar avoids the question-answer 

interaction paradigm such an analysis approach is not very informative. In contrast, 

Oscar evolves and behaves musically from the interpretation of changes in a complex 

networked architecture. As a consequence, the system can be influenced but not 

controlled, thus interaction happens on a higher level of abstraction, much higher than 

in an event-based interaction setting. For instance, the input-deliberation algorithm 

(chapter 6, section 6.5.4), the principle of multiple-influences (chapter 6, section 6.4) 

- instrumental in the agent's melody construction process - and the effect of 

nonlinear couplings spread out in the constituent networks, all this arranges for the 

expression of continuous rather than discrete levels of internal parametric 

specification. Nonetheless, one may trace correlations between, on the one hand, input 

data affecting agents output in non-trivial ways, and on the other hand, musical 

structures emerging from inter-agent interactions. 

The score clearly echoes the clustering activity in the players' agency; the 

reference agent in the current cluster is identified by its MIDI-channel, which in turn 

specifies the stave number: 2 to 9 in the score. The melodic activity switches between 
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three agents in the first two measures (starting measure 114); fi-om agent 5 to 1 to 2. 
The relative coherence of interval content of the three short sequences reveals a tight 
coupling between the three agents, the data in the agents input-deliberation vector 
most Hkely favours selection fi-om the same source (neighbour) agent. However, agent 
1 (stave 2) clearly exploits a private duration pattern. 

Human input in measure 116: the last three events form the following interval 

sequence: - 1 , 1,-2 semitones. An especially rare instance of machine imitation occurs 

in agent 1, measure 121 where the same pattern appears starting on pitch B. 

A clear instance of imitation by the human performer is spotted in measure 119, 

the negative interval of a fifth is an immediate response to the interval content of the 

short sequence produced by agent 3 in the preceding measure. 

More activity develops starting measure 124; four agents (1, 3, 5 and 7) interact, 

reference agent is agent 3. In measure 126, the pattern F, E-flat produced by agent 3 is 

expanded into the following two-event pattern: E, F-sharp - the trailing source quarter 

note is echoed as a quarter rest in agent 7. 

The duration dimension of the half-note event in measure 137 is picked up 

immediately by agent 3 in measure 138 and in agent 2 in measure 140. Figure 10.132 

confirms a peaking exploitation level around 63%^ way through the illustration - this 

means that the level human-responsiveness receives a significant boost - in other 

words, the human interactor is asking for attention by causing a contextual break by 

producing a loud event of prolonged duration. 

^ Percentage wise position in a figure is computed as: number of measures fi-om the 
start divided by the total number of measures (114 to 149 = 35 measures) multiplied 
by 100. The resulting value makes it possible to relate the posifion of a given measure 
in the score. 
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Measure 139 documents another unambiguous example of melodic expansion in 
agent 5, the source events being produced by reference agent nr. 2. The first event, 
pitch middle-C, eight note, expands into two sixteenth-note events given a pitch offset 
of a fourth and a subsequent intervals-list starting with a positive interval of a 
semitone - thus F, F-sharp results. The connected events 2 and 3 in agent 2 appear as 
disconnected in agent 5 transposed by four semitones. Next, the quarter note F in 
agent 2 is split as a dotted eight plus a sixteenth note in agent 5 following an interval 
offset of respectively an octave (F) and 14 semitones (G). A modified version of the 
contents of measure 140, agent 2 appears in agentS; a dotted C-sharp is expanded into 
F-sharp and F, the remaining C appears as F-sharp. The human performer is quick to 
react; the final small pattern in measure 140 equally focuses on F-sharp. The 
increasing value of human-machine similarity (figure 10.128) at 74% confirms this 
observation. 

Further examples of cluster-based orchestration occur in measure 141; considering 

reference agent nr. 2, contractions of interval patterns show up in agent 6 while 

complementary expansions of the same source patterns appear in agent 7. Also, the 

trailing pattern (duration eight note plus half note, pitch A) input by the human 

performer appears in measure 146, agent 5. Synchronized, expanded versions of that 

same pattern emerge in agents 2 and 7 in measure 146. As firom measure 144, the 

human performer provides descending arpeggios spanning a pitch range of up to 

almost two octaves - figure 10.133 documenting human-responsiveness and the 

peaking levels of velocity (figure 10.116, human input, dimension of velocity) all 

confirm a change in context. 

The density of agents' activity is exceptional in measure 147 since 5 agents 

exchange information as they agglomerate into the current cluster. Reference agent is 
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agent nr. 2. There are plenty of examples of orchestration by contraction and 
expansion. For example, the opening eight-note F in agent 2 is expanded into two 
sixteenth notes C-sharp, F. The following two events - interval of a minor second -
are expanded into a triplet figure, intervals of four semitones up and 11 semitones 
down. Modified versions of the second figure starting on C-sharp appear in agents 
4,5,7 and 8. The human performer has managed to exert increased influence on the 
current agents activation; this is confirmed by an incremental trend in human 
responsiveness shown in figure 10.133. 

Large intervals and a regular rhythm typify human input, starting measure 148. 

The intervals are echoed without much delay in the following measures; interval of -

15 semitones in agent 1 and +20 semitones in agent 6. 

In conclusion, the score excerpt demonstrates musical behaviour of a distributed 

system based on loosely coupled components; influence fi-om an external human 

performer merges seamlessly with an internal musical climate issuing fi-om social 

affinities between individual agents. The performer has no authority to control but 

rather interferes in the expression of autonomous social affinities while the listening 

and motivation networks also interact in complex ways. The global result is coherent 

but non-trivial emergent fiinctionality. 
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10.6 Experiment e8: Analysis of System Behaviour in Relation to 
Musical Output 

This experiment aims to offer detailed insight on how specific momentary 

situations in systems behaviour give rise to the synthesis of particular musical output. 

In other words, how the dynamics of various system components are related to the 

nature of the actual musical output. The following systems quantities have immediate 

impact on the music producing algorithms: 

1) The input-deliberation-vector 

2) The activation levels of the agents 

3) The energy levels of the agents 

4) The private patterns held by every agent 

5) The compound-fimction held by every agent 

6) The current clusters of the player agency 

7) The current level of human-responsiveness 

8) The parameter settings of the player agency: primarily the value of the critical-

distance parameter and contents of the social affinities matrix. 

9) The contents of working memory 

10) The orientation of the current drive 

The settings for this experiment are as follows: 

Steps Steps Steps System Learn Input Learning-

N learn breed perform inclination mode 

8 1 16 160 Selfish Yes Human Real-time 

Table 10.10: Global parameter settings in experiment e8. 
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The critical-distance in the agency remains fixed at 74 throughout the experiment. 
The affinities matrix is filled with random numbers between 10 and 400, the 
orientation-bit is switched off and energy is set to 100. 

A number of typical score excerpts are presented reflecting the complexity of the 

interpretation algorithms, in particular, the creation of polyphonic sequences from a 

melody held by the reference agent as conditioned by the activation levels of the 

agents in a given cluster. In every performance step (1 to 160), machine output is 

computed and two MIDI files are stored to disk for later analysis: (1) a channel-zero 

file and (2) the reference-agent file. As explained in chapter 6, the contents of the 

charmel-zero file are used to compute the current musical distance between human 

and machine. The reference-agent's MIDI file holds a manipulated version of the 

channel-zero data; the data processed by the current compound-fiinction in addition to 

a number of potential parallel voices. At every point in time, only the reference-

agent's melody is performed. 

A note on the score excerpts: the optimal score visualisation is a compromise 

between readability and accuracy. Our score notation program (Apple Logic Express) 

includes an "interpretation" fianction that helps to create a cleaner, more readable 

score image, however partially distorting the actual duration data in specific ways. 

Switching "interpretation" off adds excessive visual notation complexity but provides 

a score image more accurately reflecting the rhythms in the M I D I file. It was decided 

to keep "interpretation" on because the timing relationships between the various 

voices remain very well synchronised since the programs optimisations are consistent 

- this results in a clean image also clearly reflecting the timing relationships between 

the various parallel voices. 
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10.6.1 Experiment e8, Score Excerpt nr. 1: Performance-step nr. 9 

10.6.1.1 Description of Score Excerpt nr. 1 

Figure 10.139: player-agency score excerpt at performance step nr. 9, voices 1 and 2. 

Listing nr. 1: hsting of system output in the Lisp listener, documenting performance-

step nr. 9. 

Clusters: CC3 5 8) (0 1 2 7 9)) 

Strongest cluster: (3 5 8). 

Reference-agent: #<AGENT #x25214CE>, ID: 3 

Cluster agents: 

agt:3 s t a t : ASLEEP cdis: 74 egy: 27 act: 77 ne: 9 neC0: 9 cf: 1 ip:#C44 45 45) 

ipa:#(40 64 20) nb:(5 8) pnb:NIL 

agt:5 s t a t : ASLEEP cdis: 74 egy: 27 act: 7 ne: 7 neC0: 5 cf: 0 ip:#C50 48 53) 

ipa:#C90 13 24) nb:C3 8) pnb:C8) 

agt:8 stat: ASLEEP cdis: 74 egy: 27 act:-45 ne: 6 neC0: 8 cf: 4 ip:#(41 54 46) 

ipa:#C40 63 12) nb:C3 5) pnb:C5) 

Human-responsiveness: 41. 
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Agency autonomous. 

Nr-events: 3, reference-channel: 3, interv a l s : (-1 1 -2), density: 27. 

Ego/neighbour selection chance: 52 %, b i t s : ( 1 0 0 1), neighbour: 5. 

Make-reference-melody: 

nr-events: 5 

density: 50 

pitch-0: 46 

interva l s : (-1 1 -2) 

durations: C-0-4 0.4 0.1 0.1 0.1 1.2 0.2) (seconds) 

ve l o c i t i e s : (117 117 81 76 60 67 117) 

i o t : (0.2 0 0.05 0 0 0) 

channel: 3 

Melody: CP_1 [Nr-events: 4] Duration: 0 min 2 sec 550 msec. 

S: 600 1150 1250 1350 

P: 74 71 72 70 

V: 117 76 60 67 

D: 400 100 100 1200 

C: 3 3 3 3 

Feedback algorithm using compound-function: 

COMPOUND-FUNCTION CP_1: 

source : #<ppm-melody "events-pane-mel">. 

fi t n e s s - i e : 0 0. 

f i t n - c r i t c : 0. 

nr-events : 4, nr-events channel-zero: 4. 

nrt-used : 0. 
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read-pntrs: (20 0 30 29). 

read-range: ( 5 5 5 6 ) . 

9 PRESENT EXTEND-MELODY (5 (-3 2 -2)) 

1 PRESENT TRANSPOSE-PITCHES 5 

10 PRESENT RETROGRADE NIL 

Melody: CP_1 [Nr-events: 9] Duration: 0 min 4 sec 650 msec. 

S: 0 99 1299 1399 2599 2699 3899 4000 4250 

P: 67 70 72 70 73 75 77 76 79 

V: 60 67 60 67 60 67 60 76 117 

D: 100 1200 100 1200 100 1200 100 100 400 

C: 3 3 3 3 0 0 0 0 0 

10.6.1.2 Analysis of Score Excerpt nr. 1 

There are two cluster configurations of respectively three and five agents. A l l 

agents in the player agency are in sleep mode and feature the same energy level (27). 

Therefore, there is no "strongest" cluster and the first one with agents ID's (3 5 8) is 

selected by default. The first agent (3) of that cluster is elected as the reference-agent 

and the compound-function attributed to that agent (CP l ) wil l be used for musical 

processing, as detailed in a moment. Also notice that the agent's status (asleep or 

awake) has only impact on the creation of parallel events to the reference-melody 

(detailed in a moment), not to the creation of the reference-melody itself 

Current human-responsiveness is rather low (41) and the probabilistic selection 

algorithm selects autonomous rather than responsive behaviour (please refer to 

chapter 7, section 7.3). Next, the relationship between two values in the input-

pressures-adapted wil l condition what data wi l l be used to construct the reference-
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melody. In autonomous mode, the vector slots two and three (counting from one) hold 
respectively the pressures for Ego and Neighbour - the first vector slot, Human, is 
ignored since v̂ ê perform in autonomous mode. Ego means specific data is taken 
from the reference agent itself while Neighbour means that specific data is borrowed 
from a the chosen neighbouring agent. The Ego/Neighbour selection chance happens 
to be 52%, meaning that both pressures are approximately equal in strength. The 
chance level is remapped as to act as a selection device in order to select a bit-pattern 
from the *sorted-pattems* collection (chapter 6, figure 6.1); the bit pattern (10 0 1) is 
chosen. This implies that the input material serving the construction of the reference 
melody is as follows; the first bit (value 1) meaning pitch intervals are taken from 
Neighbour, the second bit and the third bit are zero, meaning velocity and duration 
data is taken from Ego and the last bit is one, meaning inter-onset-times are taken 
from Neighbour. This example illusfrates the principle of mixing multiple influences 
(chapter 6, section 6.4) to construct machine statements whether in autonomous or 
responsive mode. 

The fiinction make-reference-melody is called next, its arguments are as follows: 

1) Nr-events (value: 5) is proportional to the energy level of the reference-

agent; nr-events is computed as (round (max 1 (/ (energy reference-agent) 

5))), therefore the number of events varies between 1 and 21. 

2) Density (value: 50) offers probabilistic conditioning of whether a 

sounding event is generated rather than a rest, density is computed as 

(max 50 (energy reference-agent)). 

3) Pitch-0 (value 46) is the starting pitch of the melody to be generated. It is 

computed as (+ 48 (choose (intervals reference-agent)) e.g., the melody 
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starts with a pitch offset randomly chosen from the agent's current 
intervals. 

4) Intervals (value: (-12 -2)). In this particular example, this interval pattern 

is provided by the reference-agent. 

5) Durations (value: (-0.4 0.4 0.1 0.1 0.1 1.2 0.2) in seconds) In this 

particular example, the durations pattern is taken from neighbour agent 

nr. 5. 

6) Velocities (value: (117 117 81 76 60 67 117)), this pattern is also taken 

from neighbour agent nr. 5. 

7) Inter-onset-times (value: (0.2 0 0 0.5 0 0 0) in seconds). This pattern is 

provided by the reference-agent. 

8) Channel (value: 3, meaning M I D I channel 4) is the destination M I D I 

channel for the events to be generated, it is equal to the MIDI channel of 

the reference-agent. 

The algorithm cycles through all the argument lists (modulo the length of each 

list) which yield a reference-melody of four events, not five as expected from the nr-

events argument. The first prospective event is not collected because its duration 

argument is negative (-0.4). 

Melody: CP_1 [Nr-events: 4] Duration: 2.55 sec. 

S: 600 1150 1250 1350 

P: 74 71 72 70 

V: 117 76 60 67 

D: 400 100 100 1200 

C: 3 3 3 3 
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The reference-melody listing above shows five data items per event; starting-time 

(S), pitch (P), velocity (V), duration (D) and M I D I channel (C). Times and durations 

are in milliseconds. The contents of the reference-melody are copied to the channel-

zero instance variable of the current CF, its contents wi l l be used with the comparator 

object to compute musical distance between human and machine (chapter 8, section 

8.3). 

A new melody is now computed by applying the feedback-algorithm (chapter 6, 

section 6.5.3) to the contents of the reference-melody, the result is collected in the 

compound-function (a subclass of the Melody object) itself. 

As seen above in listing nr. 1, the current compound (CP l , i.e. the first function 

in the compound-function-pool) was never applied before so its integration and 

expression fitness levels are zero. The data in the read-pointers and read-ranges 

specify how the source information for the respective dimensions (pitch, velocity, 

duration, iot) wi l l be read; read-pointers provide a start-position and read-ranges 

specify how many values are read - all pointers are automatically kept within 

appropriate ranges because they are applied modulo the length of the source lists in 

question. CP l contains three processing functions with their respective arguments 

and are applied in sequential order: extend-melody, transpose-pitches and retrograde. 

Five events (channel equals 0, meaning M I D I channel 1) are added to the events 

already in the reference-melody, the accumulative result is seen in figure 10.139. 

Finally, since all cluster agents are asleep, none has the capacity to generate additional 

parallel events to the present contents of CP_1. 
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10.6.2 Experiment e8, Score Excerpt nr. 2: Performance-step nr. 63 
10.6.2.1 Description of Score Excerpt nr. 2 

Listing nr. 2: listing of system output in the Lisp listener, documenting performance-

step nr. 63. 

C l u s t e r s : CC6 8) (2 4) (0 1 5 7 9 ) ) . 

Strongest c l u s t e r : 1 5 7 9 ) . 

Reference-agent: #<AGENT #x250A2EE>, ID: 0 

Cluster agents: 

agt:0 s t a t : ACTIVE cdis : 89 egy: 69 act: 7 ne:50 neC0:10 cf: 3 

ip:#C59 42 54) ipa:#C100 18 5) nb:Cl 7) pnb:Cl 7) 

a g t : l s t a t : ACTIVE cdis : 89 egy: 69 act:-94 n e : l l neC0: 8 c f : 7 

ip:#C46 49 45) ipa:#C66 2 2) nb:C0) pnb:C0 7) 

agt:5 s t a t : ACTIVE cdis : 89 egy: 69 act:-26 n e : l l neC0: 8 cf: 7 

ip:#C50 48 53) ipa:#C100 28 32) nb:C7 9) pnb:NIL 

agt:7 s t a t : ACTIVE cdis : 89 egy: 69 act: 94 ne: 5 neC0: 5 cf: 1 

ip:#C47 58 57) ipa:#C31 67 66) nb:C0 5) pnb:C0 1 2 6 8) 

agt:9 s t a t : ACTIVE cdis : 89 egy: 83 act: 0 ne: 7 neC0: 5 cf: 4 

ip:#C56 58 44) ipa:#C73 2 2) nb:C5) pnb:C4) 

Agency-autonomous. 

Nr-events: 7, reference-channel: 0, i n t e r v a l s : (-2 1 -2), density: 69. 
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Ego/neighbour sel e c t i o n chance: 57 %, b i t s : (1 1 0 0 ) , neighbour: 5. 

Make-reference-melody: 

nr-events: 14 

density: 69 

pitch-0: 46 

i n t e r v a l s : (-3 5-5 2 - 1 3) 

durations: (0.1 1.2 0.2 1.2 1.2 1.2) 

v e l o c i t i e s : (71 73) 

i o t : (0.05 0 0 0.4 0) 

channel: 0 

Melody: CP_3 [Nr-events: 7] Duration: 11 sec 25 msec. 

150 1550 3150 4350 5600 750011150 

72 69 68 71 68 70 69 

73 73 71 73 71 73 71 

1200 1200 1200 1200 100 1200 100 

0 0 0 0 0 0 0 

Feedback algorithm using compound-function: 

name : CP_3. 

source : #<ppm-melody "events-pane-mel">. 

f i t n e s s - i e : 0 4.9. 

f i t n - c r i t c : 88. 

nr-events : 7 nr-events channel-zero: 7. 

nrt-used : 3. 

read-pntrs: (24 9 28 7 ) . 

read-range: ( 9 6 7 4 ) . 

1: 3 PRESENT INVERT-INTERVALS NIL 
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2: 9 PRESENT EXTEND-MELODY C3 (0 0 1)) 

Melody: CP_3 [Nr-events: 10] 

Apply de-grouping algorithm, a c t i v a t i o n : -94. 

Arguments: 0 (-5 1 - 2 1 - 2 2 -1) 7 0.3 (2 4 4 4) CT T T T) 1 ( 0 ) . 

Apply de-grouping algorithm, a c t i v a t i o n : -26. 
Arguments: 0 C-3 5-5 2-1 3) 12 0.6 C2 2 2 3) (T T NIL T) 5 (2 2 0 ) . 

Apply grouping algorithm, a c t i v a t i o n : 94. 

Arguments: C4 2 4 3) 0 C-2 1 -2) CT T T T) -12 7. 

Melody: CP_3 [Nr-events: 50], Channels: ( 0 1 5 7 ) . 

Melody duration: 0 min 13 sec 749 msec. 

10.6.2.2 Analysis of Score Excerpt nr.2 

We address system activity at performance-step nr. 63. From the data above we 

can see that this example is similar to the previous one with the exception that three 

parallel voices are created. Given the agents cluster (0 1 5 7 9), only agents 1, 5 and 9 

contribute a parallel voice since the activation level of agent 9 is zero. In figure 

10.140, the top stave shows the reference-melody computed according to the bit 

pattern (1 10 0). 

The second agent in the cluster (agent ID nr. 1) features an activation level of -94 

meaning it may contribute additional events using the de-grouping algorithm. This 

algorithm creates many additional events fi^om the inspection of a single source event, 

therefore it is also referred to as an "expansion" algorithm. The arguments are: 

0 (-5 1 -2 1 -22 -1) 7 0.3 (2 4 4 4) (T T T T) 1 (0) 
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meaning respectively, the source-channel, pitch-intervals, fransposition, 
minimum-duration, dvu-ation-dividers, gi-oups-flags-list, destination-channel and 
delays-list. Any source event must at least be 0.3 seconds in duration in order to be 
considered for expansion. The list (2 4 4 4) specifies the number of events to ge 
generated from a single source event, starting at a pitch offset of 7 semitones, 
generating pitches from the intervals-list and collecting the nascent event or rejecting 
it as specified in the groups-flags-list - all elements are True so all potential events 
are accepted. 

^ ^ ^ ^ I—.^-1—^=F-l-- i— 

Q I J 1 

Figure 10.140: player-agency score excerpt at performance step nr. 63, voices 1 to 4, 

top to bottom. 
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The intervals argument corresponds to the contents of the intervals data held by 
the providing source agent, i.e., the reference agent identified by source-channel 0. 
The flags-list is computed as follows: 

(loop repeat 4 c o l l e c t (< (random 75) ( a c t i v a t i o n a ) ) ) 

meaning that the number of True elements is stochastically proportional to the 

activation level of the agent in question. The transposition argument is chosen at 

random fi-om the list (-12 -3 -4 -7 3 4 7), pitch intervals in semitones. 

For example, the first event in voice 1 (pitch C5, duration is one quarter note) is 

split in two events appearing in voice 2 (pitches D4 and G#4, durations are two eight 

notes). The starting pitch of voice 2 is computed as the sum of the starting-pitch of the 

source charmel, the transposition value and an interval taken from the intervals list, in 

this case (in M I D I key numbers): 72 + 7 + (-5) = 74 e.g., pitch D4. The seconds pitch 

in voice 2 is 72 + 7 + 1 = 80 e.g., pitch G#4. When an argument is a list of values 

(rather than a single number), its values are addressed sequentially, again using a 

pointer computed as modulo the length of the list. 

The second event in voice 1 is split in four events as is the third and the fourth 

using the same de-grouping algorithm. Given a delays-list argument of (0), meaning 

no delays, the events in voice 1 and 2 are synchronised; the first four events in voice I 

coincide with the first 14 events in voice 2, event 6 in voice 1 with events 15 and 16 

in voice 2 and finally, events 18 and 19 coincide with events 17 to 24 in voice 2. 

The contents of voice 3 is also conditioned by a de-grouping algorithm with the 

following arguments: 
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0 C-3 5 -5 2 -1 3) 12 0.6 (2 2 2 3) (T T T NIL) 5 (2 2 0) 

The minimum-duration is 0.6 seconds, the groups-flags-list contains one NIL 

meaning there wi l l be less activity in voice 3 and the delays-list is (2 2 0), therefore 

the source-voice (voice 1) and the destination-voices (voice 3) wil l not synchronise. 

The first pitch of voice 3 is computed as: 72 + 12 + (-3) = 81 e.g., pitch A5. Its 

duration is half the duration of the first event in voice 1. The event takes a delay of 2 

steps in consideration (first element of delays-list); this means that it starts playing 

with an entry-delay equal two times its duration plus the entry-delay of the source 

event. The entry-delay of the first event in voice 3 is computed as (2 * 576 msec) + 

144 msec (entry-delay of first event in voice 1) = 1296 msec. Note that the timing 

information received a slightly distorted representation in the score of figure 10.140 

due to the interpretation Sanction of the score notation program, as explained above. 

Notice that the third event in voice I (pitch C#5) is not expanded because it coincides 

with the NIL value in the groups-flags-list. 

Voice 4 is the result of the activation in agent nr. 7, more precisely positive 

activation (level 94), therefore the grouping-algorithm wil l be put to work, its 

arguments are: 

C4 2 4 3) 0 C-2 1 -2) CT T T T) -12 7 

The arguments represent respectively, groupings, source-channel, intervals, 

groups-flags-list, transposition and destination-channel. The grouping-algorithm 

creates additional events by combining the durations of groups of source-events. The 

groupings are computed as follows: 

(loop repeat 4 c o l l e c t (choose ' ( 2 2 3 4 ) ) ) 
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The intervals data matches the pitch-intervals currently held by agent nr. 7. A l l 
potential events wi l l be collected since all elements in the groups-flags-list equal 
True. The first event of voice 3 (pitch Bb3) coincides with the first four events in 
voice 1 and the second event (pitch F4) matches the next group of two source events 
pitches E5 and C#5. 

This example illustrates the combined effect of the grouping and de-grouping 

algorithms in addition to the control of rhythmic organization by way of the groups-

flags-list argument. 

10.6.3 Experiment e8, Score Excerpt 3: Performance-step nr. 68 

10.6.3.1 Description of Score Excerpt nr. 3 

Listing nr. 3: listing of system output in the Lisp listener, documenting performance-

step nr. 68. 

Clusters: CC4 9) (0 1 2 6 7 8 ) ) . 

Strongest c l u s t e r : ( 0 1 2 6 7 8 ) . 

Reference-agent: #<AGENT #x250A2EE>, ID: 0 

Cluster agents: 

agt:0 s t a t : ACTIVE cdis : 89 egy: 83 act: 94 ne:48 neC0:12 c f : 3 

ip:#(59 42 54) ipa:#(100 5 2) nb:(l 7) pnb:(l 7) 

ag t : l s t a t : ACTIVE c d i s : 89 egy: 83 act: 94 ne:48 neC0:12 cf: 3 

ip:#(46 49 45) ipa:#(100 2 2) nb:(0 7) pnb:(0) 
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agt:2 s t a t : ACTIVE cdis: 89 egy: 83 act: 84 ne:48 neC0:12 cf: 3 

ip:#(58 46 50) ipa:#(100 13 18) nb:(6 7 8) pnb:(4) 

agt:6 s t a t : ACTIVE cdis : 89 egy: 83 act:-94 ne:14 neC0:22 cf: 2 

ip:#(43 53 56) ipa:#(100 2 2) nb:(2 7 8) pnb:(8) 

agt:7 s t a t : ACTIVE cdis : 89 egy: 83 act: 73 ne:14 neC0:22 cf: 2 

ip:#(47 58 57) ipa:#(70 46 46) nb:(0 1 2 6 8) pnb:(0 5) 

agt:8 s t a t : ACTIVE cdis : 89 egy: 83 act: 4 ne:14 neC0:22 cf: 2 

ip:#(41 54 46) ipa:#(100 2 2) nb:(2 6 7) pnb:(6) 

Agency responsive. 

Human/ego selection chance: 95 %, b i t s : ( 0 0 0 0 ) . 

Melody: working-memory [Nr-events: 32] Channels: ( 0 ) . 

Duration: 0 min 21 sec 966 msec. 

i n t e r v a l s = (-5 -5 -2 -1 -2 -2 -3 8 9 14 1 5 2 5 2 3 4 -2 -20 0 0 - 7 7 - 7 7 - 8 8 - 7 0 

0 7 ) . 

durations = (0.093 0.11 0.086 0.092 0.091 0.109 0.094 0.208 0.214 0.116 0.086 0.05 

0.14 0.054 0.106 0.088 0.093 0.092 0.099 1.437 1.591 1.344 0.242 0.196 0.235 0.117 

0.145 0.192 1.922 0.281 0.201 0.197) 

Feedback algorithm using compound-function: 

name : CP_3. 

source : #<ppm-melody "events-pane-mel">. 

novelty : 50. 

f i t n e s s - i e : 0.0 9.857. 

f i t n - c r i t c : 76. 

nr-events : 0 channel-zero: 0. 
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nrt-used : 8. 

read-pntrs: (24 9 28 7 ) . 

read-range: ( 9 6 7 4 ) . 

1: 3 PRESENT INVERT-INTERVALS NIL 

2: 9 PRESENT EXTEND-MELODY (3 (0 0 1 ) ) 

Melody: CP_3 [Nr-events: 9] 

Apply grouping algorithm, a c t i v a t i o n : 94. 
Arguments: (4 4 3 2) 0 (-5 1-2 1-2 2 -1) (T T T T) -3 1. 

Apply grouping algorithm, a c t i v a t i o n : 84. 

Arguments: (2 2 2 2) 0 (-3 1) (T T T T) -4 2. 

Apply de-grouping algorithm, a c t i v a t i o n : -94. 

Arguments: 0 (-1 5) 12 0.3 (4 4 2 4) (T T T T) 6 ( 0 ) . 

Apply grouping algorithm, a c t i v a t i o n : 73. 

Arguments: (3 3 4 2) 0 (-2 1 -2) (T T T T) 4 7. 

Apply de-grouping algorithm, a c t i v a t i o n : 4. 

Arguments: (2 2 2 2) 0 (-2 2 -4 2) (NIL NIL NIL NIL) 7 0. 

Melody: CP_3 [Nr-events: 48] Channels: ( 0 1 2 6 7 ) . 
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Figure 10.141: player-agency score excerpt at performance step nr. 68, voices 1 to 5, 

top to bottom. 

10.6.3.2 Analysis of Score Excerpt nr. 3 

This section contains the analysis of system activity at performance-step nr. 68. 

The input-pressures-adapted vector for all agents in the current cluster equals 100 

implying that the level of human-responsiveness is very high. The probability for 
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selecting Human vs. Ego is 95 %. This results in a bit-pattern (0 0 0 0) meaning that 

working-memory wil l serve as a source to provide data from its four dimensions: 

pitch, velocity, duration and inter-onset-times. The current content of working-

memory is depicted in figure 10.142. 

m 

3s 

3 4 

Figure 10.142: Contents of working-memory at performance step nr. 68. 

As seen from listing nr.3, the read-range parameter of the current compound-

function (CP_3) is (9 6 7 4) - this specifies the amount of information taken from the 

source melody, in this case, exclusively working-memory, in respectively the 

dimensions of pitch, velocity, duration and inter-onset-time. 

In observation of the read-pointers parameter in listing nr. 3, (24 9 28 7), it means 

we start reading pitch-interval data at the twenty-fourth event of working-memory 

i.e., the fourth event in bar 6 (pitch B3). The read-range parameter is 9, which yields 

eight pitch intervals. The eight pitch intervals read from working-memory are as 

follows: (-8 8 -7 0 0 7 -5 -5) - the last two intervals are read from the start of 

working-memory because the read-pointer is taken modulo the length of the number 

of events in working-memory. 
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These intervals are reflected in a modified form (inverted) and with a number of 
intervals added by the second processing fimction (extend-melody) in the compound-
fiinction in use: ( 2 -2 3 0 0 -3 5 5 1 0 0). Data for the other dimensions are 
collected using the respective read-pointers and read-ranges. For example, the first 
duration collected from working-memory starts at the 28* event or the second event 
of bar 7. Consequently, this duration value appears as the duration of the first event in 
voice 1 of the reference-melody. 

The data in voice 1 now serves as input to the grouping and de-grouping 

algorithms as a function of the levels and sign of the activation of the remaining 

agents in the present agents cluster, similar as in the preceding examples. Notice that 

the activation of agent 8 is only 4 - therefore it wi l l not contribute additional events. 

Also notice that all potential events are actually realised because both agent activation 

and energy are relatively high. Finally, notice that all events in the parallel voice 

synchronise in the absence of delays in the (de)grouping algorithms parameter 

specifications. 

This example shows how fragmented data from four dimensions in the source 

melody (working-memory) merges into a new machine response. Parametric aspects 

of working-memory are thus reflected in the resulting melody eventually fiirther 

modified by the CF's processing fimctions. Therefore, the machine response echoes 

certain features of the source melody in non-trivial ways. 
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Chapter 11: Conclusion 
11.1 Introduction: T h e s i s Rev iew and D i s c u s s i o n 

In a television interview on Dutch TV, while referring to the massive variations in 

size and shape of shells of land snails^ Harvard palaeontologist Stephen Jay Gould 

defined beauty as an enjoyment of evolution-based variations and change; "For this is 

beauty for evolutionary biologists because we love diversity" (Kayser 2000). The 

important point is that diversity happens to be manifest on a given continuous scale 

stretching in many dimensions. In Oscar, maximisation of diversity (chapter 1, section 

1.2.1) is supported explicitly from the appreciation of change as a first principle 

(algorithmic activity driven by changes rather than absolute data levels) and by the 

application of evolutionary transformers to maintain diversity in the system's 

compound-function pool. In addition, the continuous measurement of human-machine 

melodic similarity is a direct implementation of diversity aware processing. 

This thesis has highlighted a networked software entity built on the assumption 

that rewarding musical improvisation flourishes from the approval of diversity. The 

general methodology of Artificial Life was explored to initiate evolution and 

adaptation in real-time man-machine improvisation. The implementation and the 

ensuing experiments provided us with a platform to try-out complex ideas in a 

concrete way rather than by abstract contemplation. Quite often, the relationship 

between internal and external activity remained utterly blurred, yet a sense of non-

trivial communication emerged from the confrontation of the system's autonomy 

facing external disturbance. This observation conforms with what follows; Dutch 

virtuoso improviser Misha Mengelberg commenting on his work with fellow 

musician Han Bennink: " I would not know what Bennink means with his music, but 

Shells of Cerion Excelsior. 
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when our misunderstandings are combined we think sometimes that things are fitting, 
sometimes complementary" (cited in Bailey 1980, p. 144). Interaction with Oscar may 
be described along similar lines. However, great effort was taken in an attempt to 
disclose the underlying processes that give rise to such types of non-standard 
interaction. 

The work reported in this thesis consisted of bringing life-like qualities to the field 

of interactive composing following a general Artificial Life inspired approach. In 

contrast to more traditional approaches, the system developed here deals with 

continuous social pressures and the construction of machine opinions of how to 

respond to internal motivations in relation to external influences. The main forces 

shaping coherent overall behaviour were obtained by having the three key activities 

(perception, action and motivation synthesis) spread out in a networked architecture. 

In order to test the viability of the approach, a large number of systematic 

experiments were carried out. The experimental data allowed comparing the impact 

of various systems parameter settings in detail. 

This research required the development of a new interaction model to adequately 

support the intended life-like interaction protocol as outlined in chapter 3. The model 

was designed to foster the spontaneous development of complex, intemal 

spatiotemporal patterns and to support the accommodation of qualitative, external 

human participation. Once implemented, the model allowed for empirical testing; it 

was discovered that machine output was indeed strongly influenced by the motivation 

generator. The model developed strong preferences of how to respond to impinging 

sensory information and to develop the appropriate musical processing fiinctions in 

order to successfully comply to a given machine motivation. The general use of 

evolutionary algorithms allowed for gradual optimisation of all key system 
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components. However, it was discovered that evolution viewed as a process of the 
accumulation of small change, as formalised by Dawkins (1986), is really an idealised 
theory. Experiments revealed highly irregular changes in an otherwise fairly 
incremental fitness history, which hints to the conclusion that evolution can indeed be 
considered a complex dynamical system in itself. The eminent connection between 
the concepts of playing "on the edge" in open improvisation and computation "on the 
edge" of chaos were outlined in chapter 1, section 1.3.8. 

11.2 Contr ibut ions to Knowledge 

The contributions to knowledge of this thesis are summarised below in four 

sections. The first section indicates how this thesis answered the two overarching 

questions posed in chapter 1, section 1.2.1. Then, we briefly review how Oscar meets 

the four main evaluation criteria introduced in section 1.2.2, also in Chapter 1. In the 

third section we demonstrate how Oscar fulfils a lacuna in the field of interactive 

music systems' design, by showing how it compares to existing systems in terms of 

the comparative design criteria (or fi-amework) introduced in Chapter 2, section 2.4. 

Finally, we briefly revisit Oscar's musical output, by commenting on the rendering of 

music from its behaviour. 

11.2.1 Answers to Overarching Research Questions 

The overarching questions this thesis aimed to answer were: 

A) Is it possible to develop an interactive system that is able to modify itself in 

coherent, but non-trivial ways, as the result fi-om interactions with the external 

world (e.g., with a human interactor)? 

B) Would such system be able to offer an ongoing interaction platform, which 

remains interesting over extended time spans? 
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The answer to the first question is affirmative because Oscar's networked 
architecture implicitly supports internal changes while its intended functionality 
remains intact. As a first example, consider the listening section, it reconfigures its 
sensor-network as to become gradually more adapted to a given human interactor. 
These changes are non-trivial because they occur for the purpose of optimisation and 
are driven by an implicit fitness fiinction e.g.; the maximisation of listening 
sensitivity. Instances of this process are seen in figures 4.32 to 4.35. As a second 
example, consider the player agents; they also reconfigure themselves continuously 
into structural clusters as a function of mutual social affinities. Figures 7.14 and 7.15 
clearly show non-trivial changes occurring fi-om one time frame to the next. The 
experiments documented in chapter 10, section 10.5 and 10.6, document the effect of 
these structural changes on the actual music produced. As a third example, consider 
the successful manipulation of the compound-function pool in experiment e3 as 
shown in figures 10.3 and 10.4; the genefic programming technique evolves fitter 
fiinctions over time. Also, the data demonstrates how the compound-function pool 
articulates particular expertise for the purpose of integration and expression over time. 
As a final example, let us address the macroscopic oscillations revealed by the 
polynomials in experiments e7 to elO. For instance, consider figure 10.35 
(exploitation vs. exploration pressures in experiment e7), figvire 10.49 (drives-pool 
output levels in experiment e7) or figure 10.51 (drives pool understanding level in 
experiment e7) - they all show non-trivial, gradually oscillating tendencies rather than 
random drifting. 

The answer to the second questions is also affirmative because the degree of 

interestingness is related to the notion of persistent rewarding interaction. Interaction 

remains interesting over longer time spans because the evolutionary approach 
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cultivates fitness levels according to information gained during the time span of one 
epoch of actual human-machine interaction. Then, the process of reproduction merges 
aspects of the fimctionality that led to the ciurent situation, breeding new software 
modules incorporating features of the past with novelty. This process repeats forever 
because a single optimal solution does not exist and input fi-om the human performer 
remains totally unpredictable. Therefore, the breeding procedure is a process of both 
perpetual renewal and perpetual adaptation. Human-machine interaction remains 
interesting over longer time spans because it renews itself in a continuous process 
blending recognition and surprise. A wider discussion on the link between coherence 
and variation in behaviour follows in section 11.2.2 where it is considered in the light 
of our criteria for evaluation. 

11.2.2 IVIatching the Evaluation Criteria 

11.2.2.1 Maximization of External (Human) Influence 

According to this criterion, the system should maximise human influence in the 

process of machine listening, be sensitive to a broad variety of features in the input 

signal and a global indication of "listening" should materialize from those features. 

Listening is viewed as an active process of gradual optimisation, maximizing 

sensitivity and diversity. The networked listening module (network A in figure 1.1, 

chapter 1) implements listening as a dynamic process consisting of two interacting 

components: a sensor-network and a patch. 

The experiments documented in figures 4.32 to 4.35 (chapter 4) present clear 

evidence of incremental fitness levels that reflects a steady increase in listening 

sensitivity over time. In addition, the experiments documented in figures 4.36 and 

4.37 equally show that neurons in the sensor networks, on the average, exhibit 



550 

incremental firing rates over time. In other words, sensor networks manage to become 
more sensitive as they evolve, thus optimizing responsiveness to external input. 

A wide variety of sensors were developed in order to accommodate a broad range 

of features in the MIDI input stream. Many sensors do not handle static categorisation 

algorithms but are adaptive and thus also contribute to the objective impHed in this 

criterion i.e., the optimisation of sensitivity to human influence. Figures 4.3a to 4.3f 

document how sensor networks develop context sensitive behaviour - the sensor 

discrimination window (reflecting sensitivity) adapts as a function of the dynamics of 

the input signal. 

The patch object in combination with the sensor-network can be viewed as a 

qualitative oscillator consistent with the view that listening is a dynamic process. The 

relationships operational in a patch provide a qualitative, non-linear reduction of 

sensor information in many dimensions into a single output vector. This vector holds 

signed quantities reflecting the impact of changes (in contrast to static information 

samples) in the neural firing patterns of the sensor-network. Therefore, the patch 

object presents a continuous, qualitative and unified perspective on a hybrid mix of 

complex, parallel channels of influences as accommodated by the sensor-network. 

It should be mentioned that the genetic optimisation process acting on the 

relationships inside a patch generated unanticipated results; the patch fitness levels 

did not show the expected gradual incremental data profile. A plausible conclusion is 

that (1) the effect of multiple relationships accumulates in non-linear ways leading to 

unpredictable behaviour and (2) the genetic process is itself inherently irregular and 

deviates, from its idealised conception i.e., as a process of gradual optimisation. 

However, in summary, the intent put forward in the first criterion has been 

accomplished successfully. 
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11.2.2.2 Blending of Mutual Influences 

The second criterion states that temporal complexity and novelty should emerge 

by blending influence fi-om a human performer and pressure generated by internal 

system components. The system's internal organization must accommodate mutual 

influences between musical objects in a distributed system - the articulation of larger, 

multi-layered musical output structures should emerge from the interactions between 

more basic musical processing units. In essence, when creating a response, the system 

must negotiate influence fi-om internal and external information resources. 

A distributed, A-life oriented model was developed, taking inspiration from 

models of social interaction between people (Dewdney 1987, Gold 2007) and 

physical interaction between molecules (Hofstadter 1995). It implements the player 

agency developed in this thesis. Agents are organised in a spatial 2D world, they are 

sensitive to three information resources (1) the external human performer, (2) 

neighbour agents that are spatially close to the agent and (3) information that is held 

privately inside every agent. A l l three resources are in fact competing to be applied 

and the dynamics of this process is one reason for the great variety in the systems' 

musical output. The principle of multiple influences (chapter 6, section 6.4) is 

implemented as an algorithm to critically merge influence fi-om two sources in view 

of the construction of a machine response. The algorithm allows for quantitative 

control of the amount of information taken fi-om the respective sources (figure 6.7) as 

shown, for example in detail, in the musical scores documenting experiments e7 and 

e8 (chapter 10). 

The pilot experiments documented in figures 7.16 and 7.17 (chapter 7) reveal 

interesting spatiotemporal structures, the agency shows self-organising behaviour and 

oscillations of variable complexity, fi-om high-periodicity oscillations to complex 
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quasi-periodic oscillations to chaos. These patterns are not directly sonified since - as 
explained in the introduction - we avoid the notion of mapping. The agency 
continuously generates variable arrangements of agents (referred to as clusters) and 
thus supports the synthesis of novelty in a coherent and organised way. 

The player agency fiirther implements the blending of influences from two 

different perspectives. Firstly, the patch object sends activation signals to the agents; 

their levels wi l l influence the interpretation of a given agents cluster and influence the 

synthesis of complex, rhythmically interlocking polyphonic structures. Secondly, the 

complex-functions pool distributes musical processing ftinctions to every agent 

according to a disfribution scheme conditioned by the system's global motivation. 

This type of double influence (in terms of activation and function) is depicted in 

chapter 7, figure 7.1. 

The global musical result is thus quahtatively conditioned by (1) internal social 

forces guaranteeing perpetual renewal of the agency's internal structural organization, 

(2) the sharing of partial data from competing information resources and (3) a method 

to influence the sfrength and the quality (musical fiinctionality) of the contribution of 

every agent to the developing musical fabric. Therefore, the objectives implied by the 

second criterion have been met. 

11.2.2.3 Automatic Generation of Internal Motivations 

This criterion requires the system to initiate internal motivations autonomously, 

motivations that are instrumental in influencing the interaction climate in specific 

ways. 

The drive object (chapter 8) implements an answer to this requirement by 

formalising two primary machine motivations: integration and expression. A drive 
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interprets external changes using a collection of non-linear relationships; the results 
accumulate as two competing pressures forcing the selection of one of the 
motivations. Motivations call for musical processing functions in the compound-
function pool according their implied objective, integration or expression. As the 
musical distance between man and machine is traced continuously, we have a means 
to evaluate the efficiency of particular functions in view of the service they provide in 
relation to the goal they are aiming to attend. This method circumvents the fitness 
bottleneck e.g., the necessity to provide explicit fitness ratings to evaluate particular 
intended systems behaviour. 

In addition, the learning algorithm operational in a drive collects evidence on how 

appropriate the current drive actually is in supporting the implied systems goal, i.e., 

human and machine aiming for the same orientation (either both integration or both 

expression). The systematic experiments e7 to elO (chapter 10) examine the impact of 

learning. From the study of the correlations between figures 10.47, 10.48, 10.83 and 

10.84 it was concluded that learning exercises a stabilizing effect on the integration 

and expression levels in a given drive, drives without learning produce wider and 

irregular oscillations than drives that include a learning component. The same series 

of experiments offer compelling evidence that Oscar adapts in order to maximize 

human/machine agreement (table 10.9). Further evidence is collected fi-om the 

correlation analysis as documented in chapter 10, section 10.4.8; the analysis reveals a 

strong relationship between negative global orientation values (expression) and 

positive values for system common understanding - therefore, the system develops an 

interaction climate characterised by agreement rather than conflict. 

Histogram analysis of the compound-function pool application density, for the 

same experiments, shows a more peaking profile when learning is on. This means that 
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Oscar managed to evolve a sharper opinion about what processing functions to prefer. 
Therefore, learning promotes the welcome yet unexpected appearance of temporal 
stylistic biases that most probably encourages heightened awareness and momentum 
in the human interactor. 

The relationship between the drives pool and the compound-function pool also 

influences global systems behaviour in interesting ways. For example, referring to 

figures 10.55 and 10.56 (drives output levels) and figures 10.91 and 10.92 

(compound-function pool fitness histories) we notice a consistent correlation between 

the polynomials in the respective data sets; the changes in the competing levels in 

drives pool levels are complementary to the changes in the CF-pool. This observation 

illustrates the tight interaction between machine motivation and machine musicality 

over extended time spans. 

The organisation of the timing instructions active in the scheduling algorithm (as 

detailed in chapter 9) also reflect the selection mechanism active in a drive because 

timing depends on the drive's current orientation; for example, when orientation 

equals integration, the scheduler aims to start playing in exact synchronisation with 

the predicated start of the pending human input sequence (fiirther details are in 

chapter 9, section 9.5). 

The combined activity and interaction between drives and compound-functions 

offers a robust mechanism to influence the nature of human-machine interaction in 

interesting ways; this method offers considerable variety in machine responses while 

still sufficiently constraining systems complexity by way of feedback provided by the 

learning algorithm. In conclusion, the third criterion is attended as the drive object 

implements machine motivations that successfiiUy merge autonomy and behavioural 

directedness. 
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11.2.2.4 Emergent Functionality vs. Variable Behaviour 

Oscar should consistently offer coherent emergent fiinctionality as a whole while 

still showing evidence of variable behaviour evolving in the long run. The networked 

model (figure 1.1) was suggested to accommodate this wish for overall behaviour 

merging operational consistency and stylistic variety. 

The experiments in chapter 10 document the behavioural scope of the system 

given different conditions such as the impact of learning, breeding and systems 

inclination (social or selfish). For example, consider figure 10.3, it shows the 

relationship and progression of the fitness levels for integration and expression in a 

given CF-pool. It offers an unambiguous example of consistency and change in a 

single object that progress over 10 evolutionary epochs. Remarkably, the evolutionary 

process manages to steadily accumulate expression fitness over 10 breeding steps 

(while still being exposed to unpredictable input) after which a total breakdown in 

fitness arises. 

Consider the emergent relationships between drives global orientation and 

compound-function pool fitness histories in experiments e7 and e8. In experiment e7, 

the relationships in the drive mainly evolve expression rather than integration as seen 

in figure 10.41. The compound-function pool manages to evolve musical processing 

functions that are primarily fit for the purpose of expression as documented in figure 

10.55. This reflects autonomous emergent functionality without any need of external 

guidance. 

The data gathered from many experiments as visualised in chapter 10 reveal a 

complex peaking data profile. However, the polynomials disclose various kinds of 

"behavioural waves". Many comparative polynomial visualisations show evidence of 

the competitive interaction between complementary data levels such as human vs. 
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machine agreement (figures 10.81 and 10.82), drives' integration and expression 
levels (figures 10.85 and 10.86) and CF-pool fitness histories (figures 10.91 and 
10.92). These waves can be interpreted as emergent phenomena disclosing very low-
level frequency oscillations in the systems' consfituent networks. 

Reconsider figures 10.111 to 10.114, they provide a comparafive analysis of the 

results of the four experiments in terms of correlation between the drives global 

orientation and the system common understanding. With the exception of figure 

10.112, all show posirive correlation between agreement and expression - agreement 

suggests itself given oscillatory behaviour in the dimension of system global 

orientation. There seems to be no correlation given a system orientation of integration 

and negative common understanding; i.e., a situation of conflict. As explained in 

chapter 10, this observation proves that Oscar has more difficulty to develop an 

attitude of integration than an attitude of expression. Figure 10.112 shows 

uncorrelated data given conflict and integration. This figure, documenting an 

experiment with selfish inclination and learning enabled, offers the most explicit 

phase portrait; just two behavioural regimes. Firstly, nearly perfect correlation given 

positive common understanding (agreement) and negative global orientation (system 

prefers expression). Secondly, we observe practically no correlation at all given 

negative common understanding (conflict) and positive global orientation (system 

prefers integration). In other words, the system oscillates between behaviour based on 

relatively linear relationships and chaotic behaviour, in effect, another example of 

how Oscar merges consistency and variation. 

The score examples and their analysis documented in chapter 10 provide further 

evidence of the mix of (1) coherent musical behaviour as articulated by the social 
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affinities in the player agency and (2) unexpected patterns computed fi-om the 
appreciation of external input or the occurrence of evolutionary breeding. 

Evolution thus both acts as a means to optimise the four system components 

subject to genetic optimisation in addition to providing potentially pivotal moments 

during interaction where the respective newly bred populations are introduced. The 

present implementation also shows that small populations offer enough critical mass 

to evolve prospective systems objects. In conclusion, the goal implied in this criterion 

has been achieved. 

11.2.3 Contextual Evaluation and Fulfilment of a Lacuna in the Field 

Oscar 

Paradigm System 

Idiomatic inclination Non-idiomatic 

Objective Improvisation 

Learning capability Yes 

Evolution capability Yes 

Complexity Emergent 

Autonomy Motivation generator 

Agents paradigm Player agency 

Generative paradigm Evolutionary 

Sensing approach Adaptive, evolutionary 

Table 11.1: Tabulation of comparative design criteria for Oscar (relating to the 

information in tables 2.3 and 2.4). 

Referring to the comparative design criteria developed in chapter 2, this section 

( I ) presents a brief critical discussion of Oscar in relation to the systems presented in 

table 2.3 and table 2.4 and (2) arguments how Oscar fiilfils a lacuna in the field of 

interactive computer music systems. 
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11.2.3.1. Critical Evaluation of Contextual Systems 

Cypher's design methodology concentrates on symbolic representations while 

Oscar resorts to mixture of symbolic and subsymbolic computing. It is instructive to 

compare the two systems as both support non-idiomatic interactions. In contrast to 

Oscar, sensors in Cypher do not evolve and interactions are hand-designed protocols; 

a human designer implements prospective action-reaction schemes. Such schemes 

may be saved and loaded fi-om disk in order to provide Cypher with a specific 

responsive musical identity. Oscar has no access to such pre-defined conditioning 

information, an interactive session starts from scratch and all internal information is 

acquired and updated within the process of interaction itself 

Oscar minimises static internal representations (memory structures) and avoids 

symbolic reasoning although not its complete elimination. Oscar maximises 

functional representations throughout, for example, by using the agility of non-linear 

relationships (chapter 8). Experiments e9 and elO in chapter 10 reveal the unplanned 

emergence of purposeful behaviour. A strong positive correlation exists between the 

drives-pool integration and expression levels (figures 10.85 and 10.86) and system 

common understanding (figures 10.99 and 10.100). The extended incremental history 

of both data profiles shows that man and machine may indeed evolve towards the 

same type of interaction activity, in this particular case, both parties primarily aim to 

express rather than to integrate. 

Still, Cypher (and Voyager) can be characterised as relatively "open" systems as 

they do not promote stylistic biases and offer interesting augmented complexity from 

the combinatorial explosion of their respective rule bases. In effect, the generation of 

complex behaviour in the systems in table 2.2 is a consequence of the activation of 

"designed" action-reaction associations. Input signals may trigger responses whose 
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complexity results from mapping many parallel rules to many sound conditioning 
parameters also addressed in parallel. The results often sound "complex" and 
"unpredictable" because the mapping logic is too complex to be deciphered in real
time by a human observer. Notice that the notion of complexity has a different 
meaning considering the systems in table 2.3; complexity in the A-life oriented 
systems typically results from self-organization. 

In confrast to Oscar, Cypher does not learn nor evolve, so it cannot modify the 

way it performs from the consequences of the act of interaction itself Voyager 

includes simple statisfical learning (histograms) in its listening section. The 

Continuator uses a far more sophisticated method based on augmented Markov chains 

(chapter 2). However, learning remains confined to the acquisition of information of 

how the external human interactor behaves. In confrast to Oscar, learning is not used 

to improve systems behaviour over time. For example, experiments e9 and elO prove 

that the inclusion of a learning component has a positive impact on the synthesis of 

machine motivations. 

A certain type of automatist production is possible in Cypher; in the absence of 

human input. Cypher wi l l generate musical variations by feeding its output back into 

its listening section. In confrast to Oscar, true autonomy is not achievable because 

Cypher does not generate internal criteria conditioning the progression of its internal 

decision-making. 

A discrete number of performance modes in Cypher also follow from the 

application of specific action-reaction scripts and the nature and configuration of the 

musical processing functions. By discrete it is understood that interaction develops as 

conditioned activity in a succession of time frames, in fact, remmiscent of the 

narrative interaction schemes devised by Subotnick and Coniglio (Rowe 1992). Oscar 
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does not impose specific segmented performance modes but leaves the impression of 
particular transitions as the emergence of state transitions in the behaviour of its 
internal networks. By definition, such transitions are not planned but materialize 
spontaneously fi-om a myriad of forces that happen to animate a given interaction 
context. As a result, Oscar articulates time in a continuous fashion rather than in 
isolated segments. A turning point during human-machine negotiation signalling 
surprise and potential confiision in the human interactor is essentially considered 
emergent functionality. For example, consider the sudden introduction of a different 
clustering regime in the agency as reflected at measure 147 of the score in chapter 10, 
section 10.6. The unpredictability of such potentially pivotal moments in man-
machine interaction where man and machine are questioning their mutual behaviour is 
considered a vital attribute of rewarding interaction. 

The Continuator mainly follows a call-and-response paradigm that cannot, by 

definition, exhibit unanticipated behaviour. 

Strictly speaking, both GenJam implementations also severely limit the 

operational fi-eedom of a human interactor since explicit stylistic databases confine 

general systems behaviour. Whatever the input of the human interactor, GenJam wil l 

produce consistent stylistic output. One might even conclude that the exploratory 

nature and the "divergence" implied in the application of genetic algorithms in 

GenJam is essentially in conflict with the "convergence" imposed by its stylistic 

biases. GenJam version 2 circumvents the fitness bottleneck by eliminating fitness 

altogether, so that version no longer qualifies as a genetic system. Oscar offers an 

original solution to the problem of attributing fitness to machine generated melodies 

by suggesting an implicit fitness rating. The success of particular musical processing 

fiinctions is tied to the context in which they are used; one tracks changes in musical 
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distance between man and machine and fitness is then related to the current machine 
objective, integration or expression, as described in chapter 8. 

Both Oscar and the Social Robots project employ a type of reinforcement 

learning, Oscar to reward successful motivations, the Social Robots project to reward 

successful imitations. 

The A-life oriented systems in table 2.3 explore a form of emergence. Diseases 

Squared is unique as it models a form of virtual biology involving organisms evolving 

over many generations. Interesting dynamics emerges primarily because the disease 

and the virtual organisms co-evolve and continuously adapt in order to survive. In 

addition, a wide variety of organisms emerge through the process of bio-diversity 

forced by evolutionary pressure. Both Swarm systems and Audible Ecosystems rely 

on self-organization. Swarm follows the flocking model formalised by Reynolds 

(1987). Musical output results from the application of a 3-part mapping fiinction 

incorporating functionality for listening, reasoning and responding. Human input may 

function as a temporary focus for the flock. The design rationale of the Swarm 

systems implies that the relationships between input and output remain sufficiently 

transparent to the human interactor, which in turn implies responsive rather than 

interactive behaviour. In contrast, Oscar allows for the on-line development of open-

ended man-machine relationships with many degrees of understanding, awareness and 

potential confusion in many dimensions. Emergence in Audible Ecosystems follows 

fi-om the exploration of non-linear feedback of sound as a function of the acoustics of 

a given performance space and the use of feedback in its soimd processing functions. 

Eden and the Cellular Automata projects suggest complex behaviour in virtual worlds 

organised as a discrete, regular topology of cells. Emergence here issues fi-om the 

consistent application of a local rule interpreting the neighboiu-hood of every cell. As 
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explained in chapter 1, section 1.3, in Oscar, emergent functionality is operational for 
the purpose of machine listening, playing machine responses and in the motivation 
generator. The experiments in chapter 10 and the interpretation of the experimental 
data in section 10.4.6 reveals interesting correlations between the various datasets -
this leads to the conclusion that intended functional behaviour indeed emerges from 
interactions between the three basic networks in oiar systems architecture (figure l . I ) . 

11.2.3.2. Fulfilment of a Lacuna in the Field 

As explained in chapter 1, section 1.3.1, autonomy is a highly desired property of 

interactive music systems because (1) it guarantees the generation of unexpected 

responses that are however tightly connected to the current context in musically 

interesting complex ways, (2) it allows interactive systems to develop unpredictable 

yet coherent behaviour from the synthesis of internal motivations. 

As opposed to the systems in tables 2.2 and 2.3, Oscar offers unique functionality 

on the following levels: 

1) A combination of learning and evolution to support a form of true 

autonomy; the motivation generator. 

2) The use of genetic programming to evolve the appropriate musical 

processing functions to conform to a specific motivation. 

3) Sensing approach: sensor diversity, adaptation and optimisation. 

Referring to the data in tables 2.2 and 2.3, three systems feature a form of 

autonomy; Voyager, Social Robots and Audible Ecosystems. In Voyager, autonomy 

is considered very low since the system only provides a weak impression of autonomy 

because seemingly, goal-directed behaviour issues from the conditioning of its 

probability distributions. The various data arrays in Voyager are continuously 
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modified by incoming data. Therefore, when these arrays are addressed to supply data 
for creation of machine responses, an apparent hnk can be detected between what the 
system hears and how it reacts. However, global behaviour in Voyager does not 
progress in any particular direction because there is no higher-level arrangement to 
specify motivations. The Social Robots project offers a conceptually higher form of 
autonomy. As the robots dynamically interact, they adjust their data structures in a 
wish to develop a repertoire of common songs. The requirement to build up a 
common repertoire is a goal specification; such higher-level goals are absent in 
Voyager. The robots manage to solve the problem autonomously using reinforcement 
learning. In terms of emergence and autonomy. Voyager and Audible Ecosystems are 
related, however. Audible Ecosystems is more multifaceted since its complexity 
follows fi-om the confrontation of an "internal" complex dynamical system (its digital 
signal processing networks) and an "external" system made up of the complex 
acoustics of a given space. Systems like Voyager and Audible Ecosystems are 
appreciated fi^om the experience of the complexity of their behaviour as it develops in 
real-time. However, this behavioural complexity does not offer a hint of the 
expression of higher-level machine motivations: the general feeling is that of 
relatively unpredictable, evolving episodic complexity - there is no pressure to 
accomplish a specific agenda; consequently there is no motivation. In conclusion, of 
the ten contextual systems (tables 2.2 and 2.3) only the Social Robots develop 
autonomous behaviour (however, without the participation of human interactors), 
therefore, the notion of autonomy is generally not addressed in the current practice of 
interactive music systems design. Oscar fiilfils a lacuna in this sense because, as 
explained in chapter 8, the system develops by itself a policy to regulate its own 
behaviour fi"om the consideration of two competing internal motivations: integration 
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and expression. Oscar evolves populations of musical processing functions (chapter 
6) fit to accomplish its current motivation; co-evolution of motivation and function is 
a unique feature of the system developed here. 

Let us address the sensing approach in tables 2.2 and 2.3. We focus on the notions 

of adaptation, optimisation and diversity of perspectives in sensing. Sensing in 

Cypher is considered "minimally adaptive" since only the pitch discrimination 

window modifies itself in relation to the data it is currently processing (chapter 2, 

section 2.2.1). In Cypher, sensor hierarchies are created explicitly and remain fixed as 

the system is running. Oscar creates listening networks of variable complexity and 

orientation (selection of specific sensors) and applies a genetic algorithm to optimise 

listening sensitivity in the long run (chapter 4). Sensing in Audible Ecosystems is 

"implicitly adaptive" since its rationale is to explore sonic complexity generated by 

audio feedback; the system is intended to function "on the edge of chaos" (chapter 1, 

section 1.3.2), therefore its sensors must adapt in order to cope with momentary 

under- and over stimulation. Only Oscar integrates the following listening qualities 

deemed vital for interactive music systems: (1) diversity in listening perspective by 

using different sensor categories (chapter 4, section 4.4), (2) short term adaptation in 

low level, single event, single dimension sensors (section 4.5.1.1) and (3) long term 

optimisation of listening networks using a genetic technique (section 4.8). 

In conclusion, Oscar contributes original methods on two levels: firstly, the 

support of genuine autonomous behaviour by evolving musical processing functions 

in relation to machine motivations, and secondly, the introduction of diversity, 

adaptability and optimisation in the listening process. 
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11.2.4 Musical Output 

This section briefly reviews how musical output embodies Oscar's behaviour; we 

address the musical score analysis in experiment e7 (chapter 10, section 10.5) and 

experiment e8 (section 10.6). Analysis confirms that Oscar accommodates rewarding 

interaction (chapter 1, section 1.3.2); the system develops independent complex 

autonomous behaviour while, at the same time, activity by a human performer leaves 

a discemable impact as the music unfolds. For example, the score in experiment e? 

clearly reflects the effect of the consecutive changes in clustering activity inside the 

player agency while aspects of human input (such as particular pitch intervals and 

rhythmic patterns) appear in modified form in the score. The principle of multiple 

influences (chapter 6, section 6.4) effectively implements our wish to merge aspects 

of internally generated complexity and external influence in the musical rendering 

process. 

The score excerpts of experiment e8 are analysed in terms of the global effect of 

ten systems quantities; we provide a comprehensive analysis of typical systems 

behaviour at three moments in time. We show how a particular temporal system state 

- reflected in specific numerical data subject to analysis - translates to unambiguous 

musical output. Excerpt nr. 1 (section 10.6.1) details the effect of the agents' 

clustering, the selection of responsive or autonomous mode as a fiinction of human-

responsiveness, the selection of source material as function of the input-deliberation-

vector and the effects of the agents' energy and activation on the creation of the 

reference-melody. Excerpt nr. 2 demonstrates the effect of the compound-fiinction 

currently assigned to the agents in the playing cluster and how the current agents' 

activation level contributes additional, parallel events to the reference-melody. The 

mixed effect of grouping and de-grouping algorithms merges in a coherent though 
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complex polyphonic musical fabric as shown in figure 10.140. Excerpt nr. 3 details a 
situation where human-responsiveness is very high, this generates exclusive pressure 
to address only working memory (i.e. the current musical context made available by 
the human interactor) to create a reference-melody. Figure 10.141 shows a dense 
score; all potential events are realised since the energy and activation levels of all 
contributing agents is very high. In addition, the score in figure 10.141 provides 
evidence that complex machine responses may be generated reflecting source material 
in musically interesting, non-trivial ways. In conclusion, we have shown that the 
music-rendering approach in Oscar contributes to the achievement of rewarding 
interaction as defined in chapter 1, section 1.3.2. 

11.4 Recommendations for future research 

As made clear in the introduction, it is still difficult to provide a unified, stable 

definition of the relationships between the nature of interaction and improvisation. 

However, while drawing on Oscar as a pragmatic platform for research on the brink 

of interaction and improvisation, we discovered many interesting traits in systems 

behaviour of Oscar's internal networked organization in confrontation with an 

external interactor. The various other systems studied in this thesis offered an 

articulated context for discussion and evaluation though, most importantly, they 

substantiate the vast cultural and scientific diversity in approaching interaction and 

improvisation. 

One direction for further research would be to evolve much larger populations of 

objects than presented here and perhaps evaluate them in parallel using 

multiprocessor hardware. Conceivably, a system of improved plasticity would result 

when agents would be sensitive not just to social forces from other agents and 

activation by a human performer but could also develop a capacity to be sensitive to 
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the variable complexity of the spatiotemporal structures emerging fi-om their spatial 
organization. 

The introduction of direct audio sensing rather than indirect sensing via M I D I 

could possibly offer a tighter, more intimate connection between human and machine 

players. For instance, one could apply our working principles, including learning and 

evolution, to a distributed population of real-time digital signal processing modules. 

For example, the complementarities of human input and machine output on the audio 

sample level could result in more profound musical human-machine associations. In 

addition, when a machine develops adequate sensitivities (for the purpose of analysis 

and production) (1) to appreciate microscopic changes in audio and (2) a sense for 

understanding larger macroscopic structures, it would bring machine musicianship 

closer to the human experience of music. 

However, in the spirit of A-life and as stated in the introduction, the work reported 

here does not aspire to impersonate any known formal model of what musical 

improvisation should be although our system is definitely rooted in the dominantly 

Western opinion of non-idiomatic musical improvisation. In this light, it would be 

utterly meaningful to have experimental interactive music systems that develop 

sensitivities for music emanating from a wider diversity of world cultures. 

Innovative forms of improvisation are further conceivable when the principles of 

social affinities amongst agents and evolution are implemented in global networks 

perhaps involving forms of multi-modal audiovisual interaction. At that point, 

improvisation becomes a dynamic tool supporting the critical analysis of the 

organization of human culture far beyond the appreciation of music as a human 

discipline addressed in isolation. As further research in interactive music systems may 

be instrumental to come across innovative forms of human-machine negotiation fi-om 
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technological and aesthetic points of view, it may equally generate social awareness 
from a much wider perspective. 
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Glossary 

Adaptation 

Adaptation refers to the process whereby an organism gradually becomes better 

tailored facing the pressures of its environment. Adaptation affects both the 

morphology and the behaviour of an organism. Adaptation is thought of in two ways; 

(1) adaptation by way of long term evolution over many evolutionary epochs of a 

given species and (2) adaptation by way of learning during the life span of an 

organism. Both instances of adaptation are operational in Oscar's drive object. 

Agent 

In general, agent refers to a computational structure (materialised in software or 

hardware) endowed with local intelligence. Agents may act with certain autonomy 

within a specialised domain of expertise represented as procedural knowledge in the 

form of simple rules. However, when many agents are configured in an agency, 

sophisticated overall behaviour results because the execution of simple, local rules 

give way to global, complex emergent functionality. The terminology for software 

agents followed from the cognitive theory developed by Marvin Minsky in his book 

The Society of Mind. Much fundamental work in hardware agents refers to the domain 

of mobile robotics. This thesis views agents as virtual players configured in a player 

agency. Agents express social relationships to one another, which makes them move 

in two-dimensional space. In addition, agents assemble themselves in spatiotemporal 

"clusters"; structures that we interpret as emergent structural couplings between 

simple, basic building blocks. 
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Artificial Hfe 

The Biology inspired, scientific discipline of Artificial Life (A-life) is concerned 

with the study, analysis and design of systems exhibiting self-organisation and 

adaptive behaviour arising spontaneously by emergence rather than explicit design. 

Autonomous behaviour 

Autonomous systems develop for themselves, the laws and strategies according to 

which they regulate their behaviour. Autonomous systems contrast with automatic 

systems that behave only according prescribed rules. Autonomous systems are 

typically grounded in a given dynamic environment and adapt their internal structure 

in order to guarantee sustained functionahty. In the present thesis, the co-evolution of 

machine motivations and compound functions provides for autonomous systems 

behaviour. 

Complexity 

Complexity is a qualitative feature of systems composed of many locally 

interacting components that organise themselves into spatiotemporal structures of 

crifical composition - structures in between relative regularity and total irregularity: a 

point of balance known as "the edge of chaos". Complexity gives rise to emergence. 

Compound-fiinction 

A compound-function consists of a series of simple musical processing functions, 

all holding parametric specifications. The individual functions and their associated 

arguments are subject to genetic optimisation using a method of genetic 

programming. 
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Crossover 

Crossover and mutation are the two basic genetic operators. In the context of 

genetic algorithms, crossover creates a new genotype from sub-sequences of genotype 

extracted fi-om both parents. In the context of genetic programming, crossover 

typically creates a new nested functional tree structure that merges programming 

functionality fi-om two parent structures. 

Derivative 

Derivative is defined in terms of its conventional meaning in mathematics. For 

example, the first derivative of a number sequence is equivalent to its rate of change, 

that is, the value and sign of the difference (intervals) between consecutive values. 

Distributed system 

A distributed system consists of a collection of interrelated computafional 

components, often referred to as agents. 

Drive 

A drive represents a machine motivation in a computational structure. A drive 

holds two 12-bit binary vectors - one for each basic motivation; integration and 

expression. Every "on" bit instructs the drive to accommodate specific external 

changes such as changes in (1) quality and (2) quantity of the human input stream in 

addition to (3) changes in musical distance between the most recent human and 

machine produced melodies. Changes are interpreted by means of internal 

relationships. 

Emergence 
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Emergence generally denotes the creation of global complexity from simple 
interactions between basic building blocks, complexity that cannot be explained from 
consideration of those building blocks in isolation. Within this thesis, emergence is a 
multi-facetted concept, however, it is characterised according to two fimdamental 
meanings; emergence as morphology and emergence as functionality. Firstly, 
emergence refers to the creation of complex, spatiotemporal structures arising from 
the simple interactions between computational objects known as agents. For example, 
player agents assemble into spatiotemporal clusters according to mutual social 
affinities. Secondly, emergence refers to the creation of spontaneous global 
functionahty arising fi-om favourable interactions between different system modules. 
The apparent cooperative behaviour between the creation of machine motivations and 
the creation of musical processing functions to fu l f i l those motivations is an example 
of emergent functionality. 

Entropy 

Entropy is generally referred to as a measure of the degree of disorder in a given 

system though our definition is more specific. We use entropy to measure continuous 

melodic complexity based on the degree of predictability of a given musical event to 

the next. The entropy is then proportional to the amount of surprise it generates. 

Exploitation 

Oscar evolves populations of four types of objects: sensor networks and patch 

objects for the purpose of listening, drive objects that represent machine motivations 

{integration or expression) and musical processing functions that provide assistance 

in attaining a particular momentary motivation. A l l objects keep a fitness level 

documenting past performance efficiency. Exploitation means that object selection is 
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totally based on the appreciation of current fitness levels - without considering 
objects that did not manage to accumulate efficiency in the past. Exploitation is 
complementary to exploration. 

Exploration 

In contrast to exploitation, explorative object selection from a given population 

prefers to promote untried objects hoping they might contribute particular intended 

functionality. 

Expression 

Expression is a basic machine motivation and is complementary with integration. 

Expression means that the system is aiming to convey a private musical personality, 

irrespective of the present musical context (as present in working memory) suggested 

by the human performer. 

Evolutionary computing 

A computational method inspired by biological evolution as found in nature. 

Evolutionary computing aims to solve problems through the application of evolution 

rather than explicit design. Two main approaches exist: genetic algorithms and 

genetic programming. 

Fitness 

In nature, the fitness of an organism is proportional to how well it adapts to its 

environment. In computer simulations of life-like processes, for instance when using 

genetic algorithms, the meaning of fitness is arbifrary and decided by the system's 

designer. 
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Genotype 

Genotype is internal, coded information found in the cells of living organisms. 

Genotype holds a series of critical instructions that are inherited in the process of 

reproduction. The genotype instructions are interpreted by cells to create a physical 

manifestation: aphenotype. 

Genetic algorithm 

A genetic algorithm is a computer representation mimicking genetic optimisation 

as witnessed in nature. A given problem is analysed and typically represented as a 

binary sequence (known as a genotype) documenting all possible parameter settings 

of the implied search space. In nature, survival and reproduction are the implicit 

fitness criteria. In computer simulations, fitness may depend on an arbitrary assigned 

goal. 

Genetic programming 

Genetic programming views algorithms and their implementation in computer 

programs as subject to genetic manipulation using the standard operators of crossover 

and mutation. 

Identity 

In the context of this thesis, the identity of a system is related to the apparent 

complexity of its behaviour. Idenfity is reflected fi-om the perception of specific 

spatiotemporal patterns documenting a non-random, seemingly emergent goal-

directed behaviour. 
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Integration 

Integration (complementary to expression) is a basic machine motivation, its 

strength being represented by a scalar quantity (0 to 100). When the system aims for 

integration, the objective is to close the musical distance between a human suggested 

context (as present in working memory) and the current machine output. The system 

has access to a population of compound-functions that offer musical functionality to 

fu l f i l a particular goal such as integration. 

Interaction 

Human-machine interaction is defined as a process of reciprocal action, a process 

of mutual influence. This definition puts human and machine on equal levels of 

authority; machine behaviour cannot be controlled but only influenced. The aesthetic 

orientation of this thesis is interaction as non-idiomatic improvisation. 

Interactive composing 

Interactive composing is a two-stage process: one first creates a program equipped 

with listening and playing modules, the functionality of both being determined by the 

logic embedded in the respective software modules. At a later stage, a live musician 

interacts with the program, the musical flow and dynamics of the interaction being 

conditioned by how man and machine provide mutual influence. Relationships 

between human input and machine responses are usually organised as mappings. 

Mapping 

In interactive composing, mapping refers to the creation of an associative 

connection between human actions and machine responses. Mappings are typically 

built from explicit rules (if-then structures), the if-part identifies a feature of the input 
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signal, the then-part triggers consequent machine activity such as playing a specific 
sound. Mapping methods are considered problematic because they are not adaptive; 
they only offer static call-and-response behaviour and cannot adapt to large changes 
in context. In addition, mappings cannot deal with input material that was not 
anticipated by the programmer. 

Melody 

Melody is a computational object holding a series of time-stamped MIDI events. 

Events are identified by five parameters: start-time, pitch, velocity (loudness), 

duration and M I D I channel. The melody object is a subclass of the Sequence object 

found in Common Music (Taube 2005). 

Motivation 

Oscar maintains two competing levels of machine motivations: integration and 

expression. The winning level determines the current machine motivation. Oscar 

keeps a population of motivations represented as drive objects. 

Mutation 

Mutation is a basic genetic operator. In the context of genetic algorithms, a small 

amount of mutation is applied to genotypes in order to maintain sufficient variation in 

a given population, that is, as a means to avoid convergence to uniformity. 

Network 

A network is an assembly of (often simple) computational components that 

communicate through non-linear connections. 
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Non-idiomatic improvisation 

Also called "open-improvisation", non-idiomatic improvisation has no stylistic 

commitment. In contrast, idiomatic improvisation typically takes place within a 

confined musical fi-amework of pre-established directives, for instance, a lead sheet or 

turn-taking in standard jazz improvisation. Non-idiomatic improvisation typically 

aims to propose maximum diversity consisting of many concurrent musical options. 

Musical structure is said to surface from improvised interactions rather than resulting 

from a formal, predefined framework of musical references. 

Object-oriented programming 

With object-oriented programming (OOP), a computer program is conceptualized 

and built as a collection of dynamic software components referred to as "objects". 

Objects mutually communicate by way of exchanging messages, hence the concept of 

computing by "message passing". Object-oriented programming has many advantages 

over fiinctional programming, for instance, procediu-es and data are captured in a 

single software structure. An important feature of OOP is inheritance whereby 

software complexity is managed as a hierarchy of classes; specialised subclasses 

inherit expertise from higher super classes. Oscar is written in a symbolic language 

(LISP) and in a style of object-oriented programming. 

Pattern 

The word "pattern" is primarily used with the meaning it receives in the scientific 

domain of complex dynamical systems. Such systems typically consist of many small, 

interacting components that assemble themselves into typical spatiotemporal patterns. 

Specific regularities in a given pattern articulate the identity of the complex 

dynamical system they reflect. 
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Personality 

The personality of a system is equivalent to its identity. From a general systems 

point of view, personality is tightly linked to the way a system modifies its behaviour 

and/or morphology over time. On a smaller scale, the musical "personality" (or 

stylistic character) of a given melody issues from the nature of the specific basic 

building blocks used to generate that melody; i.e. pitch intervals, list of velocity 

values, durations and inter-onset-times. 

Phenotype 

Phenotype is the physical appearance of an organism, the structure of its 

metabolism and behaviour. Phenotype is complementary with genotype. 

Prediction 

Oscar is equipped with a prediction algorithm in order to collect evidence at what 

point in time the human performer wil l either (1) start playing a future musical 

statement ( i f he is currently silent) or (2) at what point in time the human performer 

wi l l finish the current input sequence (in case he is currently playing). This 

information is instrumental in scheduling machine responses as a function of the 

current orientation of the drive presently in use. 

Real-time system 

Real-time performance means that no perceptual delay exists between the 

computation of a musical response and that response being performed. 

Reinforcement learning 

Reinforcement learning (RL) is a non-supervised machine learning method based 

on systematic trial-and-error. An agent makes random actions and gathers feedback, a 
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scalar reinforcement signal, as to how successfiil that action was in achieving an 
implied goal. The agent must develop a policy (a mapping between agent states and 
actions) that optimises the reinforcement signal in the long run. 

Relationship 

In the context of the present thesis, a relationship is defined as a non-linear 

coupling between changes in an input quantity and the level of an output quantity. 

Four different types of relationships exist (fully documented in chapter 5). Many 

individual, concurrent relationships are typically assembled into larger structures. The 

patch and drive objects are examples of such computational structures. The basic 

objective of a relationship is to accommodate the impact of external changes into an 

internal numerical representation. 

Rewarding interaction 

Rewarding interaction results when a live performer can exercise a discemable 

impact on a given system and when that system holds enough dynamic relationships 

amongst its components to guarantee complex behaviour. 

Segmentation 

Segmentation refers to the intricate activity of extracting individual sub-sequences 

from a continuous data stream. Segmentation in real-time systems is difficult because 

specific sequence boundaries depend on a variable musical context. Principles of 

Gestalt psychology are typically used to collect evidence for the existence of 

particular discontinuities. 
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Self-organization 

Self-organisation generally refers to the spontaneous, seemingly purposeful 

formation of complex spatiotemporal patterns in distributed systems consisting of 

many interacting components. Self-organisation is studied in many domains, from 

biology and physics to cybernetics. A system must hold a sufficient number of 

components for self-organisation to occur and the effect of behavioural changes must 

feedback into the global system. Self-organisation often gives rise to emergence. 

Sensor 

A sensor is a software module that interprets an input value and, for instance, 

decides whether that value is considered high or low. Many sensors take a decision 

relative to a given context; the dynamic range of the context provides a threshold for 

making a decision. The complexity of sensors varies widely, from simple single 

event, single dimension sensors to complex higher-level sensors such as the ones 

addressing entropy in a given signal. The global effect of many sensors is typically 

accommodated in a sensor network. 

Sequence 

Sequence refers to a chronological collection of musical events. The terminology 

is mostly used to signify short series of musical events produced by man or machine. 

For example, the last melody played by the human performer as captured by the 

segmentation algorithm is referred to as "the last sequence". 

Similarity 

Similarity refers to a comparafive relationship between any two objects of the 

same class. For instance, melodic similarity is a quantity that specifies the 
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resemblance between any two melodies, normalised between zero (no relation) to 100 
percent (identical melodies). Oscar explores consecutive changes in similarity 
between melodies produced by man and machine in order to derive tendencies of man 
and machine coming together or drifting apart. 

Short-term memory 

Short-term memory (STM) holds the most recent sequence of musical events 

produced by the human interactor. A sequence of variable length is extracted from a 

continuous MIDI stream using an adaptive segmentation algorithm. Oscar holds two 

instances of STM (STMl and STM2) in a wish to capture the two most recent input 

sequences. Comparing both STM provides information about the dynamics of human 

input and feeds particular sensors. STM is a subclass of the melody object. 

Working memory 

Working memory (WM) is a computational FIFO (first-in, first-out) data structure 

holding the last (typically 32) MIDI events produced by the human performer. 

Therefore, W M reflects the current musical context suggested by that performer. 

Many sensors address the contents of W M in an attempt to extract specific features. 

W M is a subclass of the Melody object. 
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