University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
2001

A Model for Managing Information Flow
on the World Wide Web

Evans, Michael Paul
http://hdl.handle.net/10026.1/869

http://dx.doi.org/10.24382/1365
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognize that its copyright rests with its author and that no quotation from the

thesis and no information derived from it may be published without the author’s prior consent.

A Model for Managing Information Flow on the World Wide Web

by

MICHAEL PAUL EVANS

A thesis submitted to the University of Plymouth in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communications and Electrical Engineering
Faculty of Technology

March 2001

Michael Paul Evans

A Model for Managing Information Flow on the World Wide Web

Abstract

This thesis considers the nature of information management on the World Wide Web. The
web has evolved into a global information system that is completely unregulated, permitting
anyone to publish whatever information they wish. However, this information is almost
entirely unmanaged, which, together with the enormous number of users who access it, places
enormous strain on the web’s architecture. This has led to the exposure of inherent flaws,
which reduce its effectiveness as an information system.

The thesis presents a thorough analysis of the state of this architecture, and identifies three
flaws that could render the web unusable: link rot; a shrinking namespace; and the inevitable
increase of noise in the system. A critical examination of existing solutions to these flaws is
provided, together with a discussion on why the solutions have not been deployed or adopted.
The thesis determines that they have failed to take into account the nature of the information
flow between information provider and consumer, or the open philosophy of the web. The
overall aim of the research has therefore been to design a new solution to these flaws in the
web, based on a greater understanding of the nature of the information that flows upon it.

The realization of this objective has included the development of a new model for managing
information flow on the web, which is used to develop a solution to the flaws. The solution
comprises three new additions to the web’s architecture: a temporal referencing scheme; an
Oracle Server Network for more effective web browsing; and a Resource Locator Service,
which provides automatic transparent resource migration. The thesis describes their design
and operation, and presents the concept of the Request Router, which provides a new way of
integrating such distributed systems into the web’s existing architecture without breaking it.
The design of the Resource Locator Service, including the development of new protocols for
resource migration, is covered in great detail, and a prototype system that has been developed
to prove the effectiveness of the design is presented. The design is further validated by
comprehensive performance measurements of the prototype, which show that it will scale to
manage a web whose size is orders of magnitude greater than it is today.

Table of Contents

ABSTRACT I
TABLE OF CONTENTS 1
LIST OF FIGURES IX
LIST OF TABLES XI
ACKNOWLEDGEMENTS X1
AUTHOR’S DECLARATION X1V
1. INTRODUCTION AND OVERVIEW 1
1.1 INTRODUCTION . .c..uveerureressssessesseessenssnssssesssessessasesssssassnsesssssssessssrsssnsssesssessssesssanssssessesassssnsssanasessenns 2
1.2 AIMS AND OBJECTIVES...cieetcrurrsessssraraneseersaessessssssasssassssssssassasassessstassssessassssssssasssssessassnsessnsssnssssnsas 4
1.3 THESIS STRUCTURE ...cceereecreesriosecsnerseessasssessssessessassssssssessasssassssessssssssssssressassssessnsennes 7

2. THE WORLD WIDE WEB 10
2.1 INTRODUCTIONvveeererneeeecsssiecsensessessassossssnsessessassssse W11
2.2 THE ARCHITECTURE OF THE WORLD WIDE WEBcucotevieriestisiessessesssesssssssssesssessesssssssssessssssasses 13
2.2.1 THE WED'S OFIGINS.......uceeeereeersrererensessrisnsssesesessassasesssssssssssessssssssesasasssssosas essssessesassssassesassnee 13
2.2.2 AVCRItECIUFAL OVEIVIEW ... e eeees s s e e ases e seen st e s esem teeme e veee e e eeemeen 14
2.2.2.1 HyperText Transfer Protocol 16

2222 The Uniform Resource Identifier. 17

2223 HyperText Markup Language 18

2.2.3 The Relationship Between the Web and the INtErNetovveemeveneenemeseserssssnsssssssmssnes 19
2.2.4 A PRilOSODRY Of NO CORIIOL ..ot eesseesessssssenesessessessssnesseessssssemesensesseessnesenns 21

23 MANAGING THE WEB’S INFORMATION.............. 22

i

2.3.1 Identifying INfOTMALIONccvuomeeeririvscsviecrstinceeenccienssisssscriencrassestosssensssisassoncesermmsssusssscesencsses 23

2.3.2 StPUCIUFING INfOTMALION.covnvcutvierencriririisciiseisisitsisasscssssse st isssasssssasssssnesssssssssassssssnsssnons 26
2.3.3 RetrieVing INfOPMALIONcuueveeuceirevesirisesrensiescticnseesesseneacesssssssessoesessssssesssssrssssonenesssssssssssns 28
2.3.3.1 Overview of the Search Engine 29

24 THE INFORMATION MANAGEMENT DICHOTOMY ...ucveevrueeesneaesansnesssnsssssrssaenne .32
2.4, GALEKEEDING..oue.c.ooverrrrrererrresresasseresencacsosssssecssssssensassssssssersassesessessssessssanssnsscssasassssssnsaces 34
2.4.2 Case Study: Proprietary Online Information PrOVIAELSc.ceuweereeiveereressesrernsssensssssesnsanas 35
2.4.3 INEINEL ANAYCRY.cunneoneeeeiieeeeeeeeeteteeeeteeeeeeesereeeseesesessessessssessaeessssessssesemeessasasssensassnssns 39
2.5 SUMMARY ..o.ucovenivineisesisesiesnseseresnarsesensessssesssssessssssassesssssssesessssssssnsessnssessssssesenssssesesessasasesssassosss 42
3. FLAWSIN THE WEB’S ARCHITECTURE 44
3.1 INTRODUCTION.....cccetntuisesiraneesssesassssssnasssssesesssssesssessnssssssssassesssssssasasesensasssssessssasesssesssssasssssesssens 45
3.2 LINK ROT ...ocvveeisienssnirnenininissstntnsstenscsisinscssnsssesessessnsssssssesssssssssnsesssonsssssonssssssososssnssssosasssasassnnes 48
321 The Cause Of LINK ROL.........cceeeeeeeeeeereeeeeee et ee e seas et ss s s saosas et saast st seanasnas 49
3.2.2 The Damaging Effects Of LINK ROt ...t ssiisciesenssesssssasssnsssnes 52
3.2.3 Measuring Link ROt it the Web..............owvemvenirineimrnieisesisisi sttt sse s senane 54
323.1 Link Rot Incidence 55
3232 Link Rot Prevalence 55
3.2.3.3 TheLife Span of a Web Resource 56
3234 An Attempted Experiment to Determine the True Level of Link Rot in the Web.........oovvciunnnnees. 58
3235 Determining Link Rot from the Literature 59
3.2.4 Existing Solutions 0 LINK ROt cccu..cvvvunein s 60
32.4.1 Resource Migration Mechanisms 60
3.2.5 Summary of the Link ROt PrOBIEM. ..ot 74
33 SHRINKING NAMESPACE -eeeevesvesssassanssasssansssassrasaasssasns rerneeeerateesaeasssnseaaneesananes 74
3.3.1 The Cause of the Shrinking NAMESPACE.............c.occveriuereririsieniene sttt ssstsn s ssssasess 75
3.3.2 The Damaging Effects of the Shrinking Namespace..................ocouwueiveemuvsirevenniressnenesssesennns 76
3.3.3 Determining the Extent Of the PrODIEmc.ccceveerivvnnreeeerninrrseerisnnsssesssssnssassescssessssesssanens 78
3.3.4 Solutions to the Shrinking Namespace Problem................cevirverecrreeesncesssnssnesessesnasensssnnes 81

iii

3.3.4.1 TheIrreplaceable DNS.

82

3342 The Inextensible DNS 87
3.3.5 Summary of the Shrinking Namespace Problemeeeceeevveeevvrererereeesiesserevessenessssens 90
34 INCREASING NOISE.....c.corererracssmssessncsnnsanssunresssssossessassasstossasssscasssassnssnssssssssssssssasaresssessrsssssssssnsns 90
3.4.1 The Cause of the Increasing NOIS€.......oueeereeeuemnenesisiiititetsieteteseeercs st sesnans 91
3.4.2 The Damaging Effects 0f NOIS€ccovuuumiinivurensiiiniicisinniicisinsssinstssssisissnsssssinsassssnssons 92
3.4.3 Determining the Extent Of the PrOBIemcvueeevnnevvnneveriecieienriississsisssiecissseisssssssasssones 93
3.4.3.1 The State of Hyperlink Navigation 94
3.43.1.1 Navigation Mechanisms 94
343.12 The Problem with Browsing 96
34313 The State of the Web’s Hyperlink Structure: 97

3.43.2 The State of the Web’s Information Retrieval Services. 99
343.2.1 Coverage-Oriented Services 100
34322 Relevance-Oriented Services 103

3433 Implicit Gatekeeping 104
3.4.4 Summary of the INCreasing NOISE PrOBIMcuueeeeeveeeereeeeeeeeerereeserersesesseseesssessesessssesens 105
35 SUMMARY .riinsinstisenstnesseissiisisesesssessssssssesasssassassssses essssssssossesssssssassassssessesssssssassessssasassanes 106
4. 'HOMINID - A MODEL FOR MANAGING INFORMATI ON FLOW ON THE WEB........... 108
4.1 INTRODUCTION ..c.utitititsintsssinennesnerenssessesessssssesssssessnssessssssssssssenssesssssssssssssstssesssssssnsnsasasssassnsn 109
42 THE CORE COMPONENTS OF THE HOMINID MODELcocerveeverrereeueenenns . 110
43 REDUCING LINK ROT ciiitiieietineinsictiiniieeninnnesessessanssessessessessssssesssssssesssssassesssnessansessessssnnsennsssens 110
4.3.1 Managing Content Migration with Temporal Referencescouneeeceiriivercrcncnnens 113
4.3.2 Managing Resource Migration with the Resource Locator Service.................ocevvreresrernnn. 116
44 EASING THE NAMESPACE PRESSUREucutiiuictenimssesesssssansnssessssssnsssanssesssssssssssssssssssssssnensanssssases 118
4.4.1 Shrinking Namespace Increases Pressure.........iiiniiniinisnisinessesssisssessnens 119
44.1.1 Exploitative Strategies. 120
44.12 The Problem With ICANN’s Solution 121

4.4.2 EQSiNG thE PreSSUP@......oviiivniiiiinniiniisinniii ittt s ssesssssssssssessssssessass sissessssassesesss 123

iv

4.4.3 Defining the Semantics of the New Namespace

... 123
45 REDUCING THE NOISE IN THE WEB......cceceveevsrerenennrerserssnrenssesesosssesssesssssssssssssssssssssssssesssssesesessas 125
4.5.1 The Deceptive HYperlink Versus the USer ... eeeeceeeeeeeeessesessseesessresssasssssasssasssasesssnss 126
45.1.1 Deception as an Effective Strategy. 127
4.5.1.2 How the Hyperlink Breaks the Flow of Information 129
4.5.2 The Deceptive Web Site Versus the Search Engine................c..cierccvevervvnernecrsvucrennens 131
4.5.2.1 An Armms Race Between the Search Engine and the Web Resource. 132
4522 TheFight For Relevance 133
4.5.3 A Persistent Problem...........iiiiveininiiriiiniiistnisnssissessisessetsseseessss e ss st sasenensans 136
4.5.4 The Oracle Server — A Novel Platform for Enhanced Navigationcccvueeivervenenenne. 136
45.4.1 Resolving the Information Management Dichotomy. 138
4542 Functional Operation of the Oracle Server 138
45421 Characteristic Infons 139
45422 Navigational Infons 140
45423 The Heuristics of the Oracle Server 142

4543 New Web Metrics 143

4.6 SUMMARY .oeeieieimineenniiiiinnsiiieeisesitissistsissssessossessssasssessssssssssssssstesaessessasssssseaseassesasssnsssassness 144
ARCHITECTURAL DESIGN OF THE HOMINID MODEL 148
5.1 INTRODUCTION...coeeetuirsaesinrianessesssnssessssessssssssssessasssasossssnsasasssatsnsesetsssassssasssasssnsesassessessssssasassasss 149
5.2 DESIGNING THE RESOURCE LOCATOR SERVICEcucitmmniniiirimsiscsssssnsssinssssnsssssssenns 149
5.2.1 The Scope of the Resource LOCQIOr SErVICeuuuuueuvuirirviisevinirereieereeinissnsesssssesssssens 149
5.2.2 Selecting the Approach to Resource Migration.................oieemecsenensnssnsesesenssennes 150
5.2.3 Removing the Namespace CONSIAINLScovvreissumssssisnssssensisssinsiesssassssssssses s essssssens 151
5.2.4 Defining the Locator’s Client-Side INerface..............ouuoeuriitiiennennieiecasseeresesnans 153
5.2.5 MiSSing MediQlioNcoovvenntiniieteesssnsistssi sttt es s st ans s s s sesassassenans 155
53 REQUEST ROUTING: NOVEL MEDIATION BETWEEN THE WEB AND A DISTRIBUTED SYSTEM..... 156
5.3.1 The CARP Hash Routing AIGOTitRmMcivivinininnininiiiniiiiieenisssnessesssssenssssasasssensassaces 157
5.3.2 How the CARP Hash Routing AIZOrithi WOTKSuuccerecenverenneeiansessssnesssssssssenssassessens 158

533 Adapting the CARP Hash Routing Algorithm for the RLS 159

53.3.1 Updating the Request Router. 161
5332 Backwards Compatibility 163
534 How the Hash Routing Algorithm Works in the RLS. 165
5.35 The Design of the Request Router 168
53.5.1 The Request Router’s Interfaces. 170
5.3.6 Scalability 172
5361 Network Overhead 172
53.62 CPUOverhead 173
5363 Scalability of the Overall Design. 173
537 Resilience 174
538 Impact of the Resource Locator Service on existing Web mechanisms 175
538.1 Impact on Caching Servers 175
5382 Impact on History and Bookmark Mechanisms 177

54 TEMPORAL REFERENCES 177
541 The URL Extension 178
54.2 The Temporal URL Scheme 179
54.3 Defining the Scope of the Temporal Reference 181
543.1 The URL Extension Versus the Temporal URIL 182

55 DESIGNING THE ORACLE SERVER 183
5.51 The Oracle Server Network 183
35.5.2 The Architecture of the Oracle Server Network 184
5.5.3 Obtaining the Infons 185
553.1 Naviganonal Infons 186
5532 Charactenstic Infons. 187
554 The OSN as a Platform for New Services 188
56 SUMMARY 189
6. THE RESOURCE LOCATOR SERVICE 192

6.1 INTRODUCTION.

..... 193

6.1.1 Protocol DevelOPmeEnteeeeeeueeeeeeeeeeeeeeeeseesseseesssassssasassassessssesssmsssssereeessasesssnes 193
6.2 MIGRATING RESOURCES WITH THE RESOURCE MIGRATION PROTOCOL ... 195
6.2.1 Applying the WebDAV Protocols to Resource Migrationcceeueeeereeeeevevereverevevevesane 196
6.2.1.1 Security 196
6.2.1.1.1 Application to Resource Migration 197

6.2.1.2 Safe File Transfer. 197
6.2.1.2.1 Application to Resource Migration 198

6.2.1.3 Server Querying 198
6.2.13.1 Application to Resource Migration 199

6.2.2 Disadvantages of Using WebDAV for Resource Migrationwceerveueeevucreennn. 199
6.2.3 The Specification of the Resource Migration Protocolcc.coccceumecemmuneueccccecueenacs 200
6.23.1 The Migration Process 201
6.23.2 Access Control and Authorization 204
6.2.3.3 SafeFile Transfer 205
6.2.34 Updating the Locator. 207
6.2.3.5 Resource Replication 207
6.23.6 Resource Migration using Non-WebDAV Compliant Servers 209

6.3 RECONFIGURING THE RLS VIA THE LOCATOR CONTROL PROTOCOL 210
6.3.]1 The RecOTd MiTALION PrOCESS......covuueeeeenueeerereveererenevesssessesesesessessssssesansasessesssesessasesassosens 211
6.3.2 Managing the Addition of @ New LOCGIOTceecccuneieinrireesrernessassssssssssssnsssensessanesns 2]2
6321 Overview 212
6.3.22 Message Sequence Chart for Adding a New Locator 213
6.3.3 Managing the Removal of an Existing LOCGIOTcooecncmecnincrmmeeceereenesenesscnsnsssncnsnenens 221
63.3.1 Overview 221
6.3.3.2 Message Sequence Chart for Removing an Existing Locator. 224
6.3.4 Performance Implications of the LCP 228
6.4 A PROTOTYPE RESOURCE LOCATOR SERVICE 231
6.4.1 A Prototype Locator..............coeuceene 233

vii

6.4.2 A Prototype Request Router
6.4.3 A Prototype Management Interface
6.4.4 Implementing the Resource Migration Protocol

6.4.5 Performance

6.4.6 Demonstrating New Services with the Prototype RLS

6.5

7. CONCLUSION

7.1

72

73

7.4

..
...

...

..

64.5.1 Network Overhead

64.52 CPU Overhead

238

6.4.53 Total System Overhead

238

6.4.54 The Cost of Changing the Configuration

240

242

6.4.5.5 Performance Summary

64.6.1 Load Balancing

249

6.4.6.2 Fault Tolerance

250

6.4.6.3 Mobile Agents

251

6.4.6.4 Other Enhanced Services.

252

SUMMARY

ACHIEVEMENTS OF THE RESEARCH PROGRAMME ...

.......

LIMITATIONS OF THE RESEARCH

............................

SUGGESTIONS AND SCOPE FOR FUTURE WORK

THE FUTURE OF THE WORLD WIDE WEB

...

LIST OF REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

255

256

257

258
259
260

263

267

290

292

294

295

viii

List of Figures

Figure 1 - Screenshot of the Google Search Engine..........ccocueevuiiirnrecvcnccncrncienreecrennne -30
Figure 2 - Total number of domain names registered by quarter (DotCom, 2000).................. 79
Figure 3 - Percentage of registered domain names according to TLD (DotCom, 2000).......... 80
Figure 4 - Hyperlink structure of the web (Broder et al., 2000)..........ccoeceeeenerrnnreerernreereennens 99
Figure 5 - Relevance of the Web Compared to Dialog (Feldman, 1998).......cccocevrunirenvennne. 102
Figure 6 - The Result of Content Changing Within a Resource........c.ccccceevveeceenieesueecrnennen. 112
Figure 7 - Temporal Referencing.......ccceecueeiiveererseeserseesrnrteneensseseesaesssessesessasesasssnsessnens 115
Figure 8 - Real Example of Fake User Interfaceccoveeviecineenenecsnniniccnnene e 127
Figure 9 - Fake User Interface IMitators........ccoceeeeriuersrecrerrrercieierreseesseesseeeeeess s seeseenseens 128
Figure 10 - The Browser's Status Bar as a Navigation Aid.........ccccceevveeereercvemneenineeennnens 129

Figure 11 - Number of Queries per Day for the Popular Search Engines (Sullivan, 2000c). 132
Figure 12 - A High-Level Overview of the RLS

.. 154
Figure 13 - How the RR updates itself.........cccoervuiiecimiininininnncnicnnn e 162
Figure 14 - The Architecture of the Resource Locator Service........oveevceericemecnnreccnreccenennnns 166
Figure 15 - Sample JavaScript function showing a RR embedded in a HTML Page............. 170
Figure 16 - The Architecture of the Oracle Server Network........ccccvvceceieecciriinenineecnneenee. 185
Figure 17 - The Navigational Infons passed from the client to the OSN via the RLS........... 186
Figure 18 - MSC for Resource Migration Protocol (assuming successful migration)........... 203
Figure 19a-c - Managing the Addition of a New Locator.........cccceccrvinenvinnecicenencnneneencenens 213
Figure 20 - MSC Describing the Locator Addition Process in the LCP.........ccccccnvviecnnncenns 215

iX

Figure 21 - Example PUTREC message

.. 219
Figure 22a-c - Managing the Removal of an Existing Locator with the LCP........................ 222
Figure 23 - MSC for Removing @ LoCator........c.cccevrernurrnreienreesssnernieenreecseeesseessmmesssensees 223
Figure 24 - Architectural Design of the Prototype RLS.........ccccoviiiivinicirreiereene 233
Figure 25 - RLS Management Interface.........ccccoeveeiiiiireincniincinninirencneneecee mmveeeeeeennns 237
Figure 26 - Performance Results of the Prototype Request Router.........cccceeeveeverreeenionnnnnne 239

Figure 27 - Number of Messages Sent According to Configuration of RLS and Number of

Resources Managedc..coeeeeeieeneereeeerctensernennisiseessnenssesseessessssessesssssseesssensssmssnneas 243
Figure 28 - Total time taken to add a new Locator according to Locator number................. 248
Figure 29 - Prototype Fault Tolerance Application of the RLS..........ccccecvereverreceremneeereennnns 252
Figure 30 - Prototype Mobile Agent Demonstration...........eeveveviieeeereeerreesserereisseessressenas 254

List of Tables

Table 1 - Analysis of Existing Migration MechaniSms.........ccocceeveuerreeersvinncsneeniseinsenneseneans! 64
Table 2 - Name Systems in Use Today........c.cceveeeeeccmrrreesrirceecnrnrnerenrecnsrecesesiecsesesnescesenes 83
Table 3 - New TLDs submitted to ICANN........ccccvrrmririiriiiriicerricecnisicesissinsresessesseracsseans 88
Table 4 - New TLDs chosen by ICANN.......ccceeviiiieeeerieiiereneeinireessreseseeesnneeessssnsssessessssneses 88
Table 5 - The Core Components of the HOMINID Model.........ccccveeceeeverrcreereenereceneecreenen. 146
Table 6 - Results of the Overhead Introduced by the RLS.......cccccoecvevveerrenrureccicnennccnnaennn 241

Xi

Acknowledgements

This study was undertaken in part to further my own knowledge, and in part to further the
knowledge of the web community in order that the web remains society’s principal
information system. Much of the research could not have been conducted without the open
philosophy of the web, which encourages research to be shared, and its rich interconnected
nature, which makes for easy access to that research. It is hoped after the conclusion of this

study, that access can be made even easier.

The European ACTS project DOLMEN provided both the principal funding for the first two
and a half years of study, and the foundation for the idea of the research. DOLMEN
highlighted the need for proper information management in an information system, but its
methods, coming from a telecommunications perspective, seemed so at odds with the web’s

open philosophy, that the need for a new model of management seemed obvious and

imperative.

The work could not have been done without the guidance of my Director of Studies, Dr.
Steven Furnell, who helped me through the DOLMEN project, guided me through the process
of publishing and presenting papers, worked tirelessly to secure most of my further funding,
and who provided the model for the shape of this thesis; the reason for its size and

comprehensive nature can therefore be firmly laid at his door.

xii

I would also like to thank my supervisors, Prof. Peter Sanders and Prof. Paul Reynolds, both
of whom provided me with the encouragement and technical advice that was much needed
along the way. I would particularly like to thank Prof. Reynolds for his part in securing
funding from Orange Personal Telecommunications in the form of two research projects,
without which the work could not have been completed. Thanks are also owed to my
colleague, Paul Dowland, who was put upon at the last minute to help with some of the

experiments conducted as part of this work in spite of his own pressing schedule.

I would also like to thank my friends and family for the support that they gave. Despite not
seeing me for much of the writing-up stage, they continued to encourage my efforts, and not

taken my absence personally.

Finally, the biggest thanks of all belongs to my fiancée, Vicky, who has had to put up with
minimal income, expanding deadlines, stress, and little support from me during a period of
change and insecurity for us both. Throughout it all, she has remained wholly supportive and
understanding, despite the fact that this thesis was written while I worked full-time. As such,
the thesis has dominated my time at the expense of the time I have for her; it is time now that I

put that right.

xiii

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award.

This study was financed with primary funding from the EU ACTS DOLMEN project.

Relevant conferences and DOLMEN project meetings were regularly attended (at which work
was frequently presented) and a number of external establishments were visited for

consultation purposes. In addition, several papers were prepared for publication, details of

which are listed in the appendices.

Date qqo&

Xiv

Chapter 1 - Introduction and Overview

1. Introduction and Overview

The research presents a new model for managing information flow on the
web that has been designed according to the web’s open philosophy. The
model solves the problems of link rot, a shrinking namespace, and increasing
noise in the system, and has been designed to integrate into the web’s existing

architecture without breaking it.

Chapter 1 - Introduction and Overview

1.1 Introduction

The World Wide Web (web) has transformed society since its inception in 1989, becoming the
most important sociological invention of the late 20™ Century. Many other network
applications existed prior to the web, and countless others have been developed since, but
none have had such an impact on society. The web is unique in that it provides a common
information space that is global in scope, but which does not discriminate according to
information or users. Effectively, anyone can publish anything on the web, enabling it to
evolve into an abstract representation of society’s ideas, thoughts, opinions, fashions, and
fears. It is the combination of the web’s lack of censorship, its openness, its global reach, and
the ease with which information can be published that has given the web such impact on
society. For the first time in history, people with limited technological knowledge can publish

whatever information they wish and have it seen across the world instantly.

The web has impacted on many different facets of life: Its explosive growth has remained
exponential since its birth; fortunes have been made and lost; governments have tried to curtail
its freedom; business has been transformed through e-commerce; and security and privacy
issues have been ever-present. All these issues are symptomatic of the fact that the web is not
just a technological innovation, but a societal innovation as well, affecting every level of

people’s lives, either directly or indirectly.

The reason for the web’s impact lies in its open design and philosophy. Specifically, all of the

web’s protocols and standards are freely available, allowing anybody to read and modify them

Chapter 1 - Introduction and Overview

if required, while its federated design, inherited in part from its reliance on the Internet,
ensures that no central organization controls it. Thus, the web is open from an architectural
level, and from a user level, both of which give it a competitive advantage compared to similar
information systems, such as America Online, which have a centralized controlling

organization behind them.

However, the web is not without its problems. Without any controlling organization, the web
has no form of censorship, and so information of low quality competes directly with
information of high quality on an equal level, with little to distinguish between the two in the
eyes of the user. Worse, information can be deliberately misleading, designed to confuse the
user for the purposes of the information provider. The end result is an information explosion,
most of it of dubious quality, which ultimately degrades the quality of the service that the web
provides. In addition, the architecture of the web was never designed to scale to the size that it
has, and each new user and new item of information adds to the pressure placed upon its
foundations. As this thesis aims to show, cracks are appearing in the web as flaws that are

inherent in its architecture begin to undermine its structure and diminish its role in society.

Many solutions exist that attempt to solve these problems, but their effectiveness has been
limited at best. They have often been isolated systems that attempt to patch a specific
weakness without taking into account problems in other areas of the web’s architecture. Many
of these solutions also require the web’s architecture to be adapted, which ultimately would

force all existing web entities to be redesigned to take advantage of the solution offered.

Chapter 1 - Introduction and Overview

However, in a system the size of the web, this is impractical at best, and, as the low adoption

rates of these solutions has proved, impossible in practice.

The aim of the research presented in this thesis, therefore, is to design an effective solution to
the most critical flaws of the web without requiring existing entities to be redesigned.
However, rather than basing the solution on an existing model of information flow in a
network, the research takes the perspective of information flowing from information provider
to information consumer, effectively ignoring its flow through the technological foundations
of the web altogether. Using this perspective, a new model for managing information flow in
the web has been designed, which works with the web and its information, rather than against
it. The model manages the web’s information without censoring it, and solves some of the

web’s flaws without requiring the modification of its architecture.

1.2 Aims and Objectives

This study is concerned with the architecture of the web and the information published on it.
More specifically, it identifies the problems in the web’s information space and focuses on the
architectural weaknesses that have brought about these problems, with the aim being to solve

the problems in a way that is sympathetic to the underlying philosophy of the web’s design

principles.

In order to do this, the research programme can be divided into three key phases. The first
phase provides a comprehensive analysis of the web’s architecture in its current state, and

focuses on the three areas of weakness that provide the greatest cause for concern: identifying,

Chapter 1 - Introduction and Overview

structuring, and retrieving information. Specific problems are identified within these areas
that could potentially halt the growth of the web altogether. The second phase of the
programme aims to solve these problems through the development of a new model for
managing the information flow on the web without breaking its architecture or damaging its
culture. The third and final phase involves the complete specification and development of part
of the model. In order to validate the design, this stage also includes the development and
testing of a prototype, with performance measurements provided to demonstrate its

effectiveness in a real world setting.

A principal objective of the first phase was to identify those flaws in the web’s existing
architecture that were deemed most damaging to its future. In order to do this, an extensive
literature search was performed in order to determine the nature and extent of the flaws, while
an experiment was conducted in the hope of gaining empirical data on the extent of the
problems identified. Once the problems had been identified, they remained as the focus of the

remainder of the research programme.

The objective of the second phase was to develop a new model for managing information flow
on the web, which represents the focus of the research. The model comprises a new
mechanism for enhanced navigation across the web; a new addressing scheme that can
reference resources according to time and space; and a replacement for the DNS that has can
transparently migrate resources across web servers. The model relies upon a new form of
mediation, called request routing, which enables these new distributed systems to be integrated

into the web without breaking its existing architecture.

Chapter 1 - Introduction and Overview

Finally, the objective of the third phase was to develop the model such that it could be
deployed on the web to provide real solutions to the identified flaws. As such, this phase

involved completely specifying the design of the model from an engineering perspective, and

developing, testing, and measuring a prototype.

These objectives can be more formally specified as follows:

To assess the current state of the web’s architecture.

e To identify the flaws in the web’s architecture specific to identifying, structuring, and
retrieving information, and the extent to which they might affect its growth and

effectiveness as an information system.

e To develop a new model for managing the web’s information flow, and ultimately

provide a solution to the identified flaws of the web.

e To design and specify a system that implements the new model.

e To build and test a prototype of this system to demonstrate its effectiveness within the

web.

These objectives correspond to the general sequence of the material presented in the

subsequent chapters of the thesis, as will be discussed in the next section.

6

Chapter 1 - Introduction and Overview

The research has involved significant liaison with networks and telecom engineers
(particularly during the early stages of the work). The majority of this consultation occurred
within the ACTS DOLMEN project, which was concerned with the development of a service
architecture for fixed and mobile networks, based on TINA-C (TINA, 1994). Other
consultation occurred within the WebDAV working group, and through discussions with

various experts in the field.

1.3 Thesis Structure

This thesis describes the research leading to the formulation of a new model for managing
information flow on the web, which is used to provide a solution to key flaws within the web’s
architecture. The foundations for the thesis are provided in chapter 2, which begins by
examining the web’s existing architecture in detail, focusing on the way in which it identifies,
structures, and retrieves its information, and highlighting the effect that this has on the system
as a whole. The chapter reveals the dichotomy that information management introduces to a
global information system, with an open design philosophy leading to a popular but ineffective
system, and a closed philosophy leading to an unpopular but effective system. This forms the
core focus for the research, which aims to significantly improve the web’s management of its

information without destroying its openness and popularity.

Chapter 3 provides substantive evidence of the flaws in the web’s architecture that are a direct
result of its open philosophy, and which are steadily eroding its effectiveness as its popularity
increases. An exhaustive literature search is presented that reveals the extent of the web’s

problems, and the existing solutions that have been proposed, but which have ultimately

Chapter 1 - Introduction and Overview

failed. To provide further detail, the chapter discusses an experiment conducted as part of the
research programme, which was designed to provide empirical data on the problem of link rot
in the web, but which was prematurely terminated. The chapter effectively underpins the
research by identifying the scope of the web’s problems, and concludes that a new, human-

oriented model for managing information flow is required in order to solve them.

Chapter 4 presents such a model. HOMINID, as the model is called, provides a new way of
managing information flow on the web that is designed to work according o the nature of the
information that flows upon it. The chapter provides a conceptual overview of the model,
which includes the design of a new, web-specific Resource Location Service; the introduction
of time as a new dimension to the web; and a system for universal access to meta-data and
navigational information to help decrease the level of noise in the web without falling foul of

the information management dichotomy defined in chapter 2.

Chapter 5 presents a detailed specification of the HOMINID model, showing how it can be
applied to the web. The chapter essentially provides a blueprint for deploying the model on
the web, including a functional design specification of its core concepts. The chapter
describes the definition of new services, URI schemes, management entities and their
interfaces, and routing objects that can be deployed in the web’s architecture in a way that is

backwards-compatible with existing web entities.

Chapter 6 defines the complete design, specification, and implementation of the HOMINID

model’s Resource Locator Service, including the full specification of the required protocols,

Chapter 1 - Introduction and Overview

interfaces and objects that are needed for deployment. A new Resource Migration Protocol is
defined, and a prototype of the service is described that has been developed according to this
specification, in order to validate its design. The performance of the prototype has been

measured, and extensive results are provided in full, in order to demonstrate the effectiveness

of the design in today’s web.

Finally, chapter 7 presents the main conclusions arising from the entire research programme,
highlighting the principal achievements and limitations of the work, along with suggestions
for potential further development. The thesis also includes a number of appendices, which
contain a variety of additional information in support of the main discussion (including a

number of published papers from the research programme).

Chapter 2- The World Wide Web

2.

The World Wide Web

The World Wide Web (web) is a global information system that provides
equal access to information providers and information users. Its success is
due in no small part to its philosophy of openness and extensibility. Anyone
can develop anything for the web, and market forces alone will determine its
success. This has assured unprecedented investment in the web’s technology,
accelerating the rate of technological progress, and connecting society and its
information. However, it has also left it with no central controlling authority,
and no explicit standards for managing its information, leading to an anarchic
state of information provision that progressively weakens the web’s use as an

effective information system.

10

Chapter 2- The World Wide Web

2.1 Introduction

The late 20™ Century saw the emergence of global information systems that could
provide information and services on an unprecedented scale. The global
communications networks supporting these systems came from the fields of
telecommunications and computing, with ideas and technologies crossing the two
domains to provide solutions to common problems. These global networks,
supported by many users, are different from local networks, as the services they
provide have the power to impact on society. This impact becomes more powerful as

the services become richer, and more able to provide a diverse range of information.

The telephone system came from the field of telecommunications, and its services
originally consisted primarily of transporting a human voice from one telephone to
another. Over time, its services have become richer, and now telecommunications
companies (telcos) have begun to extend their role by providing multimedia-based
services such as graphics and video. However, a new global network emerged from
the computing field, in the form of the Internet and, more recently, the World Wide
Web (web). The Internet experienced a global surge in popularity, largely through
the development of the web and the introduction of the graphical web browser
Mosaic by NCSA (Berners-Lee and Fischetti, 1999). The web has developed into a
competing platform to the telecommunications system, capable of providing the
same rich multimedia services that the telecommunications companies wish to

provide, but based on a different paradigm than the telecommunications model.

11

Chapter 2- The World Wide Web

Whereas the telecommunications model tightly integrates the provision of services
with the control of the network, the Internet, upon which the web runs, effectively
separates the services from the network. This is reflected in the architecture of the
two models. The telecommunications model designs all-encompassing architectures
that control every part of the network, from the user and their terminal, to the
network resources switching data deep within the network, and provides well
managed services in a tightly controlled environment. In contrast, the Internet model
focuses more on the reliable transport of data, and leaves others to design whatever
service they require. The Internet completely ignores the network resources that
support it, and the web provides a platform for service provision without regard for
what services are deployed on it. The result is seen either as “Internet anarchy”
(Raatikainen et al., 1998) or as an “open, federated system” (Bemers-Lee and

Fischetti, 1999), depending on your chosen philosophy.

Despite the existence of the two models, it is the Internet and the web that have
become pervasive in the developed world, becoming the de facto global information
system. The reasons behind the web’s success will be examined in section2.4.1, but
before that, the following sections will examine the architecture of the web, and

analyse how its information is managed.

12

Chapter 2- The World Wide Web

2.2 The Architecture of the World Wide Web

2.2.1 The Web'’s Origins

The Internet is a data network from the field of computing that has gradually evolved
over time to become a single ubiquitous network that enables all other data networks
to communicate and interoperate with one another. The 1990s saw an explosion both
in the number of people using the Internet, and the types of services it could offer.
As the Internet grew in popularity, however, users found they needed a consistent,
standard way of formatting and referencing information. Such a system was
developed by Tim Berners-Lee, of the European particle physics research laboratory,
CERN, who proposed the World Wide Web as a hypertext distribution system that
could be accessed by any type of computer across the world, and which would
present its information through a single user-interface. Since its invention, the web
now has a user population of over 369 million (GlobalReach, 2000), yet it was
conceived of by one man, designed by a small team of developers, and refined by
many different organizations and companies. This was possible due to the open
nature of the Internet. Essentially, anybody can develop a service for deployment on
top of the Internet, and not worry about the underlying network. Better still, unlike
the situation for telecommunications service providers, service deployment does not
require negotiating access to the network, payment to the network operator (apart
from a minimal charge to an Internet Service Provider, although even this is now free

in the UK), or the development of a new architecture based around the new service.

13

Chapter 2- The World Wide Web

This dramatically reduces both the cost of new services, and the time from service

conception to service deployment.

2.2.2 Architectural Overview

The World Wide Web is defined as:
“...the universe of network-accessible information, the embodiment of human
knowledge...The Web has a body of software, and a set of protocols and

conventions. Through the use of hypertext and multimedia techniques, the
web is easy for anyone to roam, browse, and contribute to.” (W3C, 1992).

As such, the definition of the web strongly reflects the philosophy of the Internet
model: ignore the details of the underlying system, manage only the parts you need

to manage, and let anyone use your services.

The web is a loosely distributed system based on the client-server model, whereby a
client must explicitly request a resource from a server. A resource is defined as
“anything that has identity” (Berners-Lee et al., 1998, p2), and usually includes such
things as documents or images. These currently form the main items of traffic on the
web, and are transferred from server to client using the HTTP protocol (Bemers-Lee

et al., 1996).

The web’s core architecture comprises three standards:
e HyperText Transfer Protocol (Berners-Lee et al., 1996).
¢ The Uniform Resource Identifier (Berners-Lee et al., 1998).

o HyperText Markup Language (Berners-Lee et al., 1995).

14

Chapter 2- The World Wide Web

The HyperText Transfer Protocol (HTTP) is the protocol used to distribute this
information over the existing Internet architecture; the Uniform Resource Identifier
(URI) is used to both locate and identify resources (text, images, files, etc.), and
represents the standard that defines the operation of the hyperlink, enabling one
resource to be linked to another; and HyperText Markup Language (HTML) is used
to present the information contained within the resources in a consistent way across

all computer platforms.

These three standards are implemented in a web browser, which presents the
information to the user, and in a web server, which hosts the information and
transmits it to the user upon request. The browser also uses other third-party
standards for displaying content of a particular media type, such as images, sound,

animation, etc.

The user interacts with the web through the web browser, which acts as the web’s
user interface and renders all content delivered to the user. The user begins the
process by typing the URI of a resource (usually a HTML document, which is known
as a web page) into a browser. The URI acts as the resource’s address, uniquely
locating the resource on a server. It encodes the server’s domain name, and also the
directory location and file name of the resource on that server. A web browser, given
a resource’s URI, can locate the resource and download it from its server. The
resource’s content is then extracted and rendered in the browser’s window using

HTML encoding rules. This is the mechanism through which the web provides its

15

Chapter 2- The World Wide Web

services. The following sub-sections examine these three standards in greater detail,

and describe the role each has to play in the architecture of the web.

2.2.2.1 HyperText Transfer Protocol

The web relies on HTTP as its transfer protocol, transferring its resources from
server to client. The protocol is text-based and therefore extremely simple when
compared with other protocols. All it is concerned with is the transfer of a web
resource (such as a web page or an image) across a reliable transport connection. As
such, TCP/IP is nearly always used as the transport protocol, and will be considered
as the default transport protocol for this thesis. TCP/IP ensures the data is delivered
safely, leaving HTTP free to manage application-level issues. These include content
negotiation, whereby the server can negotiate with the client as to which version of a
resource is best rendered on the client’s access device; server redirection, whereby a
server redirects the request to another server; and authorization, although this is not

highly robust in HTTP.

HTTP treats all resources as if they were files located on a server, with a URI acting
as their identifier. Although it is able to differentiate between different content types
(such as HTML documents and GIF images) using the Internet Media Types
specification (Postel, 1996) and the Multipurpose Internet Mail Extensions (MIME)
specification (Freed and Borenstein, 1996), it does not exclude one content type over

another, and although it may encode or transform the content, it never alters it.

16

Chapter 2- The World Wide Web

HTTP is an extensible protocol, enabling it to be adapted and extended through a
well-defined extension framework (Nielsen et al., 2000). Recent extensions have
included a Capabilities and Preferences Protocol (Ohto and Hjelm, 1999), and the
new WebDAV protocol for distributed authoring and versioning across the web
(Goland et al., 1999), each of which has provided new semantics and message
headers to HTTP, but without breaking the existing core protocol. The extensibility
of HTTP enables it to be used in a wide range of situations, and helps prolong its

usefulness in an environment as dynamic as the web.

2.2.2.2 The Uniform Resource Identifier

The Uniform Resource Identifier (URI) (Berners-Lee et al., 1998) is a generic syntax
that provides a simple and extensible means of identifying a resource. As such, it is
used to compose all identifiers on the web, and can be seen as a superset of all web
identifiers. The most commonly used type of URI is the Uniform Resource Locator
(URL) (Berners-Lee et al., 1994), which is the subset of URIs that identify a resource
through its location (Berners-Lee et al., 1998). There are many other types of URI
scheme, such as that based on the Handle System (Sun and Lannom, 2000), or the
Uniform Resource Name (Berners-Lee et al., 1998), but because of their failure to be
widely adopted on the web, the URL is perceived as the only type of identifier.
Despite this, the distinction between URL and URI is worth noting, and although the
rest of the thesis will focus primarily on the URL, the two identifiers will be
discussed as distinct entities in future chapters. Equally, it should be noted that

discussions involving the URL necessarily involve the URI, as a URL is a URI.

17

Chapter 2- The World Wide Web

Conceptually, the URL defines a namespace that is distributed across all the servers
on the web. A resource can be located if it resides at a particular location in the
namespace. The URL can be extended to encode namespaces from other protocols,
such as FTP (File Transfer Protocol) or NNTP (Network News Transfer Protocol),
enabling resources on other information systems to easily be referenced from the
web, combining their information space with that of the web’s. Like HTTP, the URL
treats all resources equally, and so can identify any resource regardless of its
content’s media-type. As such, the URL is “...the most fundamental innovation of
the web, because it is the one specification that every web program, client or server,

anywhere uses when any link is followed.” (Berners-Lee and Fischetti, 1999, p42).

2.2.2.3 HyperText Markup Language

HTML provides a consistent markup language for the platform-neutral presentation
of information. The markup language is text-based and easy to learn, two factors
that have led to the web’s success. HTML can be seen as the web’s visual
component, rendering all information resources no matter what their content.
Multimedia content, such as video, and functional content, such as Java applets, can
be embedded into an HTML document so that it sits next to text in the user’s

browser.

The original HTML specification has been improved over time, becoming richer and
more functional, while a new extensible markup language, called XML (Bray et al.,

2000), has been specified that is based on the principles of HTML, but whose

18

Chapter 2- The World Wide Web

elements and semantics are entirely open and extensible. Indeed, the whole of the
web’s architecture is fully extensible: the URI can encode any namespace; the
messages and semantics of HTTP can be extended; and any content in any markup
language can be consistently presented. As such the web should remain thede facto

global information system for many years to come.

2.2.3 The Relationship Between the Web and the Internet

In 1974, Vinton Cerf and Bob Kahn published A4 Protocol for Packet Network
Internetworking (Cerf and Kahn, 1974), which specified the design of a
Transmission Control Program. This was to be the forerunner of the Transmission
Control Protocol (TCP), the protocol used for the transport layer of the Internet. In
1981, the TCP/IP (Transmission Control Protocol/ Internet Protocol) protocol suite
was fully formalized (see RFC793 (Postel 1981a), and RFC791 (Postel 1981b)), and
the term Internet was defined for an interconnecting network. This protocol suite
was to become the de facto interconnecting network protocol standard, and was
capable of operating above a “...wide spectrum of communication systems ranging
from hard-wired connections to packet-switched or circuit-switched networks”
(Postel, 1981a). TCP/IP is concemned primarily with internetworking heterogeneous
networking systems, and does not care about the protocol layers beneath it. Users of
this interconnected network can therefore communicate with other users regardless
of the network technology each uses, so long as each communicating host computer

can run the TCP/IP protocol stack on top of its existing network protocols.

19

Chapter 2- The World Wide Web

The web uses the Internet for the transport of its resources. The physical resources
of the Internet, such as its routers, provide the network infrastructure upon which the
web and its services run. Beneath the Internet lie the physical network resources,
such as switches, of the individual networks. Because the Internet is a data
internetwork that is designed to run over any type of network, its protocols (TCP/IP)
are designed simply to transport bits safely, regardless of the technology used in
these physical network resources. As such, the Internet has no way of controlling the
network resources over which it operates, and thus no way of enabling its services to
control the network. The Internet and the physical network it runs over are seen as
two entirely separate systems. Because of this, service characteristics such as
Quality of Service (QoS) cannot be guaranteed, and so an Internet application that
requires a certain QoS must provide its own means of compensating for bandwidth
variation and latency. This does not affect most resources on the web, however, as
HTTP is a simple request/response protocol riding on top of TCP/IP that enables
resources to be transferred from server to client, regardless of the time it takes for the
transfer to complete, or the latency inherent within the system. As such, TCP/IP
provides a perfect transport for the web, as it guarantees the safe delivery of data,
allowing HTTP simply to co-ordinate the downloading of resources according to

their content type, without worrying about the underlying packets of data.

20

Chapter 2- The World Wide Web

2.2.4 A Philosophy of No Control

The Internet cannot provide a guaranteed QoS because of a decision by its designers
to place all the complexity of the protocols in the transport layer. In stark contrast to
the telecommunications model, which seeks to control every element in a network,
the Internet assumes that the network layer is inherently unmanageable, and so TCP,
the Internet’s transport layer protocol, is a robust, reliable protocol that works over
an inherently unreliable network (Tanenbaum, 1996). As such, its design philosophy
is based on reliability and openness rather than control, with its open protocols
designed to work across a broad variety of networks, but at the expense of
understanding or controlling those networks. Its design is characterized by open
standards and open access, enabling anyone to use it or develop for it, a philosophy
that ultimately led to the development of the web. Indeed, this philosophy is shared
by the web, which provides a platform for service and information provision in the
form of web sites. The web’s standards are also entirely open, and can be extended
and used by anyone without license, while information provision is unrestricted and
uncontrolled. This is central to the philosophy of the web’s creator, Tim Bemers-

Lee, who, when designing the web, felt that:

“..for an international hypertext system to be worthwhile...many people
would have to post information...That meant that anyone (authorized) should
be able to publish and correct information and anyone (authorized) should be
able to read it. There could be no central control” (Berners-Lee and
Fischetti, 1999, p41-42).

21

Chapter 2- The World Wide Web

As the following sections discuss, however, this philosophy has made the web what
it is today, but at the expense of providing a very shaky foundation for what the web
will become tomorrow. More specifically, this philosophy has had an adverse effect
on the web’s ability to manage its own information, for it is difficult to manage

anything without control.

2.3 Managing the Web's Information

All content in an information system, whether it is text, images, movies or sound,
etc., encodes information in a specific media-type. In order for this information to be
used effectively by the system’s users, the system must provide mechanisms that
structure the information and enable it to be managed. In a system the size of the
web, effective management is even more crucial because of the diversity of the

information, and the enormous amount of it.

There are many different components to information management, but for the
purposes of the research described in this thesis, three components are key.

Specifically, the research has focused on how the web:

e identifies information;
e structures information;

e retrieves information.

22

Chapter 2- The World Wide Web

These three components are crucial to effective information management in a global
information system such as the web, as without them, the information would be
inaccessible, meaningless and irretrievable. The philosophy underlying the web’s
design does not provide great support for these components, but as the following
sub-sections show, they do exist, either through the web’s own architectural

mechanisms, or through external third party services.

2.3.1 Identifying Information

The web’s architecture specifies the URI as the mechanism through which
information is identified. The URI is a generic syntax for naming all types of
resources on the web, and so provides the web with a namespace. The vast majority
of web resources, however, use the URL, which, as was discussed in section2.2.2.2,

is a human-readable subset of the URI that identifies a resource through its location.
More specifically, the URL locates a resource via a combination of the Internet’s

Domain Name System (Mockapetris, 1987a, 1987b) and the server’s own file
system. In this way, the namespace of the URL comprises the namespace of the web
server and the namespace of the Internet’s DNS, giving the web server partial control

over the location (and thus the identity) of the resource.

23

Chapter 2- The World Wide Web

The namespace provided by the URL has become the de facto namespace of the web.

As defined in Berners-Lee et al. (1994), the syntax of the URL encodes:

o the protocol scheme to be used to download the resource (usually http://);

e the domain name of the host server (e.g. www.aserver.com);

o the file path of the resource (e.g. /library/);

¢ the file name of the resource (e.g. index.htm).

The Domain Name System (DNS) is used to map the server’s domain name, which is
encoded within the URL, onto its IP address in order that a TCP/IP connection can
be made to the server. Once achieved, the resource can be found by the server
through the file path and file name components of the URL. As such, it is the
combination of the name of the server hosting the resource, and the file path within

the server, that uniquely identifies the resource and largely defines the URL’s

namespace.

Another URI scheme is the Uniform Resource Name (URN), which identifies a
resource independently from its location (Sollins and Masinter, 1994). Note that
technically a URL is used to locate a resource, whereas a URN can be used to

identify a resource (Berners-Lee et al., 1994); that is a URN persistently labels a

24

Chapter 2- The World Wide Web

resource with an identifier, even when that resource ceases to exist (Berners-Lee et
al., 1998). However, the concept of the URN has never been implemented, and so in

practice the URL is used to both identify and locate a resource.

The URL is encoded in HTML using an anchor element, an example of which is:

Click Here

The anchor element provides a visual representation of the hyperlink, and encodes
the URL in its HREF attribute to both identify the linked resource, and locate it. As
has been said, HTML is the web’s markup language, and its anchor element can
provide textual information about the hyperlink (such as ‘Click Here’ in the example
above), or be embedded in other, richer forms of information, such as images, so that
a click on the image will download the linked resource. In this way, the information
presented to the user identifies the content of the resource to that user, while the URL
embedded in the underlying anchor element identifies and locates the resource to the

underlying system.

The hyperlink is part of the core architecture of the web. New specifications have
recently been proposed to extend its functionality in the form of the XML Linking
Language (DeRose et al., 2000) and XML Pointer Language (DeRose et al., 2001).
These provide extensible semantics to the hyperlink, with XML Linking Language

(XLink) defining a syntax for asserting and, more importantly, characterizing explicit

25

Chapter 2- The World Wide Web

relationships (i.e. hyperlinks) between two or more resources (Maler and DeRose,
1998a), and XML Pointer Language (XPointer) enabling elements, character strings
or other parts of an XML document to be referenced regardless of whether they carry
an explicit identifying attribute (Maler and DeRose, 1998ab). Essentially these
proposals allow the semantics of the relationship between two resources to be
defined, and refine the granularity of the hyperlink’s target to that of individual
elements within a resource. However, the specifications of these proposals have yet
to be completed, and they are not widely used on the web. As such, they will not
form part of this discussion, and the rest of this thesis will treat the hyperlink as it is

(19

defined in Bemners-Lee and Connolly (1995) as “...a relationship between two

anchors”.

2.3.2 Structuring Information

For an information system to be useable, its information must be structured such that
it can be understood by either human or machine, depending on the nature of the
system. Without structure, information becomes noise, with no form, no meaning
and no use. The web primarily uses HTML to structure its information in a human-
readable form. Content within a HTML document is formatted using HTML tags,
which tell a user’s browser where to place specific items of content, such as text,
images, tables, etc., and in what style to present it. In this way, a HTML document

looks attractive to the user, and can be easily read if designed well.

26

Chapter 2- The World Wide Web

However, the web’s architecture is less effective at structuring its information for
machine use. Search engines must infer the meaning of a HTML document from its
text in order to determine its relevance to a user’s query, as the HTML elements are
primarily concerned with the style and presentational layout of a document, rather
than with the semantics of the document. In order to provide more machine-readable
semantics, new markup languages based on the syntactical rules of XML, such as the
Resource Description Framework (Lassila and Swick, 1998), have been designed,
which encode the semantics of a document into a machine-readable description
through the use of meta-data (i.e. data about data). The meta-data can be read and
understood by a software agent such as a web spider (see sub-section 2.3.3),
providing it with accurate information about the meaning of the web document. As
such, just as HTML defines a common way of structuring information for the user,
so XML and its associated markup languages define a common way for information
to be structured for the machine. Note, however, that XML has been defined
according to the philosophy of the web, and is an extensible markup language. As
such, it only defines the syntax with which new markup languages must be created,
and allows the structure and semantics of the language to be defined according to the

needs of the user.

As well as structuring information within individual documents, an information
system must also structure its information across the whole system. Collating
information in this way enables the user to retrieve it easily, and to query the system

in order to access information effectively, or to retrieve information from multiple

27

Chapter 2- The World Wide Web

sources. However, the philosophy underlying the web’s design is such that system-
wide mechanisms, including those that provide information structure, cannot be part
of its architecture, as they require system-wide organization and control of a kind
that cannot effectively be provided in a federated system. As such, the web’s
architecture does not support such system-wide information structure, and so limits
the effectiveness of information retrieval (see sub-section 2.3.3, below), and prevents
the user from performing system-wide queries (Pitkow and Recker, 1994).
Information exists within web sites as part of those sites only, and although an
individual site can provide its own tools to enable its information to be queried, it
cannot be queried against other information on the web. As such, information is
structured on the web, but only at the level of the individual resource. Third party
services may provide an alternative, permitting users to seek out information across
multiple web sites, but such a service must be aware of those specific sites in the first
place, either through registration or web crawling (see the following sub-section).
The web, therefore, may be a vast reservoir of information, but it is disparate

information that is far removed from the ordered world of the database.

2.3.3 Retrieving Information

Because the web’s architecture does not provide system-wide structure to its
information, it follows that information retrieval is not specified within its
architecture either, as this too requires system-wide organization. The only defined
mechanisms for a user to retrieve information is through navigation to appropriate

web documents via hyperlinks, or using a web browser’s navigational features, such

28

Chapter 2- The World Wide Web

as the forward and back buttons. These mechanisms are far from effective for a
system the size of the web, however, as the number of hyperlinks is vast, and the
navigational features are ineffective at best. As such, it has been left to independent
third party service providers, such as the search engine companies like AltaVista,
Google, and Lycos, to provide effective information retrieval services, which work

on top of the web’s architecture.

2.3.3.1 Overview of the Search Engine

Search engines can be classified as either an index or a directory. An indexworks by
storing and indexing every single word of every HTML document, and comparing
them with the words in users’ queries to produce relevant documents. A directory, in
contrast, provides a hierarchical organization of documents, each classified according
to a specific subject heading (Inktomi, 1996). The user can navigate through this
structure using their own relevance heuristics in order to locate a document that
satisfies their information need. Because of the lack of information structure within
a document, however, it is difficult for a directory to correctly classify its documents
according to a specific subject heading automatically, and so companies such as
Yahoo pride themselves on classifying every one of their 1.8 million documents

manually (Sullivan, 2000a).

To the end user, a search engine is no different from any other web site. The user
navigates to the search engine, and is presented with the content of the site. The user

types in a set of keywords, and the search engine presents a list of relevant web sites

29

Chapter 2- The World Wide Web

that match the keywords. The user can then determine the relevance of each site to
their specific information need, and navigate to that site from the search engine’s

web page (Figure 1).

B Google Search Mike Evons@ack ter plym ac ub - Miciosolt Inteinet £xplores i L AR A R |
| Flo EGt Vew Favoitos Toos Hebp : e : 2 =
LR, s ~ TP e Tt Wl el Bl il Bl DT il S
[Badk ‘ Stop Reliesh Home | Sewch Favoes Histoy Mal P Ed . Dicuss Messergw Reslcom Dfine.
| Addiost [@] hitpx//wwew. google. conVsearch 7qeMike E vans@jack see phn.ac.uktnvsm=100bhieenti=iang_entaale=olf e G0
Cotgle - [osouce mogobor <] @oseach =L RS BUp - SHighigh | [Fissouce mgation
2
Advarced Search Preferences Sesrch Tips
(_“‘O&)gle]Mmc Evans@jack see.plym acuk Google Search] I'm Feeling Lucky [
s. World > Frangais > Informat n_> Langages > XML Computers > Data Formats > Graphics > Vector > SVG
st-auth@wa3 .org from Jar A 3 d.
- Evans (Mike Evnn@] luo p)ym ac uk) Dae Mon Mar 132&:03 Next
message: Jim Whitehead: "RE: WebDAV and dusronnecled/asynchmnaus opemmn
lists. w3. org/Archwas/Publicw3c-dist-auth2000)anMar/0428 html - Sk - Simila _j 3ges
chst-auth M 00 RE: WebDAVY .
me Jim Whnehnad <u;u@1cs uei adu) To: I)h Ev-ns <Mike Ev-n@)aduct plym.ac uk>,
w3: dist-auth@w3.org Date: Mon, 13 Mar 2000 10:06:51 -0800 Message-ID ...
lists w3.org/Archives/Public/w3c-dist-auth/2000JanMar/0423 Mmi - 11k - Cached - Similar pages
Hyper G s Markup Language (HGML)
Au\hcvs Mi tvam <mike w-n@]adun plym.acuk>, PRP an() Steven Fumell: <stevei@jack see
piym acuk>, PRP (UK) Andy F’hlppen <lrdyp@]ad&u. plym acuk ..
www w3 org/TR/NOTE-HGML - 54k - hed - Similar pages
[Mike Evans@jack see plym ac uk Google Search L{_‘.,ﬂ.‘ il roans
vl Getthe Google Toolbar for your browser
C.o gz-imnmd v @hSearch @iSearchsite 29 Qpage Info - BJUp ~ Jm-qm B stanford |
Trv vouir avary on Alf ta Fxrite HotBat_infnseek | vens Yahno - — -:‘
©] Done D inemet
Aot AE BWO R » Sueiied | £ 500 | GyEwion |[E1600g. [lacoba| B | B)enan | HER QDS w2

Figure 1 - Screenshot of the Google Search Engine

In order to provide a comprehensive service, a search engine must index or classify
all the words in a document from as many documents as possible. The extent to
which the search engine covers the web defines its size (measured in number of
documents indexed), with popular search engines competing to become the biggest
search engine on the web. To do this, most find their documents through the use of a

software agent called a web spider, which automatically navigates across web

30

Chapter 2- The World Wide Web

servers, indexing the information it finds in any web document it comes across. A

spider performs three functions (see Pallmann, 1999, p143):

e Discovery — locate specific web sites of interest;
¢ Site Crawling — traverse the site to determine the resources it contains;

o Indexing — glean descriptive information from the resources within the site.

Usually, the information from the resources is added to a search engine’s database,
which can then be queried by a user in order to locate a specific resource that
contains information that the user needs. If the web had any kind of system-wide
structure to its information, a spider would not be needed. As it is, they are an
essential component of current search engines, and are highly sophisticated
programs, capable of searching vast numbers of web resources every day. For
example, AltaVista’s (www.altavista.com) spider, called ‘Scooter’, collects data on
over 6,000,000 HTML documents a day (Schwartz, 1998), while Inktomi’s
(www.inktomi.com) spider indexes an impressive 10,000,000 HTML documents a
day (Chakrabarti et al., 1999a). One way in which a spider discovers appropriate
web sites is by extracting the URLs from hyperlinks in HTML documents, and using
them to download the associated resource. If that resource is an appropriate HTML
document, its words are indexed. If it contains hyperlinks, the URLs are again
extracted, and the spider moves on again to the associated HTML documents. In this

way, the spider is said to crawl across the web, indexing web documents as it goes.

31

Chapter 2- The World Wide Web

In order to provide an accurate service, a search engine must employ a set of
heuristics in order to determine the relevance of a document to the keywords typed in
by the user. The heuristics vary in their sophistication according to the different
search engines in which they are used, and are one of the main differentiating factors
of the different search engines available. Google (http://www.google.com), for
example, uses a sophisticated heuristic called PageRank (Brin and Page, 1998),
which ranks a HTML document’s authority based on the number of hyperlinks that
point to it, or the number of documents that point to it which themselves have a high
PageRank value. Google then determines the relevant HTML documents that match
the user’s query according to traditional relevance heuristics (e.g. keyword
matching), and uses the PageRank value to rank those that are deemed relevant
according to their computed authority. However, if the web provided more structure
to its information, a search engine would not need such complex relevance heuristics

to infer the meaning of the document from its text.

2.4 The Information Management Dichotomy

The philosophy behind the design of the web has made it very difficult for its
information to be managed. The web has no central authority controlling who can
provide information or a service. There is no concept of service modelling on the
web, as there is in a telecommunications network (DOLMEN, 1996a), and no
uniform way of providing a service. Effectively, anybody can publish anything, and
so all of the web’s content has been provided by independent third parties who

require no permission to provide their information, and are subject to no regulatory

32

Chapter 2- The World Wide Web

controls. In this way, the only control over information and service provision on the
web comes from market forces. The search engine companies illustrate this, with
user demand highlighting the need for an information retrieval service being quickly
met by competing companies rapidly developing and deploying competing search
engines. However, even these forces only control information that is expensive to
provide. Information that is inexpensive, such as family photos intended purely for a
small circle of people, is not subject to these forces, and with HTML being so easy to
use, and web servers providing their information hosting services for free, there is
effectively no control over information provision. As such, the lack of information
management in the web’s architecture leaves it exposed to an uncontrollable

explosion of information of questionable value.

However, the issue of effective information management is complicated by the effect
it can have on a system’s user population. A global information system needs to
ensure that enough users use it and publish information on it in order for it to be
viable, but the specific type of information management policies employed by the
system can have a dramatic effect on the system’s adoption. Too much management
can provide the operator of the system with too much control, and will tend to
discourage the system’s adoption. Conversely, too little will render the system

useless.

33

Chapter 2- The World Wide Web

2.4.1 Gatekeeping

The reason that managing information can provide the manager with too much

control is that it turns the manager into a censor. A censor is defined as:

“an official authorized to examine printed matter, films, news, etc., before
public release, and to suppress any parts on the grounds of obscenity, a

threat to security, etc.” (COD, 1990).
Rephrased, a censor is an agent with enough control to suppress information
according to his or her own individual criteria. Thus, whoever operates a global
information system has the power to suppress whatever information they like
according to whatever criteria they choose, once they have the appropriate
information management structures in place. It is this uncomfortable fact about

information management that can prevent users from adopting a system in large

numbers.

Such censorship has been termed gatekeeping (Levinson, 1997), and has been in
existence since information itself. This is self-evident, however, as to give
information any value, it must be selected according to its quality, and somebody has
to decide which information is of higher quality than other information. That person
is the gatekeeper. In this way, the gatekeeper manages information, and makes the
information selected more effective in conveying the intended meaning.
Traditionally, the content provided by all media has been controlled by a few

individuals (usually ‘media-barons’ such as Rupert Murdoch or Robert Maxwell)

34

Chapter 2- The World Wide Web

who are in a position to control the media that they own. These individuals can
influence the editing of their newspapers, magazines, books, etc., and so act as
gatekeepers, effectively selecting the information presented to the reader according
to their own biases, politics, or opinions (Levinson, 1997). The information is well
managed and informative, but the reader can only choose to read whatever
information the gatekeeper selects for them. As such, a balance must be struck: too
much management leads to propaganda, an unwanted state of affairs for any

information system, too little, however, and no effective meaning can be conveyed.

From the discussion in section 2.3, the philosophy of the web clearly leans towards
the open, almost anarchic style of management. However, the web is not the only
information system, and others, such as the service architecture defined by the
telecommunications companies (DOLMEN, 1996a), or the online information
providers that predate the web, favour the more dictatorial, gatekeeping approach.
There is no censor on the web, as no one controls it. In contrast, the models of the
service architecture and the online information providers give the network operators
so much control over the information on their systems that they do become censors.
Each approach has its strengths and weaknesses, but as the following sub-section

demonstrates, the anarchic competitor will always beat the managed architecture.

2.4.2 Case Study: Proprietary Online Information Providers

Before the web enjoyed its present popularity, there existed a set of proprietary

online information service providers that included CompuServe and America OnLine

35

Chapter 2- The World Wide Web

(AOL). These online service providers provided an information browsing service
similar to the web, but they adopted a different model of information management,
preferring central control governing service access and provision, instead of the
open, federated model of the web. As such, in order to use one of these online
services, a user was required to use the service provider’s own network, complete
with its own network infrastructure, and to browse for information using a special
browser that would only work with this network. Information and communication
services were thus bundled together (Gillet and Kapor, 1997), giving an online
service provider (OSP) complete control over who had access to their system and
who provided information. As has been said, the OSPs predate the web, but their
existence also coincides with the birth of the web. As such, these service providers
provide a real life case study of the impact the open model of the web has on a

system based on the gatekeeping approach.

Before the web, the OSPs could generate high revenues with a high profit margin, as
they could control both access to their information, and the provision of the
information. Each service provider offered a closed system with its own network,
and limited or no interoperability between systems, effectively locking the user in to
their system. However, the web is a fundamentally different competitor, not least
because it is not owned or controlled by any one person. In particular, the web has a
fundamentally different business model: it is free, offers no barriers to entry, no
control over the system, and separates information providers from connectivity

providers. Thus, the web provides three distinct advantages over the OSPs:

36

Chapter 2- The World Wide Web

1.

Choice - To use an online service, you must use the online service provider’s
software. With the web, however, the user can choose both the software
vendor and the type of application they wish to use, and can choose to adopt
new services, such as Internet telephony, only if they want to, and without
being restricted to a particular vendor or a particular service provider (Gillet

and Kapor, 1997).

Freedom — With no barriers to entry, anyone can provide any information on
the web without fear of censorship, and with little cost. Over time, the web
will therefore provide more information, as it can provide information that is
too expensive to be deployed on an online service, or that the online service
provider refuses to publish (i.e. censors). Thus, over time, the web will
attract more users, as it will have more information, which, in turn, will
attract more information providers, setting in motion a virtuous circle of

information provision and access.

Competition — Anyone can innovate on the web, and anyone can provide
information. This leads to ferocious price and information competition
amongst a diverse array of providers, improving the diversity of the
information to a degree not shared by users of the online services (Gillet and

Kapor, 1997).

37

Chapter 2- The World Wide Web

Ultimately, the web shifts control over information provision from the OSP (or, in
the case of the service architecture, the telco) to the information owner, putting
severe pressure on the revenues that the OSPs receive from the information owner
(Gillet and Kapor, 1997). Since the advent of the web, there has been a huge shake-
up in the online services market, with AOL taking over CompuServe, and ultimately
finding that the only way it can compete with the web is to become a gateway to it.
Users of online services do not want to be precluded from the web, and users who
use the web largely have no need for a proprietary online service. As such, the
remaining OSPs have been forced to reduce their prices and effectively become
Internet Service Providers who also offer their own private content, while their
information browsing service simply becomes another (albeit large) web site that
requires a subscription payment for access. Essentially, the OSPs, although large
companies in their own right, have become niche players in the information browsing

market, with the web defining the boundaries of and the platform for that market.

To a large degree, this process was inevitable. Metcalfe’s Law states that “the value
of a network grows as the square of its number of users” (Metcalfe, 1996), and a
network such as the web, which neither censors its information nor discriminates
against its users, will always have more users than a network that does. From the
perspective of a network, then, censorship is the wilful restriction of the network’s
user base, and so from Metcalfe’s Law, it can be seen as a restraint on the network’s

value. As such, a network employing the gatekeeper approach to information

38

Chapter 2- The World Wide Web

management will always be less valuable than a network that is open and censor-

free.

However, the gatekeeper approach is not only commercially impractical when
competing with the web, it is also socially undesirable, particularly in a global
information system. Information deemed unpublishable in one country is perfectly
acceptable in another. Further, letting the user decide on the service they wish to
receive empowers them, providing them with a new tool for self-expression.
Effectively, it turns the web into a common platform for the exchange of ideas,
which, if adopted by enough users, can have a profound impact on society, if only in
speeding up the dissemination of ideas. The future of user information systems,

therefore, lies with the web and its open model of information management.

2.4.3 Internet Anarchy

Using the case study of the online service providers, the argument has been made
that a system with rigid information management structures in place, and which
provides control over information access and provision, will not be able to compete
with the web. The web is a decentralized, federated system that gives no one the
power to control information, and it is this fact alone that guarantees its success, and
ensures it will always beat a gatekeeper network. However, it is also this fact that
can lead to the web disintegrating into a sea of noise. Specifically, the lack of central
control has led to the development of an ad hoc architecture, whose central features

such as its navigation mechanisms have been developed in response to user need,

39

Chapter 2- The World Wide Web

rather than through a well-designed plan. That this architecture is able to support
over 300 million users is testimony to the power of such a flexible approach, but it
has also led to “Internet anarchy” (Raatikainen et al., 1998), with high quality
information becoming drowned out by low quality information, and flaws are

beginning to appear in the web’s architecture that could potentially prove fatal.

When Metcalfe first determined the value of a network, which Gilder later described
as a law (see Gilder, 1993), there was perceived to be no upper bound to a network’s
value, but there was also no information network the size of the web. As such, there
is tentative evidence (although no empirical data) that there may be an upper bound
to Metcalfe’s law, and that beyond this limit, adding users diminishes the network’s
value (Windrum, 1999). The hypothesis suggests that users add information and thus
value to a network, but that information that is not relevant to a user should be
classed instead as noise. As such, the more users that use the network, the more
information that is published, but the less likely it becomes that any individual item
of information is relevant to a particular user. Beyond the threshold, the information

content of the network actually decreases with each additional item of information.

Other information systems that are based on the gatekeeper approach use the web’s
architecture as a model of what can go wrong with a global information system,
despite its obvious success. For example, the telecommunications companies have
envisaged themselves as providing the de facto global information system for many

years and their research efforts have culminated in the design of the service

40

Chapter 2- The World Wide Web

architecture. One such service architecture, OSAM (Open Service Architecture for
Mobiles (DOLMEN, 1996a)), which was developed as part of the European
DOLMEN project (Service Machine Development for an Open Long-Term Mobile
and Fixed Network Environment (DOLMEN, 1995)), and funded by the European
Union’s ACTS Programme (Advanced Communications Technologies and Services,
1994 — 1998), used the web as a benchmark global information system, analysed the
flaws in its architecture, and then sought to circumvent them in its own architecture
through the use of rigid information management mechanisms that actively enforced
gatekeeping (see Raatikainen et al. (1998)). As such, the web was regarded as no
more than a good effort, whose limitations were gradually undermining its

effectiveness.

However, service architectures are still in the research phase, with no commercially
deployed network based on the model in existence, and no matter how effective such
a network is at managing its information, it will never reach the number of users
necessary for it to compete with that of the web. Equally, the web has a flawed
architecture (Raatikainen et al., 1998), and one that will cause more problems as its
size continues to grow. As such, a dichotomy now exists at the heart of the
development of a global information system the size of the web: specifically,
gatekeeping prevents the system from maturing, especially when a non-gatekeeping
system is a competitor; whereas non-gatekeeping makes a maturing system degrade
into noise. Ultimately, the only solution to noise in a large system prevents it from

becoming large enough to suffer this problem in the first place. Unless this

41

Chapter 2- The World Wide Web

dichotomy is resolved, the only global information system that can exist is one that is

doomed to degrade into noise under the weight of its own information.

2.5 Summary

This chapter has introduced the web and the protocols that form the basis of its
architecture. The web has been shown to be a fundamentally different system from
traditional information systems, with a very open architecture, and a flexible
philosophy that allows anyone to access anything, publish any kind of information,

and develop any kind of service.

The chapter has also introduced the topic of information management, describing
how it is implemented on the web, and in alternative systems that adopt a more
controlling approach. The chapter has revealed the information management
dichotomy, which conspires against a global information system regardless of the
approach to information management that is adopted, and acts to limit the
effectiveness of any system unless it can be resolved. As such, the dichotomy lies at
the heart of the research conducted as part of this research programme, which has
attempted to resolve it for the benefit of the web through the development of a novel
model for managing information flow. The model will resolve the dichotomy by
fixing some of the web’s flaws in such a way that its open philosophy is not

compromised.

42

Chapter 2- The World Wide Web

Part of the work described in this thesis has been funded by research for the
DOLMEN project, which has provided rich insights into the flaws of an information
system, and the different approaches to information management that can be used.
The following chapter will therefore use research from the DOLMEN project, in
which the author was a participant, and also from other studies that have been
conducted, to provide a comprehensive analysis of the web’s flaws in order to

identify their exact scope and nature.

43

Chapter 3- Flaws in the Web’s Architecture

3. Flaws in the Web’s Architecture

Weak information management has enabled the web to grow, but at the
expense of its overall effectiveness as an information system. As the web has
matured, certain flaws in its architecture have been revealed, which are now
beginning to pose a threat to the coherence of the system. This chapter
provides a comprehensive analysis of these flaws in order to determine the
extent of the web’s problems, and describes how the different solutions that

have been proposed during the web’s lifetime have all failed.

44

Chapter 3- Flaws in the Web’s Architecture

3.1 Introduction

The web is not a perfect system, and many studies have been conducted that examine
its faults. For example, Cockburn and Greenberg (1999) have examined the
limitations of the navigational tools provided by browsers, particularly the Back
button; Park et al. (1997) have shown how the network traffic produced by the web
has a serious adverse effect on network performance; many studies, such as
Chakrabarti et al. (1999a), Lagoze (1997), and Lawrence and Giles (1999) report on
the inefficiencies of search engines, particularly the problems they face in having to
index over one billion web resources; and an equally large number of studies, such as
Notess (2000a), and Koehler (1999), have reported on the problem of broken

hyperlinks on the web.

A comprehensive analysis was provided by the DOLMEN project, which analysed the
flaws in the web’s architecture in great detail in order that it could provide a more
architecturally sound model of information management for its service architecture.
The DOLMEN project identified many flaws, most of which derive from early
engineering decisions that did not anticipate the scale of user adoption of the web
(Raatikainen et al.,, 1998). A detailed discussion of these flaws can be found in

Raatikainen et al. (1998) and DOLMEN (1996b), but an overview is presented here:

45

Chapter 3- Flaws in the Web’s Architecture

Poor Information Retrieval
Information on the web is unstructured and is not categorized, and although
search engines provide an information retrieval service, they are isolated from

one another, and there is no standard way to find their servers and access them

(Raatikainen et al., 1998).

Poor Navigation

A hyperlink points to any type of resource, which allows the web to host
information of all media types. However, there is no way for a user to discern
the type of resource that a hyperlink may point to. Thus, the user cannot tell
whether a hyperlink points to a product, an individual, or information, and so
must manually click each hyperlink in order to determine its associated
resource’s type. This inefficient process is compounded by the fact that many
hyperlinks are old and out of date, or simply point to resources that no longer

exist (Raatikainen et al., 1998), a process known as link rot.

Poor Information Structure

The web provides no standard way to organize and maintain its information,
with each web site using its own approach to data management (Raatikainen et
al.,, 1998). Although XML provides a standard for data formatting and
interchange, there is no way to cross-reference multiple web sites, and so query

multiple web servers.

46

Chapter 3- Flaws in the Web’s Architecture

Some of the flaws identified by DOLMEN, and the problems analysed by other studies
such as those discussed above, can be dismissed as inconveniences - either features
that would be nice but are not essential, or problems that will be solved over time as
technology inevitably improves. As such, no architectural improvement is required to
address them, as third party services or general improvements in the web’s
infrastructure will resolve them anyway. However, there are three specific flaws that
have beset the web since its origin, and although they have been treated as irritants up
until now, they have the potential to seriously cripple the web and render it completely

ineffective. Specifically, these flaws are:

e Link rot — the web has no way to update hyperlinks that point to missing

resources, causing the hyperlinks to ‘rot’ over time;

o Shrinking namespace — the names used to identify resources are running out,
leaving only meaningless, unmemorable names with which to identify

resources,

e Increasing noise — with no informational structure, and poor navigational tools,
it is becoming increasingly difficult for users and search engines to distinguish

high quality relevant information from the surrounding noise.

These three flaws pose the greatest threat to the web’s continuing success, and must be

solved soon if the web is to continue its exponential growth. However, as was shown

47

Chapter 3- Flaws in the Web’s Architecture

in section 2.4, conventional solutions rely on system-wide information management
that effectively censors the web. As such, the three flaws represent the concrete
realization of the information management dichotomy: the web’s information must be
managed effectively in order to solve the three flaws, but it cannot be managed too
effectively or it will alienate its users by giving too much control to a central
organization. This is the key problem that the research described in this thesis
attempts to solve: to provide a means of solving these three flaws in the web’s

architecture in a way that is compatible with its open philosophy.

The following sections provide a detailed examination of the root cause of these flaws,
revealing why they are so dangerous to the web, and discussing some of the solutions

that have been proposed, but which have not worked.

3.2 Link Rot

Link rot is the process by which the resources that are referenced by hypedinks in
another resource are deleted over time, leaving the hyperlinks pointing to nothing.
From the perspective of the resource that contains the hyperlinks, they can be seen to
effectively rot over time, as the referenced resources are gradually deleted. It is
characterized on the web by the HTTP Error 404 (Fielding et al., 1999), which is
returned to the user in place of the expected resource. Its cause is the result of the web
not having referential integrity; that is, the integrity of its references (the hyperlinks) is
not guaranteed, allowing the references to break whenever the resource changes

location or is deleted. A system has referential integrity if a resource is guaranteed to

48

Chapter 3- Flaws in the Web’s Architecture

exist for as long as outstanding references to the resource exist. However, the web
cannot guarantee this, as the hyperlinks are entirely independent from the resources
that they reference. This leaves the resource owners entirely unaware of the existence
of the hyperlinks, making it impossible to determine how many references to a

resource exist (Ingham et al., 1995).

3.2.1 The Cause of Link Rot

The root cause of link rot on the web is the misuse of the URL in identifying a
resource. It is a common misconception that a URL identifies a resource, when in
reality it defines a location; the IETF has defined the URN for identifying resources.
As such, a URN persistently identifies a resource throughout its lifetime, whereas the
URL identifies the place where the resource may reside (Sollins and Masinter, 1994).
If the resource changes location, it necessarily adopts a new URL that identifies that
location, but its URN remains unchanged. As such, link rot would be solved if
hyperlinks used the URN rather than the URL, because of the URN’s persistence and
location independence. At the time of writing, however, the concept of the URN is
still experimental, and there is no working mechanism for resolving the location of a
resource from its URN. A URN may therefore identify a resource, but there is no way
it can be used to determine the resource’s location. This leaves the URL as the only
way of identifying a resource on the web, even if it is through its location rather than
its name. As such, using the existing web architecture, the simplest approach to
solving link rot is to constrain a resource such that it only occupies a single location

throughout its lifetime.

49

Chapter 3- Flaws in the Web’s Architecture

As the following list shows, however, there may be many reasons why a resource has

to move:

Change of server — a resource might migrate if an overloaded web server is
replaced by a more powerful machine, requiring the resource to migrate onto
the new server (Ingham, 1996). Equally, the resource owner could decide to
use a different server hosting company, which uses a different domain name
and thus affects all the resources’ URLs (this is particularly valid for home
users using free web hosting companies such as Freeserve, where the name of

the host must be part of the URL of the resource).

Resource is archived - and the owner has a specific, lower powered machine

for archived resources (Berners-Lee, 1998).

Bankruptcy — the resource owner goes out of business, and the web server
hosting the resources is sold, forcing the resource owner to migrate the

resources.

Resource reaches expiry date set by server — the resource may be deemed too
old to be worth storing on a web server, which could insist that the resource

owner move the resource before it is deleted.

50

Chapter 3- Flaws in the Web’s Architecture

Poor internal information management processes — some resources in a web
site may be confidential or out of date, but due to the size of the site and the
difficulty tracking the attributes of each resource, the owners perceive it as
safer to limit the accessibility of the site to internal users only, and so move it

to a more secure server (Berners-Lee, 1998).

However, even if a resource was to remain on the same server, its URL could still

change. For example, this could occur due to:

Change of resource ownership — a competitor buys a web site, and does not
wish to use the old competitor’s name in any URL. Thus, the existing
resource’s URL must change, even if the web server hosting it does not

(Berners-Lee, 1998).

Change of company name — a company re-brands itself, and not wishing to use

its original name, changes all of its URLSs to reflect the new name.

Any identifier based on the DNS will always be unstable — because of the
hierarchical nature of the DNS namespace, identifiers based on it, such as the
URL, tend to reflect administrative hierarchies (e.g.
www.university.ac.uk/faculty/school/course/year/semester/module/week1.htm)
However, such hierarchies change frequently compared to the lifetime of the

resource (Moore, 1996).

51

Chapter 3- Flaws in the Web’s Architecture

Identifying a resource through its location almost guarantees a loss of referential
integrity, but it is a function of both the identifier and the name service used, rather
than the actual information system. Architectures that employ strong information
management techniques, such as the DOLMEN project’s OSAM, do not suffer from
link rot as they employ name services that can guarantee referential integrity if it is
required. OSAM, for example, defined its own naming service, which ensured that
CORBA objects (OMG, 1995) containing the functionality of the system could still be
located after a mobile terminal that hosted them had moved across GSM base station
domains, and thus had its IP address changed (DOLMEN, 1997). In contrast, the web
is left with the problems of having no mechanism for referential integrity; resources
that are identified through their location; a naming scheme that cannot be used to
locate a resource; and resources that will always move location. Under these
circumstances, link rot will remain a very real problem, which, as the following sub-

section shows, may become terminal.

3.2.2 The Damaging Effects of Link Rot

The effects of link rot on a system can be compared to that of light from a star
reaching a person on Earth. The light from a star may have travelled so long to reach
Earth that the star from which it originated may have died millions of years ago. As
such, the stars in the night sky are a physical representation of the universe as it was,
not how it is. In the same way, link rot leaves hypertext documents, and particularly

search engines with the enormous number of hyperlinks that they reference, in a

52

Chapter 3- Flaws in the Web’s Architecture

similar state: a search engine can be seen as a representation of the web as it was, not
how it is, as link rot will have caused some of the links to point to resources that are no

longer there any more.

Link rot at its worst will render the web useless, as no hyperlink will point to an
associated web resource. In this worst-case scenario, the whole hypertextual structure
of the web breaks down, which is why link rot is so dangerous. Moving away from
this extreme, link rot still threatens the web over time, as if it is allowed to proceed
unchecked, there will eventually be more dead hyperlinks than live ones. However,
link rot of any degree makes the web sub-optimal and reduces the user experience.
Although no empirical data exists that determines the level of link rot required before
a user gives up using the web, studies by GVU in the USA (1997-8) have found it to
be the user’s second biggest irritant (in 1997, 49.90% of users cited link rot as one of
the worst features of the web (GVU, 1997); this rose to 57.7% in the following year
(GVU, 1998)). The following lists some of the problems that link rot in even its

mildest form causes:

e Reputation of the resource provider is tarnished (Ingham et al., 1995).

e Direct loss of revenue for both the migrated resource owner, whose resource

can no longer be located, and the hyperlink owner, whose site’s reputation is

tarnished (Harris, 2000).

53

Chapter 3- Flaws in the Web’s Architecture

e Brand damage, if the sites affected by link rot are e-commerce businesses

(Harris, 2000).

e Loss of productivity, particularly for large web sites with thousands of

hyperlinks to maintain (Harris, 2000).

e Unreliable referencing for scholarly citation (Kahle, 1996).

e Lost digital history, as a deleted document is gone forever (Kahle, 1996)

e Compromises the services provided by librarians, as it imposes a huge burden

on catalogue maintenance (Shafer et al., 1996).

Clearly, link rot poses at best an irritant to the web user and resource owner, and at
worst a distinct threat to the future of the web. To determine how great a threat, the
following sections present a comprehensive literature search on existing studies that
have analysed the problem, and discuss an experiment that was performed as part of

this research in order to provide new empirical data.

3.2.3 Measuring Link Rot in the web

To measure the level of link rot, it is necessary to provide accurate statistics for the

number of hyperlinks on a web page that are broken (link rot incidence); the number

54

Chapter 3- Flaws in the Web’s Architecture

of web pages that contain broken hyperlinks (link rot prevalence); and the average life

span of a web resource.

3.2.3.1 Link Rot Incidence

Few studies have attempted to determine link rot incidence. Sullivan (2000b) selected
200 web pages at random from the AltaVista search engine, and determined the
number of broken links in each, reporting that the percentage of broken links in each
document averages 5.7% (Sullivan, 2000b). Notess (2000b) has studied the incidence
of link rot in the major search engines, sampling the first 100 links returned for each of
three separate searches in the major search engines. He reports that AltaVista is
currently the most affected by link rot, with some 13.7% of links broken, with Excite
(www.excite.com) and Northern Light (www.northernlight.com) recording 8.7% and
5.7% respectively. Finally, Lawrence and Giles (1999) took various measurements of
the major search engines, and found that link rot in 11 of the major search engines
varied from 2.2% for HotBot (www.hotbot.com) to 14% for Lycos, with an average of

5.3%, which would seem to confirm Sullivan’s results.

3.2.3.2 Link Rot Prevalence

Even fewer studies have attempted to determine link rot prevalence. From the same
study described above, Sullivan (2000b) has reported that link rot affects 28.5% of all

web resources, but other studies do not report link rot prevalence.

55

Chapter 3- Flaws in the Web’s Architecture

3.2.3.3 The Life Span of a Web Resource

The life span of a web resource (that is, the length of time in which it is accessible on
the web in any one location) has been measured in various studies, with Kahle (1997)
reporting 44 days, and Gwertzman and Seltzer (1996, as cited in Pitkow (1998))
estimating 50 days (confirmed through comparison with other studies in Pitkow
(1998)). Other results come from Koehler (1999), whose year-long study monitored
343 URLs, selected at random from the WebCrawler (www.webcrawler.com) search
engine’s index, and found that 25.3% of the resources had died, giving the halflife for
a web site as 2.9 years. These results were confirmed by Lawrence et al. (2001),
whose analysis of hyperlinks that were provided as references in scientific papers in
the ResearchIndex database (www.citeseer.com) showed that 23% of the hyperlinks

no longer worked after one year.

Alarmingly, however, academics and non-academics alike use Kahle’s figure of 44
days as if it is a matter of fact (see for example CyberMetrics (2000), Ashman and
Davis (1998), Harris (2000), Pearson (2000), and McNamara (2000)), when in reality,
it does not measure the life span of a web resource at all. Presumably, the fact that
Kahle’s article appeared in Scientific American (see Kahle (1997)) has given the
article a certain gravitas, such that it is seen as a more authoritative study than those
whose results are published in other journals, and is therefore more widely cited.
Further research reveals, however, that the figure of 44 days doesnot represent the life

span of a web resource.

56

Chapter 3- Flaws in the Web’s Architecture

Discussing his proposal for an archive of the Internet (since developed as the Alexa
archive (www.alexa.com)), Kahle (1997) states that “...estimates put the average
lifetime for a URL at 44 days.” However, he does not explain the method that was
used in reaching this figure, and nor does he quote its source. Personal
communication with Kahle (Kahle, 1999) as part of this research has revealed that he
simply used the figure from work done on the Harvest project by Peter Danzig and his
colleagues (Chankhunthod et al., 1995), without quoting its source in the Scientific
American article. More revealing is the fact that another of Kahle’s web sites,
www.archive.org, contains a first draft copy of Kahle (1997), in which it is claimed
that “...the average lifetime of a document is 75 days and then it is gone” (Kahle,
1996). Upon reading (Chankubnthod et al., 1995), it is clear where the two figures
come from: 44 days is the figure quoted by Danzig as the mean lifetime of all web
resources, whereas 75 days is the mean lifetime of HTML documents. However,
Danzig’s work was involved in developing a web-wide cache, and the figures of 44
and 75 days represent the period that a web resource remains unmodified, not the
period in which a web resource remains accessible. Danzig was attempting to
determine whether or not there was an average period of time in which web resources
remain unchanged such that he could set a default Time To Live value for his caches,
and so prevent the caches from going stale. He was not trying to determine the life
span of a web resource at all. Kahle himself accepts that the figure is now “no longer
valid” (Kahle, 1999), claiming that an internal study at Alexa shows that 6% of HTML
documents change in 3 months and adding the caveat that “this does not mean that

they did not disappear” (Kahle, 1999). However, this has not altered the perception in

57

Chapter 3- Flaws in the Web’s Architecture

the web community that 44 days is the true value for a web resource’s life span, with
companies such as LinkGuard actively promoting this figure (see Harris (2000)), as

their entire business model rests on its customers believing its validity.

This leaves the web in a vulnerable position, as the true level of link rot in the system,
and therefore of the reduced value of the web, is entirely unknown. Although other
studies such as Gwertzman and Seltzer (1996) provide a different source of empirical
data, they are now four years out of date, and overshadowed by the authority of the

Scientific American article.

3.2.3.4 An Attempted Experiment to Determine the True Level of Link Rot in the Web

In order to provide a more accurate measurement of link rot, an experiment was
designed and conducted as part of this research, that was designed to track web
resources over time to see how long it took before they moved location, thus breaking
any hyperlinks pointing to them. In addition, the experiment also attempted to
determine the length of time before the content of a web resource changed, to see if

Danzig’s original figures are still valid.

The experiment involved the collection of a large sample of random links, with each
link being tested periodically, and the date and time recorded if and when a link failed
(i.e. the resource pointed to by the link could no longer be found). To ensure the
randomness of the links, the experiment required the compilation of a database of web

servers from a large list of Internet servers chosen at random. Once the list had been

58

Chapter 3- Flaws in the Web’s Architecture

compiled, the intention was to let a web crawler search through the various HTML
documents on the web servers, and choose for itself a set of links at random. This
would ensure no bias had crept into the link selection process. Unfortunately,
however, the experiment never reached this stage, as several unanticipated side effects
caused two unintentional security incidents, which forced the experiment to end
prematurely. The side effects were a direct result of the experiment testing for the
existence of web servers through randomly pinging IP addresses, and falling foul of
the configuration settings of two remote firewalls. This led the University's
Computing Service being understandably concerned that further problems could arise
if it was to continue, and so the mutual decision was taken to discontinue this element
of the study, despite over 700,000 IP addresses being collected. A full discussion of

the experiment and the problems incurred can be found in Evans and Furnell (2000).

3.2.3.5 Determining Link Rot from the Literature

The failure of the above experiment has forced the figure for the length of time before
a link can be expected to rot to be determined by the literature, which at the time of the
experiment was not that accurate. The figure of 44 days used by Kahle has been
shown to be the lifetime of the content of a resource in a cache, rather than the
resource itself; that is, the length of time before the content within the resource is
modified. As such, this figure must be compared with Brewington and Cybenko’s
(2000) figure of 117 days for content lifetime, rather than with any figure for resource
lifetime, with Brewington and Cybenko’s figure being the more accurate as their

experiments were far more comprehensive and recent. Alternatively, the figure of 50

59

Chapter 3- Flaws in the Web’s Architecture

days derived by Gwertzmann and Seltzer’s (1996, as cited in Pitkow (1998)) work has
been independently verified, and is reported in Pitkow (1998), itself a widely cited
paper. However, this figure is now out of date, and contradicts Brewington and
Cybenko’s (2000) findings, implying that the content of a resource lives for over twice
as long as the resource itself. As such, the thesis will use the figures determined
independently by Koehler (1999) and Lawrence et al. (2001) as the measure of a
resource’s lifetime, as both studies are comprehensive and recent, they agree with one
another, and they are consistent with the findings from Brewington and Cybenko
(2000). As such, the thesis will assume that the half-life of a web site is 2.9 years, and

approximately 25% of hyperlinks will break after a year.

3.2.4 Existing Solutions to Link Rot

Link rot is the direct result of a resource either migrating from one location to another,
or being deleted in a system without referential integrity. As such, in order to provide
referential integrity, a system must provide some form of resource migration
mechanism, which ensures the integrity of hyperlinks whenever a resource migrates or
is deleted. This sub-section analyses the issues surrounding resource migration on the
web, and examines why mechanisms designed for the web have not been widely

accepted.

3.2.4.1 Resource Migration Mechanisms
Referential integrity is an important concept in distributed systems, and many types of

resource migration mechanisms have been designed to support it. Most of the

mechanisms operate by introducing a level of indirection into the system, which

60

Chapter 3- Flaws in the Web’s Architecture

usually involves mapping the name of a resource onto its location, or an existing

location onto a new one. They can be classified according to five distinct approaches,

each of which tends to place the indirection at a different point in the system.

However, as the following list shows, each approach has its own fundamental

weakness.

The Chain Approach

A forward reference that points to the new location is left behind on the machine
that the resource has migrated from. The indirection in the system takes place on
the servers hosting the resources. Although arguably optimal in terms of network
traffic overhead (Ingham et al., 1996), this approach can lead to forward references
outnumbering resources. Various shortcut operations can limit the length of the
chain of forward references, but this approach is still inherently brittle, as locating
your resource is dependent upon the state of someone else’s server. Also, a

resource can only migrate onto a server that supports this approach.

The Callback Approach

A database of all the links on the web is maintained, either centrally, or distributed
across the system. Each time a resource migrates, the database is updated and calls
back all documents that contain a link to the resource, enabling each document to
update its links. This approach does not introduce any indirection into the system,
as it attempts to fix broken links in situ rather than redirect any attempt to locate a

resource. However, it does have problems scaling, particularly to a system the size

61

Chapter 3- Flaws in the Web’s Architecture

of the web. Specifically, the database must store all updates to servers that are
down, and this would eventually overwhelm the system (Briscoe, 1997). This
approach also requires the documents to be intelligent enough to remove links
identified as broken, and so is not backwards compatible with the web’s existing

architecture.

e The Search Approach
Each server is aware of the identifiers of the resources that it hosts. Whenever a
resource needs to be located, each server in the system is queried using the
identifier of the required resource. A network-wide search must be performed,
with a flooding algorithm used to guarantee that all servers are searched in the
quest for the resource. Again, there is no indirection introduced, but flooding
algorithms do not scale well, and so although reliable, such an approach would
produce too much network traffic overhead for use on the web, and is the least

optimal of all the approaches (Ingham et al., 1996).

e The Name Server Approach
A name server is used that maps a resource-identifier onto the resource’s location.
The name server supplies the location of the resource when given its persistent
name. Clearly, the name server itself introduces indirection into the system,
almost by its definition. The problem with this approach is that the web already
has a name service in the form of the DNS, and integrating another name service

into the web’s architecture would require upgrading all the browsers on the web.

62

Chapter 3- Flaws in the Web’s Architecture

However, because the DNS operates at the level of the host (i.e. the server), it
cannot be adapted to operate at the level of the resource (Daniel and Mealling
1997). In particular, the DNS is a read only database that cannot be updated over
the network (Albitz and Liu, 1997), and although there is an experimental dynamic
update specification (see Vixie et al., 1997), it is insecure, and can only be used to

update the location of servers, not resources.

e The Lecturing the User Approach
Not a technical approach, more a philosophical one. Berners-Lee and others have
argued that a URL need not break if considered thought is given to its design
(Berners-Lee, 1998). However, despite the numerous technical arguments against
this viewpoint, it is people who create URLs and people who are notoriously bad
at consistent regular maintenance. Ultimately, as broken links on the W3C web
site itself testify (e.g. the link hAup://discuss.w3.org/mhonarc/w3c-
tech/threads.html on the document located at http://www.w3.org/
MobileCode/Workshop9507/ is broken), lecturing the user will be ineffective at

best.

Table 1 provides a comprehensive, though by no means exhaustive, list of some of the
different resource migration mechanisms that have been developed for the web, and
illustrates the differences between the different approaches (the ‘Lecturing the User’

approach is not included in the table).

63

(sebed Buimoijo} uo panunjuod) swsiueysa uoneabiy Buysix3 jo sisAjeuy - | ajqel

*uonN|os [BO12103)
® sulewal N 3y “Yons sy ‘(8661
‘SuI[[0§) 9sn uewny 10J JSYNUSPL
9[qepeal-UBWINY pauULapun)oA-se ue
ojuo Suiddew saimbar pue ‘1aynuspl
S]qepea1-aulyoew € St N[© ‘uonippe
ur (661 ‘SulesN pue [siue(y)
SYiom eyuswiiadxa ut asn sy snquyoxd
Sunnoix jomidu otseq ul dduepoduir
S.SNd Sy} Se pojunossip Ssem
Sul Inq ‘19Ajosal paxmbar ay) 9)es0]
0} SNG 9y Swisn pasodoid (/661)
Sul[es]y pue [swE(Q YoM Pplnoys
wajsAs uonnjosar sy moy Apoexs
U0 Payoeal Uaaq Sey SNSUasU0d Ou pue
‘(9661 ‘@I100J]) PAHSAUOD 3q 0} pasu

*UONEBIO[S}I pUe Jweu s}t y3noiy)

SB [[oM SB SONSLIAloBIRyd S)1 Yy3noayp
pajedo] 2q 03 2oInosal e Suijqeud
sny “_ynuspt (DY) oususideley)
22In0S3y WMOJIU) Oy} SISN OS[Y
AuSajut [e1ULIS)A1 SII)uURIENN)

uonnjos a[qe[ess

*sojeidiw
20IN0S?1 ©B JIoAdUSYM ‘saSueyd 22Inosal
syl Jo TIN 9y 9pym jusysisiad surewal
NN 2Yys se ‘painsud st AHu3ajul [enuaIajay

‘(9661 “e 12 19)eys) 1oAl1as Axoid
as1oaa1 & Juisn 10 (6661 “Ie 32 BOUSND)
dva Suisn (9661 “[B 12 B[[oUUB]) SIDAIAS
Axoxd uisn (/661 ‘SuijesN pue [oIue(])
SNA sy Jo Aireuonouny ay) Juipuedxa

woy SuwiSuer SAY oyl Supuswapdun
10] Sespr YIm ‘1Ajosey ojeudoidde
sy ed0] 03 pasn st (8661 ‘sulfjos)

(SY) 291198 A19A09S1(] 19A]0SSY V 'STIN
0JUO SNY[) 9A[0Sa1 0} paulisap (Suaajosay
pauLIa]) SISAISS SWBU MU Yim ‘sieak Auewr
10y sysis1ad NN V' “(2d ‘L661 ‘Buljjea]y pue
Pueq) . STIN Ywm swajqoid ayy jo jsow

[[IM S30INOS31 gam UOI[jIq SUO ISAO “aImoaliydle s gam SOW0219A0 [jeyy] -seonosal jowu] I0j | (SN SeweN

JO STYN Y ‘SIoAIas pue sIasmolq | 9yl ojur Futweu juspuadapul-uoneso] Ialynuapt juspusdapul-uonedo] ‘yuaysisiad:**, 301n0SaYy

apeiSdn i3snw s19sn ‘SN Hoddns o | Spaquia yowm ‘uoynjos JIFI [eIDYJO B SI NN ¥V uonnjos JIAI (Jedyjo, ayL uuojiun) | 1ea1ag sureN
sagejueapesi(q sadeyueApy uondiidsaq ameN goeoaddy

("juoo) swisiueyaspy uonesbiy buysix3g jo sisAjeuy - | ajqe]

*(wod uozewe mmm ‘8-3)

IaUMO 32IN0SaI Y} JO SWeU JY) uey
Jayel (310°9700°1Ind *8'9) I0A1SS Sweu
S1) JO SWIRU Y} UIB)UOJ ISNLLL I3SN Y}
Aq pasn TYNd 2Y} 9SNed3q ‘I19AIMOY
‘paydope Ajapm uaaq jou aAey sSTINd
“J19A13S qam aeudordde

oY) 0} wisiueydawW Jo31par JLIH 9Y)
Suisn jsonbalr 3y s10011pal pue SI19AI0S
gam pa1gysiSax Jo 39s B 0} sysanbar
[le soSeuewr jey) Axoid as10A31 €
S1 JOAISS QuIel Jud)sisiad, syJ, "I5AISS

‘uonn[os 2|qe[eds
‘padojaasp

S 901AI0S AI9A0DSI(] 1OAJOS9Y
B [JUN UONN]OS WLAJUI UB SIpIAOI]
*a1em1jos 113} speiddn 0y

‘ST St Aem swies
9y} ut paAjosal aq ueo STYNJ Se ‘padueyoun
SUIBWA 2INMONYSEIJUL S, QoM Y} Inq ‘saueyd
TAN Y1 3y juagsisiad surewal TN Y}
‘Kem sy Ul "I Y} JO 2WAYDS ONIBIUAS
oy} smo[[oJ Jey3 NRIN © St TINd Y3 “Yons sy

TN
[emoe ue ojuo TYN(J) parddns ayy saajosal
UoIym “IsAIaS aweu juaysisiad e Jo uoneso]
a 03 spurod 31 ‘921n0Sa1 GIM B JO UOKEIO] Y}
0} Sunuiod uey; Iayiey °SONUBLIIS S)I SIA[E

Kxo01d 3s19A21 B JO UOISISA dn passazp | I9A19S 9y} 10 Judl]d 3y} axnbal jou sa0(mnq “TN Y Jo XejuAs ay) sasn jey) J9LIUIPl (sTINd) (‘3u09)
e Ajdunis st wdisAs oy ‘eonoead uj uswadwir 0y deays pue Ases A1op 9o1nosal e st (9661 “1e 10 19JeyS) TINd V | STIN 1usis1dg | 194198 aureN
sadejugApesiq sagdejueApy uondLidsaq ameN yaeoaddy

(‘juo09) swsiueyosapy uonelbi Bunsixy jo sishjeuy - | ajqel

*‘gam 3y ade[dal A[[enuasss Jsnuwx
wsAs sjpuey 9 ‘paydope Aopim
awo%3q 0} I 10J 19pI0 Ul ‘Gam Ay}
s delodoroyul ued wa)sAs a[puey
3y ySnoye ‘yons Sy STYN Se
J]qepeal-uewWINy SE JOU 3Ie S3[pueH Inq
‘Qam) SSOIOL JIOM O} WIA)SAS 3y} 10]
ss[pueH 0} pasueyd aq Isnw STIN [Je
‘uonippe uj (00T ‘Wwouue] pue ung)
SI9A19S OYioads-sjpuel ©0) SjesSiu
A[uo ued s37INOSal OS puUB ‘WIISAS
ajpuey oy uoddns o3 pajepdn oq
ISNU JSAISS oY) Pue 19smolq 3y} yrog

‘paninbai J1 s10A19s Auew sso1oe
pPeo] oy Sunpnquysip sny} 92Inosal
® Jo soouejsut (pajesndar) opdynua
AJnuapt 0} pasn aq ued sjpuey a[3uis y

(0007 ‘wouue] pue ung) SWAYoS
uoyesyuapl s, Ayuoyne Suiueu
Aue jdope pue ‘owoyds YN Y jo
SIUIBLISUOD 3Y) JO IPISINO HIOM OS[E Ue))

‘SN 10} suonedijivads J1 7]

M 9oUBULIOJUOD YTnoly) a1mosyyore
s.gam Y o uoneiSayur 31y
STAN

YIIM pajerdosse A[[ensn jou SaOINOSAI
qam-uou Suipn[oul ‘221n0sa1 jo ad4) Kue
Ajnuapl ues jey) walsAs a[qIxay A1ap

*UoI}eI0] S,921n0sal € ajepdn 0}

Kuoyne Sunweu ay jo Ajiqisuodsal ay si 1
g ‘ooeds pue awiy 13A0 sysisiad sjpuey 9y,
*201A19s a[puey 2jeudoidde ayy

9)BO0] 0} Pasn 9q OS[B UBJ SUOISUI)X JaSMOIq
PUE SI9AISS AX01J *92IN0Sal 3y} JO UONEIO]
ajeudoidde oy 03 Sjpuey ® 9Ajosal ued
JBY) SIO1A13S I[puBH [B20])e20] 0} AnsiSay
a|puey [BQO[D ® SAUYIP WISAS SpueH oYyJ,
*SSIppe

[rewa ue 10 19301g 3sanbay 393[q0 VYAIAOD
B USA2 10 ‘NDIN ® ‘TN ® 0o 3]pueq
e dew o} pasn aq ued wasAs J[pueH 9yl
‘Kyuoyine Sunwed jey) Aq pauLjep Se 92In0sal
ay} Jo asweu [eo0] d9Y) pue Kjuoyine Junueu
oY) SaYNUIPI YOWM “IYNUIPI S, W)SAS
ayy st sjpuey V ‘(0007 ‘wouue] pue
ung) juspuadapul-uo1jeso] pue jusysisiad yjoq
S1 Jey} 2oInosal & Jo Anuapt 3y SuiSeuew
10} walsAs B sopraoid jey) 991Al19S Sweu
[eqoj8 juoisisiod e st wasAs s|puey oyl

wsAg

alpueH 3yl

(‘yu09)
19A19S JWEN

sagejueapesiq

sagdejueApy

wondiasaq

ameN

goeoaddy

(‘juo2) swstueyosay uonesbip Bunsix3 jo sishjeuy - | ajqe]

*IOUMO 3Y) JO JIeyaq uo o0} djeidiw
PINOYS 221N0S3I 3} SIYM SIUIULIISP
Jlomlou leweyy oy} se ‘uoneiduu
32IN0S31 3Y} I9A0 [OLJUOD OU SBY JOUMO
90In0Sal Ay} ‘Ajjeul] 'SIGAISS QaMm
any suofe 9] 9owAu] 3y Jo ped usAd
10U 3IB YOIYM ‘SIOAIIS TBWRYY SSOIo®
a1e13iwr A[uo ued s32IN0S3I ‘UOHIPpE Uf

‘uoyjeI3Iul 90IN0S31 paseq
-gam ony opraoid jouued reweyy
Aym uoseal ay) pue ‘waysAs Surouejeq
PEOJ 3y Ul Jul[Yeam Oy} 310J319Yy)
SI IOAIDS S Jawolsnd ay] -sjerduu
I9ASU UBD ISAISS S, JOWOISNI 9y} uo
921n0sa1 [eurSuo sy searoym ‘ajerdin
Ued MIOMIPU TelleyY 9 unpim
soomnosa1 pajedrjdar ayy Auo ‘yons
SY "991Alas Sutdue[eq peof sit 0} 199)J9
9pIs B Se uoljRIZIU 92IN0SAI SI|qRUD J1
‘I9YJeI SWISIURYOSW UONBIFIW 99IN0SaL
® jJou SI J1 Jey} SI uopnjos leweyy
ay Jo oa3wmueapesip 1s9331q Yl

*JouIaiu] oY) woy
juspuadapul SI jlomjdou Sy} asnesaq
‘Ajoinb A194 ajed1idal pue 9jeiSiu ued
IOMISU lBWEYY Y} UM SI0IN0SSY

*Kep 1ad saged qam uor[iu 90|
10A0 SAIDS YOIYm ‘OoyeX SB YOns Sa)Is
a3re] A1oA £q pasn Ajnyssaoons usaq
sey jeyy 2o1a19s Sunerado pue pakojdag

*TdN 2P sureyay

‘popei3dn aq 0} paau jou op s1asMmolg
‘3uiduejeq peoj ylomjou 10§

swyio3e pe sy Jo 3jels Juisn uoyNjos
fewndo Ajqeaoid pue sjqefess 9snqoy

‘SIOAISS IBWEYY UMO S)I WOl 1t SuiAlas pue
JIasn ay) 0} 1S3SO[9 SI JBY) 921n0sa1 2y} Suneso]
SI9AIOS QUIBU UMO S)I YIIM ‘901AI9S UOIIN[OSAL
SweU B SB S)OB YIOM)U [BWENY Ay} ‘yons
SY jomidu reweXy ay) 03 juiod 31 uynm
PaPPaquia (saSeuwul S Yans) S3IN0SI 19YJ0 0}
syul| Y} INQ “I9AISS S IIWOISND Y} Aq PaAIdS
SI)1 yuawnoop TINLH pazivuipyy ue sysanbai
JUSI[O B JDASUIYM ‘SNYJ, ‘JOAIIS [BWEYY UE
0} YUIf JBy} Sau0 Yiim Juawndop TIALLH © ut
syuipradAy ayy saoejdar siy], ‘(6661 ‘lEWENY)
Iayoune] mo[Jaa1] 3y} paj[es aremyos Juisn
jlomiau 1eweyy ay) AQ paSeuew aq 0} ySim
Ao} s201n0sal 3y} J0S5[9S ISnNUI JAWIOISND Y

"W} 0} JS3SO[d
IDAISS TRWEYY SY) WOIJ JUSI[O 3Y} 0} J1 SIAIIS
PUE 201n0S31 © 5)ed1|da1 Jey) IJ1AIS JURID|0)
jnej ‘pasuejeq peo| e Suiplaoid ‘s1aw03snd
JO JIeySaq U0 SIOINOSAI JSOY [[lm Hlomidu
rewe)y Syl ‘pHOM 3y} SSOIdE SJS] SNOLIEA
J& Pajedo]| SISAISS JewBY Pm Gawaju]
ay) woy jeredas si jeyy jiomjou padeueut
® SI [eWe}Y "SISO 31 331A13s Suldue[eq peoj
ay ap1aoid 03 1opi1o ut dyeoijdal pue 9jeidiw
0} S92IN0S3I SIqeUD INQ ‘uoneiSi 39IN0SaL
1oy paulisap Ajjesyads jou sI ewe)y

reweyy

(‘yuo0d)
19A19G weN

sagejueapesiq

sagejuBApY

uondusag

JweN

yoeoxddy

(‘juo9) swisiueyosapy uoneabiy buiysix3 jo sisAjeuy - | ajqel

*pauonsanb aq 210§a19Y) Isnur A)1fiqe[eds

asoym ‘aseqejep pazijenusd e st dejApjul] ayx,
‘skep L 1] A19As paxapul-al aq

jsnw dejApjur] ay3 ur $921n0sal [jey) Suiuesw
“000Z ‘oquaqAn pue uojSuimaig) sAep L]] snf
st (surejuos y syuiaedAy Aue Surpnjour) safueyo
JUUOD 31 210J2q 9Fed qam e Jo oFe oFeIoAe Y],
"(B000T ‘ueAl[[ng) Gam 3qexopul

a1 Jo 24,96 A[uo s9)eo0] AJ3uaLind (3[800n) auiSua
yoIeas 3sa81e[9} SE ‘Gom SY) JO 21MONNns yui| [eal
ay3 Jussaidal 0} 3nOYJIP 31 puy [[1M dejApuI] YT,
*pa[[ISUI I1BMJOS PIENOULT Y} SABY ISnwt

41 0} Sunurod syurradAy ayy [[B pue 921N0SaI 3Y}
Sunsoy asoy) Surpn|oul ‘pIA[OAUL SISAIIS oM [V
‘paxapul

U93q 9ABY SIOINOSAI [[B Jey} 2djuerend jouued
31 pue ‘uoyeiSiu 20INOSI B JO UOHEOYLOU B
9AI9031 9D1AIAS A} YA P319)SISal S3S Gam SOy}
Auo se ‘AjuSajul [enualajal s3jueIend 10U S0P 1]
*UO1INJOS [BINJOS}IYOIE U JOU SI I]

SuonEIIWI]

‘uaaoidun
SI $S900NS §)1 ‘Gam 3y} uo pakojdep usaq Ajjenjoe
sey J1 ySnoyj[e os pue ‘wa)sAs mau B SI prennulr

JOo lqunu B Sey 1 ‘Qlouusyung

‘uoneuLIoful
Julf JO oseqejep YoU B S9)BAID)
"TdN 23y} suteisy
‘JusuraSeuew yuij
noqe 32510] 0} siapiaold uoyeuLIOuL
smoj[e wA)sAs pajewojne Ajnj

*s19smo01q speiddn o) pasu oN
‘ysim Aa1j) J1 9sn 0}
350012 ued S19sn jety) wajsAs [euondp

*901n0sal1 pajeiSiul Ay}
0} SYUI YIIM SISAIIS YOBQ S[[ed W)SAS
plennyury ay) ‘Aem sy up “pajepdn
Ajeonewoine aq ueds syuljadAy
119y} Jey} OS °92IN0Sal jeyl 03 SYulj
YNM SISWOISND pienOuIT 1910 [[e
JO SIOAIS Q) SULIOJUl pue aseqejep Si
sajepdn yomym ‘dejApjur] ayj suuojut
2oInosa1 ay) Sunsoy A[jeuiduo IdAles
oy} uo aremyos ‘sajeiiu 32IN0S31
e Uayp ‘Suimerd gom pue uolssiuqns
Jpwosnd y3no1wy) pardafjod ‘qam
ayy uo sIN 118 A[pa3a[[e Jo (deppjur]
oyr paJ[ed) oseqeiep PaAINQLYSIP
B SUIE)UIBUL JBY) 9DJAISS [BIDISLULIOD
e st (0007 ‘stuey) plenpyulg

prenoyury

Joeqred

sadejuBApesiq

sadejueApy

uondiLiasa(q

aweN

yoeoaddy

(1ju09) swsiueyosay uonesbiy Bunsix3y jo sishjeuy - | o|qe)

*$30IN0Sal

Yyl ulpim pautejuod TNLH S8Yl S|V e
‘syoepe

901A19G JO [e1US(] 0} o|qudoasns Alie[nonie e
*S9)IS Jeuls)xa woy sayepdn pue sysanbai
yqui] Suppuey Lioeded yiomisu Jo sannuenb
JSBA SWNSUOD P[NOM pue ‘sjep Jo Ino
a1ow A[uo ‘Jjasyt ooyex se 31q se Jsowe aq

0} paau p[nom OOyeX I10J Syul| JO aseqeje e
‘umop Ajuerodwa) a1e jey)

s1aA19s Sunepdn 10J WISIUBYISWI OU SIPIACI] e
*qam 3Y) JO JZIS aY) WI)SAS B 0} 9[BOS
JoU [[IM pUB ‘OLJen) J}IOM)dU 3I[qRISPISUOD
sppe M ‘uonippe u] ‘omweudp AjowAnxd
pue snouuoud st syuip SuroSino pue
syu1] Surwoour Jo SI| asoym ‘ooye X Se yons

sayis adie] 10] Apepnonaed ‘Ajjiqeess 100g e

:swajqoid Surmol[oy oy} wioly sisyns
OS[B Wa)ISAS SE[IY S} ‘ISASMOH "WISAS SePy
oY) asn 03 31 10J Iopio ul papeiSdn 2q 0} 19AI3S
B 10} paau 3 se yons ‘sursjqoid swes ay) jo

*syul] Suiwosul MO[joJ 1osn
ayy Sumpo| Aq spremdoeq 9jeSiaeu
o} Aiqe 9y} se yons “sadlAIS
15Y)0 159JJ0 0} 31 s9[qeua sofeueur 31
syuiptadAy ay o saradoad ayy ynoqe
S310JS SB[}y UONBULIOJUl BIXd 3YJ

‘Augaun
[enuaIayal apmm wvysAs Jurpiaoid £Aq
‘SI9AISS SB[} JO W9)ISAS pajnquusip
e ul pue ‘Audaul [enusisol
[eoo] Suipraoid Aq ‘IaAlas [enpialpul
ue 0} asn Jo aq 0} pauSisap SI se[}y

‘yseoidde
pazijenuad e uey) ISyjed panquUisip

"9SBqR)Ep PIZI[RJUID
e sp deppjur] s.prendur] oy} Isenuod
U] 'SISAIAS SB[}V JUBAS]1 1910 [[B SuruLiojul
PUB ‘ISAISS qam B 0) }Xdu 10 uo Surpisal
I5A19S SB[}V Yoed im ‘Uonnjos pajnqLysip
e Suipraoid £q piennyur] woy SINIP SeY

*A|[edonewoine
parepdn usyy aie ‘saSed qam jueasjal
Aue pue ‘I3AI0S Se[}y a9y} UIIIM PIurejuod
syuipradAy ayJ, -pajeISiw Sey 90In0sal ay)
ey way) Suiwuojur “yui| Sunuwoour yoes Jo
PUS 3} JB SI9AIAS SB[} 9SO} yoeq S[[ed pue
‘syjul] Suiuiodur Jo 3sI] S SYOIYD IOAIDS Sy
oY) ‘sajeIFIW 32IN0SA1 B J9ASUSYAY “SUul|
Suiwosul [[pue ‘I9AIss qam ayj ul aed
gom Yoea wolj syul] SutoFino ay} [[e smowy
I9AI3S SE[1Y yoeg ‘)l 9Sn 0) IOPIO Ul papasu
a1e jeyy suoissiuad Aue pue ‘uonesrd jo
swin sj1 1038310 S ul] 2Y) se yons ‘sarpadoad
papuaixa Suiptaord Aq uipadAy s.qom
3y} JO SSaUYOL I} SPUI)XS UOHBULIOJUI SIYT
*19AI3S QaM JeY) Jnoge uoneuLIojur YuljsadAy
SUIBJUOD PUB “ISAISS qom © Siouped 1oAlss

Kuew woly s1agyns sepy ‘prenopjur Aq paydope | 8 Suisn Inq ‘waysAs prennyury SE)Y Uy ‘(9661 ‘sauof pue moyiid) uraysAs (‘u02)
yoeoidde a3 oy} Auejuuis sp Jo asneddg | Y Jo SIYauaq 3y} [[e sapiaoid sely e | aseqeiep JuipadAy paynquysip e SI Ssepy sepy yoeq[ed
sagejueapesiq Sage)uBApY uondraasaq aweN yoeoaddy

(‘ju02) swisiueyaapy uone.biy Buysixy jo sishjeuy - | ajqel

*Aep 1ad sa)hqeis], OS
JO pesy1aro jIomiou SuljaymIdA0
ue Jje1ouad pPInom yorgm
S90IN0Sa1 Qam UOI[[Iq [I19A0 pue
6661 ‘SO[ID pue 90UIIMET) SISAIIS
000°000°C IoA0 21 219y} ‘Aepo],

‘(pesn uwopenoes oy 10y (S661)
addey 99s) seounosar qam (00‘001

pue SI19A19S (001 AJuo P Aep
1od gINOS [SWIOS JO PEIYISAO HJIOMISU
€ 0) spea] [|us uone[nd[es sty (5661
‘addey]) oyyen qam jo 9%500°0 Auo
SI PeaylaA0 JIOMIaU S)I Jey} UONIISSE
ay) andsop ‘uonippe u[“(L661
‘coosug) Sutwppymiono Apaje[dwod
aq p[nom qam ay) jo Anjiqelorpaidun

*syut] asoyy ayepdn 03 aouEYDd 3Y) 92IN0OSII
paresSiw 9y} 03 SHUI| SARY JBY) SIOINOSAI YHm
s19A19s asoy) SulAld woysAs ay) jnoySnoiy
JSedpeOlq SI UYOIYym ‘JUSAD UB SB Ppajesn
uay} St uopeidiu 92INOSAL Y -9seqejep
painquysip Jouysip pue sjeredss e ui)1 saoed
PUR SISAISS qam Y} WOL Gam L) JO SImONIYS
quip ay) spensqe Ajenussss D-1dAHg

‘aseqejep

pue 9ZIS 3y} Y)IM WII)SAS B Ul Pal0)s ‘uoyeuniojut YuizadAy 2y} ut S9pPOU 7 YIIM 9JBIIUNWIUIOD

aq jsnur jeyy saSessowr jo loqunu | AU JO 9Seqejep Yo B S3jeaI]) pue jiomjou 3y} poop o013 wyjuoJ[e

oy} pue ‘IJo paromod ale jey) SISAIIS TN 3y} sutelsy pooyf-d ayy sasn wisAs D-19dAH ay “Yuij

10y sayepdn 210)s 3snu H-13dAH "qam ‘Juswageuewt Yul| Sulwosut ue Jo pus 3y} je WaISAS 2y} ul sapou

ay} Jo 9zIs 9y} wivlsAs € 0} o[qe[eosun | NOGe 33310] 0} s1dpiaoid uoneuLIOjUL 3s0Y) YIm AJuo SunedIunwwod Iseqeiep Yy (aaepp10dAYH

APp[dwod st n-10dAyg ‘wiyuoSie | Smo[le wdisAs pajewone A[ng ul Spou B uey) Joyjel Inq ‘aseqejep yuipradAy paureual ("juod)

Surpoo[} ® Jo asn S} Jo asnedagq *sjud!|o speaddn 0y paau oN pamquistp 19yjoue s1 (G661 ‘edded)) D-1adAY | souis) n-1odAH Yorq[reD
sogejueApesI(q sagdejuBApy uondrasaq aweN govoaddy

(‘juo2) swsjueyoay uoneabiy bulysixg jo sisAjeuy - | ejqeL

"((6661)
‘[€ 39 SUBAY 335) JOAISS §,95[2 SUOSWOS

Jo Aupiqeipiun 2y o) anp padewrep
3q pynod uoneindal S ISUMO 30INOSa1
Yy} ‘snyJ, ‘umop jusm uieyd oY)
ut 19A19s Aue J1 3S0] aq p[nom Ajugsjus
Jenuaisjar pue ‘yoeoidde opiSey
A|lejuswiepuny B S1 31 ‘S3ouaIdjal
JO ureyo Yy ulejuleW O} 22IN0SAL Y}
1S0Y Jey} SIOAIIS 3Y) uo sarja1 yoeoxdde
ureys> 9} asnessq ‘uonippe uj

‘PIEpUR)S QoM B SWI003] O} S1 WI)SAS
oY) JI AVUAIRJNYEM Y3 £q paoserdar
3Q jsnw STYN uoyllq 1 [pue
‘Posn 9q 0} SIVUADJNIEM J0J 1apIo
ul ‘pasn 19A19s Axo1d e 1o ‘paudisspail
9q SNl SIISMOIq][‘9SIOM
A[[enuelsqns asn s} Suniwij ‘I9AISS
192[qOgM-uoU © 0juo SjrITIW jouued
193[QOEM ' ‘Snyl -21moajIyoIe
$103[qOEM 9y Hoddns jey) sioalss
uo sylom Auo 31 Se ‘uoynjos Spim
-qaMm B Jou S1 wa)sAs $193[qQOEM UL

*K1u3aqul [BNUSI)AI SI9JUBIEND)
‘wojie]d panquysip e ojur

Qam 9y} Jutuin) ‘91mdaiyole paynqLU)sIp
oywads-qgam e saplaoid Ajjenuassg
‘qam 3 uo Kjugajut [enuaisjal

2INSuUd 0} aImesj uonoa[0d 3eqled
JSnqol pue wsiueyoaw uoneidiwu
JSe] B SOPIAOIJ °S90INOSAL S}l pue
qam 3Y) 10] AIMONIYDIE PAlUaLI0-193[qo
‘paSeuewt [[om ‘9)ajdwod e Suipiaoid
‘2Imyoa)Iydote punos Aj[esuyss) ‘pos

‘uonn[osal
oweu Jo wasAs panquusip e opiaoid
SI9AISS 3Y) ‘Aem SIY) U] ‘SIA[OSWIAY} SIDAIIS
oYy uo juowoSeuew >ui Suons yInoiyy
pasjueiend alojalayy si Ajudajur [enuaIR)ey

*201n0sal 2y} Junsoy
Ajjenioe 19A19s ay) 0} syulod SOUSIBIYELM
3511 9y} Suunsus pue IJUIIJIYEM S[pPpiu
a3 Sunosjjoo adeqied Aq ueys oy no
-{oYs, pue ‘13yjoue U0 UM S)EIIUNWWOD
USY) SIDAIDS 221y} [V “I9AISS J[ppI ay)
UO pasn SI AVUAIDJAI pIEMIO) Ioyjoue ‘ureSe
saAowW 3193[qOEM Yt JI “19AISS PIO 3y} UO
puIysq Y| SI 30UIIFJAI PIEMIO] B ‘sajeidiun
192[QOEM B 1OAJUSYA FOUDLR[PYEM B PIM
TIN 3y saoejdar pue ‘(spafqOcy PII[eo
UdY} SIB YOIYM) SIOOINOSAI qam Say13da(qo
UoIYM ‘QImodIyoIe Paseq-gqam 3[qQISudIXd
ue st (9661 “1e 12 wey3u[) s199(Q0EM

s193[q0eM

urey)

sagdejueapesi(q

sagejueApy

uondriasa(q

ameN

poeoaddy

("juod) swsjueysay uonelbiy Bunsix3 jo sishjeuy - | ajqel

*$30IN0S31 §, oM Y} [[e
Xapul 0} paeurws I J1 USAS Paysalyal
SeM XOpul 9y} [Jun JSO[UIBWS1 p[nom
90INOS3I SN} ‘UONIPPE U["39IN0Sal
oY) 9e00] 03 3[qe aq jou Aew II SE
‘fQiudayur [enuaIa)al sdjueIend jouued
wa)SAS Y} ‘Yans SY ‘qam Yy JO 9,96
saxapul Auo SIY} USAd Inq ‘O[qe[leAe
saomosar qam (6661 ‘nuopiu)
uoylq 1 Ay jo (0007 ‘ueAying)
uoyut ()9S ISAC UO UOPEULIOJUL
Suuoys ‘xopur 1so81e] oy sey
Apuoumd (woo-3|8003-mmm) 913000
‘own IJoao sdaidod sidpnu 210 03
Suraey INOYIM ‘Gom Y} JO X3pul U0
isnf ureyutewr 0y Sui38nnys are sauiduo
yoreas juaund ‘1oAamoy ysed oy
Ul pue MOU Y}0q 32IN0S3l qam AI2Ad

“TdN 3y} sureoy
B {ERN
se 9o1A19s duiSua yoress e Fuipiaoid

0S ‘SudWNIOp (JUBAR[RI QI10JaIS)
pue) iequus Aj[eonoejuks sajeoo]
‘Juswnoop TALLY Aue

10} 901AI9S Yoreas a)o[duwod e sapiaoid 31
SB ‘S301A19S 19110 AUBW 10] pasn 9q ue)

‘parepdn aq 03 gam
oy Jo ped Aue aunbai jou saop os pue

*Paa[ap usdq
jou pue pajerduu sey 31 papiaoid ‘uoneso]
M3U S)I JB 20INOSAI Y} 2q pInNoys yoyew
31)oBJUAS 1S9SO]D AU, ‘I Yojew A|jesnorejuks
jey) swip ur jutod juaLIND Sy} B gam dY)
uo $301n0sa1 (e Suua)sn|d A[jeonoeiuis usyy
pue ‘parowt 31 a10Jaq awy ut jutod snotaaid
B 18 Xapul s}l woy)1 Furasal £q 901nosal
pajesSiw € s9)ed0] uay) 3] ‘ewy ur jurod
1983 Je SaXapul 2)219S1p Jululejurew pue ‘awr)
Jo spouad snoueA 19A0 Gam U} UL SIOINOSAI
ay1 Jo [[e Surxapul Aq paaayoe st siyL, “(L661
“[e 13 lapolg) pajelSiw dAeY Jey) SI0INOSAI
S9)BJ0] JBY) 9DIAS punog puv JSOT ©
ap1aoid 0} papuajxa aq ueo asn si Inq (2661
e 32 Iapolg) IB[IWIS 318 JBY) ISOY) IaIsn|d

Jo xopui ue saxnbai 11 jey s1 yoeordde | ‘ourua yoreas e 0 lejuis adtAlas Aped pue s3[1J Jo AJLIe[IWIS S1JOBIUAS JY) SUIULIDIDP Suuaysny)
SI} JO JoegqMeEIp SNOIAQO jsowl 9yl | PIy) ‘[ewsd)xa ue se paplaoid aq ue) 0} pasn ssadoid e s1 Suusisnio onORIUAS onoejuAg yoreas
sagejueapesiq sagejueApy wondusaq aweN yovoaddy

Chapter 3 - Flaws in the Web’s Architecture

Note that even though some of these examples are now over five years old, and the problem of
link rot in distributed and hypertext systems has been known for decades, the web still has no
effective resource migration mechanism, as the disadvantages presented in Table 1 have
proved too great for successful adoption. The web therefore still suffers from link rot despite

the danger it presents.

In addition, although each of the five approaches to resource migration provides its own
solution to the problem of link rot, the semantics of the link and what it references are left in
an ambiguous state. Referential integrity can ensure that links always reference the same
resource, but what happens if the content contained within the resource changes? Should the
semantics of the link insist that the content persists along with the resource, thus requiring a
new resource and identifier to be created every time its content changes; or should the
semantics be defined such that new content simply overwrites existing content? The former
option will force web sites that contain frequently changing content, such as daily news sites,
to use new resources with new identifiers every day, making external linking to the site
virtually impossible, and leading to rapidly multiplying resources. Conversely, the latter
option would only allow links to reference the web site, rather than a specific story on the site,
requiring the user to manually search for the story within the site’s archives (if they exist). In
both cases, two separate resources have an equally valid claim to the same URL, but no
resource migration mechanism for the web even recognizes this semantic ambiguity, let alone

proposes a suitable solution.

73

Chapter 3 - Flaws in the Web’s Architecture

Furthermore, existing migration mechanisms do not provide any support for automatic
resource migration. They may provide name servers that can map a persistent identifier onto a
varying location, but this must be done manually. Although this is irritating for the owner of a
small site of perhaps one hundred web resources, particularly if the resources are distributed
across several different servers, it renders the mechanism useless for large sites such as

Yahoo’s, with many millions of resources.

3.2.5 Summary of the Link Rot Problem

This sub-section has shown that link rot is a dangerous problem for the web, but existing
solutions have failed to be adopted, as they have fundamentally ignored the web’s philosophy,
and the way in which its users use it. Link rot must be solved, but it must be through a
solution that is sympathetic to and consistent with the web’s current architecture, and which

recognizes the unique way in which it is used.

3.3 Shrinking Namespace

The DNS has been in existence since 1985, but recently alarm has been raised at its shrinking
namespace. Put simply, the number of domain names that are left unregistered is pitifully
small, forcing the modification of the DNS itself in order to extend its namespace. Companies
are suing one another over domain names for what they see as trademark infringement, while
certain memorable domain names are commanding a premium of over $1 million. However,
the growth of the web, both in terms of new users and new web sites, is still expmential, and
the number of people who wish to register a domain name will soon overtake the number of

domain names remaining.

74

Chapter 3 - Flaws in the Web’s Architecture

3.3.1 The Cause of the Shrinking Namespace

The DNS was originally designed to map a human-readable identifier onto an IP address in a
distributed and scalable way. The actual domain names that were used did not matter, as it
was only systems administrators and operators who used them, and so names such as
routerl.rs-23.section7453.serverl2.east-gcb.sun.com were common. In contrast, however, the
URL, which includes the domain name in its syntax, has made the domain name far more
visible, to the extent that it is now used in advertising and even in the brand name of
companies. With the URL, the domain names do matter, as it is customers who must use
them, and so there is a premium on memorable names, or those that represent the trademark of

the company that owns the associated domain name.

In the rush for companies to be on the Internet, the domain name has become a symbol of a
company’s web presence, and appending the .com Top Level Domain name (TLD) onto a
company’s name associates that company with the web. The company Amazon.com, for
example, explicitly includes in its company name the .com TLD that is part of the domain
name of its server. This is because users generally type in the name of a company into a
browser and wrap ‘www’. and ‘.com’ around it, and expect to locate the company’s web site
(indeed, this is what some browsers, such as Microsoft’s Internet Explorer 5, do
automatically). By appending .com onto their company name, therefore, the company
implicitly associates itself with the web, while providing the user with the address of its web

site in its brand.

75

Chapter 3 - Flaws in the Web’s Architecture

This has subtly altered the semantics behind the domain name, as it must now identify a
company or a product or a web site, and not just a server. Originally, the domain name was a
simple mapping from a human name to a machine name; with the advent of the web, however,
the domain name is now an identity, which has led to the dramatic shrinking of the desirable
namespace (i.e. the space of all names that are wanted and will be used, as opposed to names
comprising arbitrary characters, which may be syntactically legal, but which will never be

used).

This subtle shift in the semantics of the domain name has also altered the semantics behind the
operation of the DNS, effectively turning it into a rudimentary directory system (Mitchell et
al., 1996). For example, users will append ‘.com’ to the name of a company, or ‘.edu’ or
‘ac.uk’ (depending on the geographical location) around a university’s name, in order to locate
the respective organization’s web site. In this way, the users are implicitly using the TLDs of
the DNS as the top level of a hierarchical directory strudure. The problem is that the DNS
was never designed to be a directory system, and a number of problems, both technical and

social, have now begun to emerge.

3.3.2 The Damaging Effects of the Shrinking Namespace

The shrinking namespace brings with it problems that are both technical and social. The
technical problems are derived from the way in which the semantics of the DNS are being
altered to turn it into a system it was never designed to be, without its architecture changing to
adapt to this shift. The social problems, on the other hand, derive from the fact that the DNS

namespace is global in presence but limited in size, providing fertile ground for conflict as a

76

Chapter 3 - Flaws in the Web’s Architecture

limited resource is suddenly made valuable. The most damaging effects of these problems

include:

Social, political and legal tension

The namespace of the DNS is essentially flat, as everyone wants to use.com, and a domain
name must be globally unique. However, company names are not unique (Mitchell et al.,
1996), even in the same country. This leads to tension and ultimately litigious conflict
over who owns a specific domain name (for example: who owns the domain name
mcdonalds.com? The giant hamburger chain or the local baker who has been in business
50 years longer?), which in turn brings trademark law into the dispute. However,

trademark law is itself contentious, and inconsistent across different countries.

Hyper-inflated domain name prices

The combination of the huge demand for domain names as the web continues growing,
and the drastic shrinking of the desirable namespace, has led to the price of domain names
reaching hyper-inflated levels, with simple, easily recognizable names such as Drugs.com
being auctioned for over $1,000,000 (Arent, 1999). This will cause the namespace of the
web to fragment into two classes: those who can afford a desirable domain name, and the

unlucky majority who cannot, a situation that is the antithesis of the web’s philosophy.

A damaged DNS - because of the pressure on the .com namespace, and the demand for a
memorable name, international domain names are now being used to provide memorable

names that use an international TLD for purposes other than identifying a server’s country

77

Chapter 3 - Flaws in the Web’s Architecture

of origin. For example, the small island of Tuvalu recently sold its .zv international
domain name to the company DotTV, which then registered .#zv domain names, such as
bbc.tv, in the hope of selling them to TV companies for vast sums of money. Equally,
Chung Minh Shih uses Armenia’s .am international domain name to provide memorable
names such as http://i.am/john (Oakes, 1998). However, this erodes the semantics of the
DNS (Oakes, 1998) and blurs its functional definition, changing it from a simple
hostname/IP address mapping service, into a directory system in the case of .#v, and a
membership system in the case of .am. The problem is that the DNS was only ever
designed to be a simple hostname/IP address mapping service, and all other uses for it

place unknown demands on its ill-prepared architecture.

3.3.3 Determining the Extent of the Problem

How close is the namespace of the DNS to exhaustion? The theoretical limit of the namespace
can be calculated using the figures given in the DNS specification (see Mockapetris, 1987b).
A domain name string can contain a maximum of 255 characters, with each character being
selected from a pool of 28 different types (26 letters of the alphabet (a domain name is case-
insensitive) plus the characters °.” and ‘-’). This puts the number of unique names in the

DNS’s namespace at:

((26+1+1)*255) 1 = 7.3888253549170121004175301528e+24416

However, although this is a truly vast number, infinite scaling of the DNS is technically

unworkable (Mitchell et al., 1996), and so this limit will never be reached. In addition, the

78

Chapter 3 - Flaws in the Web’s Architecture

DNS will only be required to scale to the limit of its desirable names, not its theoretical limit,
and so the number of desirable names remaining is a better indicator of the size of the DNS’s

remaining pool of domain names.

There are currently 31,050,574 domain names registered (see DomainStats (2000) for a
continually updated figure), and as Figure 2 shows, the number of domain name registrations
is increasing exponentially, with the number expected to reach more than 75 million by the
end of 2002 (Barrett, 2000). Clearly this does not even scratch the surface of the theoretical

limit of the namespace, but what about the desirable limit?

20,000,000 3 -
—é— Domains Per Quarter
—@— Cumulative
15,000,000 o
10,000,000
5,000,000 = - —
e el A
olnmacttet il oot m
O 0O O MM~RMRODOODODDOO
mmmgmmmgam@gmam [I)
™ (N M — N M ™ N M - N - N
I s I e e s e B w B e B B B n oo

Figure 2 - Total number of domain names registered by quarter (DotCom, 2000)

72

Chapter 3 - Flaws in the Web’s Architecture

The DNS currently has 7 TLDs:

e .com — for commercial organizations;

e .net — for networking organizations, like NSFNET;

e .mil - for military organizations;

e .edu - for educational organizations;

e .org — for noncommercial organizations, like the IETF,
¢ .gov — for government organizations;

e .int — for international organizations, like NATO.

There are also international TLDs, such as .uk, .au, .de, etc., which represent the various
countries around the world. However, as Figure 3 shows, 80% of all domain names use the
.com TLD. This shows that nearly all other TLDs (and with them those parts of the total DNS
namespace which those TLDs represents) are perceived as undesirable, making them
effectively unusable, and reducing the structure of the overall namespace down from a

hierarchical namespace to a flat one instead.

8%

@ COM
| NET
ORG

Figure 3 - Percentage of registered domain names according to TLD (DotCom, 2000)

80

Chapter 3 - Flaws in the Web’s Architecture

Worse, of those .com names that are perceived as usable, most of the best (i.e. the most
memorable or descriptive) are already gone (Arent, 1999), with a Wired News investigation
conducted in April 1999 finding that out of 25,500 standard dictionary words checked, only
1,760 remained unregistered (McCullagh, 1999). It is safe to assume that since then, the vast

majority of those 1,760 will by now also be registered.

The remaining desirable domain names are either not in the dictionary, or are hyphenated
constructs of more than one word (which is prone to error when being typed into a browser’s
address bar). However, if the definition of useable is restricted to company names, or single
words in a standard dictionary, then it can be seen that virtually all of the useable domain
names have already been registered, at least for the .com namespace. In this way, the
namespace of the DNS has been reduced from a vast hierarchy of names to a flat, almost
exhausted pool of unwanted, meaningless names. It is the limit of the useable namespace that

causes the most problems for the DNS, and this limit has very nearly been reached.

3.3.4 Solutions to the Shrinking Namespace Problem

The problems faced by the DNS are the direct result of it being adapted to fit functions it was
never designed to perform. For example, the DNS is being asked to provide a naming system,
a directory system, and even a company’s brand identity on the web, but each of these

different functions place different and conflicting demands on the system.

Other name resolution systems are more focused in their operation, and are designed to

perform one function, and to perform it well. Table 2 on page 83 provides a comprehensive

81

Chapter 3 - Flaws in the Web’s Architecture

list of the different types of naming systems that are in operation today, and describes their
function and the environment in which they are designed to operate, including whether they
are designed for human use or machine use. Note how the functionality of each system is
markedly more focused than that of the DNS, which has evolved to perform many different

functions, and to be used by users with many different levels of experience.

3.3.4.1 The Irreplaceable DNS

Of the different naming systems described in Table 3, those designed for distributed
component architectures such as CORBA are designed for machine use only, whereas those
designed for network file systems are little different in operation than the DNS, and so would
suffer the same problems. As such, only the directory service provides a realistic alternative
to the DNS. Indeed, the OSI X.500 reference model for directory services, and its more
lightweight derivatives such as the Lightweight Directory Access Protocol (LDAP) (Yeong et
al., 1995), and Novell’s Network Directory Services (NDS), have been seen ascompetitors to
the DNS (Albitz and Liu, 1997). They provide a globally consistent, hierarchical namespace
that is used to locate a resource (UniOfMich, 1995), but which can be extended to reference a
resource of any type, allowing resources to be viewed consistently, no matter what their object
type. In addition, although they are relatively slow when adding or deleting users and
resources, they can be updated securely across the network (Albitz and Liu, 1997). As such,

they provide a far richer naming system than the DNS.

82

Chapter 3 - Flaws in the Web’s Architecture

Name Humal'l or
Resolution Machine User Level Purpose Description
S Readable Expected
ystem
Name
Local File | Human Reasonably | Identifiesafileinafile [A computer’s local file system has its
system Readable proficient system according to its | own namespace, with its resources being
location. files that are named according to the
conventions of the operating system, and
the naming system being a component of
the operating system. The file system
must ensure the uniqueness of each file
name; provide functions for adding,
deleting, creating and renaming files; and
associate a name with a specific block of
data. The namespace is operating
system-dependent, and usually encodes
the file name and file location in a single
filepath, as a human-readable string.
Network Human Reasonably | Identifies a file across | With the introduction of networks, the
File system | Readable proficient a network according to | functionality of the naming system must

its location

grow to accommodate the extra
complexity introduced by the distributed
nature of the system. Such a naming
system must cope with resources across
potentially thousands of machines,
ensuring the uniqueness of the name,
locating each individual resource
unambiguously, and providing added
services depending upon the type of

distributed system. Microsoft’s
Windows Intemet Name Service
(Microsoft, 2000a), for example,

provides a distributed database that maps
Windows-specific computer names to an
IP address, and whose namespace
encodes the computer name as well as
the filepath, as a human-readable string.
In this way, WINS, as it is known, is
similar in functionality to the Intemnet’s
DNS, but provides a Windows-specific
service whose records can be
dynamically updated across the network
should the machine be assigned a
different IP address

Table 2 - Name Systems in Use Today (continued on following pages)

&3

Chapter 3 - Flaws in the Web’s Architecture

Name Humal.l or
Resolution Machine User Level Purpose Description
Readable Expected
System
Name
CORBA Machine- | Expert Names a CORBA | The Common Object Request Broker
Name readable object across a | Architecture (CORBA) is an object-
Resolution CORBA distributed | oriented distributed architecture designed
System component system by the Object Management Group.

CORBA'’s defined naming system is the

CORBA Naming Service, which
provides the principal mechanism
through which most clients locate

computational objects that they intend to
use (OMG, 2000). The CORBA Naming
Service uses several naming contextsin a
hierarchical system to fully resolve an
object’s name onto its address.

Interestingly, CORBA’s namespace does
not use a specific syntax. Rather, a
CORBA name comprises an identifier
attribute, to identify the object within the
system, and a kind attribute. The latter
provides descriptive power to the name,
as CORBA does not interpret, manage or
even attempt to understand the syntax
used. This is left to higher levels of
software, which can impose their own
management policies on the naming of
objects (OMG, 2000). In this way,
CORBA has its own namespace for its
own uses, but also provides an
unrestricted namespace that can be
organized according to the requirements
of the higher layers of software that use
the CORBA system.

As well as having a more sophisticated
namespace, CORBA, as a platform for
distributed computing, also has a more
sophisticated naming system. For
example, an object’s externally visible
characteristics (OMG, 2000), such as its
read/write attributes, last-time-modified
attribute, or other properties, can be
registered with other CORBA services
and used to locate the object. In this
way, the name service can be used in
conjunction with the CORBA Query
Service, for example, to enable clients to
search for an object according to a query.

Table 2- Name Systems in Use Today (cont.)

84

Chapter 3 - Flaws in the Web’s Architecture

Name Human or
Resoluti Machine User Level Purpose Descripti
ofution | Readable Expected P escription
System N
ame
Directory Human- Reasonably | Treats everything [A directory service is a database that
Services readable proficient accessible from the | manages the attributes and locations of

network (including a
computer, a fax, a
printer, etc.) as an
object in the directory,
and enables it to be
located, used, queried,
and managed in a
consistent,
homogenous way.

shared objects across a network, where
objects include anything from a printer to
a file to a user (Esposito, 1999). The
directory’s hierarchical namespace is
used to locate an object, which is
classified according to a specific
category in the directory that is reflected
in the object’s name.

A directory service is like a phone book,
as it provides information about a person
or a resource when given their name
(Microsoft, 1997a). It combines multiple
directories, such as file systems, email
contact names, or those from different
groupware products, into one consistent
place, and provides advanced security
features to ensure that each object is
accessed only by those with appropriate
authorization.

Directory services are designed to
provide regular queries, but few updates,
and so are relatively slow when adding
or deleting users and resources, but they
can be updated across the network in a
secure fashion (Albitz and Liu, 1997).

Table 2- Name Systems in Use Today (cont.)

85

Chapter 3 - Flaws in the Web’s Architecture

Name Humal.l or
Resolution Machine User Level Purpose Description
Readable Expected
System N
ame
Domain Human All levels, | Onginally designed to | The DNS was originally designed to map
Name readable from expert | map a human-readable [a human-readable hostname onto a
System systems server name onto its IP | machine-readable 32-bit IP address. It
operator, to | address, but is now | provides a hierarchical namespace that is
reasonably used to identify: used to locate the server’s IP address.
proficient eany server on the | However, a domain name is now also

Internet user,
to complete

Internet;
e a web site according

used in a variety of different situations,
each with different requirements of the

novice. to a directory DNS.
structure;
ea company brand | The DNS is a read only database, which

name or trade mark;
e a product;
e a person.

cannot be updated across the network.
Its security is questionable and its
features limited, but it is an integral part
of the Intemnet that is simple, mature, and
robust, and will be extremely difficult to
replace.

Table 2- Name Systems in Use Today (cont.)

However, the DNS is integral to the Internet, not just the web, and is a fast, simple, and robust
system that is now mature and extremely reliable (Albitz and Liu, 1997). Replacing a name
resolution system that is used by over 369 million people (GlobalReach, 2000) with something
as fundamentally different in operation as a directory service is impossible, as it would require
stopping the entire Internet while the new system is integrated and tested with every different
protocol and application that relies on the DNS. As such, although the semantics of the DNS
have become blurred, it can still demonstrably cope with enormous numbers of users and a
vast array of applications without fail.

In contrast, no directory service has had to scale

beyond the enterprise, and so has only been tested within a more controlled environment. As

86

Chapter 3 - Flaws in the Web’s Architecture

such, even a directory service may find its semantics blurred when placed in the service of the

users of the web.

In addition, replacing the DNS with a directory service implicitly assumes that the web’s
naming service should be organized as a directory, but this requires centralized control in
order to organize the directory structure. Worse, directories such as X.500 are unwieldy, both
for the user, as the names used are much too long for normal use, and for the machine, as
X.500 requires far more powerful computers than the DNS, with standard PCs only able to use

its lightweight variants such as LDAP and NDS (Mitchell et al., 1996).

3.3.4.2 The Inextensible DNS

If the DNS cannot be replaced, then it is reasonable to expect it to be extended. The body
responsible for managing the DNS’s namespace is ICANN, the Internet Corporation for
Assigned Names and Numbers, and it has proposed a number of possible extensions in an
attempt to adapt the DNS to its new web-oriented environment. In order to settle disputes
over contentious domain names, ICANN has proposed the Uniform Domain Name Dispute
Resolution Policy (ICANN, 1999), a formal arbitration process through which conflicting
parties can argue their case before suing one another in court. More positively, perhaps,
ICANN has also endeavoured to open the namespace up by providing more TLDs that are

domain-specific.

87

Chapter 3 - Flaws in the Web’s Architecture

.ads
.africa
.air
.biz,
.cash
.CO-0p
dir
.dot
.dubai
.event

fin

find
firm
.geo

.health

Jina
kids
Jaw
.mall

.mas

Table 3 - New TLDs submitted to ICANN

.mus
.nom
.one
.per
.pid
.post
.pro
.tel
.travel
.union

.web

Table 3 presents a list of some of the new names that were presented to ICANN as potential

TLDs. However, after much debate, the organization eventually settled for just seven (Table

4).

.acro

.biz

.coop

.museum

.name

.pro

Table 4 - New TLDs chosen by ICANN

88

Chapter 3 - Flaws in the Web’s Architecture

ICANN proposes that the new TLDs will provide many more desirable domain names, and so
solve the problem of the diminishing namespace. However, this approach is fundamentally
flawed. Although there may be seven more TLDs, and a corresponding increase in the
number of domain names that can be registered, it will not be long before the same disputes
occur for domain names under the new TLDs. For example, .biz is meant to represent the
namespace for e-commerce, but it is not clear how it will suffer any less than the .com
namespace, with, for example, the UK’s Dixons fighting with the US’s Dixons for the right to
the dixons.biz domain name. In addition, the different mix of domain names all place different
semantics on the DNS. For example, domain-specific TLDs, such as .museum, choose to
assume that the DNS is a directory service, and the TLDs are categories within the directory;
other TLDs, such as .info treat the DNS as a service locator, with the TLDs being used to
define different types of service. Still other TLDs, such as.name, treat the DNS as a directory
of people, while it is left unexplained why there is a.pro but no .amateur, or why there is a
.museum but no .gallery. The mix of different types of TLD is eclectic at best, but they are all
at the same level in the hierarchy. No other directory would place international country codes,
such as .uk, at the same level in its hierarchy as business categories, services, and people, and
it is difficult to see exactly why the DNS should. Indeed, the mix of new TLDs is so arbitrary,

it would be difficult to define the semantics of the DNS at all.

Opening up the namespace in this way does not solve the problem, it merely delays its full
effect. The fact is that with a centralized body such as ICANN controlling the namespace,
there will always be a restricted name space, and therefore high demand for certain key names.

Unfortunately, ICANN does not seem to be helping the situation with its arbitrary mix of new

89

Chapter 3 - Flaws in the Web’s Architecture

TLDs. As such, the DNS can technically be extended, but until its exact functional definition

is determined, it seems any extension will not solve its problems.

3.3.5 Summary of the Shrinking Namespace Problem

This sub-section has shown that the DNS is facing a crisis, with the number of desirable
domain names left unregistered reduced to virtually zero, forcing users to employ cunning
workarounds that make a domain name more memorable, but which undermine the semantics
and operation of the DNS. The namespace must be extended to stop the development of a
stratified web, divided according to money, but care must be taken to decide firmly on the
exact semantics that should underlie the DNS. It must be determined whether or not the DNS
should retain its role as a database for resolving host names and IP addresses, or whether it
should become more like a directory service. If the latter is chosen, ICANN would argue that
it should hold the responsibility for maintaining and defining such a directory, but its solution
to the shrinking namespace problem is fundamentally flawed and ill thought through.
ICANN’s problem is that it is one of the only centralized bodies on the Internet, and as such,
cannot hope to provide a global solution that meets everybody’s requirements. However, the
problems with the DNS must be solved quickly, and in a way that is decentralized, and which

reflects the needs of the web and its users.

3.4 Increasing Noise

The architecture of the web has no explicit mechanism for managing its information, and has
relied instead on ad hoc services provided by third party service providers, who respond to the
demands of the market. However, this approach is failing, as search engines are indexing less

of the web and returning less relevant results, while hyperlinks are becoming completely

90

Chapter 3 - Flaws in the Web’s Architecture

unreliable. As the web grows in size, the quality of its information degrades, leading to an

increasingly noisy system.

3.4.1 The Cause of the Increasing Noise

The root cause of the problem is the volume of information combined with the web’s

decentralized architecture and lack of proper information management. Lagoze and Fielding

(1998) define the problem well, reducing it down to three components:

Universality — anyone can participate equally on the web, leading to a system that
inherently focuses on quantity over quality. This is inevitable on the web, as quality
requires the classification of one item of information as being better than another, but
without a gatekeeper, the web has no mechanism with which to do this. As such, all
information is treated the same, regardless of its source or its authority. It is left to search

engines to attempt to infer the quality of information using heuristics that analyse the text

of an HTML document.

Uniformity — resources, services and users are treated as equal, when they clearly are not.
Indexing image content is distinctly different from indexing text, and users clearly have

different levels of experience, yet the web makes no distinction.

Decentralization — the organizational structure required to manage the information
effectively cannot be put in place on the web, leading to an anarchic structure that gets

more extreme as the web grows.

91

Chapter 3 - Flaws in the Web’s Architecture

Put simply, there is no efficient information retrieval system inherent within the web’s
architecture that users of different abilities can use to retrieve information of different media
types. This problem is compounded by the decentralized nature of the architecture, which
prevents the development of such a system, and the web’s phenomenal growth, which

constantly exacerbates the problem.

Compounding the problem further is the state of the web’s navigational mechanism: its
hyperlinks. Section 3.2 has already discussed the problems due to link rot, but the
effectiveness of the hyperlink is also compromised through hyperlinks that deliberately
misdirect the user, or which pay for their location on a web page, regardless of their relevance
to its content. These and other tactics lead to the breakdown of the web’s navigational
structure, which is already in a fragile condition. The end result is that both the search engine
and the hyperlink are becoming increasingly unreliable, therefore making the web increasingly

un-navigable.

3.4.2 The Damaging Effects of Noise

Noise is defined as unwanted signals, and accompanies any data transmission event (Stallings,
1991). In an information system such as the web, noise is represented by unwanted
information content. In the specific case of a search engine, for example, if one web page out
of one hundred is perceived as relevant by the user, the other 99 irrelevant web pages

represent noise. The more noise in such a system, the harder it is to locate information.

92

Chapter 3 - Flaws in the Web’s Architecture

At its most extreme, noise in an information system will kill it, as the number of unwanted
signals will grossly outweigh the number of wanted signals, thus rendering the system useless.
Noise represents the quantity of entropy present in a system, which is a measure of the
randomness or unpredictability of communicated values (Brebner, 1997). Maximal entropy
represents a completely random and thus uniform system, making entropy the polar opposite
of information. In this way, increasing noise renders an information system increasingly

random, and therefore poses a potentially lethal threat to the web.

However, even at low levels it can severely retard the growth of the web, as new users find
themselves overwhelmed with information they do not want. As was said in section 2.4.2,
without any system-wide structure to the web’s information, more people will perceive each
new web page as noise than those who perceive it as relevant information. New users, whose
inexperience will cause them to use search engines and hyperlinks ineffectively anyway, are
particularly susceptible to this problem, which will act to implicitly raise barriers to adoption

and retard the web’s growth.

3.4.3 Determining the Extent of the Problem

There are two ways that a resource can be located on the web: through hyperlinks, which
connect related documents; or through an information retrieval service such as a search
engine. As such, if these mechanisms are ineffective in locating relevant information, the user
will perceive the web as a noisy system. The following sub-sections will therefore attempt to
determine the level of perceived noise in the web through an analysis of the literature relating

to the state of these two different navigational mechanisms.

93

Chapter 3 - Flaws in the Web’s Architecture

3.4.3.1 The State of Hyperlink Navigation

3.4.3.1.1 Navigation Mechanisms

The user interface of a web browser provides navigational features that interact with the web
in order to help the user navigate across it. In a study examining the revisitation patterns in

web navigation, Tauscher and Greenberg (1997) classified the following as major navigation

features of a browser:

e open URL — the user types a URL into the browser’s address bar;

e back — the user hits the browser’s Back button, to return to the previously viewed

resource;

e reload — the user reloads the current page from the server;

Jforms — the user submits a form via HTTP, using a button in the HTML document.

The returned resource is usually dynamically generated;

94

Chapter 3 - Flaws in the Web’s Architecture

In addition, Catledge and Pitkow (1995), in their study into browser characterizations, also

included:

e forward - the user hits the forward button, revisiting a page they have just come from;

e home — the user hits the Home button to load a resource which they have pre-selected

as their ‘home-page’ (i.e. the default page that is loaded when the browser is first

started);

e history — a list of all the URLSs visited in a pre-defined time period is presented to the

user, who then selects one to navigate to;

Finally, the user can choose to explicitly click on a rendered hyperlink, or select from a list of
URLSs that have been stored by the user in her Favourites list. Different browsers may adopt
other navigational features, but these constitute the main ones that are common across all
modern browsers. The most commonly used features have been found to be the hyperlink

(51.9%) and the Back button (40.6%) (Catledge and Pitkow, 1995).

A user must combine these navigational features of the browser with effective search
heuristics, if they are to successfully navigate across the web without the aid of a search
engine. For example, Tauscher and Greenberg (1997) found that users visit a central page and
navigate to and from its many linked resources, thus performing a breadth-first search.

Kleinberg (1998) has termed these central pages hubs, while the linked resources are

95

Chapter 3 - Flaws in the Web’s Architecture

authorities, which satisfy a user’s information need and are perceived by that user as being
authoritative and therefore accurate. Tauscher and Greenberg (1997) also note that users may
follow a ‘guided tour’, composed of hyperlinks containing instructions such as ‘Next Page’
that are followed by most users according to a set structure; or they may perform a depth first
search, following hyperlinks deeply before returning to a central page. Higgins (1999) has
also noted that time and authority affect human decision making, with humans deciding which
item of information to choose according to the authority associated with each item, and the
time available to decide. From this, it can be seen that the effectiveness of hyperlink
navigation is dependent upon the navigational features of the browser, the information

contained within the web resource, and the user’s own search heuristics.

3.4.3.1.2 The Problem with Browsing

Unfortunately for the user, neither the browser nor the information contained within a web
resource is particularly helpful in locating a specific resource. Cockburn and Greenberg

(1999) note the following limitations of the browser’s navigational features:

e Inefficiency in retrieving distant pages — the Back button only works one page at a

time, which is a laborious process when the user has visited many pages.

e Context — the user sees only one web page at a time, and so their orientation within the
information space is dependent upon the contents of the current page and their memory

of any previous page.

96

Chapter 3 - Flaws in the Web’s Architecture

e URLs do not make good lists — favourites and history mechanisms that list URLs are
not intuitive, as most URLs are not representative of the content of the resource that

they locate.

In addition, with many links on every page, it is easy for the user to become distracted (indeed,
web-based banner advertisements depend on distracting the user), and to then forget where in
the browsing session they were. Furthermore, the navigational cues in the browser only allow
the user to see hyperlinks that are one level deep. There is no way to see what the resource
that the hyperlink points to is, or of knowing what hyperlinks may be contained within it,
without clicking on the hyperlink. This severely slows down the user’s browsing progress,
and renders browsing an almost arbitrary approach to information retrieval for all but the most
experienced of web users. Worse, hyperlink navigation can only be as good as the state of the
hyperlink structure itself, but as the following sub-section shows, this is disintegrating at an

alarming rate.

3.4.3.1.3 The State of the Web’s Hyperlink Structure

The structure provided by the web’s hyperlinks is the only system-wide form of information
management inherent within its architecture. Users can theoretically use hyperlinks to
navigate from one resource to any another. Albert, Jeong, and Barabasi (1999) have shown
that any two randomly chosen documents are, on average, only 19 hyperlinks away from one
another, which, when combined with the use of advanced navigational techniques,
theoretically allows the user to navigate across the web using hyperlinks alone. However, in

practice this is not the case, as a much larger study of over 200 million documents by Broder

97

Chapter 3 - Flaws in the Web’s Architecture

et al. (2000) has shown that the web has a complex, organic structure, with only a 24%
probability that any two documents are connected via hyperlinks at all, and that the actual
diameter of the web (that is, the number of hyperlinks that must be traversed between
randomly chosen documents) is closer to 500. Figure 4 shows this structure, which reveals
that the web has a rich inner core of some 56 million highly connected resources that connect
to and from one another. However, there are also 44 million IN resources (i.e. those that link
to the core, but which cannot be reached from the core) and 44 million OUT resources (i.e.
those that are linked by the core, but which do not link back to the core). Worse, Broder et al.
(2000) also found that there are some 44 million resources that bypass the central core

altogether, and another 17 million pages that are completely disconnected.

This structure shows that the web cannot be completely navigated using hyperlinks alone, and
so the web’s inherent navigation mechanism cannot be used in isolation. The situation is made
much worse, however, by hyperlinks that pretend their referenced resource relates to
something that it clearly does not. This deception is intended to attract as much user traffic to
the resource as possible, regardless of whether or not each user actually wants the information
it contains. However, it erodes the integrity of the hyperlink structure of the web, further
increasing the noise level. As such, the hyperlink can no longer be relied upon for effective

navigation.

98

Chapter 3 - Flaws in the Web’s Architecture

- Central core

]

1
1
]
I
1
[

4

Tendrils and tubes
44 million pages

Figure 4 - Hypedink structure of the web (Broder et al., 2000)

3.4.3.2 The State of the Web's Information Retrieval Services

Third party information retrieval services are deployed on top of the web’s architecture, but
are not part of it. As such, they must index that part of the web that they wish to focus on

without help from the web’s architecture, but they are free to choose whichever mechanism or

algorithm they wish in order to achieve this.

99

Chapter 3 - Flaws in the Web’s Architecture

The web’s main information retrieval services can be classified according to two categories:

e Coverage-oriented services — services, such as the major search engines, that try to

cover as much of the web as possible.

e Relevance-oriented service — services, such as web directories, that focus more on

providing relevant results than on attempting to index the whole web.

The following sub-sections examine the state of the services that belong to these categories.

3.4.3.2.1 Coverage-Oriented Services

Search engines attempt to index the entire web using web spiders, and must infer the meaning
of a document using machine-based heuristics. However, search engines are facing three

critical problems:

1. Web crawling is no longer viable
It is becoming increasingly difficult for a web spider to keep up with the growth of the
web. Of the web’s one billion resources, today’s largest search engine (Google) indexes
only 56% of them (Sullivan, 2000a). However, the situation can only get worse, as the
web is expected to hold some 100 billion documents by the end of 2002 (Butler, 2000),
while the web’s hyperlink structure, which the spiders rely on to efficiently locate new
documents, is fragmenting. With only 24% of web resources connected at all, crawling

hyperlinks is no longer viable if the goal is to index all web resources.

100

Chapter 3 - Flaws in the Web’s Architecture

2. Relevance is based on unreliable inference heuristics

Search engines must attempt to infer the meaning of a document in order to return relevant
results, yet they generally use outdated relevance heuristics (Berst, 1998), and choose
instead to compete on the size of their index rather than its accuracy. This leads to what is
known as the abundance problem, in which the number of resources classified as relevant
by the search engine is far too large for a human to digest (Kleinberg, 1998). For example,
generic search terms such as ‘web’ can yield as many as 250 million returned documents,

greatly increasing the perceived amount of noise in the service.

3. Indexes age quickly
The average age of a web page before its content (including any hyperlinks it contains)
changes is just 117 days (Brewington and Cybenko, 2000), meaning that every document
indexed in a search engine must be re-indexed within 117 days if the index is to remain
fresh. However, with the size of the web increasing exponentially, this means that the
number of documents that must be refreshed must also increase exponentially. The

problem is compounded by link rot, which has already been covered in section3.2.

Feldman (1998) has provided empirical data on the noise level of a search engine, by
conducting a study among 999 professional information searchers that compared the
difference between the Dialog controlled information service with the web’s search engines.

In this study, clients of professional searchers used real world queries, and were asked to rate

101

Chapter 3 - Flaws in the Web’s Architecture

the relevance of the returned information. The results, shown in Figure 5, reveal that although
both services return nearly the same amount of highly relevant documents (111 for the web
against 117 for Dialog), the web returns nearly twice as many irrelevant documents (306 to

147).

Retrieved Documents by Relevance

306

RANKED 5

D4
-— fgvant —

Figure 5 - Relevance of the Web Compared to Dialog (Feldman, 1998)

Worse, of those documents that rated a relevance score of 4 out of 5, the web returned only
43% as many as Dialog (26 to 60), while for those documents with a relevance score of 3 out

of 5, it returned only 31.5% (34 to 108). Feldman (1998) notes that:

“...the interspersal of so many useless documents with those of high value may colour
the perception of the searcher that the entire Web search has less value than a
traditional online search, even though the same number of highly relevant documents
were returned.”

102

Chapter 3 - Flaws in the Web’s Architecture

Thus, regardless of the number of relevant documents that are actually retrieved, the user’s
perception is that the search engine is noisy. Worse, Henziger et al. (1999) note that the more
pages an index contains, the harder it is to keep the average page quality (in terms of
relevance) high, which means that the efforts of the search engines to provide the largest index
inherently lowers their average page quality. As the size of the web continues to increase, the
average page quality, and thus the quality of the search engine itself, will get progressively

worse.

These problems terminally undermine the approach of the search engine companies. They
cannot index the entire web; their systems are increasingly noisy; and their indexes are
becoming increasingly stale. As the web’s only comprehensive information retrieval systems,

they only add to the perception of increasing noise in the web.

3.4.3.2.2 Relevance-Oriented Services

Other information retrieval services, such as human-indexed directories, focus more on
relevance than coverage. The directories, for example, attempt to index the web by hand using
thousands of editors. However, the size of the resultant directory is considerably diminished,
with the largest directory, the Open Directory (www.dmoz.org), currently indexing only
2,000,000 documents (Sullivan, 2000a), compared with Google’s 500,000,000. Worse, with
so many documents to classify, the directory structure can become unwieldy, forcing the
directory operator to decide whether to use a small directory structure, with each level
containing millions of different resources, or to limit the number of resources per directory

level, with millions of different directory levels.

103

Chapter 3 - Flaws in the Web’s Architecture

Other types of service include domain-specific search engines that focus on one specific
subject (termed vortals, for vertically-oriented portals). These services, however, cover even
less of the web, as they ignore all resources not related to their specific subject in an attempt to
increase relevance. As such, the relevance-oriented approach cannot provide a comprehensive
information retrieval service, and so although it may have its use for certain groups of users,

the approach cannot reduce the overall noise on the web.

3.4.3.3 Implicit Gatekeeping

Ironically, a relevance-oriented service cannot become a core part of the web, as the service
itself conflicts with the web’s core philosophy that has made it so popular. Specifically, the
service becomes a gatekeeper, deliberately choosing one item of information over another.

This is self-evident, as the concept of relevance demands such discrimination.

However, all services have their own bias regardless of their orientation, and so become
gatekeepers, even if only indirectly. This may be an explicit bias, particularly with the
coverage-oriented services, whose editors must follow the editorial line of the service
provider; or an implicit bias, more common with the relevance-oriented services, whose
machine-oriented heuristics inevitably judge the relevance of a resource according to features
other than those directly describing its information (Lawrence and Giles, 1999). For example,
Google’s use of the PageRank algorithm (Brin and Page, 1998) leads it to rank documents
according to their popularity, regardless of the informational content contained within them.
This has led some unscrupulous site operators to deploy thousands of entry sites, which

contain no content other than a distinct hyperlink to the same web site, in an attempt to

104

Chapter 3 - Flaws in the Web’s Architecture

artificially inflate their PageRank score. Worse still is the practice employed by some search
engines (such as goto.com) of actually selling rankings to the highest bidder, regardless of

their relevance to a query (Berst, 1998).

The cause of implicit gatekeeping is the lack of an architectural solution to information
retrieval. Search engine companies exist in a fiercely competitive world, where the vast
majority of their services are provided for free. This puts enormous pressure on them to make
money from any available source, and to take money away from their search technologies and
give it to their marketing departments instead (Berst, 1998). In this way, they lose their

coverage, their relevance and their neutrality, and provide an ineffective service to the user.

3.4.4 Summary of the Increasing Noise Problem

This sub-section has shown that increasing noise in the web is a dangerous problem that is
being exacerbated by the tactics of information service providers. The web’s hyperlink
structure is being eroded by hyperlinks that deceive the user in order to generate traffic, or by
web sites that do not provide any hyperlinks at all to competing, but relevant web sites.
Equally, search engines are now selling high-ranking scores regardless of a site’s true
relevance. However, worst of all is the fact that there is now no way to navigate the entire
web using web-based services alone. Hyperlink navigation can no longer be relied upon, as
the hyperlink structure has broken down, leaving some resources completely disconnected.
Equally, information retrieval services can no longer be relied upon, as they cannot keep up

with the growth of the web.

105

Chapter 3 - Flaws in the Web’s Architecture

In short, the web is now perceived as a noisy system. This will discourage users from using it
effectively, and will begin to retard the web’s growth. However, if left unchecked, thenoise
will increase and will eventually render the web useless. A new way of enabling users to
locate resources effectively is required, which should be completely unbiased, comprehensive,

and tailored according to the needs of the user and the information provider.

3.5 Summary

The chapter has focused on three core problems faced by the web:

e Linkrot
e Shrinking Namespace

e Increasing Noise

The problems have been recognized for some time, and various proposed solutions have been
described in this chapter. However, they have all failed, and the web is left with a flawed

architecture that threatens its growth and even its existence.

The problem with the existing solutions has been that they are unsympathetic to the
architecture of the web; the needs and behaviour of the users; and the needs and behaviour of
the information providers. Specifically, a system that requires the replacement of the web’s
infrastructure will not be adopted; a system that ignores the needs of the user will not be used;
and a system that assumes the information provider will not attempt to deceive the user will be

rendered useless. Exacerbating the problem is the scale of the web’s growth, and the need to

106

Chapter 3 - Flaws in the Web’s Architecture

solve the information management dichotomy. As such, this represents the problem that this

research programme has set out to solve.

The web is an organic system, complex and dynamic, and evolving according to the needs of
the user, with the information providers engaged in hyper-competition trying to attract as
many users as possible. It is more like a society than a rigid information system, but this is to
be expected, as it has virtually no barriers to entry, and so all areas of society contribute to it.
As Berners-Lee puts it, “the web is a social creation not a technical one” (Berners-Lee and
Fischetti, 1999, p133). As such, this thesis is based on the assumption that in order to manage
the web’s information effectively, a new and entirely different model of information flow is
required, which is sympathetic to the web’s existing architecture, the behaviour of its users,
and of its information providers. Rather than looking at information from the perspective of
the network, the model should focus on information from a human-oriented perspective, as the
problems of the web are as much to do with the behaviour of its users as they are with the
flaws in its architecture. Such a model has been developed as part of this research programme,

and the remainder of this thesis will discuss its design, development and implementation.

107

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

4, HOMINID - A Model for Managing Information Flow on the Web

Having discussed at length three core flaws of the web, this chapter presents a
new model for managing information flow on the web. The model is called
HOMINID, and has been designed to fix the three flaws of the web without

falling foul of the information management dichotomy.

108

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

4.1 Introduction

This chapter presents a conceptual overview of HOMINID, a new model for managing
information flow on the web. The design decisions that led to the development of HOMINID
are a result of previous research that has been conducted, but which is not presented in this
thesis. Specifically, HOMINID has been designed using the philosophy of a new model of
information flow called Situated Memetic Theory (SMT), which models information flow
from a human perspective. As such, the HOMINID model treats information from the
perspective of the user, not the network, and so views information as flowing from an
information provider (i.e. the resource owner) to an information consumer (i.e. the user
browsing the web). It is for this reason that HOMINID derives its full name: the Human-
Oriented model for Managing Information Flow on the web. As this chapter will reveal, the
model provides a novel perspective on the nature of information management, and is used to
solve the three flaws of the web discussed in the previous chapter, as well as to resolve the
information management dichotomy. The research performed in the development of SMT is a
significant body of work in its own right, which has led to the development of a powerful new
model of cultural information flow. However, the work will not be discussed in this thesis,

but will instead be published in appropriate journals.

The chapter presents a conceptual overview of HOMINID, and shows how its core
components are able to fix the identified flaws of the web. The remaining chapters discuss
how the model has been applied to the web through the development of a new extension to its

architecture that fully implements the components of the model. Chapter 6 presents a

109

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

prototype of the design, which has been developed to validate the design, and to provide

performance data to illustrate the practicality of the model.

4.2 The Core Components of the HOMINID Model

The HOMINID model has been designed to solve the problems of link rot, the shrinking
namespace, and increasing noise in the web. In order to achieve this, the model comprises
three components, which together fix these three flaws in the web’s architecture, and resolve
the information management dichotomy. Specifically, the core components of HOMINID

include:

e anew scheme for referencing resources across time and space;
e anew resource migration mechanism that migrates resources across time and space;
e a new system for reducing the noise in the web by providing universal access to the

web’s navigational and characteristic information.

The focus of HOMINID is on the web’s hyperlinks; on extending their functionality,
redefining their semantics, and ensuring their referential and informational integrity. The

following sections describe how this is achieved.

4.3 Reducing Link Rot

Section 3.2.4.1 described the various resource migration mechanisms that have been designed
to prevent link rot, and went on to discuss the semantic ambiguity that exists within these
systems. This manifests itself whenever a resource’s content changes, as it is unclear whether

or not the new resource should be given a new URL of its own, or whether it should keep the

110

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

URL of the resource that contains the content that it replaces. Essentially, the decision rests
on what exactly it is that the URL references: the resource or the content within it. If the URL
references the resource, then it will persist throughout the resource’s life, regardless of how
often the content within it changes. If, however, the URL references the content, then a new

URL must be given each time the content changes significantly'.

From the perspective of the HOMINID model, the URL should be seen as referencing the
content of a resource. Recall that the perspective of the model is at the level of the human
user, with information viewed as flowing from information provider to information consumer.
As such, the user will differentiate between two completely different versions of content, and
will see two separate entities, each with distinct identities. The example given in section
3.2.4.1 was the content contained within the front-page of a daily news web site. So, for
example, content describing a foot-and-mouth outbreak one day will be distinguished as being
completely different from the next day’s content, which could, for example, describe the
collapse of the deal to build the new National Football Stadium. As such, a human views the
two separate pieces of content as completely distinct entities. The web, in contrast, treats them

both as one entity: a resource, whose content just happens to change day by day.

' Note that what constitutes a significant change of content, worthy of a new identity distinct from the original, is
a deep philosophical issue in its own right. For example, should a minor typographical correction be seen as new
content? As such, the present work will not attempt to define what is and what is not a significant change of
content, and will instead assume that the content author is capable of making up her own mind and assign new
identities to the various versions her work has she sees fit.

111

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

What this shows is that both link rot and content change effectively destroy the value of a
hyperlink form the perspective of the user. Link rot may break a hyperlink from a technical
perspective, but content change breaks it from an informational perspective. For example, if
another resource references the article about foot-and-mouth by including a hyperlink to the
news site’s main page, the hyperlink’s informational value will be rendered useless the next

day when it leads the user to a story about a football stadium.

Time
A
url - http://London.com http://London.com/Old
.................... memteimimceiotmimeng
] ! -
A B c i ; i ;
. + T ! i
Link i . i ;
Link Link L" bemrimosmomramonnsmsmemo . bimoemimimimomemomonms -
t1 --- - cmmas
url = http://London.com
mememimemimrmembmnas “
i !
A B c ! i
.]
| vrondonisprey |i
m— [.)
Link Link T—tink E ormrmmrmrmm e -
o Location

Figure 6 - The Result of Content Changing Within a Resource

From the perspective of the HOMINID model, the problem exists in both cases because the
content contained within a resource migrates without the knowledge of the set of hyperlinks
that references it. This is illustrated in Figure 6, which shows the same resource at the
location http://London.com, with three hyperlinks referencing it, at two separate points in time,

tp and ¢;. At ¢, the hyperlinks in the resources labelled A, B, and C, all reference the resource

112

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

at the location http://London.com, which contains content relating to the city of London.
Clearly, if the resource migrates to a new location at time ¢/, then the hyperlinks referencing it
break. However, as Figure 6 illustrates, they are also broken from an informational
perspective when the content changes at ¢, as it is no longer about London; rather, it is now
about Paris. In this example, the old London content is archived in a new resource at 4, with a
different URL (http://London.com/old). Effectively, the content contained within the resource
at http://London.com/ has migrated to the resource at http://London.com/old, while the existing
resource that the set of hyperlinks references remains at its original location. As such, for the
integrity of the hyperlinks to be maintained, the HOMINID model must manage resource

migration and content migration caused by content change.

4.3.1 Managing Content Migration with Temporal References

From the perspective of the HOMINID model, the problem of content migration exists
because the resource and its content is not treated as an atomic unit; rather, they are treated as
separate components, with content forced to migrate away from the resource in which it was
originally contained whenever new content in the resource is added. As such, the only way to
preserve the integrity of the hyperlinks is for the URL (or other identifier) to reference both

the resource and the content encoded within it as a single atomic unit.

Note that this does not contradict the web’s current definition of the URL. Although URLs
currently reference resources not content, RFC 2396, the current standard for the URI, simply
defines a resource as “...anything that has identity.” (Berners-Lee et al., 1998, p2). As such,

the HOMINID model simply views significantly different versions of content as having

113

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

separate identities, and so should be seen as separate resources in their own right. Effectively,
RFC 2396 can be seen to agree with both HOMINID and the web, depending upon the
perspective from which it is viewed. RFC 2396 claims that anything with identity is a
resource. From the perspective of the web, content as we see it does not exist, and so cannot
give be given an identity. Effectively, only the set of bits that encode the content can be given
an identity and classed as a resource. In contrast, the human-oriented perspective of the
HOMINID model is fully aware of the content, and so can give it an identity?. In this way,
both the model of the web and the HOMINID model are consistent with RFC 2396, differing
only in the entities that can be given identity. The HOMINID model thereby provides a novel

perspective on the architectural standards of the web.

The HOMINID model treats identifiable content and the resource that contains it as a single
atomic unit. However, this means that a resource cannot change its content: it must contain it
forever. If the content needs to change, it must move with its resource to a new location, and
the URL must persist with it. Equally, whenever a resource migrates to a new location, its
URL must persist. As section 3.2.4.1 made clear, the problem with this approach is that it
requires a resource to use a new URL each time its content changes, which causes a
proliferation of new URLs, and places even more pressure on the shrinking namespace.
However, the HOMINID model solves this problem by adding the dimension of time to the
web. The URL is a spatial locator, and so is only able to differentiate between resources at

separate physical locations. However, when content changes, the location of the resource

2 Note that for clarity, the terms content and resource will still be used according to their present usage with
respect to the web.,

114

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

remains the same, and fime becomes the differentiating factor that separates the two resources.
Thus, introducing time into the web’s references enables two entities to exist at the same point

in space, but at different points in time.

To achieve this, a temporal component must be designed for the URL, enabling it to become a
temporal reference as well as a spatial one. In this way, the resource and its referring
hyperlinks are all tightly bound and consistently referenced by the same temporally-enhanced
URL. As such, this new temporal referencing scheme is one of the central components of the

HOMINID model.

Time

url = http://London.com

Location

Figure 7 - Temporal Referencing

115

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

Figure 7 illustrates the concept of temporal referencing. The figure again shows the location
of resources at two discrete points in time, ¢, and ¢;, with the content of the central resource
changing at ¢;. However, whereas traditional hyperlinks would reference the wrong content at
this stage, temporal references are able to differentiate between the two different resources
according to their different locations in time. This enables the original content to remain at its
present location (http.://London.com:t0), with its resource and set of referring hyperlinks intact,
while a new resource is created, with new content and new hyperlinks, at the same point in
space, but a new point in time (http:/London.com:t1). Both versions of the content can be
referenced by a temporal reference without conflict, and the hyperlinks that refererence both
resources will remain intact. This is shown in Figure 7 by the new set of referring hyperlinks
(i.e. the hyperlinks in the resources D, E, and F) of http://London.com:tl co-existing with that
of http://London.com:t0. Note how Figure 7 shows hyperlinks referencing across the ¢, - ¢,
boundary, effectively referencing across time. This clearly differs from Figure 6, where only
horizontal, spatial referencing was possible. In this way, temporal references not mly
preserve the referring hyperlinks, they also enable resources to be preserved, providing the
web with the means to archive its information, and to enable it to be referenced according to
its time of creation. In this way, temporal search engines can be developed that will enable

users to search through the web’s information archive according to a specific point in time.

4.3.2 Managing Resource Migration with the Resource Locator Service

Temporal references are a fundamentally new approach to resource addressing, but they
cannot be supported by the DNS, and so require a new name resolution system. Equally, if the

integrity of a hyperlink is to be preserved when the resource it references migrates, the new

116

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

name resolution system must provide a mechanism for transparent resource migration. The
HOMINID model provides this in the form of the Resource Locator Service (RLS), which has

been designed as part of this research programme.

The RLS is a system for locating resources on the web across time and space, regardless of
how often their locations change. The RLS maps a static resource identifier onto a dynamic
location, and ensures that the location is updated whenever the resource migrates or its content
changes. The web’s hyperlinks can then reference the static identifier rather than the dynamic
location, ensuring that the integrity of the hyperlinks throughout the resource’s lifetime. In
this way, the RLS provides a solution to link rot, and preserves the integrity of hyperlinks

throughout resource migration and content change.

The RLS provides a transparent resource migration mechanism that differs from existing

mechanisms in two key ways:

® Resources can be migrated across time as well as space
The RLS supports temporal references, and so the name of a resource can be mapped

to a dynamic position in time as well as space.

e Resources can be automatically migrated across servers using a remote client
The RLS provides an interface for remote operation, enabling a resource to be

migrated automatically by a remote application.

117

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

The RLS represents the most important component of the HOMINID model. However,
although it has been designed to replace the web’s usage of the DNS, it must still work within
the existing architecture and constraints of the web if it is to be successfully deployed. The

service is therefore required to:

e provide complete referential integrity for web resources;

e Dbe fully scalable;

e be backwards compatible, such that all web entities (e.g. browsers, servers, etc.) can
use the service without change;

e have resolution granularity at the level of the individual resource rather than a host;

¢ be dynamic such that name or location changes can be made rapidly and automatically;

e implement temporal references by storing details of a resource’s name, locaion, and
time of creation;

e provide the location of a resource given a name;

e provide multiple locations if a resource has been replicated.

Designing a service that satisfies these requirements has proven to be a significant engineering
challenge. The novel design and implementation of the RLS are presented in the following

chapters.

4.4 Easing the Namespace Pressure

As the RLS is designed to replace the DNS, its namespace is free to be defined according to

whatever requirements are necessary. As such, this section defines the scope and the

118

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

semantics of the RLS’s namespace, which has been designed to avoid the problems of the

DNS’s namespace.

4.4.1 Shrinking Namespace Increases Pressure

The shrinking namespace problem has occurred because the number of desirable domain
names is vastly smaller than the number of available ones. As was discussed in section 3.3.1,

there is a premium on memorable names, or those that represent company names.

Domain names must compete against each other for the attention of users, if the web site that
they address is to be noticed. Without attention, the information conveyed by the web site will
simply be ignored. For e-commerce sites, this is financially devastating. A good domain

name, therefore, can be extremely valuable.

Receiving attention through a good domain name is exceptionally difficult, however. Entering
a URL into an address bar accounts for only 2% of all navigation events (Catledge and
Pitkow, 1995). Compounding this is the sheer number of domain names competing for this
limited attention. However, the value of a good domain name can be illustrated by the fact
that of those people who bought goods online, some 60% did so by entering the URL directly
into the address bar (SRI, 2000). As such, although only a small proportion of navigation

events directly involve the address bar, those that do are extremely valuable.

From the perspective of the web site owner, therefore, any strategy for creating a memorable

domain name has the potential to dramatically increase the number of visitors to the site. For

119

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

example, strategies that encourage the user to pass the domain name onto friends, or which
create domain names that are more memorable, or easier to type, will be more successful than
those that lead to obscure, meaningless, or syntactically awkward domain names. This is the
reason that most of the words in the dictionary have already been registered, and domain

names such as drugs.com are commanding $1,000,000 (Arent, 1999).

However, although most of these desirable names are already registered, or are so expensive
as to be out of the reach of most people, it has not meant that all other domain names have
been rendered useless. Rather, the shrinking namespace has forced new strategies to evolve
and the resultant domain names to adapt, leading to domain names that try to gain attention
using whatever strategy works. Unfortunately, as the following section shows, some of these

strategies benefit the web site owner at the expense of the user.

4.4.1.1 Exploitative Strategies

Few users are actually good at typing, and so regardless of the ease with which a domain name
can be typed, mistakes will happen. As such, one common exploitative strategy used in the
creation of domain names is to adopt a name that is syntactically close to a very well-known
existing domain name, but which differs by one or two letters that match common typing
errors made by users. In this way, the domain name acts as a parasite, living off the attention
that should belong to the well-known domain name. For example, AltaVista’s site is very
popular, and large numbers of people regularly type its domain name, www.altavista.com, into

their address bar. Exploiting the user’s typing error, however, is the URL www.atlavista.com,

120

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

which opens up a separate browser window and redirects people to the sites

www.tickerprofiles.com/profiles/liquidics/ and www.otcstreet.com/trivia/otctrivia.cfm.

Another exploitative strategy is to hijack existing trademarks and essentially steal attention
from the trademark owner. Well-known brands, such as McDonalds, are so pervasive that a
user typing in the domain name www.mcdonalds.com would automatically expect to see that
company’s web site. In this way, the wellknown domain name will be almost guaranteed a
large amount of attention. As such, if a company other than McDonalds registers the welk
known domain name before McDonalds themselves do, they can be guaranteed of this

attention, regardless of the relevance of their site to the domain name.

4.4.1.2 The Problem With ICANN's Solution

From this perspective, ICANN’s solution will only work in the short-term, if at all. Domain
names are constrained into a strict namespace, which limits the number of desirable names.
Expanding the number of TLDs does not free the namespace, and so lessmemorable domain
names will have to adopt the same exploitative strategies within each new TLD if they are to
receive any attention. However, the situation could be made worse, as the new TLDs act to
classify each domain name according to a specific category. As such, domain-specific TLDs,
such as .museum, will act to increase the pressure on those domain names that belong to each
category, by implicitly identifying the information need of the user, and thus rewarding the

parasitic strategy even more.

121

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

For example, suppose a user wishes to navigate to the web site of the Natural History
Museum, but accidentally types www.nmh.ac.uk, rather than www.nhm.ac.uk. With the
current TLDs, it is difficult to determine what the user navigating to a specific site is actually
looking for, and NMH could represent virtually anything. As such, the content of the site
behind a parasitic domain name must be general, such as a gambling site, if it is to attract
much attention, as focusing on a specific subject that it assumes the user is looking for could
deprive it of a large amount of attention if its assumption is wrong. As such, it is better to play
it safe. In this way, the user’s mistake will inadvertently take them to a web site that is clearly

different from the one they intended to visit, and their mistake will be obvious.

However, with a highly focused TLD such as.museum, it is obvious what the user is looking
for: a museum. Now, it is perfectly safe for the content of a web site behind a parasitic
domain name to focus on a specific subject. In this example, a parasitic web site could use the
new domain name www.nmh.museum, and sell items that are also sold at the Natural History
Museum, but which are much cheaper at the parasitic web site. As such, the user has been
inadvertently taken to a direct competitor to the museum, and even if the mistake is realized,
the user may decide to stay anyway, as the content behind the parasitic domain name will be
relevant to their needs. In this way, the strategy of the parasitic domain name will become
even more successful, and encourage imitators to adopt the same strategy for their own
domain names. Effectively, the new TLDs will encourage more domain names to become
parasitic, not less, particularly once the desirable names in each TLD have been exhausted. As

such, ICANN’s solution will only exacerbate the problems it set out to solve.

122

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

4.4.2 Easing the Pressure

If the HOMINID model is to resolve the namespace problems that affect the DNS, it must ease
the pressure on the namespace, taking into account the adaptive pressure that will be placed
upon it. As such, it must be free enough to discourage exploitative strategies that deceptive
domain names will adopt. However, it is doubtful that exploitative strategies can ever be fully
prevented, but they can be discouraged by making them less rewarding. This can be achieved
by opening up the namespace so that it uses any name; that is, the RLS should have a
completely unconstrained namespace, mapping any string representing a name onto any string

representing a location.

In this way, the pressure on the namespace can be relieved by dramatically increasing the
number of potential names that can be used. Parasitic strategies will still be employed, as the
attention generated by popular names and brands will always attract such parasites. However,
by opening up the namespace, there will not be such pressure overall, and there will be more
than enough space for new desirable names to exist, which otherwise would not under the
DNS’s strict syntax. As such, other, more positive strategies will become more successful,
and the parasitic strategy will become less successful. In this way, the problems of
exploitative and deceptive strategies are not eradicated, but they are made less successful,

which should drastically reduce the incidence of such names over time.

4.4.3 Defining the Semantics of the New Namespace

The introduction of a new name resolution service with its own namespace will take the

pressure off the DNS, such that its semantics can revert to their original specification (i.e. IP

123

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

address/hostname resolution). The unconstrained nature of the new namespace should enable
the definition of new sub-namespaces that exist within it. The relationship between these sub-
namespaces and the global namespace is similar to that of the URL and the URT®, but with the
exception that the new namespace will impose no restrictions on the sub-namespaces, other

than the requirement that each name must be unique within the global namespace.

In this way, the semantics of the new namespace are perhaps closer to that of the CORBA
Naming Service. Recall from Table 2 that CORBA does not manage or even attempt to
understand the syntax used in its Naming Service’s kind attribute, but leaves it to higher levels
of software, which can impose their own management policies on the naming of objects
(OMG, 2000). In a similar way, the RLS is only required to map the name of a resource onto
its location within the web, and should leave the semantics behind the namespace to

whichever naming policy is in use.

In this way, the RLS becomes a very flexible name resolution service, which can be shaped
according to the requirements of its users. However, because the namespace is not
constrained, the name are free to evolve outside of any sub-namespace, if required, keeping
the namespace pressure low without restricting the usefulness of the new system. For
example, the namespace of the DNS can be seen as a sub-namespace of the RLS, but if it runs

out of names, a new sub-namespace can be defined and implemented without any change to

3 Recall from section 2.2.2.2 that the syntax of the URI defines the structure for all web identifiers, and so
represents the superset of web-identifiers.

124

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

the RLS. This essentially makes the new service future-proof, bound only by the technology

upon which it runs.

Note that hierarchical naming schemes are used throughout distributed systems of all types,
largely because they manage very large namespaces very efficiently. As such, a flat
namespace, which the RLS’s namespace represents, may prove unmanageable in the long
term. However, although the RLS supports any string as a valid name, it can easily be adapted
to restrict the set of names it supports to one or more namespaces, the introduction and
management of which can be controlled by an organization such as ICANN. Effectively, the
RLS has been designed to remove all fechnical limitations from the design of namespaces on
the web; how the namespace is used then becomes a matter of policy. Future research will
focus on the effect an unrestricted namespace has on the naming conventions of web
resources, to determine whether some restrictions are necessary. However, whatever the
conclusion of this research, the RLS is flexible enough to provide a platform that supportsany

naming policy, and it is this flexibility that is one of the key innovations in its design.

4.5 Reducing the Noise in the Web

In the same way that domain names must compete for the attention of a user, so too must web
resource if the web sites that they are part of are to become successful. The predominant
business models for web sites are currently based on advertising or e-commerce, both of
which define success according to the number of people who visit a site; without visitors,

advertising will not work and products will remain unsold.

125

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

Analysing the web from this perspective, noise can be seen as almost inevitable. Users may
wish to seek out specific web resources, but each resource will do all it can to receive the
attention of any user, regardless of their information need. A resource thrives on attention,
and so a popular resource leads to a healthy site, particularly when its business model is based

on advertising.

However, advertising does not have to be relevant to the information need of the user
browsing the web. As such, it pays a web resource owner to attract a user to his resource,
irrespective of its relevance to the user’s information need. In this way, relevance can be seen
almost as a hurdle to the business prospects of the web site, which may actively employ
deceptive strategies to circumvent any relevance heuristics used by the user and the search
engine. The following sub-sections provide an in-depth analysis of this deception, and show
how it increases the noise in the web by impacting the integrity of its navigational

mechanisms.

4.5.1 The Deceptive Hyperlink Versus the User

A web resource’s chances of attracting attention will be greater if the hyperlinks that reference
it can attract more attention than those of its peers. As is the case with the domain name,
however, the pressure is on the hyperlink to attract attention using any strategy that works,
including those that are at the expense of the user. Unfortunately for the user, unless the
hyperlink is from a trusted and well-known source, there is no easy way for them to discern
the strategy that the hyperlink employs, other than actually clicking on it. Worse, the user

cannot go back to the hyperlink and rate it as trustworthy or not, in order to prevent other users

126

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

from making the same mistake, and so the hyperlink is free to carry out whatever strategy it

likes with impunity.

4.5.1.1 Deception as an Effective Strategy

There are many different types of deceptive strategies employed by hyperlinks, and most
predate the web. For example, hyperlinks usually contain text that is supposed to describe the
content of the referenced resource, but there is no mechanism to guarantee this constraint. As
such, it is easy for the hyperlink to deceive the user by describing the content in false terms. A
more elaborate example of this is the hyperlink that hides behind an image of a user interface
control, such as a button. Such a hyperlink, called a Fake User Interface, or FUI, is designed
to deceive the user into clicking it by pretending to actively control elements of the web page
in which it is hosted. Of course, no such control is provided, and clicking on it presents the

unwary user with an unwanted resource.

O In 3 Minutes. ..

Speed Up Your Existing Internet Access | OK

Figure 8 - Real Example of Fake User Interface

Figure 8 provides a real example of a FUI from the company Bonzi (www.bonzi.com). The
figure shows a banner advert that seems to show a button, but the whole image simply directs
the user to the Bonzi web site. This FUI is so effective that it was NetRatings’ most-clicked

banner advert on the web in February 1999 (Cox, 1999). It has also spawned many imitators

(Figure 9).

127

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

Message Alert =] B3

You have 1 message waiting for you.

£ Optimize Your Internet Connection Now

=

L X Warning

Figure 9 - Fake User Interface Imitators

A further example of the deceptive strategy can be found with the various navigational cues
provided by a web browser. For example, when a user places the mouse cursor over a
hyperlink, the URL of the resource that the hyperlink points to appears in the browser’s status
bar (see Figure 10). If the URL contains the same domain name as the current web page, the
user can be reasonably sure that clicking the link will take her to another web page in the same
site. However, deceptive hyperlinks insert their own text into the status bar, which either
hides the URL of the actual resource that the hyperlink points to, or pretends to be an honest-

looking URL when in fact it redirects the user to a different web site.

In all of these examples (and this is by no means an exhaustive list), the user is deceived by
the hyperlink into giving attention to an unwanted web resource, but has no means of

reproaching the hyperlink. Thus, the web resource that is referenced by the hyperlink gets

128

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

more attention than it would ordinarily, making the deceptive strategy employed by the

hyperlink is an unqualified success.

2 1he Natuial History Museum, London, lm[ldml Miciosoft Inlunul Fxplow! : ; 5 e
,’ AN X oA v = T

‘ e Ed Yew Favoies Tooks Hep ! - | Mouse cursor hovers over
;; DA Qsech (afevees g.’HWr DT HR hyperlink

| WIQ] Wllwwwnhnacuk/

Domain name in address |}

bar matches domain |

name in hyperlink in (g8 -\ -

Status bar. { 15 H:AETURAL

; HISTORY
MUSEUM

o Ao Mo W g b e - L NSRBI

Figure 10 - The Browser's Status Bar as a Navigation Aid

4.5.1.2 How the Hyperlink Breaks the Flow of Information

There are many reasons why a user clicks on a hyperlink. Obviously all users’ navigational
heuristics are different, but there are common types of heuristic that can be identified. For

example, a user may click on a hyperlink if it is of a type that she perceives exhibits authority

129

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

(Kleinberg, 1998), or if it appears to satisfy her information need. Fundamentally, the reason
for choosing one hyperlink over another is based on implicit information that the user has
about the hyperlink, the resource it points to, the environment in which the hyperlink is
situated, and information the user already has about the world. The constraints that the user is
attuned to between these different situation types cause information to flow, and it is this
information that helps her to select one hyperlink over another. However, it is these
constraints that also represent the user’s navigational heuristics, and so it is in a web

resource’s best interests to exploit them.

The success of a user’s navigational heuristics is dependent upon the user being aware of the
hyperlink’s type, and attuned to the constraints that all hyperlinks of a specific type are worth
clicking. For example, a user must be aware that a hyperlink is of an authoritative type, and
attuned to the constraint that authoritative hyperlinks are worth clicking. However, the
implicit constraints that enable the user to recognize these types can be manipulated freely by
the hyperlinks themselves. For example, a hyperlink should display the URL of the resource
that it references in the browser’s status bar, but it does not have to; equally, itshould provide
textual or visuval information that represents the resource, but it does not have to.
Consequently, the hyperlink can present whatever information it wishes, and can therefore
present information specific to a reliable browsing situation, when in fact the user is
unwittingly placed in an unreliable browsing situation. In this way, the constraints that the
user will be attuned to, and which she will use when judging the hyperlink, can be hijacked by

the hyperlink, and will lead to misinformation.

130

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

Ultimately, it is easy for a poor quality hyperlink to attract attention through deceiving the
user, and because it attracts more attention without incurring any penalties from the user, it is a
good strategy for a resource to employ. Deceptive hyperlinks that reference low value
resources will, on balance, attract more attention over time than reliable hyperlinks, because it
takes less effort to create a dishonest hyperlink than it does to create a resource of high
informational value. As such, the selection pressures on the hyperlinks will cause their
strategies to evolve to become more dishonest, until the constraints that the user uses to select

them break down completely.

The only defence the user has is to learn from the deception, and to recognize a deceptive
strategy when one presents itself. However, the deceptive strategies are not static, and will
constantly evolve to continue to deceive the user. Effectively, an arms race is set in motion
between the user, who must determine the type of the hyperlink situation, and the hyperlink,
which must fool the user by exploiting her constraints. As the hyperlink is the primary
mechanism for navigation on the web, however, this is a serious state of affairs for it to be in.
Effectively, the key goal of the web’s primary navigation mechanism is to deceive the user

into going somewhere they do not want to be.

4.5.2 The Deceptive Web Site Versus the Search Engine

Users are not alone in their battle against deception. Search engines, too, are prey to this
strategy, as they too provide a web site indirectly with attention. Because search engines are
so popular (see Figure 11), they can direct vast amounts of attention to a site, but only if the

site appears high up in a search engine’s results list. As such, it is in a site’s best interests to

131

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

encourage the search engine to perceive it to be as relevant as possible to the user’s query,
even if that means deceiving the search engine. However, because a search engine must use
static, hard-coded heuristics when determining relevance, it cannot respond to the strategies as
quickly as they evolve, and so resources within a site can easily pretend to be something they
are not, or more relevant to a query than they actually are. In this way, the quality of the

search engine is seriously weakened by the deception of the site.

Search Engine Searches per Day
AltaVista 50 million
Inktomi 47 million
Google 40 million
GoTo 5 million
Ask Jeeves 4 million
Voila 1.5 million

Figure 11 - Number of Queries per Day for the Popular Search Engines (Sullivan, 2000c)
4.5.2.1 An Arms Race Between the Search Engine and the Web Resource

From the user’s perspective, a search engine should take a query, and return only those web
pages that are completely relevant, and rank them in order of relevance. However, from the
site’s perspective, the search engine should return a reference to only its resources, and no
others. As such, it is a good strategy for a resource to deceive the search engine’s relevance
heuristics into ranking it as highly relevant for as many queries as possible. As search engines

become wiser to a resource’s deceptive strategy, so the resource must adapt its strategy if it is

132

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

to survive. The result is an arms race between the resource and the search engine, with the
relevance heuristics of the search engine representing the battlefield. At stake are the quality

of the search engine and the integrity of one of the web’s primary navigation mechanisms.

4.5.2.2 The Fight For Relevance

Originally, most search engines determined relevance simply by counting the number of times
the words in a user’s query appeared in a HTML document, and used that to classify the
document’s relevance to the query. However, the strategies employed by web site owners
soon evolved to adapt to this, and they began to embed the same popular keywords many
times into a document, regardless of its relevance to the query or the keyword. This ‘search
engine spamming’ as it is known (Lawrence and Giles, 1998) is designed purely to improve
the document’s ranking in the search engine, causing it to be placed at the top of the search

engine’s results list across a wide range of queries, and so giving the document more attention.

These fake keywords were originally displayed at the bottom of a web page in a simple list,
with a large amount of space between them and the actual content of the document. In this
way, the user would never see them, but the search engine would index them. However,
search engines retaliated by ignoring words below a certain point in a document. The web site
owners responded by placing the fake words at the start of the document, but in a font so small
that the user could not see it (so called ziny text (Sullivan, 2000d)). When the search engines
adapted to this, the owners responded again by making the fake keywords the same colour as

the background, rendering it invisible to the user.

133

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

In an attempt to bypass the spamming keywords problem, newer techniques focus on the user.
The experimental Inquirus meta-search engine (Lawrence and Giles, 1998), for example,
queries a number of search engines on behalf of the user (hence the term meta-search engine),
and returns not only the title of each document and its URL, but the text that surrounds the
keywords. Inquirus relies on the user determining the relevance of each document for
themselves, but without having to download the document first. However, this could be seen
as an abdication of responsibility, as the whole point of a search engine is to perform the
search on behalf of the user, and with the number of documents returned by most search

engines, the user must be prepared to put in a lot of effort.

Other search engines that focus on the user provide filtering technology, such as Northern
Light (www.northernlight.com). Filtering gives the user the chance to edit their query by
selecting criteria that each document should be judged against (for example, documents from a
specific location) (Chakrabarti et al., 1999b). In this way, the user determines the relevance
heuristics for themselves. The advantage of this approach is that the relevance heuristics are
dynamic, thus thwarting any strategies designed to exploit the more traditional, hard-coded
heuristics. However, the disadvantage is that it relies on the user being relatively expert with
information retrieval techniques, with the result that the novice user could filter out useful

results (Chakrabarti et al., 1999b).

The latest attempt to defeat the deceptive strategies is to rely on the link structure of the web to
provide an indication of the authority of a document. This technique ranks a document

according to both its perceived relevance, judged according to normal heuristics, and its

134

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

authority within the web community, judged by the number of hyperlinks pointing to it.
Google’s PageRank uses this method (see section 2.3.3.1), as does IBM’s Clever, which draws
on the work of Kleinberg (1998), who, like Google’s Brin and Page (1998), views the
hyperlink as conferring authority on the page it links to. However, unlike Google, Kleinberg
also defines the notion of Hubs, which are pages that link to many authorities. His HITS
algorithm (Chakrabarti et al., 1999b), which underlies the Clever search engine, differs from
Google’s PageRank algorithm in that it is able to identify good hub pages as well as
authoritative pages, but the principles underlying each algorithm are similar. In this way, it
does not matter what strategy the HTML document tries to use to fool the search engine, as the
document’s ranking in the search engine is determined purely by the number of links that
point to it, and these links are dependent upon the co-operation of many other users. As such,
Google and Clever assume that it is more difficult to co-ordinate deception across web sites

than it is from one web site.

However, it is not impossible. Web sites can encourage many hyperlinks to point to them
through advertising (Kleinberg, 1998), thus literally paying for attention. Alternatively, with
the cost of web publishing so low, artificial hyperlinks can be created in the form of many
separate web sites, which exist simply to provide a spurious link to the resource that may
never be used, but which will be counted by the search engine (see section 3.4.3.3). This

artificially inflates the resource’s presence on the web, and thus deceives the search engine.

Google and Clever are the latest in a long line of search engines, each of which has tried to

outsmart the deceptive strategies employed by web site owners, but which has been

135

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

outmanoeuvred by strategies that can adapt faster than an engine’s heuristics. It is expensive
to develop a search engine from scratch, and difficult to modify the heuristics of a mature
index. As such, the well-known heuristics of an engine are easy prey for the fast moving

strategies of the web site owner.

4.5.3 A Persistent Problem

The deceptive strategies employed by web site owners have clearly had an impact on the
quality of the web’s information. However, it will also impact its quality in the future, as the
same competitive forces will exist to deceive any new technology that is developed to increase
the quality. For example, as discussed in section 2.3.2, meta-data formats such as XML and
RDF have long been cited as the means to solve the web’s information retrieval problems
(Lassila, 1997, Heery, 1996). However, meta-data may work perfectly in controlled
environments, such as academic journals, but it is difficult to see how any kind of meta-data
will lead to higher quality information retrieval when it will be under the direct influence of
the web site owner. As long as there is no gatekeeper in the web, relevance will be seen as an
obstacle, and deceptive strategies will easily be able to deceive any heuristics. The challenge
for the HOMINID model, therefore, is to overcome this problem without introducing a
gatekeeper into the web; in short, the HOMINID model must resolve the information

management dichotomy.

4.5.4 The Oracle Server — A Novel Platform for Enhanced Navigation

Web sites are able to hijack a user’s constraints because they are free to present
misinformation to the user via the deceptive hyperlink that is consistent with a relevant

situation. To prevent this, the user must be made aware of the situation that they are actually

136

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

in, rather than the situation that the resources in a web site try to pretend they are in. The
HOMINID model achieves this through applying a component of situation theory called the

Oracle situation (Devlin, 1991) onto the browsing environment experienced by the user.

An Oracle situation supports all of the information about a situation from the moment of its
creation, to the moment of its destruction. Thus, the Oracle situation of a web resource is a
completely objective, factual situation that supports all of the information about the resource,
and not just the information that the resource owner wishes to present. This includes all the
characteristic information about a resource (such as its informational content, its creator, the
time of its creation, etc.) as well as all the people who have seen it, when they saw it, etc. As
such, by being made more aware of this situation, the user does not have to rely on the
information presented solely by the resource owner, and so can choose whether or not to
provide a resource with any attention based on reliable independent information. Effectively,

the user consults the Oracle before deciding whether or not to click on a hyperlink.

In this way, the user is made aware of the real situation they are presented with, and so can
determine the constraints that are appropriate to this situation, rather than the situation that the
resource tries to present. This acts to sharpen the user’s navigational heuristics, and prevents
her constraints from being manipulated, enabling the deceptive strategies of certain web
resources to be seen prior to the user paying them any attention. This gives the user the
choice of whether or not to give her attention to a resource, rather than the existing approach
in which she is forced to give her attention before determining its relevance to her information

need. As such, the selection pressures imposed on the resource will be those that benefit the

137

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

user, rather than those that benefit the site, and so the advantages of the deceptive strategy will

be reduced in favour of a strategy that provides more relevant information.

4.5.4.1 Resolving the Information Management Dichotomy

This approach resolves the information management dichotomy by enabling the user to
navigate across a set of information more effectively according to her own selection criteria,
rather than the censorship approach, which restricts the set of information that exists according
to a third party’s selection criteria. As such, the two approaches can be seen as opposite
methods to achieve the same result: the Oracle approach acts to limit the set of information
through which the user must navigate by enabling her to reject information that is not relevant
without removing it; whereas the censorship approach acts to limit the set of information by
explicitly removing it from the system before she can determine its relevance. The Oracle
approach is therefore better, because the information is selected according to the needs of the
user and not a third party censor, and the total pool of information that exists on the web is left
intact. In this way, control is imposed on the information without requiring it to be

permanently censored.

4.5.4.2 Functional Operation of the Oracle Server

The approach of the HOMINID model is to store small amounts of information from the
Oracle situation that are pertinent to the selection of the resource, and present it to the user via
the web’s hyperlinks such that she becomes more aware of the Oracle situation than she does
about the resource’s (fake) situation. The HOMINID model achieves this through an entity
called the Oracle Server, which serves information about the Oracle situation of a resource via

the hyperlinks that reference it. As such, the HOMINID model’s approach to reducing the

138

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

noise in the web is to focus on the informational integrity of the hyperlinks, and to enhance the

user’s browsing skills, rather than to provide an enhanced search engine.

The Oracle Server operates by identifying the hyperlinks that employ a potentially deceptive
strategy, and alerting the user before she actually clicks on one. It uses heuristics to infer each
hyperlink’s strategy from selected, unbiased information about the hyperlink, the resource, and
the web site that the resource is part of. The Oracle Server obtains some of this information
from the resource owner, who provides characteristic infons® about his resources, and the rest
from the navigational patterns that emerge from users’ browsing sessions, which provide
unbiased navigational infons that cannot be manipulated by the resource or its owner. If the
Oracle Server detects a deceptive strategy, it can alert the user by informing the user’s
browser, which can display the hyperlink using a different colour, for example, or by greying
it out. In this way, the user can see the situation that the resource presents, and also the real

situation obtained from the Oracle situation.

4.54.2.1 Characteristic Infons

The Oracle Server stores characteristic infons about a resource. Characteristic infons are those
that describe the characteristics of the resource, such as its subject, its informational content,
colour, date of creation, owner, author, file size, etc. Such infons help a user to select a

resource based on its characteristic attributes before they navigate to it. These infons are

4 Infons are the fundamental unit of information in situation theory, and represent facts about the world (Devlin,
1991).

139

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

meta-data that enhance the information that flows from a hyperlink, allowing the user to reject,
for example, a resource from an author whose previous resources have employed deceptive
strategies. The user can enter into their browser a range of characteristic infons that they wish
to be alerted to whenever they navigate to a web page that contains a hyperlink that references
a resource with matching characteristics. In this way, the Oracle Server filters out hyperlinks
according to the user’s own navigational heuristics, and can use these as part of its own

heuristics in order to automatically identify deceptive strategies.

4.54.2.2 Navigational Infons

Although meta-data is undoubtedly useful, it can still be manipulated by the resource, as it is
the resource owner who provides it. Thus, an Oracle Server that simply stored meta-data
would serve the user no better than current search engines. To resolve this, the Oracle Server
also stores navigational infons, which are derived from the patterns of users’ browsing
behaviour. These patterns reveal the way in which a user navigates across the web, and by
applying heuristics to the infons contained within them, the Oracle Server can automatically

identify a deceptive hyperlink.

Many studies have found patterns in web users’ browsing behaviour. Hochheiser and
Schneiderman (1999), for example, discovered the emergence of such patterns using
interactive starfield visualizations. Huberman et al. (1998) showed that such navigation
patterns display “...strong statistical regularities that can be described by a universal law”.
Pitkow and Recker (1994) found the existence of “...long sequences of between-site access

patterns on a per session and a per user basis” (Pitkow and Recker, 1994), and found that

140

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

“...in one session, a user visited seven different sites in consecutive order five times.” (Pitkow
and Recker, 1994). This could be explained by a study by Tauscher and Greenberg (1997),
who found that the probability of each resource having already been seen by a user is 58%,
indicating that users have a set of familiar web sites that are appropriate to their information
needs, and which they keep returning to. The same study was also able to identify seven
distinct browsing patterns from the navigation behaviour of 23 users over the course of six

weeks (Tauscher and Greenberg, 1997).

However, the navigational infons are currently contained within the access logs of web
servers, which record how many times each resource is downloaded, but extracting reliable
information from these log files is notoriously difficult (Pitkow, 1997). For example, each
time a user downloads a resource from its host server (termed the origin server), the server
records the event (termed a hif) in its access log. Currently, however, there is no universal
access to these logs, as each is kept on the server that maintains it, and so the navigational
infons exist, but not in a form that enables cross-server querying. Worse, caches, whether on
the client browser, or in a caching proxy server, serve a web resource without the origin server
registering any hits, while proxy servers mask the number of users accessing a server, making
paths from individual browsing sessions extremely difficult to identify (Pitkow, 1997). The
Oracle Server must therefore provide universal access to reliable navigational infons from all

web servers across the web>.

5 Note that the Oracle Server should not store any information that can identify a specific user; only the
anonymous navigation pattern that the user makes.

141

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

4.54.2.3 The Heuristics of the Oracle Server

The heuristics used by the Oracle Server to identify a deceptive strategy are based on the
user’s browsing behaviour when they have been deceived. Specifically, the user will click on
a hyperlink and download the resource that contains the unwanted resource. Once the user
sees that the resource is unwanted, they quickly navigate out of the site that hosts it. As such,
many users will click on the hyperlink connecting the user’s current resource to the resource
containing the unwanted resource, as its deceptive strategy is designed to capture attention at
all costs (recall from section 4.5.1.1 how the Bonzi deceptive hyperlink, which employed the
FUI strategy, became the most clicked banner advert on the web). Such hyperlinks are usually

banner adverts, which link separate web sites, and so are called inter-site hyperlinks.

However, because the user leaves the site at this stage, no other hyperlink within the site is
clicked. As such, the intra-site hyperlinks appear to provide enormous resistance to the user,
and register very few hits. The deceptive hyperlink can therefore be exposed tlrough a
combination of high inter-site hyperlink usage and low intra-site hyperlink usage. In this way,
the navigational infons from across web servers act to provide an unbiased view of the

strategies of the web’s hyperlinks.

Note that the Oracle Server is an open platform, such that its heuristics can be changed as the
strategies of the resource owner evolve. As such, the intention is for the simple heuristic
defined here to be replaced with more sophisticated heuristics after further research has been

conducted into the navigation patterns of users. The Oracle Server should therefore be seen as

142

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

a platform for increasingly sophisticated web browsing, which should reduce the noise on the

web significantly.

4.5.4.3 New Web Metrics

As well as using heuristics to determine the strategies of the web’s hyperlinks, the Oracle

Server can also measure the state of the web and its content, and so provide the user with

further information on a resource’s effective quality. Specifically, the Oracle Server can be

used to:

Measure the Resource
The Oracle Server can provide accurate information on how much attention the
resource at different sites across the web, allowing the real value of the resource to be

accurately determined.

Measure the attention flowing through a web site’s hyperlinks.

The resistance of the set of hyperlinks that reference a resource directly affects the
amount of attention that the resource receives. The Oracle Server can therefore be
used to determine the effectiveness of a resource’s hyperlinks, and the web sites in
which they are located. This provides the hyperlink and the web site with a real,
tangible sense of value. If the hyperlink is clicked frequently, but only in certain web
sites, then those web sites clearly provide a suitable environment in which the
phenotypic effects of the hyperlink work best. As such, the web sites will become

more valuable for that type of hyperlink. In this way, advertising hyperlinks can be

143

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

better placed, which should result in advertisements being more relevant to the

environment in which they are situated.

Measure the Potential Attention

Universal access to navigational infons enables a resource owner to see the amount of
attention that the web sites hosting his resource’s referring hyperlinks attract, and
compare it to the amount of people who actually click on it. In this way, the resource
owner can determine the amount of potential attention that his resource could receive,
and adjust the design of the hyperlinks to maximize the attention that is actually
received. Equally, if the amount of potential attention is too low, the resource owner
can search other sites for other sources of higher potential attention in which to host his
resource’s referring hyperlinks. In this way, the resource owner acts to situate the
hyperlinks in an environment that maximizes the attention that the resource can

receive, thus benefiting the resource without deceiving the user.

In this way, universal access to the navigational infons enables the Oracle Server to

characterize and measure the resource on the web, thereby providing the user with advance

information about the real situation they are in, rather than the situation that the resource tries

to pretend they are in.

4.6

Summary

This chapter has described the basic components and philosophy of the HOMINID model,

which defines a new way of managing information flow on the web. The chapter has shown

144

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

how the model fixes the three identified flaws of the web’s existing architecture without
falling foul of the information management dichotomy. The key concepts of the HOMINID

model are presented in Table 5.

Concept Problem Solved Description
Temporal e Destruction of the | The Temporal Reference binds content and a
Reference hyperlink due to | resource together as one atomic unit, and locates
content migration that unit in time and space. Should any
component of this unit change, it becomes a new
e Lost History unit, and must receive a new temporal reference.
Resource e Link Rot The RLS is functionally equivalent to the DNS,
Locator but does not constrain the namespace. Its default
Service e Shrinking namespace is the temporal reference, which
Namespace enables it to locate a resource across time and
space. The RLS also provides a transparent
e Automatic, resource migration mechanism that can enable a
transparent resource | resource to be migrated remotely.
migration
Oracle Server | e Increasing Noise The Oracle Server provides universal access to
characteristic infons and navigational infons
e Ineffective about the resources on the web and the way in
Browsing caused by | which they are used. In this way, it can measure
deceptive the resource and its referring hyperlinks, and
hyperlinks provides the user with information from the
Oracle situation rather than from the resource’s
e Resolves the deceptive situation, thus maintaining the
Information hyperlink’s informational integrity. As such, the
Management Oracle Server can alert the user to deceptive
Dichotomy strategies and help them to make more informed
browsing choices. This reduces the noise in the
e Web Metrics web without requiring the censorship of its
information, and so resolves the information
management dichotomy.

Table 5 - The Core Components of the HOMINID Model

145

Chapter 4 - HOMINID — A Model for Managing Information Flow on the Web

From this, the HOMINID model can be seen to focus on the hyperlink:

e The Temporal Reference redefines the hyperlink’s semantics to include the dimension

of time.

e The RLS manages the hyperlink’s integrity, ensuring it can be located across time and

space regardless of how often it moves.

o The Oracle Server manages the informational integrity of the hyperlink, ensuring it can

once again become an effective part of the web’s navigation mechanism.

In this way, the HOMINID model provides a new model for managing information flow on
the web that has been designed to work according to the web’s open philosophy, and within its
existing architecture. As such, the HOMINID model has been designed to work with the
nature of information flow on the web, rather than against it, and so should stand a better

chance of adoption than existing solutions.

This chapter, however, has only presented a conceptual overview of the HOMINID model. As
such, the next chapter presents its design specification in detail, which defines how the model
can be deployed on the web without breaking its existing architecture. The design is verified
in chapter 6 by a prototype of the RLS, which has been developed and measured as part of this

research programme.

146

Chapter 5 - Architectural Design of the HOMINID Model

5.

Architectural Design of the HOMINID Model

The HOMINID model provides a new model for managing information on the
web. This chapter presents in detail the model’s architectural design, which
enables it to be integrated into the web without breaking the web’s existing
architecture. The designs of the RLS, temporal references, and the Oracle
Server are discussed, together with the Request Router, a novel object that
mediates between the web’s existing architecture and the new entities of the

HOMINID model.

147

Chapter 5 - Architectural Design of the HOMINID Model

5.1 Introduction

The core components of the HOMINID model are the temporal reference, the RLS and the
Oracle Server. These components must be deployed on the web as distributed systems that are
fully backwards compatible with the web’s existing architecture. To facilitate this, a new
system of mediation between the web and the components of the HOMINID model has been
designed, called Request Routing. This is a generic method of locating specific nodes in a
distributed system in a scalable, transparent way. This chapter describes Request Routing in

depth, and shows how it is used in the design of the RLS and the Oracle Server.

5.2 Designing the Resource Locator Service

The RLS is perhaps the most important part of the HOMINID model, as it provides anelegant
solution to link rot and the shrinking namespace, while providing the web with a means of
archiving its old ideas. The overall design of the RLS is described in detail in this section,

while the design of its resource migration functionality is described in chapter 6.

5.2.1 The Scope of the Resource Locator Service

In order for the RLS to provide its services, a resource must first be registered with the RLS,
in a similar way to the registration process required by the DNS. Registration with the RLS
involves the resource owner submitting information about the resource (such as file-size,
content type, etc.), which is used by the destination server during automatic migration to
decide on the suitability of the resource according to the server’s hosting policy (see section
6.2). The information is also submitted to the Oracle Server as characteristic infons (see

section 5.5.3.2). Registration also identifies those resources that need managing without

148

Chapter 5 - Architectural Design of the HOMINID Model

requiring the RLS to crawl the web. In addition, it gives the resource owner the choice of
whether or not to use the RLS, as it is designed to co-exist with the DNS, which can still be
used if required. In this way, the scope of the RLS is limited to those resources that have been
registered with it, but the design is such that all resources can still be accessed by all clients,

regardless of whether they use the RLS or the DNS.

5.2.2 Selecting the Approach to Resource Migration

Resource migration is a core feature of the RLS, and the approach adopted for its
implementation will determine the RLS’s architectural design. Recall that section 3.2.4.1
discussed the five different approaches to resource migration. However, the requirements of
the RLS, including an unrestricted namespace, temporal references, and integration with the
web’s existing architecture, preclude some approaches, as they are unable to meet the

constraints placed on its design. For example:

o the Callback approach operates at the level of the hyperlink, by attempting to update a
hyperlink within its containing web page so that it references the resource’s new
location. However, for the RLS to operate effectively using this approach, all
hyperlinks referencing a resource would have to be updated whenever the resource
migrates or its content changes. As such, this approach cannot scale, as it requires too
many hyperlinks being updated too frequently right across the web. Thus, the

Callback approach to migration cannot be used with the RLS.

149

Chapter 5 - Architectural Design of the HOMINID Model

e the Chain approach would require the software in existing servers to be updated, and

so would not be backwards-compatible.

e the Search approach advocates searching the whole web for every resource each time
the user browses to a new resource. This approach does not scale on today’s web

(Ingham et al., 1996), but the situation would be made worse if it had to manage

temporal as well as spatial references.

® the lecturing approach cannot work while there is no gatekeeper or entity that can

enforce the lecture.

This leaves the name server approach as the only suitable approach to resource migration for
the design of the RLS. This requires the RLS to be configured as a network of name servers,
each of which must resolve the name of a resource onto its location whenever a client
application requires this service. The RLS’s name server is termed a Locator, which maps a
resource’s name onto its location, and maintains the integrity of this mapping by persisting the

name and updating the location whenever the resource moves.

5.2.3 Removing the Namespace Constraints

By adopting the name server approach, the RLS can be seen as a distributed database, with

each Locator acting as a node in the database, storing a subset of the total information in the

system.

150

Chapter 5 - Architectural Design of the HOMINID Model

In order to operate according to the requirements of the HOMINID model, this information

must comprise:

o the persistent name of the resource, the syntax of which cannot be constrained.

e the current location of the resource, defined according to whatever identifier can be

used by a client system to uniquely locate it.

e the time of the resource’s creation.

The persistent name will be used by hyperlinks and users to reference the resource, whereas
the dynamic location will be used purely by the RLS to locate the resource. The namespace of
both name and location should be unconstrained, enabling many different types of naming
schemes to be mapped onto different types of location addresses, such as IP addresses, phone
numbers, or the co-ordinates of the Global Positioning System (GPS). The RLS is not
required to understand the syntax of either the name or the location, but simply to return the
location when given a name. In this way, the RLS provides a flexible resource migration
mechanism that prevents link rot for all resources that it manages, ensuring the preservation of
those resources’ hyperlinks throughout the lifetime of the resources. A full description of the
resource migration mechanism, including a novel Resource Migration Protocol, is provided in

the following chapter.

151

Chapter 5 - Architectural Design of the HOMINID Model

Note that the semantics of the name under the RLS are similar to that of the URN. However,
although the RLS supports the URN namespace, the persistence of a resource’s name does not
necessarily make it a URN. Berners-Lee et al. (1998) defines a URN as a persistent identifier
for a resource, which must exist beyond the lifetime of the resource, and which is constrained
by the URN syntax defined in RFC 1737 (Sollins and Masinter, 1994). In contrast, the
resource name used by the RLS must only persist for as long as the resource still exists, and its

syntax is completely unconstrained, so long as it is unique within the RLS.

Also note that for the purposes of this chapter and the following one, the Locator will be
described as storing a resource’s name/location mapping; that is, the record within the
Locator’s database that maps a resource’s name onto its location. This simplifies future
discussions when describing the RLS’s architecture, deliberately ignoring the time of the
resource’s creation for clarity. The temporal aspect of the Locator is defined in full insection
5.4. To simplify the discussion further, although a name formed using any syntax can be
mapped onto a location formed using any syntax, it will be assumed that the format of a
resource’s name will be a standard URL or a temporal URL, and the format of its

corresponding location will be a standard URL.

5.2.4 Defining the Locator’s Client-Side Interface

As a Locator acts as a name server, it will be queried by existing web clients for the location
of a specific resource. In order to maintain backwards-compatibility with these clients, the
Locator must interface with them using an existing protocol, and so remain transparent to

them. This constrains the Locator to use either HTTP or the DNS’s message format (see

152

Chapter 5 - Architectural Design of the HOMINID Model

Mockapetris, 1987b) as its functional interface to web clients, as these are the only protocols
that all clients use when requesting a web resource. Of the two, HTTP has been chosen, as it
already has a redirect mechanism (see Fielding et al., 1999) that can be used by a Locator to
redirect a client to a resource’s current location. Although HTTP’s redirect mechanism is
quite heavyweight in its operation, it is the only option that ensures the Locator will work with

all existing web clients. Performance measurements of the overhead that the Locator

introduces to the web are provided in section 6.4.5.

Figure 12 shows a high-level overview of a client interfacing with the RLS, with HTTP being

used as an interface onto the Locators.

D 1.HTTP GET @ @
T l 2.HTTP 302
Locators

3.HTTP GET

\ Resource Locator Service J
4 HTTP
200 OK

Resource

Current
Host

Figure 12 - A High-Level Overview of the RLS

153

Chapter 5 - Architectural Design of the HOMINID Model

The diagram shows a client sending a standard HTTP GET message to a Locator as if the
Locator was the server hosting the requested resource. The Locator examines its database,
retrieves the location of the resource, and responds with a standard HTTP 302 Found response
message, which informs the client that the resource has moved and provides the new location
using the HTTP Location header (Fielding et al., 1999). If the Locator has not got a record of
the resource’s name, then it must return a standard HTTP Error 404 Not Found response

message.

5.2.5 Missing Mediation

Figure 12 is a high level representation of the RLS, and depicts the client querying an
appropriate Locator. However, in practice, a client must be made aware of exactly which
Locator contains the required name/location mapping, but in a way that does not require the
client or the hosting server to be altered. As such, some form of mediation is required
between the client and the RLS that can transparently route the client’s request to the

appropriate Locator, without requiring any modifications in the client or server.

This is difficult to achieve, however, as the constraints imposed on the RLS directly conflict
with its distributed nature. For example, same distributed systems, such as the DNS or
directory services, use the structure of the namespace itself to identify the correct node, but the
RLS cannot, as the namespace must be left completely unconstrained. The alternative is a flat
architectural configuration, with nodes arranged as peers, and the namespace left
unconstrained, but this requires the search approach to be used, which will not scale to a

system the size of the web (Ingham et al., 1996).

154

Chapter 5 - Architectural Design of the HOMINID Model

As such, in order for a client to locate the correct Locator in the RLS, a new approach to

mediation is required that:

does not use a flooding algorithm;

e can locate the node with the required information as easily as that of a hierarchical

architecture;

e leaves the namespace as unconstrained as that of a flat architecture;

e does not impact the existing web architecture.

This new approach has formed a major part of the work conducted for this research

programme, and is presented in the following section.

5.3 Request Routing: Novel Mediation Between the Web and a Distributed System

To meet the constraints imposed upon the RLS, a novel solution has been developed that
mediates between the web and any new distributed system that wishes to interface with it.
Specifically, a novel node location system has been developed as part of this research
programme, which places no constraints on the namespace, does not waste bandwidth, and
which leaves each Locator as an independent node that has no knowledge of any of the other

Locators in the RLS. The node location system is called Request Routing, which uses a

155

Chapter 5 - Architectural Design of the HOMINID Model

Request Router to provide transparent, scalable mediation between the web and the RLS

through the use of a hash routing algorithm (Ross, 1997).

Hash routing is an extension of the hash function, which is a common method of searching for -
information in a large database. The hash function works by scrambling some aspect of the
database key, and using this partial information to search for the data required (Knuth, 1998).
Hash routing extends this concept, by efficiently mapping a string (in this case a resource’s
name) onto a specific server in a distributed system, while ensuring a uniform distribution of

resources across the servers in the system (Thaler and Ravishankar, 1998).

Specifically, a hash routing algorithm takes a string and maps it onto a hash space. The hash
space is partitioned such that the string is mapped to one and only one node in a distributed
system (Ross, 1997, Thaler and Ravishankar, 1998). Using a hash routing algorithm as the
basis for locating nodes in the RLS, therefore, enables any string to deterministically identify
the Locator that contains the required name/location mapping. As the Locator is a database, it
can be defined to store any type of information, and so the resource’s location can be defined
as any string. Thus, the hash routing algorithm solves the problem of how to use an
unconstrained namespace for both a resource’s name and location, while efficiently locating

the correct Locator without flooding the system.

5.3.1 The CARP Hash Routing Algorithm

The Request Router (RR) uses the same hash routing algorithm as the Cache Array Routing

Protocol (CARP) (Valloppillil and Ross, 1998), which uses it to map a URL to a specific

156

Chapter 5 - Architectural Design of the HOMINID Model

cache in a distributed caching system. CARP uses hash routing to distribute the resource load
across all caches in a CARP system, such that resources within the cache are distributed
evenly across an array of machines. The algorithm has been adapted for use in the RLS,

however, and has two key differences:

o The CARP approach takes a name and returns a (copy of a) resource, whereas the RLS

returns the actual resource’s location.

e The CARP approach uses internal lookup tables to keep track of the other machines in
the cache array, and each node must intermittently ping its neighbours to determine the
size of the array and its operational state. In contrast, the RLS adopts a novel approach

to node management, with each Locator being completely isolated from its peers.

5.3.2 How the CARP Hash Routing Algorithm works

The CARP protocol is designed for an array of caching servers. As such, the array comprises
a network of distributed caching nodes, and the CARP protocol is used to identify which one
hosts a specific resource. CARP works by mapping the URLs of resources that need to be
cached onto a partitioned hash space, with each set in a partition being associated with one
caching node (Ross, 1997). When a resource is required, the algorithm deterministically

identifies the node as follows:

157

Chapter 5 - Architectural Design of the HOMINID Model

e The URL of the resource is hashed.

e The URLs of each of the caches in the array are also hashed in turn, with a weighting
factor being applied that is set according to the physical characteristics of each node .

(see below).

e The hash value of the resource and the hash values of the nodes are XORed together,

producing a score for each resource-URL-hash/cache-node-hash combination.

e The cache node whose resource-URL-hash/cache-node-hash combination scores

highest is the one that hosts the resource.

Thus, given only the name of the resource and the names of all the machines in the array, the
exact machine that holds the resource is uniquely and deterministically found. The resources
are distributed uniformly across the system, but the weighting factor can be used to skew the

distribution such that those nodes with a higher performance can receive more of the

resources.

5.3.3 Adapting the CARP Hash Routing Algorithm for the RLS

Although highly effective in large cache arrays, the CARP protocol has been adapted for use
in the Request Router in order to better meet the needs of the RLS. Specifically, each node in
a CARP system keeps a list of the URLs of all the caches in the system, and this causes a

degree of network overhead. When applied to the RLS, however, every RR would need to

158

Chapter 5 - Architectural Design of the HOMINID Model

know the URL of every Locator in the RLS, and periodically check for system configuration
changes. This would create an unacceptable increase in network overhead, and would limit
the types of device that could use the RR to those that could store and maintain the large lists

of Locators that would be required.

The RLS avoids this limitation, however, by removing the weighting factor from the
algorithm, and leaving the namespace of the resources open while restricting the namespace of
the Locators. As such, a URL pattern is defined, which all Locators must use for their own
name. The pattern encapsulates a number, which can be thought of as that Locator’s identity
number. Each number must be unique in the system, and all numbers must be sequentially

ordered, starting from 0. An example URL pattern is:

http://www.nodeX. Locator.net/

where X is a marker for where the Locator’s number should be. So for example, the first three

nodes in the system (assuming a zero-indexing system) would be:

http://www.node0.Locator.net/
http://www.nodel.Locator.net/

http://www.nodeZ2.Locator.net/

Effectively, the URL pattern of the Locators acts as a well-known URL in a similar way to the

well-known ports defined for TCP applications. Note that the URL pattern must be sequential,

159

Chapter 5 - Architectural Design of the HOMINID Model

and there can be no gaps in the sequence. The URLs of a complete sequence of nodes, each of
which has a URL that corresponds to the URL pattern, is therefore known as a URL sequence.

In this way, the URLSs of the Locators themselves become deterministic.

5.3.3.1 Updating the Request Router

Simple hash routing schemes are brittle, such that the addition or removal of a node in the
system will re-map nearly all of the URLs onto different nodes (Ross, 1997). Robust hash
routing algorithms, such as CARP and its variant used in the RR, overcome this problem by
using the name of the resource and the name of the node together, which results in the re-
mapping of only //n (where n = the number of machines in the new system configuration) of
the URLs in the system (Ross (1997), Thaler and Ravishankar (1998)). As such, the number
of name/location mappings in the RLS that must be moved decreases with the number of
nodes in the system. The RLS provides a mechanism for automated node removal and

addition, which is described in section 6.3.

If a Request Router is unaware of a change in the system’s configuration, then I/n of its
requests will go to the wrong Locator. However, the RR does not need to be synchronized
with the configuration of the RLS, as the deterministic nature of the URL sequence enables it
to detect any change automatically. Specifically, once the RR has the URL pattern for the
RLS, it is a trivial matter for it to iterate along the resulting URL sequence, querying the
existence of nodes at each point in the sequence. If a Locator fails to respond, then the RR has

found the limit of the sequence (see Figure 13).

160

Chapter 5 - Architectural Design of the HOMINID Model

/'

http://node0.Locator.net/

RR iterates through the URL sequence from
X = 0 until no response is retumed, at which
point, the RR knows that n = X.

http://node1.Locator.net/

I

>

X=3 L/
http://node2.Locator.net/

)

RR with URL Pattern =
http://nodeX.Locator.net/

7
http://node3.Locator.net/

)

http://node4.Locator.net/

NO RESPONSE

Figure 13 - How the RR updates itself

Thus, if a Locator cannot find a resource, the RR can simply query the existence of the
Locators that have a node number that matches this limit (in case a Locator has been
removed), or is one greater (in case a Locator has been added). If the limit remains
unchanged, then the RR knows that the resource is unregistered with the RLS; otherwise, the
RR simply rehashes the resource’s name using the updated value, and sends the request to the
newly calculated Locator. In this way, the RR is completely decoupled from the configuration

of the RLS, and so any change in the configuration of the system does not result in a flood of

161

Chapter 5 - Architectural Design of the HOMINID Model

update messages. Furthermore, the only information that the RR needs to store about the

configuration of the system is the URL pattern and the number of nodes.

5.3.3.2 Backwards Compatibility

For the RLS to integrate into the web’s current architecture, it must be backwards-compatible
with all of the entities that currently use the web. In this, the RLS is completely different from
all other resource migration mechanisms, as the RR is decoupled from the RLS, and needs
only minimal information in order to function, enabling it to be deployed virtually anywhere

on the web. For example, it can be:

o embedded into a HTML document as a Java applet, ActiveX control or even script.
When the user clicks on a hyperlink, the click event can be captured by the embedded
RR, the hash routing operation performed, and the location of the Locator discovered.
Thus, the node location process occurs within the HTML page itself. This ensures
total transparency and maximum backwards compatibility, but permits only HTML

documents to use the RLS;

e built into a browser.
The browser automatically locates the appropriate Locator, allowing all servers to be

unaware of the RLS, but requiring the client to be modified;

162

Chapter 5 - Architectural Design of the HOMINID Model

designed as a browser plug-in.

The browser is extended rather than redesigned, with the RR being downloaded by the
user when required. This provides seamless evolution, and a solution that is more .
backwards-compatible than the previous example. Again, all servers are unaware of

the RLS;

built into a server, or added as a server module.
The RR can be deployed on the server, which can perform the hash routing algorithm
for each request it receives. This allows all browsers to be unaware of the RLS, and

gives server owners the choice of whether to use the RLS or not;

embedded within a proxy server or a reverse proxy server.

The proxy server intercepts the request, and routes it to the appropriate Locator. This
requires reconfiguration rather than redevelopment, allowing all browsers, servers and

resources to be unaware of the RLS;

designed into a layer 4 switch or policy based router.
The switch or router contains the RR, transparently routing the request to the
appropriate Locator without client or server knowing. This provides total transparency

and maximum backwards compatibility.

163

Chapter 5 - Architectural Design of the HOMINID Model

This flexibility enables the RR to be integrated into the web at the position where it is
required. In this way, the number of resources registered with the RLS can grow over time as
more people decide they wish to use its services. As such, the adoption of the RLS is designed
to be evolutionary, rather than revolutionary, proceeding in a distributed way across different
sectors of the web, as its services become useful to different types of user For example, to
begin with, small numbers of web authors may embed a RR within a HTML document. After
a short period, server owners may decide to embed a RR into their serversin order to use the
RLS without affecting the clients. From this, plug-ins can be made available for existing
browsers, allowing resources to be located directly in the browser, via both the DNS and the
RLS. Once a reasonable number of people use the RLS Internet Service Providers can embed
a RR into their proxy servers. Eventually, the RLS will reach a critical mass of users, whereby
a RR will become an integral part of a browser and server, and thus part of the web itself. In
this way, the RLS’s database becomes populated over time by resource owners who choose to
register their resources with it. As such, the database does not need to be initialised, and
because it freely co-exists with the DNS, does not prevent nonrregistered resources from being
accessed. In this way, the RR represents a novel solution to integrating new distributed

systems into the web’s existing architecture.

5.3.4 How the Hash Routing Algorithm Works in the RLS

Figure 14 shows the architecture of the RLS. The figure depicts a client that wishes to locate
the resource whose name is http://www.anyserver.com/img.gif. The RR 1is represented

abstractly as a box, to show that it can be positioned anywhere in the location process. For the

164

Chapter 5 - Architectural Design of the HOMINID Model

purposes of this example, however, assume that it is in a proxy server that the client is

connected to.

et ———
poere 4 -
-

s Other Locators \
/ X
Q
1. GET ! 3
D www.anyserver.com/img.gif 2.[GET... Locator \
i > !
i
= ¢]
4, Error 302 Found 3. Erfpr 302 Fi !
or 302 Found Name Address ;
Request Router ' K
‘.\ www.anyserver.com/img.gif www.ServerA.com /
5. GET N Locator's Lookup Table 7
www.ServerA.com/img.gif N\, ,.'
N\, < , ,-
N, -
\\\ ”
200 | e i
oK RLS
Resource Name = www.anyserver.com/img.gif
@ Resource Location = www.ServerA.com/img.gif

www.ServerA.com

Figure 14 - The Architecture of the Resource Locator Service

In order to locate the resource, the client sends a standard HTTP GET request (Fielding et al.,
1999), as it would do normally if retrieving the resource without the aid of the RLS. However,
the proxy server intercepts the call, and passes the URL to the hash routing algorithm. The
algorithm begins by calculating a hash value for the URL (URL_Hash), using the CARP

algorithm developed by Valloppillil and Ross (1998):

For (each char in URL): URL Hash += rotl (URL_Hash, 19) + char;

165

Chapter 5 - Architectural Design of the HOMINID Model

Once the URL_Hash value is found, the hash value must be found for each of the Locators in
the RLS (Locator_Hash). Again, using the CARP algorithm developed by Valloppillil and

Ross (1998), the algorithm does this as follows:

Locator Hash += Locator_Hash * 0x62531965;

Locator_Hash = _rotl (Locator Hash, 21);

For each Locator_Hash value calculated, the algorithm must note which Locator’s URL it was
derived from. Once each Locator_Hash value has been calculated, the algorithm proceeds to
combine each value with that calculated for URL_Hash, as follows (see Valloppillil and Ross

(1998)):

Combined Hash = (URL_Hash ~ Locator_Hash);
Combined_Hash += Combined Hash * 0x62531965;

Combined Hash = _rotl (Combined Hash, 21);

Again, for each Combined Hash value calculated, the algorithm must note which Locator’s
URL it was derived from. The algorithm will then be left with a series of values for
Combined Hash (one for each Locator in the RLS), each matched with the URL of the
Locator from which it was derived. The algorithm can then simply select the Locator URL
matched to the highest scoring Combined Hash value to find the Locator that stores the

URL’s name/location mapping.

166

Chapter 5 - Architectural Design of the HOMINID Model

The hash routing algorithm returns with the correct Locator’s URL, which the proxy server
uses to locate the correct server to pass the original HTTP GET request onto. The Locator
then retrieves the URL http://www.anyserver.com/img.gif from the HTTP GET request, and
uses it as the key into its database, where it retrieves the location of the resource. The location
is passed back to the proxy encoded in an HTTP 302 redirect response message, which is
returned without change to the client that made the original request. As such, from the client’s
perspective, a standard HTTP request has been met with a standard HTTP redirect response,
and the resource can be located at the location specified in the response message’s location
header according to the standard HTTP 1.1 protocol. In this way, the RLS is completely
transparent, and so is able to effectively integrate into the existing web’s architecture without

requiring any modifications of existing web entities.

5.3.5 The Design of the Request Router

The Request Router is a generic entity that encapsulates the hash routing algorithm, and uses it
to uniquely identify a node in a distributed system when given a string identifier. As such, the
RR can be used with any distributed system whose nodes comply with its back-end interface,
and which uses HTTP to communicate. For the purposes of this discussion, however, the
system is assumed to be the RLS, the node is assumed to be a Locator within the RLS,and the

identifier is the URL of a resource.

The Request Router must accept any string as input, perform the hash routing function on it,
and output the URL of the correct Locator in the RLS. More specifically, the RR must

provide two interfaces: a function-oriented front-side interface, which clients of the RLS use

167

Chapter 5 - Architectural Design of the HOMINID Model

to query a Locator with; and an HTTP-oriented back-end interface, which is used to interface
directly with the Locators via HTTP. Using HTTP in this way enables the RR to integrate
with the web seamlessly, and to contact a Locator wherever the RR is deployed. In contrast,
the front-side interface provides a standard API, which a client application must be adapted to
if it wishes to use it. The client application can then provide a web-specific wrapper around
this API, which hides the RR from the web entities that use it to maintain backwards-
compatibility (for example, a proxy server provides a HTTP wrapper around the RR to hide it

from a browser).

If the RR is asked to query the RLS for a resource that is not registered, the RLS will return an
Error 404 Not Found message. It will not attempt to locate the resource using the DNS, as
this may not be appropriate in all cases. For example, a server hosting a RR may have
registered all of its resources with the RLS, and so an Error 404 from the RLS means that the
resource does not exist, not just that it is not registered. As such, it would serve no purpose for
the RLS to contact the DNS in this situation, and so the RLS only manages its ownregistered

resources, leaving client applications to determine what to do with those that are unregistered.

In addition, a RR may receive an Error 404 message from a Locator because the configuration
of the system has changed, and the name/location mapping has moved to a different Locator.
In this case, the DNS still has no record of the resource, but the RLS has. As such, the RR
should update its view of the system configuration (i.e. it should perform an automatic
update), but only if instructed to do so by the client application. If not, the RR should simply

pass the Error 404 back to the client application, and let it decide what should be done.

168

Chapter 5 - Architectural Design of the HOMINID Model

5.3.5.1 The Request Router’s Interfaces

The RR’s client-side interface has two functions that are used to identify the correct Locator
(or, indeed, a node in an equivalent distributed system). The first, RouteRequest(), takes the
name of the resource, and returns the appropriate Locator URL with the resource’s name
appended onto it as a Query String (e.g.
http://www.node 1. Locator.net/query?resourcename=http.//www.aserver.com/aresource.htm).

This URL can then be sent directly to the appropriate Locator without the need for adding any
new HTTP headers. The Locator will return a HTTP 302 Found response message, which
will be acted upon by the browser as per standard HTTP conventions (see Fielding et al.,
1999), and the resource successfully located. In this way, script languages such as JavaScript,
which cannot ordinarily alter HTTP messages, can use the RLS, allowing a HTML document
to locate migrated resources on a browser that has no knowledge of it (see Figure 15 for an
example). Note that the RouteRequest() function will force the RR to perform an automatic
update to check the system’s configuration if an Error 404 is returned. Thus, if the function

returns an empty string, the client knows that the resource is not registered with the system.

// Assume RR is a pre-instantiated ActiveX RequestRouter, and that
// SURL is a resource whose location is known by the RLS

Function NavigateToResource (sURL)

{

var sLocatorURL;

//Get the URL of the correct Locator
sLocatorURL = RR.RouteRequest (sURL) ;

//sLocatorURL can be used directly by JavaScript to
//navigate to the appropriate resource
window.open (sLocatorURL) ;

Figure 15 - Sample JavaScript function showing a RR embedded in a HTML Page

169

Chapter 5 - Architectural Design of the HOMINID Model

The second function, GetNodeByName(), takes the name of a resource (which can be any
string) and returns the URL of the appropriate Locator. This function only identifies the
Locator, returning its location as a URL; it does not append the resource’s name onto the
Locator’s URL. To retrieve the location of the resource, the Locator’s URL can be used by
the client application in a subsequent HTTP GET request message, together with a new HTTP
request header called resource-name, which has the name of the resource itself as its value
(this forms part of the RR’s back-end interface, and must be implemented by all nodes in the
distributed system that communicate with the RR). The Locator will then return a HTTP 302
Found response message, with the URL of the resource contained in the message’s location
header (Fielding et al., 1999). Note that the Locator requires resource-name to be a new
request header because the existing headers in HTTP have inappropriate semantics. For
example, the resource-URI header of the GET method specifies the URL of the Locator, not
the web resource; the host header specifies the web server, not the resource; and the location

header and ETag header are response headers only (Fielding et al., 1999).

The RR also has functions that enable the URL pattern to be changed (thus allowing it to
interface with other distributed system on the web), and a function called Update(), which
enables it to determine the number of Locators in a network by performing an automatic

update.

Some clients, such as mobile phones, may have very limited processing abilities, and may not
be able to perform the hash routing function required. As such, part of the RR’s back-end

interface includes a new HTTP request header authoritative-lookup, which is defined using a

170

Chapter 5 - Architectural Design of the HOMINID Model

Boolean value (default is false), and which forces the Locator that receives the request to
perform the hash routing function itself if it cannot locate the resource in its own database. In
this way, the client can send the request to an arbitrary Locator, and have the RLS itself locate
the correct Locator, enabling the client to have no direct interaction with the RR at all.
However, due to the performance overhead this places on the Locator, this functionality

should be restricted as much as possible.

5.3.6 Scalability

In order to work within the web, the design of the RLS must be fully scalable in a number of
areas. The following sub-sections describe the scalability of the RLS, while real world
measurements are presented in section 6.4.5, which have been taken from an instrumented

prototype of the RR that has been developed as part of the research programme.

5.3.6.1 Network Overhead

Hash routing is a very fast algorithm for locating a node in a distributed system, providing a
deterministic request resolution path through an array of machines, which results in locating a
specific node in a single hop (Microsoft, 1997b). As such, the network overhead introduced
by the RLS for both a successful and an unsuccessful resolution operation is always two
additional HTTP messages (either a GET and an Error 302 Found response, or a GET and an

Error 404 Not Found response).

If the RLS cannot find the resource, then a client application may contact the DNS if required,
and if this is successful, the round-trip time to the RLS via the RR has been wasted. If,

however, the RLS is completely integrated into the web, such that the DNS is not used to find

171

Chapter 5 - Architectural Design of the HOMINID Model

the locations of resources, then all resources will be registered, and an Error 404 means that

the resource does not exist on the web, not just in the RLS. As such, there will be no added

overhead, as the resource is unattainable.

5.3.6.2 CPU Overhead

The design of the RLS is such that the network overhead is constant, regardless of how many
Locators are in the system, whereas the CPU overhead required by the RR scales linearly with
respect to the number of Locators. As such, the scalability of the design is constrained more

by CPU overhead than network overhead.

The linear scaling of the RR results from the hash function being used to distribute a set of
records across many Locators, rather than to generate a unique value each time it is used, and
so it does not have to worry about managing collisions, as the same result (i.e. the idertified
Locator) can be used many times for different resource names. The function distributes the
records by hashing the URL of each Locator in the system, and as the time taken to hash each
URL is virtually uniform (dependent solely upon the number of clnr‘acters in the URLSs that

are hashed), the CPU overhead increases linearly with respect to the number of URLs (and

thus Locators) it must hash.

5.3.6.3 Scalability of the Overall Design

In terms of growth, the hash routing algorithm can scale to over 4 billion (232 =4,294,967,296)
Locators, performing single-hop resolution throughout (Microsoft, 1997b). Assuming each
Locator can store the names and location of 1 million resources (which, assuming the name

and location each use a URL that averages 50 characters, will require a database only 100 MB

172

Chapter 5 - Architectural Design of the HOMINID Model

in size), today’s web, with over 1 billion documents, would need the deployment of 1,000
Locators to fully manage all resources. Alternative combinations of records-per-Locator
against number of Locators can be tested to optimise the configuration, but network overhead
is unchanged regardless of the number of Locators. This makes the system scalable up to 22
Locators, or 4 quadrillion managed resources. However, the CPU time taken to perform the
hash routing algorithm limits the practical number of Locators that can be used. Section6.4.5
discusses this in more detail, and provides real world measurements of the overheads that are

involved.

5.3.7 Resilience

Because of the system’s reliance on the URL sequence, it is not resilient to node failure.
Should a Locator fail, not only will its records not be available, but any RR that performs an
automatic update during the failure will calculate the wrong number of nodes in the system,
and will map most URLs onto the wrong Locator. However, the disruption can be limited if
the RR continues to check for the existence of nodes beyond that at which no response is
received, effectively enabling it to jump any holes in the URL sequence. Although the RR
will still not be able to access the records in the failed Locator, it will at least know the correct
configuration of the system, and so all other records will be available. In addition, the
system’s resilience is actually better than that of the DNS, which, due to its hierarchical
structure, has a single point of failure (the root node). The reliability of the DNS comes from
the introduction of redundancy into the system, with distributed servers clustered to provide a
single fault-tolerant node. As such, future work will look at introducing redundancy into the

design of the RLS, either by clustering several servers to provide a more fault-tolerant Locator

173

Chapter 5 - Architectural Design of the HOMINID Model

design, or by using a duplicated hash routing algorithm, such as that proposed by Kawai et al.
(2000). Duplicated hash routing uses two hash routing functions and two cloned systems, one
of which is a secondary system that acts as a backup in the event of a node in the primary
system failing. However, the benefits of this algorithm need to be determined, as although the |

reliability of the system is improved, the size and complexity are increased.

5.3.8 Impact of the Resource Locator Service on existing Web mechanisms

The RLS has been designed to be backwards compatible with the existing web architecture.
The RR ensures that it can be integrated into the web without affecting either clients or
servers, but there are other systems, such as caching servers, that also need to be considered if
the RLS is to be effectively deployed. This section considers the impact of the RLS on these

systems.

5.3.8.1 Impact on Caching Servers

Caches are an integral part of the web, and help to speed up resource delivery dramatically.
Caches exist at all levels of the system, from an enterprise level, though ISP level, and up to
country level, with massive caches storing resources that are hosted outside of a country in
order to minimize the traffic that passes across expensive long distance lines. In order to work

effectively within the web, the RLS should not have a negative impact on such systems.

When a cache receives a request for a resource for the first time, it forwards the request onto
the appropriate origin server, and stores the returned response before passing it back to the
requesting client. Subsequent requests for the same resource are then served directly by the

cache providing the stored resource is still fresh. With the RLS being used, the initial request

174

Chapter 5 - Architectural Design of the HOMINID Model

by the client will be to the appropriate Locator, and the response will be an Error 302 Found
message. HTTP 1.1 defines that the cache must not store this response message, unless
explicitly instructed by the origin server (in this case, the Locator) (Fielding et al., 1999). The
Locator will not instruct the cache to store this response message, and so all subsequent
requests for the same resource will always be passed through the cache and onto the
appropriate Locator. As such, the amount of traffic between the cache and the Locator will be
more than would have existed between the cache and the origin server. However, the traffic
involved will only be request and response messages, and not the actual resource itself. As

such, the extra traffic incurred should be minimal.

Upon receiving the 302 Found response message, the client will issue another request for the
resource, to the server at the specified location. The cache will receive this message as a
separate GET request, and will retrieve the resource from the server. The cache will then store
the resource before passing it onto the client. All future requests for this resource can then be
served by the cache. As such, the RLS does not increase the number of cache misses for the

resource.

The impact of the RLS on caches, therefore, is to create an overhead of only two extra HTTP
messages (i.e. those between the cache and the Locator) per request, as the cache will serve
the subsequent redirected request. This overhead is the same as that caused by the RLS

without a cache being used, and so the overall impact on a cache is negligible.

175

Chapter 5 - Architectural Design of the HOMINID Model

5.3.8.2 Impact on History and Bookmark Mechanisms

The RLS relies on the HTTP redirect mechanism to serve the requested page. However, a
browser will navigate to the new location after receiving a redirection command, and use the
new URL in its History and Bookmark mechanisms. Thus, when a user navigates to a
resource that has migrated, it is the resource’s transient location that will be stored by the

browser’s history and bookmark mechanisms, rather than its persistent location.

This situation can be avoided by proxy servers that contain the RR and retrieve the resource
from its location on behalf of the client. The client would then never receive the redirect
response message from the Locator, and so would use the persistent name of the resource in its
bookmark and history mechanisms, rather than the resource’s location. Alternatively, browser
plug-ins that contain the RR can be made to transparently alter the mechanics of the history
and bookmark mechanisms, such that the name and not the location is stored. As such,

although the RLS does have a small impact on these mechanisms, it can easily be overcome.

5.4 Temporal References

The temporal reference is a core part of the HOMINID model, and can be integrated into the
web through the RLS. As the RLS can support any string as the name or location of a
resource, it can support the syntax of a temporal reference just as easily as it can a URL.
However, care must be taken in the design of the temporal reference’s syntax to ensure that it
can safely co-exist with the URL to maintain backwards-compatibility. As such, two different

versions of the temporal reference have been defined:

176

Chapter 5 - Architectural Design of the HOMINID Model

e A completely new Temporal URL scheme, which provides a long-term architectural

solution, but which currently only works with the RLS.

e A URL extension, which provides a backwards-compatible short-term solution, but is

less elegant.

5.4.1 The URL Extension

The URL extension version of the temporal reference comprises a URL with a timecreated

temporal component appended as a Query String, which allows existing URLs to be used as

temporal references. For example, the extended URL:

http://www.aserver.com/index.htm?timecreated=Sun, %2006%20Nov%201994

has http://www.someserver.com/index.htm as its location component, followed by ? as a
separator, and timecreated=Sun,%2006%20Nov%201994 as its temporal component. Note
that %620 is the URL encoding for whitespace, and that the time and date are formatted
according to RFC 1123 (Braden, 1989). Query Strings are an integral component of the URL
specification, and are used to pass parameters to servers (Berners-Lee et al. 1994). However,
servers must ignore parameters they do not need to use, and so adding atimecreated parameter
to a URL’s Query String will enable existing hyperlinks to become temporal references

without requiring the modification of browsers or servers.

177

Chapter 5 - Architectural Design of the HOMINID Model

Those URLSs that exist without a temporal component are re-defined as current URLs; that is,
they represent the most current version of a resource. Once the content changes, the new
resource with the new content is assigned the current URL without the timecreated
QueryString, and the old resource with the original content is assigned the same URL, but
with an appropriately formatted timecreated QueryString appended onto it. Note that for
successful resolution of such extended URLs, the server must be able to determine which
resource to serve according to the timecreated QueryString. However, all existing URLs can
be treated as current URLs, without requiring any modifications to the server. Formally

stated, a temporal URL extension can be defined as:

a standard URL with a temporal component encoded in its Query String using the
timecreated parameter, and a corresponding value that must not exceed the current

GMT time, and that must be encoded according to RFC 1123.

5.4.2 The Temporal URL Scheme

The new Temporal URL scheme is an architectural solution that conforms to the encoding
rules defined in Berners-Lee et al. (1998), and encapsulates the same semantics of the URL,
but with the addition of a temporal component. Specifically, the new scheme, called TURL

(Temporal Uniform Resource Locator), has been defined as:

turl://authority/path;time-created?query

The authority component of the TURL is identical to that of the URL (i.e. the domain name of

the hosting server). The path component, too, is identical to the URL, but with one exception:

178

Chapter 5 - Architectural Design of the HOMINID Model

a semi-colon separates the path that the server uses to locate the resource from the temporal
information used to identify the time that the resource was created. The query component
remains as it is defined for the URL, but the whitespace of the temporal component has been

replaced with a dash (-) for clarity. Thus the temporal URL extension:

http://'www.aserver.com/index.htm?timecreated=Sun,%2006%20Nov%201994

can be re-written as a TURL as:

turl://www.aserver.com/index.htm;Sun,06-Nov-1994

In addition, as HTTP essentially forms the interface between the RR and the Locator, it has
had to be extended in order to map the temporal component of the TURL onto a HTTP header.
HTTP’s existing headers already encode temporal information, but they are largely used for
caching, and are normally sent by the server rather than the client. For example, the Last-
modified entity header is used to represent the time at which the resource was last modified
(Fielding et al., 1999), which is another way of saying the time at which the resource was
created. However, it can only be used by servers in a response message, and cannot be used
by a client at all. Equally, the Age entity header, which provides the estimated age of the
resource on the origin server (Fielding et al., 1999), is also a response header, only sent by a
server (usually a caching proxy server). Alternatively, the Date header field is a general
header, which can be used by both client and server, but only to represent the date and time at

which the message was originated, not the resource (Fielding et al., 1999). Finally, the ETag

179

Chapter 5 - Architectural Design of the HOMINID Model

header could encode the temporal information, as it provides a means of encoding user-

defined values, but it, too, is a response header (Fielding et al., 1999).

As such, rather than subtly altering the semantics of existing HTTP headers, the RLS uses a
new general header, called time-created, which can be used by both client and server, and
which defines the time at which the resource was created. The value of the new header must
be formatted according to RFC 1123 (Braden, 1989), and it must map exactly onto the
temporal component of the TURL. The new header provides the preferred means for querying
a Locator according to a resource’s time of creation, thus separating the temporal information
from the resource’s name. In this way, any appropriately specified namespace is able to
become a temporal reference by mapping its temporal component onto this new HTTP header,

enabling the RLS to retain its unconstrained namespace.

5.4.3 Defining the Scope of the Temporal Reference

A temporal reference supported by the RLS can enable one resource to persist across time, but
not the resources behind any hyperlinks that might be embedded within it. For example, a
HTML document registered with the RLS may contain several hyperlinks, but if the resources
underlying the hyperlinks are not registered with the RLS, then they may not persist. The RLS
preserves a resource’s referencing hyperlinks, therefore, but cannot guarantee the integrity of
the hyperlinks within the resource. As such, the RLS can only prevent link rot for those
resources that it has been instructed to manage, and so web-wide link rot prevention canonly

be achieved if the RLS manages all web resources.

180

Chapter 5 - Architectural Design of the HOMINID Model

In addition, transient resources, such as dynamically created HTML documents, or streaming
audio or video, are also not covered by the current design of the RLS and the temporal
reference. This is because the semantics of the TURL simply extends those of the existing
URL protocol to encompass time, rather than adding any new functionality, and an existing
URL references the object that creates a dynamic resource or a multimedia stream, rather than
the transient resource itself. For example, a URL might identify an application behind a CGI
(Common Gateway Interface) gateway, which in response returns a dynamically generated
HTML document, but it does not identify the HTML document. Similarly, temporal
references may enable the application to persist (although their definition does not cover
persisting the application’s state, merely its existence as a discrete file), but they do not cover

its output, unless it is explicitly saved as a permanent web resource and given its own

(temporal) URL.

5.4.3.1 The URL Extension Versus the Temporal URL

Using the URL extension enables temporal references to be implemented immediately without
any change to the web’s architecture, and should be used when the RLS is first deployed on
the web. However, the TURL provides a more long-term solution, and should be the preferred
identifier once the RLS has become adopted as part of the web’s architecture. Thus, new
versions of browsers and servers should support both forms of identifier, while all Locators
must support both identifiers. As an intermediate solution, a plug-in or ActiveX control can be
developed that extends the functionality of existing browsers to enable them to support the

TURL.

181

Chapter 5 - Architectural Design of the HOMINID Model

Note that some applications may wish the Locator to return a number of resources, whose
time-created value lies between certain times. However, this will not be defined for this
version of the Locator, as it introduces the scope for potential Denial of Service attacks, and
extends the functionality of the Locator to include database querying. This would require
additional work to avoid the security implications, and extra HTTP headers to enable the
Locator to be queried. As such, this work is left to the client to do at this stage, but future

work will examine the possibility of providing this feature.

5.5 Designing the Oracle Server
The role of the Oracle Server is to manage the informational integrity of the hyperlink, by
providing universal access to characteristic and navigational infons about the resources on the

web and the way in which they are used.

Due to time and resource constraints, the Oracle Server will not be defined in as much detail
as the RLS. However, the design of the Oracle Server is similar in many ways to the RLS, and
so can use many of the techniques that were used in the RLS’s design. As such, the following
sub-sections functionally define the Oracle Server, and describe how it can be implemented,

but do not provide a full definition of its architectural design.

5.5.1 The Oracle Server Network

One Oracle Server cannot cope with managing meta-data for all the resources on the web, and
so a distributed network of Oracle Servers, called the Oracle Server Network (OSN), is

required.

182

Chapter 5 - Architectural Design of the HOMINID Model

The OSN also uses a Request Router for its node location system, with the URL pattern of:

http://www.nodeX.OracleServer.net

Using a Request Router enables the OSN to be queried with the URL that the user wishes to
know more about. In this way, the URL (or other identifier®) is used by the user to navigate

across the web, and by the RLS and the OSN as an index into their respective databases.

5.5.2 The Architecture of the Oracle Server Network

Figure 16 shows the architecture of the Oracle Server Network. The user clicks on a hyperlink
to download a resource, causing the browser to send a HTTP GET request. In this example,
the client is connected to a proxy server that contains a RR capable of routing into the OSN,
but the RR can be located wherever there is appropriate functionality for interpreting the
OSN’s results. The proxy forwards the request onto the origin server and downloads the
resource. However, rather than returning the resource back to the client, it extracts all the
hyperlinks from it and submits each one to the OSN for a judgement on its quality and the
strategy that it uses, according to the heuristics used by the OSN. If the verdict is OK then the
proxy can change the colour of the hyperlink in the resource to green (for example); if the
verdict is that the hyperlink is deceptive, the proxy can colour it red; and if the OSN has not

got enough information to reach a verdict, the proxy can colour it amber (note that in this

¢ Both the RLS and the OSN can support any type of resource name, regardless of syntax. However, for clarity,
the term URL will be used in the discussion, as it represents the most prevalent and identifiable type of resource
name currently on the web.

183

Chapter 5 - Architectural Design of the HOMINID Model

example, neither the client nor the origin server needs to be altered in order to present this

information).

In Figure 16, for example, the hyperlinks www.linkl.com and www.link3.com are safe;
www.link2.com is deceptive; and www.link4.com is unknown. Note that the exact presentation
of the information should be user-defined, and not dependent solely on colour. The OSN is
designed as a system for judging the informational integrity of hyperlinks; how that

information is presented is up to the client application.

Origin Server | www.link1.com

) www . link2.com
www.link3.com
www.link4.com

e mr—,
.

2. GET URL .
3.200 OK 7 N
/ *
7 \
/ “\
i \
1.GET URL 4.Query www.link1.com ! :
p # ' }
< : !
S5VERDICT 4 !
Client 6. 200 OK Proxy containing \'\ Oracle !
Request Router for \ J
the OSN ‘\Server ,.'
OSN

Figure 16 - The Architecture of the Oracle Server Network

5.5.3 Obtaining the Infons

The OSN obtains its navigational and characteristic infons from the RLS, with which it has
been designed to work closely. As such, the OSN can manage only those resources that are

registered with the RLS, as it cannot obtain the required infons from anywhere else.

184

Chapter 5 - Architectural Design of the HOMINID Model

5.5.3.1 Navigational Infons

The navigational infons come directly from the RLS each time a user downloads a resource.
Whenever a user clicks on a hyperlink to a registered resource, the RLS is queried for the
resource’s location. This query represents a navigational infon, as it implicitly registers a hit
on the resource. If the RLS manages all of the web’s resources, then it can provide the OSN

with all of the navigational infons across the web.

Figure 17 shows how the navigational infons are obtained from the user’s browsing sessions,
as the URL of the hyperlink is passed from the browser to the RLS, which passes it onto the
OSN before returning the resource’s location. In this way, the OSN updates its hit statistics

for a URL every time the user clicks on a hyperlink.

————

\
i i
CJ 5 i
EI GET URL URL URL URL i ¢ R
"_ >O # HE >
\ Locator ; A

C T O

-~ -~
~
~,
~
\,
N,
/’
4
.
R4
’
n’.
Lo
oo
-
~.
~o
m\.
-
-

Request Router for \\ Locator’s Request ," ‘-\ Oracle .;
the RLS N\, Router for the OSN Y " Server ,.’
R 7 \ /
~, ',' \ ,
~. R4 N\, 7
_\‘ > - -\. .
............... \“N._.—".
RLS OSN

Figure 17 - The Navigational Infons passed from the client to the OSN via the RLS

185

Chapter 5 - Architectural Design of the HOMINID Model

The infons are guaranteed to be reliable, as there is a direct one-to-one mapping between the
user clicking on the hyperlink and the OSN receiving the information from the RLS, with no
caching or proxy intermediaries in between that can distort the data. Each Locator in the RLS
can locate the appropriate Oracle Server using a RR with the URL pattern set to that of the -

OSN. In this way, the same URL is used end-to-end from the user to the OSN.

5.5.3.2 Characteristic Infons

Characteristic infons are provided by the resource owner whenever they register their resource
with the RLS. The infons should describe the characteristics about the content of the resource,
such as subject type, colour, etc., and the physical characteristics of the resource itself, such as

file size. The RLS can then pass these details onto the OSN once registration is complete.

The meta-data that should be stored is currently left up to the resource owner, who is free to
specify whatever characteristics of his resource that he feels is most appropriate. However, a
core set of meta-data will be specified in future research, providing the user with a set of
characteristics that should be common for all resources. It is envisaged that this set will be
based on the Dublin Core meta-data elements, which include elements such as Title, Creator,
Publisher, Type, Language, etc. (see DublinCoreWG, 1999). However, the user will not be
required to submit this information, only encouraged, as it may be a long and laborious
process that could discourage resource owners from using the RLS and OSN. In addition,
meta-data can easily be forged, and making its submission a requirement of registration would
only serve to encourage unreliable information. However, some meta-data can be

automatically inferred, such as file-size, content type, etc. Equally, it is in the resource

186

Chapter 5 - Architectural Design of the HOMINID Model

owner’s best interests to submit accurate information if they wish the resource to receive as
much attention as possible. The browser will be used by many users to judge the quality of a
hyperlink before giving the referenced resource any attention. This alters the selection
pressures on the hyperlinks in the user’s favour, making those hyperlinks that do have accurate
meta-data appear more reliable than those that do not. As such, resources without meta-data
will be presented to the user as such (Figure 16 showed them appearing highlighted yellow),
and so stand less of a chance of being clicked than those that do. In this way, permitting the

user to ignore meta-data acts in the user’s interests, rather than against them.

5.5.4 The OSN as a Platform for New Services

The OSN provides a database that contains information about the content on the web and its
patterns of usage, which can be retrieved at any time through a standard interface. As such,
how this information is presented to the user is dependent upon the client application, and is
not restricted to the example in Figure 16. For example, a browser can be configured to allow
the user to request the meta-data for each hyperlink, enabling them to see the owner of the
underlying resource, for example, rather than just a coloured hyperlink. Alternatively, the user
could request the usage statistics for the hyperlink, showing how many people have
downloaded the resource over time. In this way, the OSN provides detailed information on

the content in the resources, significantly enhancing the user’s navigational heuristics.

In addition, the OSN can be seen as a platform for new services from third parties that make
use of its information. For example, these services could show how the usage patterns for a

resource change over time as its content is updated, or as it migrates across servers. They

187

Chapter 5 - Architectural Design of the HOMINID Model

could also show how the number of hyperlinks that reference a resource change over time, and
compare it with others so that resource owners can see how much attention their resources

receive compared with those of their competitors.

The interface to the OSN has not been defined, but will be based on XML messages sent over
HTTP. The information that can be queried through this interface has so far only been
specific to an individual resource, using its URL as an index into the database. However,
future work will look at the viability of enabling each Oracle Server to serve collated
information on a range of resources according to complex queries. For example, the OSN, if
its information could be co-ordinated, could be used to determine the most popular resource in
any given subject; or who the most prolific web resource creator is; or what the biggest
resource on the web is, etc. As such, the OSN can be used not just to query the web, but to
measure it as well, providing a platform for new services that will be able to provide
information from across the web as a whole, rather than from a single server. In this way, the
OSN increases the web’s effectiveness by reducing its noise, and increases its value by

enhancing the services it can offer.

5.6 Summary

This chapter has described the HOMINID model’s architectural design, which enables it to be
integrated into the web without breaking the web’s existing architecture. Specifically, it has
presented the design of the Resource Locator Service, Temporal References, and the Oracle
Server Network, and described how they can integrate with the web through the Request

Router. This object provides transparent access to any distributed system, enabling the

188

Chapter 5 - Architectural Design of the HOMINID Model

services of the RLS and the OSN to become part of the web in a way that is completely
backwards-compatible with its existing architecture. In this way, the implementation of the
HOMINID model provides a solution to the web’s flaws that the research set out to solve.

Specifically, the model:

e provides a solution to link rot and the shrinking namespace of the web through the

RLS;

e introduces the dimension of time to the web with Temporal References,

e decreases the level of noise in the web by increasing the quality of its information and

enhancing its navigation mechanisms through the OSN.

The Request Router is the key to the implementation of the model, as it is the novel mediator
between the web’s architecture and the distributed databases of the RLS and OSN, ensuring
that the two systems fully integrate without requiring modifications to the web. Because it is
based on the CARP algorithm, which has been adopted and deployed by companies such as
Microsoft for use in its Proxy Server product, it is mature and stable enough for enterprise-
wide commercial deployment, and the variant defined for the RLS should be just as stable on
the web. The following chapter presents a prototype of the Request Router that has been

tested and measured to further validate its design.

189

Chapter 5 - Architectural Design of the HOMINID Model

As was said at the beginning of this chapter, due to time and resource constraints, the research
has had to focus on the RLS at the expense of the OSN, the design of which has been
described but not specified. As such, the next, and penultimate, chapter will focus exclusively
on the RLS. Specifically, the chapter will present a detailed specification of the RLS,
including the complete resource migration process; several protocols that have been developed
as part of its functional design; and a prototype that has been developed in order to test the

design and measure the performance of the concepts described.

190

Chapter 6 - The Resource Locator Service

6.

The Resource Locator Service

This penultimate chapter focuses exclusively on the specification and
implementation of the RLS, defining its operation, and presenting a fully
working prototype to validate its architectural design. New protocols that have
been developed as part of the RLS’s design are presented, along with
performance measurements of the prototype. In addition, services that use the
features of the RLS, such as load balancing and fault tolerance, have been

implemented to demonstrate its power and flexibility.

191

Chapter 6 - The Resource Locator Service

6.1 Introduction
In order to validate the design of the HOMINID model, and to show the effectiveness of the

Request Router, the RLS has been fully specified as part of this research, and a prototype built

to test its performance. This chapter therefore, focuses entirely on the specification,

implementation, and operation of the RLS.

The chapter focuses on how the RLS provides automatic transparent resource migration, and
how the number of Locators in the system can be updated. These functions have required the
development of two new protocols, which are defined in full. The chapter then presents a
detailed description of a prototype RLS that has been developed to validate its design.
Measurements taken from the prototype are presented before the chapter concludes with a

description of several new services that have been developed that use the RLS to demonstrate

its flexibility.

6.1.1 Protocol Development

The functionality of the RLS has required the development of two new protocols:

e The Resource Migration Protocol (RMP);

o The Locator Control Protocol (LCP).

Both protocols are based on HTTP, which enables the Locators to be based on existing web

servers rather than a completely new type of server. HTTP is an extensble protocol, and

192

Chapter 6 - The Resource Locator Service

provides three different ways in which its functionality can be extended (see Whitehead and

Wiggins, 1998):

e URL Munging — commands to the server are appended onto a URL’s QueryString (e.g.

http://www.server.com?commandname=value

e Overloading POST — HTTP’s POST method encapsulates parameters that are sent

from the client to the server using user-defined HTTP headers.

e New HTTP Methods — HTTP methods are the verbal part of the message that defines
what it does (such as GET or POST). New methods can easily be created, however,

that extend HTTP’s functionality.

Of the three approaches, adding new methods is the one that will be used for the RLS’s new
protocols. URL munging is perhaps the easiest to implement, but it is an inelegant solution
that can easily conflict with other URL munging schemes, and which overloads the semantics
of HTTP’s GET method (Whitehead and Wiggins, 1998). Using HTTP’s POST method to
introduce a new protocol is perhaps the most common approach that is used to extend HTTP,
but again it overloads the semantics of HTTP’s POST method, and it also has the drawback of
being a security risk. Most firewalls normally allow HTTP POST messages to pass through
unchallenged based on the assumption that the message is HTTP-specific, not part of some
undetermined protocol (see Cohen et al. (1998) for an in-depth discussion on the security risks

of overloading the POST method). In contrast, new HTTP methods use HTTP’s own rules for

193

Chapter 6 - The Resource Locator Service

extending its method set, and so can reuse its existing headers where necessary (Whitehead
and Wiggins, 1998). As such, the new protocols will use new methods and headers that are

defined according to the syntax and rules of HTTP version 1.1 (Fielding et al., 1999).

6.2 Migrating Resources with the Resource Migration Protocol

The Resource Migration Protocol is based on HTTP so that a resource can automatically
migrate across existing web servers without them even being aware of the migration process.
In this way, the RMP is completely backwards-compatible with all web servers. However,
basing the RMP on HTTP does present problems, as HTTP only provides limited file
manipulation support, authentication and querying, all of which are necessary if a resource is
to be migrated automatically. However, there is no other web-based standard that can be used

across all servers in a consistent, backwards-compatible, and reliable way.

Recently, however, a new set of protocols has been developed by the IETF that support full
file manipulation using standard HTTP. The Web Distributed Authoring and Versioning
(WebDAYV) protocol (Goland et al., 1999) is designed to allow remote authoring of resources
by extending the HTTP protocol. Complementary protocols are also being developed to
provide authentication and access control, and to allow querying of a web server, all based on
HTTP. These protocols are designed for group authoring of web resources, but some of the
features they provide can be used in the design of the RMP. This represents a novel
application of WebDAYV that its designers have not previously identified. As such, this section
discusses the suitability of WebDAYV for resource migration, and shows how it can be used in

the design of the RMP.

194

Chapter 6 - The Resource Locator Service

6.2.1 Applying the WebDAV Protocols to Resource Migration

WebDAV is designed to “...support efficient, scalable remote editing free of overwriting
conflicts” (Slein et al., 1998). It was designed to address the lack of such support in HTTP, so
that a defined set of standard functions could ensure interoperability amongst all web servers.
For the purposes of the RLS, these functions can be grouped into three broad categories (see

Slein et al. (1998) for a complete list):

e Security

e Safe File Transfer

e Server Querying

The following sub-sections describe the WebDAV functions specific to each of these

categories, and show how they can be applied to resource migration.

6.2.1.1 Security

WebDAYV is designed to enable remote distributed authoring of web resources. As such, it is
imperative that only authorized people are allowed to write to a resource. Equally, WebDAV
supports file locking on remote web servers, and so requires clients to be authenticated before
locks are granted. RFC 2518, the WebDAV RFC (Goland et al., 1999), states that existing
HTTP basic authentication (Franks et al., 1999) must not be used, as it is not secure enough,

and that HTTP Digest access authentication (Franks et al., 1999) must be used instead. As

195

Chapter 6 - The Resource Locator Service

such, WebDAYV also has a related protocol called the Access Control Protocol (ACP) (Sedlar
and Clemm, 2000), which provides greater access control to resources. The combination of

HTTP digest and the ACP enable web resources to be safely authored on web servers.

6.2.1.1.1 Application to Resource Migration

The same security concerns that WebDAYV has addressed also apply to resource migration.
Just as a client must be authorized before being allowed to write to a resource, so a client must
be authorized before being allowed to move a resource from one server to another. Moving a
resource without permission can be considered theft. Equally, moving a resource onto a server
that does not wish to host it can be considered trespass. As such, the client must be authorized
before they are granted the right to move the resource, and the destination must grant access

before hosting the resource. The ACP can be used to enforce these requirements.

6.2.1.2 Safe File Transfer

HTTP provides rudimentary file transfer features that enable a resource to be downloaded,
uploaded or deleted. However, distributed authoring needs more control than HTTP can
provide. For example, HTTP does not enable a resource to be moved, only copied (Fielding et
al.,, 1999). Equally, HTTP cannot lock files, and so suffers from the lost update problem
(Nielsen and LaLiberte, 1999), in which two or more parties updating a resource will
inadvertently overwrite previous versions, and thus lose any updates created by the other
party. WebDAV was designed specifically to overcome these problems, and does so by

extending HTTP to incorporate new methods for file locking, moving and copying.

196

Chapter 6 - The Resource Locator Service

6.2.1.2.1 Application to Resource Migration

A variation of the lost update problem also affects resource migration. For the process to be
truly transparent, the resource must be accessible at all times, even when the resource is in the
middle of migrating from one server to the next. With HTTP, however, a resource could
potentially be updated during the migration process, causing the wrong version to be updated

and migrated.

6.2.1.3 Server Querying

HTTP provides rudimentary querying of a web server, but only in relation to content
negotiation (Fielding et al., 1999). A client can request different versions of the same resource
according to the resource’s media-type, language, etc., or the client’s own capabilities.
However, there is no standard interface for querying a web server according to a resource’s
properties. For example, a client cannot determine a resource’s author, or its subject matter,

unless it uses a non-standard protocol on top of HTTP that both the client and server support.

WebDAYV resolves this by enabling a set of properties to be associated with a resource, using a
new HTTP method called PROPPATCH, and queried using a new HTTP method called
PROPFIND (Goland et al.,, 1999). An associated protocol, DASL (DAV Searching and
Locating (Reddy et al.,, 1999)) provides a new HTTP method, SEARCH, for explicitly
searching through these properties, enabling them to be fully queried, updated and deleted, all

using the ACP to ensure proper authorization.

197

Chapter 6 - The Resource Locator Service

6.2.1.3.1 Application to Resource Migration

Resource properties are important to resource migration, as they can be used by the destination
server to determine whether or not it wants to host the resource. For example, a server may
wish to deny a request to host a resource based on the resource’s author or subject. In
addition, the same properties férm the characteristic infons of the Oracle Server (see section
5.5.3.2). Equally, an automatic migration mechanism must automatically update a resolution
service. This can be achieved through treating each resource’s name/location mapping in a
Locator as a resource, with the name and location acting as properties of the resource. Thus,
updating a resource’s location within the Locator becomes a matter of updating the resource’s

properties within it.

6.2.2 Disadvantages of Using WebDAV for Resource Migration

The majority of resource migration protocols are used within distributed processing systems,
such as RM-ODP implementations (ISO/IEC, 1993). As such, these systems implement the
protocol using binary Remote Procedure Calls (RPCs), which are far more efficient and
opaque than the text-based messages of protocols based on HTTP. However, these systems
generally migrate objects or processes, which require sophisticated handling mechanisms to
ensure that the object’s code, data, and its current state are all migrated safely. In contrast,
web resources are far simpler, largely consisting of static HTML documents or images.
Objects and applets can be migrated, but the protocol described here provides no support for
migrating an object that is currently executing. Resources are therefore considered as simple
files during the migration process. It is, however, feasible for an executing object to be

migrated using another protocol in combination with the RMP. For example, Microsoft’s

198

Chapter 6 - The Resource Locator Service

.NET technology (Microsoft, 2001) provides a distributed component-based architecture that
enables its components to communicate using an XML-~based messaging format known as the
Simple Object Access Protocol (Box et al., 2000), which works over HTTP. As such, .NET
components could be migrated over the web using a combination of SOAP and the RMP.

This functionality, however, will have to wait for future research.

Another disadvantage of WebDAYV is that, although it provides MOVE and COPY methods
for moving anci copying a resource, these have not been defined for cross-server
implementation; that is, a MOVE, for example, is only defined for migrating a resource to a
new location on the same server. This limitation prevents these methods from being used in
the RMP, as WebDAYV servers will not support moving a resource onto a different WebDAV
server. As such, standard HTTP GET, PUT, and DELETE methods will be used to move a
resource. WebDAYV is used principally to protect a resource during the migration operation

(using LOCKSs and the ACP), and to update a resource’s and Locator’s properties.

6.2.3 The Specification of the Resource Migration Protocol

Despite its disadvantages, WebDAV and its associated protocols are ideally suited to
automating resource migration on the web. Because it is based on HTTP, it has the benefit of
allowing non-WebDAV compliant servers to be involved in the migration process (albeit
without the same security and negotiation features available to WebDAV-compliant servers).
This section describes the specification of the Resource Migration Protocol (RMP) used for

the RLS.

199

Chapter 6 - The Resource Locator Service

6.2.3.1 The Migration Process

The entities involved in the migration process are:

e The Migration Manager — oversees the whole migration process, ensuring the
availability of the resource at all times, and synchronizing the various stages of the
process and the other participants. The migration manager is any entity that wishes to
automatically migrate a resource, and can be a client, server, or even the resource

itself.

e The Source — the original server hosting the resource;

e The Destination — the server that the resource will migrate to;

e The Name Server — the resolution service entity, whose location properties for the
resource must be updated. For the RLS, this is the Locator, but the RMP is generic

enough to be used by other name resolution systems that support automatic updates.

A Message Sequence Chart (MSC), showing the sequence of messages for the RMP, is shown
in Figure 18, and described in the sub-sections that follow. Note how the Migration Manager
is the only participant allowed to act as a client in the whole operation, and how the Source
and Destination servers do not communicate with one another at all. The protocol could have
been implemented by allowing the Source and Destination servers to communicate directly. A

client could send a specially formatted MIGRATE message to the Source, which would then

200

Chapter 6 - The Resource Locator Service

begin the migration process. However, this would require enhanced functionality in both
servers, and so would not be backwards-compatible. Equally, the authentication details of the
client would be sent to the Source server, but there is no mechanism in HTTP for the Source to

forward them onto the Destination (Fielding, 1996).

The MSC shows a Migration Manager, which is used to manage the migration process. A
Migration Manager is any entity overseeing the migration operation, and could be, for
example, a dedicated server acting on behalf of the resource owner, a client, or an intelligent
agent wishing to migrate itself. The Managers acts on behalf of the resource owner (or
resource), and so already has the resource owner’s authentication details. Because it acts as a
client at all times, it is able to pass on the authentication details to the other entities involved in
the migration process, without requiring the details to be forwarded onto another machine.
The Migration Manager (also called the Manager, for brevity) should be seen as a dumb
participant, in that it must explicitly be given the URL of the resource at its Source (URLyource),
and the new URL, as it would appear on the Destination (URLss). These details can be
passed onto the Manager either through an API call (if the Manager is implemented as an
object on the same machine as the entity requesting the migration), or via a new HTTP
MIGRATE request message, if the entity requesting the migration is on a different machine to
the manager. However, the definition of a MIGRATE message has been left for future

research. The sub-sections that follow describe the operations in more detail.

201

Chapter 6 - The Resource Locator Service

Manager Source Destination Locator
1.LOCK URLpet
Authorization: digest
>
2. 200 OK
<
3.GET Resource-Name
>
4.302 Found
< Location: URLsource
5.LOCK URLsgource
>
6.200 OK
4
7.PROPFIND URLgource
>
8.200 OK
<
9.GET URLsource
g
10.200 OK
<
11.PUT URLpeut
)
12.201 OK
¢
13.PROPPATCH URLpen
»
14.200 OK
<
15.PROPPATCH Resource-Name
—>
16.200 OK
<
17.DELETE URLgouwcs
>
18.200 OK
<

Figure 18 - MSC for Resource Migration Protocol (assuming successful migration)

202

Chapter 6 - The Resource Locator Service

6.2.3.2 Access Control and Authorization

The migration process begins with the Migration Manager contacting the Destination in order
to ascertain whether or not the Destination is willing to host the resource. It does this by
sending a WebDAV LOCK message (message 1) to the Destination server for the resource
identified by URL4.. As the resource still exists on the Source server, there should be no
resource physically located on the Destination that is bound to this location. As such, the
Manager is performing a Write lock on a null resource. A mll resource is defined as “...a
resource which responds with a 404 (Not Found) to any HTTP/1.1 or DAV method except for
PUT, MKCOL, OPTIONS and LOCK” (Goland et al., 1999). In other words, a null resource
is one that does not physically exist on the server, but whose URL does (link rot can therefore
be seen as null resource creep). Locking a null resource has the effect of reserving the URL.
In this way, a write-locked null resource (or lock-null resource) ensures that no other user can

use URLges; until the Manager unlocks the resource.

The LOCK message also provides the Destination with the chance to authorize the resource
owner. The Manager acts on behalf of the resource owner, and sends authentication details to
the Destination server as an HTTP request header in the LOCK message. If the Destination
does not authorize the request, it returns a standard HTTP 40/ Unauthorized response message
and the migration process ends. Authorization can also take place prior to the LOCK request

using some other authorization scheme accepted by both client and server.

203

Chapter 6 - The Resource Locator Service

6.2.3.3 Safe File Transfer

The second stage of the process involves moving the resource from the Source to the
Destination in such a way that any client can access it at all times. To begin with, the
Manager contacts the resource’s Locator (message 3) to retrieve the current location of the
resource (i.e. to determine URLsource - Note that Figure 18 uses Resource-Name rather than
URL or URI, as the location can be any string). The Locator responds with the location

contained within a HTTP 302 Found redirect message (message 4).

Once the current location of the resource has been successfully retrieved, the Manager
contacts the Source and LOCKs the resource (messages 5 and 6). Locking the resource
ensures that it is not updated in the middle of the migration operation. The Manager must not
migrate the resource until it has been successfully locked. The Manager then sends a
WebDAV PROPFIND request to retrieve the properties of the resource (messages 7 and 8),
before sending a standard HTTP GET message to retrieve the resource itself (messages 9 and
10). The resource is copied to the Destination using a standard HTTP PUT message
(messages 11 and 12), using URLg.s as the new location for the resource on the Destination.
Once this has been accepted, the resource is physically located on the Destination, and ceases

to be in the lock-null state (Goland et al., 1999)

The resource is now physically located on both the Source and the Destination. The Manager
continues by sending the resource’s properties onto the Destination via a WebDAV

PROPPATCH request (messages 13 and 14). The properties contain meta-data such as the

204

Chapter 6 - The Resource Locator Service

resource’s subject, its author, copyright information, etc’. At thi stage, the Destination may
decide it cannot host the resource on content grounds; in other words, it will authorize the
resource owner and host their resources (using messages 1 and 2), but it cannot authorize the
content contained in this specific resource (for example, it may refuse to host resources about
a particular subject). Note that a PROPPATCH cannot be performed on a null resource, and
so the Destination only gets the chance to determine whether it wishes to host the resource
according to its content after the resource itself has been copied onto it. Although not optimal,
this method has the advantage of complying with WebDAV, ensuring backwards

compatibility with existing WebDAYV servers.

If the Destination does not wish to host the resource, it must return a HTTP 403 forbidden
response, and delete the resource. The Manager must then unlock the resource on the Source,
and the migration process will have ended once more. Note that the resource is still located on
the Source (which, at this stage, has no idea a migration operation is in progress), and the

Locator has not been updated, allowing clients to access the resource without problem.

If the Destination does permit the resource to be hosted, the Manager does not need to unlock
the resource on the Destination, as “once a PUT...is successfully executed on a lock-null

resource the resource ceases to be in the lock-null state” (Goland et al., 1999).

7 The complete content negotiation process will be the subject of future research.

205

Chapter 6 - The Resource Locator Service

6.2.3.4 Updating the Locator

Once the Destination agrees to host the resource, and sends a 20/ OK in response, the
Manager must update the appropriate Locator (or other name server). It does this by sending
another PROPPATCH message (message 15), with the resource’s Resource-Name as the
identity of the resource (i.e. its name), and URL4. as the property to be updated (i.e. its

location). Again, authorization must be performed by the Locator.

Recall that two copies of the resource now exist: one on the Source, and one on the
Destination. Only after the Manager receives a 200 OK from the Locator (message 16),
indicating the new location property has been received and processed, can the Manager send a
standard HTTP DELETE request to the Source, instructing it to delete the resource (message
17). Note that both HTTP and WebDAV define a DELETE method, with the WebDAV
method providing more control over what is being deleted, and its associated response
message (a WebDAV 207 multi-status response (Goland et al., 1999)) providing details about
Lock states. As such, the Manager should accept either the HTTP version (200 OK, 202
Accepted, or 204 No Content, (Fielding et al., 1999)) or the WebDAYV version of the DELETE

response. Once the DELETE response has been received (message 18), the migration process

is complete.

6.2.3.5 Resource Replication
The RLS has been designed to cope with replicated resources. Recall that the HOMINID
model treats a resource and its content as one atomic unit. As such, the name of a resaurce is

bound to the content that it encodes. With a replicated resource, therefore, although different

206

Chapter 6 - The Resource Locator Service

physical resources exist with the same name, the content contained within each replica is
identical. Thus, the name of the resource should be identical for all replicas, while the
location of the resource should be different for each replica. In this way, the name remains

consistent, while the name/location combination remains unique for each record in the

Locator’s database.

To implement this in the RLS requires only a slight modification to the Resource Migration
Protocol: After copying a resource onto the Destination, the Manager should send a
PROPATCH message to the Locator, informing it to add a new name/location mapping, rather
than update an existing one. Once this has been confirmed, the Manager must not delete the

existing resource. In this way, the resource has been safely replicated.

In order to support replicated resources, a Locator must ensure that its database can handle
multiple locations for the same resource name, and return a HTTP 300 Multiple Choices
message, rather than the default 302 Found message, when asked for the location of a
replicated resource. The 300 Multiple Choices message is a standard HTTP 1.1 response
message that provides a default location for the resource in the location header, and a list of
locations in the body (Fielding et al., 1999). In this way, the browser will, by default, simply
use the location provided in the location header, but other clients are free to use the alternative

locations of the replicas according to their own specific requirements.

207

Chapter 6 - The Resource Locator Service

6.2.3.6 Resource Migration using Non-WebDAV Compliant Servers

The above scenario is specific to resource migration across servers that are WebDAV
compliant, If a server is not compliant, however, it can still participate in the migration
process, but with less control than with a WebDAV server. For example, WebDAV servers
can use the Access Control Protocol to grant or deny access rights, whereas a standard HTTP
server must rely on HTTP authentication schemes. Equally, a WebDAYV server can read the
meta-data associated with a resource, and use this to determine whether it wishes to host the
resource or not. A HTTP server, however, cannot, and so must accept or deny the resource

based solely on whether or not the resource owner is authorized to upload resources®.

Because of the design of WebDAYV, a non-compliant server will still be able to communicate
with the Migration Manager, even though it does not recognize WebDAV methods such as
LOCK. In this case, the Manager will receive a HTTP 405 Method Not Allowed message
(Fielding et al., 1999), and can infer from that that the server does not support WebDAV. As
such, it can continue the process using standard HTTP commands only, but needs some way
of persisting the resource’s properties onto the non-WebDAYV server. To do this, the Manager
can make use of the fact that these properties are in XML format in the body of a WebDAV
PROPFIND message. The body of this message can be saved as an XML file on the
Destination, with the same name as the resource, but with PROP appended. When the

Manager needs to migrate the resource again, the Destination becomes the Source.

¥ Note that HTTP does contain a framework for content negotiation (see Fielding et al, 1999), which, along with
several other such frameworks (including Klyne, 1999; Holtman and Mutz, 1998; and Ohto and Hjelm, 1999),
will be examined in future research.

208

Chapter 6 - The Resource Locator Service

The first time the Manager contacts the Source, it uses a WebDAV LOCK message (see
Figure 18). As the Source is not WebDAV compliant, it will return a HTTP 405 Method Not
Allowed message again, informing the Manager it does not support WebDAV. The Manager
should then ensure it GETs not only the resource, but the associated XML property file as
well. If the new Destination is WebDAYV compliant, the property file can be embedded within
the body of a WebDAV PROPPATCH message. In this way, properties can persist across all

servers involved in the migration process, regardless of their compliance with WebDAV.

6.3 Reconfiguring the RLS via the Locator Control Protocol

As was said in section 5.3.6, traditional hash-routing functions are inherently brittle, and do
not adapt well to any changes in the configuration of the system in which they operate.
Although robust hash routing algorithms exhibit positive scaling, changes in the system’s
configuration must still be managed with care, as a Locator that cannot be accessed by a client

cuts off access to the resources that it manages.

When a new Locator is introduced into the RLS, it automatically invalidates //n (where n =
total number of Locators) of all name/location mappings managed by the RLS. Because the
Request Router automatically updates itself upon the reconfiguration of the system, once it
notices the existence of the new Locator, //n of all subsequent requests to the RLS will go to
the wrong Locator, unless the name/location mappings are migrated to the correct Locator
without the RR noticing. The automatic update feature of the RR is one of its greatest

strengths, but it also means that the RLS must carefully manage transparent record migration

209

Chapter 6 - The Resource Locator Service

(termed to reflect the fact that it is individual records in a Locator’s database that must

migrate) if it is to remain robust in the face of a changing configuration.

To manage this migration, a new protocol called the Locator Control Protocol (LCP) has been
developed as part of this research programme, that allows all Locators in the RLS to be
controlled such that records that are located in the wrong Locator can be corrected upon the
RLS’s configuration changing, without any RR noticing until after the correction has been

made.

6.3.1 The Record Migration Process

The LCP must ensure that a Locator can be added to or removed from the RLS transparently,
such that a RR is able to access all records throughout the system’s configuration change. The
key to achieving this is to enable both configurations to co-exist for a short period by copying
those records that must move to a new Locator before the existing configuration is deleted to
make way for the new one. In this way, all records are accessible whether the RR chooses to
use the RLS in its old configuration or its new one (i.e. with a Locator added or removed from

the system).

Resolving the location of a resource given its name is a time-critical process, where latency
must be kept to an absolute minimum. In contrast, however, changing the configuration of the
RLS is not time-critical at all; as long as all records are fully accessible throughout the
configuration change, there is no rush to add or remove a Locator (section 6.3.4 discusses the

latency and performance implications of the LCP). The only pressure is to ensure the process

210

Chapter 6 - The Resource Locator Service

is managed such that the integrity of the system is guaranteed, with all records accessible by
all clients throughout the configuration change. The following sub-sections show how the

LCP achieves this.

6.3.2 Managing the Addition of a New Locator

6.3.2.1 Overview

When a Locator is added to the system, a RR will only notice the change when it updates
itself, and the new Locator has adopted a domain name that complies with the appropriate
URL pattern. In this way, the adoption (or removal) of a RLS-compliant domain name acts as
a switch: with the domain name, a Locator is recognized by a RR as part of the RLS; without
it, the Locator is not recognized, and so will simply be ignored. As such, by first copying all
migrating records to their new locations before the new Locator adopts its new domain name
(Figure 19a), the LCP can enable both configurations to co-exist, ensuring that all records are

accessible both before and after the new Locator is recognized by the RR.

The protocol requires the new Locator to act as the record migration manager, coordinating
the migration process to ensure integrity of the records. While the migration is occurring, all
Locators can still perform their standard name resolution service. Once the new Locator
adopts a domain name that complies with the URL pattern, both configurations effectively co-
exist. Those RRs that have not updated will be able to access the records in their existing
location; those RRs that have updated, will be able to access the records at their new location
(Figure 19b). Once in this state, the old configuration can safely be deleted (Figure 19c¢),

causing those RRs that have not updated to receive an Error 404 when they try to access a

211

Chapter 6 - The Resource Locator Service

remapped record, which will prompt them to update and thus to recognize the new

configuration. In this way, no configuration updates need be sent to any RR throughout the

entire process.

e

PRt e DL LD T T TE

new
‘ locations

Figure 21a — migrating records are

........................ ~. -

Get resource’s
location

/" RRunaware of RR aware of
/ configuration change ~ configuration change

RR

» 3

Records
copied to

. emcmememememcmemem

New Locator, no
RLS domain name

)
-7
\\\\\\ ”,’// /
\ \, 4 ¥i
LN i ’

New Locator,
with RLS
domain name

copied to new locations

Figure 22b — RRs in either state can

access all records

e e o e e et 0 o e 6 4 e e e S - o = e e 8 e m o - a

°~

Check for new
Locator and
update
configuration
settings

-, rmemimimcmcmcmcmt——

! Request sent
to original
Locator

e mtm i mi—c .-

t

]

i |
i New Locator instructs

! existing Locators to delete
! the copied records
|

i

!

1

~. g

oo

Figure 23c - old configuration is deleted,
forcing all RRs to recognize the new
configuration

Figure 19a-c - Managing the Addition of a New Locator

6.3.2.2 Message Sequence Chart for Adding a New Locator

For the purposes of the following discussion, the following definitions are made:

Node - A Locator in the RLS.

Original configuration — the number of nodes and the distribution of records in the

RLS prior to the addition of the new Locator.

212

Chapter 6 - The Resource Locator Service

e New configuration — the number of nodes and the distribution of records in the RLS

after the addition of the new Locator.

e Stationary records — those records in a node that do not need to migrate.

e Mobile records — those records in a node that do need to migrate (i.e. the //z in each

node that must move).

e The Record Migration Manager —oversees the whole migration process, ensuring the
availability of the resource at all times, and synchronizing the various stages of the
process and the other participants. The record migration manager is the new Locator

that wishes to join the RLS.

e Source — a Locator that correctly stores its records in the original configuration, but

which must migrate some of them for the new configuration.

e Destination — the Locator that receives the mobile records that the source moves.

Figure 20 shows a Message Sequence Chart that presents the sequence of messages for the

Locator addition process managed by the LCP. The MSC is described in the sub-sections that

follow.

213

Chapter 6 - The Resource Locator Service

New Source Destination
Locator/RMM
1.REFRESHREC
config-change:addition
Determine and flag the
mobile records based on
the number of nodes in
the new configuration.
2.200 OK
Repeat for all
Locators in the
RLS and wait for
them all to return.
3. COPYREC
>
Copy mobile
records to their
new location in the
new configuration
4. PUTREC
6.200 OK 5.200 OK
Body = records destined for new Locator <
<
Wait for all
Locators to
respond
successfully.
Then register
appropriate RLS-
compliant domain
name with DNS
7.DELETEREC
scope: old-config-rec
>
Delete mobile
records
8.200 OK
N

Figure 20 - MSC Describing the Locator Addition Process in the LCP

214

Chapter 6 - The Resource Locator Service

When adding a new Locator, a RR will only experience problems if it is made aware of the
new Locator before the appropriate records have migrated. Equally, a record that is held in the
correct Locator as well as in an incorrect Locator will not cause the RR any problems, as it
will simply be unaware of the record in the wrong Locator. These facts form the basis for the

method that the LCP uses to manage the addition of a Locator to the RLS.

Prior to its addition to the RLS, the new Locator may have a domain name, but this must not
conform to the RLS’s URL pattern, so as to remain invisible to all RRs. The new Locator
(Locatoryey) is defined by the LCP as the record migration manager (RMM), and is
responsible for managing the migration of all appropriate records. As such, I/n of all records
in each Locator will need migrating, and so Locator ., will need to know the location of each
existing Locator in the RLS. This can easily be achieved by using a standard RR to calculate
the number of Locators in the system, and to then calculate their domain names using the
RLS’s standard URL pattern. Once this has been achieved, the migration process proceeds as

follows:

1. Locatornew must contact each Locator in turn and inform it that a new Locator is about to
be added. To do this, it sends each Locator a new HTTP request message with the new
method REFRESHREC and the new HTTP header config-change: addition. Locatorpew is
free to send this message to each Locator in turn, or to send it to as many Locators as it
wishes in parallel. The only constraint is that all existing Locators in the RLS are sent the

message.

215

Chapter 6 - The Resource Locator Service

The message requires the receiving Locator to update its records based on a changed
configuration of the RLS. The config-change request header is used to inform the Locator
of the addition or removal of a Locator, and to therefore recalculate its records based on
the number of Locators that will exist in the new configuration. As such, the receiving
Locator (i.e. Source in Figure 20) must flag each record in its database that is subsequently
found to belong to another Locator in the new configuration, as mobile. Note, however,
that the Locator must still act as if it exists in the old configuration for all client requests
that it receives, and only use the new configuration for determining which of its records

must migrate.

2. Upon successful recalculation, Source sends a standard HTTP 200 OK response message
back to Locatorew, which must wait for all Locators in the RLS to return the same
message. If any Locator sends back a response other than 200 OK, Locator,e,must abort;

that is, it cannot continue, and so cannot be added to the RLS until the problem is resolved.

3. Upon successful receipt of all 200 OK messages, Locatornewmust then send a new HTTP
request message with the new COPYREC method. This method requires no headers, as it
simply instructs the receiving Locator to copy its records that it has marked mobile to the

appropriate Locator that will host them in the new configuration.

4. Each Source Locator must send its records to the appropriate Destination Locator using the
new HTTP PUTREC method, with the records encoded as XML in the message’s body.

PUTREC requires the Destination Locator to accept the provided records, and add them to

216

Chapter 6 - The Resource Locator Service

its database. PUTREC differs from HTTP’s existing PUT method in that it allows the
receiving entity (i.e. Destination) to receive a collection of resources, and to store them as
individual records that do not require URIs. In contrast, HTTP’s PUT method, as defined
in RFC 2616, forbids more than one resource from being encoded in the message’s body,
and explicitly requires a server to store the single resource under the URI that is supplied
in the Request-URI of the PUT message. As such, using PUT at this stage of the LCP
would require each individual record to be sent in its own PUT message, and assigned its

own URI on the Destination Locator.

The XML format for the body of the PUTREC message is defined as follows:

o AddRec element — parent element that signifies the following records are to be

added.

® Rec element — child element of AddRec that encapsulates one complete record

e Name element — child element of Rec that encodes the name of the resource

e Location element — child element of Rec that encodes the location of the

resource

e TimeCreated — child element of Rec that encodes the time that the resource was

created, defined according to RFC 1123 (Braden, 1989).

217

Chapter 6 - The Resource Locator Service

An example PUTREC message is shown in Figure 21.

PUTREC HTTP/1.1

Host: Source.Locator.net

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" 2>

<L:AddRec xmlns:L="LCP:"

<L:Rec>

<L:Name>www.mobilerecordl.com/name/img.gif</L:Name>
<L:Location>www.resourcehost.com/location/img.gif</L:Location >
<L:TimeCreated>Sun, 06 Nov 1994 </L:TimeCreated>

</L:Rec>

<L:Rec>

<L:Name>www.mobilerecord2.com/name/doc.htm</L:Name>
<L:Location>www.resourcehost2.com/location/doc.htm</L:Location >
<L:TimeCreated>Sun, 26 Oct 2000 </L:TimeCreated>

</L:Rec>

</L:AddRec>

Figure 21 - Example PUTREC message

5. Upon successfully receiving and storing the records, the Destination returns a standard

HTTP 200 OK message.

6. The Source then sends a 200 OK message back to Locatory.,, but with the records that
Locatoryew must store encoded in the body of the response using the same XML format as
defined for the PUTREC message in 4. Upon receiving this, Locator,e, must store the

records in its own database.

Once each Locator has returned a 200 OK message, the RLS is placed in a juxtaposition

of two configurations: the original configuration that operates without Locatorpew, and a

218

Chapter 6 - The Resource Locator Service

new configuration that operates with Locator,ew, Because the records have been copied
rather than moved, both states are active simultaneously. As such, it is safe for Locatornew
to register a name for itself with the DNS that does conform to the RLS’s URL pattern,
and so make itself visible to all RRs (both configurations are equally valid, and so it does
not matter which state the RR perceives). It is envisaged that Locatornew uses the new
dynamic DNS protocol (Vixie et al., 1997) to achieve this, ensuring the process continues

automatically.

7. Locatorpew sends a DELETEREC message to each Locator with a scope header that has
the value old-config-rec. This informs each Locator to delete all the mobile records that
have been copied to a new Locator now that the RLS is in its new configuration. Those
RRs that have not updated will receive an Error 404 when they request one of these
records, but this will simply force the RR to update. Once it does this, it will be aware of

the new system configuration, and will be able to access the records at their new position.

8. Each Locator responds with a 200 OK message. Once all 200 OK messages have been
received, the RLS is safely in the new configuration with the new Locator added, and the

LCP has ensured that all records have been fully accessible at all times.

219

Chapter 6 - The Resource Locator Service

6.3.3 Managing the Removal of an Existing Locator

6.3.3.1 Overview

Removing a Locator requires a different approach as deleting its RLS-compliant domain name
may leave a hole in the sequential numbering of the URL sequence, confusing the RRs. The
process begins when the detaching Locator (Locator setach- coloured black in Figure 22), acting
as a RMM, instructs all other Locators in the system that the configuration is about to change,
thus causing them to copy the records that must migrate to their new locations. Note that
some of the records will be copied onto Locatorgeach, €ven though it is about to leave the
system (Figure 22a). Once this is complete, Locatordetach remains in the RLS, and instructs the
last Locator in the sequence (Locator,ss— coloured grey in Figure 22) to detach itself from the
system, even though Locatory,s is not the one that wishes to leave (Figure 22b). In this way,
the RLS shifts to the new configuration, with the existing configuration still operational (note
that the RRs that have not updated may attempt to reach Locator,g, but will not receive a
response; this will cause them to update automatically, however, thus moving them to the new

state).

Once the new configuration has been reached, Locatorgench Will instruct the (now removed)
Locatorps to delete all of its records, before copying its own records over to make both
Locators mirrors of one another. In addition, Locator,st Will also be given the same domain
name as Locatorgench, making the two Locators identical clones (Figure 22c). Once this
happens, Locatorgetch is free to detach itself by removing its IP address from the DNS entry

for its domain name, leaving the RLS in the new configuration. Again, the process of

220

Chapter 6 - The Resource Locator Service

removing a Locator requires no synchronization messages from any Locator, as all RRs will

automatically update themselves.

e mem et .

- ~ - ~,

s \'\' /" RR aware of RR unawareof s 7 >
{ ‘' [configuration configuration \" H 3
i Getresource’s change change i i
location i !
! !
(]] i i
i !
I i i
| []
i]
H !
4 i i
]
i # j
/11 Request ' ! N !
/| timesout! ! <N \:: ~ :
~
’o i el VNN ;
\j ! : 7 \ NN i
P A — A Y
] .
.]
i !
i !
i Last Locator |
i leaves the : !
' RLS H
-,'
----------------------------- ", ‘\h—u—u -— -
Figure 4a - Detaching Locator Figure 4b - Last Locator leaves Figure 4c - Last Locator and
instructs other Locators to copy the RLS first, forcing all RRs to detaching Locator are cloned,
their records to the new locations update before detaching Locator leaves

the RLS

Figure 22a-c - Managing the Removal of an Existing Locator with the LCP

The following discussion and the MSC in Figure 23, describe the removal process in more
detail, and define the messages used by the LCP that implement it. Note that the definitions

given for section 6.3.2 are still valid.

221

Chapter 6 - The Resource Locator Service

Detaching Locator,
Locator/RMM Locatorast Locatorg dest
1.REFRESHREC
config-change:removal
Determine and flag the
mobile records based on
the number of nodes in
the new configuration.
2.200
Repeat for all
Locators in the
RLS and wait for
them all to return.
3. COPYREC >
Copy mobile
records to their
new location in the
new configuration
4. PUTREC
P
5.200 OK
<
6.200 OK
«
Wait for all
Locators to
respond
successfully.
7. DETACH
’
Delete RLS name
8.200 OK
location: NewName
9. DELETEREC
scope: old-config-rec »
Delete old configuration
records that do not belong to
this Locator in the new
configuration
10.200 OK
=

11. DELETEREC
scope: all-rec

>

12.200 OK

r Delete all records

Figure 23 - MSC for Removing a Locator (continued on following page)

222

Chapter 6 - The Resource Locator Service

Detachi
LocatorRMM Locatorias Locators. Locatorgest
13.PUTREC
' g
14.200 OK
<
15. ATTACH Request-uri >
16.
< 200 OK
Delete RLS
name and exit
system

Figure 23 - MSC for Removing a Locator (cont.)

6.3.3.2 Message Sequence Chart for Removing an Existing Locator

The Locator that is about to leave the RLS, Locato?gewach is defined by the LCP as the Record
Migration Manager (RMM). As the RMM, it must coordinate the process of removal,
ensuring that all records in all Locators are accessible by clients throughout the entire process.
It must begin by calculating the domain names of the other Locators in the system by using its
RR, and then determine the last node in the system, Locator.s; Once this is done, the removal

process proceeds as follows:

1. Locatorgeach sends a REFRESHREC message to each Locator in the system, but this
time the config-change header is set to removal. Each Locator, upon receiving this

message, must decrease the number of nodes that it thinks the RLS has by one, and

223

Chapter 6 - The Resource Locator Service

recalculate the correct location for its records using the RR, based on this new number.
Again, the Locators must assume that the original configuration still persists for any

client requests that they receive at this stage.

2. Upon success, each Locator will return a standard HTTP 200 OK message.

Locatorgetach must wait for all Locators to return 200 OK before continuing.

3. Locatorgetach sends a COPYREC message to each Locator, instructing them to copy
their mobile records to the Locator that will host them in the new configuration
(Locatorges). Note that all records in Locator;,¢ will need to be copied, as this will not

exist in the new configuration.

4. Each Locatorg, sends a PUTREC message to the appropriate Locatordest with the
contents of its mobile records held in the body of the message (see Figure 21). Upon

receipt, Locatorges must store the records in its database.

5. Locatordest sends a HTTP 200 OK confirmation response back to Locatorge.

6. Locatorsc sends a HTTP 200 OK confirmation response back to Locatordetach, Which
must wait for all Locators to send back the same message before it can proceed. If one
Locator does not return a 200 OK, Locatorgetach must send a new HTTP ABORT
message; every Locator receiving this must place itself back in the ‘original

configuration, by deleting all newly-copied records from its database.

224

Chapter 6 - The Resource Locator Service

7. Upon receipt of all confirmation messages, Locatorgeach issues a new DETACH
message to Locatory,s, ordering it to detach itself from the system. Locaton,s does this
by removing its RLS-compliant name from the DNS. Upon doing this, the RLS moves
to the new configuration. Those RRs that are not aware of the change will send their
requests to the wrong Locator, and will receive an Error 404. This will cause them to
automatically update to determine the correct number of nodes, whereupon they will
discover that the RLS is in a new configuration, with one less node than they had
assumed. The RRs will then update the number of nodes they believe the RLS to have,
and all new requests will be routed to the correct Locator. Thus, the RLS safely moves

over to the new configuration without preventing clients from accessing any records.

8. Locatorist responds to the DETACH request with a HTTP 200 OK message that
contains a Jocation header, informing Locatorgencn of the name or IP address that
Locatorgetach should use in future communication with Locatorag (this is required as the
RLS-compliant name of Locatorj,¢s Will no longer be valid, and Locatorgetach Will not
have any other name with which to identify Locator,y). Future versions of the
protocol should include a defer-until header, which gives Locator;, time to delete its
RLS-compliant domain name. The header should specify the time by which Locatoryas
will have removed its RLS-compliant name. However, this disconnected feature of the
protocol has not been fully defined at this stage of the research, and will be left for a

future version (see section 7.3).

225

Chapter 6 - The Resource Locator Service

9.

10.

11.

12.

13.

14.

Locatorgetach sends a DELETEREC message to all other Locators apart from Locatoriast
with a scope header that has the value old-config-rec. This informs each Locator to
delete all the mobile records that have been copied to a new Locator now that the RLS
is in its new configuration. Locatorgench must also delete its own mobile records that

have been copied to other Locators.

Each Locator responds with a 200 OK message. Once all Locators have returned 200
OK, the RLS is in the new configuration, with all records in their correct Locators, and
no duplicates in existence. However, it was Locatorgench that wished to leave the
system, and not Locatorny, and so the final messages are required in order for

Locatorgetach to leave the RLS, and Locator, to reattach itself.

Locatordetach sends a DELETEREC message to Locatory,g , but with a scopeheader that

has a value of all-rec. This instructs Locator.s to delete all records within its database.

Locatoriast responds with a 200 OK message.

Locatorgetact, then sends one or more PUTREC messages to Locator,st containing all of

the records that Locatorgetuch currently manages.

Locatorist stores these records and returns a 200 OK message. LoCatOliewncn and

Locatoriast are now mirrors of one another.

226

Chapter 6 - The Resource Locator Service

15. Locatorgetach sends an ATTACH message to Locatori with a Request-URI value of the
RLS-compliant domain name of Locatorgench. Upon receipt, Locator,st must register
this name as an alias to itself. As soon as it does so, Locator),s is part of the RLS once
more, but not as the last node in the system. The domain name that Locatorgeiach uses
now identifies both Locatorgeach and Locatorjs, both of which are mirrors of one

another.

16. Locatoriast sends a 200 OK message back to Locatorgeach, Upon receipt of this message,
Locatorgetach must remove its RLS-compliant domain name from the system. Once it
has done so, it has officially left the RLS, leaving the RLS in the new configuration,

with the appropriate Locators still members of the system.

6.3.4 Performance Implications of the LCP

Changing the configuration of the RLS is not a time-critical process, as the name resolution
service provided by the RLS is unaffected throughout the change. However, the change
should still occur in a reasonable time-frame, and with a reasonable amount of network traffic,
and so this section presents an estimate of the order of time that will be needed for a new
Locator to be added the system. Note that no estimations are provided for removing a

Locator, as the operations are very similar, and so the time taken will be of a similar order.

227

Chapter 6 - The Resource Locator Service

The addition of a new Locator involves two steps that could significantly affect the time taken

to update the system:

¢ Determining which records need to move;

e Physically moving the records.

The other steps involve data manipulation, such as deleting records, which will not negatively
affect the scalability of the design or the time taken to change the configuration, and so will

not be considered in the following calculations.

The first step involves every record in the system being processed by a RR whose node
configuration is set at one node higher than its current value (i.e. set ton + I). The time taken
to do this can be significantly reduced if each Locator works in parallel with its peers,
processing only the records contained in its own database. This is how the LCP operates. As
such, ignoring the network overhead of the LCP, the time taken for step one will be

approximately:

Rt#
n+1

where R is the total number of records in the system, and ## is the time taken to process one

record. Thus, for the same R, the time will decrease with the number of Locators in the

228

Chapter 6 - The Resource Locator Service

system. Section 6.4.5.4 provides an example of the time taken based on figures obtained from

the prototype RLS.

The time taken to complete the second step, however, is dependent upon the number of
Locators in the system, and the number of records. When a new Locator is added to an #-node
system, the records that are re-mapped will be evenly distributed across all Locators in the
RLS (Thaler and Ravishankar, 1998). As such, each Locator will evenly distribute 1/(nt1) of
its own records (which represent 1/n of the total number of records in the system) to the n
other Locators in the RLS (including the new one). This results inz Locators broadcasting to
n Locators (including the newly added one), resulting in the propagation of n° messages. As
such, the number of messages that this step generates increases with the square of the number
of Locators, which could constrain the size of the system. However, the total number of
messages, m, is limited by the number of records that are invalidated, as clearly there cannot

be more record-carrying messages than there are records to move. Thus:

Once m reaches this limit, the number of messages will decrease as more Locators are added,

improving the scalability of the design markedly.

As such, the number of messages that are broadcast can be controlled by balancing the number

of records in the system with the number of Locators. Furthermore, as section 6.4.5.4

229

Chapter 6 - The Resource Locator Service

demonstrates, the time taken to add a new Locator is bounded by Rp, where p = the time taken
to hash one record with only one Locator in the system. That is, once m has reached its limit,
the time taken to add a new Locator becomes independent of the number of Locators in the
system. This is an important result, as it proves that the scalability of the system depends only
on the processing power of the machines performing the hash routing algorithm, and not on
the configuration of the system itself. Furthermore, the LCP can also be optimised so that it
broadcasts messages in parallel across Locators according to bandwidth available and Locator
performance, cutting the time it takes to broadcast the messages. In addition, each record will
only be of the order of 150 bytes (assuming an average of 50 characters each for the name,
location, and time of creation values), resulting in a relatively small amount of data that must
be transferred regardless of the number of messages. Finally, it is worth reiterating that a
configuration change is not a time-dependent task, as the RLS is fully operational throughout
the change, and it will not happen often, as the configuration of the RLS should remain stable
for relatively long periods of time. As such, the design of the RLS is such that network
overhead never becomes a limiting factor, whatever the number of Locators in the system.
The proof of this is provided in section 6.4.5.4, which presents sample calculations illustrating
the order of time that is required to add a new node to a system using a variety of different

configurations.

6.4 A Prototype Resource Locator Service

In order to validate the design of the RLS and the RR, a prototype has been built and tested as

part of this research.

230

Chapter 6 - The Resource Locator Service

The prototype Resource Locator Service comprises:

e a small network of Locators;

¢ a Request Router;

e a HTTP proxy server;

e amanagement interface.

Figure 24 shows the architectural design of the prototype RLS. The design differs slightly
from the architecture presented in section 5.3.4 (see Figure 14), as the proxy server retrieves
the resource from the origin server, rather than the client. However, the RLS’s architecture
does not specify where the RR is hosted, or the semantics of the RR’s host, as these will
change according to where the RR is hosted. As such, using the proxy server to retrieve the
resource simplifies the implementation considerably, and because the proxy is not placed

under a heavy load, the performance of the system remains unaffected’

The following sub-sections provide more details about the implementation of each component

in the prototype, while section 6.4.5 presents performance measurements that were taken to

validate its design.

® Note that the performance would be affected if many clients used the proxy, as it is not a scalable design.

231

Chapter 6 - The Resource Locator Service

e
.

Proxy Server - <.

containing e O O T
Request Router Vi ,
\

1. GET www.anyserver.com/img.gif 2.GET... Locator
» t
4. Error 302 Found

<
l l 5. GET www.ServerA.com/img.gif #
8. 200 OK - Name Address
Client www.anyserver.com www.ServerA
fimg.gif .com
7.200 OK Locator’s Lookup Table
6. GET
www.ServerA.com/img.gif

— Resource Name = www.anyserver.com/img.gif
@ Resource Location = www.ServerA.com/img.gif

www.ServerA.com

Figure 24 - Architectural Design of the Prototype RLS
6.4.1 A Prototype Locator

The Locator has been designed as a web server using Microsoft IIS on NT 4 Server, which
uses Active Server Pages (ASP) to implement a Locator’s functionality through integration
with a Microsoft Access database via ODBC. The database stores the following for each

resource:

e Resource’s name (this can be any string).

e Resource’s current location (this must be a URL).

232

Chapter 6 - The Resource Locator Service

e Resource’s time of creation.

e Sequence Order (used for load balancing purposes; note that this is not part of the

functional design of the RLS, but has been included in the prototype to demonstrate

some applications of the RLS).

The same resource name can reference multiple entries in the database, as each resource may
have multiple locations (i.e. replicated resources) and multiple times of creation (i.e. when a

resource’s content is changed but its name remains unchanged).

When a Locator receives a standard HTTP request from a client, it looks up the resource in its
database. If it contains the resource’s name/location mapping, it returns a HTTP 302 Found
response message; otherwise it returns a HTTP Error 404 Not Found error message. In this
way, a client can communicate with the RLS transparently, providing full backwards

compatibility.

If the URL of the requested resource was encoded as a Query String, or if the new HTTP
request header authoritative-lookup is used (see section 5.3.5.1), the Locator performs an
authoritative lookup, using the RR itself if it cannot locate the resource in its own database to
ensure the client has reached the correct Locator. An authoritative lookup is guaranteed to

locate the resource’s name/location mapping, provided the resource is registered with the RLS.

233

Chapter 6 - The Resource Locator Service

If the Locator receives a HTTP request with a HEAD method, it will simply return a HTTP

200 OK response. This is used so that RRs can safely query for the existence of a Locator.

The database can be queried using standard WebDAV PROPFIND messages'®. The
PROPFIND method allows a resource to be queried according to its attributes. In this way,
each name/location mapping (and corresponding information) in the Locator is treated as a
resource, enabling the location of managed web resources to be returned according to their

name, location or time of creation.

Finally, the database can be updated automatically and remotely using the Resource Migration
Protocol and standard WebDAV and HTTP commands. Due to time and resource limitations,
temporal references have not been included in the prototype, but their implementation will not

be difficult, and will be left as future work.

6.4.2 A Prototype Request Router

The Request Router is perhaps the most important part of the system, as it has to integrate into
the web’s existing architecture. To do this, a Request Router object has been created in C++
and embedded into a simple HTTP proxy server. Any user who wishes to use the RLS can

configure their browser to use the proxy server, enabling all legacy browsers and servers to

use the RLS transparently.

'® The prototype Locator has been designed to support only a minimal subset of the WebDAV PROPFIND
semantics, and so although it supports PROPFIND, it does not implement it according to the WebDAV
specification.

234

Chapter 6 - The Resource Locator Service

The Request Router object can be deployed on any system where a developer has source code
access. However, it is trivial to turn the object into an ActiveX control, in which case it can be
embedded into any Microsoft Windows application that supports ActiveX controls (for
example, Internet Explorer, the Microsoft Office suite of products, or any application that
supports scripting). For more cross-platform support, the component could have been written
in Java and turned into a JavaBean, enabling it to be deployed on any platform. However, for
the purposes of the prototype, it need only exist on a Microsoft Windows NT platform, and so

Microsoft Visual C++ was chosen as its development language.

6.4.3 A Prototype Management Interface

A management interface has been developed for the prototype system (Figure 25) that
provides a user interface for managing resources on web servers, and for demonstrating certain
features of the RLS and the RMP. The interface acts as the Migration Manager, imgementing
the RMP and co-ordinating messages amongst the web servers being managed. It will work
with any web server, whether it is WebDAV compliant or not, so long as each grants write
access to the Manager (username and password settings can be stored within the management
interface). Two of the servers in the prototype use WebDAYV, and two do not. None of them
are aware of the resource migration protocol, or that they are involved in a migration

operation, demonstrating the backwards-compatibility of the service.

235

Chapter 6 - The Resource Locator Service

#z The Web Migrator

File Resource Transfer Demonstrations Tools Help

Addrass W HdougalMAT /Souce

5. @ Web Servers | Transter Option | Destration i
=2 hitp / ted see plym ac uk/Mikedemo/ Unmanaged
¢ 2} _private Linmanaged
= Source Unmenaged
< - L MobileCode £ Fesourcas fm Unmanaged
-1 LondBelancingSource 2] Resourced him Inmanaged
v 3 imanes £]zearchhtm Unmanaged
23 FaulToleranceSource A TEET jpg Unmansged
& 33 Dest £ MobileCodafens . Unmanaged
=28 http fdougal /IMAT/
o3 Namespace
wd LosdBelencing
=) Dast
-
< MabileCode
+ i) Repiice
+ - htto {/douqal/ishtatact/

Extt

Figure 25 - RLS Management Interface
6.4.4 Implementing the Resource Migration Protocol

The implementation of the protocol uses Microsoft’s OLE DB Provider for Internet Publishing
(Microsoft, 2000b). This is an API that allows clients to manipulate resources and properties
on remote servers using WebDAYV messages. As such, the API handles all WebDAV message
processing, allowing the development work to focus on the implementation of the Resource

Migration Protocol.

The Management Interface provides a Windows-explorer like user interface that shows the
directories of the managed web servers as if they were part of the local file system. Resource
migration is handled through a drag and drop interface, which enables the user to drag a web
resource from its source directory on one web server, and drop it onto a destination directory

on another server, in the same way that files are copied and moved using Windows Explorer.

236

Chapter 6 - The Resource Locator Service

The migration process is managed by the Management Interface using RMP, which ensures
that the correct Locator is updated automatically, such that any client using the proxy server is

able to access the resource at all times throughout the migration operation.

6.4.5 Performance

The prototype RLS was designed to functionally validate the design of the RLS, and it has
achieved this by showing how standard web resources can be transparently migrated across
any existing web server, without the modification of any client. In addition, the prototype has
also been instrumented to provide performance measurements of the RLS. The results of

these measurements are presented in the following sub-sections.

6.4.5.1 Network Overhead

Network overhead will always be two extra HTTP messages (one request and one response),
regardless of the size of the system. As such, network overhead on its own has not been

measured, as it does not impact on the scalability of the system.

6.4.5.2 CPU Overhead

The Request Router was tested on a Pentium Pro 200MHz with 64MB RAM, a Pentium III
400MHz with 128MB RAM, and an Athlon 1100MHz with 128MB RAM. The RR was
designed so that the number of nodes it believed existed within the RLS could be manually
set, and instrumented to enable it to measure the length of time it took to identify the correct
Locator. The results are presented in Figure 26, which clearly reveals the linear relationship
between time and the number of Locators. The results show that for small numbers of

Locators, the time taken is insignificant, and that even with more Locators, the time taken is

237

Chapter 6 - The Resource Locator Service

still small. As such, even with a relatively slow machine such as the Pentium Pro 200MHz,

the RR can determine the correct Locator from a 10,000-node configuration in only 0.35

seconds.
—o—fthon Request Router Performance
+— Pentium Il
400MHz
Pentium Pro 100 T
200MHz
10 —
£ T
T L
= =
o 1
Q y
L .
@F /
o 0.1
=
= o
0.01 n
0.001
1 10 100 1000
Athlon 1100MHz 0.007 0.071 0.718 7.402
Pentium IIl 400MHz 0.01 0.14 1.51 16.14
Pentium Pro 200MHz 0.03 0.35 3.65 37.404

In addition, the prototype RR was designed for experimental purposes, and is non-optimal.
Specifically, it rehashes every Locator URL for every request that it routes, but unless the

number of Locators changes, these hash values will remain static. As such, a more optimal

Number of Locators (x1000)

Figure 26 - Performance Results of the Prototype Request Router

238

Chapter 6 - The Resource Locator Service

design would cache the hash values in memory, and only rehash them when the configuration

changes, thereby drastically reducing the length of time it would take to locate a Locator.

6.4.5.3 Total System Overhead

The total overhead introduced by the system was measured to provide a real-world indication
of the system’s performance. To do this, the time taken to visit the homepage of three
different web sites (www.google.com, www.lycos.co.uk, and www.yahoo.com) was measured
using a standard browser and no RLS. Each site was visited 25 times, with the browser’s
cache deleted each time. The browser was then connected to the RLS via the proxy server,
and the same sites were visited 25 times again. The experiment was run using an Athlon
1100MHz PC with 128MB RAM, which acted as the proxy server with an embedded RR, and
a Pentium Pro 200MHz PC with 64MB RAM, which encoded the functionality of the Locator.
Both machines used Microsoft Windows NT 4 Server, and were connected via a 10Mbps

Ethernet LAN.

For this experiment, the number of Locators was varied in the RR from one to 1 million.
However, to avoid having to physically deploy 1 million Locators, the proxy server was
configured so that it always forwarded the request onto the same Locator, regardless of which
one the RR identified. The Locator would then return an Error 404 message, which would
cause the proxy server to redirect the request to the origin server, from where the resource
would ultimately be retrieved. Because the overhead for the RLS is the same whether the
resource is found or not (i.e. one extra HTTP request and one extra HTTP response), the

measurements of the overall system overhead remained unaffected. In addition, this

239

Chapter 6 - The Resource Locator Service

configuration removed any differences between servers that would have been introduced had

each Locator been deployed on a separate physical machine.

The results presented in Table 6 show the time taken to visit each web site without the RLS,
and the time taken to visit it with the RLS, with one, 1,000, 10,000, 100,000, and 1,000,000
Locators in the system. Each value is the 10% trimmed mean of 25 trials, with the overhead
calculated by subtracting the mean from the value obtained without the RLS. The results
show the overhead introduced by the RLS varies from 0.7 to 0.87 seconds with only one
Locator in the system; from 1.42 to 1.58 seconds with 100,000 Locators; and from 8.10 to
8.33 seconds with one million Locators in the system. The results are consistent across the
different web sites, with the overhead introduced by the RR only becoming noticeable with

100,000 Locators, and becoming impractical on 1,000,000 Locators.

www.google.com www.lycos.co.uk www.yahoo.com
(Standard download time = | (Standard download time | (Standard download time =
3.660 seconds) = 7.610 seconds) 6.192 seconds)
Number | Download | Overhead | Download | Overhead | Download Overhead
of time (seconds) | time (seconds) | time (seconds)
Locators | (seconds) (seconds) (seconds)
1 4.363 0.703 8.477 0.867 7.063 0.871
1000 4.370 0.710 8.483 0.873 7.070 0.878
10,000 4.434 0.774 8.546 0.936 7.135 0.943
100,000 5.081 1.421 9.190 1.580 7.775 1.583
1,000,000 | 11.765 8.105 15.985 8.375 14.524 8.332

Table 6 - Results of the Overhead Introduced by the RLS

The results show that the RLS introduces negligible overhead for a configuration of 10,000

Locators or less. However, it should be noted that neither the design of the RR or the proxy

240

Chapter 6 - The Resource Locator Service

server are optimal, and that significant performance improvements can easily be made. Such
improvements are expected to enable the deployment of a 100,000 Locator system with

negligible overhead.

6.4.5.4 The Cost of Changing the Configuration

As section 6.3.4 discussed, changing the configuration of the RLS incurs a performance cost.
Using the figures above, this cost can now be calculated. The following scenario represents a
new Locator being added to a RLS designed for today’s web. As such, the total number of
resources managed, R, is 1 billion (109), and the number of Locators, n, in the original

configuration is 999. Recall that changing the configuration comprises two steps:
e Determining which records need to move;

e Physically moving the records.

The first step takes —@1— seconds. From Figure 26, t# takes 0.007 seconds for an Athlon
n+

1100MHz machine, which would lead to a total time of:

10° x 0.007

1000 = 7000 seconds (or 1 hour 57 minutes, 7 seconds).

241

paBeuepy sadoinosay Jo JequinN pue STy Jo uoneinByuo) o} Buipioaay juss seBessap jo Jequinp - 2z aanbig

(u) JaquinpN 10}e207

N \
PSSP LPLLE Sy E L o
FFIFSLSFFFSFFLHFSIT & o
“ Lne Ui i e) e | s | | 2 Lo | e | ne | e | e | s | e | e | | | o | v L | e | e | e | e Ly | e | plower | e | oo Lome | vr | e Do b e Lo Lo Lo Lo 1oL il o
- 000002
| 000007
2043001 | | @
20+300'L 8- | 000009
60+300'L —&—| | »
| 3
000008 =
+ 000000}
SRR o A S AN R A S £ O A A S S B 2 5 DS O e it i ot o B OOOOONF

pabeuely saounosay pue uoneinbiyuos o3 Buipioooe sabessapy

Chapter 6 - The Resource Locator Service

That is, each Locator takes 1 hour 57 minutes to calculate which of its 1 million records need
to migrate (keep in mind that all Locators perform this step roughly in parallel with one

another).

The cost of the second step is dependent upon the number of records in the system and the
number of Locators, with the number of messages generated increasing with the square of the
number of Locators, until they reach the number of invalidated records, after which they
decrease. This is illustrated in Figure 27, which shows the number of messages that are
generated according to the number of Locators in the system, for different numbers of
managed resources. Thus, for today’s web with 10° resources, a 1,000 node system generates

1,000,000 messages (n°). The number of records invalidated is therefore:

R _10°
n+1 1000

= 1,000,000 records

Recall from section 6.3.4 that each record will be approximately 150 bytes in size; thus, total
data transfer = 15MB. How fast this takes to complete depends entirely on the optimisation of

the LCP, with messages sent in parallel substantially reducing the length of time required.

However, assuming the worst case scenario of linear operation (i.e. where only one of the one

million messages is in transit at any one time), and a data transfer speed of 1.544 Mbps'’

' T.e. a standard T1 connection (Brebner, 1997); in contrast, the DNS uses 200Mbps of bandwidth (Kosters,
1999)

243

Chapter 6 - The Resource Locator Service

between Locators, the total time taken to transmit all one million messages (ignoring protocol

overhead and converting bytes to bits) is:

1,000,000x150x 8
1,544,000

= 777.20 seconds, or 12 minutes 57 seconds.

Thus, the total time taken to complete the addition of a new Locator is only 2 hours, 10

minutes, 4 seconds, which is entirely acceptable.

However, as can be seen from Figure 27, this is actually the maximum number of messages
that could ever be generated for a system managing 10° resources. For example, if the number
of Locators in the new configuration is 3,500, then the number of generated messages that
must be broadcast comes down to approximately 285,714. Using the same figures as the

previous example, the total time to transmit these messages is:

285,714x150x 8
1,544,000

= 222 seconds, = 3 mins, 42 seconds

However, the total time taken for the first step would then increase. FromFigure 26, the time
taken for the Athlon 1100 MHz to calculate t# can be calculated as 0.0252 seconds (using the

gradient of the slope). Thus, the time taken to complete step 1 would be:

10° x0.0252
3500

= 7200 seconds = 2 hours.

244

Chapter 6 - The Resource Locator Service

The total time would then come down to 2 hours, 3 mins 42 seconds, a saving of 6 minutes 22

seconds.

In fact, the two steps balance each other out, with the total time required to add a new Locator
converging on 1 hour 59 minutes and 8 seconds regardless of the number of Locators in the
system'? (see Figure 28). The reason for this is that the total time taken (i.e. the sum of the
two steps) converges on Rp (where p = time taken to hash one record with only one Locator in
the system) as n increases. This can be illustrated by writing the sum of the two steps

together:

_R# b R _ R R
n+l d n+l n+l (n+1)d

+
I
I

)

where ¢ = total time, b = bit size of each record, d = data transfer speed in bits per second. But
t# is linear with respect to n, as Figure 26 showed. That is, t# = pn + ¢, where p = the gradient
of the straight line (i.e the time taken to hash one record with only one Locator in the system)

and ¢ = the intercept, which is zero. Thus, ##= pn, which, with n+1 Locators, gives:

t#=p(n+l)

12 Note that this figure is specific for the example system, which uses an Athlon 1100 MHz PC in a system
managing one billion resources.

245

Chapter 6 - The Resource Locator Service

Substituting this value for ## in (i) gives:

t=Rp(n+1)+ Rb =Rp+ Rb
n+l (n+1)d (n+1d

Thus as n > o, t = Rp. As such, the time taken to add a Locator is bounded by Rp, and is
therefore independent of n, the number of Locators in the system, thereby proving the

system’s scalability for configuration change.

Figure 28 demonstrates this result. The graph shows the time taken to add a new Locator for
varying numbers of Locators (#) in a RLS that manages 1 billion resources. As can be seen,
the graph converges on a time of 7,000 seconds as # increases. The timings are for a RR run

on an Athlon 1100Mhz, and can be shown to converge onRp as follows:

From Figure 26, the time taken to hash one record with only one Locator (p) can be calculated

as:
_ t# _ 0.007
n 1000
If R =10°, then
10° x 0.
Ro- 0°x0.007 _ 000
1000

246

Jaquinu Joje207 0} Buipioooe 1038007 Mau € ppe 03 uaxe) awl [ej0] - gZ aunbiy

(u) si03e207 J0 Joquiny

N \'] N .
AR M TP S S SR VIR VI St S SN SR R SN - AR, PR PRV
S & ¥ & & & P & ¥ & & & & o o&e

0

0002

§

000y

ﬁmo+m_‘ = 90IN0SaYy I’I~

0009

0008

Jaquunp Jojeso-] o3 Buipiosoe 10322071 Mau B ppe 0} use) el

0000¢

|

- 00021

(spuooss) swiy,

Chapter 6 - The Resource Locator Service

6.4.5.5 Performance Summary

These figures show that the design of the RLS is such that it can be deployed on today’s web
without experiencing any scalability problems. Furthermore, the system has been proven to be
fully scalable according to the number of Locators, with the time taken to change
configuration being independent of the number of Locators in the system. The sample figures
used were obtained from a prototype system that used desktop PCs and non-optimised code,
yet were still satisfactory for today’s web, and showed that the prototype is capable of scaling
beyond that. As such, a properly designed, highly optimised system that uses high

performance machines should cope with a web many times the size that it is today.

6.4.6 Demonstrating New Services with the Prototype RLS

The RLS not only solves some of the flaws in the web, it also provides a platform upon which
new services can be deployed. In this way, it extends the web’s architecture by enabling it to
provide more functionality than the existing architectural design can. As such, a number of
small demonstration services have been developed that use the prototype RLS to demonstrate
the enhanced functionality it provides. Specifically, the resource migration aspect of the RLS

has been used to demonstrate:

e fault tolerance;
¢ load balancing;

¢ mobile agents.

248

Chapter 6 - The Resource Locator Service

These enhanced services work on top of the RLS, and operate transparently to any client, as

the following sub-sections describe.

6.4.6.1 Load Balancing

The web provides little support for load balancing. The DNS can be used to provide a crude
load balancing service, by returning different IP addresses for the same hostname, but this
‘round robin’ functionality (Albitz and Liu, 1997) only works at the host level, as browsers

generally only perform a DNS query once for a whole web site.

In contrast, the RLS can provide a more sophisticated load balancing service at the resource
level. Individual resources can be migrated dynamically according to the load they place on
the server, thereby providing far more control than existing load balancing systems.
Replicated resources will have the same name but different current locations. Assigning
sequence orders to each replicated version allows a Locator to return the current URL of a
different version for every HTTP request. This has been implemented in the prototype RLS,
permitting resources to be placed on different servers according to media type, demand, or

processing requirements, which is a level of management not supported by the DNS.

The management interface monitors the load on various resources. If the load gets too high, it
migrates the resources to different predetermined web servers under its management, using the
RMP. Once the load decreases, the resources are migrated back again. In this way, the

interface acts as both client and Migration Manager.

249

Chapter 6 - The Resource Locator Service

6.4.6.2 Fault Tolerance

Mirroring a web site provides the web with a manual form of fault tolerance, but requires the
resource owner to provide a different link to each of the various mirrors. If one of the mirrors
falls over, the link to that mirror is broken, and the user must manually try another mirror

through another link.

In contrast, the RLS can be used to automatically route around mirrors that have fallen over,
and allow the resource owner to provide only one link. The management interface provides a
demonstration of this (see Figure 29). Firstly, the user selects appropriate destinations for
each resource that needs to be managed (each resource can be replicated onto a different

server).

Once complete, the management interface automatically replicates selected resources onto
selected web servers, using the RMP. The interface then monitors the resources. If it cannot
access them, it updates the appropriate Locator, marking the inaccessible resource as
inaccessible, and switching access over to the replicated resources. Once the system comes
back up, the interface brings the Locator back to its original state. This demonstrates the

usefulness of an automatic resource migration mechanism.

250

Chapter 6 - The Resource Locator Service

Fault Tolerance Demonstration

! This demonstration will replicate the contents of a web folder, and mdnitov the ariginal web server. 1If the !
| server goes down, clients are automatically routed to the replica folder. 'When it comes up, they are i
| routed to the original folder again. : |

!

Folder to monitor: |d°° _Egt_se_]

Folder to replicate to: ld°°'b°°kUP Browse

- Monitor]
i :
% \iZah S mevint]I’vttp://ted.see.plym.ac.uk/ |

E Stutl Slnpl {Notmonitoring

Exit

Figure 29 - Prototype Fault Tolerance Application of the RLS

6.4.6.3 Mobile Agents

Mobile agents are items of code that migrate across machines to perform their required task.
However, there is currently no support for them on the web, largely because an agent’s URL
breaks each time it migrates. With the use of the RLS, however, any code can freely migrate,

as it is treated by the RLS as just another resource.

251

Chapter 6 - The Resource Locator Service

The prototype system demonstrates mobile code by migrating a resource over to a random
server every minute. The prototype uses four servers set up in the same room. The resource is
a file containing a fragment of HTML, which is migrated to the same directory on the server
as a mobile code-specific web page. This web page looks for the existence of the resource
every 10 seconds; if it finds it, it reads the HTML contained within the resource and displays
it. If not, it displays a blank screen (see Figure 30). Each server permanently displays the web
page through a browser. As the management interface moves the resource across servers, the
HTML contained within the resource is displayed on a different machine, providing a visual

demonstration of migration.

The user can change the HTML in the mobile code at any time, no matter where the resource
is currently located. To do this, the Management interface sends a HTTP GET to the
appropriate Locator, which returns a HTTP 302 Found response, with the current location of
the response contained within the location header. The interface uses this location to issue a
HTTP PUT command, updating the resource with the new HTML entered by the user,
regardless of where the resource happens to reside. This demonstrates the transparency of the
migration operation, as any client can download the resource and view its HTML contents at
any time, regardless of which server it resides on, or where it is in the migration process, so

long as it is connected to the proxy.

Although a trivial implementation, it demonstrates the ability of the RLS and RMP to act as a

platform for mobile code and mobile agents. As such, a real mobile agent would contain more

252

Chapter 6 - The Resource Locator Service

functionality than a simple HTML file, and could be designed to contact a Migration Manager

to migrate itself onto a different machine.

Alpge Toak el

File v Restioe: Transter - Demor)

Address: |

Mobile Code Demonstration

-~ Description : ' . T
This demonstration randomly migrates the file MobileCode. htm between the remote hosts you enter.
If you wish to change the Mobile Code, press stop, enter new HTML, press ‘Update’ and then {

‘Start'

Remote Hosts:

Add Host l I~ Sequential Migration Time between Migrations (secs.) |1 0
 MobileCode: ‘ ;.
Exit '
Hello World

stat | Swop | UpdateHTML|

Figure 30 - Prototype Mobile Agent Demonstration

253

Chapter 6 - The Resource Locator Service

6.4.6.4 Other Enhanced Services

As well as those services that have been implemented to demonstrate the power of the RLS,

many other services can be built upon its features that cannot be deployed using the web’s

existing architecture. Some examples include:

Web History

By providing the web with a new temporal dimension, resources can be archived
instead of lost. The temporal component of the RLS can enable them to be retrieved at
any point in time. Extending this concept, however, third party services could provide
temporal search engines, which dynamically return documents from a user’s query
based on a point in time. Thus, the user can see how many documents and of what
quality existed at different points in time for the same query. The query might relate to
an important news topic, or to a new technological or scientific breakthrough, and so

the temporal search engine can be used to track its progress through time.

Security

Recently, severe Distributed Denial of Service attacks have taken place against high
profile web sites such as Yahoo and Amazon.com (McCullagh and Arent, 2000). The
distributed denial of service attack is very difficult to counter, as it is hard to
differentiate an attacker from a genuine user. However, with the RLS, resources can
be dynamically mirrored and migrated across many different machines, thus dispersing
the effectiveness of the attack. Various servers can be used to ‘draw the fire’ of the

attack, while other servers continue to serve real users.

254

Chapter 6 - The Resource Locator Service

6.5 Summary

This chapter concludes the work that has been performed in order to validate the concepts that
have been defined as part of the thesis. The chapter has presented the design and specification
of the RLS and the RR, as well as a prototype implementation that demonstrates the power
and flexibility of the system. In addition, the chapter has proven the scalability of the design
which has been tested with performance data from the prototype. More specifically, the

chapter has presented:

the design and specification of the Resource Migration Protocol (RMP);

the design and specification of the Locator Control Protocol (LCP);

a fully working prototype RLS and RR;

demonstration applications of the RLS;

performance figures of the system.

In addition, further validation of the system’s design has been provided by the publication of a
paper that describes the RLS in Computer Networks journal (Evans and Furnell, 2001). The
RLS represents the culmination of the research, which, together with the OSN, has extended
the existing state of the art, provided solutions to seemingly intractable problems, and will

form the basis of much future research.

255

Chapter 7 - Conclusion

7.

Conclusion

This chapter concludes the thesis by summarizing the work that has been
achieved, including the new HOMINID model for managing information flow
on the web, the Request Router and its associated algorithms and protocols, the
Temporal URL, and the implementation of a prototype Resource Locator
Service. The chapter concludes by discussing limitations of the research, and

describing new areas of research that can be performed to enhance and refine

the work further.

256

Chapter 7 - Conclusion

7.1 Achievements of the Research Programme

The research programme has met all of the objectives originally specified in chapter 1, with
the exception of the link rot experiment, which had to be terminated prematurely prior to any
conclusive results being obtained. However, a comprehensive literature search helped to
quantify link rot, and new conceptual and practical work has been presented in a number of

areas, as listed below.

1. The development of the HOMINID model for managing information flow, which
solves the three identified web flaws without succumbing to the information
management dichotomy. The HOMINID model comprises the Resource Locator
Service, Temporal Referencing, and the Oracle Server Network, each of which extends
the web’s existing architecture without breaking it, and helps both the information

provider and information user without censoring the web.

2. The design, development and testing of the Request Router, a novel node location
system that transparently mediates between the web and a new distributed system. The

Request Router is the foundation of the implementation of the RLS and OSN.

3. The design of temporal references, which add the dimension of time to the web

without invalidating existing addressing schemes.

257

Chapter 7 - Conclusion

4. The design, specification, and development the RLS, complete with the

implementation of a prototype to test the concept and measure its performance.

5. The design, specification, and development of the Resource Migration Protocol, which
enables transparent resource migration across the web through an extension of existing

web protocols.

Several papers relating to the research programme have been presented at refereed conferences
and published in internationally recognized refereed journals, where the work received praise
and recognition for its novel approach to solving the web’s three flaws. In addition, the work
on the RLS that involved the WebDAYV protocol emerged as a result of participation in the
IETF’s WebDAV working group, and has led to the design and development of a novel
application of WebDAYV that enhances its functionality. In conclusion, it is believed that the
research has made valid and useful contributions to the fields of distributed information

management, distributed systems, and the World Wide Web.

7.2 Limitations of the Research

Despite having met the overall objectives of the research programme, and the functional
success of the prototype, the work inevitably contains a number of limitations. The principal

points are presented below.

1. The link rot experiment was terminated prematurely, leaving the quantification of link

rot imprecise and out of date. Although the comprehensive literature review

258

Chapter 7 - Conclusion

subsequently provided adequate results, there is still no recent, comprehensive
experimental data that is comparable with the experiments that have been performed

regarding content lifetime.

2. Insufficient time and resources were available to further develop the OSN. The scope
of the system could easily form another research programme in itself, including
experiments, implementation and further design. = However, the design and
implementation of the RLS was the priority, and as the architectural design of the OSN
relied on the success of the Request Router, the validation of the RLS’s design applied

equally to that of the OSN, at least from a functional perspective.

3. The RLS prototype was deployed and tested on a computer less powerful than if
deployed on the web, and on a LAN rather than across the Internet, due to resource
constraints. As such, the prototype was not run in a real world environment, which
will have impacted the performance figures that were obtained. Despite this, however,
the performance and scalability proved sufficient to validate its design such that it will

scale to a system the size of the web.

7.3 Suggestions and Scope for Future Work
Throughout the thesis, areas where future work is possible or preferable have been identified,
which could be conducted to build upon and enhance that undertaken within the project.

These areas, together with new ones, are summarized below.

259

Chapter 7 - Conclusion

1. The link rot experiment can be remounted, but using a single HTTP HEAD request to
determine the presence of a web server, rather than the ping method that was used in the
original experiment. HTTP is deemed less ambiguous in its intent than ping, and so the

security problems associated with the initial experiment should be removed.

2. The Oracle Server Network has not been fully specified or implemented. Future work will
design its interface, and will determine the meta-data that needs to be stored. In addition,
the OSN will be designed such that it can collate its information across resources, so that
measurements can be made about the maximum and minimum values of the properties of
resources and their content. In this way, the shape and structure of the web and its content
can be accurately determined, enabling new services to be deployed that increase the web’s

functional value.

3. The design of the Locator could be extended such that a client could ask it to return a
resource whose time of creation lies between a set of dates, rather than at a specific fixed
date. The extra complexity this introduces into the design precluded it from becoming a
feature of the RLS at this stage of its development, but it is a useful feature that should be

considered for inclusion in the RLS’s design in future work.

4. The resources that are managed by the RLS are simple, static resources with little or no
intelligence. Existing distributed systems, such as CORBA or DCOM, use objects as their
resources, which are full programmatic resources that have their own state and data. As

such, future work should examine ways in which the RLS can be extended to manage

260

Chapter 7 - Conclusion

these intelligent objects, such that they can be transparently migrated across servers during
execution. New developments on the web using XML and SOAP have provided the basis
for the technology to achieve this, and the functionality of the RLS would provide new

services to these existing distributed architectures.

5. The namespace of the RLS is left deliberately flat and unconstrained, but it is not known
what effect this will have on the naming schemes used by resource owners. As such,
future research will examine the merits of such a flat naming scheme, to determine
whether or not any restrictions should be imposed on the RLS’s namespace, and the exact

nature of any restrictions should the research favour their introduction.

6. The current design of the RMP relies on a resource migration manager to co-ordinate the
migration of a resource. However, there may be circumstances in which a client might
wish to contact the manager remotely through the use of a new HTTP MIGRATE
message. This would enable the client to direct its own migration, and could lead to third
parties providing new migration services through an open, universal resource migration

manager.

6. The RMP and LCP protocols make no allowance for security issues. As such, in the
current design, anybody can alter a Locator’s database, leading to corruption of its records.
Future research should implement the ACL or at least HTTP digest authentication in order

to safeguard the integrity of the RLS.

261

Chapter 7 - Conclusion

7. The design of the RMP and LCP is such that certain entities must wait for a response that
may take a long time to arrive, due to the amount of processing that the machine sending
the response has to do before the response can be sent. As such, future work should focus
on providing disconnected operation, possibly though the use of a defer-until header, which
would give a Locator time to complete its operation while providing a client application
with the time in which it should check the Locator’s progress. However, this functionality
has been left out of the current design following discussions with Jim Whitehead, chair of
the IETF’s WebDAV working group, who advised that such disconnected operation would
require some form of Internet-scale event notification technology, which does not yet exist

(see Whitehead, 2000).

8. Temporal references were left out of the prototype. A future version should include these,
and provide support for a temporal search engine, which would allow a user to query the
web based on a topic and a range of times. Additionally, the future prototype should also

include the OSN, to further realize its potential.

9. Further trials should place the prototype in a more realistic context, using larger machines
to host the Locator software, an optimised Request Router, many Locators managing many

resources, and distributed across a WAN rather than a LAN.

7.4 The Future of the World Wide Web

The World Wide Web is here to stay, and will remain part of our lives for many years to

come. If it is to remain a useful resource, however, then its flaws need fixing, and they cannot

262

Chapter 7 - Conclusion

be fixed using methods that run counter to its philosophy. As such, the HOMINID model

provides a complete solution to the information management flaws with which the thesis is

concerned, providing a genuinely novel insight into the nature of information flow on the web.

However, even if it does not become a new part of the web’s architecture, it has contributed to

the field in many ways:

The HOMINID model is a novel means of managing information flow on the web. Its
human-oriented perspective of information in a networked environment differs
substantially from existing models, enabling it to more easily address the problems that
emerge from the nature of information provision and consumption on the web. As
such, it can be used in a wide range of applications, from enabling information
providers to determine the best strategy for their marketing campaigns, to enabling

browser designers to design better interfaces to the web.

Request Routing is a novel approach to distributed systems, and can be used in any
system that requires flexibility and performance while maintaining backwards

compatibility.

The hash routing algorithm used in the RR adapts the CARP algorithm in a way that
removes the need for lookup tables of each node, and thus reduces the network
overhead incurred by the algorithm. With the design of the LCP as a scalabk protocol
for controlling configuration change, the whole package can be used to lower the

network overhead of any system that currently relies on CARP.

263

Chapter 7 - Conclusion

The RMP is a generic automatic migration protocol that can be adopted by any
migration mechanism, and used on the web by all entities without modification. The
protocol also provides an impressive demonstration of what can be achieved with

WebDAYV, and an Internet draft will be submitted to the IETF as a contribution to

Internet protocols.

The TURL scheme is a novel extension to the URL that can be employed by any
application on the web that requires a new temporal dimension. The specification of

the scheme will also be submitted to the IETF as an Internet draft.

The architecture of the RLS provides a novel approach to resource migration,
improving the hyperlink’s referential integrity without breaking the web’s existing
architecture. Although the design was developed specifically for the web, however, it
should transfer well to other distributed systems, as the namespace is entirely generic,
and web protocols are used simply to convey messages. As such, the design of the
RLS can be seen as a novel resource migration mechanism for all types of information

system, not just the web.

The OSN improves the hyperlink’s informational integrity, and enhances the richness
of the web’s links. The information that it stores can serve as a platform for many new
services that require universal access to usage data on the web, as well as providing

reliable metrics of the web and its users that can be used by third parties.

264

Chapter 7 - Conclusion

As such, the research work that has been completed for this PhD has contributed to many

fields, and has provided new avenues for future research that will provide many more

contributions in the future.

265

List of References

List of References

1. Akamai (1999), Akamai web site, http://www.akamai.com/service/howitworks.html

2. Arent, L. (1999), “Bidders High On Drugs.com?”, Wired News, August 5th 1999,

http://www.wired.com/news/business/0,1367,21128,00.html

3. Ashman, H. and Davis, H. (1998), W3C Panel: "Missing the 404: Link Integrity on the

World Wide Web", in: The Seventh World Wide Web Conference, Brisbane, Australia,

April 14-18 1998.

4, Barrett, T. (2000), "Internet comes of age with 30 millionth domain name" NetNames

Web site, October 2000, http:/www.netnames.com/dnrs/netnames.client.Login

5. Berners-Lee, T., Masinter, L. and M. McCahill (1994), "Uniform Resource Locators

(URL)", RFC1738, December 1994

6. Berners-Lee, T. and Connolly, D (1995), "HyperText Markup Language Specification

- 2.0", RFC1866, November 1995.

7. Berners-Lee, T. (1998) "Cool URIs Don't Change", W3C Web site, 1998,

http://www.w3.org/Provider/Style/URI.

266

List of References

10.

11.

12.

13.

14.

Berners-Lee, T., Fielding, R. and Masinter, L. (1998), "Uniform Resource Identifiers

(URI): Generic Syntax", RFC 2396, http://www.ietf.org/rfc/rfc2396.txt, August 1998.

Berners-Lee, T. and Fischetti, M. (1999), "Weaving the Web- the Past, Present and

Future of the World Wide Web, by its Inventor", Orion Business Books, 1999.

Berst, J. (1998), "Search Sites' Shocking Secret", ZDNet Anchor Desk, August 17th,

1998, http://www.zdnet.com/anchordesk/story/story 2432.html

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen. H.F.,
Thatte, S. and Winer, D. (2000), "Simple Object Access Protocol (SOAP) 1.1", W3C

Note, 8th May 2000, http://www.w3.org/TR/SOAP/

Braden, R. (1989), "Requirements for Internet Hosts - Communication layers, STD 3",

RFC 1123, October 1989.

Bray, T., Paoli, J. and Sperberg-McQueen, C.M. (2000), "Extensible Markup Langwge
(XML) 1.0 (Second Edition)", W3C Recommendation, 6th October 2000,

http://www.w3.org/TR/2000/REC-xml-20001006.

Brebner, G. (1997), "Computers in Communciation", 1997, McGraw Hill Publishing

Company, Berkshire, England.

267

List of References

15.

16.

17.

18.

19.

20.

Brewington, B.E. and Cybenko, G. (2000), "Keeping up with the Changing Web",

IEEE Computer, p 52-58, May 2000

Brin, S and Page, L. (1998), "The Anatomy of a Large-Scale Hypertextual Web Search

Engine", in: Proc. 7th International World Wide Web Conference Brisbane, Australia,

14-18th April, 1998

Briscoe, R. J. (1997), "Distributed Objects on the Web", BT Technology Journal,

Vol.15 No.2, April 1997, pp158.

Broder, A.Z., Glassman, S.C., Manasse, M.S, and Zweig, G. (1997), "Syntactic

Clustering of the Web", In: Proceedings of the 6th International World Wide Web

Conference, pp. 391-404, 1997

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A. and Wiener, J. (2000), "Graph Structure in the Web" In: Proceedings of
the 9th International World Wide Web Conference, Amsterdam, The Netherlands,

May 2000

Butler, D. (2000), "Souped-Up Search Engines", in: Nature, No. 405, pp112-115, 11

May 2000, http://www .nature.com/cgi-
taf/DynaPage.taf?file=/nature/journal/v405/n6783 full/405112a0_fs.html& UserRefer

ence=CO0A804EC46B4E67A8CDD728163CF3A6D6B22

268

List of References

21.

22.

23.

24.

25.

26.

Catledge, L.D. and Pitkow, J.E. (1995), "Characterizing Browsing Strategies in the
World-Wide Web", in: Proceedings of the Third International World Wide Web

Conference, Darmstadt, Germany, April 1995

Cerf, V. and Kahn, R. (1974), "A Protocol for Packet Network Intercommunication",

IEEE Transactions on Communications, Vol. COM-22, No. 5, pp 637-648, May 1974.

Chakrabarti, S., van den Berg, M. and Dom, B. (1999a), "Focused Crawling: A New
Approach to Topic-Specific Web Resource Discovery", in: Proceedings of the 8th

International World Wide Web Conference, 1999.

Chakrabarti, S., Dom, B.E., Gibson, D., Kleinberg, J., Kumar, R., Raghavan, P.,

Rajagopalan S. and Tomkins A. (1999b), "Mining the Link Structure of the World

Wide Web", IEEE Computer, 32(8), August 1999.

Chankhunthod, A., Danzig, P.B., Neerdaels, C., Schwartz, M.F. and Worrell, K.J.
(1995), Object Lifetimes, in A Hierarchical Internet Object Cache, 1995.

http://excalibur.usc.edu/cache-html/cache.html.

Cockburn, A. and Greenberg, S. (1999), "Issues of Page Representation and
Organization in Web Browser's Revisitation Tools" in: Proceedings of the OZCHI'99
Australian Conferences on Human Computer Interaction, November 28-30, Wagga

Wagga, Australia.

269

List of References

27.

28.

29.

30.

31.

32.

Cohen, J., Hopman, A., Goland, Y., Valloppillil, V., Leach, P. and Lawrence, S.
(1998), "Don't Go Postal - An Argument Against Improperly Overloading the HTTP

POST Method", Internet draft, draft-cohen-http-ext-postal-00, 1998

Concise Oxford Dictionary (COD) (1990), "Concise Oxford Dictionary", 1990, R.E.

Allen (Ed.), Clarendon Press, Oxford

Cox, B. (1999), "Bonzi Software Banner Leads NetRatings Weekly List",
InternetNews.com, March 15th, 1999,

http://www.internetnews.com/IAR/article/0,,12_80021,00.html

Cuenca, P., Sosa, V., Romero, J. and Hernanz, 1. (1999), "Lessons Learned from the
Early Adoption of URNSs in an Intranet Environement", The 9th Annual Conference of
the Internet Society, INET 99, San Jose, CA,

http://www.isoc.org/inet99/proceedings/4m/4m_2.htm ,1999

CyberMetrics (2000) Homepage of the International Journal of Scientometrics,
Informetrics and Bibliometrics, October 2000,

http://www.cindoc.csic.es/cybermetrics/links08.html

Daniel, R. and Mealling., M, (1997), "Resolution of Uniform Resource Identifiers

using the Domain Name System", RFC2168, June 1997.

270

List of References

33. DeRose, S, Maler, E. and Daniel, R. (2001), "XML Pointer Language (Xpointer)
version 1.0", World Wide Web Consortium Last Call Working Draft, 8th January,

2001, WD-xptr-19980303, 3rd March 1998, http://www.w3.0rg/TR/2001/WD-xptr-

20010108/

34. DeRose, S, Maler, E. and Orchard, D. (2000), "XML Linking Language (Xlink) -
version 1.0", World Wide Web Consortium Proposed Recommendation, 20th

December 2000, http://www.w3.org/TR/2000/PR-x1ink-20001220/

35. Devlin, K. (1991) "Information and Logic", Cambridge University Press, 1991

36. DOLMEN (1995), "Service Machine Development for an Open Long-term Mobile and

Fixed Network Environment - Technical Annex", ACTS DOLMEN, 1995

37. DOLMEN (1996a), "Evaluation of Service Architecture Frameworks", G. Bruno,

ACTS DOLMEN Deliverable ASD1, 28th June 1996

38. DOLMEN (1996b), "Evaluation of Current Communication Technology in

Hypermedia Information Browsing", Raatikainen, K., ACTS DOLMEN deliverable

TAD3, 1996

39. DOLMEN (1997), "Implementation of an Enhanced Distributed Processing Platform
for DOLMEN", Huynh, N., ACTS DOLMEN deliverable MPD3, 15th Apnl 1997

271

List of References

40.

41.

42.

43.

44,

45.

46.

DomainStats (2000), DomainStats web site, http://www.domainstats.com/, October

2000
DotCom (2000), DotCom web site, http://www.dotcom.com/facts/quickstats.html

Douglis, F., Feldmann, A. and Krisnamurthy, B. (1997), "Rate of Change and other
Metrics: a Live Study of the World Wide Web", In: Proceedings of USENIX
Symposium on Internet Technology, and Systems, Monterey, CA, pp. 147-158,

December 1997. 12

Dublin Core Working Group (DublinCoreWG) (1999), "Dublin Core Metadata
Element Set, Version 1.1: Reference Description", 2nd July, 1999,

http://purl.org/dc/documents/rec-dces-19990702.htm

Esposito, D. (1999), "ADSI Overview", Microsoft Internet Developer Journal, May

1999, http://www.microsoft.com/Mind/0599/cutting/cutting0599.htm

Evans, M.P., Phippen, A.D., Mueller, G., Furnell, S.M., Sanders, P.W. and Reynolds,
P.L. (1999) "Strategies for Content Migration on the World Wide Web" Internet

Research, vol. 9, no. 1, 1999. pp25-34.

Evans, M.P. and Furnell, S.M. (2000), "Internet-based security incidents and the

potential for false alarms", Internet Research, vol. 10, no. 3: 238-245., 2000

272

List of References

47.

48.

49,

50.

S1.

52.

Evans, M.P. and Furnell, S.M. (2001), “The Resource Locator Service: Fixing a Flaw
in the Web”, to appear in Computer Networks Journal - The International Journal of

Computer and Telecommunications Networking, Elsevier Science

Feldman, S. (1998), “The Internet Search-Off”, The Searcher: The Magazine for
Database Professionals, February 1998,

http://www.infotoday.com/searcher/feb98/story1.htm

Fielding, R, Gettys, J, Mogul, J.C., Nielsen, H.F., Masinter, L, Leach, P., Berners-Lee,

T. (1999), HyperText Transfer Protocol - HTTP/1.1, RFC 2616, June 1999.

Fielding, R.T., (1996), "Fielding on MOVE & COPY", Discussion in WebDAV
working group, July to September 1996, http:/lists.w3.org/Archives/Public/w3c-dist-

auth/1996JulSep/0045.htm

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A. and
Stewart, L. (1999), "HTTP Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999, http://www.rfc-editor.org/rfc/rfc2617.txt

Freed, N. and Borenstein, N. (1996), "Multipuropse Internet Mail Extensions (MIME)

Part Two: Media Types", RFC 2046, November 1996

273

List of References

53.

54.

55.

56.

57.

58.

59.

60.

Gilder, G. (1993), "Metcalfe's Law and Legacy", Forbes ASAP Magazine, 13th

September, 1993

Gillet, S.E. and Kapor, M. (1997), "The Self-Governing Internet: Coordination by
Design", in: Coordination of the Internet, ed. B. Kahin and J. Keller, MIT Press, 1997
GlobalReach (2000), Global Reach homepage, Global Reach,

http://www.glreach.com/globstats/index.php3, October 2000

Goland, Y., Whitehead, E.J., Faizi, A., Carter, S.R. and Jenson, D. (1999), "HTTP

Extension for Distributed Authoring - WebDAV", RFC 2518, February 1999.

Graphic, Visualization and Usability Centre (GVU) (1997), "7th WWW User Survey",
April 1997 (an archive of GVU's web surveys can be found at

http://www.cc.gatech.edu/user_surveys/)

Graphic, Visualization and Usability Centre (GVU) (1998), "9th WWW User Survey",

April 1998

Harris, C. (2000), "LinkGuard - Intelligent Link Management", White Paper, Link

Guard web site, http://www .linkguard.com/utils/downloads/wp/whitepaper.pdf

Heery, D. (1996), "Review of Metadata Formats", Program, Vol. 30, No. 4, October

1996, pp. 345-373

274

List of References

61.

62.

63.

64.

65.

66.

Henziger, M.R., Heydon, A., Mitzenmacher, M. and Njork, M. (1999), "Measuring
Index Quality using Random Walks on the Web", In Eighth International World Wide

Web Conference, pages 213-225, Elsevier Science B.V., May 1999

Higgins, M. (1999), "Meta-Information, and Time: Factors in Human Decision
making", Journal of the American Society for Information Science, 50(2): 132-139,

1999

Hochheiser, H. and Schneiderman, B. (1999), "Understanding Patterns of User Visits
to Web Sites: Interactive Starfield Visualizations of WWW Log Data", In: Proceedings

of ASIS "99, 1999.

Holtman, K. and Mutz, A. (1998), "Transparent Content Negotiation in HTTP",

RFC2295, March 1998

Huberman, B.A., Pirolli, P.L.T., Pitkow, J.E. and Lukse, R.M. (1998), "Strong

Regularities in World Wide Surfing", Science, Vo0l.280, 3rd April 1998

Iannella, R., Sue, H. and Leong, D. (1996), "BURNS: Basic URN Service Resolution
for the Internet", in: Proceedings of the Asia-Pacific World Wide Web Conference,
Beijing & Hog Kong, 1996,
"http://www.dstc.edu.au/Research/Research/Resource_Discovery/publications/apweb96

/index.html

275

List of References

67. Ingham, D, Caughey, S and Little, M. (1996), "Fixing the 'Broken-Link' Problem: The

W3Objects Approach", in: The Fifth International World Wide Web Conference, Paris,

France, May 6-10 1996.

68. Ingham, D., Little, M., Caughey, S. and Shrivastava, S. (1995), "W3Objects: Bringing
Object-Oriented Technology to the Web", in: Proceedings of the 4th International

WWW Conference, Boston, December 1995,

http://www.w3.org/pub/Conferences/'WWW4/Papers2/141

69. Inktomi Corporation (1996), "The Inktomi Technology Behind HotBot- A White

Paper", 1996, htp://www.inktomi.com/products/search/clustered.html

70. Inktomi Corporation (1999), Inktomi and NEC Research institute,

http://www.inktomi.com/webmap/.

71. Internet Corporation for Assigned Names and Numbers (ICANN) (1999), "Uniform
Domain Name Resolution Policy", http://www.icann.org/udrp/udrp-policy-

240ct99.htm, October 24th 1999

72. ISO/IEC (1993) "Draft Recommendation X.901: Basic Reference Model of Open

Distributed Processing - Part 1: Overview and Guide to use", ISO/IEC, 30th August

1993.

276

List of References

73.

74.

75.

76.

71.

78.

79.

Kahle, B. (1996), "Archiving the Internet", First draft of Kahle 1997, submitted to

Scientifc American in 4th November 1996, http://www.archive.org/sciam_article.html

Kahle, B. (1997), "Preserving the Internet", Scientific American, March 1997,

http://www.sciam.com/0397issue/0397kahle.html

Kahle, B. (1999), Personal communication (see Appendix C), Juy 15" 1999

Kawai, E., Osuga, K., Chinien, K. and Yamaguchi, S. (2000), “Duplicated Hash
Routing: A Robust Algorithm for a Distributed WWW Cache System”, in: IEICE

Trans. Inf. & Syst., Vol.E83-D, No.5, May 2000.

Kleinberg, J.M. (1998), "Authoritative Sources in a Hyperlinked Environment",
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 668-677,

January 1998.

Klyne, G. (1999), "Protocol-Independent Content Negotiation Framework", RFC 2703,

September 1999.

Knuth, D. (1998), "The Art of Computer Programming - Volume III Sorting and

Searching", 2nd Edition, Addison Wesley Longman, 1998

277

List of References

80. Koehler, W. (1999), "An Analysis of Web Page and Web Site Constancy and
Permanence", Journal of the American Society for Information Science, 50(2);162-

180, 1999

81. Kosters, M. (1999), "Massive Scale Name Management: Lessons Learned from the
.COM Namespace", TWIST 99 conference, University of California, Irvine, California,

USA, August 1999,

82. Lagoze, C. (1997), "From Static to Dynamic Surrogates - Resource Discovery in the
Digital Age", D-Lib Magazine, June 1997, http://mirrored.ukoln.ac.uk/lis-

journals/dlib/dlib/dlib/june97/06lagoze.html

83. Lagoze, C. and Fielding, D. (1998), "Defining Collections in Distributed Digital
Libraries", D-Lib Magazine, ISSN 1082-9873, November 1998,
http://mirrored.ukoln.ac.uk/lis-

jouranls/dlib/dlib/dlib/november98/lagoze/1 11agoze.html

84. Lassila, O. (1997), "Introduction to RDF Meta-Data", W3C NOTE 1997-11-13, 13th

November 1997, http://www.w3.0rg/TR/NOTE-rdf-simple-intro

85. Lassila, O. and Swick, R.R. (1998), "Resource Description Framework (RDF) Model
and Syntax Specification", W3C Recommendation, 22ndFebruary, 1999, RD-rdf-

syntax-19980819, http://www.w3.org/TR/REC-rdf-syntax/

278

List of References

86. Lawrence, S. and Giles, C.L. (1999), "Accessibility of Information on the Web",

Nature, Vol.400, 8 July 1999, pp107-109.

87. Lawrence, S., and Giles, C.L. (1998), "Inquirus, the NECI Meta-Search Engine", In:
Proceedings of the Seventh International World Wide Web Conference, Brisbane,
Australia, 14-18 April 1998, pages 95-105.

http://www7.scu.edu.au/programme/fullpapers/1906/com1906.htm

88. Lawrence, S., Pennock, D.M,, Flake, G.W., Krovetz, R., Coetzee, F.M., Glover, E.,
Nielsen, F.A., Kruger, A. and Giles, C.L. (2001), “Persistence of Web References in

Scientific Research”, IEEE Computer, p26-31, February 2001.

89. Levinson, P. (1997) "The Soft Edge - A Natural History and Future of the Information

Revolution", Routledge, 1997

90. Mackay, D. (2001), “Information Theory, Inference, and Learning Algorithms”,
Cambridge University Press, Cambridge, UK. See also

http://wol.ra.phy.cam.ac.uk/mackay/itprnn/book.html

91. McCullagh, D. (1999), "Domain Name List is Dwindling", Wired News, April 14

1999, http://www.wired.com/news/technology/0,1282,19117,00.html

279

List of References

92.

93.

94.

9s5.

96.

97.

98.

99.

McCullagh, D. and L. Arent (2000), "A Frenzy of Hacking Attacks", Wired News, 9

February 2000. http://www.wired.com/news/print/0,1294,34234,00.html.

McNamara, P. (2000), "Guarding against Broken Links", Network World Fusion News

Article, http://www.nwfusion.com/columnists/2000/051Snetbuzz.html, 15th May 2000

Metcalfe, R. (1996), "Computer Laws galore, but one is holding back the information
age", InfoWorld article, May 6th 1996, http://www.infoworld.com/cgi-

bin/displayNew.pl?/metcalfe/bm050696.htm

Microsoft (1997a),"MS Active Directory Service Interface (ADSI)"

http://www.microsoft.com/technet/winnt/winntas/technote/adsiwp.asp, February 1997.

Microsoft (1997b), "Cache Array Routing Protocol (CARP) and Microsoft Proxy

Server 2.0", Microsoft Corporation, http://msdn.microsoft.convlibrary/backgmd/html/carp.htm

Microsoft (2000a), "Windows Internet Name Service and Broadcast Name

Resolution", Microsoft, 2000,
http://msdn.microsoft.com/library/default.asp?URL~/library/winresource/dnwinnt/S763A . HTM

Microsoft (2000b), "About the OLE DB Provider for Internet Publishing", Microsoft,

2000. http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/ipubsdk/ipubbyb0_797m.htm

Microsoft (2001). Microsoft DotNet Web Stite, http://msdn.microsoft.com/net/

280

List of References

100.

101.

102.

103.

104.

105.

Mitchell, D., Bradner, S. and Claffy, K. (1996), "In whose Domain: Name Service in
Adolescence", Information Infrastructure project workshop on Co-ordination and
Administration of the Internet JFK School, 8-10 September, 1996,

http://www.caida.org/outreach/papers/dnssence

Mockapetris, P. (1987a), "Domain names - concepts and facilities," RFC1034,

November 1987, http://www.ietf.org/rfc/rfc1034.txt.

Mockapetris, P. (1987b), "Domain names - implementation and specification",

RFC1035, November 1987, http://www.ietf.org/rfc/rfc1035.txt.

Moore, K. (1996), "Location-Independent URLs or URNs Considered Harmful",

Internet Draft, draft-ietf-uri-urns-harmful-00.txt, 1996

Nielsen, H.F. and D. LaLiberte (1999), "Editing the Web: Detecting the Lost Update
Problem Using Unreserved Checkout", W3C NOTE, May 10, 1999,

http://www.w3.0rg/1999/04/Editing/

Nielsen, H.F., Leach, P. and Lawrence, S. (2000), "An HTTP Extension Framework",

RFC 2774, February 2000.

281

List of References

106.

107.

108.

109.

110.

111.

Notess, G. (2000a),"Search Engine Statistics Web site",

http://www.notess.com/search/stats/sizeest.shtml, 2000.

Notess, G. (2000b), Search Engine Showdown report, February 21, 2000,

http://searchengineshowdown.com/stats/dead.shtml

Object Management Group (OMG) (2000), "Interoperable Naming Service
Specification", Object Management Group, Document number: formal/2000-11-01,
http://www.omg.org/technology/documents/formal/naming_service.htm, November

2000

Ohto, H. and Hjelm, J (1999), "CC/PP Exchange Protocol Based on HTTP Extension
Framework", W3C Note, 24th June 1999, http://www.w3.0rg/TR/NOTE-

CCPPexchange.htm

OMG (1995), "The Common Object Request Broker: Architecture and Specification,

Revision 2.0", Object Management Group, 1995

Pallmann, D. (1999), Pallmann, D., "Programming Bots, Spiders and Intelligent Agents

in Microsoft Visual C++", Microsoft Press, Redmond, Washington, USA, 1999.

282

List of References

112.

113.

114.

115.

116.

117.

Park, K., Kim, G. and Crovella, M. (1997), "On the Effect of Traffic Self-Similarity on
Network Performance", in Proceedings of the 1997 SPIE International Conference on

Performance and Control of Network Systems, November 1997

Pearson, S. (2000), "Hype or Hypertext? A Plan for the Law Review to move into the

21st Century", http://www.cc.utah.edu/~sgp5837/pearson.htm

Pitkow, J, and Recker, M. (1994), "Integrating Bottom-Up and Top-Down Analysis for
Intelligent Hypertext", Intelligent Hypertext Workshop, Third International Conference
on information and Knowledge Management, National Institute of

StandardTechnology, December 12th 1994

Pitkow, J. E. (1998), "Summary of WWW characterizations", Computer Networks and

ISDN Systems, vol. 30, no. 5, pp. 551-558, 1998

Pitkow, J.E. (1997), "In Search of Reliable Usage Data on the WWW", The Sixth

International World Wide Web Conference, pages 451-463, Santa Clara, CA, 1997.

Pitkow, J.E. and Jones, R.K. (1996), "Supporting the Web: a Distributed Hyperlink
Database System", in: The Fifth International World Wide Web Conference, Paris,

France, May 6-10 1996.

283

List of References

118.

119.

120.

121.

122.

123.

124.

Postel, J. (1981a), "Transmission Control Protocol - DARPA Internet Program

Protocol Specification", Postel, J. (ed.), RFC793, September 1981.

Postel, J. (1981b), "Internet Protocol - DARPA Internet Program Protocol

Specification", Postel, J. (ed.), RFC791, September 1981.

Postel, J. (1996), "Media Type Registration Procedure", RFC 1590, November 1996.

Raatikainen, K., Dede, A. and Koskimies, O. (1998), "Internet browsing on OSAM
platform", In: Intelligence in services and networks: technology for ubiquitous telecom
services. Proc. 5th International Conference on Intelligence in Services and Networks,
IS&N '98, Antwerp, Belgium, May 25-28, 1998. Berlin, Springer-Verlag, 1998

(Lecture notes in computer science vol. 1430) pp. 261-272

Reddy, S., Lowry, D., Reddy, S., Henderson, R., Davis, J. and Babich, A., (1999),
“DAYV Searching and Locating”, Internet Draft draft-dasl-protocol-01,

http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html, July 1999.

Ross, K. (1997), "Hash Routing for Collections of Shared Web Caches", IEEE

Network Magazine, 11, 7:37--44, Nov-Dec 1997.

Schwartz, C. (1998), "Web Search Engines", Jaurnal of the American Society for

Information Science, 49(1), p973-982, 1998

284

List of References

125.

126.

127.

128.

129.

130.

Sedlar, E and G. Clemm (2000), "Access Control Extensions to WebDAV", Internet

Draft draft-ietf-webdav-acl-01, April 28 2000,

http://www.webdav.org/acl/protocol/draft-ietf-webdav-acl-01.htm.

Shafer, K., Weibel, S., Jul, E. and Fausey, J. (1996), "Introduction to Persistent

Uniform Resource Locators", in: Proceedings of INET96, Montreal, Canada, 24-28

June 1996.

Slein, J.A., Vitali, F., Whitehead, J. and Durand, D. (1998), "Requirements for a
Distributed Authoring and Versioning Protocol for the World Wide Web", RFC 2291,

February 1998, http://www.rfc-editor.org/rfc/rfc2291.txt

Sollins, K. (1998), "Architectural Principles of Uniform Resource Name Resolution",
RFC 2276, January 1998.

Sollins, K. and Masinter, L. (1994), "Functional Requirements for Uniform Resource

Names", RFC 1737, December 1994

SRI Research (2000), "How People Use the Internet", 17th February 2000,

http://www.sriresearch.com/press/pr20000217.htm

285

List of References

131.

132.

133.

134,

135.

136.

137.

Stallings, W. (1991), Stallings, W, "Data and Computer Communications", 4th Edition,

Macmillan Publishing Company, New York, 1991.

Sullivan, D. (2000a), "SearchEngineWatch" report, July 7th 2000,

http://www.searchenginewatch.com/reports/directories.html

Sullivan, D. (2000c), "Search Engine Watch",

http://www .searchenginewatch.com/reports/perday.html

Sullivan, D. (2000d) "Search Engine Watch",

http://www.searchenginewatch.com/webmasters/features.html

Sullivan, T. (2000b), "All Things Web", http://www.pantos.org/atw/35654.html, 2000.

Sun, S.X. and Lannom, L., (2000), "The Handle System: A Persistent Global Name
Service - Overview and Syntax", Internet-draft, February 2000,

http://www ietf.org/internet-drafts/draft-sun-handle-system-04.txt

Tauscher, L. and Greenberg, S. (1997), "Revisitation Patterns in World Wide Web
Navigation", Conference on Human Factors in Computer Systems, Atlanta, Georgia,

March 22-27, 1997.

286

List of References

138.

139.

140.

141.

142.

143.

144.

Thaler, D.G. and Ravishankar, C.V. (1998), "Using Name Based Mappings to Increase

Hit Rates", [IEEE/ACM Transactions on Networking, 6(1):1-14, February 1998.

TINA (1994) "Overall Concepts and principles of TINA Version 1.0", Chapman, M.

and Montesi, S., TINA-C Deliverable, 17th February 1995

University of Michigan (1995), University of Michigan's LDAP FAQ, 1995,

http://www.umich.eduw/~dirsvcs/ldap/doc/guides/slapd/1.html#RTFToCl1

Valloppillil, V. and Ross, K. (1998), "Cache Array Routing Protocol v1.0", Internet
Draft, draft-vinod-carp-v1-03, 26th February 1998,

http://www.microsoft.com/proxy/guide/CarpSpec.asp?A=2&B=3

Vixie, P., Thomson, S., Rekhter, Y. and Bound, J. (1997), "Dynamic Updates in the

Domain Name System (DNS UPDATE), RFC 2136, April 1997

W3C (1992) World Wide Web Consortium web site, http://www.w3.org/WWW/, 1992

Whitehead, E.J. and Wiggins, M. (1998), "WebDAV: IETF Standard for Collaborative

Authoring on the Web", IEEE Internet Computing: Software Engineering over the

Internet, 2(5): 34-40, September-October 1998

287

List of References

145.

146.

147.

Whitehead, E.J. (2000), Personal Communication via IETF’s WebDAV working

group.

Windrum, P. (1999), "The Collective Invention of the World Wide Web", the Colline

Report, Prepared for DGXII, European Commission, 1999

Yeong, W., Howes, T. and Kille, S. (1995), "The Lightweight Directory Access

Protocol", RFC 1777, ftp:/ftp.isi.edw/in-notes/rfc1777.txt, March 1995.

288

Appendix A — Core Components of the HOMINID Model

APPENDIX A

CORE COMPONENTS OF THE HOMINID MODEL

The core components of the HOMINID model that were developed in chapter 4 are presented

in the following table for reference.

transparent resource
migration

Concept Problem Solved Description

Temporal Invalid hyperlinks | The Temporal Reference binds a resource and its
Reference due to content | content together as one atomic unit, and locates
change that unit in time and space. Should any

component of this unit change, it becomes a new

Lost History unit, and must receive a new temporal reference.

Resource Link Rot The RLS is functionally equivalent to the DNS,
Locator but does not constrain the namespace. Its default
Service Shrinking namespace is the temporal reference, which
Namespace enables it to locate a resource across time and

space. The RLS also provides a transparent

Automatic, resource migration mechanism that can enable a

resource to be migrated remotely.

The Core Components of the HOMINID Model

289

Appendix A — Core Components of the HOMINID Model

Concept

Problem Solved

Description

Oracle Server

Increasing Noise

Ineffective
Browsing caused by
deceptive
hyperlinks

Resolves the
Information
Management
Dichotomy

Measuring the Web

The Oracle Server provides universal access to
characteristic infons and navigational infons
about the resources on the web and the way in
which they are used. In this way, it can measure
the resource and its referring hyperlinks, and
provides the user with information from the
Oracle situation rather than from the resource
owner’s deceptive situation, thus maintaining the
hyperlink’s informational integrity. As such, the
Oracle Server can alert the user to deceptive
strategies and help them to make more informed
browsing choices. This reduces the noise in the
web without requiring the censorship of its
information, and so resolves the information
management dichotomy.

The Core Components of the HOMINID Model (cont.)

290

Appendix B — List of Abbreviations

APPENDIX B
LIST OF ABBREVIATIONS
CORBA Common Object Request Broker Architecture
CARP Cache Array Routing Protocol
DNS Domain Name System
DOLMEN Service Machine Development for an Open Long-Term Mobile and Fixed
Network Environment
HOMINID Human-Oriented model for Managing Information flow on the web
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ISP Internet Service Provider
LCP Locator Control Protocol
OSAM Open Service Architecture for Mobiles
OSN Oracle Server Network
OSP Online Service Provider
QoS Quality of Service
RDF Resource Description Framework
RLS Resource Locator Service
RMP Resource Migration Protocol
RR Request Router

291

Appendix B — List of Abbreviations

TCP/IP

TLD

TURL

URI

URL

URN

WebDAV

XML

Transmission Control Protocol/Internet Protocol
Top-Level Domain name

Temporal Uniform Resource Locator

Uniform Resource Identifier

Uniform Resource Locator

Uniform Resource Identifier

Web Distributed Authoring and Versioning

Extensible Markup Language

292

Appendix C — Personal Communications

APPENDIX C

PERSONAL COMMUNICATIONS

The following represents personal communication with Brewster Kahle, CEO of the Alexa
archive. The communication requested clarification of the reference used in Kahle’s Scientific

American article regarding the lifetime of a resource on the web (see p57).

293

Mike Evans

From: - Brewster Kahle [brewster@alexa.com]
Sent: Thursday, July 15, 1999 9:31 PM

To: '‘Mike Evans'

Subject: RE: Where did 44 days come from?

It is that danzig paper that that number came from. An internal stat for us
is that 6% of HTML pages changed in 3 months (this does not mean that they
did not disappear). This argues that the 44 days is no longer valid.

-brewster

e Original Message--—---

>From: Mike Evans [mailto:Mike.Evans@jack.see.plym.ac.uk]
>Sent: Thursday, July 15, 1999 4:07 AM

>To: brewster@archive.org

>Subject: Where did 44 days come from?

>

>

>Dear Mr. Kahle,

>

> I am currently researching the integrity of URLs for my PhD thesis,
>provisionally titled ‘Managing Information Flow on the Web', and have
>frequently come across your work in archiving the Internet during my
>research. In particular, the article you published in

>Scientific American

>entitled 'Preserving the Internet' (March 1997,
>www.sciam.com/0397issue/0397kahle.html) appears to be the most widely
>referenced article on the lifetime of URLs, with your figure of 44 days
>being quoted as the accepted standard in many other papers.

>

> As such, I would be grateful if you could let me know from
>which study

>this figure was obtained, as it is not referenced in your
>article. I have

>located a paper from Chankhunthod, Danzig et al, ("A
>hierarchical Internet

>Object Cache",
>http://catarina.usc.edu/danzig/cache/subsubsectionstar3_4 0 1.h
tml#SECTIONCO

04010000000000000)

which gives a figure of 44 days for object lifetime, but I am reluctant to
use it in my thesis with reference to your work, as I cannot find any
explicit link between the two, other than the figure '44 days'. Is this the
study you were referring to? If not, could you let me know which was?

Thank you, in advance, for your help in this matter. I look forward to your
reply.

Yours
Mike Evans

The Network Research Group
University of Plymouth
Plymouth

Devon

UK

Appendix D — List of Publications

APPENDIX D

LIST OF PUBLICATIONS

During the course of this research project, the author has contributed to 12 published papers,
as detailed below. Several of the papers relate directly to the focus of the research project,

whereas others are associated with further work in which the author was involved during the

research period.

1. Evans, M.P., Kettunen, K.T., Blackwell, G.K., Furnell, S.M., Phippen, A.D., Hope S.
and Reynolds, P.L. (1997), "Network Resource Adaptation in the DOLMEN Service
Machine", In: Intelligence in Services and Networks: Technology for Cooperative

Competition, Mullery et al. (eds.), Springer, 1997.

2. Evans, M.P., Phippen, A.D., Furnell, SM. and Reynolds, P.L. (1997), "Resource
Adaptation in the TINA Service Environment", Proceedings of Fourth Communications

Networks Symposium, Manchester, UK, 7-8 July 1997.

3. Liljeberg, M., Evans, M., Fumnell, S., Maumon, N., Raatikainen, K., Veldkamp, E.,
Wind, B. and Trigila, S. (1997), "Using CORBA to Support Terminal Mobility",

Proceedings of TINA 97 Conference, Santiago, Chile, 17-21 November 1997.

294

Appendix D - List of Publications

4.

Evans, M.P., Fumnell, S.M., Phippen, A.D., Reynolds, P.L. (1998), "Mobility
Considerations for integrated Telecommunications Service Environments", Proceedings

of IEE Sixth International Conference on Telecommunications, Edinburgh, UK, 29

March-1 April 1998

Evans, M.P., Phippen, A.D., Mueller, G., Furnell, S.M., Sanders, P.W. and Reynolds,
P.L. (1998), "Content Migration on the World Wide Web", Proceedings of the first
International Network Conference 1998 (INC ’98), Plymouth, UK, 6-9 July 1998: 156-

161.

Evans, M.P. Phippen, A.D., Mueller, G., Furnell, S.M., Sanders, P.W. and Reynolds,

P.L. (1999), "Strategies for Content Migration on the World Wide Web", Internet

Research, vol. 9, no. 1, 1999. pp25-34.

Reynolds, P., Furnell, S., Evans, M. and Phippen, A. (1999), “A Hyper Graphics
Markup Language for optimising WWW access in wireless networks", Proceedings of

Euromedia 99, Munich, Germany, 25-28 April 1999: 136-144

Furnell, S., Evans, M., Phippen, A., Ali AbuRgheff, M. (1999) "Online Distance

Learning: Expectations, Requirements and Barriers", Virtual University Journal, vol. 2,

no. 2.

295

Appendix D - List of Publications

10.

11.

12.

Furnell, S.M., Evans, M.P. and Dowland, P.S. (2000), "Developing tools to sypport
online distance learning", Proceedings of EUROMEDIA 2000, Antwerp, Belgium, 8-10

May 2000.

Evans, M.P. and Furnell, SM. (2000) "Internetbased security incidents and the

potential for false alarms", Internet Research, vol. 10, no. 3: 238-245.,2000

Furnell, S.M., Evans, M.P. and Bailey, P. (2001), "The promise of Online Distance
Learning: Addressing academic and institutional concerns", Quarterly Review of

Distance Education, vol. 1, no. 4: 281-291

Evans, M.P. and Furnell, S.M. (2001), “The Resource Locator Service: Fixing a Flaw in
the Web", To appear in Computer Networks Journal - The International Journal of

Computer and Telecommunications Networking, Elsevier Science

In addition, the author has contributed to a chapter in a book, as detailed below.

Furnell, S.M., Warren, M.J. and Evans, M.P. (2001), "The ISHTAR World Wide Web
Dissemination and Advisory Service for Healthcare Information Security", in
Implementing Secure Healthcare Telematics Applications in Europe. The ISHTAR

Consortium (Eds). Technology and Informatics 66, IOS Press: pp249-280.

296

Appendix D — List of Publications

Finally, the author has also contributed to the World Wide Web standards process through the

publication of a World Wide Web Consortium (W3C) NOTE, as detailed below.

Evans, M.P., Furnell, S.M., Phippen, P., Reynolds, P., Lilly, N. and Hammac, J., “Hyper
Graphics Markup Language (HGML)”, W3C NOTE, 19" June 1998,

http://www.w3.org/TR/NOTE-HGML

Copies of the papers most closely related to the research described are bound within this

appendix of the thesis.

297

Content Migration on the
World Wide Web

M.P.Evans', A.D.Phippen?, G.Mueller’, S.M.Fumell!, P.W.Sanders', P.L .Reynolds'

Network Research Group
' School of Electronic, Communication and Electrical Engineering, University of Plymouth,
Plymouth, UK.
* School of Computing, University of Plymouth, Plymouth, UK.

e-mail contact: Mike.Evans@jack.see.plym.ac.uk

ABSTRACT

The World Wide Web has experienced explosive growth as a content delivery mechanism, delivering
hypertext files and static media content in a standard and consistent way. However, this content has not been
able to interact with other content, making the web a distribution system rather than a distributed system.
Thas is beginning to change, however, as distributed component architectures such as CORBA, Enterprise
JavaBeans, and DCOM are being adapted to work with the web’s architecture. This paper tracks the
development of the web as a distributed platform, and highlights the potential to employ an often neglected
feature of distributed computing: migration. The paper argues, however, that all content on the web, be it
static images or distributed components, should be free to migrate according to either the policy of the
server, or the content itself. The paper goes on to describe the requirements of such a content migration
mechanism, and shows how, combined with network traffic profiling, a network can be optimised by
dynamically migrating content according to traffic demand.

1. Introduction

1.1 Software Resources

The World Wide Web (‘the web’) is a platform for distributing software resources across the
Internet, which are then presented as rich, consistent content by applications on the client (usually a
browser). The three main standards which define the platform are:

o the Uniform Resource Locator (Berners-Lee, et al 1994);
e HyperText Transfer Protocol (Bemers-Lee, et al, 1996);
o HyperText Markup Language (Berners-Lee, et al, 1995).

The Uniform Resource Locator (URL) is used to locate software resources; the HyperText Transfer
Protocol (HTTP) is the protocol used to distribute the resources; and HyperText Markup Language
(HTML) is used to present the information contained within the software resources in a consistent
way across all computer platforms.

As such, today’s web is a large distribution system. The software resource is a single, self-contained
unit of data (usually a binary or text file), which the web can locate (using the URL) and distribute
(using HTTP). It encodes content, which is presented on the client by applications according to the
media type the content represents (e.g. images, video, etc.). Each media type must conform to its
own universal standard, which is not part of the specification of the web itself, but which contributes
to its ubiquity and openness. The content is decoded from the software resource by the browser or its
own application (generally termed a ‘viewer’ or ‘plug-in’), and is presented consistently across all
platforms according to the layout and style specified by the HTML page. For example, the GIF
(Graphics Interchange Format) standard, developed by CompuServe, is a standard format for

156

compressing and encoding images. A GIF viewer is an application which works inline with the
browser to interpret a GIF image file and display the image it contains. This GIF viewer essentially
reads in a generic, platform-independent file (the software resource) which contains an encoding of
the image, and converts the encoded data into content: platform-dependent information which can be
displayed on the client’s screen as the decoded image in a consistent way across all platforms
according to the layout and style specified by the HTML. The same can also be said for other content
formats (e.g. JPEG, MPEG, AVI, QuickTime), each of which encodes a specific media type
according to the media’s own defined standard. In fact, for any type of content to proliferate on the
web, it must have its own platform-independent standard with its own platform-specific viewers
generally available on every platform. To the web’s distribution mechanism (i.e. the web servers and
HTTP), everything is a generic software resource (see Figure 1). Only when the correct application
receives it on the client does it become content.

Content image Java applet component Client’s view of a resource. The client sees
ff a = 10 then C each software resource as a distinct type of
@ object.move; content (be it Staﬁ.C, such as an image, or
) intelligent, such as a Java applet or a
t J 1 component) which can only be decoded by the
ava Object correct application using the correct content
Application | Image Virtual Request standard.pp e
viewer Machine Broker
s m """"""" Web view of a resource. To the web’s
RZsourr:e distribution mechanism, each instance of

content is simply a binary or text file, and no
distinction is made as to the content it
contains. .

Figure 1: Relationship between content and the software resource

1.2\ Static and Intelligent Content

This content has traditionally consisted of static files without functionality, and without the ability to
interact with other software resources. A GIF file, for example, contains the information required to
display the image it encodes with a suitable viewer, but there is no computational intelligence
contained within it; consequently, the user cannot interact with it (the use of ‘image maps’ within a
browser, whereby a user can click on an image to navigate to another page, is controlled and
formatted by the HTML in the web page, not the image file). Currently, then, the web is a
distribution system, not a distributed system. However, this is changing. As the web matures, its
functionality is increasing, and, more importantly, the intelligence contained within the resources it is
currently distributing is growing along with the web itself. To distinguish between resources which
contain some form of static media content (such as an image), and resources which have some form
of computational intelligence as part of their content (such as a Java applet), this paper will define the
terms static content and intelligent content, respectively.

Intelligent content currently consists of small self-contained blocks of code which reside on a server
as software resources, and are downloaded onto a client machine, where they are executed by a
suitable application, usually inline with an HTML page. Java applets are an example of such
content, as are Microsoft’s ActiveX controls. This type of content is limited, however, by its self-
contained nature: a Java applet, for example, cannot communicate with other Java applets on
machines other than the server it originated from. In order to distribute the intelligence of a large
scale application, the components of the application must be able to interact with each other across a
distributed environment; to achieve this, a distributed component architecture must be employed.

157

2. Distributed Components

Component software develops on the potential of object-based software by constructing software
from components which encapsulate functionality and data. This is similar to object orientation, but
allows dynamic component interaction at runtime (known as ‘runtime reuse’). This is achieved
through the use of a component architecture, which is a defined platform with rules for interaction
between components. Any component developed on top of this platform will be able to interact with
any other component built on the same platform. Whilst a general component architecture enables
components on the same computer to interact, distributed component architectures add to the
functionality by enabling interaction across a distributed network environment. A client component
can not only use the services of components on its host machine, but also any other machine which
supports the distributed architecture. Components within such architectures are also termed
distributed objects, primarily because the architecture itself is based on the object-oriented paradigm.
Currently, the distributed component field is dominated by two major architectures: Microsoft’s
Distributed Component Object Model (DCOM) and the Object Management Group’s Common
Object Request Broker Architecture (CORBA).

DCOM is the distributed extension to Microsoft’s COM (Component Object Model), and extends the
basic functionality to incorporate transparent network distribution and network security mechanisms
into the architecture. Through DCOM, ActiveX controls can interact with one another, and with
other COM-based components, across a network.

CORBA is a complete architectural specification developed by the Object Management Group (OMG,
1995) which specifies both a component architecture, and component services. CORBA is entirely
generic, defining platform-independent data-types, protocols for communication across platforms,
and a number of platform-independent services which provide the components with a number of
useful services such as security, transaction processing, and naming and location services for finding
components across a distributed system. CORBA'’s functionality is implemented through an Object
Request Broker (ORB), which provides the transparencies required by the architecture.

Both architectures offer the developer similar features and similar benefits. They both provide a
component distribution mechanism employing network and location transparency, marshalling
mechanisms, etc., and both expose functionality through language-independent interfaces. They are
reliable distributed platforms upon which large scale distributed applications can be built.

2.1 Distributed Components and the WWW

Such distributed component systems are increasingly being incorporated into the web. Distributed
components are becoming the next type of software resource to share server space with existing types
of static and intelligent content. This allows the web to become a true distributed system, being able
to provide distributed applications and services via a client’s browser. Netscape, for example, has
integrated CORBA functionality into its Communicator 4.0 browser, allowing it to interact with
CORBA components on CORBA-enabled servers. Equally, Microsoft’s Internet Explorer 4.0
browser is DCOM-enabled, allowing it to communicate with DCOM components on DCOM-enabled
servers. In this way, the web is evolving into a complete distributed system, termed the ‘Object Web’
(Orfali et al, 1996) to reflect the object-based nature of the distributed architectures being employed.

158

3. Content Migration

3.1 An Overview of Migration in a Distributed System

One of the benefits of a distributed system is the ability of an application to be distributed across
multiple hosts across a network, such that no one host has to execute the whole application on its
own. With a fast enough network, this ‘load balancing’ functionality can greatly increase the
efficiency and performance of the application in a way which is entirely transparent to the client
machine, However, the drawback to this distributed paradigm is the static nature of the location of
each component. Once a component has been installed on a host, it cannot easily be moved to
another host. Thus, should the host’s, or its network’s, performance degrade in any way, access to
the component will be affected. Invocations on the component’s interfaces will be slowed down,
which in turn will impact on the performance of the application as a whole. The component can be
manually relocated to a different host, but this is time-consuming. Most distributed applications
comprise many components, and it would be impractical to manually redistribute them all whenever
necessary.

As such, various automatic component relocation mechanisms exist. These ‘migration mechanisms’
can transparently move a component from one host to another such that the client has no awareness
of the move. These mechanisms are provided by some (though not all) distributed architectures as a
way of dynamically relocating components to provide load balancing and fault tolerance. Distributed
component architectures can migrate entire components, including their functionality and data, and
retain the state of the component from one machine to another. Such migration mechanisms can
optimise a network, and can enable mobile agents: autonomous objects of code which are free to
roam across a network.

3.2 The Problems with Distributed Components and the WWW

The distributed component is a new type of intelligent content, which has the ability to interact with
other content of the same type. However, components of different architectures cannot directly
communicate with each other. Thus, Netscape’s CORBA-compliant browser cannot use DCOM
components, and Microsoft’s DCOM-enabled browser cannot use CORBA. components. As such,
neither component architecture provides its content (the distributed component) with true ubiquity
across the web in a way in which traditional content does.

This problem impacts on the architectures’ use of migration. Most, including DCOM and Enterprise
JavaBeans, do not support migration at all. However, even if they did, current distributed
architectures cannot successfully employ a ubiquitous migration mechanism across the web, because
no matter how open they are, the type of resource which can be migrated is tied too closely to the
architecture itself. The web treats each software resource as a generic unit. The URL is used to
reference it, and HTTP to distribute it, regardless of the resource’s content type. In contrast,
distributed architectures work only with their own content, and use their own reference formats to
locate the components. Thus, only components created specifically to an architecture’s specifications
can be migrated, and only if both hosts involved in the migration support the architecture. Currently,
however, the vast majority of content on the web today consists of JPEG and GIF files, and Java
applets, which have no concept of a distributed architecture, much less the services that one can
provide. Equally, servers supporting CORBA or DCOM are in the minority meaning there are
physically very few places for a component to migrate to.

159

3.3 Requirements for a Migration Mechanism on the WWW

For a migration mechanism to be successful on the web, it must recognise the diverse range of
content that exists. As such, it must be completely decoupled from the content that it can migrate,
and instead focus on the software resource: a generic unit of data which may or may not be aware of
the mechanism (see Figure 2). Additionally, to truly be of benefit, the mechanism must fit in with the
existing web architecture. As such, it must reference each resource using a standard URL, not an
architecture-specific reference. With so many businesses using URLSs on their promotional material,
any mechanism which required a new format for resource location would not be accepted.

image Java applet

If a = 10 then

Content @ {
object.move;

)

T
Java
i Image Virtual
Application viewer Machine

Focusing a migration mechanism at the ‘I
software resource level, however, |
allows resources encoding any type of |
content to use the same migration =

Figure 2: Migration Mechanlsms at the Content and Resource Levels

Software
Resource

Within a distributed system, much use is made of the term ‘transparency’ (RM-ODP, 1995). This is
used to convey the concept that the services performed by the distributed system (such as migration)
happen without components being aware that anything has changed. Thus, a transparent migration
mechanism is one in which components are migrated to another machine without the component, or a
client wishing to access the component, being aware of the move. However, such a mechanism can
be made ‘translucent’; that is, the components can be moved transparently, but if they require the
service themselves, they can use it to initiate their own migration. In this way, the migration is
controlled by the component rather than the server hosting the software resource. For example, static
content has no intelligence, and so cannot make use of a migration mechanism. As such, if the
resource encoding the static content is to be migrated, it must be at the server’s discretion. The
server 1s therefore able to migrate the resource without the resource or any other host being aware of
the move. Intelligent content, however, has the ability to use any service the network can provide.
Thus, a migration mechanism can be used by intelligent content to migrate itself, transforming it into
a mobile agent.

In this way, a translucent migration mechanism on the world wide web can provide a host of new and
extended services. The same mechanism can be used by intelligent content (to autonomously roam
the web), and by web servers, (to optimise the network); it can solve the ‘broken link’ problem typical
of hypertext documents, whereby a URL embedded within an HTML document is rendered useless
when the content it refers to is moved. It can also be employed on a company’s intranet, allowing
resources to migrate freely, either of their own volition, or transparently by the server hosting them.
By providing its servers with the ability to monitor their own performance, a company can simply
connect a new server to its intranet, and wait for resources to migrate to it from existing servers under
strain. Using dynamic network configuration protocols, and wireless network technology such as
Wireless LAN, this facility can be extended such that a server need only be brought into range of a
mobile basestation, and switched on: the server will connect to the network, and the resources will
populate the server, automatically.

160

3.3.1 Identifying the Content to Migrate through Network Traffic Profiling

Profiling network traffic can identify which content should migrate and when, enabling a network to
be optimised and managed more effectively. Currently, certain network technologies and Service
Level Agreements (SLAs) with network providers insist on the network user specifying the expected
quality of service of the network at certain times of the day. For example, Frame Relay can ensure a
certain throughput to the user over a short period of time by guaranteeing a Committed Information
Rate (CIR). This CIR is the rate which is, on average, available to the user.

Determining the CIR is a difficult process and involves a good knowledge of the local traffic. The
network manager has to plan for the expected traffic, keeping in mind that at very busy times he does
not have the same throughput and availability of capacity above the CIR for bursty traffic.
Depending on the use of protocols, this can have a major influence on the choice of the CIR.
Frequently this choice is not influenced by the traffic volume itself, but by the budget a company is
able to afford. However, choosing too low a CIR can cause congestion, data loss, poor throughput,
and a financial loss. Traffic profiling is very important in such networks, whereby the traffic is
monitored in order to determine the quality of service required. Research by the members of the
author team is developing a methodology for profiling traffic in this way. It has been determined that
whilst overall network traffic may be variable over the short-term, over time it only increases. The
SLAs, therefore, can provide the business case for introducing content migration as a means of
balancing the network and staying within the CIR. With a transparent migration mechanism built
into a company’s intranet, software resources can be migrated to balance the load not just across
servers, but across the network. A traffic profiling system can be used to monitor the traffic on a
company’s network. If network traffic has increased at a particular point, resources can be migrated
to ease the flow of traffic at the bottleneck. If the traffic is too great only at certain times of day, the
profile will show this, and the resources can be migrated back and forth according to the time of day.

4. Conclusion

A transparent, content-independent migration mechanism for the web, combined with existing
distributed component architectures and sophisticated network traffic profiling techniques should
optimise both a server and the network, and can provide a new class of services to users. Such a
mechanism 1s currently being developed by the authors, and an initial design has been produced
which can provide such migration services without breaking the existing Internet architecture. That
1s, the URL is retained for locating resources, the resources can be of any content type, the
mechanism can be integrated gradually into the existing infrastructure, and the mechanism imposes
no foot-print on the client. This mechanism is currently work in progress and will be expanded upon
in future publications.

S. References

Berners-Lee, T.; Masinter, L. and McCahill, M. (1994) Uniform Resource Locators (URL), RFC-1738,
CERN/Xerox/University of Minnesota, December 1994

1139e;rsxers-l.ze, T., Connolly, D. (1995) HyperText Markup Language - 2.0, RFC 1866, MIT/W3C, November

Bemers-Lee, T., Fielding, R. and Frystyk, H. (1996) Hypertext Transfer Protocol - HTTP/1.0, RFC 1945,
MIT/UCS/UC Irvine, May 1996.

OMG (1995) “The Common Object Request Broker: Architecture and Specification, Revision 2.0”, Object .
Management Group, 1995

Orfali, R., Harkey, D., Edwards, J.(1996) The Essential Client/Server Survival Guide, 1996, Wiley

RM-ODP (1993) “Open Distributed Processing Reference Model (RM-ODP)", ISO/TEC DIS 10746-1 to
10746-4, 1995. http://www.iso.ch:8000/RM-ODP/

161

Strategies for content
migration on the World
Wide Web

M. P Evans

A.D. Phippen

G. Mueller

S.M. Furnell

P W Sanders and
RL. Reynolds

M.P. Evans, G. Mueller, S.M. Furnell, P.W. Sanders and
P.L. Reynolds are all at the Network Research Group, School
of Electronic, Communication and Electrical Engineering,
University of Plymouth, Plymouth, UK.

A.D. Phippen is at the School of Computing, University of
Plymouth, Plymouth, UK.

E-mail: Mike/Evans@jack.see.plym. ac.uk

Distributed data processing, Distribution, Internet

The World Wide Web has experienced explosive growth as a
content delivery mechanism, delivering hypertext files and
static media content in a standardised way. However, this
content has been unable to interact with other content,
making the Web a distribution system rather than a distrib-
uted system. This is changing, however, as distributed
component architectures are being adapted to work with the
Web’s architecture. This paper tracks the development of the
Web as a distributed platform, and highlights the potential to
employ an often neglected feature of distributed computing:
migration. Argues that all content on the Web, be it static
images or distributed components, should be free to migrate
according to either the policy of the server, or the content
itself. The requirements of such a content migration
mechanism are described, and an overview of a new
migration mechanism, currently being developed by the
authors, is presented.

Internet Research: Electranic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - pp. 25-34
© MCB University Press - ISSN 1066-2243

25

Introduction

The World Wide Web (the Web) is a platform

for distributing software resources across the

Internet, which are then presented as rich,

consistent content by applications on the client

(usually a browser). The three main standards

which define the platform are:

(1) the Uniform Resource Locator (Berners-
Leeetal., 1994);

(2) HyperText Transfer Protocol (Berners-Lee
etal., 1996);

(3) HyperText Markup Language (Berners-Lee
etal., 1995).

The Uniform Resource Locator (URL) is used
to locate software resources; the HyperText
Transfer Protocol (HTTP) is the protocol used
to distribute the resources; and HyperText
Markup Language (HTML) is used to

present the information contained within the
software resources in a consistent way across all
computer platforms.

Consequently, today’s Web is a large distrib-
ution system. The software resource is a single,
self-contained unit of data (usually a binary or
text file), which the Web can locate (using the
URL) and distribute (using HTTP). It encodes
content, which is presented on the client by
applications according to the media type the
content represents (e.g. images, video, etc.).
Each media type must conform to its own uni-
versal standard, which is not part of the specifi-
cation of the Web itself, but which contributes
to its ubiquity and openness. The content is
decoded from the software resource by the
browser or its own application (generally termed
a “viewer” or “plug-in”), and is presented con-
sistently across all platforms according to the
layout and style specified by the HT ML page.
For example, the graphics interchange format
(GIF) standard, developed by CompuServe, is a
standard format for compressing and encoding
images. A GIF viewer is an application which
works inline with the browser to interpret a GIF
image file and display the image it contains.
This GIF viewer essentially reads in a generic,
platform-independent file (the software
resource) which contains an encoding of the
image, and converts the encoded data into
content: platform-dependent information
which can be displayed on the client’s screen as
the decoded image in a consistent way across all

Strategies for content migration on the World Wide Web
M P Evans, A.D. Phippen, G. Mueller, .M Furnell, PW. Sanders, PL Reynolds

platforms according to the layout and style
specified by the HTML.. The same can also be
said for other content formats (e.g. JPEG,
MPEG, AV], QuickTime), each of which
encodes a specific media type according to the
media’s own defined standard. In fact, for any
type of content to prohferate on the Web, it
must have its own platform-independent
standard with its own platform-specific viewers
generally available on every platform. “lo the
Web’s distribution mechanism (i.e. the Web
servers and HTTP), evervthing is a generic
software resource (sce Figure 1). Only when the
correct application receives it on the client does
it become content.

Static and intelligent content

Web content has traditionally consisted of static
files without functionality, and without the
ability to interact with other software resources.
A GIF file, for example, contains the informa-
tion required to display the image it encodes
with a suitable viewer, but there is no computa-
tional intelligence contained within it; conse-
quently, the user cannot interact with it (the use
of “image maps” within a browser, whereby a
user can click on an image to navigate to
another page, is controlled and formatted by the
HTML in the Web page, not the image file).
Currently, then, the Web is a distribution
system, not a distributed system. However, this
is changing. As the Web matures, its functionali-
ty is increasing, and, more important, the intel-
ligence contained within the resources it is
currently distributing is growing along with the
Web itself. To distinguish between resources
which contain some form of static media

Internet Research: Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25-34

content (such as an image), and resources which
have some form of computational intelligence as
part of their content (such as a Java applet), this
paper will define the terms static content and
intelligent content, respectively.

Intelligent content currently consists of small
self-contained blocks of code which reside on a
server as software resources, and are down-
loaded onto a client machine, where they are
executed by a suitable applicauon. usually inline
with an HTML page. Java applets are an
example of such content, as are Microsoft’s
ActiveX controls. This type of content is limit-
ed, however, by its self-contained nature: a Java
applet, for example, cannot communicate with
other Java applets on machines other than the
server it originated from. In order to distribute
the intelligence of a large scale application, the
components of the application must be able to
interact with each other across a distributed
environment; to achieve this, a distributed
component architecture must be employed.

Distributed components

Component software develops on the potential
of object-based software by constructing soft-
ware from components which encapsulate
functionality and data. This is similar to object
orientation, but allows dynamic component
interaction at runtime (known as “runtime
reuse”). This is achieved through the use of a
component architecture, which is a defined
platform with rules for interaction between
components. Any component developed on top
of this platform will be able to interact with any
other component built on the same platform.
While a general component architecture enables

Figure 1 Relationship between content and the software resource

Image Java applet component ruonts view of a resource. The client sees
Content I1'a 10 then each software resource a a distinct type of
@ object move. . content {be it static, such as an image, or
- intelligent, such as a Java applet or a
* 3 component) which can only be decoded by the
image Java Robjec(corrgctr:pplication using the correct content
; Vi equest standa
Application | yiewer Mi;gtl\jiar:e Broker
................. . 1

(Web view of a resource. To the web's
Software distribution mechanism, each instance of
Resource Y _ content is simply a binary or text file, and no

distinction is made as to the content it contains.

26

Strategies for content migration on the World Wide Web

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, A.D. Phippen, G. Mueller, S.M. Fumell, PW. Sanders, P.L. Reynolds

components on the same computer to interact,
distributed component architectures add to the
functionality by enabling interaction across a
distributed network environment. A client
component can use the services of components
not only on its host machine, but also any other
machine which supports the distributed archi-
tecture. Components within such architectures
are also termed distributed objects, primarily
because the architecture itself is based on the
object-oriented paradigm. Currently, the dis-
tributed component field is dominated by two
major architectures:
(1) Microsoft’s distributed component object
model (DCOM); and
(2) the Object Management Group’s common
object request broker architecture
(CORBA).

DCOM is the distributed extension to
Microsoft’s component object model (COM),
and extends the basic functionality to incor-
porate transparent network distribution and
network security mechanisms into the architec-
ture. Through DCOM, ActiveX controls can
interact with one another, and with other
COM-based components, across a network.
CORBA is a complete architectural specifica-
tion developed by the Object Management
Group (OMG, 1995) which specifies both a
component architecture, and component ser-
vices. CORBA is entirely generic, defining
platform-independent data-types, protocols for
communication across platforms, and a number
of platform-independent services which provide
the components with a number of useful ser-
vices such as security, transaction processing,
and naming and location services for finding
components across a distributed system.
CORBA’s functionality is implemented through
an object request broker (ORB), which provides
the transparencies required by the architecture.
Both architectures offer the developer similar
features and similar benefits. They both provide
a component distribution mechanism
employing network and location transparency,
marshalling mechanisms, etc., and both expose
functionality through language-independent
interfaces. They are reliable distributed plat-
forms on which large scale distributed applica-
tions can be built. Such distributed component
systems are increasingly being incorporated into

Volume 9 - Number 1 - 1999 - 25-34

the Web. Distributed components are becoming
the next type of software resource to share
server space with existing types of static and
intelligent content. This allows the Web to
become a true distributed system, being able to
provide distributed applications and services via
a client’s browser. Netscape, for example, has
integrated CORBA functionality into its Com-
municator 4.0 browser, allowing it to interact
with CORBA components on CORBA-enabled
servers. Equally, Microsoft’s Internet Explorer
4.0 browser is DCOM-enabled, allowing it to
communicate with DCOM components on
DCOM-enabled servers. In this way, the Web is
evolving into a complete distributed system,
termed the “object Web” (Orfali ez al., 1996) to
reflect the object-based nature of the distributed
architectures being employed.

Content migration

An overview of migration in a distributed
system

One of the benefits of a distributed system is the
ability of an application to be distributed across
multiple hosts across a network, in such a way
that no one host has to execute the whole appli-
cation on its own. With a fast enough network,
this “load balancing” functionality can greatly
increase the efficiency and performance of the
application in a way which is entirely transpar-
ent to the client machine. However, the draw-
back to this distributed paradigm is the static
nature of the location of each component. Once
a component has been installed on a host, it
cannot easily be moved to another host. Thus,
should the host’s, or its network’s, performance
degrade in any way, access to the component
will be affected. Invocations on the component’s
interfaces will be slowed down, which in turn
will affect the performance of the application as
a whole. The component can be manually
relocated to a different host, but this is time-
consuming. Most distributed applications
comprise many components, and it would be
impractical to manually redistribute them all
whenever necessary.

Consequently, various automatic component
relocation mechanisms exist. These “migration
mechanisms” can transparently move a compo-
nent from one host to another in such a way that
the client has no awareness of the move. These

27

Strategies for content migration on the World Wide Web
M P Evans, AD Phippen, G Mueller, S M Furnell, PW. Sanders, P.L. Reynolds

mechanisms are provided by some (though not
all) distributed architectures as a way of dynam-
ically relocating components to provide load
balancing and fault tolerance. Distributed
component architectures can migrate entire
components, including their functionality and
data, and retain the state of the component from
one machine to another.

The problems with distributed components
and the WWW

The distributed component is a new type of
intelligent content, which has the ability to
interact with other content of the same type.
However, components of different architectures
cannot directly communicate with each other.
Thus, Netscape’s CORBA-compliant browser
cannot use DCOM components, and
Microsoft’s DCOM-enabled browser cannot
use CORBA components. Thus, neither com-
ponent architecture provides its content (the
distributed component) with true ubiquity
across the Web in the way in which traditional
content does.

This problem affects the architectures’ use of
migration. Most, including DCOM and Enter-
prise JavaBeans, do not support migration at all.
However, even if they did, current distributed
architectures cannot successfully employ a
ubiquitous migration mechanism across the
Web, because no matter how open they are, the
type of resource that can be migrated is tied too
closely to the architecture itself. The Web treats
each software resource as a generic unit. The
URL is used to reference it,and HTTP to
distribute it, regardless of the resource’s content
type. In contrast, distributed architectures work
only with their own content, and use their own
reference formats to locate the components.
Thus, only components created specifically to
an architecture’s specifications can be migrated,
and only if both hosts involved in the migration
support the architecture. Currently, however,
the vast majority of content on the Web today
consists of JPEG and GIF files, and Java
applets, which have no concept of a distributed
architecture, much less the services that one
can provide. Equally, servers supporting
CORBA or DCOM are uncommon, leaving
very few places for a component to physically
migrate to.

28

Internet Research: Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25~34

Requirements for a migration mechanism

on the WWW

For a migration mechanism to be successful on

the Web, then, it must recognise the diverse

range of content that exists. Therefore, it must
be completely decoupled from the content that
it can migrate, and instead focus on the software
resource: a generic unit of data which may or
may not be aware of the mechanism (see Figure
2). Additionally, to truly be of benefit, the
mechanism must fit in with the existing Web
architecture, rather than build its own set of
standards on top of the existing Web platform.
In this way, it can be used by existing Web con-
tent as much as by intelligent content such as
distributed components, and can provide ser-
vices which distributed components can use to
enable the Web to become a distributed
platform.

True content migration, then, where content
of any type can be freely migrated, relies on
implementing migration at the resource level. In
order to achieve this, the following set of
requirements for a resource-level migration
mechanism have been identified:

» Universal client access. The mechanism must
be accessible to clients of any type and should
not require clients to be altered in order 1o
use it. Thus, existing software does not need
to be rewritten, and future software will not
require any extra facilities in order to use it.

» Content neutrality. A Web-based mechanism
must be completely decoupled from the
content it can migrate, enabling it to migrate
all resources, no matter what type of content
they encapsulate (see Figure 2).

» Full integration with the Web’s current architec-
ture. The mechanism must reuse as much of
the Web’s existing architecture as possible.
Specifically, this means the reuse of HT TP
and the URL. There is too much investment
in the infrastructure supporting HT TP to
change it overnight, and the URL is becom-
ing accepted by the public as the only way to
navigate to Web resources. With businesses
now using the URL as part of their advertis-
ing campaigns, URLs can now be recognised
even by people without access to the Web.

* Practical design. Resource migration can be
technically achieved in many different ways,
but adopting a practical approach means
focusing on the requirements of Web

Strategies for content migration on the World Wide Web

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, A.D. Phippen, G. Mueller, S.M. Fumell, PW, Sanders, P.L. Reynolds

Volume 9 - Number 1-1999-25-34

Figure 2 Migration mechanisms at the content and resource levels

use the same migration mechanism

image Java applet component Current distributed component architectures
s =10 then focus their migration mechanisms at the
Content @ content level. As a result, only content
object.move: specific to the architecture can be migrated.
4 /)
Java
Application Image Virtual
o viewer Machine
A cpsnusede s nne s n s n st
{ Focusing a migration mechanism at the P
Software ! software resource level, however, allows |
Resource ! resources encoding any type of content to ;
]

..

developers, existing Web software, and (most
important) Web users, rather than focusing
on a technically optimal design. A practical
design also means one that takes into account
the dynamics and characteristics of the Web
(and, by implication, the users of the Web);
an approach that technically works will not
achieve ubiquity if it results in the Web
appearing to run more slowly.

In the next section, this set of requirements will
be used to evaluate existing approaches to
migration to see which is best suited to the
development of a migration mechanism for the
Web.

Developing a Web-based migration
mechanism

Methods of resource migration

For any migration mechanism, there are four
different methods through which a resource can
be tracked once migration has occurred
(Ingham ez al., 1996). These are:

(1) Forward referencing.

(2) Name service.

(3) Callback.

(4) Search.

Forward referencing

Forward referencing involves leaving behind a
reference in place of the migrated resource
which points to the resource’s new location.
Thus, an object leaves behind a chain of refer-
ences on each host it visits. For example, the
migration mechanism of the “W3Objects”
system (Ingham et al., 1996), and “Voyager”,
from ObjectSpace (an agent-oriented CORBA
implementation), both adopt this approach.

29

When an object migrates in Voyager, a “vir-
tual reference” is left behind to forward mess-
ages to the new location. As an object migrates,
more virtual references are created, forming
long chains which eventually resolve onto the
object itself. The W3Objects approach is simi-
lar, in that “forward references” are created
each time a resource migrates; however, to
prevent long chains building up, “shortcuts”
can be created which allow a reference holder
(that is, a resource with a link to the migrated
resource) to bypass the chain of references, and
reference the resource directly.

Suitability for the Web

Voyager’s mechanism is unsuitable for the Web
as, like most other distributed architectures, it
only migrates Voyager-aware content, and is
therefore not content-neutral. Surprisingly, the
mechanism used by W3Objects will also only
work with its own, object-oriented resource
(termed a “W3Object”) and a specially-defined
reference (termed a “W3reference™), and so it
too is not content-neutral. Furthermore, in
order to use the W3Objects system, each client’s
browser must be adapted to work with W3Ref-
erences rather than URLs.

However, the forward reference method itself
is unsuitable for use on the Web. Each link in
the chain of forward references adds another
point of potential failure (Ingham ez al., 1996),
and if the chain breaks, then the resource is lost
completely. Further, the characteristics of the
Web will make managing the chains unrealistic,
as the number of forward references will
increase with both time (some resources, such
as autonomous agents, will migrate constantly)
and space (every resource will require a chain of
references to be maintained).

Strategres for content migration on the World Wide Web
M.P Evans, A.D. Phippen, G. Mueller, S.M. Furnel|, PW. Sanders, P.L. Reynolds

Name service
The name service method employs an external
system to maintain references to registered
resources at all times. Such mechanisms gener-
ally focus on the use of the name used to identify
a resource, and attempt to abstract any location-
dependent information out of the name itself.
For example, the uniform resource name
(URN) is a proposed standard by the Internet
Engineering Task Force (IETF) for naming a
resource independently from its location
(Sollins and Masinter, 1994). Specifically, a
URL is used to locate a resource, while a URN
can be used to identify a resource (Berners-Lee
et al., 1994). The URN can then be mapped
onto the URL through an external resolver
discovery service (RDS), which maintains the
location of the resource. Should the resource
have migrated, the RDS will resolve the URN
into a URL that points to another RDS which
can resolve the URL. Thus, a chain of refer-
ences is built up across the resolver service,
rather than across each visited server.

Suitability for the Web

The URN identifies a resource independently
from its location, and so subsumes the URL,
treating it not as a name, but as a pointer to a
location. Thus, while the URN has content-
neutrality, it does not support full integration, as
the URL cannot be used at the user level.

Also the name service method suffers from
the same problems inherent with any “chain” of
references, as described above. Further, the
method is not practical, as it does not take into
account the characteristics of the Web users: it
requires, for example, that a resource’s name
remain invariant throughout its lifetime (which
can be “for hundreds of years” (Sollins and
Masinter,1994)), but in real life, the ownership
of a resource can change within its lifetime, and
the new owner may wish to give the resource a
new name.

Callback

The callback method relies on a resource to
inform all other resources with references to it
of any change in its location, in order to ensure
referential integrity. The benefit of this
approach is that there is no indirection, and so
no chain of references need be maintained.

The Hyper-G system (Kappe, 1995) adopts

this approach, maintaining a large database on

30

Internet Research: Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25-34

the references used between resources. Should a
resource move, the database is informed, and all
references are updated. This is similar to the
name service approach, in that an external
service is used, but it is the relationships
between resources which are maintained by the
service, rather than the resources’ locations.

Suittability for the Web

This approach either requires each resource to
know which other resource has references to it,
or requires an external service to maintain the
references. However, the former approach is
unrealistic, as the Web is a federated system,
with no central control: a resource has no way of
knowing who or what is referencing it. Equally,
the latter approach is unrealistic, as the size of
the database of references would become
impossible to manage, and many Web servers
are frequently offline, resulting in the database
being swamped as it must store pending refer-
ence updates until they are online again
(Briscoe, 1997).

Search

The search method does not attempt to update
the references between resources, or to maintain
the location of a resource. Rather, it uses a
sophisticated search mechanism to find the
resource if it migrates. To ensure success, the
entire system must potentially be searched,
which involves flooding the network. This has
the advantage that so long as the server hosting
a particular resource is accessible, the resource
can be guaranteed to be found, as the flood will
eventually cover all servers. Thus, the search
approach has perfect robustness. The Harvest
information system (Mic Bowman et al., 1995)
uses this approach to catalogue and index a
distributed system’s collection of resources.
However, the Harvest system is used to index
and search for pertinent information within
resources, and so is effectively a search engine
which can index an entire distributed system.

Suitability for the Web

While flooding a network provides perfect
robustness, it is also the most costly method in
terms of messaging overheads (Ingham ez al.,
1996). A flooding algorithm must be imple-
mented which spans the entire Web. To
prevent the network being overwhelmed with
packets (which, unchecked, would increase

Strategies for content migration on the World Wide Web
M.P. Evans, A.D. Phippen, G. Mueller, S.M. Fumnell, PW. Sanders, P.L. Reynolds

exponentially), attempts must be made to
restrict the flood. This can be achieved by
including time to live fields in any messages sent
by such a mechanism, but this requires knowl-
edge of the exact diameter of the Web (Tanen-
baum, 1996).

Selecting a migration method

The callback approach

The callback service can be immediately ruled
out. As has been said, a resource on the Web has
no way of knowing who or what is referencing it,
and so any implemented callback service simply
cannot be used.

The chain approach

The forward reference and the name service
approaches can be grouped together and
termed the “chain approach”, as both relyon a
chain references to effect migration. The differ-
ence is simply that the forward reference
approach leaves its references on the servers it
has visited, while the name service approach
relies on a separate service to store and maintain
its chain of references. The concept of the chain
approach, then, can be examined in its own
right, but does not meet all of the requirements
specified above. The very fact that a chain exists
exposes the whole approach to the chain’s weak-
est link; in this case, the weakest link is the most
unreliable server within the chain, meaning that
a resource may be lost because somebody else’s
server has crashed. Finding that server can be
difficult; worse, the resource’s owner will have
no control over the maintenance of the crashed
server, and if it goes down permanently, the
resource may be lost permanently. This is not
just impractical, it is unacceptable to a network
such as the Web which is forming the platform
for e-commerce: losing a resource can sever the
relationship between an organisation and its
customers.

The search approach

The search approach comes closest to meeting
all of the requirements specified above. Because
the search would be performed within the net-
work, the client need not be aware that a search
is being performed; it simply receives the
resource once it is located. Thus, universal
client access is achieved. The search process
would be performed using the resource’s URL;
consequently, as long as the resource has a

31

Internet Research:; Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25-34

URL, it can be located, regardless of its content
type. This achieves the requirement of content
neutrality. HT TP and the URL can remain. In
fact, so long as the identifier is unique, it can be
of any format, leaving the way open for future
formars of identifier to be used with the same
migration mechanism. Full integration with the
Web’s current architecture is, therefore,
achieved. However, the message overhead used
to locate a resource cannot be ignored. Because
it uses a flooding algorithm, the messages will
grow exponentially with the size of the network.
This is, at best, impractical when considering a
network the size of the Internet. Thus, the
search approach fails the practical design
requirement. If this can be resolved, however,
the concept of the search approach is far more
robust and scalable than the chain approach.
With no chains of references to maintain, and
the ability to visit all hosts in a network, there is
no weak link in the system. Resources, by defini-
tion, cannot be lost. Therefore, adopting a
different search algorithm for the search
approach could result in a practical search-
based migration mechanism on the Web.

Adapting the search approach
The problems described thus far relate to a
search algorithm which is parallel in nature,
generating exponential traffic as the search
progresses, and works on unstructured data.
Such an approach cannot be practical on the
Web, because its latency overhead occurs at the
wrong stage of the migration process. The
process of migration can be divided into two
stages: first, a resource migrates; then, it must
be located whenever a client wishes to use the
resource. Generally, the migration stage can
cope with higher latency times than the location
stage. This is because there is no user inter-
action with the resource during the migration
stage, whereas a resource usually needs to be
located because a user wishes to download it.
Currently, there is no migration mechanism on
the Web; locating a resource is simply a matter
of connecting with the appropriate server. Any
mechanism that is required to locate a resource
will incur its own overhead, and this adds to the
latency involved in actually accessing the
resource. To the user, this latency is perceived as
a slower response time of the Web. With the
chain approach, the main overhead occurs

Strategses for content migration on the World Wide Web
M P Evans, A D.Phippen, G. Mueller, S.M. Furnell, PW. Sanders, PL. Reynolds

during the migration process. Location is simply
a matter of following a chain of references, and
so long as this chain is not too large, latency
should not be appreciably increased. However,
with the parallel search approach described
above, all of the overhead occurs during the
location process, with the latency increasing as
the search continues. Worse, the message over-
head also increases (exponentially) as the search
continues, resulting in a network with more
location traffic than resource traffic.

This, however, is simply one end of a
spectrum of search algorithms. For example,
another approach could involve constructing a
look-up table, with the set of all URLs on the
Web being mapped to each respective resource’s
actual location. The URLSs can be ordered as
appropriate, and a trivial search algorithm used
to locate a specific URL within the look-up
table. While this centralised approach is not
fault tolerant, and could result in all resources
being lost, it does illustrate how structuring the
data can fundamentally change the performance
of the search approach. What is required, there-
fore, is an approach which structures the data,
but across a distributed system of migration-
specific machines.

An overview of a Web-based migration
mechanism

This is the approach that is currently being
investigated by the authors. A migration mecha-
nism is being developed which uses an external
(distributed) service to keep track of the URLs
and the actual location of the respective
resources. This is similar to the resolver discov-
ery service adopted by the URN approach, and
provides the indirection required to retain the
formart of the URL while allowing the resource
to reside on a machine with a different name.
However, while the resolver discovery service -
uses a chain of references to keep track of the
migrating resources, the new approach uses
what is, essentially, a migration-specific distrib-
uted “database”. This database is constructed
and queried using Web-based technologies,
such as Extensible Markup Language (XML).
Rather than searching all of the resources on all
of the servers across the Web, the set of all
resources are represented within this distributed
database by their URLSs, and it is this database
which is searched to locate a resource. Fault

Internet Research: Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25~34

tolerance techniques will be used to ensure no
resources are lost, and load balancing will mini-
mise the latency incurred. Because the database
contains URLs, any content which can be
addressed using a URL can safely migrate using
this system. All that is required is for the system
to be notified when a migration has occurred.
This can be done by the server the resource has
migrated from, or the server the resource has
migrated to (or, for that matter, by the resource
itself, if it contains intelligent content).
Development of this system is currently a
work-in-progress, and results from the com-
pleted system will be published in a later paper.
The next section discusses some of the new
services such a system can provide to the Web.

Providing new Web-based services

How a migration mechanism can enable
new services

Within a distributed system, much use is made
of the term “transparency” (RM-ODP, 1995).
This is used to convey the concept that the
services performed by the distributed system
(such as migration) happen without com-
ponents being aware that anything has changed.
Thus, a transparent migration mechanism is
one in which components are migrated to
another machine without the component, or a
client wishing to access the component, being
aware of the move. However, such a mechanism
can be made “translucent”; that is, the com-
ponents can be moved transparently, but if they
require the service themselves, they can use it to
initiate their own migration. In this way, the
migration is controlled by the component rather
than the server hosting the software resource.
For example, static content has no intelligence,
and so cannot make use of a migration
mechanism. Therefore, if the resource encoding
the static content is to be migrated, it must be at
the server’s discretion. The server is therefore
able to migrate the resource without the
resource or any other host being aware of the
move. Intelligent content, however, has the
ability to use any service the network can pro-
vide. Thus, a migration mechanism can be used
by intelligent content to migrate itself. It may
choose to do this for the purpose of network
optimisation (for example, if it detects that the
server’s performance has degraded due to

32

Strategies for content migration on the World Wide Web

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, A.D. Phippen, G. Mueller, S.M. Fumell, PW, Sanders, P.L. Reynolds

excess demand), or it may do this to achieve a
goal on behalf of a user. This would effectively
enable the intelligent content to become a
mobile autonomous agent (Franklin and
Graesser, 1996); that is, software which can
roam across a network, performing tasks on
behalf of a user.

In this way, a translucent migration
mechanism on the Web can provide a host of
new and extended services. The same
mechanism can be used by intelligent content
(to autonomously roam the Web), and by Web
servers (to optimise the network); it can solve
the “broken link” problem typical of hypertext
documents, whereby a URL embedded within
an HTML document is rendered useless when
the content it refers to is moved. It can also be
employed on a company’s intranet, allowing
resources to migrate freely, either of their own
volition, or transparently by the server hosting
them. By providing its servers with the ability to
monitor their own performance, a company can
simply connect a new server to its intranet, and
wait for resources to migrate to it from existing
servers under strain. Using dynamic network
configuration protocols, and wireless network
technology such as wireless LAN, this facility
can be extended so that a server need only be
brought into range of a mobile basestation, and
switched on: the server will connect to the
network, and the resources will populate the
server, automatically.

Mobile servers
Basing the migration mechanism on a search
approach effectively provides a service which
resolves the IP address of a machine given a
specific resource. Thus, the same host can have
many different IP addresses over time (for
example, if the host is roaming) yet its resources
will still be locatable (providing the host is
accessible to the migration mechanism),
because the mechanism ensures the resource
can be located regardless of the current IP
address associated with it. This implies that
mobile servers can be developed with IP
addresses which change according to the
server’s location, without affecting the accessi-
bility of the resources being hosted.

Services for distributed component systems
Distributed component systems can use the
mechanism to migrate components. Any type of
content can use such a migration mechanism,

33

Volume 9 - Number 1 - 1999 - 25-34

and this includes intelligent content such as
distributed components. Thus the mechanism
enables the Web to provide a generic migration
service to such component systems. In this way,
the Web can become a distributed platform,
enabling distributed systems to build their own
specific services on top of the Web’s generic
services. For example, system-specific messages
between components can be routed to individ-
ual resources (components) irrespective of
where the resources are located, using the
generic services provided by the migration
mechanism.

Optimising the network through network traffic
profiling
Deciding which content to migrate and when
can optimise both the performance of a server,
and a network as a whole. Currently, certain
network technologies and service level agree-
ments (SLAs) with network providers insist on
the network user specifying the expected quality
of service of the network at certain times of the
day. For example, Frame Relay can ensure a
certain throughput to the user over a short
period of time by guaranteeing a committed
information rate (CIR). This CIR is the rate
which is, on average, available to the user.
Determining the CIR is a difficult process
and involves a good knowledge of the local
traffic. The network manager has to plan for the
expected traffic, keeping in mind that at very
busy times he does not have the same through-
put and availability of capacity above the CIR
for “bursty” traffic. Traffic profiling is very
important in such networks, whereby the traffic
is monitored in order to determine the quality of
service required. Research by the members of
the author team is developing a methodology for
profiling traffic in this way. It has been deter-
mined that while overall network traffic may be
variable over the short term, over time it only
increases. The SLAs, therefore, can provide the
business case for introducing content migration
as a means of balancing the network and staying
within the CIR. With a transparent migration
mechanism built into a company's intranet,
software resources can be migrated to balance
the load not just across servers, but across the
network. A traffic profiling system can be used
to monitor the traffic on a company’s network.
If network traffic has increased at a particular

Strategies for content migration on the World Wide Web
M.P. Evans, A.D Phippen, G. Mueller, S.M. Furnell, PW. Sanders, P.L. Reynolds

point, resources can be migrated to ease the
flow of traffic at the bottleneck. If the traffic is
too great only at certain times of day, the profile
will show this, and the resources can be migrat-
ed back and forth according to the time of day.

Conclusion

This paper has examined the various issues
involved in developing a practical migration
mechanism for the Web. It has identified the
requirements of such a mechanism, and exam-
ined some of the different approaches that can
be used to implement a migration mechanism
with respect to these. However, no current
migration system meets these requirements,
largely because they are not content-neutral.
Therefore, the authors are currently working on
a migration mechanism that will meet these
requirements, and thus could form part of the
Web’s infrastructure. A transparent, search-
based, resource-level migration mechanism for
the Web, combined with existing distributed
component architectures and sophisticated
network traffic profiling techniques should
optimise both a server and the network, and can
provide a new class of services to users. While
the Web is currently a distribution system, the
integration of a migration mechanism can pro-
vide the Web with the services it needs to offer
to become a ubiquitous distributed system.

References

Berners-Lee, T. and Connolly, D. (1995), “HyperText Markup
Language —2.0", RFC 1866, MIT/W3C, November.

Internet Research: Electronic Networking Applications and Policy
Volume 9 - Number 1 - 1999 - 25-34

Berners-Lee, T., Fielding, R. and Frystyk, H. (1996), “Hypertext
Transfer Protocol — HTTP/1.0", RFC 1945, MIT/UCS/UC
Irvine, May.

Berners-Lee, T., Masinter, L. and McCahill, M. (1994),
“Uniform resource locators (URL)", RFC-1738,
CERN/Xerox/University of Minnesota, December.

Briscoe, R.J. (1997), " Distributed objects on the Web”, BT
Technology Journal, Vol.15 No.2, April, pp.158.

Ingham, D., Caughey, S. and Little, M. (1996), “Fixing the
‘broken link problem’: the W3Qbjects approach®, in
Fifth International World Wide Web Conference,
6-10 May, Paris.

Franklin, S. and Graesser, A. (1996), “Is it an agent, or just a
program?: A taxonomy for autonomous agents”, in
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages,
Springer Verlag, New York, NY, Berlin, 1996,
http://www.msci.memphis.edu/%7Efranklin/Agent-
Prog.html#agent

Kappe, F. (1995), “A scalable architecture for maintaining
referential integrity in distributed information
systems”, JUCS, Vol. 1 No. 2, February, pp. 84-104.

Mic Bowman, C., Danzig, P.B., Hardy, D.R., Manber, U. and
Schwartz, M.F. (1995), “The harvest information
discovery and access system”, Computer Networks and
ISDN Systems, Vol. 28, pp. 119-25.

OMG (1995), “The Common Object Request Broker: Architec-
ture and Specification, Revision 2.0%, Object Manage-
ment Group.

Orfali, R., Harkey, D. and Edwards, J.(1996), The Essential
Client/Server Survival Guide, John Wiley & Sons,

New York, NY, and Chichester.

RM-ODP (1995), “Open distributed processing reference
model (RM-ODP)*”, 1SO/IEC DIS 10746-1 to 10746-4,
1995. http://www.iso.ch:8000/RM-ODP/

Sollins, K. and Masinter, L. (1994), “Functional requirements
for uniform resource names”, RFC 1737.

Tanenbaum, A.S. (1996), Computer Networks, 3rd ed.,
Prentice Hall, Englewood Cliffs, NJ.

34

Internet-based security
incidents and the
potential for false
alarms

M.P. Evans and
S.M. Furnell

M.P. Evans is a Research Student and S.M. Furnell is a
Research Co-ordinator, both at the Network Research
Group, School of Electronic, Communication and Electrical
Engineening, University of Plymouth, Plymouth, UK.

Computer security, Internet, WWW, Hacking

The paper explains the background to experimental work
that was conducted with the aim of measuring aspects of
the WWW (specifically the average lifetime of a web link and
the impact of the “Millennium Bug"), but which inadver-
tently caused two perceived security breaches on remote
systems. The paper explains the nature of these incidents
and considers why, when over 700,000 IP addresses were
randomly sampled in the experimental study, only two sites
considered the activity to be an attempt to breach their
security. It is concluded that, while the appropriate
protection of Internet-based systems is undoubtedly of
importance, the problems experienced during the experi-
mental study suggest a lack of uniformity in what different
organisations will class as a security breach.

Electronic access

The current issue and full text archive of this journal is
available at
http:/iwww.emerald-library.com

Internet Research- Electronic Networking Applications and Policy
Volume 10 - Number 3 - 2000 - pp. 238-245
+ MCB University Press - ISSN 1066-2243

Introduction

The Internet and the World Wide Web
(X"\XW) represent two of the most significant
technological developments of the last century.
T'he Internet offers a previously unimaginable
potential for connectivity — the possession of
two IP addresses enables a seemingly direct
connection between two systems, no matter
where they may be physically located. With
network connectivity and appropriate software
utilities, it is possible to determine the existence
of a remote system (and, to some extent, the
services it can provide), even if you cannot
actually log into it. From a security perspective,
this can represent a problem, as the mere
knowledge of a system’s existence serves to
make it a potential target.

The paper describes the problems posed by
Internet-based attacks and the resulting attitude
that they demand on the part of network
security administrators. The discussion then
proceeds to consider the problem that this
effective state of “connection paranoia” may
represent for normal Internet users wishing to
conduct innocent network activities. This is
supported by the example of an experimental
study into Web site longevity that the authors
attempted, but which was complicated by
inadvertent security side effects.

Internet security issues and examples

Computer-based crime and abuse has been
recognised as an unfortunate side-effect of the
information technology revolution for many
years, with computer hackers (crackers) and
viruses representing the most widely recognised
causes of the problem (Audit Commission,
1998; Furnell and Warren, 1996). However,
the Internet has significantly enhanced the
threat posed by attackers, giving rise to a new
series of opportunities for abuse. For example, a
useful tool in the hacker arsenal is the port
scanner, which enables the inspection of a
remote system to determine what software and
services it is running. This knowledge can be
useful in facilitating a more direct attack if
known vulnerabilities of the discovered software
can then be exploited. Probably the most well-
known example of a scanner program is the

238

Internet-based security incidents and the potential for false alarms

Internet Research: Electronic Networking Applications and Policy

M.P. Evans and S.M. Furnell

Security Administrator Tool for Analyzing
Networks (SATAN), the rationale for which is
described by Farmer and Venema (1993).
SATAN, in common with other scanner
software, offers the facility to find a machine or
network, find out what services are being run
and then automatically test those services for
known security holes. As the full name suggests,
SATAN offers a useful tool to system
administrators wishing to ensure the security of
their network. However, the public availability
serves to make it an accessible tool for hackers
as well. SATAN has been followed by a wealth
of other tools, such as NetInfo, PortPro,
IPprober and HackTek, from both the
commercial and hacker communities.

Even if an attacker cannot directly enter a
system, they can often still cause problems
through denial of service (DoS) attacks. Such
an attack is one in which a target system is
rendered inaccessible or unusable and will
generally involve the consumption of a system’s
resources (such as memory, storage space and/
or network ports), such that it is unable to
provide adequate service for its legitimate users.
At a minimum, the end result can be
inconvenience for legitimate users attempting to
use the system or wishing to gain access to it.
Such incidents represent a growing problem on
the Internet and account for a significant
proportion of reported security problems
(CERT, 2000). The attacks themselves can
take many forms and are frequently system-
specific, taking advantage of known
vulnerabilities on a particular target platform
(e.g. running a particular operating system,
Web server or other system software). However,
some generic categories of DoS attack can also
be identified and two Internet-based examples
are briefly described below (Escamilla, 1998).
(1) Ping of death. Relies on a flaw in some TCP/

IP stack implementations. The attack
relates to the handling of unusually and
illegally large ping packets (which some
systems, e.g. Windows NT and 95, can
generate). Remote systems receiving such
packets can crash as the memory allocated
for storing packets overflows. The attack
does not affect all systems in the same way,
some systems will crash, others will remain
unaffected.

Volume 10 - Number 3 - 2000 - 238-245

(2) SYN flooding. Exploits the fact that
establishing a connection with the TCP
protocol involves a three-phase handshake
between the systems, as follows:

e connecting host sends a SYN packet to
the receiving host;

» receiving host sends a SYN|ACK
packet back;

e connecting host responds with an ACK
packet.

In a SYN flood attack, an attacking host

sends many SYN packets and does not

respond with an ACK to the SYN|ACK:s.

As the receiving host is waiting for more

and more ACKs, the buffer queue will fill

up. Ultimately, the receiving machine can

no longer accept legitimate connections.

The facility to launch such attacks can be found
as a “feature” of several cracker toolkits, such as
HackTek. Given that they can be automated in
this way, the mounting of such attacks does not
require any skill or expertise on the part of the
hacker (indeed, more dedicated hackers refer to
those who rely upon such techniques as “script
kiddies). As such, it has been conjectured that
around 90 percent of hacking is conducted by
people using such methads (Akass, 2000). This
is not to underestimate the serious
consequences that attacks such as denial of
service may have. For example, in the context of
a system used for a sensitive application, such as
providing access to patient records or
controlling direct care provision in a healthcare
environment, any unavailability or performance
degradation could have significant
consequences.

The sheer range of companies and
organisations now represented on the Internet
and the WWW means that there are a
significant number of high-profile targets for
potential attackers. One such organisation is the
Pentagon in the United States, which
experienced a total of 5,844 recorded attacks in
1998. Although this is itself significant
(averaging over 16 attacks per day), the number
recorded in 1999 was significantly higher and,
by November, well over 18,000 arttacks had
been identified (Daily Telegraph, 1999). More
recently, a distributed DoS attack was
experienced by a series of major Internet sites in
February 2000. The attacks affected a number

239

Internet-based secunty incidents and the potential for false alarms
M P Evans and S.M. Furnell

of notable and popular sites, including
Amazon.com (books), eBay (online auctions)
and CNN (news) and had a significant impact.
For example, it was reported that, within a few
minutes, the Amazon.com Web site became
98.5 percent unavailable to legitimate users
(McCullagh and Arent, 2000). In addition,
Keynote, a US-based Internet monitoring
company, reported that the average
performance of the Internet was degraded by
“as much as 26.8 percent” (Keynote, 2000).
These statistics scrve to reinforce the
significance of the problem that DoS attacks
can represent.

As a conscquence of factors such as those
described above, many organisations are
sensitive to the threat of Internet-based attacks
and take measurcs to guard against them.
Success here relies upon being able to
accurately detcct the signs of an attempted
attack in progress. However, as the next section
illustrates, it is not always possible to reliably
differentiate between attacks and other forms of
network activity.

Measuring the Web - a problematic study

The authors have first-hand experience in
causing Internet sccurity alerts — although in an
entirely innocent context, through the conduct
of Web-based experimental research unrelated
to security. The nature of the intended
experiment, and the problems that
subsequently arose, are described in the
sections that follow.

Experimental background and procedure
The experiment that caused the problems was
involved in measuring aspects of the Web.
Specifically, the experiment was designed to
determine both the average lifetime of a Web
link (that is, the average period of time before
the resource pointed to was removed), and the
impact of the “Millennium Bug” on the
Internet. Both of these activities were
conducted as part of a wider research
programme relating to Wceb-based content
migration (Evans er al., 1999).

The principal aim of the experiment was to
determine the average lifetime of a Web link.
To do this, it was necessary to collect a large

Internet Research: Electronic Networking Applications and Policy
Volume 10 - Number 3 - 2000 - 238-245

sample of links at random. Each link would
then be tested periodically, and the date and
time would be recorded if and when the link
failed (i.e. the resource pointed to by the link
could no longer be found). To ensure the
randomness of the links, the authors attempted
to compile a database of Web servers from a
large list of Internet servers chosen at random.
Once the list had been compiled, the intention
was to let a Web crawler search through the
various HTML documents on the Web servers,
and choose for itself a set of links at random.
This would ensure no bias had crept into the
link selection process. Unfortunately, however,
the experiment never reached this stage.

A secondary aim of the experiment was to
determine the impact of the “Millennium Bug”
on the Internet. The list of randomly selected
servers was being compiled between October
and November 1999. As such, it would be
trivial to extend the experiment and periodically
test the state of these servers after midnight on 1
January 2000. Although not related to the
primary aim of the experiment, this would be
interesting research for little cost.

The intended experiment comprised four
different stages:

(1) compile a list of random servers;

(2) from this list, compile a list of random web
links;

(3) periodically determine the state of each
server;

(4) periodically determine the state of each
link.

However, only the first stage was ever reached,
as several unanticipated side effects caused two
unintentional security incidents, which forced
the experiment to end prematurely. The side
effects were a direct result of the design of stage
1 of the experiment interacting unpredictably
with a server’s firewall.

In stage 1, a list of random Web servers had
to be compiled. This was achieved by randomly
generating an IP address and sending a simple
HTTP HEAD message on port 80 to attempt
to retrieve the header of the default HTML
page of the server. If a response was received,
the server’s IP address and domain name were
recorded as belonging to a Web server. If no
response was received, however, the machine
was pinged. If a response was received, the

240

Internet-based security incidents and the potential for false alarms
M.P. Evans and S.M. Furnell

machine’s IP address and domain name were
recorded as belonging to an Internet server (no
attempt was made to determine which type of
Internet service the machine was providing).
This allowed the experiment to determine the
effect of the Millennium Bug on the Internet in
general and on the Web in particular. If no
response was received from the ping, the IP
address was noted as being dead, and played no
further part in the experiment.

Because of the unpredictable nature of the
network at the University, the experiment was
designed to compensate for any network
problems that occurred. For example, the
network would sometimes go down for a few
seconds or several minutes before returning to
normal. At other times, its speed dropped
significantly, due to the network loading of the
University’s LAN. Because of this, some ping
messages seemed to take a long time before a
reply was received; equally, some HTTP
requests had to be sent more than once before a
reply was received. To ensure that a server
really was down when no reply was received,
the HTTP HEAD request was sent more than
once, and both the Time To Live of each ping,
and the number of pings sent, was increased to
allow for delayed responses.

The experiment was designed as a multi-
threaded application, with 100 threads
operating at a time, each of which contacted
one server at random. The design was fully
tested on the University’s servers before being
allowed to sample the whole Internet. However,
over time, it became apparent that the
experimental procedure was resulting in
perceived security problems and, during the
course of two months, two formal complaints
were received from organisations whose systems
had been randomly targeted. The details of
these incidents, and the remedial actions that
were taken, are described in the sections that
follow.

Security incident one

Table I contains the text of an e-mail received
from the administrators of one of the randomly
sclected systems. It should be noted that
elements of the figure have been edited to
preserve the anonymity of the specific machines
involved at the authors’ site and of the affected
remote domain. As such, organisational name

Intemet Research: Electronic Networking Applications and Policy
Volume 10 - Number 3 - 2000 - 238-245

Table | E-mail recieved concerning first perceived intrusion

We have detected unfriendly network activity, directed at our machines,
from 141.163.xx.xx [xx.xx.plymouth.ac.uk]. The activity, which began at
19:04 EDT (GMT-0400) on October 27, 1999 was a port scan (137) and
pinging of many addresses in our subnets (xx.xX.xx.XX, XX.xx.XX.xx).

This type of activity is not desired on the [Deleted] domain and is
monitored frequently. Please advise your system managers and users that
this activity should stop immediately.

[Deleted]
Computer & Network Security

references have been deleted and address
elements have been replaced with “xx™ where
appropriate.

From the perspective of the remote system, it
is clear that the activity of the program was
considered comparable to that of port scanning
tools such as SATAN. However, in the context
of the experimental study, the use of port 137
(the NetBIOS name resolution service) was not
a feature that had been explicitly included in the
program. Rather, it is a feature of the Windows
NT Server (the operating system that was used
to host the experiment) that NetBIOS is used to
resolve a name, followed by the Internet DNS,
in response to a call to the “gethostbyaddr()”
function. This is the default behaviour of the
operating system.

Although completely innocent in this case,
port scans are widely used by hackers as
reconnaissance, in an attempt to determine the
services the victim’s servers are providing.
However, in this case the firewall software
would have received one NetBIOS call to port
137, and one subsequent HT TP request to port
80 (although the latter was not mentioned in
their e-mail communication). Further, the
“pinging of many addresses” (ping sweep) that
was detected listed just two IP addresses that
were pinged. Both addresses were selected
completely at random, and were not part of the
same sub-net, or even looked as if they were
remotely related. It was an unfortunate
coincidence that both were pinged at the same
time, and both happened to be owned by the
same organisation.

Security incident two
The experiment was remounted, with NetBIOS
support disabled on the originating NT system,

241

Internet-based security incidents and the potential for false alarms
M.P. Evans and S.M. Furnell

and the ping configuration altered such that
cach ping packet had a timeout value of one
sccond, and at most only six packets would ever
be sent to one machine. The experiment was
restarted, and for a time all went well. In fact,
700,000 differcnt IP addresses had been tested
over a period of two weeks, when the second
and final inadvertent security incident occurred.
‘I'able II presents the e-mail message received in
this case. Note that the IP addresses listed have
again been altered in order to hide the identities
of the machines involved.

At this point, it was decided that the
experiment had attracted too much adverse
attention and the University’s Computing
Scrvice was understandably concerned that
further problems could arise if it was to
continue. As such, the mutual decision was
taken to discontinue this element of the study.

The unfortunate situation in this case was the
fact that the incident reported differed greatly
from the behaviour of the experiment under
testing. A total of 338 ping messages were
allegedly received in five seconds, when the
code was explicitly written to send only six.
Indeed, the network traffic generated by the
experiment had been extensively monitored
before the experiment was restarted to ensure

Table 11 E-mail received concerning second perceived intrusion

Intrusion attempt report
We have noticed the following behaviour originating from IP addresses
under your control:

ICMP denial of service attempt
The activity took place at approximately:
Dec 7 03:07 GMT

We consider this/these unauthorized attempt(s) to access our networks as
malicious in nature and hereby request that you take steps to identify the
person(s) involved and arrange for this activity to halt immediately.

Here are some samples of the activity in question:

03:07:41.035397 141.163.xx.xx XX.Xx.xx.xx: icmp: echo request
03:07:41.036032 141.163.xx.xx XX.XX.xx.xx: icmp: echo request
03:07:41.038980 141.163.xx.xx XX.XX.XX.XX: icmp: echo request
03:07:41.039568 141.163.xx.xx Xx.Xx.xx.xx: icmp: echo request
03:07:41.042556 141.163.xx.xx XX.XX.XX.XX: icmp: echo request
03:07:41.043138 141.163.xx.xx XX.XX.XX.xx: icmp: echo request

338 instances in five seconds

We further request that you reply back to us with the resolution achieved
in this matter.

Internet Research: Electronic Networking Applications and Policy
Volume 10 - Number 3 - 2000 - 238-245

that no more than six packets were sent to any
one machine. The University’s network was
used for the test, and indeed, only six packets
were ever sent to each machine. However, the
incident reported 338 such messages. Whether
this was a fault in the éxperiment or in the
firewall on the remote machine that reported
the incident is impossible to determine, as the
experiment had to be discontinued and it is
doubtful that the “victim” would be willing to
share their firewall’s configuration details.

Discussion

In both incidents, the receipt of the complaint
was immediately followed by corrective action
and a written explanation of the experimental

context. This was considered satisfactory and

defused the possibility of further action.

Reflecting upon the experiences, it could be
argued that in the first incident, the remote
firewall software used was a little overzealous.
The “incident” comprised one name resolution
request to port 137, one HTTP request to port
80 and several ping messages on two separate
servers with widely differing IP addresses. It is
debatable whether this should be considered to
represent a threat. It should also be
remembered that a contributing factor in the
first incident was that the experimental software
performed an unexpected task (i.e. a NetBIOS
call) as a consequence of asking it to perform an
intended function (i.e. a name resolution). In a
sense, it could therefore be argued that the
program author was the victim of an
inadvertent “Trojan Horse” effect. Without this
prior action occurring, it is possible that the
respondent organisation may not have
perceived the subsequent pings to be part of a
hostile artack.

In the second incident, the duration of each
ping was only five seconds, which intuitively
would not suggest that a Denial of Service
attack was intended. It could be argued that this
might have been an initial assault, designed to
overload the firewall system and thereby enable
exploitation of some other vulnerability.
However, the fact that no further activity would
have been apparent from the source IP address
should have provided an indication that this was
not the case.

242

Internet-based security incidents and the potential for false alarms

Internet Research: Electronic Networking Applications and Policy

M.P. Evans and 5.M. Fumell

In both incidents, the ping feature had been
disabled by the firewall (a relatively standard
practice, which is intended to guard against
attacks such as “Ping of Death”). This meant
that the experiment continued sending ping
requests in an attempt to determine whether the
IP address was a live server or not, while the
firewall silently monitored the requests, yet did
not respond. In the absence of a response, the
experimental software was unintentionally
entrapped into appearing as a security threat.

With hindsight, however, it can also be
argued that, from a security perspective, the
practical approach taken by the experimental
study was ill conceived. To select an IP address
at random and then attempt to determine the
state of the server can be seen to have the
potential for mis-interpretation by a security
conscious organisation. From the organisation’s
perspective, such a stream of traffic would have
no obviously legitimate purpose and, therefore,
by default would be regarded as suspicious.
However, the fact that only two organisations
flagged a problem during the period of the
experimental study (during which over 700,000
random addresses were targeted in this way),
gives a very strong indication that organisations
are not monitoring their security to a consistent
degree, If it is argued that the two complainant
organisations were correct to interpret the
network activity as attacks, then it could also be
considered that the other organisations were
failing in their network security strategy. This
assertion must, of course, be offset against the
fact that different organisations will be dealing
with systems and data of different levels of
sensitivity, and therefore, in some cases, the
required level of sccurity may legitimately be
lower. Having said that, it is unlikely that in a
random sample only two organisations had data
that they would consider sensitive.

The question remains, however, as to how to
effectively monitor the growth of the Internet
without upsetting somcebody’s security policy.
As e-commerce continucs to grow on the Web,
security is becoming maorce and more of an issue,
with the result that firewalls are being
configured ever more ughtly. As has been
shown, this can have the effect of seriously
derailing entirely innocent applications, and has
the potential to cause serious harm to the
reputation of those involved (in this case, the

Volume 10 - Number 3 - 2000 - 238-245

University was advised that unless the
experiment was discontinued, its network
connection would risk being terminated).

In view of the practical experiences, it is
worth re-examining the Pentagon attack figures
cited earlier in the paper. Closer investigation
reveals that the Pentagon’s definition ol an
attack includes activities such as port scans and
pings (Wayner, 1999). As such, the level of
genuine abuse may not be as significant as first
suggested by the bare statistics alone, as many
of the incidents recorded may have been the
result of activitics that were not intended to
breach security. This can be regarded as a
counter-argument to the commonly held belief
that the majority of computer-based crime goes
unreported, due to fears of adverse publicity on
the part of the affected organisations (Nycum
and Parker, 1990). In this case, organisations
may be over-stating their vulnerability to abuse.
In addition, there has been at least one legal
ruling (by the Norwegian supreme court)
stating that probing of systems on the Internet,
using techniques such as port scans, should not
be considered illegal (Jones, 1998).

It can be argued that all parties involved in
the practical incidents described emerged as
losers from their experiences. The authors were
unable to proceed with a potentially interesting
experiment, whilst the remote organisations
had effectively wasted resources in responding
to false alarms. As such, there appears to be the
nced for some form of protocol through which
applications such as the experiment detailed
here can safcly query a server on the Internet
without upsetting its security arrangement.
Such a protocol exists for the Web in the form
of the Robot Exclusion Standard (Koster,
1994). This is a mechanism through which a
Web server can dcfine the permissible
behaviour of “visiting™ software agents, such as
a search engine’s Web crawler. These agents
attempt to index the contents of a Web server,
but have the potential to cause unwelecome side
effects. For example, they may flood the server
with too many requests, or attempt to index
arcas in which they are not welcome, cither for
privacy reasons, or because their presence fools
the scrver into thinking that they are a genuine
user. To prevent this, the standard lets the
server owner specify clear boundanes of good
behaviour which the Web cran ler s expected o

243

Internet-based secunity incidents and the potential for false alarms
M.P. Evans and § M. Furnell

adhere to. The boundaries are encoded in a text
file called Robots.txt, which a Web crawler
should parse upon arrival at the server.
Although the standard cannot enforce the
behaviour of a Web crawler, it provides an
implicit contract between server owner and
Web crawler designer. Breaking the contract
can lead to the exclusion of all traffic from the
sub-network from which the Web crawler
originated, or even legal disputes (Pallmann,
1999). As such, the Robot Exclusion Standard
could make an ideal model from which to
develop similar protocols for measuring the
Internet. With so many different security
policies in existence, it makes sense for a server
to publish its policy of acceptable behaviour,
rather than expect any visiting software agents
to guess what that policy might be.

Conclusions

The provision of appropriate protection for
Internet-based systems is undoubtedly of
importance. It is necessary for systems to have
“frontline” defences in order to detect potential
abuse and reduce the possibility of successful
system penetration. From this perspective, the
organisations that identified and responded to
the activity of the experimental software can be
commended for having effective security
monitoring procedures that should also enable
detection of genuine attacks. The fact that, in
the cases described, the monitoring software
caused false alarms can be excused in a security
context, as this is preferable to allowing an
intruder to penetrate or disrupt the system.

Incidents such as Denial of Service attacks
represent a significant threat to Internet-based
systems and, while they do not represent a
direct threat to the confidentiality or integrity of
data, they may be employed as a precursor to a
more direct form of attack. In addition, the lack
of system availability may itself represent a
significant threat to individual or organisational
well-being in many scenarios. As such, it is
legitimate and advisable for organisations to
take appropriate steps to protect their assets
from such attack. However, there is also a clear
need for experimental research to be performed
on the Internet. Measurements on the size of
the Internet and its growth are not just of

Internet Research: Electronic Networking Applications and Policy
Volume 10 - Number 3 - 2000 - 238-245

academic relevance. Web masters and network
managers need to know how much network
traffic to expect, while business leaders need to
know the importance of the Internet to their
business. The techniques used to perform such
measurements, however, share certain
characteristics with those used by hackers.
There is, therefore, the potential to trigger
security alerts for innocent reasons, as the
authors have discovered. This finding calls into
question whether the number of “security
incidents” logged by certain organisations
actually represent a realistic indication of their
vulnerability to attack. The experiment
discussed previously was applied to over
700,000 Internet addresses, yet only two
security incidents were flagged and followed up,
demonstrating a lack of uniformity in the
security policies of different organisations and
what they class as an attack.

In view of the above, the security needs of the
Internet must be balanced with the
experimental needs of the research community
(and the activities of legitimate bots performing
necessary services), if only to prevent future
misunderstandings that could potentially lead
to more embarrassing outcomes than those
discussed here. The definition of a standard
enabling server owners to define their
acceptable behaviour policy could prevent such
situations from occurring, and lead to a more
realistic measure of security incidents, reducing
public fear caused by potentially exaggerated
attack statistics.

References

Akass, C. (2000), “On the straight and narrow — not”,
Personal Computer World, February, p. 57.

Audit Commission (1998), Ghost in the Machine, Audit
Commission Publications, February, ISBN 1-86240-
056-3.

CERT (2000), “CERT" Advisory CA-2000-01 Denial-of-
Service Developments"”, CERT Coordination Center and
the Federal Computer Incident Response Capability
(FedCIRC), 3 January, http://www.cert.org/advisories/
CA-2000-01.html

Daily Telegraph (1999), “Pentagon under cyber-seige”, The
Daily Telegraph Connected Supplement, 11 November,
p. 2.

Escamilla, T. (1998), Intrusion Detection, Wiley Computer
Publishing, I1SBN 0-471-29000-9, New York, NY.

244

Internet-based security incidents and the potential for false alarms

Internet Research: Electronic Networking Applications and Policy

M.P, Evans and S.M. Fumnell

Evans, M.P., Phippen, A.D., Mueller, G., Furnell, S.M.,
Sanders, P.W. and Reynolds, P.L. (1999), “Strategies
for content migration on the World Wide Web”,
Internet Research, Vol. 9 No. 1, pp. 25-34.

Farmer, D. and Venema, W. (1993), “Improving the
security of your site by breaking into it",
http:/iwww fish.com/~zen/satan/satan-demo/admin-
guide-to-cracking.html

Furnell, S.M. and Warren, M.J. (1996), “Computer abuse:
vandalising the information society”, Internet
Research, Vol. 7 No. 1, pp. 61-6.

Jones, C. (1998), “Let the Web server beware”, Wired News,
23 December, http://www.wired.com/news/politics/
0,1283,17024,00.html

Keynote (2000), “Denial of service attacks this week
degraded Internet performance overall according to
Keynote”, Keynote Press Release, 12 February, http://
www.keynote.com.

245

Volume 10 - Number 3 - 2000 - 238-245

Koster, M. (1994), “A standard for robot exclusion”, The
Web Robots Pages, http:/finfo.webcrawler.com/mak/
projects/robots/norobots.htmi

McCullagh, D. and Arent, L. (2000), "A frenzy of hacking
attacks”, Wired News, 9 February, http:/
www.wired.com/news/print/0,1294,34234,00.html

Nycum, S.H. and Parker, D.B. (1990), "Prosecutorial
experience with state computer crime laws in the
United States”, in Grissonnanche, A. (Ed.), Security
and Protection in Information Systems, Elsevier
Science Publishers B.V., North-Holland, pp. 307-19.

Pallmann, D. (1999), Programming Bots, Spiders, and
Intelligent Agents in Microsoft Visual C++, Microsoft
Press, ISBN 0-7356-0565-3.

Wayner, P. (1999), “Hacker ‘attacks’ on military networks
may be closer to espionage”, New York Times, 8
March, http://www.nytimes.com/library/tech/99/03/
cyber/articles/08defense.html

The Resource Locator Service: Fixing a
Flaw in the Web

M.P.Evans and S.M.Furnell

Network Research Group
Department of Communication and Electronic Engineering, University of Plymouth,
Plymouth, UK.

Abstract

The architecture of the World Wide Web has scaled beyond its original expectations, but
problems are now emerging that could undermine its effectiveness as an information system,
and restrict its future growth. Nearly 30% of all web pages experience link rot, DNS domain
names are rapidly running out, and older web pages are deleted without being archived,
leading to the loss of potentially important information. These problems are caused by the
URL and its reliance on the Internet’s DNS for its namespace, which we argue represent a
serious flaw in the web’s architecture. In this paper, we present a new web-specific name
resolution service that has been designed to address these problems. Called the Resource
Locator Service, it offers an unconstrained namespace, and a mechanism for transparent
resource migration that can dynamically locate static resources across time and space.

Keywords: Referential integrity; Resource migration; Link rot; Temporal references; Web
namespace

1. Introduction

The World Wide Web (web) was designed by Tim Berners-Lee as a social creation rather
than a technical one [14]. The ease with which its users can publish information as well as
read it, combined with its exponential growth, has made it a social platform from which ideas
and concepts emerge at an ever-increasing rate. However, the sheer volume of users and
information has applied enormous pressure on its architectural foundations, which was not
foreseen during its development. As its size continues to grow exponentially, increasing
pressure is placed on its architecture, such that any flaw will become a major weakness in the
system. With the web’s role in society becoming increasingly important, and with the
development of new access devices such as Personal Digital Assistants increasing the number
of users, it seems appropriate to address any flaws before they disrupt the system.

In its present design, the most serious flaw in the web’s architecture currently stems from
the design of the Uniform Resource Locator (URL), which is used to reference a web
resource. The URL has proven to be an unfortunate means of referencing a resource on the
web, and its technical limitations are well documented [8, 14, 18, 27, 30, 35-36, 39]. It sits
uneasily between the machine world of the web’s architecture and the human world of the
User Interface: the machines need the URL to be syntactically consistent and constrained to
tell them where a resource is, whereas humans need it to be intelligible and memorable to tell
them what the resource is. For the purposes of this paper, we have focused on three key
problems that are inherent within the URL’s design, which together could threaten the web’s
development if left unchecked:

1. Link Rot - the URL incorporates a server’s hostname in order to provide a name for a
resource. When the resource migrates to a different host, it must use a new URL that
incorporates the new hostname. This causes all hyperlinks that use the old URL to
break, or ‘rot’. Currently, 28.5% of web pages suffer from link rot, with 5.7% of all
links broken [38] and an average of 5.3% of links in search engines also broken [21].
The informational content and overall usefulness of the web will decrease as links
become less reliable.

2. Shrinking Namespace — a URL not only defines a resource’s location, it is also used
as its name. Any company that wants to be remembered needs a memorable name,
and the trend on the web has been to name a company after a memorable hostname to
create a memorable URL. However, the URL is based on the aging Domain Name
System (DNS) of the Internet, and the namespace this provides is running out. In
March 2000 alone, new hostnames were being requested at a rate of nearly one a
second, and some 14,322,950 distinct hostnames have been registered just for web
server use [29]. The problem is exacerbated by copyright and trademark issues
regarding the ownership of certain URLs, and the centralised nature of the DNS,
making the URL in its role as a resource’s identifier, the “web’s achilles heel” [3].

3. Lost History — the web is designed for society, but crucially it neglects one key area:
its history. Information on the web is foday’s information. Yesterday’s information
is deleted or overwritten, with no consistent means of searching through archived
material other than manual navigation through a web site in the hope of finding
archived material. The URL is a spatial identifier only, unconcerned with the
temporal ordering of the web’s resources, and so prevents the consistent retrieval of
archived information [22].

In this paper, we examine existing solutions to these problems and highlight their
weaknesses when confronted with a system the size of the web. We argue that the
architecture of the web itself is flawed, and that solutions built on top of a flawed architecture
cannot work. As such, we present a new approach with the design of the Resource Locator
Service (RLS), which effectively addresses these problems by replacing the DNS with a name
service designed specifically for the web.

The remainder of the paper is presented as follows: Section 2 discusses the background to
the problem, and related work that has tried to provide a solution. Section 3 provides an
overview of the RLS, while section 4 presents the design in much greater depth. Finally,
sections 5 and 6 discuss the RLS in operation, while sections 7 and 8 present the results of
performance measurements that have been taken from a prototype, which has been developed
to demonstrate the effectiveness of the design, and discuss issues and further work that
remains to be done.

2. Background and Related Work
2.1. Solutions to Link Rot

The use of the URL as a means of identifying a resource has caused all links to be
inherently brittle, as once a resource moves to a new location, the link breaks. Designing a
system for the web whose identifier does not change when the resource migrates (i.e. a
location-independent identifier) will help to prevent link-rot. Such systems exist on the web
and can be classified as using one of five approaches:

1. The Chain Approach
A forward reference is left behind on the machine that the resource has migrated
from, pointing to the new location. Although arguably optimal in terms of network
traffic overhead [14], this approach can lead to forward references outnumbenng

resources. Various shortcut operations can limit the length of the chain of forward
references, but this approach is still inherently brittle, as locating your resource is
dependent upon the state of someone else’s server. Also a resource can only migrate
onto a server that supports this approach. Examples include W3Objects [14].

2. The Callback Approach

A database of all the links on the web is maintained. Each time a resource migrates,
the database is updated and calls back all documents that contain a link to the
resource, enabling each document to update its links. This approach guarantees
referential integrity, as it is modelled on database technology. However, the web is
not a database, and any server on the web may be down at any time. As the database
must store all updates to servers that are down, it would eventually be overwhelmed
by the number of pending updates [6]. This approach also requires the documents to
be intelligent enough to remove links identified as broken, and so is not backwards
compatible with the web’s existing architecture. Examples include the HyperG
system [18] and Atlas [30].

3. The Search Approach
Whenever a resource needs to be located, a network-wide search is performed, with a
flooding algorithm used to guarantee that all servers are queried. Although reliable,
such an approach produces too much network traffic overhead for use on the web,
and is the least optimal of all the approaches [14]. No examples currently exist for
web-wide resource location through search.

4. The Name Server Approach

A set of distributed name servers are used that manage a resource-identifier/location
mapping. The name server is queried using the identifier of the resource in much the
same way that a machine’s IP address is determined through its hostname using the
DNS [25, 26]). However, a name server system is essentially a distributed database,
whereas the web is a federated system, and so locating the correct name server
without breaking the web’s existing architecture presents a significant challenge.
Examples include the Handle System [39], and the Resolver Discovery Service
(RDS) [36], both of which break the web’s existing architecture.

5. The Lecturing the User Approach

Not a technical approach, more a philosophical one. Berners-Lee and others have
argued that a URL need not break if considered thought is given to its design [2].
However, despite the numerous technical arguments against this viewpoint, it is
people who create URLs and people who are notoriously bad at consistent regular
maintenance. Ultimately, as broken links on the W3C web site itself testify (e.g. the
link http://discuss.w3.org/mhonarc/w3c-tech/threads.html on the document located at
http://www.w3.org/MobileCode/Workshop9507/ is broken), lecturing the user will be
ineffective at best.

2.1.1 Semantic Ambiguity

Although each of the five approaches provides its own solution to the problem of link rot,
the semantics of the link and what it references are left in an ambiguous state. Referential
integrity can ensure that links always reference the same resource, but what happens if the
content contained within the resource changes? Should the semantics of the link require the
content to persist for the lifetime of the resource, thus requiring a new resource and identifier
to be created each time the content changes; or should the semantics be defined such that new
content simply overwrites existing content? The former option will preserve all content, but
will lead to an explosion of new resources, each with its own distinct identifier. Web sites
that contain frequently changing content, such as daily news sites, will generate many new

resources, making linking to the site virtually impossible. Conversely, the latter option
controls the number of resources but destroys information. Links will only be able to
reference the web site, rather than specific information on the site, requiring the user to search
manually for the story within the site’s archives (if they exist). Although this problem of
semantic ambiguity exists in the web’s current architecture, the design of a new name service
is a suitable opportunity for the ambiguity to be resolved.

2.2. Solutions to the Shrinking Namespace

Since the birth of the web, the number of domain names registered has exploded
exponentially, leading to the number of memorable names shrinking rapidly. Companies that
register domain names without actually using them in order to resell them for a profit
exacerbate the problem by driving up the price of the remaining names. Furthermore, name
disputes are becoming increasingly common, as the rights to the remaining names are fought
over by companies and organizations with similar trading names. The Internet Corporation
for Assigned Names and Numbers (ICANN) is the organization responsible for assigning
Internet names, and acts as the central registrar for domain names on the web. ICANN has a
defined policy for resolving domain name conflicts, called the ‘Uniform Domain-Name
Dispute Resolution Policy’ [16], which attempts to resolve the issue of two parties fighting
over the same name. However, before the policy can be invoked, one party must first file a
complaint in a court of law. This is not an elegant solution, and with the number of available
domain names dwindling, the problem can only get worse.

To resolve the problem, ICANN is currently examining ways to extend the top level
domain name space. A Top Level Domain name (TLD) is the last part of a domain name
(e.g. .com, .org, etc.). ICANN has recently extended the original list of seven (excluding
country codes) to include new names such as .biz, .coop, and .aero, etc [13]. However, this
must be seen as a short-term solution, as it simply constricts the same problem to vertical
commercial and organizational domains. Equally, there is no guarantee that the new top level
domains will be used, as companies are currently fighting to use the.com TLD over all other
alternatives. Currently, 82.8% of all registered domain names use.com [20], largely because
it is perceived as being associated with the web in people’s minds far more strongly than any
other TLD [37]. As such, the competition for.com names will still remain, regardless of how
many new TLDs are introduced.

An alternative proprietary solution can be found in the RealNames system [31], which
provides an alternative namespace to that of the DNS, and is used by various web portals
including AltaVista, MSN, Google and LookSmart. RealNames uses Internet Keywords as
‘human friendly identifiers’ [23] that are registered by a company or organization usually
associated with that name (e.g. ‘Ford’). The RealNames system maps the human friendly
identifier onto a company’s web site, enabling a user to navigate to the site using the brand
name of the company. In addition, it allows more than one party to register a web site under
the same Internet Keyword, presenting several links to the user (either through an affiliated
web site, such as AltaVista, or an affiliated browser, such as Microsoft’s Internet Explorer 5)
when a shared name is entered. In effect, it can be seen as occupying the middle ground
between a naming scheme and a search engine, indexing Internet Keywords rather than every
word in a web document, and so makes search results more reliable than a general web
search. However, it is not a true architectural solution, as the same identifier does not
uniquely identify a specific resource, leaving it to the user to manually select the most
appropriate resource from a list. As such, an Internet Keyword cannot be used by the web as
a machine-readable identifier, and so cannot replace the URL. Furthermore, it does not open
up the namespace, as it is a proprietary solution that enables the RealNames company to
determine what is and what is not a suitable Intemet Keyword. The company isalso in a
position to limit the number of times that an Internet Keyword can be used by users to just
1000 times a year, at a cost of $100 per Internet Keyword per year [32].

The official solution is to use Uniform Resource Names (URNSs) rather than URLs.
URNSs are designed to be permanent identifiers that identify a resource through a location-

independent name, thus simultaneously removing the dependence on the DNS and providing
a solution to link rot. However, URNs have been on the agenda since 1992, and despite many
short-term solutions [7, 27], no architectural method of providing URN to URL resolution has
been developed. Worse, URNs are designed as machine-readable identifiers only [36], and so
ignore the shrinking namespace problem completely as they are not designed for human use.

2.3. Solutions for Archiving the Web

Because the URL is a spatial locator and has no means of referencing a resource
according to its time of creation, the web is always stuck in the present. A user can manually
locate an archived version of a resource using the textual cues contained within a web page,
but a web crawler cannot, as it does not understand the text. Existing solutions to this
problem are again proprietary and unfocused in their approach. For example, the Internet
Archive project [17] was begun in April 1996 by Brewster Kahle to literally archive the entire
Internet. However, access to the archive is free only to researchers, students and not-for-
profit organizations, and only if a research proposal indicating the need for access is first
submitted and approved. Like the RealNames system, this is hardly in line with the open
environment of Berners-Lee’s original vision of the web.

Other systems have been designed in an ad hoc fashion in order to archive a particular
library’s digital contents, but no the other resources on the web [12, 28]. Although fully
operational in themselves, these systems are isolated from one another and from the public at
large because they are not part of the web’s architecture.

2.4. The Need for a New Approach

The existing solutions described here are all isolated, independent approaches that do not
address the cause of the web’s architectural flaw and do not sufficiently integrate with the
web’s existing architecture. Consequently, they cannot provide effective long-term solutions
to the flaw.

We argue that it is the use of the URL and its reliance on the DNS that is the root of the
problems identified here, because:

e the DNS is designed to map a hostname onto an IP address, whereas the web needs a
system to map a resource name onto a location;

o the DNS deliberately constrains its namespace as it only has to deal with the names of
servers, whereas the web needs an unconstrained namespace to cater for all different
types of resources and the needs of their owners;

e neither the DNS nor the URL have any way of storing and referencing a resource’s
time of creation.

In order to fix the flaw the web needs a new service tailored to its own needs, which can
provide referential integrity, an unconstrained namespace, and can locate a resource according
to its position in time as well as space. In the next section, we present the design principles
for such a service, which we have termed the Resource Locator Service.

3. The Resource Locator Service
3.1 Overview

The Resource Locator Service (RLS) has been designed as a name resolution service that
is specific to the web. The service is fully backwards-compatible with the web’s existing
architecture, but provides new functionality that enhances it. It has been designed to work
with the DNS as well as on its own, so that it does not have to completely replace the DNS in
order for it to function effectively. As such, the RLS will only manage those resources that

are explicitly registered with it, giving the user the choice of whether they wish to use its
advanced features or not, while maintaining full backwards-compatibility with the web’s
existing architecture. The service is designed to be deployed in an evolutionary way,
becoming increasingly prevalent on the web until it eventually becomes the de facto name
resolution service, leaving the DNS as the Internet s name resolution service.

3.2 Unconstrained Namespace

The RLS has been designed to accept any string as the name for a resource, allowing an
infinite variety of naming schemes and namespaces to be used. As such, the RLS provides a
technical solution to the constrained namespace problem, but does not define a way of
avoiding namespace conflicts. However, this is a matter of policy rather than technology, and
so will be left for future research.

We envisage the RLS being run along similar lines to the DNS, with individual nodes in
the system being independently operated, but an organization such as ICANN managing the
addition or removal of those nodes. However, unlike the DNS, no organization would have
control over the namespace.

3.3 Transparent Resource Migration

The RLS helps to prevent link rot by providing a transparent resource migration service
that maps a persistent name onto a dynamic location. Resources that wish to make use of the
service must first register with it, after which they are free to migrate without breaking the
links that reference them. Resources that do not register will still cause link rotshould they
migrate to a different location. As such, the RLS will not provide an immediate solution to
link rot, but will act to retard its growth until all resources register with the service. Once this
happens, link rot will only occur when a resource is no longer required and is deleted.
However, we envisage third-party archiving services being employed to host such unwanted
resources, with the RLS being used to maintain their persistent name. Although this does not
guarantee the integrity of all links, we argue that it is the most appropriate level of integrity
for the web, as persisting all resources forever would be impractical, and unwanted resources
will not have many links referencing them anyway.

Resource migration enables the RLS to shift the responsibility for link management (and
thus link rot) from the resource owner to an automated service. Because a registered
resource’s name persists across servers, the resource owner is not required to manage broken
hyperlinks, as their integrity is guaranteed by the RLS. The owner must still inform the RLS
of the new location, but we have automated the entire process through a new Resource
Migration Protocol (RMP - see section 5.1), which remotely instructs the RLS to update the
location of a migrated resource. To demonstrate this, our prototype includes a RMP client
with a drag and drop interface for moving resources across servers using a style very similar
to Microsoft’s Windows Explorer (see section 7.1.3). This enables the resource owner to
freely move registered resources across all web servers without any manual link management

3.4 Temporal References

The RLS preserves the web’s history through the use of a new temporal reference, which
enables a resource to be identified according to its time of creation as well as its name. In this
way, different versions of the same resource can share the same name, while still being
differentiated by the RLS according to the reference’s temporal attribute. This will also
enable resources to be searched for according to their time of creation as well as their subject
matter, enabling temporal search engines to be developed that show the state of the web and
its resources at different points in time.

Temporal references require the resource and its content to be bound tightly together and
treated as an atomic unit. Should the content need to change, a new resource must be created
to contain it. However, rather than requiring a new name, the new resource can use the

existing name, but with a different temporal attribute. In this way, different versions of the
same resource can be uniquely identified according to their time of creation, without requiring
different names. References without a temporal attribute are assumed to be current
references, which always reference the most recent version of the resource. This enables the
temporal reference to resolve the semantic ambiguity of the hyperlink, as the current
reference can be used to identify a web page whose content changes frequently, while a fully
defined temporal reference can be used to identify a specific version of the web page
according to the time that it was created.

Note that although the RLS binds a resource to its name and content in a way that appears
similar to the specification of the URN, its functionality is very different. For example, the
namespace of the RLS is completely unrestricted, whereas that of the URN is rigidly
constrained. In addition, a URN can persist beyond the lifetime of its associated resource,
whereas the RLS will persist a resource’s name only as long as the resource exists.

4. Architecture of the Resource Locator Service
4.1. The Locator Network

The RLS is a distributed database, deployed across a network of nodes called Locators. A
Locator is analogous to a Resolver [36], but is able to locate a resource through time as well

as space by storing a resource’s name, current location, and time of creation. This Locator
Network performs a similar job to the DNS, but with granularity at the resource level.

- had D
- -~

/ A Y
K Other Locators *
/ A
1. GET / O A
a g .gi ' |
@ www anyserver.com/img g’lf 2 obT.. Locator O “
—] i]
= ¥ ! !
4 Frenr AN2 3 Eﬁt_‘)r302 Found Name Addrece l!
Request Router /
\ www anvserver.com/ima arf www.ServerAcom |/
. E
5. GET \, /7
Servern.comimg.gif . Locator's Lookup Table 7
.\. 7 ’
\. 04
6 200 -
v RL

@ Resource Name =
www.anyserver.com/img.gif

Resource Location =

www.ServerA.com/img.gif

www.ServerA.com

Figure 1 - Basic Architecture of the Resource Locator Service

Figure 1 shows a high level view of the RLS. The Locator network uses standard HTTP
for communication, with the client being redirected to the correct location of the resource
using the HTTP redirect mechanism [9]. Although this is not the most efficient approach, it
facilitates backwards-compatibility, enabling all web entities to use the RLS.

The Locators take any string as the name of a resource and return that resource’s location
as a URL. The only constraint on the name used is that it must identify only one resource
(although that resource may itself be replicated, and so have many values for its location in

the database). In this way, the RLS removes any technological barrier to future naming
schemes, leaving policy alone to determine their structure.

4.1.1 Migration Approach

Of the five approaches described in section 2.1, the RLS uses the name server approach, as
it is the most appropriate for the required functionality. Of the other approaches:

o the lecture the user approach advocates doing nothing as a solution, and so can be
immediately discounted,

e forward referencing may provide referential integrity, but it still relies on the URL
and thus the DNS’s constrained namespace, and cannot support temporal
references;

o the search approach will not scale to a system the size of the web [14], and the
situation would be made worse if it had to manage temporal as well as spatial
references;

o the callback approach provides referential integrity without providing a true
naming service, and so the URL and the DNS would remain.

The name server approach, in contrast, is simply a distributed database, and so will scale
to the size of the web and support temporal references. However, designing the system such
that it interoperates with the web’s existing architecture has been a major engineering
challenge. Our solution to this problem is presented in the following sub-section.

4.2. Request Routing

Figure 1 is a high level representation of the RLS and depicts the client querying an
appropriate Locator. However, in practice, a client must be made aware of exactly which
Locator contains the required name/location mapping, but in a way that does not require the
client or the hosting server to be altered. As such, some form of mediation is required
between the client and the RLS that can transparently route the client’s request to the
appropriate Locator, without requiring any modifications in the client or server. This is
difficult to achieve, however, as the constraints imposed on the RLS directly conflict with its
distributed nature. For example, some distributed systems, such as the DNS or directory
services, use the structure of the namespace itself to identify the correct node, but the RLS
cannot, as the namespace must be left completely unconstrained. The alternative is a flat
architectural configuration, with nodes arranged as peers and the namespace left
unconstrained, but this requires the search approach to be used, which will not scale to a
system the size of the web [14].

The IETF has also faced this problem with the design of the URN, and their proposal
involves using the DNS to locate the correct node (termed a Resolver) in their Resolver
Discovery Service [7]. A URN is sent to the DNS, which then forwards the URN onto the
correct Resolver, which in turn resolves the URN to the correct URL. Essentially, the DNS’s
architecture is adapted so that it acts as an access system into a network of distributed name
servers (the Resolvers), which perform the actual URN/URL mapping. Although this can
work without requiring every browser and server to be changed, it has several disadvantages:

e It fundamentally changes the purpose of the DNS (from a name/address resolution
service to an access service to another network).

e The DNS’s importance in basic network routing prohibits its use in experimental
work [3].

¢ URNSs would still be constrained by the DNS namespace [7].

To resolve this problem for the RLS, we have developed a new system of mediation using
an object called the Request Router, which transparently routes a standard HTTP request to
the appropriate Locator in the RLS. The Request Router can work with any string as a
resource identifier, and does not flood the entire RLS in order to locate the node with the
required information. Furthermore, the system is fully backwards compatible with the web’s
existing architecture, and generic enough to provide mediation between the web and any
distributed system.

4.2.2 The Request Router

The Request Router (RR) provides transparent, scalable mediation between the web and
the RLS through the use of a hash routing algorithm. Specifically, a hash routing algorithm
takes a string and maps it onto a hash space. The hash space is partitioned such that the string
is mapped onto one and only one node in a distributed system [33, 40]. Using a hash routing
algorithm as the basis for locating nodes in the RLS, therefore, enables any string to
deterministically identify the Locator that contains the required name/location mapping. As
the Locator is a database, it can be defined to store any type of information, and so the
resource’s location can be defined as any string. Thus, the hash routing algorithm solves the
problem of how to use an unconstrained namespace for both a resource’s name and location,
whilst efficiently locating the correct Locator without flooding the system.

4.2.3 The Hash Routing Algorithm

The RR uses the same hash routing algorithm as the Cache Array Routing Protocol
(CARP) [41], which maps a URL onto a specific cache in a distributed caching system, such
that resources are distributed evenly across all caches in the system. The algorithm used in
CARP works by mapping the URLs of resources that need to be cached onto a partitioned
hash space, with each set in a partition being associated with one caching node [33]. The
algorithm deterministically identifies the node as follows:

1. The URL of the resource is hashed.

2. The URLs of each of the caches in the array are also hashed in turn, with a weighting
factor being applied that is set according to the physical characteristics of each node
(see below).

3. The hash value of the resource and the hash values of the nodes are XORed together,
producing a score for each resourceURL _hash/cacheNode_hash combination.

4. The cache node whose resourceURL_hash/cacheNode_hash combination scores
highest is the one that hosts the resource.

Thus, given only the name of the resource and the names of all the machines in the array,
the exact machine that holds the resource is uniquely and deterministically found. The
resources are distributed uniformly across the system, but the weighting factor can be used to
skew the distribution such that those nodes with a higher performance will host more of the
resources.

4.2.3.1 Adapting the Hash Routing Algorithm for the Resource Locator Service

Although highly effective in large cache arrays, we have adapted the CARP protocol for
use in the Request Router to better meet the needs of the RLS. Specifically, each node in a
CARP system keeps a list of the URLs of all the caches in the system, and this causes a
degree of network overhead. When applied to the RLS, however, every RR would need to
know the URL of every Locator in the Locator Network, and periodically check for system
configuration changes. This would create an unacceptable increase in network overhead, and
would limit the types of device that could use the RR to those that could store and maintain
the large lists of Locators that would be required.

The RLS avoids this limitation, however, by removing the weighting factor from the
algorithm, and leaving the namespace of the resources open while restricting the namespace
of the Locators. As such, a URL pattern is defined, which all Locators must use for their own
name. The pattern encapsulates a number, which can be thought of as that Locator’s identity
number. Each number must be unique in the system, and all numbers must be sequentially
ordered, starting from 0. An example URL pattern is:

http://www.nodeX.Locator.net/

where X represents the Locator’s number in the system. For example, the first three nodes in
the system (assuming a zero-indexing system) would have the following URLs:

http://www.node0.Locator.net/
http://www.nodel.Locator.net/
http://www.node2.Locator.net/

Effectively, the URL pattern of the Locators acts as a well-known URL in a similar way to the
well-known ports defined for TCP applications. Note that the URL pattern must be
sequential, and there can be no gaps in the sequence. The URLs of a complete sequence of
nodes, each of which has a URL that corresponds to the URL pattern, is therefore known as a
URL sequence. In this way, the URLSs of the Locators themselves become deterministic.

4.2.4 Updating the Request Router

Adding a new Locator to the RLS will cause the hash routing algorithm to implicitly re-
map 1/n resources in an n-node system (note that » includes the new node) [33, 40]. As such,
if a Request Router is unaware of this change in the system’s configuration, then 1/n of its
requests will go to the wrong Locator. However, the RR does not need to be synchronized
with the configuration of the RLS, as the deterministic nature of the URL sequenceenables it
to detect any change automatically. Specifically, once the RR has the URL pattern for the
RLS, it is a trivial matter for it to iterate along the resulting URL sequence, querying the
existence of nodes at each point in the sequence. If a Locator fails to respond, then the RR
has found the limit of the sequence. Thus, if a Locator cannot find a resource, the RR can
simply query the existence of the Locators that have a node number that matches this limit (in
case a Locator has been removed), or is one greater (in case a Locator has been added). If the
limit remains unchanged, then the RR knows that the resource is unregistered with the RLS;
otherwise, the RR simply rehashes the resource’s name using the updated value, and sends the
request to the newly calculated Locator. In this way, the RR is completely decoupled from
the configuration of the Locator Network, and so any change in the configuration of the
system does not result in a flood of update messages. Furthermore, the only informationthat
the RR needs to store about the configuration of the system is the URL pattern and the
number of nodes.

Note that the system’s reliance on the URL sequence makes it vulnerable to node failure.
Should a Locator fail, not only will its records not be available, but any RR that performs an
automatic update during the failure will calculate the wrong number of nodes in the system,
and will map most URLs onto the wrong Locator. However, the disruption can be limited if
the RR continues to check for the existence of nodes beyond that at which no response is
received, effectively enabling it to jump any holes in the URL sequence. Although the RR
will still not be able to access the records in the failed Locator, it will at least know the correct
configuration of the system, and so all other records will be available.

To further improve the resilience of the RLS, future work will look at introducing
redundancy to the system, either by clustering several servers to provide a more fault-tolerant
Locator design, or by using a duplicated hash routing algorithm, such as that proposed by
[19]. Duplicated hash routing uses two hash routing functions and two cloned systems, one of
which is a secondary system that acts as a backup in the event of a node in the primary system

10

failing. However, the benefits of this algorithm need to be determined, as although the
reliability of the system is improved, the size and complexity are increased.

4.2.5 Integrating the Request Router into the Web

Because the RR is decoupled from the RLS, and needs only minimal information in order
to function, it can be deployed virtually anywhere on the web. For example, it can be:

e embedded into an HTML document as a Java applet, ActiveX control or even script.
When the user clicks on a hyperlink, the click event can be captured by the embedded
RR, the hash routing operation performed, and the location of the Locator discovered.
Thus, the node location process occurs within the HTML page itself. This ensures
total transparency and maximum backwards compatibility, but permits only HTML
documents to use the RLS;

o built into a browser.

The browser automatically locates the appropriate Locator, allowing all servers to be
unaware of the RLS, but requiring the client to be modified;

e designed as a browser plug-in.

The browser is extended rather than redesigned, with the RR being downloaded by
the user when required. This provides seamless evolution, and a solution that is more
backwards-compatible than the previous example. Again, all servers are unaware of
the RLS;

e built into a server, or added as a server module.

The RR can be deployed on the server, which can perform the hash routing algorithm
for each request it receives. This allows all browsers to be unaware of the RLS, and
gives server owners the choice of whether to use the RLS or not;

e embedded within a proxy server or a reverse proxy server.

The proxy server intercepts the request, and routes it to the appropriate Locator. This
requires reconfiguration rather than redevelopment, allowing all browsers, servers
and resources to be unaware of the RLS;

e designed into a layer 4 switch or policy based router.

The switch or router contains the RR, transparently routing the request to the
appropriate Locator without the knowledge of the client or the server. This provides
total transparency and maximum backwards compatibility.

This allows the RR to be integrated into the web wherever it is required. In this way, the
number of resources registered with the RLS can grow over time as more people decide they
wish to use its services. As such, we envisage the adoption of the RLS to be evolutionary,
rather than revolutionary, proceeding in a distributed way across different sectors of the web,
as its services become useful to different types of user For example, to begin with, small
numbers of web authors may embed a RR within a HTML document. After a short period,
server owners may decide to embed a RR into their servers in order to use the RLS without
affecting the clients. From this, plug-ins can be made available for existing browsers,
allowing resources to be located directly in the browser, via both the DNS and the RLS. Once
a reasonable number of people use the RLS, Internet Service Providers can embed a RR into
their proxy servers. Eventually, the RLS will reach a critical mass of users, whereby a RR
will become an integral part of a browser and server, and thus part of the web itself. In this
way, the RLS’s database becomes populated over time by resource owners who choose to
register their resources with it. As such, the database does not need to be initialized, and
because it freely co-exists with the DNS, does not prevent non-registered resources from
being accessed.

11

5. The Functionality of the Resource Locator Service

3.1 Transparent Resource Migration

In order to help solve link rot, the RLS must be able to dynamically reassign the location
of a resource while persisting its name. This can be done using a new protocol that we have
developed specifically for this task, called the Resource Migration Protocol (RMP), which is
briefly described in this section (see figure 2). A more detailed discussion will be the focus of
a future publication.

RMP is based on WebDAV (Web Distributed Authoring and Versioning [11]), a new
extension to HTTP designed to enable group authoring of web resources. WebDAYV has been
chosen because of its new file manipulation semantics, such as the ability to lock files, which
are implemented via HTTP. However, RMP is flexible enough to allow existing HTTP
servers that are not WebDAV compliant to participate in the migration process, but without
the extra safeguards that WebDAV provides.

‘ Manager ’ (Source ’ ‘Desbnation’ (Locator ’

1 LOCK URLdest
Aithanzatinn_dinaat

'
14
2 200 0K_|

4
N

3 GET Resource-Name
4 302 Found I
L .

d
hl

5 LOCK URLsource N

R 20N NK

4
hl
7 PROPFIND VIRI revirrg

L4

R 200 DK

4
N
9 GET URLsource

10200 OK

d
N

11 PUT URLdest

P 12 01 O

13 PROPPATCH URLdest

»

14 200 OK

4
|

15.PROPPATCH Resource{Name

168 200 OK

4
Al
17.DELETE URLsource R

18 200 NK

d
-

Figure 2 - The Resource Migration Protocol

12

3.1.1 The Resource Migration Protocol

The Migration Manager, defined as any entity that wishes to migrate a resource, manages
the entire migration process, and is the only participant allowed to act as a client throughout,
while the Source and Destination servers do not communicate with one another at all. The
process begins with the Manager contacting the Destination in order to ascertain whether or
not it is willing to host the resource. It does this by sending a WebDAV LOCK message
(message 1) for the resource identified by URL.y, together with authentication details (see
figure 2). As the resource still exists on the Source server, there should be no resource
physically located on the Destination that is bound to this location. Locking a null resource in
this way has the effect of reserving the URL, ensuring that no other user can use URLj,s until
the Manager unlocks the resource [11].

Upon a satisfactory response, the resource must be migrated from the Source to the
Destination in such a way that it is accessible throughout the process. As such, the Manager
must locate the Source using its own RR (messages 3 and 4), and LOCK the resource
(messages 5 and 6), to ensure that it is not updated in the middle of the migration process.
The Manager then sends the Source a WebDAV PROPFIND request (which allows a resource
to be queried according to its attributes) in order to retrieve the resource’s name, location and
time of creation (messages 7 and 8), before sending a standard HTTP GET message to
retrieve the resource itself (messages 9 and 10). The resource is copied to the Destination
using a standard HTTP PUT message (messages 11 and 12), using URLg.y as the new
location for the resource on the Destination. Note that although WebDAYV provides MOVE
and COPY methods for moving and copying a resource, they have not been defined for cross-
server implementation; that is, a MOVE, for example, is only defined for moving a resource
to a new location on the same server. This limitation prevents these methods from being used
in the RMP, as WebDAV servers will not support moving a resource onto a different
WebDAYV server.

At this stage of the process, the resource is physically located on both the Source and the
Destination. Before the resource on the Source is deleted, however, the Manager must update
the appropriate Locator. It does this by sending a PROPPATCH message (message 15) to the
Locator, which includes the resource’s name and time of creation to identify the resource, and
URL,.s as the property to be updated (i.e. its location). Once the Locator responds that the
change has been successful, the resource located on the Source can be deleted using either a
WebDAV DELETE message, or a standard HTTP DELETE request message. Once the
DELETE response message (message 18) has been received, the migration process is
complete.

5.2 Initializing and Updating the Resource Locator Service

The RLS is designed to be used in a way similar to that of the DNS; that is, a resource
owner must first register the details of their resource in order to use the services of the RLS,
and must then inform the RLS should the resource be deleted. The registration process acts to
initialize the Locators’ databases, and ensures that the resources that are managed are those
whose owners explicitly requested the management service.

The Locators have been designed to enable a resource owner to automatically register and
deregister a resource through the Locator’s interface, using WebDAV messages. In order to
add a resource’s details to the RLS, a client can send a WebDAV PROPPATCH message [11]
to the appropriate Locator, with the resource’s name and time of creation properties encoded
in the message body. The WebDAYV specification defines PROPPATCH to set and remove
properties, but the Locator cannot allow it to change the name of a resource or its time of
creation (see section 3.2). As such, the Locator’s interface restricts the client to adding or
removing entire records only, with RMP used to automatically modify the location data. In
this way, the complete functionality of the RLS is fully automated, while referential integrity
is enforced.

13

In order to remove a resource’s details from a Locator, the client must send it a
PROPPATCH message containing a remove XML element (see [11], section 12.13.1), which
acts to delete the details from the locator, but not the resource from the web. The Locator
essentially delegates that responsibility to the resource owner, viewing the message as a
request for the resource to leave the RLS, rather than for the resource to be destroyed. As
such, the Locator will include the current location of the resource in alocation header in the
response message, allowing the client to send a HTTP DELETE message to the hosting server
to physically delete the resource, if required.

Note that new HTTP headers could also achieve the same purpose as PROPPATCH, but
the use of WebDAV messages is more consistent with RMP, and the semantics of the
messages fit well with the needs of the Locator. Specifically, PROPPATCH “...processes
instructions specified in the request body to set and/or remove properties defined on the
resource identified by the Resource-URI” [11]. In this way, the Locator acts as a third party
that manages the properties of the resource on behalf of its current host. In addition, the
WebDAYV error message 409 conflict is used if a client tries to change the name of a resource
within the Locator, as this message informs the client that it has “...provided a value whose
semantics are not appropriate for this property” [11].

3.3 Temporal References
5.3.1 Defining the Temporal Reference

A client must be able to query a Locator for a resource according to its time of creation,
and so some form of temporal identifier is required. As such, although the RLS can use any
string as an identifier, we have specified two types of temporal reference in order that
temporal referencing can be used immediately. Specifically, we have designed the Locators
to work with standard URLs with a timecreated temporal component appended as a Query
String (e.g. http://www.aserver.com/index.htm?timecreated=Sun,%2006%20Nov%201994),
which allows existing URLs to be used as temporal references; and with a new temporal URL
scheme that we have defined as a more long term, architectural solution. The new temporal
URL scheme conforms to the encoding rules defined in [4], and encapsulates the same
semantics of the URL, but with the addition of a temporal component. Specifically, the new
scheme, called TURL (Temporal Uniform Resource Locator), has been defined as:

turl://authority/path time-created? query

The authority component of the TURL is identical to that of the URL (i.e. the domain name
of the hosting server). The path component, too, is identical to the URL, but with one
exception: a semi-colon separates the path that the server uses to locate the resource from the
temporal information used to identify the time that the resource was created. The query
component remains as it is defined for the URL, but the whitespace of the temporal
component has been replaced with a dash (-) for clarity. Thus the URL:

http://www.aserver.com/index.htm?timecreated=Sun, %2006%20Nov%201994

can be re-written as a TURL as:
turl://www.aserver.com/index.htm,;Sun,06-Nov-1994

In addition, as HTTP essentially forms the interface between the RR and the Locator, we
have had to extend it in order to map the temporal component of the TURL onto a HTTP
header. HTTP’s existing headers already encode temporal information, but they are largely
used for caching, and are normally sent by the server rather than the client. For example, the
Last-modified entity header is used to represent the time at which the resource was last
modified, which is another way of saying the time at which the resource was created.

14

However, it can only be used by servers in a response message, and cannot be used by a client
at all. Equally, the Age entity header [9], which provides the estimated age of the resource on
the origin server, is also a response header, only sent by a server (usually a caching proxy
server). Alternatively, the Date header field is a general header, which can be used by both
client and server, but only to represent the date and time at which the message was originated,
not the resource [9]. Finally, the ETag header could encode the temporal information, as it
provides a means of encoding user-defined values, but it, too, is a response header [9].

As such, faced with the decision of subtly altering the semantics of HTTP or defining a
new general header, we have chosen the latter option, and defined a header called time-
created, which can be used by both client and server, and which defines the time at which the
resource was created. The value of the new header must be formatted according to [5], and it
must map exactly onto the temporal component of the TURL. The new header provides the
preferred means for querying a Locator according to a resource’s time of creation, thus
separating the temporal information from the resource’s name. In this way, any appropriately
specified namespace is able to become a temporal reference, enabling the RLS to retain its
unconstrained namespace.

5.3.2 Defining the Scope of the Temporal Reference

A temporal reference supported by the RLS can enable one resource to persist across time,
but not the resources behind any hyperlinks that might be embedded within it. For example, a
HTML document registered with the RLS may contain several hyperlinks, but if the resources
underlying the hyperlinks are not registered with the RLS, then they may not persist. As
such, the RLS can only prevent link rot for those resources that it has been instructed to
manage, and so web-wide link rot prevention can only be achieved if the RLS manages all
web resources.

In addition, transient resources, such as dynamically created HTML documents, or
streaming audio or video, are also not covered by the current design of the RLS and the
temporal reference. This is because the TURL simply extends the existing URL protocol to
encompass time, rather than adding any new functionality, and an existing URL references
the object that creates a dynamic resource or a multimedia stream, rather than the transient
resource itself. For example, a URL might identify an application behind a CGI (Common
Gateway Interface) gateway, which in response returns a dynamically generated HTML
document, but it does not identify the HTML document. Similarly, temporal references may
enable the application to persist (although their definition does not cover persisting the
application’s state, merely its existence as a discrete file), but they do not cover its output,
unless it is explicitly saved as a permanent web resource and given its own (temporal) URL.

6. Changing the Configuration of the Resource Locator Service

When the configuration of the RLS changes, the hash routing algorithm will re-map 1/n
(where n = total number of Locators) of all records onto a different Locator. This will make
the RR incorrectly route 1/n of all subsequent requests, unless the appropriate records are
transparently migrated to the correct Locator. As such, the RLS must carefully manage
transparent record migration (termed to reflect the fact that it is individual records in a
Locator’s database that must migrate) if it is to remain robust in the face of a changing
configuration.

To manage this migration, we have developed the Locator Control Protocol (LCP), which
allows all Locators in the RLS to be controlled such that the location of remapped records can
be corrected without the knowledge of the RR. LCP is based on HTTP, ensuring its
compatibility with existing web server technology. However, its full specification is beyond
the scope of this paper, and so the following sections will present an overview of the protocol
only. Section 7 will discuss the performance implications of the protocol.

The role of the LCP is to ensure that a Locator can be added to or removed from the RLS
transparently, such that a RR is able to access all records throughout the system’s

15

configuration change. The key to achieving this is to enable both configurations to co-exist
for a short period by copying those records that must move, before the existing configuration
is deleted to make way for the new one. In this way, all records are accessible whichever

configuration the RR attempts to use.

6.1 Adding a New Locator

When a Locator is added to the system, a RR will only notice the change when it updates
itself and the new Locator has adopted a domain name that complies with the appropriate
URL pattern. In this way, the adoption (or removal) of a RLS-compliant domain name acts as
a switch: with the domain name, a Locator is recognized by a RR as part of the RLS; without
it, the Locator is not recognized, and so will simply be ignored. As such, by first copying all
migrating records to their new locations before the new Locator adopts its new domain name
(figure 3a), the LCP can enable both configurations to co-exist, ensuring that all records are
accessible both before and after the new Locator is recognized by the RR.

The protocol requires the new Locator to act as the record migration manager,
coordinating the migration process to ensure integrity of the records. While the migration is
occurring, all Locators can still perform their standard name resolution service. Once the new
Locator adopts a domain name that complies with the URL pattern, both configurations
effectively co-exist. Those RRs that have not updated will be able to access the records in
their existing location; those RRs that have updated, will be able to access the records at their
new location (figure 3b). Once in this state, the old configuration can safely be deleted
(figure 3c), causing those RRs that have not updated to receive an Error 404 when they try to
access a remapped record, which will prompt them to update and thus to recognize the new
configuration. In this way, no configuration updates need be sent to any RR throughout the

entire process.

emrmememcmememe ooy

/RRunawareof RRawareof 1\ /°

. 1 \ 3\
! H ! configuration configuration " i
i Get i ! change change ! ! i
| resource's i ! H ;
i tocatin ™) (] i) i
. l ..
1 ! HH H
] = = i E
i E- P ' H
1 HER] 1 H
H | HE [
i N> P i Check for §
! RR n' i ' new Locator |
i 0 HH !
H | i !
! 10N i RN L2271 t i
i ,’I 1\) [\\\\ /'1’/’ /0 H i H
H \ 1 \ R Yy B } "]
7 1]] S .

i / \ g 4 \ !
L i i YaaGKF y ,
\ J ' J

) 4 H (B}

I L L 4% ST ST X Ll ! H
7 - .
/ N New 1)
! Records | | Locator, ! !
! copedto ! i wthRLS i New Locator instructs !
! > new || domain 1] existing Locators to !
{ — locations | : name I delete the copied records]
{New Locator, I H ;
i noRLS ! K i
.domain name LIRY PR
\! .I \\ " \~ O,

e mimemem e momomomaonns - e mimecmememomomme e - h T T TR T —— -

Figure 3a — migrating records Figure 3b — RRs In either state Figure 3c — old configuration ts

are copied to new locations can access all records deleted, forcing all RRs to recognize

the new

Figure 3a-c — Adding a New Locator

16

6.2 Removing an Existing Locator

Removing a Locator requires a different approach, however, as deleting its RLS-compliant
domain name may leave a hole in the sequential numbering of the URL sequence, confusing
the RRs. The process begins when the detaching Locator (Locator uach - coloured black in
figure 4), acting as a coordinator, instructs all other Locators in the system that the
configuration is about to change, thus causing them to copy the records that must migrate to
their new locations. Note that some of the records will be copied onto Locatorgetacs, even
though it is about to leave the system (figure 4a). Once this is complete, Locatoryeuch remains
in the RLS, and instructs the last Locator in the sequence (Locator,, — coloured grey in figure
4) to detach itself from the system, even though Locator,y is not the one that wishes to leave
(figure 4b). In this way, the RLS shifts to the new configuration, with the existing
configuration still operational (note that the RRs that have not updated may attempt to reach
Locator;,g, but will not receive a response; this will cause them to update automatically,
however, thus moving them to the new state).

Once the new configuration has been reached, Locatorgech Will instruct the (now removed)
Locator,,q to delete all of its records, before copying its own records over to make both
Locators mirrors of one another. In addition, Locator,s will also be given the same domain
name as Locatorsess, making the two Locators identical clones (figure 4c). Once this
happens, Locatorgeach is free to detach itself by removing its IP address from the DNS entry
for its domain name, leaving the RLS in the new configuration. Again, the process of
removing a Locator requires no synchronization messages from any Locator, as all RRs will
automatically update themselves.

4 % /" RRaware of RR unaware of
! configuration configuration
Get change change

resource's

location D

]
i
i
i
i
i
]
i
i
i
i
4t

RR # # #
i | ’,;'/“ Reque H
H ks o
' <y mesi i

‘Mememememimemoemomemomemomemomon®

L me— e mcmem

memememesr’

Figure 4a - Detaching Locator Figure 4b - Last Locator Figure 4c - Last Locator and

instructs other Locators to leaves the RLS first, forcing all detaching Locator are cloned,
copy their records to the new RRs to update before detaching Locator leaves
locations the RLS

Figure 4a-c — Removing an Existing Locator

7. System Evaluation

To test the concepts discussed here, we have developed a prototype RLS, Which
comprises:

a small network of Locators;
a Request Router;

a HTTP proxy server;

a management interface.

17

This section presents the implementation details of the prototype, and performance data that
we have gathered to demonstrate the scalability of the design.

7.1. Prototype Implementation
7.1.1 Prototype Locator

The Locator has been designed as a web server using Microsoft IIS on NT 4 Server, which
uses Active Server Pages (ASP) to implement the functionality, and integrates with a
Microsoft Access database that stores the name, location, and time of creation of each
managed resource. The same resource name can reference multiple entries in the database, as
each resource may have multiple locations (i.e. replicated resources) and multiple times of
creation (i.e. when its content is changed). As such, the resource’s name, time of creation,
and location represent a compound key that together uniquely identify a single record,
allowing the Locator to support replication and temporal referencing.

When a Locator receives a standard HTTP request, it looks up the resource’s details in its
database. If it contains the resource’s name/location mapping, it returns a 302 Found HTTP
response message, with the current location of the resource contained within its location
header; otherwise it returns a 404 Not Found HTTP error message. In this way, a client can
communicate with the RLS transparently, providing full backwards compatibility. If the
Locator receives a HTTP request with a ‘HEAD’ method, it will simply return a HTTP 200
OK response, enabling RRs to safely query for the existence of a Locator.

Finally, the Locator supports the RMP, using both WebDAV-enabled and standard HTTP
servers as source and destination machines, enabling transparent resource migration to be
implemented across all web servers.

7.1.2 Prototype Request Router

The Request Router is perhaps the most important part of the system, as it must be
integrated into the web’s existing architecture. To do this, we have created a Request Router
object in C++ and embedded it into a simple HTTP proxy server, which routes the incoming
request to the appropriate Locator, and then downloads the resource (if found) from the
appropriate server. Any user who wishes to use the RLS can configure their browser to use
the proxy server, enabling all legacy browsers and servers to use the RLS transparently. The
proxy server application is also small enough for deployment on a client machine, allowing it
and the browser to co-exist on the same machine if required. Future versions of the RR will
include an ActiveX version, allowing the RR to be embedded into HTML pages, browsers
such as Microsoft’s Internet Explorer, or standard web servers.

The RR’s client-side interface has two functions that are used to identify the correct
Locator. The first, RouteRequest(), takes the name of a resource, and returns the appropriate
Locator’s URL with the resource’s name appended onto it as a Query String (e.g.
http://www.nodel.Locator.net/query?resourcename=http://www.aserver.com/aresource.htm).
This URL can then be sent directly to the appropriate Locator without the need for adding any
new HTTP headers. The second, GetLocatorByName(), returns the appropriate Locator’s
URL without the resource’s name being appended as a Query String. The resource’s name
must be encoded in a HTTP request header in a subsequent HTTP GET message. In both
functions, the location of the resource is provided by the appropriate Locator via a HTTP
redirect message (302 Found).

The RR also has functions that enable the URL pattern to be changed (thus allowing it to
interface with other distributed systems on the web), and a function called Update(), which
enables it to determine the number of Locators in a network by performing an automatic
update.

18

7.1.3 A Prototype Management Interface and Resource Migration Protocol Client

In order to test the system, we have developed a management interface for controlling the
Locators (see figure 5). The interface includes a RMP client, which enables it to act as the
migration manager during a resource migration operation, and a Request Router object,
enabling it to query the Locator Network.

¢ The Web Migrator PE

File Resource Transfer [Demonstrations Tools Help

Address; IhUr\ //dougel/MAT/Source

@ Web Servers Filename | Transter Option [Destination |
=723 http./ ted see plym.ac uk/Mikedemo/ @] Resourced him Unranaged
+«] _prvate I:J Resourcae? htm Unmanaged
+ (2 Source] Resourcef him Unmansged
+ -] MobileCode &) Resource’ him Unmanaged
J LoadBelancingSource] Resourcad him Unmanaged
+ [2) images &) searchhtm Unmanaged
) FaultToleranceSource TESTpg Unmanaged
-2 Dast &) MobileCodefend . Unmanaged
- hitp°//daugal /MAT/
+ [Namespace
4 . LosdBelancing
%) Dest
< L
+ [J MobiteCode
+ 1) Reglica
) hitp //dougal/ishtantest)

Figure 5 - Prototype Management Interface

The user interface is similar to Microsoft’s Windows Explorer, allowing the user to drag
and drop resources across web servers, while the underlying RMP functionality automatically
updates the appropriate Locator’s name and location details. The interface demonstrates the
backwards-compatibility of the system, as the web servers shown in figure 5 have not been
altered in any way, and are completely unaware of the RLS as a system.

7.1.4 Enhanced Web Services

In addition to the prototype RLS, we have developed several extra services that build on
the services provided by RLS to extend the functionality of the web. These services take
advantage of the RLS’s resource migration mechanism, in order to provide transparent fault
tolerance, load balancing, and mobile code functionality to existing web servers. Due to
space restrictions, however, these services will not be discussed here, but will instead be

presented in a future paper.
7.2 Scalability and Performance Issues
The prototype contains code that instruments performance, allowing us to measure its

impact on standard web browsing. The results from our measurements, together with a
general discussion on the scalability of the design, are presented in this section.

19

7.2.1 Network Overhead

Hash routing is a very fast algorithm for locatinga node in a distributed system, providing
a deterministic request resolution path through an array of machines, which results in locating
a specific node in a single hop [24]. As such, the network overhead introduced by the RLS
for both a successful and an unsuccessful resolution operation is always two additional HTTP
messages (either a GET and an Error 302 Found response, or a GET and an Error 404 Not
Found response).

If the RLS cannot find the resource, then a client application may contact the DNS if
required, and if this is successful, the round-trip time to the RLS via the RR has been wasted.
If, however, the RLS is completely integrated into the web, such that the DNS is not used to
find the locations of resources, then all resources will be registered, and an Error 404 means
that the resource does not exist on the web, not just in the RLS. As such, there will be no
added overhead, as the resource is unattainable.

Note that the RLS will not attempt to contact the DNS to find a resource, as it may not be
appropriate in all cases. For example, a server hosting a RR may have registered all of its
resources with the RLS, and so an Error 404 means that the resource does not exist, not just
that it is not registered. As such, it would serve no purpose for the RLS to contact the DNS in
this situation, and so the RLS only manages its own registered resources, leaving clients to
determine what to do with those that are unregistered.

7.2.2 CPU Overhead

The design of the RLS is such that the network overhead is constant, regardless of how
many Locators are in the system, whereas the CPU overhead required by the RR scales
linearly with respect to the number of Locators. As such, the scalability of the design is
constrained more by CPU overhead than network overhead.

The linear scaling of the RR results from the hash function being used to distribute a set of
records across many Locators, rather than to generate a unique value each time it is used, and
so it does not have to worry about managing collisions, as the same result (i.e. the identified
Locator) can be used many times for different resource names. The function distributes the
records by hashing the URL of each Locator in the system, and as the time taken to hash each
URL is virtually uniform (dependent solely upon the number of characters in the URLs that
are hashed), the CPU overhead increases linearly with respect to the number of URLs (and
thus Locators) it must hash.

We tested our Request Router on a Pentium Pro 200MHz with 64MB RAM, a Pentium III
400MHz with 128MB RAM, and an Athlon 1.1GHz with 128MB RAM. We set the number
of nodes that the RR believed existed within the RLS to different levels, and measured the
length of time that the RR took to identify the correct Locator. The results are presented in
figure 6, which clearly reveals the linear relationship between time and the number of
Locators. The results show that for small numbers of Locators, the time taken is insignificant,
and that even with more Locators, the time taken is still small. As such, even with a relatively
slow machine such as the Pentium Pro 200MHz, the RR can determine the correct Locator
from a 10,000-node Locator Network in only 0.35 seconds.

20

Request Routes Performance
100
10 =
) .
z 1 /’Z/
¢ 01 /
E e
a 0.01 g
0.001
1 10 100 1000
- -+ 4 -+ Athlon 1100 MHz 0.007 0.071 0.718 7.402
—a— Pentium I 400 MHz 001 014 1.51 16.14
seseagieene= Pontium Pro 200 MHz 003 035 3.65 37.404
Number of Locators (x1000)

Figure 6 - Performance of the Request Router

In addition, the prototype RR was designed for experimental purposes, and is non-optimal.
Specifically, it rehashes every Locator URL for every request that it routes, but unless the
number of Locators changes, these hash values will remain static. As such, a more optimal
design would cache the hash values in memory, and only rehash them when the configuration
changes, thereby drastically reducing the length of time it would take to locate a Locator.

7.2.3 Total System Overhead

The total overhead introduced by the system was measured to provide a real-world
indication of the system’s performance. To do this, we first measured the time it took to visit
the homepage of www.lycos.co.uk using a standard browser (Microsoft IE 5.0) and no RLS.
The web site was visited 25 times, with the browser’s cache deleted each time. We then
connected the browser to our proxy server with the embedded RR, and visited the same sites
again, once more taking 25 distinct measurements. The experiment was run using an Athlon
1.1 GHz PC with 128MB RAM, which acted as the proxy server with an embedded RR, and a
Pentium Pro 200MHz PC with 64MB RAM, which encoded the functionality of the Locator.
Both machines used Microsoft Windows NT 4 Server, and were connected via a 10Mbps
Ethernet LAN.

The RR in the proxy server was manually configurable, allowing us to set the number of
Locators according to requirements. For this experiment, we varied the number of Locators
in the system from one to 1 million. However, to avoid havingto physically deploy 1 million
Locators, we reconfigured the proxy server so that it always forwarded the request onto the
same Locator, regardless of which one the RR actually identified. The Locator would then
return an Error 404 message, which would cause the proxy server to redirect the request to
the origin server, from where the resource would ultimately be retrieved. Because the
overhead for the RLS is the same whether the resource is found or not (i.e. one extra HTTP
request and one extra HTTP response), the measurements of the overall system overhead
remained unaffected. In addition, this configuration removed any differences between servers
that hWould have been introduced had each Locator been deployed on a separate physical
machine.

The results presented in table 1 show the time taken to visit the Lycos web site both
without the RLS, and with it, using one, 1,000, 10,000, 100,000, and 1 million Locators in the
system. Each value is the 10% trimmed mean of 25 trials, with the overheard calculated by
subtracting the mean from the value obtained without the RLS. The results show that the

21

overhead introduced by the RLS ranges from 0.869 seconds with only one Locator in the
system, to 8.38 seconds with 1 million Locators. However, despite the large overhead for 1
million Locators, it remains small up to 100,000 Locators, with 1.582 seconds recorded.

Download time for
Number of www.lycos.co.uk Overhead
Locators (time without RLS = 7.608 sec)
1 8.477 seconds 0.869 seconds
1,000 8.483 seconds 0.875 seconds
10,000 8.546 seconds 0.938 seconds
100,000 9.190 seconds 1.582 seconds
1,000,000 15.985 seconds 8.377 seconds

Table 1 - Overhead introduced by the RLS with different configurations

The results show that the RLS introduces negligible overhead for a configuration of
10,000 Locators or less, and a relatively small overhead up to 100,000. However, it should be
noted that neither the design of the RR or the proxy server are optimal, and that significant
performance improvements can easily be made. We expect such improvements to enable the
deployment of a 100,000 Locator system with negligible overhead.

7.2.4 Scalability of the Overall Design

In terms of growth, the hash routing algorithm can scale to over 4 billion (22 =
4,294,967,296) Locators, performing single-hop resolution throughout [24]. Assuming each
Locator can store the names and locations of 1 million resources (which, assuming an average
URL of 50 characters, will require a database only 50 MB in size), today’s web, with over 1
billion documents [15], would need the deployment of 1,000 Locators to fully manage all
resources, which will take the RR on a Pentium Pro 200 machine just 0.03 seconds.
However, even 10,000 Locators will only take 0.35 seconds, and this can accommodate ten
times as many resources as currently exist on the web. Clearly, the configuration of the RLS
can be better optimized, but this provides a good indication of the scalability and practicality
of the design.

7.2.5 The Cost of Changing the Configuration

Changing the configuration of the RLS is not a time-critical process, as the name
resolution service provided by the RLS is unaffected throughout the change. However, the
change should still occur in a reasonable time-frame, and with a reasonable amount of
network traffic, and so this section presents an estimate of the order of time that will be
needed for a new Locator to be added to the system. Note that no estimations are provided
for removing a Locator, as the operations are very similar, and so the time taken will be of a
similar order.

The addition of a new Locator involves two steps that could significantly affect the time
taken to update the system:

e determining which records need to move;
e physically moving the records.

22

The other steps involve data manipulation, such as deleting records, which will not
negatively affect the scalability of the design or the time taken to change the configuration,
and so will not be considered in the following calculations.

The first step involves every record in the system being processed by a RR whose node
configuration is set at one node higher than its current value (i.e. set to n +). The time taken
to do this can be significantly reduced if each Locator works in parallel with its peers,
processing only the records contained in its own database. This is how the LCP operates. As
such, ignoring the network overhead of the LCP, the time taken for step one will be:

Rt,
n+l

where R is the total number of records in the system, and ¢, is the time taken to process one
record. Clearly, for the same R, the time will decrease with the number of Locators in the
system, and as section 7.2.2 has shown, ¢, is very small on even a low powered machine.
Thus, the cost incurred by this first step is small. For example, suppose the existing
configuration has 999 Locators managing 10° records, with an Athlon 1100MHz processor
inside each Locator, giving ¢, = 0.007 seconds (see figure 6). In this scenario, the time taken
for step 1 will be:

10°x 0.007
999 +1

= 7000 seconds (or 1 hour 57 minutes, 7 seconds).

The cost incurred by the second step is dependent upon the number of Locators in the
system and the number of records. When a new Locator is added to an n-node system, the
records that are re-mapped will be evenly distributed across all Locators in the RLS [40]. IfR
is large compared to n, then every Locator in the system will contain records that are re-
mapped. As such, each Locator will evenly distribute 1/(n+1) of its own records to the n
other Locators in the RLS. This results in # Locators transmitting tor Locators (including the
newly added one), resulting in the propagation of up to n° messages. This value represents
the message limit, however, as each message can carry more than one record if required.

The time taken to transmit these messages can be shown to be acceptable for even the
worst-case scenario, in which the configuration results in the maximum number of messages
being sent (n°), and only one message is in transit at any one time. For example, the
configuration of step one is such that the addition of a new Locator requires the maximum
number of messages to be sent for this configuration (i.e.n’= 1,000 x 1,000 = 10° messages).
The time taken to send these messages can be estimated if the data transfer rate between
Locators is known, as well as the number of bytes in each record. As such, if we assume that
a conservative data transfer rate of 1.544 Mbps can be maintained between Locators, and the
average record size is 150 bytes (50 bytes each for name, location, and time of creation), then
the total time taken to transmit all messages (ignoring protocol overhead and converting bytes
to bits) is:

1,000,000 x150x 8
1,544,000

= 777.20 seconds (or 12 minutes 57 seconds).

Thus, for this scenario, the fotal time taken to complete the addition of a new Locator is only
2 hours, 10 minutes, 4 seconds, which is entirely acceptable. Furthermore, this figure
represents a maximum value, and can be decreased by sending messages in parallel, and by
balancing the number of records per Locator with the number of Locators in the system,
according to the available bandwidth and the performance requirements of the RRs. Finally,
it is worth reiterating that a configuration change is not a time-dependent task, as the RLS is
fully operational throughout the change, and it will not happen often, as the configuration of

23

the RLS should remain stable for relatively long periods of time. As such, the design of the
RLS remains scalable and practical for a system the size of the web.

8. Discussion and Conclusions

Security is critical within the RLS, and is an area that needs further work before the RLS
can be deployed. The RLS should use the HTTP digest authentication scheme [9], as it is
stronger than the basic scheme, but both schemes have been determined too weak for the
WebDAV working group, which faces similar problems, and is working on its own solution
[10]. The RLS must use strong authentication techniques, as malicious use could potentially
route requests to unwanted resources. As such, we anticipate future versions of the RLS to
use the WebDAV Access Control Protocol [34] for its authentication requirements.

In addition, our prototype system has so far only been tested locally as a proof of concept.
The next step is to build a bigger system and to stress test it under varying loads. However,
its design is based on an existing, commercially proven distributed system (CARP), and so we
expect it to stand up well to such a test. The LCP will also be redesigned to provide a more
optimal solution that employs concurrent operation.

Overall, the Resource Locator Service provides an effective and elegant approach that
addresses the problems of link rot, a shrinking namespace and a lost history, by providing a
replacement for the URL and the DNS. We believe the RLS offers a better solution than
existing systems, as it offers a single, coherent, architectural solution, which addresses all
three problems at once. Further, the RLS is fully backwards-compatible with the web’s
existing architecture, yet extensible enough for it to be future proof. A web page creator, a
browser developer, or a proxy server developer, can use the RLS today without affecting any
other system within the web. Equally, the system should be scalable enough for it to become
an integral part of the web’s architecture in future years.

The resource migration aspect of the RLS will also enable it to become part of a nascent
platform for distributed computing on the web, providing services such as fault tolerance and
load balancing, and allowing new services to be deployed, including a temporal search
engine, that are currently impossible to implement on a web-wide scale. We intend to
develop these services to fully exploit the potential of the RLS in future work.

Acknowledgements

We would like to thank Paul Dowland for his help with the experiments that were
conducted for this paper.

References

[1] Babich, A, Davis, J, Henderson, R, Lowry, D, Reddy, S and Reddy, S, DAV Searching
and Locating, Internet Draft, http://www.webdav.org/dasl/protocol/draft-davis-dasl-
protocol-00.html, April 20, 2000.

[2] Berners-Lee, T, Cool URIs Don’t Change, 1998, http://www.w3.org/Provider/Style/URI.

[3] Beners-Lee, T and Fischetti, M, Weaving the Web — the Past, Present and Future of the
World Wide Web by its Inventor, Orion Business Books, 1999, p. 133.

[4] Berners-Lee, T., R. Fielding and L. Masinter (1998), “Uniform Resource Identifiers
(URI): Generic Syntax”, RFC 2396, http://www.ietf.org/rfc/rfc2396.txt

[5] Braden, R, Requirements for Internet Hosts — Communication layers, STD 3, RFC 1123,
October 1989.

[6] Briscoe, RJ, Distributed Objects on the Web, BT Technology Journal vol. 15 No 2, April
1997, pp.157-171.

[7] Daniel, R and Mealling, M, Resolution of Uniform Resource Identifiers using the Domain
Name System, RFC 2168, June 1997.

24

[8] Evans, MP, Phippen, AD, Mueller, G, Furnell, SM, Sanders, PW and Reynolds, PL,
Strategies for Content Migration on the World Wide Web, Internet Research, vol. 9, no. 1,
1999, pp25-34.

[9] Fielding, R, Irvine, UC, Gettys, J, Mogul, JC, Frystyk, H, Masinter, L, Leach, P, Berners-
Lee, T, HyperText Transfer Protocol — HTTP/1.1, RFC 2616, June 1999.

[10] Franks, J, Hallam-Baker, P, Hostetler, J, Lawrence, S, Leach, P, Luotonen, A, Stewart,
L, HTTP Authentication: Basic and Digest Access Authentication, RFC 2617, June
1999.

[11] Goland, Y, Whitehead, J, Faizi, A, Carter, S and Jensen, D, HTTP Extensions for
Distributed Authoring — WebDAYV, RFC 2518, February 1999,
http://andrew2.andrew.cmu.edw/rfc/rfc2518.html.

[12] Hogarth, J, The National Register of Archives’ARCHON: a study to inform a
development strategy for a National Name Authority File, for the Historical Manuscripts
Commission, September 1999, http://www2.hmec.gov.uk/pubs/jhreport.htm.

[13] ICANN Announcement, November 16" 2000,
http://www.icann.org/announcements/icann-pr16nov00.htm

[14] Ingham, D, Caughey, S and Little, M, Fixing the ‘Broken-Link’ Problem: The
W3Objects Approach, in: The Fifth International World Wide Web Conference, Paris,
France, May 6-10 1996.

[15] Inktomi and NEC Research institute, http://www.inktomi.com/webmap/.

[16] Internet Corporation for Assigned Names and Numbers, Uniform Domain-Name
Dispute-Resolution Policy, http://www.icann.org/udrp/udrp/-policy-240ct99.htm, 24
October 1999.

[17] Kahle, B, Preserving the Internet, Scientific American, March 1997. See also the
Internet Archive, www.archive.org.

[18] Kappe, F. A Scalable Architecture for Maintaining Referential Integrity in Distributed
Information Systems, in J.UCS Vol. 1, No. 2, Springer, February 1995, pp. 84-104.

[19] Kawai, E, Osuga, K, Chinien, K and Yamaguchi, S, Duplicated Hash Routing: A Robust
Algorithm for a Distributed WWW Cache System, in: IEICE Trans. Inf. & Syst.,
Vol.E83-D, No.5, May 2000.

[20] Kosters, M, Massive Scale Name Management: Lessons Learned From the .COM
Namespace, in: The Workshop on Internet-scale Software Technologies, University of
California, Irvine, California, USA, August 19-20, 1999,
http://www.ics.uci.edw/IRUS/twist/twist99/.

[21] Lawrence, S and Lee Giles, C, Accessibility of Information on the Web, Nature,
Vol.400, 8 July 1999, pp107-109.

[22] Lyman, P and Kahle, B, Archiving Digital Cultural Artifacts, Dlib Magazine, July/august
1998, http://www.dlib.org/dlib/july98/07lyman.html.

[23] Mealling, M, Requirements for Human Friendly Identifiers, Internet Draft, June 1998,
http://www.ics.uci.edu/pub/ietf/uri/draft-mealling-human-friednly-identifier-req-00.txt.

[24] Microsoft Corporation, Cache Array Routing Protocol (CARP) and Microsoft Proxy
Server 2.0, 1997, http://msdn.microsoft.com/library/backgmd/html/carp.htm.

[25] Mockapetris, P, Domain names — concepts and facilities, RFC1034, November 1987,
http://www.ietf.org/rfc/rfc1034.txt.

[26] Mockapetris, P, Domain names — implementation and specification, RFC1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt.

[27] Moore, K, Location-Independent URLs or URNs Considered Harmful, Internet Draft, 7
January 1996, ftp://cs.utk.edu/pub/moore/draft-ietf-uri-urns-harmful-00.txt.

[28] Moore, R, Baru, C, Rajasekar, A, Ludescher, B, Marciano, R, Wan, M, Schroeder, W
and Gupta, a, Collection-Based Persistent Digital Archives — Part 1, D-Lib Magazine,
Volume 6 Number 3, http://www.dlib.org/dlib/march00/moore/03moore-pt1.html, March
2000.

[29] NetCraft WebServer Survey, http://www.netcraft.com/Survey/.

25

[30] Pitkow, JE and Jones, RK, Supporting the Web: a Distributed Hyperlink Database
System, in: The Fifth International World Wide Web Conference, Paris, France, May 6-
10 1996.

[31] Popp, N, Masinter, L, The RealName System: a Human Friendly Naming Scheme,
Internet Draft, draft-popp-realname-hfn-00.txt. See also www.RealNames.com.

[32] RealNames.com, Internet Keyword Subscription Policy, January 2001,
http://web.realnames.com/Virtual.asp?page=Eng_Policy_Subscribe_Agreement

[33] Ross, KW, Hash Routing for Collections of Shared Web Caches, IEEE Network,
November/December (1997), pp. 37-44.

[34] Sedlar, E and Clemm, G, Access Control Extensions to WebDAYV, Internet Draft,
http://www.webdav.org/acl/protocol/draft-ietf-webdav-acl-01.htm, April 28 2000.

[35] Shafer, K, Weibel, S, Jul, E and Fausey, J, Introduction to Persistent Uniform Resource
Locators, in: Proceedings of INET96, Montreal, Canada, 24-28 June 1996.

[36] Sollins, K, Architectural principles of Uniform Resource Name Resolution, RFC 2276,
January 1998, ftp://ftp.isi.edw/in-notes/rfc2276.txt.

[37] Sullivan, D, Goodbye Domain Names, Hello Real Names, in: The Search Engine Report,
May 2000, http://www.searchenginewatch.com/sereport/00/05-realnames.html.

[38] Sullivan, T, All Things Web, http://www.pantos.org/atw/35654.html.

[39] Sun, SX and Lannom, L, The Handle System: A Persistent Global Name Service —
Overview and Syntax, Internet-draft, February 2000, http://www.ietf.org/internet-
drafts/draft-sun-handle-system-04.txt.

[40] Thaler, D.G., and Ravishankar, C.V., “Using Name Based Mappings to Increase Hit
Rates”, IEEE/ACM Transactions on Networking, 6(1), Feb. 1998.

[41] Valloppillil, V and Ross, KW, Cache Array Routing Protocol v1.0, Internet Draft, draft-
vinod-carp-v1-02.txt, http://www.cs-ipv6.lancs.ac.uk/ipvé/documents/standards/general-
comms/internet-drafts/draft-vinod-carp-v1-03.txt, February 26 1998.

26

