
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2001

A Model for Managing Information Flow

on the World Wide Web

Evans, Michael Paul

http://hdl.handle.net/10026.1/869

http://dx.doi.org/10.24382/1365

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognize that its copyright rests with its author and that no quotation from the

thesis and no information derived from it may be published without the author's prior consent.

A Model for Managing Information Flow on the World Wide Web

by

MICHAEL PAUL EVANS

A thesis submitted to the University of Plymouth in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communications and Electrical Engineering
Faculty of Technology

March 2001

Michael Paul Evans

A Model for Managing Information Flow on the World Wide Web

Abstract

This thesis considers the nature of information management on the World Wide Web. The
web has evolved into a global information system that is completely unregulated, permitting
anyone to publish whatever information they wish. However, this information is almost
entirely unmanaged, which, together with the enormous number of users who access it, places
enormous strain on the web's architecture. This has led to the exposure of inherent flaws,
which reduce its effectiveness as an information system.

The thesis presents a thorough analysis of the state of this architecture, and idenlifies three
flaws that could render the web unusable: link rot; a shrinking namespace; and the inevitable
increase of noise in the system. A critical examination of existing solutions to these flaws is
provided, together with a discussion on why the solutions have not been deployed or adopted.
The thesis determines that they have failed to take into account the nature of the information
flow between information provider and consumer, or the open philosophy of the web. The
overall aim of the research has therefore been to design a new solution to these flaws in the
web, based on a greater understanding of the nature of the information that flows upon it.

The realization of this objective has included the development of a new model for managing
information flow on the web, which is used to develop a solution to the flaws. The solution
comprises three new additions to the web's architecture: a temporal referencing scheme; an
Oracle Server Network for more effective web browsing; and a Resource Locator Service,
which provides automatic transparent resource migration. The thesis describes their design
and operation, and presents the concept of the Request Router, which provides a new way of
integrating such distributed systems into the web's existing architecture without breaking it.
The design of the Resource Locator Service, including the development of new protocols for
resource migration, is covered in great detail, and a prototype system that has been developed
to prove the effectiveness of the design is presented. The design is further validated by
comprehensive performance measurements of the prototype, which show that it will scale to
manage a web whose size is orders of magnitude greater than it is today.

Table of Contents

ABSTRACT	 .1

TABLEOF CONTENTS ...II

LISTOF FIGURES ..ix

LISTOF TABLES ..XI

ACKNOWLEDGEMENTS .. XII

AUThOR'S DECLARATION.. XIV

1. INTRODUCTION AND OVERVIEW ... 1

1.1	 INTRODUCTION...2

1.2	 AIMS AND OBJECTIVES... 4

1.3	 THESIS STRUCTURE.. 7

2. THE WORLD WIDE WEB ... 10

2.1	 INTRODUCTION...11

2.2	 THE ARCHITECTURE OF THE WORLD WIDE WEB ...13

2.2.1	 The Web's Origins... 13

2.2.2	 Architectural Overview... 14

	2.2.2.1	 HyperText Transfer Protocol...16

	2.2.2.2	 The Uniform Resource Identifier...17

	2.2.2.3	 HyperText Markup Language...18

2.2.3	 The Relationship Between the Web and the Internet...19

2.2.4	 APhilOSOphyofNo Control.. 21

2.3	 MANAGING THE WEB'S INFORMATION...22

11

2.3.1 Ident5iing Information	 .23

2.3.2	 Structuring Information...26

2.3.3	 Retrieving Information..28

2.3.3.1	 Overview of the Search Engine...29

	

2 .4	 THE INFORMATION MANAGEMENT DICHOTOMY.. 32

2.4.1	 Gatekeeping...34

2.4.2	 Case Study: Proprietary Online Information Providers ...35

2.4.3	 Internet Anarchy..39

	

2 .5	 SUMMARY..42

3.	 FLAWS IN THE WEB'S ARCHITECTURE .. 44

3 .1	 INTRODUCTION... 45

3.2	 LINK ROT...48

3.2.1	 The Cause of Link Rot...49

3.2.2	 The Damaging Effects of Link Rot ..52

3.2.3	 Measuring Link Rot in the web..54

	

3.2.3.1	 Link Rot Incidence...55

	

3.2.3.2	 Link Rot Prevalence... 55

	

3.2.3.3	 The Life Span of a Web Resource... 56

	

3.2.3.4	 An Attempted Experiment to Determine the True Level of Link Rot in the Weh............................58

	

3.2.3.5	 Determining Link Rot from the Literature...59

3.2.4	 Existing Solutions to Link Rot...60

3.2.4.1	 Resource Migration Mechanisms..60

3.2.5	 Summary of the Link Rot Problem...74

3.3	 SHRINKING NAMESPACE ..74

	3.3.1	 The Cause of the Shrinking Namespace..75

	

3.3.2	 The Damaging Effects of the Shrinking Namespace..76

	

3.3.3	 Determining the Extent of the Problem...78

	

3.3.4	 Solutions to the Shrinking Namespace Problem..81

111

	

3.3.4.1	 The Irreplaceable DNS	 .82

	

3.3.4.2	 The Inextensible DNS..87

3.3.5	 Summary of the Shrinking Namespace Problem ...90

3.4	 INCREASING NOISE...90

3.4.1	 The Cause of the Increasing Noise..91

3.4.2	 The Damaging Effects of Noise...92

3.4.3	 Determining the Extent of the Problem...93

	3.4.3.1	 The State of Hyperlink Navigation ...94

	

3.4.3.1.1	 Navigation Mechanisms..94

	

3.4.3.1.2	 The Problem with Browsing...96

	

3.4.3.1.3	 The State of the Web's Hyperlink Structure...97

	

3.4.3.2	 The State of the Web's Information Retrieval Services ..99

	

3.4.3.2.1	 Coverage-Oriented Services...100

	

3.4.3.2.2	 Relevance-Oriented Services..103

	

3.4.3.3	 Implicit Gatekeeping..104

3.4.4	 Summary of the Increasing Noise Problem...105

3.5	 SUMMARY..106

4. HOMINID - A MODEL FOR MANAGING INFORMAl! ON FLOW ON THE WEB...........108

4.1	 INTRODUCTION...109

4.2	 THE CORE COMPONENTS OF THE HOMINID MODEL ..110

4.3	 REDUCING LINK ROT ...110

4.3.1	 Managing Content Migration with Temporal References...113

4.3.2	 Managing Resource Migration with the Resource Locator Service......................................116

4.4	 EASING THE NAMESPACE PRESSURE..118

4.4.1	 Shrinking Namespace Increases Pressure...119

	4.4.1.1	 Exploitative Strategies..120

	

4.4.1.2	 The Problem With ICANN's Solution..121

4.4.2	 Easing the Pressure...123

iv

4.4.3	 Defining the Semantics of the New Namespace...123

4.5	 REDUCINGTHENOISEINTHE WEB...125

4.5.1	 The Deceptive Hyperlink Versus the User...126

	

4.5.1.1	 Deception as an Effective Strategy..127

	

4.5.1.2	 How the Hyperlink Breaks the Flow of Information...129

4.5.2	 The Deceptive Web Site Versus the Search Engine...131

	

4.5.2.1	 An Arms Race Between the Search Engine and the Web Resource...132

	

4.5.2.2	 The Fight For Relevance..133

4.5.3	 A Persistent Problem...136

4.5.4	 The Oracle Server - A Novel Platform for Enhanced Navigation ..136

	

4.5.4.1	 Resolving the Information Management Dichotomy...138

	

4.5.4.2	 Functional Operation of the Oracle Server...138

	

4.5.4.2.1	 Characteristic Infons..139

	

4.5.4.2.2	 Navigational Infons...140

	

4.5.4.2.3	 The Heuristics of the Oracle Server...142

4.5.4.3	 New Web Metrics...143

4.6	 SUMMARY..144

5.	 ARCHITECTURAL DESIGN OF THE HOMINID MODEL ...148

5.1	 INTRODUCTION...149

5.2	 DESIGNING THE RESOURCE LOCATOR SERVICE ...149

5.2.1	 The Scope of the Resource Locator Service..149

5.2.2	 Selecting the Approach to Resource Migration...150

5.2.3	 Removing the Namespace Constraints..151

5.2.4	 Defining the Locator's Client-Side Interface..153

5.2.5	 Missing Mediation...155

5.3	 REQUEsT ROUTING: NOVEL MEDIATION BETWEEN THE WEB AND A DISTRIBUTED SYSTEM.....156

5.3.1	 The CARP Hash RoutingAlgorithm..157

5.3.2	 How the CARP Hash RoutingAlgorithm works..158

V

53.3 Adapting the CARP Hash Routing Algorithm for the RLS 	 .159

5.3.3.1	 UpdahngdieRcquestRouter 	 .. 161

533.2	 Backwards Compaübiliy.._...........................163

53.4 	 How the Hash Routing Algorithm Works in the RLS...165

5.35	 The Design of the Request Router...168

533.1	 The Request Router's Interfaces...__...___........_ ...170

5.3.6	 Scalabiily..172

5361 Network Overhead_	172

53.62	 CPU Ovethcad	 173

5363	 Scalabihty of the Overall Design.............................. 173

537	 Resilience..174

538 Impact of the Resource Locator Service on existing Web mechanisms................................. 175

53 8.1	 Impact on Caching Servers................................_.._ ..175

5381	 Impact on History and Bookmark Mechanisms	 ...177

5.4	 TEMPORAL REFEiuNcEs ..177

54 1	 The URL Extension..178

54.2	 The Temporal URL Scheme...179

54.3 	 Defining the Scope of the Temporal Reference...181

5.43.1	 The IJRL Extension Versus the Temporal URL 182

53	 DESIGNING ThE ORACLE SERVER. ..183

5.51	 The Oracle Server Network...183

5.5.2	 The Architecture of the Oracle Server Network..184

5.5.3	 Obtaining the Infons..185

533.1	 Navigational Infons186

5331 Charactenstic Infons...... 187

554	 The OSN asaPli4[ormfor New Services ..188

5.6	 SUMMARY .. 189

6. THE RESOURCE LOCATOR SERVICE-	 ..._..	 192

Vi

6.1	 INTRODUCTION	 . 193

6.1.1 Protocol Development	 . 193

6.2	 MIGRATING RESOURCES WITH ThE RESOURCE MIGRATION PROTOCOL.....................................195

6.2.1	 Applying the WebDA VProtocols to Resource Migration ...196

	

6.2.1.1	 Security.. 196

6.2.1.1.1	 Application to Resource Migration..197

	

6.2.1.2	 Safe File Transfer..197

6.2.1.2.1	 Application to Resource Migration..198

	

6.2.1.3	 Server Querying..198

6.2.1.3.1	 Application to Resource Migration..199

6.2.2 Disadvantages of Using WebDA Vfor Resource Migration ..199

6.2.3	 The Spec jflcation of the Resource Migration Protocol...200

	6.2.3.1	 The Migration Process..201

	

6.2.3.2	 Access Control and Authorization...204

	

6.2.3.3	 Safe File Transfer..205

	

6.2.3.4	 Updating the Locator..207

	

6.2.3.5	 Resource Replication..207

6.2.3.6	 Resource Migration using Non-WebDAV Compliant Servers..209

6.3	 RECONFIGURING THE RLS VIA THE LOCATOR CONTROL PROTOCOL ...210

6.3.1	 The Record Migration Process..211

6.3.2	 Managing the Addition of a New Locator...212

	6.3.2.1	 Overview...212

	

6.3.2.2	 Message Sequence Chart for Adding a New Locator..213

6.3.3	 Managing the Removal of an Existing Locator...221

	6.3.3.1	 Overview...221

	

6.3.3.2	 Message Sequence Chart for Removing an Existing Locator...224

6.3.4	 Performance Implications of the LCP...228

6.4	 A PROTOTYPE RESOURCELOCATOR SERVICE..231

6.4.1	 A Prototype Locator..233

vi'

6.4.2 A Prototype Request Router 	 . 235

6.4.3	 A Prototype Management Interface...236

6.4.4	 Implementing the Resource Migration Protocol...237

6.4.5	 Performance..238

	

6 .4.5.1	 Network Overhead..238

	

6 .4.5.2	 CPU Overhead..238

	

6 .4.5.3	 Total System Overhead..240

	

6 .4.5.4	 The Cost of Changing the Configuration..242

	

6 .4.5.5	 Performance Summary...249

6.4.6	 Demonstrating New Services with the Prototype RLS...249

	

6 .4.6.1	 Load Balancing...250

	

6 .4.6.2	 Fault Tolerance...251

	

6 .4.6.3	 Mobile Agents...252

	

6 .4.6.4	 Other Enhanced Services...255

6 .5	 SUMMARY..256

7.	 CONCLUSION ...257

7.1	 ACHIEVEMENTS OF THE RESEARCH PROGRAMME..258

7.2	 LIMITATIONS OF THE RESEARCH..259

7.3	 SUGGESTIONS AND SCOPE FOR FUTURE WORK ..260

7.4	 THE FUTURE OF THE WORLD WIDE WEB ...263

LISTOF REFERENCES ...267

APPENDIX A ..290

APPENDIX B ..292

APPENDIX C ..294

APPENDIX D ..295

viii

List of Figures

Figure 1 - Screenshot of the Google Search Engine 	 . _30

Figure 2 - Total number of domain names registered by quarter (DotCom, 2000)..................79

Figure 3 - Percentage of registered domain names according to TLD (DotCom, 2000)..........80

Figure4 - Hyperlink structure of the web (Broder et al., 2000)..99

Figure 5 - Relevance of the Web Compared to Dialog (Feldman, 1998)...............................102

Figure 6 - The Result of Content Changing Within a Resource..112

Figure7 - Temporal Referencing...115

Figure8 - Real Example of Fake User Interface..127

Figure9 - Fake User Interface Imitators...-128

Figure10 - The Browser's Status Bar as a Navigation Aid...129

Figure 11 - Number of Queries per Day for the Popular Search Engines (Sullivan, 2000c). 132

Figure12 - A High-Level Overview of the RLS.. 154

Figure13 - How the RB. updates itself...-162

Figure 14 - The Architecture of the Resource Locator Service...166

Figure 15 - Sample JavaScript function showing a RB. embedded in a HTML Page.............170

Figure 16 - The Architecture of the Oracle Server Network...185

Figure 17 - The Navigational Inlons passed from the client to the OSN via the RLS...........186

Figure 18 - MSC for Resource Migration Protocol (assuming successful migration)...........203

Figure19a-c - Managing the Addition of a New Locator...213

Figure 20 - MSC Describing the Locator Addition Process in the LCP................................215

lx

Figure 21 - Example PUTREC message 	 . -	 .219

Figure 22a-c - Managing the Removal of an Existing Locator with the LCP........................222

Figure23 - MSC for Removing a Locator...-223

Figure24- Architectural Design of the Prototype RLS...233

Figure 25 - RLS Management Interface...-237

Figure 26 - Performance Results of the Prototype Request Router.......................................239

Figure 27 - Number of Messages Sent According to Configuration of RLS and Number of

ResourcesManaged..243

Figure 28 - Total time taken to add a new Locator according to Locator number.................248

Figure29 - Prototype Fault Tolerance Application of the RLS...252

Figure30 - Prototype Mobile Agent Demonstration..254

x

List of Tables

Table1 - Analysis of Existing Migration Mechanisms...64

Table2 - Name Systems in Use Today..S3

Table3 - New TLDs submitted to ICANN...8.8

Table4- New TLDs chosen by ICANN..88

Table 5 - The Core Components of the HOMINID ModeL...146

Table6 - Results of the Overhead Introduced by the RLS...241

xi

Acknowledgements

This study was undertaken in part to further my own knowledge, and in part to further the

knowledge of the web community in order that the web remains society's principal

information system. Much of the research could not have been conducted without the open

philosophy of the web, which encourages research to be shared, and its rich interconnected

nature, which makes for easy access to that research. It is hoped after the conclusion of this

study, that access can be made even easier.

The European ACTS project DOLMEN provided both the principal funding for the first two

and a half years of study, and the foundation for the idea of the research. DOLMEN

highlighted the need for proper information management in an information system, but its

methods, coming from a telecommunications perspective, seemed so at odds with the web's

open philosophy, that the need for a new model of management seemed obvious and

imperative.

The work could not have been done without the guidance of my Director of Studies, Dr.

Steven Furnell, who helped me through the DOLMEN project, guided me through the process

of publishing and presenting papers, worked tirelessly to secure most of my further funding,

and who provided the model for the shape of this thesis; the reason for its size and

comprehensive nature can therefore be firmly laid at his door.

xii

I would also like to thank my supervisors, Prof. Peter Sanders and Prof. Paul Reynolds, both

of whom provided me with the encouragement and technical advice that was much needed

along the way. I would particularly like to think Prof. Reynolds for his part in securing

funding from Orange Personal Telecommunications in the form of two research projects,

without which the work could not have been completed. Thanks are also owed to my

colleague, Paul Dowland, who was put upon at the last minute to help with some of the

experiments conducted as part of this work in spite of his own pressing schedule.

I would also like to thank my friends and family for the support that they gave. Despite not

seeing me for much of the writing-up stage, they continued to encourage my efforts, and not

taken my absence personally.

Finally, the biggest thanks of all belongs to my fiancée, Vicky, who has had to put up with

minimal income, expanding deadlines, stress, and little support from me during a period of

change and insecurity for us both. Throughout it all, she has remained wholly supportive and

understanding, despite the fact that this thesis was written while I worked full-time. As such,

the thesis has dominated my time at the expense of the time I have for her; it is time now that I

put that right.

xlii

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award.

This study was financed with primary funding from the EU ACTS DOLMEN project.

Relevant conferences and DOLMEN project meetings were regularly attended (at which work

was frequently presented) and a number of external establishments were visited for

consultation purposes. In addition, several papers were prepared for publication, details of

which are listed in the appendices.

Signed

Date

xiv

Chapter 1 - Introduction and Overview

1.	 Introduction and Overview

The research presents a new model for managing informatkii flow on the

web that has been designed according to the web's open philosophy. The

model solves the problems of link rot, a shrinking namespace, and increasing

noise in the system, and has been designed to integrate into the web's existing

architecture without breaking it.

Chapter 1 - Introduction and Overview

1.1	 Introduction

The World Wide Web (web) has transformed society since its inception in 1989, becoming the

most important sociological invention of the late 20th Century. Many other network

applications existed prior to the web, and countless others have been developed since, but

none have had such an impact on society. The web is unique in that it provides a common

information space that is global in scope, but which does not discriminate according to

information or users. Effectively, anyone can publish anything on the web, enabling it to

evolve into an abstract representation of society's ideas, thoughts, opinions, fashions, and

fears. It is the combination of the web's lack of censorship, its openness, its global reach, and

the ease with which information can be published that has given the web such impact on

society. For the first time in history, people with limited technological knowledge can publish

whatever information they wish and have it seen across the world instantly.

The web has impacted on many different facets of life: Its explosive growth has remained

exponential since its birth; fortunes have been made and lost; governments have tried to curtail

its freedom; business has been transformed through e-commerce; and security and privacy

issues have been ever-present. All these issues are symptomatic of the fact that the web is not

just a technological innovation, but a societal innovation as well, affecting every level of

people's lives, either directly or indirectly.

The reason for the web's impact lies in its open design and philosophy. Specifically, all of the

web's protocols and standards are freely available, allowing anybody to read and modify them

2

Chapter 1 - Introduction and Overview

if required, while its federated design, inherited in part from its reliance on the Internet,

ensures that no central organization controls it. Thus, the web is open from an architectural

level, and from a user level, both of which give it a competitive advantage compared to similar

information systems, such as America Online, which have a centralized controlling

organization behind them.

However, the web is not without its problems. Without any controlling organization, the web

has no form of censorship, and so information of low quality competes directly with

information of high quality on an equal level, with little to distinguish between the two in the

eyes of the user. Worse, information can be deliberately misleading, designed to confuse the

user for the purposes of the information provider. The end result is an information explosion,

most of it of dubious quality, which ultimately degrades the quality of the service that the web

provides. In addition, the architecture of the web was never designed to scale to the size that it

has, and each new user and new item of information adds to the pressure placed upon its

foundations. As this thesis aims to show, cracks are appearing in the web as flaws that are

inherent in its architecture begin to undermine its structure and diminish its role in society.

Many solutions exist that attempt to solve these problems, but their effectiveness has been

limited at best. They have often been isolated systems that attempt to patch a specific

weakness without taking into account problems in other areas of the web's architecture. Many

of these solutions also require the web's architecture to be adapted, which ultimately would

force all existing web entities to be redesigned to take advantage of the solution offered.

3

Chapter 1 - Introduction and Overview

However, in a system the size of the web, this is impractical at best, and, as the low adoption

rates of these solutions has proved, impossible in practice.

The aim of the research presented in this thesis, therefore, is to design an effective solution to

the most critical flaws of the web without requiring existing entities to be redesigned.

However, rather than basing the solution on an existing model of information flow in a

network, the research takes the perspective of information flowing from information provider

to information consumer, effectively ignoring its flow through the technological foundations

of the web altogether. Using this perspective, a new model for managing information flow in

the web has been designed, which works with the web and its information, rather than against

it. The model manages the web's information without censoring it, and solves some of the

web's flaws without requiring the modification of its architecture.

1.2	 Aims and Objectives

This study is concerned with the architecture of the web and the information published on it.

More specifically, it identifies the problems in the web's information space and focuses on the

architectural weaknesses that have brought about these problems, with the aim being to solve

the problems in a way that is sympathetic to the underlying philosophy of the web's design

principles.

In order to do this, the research programme can be divided into three key phases. The first

phase provides a comprehensive analysis of the web's architecture in its current state, and

focuses on the three areas of weakness that provide the greatest cause for concern: identifying,

4

Chapter 1 - Introduction and Overview

structuring, and retrieving information. Specific problems are identified within these areas

that could potentially halt the growth of the web altogether. The second phase of the

programme aims to solve these problems through the development of a new model for

managing the information flow on the web without breaking its architecture or damaging its

culture. The third and final phase involves the complete specification and development of part

of the model. In order to validate the design, this stage also includes the development and

testing of a prototype, with performance measurements provided to demonstrate its

effectiveness in a real world setting.

A principal objective of the first phase was to identif' those flaws in the web's existing

architecture that were deemed most damaging to its future. In order to do this, an extensive

literature search was performed in order to determine the nature and extent of the flaws, while

an experiment was conducted in the hope of gaining empirical data on the extent of the

problems identified. Once the problems had been identified, they remained as the focus of the

remainder of the research programme.

The objective of the second phase was to develop a new model for managing information flow

on the web, which represents the focus of the research. The model comprises a new

mechanism for enhanced navigation across the web; a new addressing scheme that can

reference resources according to time and space; and a replacement for the DNS that has can

transparently migrate resources across web servers. The model relies upon a new form of

mediation, called request routing, which enables these new distributed systems to be integrated

into the web without breaking its existing architecture.

5

Chapter 1 - Introduction and Overview

Finally, the objective of the third phase was to develop the model such that it could be

deployed on the web to provide real solutions to the identified flaws. As such, this phase

involved completely specifying the design of the model from an engineering perspective, and

developing, testing, and measuring a prototype.

These objectives can be more formally specified as follows:

. To assess the current state of the web's architecture.

To identify the flaws in the web's architecture specific to identifying, structuring, and

retrieving information, and the extent to which they might affect its growth and

effectiveness as an information system.

To develop a new model for managing the web's information flow, and ultimately

provide a solution to the identified flaws of the web.

To design and specify a system that implements the new model.

. To build and test a prototype of this system to demonstrate its effectiveness within the

web.

These objectives correspond to the general sequence of the material presented in the

subsequent chapters of the thesis, as will be discussed in the next section.

6

Chapter 1 - Introduction and Overview

The research has involved significant liaison with networks and telecom engineers

(particularly during the early stages of the work). The majority of this consultation occurred

within the ACTS DOLMEN project, which was concerned with the development of a service

architecture for fixed and mobile networks, based on TINA-C (TINA, 1994). Other

consultation occurred within the WebDAV working group, and through discussions with

various experts in the field.

1.3	 Thesis Structure

This thesis describes the research leading to the formulation of a new model for managing

information flow on the web, which is used to provide a solution to key flaws within the web's

architecture. The foundations for the thesis are provided in chapter 2, which begins by

examining the web's existing architecture in detail, focusing on the way in which it identifies,

structures, and retrieves its information, and highlighting the effect that this has on the system

as a whole. The chapter reveals the dichotomy that information management introduces to a

global information system, with an open design philosophy leading to a popular but ineffective

system, and a closed philosophy leading to an unpopular but effective system. This forms the

core focus for the research, which aims to significantly improve the web's management of its

information without destroying its openness and popularity.

Chapter 3 provides substantive evidence of the flaws in the web's architecture that are a direct

result of its open philosophy, and which are steadily eroding its effectiveness as its popularity

increases. An exhaustive literature search is presented that reveals the extent of the web's

problems, and the existing solutions that have been proposed, but which have ultimately

7

Chapter 1 - Introduction and Overview

failed. To provide further detail, the chapter discusses an experiment conducted as part of the

research programme, which was designed to provide empirical data on the problem of link rot

in the web, but which was prematurely terminated. The chapter effectively underpins the

research by identifying the scope of the web's problems, and concludes that a new, human-

oriented model for managing information flow is required in order to solve them.

Chapter 4 presents such a model. HOMINID, as the model is called, provides a new way of

managing information flow on the web that is designed to work according t the nature of the

information that flows upon it. The chapter provides a conceptual overview of the model,

which includes the design of a new, web-specific Resource Location Service; the introduction

of time as a new dimension to the web; and a system for universal access to meta-data and

navigational information to help decrease the level of noise in the web without falling foul of

the information management dichotomy defined in chapter 2.

Chapter 5 presents a detailed specification of the HOMINID model, showing how it can be

applied to the web. The chapter essentially provides a blueprint for deploying the model on

the web, including a functional design specification of its core concepts. The chapter

describes the definition of new services, URI schemes, management entities and their

interfaces, and routing objects that can be deployed in the web's architecture in a way that is

backwards-compatible with existing web entities.

Chapter 6 defmes the complete design, specification, and implementation of the HOMINID

model's Resource Locator Service, including the full specification of the required protocols,

8

Chapter 1 - Introduction and Overview

interfaces and objects that are needed for deployment. A new Resource Migration Protocol is

defined, and a prototype of the service is described that has been developed according to this

specification, in order to validate its design. The performance of the prototype has been

measured, and extensive results are provided in full, in order to demonstrate the effectiveness

of the design in today's web.

Finally, chapter 7 presents the main conclusions arising from the entire research programme,

highlighting the principal achievements and limitations of the work, along with suggestions

for potential further development. The thesis also includes a number of appendices, which

contain a variety of additional information in support of the main discussion (including a

number of published papers from the research programme).

9

Chapter 2- The World Wide Web

2.	 The World Wide Web

The World Wide Web (web) is a global information system that provides

equal access to information providers and information users. Its success is

due in no small part to its philosophy of openness and extensibility. Anyone

can develop anything for the web, and market forces alone will determine its

success. This has assured unprecedented investment in the web's technology,

accelerating the rate of technological progress, and connecting society and its

information. However, it has also left it with no central controlling authority,

and no explicit standards for managing its information, leading to an anarchic

state of information provision that progressively weakens the web's use as an

effective information system.

10

Chapter 2- The World Wide Web

2.1	 Introduction

The late 20th Century saw the emergence of global information systems that could

provide information and services on an unprecedented scale. The global

communications networks supporting these systems came from the fields of

telecommunications and computing, with ideas and technologies crossing the two

domains to provide solutions to common problems. These global networks,

supported by many users, are different from local networks, as the services they

provide have the power to impact on society. This impact becomes more powerful as

the services become richer, and more able to provide a diverse range of information.

The telephone system came from the field of telecommunications, and its services

originally consisted primarily of transporting a human voice from one telephone to

another. Over time, its services have become richer, and now telecommunications

companies (telcos) have begun to extend their role by providing multimedia-based

services such as graphics and video. However, a new global network emerged from

the computing field, in the form of the Internet and, more recently, the World Wide

Web (web). The Internet experienced a global surge in popularity, largely through

the development of the web and the introduction of the graphical web browser

Mosaic by NCSA (Berners-Lee and Fischetti, 1999). The web has developed into a

competing platform to the telecommunications system, capable of providing the

same rich multimedia services that the telecommunications companies wish to

provide, but based on a different paradigm than the telecommunications model.

11

Chapter 2- The World Wide Web

Whereas the telecommunications model tightly integrates the provision of services

with the control of the network, the Internet, upon which the web runs, effectively

separates the services from the network. This is reflected in the architecture of the

two models. The telecommunications model designs all-encompassing architectures

that control every part of the network, from the user and their terminal, to the

network resources switching data deep within the network, and provides well-

managed services in a tightly controlled environment. In contrast, the Internet model

focuses more on the reliable transport of data, and leaves others to design whatever

service they require. The Internet completely ignores the network resources that

support it, and the web provides a platform for service provision without regard for

what services are deployed on it. The result is seen either as "Internet anarchy"

(Raatikainen et al., 1998) or as an "open, federated system" (Berners-Lee and

Fischetti, 1999), depending on your chosen philosophy.

Despite the existence of the two models, it is the Internet and the web that have

become pervasive in the developed world, becoming the defacto global information

system. The reasons behind the web's success will be examined in section 2.4.1, but

before that, the following sections will examine the architecture of the web, and

analyse how its information is managed.

12

Chapter 2- The World Wide Web

2.2	 The Architecture of the World Wide Web

2.2.1 The Web 's Origins

The Internet is a data network from the field of computing that has gradually evolved

over time to become a single ubiquitous network that enables all other data networks

to communicate and interoperate with one another. The 1990s saw an explosion both

in the number of people using the Internet, and the types of services it could offer.

As the Internet grew in popularity, however, users found they needed a consistent,

standard way of formatting and referencing information. Such a system was

developed by Tim Berners-Lee, of the European particle physics research laboratory,

CERN, who proposed the World Wide Web as a hypertext distribution system that

could be accessed by any type of computer across the world, and which would

present its information through a single user-interface. Since its invention, the web

now has a user population of over 369 million (GlobalReach, 2000), yet it was

conceived of by one man, designed by a small team of developers, and refmed by

many different organizations and companies. This was possible due to the open

nature of the Internet. Essentially, anybody can develop a service for deployment on

top of the Internet, and not worry about the underlying network. Better still, unlike

the situation for telecommunications service providers, service deployment does not

require negotiating access to the network, payment to the network operator (apart

from a minimal charge to an Internet Service Provider, although even this is now free

in the UK), or the development of a new architecture based around the new service.

13

Chapter 2- The World Wide Web

This dramatically reduces both the cost of new services, and the time from service

conception to service deployment.

2.2.2 Architectural Overview

The World Wide Web is defined as:

"...the universe of network-accessible information, the embodiment of human
knowledge...The Web has a body of software, and a set of protocols and
conventions. Through the use of hypertext and multimedia techniques, the
web is easy for anyone to roam, browse, and contribute to. "(W3C, 1992).

As such, the definition of the web strongly reflects the philosophy of the Internet

model: ignore the details of the underlying system, manage only the parts you need

to manage, and let anyone use your services.

The web is a loosely distributed system based on the client-server model, whereby a

client must explicitly request a resource from a server. A resource is defined as

"anything that has identity" (Berners-Lee et al., 1998, p2), and usually includes such

things as documents or images. These currently form the main items of traffic on the

web, and are transferred from server to client using the HTTP protocol (Berners-Lee

et al., 1996).

The web's core architecture comprises three standards:

. HyperText Transfer Protocol (Berners-Lee et al., 1996).

. The Uniform Resource Identifier (Berners-Lee et al., 1998).

• FlyperText Markup Language (Berners-Lee et al., 1995).

14

Chapter 2- The World Wide Web

The HyperText Transfer Protocol (HTTP) is the protocol used to distribute this

information over the existing Internet architecture; the Uniform Resource Identifier

(URI) is used to both locate and identify resources (text, images, files, etc.), and

represents the standard that defmes the operation of the hyperlink, enabling one

resource to be linked to another; and HyperText Markup Language (HTML) is used

to present the information contained within the resources in a consistent way across

all computer platforms.

These three standards are implemented in a web browser, which presents the

information to the user, and in a web server, which hosts the information and

transmits it to the user upon request. The browser also uses other third-party

standards for displaying content of a particular media type, such as images, sound,

animation, etc.

The user interacts with the web through the web browser, which acts as the web's

user interface and renders all content delivered to the user. The user begins the

process by typing the URI of a resource (usually a HTML document, which is known

as a web page) into a browser. The URI acts as the resource's address, uniquely

locating the resource on a server. It encodes the server's domain name, and also the

directory location and file name of the resource on that server. A web browser, given

a resource's URI, can locate the resource and download it from its server. The

resource's content is then extracted and rendered in the browser's window using

HTML encoding rules. This is the mechanism through which the web provides its

15

Chapter 2- The World Wide Web

services. The following sub-sections examine these three standards in greater detail,

and describe the role each has to play in the architecture of the web.

2.2.2.1 HyperText Transfer Protocol

The web relies on HTTP as its transfer protocol, transferring its resources from

server to client. The protocol is text-based and therefore extremely simple when

compared with other protocols. All it is concerned with is the transfer of a web

resource (such as a web page or an image) across a reliable transport connection. As

such, TCP/IP is nearly always used as the transport protocol, and will be considered

as the default transport protocol for this thesis. TCP/IP ensures the data is delivered

safely, leaving HTTP free to manage application-level issues. These include content

negotiation, whereby the server can negotiate with the client as to which version of a

resource is best rendered on the client's access device; server redirection, whereby a

server redirects the request to another server; and authorization, although this is not

highly robust in HTTP.

HTTP treats all resources as if they were files located on a server, with a URI acting

as their identifier. Although it is able to differentiate between different content types

(such as HTML documents and GIF images) using the Internet Media Types

specification (Postel, 1996) and the Multipurpose Internet Mail Extensions (MIME)

specification (Freed and Borenstein, 1996), it does not exclude one content type over

another, and although it may encode or transform the content, it never alters it.

16

Chapter 2- The World Wide Web

HTTP is an extensible protocol, enabling it to be adapted and extended through a

well-defined extension framework (Nielsen et al., 2000). Recent extensions have

included a Capabilities and Preferences Protocol (Ohto and Hjelm, 1999), and the

new WebDA V protocol for distributed authoring and versioning across the web

(Goland et al., 1999), each of which has provided new semantics and message

headers to HTTP, but without breaking the existing core protocol. The extensibility

of HTTP enables it to be used in a wide range of situations, and helps prolong its

usefulness in an environment as dynamic as the web.

2.2.2.2 The Uniform Resource IdentfIer

The Uniform Resource Identifier (URI) (Berners-Lee et al., 1998) is a generic syntax

that provides a simple and extensible means of identifying a resource. As such, it is

used to compose all identifiers on the web, and can be seen as a superset of all web

identifiers. The most commonly used type of URI is the Uniform Resource Locator

(URL) (Berners-Lee et al., 1994), which is the subset of URIs that identify a resource

through its location (Berners-Lee et al., 1998). There are many other types of URI

scheme, such as that based on the Handle System (Sun and Lannom, 2000), or the

Un (form Resource Name (Bemers-Lee et at., 1998), but because of their failure to be

widely adopted on the web, the URL is perceived as the only type of identifier.

Despite this, the distinction between URL and URI is worth noting, and although the

rest of the thesis will focus primarily on the URL, the two identifiers will be

discussed as distinct entities in future chapters. Equally, it should be noted that

discussions involving the URL necessarily involve the URI, as a IJRL is a URI.

17

Chapter 2- The World Wide Web

Conceptually, the URL defmes a namespace that is distributed across all the servers

on the web. A resource can be located if it resides at a particular location in the

namespace. The URL can be extended to encode namespaces from other protocols,

such as FTP (File Transfer Protocol) or NNTP (Network News Transfer Protocol),

enabling resources on other information systems to easily be referenced from the

web, combining their information space with that of the web's. Like HTTP, the URL

treats all resources equally, and so can identify any resource regardless of its

content's media-type. As such, the URL is ". . .the most fundamental innovation of

the web, because it is the one specification that every web program, client or server,

anywhere uses when any link is followed." (Berners-Lee and Fischetti, 1999, p42).

2.2.2.3 HyperText Markup Language

HTML provides a consistent markup language for the platform-neutral presentation

of information. The markup language is text-based and easy to learn, two factors

that have led to the web's success. HTML can be seen as the web's visual

component, rendering all information resources no matter what their content.

Multimedia content, such as video, and functional content, such as Java applets, can

be embedded into an HTML document so that it sits next to text in the user's

browser.

The original HTML specification has been improved over time, becoming richer and

more functional, while a new extensible markup language, called XML (Bray et al.,

2000), has been specified that is based on the principles of HTML, but whose

18

Chapter 2- The World Wide Web

elements and semantics are entirely open arki extensible. Indeed, the whole of the

web's architecture is fully extensible: the URI can encode any namespace; the

messages and semantics of HTTP can be extended; and any content In any markup

language can be consistently presented. As such the web should remain the defaclo

global information system for many years to come.

2.2.3 The Relationship Between the Web and the Internet

In 1974, Vinton Cerf and Bob Kahn published A Protocol for Packet Network

Intern etworking (Cerf and Kahn, 1974), which specified the design of a

Transmission Control Program. This was to be the forerunner of the Transmission

Control Protocol (TCP), the protocol used for the transport layer of the Internet. In

1981, the TCP/IP (Transmission Control Protocoll Internet Protocol) protocol suite

was fully formalized (see RFC793 (Postel 1981a), and RFC791 (Postel 1981b)), and

the term Internet was defmed for an interconnecting network. This protocol suite

was to become the de facto interconnecting network protocol standard, and was

capable of operating above a "...wide spectrum of communication systems ranging

from hard-wired connections to packet-switched or circuit-switched networks"

(Postel, 1981a). TCP/IP is concerned primarily with internetworking heterogeneous

networking systems, and does not care about the protocol layers beneath it. Users of

this interconnected network can therefore communicate with other users regardless

of the network technology each uses, so long as each communicating host computer

can run the TCP/IP protocol stack on top of its existing network protocols.

19

Chapter 2- The World Wide Web

The web uses the Internet for the transport of its resources. The physical resources

of the Internet, such as its routers, provide the network infrastructure upon which the

web and its services run. Beneath the Internet lie the physical network resources,

such as switches, of the individual networks. Because the Internet is a data

internetwork that is designed to run over any type of network, its protocols (TCP/IP)

are designed simply to transport bits safely, regardless of the technology used in

these physical network resources. As such, the Internet has no way of controlling the

network resources over which it operates, and thus no way of enabling its services to

control the network. The Internet and the physical network it runs over are seen as

two entirely separate systems. Because of this, service characteristics such as

Quality of Service (Q0S) cannot be guaranteed, and so an Internet application that

requires a certain QoS must provide its own means of compensating for bandwidth

variation and latency. This does not affect most resources on the web, however, as

HTTP is a simple request/response protocol riding on top of TCP/IP that enables

resources to be transferred from server to client, regardless of the time it takes for the

transfer to complete, or the latency inherent within the system. As such, TCP/IP

provides a perfect transport for the web, as it guarantees the safe delivery of data,

allowing HTTP simply to co-ordinate the downloading of resources according to

their content type, without worrying about the underlying packets of data.

20

Chapter 2- The World Wide Web

2.2.4 A Philosophy of No Control

The Internet cannot provide a guaranteed Q0S because of a decision by its designers

to place all the complexity of the protocols in the transport layer. In stark contrast to

the telecommunications model, which seeks to control every element in a network,

the Internet assumes that the network layer is inherently unmanageable, and so TCP,

the Internet's transport layer protocol, is a robust, reliable protocol that works over

an inherently unreliable network (Tanenbaum, 1996). As such, its design philosophy

is based on reliability and openness rather than control, with its open protocols

designed to work across a broad variety of networks, but at the expense of

understanding or controlling those networks. Its design is characterized by open

standards and open access, enabling anyone to use it or develop for it, a philosophy

that ultimately led to the development of the web. Indeed, this philosophy is shared

by the web, which provides a platform for service and information provision in the

form of web sites. The web's standards are also entirely open, and can be extended

and used by anyone without license, while information provision is unrestricted and

uncontrolled. This is central to the philosophy of the web's creator, Tim Berners-

Lee, who, when designing the web, felt that:

"...for an international hypertext system to be worthwhile...many people
would have to post infor,nation... That meant that anyone (authorized) should
be able to publish and correct information and anyone (authorized) should be
able to read it. There could be no central control" (Berners-Lee and
Fischetti, 1999, p41-4.2).

21

Chapter 2- The World Wide Web

As the following sections discuss, however, this philosophy has made the web what

it is today, but at the expense of providing a very shaky foundation for what the web

will become tomorrow. More specifically, this philosophy has had an adverse effect

on the web's ability to manage its own information, for it is difficult to manage

anything without control.

2.3 Managing the Web's Information

All content in an information system, whether it is text, images, movies or sound,

etc., encodes information in a specific media-type. In order for this information to be

used effectively by the system's users, the system must provide mechanisms that

structure the information and enable it to be managed. In a system the size of the

web, effective management is even more crucial because of the diversity of the

information, and the enormous amount of it.

There are many different components to information management, but for the

purposes of the research described in this thesis, three components are key.

Specifically, the research has focused on how the web:

. identifies information;

structures information;

. retrieves information.

22

Chapter 2- The World Wide Web

These three components are crucial to effective information management in a global

information system such as the web, as without them, the information would be

inaccessible, meaningless and irretrievable. The philosophy underlying the web's

design does not provide great support for these components, but as the following

sub-sections show, they do exist, either through the web's own architectural

mechanisms, or through external third party services.

2.3.1 Ident5ing Information

The web's architecture specifies the URI as the mechanism through which

information is identified. The URI is a generic syntax for naming all types of

resources on the web, and so provides the web with a namespace. The vast majority

of web resources, however, use the URL, which, as was discussed in section 2.2.2.2,

is a human-readable subset of the URIE that identifies a resource through its location.

More specifically, the URL locates a resource via a combination of the Internet's

Domain Name System (Mockapetris, 1987a, 198Th) and the server's own file

system. In this way, the namespace of the URL comprises the namespace of the web

server and the namespace of the Internet's DNS, giving the web server partial control

over the location (and thus the identity) of the resource.

23

Chapter 2- The World Wide Web

The namespace provided by the URL has become the defacto namespace of the web.

As defined in Berners-Lee et a!. (1994), the syntax of the URL encodes:

the protocol scheme to be used to download the resource (usually http:/f);

. the domain name of the host server (e.g. www.aserver.com);

the file path of the resource (e.g. /library/);

. the file name of the resource (e.g. index.htm).

The Domain Name System (DNS) is used to map the server's domain name, which is

encoded within the URL, onto its IP address in order that a TCP/IP connection can

be made to the server. Once achieved, the resource can be found by the server

through the file path and file name components of the URL. As such, it is the

combination of the name of the server hosting the resource, and the file path within

the server, that uniquely identifies the resource and largely defmes the UIRL's

namespace.

Another URI scheme is the Uniform Resource Name (URN), which identifies a

resource independently from its location (Sollins and Masinter, 1994). Note that

technically a URL is used to locate a resource, whereas a URN can be used to

identfy a resource (Berners-Lee et al., 1994); that is a URN persistently labels a

24

Chapter 2- The World Wide Web

resource with an identifier, even when that resource ceases to exist (Berners-Lee et

al., 1998). However, the concept of the URN has never been implemented, and so in

practice the URL is used to both identify and locate a resource.

The URL is encoded in HTML using an anchor element, an example of which is:

Click Here

The anchor element provides a visual representation of the hyperlink, and encodes

the URL in its HREF attribute to both identify the linked resource, and locate it. As

has been said, HTML is the web's markup language, and its anchor element can

provide textual information about the hyperlink (such as 'Click Here' in the example

above), or be embedded in other, richer forms of information, such as images, so that

a click on the image will download the linked resource. In this way, the information

presented to the user identifies the content of the resource to that user, while the URL

embedded in the underlying anchor element identifies and 1ocat the resource to the

underlying system.

The hyperlink is part of the core architecture of the web. New specifications have

recently been proposed to extend its functionality in the form of the XML Linking

Language (DeRose et a!., 2000) and XML Pointer Language (DeRose et al., 2001).

These provide extensible semantics to the hyperlink, with XML Linking Language

(XLink) defining a syntax for asserting and, more importantly, characterizing explicit

25

Chapter 2- The World Wide Web

relationships (i.e. hyperlinks) between two or more resoumes (Maler and DeRose,

1 998a), and XML Pointer Language (XPointer) enabling elements, character strings

or other parts of an XML document to be referenced regardless of whether they carry

an explicit identifying attribute (Maler and DeRose, 1998ab). Essentially these

proposals allow the semantics of the relationship between two resources to be

defined, and refme the granularity of the hyperlink's target to that of individual

elements within a resource. However, the specifications of these proposals have yet

to be completed, and they are not widely used on the web. As such, they will not

form part of this discussion, and the rest of this thesis will treat the hyperlink as it is

defined in Berners-Lee and Connolly (1995) as ". ..a relationship between two

anchors".

2.3.2 Structuring Information

For an information system to be useable, its information must be structured such that

it can be understood by either human or machine, depending on the nature of the

system. Without structure, information becomes noise, with no form, no meaning

and no use. The web primarily uses HTML to structure its information in a human-

readable form. Content within a HTML document is formatted using HTML tags,

which tell a user's browser where to place specific items of content, such as text,

images, tables, etc., and in what style to present it. In this way, a HTML document

looks attractive to the user, and can be easily read if designed well.

26

Chapter 2- The World Wide Web

However, the web's architecture is less effective at structuring its information for

machine use. Search engines must infer the meaning of a HTML document from its

text in order to determine its relevance to a user's query, as the HTML elements are

primarily concerned with the style and presentational layout of a document, rather

than with the semantics of the document. In order to provide more machine-readable

semantics, new markup languages based on the syntactical rules of XML, such as the

Resource Description Framework (Lassila and Swick, 1998), have been designed,

which encode the semantics of a document into a machine-readable description

through the use of meta-data (i.e. data about data). The meta-data can be read and

understood by a software agent such as a web spider (see sub-section 2.3.3),

providing it with accurate information about the meaning of the web document. As

such, just as HTML defines a common way of structuring information for the user,

so XML and its associated markup languages define a common way for information

to be structured for the machine. Note, however, that XML has been defmed

according to the philosophy of the web, and is an extensible markup language. As

such, it only defines the syntax with which new markup languages must be created,

and allows the structure and semantics of the language to be defined according to the

needs of the user.

As well as structuring information within individual documents, an information

system must also structure its information across the whole system. Collating

information in this way enables the user to retrieve it easily, and to query the system

in order to access information effectively, or to retrieve information from multiple

27

Chapter 2- The World Wide Web

sources. However, the philosophy underlying the web's design is such that system-

wide mechanisms, including those that provide information structure, cannot be part

of its architecture, as they require system-wide organization and control of a kind

that cannot effectively be provided in a federated system. As such, the web's

architecture does not support such system-wide information structure, and so limits

the effectiveness of information retrieval (see sub-section 2.3.3, below), and prevents

the user from performing system-wide queries (Pitkow and Recker, 1994).

Information exists within web sites as part of those sites only, and although an

individual site can provide its own tools to enable its information to be queried, it

cannot be queried against other information on the web. As such, information is

structured on the web, but only at the level of the individual resource. Third party

services may provide an alternative, permitting users to seek out information across

multiple web sites, but such a service must be aware of those specific sites in the first

place, either through registration or web crawling (see the following sub-section).

The web, therefore, may be a vast reservoir of information, but it is disparate

information that is far removed from the ordered world of the database.

2.3.3 Retrieving Information

Because the web's architecture does not provide system-wide structure to its

information, it follows that information retrieval is not specified within its

architecture either, as this too requires system-wide organization. The only defined

mechanisms for a user to retrieve information is through navigation to appropriate

web documents via hyperlinks, or using a web browser's navigational features, such

28

Chapter 2- The World Wide Web

as the forward and back buttons. These mechanisms are far from effective for a

system the size of the web, however, as the number of hyperlinks is vast, and the

navigational features are ineffective at best. As such, it has been left to independent

third party service providers, such as the search engine companies like AltaVista,

Google, and Lycos, to provide effective information retrieval services, which work

on top of the web's architecture.

2.3.3.1 Overview of the Search Engine

Search engines can be classified as either an index or a directory. An indexworks by

storing and indexing every single word of every HTML document, and comparing

them with the words in users' queries to produce relevant documents. A directory, in

contrast, provides a hierarchical organization of documents, each classified according

to a specific subject heading (Inktomi, 1996). The user can navigate through this

structure using their own relevance heuristics in order to locate a document that

satisfies their information need. Because of the lack of information structure within

a document, however, it is difficult for a directory to correctly classify its doci.ments

according to a specific subject heading automatically, and so companies such as

Yahoo pride themselves on classifying every one of their 1.8 million documents

manually (Sullivan, 2000a).

To the end user, a search engine is no different from any other web site. The user

navigates to the search engine, and is presented with the content of the site. The user

types in a set of keywords, and the search engine presents a list of relevant web sites

29

Chapter 2- The World Wide Web

that match the keywords. The user can then determine the relevance of each site to

their specific information need, and navigate to that site from the search engine's

web page (Figure 1).

I-	 1rmne	 :rrpr1 cur	 cr7111,.	 ..	 - :-

on FoorOro jool. ij*

j
Stop	 9.11.!. Hoe.	 Se.di Fan.!as Hoeo.y	 H!	 PilO	 E!.	 Dora., Neeronec Ro11om Defri.

AØeet 1lJ hOIp //onw, ,ojp 	th?Eoon,&,*h one p.voo 1-1SF&ndr-df	 J '°GO

Go k ',non,cn,ropneon	 j 'Se.10	 P'a.°	 Up 6HiI11	 ,e.,p!11n

Google ev,cok	 imaeKngLoci'

Caleporlal, Wottit> Etoocato >. (nlorrepqoe>_PiQ5r	 tWofl? Ljnses' MJ.

:cu>: wbEJ nd
Fratn Mike Eva,,, (Mike EvanIjacku. plym ac Uk) De MOn. Mar13 2	 Neal

message: Jim WhuleheaS RE WebDAV and dusconn.ctedlo$yrtchronous operation
si, w3 org'4othvan/PubIlcAnc-dus1-auIlVJ3nMarO.42S PrInt 9k . >i-

Stl]u n ill3L)f1rn	 ruar 1: 1 lr	 i: RE V?bDR

From Jim PM,utehead oeje,cs.ucu edun Ta Mike Dv.,, oMike Ev.n.jeckee. plyna acuk>.
w3c. dual . aoti@w3o.g Date Mon. 13 Mar 2 	 tO 51 -	 Mesuage-ID
hare w3	 hIm-. III.

Authors Mike Eva,, nrniko evan.ijeck..e plym cc uk>, PRP (UK) Steven Furneil osteee.ck ace
plym cc uk>. PPP (UK) rdy Phuppen ,ndypjacksa. plym acuk

*3 or9fTtltNiTtT- 1l	 -

°°°'3	 I	 .->C inrIllo re$-;1

Neyt Get the	 TX t>r foryour b-cuwser

Co e4,onrnd	 S.crchsrte	 Pane Info-JUo - 6 gtuhgat	 danfrd

Wilt muon flfl
otJ Done	 • tHereat

UHHedS HLI.jiJ E9AUmiI4 jlioo. DA I lraon. I ThDoj	 5J-3

Figure 1 - Screenshot of the Google Search Engine

In order to provide a comprehensive service, a search engine must index or classif'

all the words in a document from as many documents as possible. The extent to

which the search engine covers the web defines its size (measured in number of

documents indexed), with popular search engines competing to become the biggest

search engine on the web. To do this, most find their documents through the use of a

software agent called a web spider, which automatically navigates across web

30

Chapter 2- The World Wide Web

servers, indexing the information it finds in any web document it comes across. A

spider performs three functions (see Pallmann, 1999, p 143):

• Discovery - locate specific web sites of interest;

• Site Crawling - traverse the site to determine the resources it contains;

• Indexing - glean descriptive information from the resources within the site.

Usually, the information from the resources is added to a search engine's database,

which can then be queried by a user in order to locate a specific resource that

contains information that the user needs. If the web had any kind of system-wide

structure to its information, a spider would not be needed. As it is, they are an

essential component of current search engines, and are highly sophisticated

programs, capable of searching vast numbers of web resources every day. For

example, AltaVista's (www.altavista.com) spider, called 'Scooter', collects data on

over 6,000,000 HTML documents a day (Schwartz, 1998), while Inktomi's

(www.inktomi.com) spider indexes an impressive 10,000,000 HTML dociznents a

day (Chakrabarti et al., 1 999a). One way in which a spider discovers appropriate

web sites is by extracting the URLs from hyperlinks in HTML documents, and using

them to download the associated resource. If that resource is an appropriate HTML

document, its words are indexed. If it contains hyperlinks, the URLs are again

extracted, and the spider moves on again to the associated HTML documents. In this

way, the spider is said to crawl across the web, indexing web documents as it goes.

31

Chapter 2- The World Wide Web

In order to provide an accurate service, a search engine must employ a set of

heuristics in order to determine the relevance of a document to the keywords typed in

by the user. The heuristics vary in their sophistication according to the different

search engines in which they are used, and are one of the main differentiating factors

of the different search engines available. Google (http://www.google.com), for

example, uses a sophisticated heuristic called PageRank (Brin and Page, 1998),

which ranks a HTML document's authority based on the number of hyperlinks that

point to it, or the number of documents that point to it which themselves have a high

PageRank value. Google then determines the relevant HTML documents that match

the user's query according to traditional relevance heuristics (e.g. keyword

matching), and uses the PageRank value to rank those that are deemed relevant

according to their computed authority. However, if the web provided more structure

to its information, a search engine would not need such complex relevance heuristics

to infer the meaning of the document from its text.

2.4 The Information Management Dichotomy

The philosophy behind the design of the web has made it very difficult for its

information to be managed. The web has no central authority controlling who can

provide information or a service. There is no concept of service modelling on the

web, as there is in a telecommunications network (DOLMEN, 1996a), and no

uniform way of providing a service. Effectively, anybody can publish anythirg, and

so all of the web's content has been provided by independent third parties who

require no permission to provide their information, and are subject to no regulatory

32

Chapter 2- The World Wide Web

controls. In this way, the only control over information and service provision on the

web comes from market forces. The search engine companies illustrate this, with

user demand highlighting the need for an information retrieval service being quickly

met by competing companies rapidly developing and deploying competing search

engines. However, even these forces only control information that is expensive to

provide. Information that is inexpensive, such as family photos intended purely for a

small circle of people, is not subject to these forces, and with HTML being so easy to

use, and web servers providing their information hosting services for free, there is

effectively no control over information provision. As such, the lack of information

management in the web's architecture leaves it exposed to an uncontrollable

explosion of information of questionable value.

However, the issue of effective information management is complicated by the effect

it can have on a system's user population. A global information system needs to

ensure that enough users use it and publish information on it in order for it to be

viable, but the specific type of information management policies employed by the

system can have a dramatic effect on the system's adoption. Too much management

can provide the operator of the system with too much control, and will tend to

discourage the system's adoption. Conversely, too little will render the system

useless.

33

Chapter 2- The World Wide Web

2.4.1 Gatekeeping

The reason that managing information can provide the manager with too much

control is that it turns the manager into a censor. A censor is defined as:

"an official authorized to examine printed matter, films, news, etc., before
public release, and to suppress any parts on the grounds of obscenity, a
threat to security, etc. " (COD, 1990).

Rephrased, a censor is an agent with enough control to suppress information

according to his or her own individual criteria. Thus, whoever operates a global

information system has the power to suppress whatever information they like

according to whatever criteria they choose, once they have the appropriate

information management structures in place. It is this uncomfortable fact about

information management that can prevent users from adopting a system in large

numbers.

Such censorship has been termed gatekeeping (Levinson, 1997), and has been in

existence since information itself. This is self-evident, however, as to give

information any value, it must be selected according to its quality, and somebody has

to decide which information is of higher quality than other information. That person

is the gatekeeper. In this way, the gatekeeper manages information, and makes the

information selected more effective in conveying the intended meaning.

Traditionally, the content provided by all media has been controlled by a few

individuals (usually 'media-barons' such as Rupert Murdoch or Robert Maxwell)

34

Chapter 2- The World Wide Web

who are in a position to control the media that they own. These individuals can

influence the editing of their newspapers, magazines, books, etc., and so act as

gatekeepers, effectively selecting the information presented to the reader according

to their own biases, politics, or opinions (Levinson, 1997). The information is well

managed and informative, but the reader can only choose to read whatever

information the gatekeeper selects for them. As such, a balance must Fe struck: too

much management leads to propaganda, an unwanted state of affairs for any

information system; too little, however, and no effective meaning can be conveyed.

From the discussion in section 2.3, the philosophy of the web clearly leans towards

the open, almost anarchic style of management. However, the web is not the only

information system, and others, such as the service architecture defmed by the

telecommunications companies (DOLMEN, 1996a), or the online information

providers that predate the web, favour the more dictatorial, gatekeeping approach.

There is no censor on the web, as no one controls it. In contrast, the models of the

service architecture and the online information providers give the network operators

so much control over the information on their systems that they do become censors.

Each approach has its strengths and weaknesses, but as the following sub-section

demonstrates, the anarchic competitor will always beat the managed architecture.

2.4.2 Case Study: Proprietaiy Online Information Providers

Before the web enjoyed its present popularity, there existed a set of proprietary

online information service providers that included CompuServe and America OnLine

35

Chapter 2- The World Wide Web

(AOL). These online service providers provided an information browsing service

similar to the web, but they adopted a different model of information management,

preferring central control governing service access and provision, instead of the

open, federated model of the web. As such, in order to use one of these online

services, a user was required to use the service provider's own network, complete

with its own network infrastructure, and to browse for information using a special

browser that would only work with this network. Information and communication

services were thus bundled together (Gillet and Kapor, 1997), giving an online

service provider (OSP) complete control over who had access to their system and

who provided information. As has been said, the OSPs predate the web, but their

existence also coincides with the birth of the web. As such, these service providers

provide a real life case study of the impact the open model of the web has on a

system based on the gatekeeping approach.

Before the web, the OSPs could generate high revenues with a high profit margin, as

they could control both access to their information, and the provision of the

information. Each service provider offered a closed system with its own network,

and limited or no interoperability between systems, effectively locking the user in to

their system. However, the web is a fundamentally different competitor, not least

because it is not owned or controlled by any one person. In particular, the web has a

fundamentally different business model: it is free, offers no barriers to entry, no

control over the system, and separates information providers from connectivity

providers. Thus, the web provides three distinct advantages over the OSPs:

36

Chapter 2- The World Wide Web

1. Choice - To use an online service, you must use the online service provider's

software. With the web, however, the user can choose both the software

vendor and the type of application they wish to use, and can choose to adopt

new services, such as Internet telephony, only if they want to, and without

being restricted to a particular vendor or a particular service provider (Gillet

and Kapor, 1997).

2. Freedom - With no barriers to entry, anyone can provide any information on

the web without fear of censorship, and with little cost. Over time, the web

will therefore provide more information, as it can provide information that is

too expensive to be deployed on an online service, or that the online service

provider refuses to publish (i.e. censors). Thus, over time, the web will

attract more users, as it will have more information, whic1 in turn, will

attract more information providers, setting in motion a virtuous circle of

information provision and access.

3. Competition - Anyone can innovate on the web, and anyone can provide

information. This leads to ferocious price and information wmpetition

amongst a diverse array of providers, improving the diversity of the

information to a degree not shared by users of the online services (Gillet and

Kapor, 1997).

37

Chapter 2- The World Wide Web

Ultimately, the web shifts control over information provision from the OSP (or, in

the case of the service architecture, the telco) to the information owner, putting

severe pressure on the revenues that the OSPs receive from the information owner

(Gillet and Kapor, 1997). Since the advent of the web, there has been a huge shake-

up in the online services market, with AOL taking over CompuServe, and ultimately

finding that the only way it can compete with the web is to become a gateway to it.

Users of online services do not want to be precluded from the web, and users who

use the web largely have no need for a proprietary online service. As such, the

remaining OSPs have been forced to reduce their prices and effectively become

Internet Service Providers who also offer their own private content, while their

information browsing service simply becomes another (albeit large) web site that

requires a subscription payment for access. Essentially, the OSPs, although large

companies in their own right, have become niche players in the information browsing

market, with the web defming the boundaries of and the platform for that market.

To a large degree, this process was inevitable. Metcalfe's Law states that "the value

of a network grows as the square of its number of users" (Metcalfe, 1996), and a

network such as the web, which neither censors its information nor discriminates

against its users, will always have more users than a network that does. From the

perspective of a network, then, censorship is the wilful restriction of the network's

user base, and so from Metcalfe's Law, it can be seen as a restraint on the network's

value. As such, a network employing the gatekeeper approach to information

38

Chapter 2- The World Wide Web

management will always be less valuable than a network that is open and censor-

free.

However, the gatekeeper approach is not only commercially impractical when

competing with the web, it is also socially undesirable, particularly in a global

information system. Information deemed unpublishable in one country is perfectly

acceptable in another. Further, letting the user decide on the service they wish to

receive empowers them, providing them with a new tool for self-expression.

Effectively, it turns the web into a common platform for the exchange of ideas,

which, if adopted by enough users, can have a profound impact on society, if only in

speeding up the dissemination of ideas. The future of user information systems,

therefore, lies with the web and its open model of information management.

2.4.3 Internet Anarchy

Using the case study of the online service providers, the argument has been made

that a system with rigid information management structures in place, and which

provides control over information access and provision, will not be able to compete

with the web. The web is a decentralized, federated system that gives no one the

power to control information, and it is this fact alone that guarantees its success, and

ensures it will always beat a gatekeeper network. However, it is also this fact that

can lead to the web disintegrating into a sea of noise. Specifically, the lack of central

control has led to the development of an ad hoc architecture, whose central features

such as its navigation mechanisms have been developed in response to user need,

39

Chapter 2- The World Wide Web

rather than through a well-designed plan. That this architecture is able to support

over 300 million users is testimony to the power of such a flexible approach, but it

has also led to "Internet anarchy" (Raatikainen et al., 1998), with high quality

information becoming drowned out by low quality information, and flaws are

beginning to appear in the web's architecture that could potentially prove fatal.

When Metcalfe first determined the value of a network, which Gilder later described

as a law (see Gilder, 1993), there was perceived to be no upper bound to a network's

value, but there was also no information network the size of the web. As such, there

is tentative evidence (although no empirical data) that there may be an upper bound

to Metcalfe's law, and that beyond this limit, adding users diminishes the network's

value (Windrum, 1999). The hypothesis suggests that users add information and thus

value to a network, but that information that is not relevant to a user should be

classed instead as noise. As such, the more users that use the network, the more

information that is published, but the less likely it becomes that any individual item

of information is relevant to a particular user. Beyond the threshold, the information

content of the network actually decreases with each additional item of information.

Other information systems that are based on the gatekeeper approach use the web's

architecture as a model of what can go wrong with a global information system,

despite its obvious success. For example, the telecommunications companies have

envisaged themselves as providing the defacto global information system for many

years and their research efforts have culminated in the design of the service

40

Chapter 2- The World Wide Web

architecture. One such service architecture, OSAM (Open Service Architecture for

Mobiles (DOLMEN, 1996a)), which was developed as part of the European

DOLMEN project (Service Machine Development for an Open Long-Term Mobile

and Fixed Network Environment (DOLMEN, 1995)), and funded by the European

Union's ACTS Programme (Advanced Communications Technologies and Services,

1994 - 1998), used the web as a benchmark global information system, analysed the

flaws in its architecture, and then sought to circumvent them in its own architecture

through the use of rigid information management mechanisms that actively enforced

gatekeeping (see Raatikainen et al. (1998)). As such, the web was regarded as no

more than a good effort, whose limitations were gradually undermining its

effectiveness.

However, service architectures are still in the research phase, with no commercially

deployed network based on the model in existence, and no matter how effective such

a network is at managing its information, it will never reach the number of users

necessary for it to compete with that of the web. Equally, the web has a flawed

architecture (Raatikainen et al., 1998), and one that will cause more problems as its

size continues to grow. As such, a dichotomy now exists at the heart of the

development of a global information system the size of the web: specifically,

gatekeeping prevents the system from maturing, especially when a non-gatekeeping

system is a competitor; whereas non-gatekeeping makes a maturing system degrade

into noise. Ultimately, the only solution to noise in a large system prevents it from

becoming large enough to suffer this problem in the first place. Unless this

41

Chapter 2- The World Wide Web

dichotomy is resolved, the only global information system that can exist is one that is

doomed to degrade into noise under the weight of its own information.

2.5 Summaiy

This chapter has introduced the web and the protocols that form the basis of its

architecture. The web has been shown to be a fundamentally different system from

traditional information systems, with a very open architecture, and a flexible

philosophy that allows anyone to access anything, publish any kind of information,

and develop any kind of service.

The chapter has also introduced the topic of information management, describing

how it is implemented on the web, and in alternative systems that adopt a more

controlling approach. The chapter has revealed the information management

dichotomy, which conspires against a global information system regardless of the

approach to information management that is adopted, and acts to limit the

effectiveness of any system unless it can be resolved. As such, the dichotomy lies at

the heart of the research conducted as part of this research programme, which has

attempted to resolve it for the benefit of the web through the development of a novel

model for managing information flow. The model will resolve the dichotomy by

fixing some of the web's flaws in such a way that its open philosophy is not

compromised.

42

Chapter 2- The World Wide Web

Part of the work described in this thesis has been funded by research for the

DOLMEN project, which has provided rich insights into the flaws of an information

system, and the different approaches to information management that can be used.

The following chapter will therefore use research from the DOLMEN project, in

which the author was a participant, and also from other studies that have been

conducted, to provide a comprehensive analysis of the web's flaws in order to

identify their exact scope and nature.

43

Chapter 3- Flaws in the Web's Architecture

3.	 Flaws in the Web's Architecture

Weak information management has enabled the web to grow, but at the

expense of its overall effectiveness as an information system. As the web has

matured, certain flaws in its architecture have been revealed, which are now

beginning to pose a threat to the coherence of the system. This chapter

provides a comprehensive analysis of these flaws in order to determine the

extent of the web's problems, and describes how the different solutions that

have been proposed during the web's lifetime have all failed.

44

Chapter 3- Flaws in the Web's Architecture

3.1	 Introduction

The web is not a perfect system, and many studies have been conducted that examine

its faults. For example, Cockburn and Greenberg (1999) have examined the

limitations of the navigational tools provided by browsers, particularly the Back

button; Park et al. (1997) have shown how the network traffic produced by the web

has a serious adverse effect on network performance; many studies, such as

Chakrabarti et al. (1999a), Lagoze (1997), and Lawrence and Giles (1999) report on

the inefficiencies of search engines, particularly the problems they face in having to

index over one billion web resources; and an equally large number of studies, such as

Notess (2000a), and Koehler (1999), have reported on the problem of broken

hyperlinks on the web.

A comprehensive analysis was provided by the DOLMEN project, which analysed the

flaws in the web's architecture in great detail in order that it could provide a more

architecturally sound model of information management for its service architecture.

The DOLMEN project identified many flaws, most of which derive from early

engineering decisions that did not anticipate the scale of user adoption of the web

(Raatikainen et al., 1998). A detailed discussion of these flaws can be found in

Raatikainen et al. (1998) and DOLMEN (1996b), but an overview is presented here:

45

Chapter 3- Flaws in the Web's Architecture

• Poor Information Retrieval

Information on the web is unstructured and is not categorized, and although

search engines provide an information retrieval service, they are isolated from

one another, and there is no standard way to fmd their servers and access them

(Raatikainen et al., 1998).

• Poor Navigation

A hyperlink points to any type of resource, which allows the web to host

information of all media types. However, there is no way for a user to discern

the type of resource that a hyperlink may point to. Thus, the user caimot tell

whether a hyperlink points to a product, an individual, or information, and so

must manually click each hyperlink in order to determine its associated

resource's type. This inefficient process is compounded by the fact that many

hyperlinks are old and out of date, or simply point to resources that no lonr

exist (Raatikainen et al., 1998), a process known as link rot.

• Poor Information Structure

The web provides no standard way to organize and maintain its information,

with each web site using its own approach to data management (Raatikainen et

al., 1998). Although XML provides a standard for data formatting and

interchange, there is no way to cross-reference multiple web sites, and so query

multiple web servers.

46

Chapter 3- Flaws in the Web's Architecture

Some of the flaws identified by DOLMEN, and the problems analysed by other studies

such as those discussed above, can be dismissed as inconveniences - either features

that would be nice but are not essential, or problems that will be solved over time as

technology inevitably improves. As such, no architectural improvement is required to

address them, as third party services or general improvements in the web's

infrastructure will resolve them anyway. However, there are three specific flaws that

have beset the web since its origin, and although they have been treated as irritants up

until now, they have the potential to seriously cripple the web and render it completely

ineffective. Specifically, these flaws are:

• Link rot - the web has no way to update hyperlinks that point to missing

resources, causing the hyperlinks to 'rot' over time;

• Shrinking namespace - the names used to identif' resources are running out,

leaving only meaningless, unmemorable names with which to identify

resources;

• Increasing noise - with no informational structure, and poor navigational tools,

it is becoming increasingly difficult for users and search engines to distinguish

high quality relevant information from the surrounding noise.

These three flaws pose the greatest threat to the web's continuing success, and must be

solved soon if the web is to continue its exponential growth. However, as was shown

47

Chapter 3- Flaws in the Web's Architecture

in section 2.4, conventional solutions rely on system-wide information management

that effectively censors the web. As such, the three flaws represent the concrete

realization of the information management dichotomy: the web's information must be

managed effectively in order to solve the three flaws, but it cannot be managed too

effectively or it will alienate its users by giving too much control to a central

organization. This is the key problem that the research described in this thesis

attempts to solve: to provide a means of solving these three flaws in the web's

architecture in a way that is compatible with its open philosophy.

The following sections provide a detailed examination of the root cause of these flaws,

revealing why they are so dangerous to the web, and discussing some of the solutions

that have been proposed, but which have not worked.

3.2	 Link Rot

Link rot is the process by which the resources that are referenced by hypeñinks in

another resource are deleted over time, leaving the hyperlinks pointing to nothing.

From the perspective of the resource that contains the hyperlinks, they can be seen to

effectively rot over time, as the referenced resources are gradually deletaI. It is

characterized on the web by the HTTP Error 404 (Fielding et al., 1999), which is

returned to the user in place of the expected resource. Its cause is the result of the web

not having referential integrity; that is, the integrity of its references (the hyperlinks) is

not guaranteed, allowing the references to break whenever the resource changes

location or is deleted. A system has referential integrity if a resource is guaranteed to

48

Chapter 3- Flaws in the Web's Architecture

exist for as long as outstanding references to the resource exist. However, the web

cannot guarantee this, as the hyperlinks are entirely independent from the resources

that they reference. This leaves the resource owners entirely unaware of the existence

of the hyperlinks, making it impossible to determine how many references to a

resource exist (Ingham et al., 1995).

3.2.1 The Cause ofLink Rot

The root cause of link rot on the web is the misuse of the URL in identifying a

resource. It is a common misconception that a URL identifies a resource, when in

reality it defines a location; the IETF has defined the URN for identifying resources.

As such, a URN persistently identifies a resource throughout its lifetime, whereas the

URL identifies the place where the resource may reside (Sollins and Masinter, 1994).

If the resource changes location, it necessarily adopts a new URL that identifies that

location, but its URN remains unchanged. As such, link rot would be solved if

hyperlinks used the URN rather than the URL, because of the URN's persistence and

location independence. At the time of writing, however, the concept of the URN is

still experimental, and there is no working mechanism for resolving the location of a

resource from its URN. A URN may therefore identify a resource, but there is no way

it can be used to determine the resource's location. This leaves the URL as the only

way of identifying a resource on the web, even if it is through its location rather than

its name. As such, using the existing web architecture, the simplest approach to

solving link rot is to constrain a resource such that it only occupies a single location

throughout its lifetime.

49

Chapter 3- Flaws in the Web's Architecture

As the following list shows, however, there may be many reasons why a resource has

to move:

Change of server - a resource might migrate if an overloaded web server is

replaced by a more powerful machine, requiring the resource to migrate onto

the new server (Ingham, 1996). Equally, the resource owner could decide to

use a different server hosting company, which uses a different domain name

and thus affects all the resources' URLs (this is particularly valid for home

users using free web hosting companies such as Freeserve, where the name of

the host must be part of the URL of the resource).

. Resource is archived - and the owner has a specific, lower powered machine

for archived resources (Berners-Lee, 1998).

Bankruptcy - the resource owner goes out of business, and the web server

hosting the resources is sold, forcing the resource owner to migrate the

resources.

• Resource reaches expiry date set by server - the resource may be deemed too

old to be worth storing on a web server, which could insist that the resource

owner move the resource before it is deleted.

50

Chapter 3- Flaws in the Web's Architecture

• Poor internal information management processes - some resources in a web

site may be confidential or out of date, but due to the size of the site and the

difficulty tracking the attributes of each resource, the owners perceive it as

safer to limit the accessibility of the site to internal users only, and so move it

to a more secure server (Berners-Lee, 1998).

However, even if a resource was to remain on the same server, its URL could still

change. For example, this could occur due to:

Change of resource ownership - a competitor buys a web site, and does not

wish to use the old competitor's name in any URL. Thus, the existing

resource's URL must change, even if the web server hosting it does not

(Berners-Lee, 1998).

Change of company name - a company re-brands itself, and not wishing to use

its original name, changes all of its URLs to reflect the new name.

• Any iden4/Ier based on the DNS will always be unstable - because of the

hierarchical nature of the DNS namespace, identifiers based on it, uch as the

URL,	 tend	 to	 reflect	 administrative	 hierarchies	 (e.g.

www.university.ac.uk/faculty/schoollcourse/year/semester/module/weekl .htm)

However, such hierarchies change frequently compared to the lifetime of the

resource (Moore, 1996).

51

Chapter 3- Flaws in the Web's Architecture

Identifying a resource through its location almost guarantees a loss of referential

integrity, but it is a function of both the identifier and the name service used, rather

than the actual information system. Architectures that employ strong information

management techniques, such as the DOLMEN project's OSAM, do not suffer from

link rot as they employ name services that can guarantee referential integrity if it is

required. OSAM, for example, defined its own naming service, which ensured that

CORBA objects (0MG, 1995) containing the functionality of the system could still be

located after a mobile terminal that hosted them had moved across GSM base station

domains, and thus had its IP address changed (DOLMEN, 1997). In contrast, the web

is left with the problems of having no mechanism for referential integrity; resources

that are identified through their location; a naming scheme that cannot be used to

locate a resource; and resources that will always move location. Under these

circumstances, link rot will remain a very real problem, which, as the following sub-

section shows, may become terminal.

3.2.2 The Damaging Effects of Link Rot

The effects of link rot on a system can be compared to that of light from a star

reaching a person on Earth. The light from a star may have travelled so long to reach

Earth that the star from which it originated may have died millions of years ago. As

such, the stars in the night sky are a physical representation of the universe as it was,

not how it is. In the same way, link rot leaves hypertext documents, and particularly

search engines with the enormous number of hyperlinks that they reference, in a

52

Chapter 3- Flaws in the Web's Architecture

similar state: a search engine can be seen as a representation of the web as it was, not

how it is, as link rot will have caused some of the links to point to resources that are no

longer there any more.

Link rot at its worst will render the web useless, as no hyperlink will point to an

associated web resource. In this worst-case scenario, the whole hypertextual structure

of the web breaks down, which is why link rot is so dangerous. Moving away from

this extreme, link rot still threatens the web over time, as if it is allowed to proceed

unchecked, there will eventually be more dead hyperlinks than live ones. However,

link rot of any degree makes the web sub-optimal and reduces the user experience.

Although no empirical data exists that determines the level of link rot required before

a user gives up using the web, studies by GVU in the USA (1997-8) have found it to

be the user's second biggest irritant (in 1997, 49.90% of users cited link rot as one of

the worst features of the web (GVU, 1997); this rose to 57.7% in the following year

(GVU, 1998)). The following lists some of the problems that link rot in even its

mildest form causes:

Reputation of the resource provider is tarnished (Ingham et al., 1995).

• Direct loss of revenue for both the migrated resource owner, whose resource

can no longer be located, and the hyperlink owner, whose site's reputation is

tarnished (Harris, 2000).

53

Chapter 3- Flaws in the Web's Architecture

• Brand damage, if the sites affected by link rot are e-commerce businesses

(Harris, 2000).

• Loss of productivity, particularly for large web sites with thousands of

hyperlinks to maintain (Harris, 2000).

Unreliable referencing for scholarly citation (Kahie, 1996).

. Lost digital history, as a deleted document is gone forever (Kahle, 1996)

Compromises the services provided by librarians, as it imposes a huge burden

on catalogue maintenance (Shafer et al., 1996).

Clearly, link rot poses at best an irritant to the web user and resource owner, and at

worst a distinct threat to the future of the web. To determine how great a threat, the

following sections present a comprehensive literature search on existing studies that

have analysed the problem, and discuss an experiment that was performed as part of

this research in order to provide new empirical data.

3.2.3 Measuring Link Rot in the web

To measure the level of link rot, it is necessary to provide accurate statistics for the

number of hyperlinks on a web page that are broken (link rot incidence); the number

54

Chapter 3- Flaws in the Web's Architecture

of web pages that contain broken hyperlinks (link rot prevalence); and the average life

span of a web resource.

3.2.3.1 Link Rot Incidence

Few studies have attempted to determine link rot incidence. Sullivan (2000b) selected

200 web pages at random from the AltaVista search engine, and determined the

number of broken links in each, reporting that the percentage of broken links in each

document averages 5.7% (Sullivan, 2000b). Notess (2000b) has studied the incidence

of link rot in the major search engines, sampling the first 100 links returned for each of

three separate searches in the major search engines. He reports that AltaVista is

currently the most affected by link rot, with some 13.7% of links broken, with Excite

(www.excite.com) and Northern Light (www.northernlight.com) recording 8.7% and

5.7% respectively. Finally, Lawrence and Giles (1999) took various measurements of

the major search engines, and found that link rot in 11 of the major search engines

varied from 2.2% for HotBot (www.hotbot.com) to 14% for Lycos, with an average of

5.3%, which would seem to confirm Sullivan's results.

3.2.3.2 Link Rot Prevalence

Even fewer studies have attempted to determine link rot prevalence. From the same

study described above, Sullivan (2000b) has reported that link rot affects 28.5% of all

web resources, but other studies do not report link rot prevalence.

55

Chapter 3- Flaws in the Web's Architecture

3.2.3.3 The Life Span of a Web Resource

The life span of a web resource (that is, the length of time in which it is accessible on

the web in any one location) has been measured in various studies, with Kahle (1997)

reporting 44 days, and Gwertzman and Seltzer (1996, as cited in Pitkow (1998))

estimating 50 days (confirmed through comparison with other studies in Pitkow

(1998)). Other results come from Koehier (1999), whose year-long study monitored

343 URLs, selected at random from the WebCrawler (www.webcrawler.com) search

engine's index, and found that 25.3% of the resources had died, giving the halclife for

a web site as 2.9 years. These results were confirmed by Lawrence et al. (2001),

whose analysis of hyperlinks that were provided as references in scientific papers in

the Researchlndex database (www.citeseer.com) showed that 23% of the hyperlinks

no longer worked after one year.

Alarmingly, however, academics and non-academics alike use Kahie's figure of 44

days as if it is a matter of fact (see for example CyberMetrics (2000), Ashman and

Davis (1998), Harris (2000), Pearson (2000), and McNamara (2000)), when in reality,

it does not measure the life span of a web resource at all. Presumably, the fact that

Kahie's article appeared in Scientific American (see Kahie (1997)) has given the

article a certain gravitas, such that it is seen as a more authoritative study than those

whose results are published in other journals, and is therefore more widely cited.

Further research reveals, however, that the figure of 44 days does not represent the life

span of a web resource.

56

Chapter 3- Flaws in the Web's Architecture

Discussing his proposal for an archive of the Internet (since developed as the Alexa

archive (www.alexa.com)), Kahle (1997) states that ". . .estimates put the average

lifetime for a URL at 44 days." However, he does not explain the method that was

used in reaching this figure, and nor does he quote its source. Personal

communication with Kahle (Kahle, 1999) as part of this research has revealed that he

simply used the figure from work done on the Harvest project by Peter Danzig and his

colleagues (Chankhunthod et al., 1995), without quoting its source in the Scientific

American article. More revealing is the fact that another of Kahle's web sites,

www.archive.org, contains a first draft copy of Kahle (1997), in which it is claimed

that ". . .the average lifetime of a document is 75 days and then it is gone" (Kahle,

1996). Upon reading (Chamikubnthod et al., 1995), it is clear where the two figures

come from: 44 days is the figure quoted by Danzig as the mean lifetime of all web

resources, whereas 75 days is the mean lifetime of HTML documents. However,

Danzig's work was involved in developing a web-wide cache, and the figures of 44

and 75 days represent the period that a web resource remains unmodfled, not the

period in which a web resource remains accessible. Danzig was attempting to

determine whether or not there was an average period of time in which web resources

remain unchanged such that he could set a default Time To Live value for his caches,

and so prevent the caches from going stale. He was not trying to determine the life

span of a web resource at all. Kahie himself accepts that the figure is now "no longer

valid" (Kahie, 1999), claiming that an internal study at Alexa shows that 6% of HTML

documents change in 3 months and adding the caveat that "this does not mean that

they did not disappear" (Kahie, 1999). However, this has not altered the perception in

57

Chapter 3- Flaws in the Web's Architecture

the web community that 44 days is the true value for a web resource's life span, with

companies such as LinkGuard actively promoting this figure (see Harris (2000)), as

their entire business model rests on its customers believing its validity.

This leaves the web in a vulnerable position, as the true level of link rot in the system,

and therefore of the reduced value of the web, is entirely unknown. Although other

studies such as Gwertzman and Seltzer (1996) provide a different source of empirical

data, they are now four years out of date, and overshadowed by the authority of tl

Scientific American article.

3.2.3.4 An Attempted Experiment to Determine the True Level of Link Rot in the Web

In order to provide a more accurate measurement of link rot, an experiment was

designed and conducted as part of this research, that was designed to track web

resources over time to see how long it took before they moved location, thus breaking

any hyperlinks pointing to them. In addition, the experiment also attempted to

determine the length of time before the content of a web resource changed, to see if

Danzig's original figures are still valid.

The experiment involved the collection of a large sample of random links, with each

link being tested periodically, and the date and time recorded if and when a link failed

(i.e. the resource pointed to by the link could no longer be found). To ensure the

randomness of the links, the experiment required the compilation of a database of web

servers from a large list of Internet servers chosen at random. Once the list had been

58

Chapter 3- Flaws in the Web's Architecture

compiled, the intention was to let a web crawler search through the various HTML

documents on the web servers, and choose for itself a set of links at random. This

would ensure no bias had crept into the link selection process. Unfortunately,

however, the experiment never reached this stage, as several unanticipated side effects

caused two unintentional security incidents, which forced the experiment to end

prematurely. The side effects were a direct result of the experiment testing for the

existence of web servers through randomly pinging IP addresses, and falling foul of

the configuration settings of two remote firewalls. This led the University's

Computing Service being understandably concerned that further problems could arise

if it was to continue, and so the mutual decision was taken to discontinue this element

of the study, despite over 700,000 IP addresses being collected. A full discussion of

the experiment and the problems incurred can be found in Evans and Furnell (2000).

3.2.3.5 Determining Link Rot from the Literature

The failure of the above experiment has forced the figure for the length of time before

a link can be expected to rot to be determined by the literature, which at the time of the

experiment was not that accurate. The figure of 44 days used by Kahle has been

shown to be the lifetime of the content of a resource in a cache, rather than the

resource itself; that is, the length of time before the content within the resource is

modified. As such, this figure must be compared with Brewington and Cybenko's

(2000) figure of 117 days for content 4fetime, rather than with any figure for resource

lfetime, with Brewington and Cybenko's figure being the more accurate as their

experiments were far more comprehensive and recent. Alternatively, the figure of 50

59

Chapter 3- Flaws in the Web's Architecture

days derived by Gwertzmann and Seltzer's (1996, as cited in Pitkow (1998)) work has

been independently verified, and is reported in Pitkow (1998), itself a widely cited

paper. However, this figure is now out of date, and contradicts Brewington and

Cybenko's (2000) findings, implying that the content of a resource lives for over twice

as long as the resource itself. As such, the thesis will use the figures determined

independently by Koehler (1999) and Lawrence et al. (2001) as the measure of a

resource's lifetime, as both studies are comprehensive and recent, they agree with one

another, and they are consistent with the findings from Brewington and Cybenko

(2000). As such, the thesis will assume that the half-life of a web site is 2.9 years, and

approximately 25% of hyperlinks will break after a year.

3.2.4 Existing Solutions to Link Rot

Link rot is the direct result of a resource either migrating from one location to another,

or being deleted in a system without referential integrity. As such, in order to provide

referential integrity, a system must provide some form of resource migration

mechanism, which ensures the integrity of hyperlinks whenever a resource migrates or

is deleted. This sub-section analyses the issues surrounding resource migration on the

web, and examines why mechanisms designed for the web have not been widely

accepted.

3.2.4.1 Resource Migration Mechanisms

Referential integrity is an important concept in distributed systems, and many types of

resource migration mechanisms have been designed to support it. Most of the

mechanisms operate by introducing a level of indirection into the system, which

60

Chapter 3- Flaws in the Web's Architecture

usually involves mapping the name of a resource onto its location, or an existing

location onto a new one. They can be classified according to five distinct approaches,

each of which tends to place the indirection at a different point in the system.

However, as the following list shows, each approach has its own fundamental

weakness.

. The Chain Approach

A forward reference that points to the new location is left behind on the machine

that the resource has migrated from. The indirection in the system takes place on

the servers hosting the resources. Although arguably optimal in terms of network

traffic overhead (Ingham et al., 1996), this approach can lead to forward references

outnumbering resources. Various shortcut operations can limit the length of the

chain of forward references, but this approach is still inherently brittle, as locating

your resource is dependent upon the state of someone else's server. Also, a

resource can only migrate onto a server that supports this approach.

• The Callback Approach

A database of all the links on the web is maintained, either centrally, or distributed

across the system. Each time a resource migrates, the database is updated ad calls

back all documents that contain a link to the resource, enabling each document to

update its links. This approach does not introduce any indirection into the system,

as it attempts to fix broken links in situ rather than redirect any attempt to locate a

resource. However, it does have problems scaling, particularly to a system the size

61

Chapter 3- Flaws in the Web's Architecture

of the web. Specifically, the database must store all updates to servers that are

down, and this would eventually overwhelm the system (Briscoe, 1997). This

approach also requires the documents to be intelligent enough to remove links

identified as broken, and so is not backwards compatible with the web's existing

architecture.

• The Search Approach

Each server is aware of the identifiers of the resources that it hosts. Whenever a

resource needs to be located, each server in the system is queried using the

identifier of the required resource. A network-wide search must be performed,

with a flooding algorithm used to guarantee that all servers are searched in tir

quest for the resource. Again, there is no indirection introduced, but flooding

algorithms do not scale well, and so although reliable, such an approach would

produce too much network traffic overhead for use on the web, and is the least

optimal of all the approaches (Ingham et al., 1996).

• The Name Server Approach

A name server is used that maps a resource-identifier onto the resource's location.

The name server supplies the location of the resource when given its persistent

name. Clearly, the name server itself introduces indirection into the system,

almost by its definition. The problem with this approach is that the web already

has a name service in the form of the DNS, and integrating another name service

into the web's architecture would require upgrading all the browsers on the web.

62

Chapter 3- Flaws in the Web's Architecture

However, because the DNS operates at the level of the host (i.e. the server), it

cannot be adapted to operate at the level of the resource (Daniel and Mealling

1997). In particular, the DNS is a read only database that cannot be updated over

the network (Albitz and Liu, 1997), and although there is an experimental dynamic

update specification (see Vixie et al., 1997), it is insecure, and can only be used to

update the location of servers, not resources.

The Lecturing the User Approach

Not a technical approach, more a philosophical one. Berners-Lee and others have

argued that a URL need not break if considered thought is given to its design

(Berners-Lee, 1998). However, despite the numerous technical arguments against

this viewpoint, it is people who create URLs and people who are notoriously bad

at consistent regular maintenance. Ultimately, as broken links on the W3C web

site itself testify (e.g. the link http://discuss.w3.org/mhonarc/w3c-

tech/threads.html on the document located at http://www.w3.org/

MobileCode/Workshop95O7/ is broken), lecturing the user will be ineffective at

best.

Table 1 provides a comprehensive, though by no means exhaustive, list of some of the

different resource migration mechanisms that have been developed for the web, and

illustrates the differences between the different approaches (the 'Lecturing the User'

approach is not included in the table).

63

a)(=,_	
E 000 U ci)

I_ —0ciZ
0.

0.
ci)	 u000

	

0	 (-

	

.—..00	 00 b0C1cfl
c-.a)

). .CI)
.0

(

0in0
—0

rd.0	 0	 0 (I)

0(

00 a)

	

0'0a))a)
I-

E-..o 0

a)
-	 a)C

9—.
.0

0
U,

.0
a.) 00

a)	 v)C.)
ci)	 Cl

.2..-.

U,	 a)a)0a).	 zE
a.)

	

.	 .
—I.--

Cl ci, Cl	 0 0

0.2
•	 S S S

0	 >	 0
a)0

a) '.—,	 I) Cl	 00	 .0

	

._	
0Qa)

0 c aa) • ° E0 •
	 00	 Cl

-ga)

.0

	

—	 a)0	 Cl\0\'	 UC	 -
Cl	 0

	

Cl	 — — -
0.. .	

,,z
C.) ClaU•-

J

0)	 -
Ci)	 0-a)

_	
a)_t_	 a) U,0'	 00.	 Cl

-	 a) a)	 U,
-	 - .
	 0	 -	

E	 '	 - -a)()

C•

a)4•• 0 - — -	 a)
a)	 0	 U0

	

C/)	 a)	 a)

	

_.. Cl	 a)	 U,

0)
E

0)

U

U)
0)
C)
60
a
C)

0

.2

0

C)

C
4-
C
0
C.)

U)
E
U)

C
CO

C,

C
0

4-.
60
I-
C)

C)
C

.4-
10
x

LU
1
0
U)
U)

CO
C

C,

.0
60

0
C.)

U)

E
U)

C

.0
U
a,
2
C
0
4-

I-
a)

2
a)
C
4-
U)
x
w
'I-
0
U)

U,
>

C

a,

I-

C.Dba)

1g

,

a)

a) 4_4c	 •:

E	 0

) U)U)	 QQa)a)	 .4-4
.	 opo

,a)
a	 E

•1)

a)	 Oa)
E.°

Cl)
a)	 ;IU)

0

hh
U)

--

• S	 S	 S

rii
-

U)a)a)
I-.

. .	 a)

.

-	 0 c "

— U) 0 •,

U)

c

U

o
a)..)

cl)

,	 .,
o_U,

-	
2 C)o.8'O

0 -

	

-e	 Q

	

oOcn	 I-

o•

-o -a
U,

U,

	

0	 (I

—

-

,--

0	 C

(0d 10;

O)	 ..0-
O
c E

--

Cd,

I-

'-,)Q

• __	
1.L.	 -	 •	 Cd,

	

: 	 •	
2

	

E cL) o	 2

•	 .	 .	 .

)

>- 5- fl_ CfløO
-a

ce-a	 -5-

jc-a

	

2	 °E•.•,	 t . c_g 9	 ._..0	
_)5-	 U

U,)
•-'-	 C >• 0-U_-.
E	

E2

U

	

oVU))	 vu.9a2F

C)
C C)<	 o•C a)

u •.5-	'-•2

- C	 0
2L

C)

z EC)

5-
C)

C)
o CID

0
C.)

(0

E
U)

C

.0

C.)
C)

C

0

4-

5-
a)

C

4-.
U)

x

LU

.4-
0

U)

U)

C

C)

I-

-

)

	

.	 .	 C.)	 .?'

	

o	 o

C._. 0d °

	

v bO	 O
Z - '-' -	

O.

asI0C

li)a C.)

ft
Cbb)	 V.0.2L.

U)

OO
I-.

— —

Cd)	 0	 CJ
=

rd 0	 u

0

•	 • • S	 •

'-0)	 '	 C/' 0	 "	 'I'
- C C 0	 V

.a)C.)

u	
z-

.-0
fl•••

C.) ..0 u U

	

Cd))	 <C)V

UO°
-	

ri	 -.
U

0'—•	 U
U)0CU

,_o- " 0
aV C 0

/')bO

Uc	 0

-	 !fl..	 C	 C

	

u2	 C) C) 0	 C) 0
C	 I. 	Cd)...	 Cd) I-..—. (

E

-

C)
0 r;/)

0
U

U,
E
U,
C

-C
U

5
C
0
4-

0)

2

0)

C

4-

U,

x

I.-

0

U,

U)

>1

C

.0

bOP	 —u -.4-•

I

	

hh	 o,2i>-.).4-.
	I- 	 -H.

(I)

g2-	 -FI
0

a) C4-.)

-	 I-.0	 -
.	 _a)	 Q_•o_c_

0	 ---'Z

<	 < c0

. .	 I	 I	 S	 S

a)	 C#

o	 —

-	 a)	 0

a)CC4
a)
CI)	 O

..0	 ;

	

a)	 -

0

CCflu)C

o

a)

•	 S S	 S S

Cia)) - Civ a	 0-	 a)	 0 •	 —

I-.
bb	 a)-

E0- C
Ci

-

aJ'	 -

Cfl

-	

•O_
00
O

Ci

0 u	 a E
aa

2

U

0
C.,

C,,
E
U,

C

C.,
0

C
0

0)
C

(0

x
Ui

0
U,

C,,
>

C

0

.a

I-

V V
C)V

c#	 c

'
•00.0.-

-WV . -
V (n V :C..	 ;_ooCU

E-
V V

Cl) o	 •	 > C4 V -	 e .
< Z - 0	 C	 -	 0	 C) V

_	 U C)
0

_c
I-	 'cd 0	 u	 o

r/)
C)00	 .-C)

Vi,
0_0 ..

—	
>•	 V

)Cfl	
V, CC.VVE

0>0	
—C	 0 Cl)

VVCl)

O<0C)L.
) 0

S	 •	 .	 .

CflCfl0V
V V

CU

)b0

V	 C.)
0	 V	 V	 —

,.0	 V '	 0 V >

V

- E	
0 >	 0	 00

=V	 E
e	 CV	 V1 •t	 oo	 •oVO

- V 00
C)	 >	 Cl)

0	 • V — 00

•	 <.E

•	 S	 •

C 1- -dV	 V	 V V I- .0 00 V
V)	 V	 .

Cl)

dC)V;: ,
-	 V0Cl,.

00

V-
Cl)	 C)	 C)

)
I- —

00	 V	 •
Voo

..0	 V

Cl)	 0 .E -	 0 V >

o	
.	 V V	 0

	

E	
0

..r N
CI)	 CC

V	 c	 -.

C1VC	 V0V

E

U

C
0
C.)

U)

E
U,

C

C.)
C,

S

C
0
4-
(5
1
C)

S

C)
C
4-
U,

x
ILi

0

U,

U)
>1

(5
C

C)

.0
€5
I-

00	 4)	 4) 4)	 4)	 .) . A 0
C)CU)
0

U))
U)

rM	 C
0

4	 -c,bD	4) 	 0

•	 QU) E	 0
p.• o Lo	 Ob0r.

_	 4)

	

C)	
U,	 -4)	 0

_z	 0-gg2o	 cg-	 4)

	

0- p --. - E-	 o

U,1-.

0
00

4)
U)

4) 5U)
U) -a

4)
.

P
1.5 0
P•

4)

zr.. .	 Q

• S	 • S

- P 4) 00	 -4).U)p0pp

-	 4)4) 4)U)0U)	 -
P	 I>• .5.0 •4)E

-a	 'a p	 U) 4)
.P

-
P

•-

.,	 c'J

PQ

C', — 4)
>.. (0

p._00 0 •	 -C)
Cl Cl 4)

C"

Cl
o.E

00

Cl
-a

Cl 0	 0

	

0p_poCl	 ,• U)

Cl o'a

4)
C.)
P

Zj

C)

0a
U)

E
Co

P

.P
U
a,

P
0
4-
I—
C)

C)
P
4-
U,
x

Lii
II-
0
U)
U,

P

a,
.

I-

-r •
2. D OO . -

Cl

rI)
0	 ClOCI	 Q0

.	 2O	 ClC6U>	 u	 '—'
• CI)	 CI	 a)•%Cl	 c"-00

.-..
.	 ..

0
.- - Cd,•;fl6UL.

mO	 —
C.) U

.

Cl	 2	 2

o_0

tt1_.DCd,	
.

U

2 —-
v

—.
Cl C.) U	 Eo —	 I-. • 0	 1-UC.)

•	 C) U	 U

C,	 V ;

	

0 rJ .9 V	 Cl

.e.±.	 -oa

Il, —

o2e.2O

•	 •	 .

(IOU
0	 (;:z'•-

V°	
U00C)

V

LCIa '-
UI!)

o	 o	 .V0bV

.-	 I-UUV'i	 Cl
CIV	 I- .Cl•e

C. _UO2.	 -
(, CC,,	 0	 i1 .U CI Cl V,'Cj

o . — Cd'. -

2
'—	 U	 FeU	 Cl.- U	 or	 V•-' C!))

00	 - u, I)
0	 j0

—	 U	 -.	 d'

_i U

V

z

en

C)

0

C
0
0

U)

E
U)

C

0
0)

C
0
4-

I-
C)

C)
C
4-
U)

x
Ui
I.-
0

U)

U)
>

C

0)
.0

I-

U

I-

-

_

	

.O	
ovo- d) '-_	 U

U)
.

.j2)	 0 I-
U)	 'O)	

();4.._
)0	 4- 0

U)

	

.	 V

- .- 0
'—'V

11 V

V

U)
.-.-.

v	 'o	 o

1i • .
flV	 U)

V

	

r#)	 c	
0

V	 bO
0

U)	
V

U 0

U)

U)

20	 0
•	 S	 S	 S

—	 V4.	 0

— —
0o.U)

U)	 U)

E
- U)I ;ll F -e .	 .	 -	

V
-V••

	

—	 - E .V h	 UU ,	 2 -d
0 _	 c— 0 j

U	 U)	 flo	 V
.—.•__0

a,

8

U)

U

0
L

4-
C
0
0

(0
E
U)

C
m
.0
C.,
a,

C
0
4-.

0)

2
0)
C
4-
U)
x

Lii
II-
0
U)
U)
>,

C

.D

I-

Chapter 3 - Flaws in the Web's Architecture

Note that even though some of these examples are now over five years old, and the problem of

link rot in distributed and hypertext systems has been known for decades, the web still has no

effective resource migration mechanism, as the disadvantages presented in Table 1 have

proved too great for successful adoption. The web therefore still suffers from link rot despite

the danger it presents.

In addition, although each of the five approaches to resource migration provides its own

solution to the problem of link rot, the semantics of the link and what it references are left in

an ambiguous state. Referential integrity can ensure that links always reference the same

resource, but what happens if the content contained within the resource changes? Should the

semantics of the link insist that the content persists along with the resource, thus requiring a

new resource and identifier to be created every time its content changes; or iould the

semantics be defined such that new content simply overwrites existing content? The former

option will force web sites that contain frequently changing content, such as daily news sites,

to use new resources with new identifiers every day, making external linking to the site

virtually impossible, and leading to rapidly multiplying resources. Conversely, the latter

option would only allow links to reference the web site, rather than a specific story on the site,

requiring the user to manually search for the story within the site's archives (if they exist). In

both cases, two separate resources have an equally valid claim to the same UIRL, but no

resource migration mechanism for the web even recognizes this semantic ambiguity, let alone

proposes a suitable solution.

73

Chapter 3 - Flaws in the Web's Architecture

Furthermore, existing migration mechanisms do not provide any support for automatic

resource migration. They may provide name servers that can map a persistent identifier onto a

varying location, but this must be done manually. Although this is irritating for the owner of a

small site of perhaps one hundred web resources, particularly if the resources are distributed

across several different servers, it renders the mechanism useless for large sites such as

Yahoo's, with many millions of resources.

3.2.5 Summary of the Link Rot Problem

This sub-section has shown that link rot is a dangerous problem for the web, but existing

solutions have failed to be adopted, as they have fundamentally ignored the web's philosophy,

and the way in which its users use it. Link rot must be solved, but it must be through a

solution that is sympathetic to and consistent with the web's current architecture, and which

recognizes the unique way in which it is used.

3.3 Shrinking Namespace

The DNS has been in existence since 1985, but recently alarm has been raised at its shrinking

namespace. Put simply, the number of domain names that are left unregistered is pitifully

small, forcing the modification of the DNS itself in order to extend its namespace. Companies

are suing one another over domain names for what they see as trademark infringement, while

certain memorable domain names are commanding a premium of over $1 million. However,

the growth of the web, both in terms of new users and new web sites, is still expmential, and

the number of people who wish to register a domain name will soon overtake the number of

domain names remaining.

74

Chapter 3 - Flaws in the Web's Architecture

3.3.1 The Cause of the Shrinking Narnespace

The DNS was originally designed to map a human-readable identifier onto an IP address in a

distributed and scalable way. The actual domain names that were used did not matter, as it

was only systems administrators and operators who used them, and so names such as

routerl. rs-23.section 7453. serverl2. east-gc b.sun. corn were common. In contrast, however, the

URL, which includes the domain name in its syntax, has made the domain name far more

visible, to the extent that it is now used in advertising and even in the brand name of

companies. With the URL, the domain names do matter, as it is customers who must use

them, and so there is a premium on memorable names, or those that represent the trademark of

the company that owns the associated domain name.

In the rush for companies to be on the Internet, the domain name has become a symbol of a

company's web presence, and appending the corn Top Level Domain name (TLD) onto a

company's name associates that company with the web. The company Amazon.com, for

example, explicitly includes in its company name the .com TLD that is part of the domain

name of its server. This is because users generally type in the name of a company into a

browser and wrap 'www'. and '.com' around it, and expect to locate the company's web site

(indeed, this is what some browsers, such as Microsoft's Internet Explorer 5, do

automatically). By appending .com onto their company name, therefore, the company

implicitly associates itself with the web, while providing the user with the address of its web

site in its brand.

75

Chapter 3 - Flaws in the Web's Architecture

This has subtly altered the semantics behind the domain name,	 it must now identify a

company or a product or a web site, and not just a server. Originally, the domain name was a

simple mapping from a human name to a machine name; with the advent of the web, however,

the domain name is now an identity, which has led to the dramatic shrinking of the desirable

namespace (i.e. the space of all names that are wanted and will be used, as opposed to names

comprising arbitrary characters, which may be syntactically legal, but which will never be

used).

This subtle shift in the semantics of the domain name has also altered the semantics behind the

operation of the DNS, effectively turning it into a rudimentary directory system (Mitchell et

a!., 1996). For example, users will append '.com' to the name of a company, or '.edu' or

'ac.uk' (depending on the geographical location) around a university's name, in order to locate

the respective organization's web site. In this way, the users are implicitly using the TLDs of

the DNS as the top level of a hierarchical directory struclure. The problem is that the DNS

was never designed to be a directory system, and a number of problems, both technical and

social, have now begun to emerge.

3.3.2 The Damaging Effects of the Shrinking Namespace

The shrinking namespace brings with it problems that are both technical and social. The

technical problems are derived from the way in which the semantics of the DNS are being

altered to turn it into a system it was never designed to be, without its architecture changing to

adapt to this shift. The social problems, on the other hand, derive from the fact that the DNS

namespace is global in presence but limited in size, providing fertile ground for conflict as a

76

Chapter 3 - Flaws in the Web's Architecture

limited resource is suddenly made valuable. The most damaging effects of these problems

include:

Social, political and legal tension

The namespace of the DNS is essentially flat, as everyone wants to use.com, and a domain

name must be globally unique. However, company names are not unique (Mitchell et al.,

1996), even in the same country. This leads to tension and ultimately litigious conflict

over who owns a specific domain name (for example: who owns the domain name

mcdonalds.com? The giant hamburger chain or the local baker who has been in business

50 years longer?), which in turn brings trademark law into the dispute. However,

trademark law is itself contentious, and inconsistent across different countries.

• Hyper-inflated domain name prices

The combination of the huge demand for domain names as the web continues growing,

and the drastic shrinking of the desirable namespace, has led to the price of domain names

reaching hyper-inflated levels, with simple, easily recognizable names such as Drugs.com

being auctioned for over $1,000,000 (Arent, 1999). This will cause the namespace of the

web to fragment into two classes: those who can afford a desirable domain name, and the

unlucky majority who cannot, a situation that is the antithesis of the web's philosophy.

• A damaged DNS - because of the pressure on the .com namespace, and the demand for a

memorable name, international domain names are now being used to provide memorable

names that use an international TLD for purposes other than identifying a server's country

77

Chapter 3 - Flaws in the Web's Architecture

of origin. For example, the small island of Tuvalu recently sold its .tv international

domain name to the company DotTV, which then registered .tv domain names, such as

bbc. tv, in the hope of selling them to TV companies for vast sums of money. Equally,

Chung Minh Shih uses Armenia's .am international domain name to provide memorable

names such as http://i.am/john (Oakes, 1998). However, this erodes the semantics of the

DNS (Oakes, 1998) and blurs its functional definition, changing it from a simple

hostname/IP address mapping service, into a directory system in the case of .tv, and a

membership system in the case of .am. The problem is that the DNS was only ever

designed to be a simple hostname/IP address mapping service, and all other uses for it

place unknown demands on its ill-prepared architecture.

3.3.3 Determining the Extent of the Problem

How close is the namespace of the DNS to exhaustion? The theoretical limit of the namespace

can be calculated using the figures given in the DNS specification (see Mockapetris, 198Th).

A domain name string can contain a maximum of 255 characters, with each character being

selected from a pooi of 28 different types (26 letters of the alphabet (a domain name is case-

insensitive) plus the characters '.' and '-'). This puts the number of unique names in the

DNS's namespace at:

((26+1+1)*255) ! = 7.3888253549170121004175301 528e+2441 6

However, although this is a truly vast number, infinite scaling of the DNS is technically

unworkable (Mitchell et al., 1996), and so this limit will never be reached. In addition, the

78

• Domains Per Quarter

- Cumulative

Chapter 3 - Flaws in the Web's Architecture

DNS will only be required to scale to the limit of its desirable names, not its theoretical limit,

and so the number of desirable names remaining is a better indicator of the size of the DNS's

remaining pool of domain names.

There are currently 31,050,574 domain names registered (see DomainStats (2000) for a

continually updated figure), and as Figure 2 shows, the number of domain name registrations

is increasing exponentially, with the number expected to reach more than 75 million by the

end of 2002 (Barrett, 2000). Clearly this does not even scratch the surface of the theoretical

limit of the namespace, but what about the desirable limit?

lc'—c'1

Figure 2 - Total number of domain names registered by quarter (DotCom, 2000)

20.000.000

15.000.000

10.000.000

5.000.000

0

79

I COM

• NET

0 ORG

12L

Chapter 3 - Flaws in the Web's Architecture

The DNS currently has 7 TLDs:

. .com - for commercial organizations;

.net - for networking organizations, like NSFNET;

.mil - for military organizations;

.edu - for educational organizations;

.org - for noncommercial organizations, like the IETF;

. .gov - for government organizations;

• .int - for international organizations, like NATO.

There are also international TLDs, such as .uk, .au, .de, etc., which represent the various

countries around the world. However, as Figure 3 shows, 80% of all domain names use the

.com TLD. This shows that nearly all other UDs (and with them those parts of the total DNS

namespace which those TLDs represents) are perceived as undesirable, making them

effectively unusable, and reducing the structure of the overall namespace down from a

hierarchical namespace to a flat one instead.

8%

LM_ 10

Figure 3- Percentage of registered domain names according to TLD (Dotcom, 2000)

80

Chapter 3 - Flaws in the Web's Architecture

Worse, of those .com names that are perceived as usable, most of the best (i.e. the most

memorable or descriptive) are already gone (Arent, 1999), with a Wired News investigation

conducted in April 1999 finding that out of 25,500 standard dictionary words checked, only

1,760 remained unregistered (McCullagh, 1999). It is safe to assume that since then, the vast

majority of those 1,760 will by now also be registered.

The remaining desirable domain names are either not in the dictionary, or are hyphenated

constructs of more than one word (which is prone to error when being typed into a browser's

address bar). However, if the definition of useable is restricted to company names, or single

words in a standard dictionary, then it can be seen that virtually all of the useable domain

names have already been registered, at least for the .com namespace. In this way, the

namespace of the DNS has been reduced from a vast hierarchy of names to a flat, almost

exhausted pool of unwanted, meaningless names. It is the limit of the useable namespace that

causes the most problems for the DNS, and this limit has very nearly been reached.

3.3.4 Solutions to the ShrinldngNamespace Problem

The problems faced by the DNS are the direct result of it being adapted to fit functions it was

never designed to perform. For example, the DNS is being asked to provide a naming system,

a directory system, and even a company's brand identity on the web, but each of these

different functions place different and conflicting demands on the system.

Other name resolution systems are more focused in their operation, and are designed to

perform one function, and to perform it well. Table 2 on page 83 provides a comprehensive

81

Chapter 3 - Flaws in the Web's Architecture

list of the different types of naming systems that are in operation today, and describes their

function and the environment in which they are designed to operate, including whether they

are designed for human use or machine use. Note how the functionality of each system is

markedly more focused than that of the DNS, which has evolved to perform many different

functions, and to be used by users with many different levels of experience.

3.3.4.1 The Irreplaceable DNS

Of the different naming systems described in Table 3, those designed for distributed

component architectures such as CORBA are designed for machine use only, whereas those

designed for network file systems are little different in operation than the DNS, and so would

suffer the same problems. As such, only the directory service provides a realistic alternative

to the DNS. Indeed, the 051 X.500 reference model for directory services, and its more

lightweight derivatives such as the Lightweight Directory Access Protocol (LDAP) (Yeong et

al., 1995), and Novell's Network Directory Services (NDS), have been seen as competitors to

the DNS (Albitz and Liu, 1997). They provide a globally consistent, hierarchical namespace

that is used to locate a resource (UniOfMich, 1995), but which can be extended to reference a

resource of any type, allowing resources to be viewed consistently, no matter what their object

type. In addition, although they are relatively slow when adding or deleting users and

resources, they can be updated securely across the network (Albitz and Liu, 1997). As such,

they provide a far richer naming system than the DNS.

82

Chapter 3 - Flaws in the Web's Architecture

Human orName Machine	 User LevelResolution	 Purpose	 DescriptionReadable	 ExpectedSystem
Name

Local File Human	 Reasonably	 Identifies a file in a file A computer's local file system has its
system	 Readable	 proficient	 system according to its own namespace, with its resources being

location, files that are named according to the
conventions of the operating system, and
the naming system being a component of
the operating system. The file system
must ensure the uniqueness of each file
name; provide functions for adding,
deleting, creating and renaming files; and
associate a name with a specific block of
data. The namespace is operating
system-dependent, and usually encodes
the file name and file location in a single
filepath, as a human-readable string.

Network	 Human	 Reasonably	 Identifies a file across With the introduction of networks, the
File system Readable 	 proficient	 a network according to functionality of the naming system must

its location grow to accommodate the extra
complexity introduced by the distributed
nature of the system. Such a naming
system must cope with resources across
potentially thousands of machines,
ensuring the uniqueness of the name,
locating each individual resource
unambiguously, and providing added
services depending upon the type of
distributed system. Microsoft's
Windows Internet Name Service
(Microsoft, 2000a), for example,
provides a distributed database that maps
Windows-specific computer names to an
IP address, and whose namespace
encodes the computer name as well as
the filepath, as a human-readable string.
In this way, WINS, as it is known, is
similar in functionality to the Internet's
DNS, but provides a Windows-specific
service whose records can be
dynamically updated across the network
should the machine be assigned a
different IP address

Table 2 - Name Systems in Use Today (continued on following pages)

83

Chapter 3 - Flaws in the Web's Architecture

Human orName Machine	 User LevelResolution	 Purpose	 Description
Readable	 ExpectedSystem Name

CORBA	 Machine- Expert	 Names a CORBA The Common Object Request Broker
Name	 readable	 object	 across	 a Architecture (CORBA) is an object-
Resolution	 CORBA	 distributed oriented distributed architecture designed
System component system by the Object Management Group.

CORBA's defined naming system is the
CORBA Naming Service, which
provides the principal mechanism
through which most clients locate
computational objects that they intend to
use (0MG, 2000). The CORBA Naming
Service uses several naming contexts in a
hierarchical system to fully resolve an
object's name onto its address.

Interestingly, CORBA 's namespace does
not use a specific syntax. Rather, a
CORBA name comprises an identifier
attribute, to identif' the object within the
system, and a kind attribute. The latter
provides descriptive power to the name,
as CORBA does not interpret, manage or
even attempt to understand the syntax
used. This is left to higher levels of
software, which can impose their own
management policies on the naming of
objects (0MG, 2000). In this way,
CORBA has its own namespace for its
own uses, but also provides an
unrestricted namespace that can be
organized according to the requirements
of the higher layers of software that use
the CORBA system.

As well as having a more sophisticated
namespace, CORBA, as a platform for
distributed computing, also has a more
sophisticated naming system. For
example, an object's externally visible
characteristics (0MG, 2000), such as its
read/write attributes, last-time-modified
attribute, or other properties, can be
registered with other CORBA services
ançl used to locate the object. In this
way, the name service can be used in
conjunction with the CORI3A Query
Service, for example, to enable clients to
search for an object according to a query.

Table 2- Name Systems in Use Today (cont.)

84

Chapter 3 - Flaws in the Web's Architecture

Human orName Machine	 User LevelResolution	 Purpose	 DescriptionReadable	 Expected
System Name

Directory	 Human-	 Reasonably	 Treats	 everything A directory service is a database that
Services readable proficient accessible from the manages the attributes and locations of

network (including a shared objects across a network, where
computer, a fax, a objects include anything from a printer to
printer, etc.) as an a file to a user (Esposito, 1999). The
object in the directory, directory's hierarchical namespace is
and enables it to be used to locate an object, which is
located, used, queried, classified according to a specific
and managed in a category in the directory that is reflected
consistent,	 in the object's name.
homogenous way.

A directory service is like a phone book,
as it provides information about a person
or a resource when given their name
(Microsoft, 1997a). It combines multiple
directories, such as file systems, email
contact names, or those from different
groupware products, into one consistent
place, and provides advanced security
features to ensure that each object is
accessed only by those with appropriate
authorization.

Directory services are designed to
provide regular queries, but few updates,
and so are relatively slow when adding
or deleting users and resources, but they
can be updated across the network in a
secure fashion (Albitz and Liu, 1997).

Table 2- Name Systems in Use Today (cont.)

85

Chapter 3 - Flaws in the Web's Architecture

Human orName Machine	 User LevelResolution	 Purpose	 DescriptionReadable	 ExpectedSystem Name
Domain	 Human	 All levels, Originally designed to The DNS was originally designed to map
Name	 readable	 from expert map a human-readable a human-readable hostname onto a
System	 systems	 server name onto its IP machine-readable 32-bit IP address. It

operator, to address, but is now provides a hierarchical namespace that is
reasonably	 used to identif':	 used to locate the server's IP address.
proficient	 • any server on the However, a domain name is now also
Internet user,	 Internet;	 used in a variety of different situations,
to complete • a web site according each with different requirements of the
novice,	 to	 a	 directory DNS.

structure;
• a company brand The DNS is a read only database, which

name or trade mark;	 cannot be updated across the network.

• a product;	 Its security is questionable and its

• a person.	 features limited, but it is an integral part
of the Internet that is simple, mature, and
robust, and will be extremely difficult to

_____________ ____________ _______________ _______________________ replace.

Table 2- Name Systems in Use Today (cont.)

However, the DNS is integral to the Internet, not just the web, and is a fast, simple, and robust

system that is now mature and extremely reliable (Albitz and Liu, 1997). Replacing a name

resolution system that is used by over 369 million people (GlobaiReach, 2000) with something

as fundamentally different in operation as a directory service is impossible, as it would require

stopping the entire Internet while the new system is integrated and tested with every different

protocol and application that relies on the DNS. As such, although the semantics of the DNS

have become blurred, it can still demonstrably cope with enormous numbers of users and a

vast array of applications without fail. In contrast, no directory service has had to scale

beyond the enterprise, and so has only been tested within a more controlled environment. As

86

Chapter 3 - Flaws in the Web's Architecture

such, even a directory service may find its semantics blurred when placed in the service of the

users of the web.

In addition, replacing the DNS with a directory service implicitly assumes that the web's

naming service should be organized as a directory, but this requires centralized control in

order to organize the directory structure. Worse, directories such as X.500 are unwieldy, both

for the user, as the names used are much too long for normal use, and for the machine, as

X.500 requires far more powerful computers than the DNS, with standard PCs only able to use

its lightweight variants such as LDAP and NDS (Mitchell et al., 1996).

3.3.4.2 The Inextensible DNS

If the DNS cannot be replaced, then it is reasonable to expect it to be extended. The body

responsible for managing the DNS 's namesp ace is ICANN, the Internet Corporation for

Assigned Names and Numbers, and it has proposed a number of possible extensions in an

attempt to adapt the DNS to its new web-oriented environment. In order to settle disputes

over contentious domain names, ICANN has proposed the Uniform Domain Name Dispute

Resolution Policy (ICANN, 1999), a formal arbitration process through which conflicting

parties can argue their case before suing one another in court. More positively, perhaps,

ICANN has also endeavoured to open the namespace up by providing more TLDs that are

domain-specific.

87

Chapter 3 - Flaws in the Web's Architecture

.ads

.africa

.air

.biz,

.cash

.co-op

.dir

.dot

.dubai

.event

.fin

.find

.firm

.geo

.health

.1

.info

.jina

.kids

.law

.mall

.mas

.mus

.nom

.one

.per

.pid

.post

.pro

.tel

.travel

.union

.web

Table 3 - New TLDs submitted to ICANN

Table 3 presents a list of some of the new names that were presented to ICANN as potential

TLDs. However, after much debate, the organization eventually settled for just seven (Table

4).

aero	 .museum

biz	 .name

.coop	 pro

.info

Table 4 - New TLDs chosen by ICANN

88

Chapter 3 - Flaws in the Web's Architecture

ICANN proposes that the new TLDs will provide many more desirable domain names, and so

solve the problem of the diminishing namespace. However, this approach is fundamentally

flawed. Although there may be seven more TLDs, and a corresponding increase in the

number of domain names that can be registed, it will not be long before the same disputes

occur for domain names under the new TLDs. For example, .biz is meant to represent the

namespace for c-commerce, but it is not clear how it will suffer any less than the . corn

namespace, with, for example, the UK's Dixons fighting with the US's Dixons for the right to

the dixons. biz domain name. In addition, the different mix of domain names all place different

semantics on the DNS. For example, domain-specific TLDs, such as .museurn, choose to

assume that the DNS is a directory service, and the TLDs are categories within the directory;

other TLDs, such as . info treat the DNS as a service locator, with the TLDs being used to

define different types of service. Still other TLDs, such as. narne, treat the DNS as a directory

of people, while it is left unexplained why there is a .pro but no .arnateur, or why there is a

.rnuseum but no .gallery. The mix of different types of TLD is eclectic at best, but they are all

at the same level in the hierarchy. No other diiectory would place international country codes,

such as . uk, at the same level in its hierarchy as business categories, services, and people, and

it is difficult to see exactly why the DNS should. Indeed, the mix of new TLDs is so arbitrary,

it would be difficult to define the semantics of the DNS at all.

Opening up the namespace in this way does not solve the problem, it merely delays its full

effect. The fact is that with a centralized body such as ICANN controlling the namespace,

there will always be a restricted name space, and therefore high demand for certain key names.

Unfortunately, ICANN does not seem to be helping the situation with its arbitrary mix of new

89

Chapter 3 - Flaws in the Web's Architecture

TLDs. As such, the DNS can technically be extended, but until its exact functional definition

is determined, it seems any extension will not solve its problems.

3.3.5 Summary of the Shrinking Namespace Problem

This sub-section has shown that the DNS is facing a crisis, with the number of desirable

domain names left unregistered reduced to virtually zero, forcing users to employ cunning

workarounds that make a domain name more memorable, but which undermine the semantics

and operation of the DNS. The namespace must be extended to stop the development of a

stratified web, divided according to money, but care must be taken to decide firmly on the

exact semantics that should underlie the DNS. It must be determined whether or not the DNS

should retain its role as a database for resolving host names and IP addresses, or whether it

should become more like a directory service. If the latter is chosen, ICANN would argue that

it should hold the responsibility for maintaining and defining such a directory, but its solution

to the shrinking namespace problem is fundamentally flawed and ill thought through.

ICANN's problem is that it is one of the only centralized bodies on the Internet, and as such,

cannot hope to provide a global solution that meets everybody's requirements. However, the

problems with the DNS must be solved quickly, and in a way that is decentralized, and which

reflects the needs of the web and its users.

3.4 Increasing Noise

The architecture of the web has no explicit mechanism for managing its information, and has

relied instead on ad hoc services provided by third party service providers, who respond to the

demands of the market. However, this approach is failing, as search engines are indexing less

of the web and returning less relevant results, while hyperlinks are becoming completely

90

Chapter 3 - Flaws in the Web's Architecture

unreliable. As the web grows in size, the quality of its information degrades, leading to an

increasingly noisy system.

3.4.1 The Cause of the Increasing Noise

The root cause of the problem is the volume of information combined with the web's

decentralized architecture and lack of proper information management. Lagoze and Fielding

(1998) define the problem well, reducing it down to three components:

Universality - anyone can participate equally on the web, leading to a system that

inherently focuses on quantity over quality. This is inevitable on the web, as quality

requires the classification of one item of information as being better than another, but

without a gatekeeper, the web has no mechanism with which to do this. As such, all

information is treated the same, regardless of its source or its authority. It is left to search

engines to attempt to infer the quality of information using heuristics that analyse the text

of an HTML document.

. Uniformity - resources, services and users are treated as equal, when they clearly are not.

Indexing image content is distinctly different from indexing text, and users clearly have

different levels of experience, yet the web makes no distinction.

. Decentralization - the organizational structure required to manage the information

effectively cannot be put in place on the web, leading to an anarchic structure that gets

more extreme as the web grows.

91

Chapter 3 - Flaws in the Web's Architecture

Put simply, there is no efficient information retrieval system inherent within the web's

architecture that users of different abilities can use to retrieve information of different media

types. This problem is compounded by the decentralized nature of the architecture, which

prevents the development of such a system, and the web's phenomenal growth, which

constantly exacerbates the problem.

Compounding the problem further is the state of the web's navigational mechanism: its

hyperlinks. Section 3.2 has already discussed the problems due to link rot, but the

effectiveness of the hyperlink is also compromised through hyperlinks that deliberately

misdirect the user, or which pay for their location on a web page, regardless of their relevance

to its content. These and other tactics lead to the breakdown of the web's navigational

structure, which is already in a fragile condition. The end result is that both the search engine

and the hyperlink are becoming increasingly unreliable, therefore making the web increasingly

un-navigable.

3.4.2 The Damaging Effects of Noise

Noise is defined as unwanted signals, and accompanies any data transmission event (Stalling,

1991). In an information system such as the web, noise is represented by unwanted

information content. In the specific case of a search engine, for example, if one web page out

of one hundred is perceived as relevant by the user, the other 99 irrelevant web pages

represent noise. The more noise in such a system, the harder it is to locate information.

92

Chapter 3 - Flaws in the Web's Architecture

At its most extreme, noise in an information system will kill it, as the number of unwanted

signals will grossly outweigh the number of wanted signals, thus rendering the system useless.

Noise represents the quantity of entropy present in a system, which is a measure of the

randomness or unpredictability of communicated values (Brebner, 1997). Maximal entropy

represents a completely random and thus uniform system, making entropy the polar opposite

of information. In this way, increasing noise renders an information system increasingly

random, and therefore poses a potentially lethal threat to the web.

However, even at low levels it can severely retard the growth of the web, as new users fmd

themselves overwhelmed with information they do not want. As was said in section 2.4.2,

without any system-wide structure to the web's information, more people will perceive each

new web page as noise than those who perceive it as relevant information. New users, whose

inexperience will cause them to use search engines and hyperlinks ineffectively anyway, are

particularly susceptible to this problem, which will act to implicitly raise barriers to adoption

and retard the web's growth.

3.4.3 Determining the Extent of the Problem

There are two ways that a resource can be located on the web: through hyperlinks, which

connect related documents; or through an information retrieval service such as a search

engine. As such, if these mechanisms are ineffective in locating relevant information, the user

will perceive the web as a noisy system. The following sub-sections will therefore attempt to

determine the level of perceived noise in the web through an analysis of the literature relating

to the state of these two different navigational mechanisms.

93

Chapter 3 - Flaws in the Web's Architecture

3.4.3.1 The State of Hyperlink Navigation

3.4.3.1.1	 Navigation Mechanisms

The user interface of a web browser provides navigational features that interact with the web

in order to help the user navigate across it. In a study examining the revisitation patterns in

web navigation, Tauscher and Greenberg (1997) classified the following as major navigation

features of a browser:

. open URL - the user types a URL into the browser's address bar;

• back - the user hits the browser's Back button, to return to the previously viewed

resource;

• reload - the user reloads the current page from the server;

• forms - the user submits a form via HTTP, using a button in the HTML document.

The returned resource is usually dynamically generated;

94

Chapter 3 - Flaws in the Web's Architecture

In addition, Catledge and Pitkow (1995), in their study into browser characterizations, also

included:

• forward - the user hits the forward button, revisiting a page they have just come from;

• home - the user hits the Home button to load a resource which they have pre-selected

as their 'home-page' (i.e. the default page that is loaded when the browser is first

started);

history - a list of all the URLs visited in a pro-defined time period is presented to the

user, who then selects one to navigate to;

Finally, the user can choose to explicitly click on a rendered hyperlink, or select from a list of

URLs that have been stored by the user in her Favourites list. Different browsers may adopt

other navigational features, but these constitute the main ones that are common across all

modern browsers. The most commonly used features have been found to be the hyperlink

(51.9%) and the Back button (40.6%) (Catledge and Pitkow, 1995).

A user must combine these navigational features of the browser with effective search

heuristics, if they are to successfully navigate across the web without the aid of a search

engine. For example, Tauscher and Greenberg (1997) found that users visit a central page and

navigate to and from its many linked resources, thus performing a breadth-first search.

Kleinberg (1998) has termed these central pages hubs, while the linked resources are

95

Chapter 3 - Flaws in the Web's Architecture

authorities, which satisfy a user's information need and are perceived by that user as being

authoritative and therefore accurate. Tauscher and Greenberg (1997) also note that users may

follow a 'guided tour', composed of hyperlinks containing instructions such as 'Next Page'

that are followed by most users according to a set structure; or they may perform a depth first

search, following hyperlinks deeply before returning to a central page. Higgins (1999) has

also noted that time and authority affect human decision making, with humans deciding which

item of information to choose according to the authority associated with each item, and the

time available to decide. From this, it can be seen that the effectiveness of hyperlink

navigation is dependent upon the navigational features of the browser, the information

contained within the web resource, and the user's own search heuristics.

3.4.3.1.2	 The Problem with Browsing

Unfortunately for the user, neither the browser nor the information contained within a web

resource is particularly helpful in locating a specific resource. Cockburn and Greenberg

(1999) note the following limitations of the browser's navigational features:

• Inefficiency in retrieving distant pages - the Back button only works one page at a

time, which is a laborious process when the user has visited many pages.

• Context - the user sees only one web page at a time, and so their orientation within the

information space is dependent upon the contents of the current page and their memory

of any previous page.

96

Chapter 3 - Flaws in the Web's Architecture

• URLs do not make good lists - favourites and history mechanisms that list URLs are

not intuitive, as most URLs are not representative of the content of the resource that

they locate.

In addition, with many links on every page, it is easy for the user to become distracted (indeed,

web-based banner advertisements depend on distracting the user), and to then forget where in

the browsing session they were. Furthermore, the navigational cues in the browser only allow

the user to see hyperlinks that are one level deep. There is no way to see what the resource

that the hyperlink points to is, or of knowing what hyperlinks may be contained within it,

without clicking on the hyperlink. This severely slows down the user's browsing progress,

and renders browsing an almost arbitrary approach to information retrieval for all but the most

experienced of web users. Worse, hyperlink navigation can only be as good as the state of the

hyperlink structure itself, but as the following sub-section shows, this is disintegrating at an

alarming rate.

3.4.3.1.3	 The State of the Web's Hyperlink Structure

The structure provided by the web's hyperlinks is the only system-wide form of information

management inherent within its architecture. Users can theoretically use hyperlinks to

navigate from one resource to any another. Albert, Jeong, and Barabasi (1999) have shown

that any two randomly chosen documents are, on average, only 19 hyperlinks away from one

another, which, when combined with the use of advanced navigational techniques,

theoretically allows the user to navigate across the web using hyperlinks alone. However, in

practice this is not the case, as a much larger study of over 200 million documents by Broder

97

Chapter 3 - Flaws in the Web's Architecture

et al. (2000) has shown that the web has a complex, organic structure, with only a 24%

probability that any two documents are connected via hyperlinks at all, and that the actual

diameter of the web (that is, the number of hyperlinks that must be traversed between

randomly chosen documents) is closer to 500. Figure 4 shows this structure, which reveals

that the web has a rich inner core of some 56 million highly connected resources that connect

to and from one another. However, there are also 44 million IN resources (i.e. those that link

to the core, but which cannot be reached from the core) and 44 million OUT resources (i.e.

those that are linked by the core, but which do not link back to the core). Worse, Broder et al.

(2000) also found that there are some 44 million resources that bypass the central core

altogether, and another 17 million pages that are completely disconnected.

This structure shows that the web cannot be completely navigated using hyperlinks alone, and

so the web's inherent navigation mechanism cannot be used in isolation. The situation is made

much worse, however, by hyperlinks that pretend their referenced resource relates to

something that it clearly does not. This deception is intended to attract as much user traffic to

the resource as possible, regardless of whether or not each user actually wants the information

it contains. However, it erodes the integrity of the hyperlink structure of the web, further

increasing the noise level. As such, the hyperlink can no longer be relied upon for effective

navigation.

98

Chapter 3 - Flaws in the Web's Architecture

Figure 4- Hyperlinlc structure of the web lBroder et aL, 2000)

3.4.3.2 The State of the Web's Information Retrieval Services

Third party information retrieval services are deployed on top of the web's architecture, but

are not part of it. As such, they must index that part of the web that they wish to focus on

without help from the web's architecture, but they are free to choose whichever mechanism or

algorithm they wish in order to achieve this.

99

Chapter 3 - Flaws in the Web's Architecture

The web's main information retrieval services can be classified according to two categories:

• Coverage-oriented services - services, such as the major search engines, that try to

cover as much of the web as possible.

• Relevance-oriented service - services, such as web directories, that focus more on

providing relevant results than on attempting to index the whole web.

The following sub-sections examine the state of the services that belong to these categories.

3.4.3.2.1	 Coverage-Oriented Services

Search engines attempt to index the entire web using web spiders, and must infer the meaning

of a document using machine-based heuristics. However, search engines are facing three

critical problems:

1. Web crawling is no longer viable

It is becoming increasingly difficult for a web spider to keep up with the growth of the

web. Of the web's one billion resources, today's largest search engine (Google) indexes

only 56% of them (Sullivan, 2000a). However, the situation can only get worse, as the

web is expected to hold some 100 billion documents by the end of 2002 (Butler, 2000),

while the web's hyperlink structure, which the spiders rely on to efficiently locate new

documents, is fragmenting. With only 24% of web resources connected at all, crawling

hyperlinks is no longer viable if the goal is to index all web resources.

100

Chapter 3 - Flaws in the Web's Architecture

2. Relevance is based on unreliable inference heuristics

Search engines must attempt to infer the meaning of a document in order to return relevant

results, yet they generally use outdated relevance heuristics (Berst, 1998), and choose

instead to compete on the size of their index rather than its accuracy. This leads to 'vhat is

known as the abundance problem, in which the number of resources classified as relevant

by the search engine is far too large for a human to digest (Kleinberg, 1998). For example,

generic search terms such as 'web' can yield as many as 250 million returned documents,

greatly increasing the perceived amount of noise in the service.

3. Indexes age quickly

The average age of a web page before its content (including any hyperlinks it contains)

changes is just 117 days (Brewington and Cybenko, 2000), meaning that every document

indexed in a search engine must be re-indexed within 117 days if the index is to remain

fresh. However, with the size of the web increasing exponentially, this means that the

number of documents that must be refreshed must also increase exponentially. The

problem is compounded by link rot, which has already been covered in section 3.2.

Feldman (1998) has provided empirical data on the noise level of a search engine, by

conducting a study among 999 professional information searchers that compared the

difference between the Dialog controlled information service with the web's search engines.

In this study, clients of professional searchers used real world queries, and were asked to rate

101

• S.ru.sl
• S.ri.s2

Chapter 3 - Flaws in the Web's Architecture

the relevance of the returned information. The results, shown in Figure 5, reveal that although

both services return nearly the same amount of highly relevant documents (111 for the web

against 117 for Dialog), the web returns nearly twice as many irrelevant documents (306 to

147).

350

300

250

200

150

100

50

0

Retrieved Documents by Relevance

R*McED I	 R*1ED2	 RAMTh 3	 RM(ED 4	 RANW 5
.	 Less Relevant More Relevant

Figure 5-Relevance of the Web Compared to Dialog (Feldman, 1998)

Worse, of those documents that rated a relevance score of 4 out of 5, the web returned only

43% as many as Dialog (26 to 60), while for those documents with a relevance score of 3 out

of 5, it returned only 3 1.5% (34 to 108). Feldman (1998) notes that:

"...the interspersal of so many useless documents with those of high value may colour
the perception of the searcher that the entire Web search has less value than a
traditional online search, even though the same number of highly relevant documents
were returned."

102

Chapter 3 - Flaws in the Web's Architecture

Thus, regardless of the number of relevant documents that are actually retrieved, the user's

perception is that the search engine is noisy. Worse, Henziger et a!. (1999) note that the more

pages an index contains, the harder it is to keep the average page quality (in terms of

relevance) high, which means that the efforts of the search engines to provide the largest index

inherently lowers their average page quality. As the size of the web continues to increase, the

average page quality, and thus the quality of the search engine itself, will get progressively

worse.

These problems terminally undermine the approach of the search engine companies. They

caimot index the entire web; their systems are increasingly noisy; and their indexes are

becoming increasingly stale. As the web's only comprehensive information retrieval systems,

they only add to the perception of increasing noise in the web.

3.4.3.2.2	 Relevance-Oriented Services

Other information retrieval services, such as human-indexed directories, focus more on

relevance than coverage. The directories, for example, attempt to index the web by hand using

thousands of editors. However, the size of the resultant directory is considerably diminished,

with the largest directory, the Open Directory (www.dmoz.org), currently indexing only

2,000,000 documents (Sullivan, 2000a), compared with Google's 500,000,000. Worse, with

so many documents to classify, the directory structure can become unwieldy, forcing the

directory operator to decide whether to use a small directory structure, with each level

containing millions of different resources, or to limit the number of resources per directory

level, with millions of different directory levels.

103

Chapter 3 - Flaws in the Web's Architecture

Other types of service include domain-specific search engines that focus on one specific

subject (termed vortals, for vertically-oriented portals). These services, however, cover even

less of the web, as they ignore all resources not related to their specific subject in an attempt to

increase relevance. As such, the relevance-oriented approach cannot provide a comprehensive

information retrieval service, and so although it may have its use for certain groups of users,

the approach cannot reduce the overall noise on the web.

3.4.3.3 Implicit Gatekeeping

Ironically, a relevance-oriented service cannot become a core part of the web, as the service

itself conflicts with the web's core philosophy that has made it so popular. Specifically, the

service becomes a gatekeeper, deliberately choosing one item of information over another.

This is self-evident, as the concept of relevance demands such discrimination.

However, all services have their own bias regardless of their orientation, and so become

gatekeepers, even if only indirectly. This may be an explicit bias, particularly with the

coverage-oriented services, whose editors must follow the editorial line of the service

provider; or an implicit bias, more common with the relevance-oriented services, whose

machine-oriented heuristics inevitably judge the relevance of a resource according to features

other than those directly describing its information (Lawrence and Giles, 1999). For example,

Google's use of the PageRank algorithm (Brin and Page, 1998) leads it to rank documents

according to their popularity, regardless of the informational content contained within them.

This has led some unscrupulous site operators to deploy thousands of entry sites, which

contain no content other than a distinct hyperlink to the same web site, in an attempt to

104

Chapter 3 - Flaws in the Web's Architecture

artificially inflate their PageRank score. Worse still is the practice employed by some search

engines (such as goto.com) of actually selling rankings to the highest bidder, regardless of

their relevance to a query (Berst, 1998).

The cause of implicit gatekeeping is the lack of an architectural solution to information

retrieval. Search engine companies exist in a fiercely competitive world, where the vast

majority of their services are provided for free. This puts enormous pressure on them to make

money from any available source, and to take money away from their search technologies and

give it to their marketing departments instead (Berst, 1998). In this way, they lose their

coverage, their relevance and their neutrality, and provide an ineffective service to the user.

3.4.4 Summary of the Increasing Noise Problem

This sub-section has shown that increasing noise in the web is a dangerous problem that is

being exacerbated by the tactics of information service providers. The web's hyperlink

structure is being eroded by hyperlinks that deceive the user in order to generate traffic, or by

web sites that do not provide any hyperlinks at all to competing, but relevant web sites.

Equally, search engines are now selling high-ranking scores regardless of a site's true

relevance. However, worst of all is the fact that there is now no way to navigate the entire

web using web-based services alone. Hyperlink navigation can no longer be relied upon, as

the hyperlink structure has broken down, leaving some resources completely disconnected.

Equally, information retrieval services can no longer be relied upon, as they cannot keep up

with the growth of the web.

105

Chapter 3 - Flaws in the Web's Architecture

In short, the web is now perceived as a noisy system. This will discourage users from using it

effectively, and will begin to retard the web's growth. However, if left unchecked, the noise

will increase and will eventually render the web useless. A new way of enabling users to

locate resources effectively is required, which should be completely unbiased, comprehensive,

and tailored according to the needs of the user and the information provider.

3.5 Summary

The chapter has focused on three core problems faced by the web:

Link rot

Shrinking Namespace

• Increasing Noise

The problems have been recognized for some time, and various proposed solutions have been

described in this chapter. However, they have all failed, and the web is left with a flawed

architecture that threatens its growth and even its existence.

The problem with the existing solutions has been that they are unsympathetic to the

architecture of the web; the needs and behaviour of the users; and the needs and behaviour of

the information providers. Specifically, a system that requires the replacement of the web's

infrastructure will not be adopted; a system that ignores the needs of the user will not be used;

and a system that assumes the information provider will not attempt to deceive the user will be

rendered useless. Exacerbating the problem is the scale of the web's growth, and the need to

106

Chapter 3 - Flaws in the Web's Architecture

solve the information management dichotomy. As such, this represents the problem that this

research programme has set out to solve.

The web is an organic system, complex and dynamic, and evolving according to the needs of

the user, with the information providers engaged in hyper-competition trying to attract as

many users as possible. It is more like a society than a rigid information system, but this is to

be expected, as it has virtually no barriers to entry, and so all areas of society contribute to it.

As Berners-Lee puts it, "the web is a social creation not a technical one" (Berners-Lee and

Fischetti, 1999, p113). As such, this thesis is based on the assumption that in order to manage

the web's information effectively, a new and entirely different model of information flow is

required, which is sympathetic to the web's existing architecture, the behaviour of its users,

and of its information providers. Rather than looking at information from the perspective of

the network, the model should focus on information from a human-oriented perspective, as the

problems of the web are as much to do with the behaviour of its users as they are with the

flaws in its architecture. Such a model has been developed as part of this research programme,

and the remainder of this thesis will discuss its design, development and implementation.

107

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

4.	 HOMINID - A Model for Managing Information Flow on the Web

Having discussed at length three core flaws of the web, this chapter presents a

new model for managing information flow on the web. The model is called

HOMINID, and has been designed to fix the three flaws of the web without

falling foul of the information management dichotomy.

108

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

4.1	 Introduction

This chapter presents a conceptual overview of HOMINID, a new model for managing

information flow on the web. The design decisions that led to the development of HOMINID

are a result of previous research that has been conducted, but which is not presented in this

thesis. Specifically, HOMINID has been designed using the philosophy of a new model of

information flow called Situated Memetic Theory (SMT), which models information flow

from a human perspective. As such, the HOMINID model treats information from the

perspective of the user, not the network, and so views information as flowing from an

information provider (i.e. the resource owner) to an information consumer (i.e. the user

browsing the web). It is for this reason that HOMINID derives its full name: the Human-

Oriented model for Managing Information Flow on the web. As this chapter will reveal, the

model provides a novel perspective on the nature of information management, and is used to

solve the three flaws of the web discussed in the previous chapter, as well as to resolve the

information management dichotomy. The research performed in the development of SMT is a

significant body of work in its own right, which has led to the development of a powerful new

model of cultural information flow. However, the work will not be discussed in this thesis,

but will instead be published in appropriate journals.

The chapter presents a conceptual overview of HOMINID, and shows how its core

components are able to fix the identified flaws of the web. The remaining chapters discuss

how the model has been applied to the web through the development of a new extension to its

architecture that fully implements the components of the model. Chapter 6 presents a

109

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

prototype of the design, which has been developed to validate the design, and to provide

performance data to illustrate the practicality of the model.

4.2 The Core Components of the HOMINID Model

The HOMINID model has been designed to solve the problems of link rot, the shrinking

namespace, and increasing noise in the web. In order to achieve this, the model comprises

three components, which together fix these three flaws in the web's architecture, and resolve

the information management dichotomy. Specifically, the core components of HOMINID

include:

• a new scheme for referencing resources across time and space;

• a new resource migration mechanism that migrates resources across time and space;

a new system for reducing the noise in the web by providing universal access to the

web's navigational and characteristic information.

The focus of HOMINID is on the web's hyperlinks; on extending their functionality,

redefining their semantics, and ensuring their referential and informational integrity. The

following sections describe how this is achieved.

4.3	 ReducingLinkRot

Section 3.2.4.1 described the various resource migration mechanisms that have been designed

to prevent link rot, and went on to discuss the semantic ambiguity that exists within these

systems. This manifests itself whenever a resource's content changes, as it is unclear whether

or not the new resource should be given a new URL of its own, or whether it should keep the

110

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

URL of the resource that contains the content that it replaces. Essentially, the decision rests

on what exactly it is that the URL references: the resource or the content within it. If the URL

references the resource, then it will persist throughout the resource's life, regardless of how

often the content within it changes. If, however, the URL references the content, then a new

URL must be given each time the content changes significantly'.

From the perspective of the HOMINID model, the URL should be seen as referencing the

content of a resource. Recall that the perspective of the model is at the level of the human

user, with information viewed as flowing from information provider to information consumer.

As such, the user will differentiate between two completely different versions of content, and

will see two separate entities, each with distinct identities. The example given in section

3.2.4.1 was the content contained within the front-page of a chily news web site. So, for

example, content describing a foot-and-mouth outbreak one day will be distinguished as being

completely different from the next day's ccrntent, which could, for example, describe the

collapse of the deal to build the new National Football Stadium. As such, a human views the

two separate pieces of content as completely distinct entities. The web, in contrast, treats them

both as one entity: a resource, whose content just happens to change day by day.

'Note that what constitutes a significant change of content, worthy of a new identity distinct from the origitial, is
a deep philosophical issue in its own right. For example, should a minor typographical correction be seen as new
content? As such, the present work will not attempt to define what is and what is not a significant change of
content, and will instead assume that the content author is capable of making up her own mind and assign new
identities to the various versions her work has she sees fit.

111

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

What this shows is that both link rot and content change effectively destroy the value of a

hyperlink form the perspective of the user. Link rot may break a hyperlink from a technical

perspective, but content change breaks it from an informational perspective. For example, if

another resource references the article about foot-and-mouth by including a hyperlink to the

news site's main page, the hyperlink's informational value will be rendered useless the next

day when it leads the user to a story about a football stadium.

Time

ti I

un - http://London.com

A
I lB	 C	 _______ I

LondonlsPretty 1!

Link	 Link I	 I Link I	 - -	 -. - -

tol
Location

FIgure 6 - The Result of Content Changing Within a Resource

From the perspective of the HOMiNID model, the problem exists in both cases because the

content contained within a resource migrates without the knowledge of the set of hyperlinks

that references it. This is illustrated in Figure 6, which shows the same resource at the

location http://London.com , with three hyperlinks referencing it, at two separate points in time,

to and t,. At to, the hyperlinks in the resources labelled A, B, and C, all reference the resource

112

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

at the location http://London.corn , which contains content relating to the city of London.

Clearly, if the resource migrates to a new location at time tj, then the hyperlinks referencing it

break. However, as Figure 6 illustrates, they are also broken from an informational

perspective when the content changes at tj, as it is no longer about London; rather, it is now

about Paris. In this example, the old London content is archived in a new resource at z, with a

different URL (http://London. corn/old) . Effectively, the content contained within the resource

at http://London.corn/ has migrated to the resource at http://London.com/old, while the existing

resource that the set of hyperlinks references remains at its original location. As such, for the

integrity of the hyperlinks to be maintained, the HOMINID model must manage resource

migration and content migration caused by content change.

4.3.1 Managing Content Migration with Temporal References

From the perspective of the HOMINID model, the problem of content migration exists

because the resource and its content is not treated as an atomic unit; rather, they are treated as

separate components, with content forced to migrate away from the resource in which it was

originally contained whenever new content in the resource is added. As such, the only way to

preserve the integrity of the hyperlinks is for the URL (or other identifier) to reference both

the resource and the content encoded within it as a single atomic unit.

Note that this does not contradict the web's current definition of the URL. Although URLs

currently reference resources not content, RFC 2396, the current standard for the URI, simply

defines a resource as "...anything that has identity." (Berners-Lee et a!., 1998, p2). As such,

the HOMINID model simply views significantly different versions of content as having

113

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

separate identities, and so should be seen as separate resources in their own right. Effectively,

RFC 2396 can be seen to agree with both HOMINID and the web, depending upon the

perspective from which it is viewed. RFC 2396 claims that anything with identity is a

resource. From the perspective of the web, content as we see it does not exist, and so cannot

give be given an identity. Effectively, only the set of bits that encode the content can be given

an identity and classed as a resource. In contrast, the human-oriented perspective of the

HOMINID model is fully aware of the content, and so can give it an identity2 . In this way,

both the model of the web and the HOMINID model are consistent with RFC 2396, differing

only in the entities that can be given identity. The HOMINID model thereby provides a novel

perspective on the architectural standards of the web.

The HOMINID model treats identifiable content and the resource that contains it as a single

atomic unit. However, this means that a resource cannot change its content: it must contain it

forever. If the content needs to change, it must move with its resource to a new location, and

the URL must persist with it. Equally, whenever a resource migrates to a new location, its

URL must persist. As section 3.2.4.1 made clear, the problem with this approach is that it

requires a resource to use a new URL each time its content changes, which causes a

proliferation of new URLs, and places even more pressure on the shrinking namespace.

However, the HOMINID model solves this problem by adding the dimension of time to the

web. The URL is a spatial locator, and so is only able to differentiate between resources at

separate physical locations. However, when content changes, the location of the resource

2 Note that for clarity, the terms content and resource will still be used according to their present usage with
respect to the web.

114

ti

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

remains the same, and time becomes the differentiating factor that separates the two resources.

Thus, introducing time into the web's references enables two entities to exist at the same point

in space, but at different points in time.

To achieve this, a temporal component must be designed for the URL, enabling it to become a

temporal reference as well as a spatial one. In this way, the resource and its referring

hyperlinks are all tightly bound and consistently referenced by the same temporally-enhanced

URL. As such, this new temporal referencing scheme is one of the central components of the

HOMINID model.

Time

IA	 I	 lB	 I	 IC	 I

Link II	 II	 Link

uil - http:/ILondon.com

I1	 r-	 i
D	 E	 F

4	 Link
PadsIsUgIy	

4 I Link I	 I Link I	 I Link

un - http://London.comPIFI
London is Pretty

tol
Location

Figure 7 - Temporal Referencing

115

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

Figure 7 illustrates the concept of temporal referencing. The figure again shows the location

of resources at two discrete points in time, t0 and tj, with the content of the central resource

changing at tj . However, whereas traditional hyperlinks would reference the wrong content at

this stage, temporal references are able to differentiate between the two different resources

according to their different locations in time. This enables the original content to remain at its

present location (http://London.com:tO), with its resource and set of referring hyperlinks intact,

while a new resource is created, with new content aid new hyperlinks, at the same point in

space, but a new point in time (http://London.com:tl). Both versions of the content can be

referenced by a temporal reference without conflict, and the hyperlinks that refererence both

resources will remain intact. This is shown in Figure 7 by the new set of referring hyperlinks

(i.e. the hyperlinks in the resources D, E, and F) of http://London.com:tl co-existing with that

of http://London.com:tO. Note how Figure 7 shows hyperlinks referencing across the t0 - tj

boundary, effectively referencing across time. This clearly differs from Figure 6, where only

horizontal, spatial referencing was possible. In this way, temporal references not cnly

preserve the referring hyperlinks, they also enable resources to be preserved, providing the

web with the means to archive its information, and to enable it to be referenced according to

its time of creation. In this way, temporal search engines can be developed that will enable

users to search through the web's information archive according to a specific point in time.

4.3.2 Managing Resource Migration with the Resource Locator Service

Temporal references are a fundamentally new approach to resource addressing, but they

cannot be supported by the DNS, and so require a new name resolution system. Equally, if the

integrity of a hyperlink is to be preserved when the resource it references migrates, the new

116

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

name resolution system must provide a mechanism for transparent resource migration. The

HOMINID model provides this in the form of the Resource Locator Service (RLS), which has

been designed as part of this research programme.

The RLS is a system for locating resources on the web across time and space, regardless of

how often their locations change. The RLS maps a static resource identifier onto a dynamic

location, and ensures that the location is updated whenever the resource migrates or its content

changes. The web's hyperlinks can then reference the static identifier rather than the dynamic

location, ensuring that the integrity of the hyperlinks throughout the resource's lifetime. In

this way, the RLS provides a solution to link rot, and preserves the integrity of hyperlinks

throughout resource migration and content change.

The RLS provides a transparent resource migration mechanism that differs from existing

mechanisms in two key ways:

• Resources can be migrated across time as well as space

The RLS supports temporal references, and so the name of a resource can be mapped

to a dynamic position in time as well as space.

• Resources can be automatically migrated across servers using a remote client

The RLS provides an interface for remote operation, enabling a resource to be

migrated automatically by a remote application.

117

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

The RLS represents the most important component of the HOMINID model. However,

although it has been designed to replace the web's usage of the DNS, it must still work within

the existing architecture and constraints of the web if it is to be successfully deployed. The

service is therefore required to:

provide complete referential integrity for web resources;

be fully scalable;

. be backwards compatible, such that all web entities (e.g. browsers, servers, etc.) can

use the service without change;

. have resolution granularity at the level of the individual resource rather than a host;

be dynamic such that name or location changes can be made rapidly and automatically;

• implement temporal references by storing details of a resource's name, locion, and

time of creation;

provide the location of a resource given a name;

provide multiple locations if a resource has been replicated.

Designing a service that satisfies these requirements has proven to be a significant engineering

challenge. The novel design and implementation of the RLS are presented in the following

chapters.

4.4 Easing the Namespace Pressure

As the RLS is designed to replace the DNS, its namespace is free to be defined according to

whatever requirements are necessary. As such, this section defines the scope and the

118

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

semantics of the RLS's namespace, which has been designed to avoid the problems of the

DNS 's namespace.

4.4.1 Shrinking Namespace Increases Pressure

The shrinking namespace problem has occurred because the number of desirable domain

names is vastly smaller than the number of available ones. As was discussed in section 3.3.1,

there is a premium on memorable names, or those that represent company names.

Domain names must compete against each other for the attention of users, if the web site that

they address is to be noticed. Without attention, the information conveyed by the web site will

simply be ignored. For e-commerce sites, this is financially devastating. A good domain

name, therefore, can be extremely valuable.

Receiving attention through a good domain name is exceptionally difficult, however. Entering

a URL into an address bar accounts for only 2% of all navigation events (Catledge and

Pitkow, 1995). Compounding this is the sheer number of domain names competing for this

limited attention. However, the value of a good domain name can be illustrated by the fact

that of those people who bought goods online, some 60% did so by entering the URL directly

into the address bar (SRI, 2000). As such, although only a small proportion of navigation

events directly involve the address bar, those that do are extremely valuable.

From the perspective of the web site owner, therefore, any strategy for creating a memorable

domain name has the potential to dramatically increase the number of visitors to the site. For

119

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

example, strategies that encourage the user to pass the domain name onto friends, or which

create domain names that are more memorable, or easier to type, will be more successful than

those that lead to obscure, meaningless, or syntactically awkward domain names. This is the

reason that most of the words in the dictionary have already been registered, and domain

names such as drugs.corn are commanding $1,000,000 (Arent, 1999).

However, although most of these desirable names are already registered, or are so expensive

as to be out of the reach of most people, it has not meant that all other domain names have

been rendered useless. Rather, the shrinking namespace has forced new strategies to evolve

and the resultant domain names to adapt, leading to domain names that try to gain attention

using whatever strategy works. Unfortunately, as the following section shows, some of these

strategies benefit the web site owner at the expense of the user.

4.4.1.1 Exploitative Strategies

Few users are actually good at typing, and so regardless of the ease with which a domain name

can be typed, mistakes will happen. As such, one common exploitative strategy used in the

creation of domain names is to adopt a name that is syntactically close to a very well-known

existing domain name, but which differs by one or two letters that match common typing

errors made by users. In this way, the domain name acts as a parasite, living off the attention

that should belong to the well-known domain name. For example, AltaVista's site is very

popular, and large numbers of people regularly type its domain name, www. altavista. corn, into

their address bar. Exploiting the user's typing error, however, is the URL www.atlavista.com,

120

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

which opens up a separate browser window and redirects people to the sites

www.tickerprofiles.com/profiles/liquidics/ and www.otcstreet.com/trivia/otctrivia.cfm.

Another exploitative strategy is to hijack existing trademarks and essentially steal attention

from the trademark owner. Well-known brands, such as McDonalds, are so pervasive that a

user typing in the domain name www.mcdonalds.com would automatically expect to see that

company's web site. In this way, the well-known domain name will be almost guaranteed a

large amount of attention. As such, if a company other than McDonalds registers the well-

known domain name before McDonalds themselves do, they can be guaranteed of this

attention, regardless of the relevance of their site to the domain name.

4.4.1.2 The Problem With ICANN's Solution

From this perspective, ICANN's solution will only work in the short-term, if at all. Domain

names are constrained into a strict namespace, which limits the number of desirable names.

Expanding the number of TLDs does not free the namespace, and so less-memorable domain

names will have to adopt the same exploitative strategies within each new TLD if they are to

receive any attention. However, the situation could be made worse, as the new TLDs act to

classif' each domain name according to a specific category. As such, domain-specific TLDs,

such as . museum, will act to increase the pressure on those domain names that belong to each

category, by implicitly identifying the information need of the user, and thus rewarding the

parasitic strategy even more.

121

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

For example, suppose a user wishes to navigate to the web site of the Natural History

Museum, but accidentally types www.nmh.ac.ulç rather than www.nhm.ac.uk With the

current TLDs, it is difficult to determine what the user navigating to a specific site is actually

looking for, and NMH could represent virtually anything. As such, the content of the site

behind a parasitic domain name must be general, such as a gambling site, if it is to attract

much attention, as focusing on a specific subject that it assumes the user is looking for could

deprive it of a large amount of attention if its assumption is wrong. As such, it is better to play

it safe. In this way, the user's mistake will inadvertently take them to a web site that is clearly

different from the one they intended to visit, and their mistake will be obvious.

However, with a highly focused TLD such as .museum, it is obvious what the user is looking

for: a museum. Now, it is perfectly safe for the content of a web site behind a parasitic

domain name to focus on a specific subject. In this example, a parasitic web site could use the

new domain name www.nmh.museum, and sell items that are also sold at the Natural History

Museum, but which are much cheaper at the parasitic web site. As such, the user has been

inadvertently taken to a direct competitor to the museum, and even if the mistake is realized,

the user may decide to stay anyway, as the content behind the parasitic domain name will be

relevant to their needs. In this way, the strategy of the parasitic domain name will become

even more successful, and encourage imitators to adopt the same strategy for their own

domain names. Effectively, the new TLDs will encourage more domain names to become

parasitic, not less, particularly once the desirable names in each TLD have been exhausted. As

such, ICANN's solution will only exacerbate the problems it set out to solve.

122

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

4.4.2 Easing the Pressure

If the HOMINID model is to resolve the namespace problems that affect the DNS, it must ease

the pressure on the namespace, taking into account the adaptive pressure that will be placed

upon it. As such, it must be free enough to discourage exploitative strategies that deceptive

domain names will adopt. However, it is doubtful that exploitative strategies can ever be fully

prevented, but they can be discouraged by making them less rewarding. This can be achieved

by opening up the namespace so that it uses any name; that is, the RLS should have a

completely unconstrained namespace, mapping any string representing a name onto any string

representing a location.

In this way, the pressure on the namespace can be relieved by dramatically increasing the

number of potential names that can be used. Parasitic strategies will still be empkyed, as the

attention generated by popular names and brands will always attract such parasites. However,

by opening up the namespace, there will not be such pressure overall, and there will be more

than enough space for new desirable names to exist, which otherwise would not under the

DNS 's strict syntax. As such, other, more positive strategies will become more successful,

and the parasitic strategy will become less successful. In this way, the problems of

exploitative and deceptive strategies are not eradicated, but they are made less successful,

which should drastically reduce the incidence of such names over time.

4.4.3 Defining the Semantics of the New Namespace

The introduction of a new name resolution service with its own namespace will take the

pressure off the DNS, such that its semantics can revert to their original specification (i.e. IP

123

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

addressfhostname resolution). The unconstrained nature of the new namespace should enable

the definition of new sub-names paces that exist within it. The relationship between these sub-

namespaces and the global namespace is similar to that of the UIRL and the URI 3, but with the

exception that the new namespace will impose no restrictions on the sub-namespaces, other

than the requirement that each name must be unique within the global namespace.

In this way, the semantics of the new namespace are perhaps closer to that of the CORBA

Naming Service. Recall from Table 2 that CORBA does not manage or even attempt to

understand the syntax used in its Naming Service's kind attribute, but leaves it to higher levels

of software, which can impose their own management policies on the naming of objects

(0MG, 2000). In a similar way, the RLS is only required to map the name of a resource onto

its location within the web, and should leave the semantics behind the namespace to

whichever naming policy is in use.

In this way, the RLS becomes a very flexible name resolution service, which can be shaped

according to the requirements of its users. However, bause the namespace is not

constrained, the name are free to evolve outside of any sub-namespace, if required, keeping

the namespace pressure low without restricting the usefulness of the new system. For

example, the namespace of the DNS can be seen as a sub-namespace of the RLS, but if it runs

out of names, a new sub-namespace can be defined and implemented without any change to

Recall from section 2.2.2.2 that the syntax of the URI defines the structure for all web identifiers, and so
represents the superset of web-identifiers.

124

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

the RLS. This essentially makes the new service future .proof, bound only by the technology

upon which it runs.

Note that hierarchical naming schemes are used throughout distributed systems of all types,

largely because they manage very large namespaces very efficiently. As such, a flat

namespace, which the RLS's namespace represents, may prove unmanageable in the long

term. However, although the RLS supports any string as a valid name, it can easily be adapted

to restrict the set of names it supports to one or more namespaces, the introduction and

management of which can be controlled by an organization such as ICANN. Effectively, the

RLS has been designed to remove all technical limitations from the design of namespaces on

the web; how the namespace is used then becomes a matter of policy. Future research will

focus on the effect an unrestricted namespace has on the naming conventions of web

resources, to determine whether some restrictions are necessary. However, whatever the

conclusion of this research, the RLS is flexible enough to provide a platform that supports any

naming policy, and it is this flexibility that is one of the key innovations in its design.

4.5	 Reducing the Noise in the Web

In the same way that domain names must compete for the attention of a user, so too must web

resource if the web sites that they are part of are to become successful. The predominant

business models for web sites are currently based on advertising or e-commerce, both of

which define success according to the number of people who visit a site; without visitors,

advertising will not work and products will remain unsold.

125

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

Analysing the web from this perspective, noise can be seen as almost inevitable. Users may

wish to seek out specific web resources, but each resource will do all it can to receive the

attention of any user, regardless of their information need. A resource thrives on attention,

and so a popular resource leads to a healthy site, particularly when its business model is based

on advertising.

However, advertising does not have to be relevant to the information need of the user

browsing the web. As such, it pays a web resource owner to attract a user to his resource,

irrespective of its relevance to the user's information need. In this way, relevance can be seen

almost as a hurdle to the business prospects of the web site, which may actively employ

deceptive strategies to circumvent any relevance heuristics used by the user and the search

engine. The following sub-sections provide an in-depth analysis of this deception, and show

how it increases the noise in the web by impacting the integrity of its navigational

mechanisms.

4.5.1 The Deceptive Hyperlink Versus the User

A web resource's chances of attracting attention will be greater if the hyperlinks that reference

it can attract more attention than those of its peers. As is the case with the domain name,

however, the pressure is on the hyperlink to attract attention using any strategy that works,

including those that are at the expense of the user. Unfortunately for the user, unless the

hyperlink is from a trusted and well-known source, there is no easy way for them to discern

the strategy that the hyperlink employs, other than actually clicking on it. Worse, the user

cannot go back to the hyperlink and rate it as trustworthy or not, in order to prevent other users

126

Chapter 4- HOMINID - A Model for Managing Information Flow on the Web

from making the same mistake, and so the hyperlink is free to carry out whatever strategy it

likes with impunity.

4.5.1.1 Deception as an Effective Strategy

There are many different types of deceptive strategies employed by hyperlinks, and most

predate the web. For example, hyperlinks usually contain text that is supposed to describe the

content of the referenced resource, but there is no mechanism to guarantee this constraint. As

such, it is easy for the hyperlink to deceive the user by describing the content in false terms. A

more elaborate example of this is the hyperlink that hides behind an image of a user interface

control, such as a button. Such a hyperlink, called a Fake User Interface, or FUJI, is designed

to deceive the user into clicking it by pretending to actively control elements of the web page

in which it is hosted. Of course, no such control is provided, and clicking on it presents the

unwary user with an unwanted resource.

SpeedUpYourExisthglnternetAccessl 	 Qj(

Figure 8 Real Example of Fake User Interface

Figure 8 provides a real example of a FUT from the company Bonzi (www.bonzi.com). The

figure shows a banner advert that seems to show a button, but the whole image simply directs

the user to the Bonzi web site. This FUI is so effective that it was NetRalings' most-clicked

banner advert on the web in February 1999 (Cox, 1999). It has also spawned many imitators

(Figure 9).

127

Chapter 4- HOMINID - A Model for Managing Infonnation Flow on the Web

You have I message waiting for you.	 ____________

Slow
..I.........................A..............I...

Ft

Your Internet Connection Is Not Optimized.
Download Internet900Sl 2001 Now!	

Figure 9 - Fake User Inteiface Imitators

A further example of the deceptive strategy can be found with the various navigational cues

provided by a web browser. For example, when a user places the mouse cursor over a

hyperlink, the URL of the resource that the hyperlink points to appears in the browser's status

bar (see Figure 10). If the IJRL contains the same domain name as the current web page, the

user can be reasonably sure that clicking the link will take her to another web page in the same

site. However, deceptive hyperlinks insert their own text into the status bar, which either

hides the UIRL of the actual resource that the hyperlink points to, or pretends to be an honest-

looking URL when in fact it redirects the user to a different web site.

In all of these examples (and this is by no means an exhaustive list), the user is deceived by

the hyperlink into giving attention to an unwanted web resource, but has no means of

reproaching the hyperlink. Thus, the web resource that is referenced by the hyperlink gets

128

- x

zi iGc

Mouse cursor hovers over
hyperlink

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

more attention than it would ordinarily, making the deceptive strategy employed by the

hyperlink is an unqualified success.

Ea	 Fu*	 bee Ee

	

Seasct	 1ciIet •Hy	 J

Aje j] hep leew ehre sc

4	 _____________

Domain name n address
bar matches domain
name in hyperlink in
Status bar.	

NATU RAL
HISTORY
MUSEUM

Quickindex

vi
	

j,) x455reA

j	 i. >	 WEUNOOWWtC'	 ih?.- 5s

Figure 10 - The Browser's Status Bar as a Navigation Aid

4.5.1.2 How the Hyperlink Breaks the Flow ofInform ation

There are many reasons why a user clicks on a hyperlink. Obviously all users' navigational

heuristics are different, but there are common types of heuristic that can be identified. For

example, a user may click on a hyperlink if it is of a type that she perceives exhibits authority

129

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

(Kleinberg, 1998), or if it appears to satisfy her information need. Fundamentally, the reason

for choosing one hyperlink over another is based on implicit information that the user has

about the hyperlink, the resource it points to, the environment in which the hyperlink is

situated, and information the user already has about the world. The constraints that the user is

attuned to between these different situation types cause information to flow, and it is this

information that helps her to select one hyperlink over another. However, it is these

constraints that also represent the user's navigational heuristics, and so it is in a web

resource's best interests to exploit them.

The success of a user's navigational heuristics is dependent upon the user being aware of the

hyperlink's type, and attuned to the constraints that all hyperlinks of a specific type are worth

clicking. For example, a user must be aware that a hyperlink is of an authoritative type, and

attuned to the constraint that authoritative hyperlinks are worth clicking. However, the

implicit constraints that enable the user to recognize these types can be manipulated freely by

the hyperlinks themselves. For example, a hyperlink should display the URL of the resource

that it references in the browser's status bar, but it does not have to; equally, itshould provide

textual or visual information that represents the resource, but it does not have to.

Consequently, the hyperlink can present whatever information it wishes, and can therefore

present information specific to a reliable browsing situation, when in fact the user is

unwittingly placed in an unreliable browsing situation. In this way, the constraints that the

user will be attuned to, and which she will use when judging the hyperlink, can be hijacked by

the hyperlink, and will lead to misinformation.

130

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

Ultimately, it is easy for a poor quality hyperlink to attract attention through deceiving the

user, and because it attracts more attention without incurring any penalties from the user, it is a

good strategy for a resource to employ. Deceptive hyperlinks that reference low value

resources will, on balance, attract more attention over time than reliable hyperlinks, because it

takes less effort to create a dishonest hyperlink than it does to create a resource of high

informational value. As such, the selection pressures on the hyperlinks will cause their

strategies to evolve to become more dishonest, until the constraints that the user uses to select

them break down completely.

The only defence the user has is to learn from the deception, and to recognize a deceptive

strategy when one presents itself. However, the deceptive strategies are not static, and will

constantly evolve to continue to deceive the user. Effectively, an arms race is set in motion

between the user, who must determine the type of the hyperlink situation, and the hyperlink,

which must fool the user by exploiting her constraints. As the hyperlink is the primary

mechanism for navigation on the web, however, this is a serious state of affairs for it to be in.

Effectively, the key goal of the web's primary navigation mechanism is to deceive the user

into going somewhere they do not want to be.

4.5.2 The Deceptive Web Site Versus the Search Engine

Users are not alone in their battle against deception. Search engines, too, are prey to this

strategy, as they too provide a web site indirectly with attention. Because search engines are

so popular (see Figure 11), they can direct vast amounts of attention to a site, but only if the

site appears high up in a search engine's results list. As such, it is in a site's best interests to

131

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

encourage the search engine to perceive it to be as relevant as possible to the user's query,

even if that means deceiving the search engine. However, because a search engine must use

static, hard-coded heuristics when determining relevance, it cannot respond to the strategies as

quickly as they evolve, and so resources within a site can easily pretend to be something they

are not, or more relevant to a query than they actually are. In this way, the quality of the

search engine is seriously weakened by the deception of the site.

Search Engine	 Searches per Day

AltaVista	 50 million

Inktomi	 47 million

Google	 40 million

GoTo	 5 million

Ask Jeeves	 4 million

Voila	 1.5 million

Figure 11 - Number of Queries per Day for the Popular Search Engines (Sullivan, 2000c)

4.5.2.1 An Arms Race Between the Search Engine and the Web Resource

From the user's perspective, a search engine should take a query, and return only those web

pages that are completely relevant, and rank them in order of relevance. However, from the

site's perspective, the search engine should return a reference to only its resources, and no

others. As such, it is a good strategy for a resource to deceive the search engine's relevance

heuristics into ranking it as highly relevant for as many queries as possible. As search engines

become wiser to a resource's deceptive strategy, so the resource must adapt its strategy if it is

132

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

to survive. The result is an arms race between the resource and the search engine, with the

relevance heuristics of the search engine representing the battlefield. At stake are the quality

of the search engine and the integrity of one of the web's primary navigation mechanisms.

4.5.2.2 The Fight For Relevance

Originally, most search engines determined relevance simply by counting the number of times

the words in a user's query appeared in a HTML document, and used that to classify the

document's relevance to the query. However, the strategies employed by web site owners

soon evolved to adapt to this, and they began to embed the same popular keywords many

times into a document, regardless of its relevance to the query or the keyword. This 'search

engine spamming' as it is known (Lawrence and Giles, 1998) is designed purely to improve

the document's ranking in the search engine, causing it to be placed at the top of the search

engine's results list across a wide range of queries, and so giving the document more attention.

These fake keywords were originally displayed at the bottom of a web page in a simple list,

with a large amount of space between them and the actual content of the docummt. In this

way, the user would never see them, but the search engine would index them. However,

search engines retaliated by ignoring words below a certain point in a document. The web site

owners responded by placing the fake words at the start of the document, but in a font so small

that the user could not see it (so called tiny text (Sullivan, 2000d)). When the search engines

adapted to this, the owners responded again by making the fake keywords the same colour as

the background, rendering it invisible to the user.

133

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

In an attempt to bypass the spamming keywords problem, newer techniques focus on the user.

The experimental Inquirus meta-search engine (Lawrence and Giles, 1998), for example,

queries a number of search engines on behalf of the user (hence the term meta-search engine),

and returns not only the title of each document and its URL, but the text that surrounds the

keywords. Inquirus relies on the user determining the relevance of each document for

themselves, but without having to download the document first. However, this could be seen

as an abdication of responsibility, as the whole point of a search engine is to perform the

search on behalf of the user, and with the number of documents returned by most search

engines, the user must be prepared to put in a lot of effort.

Other search engines that focus on the user provide filtering technology, such as Northern

Light (www.northernlight.com). Filtering gives the user the chance to edit their query by

selecting criteria that each document should be judged against (for example, documents from a

specific location) (Chakrabarti et al., 1999b). In this way, the user determines the relevance

heuristics for themselves. The advantage of this approach is that the relevance heuristics are

dynamic, thus thwarting any strategies designed to exploit the more traditional, hard-coded

heuristics. However, the disadvantage is that it relies on the user being relatively expert with

information retrieval techniques, with the result that the novice user could filter out useful

results (Chakrabarti et al., 1999b).

The latest attempt to defeat the deceptive strategies is to rely on the link structure of the web to

provide an indication of the authority of a document. This technique ranks a document

according to both its perceived relevance, judged according to normal heuristics, and its

134

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

authority within the web community, judged by the number of hyperlinks pointing to it.

Google's PageRank uses this method (see section 2.3.3.1), as does IBM's Clever, which draws

on the work of Kleinberg (1998), who, like Google's Brin and Page (1998), views the

hyperlink as conferring authority on the page it links to. However, unlike Google, Kleinberg

also defines the notion of Hubs, which are pages that link to many authorities. His HITS

algorithm (Chakrabarti et al., 1 999b), which underlies the Clever search engine, differs from

Google's PageRank algorithm in that it is able to identify good hub pages as well as

authoritative pages, but the principles underlying each algorithm are similar. In this way, it

does not matter what strategy the HTML document tries to use to fool the search engine, as the

document's ranking in the search engine is determined purely by the number of links that

point to it, and these links are dependent upon the co-operation of many other users. As such,

Google and Clever assume that it is more difficult to co-ordinate deception across web sites

than it is from one web site.

However, it is not impossible. Web sites can encourage many hyperlinks to point to them

through advertising (Kleinberg, 1998), thus literally paying for attention. Alternatively, with

the cost of web publishing so low, artificial hyperlinks can be created in the form of many

separate web sites, which exist simply to provide a spurious link to the resource that may

never be used, but which will be counted by the search engine (see section 3.4.3.3). This

artificially inflates the resource's presence on the web, and th deceives the search engine.

Google and Clever are the latest in a long line of search engines, each of which has tried to

outsmart the deceptive strategies employed by web site owners, but which has been

135

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

outmanoeuvred by strategies that can adapt faster than an engine's heuristics. It is expensive

to develop a search engine from scratch, and difficult to modify the heuristics of a mature

index. As such, the well-known heuristics of an engine are easy prey for the fast moving

strategies of the web site owner.

4.5.3 A Persistent Problem

The deceptive strategies employed by web site owners have clearly had an impact on the

quality of the web's information. However, it will also impact its quality in the future, as the

same competitive forces will exist to deceive any new technology that is developed to increase

the quality. For example, as discussed in section 2.3.2, meta-data formats such as XML and

RDF have long been cited as the means to solve the web's information retrieval problems

(Lassila, 1997; Heery, 1996). However, meta-data may work perfectly in controlled

envirom-nents, such as academic journals, but it is difficult to see how any kind of meta-data

will lead to higher quality information retrieval when it will be under the direct influence of

the web site owner. As long as there is no gatekeeper in the web, relevance will be seen as an

obstacle, and deceptive strategies will easily be able to deceive any heuristics. The challenge

for the HOMINID model, therefore, is to overcome this problem without introducing a

gatekeeper into the web; in short, the HOMINID model must resolve the information

management dichotomy.

4.5.4 The Oracle Server - A Novel Platform for Enhanced Navigation

Web sites are able to hijack a user's constraints because they are free to present

misinformation to the user via the deceptive hyperlink that is consistent with a relevant

situation. To prevent this, the user must be made aware of the situation that they are actually

136

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

in, rather than the situation that the resources in a web site try to pretend they are in. The

HOMINID model achieves this through applying a component of situation theory called the

Oracle situation (Devlin, 1991) onto the browsing environment experienced by the user.

An Oracle situation supports all of the information about a situation from the moment of its

creation, to the moment of its destruction. Thus, the Oracle situation of a web resource is a

completely objective, factual situation that supports all of the information about the resource,

and not just the information that the resource owner wishes to present. This includes all the

characteristic information about a resource (such as its informational content, its creator, the

time of its creation, etc.) as well as all the people who have seen it, when they saw it, etc. As

such, by being made more aware of this situation, the user does not have to rely on the

information presented solely by the resource owner, and so can choose whether or not to

provide a resource with any attention based on reliable independent information. Effectively,

the user consults the Oracle before deciding whether or not to click on a hyperlink.

In this way, the user is made aware of the real situation they are presented with, and so can

determine the constraints that are appropriate to this situation, rather than the situation that the

resource tries to present. This acts to sharpen the user's navigational heuristics, and prevents

her constraints from being manipulated, enabling the deceptive strategies of certain web

resources to be seen prior to the user paying them any attention. This gives the user the

choice of whether or not to give her attention to a resource, rather than the existing approach

in which she is forced to give her attention before determining its relevance to her information

need. As such, the selection pressures imposed on the resource will be those that benefit the

137

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

user, rather than those that benefit the site, and so the advantages of the deceptive strategy will

be reduced in favour of a strategy that provides more relevant information.

4.5.4.1 Resolving the Information Management Dichotomy

This approach resolves the information management dichotomy by enabling the user to

navigate across a set of information more effectively according to her own selection criteria,

rather than the censorship approach, which restricts the set of information that exists according

to a third party's selection criteria. As such, the two approaches can be seen as opposite

methods to achieve the same result: the Oracle approach acts to limit the set of information

through which the user must navigate by enabling her to reject information that is not relevant

without removing it; whereas the censorship approach acts to limit the set of information by

explicitly removing it from the system before she can determine its relevance. The Oracle

approach is therefore better, because the information is selected according to the needs of the

user and not a third party censor, and the total pooi of information that exists on the web is left

intact. In this way, control is imposed on the information without requiring it to be

permanently censored.

4.5.4.2 Functional Operation of the Oracle Server

The approach of the HOMINID model is to store small amounts of information from the

Oracle situation that are pertinent to the selection of the resource, and present it to the user via

the web's hyperlinks such that she becomes more aware of the Oracle situation than she does

about the resource's (fake) situation. The HOMINID model achieves this through an entity

called the Oracle Server, which serves information about the Oracle situation of a resource via

the hyperlinks that reference it. As such, the HOMINID model's approach to reducing the

138

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

noise in the web is to focus on the informational integrity of the hyperlinks, and to enhance the

user's browsing skills, rather than to provide an enhanced search engine.

The Oracle Server operates by identifying the hyperlinks that employ a potentially deceptive

strategy, and alerting the user before she actually clicks on one. It uses heuristics to infer each

hyperlink's strategy from selected, unbiased information about the hyperlink, the resource, and

the web site that the resource is part of. The Oracle Server obtains some of this information

from the resource owner, who provides characteristic infons4 about his resources, and the rest

from the navigational patterns that emerge from users' browsing sessions, which provide

unbiased navigational infons that cannot be manipulated by the resource or its owner. If the

Oracle Server detects a deceptive strategy, it can alert the user by informing the user's

browser, which can display the hyperlink using a different colour, for example, or by greying

it out. In this way, the user can see the situation that the resource presents, and also the real

situation obtained from the Oracle situation.

4.5.4.2.1	 Characteristic Infons

The Oracle Server stores characteristic infons about a resource. Characteristic infons are those

that describe the characteristics of the resource, such as its subject, its informational content,

colour, date of creation, owner, author, file size, etc. Such infons help a user to select a

resource based on its characteristic attributes before they navigate to it. These infons are

' Infons are the fundamental unit of information in situation theory, and represent facts about the world (Devlin,
1991).

139

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

meta-data that enhance the information that flows from a hyperlink, allowing the user to reject,

for example, a resource from an author whose previous resources have employed deceptive

strategies. The user can enter into their browser a range of characteristic infons that they wish

to be alerted to whenever they navigate to a web page that contains a hyperlink that references

a resource with matching characteristics. In this way, the Oracle Server filters out hyperlinks

according to the user's own navigational heuristics, and can use these as part of its own

heuristics in order to automatically identify deceptive strategies.

4.5.4.2.2	 Navigational Infons

Although meta-data is undoubtedly useful, it can still be manipulated by the resource, as it is

the resource owner who provides it. Thus, an Oracle Server that simply stored meta-data

would serve the user no better than current search engines. To resolve this, the Oracle Server

also stores navigational infons, which are derived from the patterns of users' browsing

behaviour. These patterns reveal the way in which a user navigates across the web, and by

applying heuristics to the infons contained within them, the Oracle Server can automatically

identify a deceptive hyperlink.

Many studies have found patterns in web users' browsing behaviour. Hochheiser and

Schneiderman (1999), for example, discovered the emergence of such patterns using

interactive starfield visualizations. Huberman et al. (1998) showed that such navigation

patterns display ". . . strong statistical regularities that can be described by a universal law".

Pitkow and Recker (1994) found the existence of ". . .long sequences of between-site access

patterns on a per session and a per user basis" (Pitkow and Recker, 1994), and found that

140

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

". . . in one session, a user visited seven different sites in consecutive order five times." (Pitkow

and Recker, 1994). This could be explained by a study by Tauscher and Greenberg (1997),

who found that the probability of each resource having already been seen by a user is 58%,

indicating that users have a set of familiar web sites that are appropriate to their information

needs, and which they keep returning to. The same study was also able to identify seven

distinct browsing patterns from the navigation behaviour of 23 users over the course of six

weeks (Tauscher and Greenberg, 1997).

However, the navigational infons are currently contained within the access logs of web

servers, which record how many times each resource is downloaded, but extracting reliable

information from these log files is notoriously difficult (Pitkow, 1997). For example, each

time a user downloads a resource from its host server (termed the origin server), the server

records the event (termed a hit) in its access log. Currently, however, there is no universal

access to these logs, as each is kept on the server that maintains it, and so the navigational

infons exist, but not in a form that enables cross-server querying. Worse, caches, whether on

the client browser, or in a caching proxy server, serve a web resource without the origin server

registering any hits, while proxy servers mask the number of users accessing a server, making

paths from individual browsing sessions extremely difficult to identify (Pitkow, 1997). The

Oracle Server must therefore provide universal access to reliable navigational infons from all

web servers across the web5.

Note that the Oracle Server should not store any information that can identif' a specific user; only the
anonymous navigation pattern that the user makes.

141

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

4.5.4.2.3	 The Heuristics of the Oracle Server

The heuristics used by the Oracle Server to identify a deceptive strategy are based on the

user's browsing behaviour when they have been deceived. Specifically, the user will click on

a hyperlink and download the resource that contains the unwanted resource. Once the user

sees that the resource is unwanted, they quickly navigate out of the site that hosts it. As such,

many users will click on the hyperlink connecting the user's current resource to the resource

containing the unwanted resource, as its deceptive strategy is designed to capture attention at

all costs (recall from section 4.5.1.1 how the Bonzi deceptive hyperlink, which employed the

FUI strategy, became the most clicked banner advert on the web). Such hyperlinks are usually

banner adverts, which link separate web sites, and so are called inter-sitehyperlinks.

However, because the user leaves the site at this stage, no other hyperlink within the site is

clicked. As such, the intra-site hyperlinks appear to provide enormous resistance to the user,

and register very few hits. The deceptive hyperlink can therefore be exposed tFrough a

combination of high inter-site hyperlink usage and low intra-site hyperlink usage. In this way,

the navigational infons from across web servers act to provide an unbiased view of the

strategies of the web's hyperlinks.

Note that the Oracle Server is an open platform, such that its heuristics can be changed as the

strategies of the resource owner evolve. As such, the intention is for the simple heuristic

defined here to be replaced with more sophisticated heuristics after further research has been

conducted into the navigation patterns of users. The Oracle Server should therefore be seen as

142

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

a platform for increasingly sophisticated web browsing, which should reduce the noise on the

web significantly.

4.5.4.3 New Web Metrics

As well as using heuristics to determine the strategies of the web's hyperlinks, the Oracle

Server can also measure the state of the web and its content, and so provide the user with

further information on a resource's effective quality. Specifically, the Oracle Server can be

used to:

• Measure the Resource

The Oracle Server can provide accurate information on how much attention the

resource at different sites across the web, allowing the real value of the resource to be

accurately determined.

• Measure the attention flowing through a web site's hyperlinks.

The resistance of the set of hyperlinks that reference a resource directly affects the

amount of attention that the resource receives. The Oracle Server can therefore be

used to determine the effectiveness of a resource's hyperlinks, and the web sites in

which they are located. This provides the hyperlink and the web site with a real,

tangible sense of value. If the hyperlink is clicked frequently, but only in certain web

sites, then those web sites clearly provide a suitable environnnt in which the

phenotypic effects of the hyperlink work best. As such, the web sites will become

more valuable for that type of hyperlink. In this way, advertising hyperlinks can be

143

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

better placed, which should result in advertisements being more relevant to the

environment in which they are situated.

• Measure the Potential Attention

Universal access to navigational infons enables a resource owner to see the amount of

attention that the web sites hosting his resource's referring hyperlinks attract, and

compare it to the amount of people who actually click on it. In this way, the resource

owner can determine the amount of potential attention that his resource could receive,

and adjust the design of the hyperlinks to maximize the attention that is actually

received. Equally, if the amount of potential attention is too low, the resource owner

can search other sites for other sources of higher potential attention in which to host his

resource's referring hyperlinks. In this way, the resource owner acts to situate the

hyperliriks in an environment that maximizes the attention that the resource can

receive, thus benefiting the resource without deceiving the user.

In this way, universal access to the navigational infons enables the Oracle Server to

characterize and measure the resource on the web, thereby providing the user with advance

information about the real situation they are in, rather than the situation that the resource tries

to pretend they are in.

4.6 Summaiy

This chapter has described the basic components and philosophy of the HOMINID model,

which defines a new way of managing information flow on the web. The chapter has shown

144

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

how the model fixes the three identified flaws of the web's existing architecture without

falling foul of the information management dichotomy. The key concepts of the HOMINID

model are presented in Table 5.

Concept	 Problem Solved	 Description

Temporal	 • Destruction of the The Temporal Reference binds content and a
Reference	 hyperlink due to resource together as one atomic unit, and locates

content migration

	

	 that unit in time and space. Should any
component of this unit change, it becomes a new

• Lost History	 unit, and must receive a new temporal reference.

Resource	 • Link Rot	 The RLS is functionally equivalent to the DNS,
Locator	 but does not constrain the namespace. Its default
Service	 • Shrinking	 namespace is the temporal reference, which

Namespace	 enables it to locate a resource across time and
space. The RLS also provides a transparent

• Automatic,	 resource migration mechanism that can enable a
transparent resource resource to be migrated remotely.
migration

Oracle Server • Increasing Noise	 The Oracle Server provides universal access to
characteristic infons and navigational infons

• Ineffective	 about the resources on the web and the way in
Browsing caused by which they are used. In this way, it can measure
deceptive	 the resource and its referring hyperlinks, and
hyperlinks

	

	 provides the user with information from the
Oracle situation rather than from the resource's

• Resolves the	 deceptive situation, thus maintaining the
Information	 hyperlink's informational integrity. As such, the
Management	 Oracle Server can alert the user to deceptive
Dichotomy

	

	 strategies and help them to make more informed
browsing choices. This reduces the noise in the

• Web Metrics web without requiring the censorship of its
information, and so resolves the information
management dichotomy.

Table 5 - The Core Components of the HOMINID Model

145

Chapter 4 - HOMINID - A Model for Managing Information Flow on the Web

From this, the HOMINID model can be seen to focus on the hyperlink:

The Temporal Reference redefines the hyperlink's semantics to include the dimension

of time.

. The RLS manages the hyperlink's integrity, ensuring it can be located across time and

space regardless of how often it moves.

• The Oracle Server manages the informational integrity of the hyperlink, ensuring it can

once again become an effective part of the web's navigation mechanism.

In this way, the HOMINID model provides a new model for managing information flow on

the web that has been designed to work according to the web's open philosophy, and within its

existing architecture. As such, the HOMINID model has been designed to work with the

nature of information flow on the web, rather than against it, and so should stand a better

chance of adoption than existing solutions.

This chapter, however, has only presented a conceptual overview of the HOMINID model. As

such, the next chapter presents its design specification in detail, which defmes how the model

can be deployed on the web without breaking its existing architecture. The design is verified

in chapter 6 by a prototype of the RLS, which has been developed and measured as part of this

research programme.

146

Chapter 5 - Architectural Design of the HOMINID Model

5.	 Architectural Design of the HOMINID Model

The HOMINID model provides a new model for managing information on the

web. This chapter presents in detail the model's architectural design, which

enables it to be integrated into the web without breaking the web's existing

architecture. The designs of the RLS, temporal references, and the Oracle

Server are discussed, together with the Request Router, a novel object that

mediates between the web's existing architecture and the new entities of the

HOMINID model.

147

Chapter 5 - Architectural Design of the HOMINID Model

5.1	 Introduction

The core components of the HOMINID model are the temporal reference, the RLS and the

Oracle Server. These components must be deployed on the web as distributed systems that are

fully backwards compatible with the web's existing architecture. To facilitate this, a new

system of mediation between the web and the components of the HOMINID model has been

designed, called Request Routing. This is a generic method of locating specific nodes in a

distributed system in a scalable, transparent way. This chapter describes Request Routing in

depth, and shows how it is used in the design of the RLS and the Oracle Server.

5.2	 Designing the Resource Locator Service

The RLS is perhaps the most important part of the HOMINID model, as it provides anelegant

solution to link rot and the shrinking namespace, while providing the web with a means of

archiving its old ideas. The overall design of the RLS is described in detail in this section,

while the design of its resource migration functionality is described in chapter 6.

5.2.1 The Scope of the Resource Locator Service

In order for the RLS to provide its services, a resource must first be registered with the RLS,

in a similar way to the registration process required by the DNS. Registration with the RLS

involves the resource owner submitting information about the resource (such as file.size,

content type, etc.), which is used by the destination server during automatic migration to

decide on the suitability of the resource according to the server's hosting policy (see section

6.2). The information is also submitted to the Oracle Server as characteristic infons (see

section 5.5.3.2). Registration also identifies those resources that need managing without

148

Chapter 5 - Architectural Design of the HOMINID Model

requiring the RLS to crawl the web. In addition, it gives the resource owner the choice of

whether or not to use the RLS, as it is designed to co-exist with the DNS, which can still be

used if required. In this way, the scope of the RLS is limited to those resources that have been

registered with it, but the design is such that all resources can still be accessed by all clients,

regardless of whether they use the RLS or the DNS.

5.2.2 Selecting the Approach to Resource Migration

Resource migration is a core feature of the RLS, and the approach adopted for its

implementation will determine the RLS 's architectural design. Recall that section 3.2.4.1

discussed the five different approaches to resource migration. However, the requirements of

the RLS, including an unrestricted namespace, temporal references, and integration with the

web's existing architecture, preclude some approaches, as they are unable to meet the

constraints placed on its design. For example:

• the Callback approach operates at the level of the hyperlink, by attempting to update a

hyperlirik within its containing web page so that it references the resource's new

location. However, for the RLS to operate effectively using this approach, all

hyperlinks referencing a resource would have to be updated whenever the resource

migrates or its content changes. As such, this approach cannot scale, as it requires too

many hyperlinks being updated too frequently right across the web. Thus, the

Callback approach to migration cannot be used with the RLS.

149

Chapter 5 - Architectural Design of the HOMINID Model

• the Chain approach would require the software in existing servers to be updated, and

so would not be backwards-compatible.

• the Search approach advocates searching the whole web for every resource each time

the user browses to a new resource. This approach does not scale on today's web

(Ingham et al., 1996), but the situation would be made worse if it had to manage

temporal as well as spatial references.

the lecturing approach cannot work while there is no gatekeeper or entity that can

enforce the lecture.

This leaves the name server approach as the only suitable approach to resource migration for

the design of the RLS. This requires the RLS to be configured as a network of name servers,

each of which must resolve the name of a resource onto its location whenever a client

application requires this service. The RLS's name server is termed a Locator, which maps a

resource's name onto its location, and maintains the integrity of this mapping by persisting the

name and updating the location whenever the resource moves.

5.2.3 Removing the Namespace Constraints

By adopting the name server approach, the RLS can be seen as a distributed database, with

each Locator acting as a node in the database, storing a subset of the total information in the

system.

150

Chapter 5 - Architectural Design of the HOMINID Model

In order to operate according to the requirements of the HOMINID model, this information

must comprise:

the persistent name of the resource, the syntax of which cannot be constrained.

• the current location of the resource, defined according to whatever identifier can be

used by a client system to uniquely locate it.

• the time of the resource's creation.

The persistent name will be used by hyperlinks and users to reference the resource, whereas

the dynamic location will be used purely by the RLS to locate the resource. The namespace of

both name and location should be unconstrained, enabling many different types of naming

schemes to be mapped onto different types of Location addresses, such as IP addresses, phone

numbers, or the co-ordinates of the Global Positioning System (GPS). The RLS is not

required to understand the syntax of either the name or the location, but simply to return the

location when given a name. In this way, the RLS provides a flexible resource migration

mechanism that prevents link rot for all resources that it manages, ensuring the preservation of

those resources' hyperlinks throughout the lifetime of the resources. A full description of the

resource migration mechanism, including a novel Resource Migration Protocol, is provided in

the following chapter.

151

Chapter 5 - Architectural Design of the HOMINID Model

Note that the semantics of the name under the RLS are similar to that of the URN. However,

although the RLS supports the URN namespace, the persistence of a resource's name does not

necessarily make it a URN. Berners-Lee et al. (1998) defines a URN as a persistent identifier

for a resource, which must exist beyond the lifetime of the resource, and which is constrained

by the URN syntax defined in RFC 1737 (Sollins aid Masinter, 1994). In contrast, the

resource name used by the RLS must only persist for as long as the resource still exists, and its

syntax is completely unconstrained, so long as it is unique within the RLS.

Also note that for the purposes of this chapter and the following one, the Locator will be

described as storing a resource's name/location mapping; that is, the record within the

Locator's database that maps a resource's name onto its location. This simplifies future

discussions when describing the RLS's architecture, deliberately ignoring the time of the

resource's creation for clarity. The temporal aspect of the Locator is defmed in full in section

5.4. To simplify the discussion further, although a name formed using any syntax can be

mapped onto a location formed using any syntax, it will be assumed that the format of a

resource's name will be a standard URL or a temporal URL, and the format of its

corresponding location will be a standard URL.

5.2.4 Defining the Locator's Client-Side Interface

As a Locator acts as a name server, it will be queried by existing web clients for the location

of a specific resource. In order to maintain backwards-compatibility with these clients, the

Locator must interface with them using an existing protocol, and so remain transparent to

them. This constrains the Locator to use either HTTP or the DNS's message format (see

152

Chapter 5 - Architectural Design of the HOMINID Model

Mockapetris, 1987b) as its functional interface to web clients, as these are the only protocols

that all clients use when requesting a web resource. Of the two, HTTP has been chosen, as it

already has a redirect mechanism (see Fielding Ct al., 1999) that can be used by a Locator to

redirect a client to a resource's current location. Although HTTP's redirect mechanism is

quite heavyweight in its operation, it is the only option that ensures the Locator will work with

all existing web clients. Performance measurements of the overhead that the Locator

introduces to the web are provided in section 6.4.5.

Figure 12 shows a high-level overview of a client interfacing with the RLS, with HTTP being

used as an interface onto the Locators.

[j
2.HTTP 302

Locators

Client

3.HTTP GET

Resource Locator Service

4.HTTP
200 OK

Resource

Current
Host

Figure 12 - A High-Level Overview of the RLS

153

Chapter 5 - Architectural Design of the HOMINID Model

The diagram shows a client sending a standard HTTP GET message to a Locator as if the

Locator was the server hosting the requested resource. The Locator examines its database,

retrieves the location of the resource, and responds with a standard HTTP 302 Found response

message, which informs the client that the resource has moved and provides the new location

using the HT7'P Location header (Fielding et al., 1999). If the Locator has not got a record of

the resource's name, then it must return a standard HTTP Error 404 Not Found response

message.

5.2.5 Missing Mediation

Figure 12 is a high level representation of the RLS, and depicts the client querying an

appropriate Locator. However, in practice, a client must be made aware of exactly which

Locator contains the required name/location mapping, but in a way that does not require the

client or the hosting server to be altered. As such, some form of mediation is required

between the client and the RLS that can transparently route the client's request to the

appropriate Locator, without requiring any modifications in the client or server.

This is difficult to achieve, however, as the constraints imposed on the RLS directly conflict

with its distributed nature. For example, scne distributed systems, such as the DNS or

directory services, use the structure of the namespace itself to identify the correct node, but the

RLS cannot, as the namespace must be left completely unconstrained. The alternative is a flat

architectural configuration, with nodes arranged as peers, and the namespace left

unconstrained, but this requires the search approach to be used, which will not scale to a

system the size of the web (Ingham et a!., 1996).

154

Chapter 5 - Architectural Design of the HOMINID Model

As such, in order for a client to locate the correct Locator in the RLS, a new approach to

mediation is required that:

. does not use a flooding algorithm;

. can locate the node with the required information as easily as that of a hierarchical

architecture;

. leaves the namespace as unconstrained as that of a flat architecture;

. does not impact the existing web architecture.

This new approach has formed a major part of the work conducted for this research

programme, and is presented in the following section.

5.3 Request Routing: Novel Mediation Between the Web and a Distributed System

To meet the constraints imposed upon the RLS, a novel solution has been developed that

mediates between the web and any new distributed system that wishes to interface with it.

Specifically, a novel node location system has been developed as part of this research

programme, which places no constraints on the namespace, does not waste bandwidth, and

which leaves each Locator as an independent node that has no knowledge of any of the other

Locators in the RLS. The node location system is called Request Routing, which uses a

155

Chapter 5 - Architectural Design of the HOMINID Model

Request Router to provide transparent, scalable mediation between the web and the RLS

through the use of a hash routing algorithm (Ross, 1997).

Hash routing is an extension of the hash function, which is a common method of searching for

information in a large database. The hash function works by scrambling some aspect of the

database key, and using this partial information to search for the data required (Knuth, 1998).

Hash routing extends this concept, by efficiently mapping a string (in this case a resource's

name) onto a specific server in a distributed system, while ensuring a uniform distribution of

resources across the servers in the system (Thaler and Ravishankar, 1998).

Specifically, a hash routing algorithm takes a string and maps it onto a hash space. The hash

space is partitioned such that the string is mapped to one and only one node in a distributed

system (Ross, 1997, Thaler and Ravishankar, 1998). Using a hash routing algorithm as the

basis for locating nodes in the RLS, therefore, enables any string to deterministically identify

the Locator that contains the required name/location mapping. As the Locator is a database, it

can be defmed to store any type of information, and so the resource's location can be defined

as any string. Thus, the hash routing algorithm solves the problem of how to use an

unconstrained namespace for both a resource's name and location, while efficiently locating

the correct Locator without flooding the system.

5.3.1 The CARP Hash Routing Algorithm

The Request Router (RR) uses the same hash routing algorithm as the Cache Array Routing

Protocol (CARP) (Valloppillil and Ross, 1998), which uses it to map a URL to a specific

156

Chapter 5 - Architectural Design of the HOMINID Model

cache in a distributed caching system. CARP uses hash routing to distribute the resource load

across all caches in a CARP system, such that resources within the cache are distributed

evenly across an array of machines. The algorithm has been adapted for use in the RLS,

however, and has two key differences:

. The CARP approach takes a name and returns a (copy of a) resource, whereas the RLS

returns the actual resource's location.

. The CARP approach uses internal lookup tables to keep track of the other machines in

the cache array, and each node must intermittently ping its neighbours to determine the

size of the array and its operational state. In contrast, the RLS adopts a novel approach

to node management, with each Locator being completely isolated from its peers.

5.3.2 How the CARP Hash Routing Algorithm works

The CARP protocol is designed for an array of caching servers. As such, the array comprises

a network of distributed caching nodes, and the CARP protocol is used to identify which one

hosts a specific resource. CARP works by mapping the URLs of resources that need to be

cached onto a partitioned hash space, with each set in a partition being associated with one

caching node (Ross, 1997). When a resource is required, the algorithm deterministically

identifies the node as follows:

157

Chapter 5 - Architectural Design of the HOMINID Model

. The URL of the resource is hashed.

. The URLs of each of the caches in the array are also hashed in turn, with a weighting

factor being applied that is set according to the physical characteristics of each node

(see below).

• The hash value of the resource and the hash values of the nodes are XORed together,

producing a score for each resource-URL-hash/cache-node-hash combination.

• The cache node whose resource-URL-hash/cache-node-hash combination scores

highest is the one that hosts the resource.

Thus, given only the name of the resource and the names of all the machines in the array, the

exact machine that holds the resource is uniquely and deterministically found. The resources

are distributed uniformly across the system, but the weighting factor can be used to skew the

distribution such that those nodes with a higher performance can receive more of the

resources.

5.3.3 Adapting the CARP Hash Routing Algorithm for the RLS

Although highly effective in large cache arrays, the CARP protocol has been adapted for use

in the Request Router in order to better meet the needs of the RLS. Specifically, each node in

a CARP system keeps a list of the URLs of all the caches in the system, and this causes a

degree of network overhead. When applied to the RLS, however, every RR would need to

158

Chapter 5 - Architectural Design of the HOMINID Model

know the URL of every Locator in the RLS, and periodically check for system configuration

changes. This would create an unacceptable increase in network overhead, and would limit

the types of device that could use the RR to those that could store and maintain the large lists

of Locators that would be required.

The RLS avoids this limitation, however, by removing the weighting factor from the

algorithm, and leaving the namespace of the resources open while restricting the namespace of

the Locators. As such, a URL pattern is defined, which all Locators must use for their own

name. The pattern encapsulates a number, which can be thought of as that Locator's identity

number. Each number must be unique in the system, and all numbers must be sequentially

ordered, starting from 0. An example URL pattern is:

http://www.nodeXLocator.net/

where X is a marker for where the Locator's number should be. So for example, the first three

nodes in the system (assuming a zero-indexing system) would be:

http://www.nodeO.Locator.net!

http://www.nodel.Locator.net!

http://www.node2.Locator.net!

Effectively, the URL pattern of the Locators acts as a well-known URL in a similar way to the

well-known ports defined for TCP applications. Note that the URL pattern must be sequential,

159

Chapter 5 - Architectural Design of the HOMiNID Model

and there can be no gaps in the sequence. The URLs of a complete sequence of nodes, each of

which has a URL that corresponds to the URL pattern, is therefore known as a URL sequence.

In this way, the URLs of the Locators themselves become deterministic.

5.3.3.1 Updating the Request Router

Simple hash routing schemes are brittle, such that the addition or removal of a node in the

system will re-map nearly all of the URLs onto different nodes (Ross, 1997). Robust hash

routing algorithms, such as CARP and us variant used in the RR, overcome this problem by

using the name of the resource and the name of the node together, which results in the re-

mapping of only 1/n (where n = the number of machines in the new system configuration) of

the URLs in the system (Ross (1997), Thaler and Ravishankar (1998)). As such, the number

of name/location mappings in the RLS that must be moved decreases with the number of

nodes in the system. The RLS provides a mechanism for automated node removal and

addition, which is described in section 6.3.

If a Request Router is unaware of a change in the system's configuration, then 1/n of its

requests will go to the wrong Locator. However, the RR does not need to be synchronized

with the configuration of the RLS, as the deterministic nature of the URL sequence enables it

to detect any change automatically. Specifically, once the RR has the URL pattern for the

RLS, it is a trivial matter for it to iterate along the resulting URL sequence, querying the

existence of nodes at each point in the sequence. If a Locator fails to respond, then the RR has

found the limit of the sequence (see Figure 13).

160

http://nodeO.Locator.net/

RR iterates through the URL sequence from
X = 0 until no response is returned, at which
point, the RR knows that n = X.

L!O
http://nodel .Locator.netl

Chapter 5 - Architectural Design of the HOMINID Model

#
	

X=3

http://node2.Locator.net/

RR with URL Pattern =
httpi/nodeX.Locator.net/

http://node3.Locator.net/

http://node4.Locator.net/

NO RESPONSE

Figure 13 - How the RR updates itself

Thus, if a Locator cannot find a resource, the RR can simply query the existence of the

Locators that have a node number that matches this limit (in case a Locator has been

removed), or is one greater (in case a Locator has been added). If the limit remains

unchanged, then the RR knows that the resource is unregistered with the RLS; otherwise, the

RR simply rehashes the resource's name using the updated value, and sends the request to the

newly calculated Locator. In this way, the RR is completely decoupled from the configuration

of the RLS, and so any change in the configuration of the system does not result in a flood of

161

Chapter 5 - Architectural Design of the HOMINID Model

update messages. Furthermore, the only information that the RR needs to store about the

configuration of the system is the URL pattern and the number of nodes.

5.3.3.2 Backwards Compatibility

For the RLS to integrate into the web's current architecture, it must be backwards-compatible

with all of the entities that currently use the web. In this, the RLS is completely different from

all other resource migration mechanisms, as the RR is decoupled from the RLS, and needs

only minimal information in order to function, enabling it to be deployed virtually anywhere

on the web. For example, it can be:

• embedded into a HTML document as a Java applet, ActiveX control or even script.

When the user clicks on a hyperlink, the click event can be captured by the embedded

RR, the hash routing operation performed, and the location of the Locator discovered.

Thus, the node location process occurs within the HTML page itself. This ensures

total transparency and maximum backwards compatibility, but permits only HTML

documents to use the RLS;

• built into a browser.

The browser automatically locates the appropriate Locator, allowing all servers to be

unaware of the RLS, but requiring the client to be modified;

162

Chapter 5 - Architectural Design of the HOMINID Model

designed as a browser plug-in.

The browser is extended rather than redesigned, with the RR being downloaded by the

user when required. This provides seamless evolution, and a solution that is more

backwards-compatible than the previous example. Again, all servers are unaware of

the RLS;

• built into a server, or added as a server module.

The RR can be deployed on the server, which can perform the hash routing algorithm

for each request it receives. This allows all browsers to be unaware of the RLS, and

gives server owners the choice of whether to use the RLS or not;

• embedded within a proxy server or a reverse proxy server.

The proxy server intercepts the request, and routes it to the appropriate Locator. This

requires reconfiguration rather than redevelopment, allowing all browsers, servers and

resources to be unaware of the RLS;

• designed into a layer 4 switch or policy based router.

The switch or router contains the RR, transparently routing the request to the

appropriate Locator without client or server knowing. This provides total transparency

and maximum backwards compatibility.

163

Chapter 5 - Architectural Design of the HOMINID Model

This flexibility enables the RR to be integrated into the web at the position where it is

required. In this way, the number of resources registered with the RLS can grow over time as

more people decide they wish to use its services. As such, the adoption of the RLS is designed

to be evolutionary, rather than revolutionary, proceeding in a distributed way across different

sectors of the web, as its services become useful to different types of user For example, to

begin with, small numbers of web authors may embed a RR within a HTML document. After

a short period, server owners may decide to embed a RR into their servers in order to use the

RLS without affecting the clients. From this, plug-ins can be made available for existing

browsers, allowing resources to be located directly in the browser, via both the DNS and the

RLS. Once a reasonable number of people use the RLS, Internet Service Providers can embed

a RR into their proxy servers. Eventually, the RLS will reach a critical mass of users, whereby

a RR will become an integral part of a browser and server, and thus part of the web itself. In

this way, the RLS's database becomes populated over time by resource owners who choose to

register their resources with it. As such, the database does not need to be initialised, and

because it freely co-exists with the DNS, does not prevent non-registered resources from being

accessed. In this way, the RR represents a novel solution to integrating new distributed

systems into the web's existing architecture.

5.3.4 How the Hash Routing Algorithm Works in the RLS

Figure 14 shows the architecture of the RLS. The figure depicts a client that wishes to locate

the resource whose name is http://www.anyserver.com/img.gzj' The RR is represented

abstractly as a box, to show that it can be positioned anywhere in the location process. For the

164

Chapter 5 - Architectural Design of the HOMINID Model

purposes of this example, however, assume that it is in a proxy server that the client is

connected to.

c

/	 Other Locators
,

I

www.anyaerver.com/irng.gff 	 Locator

4. Error 302 Found	 3. En'pr 302 Found	 Name	 Address
Request Router	 t	

www.anyserver.comlimg.gif 	 www.ServerA.com

5. GET	 '.,	 Locator's Lookup Table
ww.ServerA.comlimg.git 	 '.

.4..

6.200
OK	 RLS

• •	 Resource Name = www.anyserver.comlimg.gif
-.' Resource Location = www.ServerA.comlimg.gif

www.ServerA.com

Figure 14 -The Architecture of the Resource Locator Service

In order to locate the resource, the client sends a standard HTTP GET request (Fielding et al.,

1999), as it would do normally if retrieving the resource without the aid of the RLS. However,

the proxy server intercepts the call, and passes the URL to the hash routing algorithm. The

algorithm begins by calculating a hash value for the URL (URL_Hash), using the CARP

algorithm developed by Valloppillil and Ross (1998):

For (each char in URL): URL_Hash += rotl(URL Hash, 19) + char;

165

Chapter 5 - Architectural Design of the HOMINID Model

Once the URL_Hash value is found, the hash value must be found for each of the Locators in

the RLS (Locator_Hash). Again, using the CARP algorithm developed by Valloppillil and

Ross (1998), the algorithm does this as follows:

Locator_Hash += Locator_Hash * 0x62531965;

Locator_Hash = roti (Locator Hash, 21);

For each Locator_Hash value calculated, the algorithm must note which Locator's URL it was

derived from. Once each Locator_Hash value has been calculated, the algorithm proceeds to

combine each value with that calculated for URL_Hash, as follows (see Valloppillil and Ross

(1998)):

Combined Hash = (tJRL Hash A Locator_Hash);

Combined Hash += Combined Hash * 0x62531965;

Combined Hash = roti (Combined Hash, 21);

Again, for each Combined_Hash value calculated, the algorithm must note which Locator's

URL it was derived from. The algorithm will then be left with a series of values for

Combined_Hash (one for each Locator in the RLS), each matched with the URL of the

Locator from which it was derived. The algorithm can then simply select the Locator URL

matched to the highest scoring Combined_Hash value to find the Locator that stores the

URL's name/location mapping.

166

Chapter 5 - Architectural Design of the HOMINID Model

The hash routing algorithm returns with the correct Locator's IJRL, which the proxy server

uses to locate the correct server to pass the original HTTP GET request onto. The Locator

then retrieves the URL http://www.anyserver.com/img.giffrom the HTTP GET request, and

uses it as the key into its database, where it retrieves the location of the resource. The location

is passed back to the proxy encoded in an HTTP 302 redirect response message, which is

returned without change to the client that made the original request. As such, from the client's

perspective, a standard HTTP request has been met with a standard HTTP redirect response,

and the resource can be located at the location specified in the response message's location

header according to the standard HTTP 1.1 protocol. In this way, the RLS is completely

transparent, and so is able to effectively integrate into the existing web's architecture without

requiring any modifications of existing web entities.

5.3.5 The Design of the Request Router

The Request Router is a generic entity that encapsulates the hash routing algorithm, and uses it

to uniquely identify a node in a distributed system when given a string identifier. As such, the

RR can be used with any distributed system whose nodes comply with its back-end interface,

and which uses HTTP to communicate. For the purposes of this discussion, however, the

system is assumed to be the RLS, the node is assumed to be a Locator within the RLS,and the

identifier is the URL of a resource.

The Request Router must accept any string as input, perform the hash routing function on it,

and output the URL of the correct Locator in the RLS. More specifically, the RR must

provide two interfaces: a function-oriented front-side interface, which clients of the RLS use

167

Chapter 5 - Architectural Design of the HOMINID Model

to query a Locator with; and an HTTP-oriented back-end interface, which is used to interface

directly with the Locators via HTTP. Using HTTP in this way enables the RR to integrate

with the web seamlessly, and to contact a Locator wherever the RB. is deployed. In contrast,

the front-side interface provides a standard API, which a client application must be adapted to

if it wishes to use it. The client application can then provide a web-specific wrapper around

this API, which hides the RR from the web entities that use it to maintain backwards-

compatibility (for example, a proxy server provides a HTTP wrapper around the RB. to hide it

from a browser).

If the RR is asked to query the RLS for a resource that is not registered, the RLS will return an

Error 404 Not Found message. It will not attempt to locate the resource using the DNS, as

this may not be appropriate in all cases. For example, a server hosting a RR may have

registered all of its resources with the RLS, and so an Error 404 from the RLS means that the

resource does not exist, not just that it is not registered. As such, it would serve no purpose for

the RLS to contact the DNS in this situation, and so the RLS only manages its ownregistered

resources, leaving client applications to determine what to do with those that are unregistered.

In addition, a RR may receive an Error 404 message from a Locator because the configuration

of the system has changed, and the name/location mapping has moved to a different Locator.

In this case, the DNS still has no record of the resource, but the RLS has. As such, the RR

should update its view of the system configuration (i.e. it should perform an automatic

update), but only if instructed to do so by the client application. If not, the RR should simply

pass the Error 404 back to the client application, and let it decide what should be done.

168

Chapter 5 - Architectural Design of the HOMINID Model

5.3.5.1 The Request Router's Interfaces

The RR's client-side interface has two functions that are used to identif' the correct Locator

(or, indeed, a node in an equivalent distributed system). The first, RouteRequestO, takes the

name of the resource, and returns the appropriate Locator URL with the resource's name

appended	 onto	 it	 as	 a	 Query	 String	 (e.g.

http://www. node 1.Locator. net/query?resourcename =http://www. aserver. com/aresource.htm).

This URL can then be sent directly to the appropriate Locator without the need for adding any

new HTTP headers. The Locator will return a HTTP 302 Found response message, which

will be acted upon by the browser as per standard HTTP conventions (see Fielding et al.,

1999), and the resource successfully located. In this way, script languages such as JavaScript,

which cannot ordinarily alter HTTP messages, can use the RLS, allowing a HTML document

to locate migrated resources on a browser that has no knowledge of it (see Figure 15 for an

example). Note that the RouteRequestO function will force the RR to perform an automatic

update to check the system's configuration if an Error 404 is returned. Thus, if the function

returns an empty string, the client knows that the resource is not registered with the system.

II Assume RR is a pre-instantiated ActiveX RequestRouter, and that
// 5URL is a resource whose location is known by the RLS
Function NavigateToRe source (stJRL)

var sLocatorURL;

I/Get the URL of the correct Locator
sLocatortiRL = RR.RouteRequest(sURL);

//sLocatorURL can be used directly by JavaScript to
I/navigate to the appropriate resource
window, open (sLocatoruRL);

Figure 15- Sample JavaScript function showing a RR embedded in a HTML Page

169

Chapter 5 - Architectural Design of the HOMINID Model

The second function, GetNodeByNameO, takes the name of a resource (which can be any

string) and returns the URL of the appropriate Locator. This function only identifies the

Locator, returning its location as a URL; it does not append the resource's name onto the

Locator's URL. To retrieve the location of the resource, the Locator's URL can be used by

the client application in a subsequent HTTP GET request message, together with a new HTTP

request header called resource-name, which has the name of the resource itself as its value

(this forms part of the RR's back-end interface, and must be implemented by all nodes in the

distributed system that communicate with the RR). The Locator will then return a HTTP 302

Found response message, with the URL of the resource contained in the message's location

header (Fielding et al., 1999). Note that the Locator requires resource-name to be a new

request header because the existing headers in HTTP have inappropriate semantics. For

example, the resource-URI header of the GET method specifies the URL of the Locator, not

the web resource; the host header specifies the web server, not the resource; and the location

header and ETag header are response headers only (Fielding et al., 1999).

The RR also has functions that enable the URL pattern to be changed (thus allowing it to

interface with other distributed system on the web), and a function called UpdateO, which

enables it to determine the number of Locators in a network by performing an automatic

update.

Some clients, such as mobile phones, may have very limited processing abilities, and may not

be able to perform the hash routing function required. As such, part of the RR's back-end

interface includes a new HTTP request header authoritative-lookup, which is defmed using a

170

Chapter 5 - Architectural Design of the HOMINID Model

Boolean value (default is false), and which forces the Locator that receives the request to

perform the hash routing function itself if it cannot locate the resource in its own database. In

this way, the client can send the request to an arbitrary Locator, and have the RLS itself locate

the correct Locator, enabling the client to have no direct interaction with the RR at all.

However, due to the performance overhead this places on the Locator, this functionality

should be restricted as much as possible.

5.3.6 Scalability

In order to work within the web, the design of the RLS must be fully scalable in a number of

areas. The following sub-sections describe the scalability of the RLS, while real world

measurements are presented in section 6.4.5, which have been taken from an instrumented

prototype of the RB. that has been developed as part of the research programme.

5.3.6.1 Network Overhead

Hash routing is a very fast algorithm for locating a node in a distributed system, providing a

deterministic request resolution path through an array of machines, which results in locating a

specific node in a single hop (Microsoft, 199Th). As such, the network overhead introduced

by the RLS for both a successful and an unsuccessful resolution operation is always two

additional HTTP messages (either a GET and an Error 302 Found response, or a GET and an

Error 404 Not Found response).

If the RLS cannot find the resource, then a client application may contact the DNS if required,

and if this is successful, the round-trip time to the RLS via the RR has been wasted. If,

however, the RLS is completely integrated into the web, such that the DNS is not used to fmd

171

Chapter 5 - Architectural Design of the HOMINID Model

the locations of resources, then all resources will be registered, and an Error 404 means that

the resource does not exist on the web, not just in the RLS. As such, there will be no added

overhead, as the resource is unattainable.

5.3.6.2 CPU Overhead

The design of the RLS is such that the network overhead is constant, regardless of how many

Locators are in the system, whereas the CPU overhead required by the RR scales linearly with

respect to the number of Locators. As such, the scalability of the design is constrained more

by CPU overhead than network overhead.

The linear scaling of the RR results from the hash function being used to distribute a set of

records across many Locators, rather than to generate a unique value each time it is used, and

so it does not have to worry about managing collisions, as the same result (i.e. the idertified

Locator) can be used many times for different resource names. The function distributes the

records by hashing the URL of each Locator in the system, and as the time taken to hash each

URL is virtually uniform (dependent solely upon the number of clracters in the URLs that

are hashed), the CPU overhead increases linearly with respect to the number of URLs (and

thus Locators) it must hash.

5.3.6.3 Scalability of the Overall Design

In terms of growth, the hash routing algorithm can scale to over 4 billion (232 = 4,294,967,296)

Locators, performing single-hop resolution throughout (Microsoft, 1997b). Assuming each

Locator can store the names and location of 1 million resources (which, assuming the name

and location each use a URL that averages 50 characters, will require a database only 100 MB

172

Chapter 5 - Architectural Design of the HOMINID Model

in size), today's web, with over 1 billion documents, would need the deployment of 1,000

Locators to fully manage all resources. Alternative combinations of records-per-Locator

against number of Locators can be tested to optimise the configuration, but network overhead

is unchanged regardless of the number of Locators. This makes the system scalable up to 232

Locators, or 4 quadrillion managed resources. However, the CPU time taken to perform the

hash routing algorithm limits the practical number of Locators that can be used. Section 6.4.5

discusses this in more detail, and provides real world measurements of the overheads that are

involved.

5.3.7 Resilience

Because of the system's reliance on the URL sequence, it is not resilient to node failure.

Should a Locator fail, not only will its records not be available, but any RR that performs an

automatic update during the failure will calculate the wrong number of nodes in the system,

and will map most URLs onto the wrong Locator. However, the disruption can be limited if

the RR continues to check for the existence of nodes beyond that at which no response is

received, effectively enabling it to jump any holes in the URL sequence. Although the RR

will still not be able to access the records in the failed Locator, it will at least know the correct

configuration of the system, and so all other records will be available. In addition, the

system's resilience is actually better than that of the DNS, which, due to its hierarchical

structure, has a single point of failure (the root node). The reliability of the DNS comes from

the introduction of redundancy into the system, with distributed servers clustered to provide a

single fault-tolerant node. As such, future work will look at introducing redundancy into the

design of the RLS, either by clustering several servers to provide a more fault-tolerant Locator

173

Chapter 5 - Architectural Design of the HOMINID Model

design, or by using a duplicated hash routing algorithm, such as that proposed by Kawai et al.

(2000). Duplicated hash routing uses two hash routing functions and two cloned systems, one

of which is a secondary system that acts as a backup in the event of a node in the primary

system failing. However, the benefits of this algorithm need to be determined, as although the

reliability of the system is improved, the size and complexity are increased.

5.3.8 Impact of the Resource Locator Service on existing Web mechanisms

The RLS has been designed to be backwards compatible with the existing web architecture.

The RR ensures that it can be integrated into the web without affecting either clients or

servers, but there are other systems, such as caching servers, that also need to be considered if

the RLS is to be effectively deployed. This section considers the impact of the RLS on these

systems.

5.3.8.1 Impact on Caching Servers

Caches are an integral part of the web, and help to speed up resource delivery dramatically.

Caches exist at all levels of the system, from an enterprise level, though ISP level, and up to

country level, with massive caches storing resources that are hosted outside of a country in

order to minimize the traffic that passes across expensive long distance lines. In order to work

effectively within the web, the RLS should not have a negative impact on such systems.

When a cache receives a request for a resource for the first time, it forwards the request onto

the appropriate origin server, and stores the returned response before passing it back to the

requesting client. Subsequent requests for the same resource are then served directly by the

cache providing the stored resource is still fresh. With the RLS being used, the initial request

174

Chapter 5 - Architectural Design of the HOMINID Model

by the client will be to the appropriate Locator, and the response will be an Error 302 Found

message. HTTP 1.1 defines that the cache must not store this response message, unless

explicitly instructed by the origin server (in this case, the Locator) (Fielding et al., 1999). The

Locator will not instruct the cache to store this response message, and so all subsequent

requests for the same resource will always be passed through the cache and onto the

appropriate Locator. As such, the amount of traffic between the cache and the Locator will be

more than would have existed between the cache and the origin server. However, the traffic

involved will only be request and response messages, and not the actual resource itself. As

such, the extra traffic incurred should be minimal.

Upon receiving the 302 Found response message, the client will issue another request for the

resource, to the server at the specified location. The cache will receive this message as a

separate GET request, and will retrieve the resource from the server. The cache will then store

the resource before passing it onto the client. All future requests for this resource can then be

served by the cache. As such, the RLS does not increase the number of cache misses for the

resource.

The impact of the RLS on caches, therefore, is to create an overhead of only two extra HTTP

messages (i.e. those between the cache and the Locator) per request, as the cache will serve

the subsequent redirected request. This overhead is the same as that caused by the RLS

without a cache being used, and so the overall impact on a cache is negligible.

175

Chapter 5 - Architectural Design of the HOMINID Model

5.3.8.2 Impact on History and Bookmark Mechanisms

The RLS relies on the HTTP redirect mechanism to serve the requested page. However, a

browser will navigate to the new location after receiving a redirection command, and use the

new URL in its History and Bookmark mechanisms. Thus, when a user navigates to a

resource that has migrated, it is the resource's transient location that will be stored by the

browser's history and bookmark mechanisms, rather than its persistent location.

This situation can be avoided by proxy servers that contain the RR and retrieve the resource

from its location on behalf of the client. The client would then never receive the redirect

response message from the Locator, and so would use the persistent name of the resource in its

bookmark and history mechanisms, rather than the resource's location. Alternatively, browser

plug-ins that contain the RR can be made to transparently alter the mechanics of the history

and bookmark mechanisms, such that the name and not the location is stored. As such,

although the RLS does have a small impact on these mechanisms, it can easily be overcome.

5.4	 Temporal References

The temporal reference is a core part of the HOMINID model, and can be integrated into the

web through the RLS. As the RLS can support any string as the name or location of a

resource, it can support the syntax of a temporal reference just as easily as it can a URL.

However, care must be taken in the design of the temporal reference's syntax to ensure that it

can safely co-exist with the URL to maintain backwards-compatibility. As such, two different

versions of the temporal reference have been defined:

176

Chapter 5 - Architectural Design of the HOMINID Model

A completely new Temporal URL scheme, which provides a long-term architectural

solution, but which currently only works with the RLS.

A URL extension, which provides a backwards-compatible short-term solution, but is

less elegant.

5.4.1 The URL Extension

The URL extension version of the temporal reference comprises a URL with a timecreated

temporal component appended as a Query String which allows existing URLs to be used as

temporal references. For example, the extended URL:

http://www.aserver.com/index.htm ?timecreated =Sun, %2006%2ONov%201994

has http://www.someserver.com/index.htrn as its location component, followed by ? as a

separator, and timecreatedSun,%2006%2ONov%201994 as its temporal component. Note

that %20 is the URL encoding for whitespace, and that the time and date are formatted

according to RFC 1123 (Braden, 1989). Query Strings are an integral component of the URL

specification, and are used to pass parameters to servers (Berners-Lee et al. 1994). However,

servers must ignore parameters they do not need to use, and so adding atimecreated parameter

to a URL's Query String will enable existing hyperlinks to become temporal references

without requiring the modification of browsers or servers.

177

Chapter 5 - Architectural Design of the HOMINID Model

Those URLs that exist without a temporal component are re-defined as current URLs; that is,

they represent the most current version of a resource. Once the content changes, the new

resource with the new content is assigned the current URL without the timecreated

QueryString, and the old resource with the original content is assigned the same URL, but

with an appropriately formatted timecreated QueryString appended onto it. Note that for

successful resolution of such extended URLs, the server must be able to determine which

resource to serve according to the timecreated QueryString. However, all existing URLs can

be treated as current URLs, without requiring any modifications to the server. Formally

stated, a temporal URL extension can be defined as:

a standard URL with a temporal component encoded in its Query String using the

timecreated parameter, and a corresponding value that must not exceed the current

GMT time, and that must be encoded according to RFC 1123.

5.4.2 The Temporal URL Scheme

The new Temporal URL scheme is an architectural solution that conforms to the encoding

rules defmed in Berners-Lee et al. (1998), and encapsulates the same semantics of the URL,

but with the addition of a temporal component. Specifically, the new scheme, called TURL

(Temporal Uniform Resource Locator), has been defined as:

turl://authority/path;time-created?query

The authority component of the TURL is identical to that of the URL (i.e. the domain name of

the hosting server). The path component, too, is identical to the URL, but with one exception:

178

Chapter 5 - Architectural Design of the HOMINID Model

a semi-colon separates the path that the server uses to locate the resource from the temporal

information used to identify the time that the resource was created. The query component

remains as it is defined for the URL, but the whitespace of the temporal component has been

replaced with a dash (-) for clarity. Thus the temporal URL extension:

http://www.aserver.com/index.htm ?timecreatedSun, %2006%2ONov%201994

can be re-written as a TURL as:

turl://www.aserver. com/index.htrn;Sun, 06-Nov-1994

In addition, as HTTP essentially forms the interface between the RR and the Locator, it has

had to be extended in order to map the temporal component of the TURL onto a HTTP header.

HTTP ' s existing headers already encode temporal information, but they are largely used for

caching, and are normally sent by the server rather than the client. For example, the Last-

modfled entity header is used to represent the time at which the resource was last modified

(Fielding et al., 1999), which is another way of saying the time at which the resource was

created. However, it can only be used by servers in a response message, and cannot be used

by a client at all. Equally, the Age entity header, which provides the estimated age of the

resource on the origin server (Fielding et al., 1999), is also a response header, only sent by a

server (usually a caching proxy server). Alternatively, the Date header field is a general

header, which can be used by both client and server, but only to represent the date and time at

which the message was originated, not the resource (Fielding et al., 1999). Finally, theETag

179

Chapter 5 - Architectural Design of the HOMINID Model

header could encode the temporal information, as it provides a means of encoding user-

defined values, but it, too, is a response header (Fielding et al., 1999).

As such, rather than subtly altering the semantics of existing HTTP headers, the RLS uses a

new general header, called time-created, which can be used by both client and server, and

which defines the time at which the resource was created. The value of the new header must

be formatted according to RFC 1123 (Braden, 1989), and it must map exactly onto the

temporal component of the TURL. The new header provides the preferred means for querying

a Locator according to a resource's time of creation, thus separating the temporal information

from the resource's name. In this way, any appropriately specified namespace is able to

become a temporal reference by mapping its temporal component onto this new HTTP header,

enabling the RLS to retain its unconstrained namespace.

5.4.3 Defining the Scope of the Temporal Reference

A temporal reference supported by the RLS can enable one resource to persist across time, but

not the resources behind any hyperlinks that might be embedded within it. For example, a

HTML document registered with the RLS may contain several hyperlinks, but if the resources

underlying the hyperlinks are not registered with the RLS, then they may not persist. The RLS

preserves a resource's referencing hyperlinks, therefore, but cannot guarantee the integrity of

the hyperlinks within the resource. As such, the RLS can only prevent link rot for those

resources that it has been instructed to manage, and so web-wide link rot prevention can only

be achieved if the RLS manages all web resources.

180

Chapter 5 - Architectural Design of the HOMINID Model

In addition, transient resources, such as dynamically created HTML documents, or streaming

audio or video, are also not covered by the current design of the RLS and the temporal

reference. This is because the semantics of the TURL simply extends those of the existing

URL protocol to encompass time, rather than adding any new functionality, and an existing

URL references the object that creates a dynamic resource or a multimedia stream, rather than

the transient resource itself. For example, a URL might identify an application behind a CGI

(Common Gateway Interface) gateway, which in response returns a dynamically generated

HTML document, but it does not identify the HTML document. Similarly, temporal

references may enable the application to persist (although their definition does not cover

persisting the application's state, merely its existence as a discrete file), but they do not cover

its output, unless it is explicitly saved as a permanent web resource and given its own

(temporal) URL.

5.4.3.1 The URL Extension Versus the Temporal URL

Using the URL extension enables temporal references to be implemented immediately without

any change to the web's architecture, and should be used when the RLS is first deployed on

the web. However, the 'FURL provides a more long-term solution, and should be the preferred

identifier once the RLS has become adopted as part of the web's architecture. Thus, new

versions of browsers and servers should support both forms of idenlifier, while all Locators

must support both identifiers. As an intermediate solution, a plug-in or ActiveX control can be

developed that extends the functionality of existing browsers to enable them to support the

TURL.

181

Chapter 5 - Architectural Design of the HOMINID Model

Note that some applications may wish the Locator to return a number of resources, whose

time-created value lies between certain times. However, this will not be defined for this

version of the Locator, as it introduces the scope for potential Denial of Service attacks, and

extends the functionality of the Locator to include database querying. This would require

additional work to avoid the security implications, and extra HTTP headers to enable the

Locator to be queried. As such, this work is left to the client to do at this stage, but future

work will examine the possibility of providing this feature.

5.5	 Designing the Oracle Server

The role of the Oracle Server is to manage the informational integrity of the hyperlink, by

providing universal access to characteristic and navigational infons about the resources on the

web and the way in which they are used.

Due to time and resource constraints, the Oracle Server will not be defined in as much detail

as the RLS. However, the design of the Oracle Server is similar in many ways to the RLS, and

so can use many of the techniques that were used in the RLS's design. As such, the following

sub-sections functionally define the Oracle Server, and describe how it can be implemented,

but do not provide a full definition of its architectural design.

5.5.1 The Oracle Server Network

One Oracle Server cannot cope with managing meta-data for all the resources on the web, and

so a distributed network of Oracle Servers, called the Oracle Server Network (OSN), is

required.

182

Chapter 5 - Architectural Design of the HOMINID Model

The OSN also uses a Request Router for its node location system, with the URL pattern of:

http://www.nodeX.OracleServer.net

Using a Request Router enables the OSN to be queried with the URL that the user wishes to

know more about. In this way, the URL (or other identifier is used by the user to navigate

across the web, and by the RLS and the OSN as an index into their respective databases.

5.5.2 The Architecture of the Oracle Server Network

Figure 16 shows the architecture of the Oracle Server Network. The user clicks on a hyperlink

to download a resource, causing the browser to send a HTTP GET request. In this example,

the client is connected to a proxy server that contains a RR capable of routing into the OSN,

but the RR can be located wherever there is appropriate functionality for interpreting the

OSN's results. The proxy forwards the request onto the origin server and downloads the

resource. However, rather than returning the resource back to the client, it extracts all the

hyperlinks from it and submits each one to the OSN for a judgement on its quality and the

strategy that it uses, according to the heuristics used by the OSN. If the verdict is OK then the

proxy can change the colour of the hyperlink in the resource to green (for example); if the

verdict is that the hyperlink is deceptive, the proxy can colour it red; and if the OSN has not

got enough information to reach a verdict, the proxy can colour it amber (note that in this

6 Both the RLS and the OSN can support any type of resource name, regardless of syntax. However, for clarity,
the term URL will be used in the discussion, as it represents the most prevalent and identifiable type of resource
name currently on the web.

183

Chapter 5 - Architectural Design of the HOMINID Model

example, neither the client nor the origin server needs to be altered in order to present this

information).

In Figure 16, for example, the hyperlinks www.linkl.com and www.link3.com are safe;

www. link2. corn is deceptive; and www. link4. corn is unknown. Note that the exact presentation

of the information should be user-defined, and not dependent solely on colour. The OSN is

designed as a system for judging the informational integrity of hyperlinks; how that

information is presented is up to the client application.

Origin Server I www.linkl.com
I www.link2.com

ii71	
www.link3.com

=	 I www.link4.com

UflK1Ofl

www.11nk4.com
	

2. GET URL
3. 200 OK

1.GETURL	

#
	 4.Query www.linkl .com

5.VERDICT
Client	 6. 200 OK Proxy containing

Request Router for
the OSN

\ Oracle	 L.\	 •1
Server

OSN

FIgure 16 - The Architecture of the Oracle Server Network

5.5.3 Obtaining the Infons

The OSN obtains its navigational and characteristic infons from the RLS, with which it has

been designed to work closely. As such, the OSN can manage only those resources that are

registered with the RLS, as it cannot obtain the required infons from anywhere else.

184

Chapter 5 - Architectural Design of the HOMINID Model

5.5.3.1 Navigational Infons

The navigational infons come directly from the RLS each time a user downloads a resource.

Whenever a user clicks on a hyperlink to a registered resource, the RLS is queried for the

resource's location. This query represents a navigational infon, as it implicitly registers a hit

on the resource. If the RLS manages all of the web's resources, then it can provide the OSN

with all of the navigational infons across the web.

Figure 17 shows how the navigational infons are obtained from the user's browsing sessions,

as the URL of the hyperlink is passed from the browser to the RLS, which passes it onto the

OSN before returning the resource's location. In this way, the OSN updates its hit statistics

for a URL every time the user clicks on a hyperlink.

C 0 0

URL
	

URL

	

LJ	 \ Lr
Request Router for	 Locator's Request	 /

	

the RLS	 Router for the OSN
I'

RLS

'S

•1

7"a L'\

\ Oracle	 /'
\Server	 •1

'I
S

S

OSN

FIgure 17 - The Navigational Infons passed from the client to the OSN via the RLS

185

Chapter 5 - Architectural Design of the HOMINID Model

The infons are guaranteed to be reliable, as there is a direct one-to-one mapping between the

user clicking on the hyperlink and the OSN receiving the information from the RLS, with no

caching or proxy intermediaries in between that can distort the data. Each Locator in the RLS

can locate the appropriate Oracle Server using a RR with the URL pattern set to that of the -

OSN. In this way, the same URL is used end-to-end from the user to the OSN.

5.5.3.2 Characteristic Infons

Characteristic infons are provided by the resource owner whenever they register their resource

with the RLS. The infons should describe the characteristics about the content of the resource,

such as subject type, colour, etc., and the physical characteristics of the resource itself, such as

file size. The RLS can then pass these details onto the OSN once registration is complete.

The meta-data that should be stored is currently left up to the resource owner, who is free to

specify whatever characteristics of his resource that he feels is most appropriate. However, a

core set of meta-data will be specified in future research, providing the user with a set of

characteristics that should be common for all resources. It is envisaged that this set will be

based on the Dublin Core meta-data elements, which include elements such as Title, Creator,

Publisher, Type, Language, etc. (see DublinCoreWG, 1999). However, the user will not be

required to submit this information, only encouraged, as it may be a long and laborious

process that could discourage resource owners from using the RLS and OSN. In addition,

meta-data can easily be forged, and making its submission a requirement of registration would

only serve to encourage unreliable information. However, some meta-data can be

automatically inferred, such as file-size, content type, etc. Equally, it is in the resource

186

Chapter 5 - Architectural Design of the HOMINID Model

owner's best interests to submit accurate information if they wish the resource to receive as

much attention as possible. The browser will be used by many users to judge the quality of a

hyperlink before giving the referenced resource any attention. This alters the selection

pressures on the hyperlinks in the user's favour, making those hyperlinks that do have accurate

meta-data appear more reliable than those that do not. As such, resources without meta-data

will be presented to the user as such (Figure 16 showed them appearing highlighted yellow),

and so stand less of a chance of being clicked than those that do. In this way, permitting the

user to ignore meta-data acts in the user's interests, rather than against them.

5.5.4 The OSNas a Platform for New Services

The OSN provides a database that contains information about the content on the web and its

patterns of usage, which can be retrieved at any time through a standard interface. As such,

how this information is presented to the user is dependent upon the client application, and is

not restricted to the example in Figure 16. For example, a browser can be configured to allow

the user to request the meta-data for each hyperlink, enabling them to see the owner of the

underlying resource, for example, rather than just a coloured hyperlink. Alternatively, the user

could request the usage statistics for the hyperlink, showing how many people have

downloaded the resource over time. In this way, the OSN provides detailed information on

the content in the resources, significantly enhancing the user's navigational heuristics.

In addition, the OSN can be seen as a platform for new services from third parties that make

use of its information. For example, these services could show how the usage patterns for a

resource change over time as its content is updated, or as it migrates across servers. They

187

Chapter 5 - Architectural Design of the HOMINID Model

could also show how the number of hyperlinks that reference a resource change over time, and

compare it with others so that resource owners can see how much attention their resources

receive compared with those of their competitors.

The interface to the OSN has not been defmed, but will be based on XML messages sent over

HTTP. The information that can be queried through this interface has so far only been

specific to an individual resource, using its URL as an index into the database. However,

future work will look at the viability of enabling each Oracle Server to serve collated

information on a range of resources according to complex queries. For example, the OSN, if

its information could be co-ordinated, could be used to determine the most popular resource in

any given subject; or who the most prolific web resource creator is; or what the biggest

resource on the web is, etc. As such, the OSN can be used not just to query the web, but to

measure it as well, providing a platform for new services that will be able to provide

information from across the web as a whole, rather than from a single server. In this way, the

OSN increases the web's effectiveness by reducing its noise, and increases its value by

enhancing the services it can offer.

5.6 Summaiy

This chapter has described the HOMINID model's architectural design, which enables it to be

integrated into the web without breaking the web's existing architecture. Specifically, it has

presented the design of the Resource Locator Service, Temporal References, and the Oracle

Server Network, and described how they can integrate with the web through the Request

Router. This object provides transparent access to any distributed system, enabling the

188

Chapter 5 - Architectural Design of the HOMINID Model

services of the RLS and the OSN to become part of the web in a way that is completely

backwards-compatible with its existing architecture. In this way, the implementation of the

HOMINID model provides a solution to the web's flaws that the research set out to solve.

Specifically, the model:

• provides a solution to link rot and the shrinking namespace of the web through the

RLS;

• introduces the dimension of time to the web with Temporal References,

. decreases the level of noise in the web by increasing the quality of its information and

enhancing its navigation mechanisms through the OSN.

The Request Router is the key to the implementation of the model, as it is the novel mediator

between the web's architecture and the distributed databases of the RLS and OSN, ensuring

that the two systems fully integrate without requiring modifications to the web. Because it is

based on the CARP algorithm, which has been adopted and deployed by companies such as

Microsoft for use in its Proxy Server product, it is mature and stable enough for enterprise-

wide commercial deployment, and the variant defined for the RLS should be just as stable on

the web. The following chapter presents a prototype of the Request Router that has been

tested and measured to further validate its design.

189

Chapter 5 - Architectural Design of the HOMINID Model

As was said at the beginning of this chapter, due to time and resource constraints, the research

has had to focus on the RLS at the expense of the OSN, the design of which has been

described but not specified. As such, the next, and penultimate, chapter will focus exclusively

on the RLS. Specifically, the chapter will present a detailed specification of the RLS,

including the complete resource migration process; several protocols that have been developed

as part of its functional design; and a prototype that has been developed in order to test the

design and measure the performance of the concepts described.

190

Chapter 6 - The Resource Locator Service

6.	 The Resource Locator Service

This penultimate chapter focuses exclusively on the specification and

implementation of the RLS, defining its operation, and presenting a fully

working prototype to validate its architectural design. New protocols that have

been developed as part of the RLS's design are presented, along with

performance measurements of the prototype. In addition, services that use the

features of the RLS, such as load balancing and fault tolerance, have been

implemented to demonstrate its power and flexibility.

191

Chapter 6 - The Resource Locator Service

6.1	 Introduction

In order to validate the design of the HOMINID model, and to show the effectiveness of the

Request Router, the RLS has been fuily specified as part of this research, and a prototype built

to test its performance. This chapter therefore, focuses entirely on the specification,

implementation, and operation of the RLS.

The chapter focuses on how the RLS provides automatic transparent resource migration, and

how the number of Locators in the system can be updated. These functions have required the

development of two new protocols, which are defined in full. The chapter then presents a

detailed description of a prototype RLS that has been developed to validate its design.

Measurements taken from the prototype are presented before the chapter concludes with a

description of several new services that have been developed that use the RLS to demonstrate

its flexibility.

6.1.1 Protocol Development

The functionality of the RLS has required the development of two new protocols:

. The Resource Migration Protocol (RIVIP);

. The Locator Control Protocol (LCP).

Both protocols are based on HTTP, which enables the Locators to be based on existing web

servers rather than a completely new type of server. HTTP is an extensble protocol, and

192

Chapter 6 - The Resource Locator Service

provides three different ways in which its functionality can be extended (see Whitehead and

Wiggins, 1998):

URL Munging - commands to the server are appended onto a URL's QueryString (e.g.

http://www.server. corn ?cornrnandnarne=value

Overloading POST - HTTP's POST method encapsulates parameters that are sent

from the client to the server using user-defined HTTP headers.

. New H77'P Methods - HTTP methods are the verbal part of the message that defmes

what it does (such as GET or POST). New methods can easily be created, however,

that extend HTTP ' s functionality.

Of the three approaches, adding new methods is the one that will be used for the RLS's new

protocols. URL munging is perhaps the easiest to implement, but it is an inelegant solution

that can easily conflict with other URL munging schemes, and which overloads the semantics

of HTTP's GET method (Whitehead and Wiggins, 1998). Using HTTP's POST method to

introduce a new protocol is perhaps the most common approach that is used to extend HTTP,

but again it overloads the semantics of HTTP's POST method, and it also has the drawback of

being a security risk. Most firewalls normally allow HTTP POST messages to pass through

unchallenged based on the assumption that the message is HTTP-specific, not part of some

undetermined protocol (see Cohen et al. (1998) for an in-depth discussion on the security risks

of overloading the POST method). In contrast, new HTTP methods use HTTP's own rules for

193

Chapter 6 - The Resource Locator Service

extending its method set, and so can reuse its existing headers where necessary (Whitehead

and Wiggins, 1998). As such, the new protocols will use new methods and headers that are

defined according to the syntax and rules of HTTP version 1.1 (Fielding et al., 1999).

6.2 Migrating Resources with the Resource Migration Protocol

The Resource Migration Protocol is based on HTTP so that a resource can automatically

migrate across existing web servers without them even being aware of the migration process.

In this way, the R1vIP is completely backwards-compatible with all web servers. However,

basing the RMP on HTTP does present problems, as HTTP only provides limited file

manipulation support, authentication and querying, all of which are necessary if a resource is

to be migrated automatically. However, there is m other web-based standard that can be used

across all servers in a consistent, backwards-compatible, and reliable way.

Recently, however, a new set of protocols has been developed by the IETF that support full

file manipulation using standard HTTP. The Web Distributed Authoring and Versioning

(WebDAV) protocol (Goland et aL, 1999) is designed to allow remote authoring of resources

by extending the HTTP protocol. Complementary protocols are also being developed to

provide authentication and access control, and to allow querying of a web server, all based on

HTTP. These protocols are designed for group authoring of web resources, but some of the

features they provide can be used in the design of the RMP. This represents a novel

application of WebDAV that its designers have not previously identified. As such, this section

discusses the suitability of WebDAV for resource migration, and shows how it can be used in

the design of the RMP.

194

Chapter 6 - The Resource Locator Service

6.2.1 Applying the WebDA VProtocols to Resource Migration

WebDAV is designed to "...support efficient, scalable remote editing free of overwriting

conflicts" (Slein et a!., 1998). It was designed to address the lack of such support in HTTP, so

that a defined set of standard functions could ensure interoperability amongst all web servers.

For the purposes of the RLS, these functions can be grouped into three broad categories (see

Slein et a!. (1998) for a complete list):

. Security

. Safe File Transfer

• Server Querying

The following sub-sections describe the WebDAV functions specific to each of these

categories, and show how they can be applied to resource migration.

6.2.1.1 Security

WebDAV is designed to enable remote distributed authoring of web resources. As such, it is

imperative that only authorized people are allowed to write to a resource. Equally, WebDAV

supports file locking on remote web servers, and so requires clients to be authenticated before

locks are granted. RFC 2518, the WebDAV RFC (Goland et al., 1999), states that existing

HTTP basic authentication (Franks et aL, 1999) must not be used, as it is not secure cnough,

and that HTTP Digest access authentication (Franks et al., 1999) must be used instead. As

195

Chapter 6 - The Resource Locator Service

such, WebDAV also has a related protocol called the Access Control Protocol (ACP) (Sedlar

and Clemm, 2000), which provides greater access control to resources. The combination of

HTTP digest and the ACP enable web resources to be safely authored on web servers.

6.2.1.1.1	 Application to Resource Migration

The same security concerns that WebDAV has addressed also apply to resource migration.

Just as a client must be authorized before being allowed to write to a resource, so a client must

be authorized before being allowed to move a resource from one server to another. Moving a

resource without permission can be considered theft. Equally, moving a resource onto a server

that does not wish to host it can be considered trespass. As such, the client must be authorized

before they are granted the right to move the resource, and the destination must grant access

before hosting the resource. The ACP can be used to enforce these requirements.

6.2.1.2 Safe File Transfer

HTTP provides rudimentary file transfer features that enable a resource to be downloaded,

uploaded or deleted. However, distributed authoring needs more control than HTTP can

provide. For example, HTTP does not enable a resource to be moved, only copied (Fielding et

a!., 1999). Equally, HTTP cannot lock files, and so suffers from the lost update problem

(Nielsen and LaLiberte, 1999), in which two or more parties updating a resource will

inadvertently overwrite previous versions, and thus lose any updates created by the other

party. WebDAV was designed specifically to overcome these problems, and does so by

extending HTTP to incorporate new methods for file locking, moving and copying.

196

Chapter 6 - The Resource Locator Service

6.2.1.2.1	 Application to Resource Migration

A variation of the lost update problem also affects resource migration. For the process to be

truly transparent, the resource must be accessible at all times, even when the resource is in the

middle of migrating from one server to the next. With HTTP, however, a resource could

potentially be updated during the migration process, causing the wrong version to be updated

and migrated.

6.2.1.3 Server Queiying

HTTP provides rudimentary querying of a web server, but only in relation to content

negotiation (Fielding et al., 1999). A client can request different versions of the same resource

according to the resource's media-type, language, etc., or the client's own capabilities.

However, there is no standard interface for querying a web server according to a resource's

properties. For example, a client cannot determine a resource's author, or its subject matter,

unless it uses a non-standard protocol on top of HTTP that both the client and server support.

WebDAV resolves this by enabling a set of properties to be associated with a resource, using a

new HTTP method called PROPPATCH, and queried using a new HTTP method called

PROPFIND (Goland et al., 1999). An associated protocol, DASL (DAY Searching and

Locating (Reddy et al., 1999)) provides a new HTTP method, SEARCH, for explicitly

searching through these properties, enabling them to be fully queried, updated and deleted, all

using the ACP to ensure proper authorization.

197

Chapter 6 - The Resource Locator Service

6.2.1.3.1	 Application to Resource Migration

Resource properties are important to resource migration, as they can be used by the destination

server to determine whether or not it wants to host the resource. For example, a server may

wish to deny a request to host a resource based on the resource's author or subject. In

addition, the same properties form the characteristic infons of the Oracle Server (see section

5.5.3.2). Equally, an automatic migration mechanism must automatically update a resolution

service. This can be achieved through treating each resource's name/location mapping in a

Locator as a resource, with the name and location acting as properties of the resource. Thus,

updating a resource's location within the Locator becomes a matter of updating the resource's

properties within it.

6.2.2 Disadvantages of Using WebDAVforResource Migration

The majority of resource migration protocols are used within distributed processing systems,

such as RM-ODP implementations (ISO/IEC, 1993). As such, these systems implement the

protocol using binary Remote Procedure Calls (RPCs), which are far more efficient and

opaque than the text-based messages of protocols based on HTTP. However, these systems

generally migrate objects or processes, which require sophisticated handling mechanisms to

ensure that the object's code, data, and its current state are all migrated safely. In contrast,

web resources are far simpler, largely consisting of static HTML documents or images.

Objects and applets can be migrated, but the protocol described here provides no support for

migrating an object that is currently executing. Resources are therefore considered as simple

files during the migration process. It is, however, feasible for an executing object to be

migrated using another protocol in combination with the RMP. For example, Microsoft's

198

Chapter 6 - The Resource Locator Service

.NET technology (Microsoft, 2001) provides a distributed component-based architecture that

enables its components to communicate using an XML-based messaging format known as the

Simple Object Access Protocol (Box et a!., 20W), which works over HTTP. As such, .NET

components could be migrated over the web using a combination of SOAP and the RMP.

This functionality, however, will have to wait for future research.

Another disadvantage of WebDAV is that, although it provides MOVE and COPY methods

for moving and copying a resource, these have not been defined for cross-server

implementation; that is, a MOVE, for example, is only defmed for migrating a resource to a

new location on the same server. This limitation prevents the methods from being used in

the RMP, as WebDAV servers will not support moving a resource onto a different WebDAV

server. As such, standard HTTP GET, PUT, and DELETE methods will be used to move a

resource. WebDAV is used principally to protect a resource during the migration operation

(using LOCKs and the ACP), and to update a resource's and Locator's properties.

6.2.3 The Spec4flcation of the Resource Migration Protocol

Despite its disadvantages, WebDAV and its associated protocols are ideally suited to

automating resource migration on the web. Because it is based on HTTP, it has the benefit of

allowing non-WebDAV compliant servers to be involved in the migration process (albeit

without the same security and negotiation features available to WebDAV-compliant servers).

This section describes the specification of the Resource Migration Protocol (RMP) used for

the RLS.

199

Chapter 6 - The Resource Locator Service

6.2.3.1 The Migration Process

The entities involved in the migration process are:

The Migration Manager - oversees the whole migration process, ensuring the

availability of the resource at all times, and synchronizing the various stages of the

process and the other participants. The migration manager is any entity that wishes to

automatically migrate a resource, and can be a client, server, or even the resource

itself.

• The Source - the original server hosting the resource;

. The Destination - the server that the resource will migrate to;

• The Name Server - the resolution service entity, whose location properties for the

resource must be updated. For the RLS, this is the Locator, but the RMP is generic

enough to be used by other name resolution systems that support automatic updates.

A Message Sequence Chart (MSC), showing the sequence of messages for the RMP, is shown

in Figure 18, and described in the sub-sections that follow. Note how the Migration Manager

is the only participant allowed to act as a client in the whole operation, and how the Source

and Destination servers do not communicate with one another at all. The protocol could have

been implemented by allowing the Source and Destination servers to communicate directly. A

client could send a specially formatted MIGRATE message to the Source, which would then

200

Chapter 6 - The Resource Locator Service

begin the migration process. However, this would require enhanced functionality in both

servers, and so would not be backwards-compatible. Equally, the authentication details of the

client would be sent to the Source server, but there is no mechanism in HTTP for the Source to

forward them onto the Destination (Fielding, 1996).

The MSC shows a Migration Manager, which is used to manage the migration process. A

Migration Manager is any entity overseeing the migration operation, and could be, for

example, a dedicated server acting on behalf of the resource owner, a client, or an intelligent

agent wishing to migrate itself. The Managers acts on behalf of the resource owner (or

resource), and so already has the resource owner's authentication details. Because it acts as a

client at all times, it is able to pass on the authentication details to the other entities involved in

the migration process, without requiring the details to be forwarded onto another machine.

The Migration Manager (also called the Manager, for brevity) should be seen as a dumb

participant, in that it must explicitly be given the URL of the resource at its Source (UR4oue),

and the new URL, as it would appear on the Destination (URI,). These details can be

passed onto the Manager either through an API call (if the Manager is implemented as an

object on the same machine as the entity requesting the migration), or via a new HTTP

MIGRATE request message, if the entity requesting the migration is on a different machine to

the manager. However, the defmition of a MIGRATE message has been left for future

research. The sub-sections that follow describe the operations in more detail.

201

Chapter 6 - The Resource Locator Service

Figure 18 - MSC for Resource Migration Protocol (assuming successful migration)

202

Chapter 6 - The Resource Locator Service

6.2.3.2 Access Control and Authorization

The migration process begins with the Migration Manager contacting the Destination in order

to ascertain whether or not the Destination is willing to host the resource. It does this by

sending a WebDAV LOCK message (message 1) to the Destination server for the resource

identified by URLdesl. As the resource still exists on the Source server, there should be no

resource physically located on the Destination that is bound to this location. As such, the

Manager is performing a Write lock on a null resource. A mll resource is defined as ". . . a

resource which responds with a 404 (Not Found) to any HTTP/1 .1 or DAV method except for

PUT, MKCOL, OPTIONS and LOCK" (Goland et al., 1999). In other words, a null resource

is one that does not physically exist on the server, but whose URL does (link rot can therefore

be seen as null resource creep). Locking a null resource has the effect of reserving the URL.

In this way, a write-locked null resource (or lock-null resource) ensures that no other user can

use URLdesg until the Manager unlocks the resource.

The LOCK message also provides the Destination with the chance to authorize the resource

owner. The Manager acts on behalf of the resource owner, and sends authentication details to

the Destination server as an HTTP request header in the LOCK message. If the Destination

does not authorize the request, it returns a standard HTTP 401 Unauthorized response message

and the migration process ends. Authorization can also take place prior to the LOCK request

using some other authorization scheme accepted by both client and server.

203

Chapter 6 - The Resource Locator Service

6.2.3.3 Safe File Transfer

The second stage of the process involves moving the resource from the Source to the

Destination in such a way that any client can access it at all times. To begin with, the

Manager contacts the resource's Locator (message 3) to retrieve the current location of the

resource (i.e. to determine URLSOUrce - note that Figure 18 uses Resource-Name rather than

URL or URI, as the location can be any string). The Locator responds with the location

contained within a HTTP 302 Found redirect message (message 4).

Once the current location of the resource has been successfully retrieved, the Manager

contacts the Source and LOCKs the resource (messages 5 and 6). Locking the resource

ensures that it is not updated in the middle of the migration operation. The Manager must not

migrate the resource until it has been successfully locked. The Manager then sends a

WebDAV PROPF1ND request to retrieve the properties of the resource (messages 7 and 8),

before sending a standard HTTP GET message to retrieve the resource itself (messages 9 and

10). The resource is copied to the Destination using a standard HTTP PUT message

(messages 11 and 12), using URLd as the new location for the resource on the Destination.

Once this has been accepted, the resource is physically located on the Destination, and ceases

to be in the lock-null state (Goland et aL, 1999)

The resource is now physically located on both the Source and the Destination. The Manager

continues by sending the resource's properties onto the Destination via a WebDAV

PROPPATCH request (messages 13 and 14). The properties contain metadata such as the

204

Chapter 6 - The Resource Locator Service

resource's subject, its author, copyright information, etc 7. At th stage, the Destination may

decide it cannot host the resource on content grounds; in other words, it will authorize the

resource owner and host their resources (using messages 1 and 2), but it cannot authorize the

content contained in this specific resource (for example, it may refuse to host resources about

a particular subject). Note that a PROPPATCH cannot be performed on a null resource, and

so the Destination only gets the chance to determine whether it wishes to host the resource

according to its content after the resource itself has been copied onto it. Although not optimal,

this method has the advantage of complying with WebDAV, ensuring backwards

compatibility with existing WebDAV servers.

If the Destination does not wish to host the resource, it must return a HTTP 403 forbidden

response, and delete the resource. The Manager must then unlock the resource on the Source,

and the migration process will have ended once more. Note that the resource is still located on

the Source (which, at this stage, has no idea a migration operation is in progress), and the

Locator has not been updated, allowing clients to access the resource without problem.

If the Destination does permit the resource to be hosted, the Manager does not need to unlock

the resource on the Destination, as "once a PUT.. .is successfully executed on a lock-null

resource the resource ceases to be in the lock-null state" (Goland et al., 1999).

The complete content negotiation process will be the subject of future research.

205

Chapter 6 - The Resource Locator Service

6.2.3.4 Updating the Locator

Once the Destination agrees to host the resource, and sends a 201 OK in response, the

Manager must update the appropriate Locator (or other name server). It does this by sending

another PROPPATCH message (message 15), with the resource's Resource-Name as the

identity of the resource (i.e. its name), and URLdg as the property to be updated (i.e. its

location). Again, authorization must be performed by the Locator.

Recall that two copies of the resource now exist: one on the Source, and one on the

Destination. Only after the Manager receives a 200 OK from the Locator (message 16),

indicating the new location property has been received and processed, can the Manager send a

standard HTTP DELETE request to the Source, instructing it to delete the resource (message

17). Note that both HTTP and WebDAV define a DELETE method, with the WebDAV

method providing more control over what is being deleted, and its associated response

message (a WebDAY 207 multi-status response (Goland et al., 1999)) providing details about

Lock states. As such, the Manager should accept either the HTTP version (200 OK, 202

Accepted, or 204 No Content, (Fielding et al., 1999)) or the WebDAV version of the DELETE

response. Once the DELETE response has been received (message 18), the migration process

is complete.

6.2.3.5 Resource Replication

The RLS has been designed to cope with replicated resources. Recall that the HOMINID

model treats a resource and its content as one atomic unit. As such, the name of a resource is

bound to the content that it encodes. With a replicated resource, therefore, although different

206

Chapter 6 - The Resource Locator Service

physical resources exist with the same name, the content contained within each replica is

identical. Thus, the name of the resource should be identical for all replicas, while the

location of the resource should be different for each replica. In this way, the name remains

consistent, while the name/location combination remains unique for each record in the

Locator's database.

To implement this in the RLS requires only a slight modification to the Resource Migration

Protocol: After copying a resource onto the Destination, the Manager should send a

PROPATCH message to the Locator, informing it to add a new name/location mapping, rather

than update an existing one. Once this has been confirmed, the Manager must not delete the

existing resource. In this way, the resource has been safely replicated.

In order to support replicated resources, a Locator must ensure that its database can handle

multiple locations for the same resource name, and return a HTTP 300 Multiple Choices

message, rather than the default 302 Found message, when asked for the location of a

replicated resource. The 300 Multiple Choices message is a standard HT1'P 1.1 response

message that provides a default location for the resource in the location header, and a list of

locations in the body (Fielding et al., 1999). In this way, the browser will, by default, simply

use the location provided in the location header, but other clients are free to use the alternative

locations of the replicas according to their own specific requirements.

207

Chapter 6 - The Resource Locator Service

6.2.3.6 Resource Migration using Non- WebDA V Compliant Servers

The above scenario is specific to resource migration across servers that are WebDAV

compliant. If a server is not compliant, however, it can still participate in the migration

process, but with less control than with a WebDAY server. For example, WebDAV servers

can use the Access Control Protocol to grant or deny access rights, whereas a standard HTTP

server must rely on HTTP authentication schemes. Equally, a WebDAV server can read the

meta-data associated with a resource, and use this to determine whether it wishes to host the

resource or not. A HTTP server, however, cannot, and so must accept or deny the resource

based solely on whether or not the resource owner is authorized to upload resources8.

Because of the design of WebDAV, a non-compliant server will still be able to communicate

with the Migration Manager, even though it does not recognize WebDAV methods such as

LOCK. In this case, the Manager will receive a HTTP 405 Method Not Allowed message

(Fielding et al., 1999), and can infer from that that the server does not support WebDAV. As

such, it can continue the process using standard HTTP commands only, but needs some way

of persisting the resource's properties onto the non-WebDAV server. To do this, the Manager

can make use of the fact that these properties are in XML format in the body of a WebDAV

PROPFIND message. The body of this message can be saved as an XML file on the

Destination, with the same name as the resource, but with PROP appended. When the

Manager needs to migrate the resource again, the Destination becomes the Source.

Note that HTTP does contain a framework for content negotiation (see Fielding et al, 1999), which, along with
several other such frameworks (including Klyne, 1999; Holtman and Mutz, 1998; and Ohto and Hjelm, 1999),
will be examined in future research.

208

Chapter 6 - The Resource Locator Service

The first time the Manager contacts the Source, it uses a WebDAV LOCK message (see

Figure 18). As the Source is not WebDAV compliant, it will return a HTTP 405 Method Not

Allowed message again, informing the Manager it does not support WebDAV. The Manager

should then ensure it GETs not only the resource, but the associated XML property file as

well. If the new Destination is WebDAV compliant, the property file can be embedded within

the body of a WebDAV PROPPATCH message. In this way, properties can persist across all

servers involved in the migration process, regardless of their compliance with WebDAV.

6.3 Reconfiguring the RLS via the Locator Control Protocol

As was said in section 5.3.6, traditional hash-routing functions are inherently brittle, and do

not adapt well to any changes in the configuration of the system in which they operate.

Although robust hash routing algorithms exhibit positive scaling, changes in the system's

configuration must still be managed with care, as a Locator that cannot be accessed by a client

cuts off access to the resources that it manages.

When a new Locator is introduced into the RLS, it automatically invalidates 1/n (where n =

total number of Locators) of all name/location mappings managed by the RLS. Because the

Request Router automatically updates itself upon the reconfiguration of the system, once it

notices the existence of the new Locator, 1/n of all subsequent requests to the RLS will go to

the wrong Locator, unless the name/location mappings are migrated to the correct Locator

without the RR noticing. The automatic update feature of the RR is one of its greatest

strengths, but it also means that the RLS must carefully manage transparent record migration

209

Chapter 6 - The Resource Locator Service

(termed to reflect the fact that it is individual records in a Locator's database that must

migrate) if it is to remain robust in the face of a changing configuration.

To manage this migration, a new protocol called the Locator Control Protocol (LCP) has been

developed as part of this research programme, that allows all Locators in the RLS to be

controlled such that records that are located in the wrong Locator can be corrected upon the

RLS ' s configuration changing, without any RR noticing until after the correction has been

made.

6.3.1 The Record Migration Process

The LCP must ensure that a Locator can be added to or removed from the RLS transparently,

such that a RR is able to access all records throughout the system's configuration change. The

key to achieving this is to enable both configurations to co-exist for a short period by copying

those records that must move to a new Locator before the existing configuration is deleted to

make way for the new one. In this way, all records are accessible whether the RR chooses to

use the RLS in its old configuration or its new one (i.e. with a Locator added or removed from

the system).

Resolving the location of a resource given its name is a time-critical process, where latency

must be kept to an absolute minimum. In contrast, however, changing the configuration of the

RLS is not time-critical at all; as long as all records are fully accessible throughout the

configuration change, there is no rush to add or remove a Locator (section 6.3.4 discusses the

latency and performance implications of the LCP). The only pressure is to ensure the process

210

Chapter 6 - The Resource Locator Service

is managed such that the integrity of the system is guaranteed, with all records accessible by

all clients throughout the configuration change. The following sub-sections show how the

LCP achieves this.

6.3.2 Managing the Addition of a New Locator

6.3.2.1 Overview

When a Locator is added to the system, a RR will only notice the change when it updates

itself, and the new Locator has adopted a domain name that complies with the appropriate

URL pattern. In this way, the adoption (or removal) of a RLS-compliant domain name acts as

a switch: with the domain name, a Locator is reogthzed by a RR as part of the RLS; without

it, the Locator is not recognized, and so will simply be ignored. As such, by first copying all

migrating records to their new locations before the new Locator adopts its new domain name

(Figure 1 9a), the LCP can enable both configurations to co-exist, ensuring that all records are

accessible both before and after the new Locator is recognized by the RR.

The protocol requires the new Locator to act as the record migration manager, cooidinating

the migration process to ensure integrity of the records. While the migration is occurring, all

Locators can still perform their standard name resolution service. Once the new Locator

adopts a domain name that complies with the URL pattern, both configurations effectively co-

exist. Those RRs that have not updated will be able to access the records in their existing

location; those RRs that have updated, will be able to access the records at their new location

(Figure 19b). Once in this state, the old configuration can safely be deleted (Figure 19c),

causing those RRs that have not updated to receive an Error 404 when they try to access a

211

I'

Get resource's
location

ILI

(RR unaware	 RR aware of ••\ /
configuration change configuration change 	 f

Chapter 6 - The Resource Locator Service

remapped record, which will prompt them to update and thus to recognize the new

configuration. In this way, no configuration updates need be sent to any RR throughout the

entire process.

Check for new
RR	 Request sent	 Locator and

ii	 to original	 #	 update

	

'I',	
, :	 - ' 2	

Locator	 configuration

:	 \ '\	 -,,	 / \
," /	 /	 Error 404

tJi]	 [j •	 •(f	 f	 f	 New Locator,

c ied to I	 New Locator instructs
Records	 domain name j

new	 I i	 existing Locators to delete
locations	 I	 the copied records

Ii

	

New Locator no	 /

	

RLS domain name	 ,	 '.	 ,' \

	

I	 S

Figure 21 a - migrating records are	 Figure 22b - RRs in either state can 	 Figure 23c - old configuration is deleted,
copied to new locations	 access all records	 forcing all RRs to recognize the new

configuration

Figure 19a-c - Managing the Addition of a New Locator

6.3.2.2 Message Sequence Chart for Adding a New Locator

For the purposes of the following discussion, the following definitions are made:

• Node - A Locator in the RLS.

Original configuration - the number of nodes and the distribution of records in the

RLS prior to the addition of the new Locator.

212

Chapter 6 - The Resource Locator Service

New configuration - the number of nodes and the distribution of records in the RLS

after the addition of the new Locator.

• Stationary records - those records in a node that do not need to migrate.

. Mobile records - those records in a node that do need to migrate (i.e. the 1/n in each

node that must move).

• The Record Migration Manager —oversees the whole migration process, ensuring the

availability of the resource at all times, and synchronizing the various stages of the

process and the other participants. The record migration manager is the new Locator

that wishes to join the RLS.

• Source - a Locator that correctly stores its records in the original configuration, but

which must migrate some of them for the new configuration.

• Destination - the Locator that receives the mobile records that the source moves.

Figure 20 shows a Message Sequence Chart that presents the sequence of messages for the

Locator addition process managed by the LCP. The MSC is described in the sub-sections that

follow.

213

Chapter 6 - The Resource Locator Service

New
	

Source
	

Destination
Locator/RMM

1.REFRESHREC

config-change:addition

Determine and flag the
mobile records based on
the number of nodes In
the new configuration.

2.200 OK

Repeat for all
Locators In the

RLS and wait for
them all to return.

3. COPYREC

Copy mobile
records to their

new location in the
new configuration

4. PUTREC

6.200 OK
	

5.200 OK

Body = records destined for new Locator

Walt for all
Locators to

respond
successfully.
Then register

appropriate RLS-
compliant domain
namewith DNS

7.DELETEREC
scope: old-confug-rec

Delete mobile
records

8.200 OK

Figure 20 - MSC Describing the Locator Addition Process in the LCP

214

Chapter 6 - The Resource Locator Service

When adding a new Locator, a RR will only experience problems if it is made aware of the

new Locator before the appropriate records have migrated. Equally, a record that is held in the

correct Locator as well as in an incorrect Locator will not cause the RR any problems, as it

will simply be unaware of the record in the wrong Locator. These facts form the basis for the

method that the LCP uses to manage the addition of a Locator to the RLS.

Prior to its addition to the RLS, the new Locator may have a domain name, but this must not

conform to the RLS's URL pattern, so as to remain invisible to all RRs. The new Locator

(Locatornew) is defined by the LCP as the record migration manager (RMM), and is

responsible for managing the migration of all appropriate records. As such, 1/n of all records

in each Locator will need migrating, and so Locatornew will need to know the location of each

existing Locator in the RLS. This can easily be achieved by using a standard RR to calculate

the number of Locators in the system, and to then calculate their domain names using the

RLS's standard URL pattern. Once this has been achieved, the migration process proceeds as

follows:

1. Locatornew must contact each Locator in turn and inform it that a new Locator is about to

be added. To do this, it sends each Locator a new HTTP request message with the new

method REFRESHREC and the new HTTP header config-change: addition. Locatornew is

free to send this message to each Locator in turn, or to send it to as many Locators as it

wishes in parallel. The only constraint is that all existing Locators in the RLS are sent the

message.

215

Chapter 6 - The Resource Locator Service

The message requires the receiving Locator to update its records based on a changed

configuration of the RLS. The config-change request header is used to inform the Locator

of the addition or removal of a Locator, and to therefore recalculate its records based on

the number of Locators that will exist in the new configuration. As such, the receiving

Locator (i.e. Source in Figure 20) must flag each record in its database that is subsequently

found to belong to another Locator in the new configuration, as mobile. Note, however,

that the Locator must still act as if it exists in the old configuration for all client requests

that it receives, and only use the new configuration for determining which of its records

must migrate.

2. Upon successful recalculation, Source sends a standard HTTP 200 OK response message

back to Locatornew, which must wait for all Locators in the RLS to return the same

message. If any Locator sends back a response other than 200 OK, Locatornewmust abort;

that is, it cannot continue, and so cannot be added to the RLS until the problem is resolved.

3. Upon successful receipt of all 200 OK messages, Locatornew must then send a new HTTP

request message with the new COP YREC method. This method requires no headers, as it

simply instructs the receiving Locator to copy its records that it has marked mobile to the

appropriate Locator that will host them in the new configuration.

4. Each Source Locator must send its records to the appropriate Destination Locator using the

new HTTP PUTREC method, with the records encoded as XML in the message's body.

PUTREC requires the Destination Locator to accept the provided records, and add them to

216

Chapter 6 - The Resource Locator Service

its database. PUTREC differs from HTTP's existing PUT method in that it allows the

receiving entity (i.e. Destination) to receive a collection of resources, and to store them as

individual records that do not require URIs. In contrast, HTTP's PUT method, as defined

in RFC 2616, forbids more than one resource from being encoded in the message's body,

and explicitly requires a server to store the single resource under the URI that is supplied

in the Request-URI of the PUT message. As such, using PUT at this stage of the LCP

would require each individual record to be sent in its own PUT message, and assigned its

own URI on the Destination Locator.

The XML format for the body of the PUTREC message is defined as follows:

. AddRec element - parent element that signifies the following records are to be

added.

. Rec element - child element of AddRec that encapsulates one complete record

• Name element - child element of Rec that encodes the name of the resource

• Location element - child element of Rec that encodes the location of the

resource

• TimeCreated - child element of Rec that encodes the time that the resource was

created, defined according to RFC 1123 (Braden, 1989).

217

Chapter 6 - The Resource Locator Service

An example PUTREC message is shown in Figure 21.

PUTREC HTTP/l.1
Host: Source. Locator. net
Content-Type: text/xml; charset="utf-B"
Content-Length: xxxx
<?xml version="l.O" encoding="utf-8" ?>
<L:AddRec xmlns:L="LCP:"

Rec>
<L:Name>www.mobilerecordl.com/name/img.gif </L:Name>
<L:Location>www.resourcehost.com/location/img.gif </L:Location >
<L:TimeCreated>Sun, 06 Nov 1994 </L:TimeCreated>
</L: Rec>
<L : Rec>
<L:Narne>www.mobilerecord2 .com/name/doc.htm </L:Name>
<L:Location>www.resourcehost2.com/location/doc.htm</L:Location >
<L:TimeCreated>Sun, 26 Oct 2000 </L:TimeCreated>
</L:Rec>
<IL: AddRec>

Figure 21 - Example PUTREC message

5. Upon successfully receiving and storing the records, the Destination returns a standard

HTTP 200 OK message.

6. The Source then sends a 200 OK message back to Locator, but with the records that

Locator must store encoded in the body of the response using the same XML format as

defined for the PUTREC message in 4. Upon receiving this, Locator must store the

records in its own database.

Once each Locator has returned a 200 OK message, the RLS is placed in a juxtaptsition

of two configurations: the original configuration that operates without Locatornew, and a

218

Chapter 6 - The Resource Locator Service

new configuration that operates with Locatornew. Because the records have been copied

rather than moved, both states are active simultaneously. As such, it is safe for Locator

to register a name for itself with the DNS that does conform to the RLS's URL pattern,

and so make itself visible to all RRs (both configurations are equally valid, and so it does

not matter which state the RR perceives). It is envisaged that Locatornew uses the new

dynamic DNS protocol (Vixie et al., 1997) to achieve this, ensuring the process continues

automatically.

7. Locatornew sends a DELETEREC message to each Locator with a scope header that has

the value old-confIg-rec. This informs each Locator to delete all the mobile records that

have been copied to a new Locator now that the RLS is in its new configuration. Those

RRs that have not updated will receive an Error 404 when they request one of these

records, but this will simply force the RR to update. Once it does this, it will be aware of

the new system configuration, and will be able to access the records at their new position.

8. Each Locator responds with a 200 OK message. Once all 200 OK messages have been

received, the RLS is safely in the new configuration with the new Locator added, and the

LCP has ensured that all records have been fully accessible at all times.

219

Chapter 6 - The Resource Locator Service

6.3.3 Managing the Removal of an Existing Locator

6.3.3.1 Overview

Removing a Locator requires a different approach as deleting its RLS-compliant domain name

may leave a hole in the sequential numbering of the URL sequence, confusing the RRs. The

process begins when the detaching Locator (Locatordelach_ coloured black in Figure 22), acting

as a RMM, instructs all other Locators in the system that the configuration is about to change,

thus causing them to copy the records that must migrate to their new locations. Note that

some of the records will be copied onto Locatordetach, even though it is about to leave the

system (Figure 22a). Once this is complete, Locatordetach remains in the RLS, and instructs the

last Locator in the sequence (Locatoriast - coloured grey in Figure 22) to detach itself from the

system, even though Locatoriast is not the one that wishes to leave (Figure 22b). In this way,

the RLS shifts to the new configuration, with the existing configuration still operational (note

that the RRs that have not updated may attempt to reach Locator iast, but will not receive a

response; this will cause them to update automatically, however, thus moving them to the new

state).

Once the new configuration has been reached, Locatordh will instruct the (now removed)

Locatoriast to delete all of its records, before copying its own records over to make both

Locators mirrors of one another. In addition, Locator i ast will also be given the same domain

name as LocatordCh, making the two Locators identical clones (Figure 22c). Once this

happens, Locatordetach is free to detach itself by removing its IP address from the DNS entry

for its domain name, leaving the RLS in the new configuration. Again, the process of

220

S.

Get resources
location

Figure 4a - Detaching Locator
instructs other Locators to copy

their records to the new locations

S

Chapter 6 - The Resource Locator Service

removing a Locator requires no synchronization messages from any Locator, as all RRs will

automatically update themselves.

S

ri

/ RR aware of	 RR unaware of \

/	 configuration	 configuration	 /
change	 change

rr-iI	 irniH

_.- i i Request !	 -- "•.
'	 ,' / times out! .	 %s

'	 i	 !	 -
I	 -')<'..i'	 V	 i !	 --	 '

4k \' " -
	 \ '.

(tJ:1 .:=:I
\Neiwcoun	 Last Locator	 Clone Locators

I DetachfromRLS

	

..	 Is

Figure 4b - Last Locator leaves 	 Figure 4c - Last Locator and
the RLS first, forcing all RRs to 	 detaching Locator are doned,

update	 before detaching Locator leaves
the RLS

Figure 22a-c - Managing the Removal of an Existing Locator with the LCP

The following discussion and the MSC in Figure 23, describe the removal process in more

detail, and define the messages used by the LCP that implement it. Note that the definitions

given for section 6.3.2 are still valid.

221

Chapter 6 - The Resource Locator Service

Detaching	 1

	

Locator/RMM J	 (Locatori5t)	 ç Locatorsm)	 (LocatorS

I .REFRESHREC
config-change:removai

Determine and flag the
mobile records based on
the number of nodes in
the new configuration.

2.200

Repeat for all
Locators in the

RLS and wait for
them all to return.

Copy mobile
records to their

new location in the
ration

6.200 OK

Wait for afl
Locators to

respond
successfully.

I 7. DETACH

Delete RLS name
8.200 OK	 L

location: NewName

9. DELETEREC
scooe: old-confi

Delete old configuration
records that do not belong to

this Locator in the new
configuration

10.2000K

11. DELETEREC
scooe: all-rec

Delete all records
12.2000K

Figure 23 - MSC for Removing a Locator (continued on following page)

222

Chapter 6 - The Resource Locator Service

Detaching	 I

	

Locator/RMM Al	 (
Locatoriast

1 3.PUTREC

14.2000K

15. ATTACH

16.2000K

Delete RLS
name and exit

system

Figure 23 - MSC for Removing a Locator (cont.)

6.3.3.2 Message Sequence Chart for Removing an Existing Locator

The Locator that is about to leave the RLS, Locatordelach is defined by the LCP as the Record

Migration Manager (RMM). As the RMltvI, it must coordinate the process of removal,

ensuring that all records in all Locators are accessible by clients throughout the entire process.

It must begin by calculating the domain names of the other Locators in the system by using its

RR, and then determine the last node in the system, Locator i Once this is done, the removal

process proceeds as follows:

1. Locatordetach sends a REFRESHREC message to each Locator in the system, but this

time the config-change header is set to removal. Each Locator, upon receiving this

message, must decrease the number of nodes that it thinks the RLS has by one, and

223

Chapter 6 - The Resource Locator Service

recalculate the correct location for its records using the RR, based on this new number.

Again, the Locators must assume that the original configuration still persists for any

client requests that they receive at this stage.

2. Upon success, each Locator will return a standard HTTP 200 OK message.

Locatordetach must wait for all Locators to return 200 OK before continuing.

3. Locatort sends a COPYREC message to each Locator, instructing them to copy

their mobile records to the Locator that will host them in the new configuration

(Locatordest). Note that all records in Locatorias t will need to be copied, as this will not

exist in the new configuration.

4. Each Locatorsrc sends a PUTREC message to the appropriate Locatordest with the

contents of its mobile records held in the body of the message (see Figure 21). Upon

receipt, Locatordest must store the records in its database.

5. Locatort sends a HTTP 200 OK confirmation response back to Locatorsrc.

6. Locatorsrc sends a H1'TP 200 OK confirmation response back to Locatordetach, which

must wait for all Locators to send back the same message before it can proceed. If one

Locator does not return a 200 OK, Locatordh must send a new HTTP ABORT

message; every Locator receiving this must place itself back in the original

configuration, by deleting all newly-copied records from its database.

224

Chapter 6 - The Resource Locator Service

7. Upon receipt of all confirmation messages, Locatordech issues a new DETACH

message to Locator 1 ordering it to detach itself from the system. Locator does this

by removing its RLS-compliant name from the DNS. Upon doing this, the RLS moves

to the new configuration. Those RRs that are not aware of the change will send their

requests to the wrong Locator, and will receive an Error 404. This will cause them to

automatically update to determine the correct number of nodes, whereupon they will

discover that the RLS is in a new configuration, with one less node than they had

assumed. The RRs will then update the number of nodes they believe the RLS to have,

and all new requests will be routed to the correct Locator. Thus, the RLS safely moves

over to the new configuration without preventing clients from accessing any records.

8. Locatoriast responds to the DETACH request with a HTTP 200 OK message that

contains a location header, informing Locatordetach of the name or IP address that

Locatordetach should use in future communication with Locator i (this is required as the

RLS-compliant name of Locator iast will no longer be valid, and Locatordh will not

have any other name with which to identify Locator iast). Future versions of the

protocol should include a defer-until header, which gives Locator iast time to delete its

RLS-compliant domain name. The header should specify the time by which Locatorj

will have removed its RLS-compliant name. However, this disconnected feature of the

protocol has not been fully defined at this stage of the research, and will be left for a

future version (see section 7.3).

225

Chapter 6 - The Resource Locator Service

9. Locatordetach sends a DELETEREC message to all other Locators apart from Locatoriast

with a scope header that has the value old-config-rec. This informs each Locator to

delete all the mobile records that have been copied to a new Locator now that the RLS

is in its new configuration. Locatordech must also delete its own mobile records that

have been copied to other Locators.

10. Each Locator responds with a 200 OK message. Once all Locators have returned 200

OK, the RLS is in the new configuration, with all records in their correct Locators, and

no duplicates in existence. However, it was Locatordech that wished to leave the

system, and not Locatori ast, and so the final messages are required in order for

Locatordetach to leave the RLS, and Locatori ast to reattach itself.

11. Locatorietaci sends a DELETEREC message to Locator iast , but with a scopeheader that

has a value of all-rec. This instructs Locatoriast to delete all records within its database.

12. Locatoriast responds with a 200 OK message.

13. Locatordetach then sends one or more PUTREC messages to Locator 1 t containing all of

the records that Locatordetach currently manages.

14. Locatoriast stores these records and returns a 200 OK message. LocatoIietach and

Locatoriast are now mirrors of one another.

226

Chapter 6 - The Resource Locator Service

15. Locatordetach sends an ATTACH message to Locatorias t with a Request-URI value of the

RLS-compliant domain name of Locatordetach. Upon receipt, Locatoriast must register

this name as an alias to itself. As soon as it does so, Locatoriast is part of the RLS once

more, but not as the last node in the system. The domain name that LocatordCh uses

now identifies both Locatordetach and Locatorjas both of which are mirrors of one

another.

16. Locatoriast sends a 200 OK message back to Locatordetach. Upon receipt of this message,

Locatordetach must remove its RLS-compliant domain name from the system. Once it

has done so, it has officially left the RLS, leaving the RLS in the new configuration,

with the appropriate Locators still members of the system.

6.3.4 Performance Implications of the LCP

Changing the configuration of the RLS is not a time-critical process, as the name resolution

service provided by the RLS is unaffected throughout the change. However, the change

should still occur in a reasonable time-frame, and with a reasonable amount of network traffic,

and so this section presents an estimate of the order of time that will be needed for a new

Locator to be added the system. Note that no estimations are provided for removing a

Locator, as the operations are very similar, and so the time taken will be of a similar order.

227

Chapter 6 - The Resource Locator Service

The addition of a new Locator involves two steps that could significantly affect the time taken

to update the system:

Determining which records need to move;

• Physically moving the records.

The other steps involve data manipulation, such as deleting records, which will not negatively

affect the scalability of the design or the time taken to change the configuration, and so will

not be considered in the following calculations.

The first step involves every record in the system being processed by a RR whose node

configuration is set at one node higher than its current value (i.e. set ton + 1). The time taken

to do this can be significantly reduced if each Locator works in parallel with its peers,

processing only the records contained in its own database. This is how the LCP operates. As

such, ignoring the network overhead of the LCP, the time taken for step one will be

approximately:

Rt#

n+1

where R is the total number of records in the system, and t# is the time taken to process one

record. Thus, for the same R, the time will decrease with the number of Locators in the

228

Chapter 6 - The Resource Locator Service

system. Section 6.4.5.4 provides an example of the time taken based on figures obtained from

the prototype RLS.

The time taken to complete the second step, however, is dependent upon the number of

Locators in the system, and the number of records. When a new Locator is added to an n-node

system, the records that are re-mapped will be evenly distributed across all Locators in the

RLS (Thaler and Ravishankar, 1998). As such, each Locator will evenly distribute 11(1*1) of

its own records (which represent 1/n of the total number of records in the system) to the n

other Locators in the RLS (including the new one). This results inn Locators broadcasting to

n Locators (including the newly added one), resulting in the propagation of n2 messages. As

such, the number of messages that this step generates increases with the square of the number

of Locators, which could constrain the size of the system. However, the total number of

messages, m, is limited by the number of records that are invalidated, as clearly there cannot

be more record-carrying messages than there are records to move. Thus:

R
m ^-

n+1

Once m reaches this limit, the number of messages will decrease as more Locators are added,

improving the scalability of the design markedly.

As such, the number of messages that are broadcast can be controlled by balancing the number

of records in the system with the number of Locators. Furthermore, as section 6.4.5.4

229

Chapter 6 - The Resource Locator Service

demonstrates, the time taken to add a new Locator is bounded byRp, where p = the time taken

to hash one record with only one Locator in the system. That is, once m has reached its limit,

the time taken to add a new Locator becomes independent of the number of Locators in the

system. This is an important result, as it proves that the scalability of the system depends only

on the processing power of the machines performing the hash routing algorithm, and not on

the configuration of the system itself. Furthermore, the LCP can also be optimised so that it

broadcasts messages in parallel across Locators according to bandwidth available and Locator

performance, cutting the time it takes to broadcast the messages. In addition, each record will

only be of the order of 150 bytes (assuming an average of 50 characters each for the name,

location, and time of creation values), resulting in a relatively small amamt of data that must

be transferred regardless of the number of messages. Finally, it is worth reiterating that a

configuration change is not a time-dependent task, as the RLS is fully operational throughout

the change, and it will not happen often, as the configuration of the RLS should remain stable

for relatively long periods of time. As such, the design of the RLS is such that network

overhead never becomes a limiting factor, whatever the number of Locators in the system.

The proof of this is provided in section 6.4.5.4, which presents sample calculations illustrating

the order of time that is required to add a new node to a system using a variety of different

configurations.

6.4 A Prototype Resource Locator Service

In order to validate the design of the RLS and the RR, a prototype has been built and tested as

part of this research.

230

Chapter 6 - The Resource Locator Service

The prototype Resource Locator Service comprises:

• a small network of Locators;

• a Request Router;

. a HTTP proxy server;

a management interface.

Figure 24 shows the architectural design of the prototype RLS. The design differs slightly

from the architecture presented in section 5.3.4 (see Figure 14), as the proxy server retrieves

the resource from the origin server, rather than the client. However, the RLS's architecture

does not specify where the RR is hosted, or the semantics of the RR's host, as these will

change according to where the RR is hosted. As such, using the proxy server to retrieve the

resource simplifies the implementation considerably, and because the proxy is not placed

under a heavy load, the performance of the system remains unaffected?

The following sub-sections provide more details about the implementation of each component

in the prototype, while section 6.4.5 presents performance measurements that were taken to

validate its design.

Note that the performance would be affected if many clients used the proxy, as it is not a scalable design.

231

Proxy Server
containing

Request Router

8. 200 OK

7. 200 OK

Client

[1
1. GET www.anyserver.comTimg.gif

4. Error3O2 Found

5. GET www.ServerA.cornlimg.gif #

Chapter 6 - The Resource Locator Service

RLS

- Qs

2 GET '	 Locator	 Other Locators

Error 302

Name	 Address

.anyserver.com	 www.ServerA
mg.gif	 .com

Locator's Lookup Table

6. GET
www.ServerA.com/img.gif

• • Resource Name = www.anyserver.com/img.gif
Resource Location = www.ServerA.com/img.gif

www.ServerA.com

FIgure 24 - Architectural Design of the Prototype RLS

6.4.1 A Prototype Locator

The Locator has been designed as a web server using Microsoft 115 on NT 4 Server, which

uses Active Server Pages (ASP) to implement a Locator's functionality through integration

with a Microsoft Access database via ODBC. The database stores the following for each

resource:

• Resource's name (this can be any string).

• Resource's current location (this must be a URL).

232

Chapter 6 - The Resource Locator Service

. Resource's time of creation.

Sequence Order (used for load balancing purposes; note that this is not part of the

functional design of the RLS, but has been included in the prototype to demonstrate

some applications of the RLS).

The same resource name can reference multiple entries in the database, as each resource may

have multiple locations (i.e. replicated resources) and multiple times of creation (i.e. when a

resource's content is changed but its name remains unchanged).

When a Locator receives a standard HTTP request from a client, it looks up the resource in its

database. If it contains the resource's name/location mapping, it returns a HTTP 302 Found

response message; otherwise it returns a HTTP Error 404 Not Found error message. In this

way, a client can communicate with the RLS transparently, providing full backwards

compatibility.

If the URL of the requested resource was encoded as a Query String, or if the new HTTP

request header authoritative-lookup is used (see section 5.3.5.1), the Locator performs an

authoritative lookup, using the RR itself if it cannot locate the resource in its own database to

ensure the client has reached the correct Locator. An authoritative lookup is guaranteed to

locate the resource's name/location mapping, provided the resource is registered with the RLS.

233

Chapter 6 - The Resource Locator Service

If the Locator receives a HTTP request with a HEAD method, it will simply return a HTTP

200 OK response. This is used so that RRs can safely query for the existence of a Locator.

The database can be queried using standard WebDAV PROPF1ND messages 10. The

PROPFIND method allows a resource to be queried according to its attributes. In this way,

each name/location mapping (and corresponding information) in the Locator is treated as a

resource, enabling the location of managed web resources to be returned according to their

name, location or time of creation.

Finally, the database can be updated automatically and remotely using the Resource Migration

Protocol and standard WebDAV and HTTP commands. Due to time and resource limitations,

temporal references have not been included in the prototype, but their implementation will not

be difficult, and will be left as future work.

6.4.2 A Prototype Request Router

The Request Router is perhaps the most important part of the system, as it has to integrate into

the web's existing architecture. To do this, a Request Router object has been created in C-H-

and embedded into a simple HTTP proxy server. Any user who wishes to use the RLS can

configure their browser to use the proxy server, enabling all legacy browsers and servers to

use the RLS transparently.

'° The prototype Locator has been designed to support only a minimal subset of the WebDAV PROPFIND
semantics, and so although it supports PROPFIND, it does not implement it according to the WebDAV
specification.

234

Chapter 6 - The Resource Locator Service

The Request Router object can be deployed on any system where a developer has source code

access. However, it is trivial to turn the object into an ActiveX control, in which case it can be

embedded into any Microsoft Windows application that supports ActiveX controls (for

example, Internet Explorer, the Microsoft Office suite of products, or any application that

supports scripting). For more cross-platform support, the component could have been written

in Java and turned into a JavaBean, enabling it to be deployed on any platform. However, for

the purposes of the prototype, it need only exist on a Microsoft Windows NT platform, and so

Microsoft Visual C++ was chosen as its development language.

6.4.3 A Prototype Management Interface

A management interface has been developed for the prototype system (Figure 25) that

provides a user interface for managing resources on web servers, and for demonstrating certain

features of the RLS and the RMP. The interface acts as the Migration Manager, im1ementing

the RMP and co-ordinating messages amongst the web servers being managed. It will work

with any web server, whether it is WebDAV compliant or not, so long as each grants write

access to the Manager (username and password settings can be stored within the management

interface). Two of the servers in the prototype use WebDAV, and two do not. None of them

are aware of the resource migration protocol, or that they are involved in a migration

operation, demonstrating the backwards-compatibility of the service.

235

Chapter 6 - The Resource Locator Service

File Re,uu, e i,asisfer Qeniutist, atkins Tijols Lhilp

Actd ' es	 li-i . /(:- .r	 ,1 AT/ -

•
J Iit f/'ed see ym c uMKeerrf
• _1 _rvTh

_J r.uItx.
• J M .rtLdti

-

_j
•

- _j hr' tjiiuqhtAT/
•	 _Jr-r 1-r.-
•	 ••I L,JEt-IoIUr-J

- _Jt—iI
__j 4r.i €.)1

• _J CU L

• _J hrn !. J3J,IiIsl1Et/

T,,ncpv fr,rr	 f rrt,
•	 nm	 n

	

II-5DU:_ tfl	 _Irijr:ed

	

F.: jIrm • in	 jnr,i ,r *jri

	

1Fourc5 him	 •lflrnncjd

	

jFimiumcr4tirn	 jr;I.,r,nc
sih hrr	 Jnmnr1

r TEST

	

Mr 1mICr 1er-	 I

ri

Figure 25- RLS Management Interface

6.4.4 Implementing the Resource Migration Protocol

The implementation of the protocol uses Microsoft's OLE DB Provider for Internet Publishing

(Microsoft, 2000b). This is an API that allows clients to manipulate resources and properties

on remote servers using WebDAV messages. As such, the API handles all WebDAV message

processing, allowing the development work to focus on the implementation of the Resource

Migration Protocol.

The Management Interface provides a Windows-explorer like user interface that shows the

directories of the managed web servers as if they were part of the local ifie system. Resource

migration is handled through a drag and drop interface, which enables the user to drag a web

resource from its source directoiy on one web server, and drop it onto a destination directory

on another server, in the same way that files are copied and moved using Windows Explorer.

236

Chapter 6 - The Resource Locator Service

The migration process is managed by the Management Interface using RMP, which ensures

that the correct Locator is updated automatically, such that any client using the proxy server is

able to access the resource at all times throughout the migration operation.

6.4.5 Performance

The prototype RLS was designed to functionally validate the design of the RLS, and it has

achieved this by showing how standard web resources can be transparently migrated across

any existing web server, without the modification of any client. In addition, the prototype has

also been instrumented to provide performance measurements of the RLS. The results of

these measurements are presented in the following sub-sections.

6.4.5.1 Network Overhead

Network overhead will always be two extra HTTP messages (one request and one response),

regardless of the size of the system. As such, network overhead on its own has not been

measured, as it does not impact on the scalability of the system.

6.4.5.2 CPU Overhead

The Request Router was tested on a Pentium Pro 200MHz with 64MB RAM, a Pentium III

400MHz with 128MB RAM, and an Athlon 1100MHz with 128MB RAM. The RR was

designed so that the number of nodes it believed existed within the RLS could be manually

set, and instrumented to enable it to measure the length of time it took to identify the correct

Locator. The results are presented in Figure 26, which clearly reveals the linear relationship

between time and the number of Locators. The results show that for small numbers of

Locators, the time taken is insignificant, and that even with more Locators, the time taken is

237

-
C
0
U
4)

C,)

4)
	

0.1
E
R

0.01

0.00 1

Athlon 1100MHz

Pentium III 400MHz

Pentium Pro 200MHZ

Chapter 6 - The Resource Locator Service

still small. As such, even with a relatively slow machine such as the Pentium Pro 200MHz,

the RR can determine the correct Locator from a 10,000-node configuration in only 0.35

seconds.

---Athlon
1100MHz

Pentium III
400MHz

Pentium Pro	 100

L..__

10

Request Router Performance

1000

7 .402

16.14

37 .404

1	 10	 100

0.007	 0071	 0.716

JUl	 0.14	 1.51

0.03	 0.35	 3.65

Number of Locators (xl000)

Figure 26 - Performance Results of the Prototype Request Router

In addition, the prototype RR was designed for experimental purposes, and is non-optimal.

Specifically, it rehashes every Locator URL for every request that it routes, but unless the

number of Locators changes, these hash values will remain static. As such, a more optimal

238

Chapter 6 - The Resource Locator Service

design would cache the hash values in memory, and only rehash them when the configuration

changes, thereby drastically reducing the length of time it would take to locate a Locator.

6.4.5.3 Total System Overhead

The total overhead introduced by the system was measured to provide a real-world indication

of the system's performance. To do this, the time taken to visit the homepage of three

different web sites (www.google.com, www.lycos.co.uk, and www.yahoo.com) was measured

using a standard browser and no RLS. Each site was visited 25 times, with the browser's

cache deleted each time. The browser was then connected to the RLS via the proxy server,

and the same sites were visited 25 times again. The experiment was run using an Athion

1100MHz PC with 128MB RAM, which acted as the proxy server with an embedded RR, and

a Pentium Pro 200MHz PC with 64MB RAM, which encoded the functionality of the Locator.

Both machines used Microsoft Windows NT 4 Server, and were connected via a 10Mbps

Ethernet LAN.

For this experiment, the number of Locators was varied in the RB. from one to 1 million.

However, to avoid having to physically deploy 1 million Locators, the proxy server was

configured so that it always forwarded the request onto the same Locator, regardless of which

one the RR identified. The Locator would then return an Error 404 message, which would

cause the proxy server to redirect the request to the origin server, from where the resource

would ultimately be retrieved. Because the overhead for the RLS is the same whether the

resource is found or not (i.e. one extra HTTP request and one extra HTTP response), the

measurements of the overall system overhead remained unaffected. In addition, this

239

Chapter 6 - The Resource Locator Service

configuration removed any differences between servers that would have been introduced had

each Locator been deployed on a separate physical machine.

The results presented in Table 6 show the time taken to visit each web site without the RLS,

and the time taken to visit it with the RLS, with one, 1,000, 10,000, 100,000, and 1,000,000

Locators in the system. Each value is the 10% trimmed mean of 25 trials, with the overhead

calculated by subtracting the mean from the value obtained without the RLS. The results

show the overhead introduced by the RLS varies from 0.7 to 0.87 seconds with only one

Locator in the system; from 1.42 to 1.58 seconds with 100,000 Locators; and from 8.10 to

8.33 seconds with one million Locators in the system. The results are consistent across the

different web sites, with the overhead introduced by the RR only becoming noticeable with

100,000 Locators, and becoming impractical on 1,000,000 Locators.

Table 6 - Results of the Overhead Introduced by the RLS

The results show that the RLS introduces negligible overhead for a configuration of 10,000

Locators or less. However, it should be noted that neither tic design of the RR or the proxy

240

Chapter 6 - The Resource Locator Service

server are optimal, and that significant performance improvements can easily be made. Such

improvements are expected to enable the deployment of a 100,000 Locator system with

negligible overhead.

6.4.5.4 The Cost of Changing the Configuration

As section 6.3.4 discussed, changing the configuration of the RLS incurs a performance cost.

Using the figures above, this cost can now be calculated. The following scenario represents a

new Locator being added to a RLS designed for today's web. As such, the total number of

resources managed, R, is 1 billion (10), and the number of Locators, n, in the original

configuration is 999. Recall that changing the configuration comprises two steps:

• Determining which records need to move;

• Physically moving the records.

The first step takes	 seconds. From Figure 26, t# takes 0.007 seconds for an Athion
n+1

1100MHz machine, which would lead to a total time of:

iO x 0.007
__________ = 7000 seconds (or 1 hour 57 minutes, 7 seconds).

1000

241

0) aD N-
QQQ
+ + +
uJuJ w
OQQ
0•00

J

a,
a)

C

'I,a,

0
U)
a,

•a
C
Co

C

0

I-

C)

C
0

C.)

2
C)
C

1
0
0
0
CO
U)
a,
C)
Co
U)
U)
a,

o o 0 0 0 0 00 0 0 0 0 0
o	 0 0 0 0
o o 0 0 0 0
o 0 0 0 0 00	 co	 (0	 ('1
1

(w) se6esse

t2

II
0

4,

0

0
'9

I I

Chapter 6 - The Resource Locator Service

That is, each Locator takes 1 hour 57 minutes to calculate which of its 1 million records need

to migrate (keep in mind that all Locators perfonn this step roughly in parallel with one

another).

The cost of the second step is dependent upon the number of records in the system and the

number of Locators, with the number of messages generated increasing with the square of the

number of Locators, until they reach the number of invalidated records, after which they

decrease. This is illustrated in Figure 27, which shows the number of messages that are

generated according to the number of Locators in the system, for different numbers of

managed resources. Thus, for today's web with i0 9 resources, a 1,000 node system generates

1,000,000 messages (n2). The number of rords invalidated is therefore:

R - io- - ____ = 1,000,000 records
n+1 1000

Recall from section 6.3.4 that each record will be approximately 150 bytes in size; thus, total

data transfer = 15MB. How fast this takes to complete depends entirely on the optimisation of

the LCP, with messages sent in parallel substantially reducing the length of time required.

However, assuming the worst case scenario of linear operation (i.e. where only one of the one

million messages is in transit at any one time), and a data transfer speed of 1.544 Mbps"

I.e. a standard Ti connection (Brebner, 1997); in contrast, the DNS uses 200Mbps of bandwidth (Kosters,
i999)

243

Chapter 6 - The Resource Locator Service

between Locators, the total time taken to transmit all one million messages (ignoring protocol

overhead and converting bytes to bits) is:

l,000,000x150x8 = 777.20 seconds, or 12 minutes 57 seconds.
1,544,000

Thus, the total time taken to complete the addition of a new Locator is only 2 hours, 10

minutes, 4 seconds, which is entirely acceptable.

However, as can be seen from Figure 27, this is actually the maximum number of messages

that could ever be generated for a system managing 1 resources. For example, if the number

of Locators in the new configuration is 3,500, then the number of generated messages that

must be broadcast comes down to approximately 285,714. Using the same figures as the

previous example, the total time to transmit these messages is:

285,714 xl 50 x 8 = 222 seconds, = 3 mins, 42 seconds
1,544,000

However, the total time taken for the first step would then increase. FromFigure 26, the time

taken for the Athion 1100 MHz to calculate t# can be calculated as 0.0252 seconds (using the

gradient of the slope). Thus, the time taken to complete step 1 would be:

io xO.0252
__________ = 7200 seconds = 2 hours.

3500

244

Chapter 6 - The Resource Locator Service

The total time would then come down to 2 hours, 3 mins 42 seconds, a saving of 6 minutes 22

seconds.

In fact, the two steps balance each other out, with the total time required to add a new Locator

converging on 1 hour 59 minutes and 8 seconds regardless of the number of Locators in the

system' 2 (see Figure 28). The reason for this is that the total time taken (i.e. the sum of the

two steps) converges on Rp (where p = time taken to hash one record with only one Locatcr in

the system) as n increases. This can be illustrated by writing the sum of the two steps

together:

=-R-- +	 _-_- .!!! + Rb	
(i)

n+1 d n+1 n+1	 (n+1).d

where t = total time, b = bit size of each record, d = data transfer speed in bits per second. But

t# is linear with respect to n, as Figure 26 showed. That is, t# pn + c, where p = the gradient

of the straight line (i.e the time taken to hash one record with only one Locator in the system)

and c = the intercept, which is zero. Thus, t# pn which, with n+1 Locators, gives:

t# p(n+l)

12 Note that this figure is specific for the example system, which uses an Athlon 1100 MHz PC in a system
managing one billion resources.

245

Chapter 6 - The Resource Locator Service

Substituting this value for t# in (i) gives:

= RP(n+l) + Rb
Rp+

Rb

n+1	 (n+1)d	 (n+1)d

Thus as n -^ , t -^ Rp. As such, the time taken to add a Locator is bounded byRp, and is

therefore independent of n, the number of Locators in the system, thereby proving the

system's scalability for configuration change.

Figure 28 demonstrates this result. The graph shows the time taken to add a new Locator for

varying numbers of Locators (n) in a RLS that manages 1 billion resources. As can be seen,

the graph converges on a time of 7,000 seconds as n increases. The timings are for a RR run

on an Athlon 1100Mhz, and can be shown to converge onRp as follows:

From Figure 26, the time taken to hash one record with only one Locator (p) can be calculated

as:

t#	 0.007

n	 1000

If R = i09, then

iO xO.007
Rp	 =7000

1000

246

Chapter 6 - The Resource Locator Service

6.4.5.5 Performance Summary

These figures show that the design of the RLS is such that it can be deployed on today's web

without experiencing any scalability problems. Furthermore, the system has been proven to be

fully scalable according to the number of Locators, with the time taken to change

configuration being independent of the number of Locators in the system. The sample figures

used were obtained from a prototype system that used desktop PCs and non-optimised code,

yet were still satisfactory for today's web, and showed that the prototype is capable of scaling

beyond that. As such, a properly designed, highly optimised system that uses high

performance machines should cope with a web many times the size that it is today.

6.4.6 Demonstrating New Services with the Prototype RLS

The RLS not only solves some of the flaws in the web, it also provides a platform upon which

new services can be deployed. In this way, it extends the web's architecture by enabling it to

provide more functionality than the existing architectural design can. As such, a number of

small demonstration services have been developed that use the prototype RLS to demonstrate

the enhanced functionality it provides. Specifically, the resource migration aspect of the RLS

has been used to demonstrate:

. fault tolerance;

. load balancing;

. mobile agents.

248

Chapter 6 - The Resource Locator Service

These enhanced services work on top of the RLS, and operate transparently to any client, as

the following sub-sections describe.

6.4.6.1 Load Balancing

The web provides little support for load balancing. The DNS can be used to provide a crude

load balancing service, by returning different IP addresses for the same hostname, but this

'round robin' functionality (Albitz and Liu, 1997) only works at the host level, as browsers

generally only perform a DNS query once for a whole web site.

In contrast, the RLS can provide a more sophisticated load balancing service at the resource

level. Individual resources can be migrated dynamically according to the load they place on

the server, thereby providing far nxre control than existing load balancing systems.

Replicated resources will have the same name but different current locations. Assigning

sequence orders to each replicated version allows a Locator to return the current URL of a

different version for every HTTP request. This has been implemented in the prototype RLS,

permitting resources to be placed on different servers according to media type, demand, or

processing requirements, which is a level of management not supported by the DNS.

The management interface monitors the load on various resources. If the load gets too high, it

migrates the resources to different predetermined web servers under its management, using the

RMP. Once the load decreases, the resources are migrated back again. In this way, the

interface acts as both client and Migration Manager.

249

Chapter 6 - The Resource Locator Service

6.4.6.2 Fault Tolerance

Mirroring a web site provides the web with a manual form of fault tolerance, but requires the

resource owner to provide a different link to each of the various mirrors. If one of the mirrors

falls over, the link to that mirror is broken, and the user must manually try another mirror

through another link.

In contrast, the RLS can be used to automatically route around mirrors that have fallen over,

and allow the resource owner to provide only one link. The management interface provides a

demonstration of this (see Figure 29). Firstly, the user selects appropriate destinations for

each resource that needs to be managed (each resource can be replicated onto a different

server).

Once complete, the management interface automatically replicates selected resources onto

selected web servers, using the RMP. The interface then monitors the resources. If it cannot

access them, it updates the appropriate Locator, marking the inaccessible resource as

inaccessible, and switching access over to the replicated resources. Once the system comes

back up, the interface brings the Locator back to its original state. This demonstrates the

usefulness of an automatic resource migration mechanism.

250

Chapter 6 - The Resource Locator Service

Address:

i1•rri1s

D escriplion

This demonstration will replicate the contents of a web folder, arid monitor the original web server. If the
server goes down, clients are automatically routed to the replica folder. When it comes up. they are
routed to the original folder again.

Folder to monitor:	 1d0c	 Browse

Folder to replicate to:	 [doc-backup	 Browse

Monitor

Web Server	 lhttp:/lted.see.plym.ac.uk/

Start	 Stop]Not monitoring

Exit

Exit	 j

Figure 29 - Prototype Fault Tolerance Application of the RLS

6.4.6.3 Mobile Agents

Mobile agents are items of code that migrate across machines to perform their required task.

However, there is currently no support for them on the web, largely because an agent's URL

breaks each time it migrates. With the use of the RLS, however, any code can freely migrate,

as it is treated by the RLS as just another resource.

251

Chapter 6 - The Resource Locator Service

The prototype system demonstrates mobile code by migrating a resource over to a random

server every minute. The prototype uses four servers set up in the same room. The resource is

a file containing a fragment of HTML, which is migrated to the same directory on the server

as a mobile code-specific web page. This web page looks for the existence of the resource

every 10 seconds; if it finds it, it reads the HTML contained within the resource and displays

it. If not, it displays a blank screen (see Figure 30). Each server permanently displays the web

page through a browser. As the management interface moves the resource across servers, the

HTML contained within the resource is displayed on a different machine, providing a visual

demonstration of migration.

The user can change the HTML in the mobile code at any time, no matter where the resource

is currently located. To do this, the Management interface sends a HTTP GET to the

appropriate Locator, which returns a HTTP 302 Found response, with the current location of

the response contained within the location header. The interface uses this location to issue a

HTTP PUT command, updating the resource with the new HTML entered by the user,

regardless of where the resource happens to reside. This demonstrates tie transparency of the

migration operation, as any client can download the resource and view its HTML contents at

any time, regardless of which server it resides on, or where it is in the migration process, so

long as it is connected to the proxy.

Although a trivial implementation, it demonstrates the ability of the RLS and RMP to act as a

platform for mobile code and mobile agents. As such, a real mobile agent would contain more

252

Chapter 6 - The Resource Locator Service

functionality than a simple HTML file, and could be designed to contact a Migration Manager

to migrate itself onto a different machine.

1i:tr Drrcni	 o:	 H

Address:	 -

IW1I1qtiNiHTttJi

Description

This demonstration randomly migrates the file MtheCodehtm between the remote hosts you enter.
II you wish to change the Mobile Code, press stop, enter new HTML, press Update and then

Remote Hosts:

Add Host	 E Sequental Migration	 Time between Migrations secs.) lO

MobileCode:
Exit

HelloWorId

Start	 Stop j	 Update HTML

T Exit

Figure 30 - Prototype Mobile Agent Demonstration

253

Chapter 6 - The Resource Locator Service

6.4.6.4 Other Enhanced Services

As well as those services that have been implemented to demonstrate the power of the RLS,

many other services can be built upon its features that cannot be deployed using the web's

existing architecture. Some examples include:

Web History

By providing the web with a new temporal dimension, resources can be archived

instead of lost. The temporal component of the RLS can enable them to be retrieved at

any point in time. Extending this concept, however, third party services could provide

temporal search engines, which dynamically return documents from a user's query

based on a point in time. Thus, the user can see how many documents and of what

quality existed at different points in time for the same query. The query might relate to

an important news topic, or to a new technological or scientific breakthrough, and so

the temporal search engine can be used to track its progress through time.

Security

Recently, severe Distributed Denial of Service attacks have taken place against high

profile web sites such as Yahoo and Amazon.com (McCullagh and Arent, 2000). The

distributed denial of service attack is very difficult to counter, as it is hard to

differentiate an attacker from a genuine user. However, with the RLS, resources can

be dynamically mirrored and migrated across many different machines, thus dispersing

the effectiveness of the attack. Various servers can be used to 'draw the fire' of the

attack, while other servers continue to serve real users.

254

Chapter 6 - The Resource Locator Service

6.5 Summaiy

This chapter concludes the work that has been performed in order to validate the concepts that

have been defined as part of the thesis. The chapter has presented the design and specification

of the RLS and the RR, as well as a prototype implementation that demonstrates the power

and flexibility of the system. In addition, the chapter has proven the scalability of the desigr

which has been tested with performance data from the prototype. More specifically, the

chapter has presented:

the design and specification of the Resource Migration Protocol (RMP);

the design and specification of the Locator Control Protocol (LCP);

a fully working prototype RLS and RR;

. demonstration applications of the RLS;

performance figures of the system.

In addition, further validation of the system's design has been provided by the publication of a

paper that describes the RLS in Computer Networks journal (Evans and Furnell, 2001). The

RLS represents the culmination of the research, which, together with the OSN, has extended

the existing state of the art, provided solutions to seemingly intractable problems, and will

form the basis of much future research.

255

Chapter 7 - Conclusion

7.	 Conclusion

This chapter concludes the thesis by summarizing the work that has been

achieved, including the new HOMiNID model for managing information flow

on the web, the Request Router and its associated algorithms and protocols, the

Temporal URL, and the implementation of a prototype Resource Locator

Service. The chapter concludes by discussing limitations of the research, and

describing new areas of research that can be performed to enhance and refine

the work further.

256

Chapter 7 - Conclusion

7.1	 Achievements of the Research Programme

The research programme has met all of the objectives originally specified in chapter 1, with

the exception of the link rot experiment, which had to be terminated prematurely prior to any

conclusive results being obtained. However, a comprehensive literature search helped to

quantify link rot, and new conceptual and practical work has been presented in a number of

areas, as listed below.

1. The development of the HOMINID model for managing information flow, which

solves the three identified web flaws without succumbing to the information

management dichotomy. The HOMINID model comprises the Resource Locator

Service, Temporal Referencing, and the Oracle Server Network, each of which extends

the web's existing architecture without breaking it, and helps both the information

provider and information user without censoring the web.

2. The design, development and testing of the Request Router, a novel node location

system that transparently mediates between the web and a new distributed system. The

Request Router is the foundation of the implementation of the RLS and OSN.

3. The design of temporal references, which add the dimension of time to the web

without invalidating existing addressing schemes.

257

Chapter 7 - Conclusion

4. The design, specification, and development the RLS, complete with the

implementation of a prototype to test the concept and measure its performance.

5. The design, specification, and development of the Resource Migration Protocol, which

enables transparent resource migration across the web through an extension of existing

web protocols.

Several papers relating to the research programme have been presented at refereed conferences

and published in internationally recognized refereed journals, where the work received praise

and recognition for its novel approach to solving the web's three flaws. In addition, the work

on the RLS that involved the WebDAV protocol emerged as a result of participation in the

IETF's WebDAV working group, and has led to the design and development of a novel

application of WebDAV that enhances its functionality. In conclusion, it is believed that the

research has made valid and useful contributions to the fields of distributed information

management, distributed systems, and the World Wide Web.

7.2	 Limitations of the Research

Despite having met the overall objectives of the research programme, and the functional

success of the prototype, the work inevitably contains a number of limitations. The principal

points are presented below.

1. The link rot experiment was terminated prematurely, leaving the quantification of link

rot imprecise and out of date. Although the comprehensive literature review

258

Chapter 7 - Conclusion

subsequently provided adequate results, there is still no recent, comprehensive

experimental data that is comparable with the experiments that have been performed

regarding content lifetime.

2. Insufficient time and resources were available to further develop the OSN. The scope

of the system could easily form another research programme in itself, including

experiments, implementation and further design.	 However, the design and

implementation of the RLS was the priority, and as the architectural design of the OSN

relied on the success of the Request Router, the validation of the RLS's design applied

equally to that of the OSN, at least from a functional perspective.

3. The RLS prototype was deployed and tested on a computer less powerful than if

deployed on the web, and on a LAN rather than across the Internet, due to resource

constraints. As such, the prototype was not run in a real world environment, which

will have impacted the performance figures that were obtained. Despite this, however,

the performance and scalability proved sufficient to validate its design such that it will

scale to a system the size of the web.

7.3 Suggestions and Scope for Future Work

Throughout the thesis, areas where future work is possible or preferable have been identified,

which could be conducted to build upon and enhance that undertaken within the project.

These areas, together with new ones, are summarized below.

259

Chapter 7 - Conclusion

1. The link rot experiment can be remounted, but using a single HTTP HEAD request to

determine the presence of a web server, rather than the ping method that was used in the

original experiment. H1'TP is deemed less ambiguous in its intent than ping, and so the

security problems associated with the initial experiment should be removed.

2. The Oracle Server Network has not been fully specified or implemented. Future work will

design its interface, and will determine the meta-data that needs to be stored. In addition,

the OSN will be designed such that it can collate its information across resources, so that

measurements can be made about the maximum and minimum values of the properties of

resources and their content. In this way, the shape and structure of the web and its content

can be accurately determined, enabling new services to be deployed that increase the web's

functional value.

3. The design of the Locator could be extended such that a client could ask it to return a

resource whose time of creation lies between a set of dates, rather than at a specific fixed

date. The extra complexity this introduces into the design precluded it from becoming a

feature of the RLS at this stage of its development, but it is a useful feature that should be

considered for inclusion in the RLS's design in future work.

4. The resources that are managed by the RLS are simple, static resources with little or no

intelligence. Existing distributed systems, such as CORBA or DCOM, use objects as their

resources, which are full programmatic resources that have their own state and data. As

such, future work should examine ways in which the RLS can be extended to manage

260

Chapter 7 - Conclusion

these intelligent objects, such that they can be transparently migrated across servers during

execution. New developments on the web using XML and SOAP have provided the basis

for the technology to achieve this, and the functionality of the RLS would provide new

services to these existing distributed architectures.

5. The namespace of the RLS is left deliberately flat and unconstrained, but it is not known

what effect this will have on the naming schemes used by resource owners. As such,

future research will examine the merits of such a flat naming scheme, to determine

whether or not any restrictions should be imposed on the RLS's namespace, and the exact

nature of any restrictions should the research favour their introduction.

6. The current design of the RMP relies on a resource migration manager to co-ordinate the

migration of a resource. However, there may be circumstances in which a client might

wish to contact the manager remotely through the use of a new HTTP MIGRATE

message. This would enable the client to direct its own migration, and could lead to third

parties providing new migration services through an open, universal resource migration

manager.

6. The RIVIP and LCP protocols make no allowance for security issues. As such, in the

current design, anybody can alter a Locator's database, leading to corruption of its records.

Future research should implement the ACL or at least HTTP digest authentication in order

to safeguard the integrity of the RLS.

261

Chapter 7 - Conclusion

7. The design of the RMP and LCP is such that certain entities must wait for a response that

may take a long time to arrive, due to the amount of processing that the machine sending

the response has to do before the response can be sent. As such, future work should focus

on providing disconnected operation, possibly though the use of a defer-until header, which

would give a Locator time to complete its operation while providing a client application

with the time in which it should check the Locator's progress. However, this functionality

has been left out of the current design following discussions with Jim Whitehead, chair of

the IETF's WebDAV working group, who advised that such disconnected operation would

require some form of Internet-scale event notification technology, which does not yet exist

(see Whitehead, 2000).

8. Temporal references were left out of the prototype. A future version should include these,

and provide support for a temporal search engine, which would allow a user to query the

web based on a topic and a range of times. Additionally, the future prototype should also

include the OSN, to further realize its potential.

9. Further trials should place the prototype in a more realistic context, using larger machines

to host the Locator software, an optiniised Request Router, many Locators managing many

resources, and distributed across a WAN rather than a LAN.

7.4 The Future of the World Wide Web

The World Wide Web is here to stay, and will remain part of our lives for many years to

come. If it is to remain a useful resource, however, then its flaws need fixing, and they cannot

262

Chapter 7 - Conclusion

be fixed using methods that run counter to its philosophy. As such, the HOMINID model

provides a complete solution to the information management flaws with which the thesis is

concerned, providing a genuinely novel insight into the nature of information flow on the web.

However, even if it does not become a new part of the web's architecture, it has contributed to

the field in many ways:

. The HOMINID model is a novel means of managing information flow on the web. Its

human-oriented perspective of information in a networked enviromnent differs

substantially from existing models, enabling it to more easily address the problems that

emerge from the nature of information provision and consumption on the web. As

such, it can be used in a wide range of applications, from enabling information

providers to determine the best strategy for their marketing campaigns, to enabling

browser designers to design better interfaces to the web.

• Request Routing is a novel approach to distributed systems, and can be used in any

system that requires flexibility and performance while maintaining backwards

compatibility.

• The hash routing algorithm used in the RR adapts the CARP algorithm in a way that

removes the need for lookup tables of each node, and thus reduces the network

overhead incurred by the algorithm. With the design of the LCP as a scalab protocol

for controlling configuration change, the whole package can be used to lower the

network overhead of any system that currently relies on CARP.

263

Chapter 7 - Conclusion

The RMP is a generic automatic migration protocol that can be adopted by any

migration mechanism, and used on the web by all entities without modification. The

protocol also provides an impressive demonstration of what can be achieved with

WebDAV, and an Internet draft will be submitted to the IETF as a contribution to

Internet protocols.

• The TURL scheme is a novel extension to the URL that can be employed by any

application on the web that requires a new temporal dimension. The specification of

the scheme will also be submitted to the IETF as an Internet draft.

The architecture of the RLS provides a novel approach to resource migration,

improving the hyperlink's referential integrity without breaking the web's existing

architecture. Although the design was developed specifically for the web, however, it

should transfer well to other distributed systems, as the namespace is entirely generic,

and web protocols are used simply to convey messages. As such, the design of the

RLS can be seen as a novel resource migration mechanism for all types of information

system, not just the web.

The OSN improves the hyperlink's informational integrity, and enhances the richness

of the web's links. The information that it stores can serve as a platform for many new

services that require universal access to usage data on the web, as well as providing

reliable metrics of the web and its users that can be used by third parties.

264

Chapter 7 - Conclusion

As such, the research work that has been completed for this PhD has contributed to many

fields, and has provided new avenues for future research that will provide many more

contributions in the future.

265

List of References

List of References

1. Akamai (1999), Akamai web site, http://www.akamai.comlservice/howitworks.html

2. Arent, L. (1999), "Bidders High On Drugs.com ?", Wired News, August 5th 1999,

http://www.wired.com/news/business/0, 1367,21 128,00.html

3. Ashman, H. and Davis, H. (1998), W3C Panel: "Missing the 404: Link Integrity on the

World Wide Web", in: The Seventh World Wide Web Conference, Brisbane, Australia,

April 14-18 1998.

4. Barrett, T. (2000), "Internet comes of age with 30 millionth domain name" NetNames

Web site, October 2000, http://www.netnames.com/dnrs/netnames.client.Login

5. Bemers-Lee, T., Masinter, L. and M. McCaliill (1994), "Uniform Resource Locators

(URL)", RFC1738, December 1994

6. Berners-Lee, T. and Connolly, D (1995), "HyperText Markup Language Specification

- 2.0", RFC1866, November 1995.

7. Berners-Lee, T. (1998) "Cool URIs Don't Change", W3C Web site, 1998,

http://www.w3.org/Provider/Style/URI.

266

List of References

8. Bemers-Lee, T., Fielding, R. and Masinter, L. (1998), "Uniform Resource Identifiers

(URI): Generic Syntax", RFC 2396, http://www.ietf.org/rfc/rfc2396.txt, August 1998.

9. Bemers-Lee, T. and Fischetti, M. (1999), "Weaving the Web- the Past, Present and

Future of the World Wide Web, by its Inventor", Orion Business Books, 1999.

10. Berst, J. (1998), "Search Sites' Shocking Secret", ZDNet Anchor Desk, August 17th,

1998, http://www.zdnet.com/anchordesk/story/story_2432.htm1

11. Box, D., Elinebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen. H.F.,

Thatte, S. and Winer, D. (2000), "Simple Object Access Protocol (SOAP) 1.1", W3C

Note, 8th May 2000, http://www.w3.org/TR/SOAP/

12. Braden, R. (1989), "Requirements for Internet Hosts - Communication layers, STD 3",

RFC 1123, October 1989.

13. Bray, T., Paoli, J. and Sperberg-McQueen, C.M. (2000), "Extensible Markup Langmge

(XML) 1.0 (Second Edition)", W3C Recommendation, 6th October 2000,

http://www.w3.orgITRJ2000IREC-xnil-20001 006.

14. Brebner, G. (1997), "Computers in Communciation", 1997, McGraw Hifi Publishing

Company, Berkshire, England.

267

List of References

15. Brewington, B.E. and Cybenko, G. (2000), "Keeping up with the Changing Web",

IEEE Computer, p 52-5 8, May 2000

16. Brin, S and Page, L. (1998), "The Anatomy of a Large-Scale Hypertextual Web Search

Engine", in: Proc. 7th International World Wide Web Conference Brisbane, Australia,

14-18th April, 1998

17. Briscoe, R. J. (1997), "Distributed Objects on the Web", BT Technology Journal,

Vol.15 No.2, April 1997, pp158.

18. Broder, A.Z., Glassman, S.C., Manasse, M.S, and Zweig, G. (1997), "Syntactic

Clustering of the Web", In: Proceedings of the 6th International World Wide Web

Conference, pp. 391-404, 1997

19. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,

Tomkins, A. and Wiener, J. (2000), "Graph Structure in the Web" In: Proceedings of

the 9th International World Wide Web Conference, Amsterdam, The Netherlands,

May2000

20. Butler, D. (2000), "Souped-Up Search Engines", in: Nature, No. 405, pp1 12-115, 11

May 2000, http://www.nature.com/cgi-

taf/DynaPage.taf7file=/nature/journal/v405/n6783 full/4051 12a0_fs.html&_UserRefer

enceCOA8O4EC46B4E67A8CDD728 1 63CF3A6D6B22

268

List of References

21. Catledge, L.D. and Pitkow, J.E. (1995), "Characterizing Browsing Strategies in the

World-Wide Web", in: Proceedings of the Third International World Wide Web

Conference, Darmstadt, Germany, April 1995

22. Cerf, V. and Kahn, R. (1974), "A Protocol for Packet Network Intercommunication",

IEEE Transactions on Communications, Vol. COM-22, No. 5, pp 637-648, May 1974.

23. Chakrabarti, S., van den Berg, M. and Dom, B. (1999a), "Focused Crawling: A New

Approach to Topic-Specific Web Resource Discovery", in: Proceedings of the 8th

International World Wide Web Conference, 1999.

24. Chakrabarti, S., Dom, B.E., Gibson, D., Kleinberg, J., Kumar, R., Raghavan, P.,

Rajagopalan S. and Tomkins A. (1999b), "Mining the Link Structure of the World

Wide Web", IEEE Computer, 32(8), August 1999.

25. Chankhunthod, A., Danzig, P.B., Neerdaels, C., Schwartz, M.F. and Worrell, K.J.

(1995), Object Lifetimes, in A Hierarchical Internet Object Cache, 1995.

http://excalibur.usc.edu/cache-html/cache.html.

26. Cockburn, A. and Greenberg, S. (1999), "Issues of Page Representation and

Organization in Web Browser's Revisitation Tools" in: Proceedings of the OZCHI'99

Australian Conferences on Human Computer Interaction, November 28-30, Wagga

Wagga, Australia.

269

List of References

27. Cohen, J., Hopman, A., Goland, Y., Valloppillil, V., Leach, P. and Lawrence, S.

(1998), "Don't Go Postal - An Argument Against Improperly Overloading the HTTP

POST Method", Internet draft, draft-cohen-http-ext-postal-00, 1998

28. Concise Oxford Dictionary (COD) (1990), "Concise Oxford Dictionary", 1990, RE.

Allen (Ed.), Clarendon Press, Oxford

29. Cox, B. (1999), "Bonzi Software Banner Leads NetRatings Weekly List",

InternetNews.com, March 15th, 1999,

http://www.internetnews.com/IARiartic1e/0,, 1 2_8002 1 ,00.html

30. Cuenca, P., Sosa, V., Romero, J. and Hernanz, I. (1999), "Lessons Learned from the

Early Adoption of URNs in an Intranet Environement", The 9th Annual Conference of

the Internet Society, INET 99, San Jose, CA,

http://www.isoc.org/inet99/proceedings/4m/4m_2.htm ,1999

31. CyberMetrics (2000) Homepage of the International Journal of Scientometrics,

Informetrics and Bibliometrics, October 2000,

http://www.cindoc.csic.es/cybermetrics/linkso8.html

32. Daniel, R. and Mealling., M, (1997), "Resolution of Uniform Resource Identifiers

using the Domain Name System", RFC2 168, June 1997.

270

List of References

33. DeRose, S, Maler, E. and Daniel, R. (2001), "XML Pointer Language (Xpointer)

version 1.0", World Wide Web Consortium Last Call Working Draft, 8th January,

2001, WD-xptr- 19980303, 3rd March 1998, http://www.w3 .org/TRI2001/WD-xptr-

20010108/

34. DeRose, S, Maler, E. and Orchard, D. (2000), "XML Linking Language (Xlink) -

version 1.0", World Wide Web Consortium Proposed Recommendation, 20th

December 2000, http://www.w3 .org/TRI2000/PR-xlink-2000 1220/

35. Devlin, K. (1991) "Information and Logic", Cambridge University Press, 1991

36. DOLMEN (1995), "Service Machine Development for an Open Long-term Mobile and

Fixed Network Environment - Technical Annex", ACTS DOLMEN, 1995

37. DOLMEN (1996a), "Evaluation of Service Architecture Frameworks", G. Bruno,

ACTS DOLMEN Deliverable ASD1, 28th June 1996

38. DOLMEN (1996b), "Evaluation of Current Communication Technology in

Hypermedia Information Browsing", Raatikainen, K., ACTS DOLMEN deliverable

TAD3, 1996

39. DOLMEN (1997), "Implementation of an Enhanced Distributed Processing Platfbrm

for DOLMEN", Huynh, N., ACTS DOLMEN deliverable MPD3, 15th April 1991

271

List of References

47. Evans, M.P. and Furnell, S.M. (2001), "The Resource Locator Service: Fixing a Flaw

in the Web", to appear in Computer Networks Journal - The International Journal of

Computer and Telecommunications Networking, Elsevier Science

48. Feldman, S. (1998), "The Internet Search-Off', The Searcher: The Magazine for

Database Professionals, February 1998,

http://www.infotoday.comlsearcher/feb98/storyi .htm

49. Fielding, R, Gettys, J, Mogul, J.C., Nielsen, H.F., Masinter, L, Leach, P., Berners-Lee,

T. (1999), HyperText Transfer Protocol - HTTP/1.1, RFC 2616, June 1999.

50. Fielding, R.T., (1996), "Fielding on MOVE & COPY", Discussion in WebDAV

working group, July to September 1996, http:/flists.w3 .org/Archives/Public/w3o-dist-

auth/i 996JulSep/0045.htm

51. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A. and

Stewart, L. (1999), "HTTP Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999, http://www.rfc-editor.org/rfc/rfc2617.txt

52. Freed, N. and Borenstein, N. (1996), "Multipuropse Internet Mail Extensions (MIME)

Part Two: Media Types", RFC 2046, November 1996

273

List of References

53. Gilder, G. (1993), "Metcalfe's Law and Legacy", Forbes ASAP Magazine, 13th

September, 1993

54. Gillet, S.E. and Kapor, M. (1997), "The Self-Governing Internet: Coordination by

Design", in: Coordination of the Internet, ed. B. Kahin and J. Keller, MIT Press, 1997

55. GlobalReach (2000), Global Reach homepage, Global Reach,

http://www.glreach.com/g1obstats/index.php3, October 2000

56. Goland, Y., Whitehead, E.J., Faizi, A., Carter, S.R. and Jenson, D. (1999), "HTTP

Extension for Distributed Authoring - WebDAV", RFC 2518, February 1999.

57. Graphic, Visualization and Usability Centre (GVU) (1997), "7th WWW User Survey",

April 1997 (an archive of GVU's web surveys can be found at

http://www.cc.gatech.edu/user_surveys/)

58. Graphic, Visualization and Usability Centre (GVU) (1998), "9th WWW User Survey",

April 1998

59. Harris, C. (2000), "LinkGuard - Intelligent Link Management", White Paper, Link

Guard web site, http://www.linkguard.com/utils/downloads/wp/whitepaper.pdf

60. Heery, D. (1996), "Review of Metadata Formats", Program, Vol. 30, No. 4, October

1996, pp. 345-373

274

List of References

61. Henziger, M.R., Heydon, A., Mitzenmacher, M. and Njork, M. (1999), "Measuring

Index Quality using Random Walks on the Web", In Eighth International World Wide

Web Conference, pages 2 13-225, Elsevier Science B.V., May 1999

62. Higgins, M. (1999), "Meta-Information, and Time: Factors in Human Decision

making", Journal of the American Society for Information Science, 50(2): 132-139,

1999

63. Hochheiser, H. and Schneiderman, B. (1999), "Understanding Patterns of User Visits

to Web Sites: Interactive Starfield Visualizations of WWW Log Data", In: Proceedings

of ASIS '99, 1999.

64. Hoitman, K. and Mutz, A. (1998), "Transparent Content Negotiation in HTTP",

RFC2295, March 1998

65. Huberman, B.A., Pirolli, P.L.T., Pitkow, J.E. and Lukse, R.M. (1998), "Strong

Regularities in World Wide Surfing", Science, Vol.280, 3rd April 1998

66. lannella, R., Sue, H. and Leong, D. (1996), "BURNS: Basic URN Service Resolution

for the Internet", in: Proceedings of the Asia-Pacific World Wide Web Conference,

Beijing & Hog Kong, 1996,

http://www.dstc.edu.au/ResearchlResearchlResource_Discovery/publications/apweb96

/index.html

275

List of References

67. Ingham, D, Caughey, S and Little, M. (1996), "Fixing the 'Broken-Link' Problem: The

W3Objects Approach", in: The Fifth International World Wide Web Conference, Paris,

France, May 6-10 1996.

68. Ingham, D., Little, M., Caughey, S. and Shrivastava, S. (1995), "W3Objects: Bringing

Object-Oriented Technology to the Web", in: Proceedings of the 4th International

WWW Conference, Boston, December 1995,

http://www.w3.org/pub/Conferences/WWW4/Papers2/1 41

69. Inktomi Corporation (1996), "The Inktomi Technology Behind HotBot- A White

Paper", 1996, htp://www.inktomi.comlproducts/searchlclustered.html

70. Inktomi Corporation (1999), Inktomi and NEC Research institute,

http://www.inktomi.com/webmap/.

71. Internet Corporation for Assigned Names and Numbers (ICANIN) (1999), "Uniform

Domain Name Resolution Policy", http://www.icann.orgludrp/udrp-policy-

24oct99.htm, October 24th 1999

72. ISO/IEC (1993) "Draft Recommendation X.901: Basic Reference Model of Open

Distributed Processing - Part 1: Overview and Guide to use", ISO/JEC, 30th August

1993.

276

List of References

73. Kahie, B. (1996), "Archiving the Internet", First draft of Kahie 1997, submitted to

Scientifc American in 4th November 1996, http://www.archive.org/sciam_artic1e.htm1

74. Kahle, B. (1997), "Preserving the Internet", Scientific American, March 1997,

http://www.sciam.com/0397issue/0397kahle.html

75. Kahle, B. (1999), Personal communication (see Appendix C), Jiiy 15th 1999

76. Kawai, E., Osuga, K., Chinien, K. and Yamaguchi, S. (2000), "Duplicated Hash

Routing: A Robust Algorithm for a Distributed WWW Cache System", in: JEICE

Trans. Inf. & Syst., Vol.E83-D, No.5, May 2000.

77. Kleinberg, J.M. (1998), "Authoritative Sources in a Hyperlinked Environment",

Proceedings of the ACM-SLAM Symposium on Discrete Algorithms, pp. 668-677,

January 1998.

78. Klyne, G. (1999), "Protocol-Independent Content Negotiation Framework", RFC 2703,

September 1999.

79. Knuth, D. (1998), "The Art of Computer Programming- Volume III Sorting and

Searching", 2nd Edition, Addison Wesley Longman, 1998

277

List of References

80. Koehier, W. (1999), "An Analysis of Web Page and Web Site Constancy and

Permanence", Journal of the American Society for Information Science, 50(2);162-

180, 1999

81. Kosters, M. (1999), "Massive Scale Name Management: Lessons Learned from the

.COM Namespace", TWIST 99 conference, University of California, Irvine, California,

USA, August 1999.

82. Lagoze, C. (1997), "From Static to Dynamic Surrogates - Resource Discovery in the

Digital Age", D-Lib Magazine, June 1997, http://mirrored.ukoln.ac.ukllis-

journals/dlib/dlib/dlib/june97/O6lagoze.html

83. Lagoze, C. and Fielding, D. (1998), "Defining Collections in Distributed Digital

Libraries", D-Lib Magazine, ISSN 1082-9873, November 1998,

http://mirrored.ukoln.ac.uk/lis-

jouranls/dlib/dlib/dlib/november98/lagoze/1 1 lagoze.html

84. Lassila, 0. (1997), "Introduction to RDF Meta-Data", W3C NOTE 1997-11-13, 13th

November 1997, http://www.w3 .orgITRJNOTE-rdf-simple-intro

85. Lassila, 0. and Swick, R.R. (1998), "Resource Description Framework (RDF) Model

and Syntax Specification", W3C Recommendation, 22ndFebruary, 1999, RD-rdf-

syntax- 19980819, hup://www.w3 .org/TRIREC-rdf-syntax/

278

List of References

86. Lawrence, S. and Giles, C.L. (1999), "Accessibility of Information on the Web",

Nature, Vol.400, 8 July 1999, pplO7-1O9.

87. Lawrence, S., and Giles, C.L. (1998), "Inquirus, the NECI Meta-Search Engine", In:

Proceedings of the Seventh International World Wide Web Conference, Brisbane,

Australia, 14-18 April 1998, pages 95-105.

http://www7.scu. edu.aulprogranime/fullpapers/1 906/comi 906.htm

88. Lawrence, S., Pennock, D.M., Flake, G.W., Krovetz, R., Coetzee, F.M., Glover, E.,

Nielsen, F.A., Kruger, A. and Giles, C.L. (2001), "Persistence of Web References in

Scientific Research", IEEE Computer, p26-3!, February 2001.

89. Levinson, P. (1997) "The Soft Edge - A Natural History and Future of the Information

Revolution", Routledge, 1997

90. Mackay, D. (2001), "Information Theory, Inference, and Learning Algorithms",

Cambridge University Press, Cambridge, UK. See also

http://wol.ra.phy.cam.ac.uk/mackay/itprnnlbook.html

91. McCullagh, D. (1999), "Domain Name List is Dwindling", Wired News, April 14

1999, http://www.wired.comlnews/technology/0, 1282,1911 7,00.html

279

List of References

92. McCullagh, D. and L. Arent (2000), "A Frenzy of Hacking Attacks", Wired News, 9

February 2000. http://www.wired.com/news/printJ0, 1 294,34234,00.html.

93. McNamara, P. (2000), "Guarding against Broken Links", Network World Fusion News

Article, http://www.nwfusion.com/coluninists/200O/O515netbuzz.html, 15th May 2000

94. Metcalfe, R. (1996), "Computer Laws galore, but one is holding back the information

age", InfoWorld article, May 6th 1996, http://www.infoworld.com/cgi-

binldisplayNew.pl?/metcalfe/bm050696.htm

95. Microsoft (1997a),"MS Active Directory Service Interface (ADSI)"

http://www.microsoft.com/technetlwinntlwinntas/technote/adsiwp.asp, February 1997.

96. Microsoft (1997b), "Cache Array Routing Protocol (CARP) and Microsoft Proxy

Server 2.0", Microsoft Corporation, http://msdn.microsoft.com'Iibrary/backgmd/html/carp.htm

97. Microsoft (2000a), "Windows Internet Name Service and Broadcast Name

Resolution", Microsoft, 2000,

http://msdn.microsoft.comllibraiy/default.asp?LJRL=Ilibraiy/winresource/dnwinntlS763A.HTM

98. Microsoft (2000b), "About the OLE DB Provider for Internet Publishing", Microsoft,

2000. http://msdn.microsoft.com/Iibraiy/default.asp?URL=/Iibraiy/psdk/ipubsdkfipubbybO_797m.htm

99.	 Microsoft (2001). Microsoft DotNet Web Stite, http://msdn.microsoft.com/netl

280

List of References

100. Mitchell, D., Bradner, S. and Claffy, K. (1996), "In whose Domain: Name Service in

Adolescence", Information Infrastructure project workshop on Co-ordination and

Administration of the Internet JFK School, 8-10 September, 1996,

http://www.caida.org/outreach/papers/dnssence

101. Mockapetris, P. (1987a), "Domain names - concepts and facilities," RFC1O34,

November 1987, http://www.ietf.org/rfc/rfc1034.txt.

102. Mockapetris, P. (198Th), "Domain names - implementation and specification",

RFC 1035, November 1987, http://www.ietf.org/rfc/rfc5.txt.

103. Moore, K. (1996), "Location-Independent URLs or URNs Considered Harmful",

Internet Draft, draft-ietf-uri-urns-harmful-00.txt, 1996

104. Nielsen, H.F. and D. LaLiberte (1999), "Editing the Web: Detecting the Lost Update

Problem Using Unreserved Checkout", W3C NOTE, May 10, 1999,

http://www.w3.org/1 999/04/Editing!

105. Nielsen, H.F., Leach, P. and Lawrence, S. (2000), "An HTTP Extension Framework",

RFC 2774, February 2000.

281

List of References

106. Notess, G. (2000a),"Search Engine Statistics Web site",

http://www.notess.com/searchJstats/sizeest.shtml, 2000.

107. Notess, G. (2000b), Search Engine Showdown report, February 21, 2000,

http://searchengineshowdown.comlstats/dead.shtml

108. Object Management Group (0MG) (2000), "Interoperable Naming Service

Specification", Object Management Group, Document number: formalI2000-1 1-0 1,

http://www.omg.orglteclmology/documents/formallnaniing_service.htm, November

2000

109. Ohto, H. and Hjelm, J (1999), "CC/PP Exchange Protocol Based on HTTP Extension

Framework", W3C Note, 24th June 1999, http://www.w3.org/TRJNOTE-

CCPPexchange.htm

110. 0MG (1995), "The Common Object Request Broker: Architecture and Specification,

Revision 2.0", Object Management Group, 1995

111. Pallmann, D. (1999), Pallmann, D., "Programming Bots, Spiders and Intelligent Agents

in Microsoft Visual C++", Microsoft Press, Redmond, Washington, USA, 1999.

282

List of References

112. Park, K., Kim, G. and Crovella, M. (1997), "On the Effect of Traffic Self-Similarity on

Network Performance", in Proceedings of the 1997 SPIE International Conference on

Performance and Control of Network Systems, November 1997

113. Pearson, S. (2000), "Hype or Hypertext? A Plan for the Law Review to move into the

21St Century", http://www.cc.utah.edwLsgp5837/pearson.htm

114. Pitkow, J, and Reeker, M. (1994), "Integrating Bottom-Up and Top-Down Analysis for

Intelligent Hypertext", Intelligent Hypertext Workshop, Third International Conference

on information and Knowledge Management, National Institute of

StandardTechnology, December 12th 1994

115. Pitkow, J. B. (1998), "Summary of WWW characterizations", Computer Networks and

ISDN Systems, vol. 30, no. 5, pp. 55 1-558, 1998

116. Pitkow, J.B. (1997), "In Search of Reliable Usage Data on the WWW", The Sixth

International World Wide Web Conference, pages 45 1-463, Santa Clara, CA, 1997.

117. Pitkow, J.E. and Jones, R.K. (1996), "Supporting the Web: a Distributed Hyperlink

Database System", in: The Fifth International World Wide Web Conference, Paris,

France, May 6-10 1996.

283

List of References

118. Postel, J. (1981a), "Transmission Control Protocol- DARPA Internet Program

Protocol Specification", Postel, J. (ed.), RFC793, September 1981.

119. Postel, J. (1981b), "Internet Protocol - DARPA Internet Program Protocol

Specification", Postel, J. (ed.), RFC791, September 1981.

120. Postel, J. (1996), "Media Type Registration Procedure", RFC 1590, November 1996.

121. Raatikainen, K., Dede, A. and Koskimies, 0. (1998), "Internet browsing on OSAM

platform", In: Intelligence in services and networks: technology for ubiquitous telecom

services. Proc. 5th International Conference on Intelligence in Services and Networks,

IS&N '98, Antwerp, Belgium, May 25-28, 1998. Berlin, Springer-Verlag, 1998

(Lecture notes in computer science vol. 1430) pp. 261-272

122. Reddy, S., Lowry, D., Reddy, S., Henderson, R., Davis, J. and Babich, A., (1999),

"DAV Searching and Locating", Internet Draft draft-dasl-protocol-0 1,

http://www.webdav.org/dasllprotocolldraft-dasl-protocol-00.html, July 1999.

123. Ross, K. (1997), "Hash Routing for Collections of Shared Web Caches", IEEE

Network Magazine, 11, 7:37--44, Nov-Dec 1997.

124. Schwartz, C. (1998), "Web Search Engines", Jcurnal of the American Society for

Information Science, 49(1), p973-982, 1998

284

List of References

125. Sedlar, E and G. Clemm (2000), "Access Control Extensions to WebDAV", Internet

Draft draft-ietf-webdav-acl-01, April 28 2000,

http://www.webdav.org/acl/proto col/draft-ietf-webdav-acl-0 1 .htm.

126. Shafer, K., Weibel, S., Jul, E. and Fausey, J. (1996), "Introduction to Persistent

Uniform Resource Locators", in: Proceedings of INET96, Montreal, Canada, 24-28

June 1996.

127. Slein, J.A., Vitali, F., Whitehead, J. and Durand, D. (1998), "Requiements for a

Distributed Authoring and Versioning Protocol for the World Wide Web", RFC 2291,

February 1998, http://www.rfc-editor.org/rfc/rfc229 1 .txt

128. Sollins, K. (1998), "Architectural Principles of Uniform Resource Name Resolution",

RFC 2276, January 1998.

129. Sollins, K. and Masinter, L. (1994), "Functional Requirements for Uniform Resource

Names", RFC 1737, December 1994

130. SRI Research (2000), "How People Use the Internet", 17th February 2000,

http://www.sriresearch.comlpress/pr2000021 7.htm

285

List of References

131. Stallings, W. (1991), Stallings, W, "Data and Computer Communications", 4th Edition

Macmillan Publishing Company, New York, 1991.

132. Sullivan, D. (2000a), "SearchEngineWatch" report, July 7th 2000,

http://www.searchenginewatch.com/reports/directories.html

133. Sullivan, D. (2000c), "Search Engine Watch",

http://www.searchenginewatch.com/reports/perday.html

134. Sullivan, D. (2000d) "Search Engine Watch",

http://www.searchenginewatch.com/webmasters/features.html

135. Sullivan, T. (2000b), "All Things Web", http://www.pantos.org/atw/35654.htm1, 2000.

136. Sun, S.X. and Lannom, L., (2000), "The Handle System: A Persistent Global Name

Service - Overview and Syntax", Internet-draft, February 2000,

http://www.ietf.org/internet-drafts/draft-sun-handle-system-04.txt

137. Tauscher, L. and Greenberg, S. (1997), "Revisitation Patterns in World Wide Web

Navigation", Conference on Human Factors in Computer Systems, Atlanta, Georgia,

March 22-27, 1997.

286

List of References

138. Thaler, D.G. and Ravishankar, C.V. (1998), "Using Name Based Mappings to Increase

Hit Rates", IEEE/ACM Transactions on Networking, 6(1):1-14, February 1998.

139. TINA (1994) "Overall Concepts and principles of TINA Version 1.0", Chapman, M.

and Montesi, S., TINA-C Deliverable, 17th February 1995

140. University of Michigan (1995), University of Michigan's LDAP FAQ, 1995,

http://www.umich.edu/ —dirsvcs/Idap/doc/guides/slapd/1 .html#RTFToC 1

141. Valloppillil, V. and Ross, K. (1998), "Cache Array Routing Protocol vl.0", Internet

Draft, draft-vinod-carp-vl-03, 26th February 1998,

http://www.microsoft.com/proxy/guide/CarpSpec.asp?A=2&B=3

142. Vixie, P., Thomson, S., Rekhter, Y. and Bound, J. (1997), "Dynamic Updates in the

Domain Name System (DNS UPDATE), RFC 2136, April 1997

143. W3C (1992) World Wide Web Consortium web site, http://www.w3.org/WWW/, 1992

144. Whitehead, E.J. and Wiggins, M. (1998), "WebDAV: IETF Standard for Collaborative

Authoring on the Web", IEEE Internet Computing: Software Engineering over the

Internet, 2(5): 34-40, September-October 1998

287

List of References

145. Whitehead, E.J. (2000), Personal Communication via IETF's WebDAY working

group.

146. Windrum, P. (1999), "The Collective Invention of the World Wide Web", the Colline

Report, Prepared for DGXII, European Commission, 1999

147. Yeong, W., Howes, T. and Kille, S. (1995), "The Lightweight Directory Access

Protocol", RFC 1777, ftp://ftp.isi.edu/in-notes/rfc1777.txt, March 1995.

288

Appendix A - Core Components of the HOMINID Model

APPENDIX A

CoRE COMPONENTS OF THE HOMINID MODEL

The core components of the HOMINID model that were developed in chapter 4 are presented

in the following table for reference.

Concept	 Problem Solved	 Description

Temporal	 • Invalid hyperlinks The Temporal Reference binds a resource and its
Reference	 due to	 content content together as one atomic unit, and locates

change

	

	 that unit in time and space. Should any
component of this unit change, it becomes a new

• Lost History	 unit, and must receive a new temporal reference.

Resource	 • Link Rot	 The RLS is functionally equivalent to the DNS,
Locator	 but does not constrain the namespace. Its default
Service	 • Shrinking	 namespace is the temporal reference, which

Namespace	 enables it to locate a resource across time and
space. The RLS also provides a transparent

• Automatic,	 resource migration mechanism that can enable a
transparent resource resource to be migrated remotely.
migration

The Core Components of the HOMINID Model

289

Appendix A - Core Components of the HOMINID Model

Concept	 Problem Solved	 Description

Oracle Server • Increasing Noise	 The Oracle Server provides universal access to
characteristic infons and navigational infons

• Ineffective	 about the resources on the web and the way in
Browsing caused by which they are used. In this way, it can measure
deceptive	 the resource and its referring hyperlinks, and
hyperlinks	 provides the user with information from the

Oracle situation rather than from the resource
• Resolves the	 owner's deceptive situation, thus maintaining the

Information	 hyperlink's informational integrity. As such, the
Management	 Oracle Server can alert the user to deceptive
Dichotomy	 strategies and help them to make more informed

browsing choices. This reduces the noise in the
• Measuring the Web web without requiring the censorship of its

information, and so resolves the information
management dichotomy.

The Core Components of the HOMINID Model (cont.)

290

Appendix B - List of Abbreviations

APPENDIX B

LIST OF ABBREVIATIONS

CORBA

CARP

DNS

DOLMEN

HOMINID

HTML

HTTP

ISP

LCP

OSAM

OSN

OSP

QoS

RDF

RLS

RMP

RR

Common Object Request Broker Architecture

Cache Array Routing Protocol

Domain Name System

Service Machine Development for an Open Long-Term Mobile and Fixed
Network Environment

Human-Oriented model for Managing Information flow on the web

HyperText Markup Language

HyperText Transfer Protocol

Internet Service Provider

Locator Control Protocol

Open Service Architecture for Mobiles

Oracle Server Network

Online Service Provider

Quality of Service

Resource Description Framework

Resource Locator Service

Resource Migration Protocol

Request Router

291

Appendix B - List of Abbreviations

TCP/IP	 Transmission Control Protocolllnternet Protocol

TLD	 Top-Level Domain name

TURL	 Temporal Uniform Resource Locator

URI	 Uniform Resource Identifier

URL	 Uniform Resource Locator

URN	 Uniform Resource Identifier

WebDAV	 Web Distributed Authoring and Versioning

XML	 Extensible Markup Language

292

Appendix C - Personal Communications

APPENDIX C

PERSONAL COMMUNICATIONS

The following represents personal communication with Brewster Kahie, CEO of the Alexa

archive. The communication requested clarification of the reference used in Kahie's Scientific

American article regarding the lifetime of a resource on the web (see p57).

293

Appendix D - List of Publications

APPENDIX D

LIST OF PUBLICATIONS

During the course of this research project, the author has contributed to 12 published papers,

as detailed below. Several of the papers relate directly to the focus of the research project,

whereas others are associated with further work in which the author was involved during the

research period.

1. Evans, M.P., Kettunen, K.T., Blackwell, G.K., Furnell, S.M., Phippen,, A.D., Hope S.

and Reynolds, P.L. (1997), "Network Resource Adaptation in the DOLMEN Service

Machine", In: Intelligence in Services and Networks: Technology for Cooperative

Competition, Mullery et al. (eds.), Springer, 1997.

2. Evans, M.P., Phippen, A.D., Furnell, S.M. and Reynolds, P.L. (1997), "Resource

Adaptation in the TINA Service Environment", Proceedings of Fourth Communications

Networks Symposium, Manchester, UK, 7-8 July 1997.

3. Liljeberg, M., Evans, M., Furnell, S., Maumon, N., Raatikainen, K., Veldkamp, E.,

Wind, B. and Trigila, S. (1997), "Using CORBA to Support Terminal Mobility",

Proceedings of TINA 97 Conference, Santiago, Chile, 17-2 1 November 1997.

294

Appendix D - List of Publications

4. Evans, M.P., Furnell, S.M., Phippen, A.D., Reynolds, P.L. (1998), "Mobility

Considerations for integrated Telecommunications Service Environments", Proceedings

of lEE Sixth International Conference on Telecommunications, Edinburgh, UK, 29

March-i April 1998

5. Evans, M.P., Phippen, A.D., Mueller, G., Furnell, S.M., Sanders, P.W. and Reynolds,

P.L. (1998), "Content Migration on the World Wide Web", Proceedings of the first

International Network Conference 1998 (INC '98), Plymouth, UK, 6-9 July 1998: 156-

161.

6. Evans, M.P. Phippen, A.D., Mueller, G., Furnell, S.M., Sanders, P.W. and Reynolds,

P.L. (1999), "Strategies for Content Migration on the World Wide Web", Internet

Research, vol. 9, no. 1, 1999. pp25-34.

7. Reynolds, P., Furnell, S., Evans, M. and Phippen, A. (1999), "A Hyper Graphics

Markup Language for optimising WWW access in wireless networks", Proceedings of

Euromedia 99, Munich, Germany, 25-28 April 1999: 136-144

8. Furnell, S., Evans, M., Phippen, A., Ali Abu .Rgheff, M. (1999) "Online Distance

Learning: Expectations, Requirements and Barriers", Virtual University Journal, vol. 2,

no. 2.

295

Appendix D - List of Publications

9. Fume!!, S.M., Evans, M.P. and Dowland, P.s. (2000), "Developing tools to spport

online distance learning", Proceedings of EUROMEDIA 2000, Antwerp, Belgium, 8-10

May2000.

10. Evans, M.P. and Furnel!, S.M. (2000) "Internetbased security incidents and the

potential for false a!arms", Internet Research, vol. 10, no. 3: 23 8-245. ,2000

11. Furne!l, S.M., Evans, M.P. and Bai!ey, P. (2001), "The promise of Online Distance

Learning: Addressing academic and institutional concerns", Quarterly Review of

Distance Education, vol. 1, no.4: 281-291

12. Evans, M.P. and Furnell, 5.M. (2001), "The Resource Locator Service: Fixing a Flaw in

the Web", To appear in Computer Networks Journal - The International Journal of

Computer and Telecommunications Networking, Elsevier Science

In addition, the author has contributed to a chapter in a book, as detailed below.

Furne!l, 5.M., Warren, M.J. and Evans, M.P. (2001), "The ISHTAR World Wide Web

Dissemination and Advisory Service for Healthcare Information Security", in

Implementing Secure Healthcare Telematics Applications in Europe. The ISHTAR

Consortium (Eds). Techno!ogy and Informatics 66, lOS Press: pp249-28O.

296

Appendix D - List of Publications

Finally, the author has also contributed to the World Wide Web standards process through the

publication of a World Wide Web Consortium (W3C) NOTE, as detailed below.

Evans, M.P., Furnell, S.M., Phippen, P., Reynolds, P., Lilly, N. and Hammac, J., "Hyper

Graphics Markup Language (HGML)", W3C NOTE, 19th June 1998,

http://www.w3 .org/TRINOTE-HGML

Copies of the papers most closely related to the research described are bound within this

appendix of the thesis.

297

Content Migration on the
World Wide Web

M.P .Evanst, A.D .Phippen*, G . Muellert, S .M.Fume1l, P.W.Sanderst, P .L.Reynoldst

Network Research Group
of Electronic, Communication and Electrical Engineering, University of Plymouth,

Plymouth, UK.
School of Computing, University of Plymouth, Plymouth, UK.

e-mail contact: Mike.Evansjack.see.plym.ac.uk

ABSTRACT
The World Wide Web has experienced explosive growth as a content delivexy mechanism, delivering
hypertext files and static media content in a standard and consistent way. However, this content has not been
able to interact with other content, making the web a distribution system rather than a distributed system.
This is beginning to change, however, as distributed component architectures such as CORBA, Enterprise
JavaBeans, and DCOM are being adapted to work with the web's architecture. This paper tracks the
development of the web as a distributed platform, and highlights the potential to employ an often neglected
feature of distributed computing: migration.. The paper argues, however, that all content on the web, be it
static images or distributed components, should be free to migrate according to either the policy of the
server, or the content itself The paper goes on to describe the requirements of such a content migration
mechanism, and shows how, combined with network traffic profiling, a network can be optimised by
dynamically migrating content according to traffic demand.

1. Introduction

1.1 Software Resources

The World Wide Web ('the web') is a platform for distributing software resources across the
Internet, which are then presented as rich, consistent content by applications on the client (usually a
browser). The three main standards which define the platform are:

• the Uniform Resource Locator (Berners-Lee, et al 1994);
• HyperText Transfer Protocol (Berners-Lee, et al, 1996);
• HyperText Markup Language (Berners-Lee, et al, 1995).

The Uniform Resource Locator (URL) is used to locate software resources; the HyperText Transfer
Protocol (I-ITFP) is the protocol used to distribute the resources; and HyperText Markup Language
(HTML) is used to present the information contained within the software resources in a consistent
way across all computer platforms.

As such, today's web is a large distribution system. The software resource is a single, self-contained
unit of data (usually a binary or text file), which the web can locate (using the URL) and distribute
(using HTTP). It encodes content, which is presented on the client by applications according to the
media type the content represents (e.g. images, video, etc.). Each media type must conform to its
own universal standard, which is not part of the specification of the web itself; but which contributes
to its ubiquity and openness. The content is decoded from the software resource by the browser or its
own application (generally termed a 'viewer' or 'plug-in'), and is presented consistently across all
platforms according to the layout and style specified by the HTML page. For example, the GIF
(Graphics Interchange Format) standard, developed by CompuServe, is a standard format for

156

2. Distributed Components

Component software develops on the potential of object-based software by constructing software
from components which encapsulate functionality and data. This is similar to object orientation, but
allows dynamic component interaction at runtime (known as 'runtime reuse'). This is achieved
through the use of a component architecture, which is a defined platform with rules for interaction
between components. Any component developed on top of this platform will be able to interact with
any other component built on the same platform. Whilst a general component architecture enables
components on the same computer to interact, distributed component architectures add to the
functionality by enabling interaction across a distributed network environment. A client component
can not only use the services of components on its host machine, but also any other machine which
supports the distributed architecture. Components within such architectures are also termed
distributed objects, primarily because the architecture itself is based on the object-oriented paradigm.
Currently, the distributed component field is dominated by two major architectures: Microsoft's
Distributed Component Object Model (DCOM) and the Object Management Group's Common
Object Request Broker Architecture (CORBA).

DCOM is the distributed extension to Microsoft's COM (Component Object Model), and extends the
basic functionality to incorporate transparent network distribution and network security mechanisms
into the architecture. Through DCOM, ActiveX controls can interact with one another, and with
other COM-based components, across a network.

CORBA is a complete architectural specification developed by the Object Management Group (0MG,
1995) which specifies both a component architecture, and component services. CORBA is entirely
generic, defining platform-independent data-types, protocols for communication across platforms,
and a number of platform-independent services which provide the components with a number of
useful services such as security, transaction processing, and naming and location services for finding
components across a distributed system. CORBA's functionality is implemented through an Object
Request Broker (ORB), which provides the transparencies required by the architecture.

Both architectures offer the developer similar features and similar benefits. They both provide a
component distribution mechanism employing network and location transparency, marshalling
mechanisms, etc., and both expose functionality through language-independent interfaces. They are
reliable distributed platforms upon which large scale distributed applications can be built.

2.1 Distributed Components and the WWW

Such distributed component systems are increasingly being incorporated into the web. Distributed
components are becoming the next type of software resource to share server space with existing types
of static and intelligent content. This allows the web to become a true distributed system, being able
to provide distributed applications and services via a client's browser. Netscape, for example, has
integrated CORBA functionality into its Communicator 4.0 browser, allowing it to interact with
CORBA components on CORBA-enabled servers. Equally, Microsoft's Internet Explorer 4.0
browser is DCOM-enabled, allowing it to communicate with DCOM components on DCOM-enabled
servers. In this way, the web is evolving into a complete distributed system, termed the 'Object Web'
(Orfali et al, 1996) to reflect the object-based nature of the distributed architectures being employed.

158

3.3 Requirements for a Migration Mechanism on the W\,TW
For a migration mechanism to be successful on the web, it must recognise the diverse range of
content that exists. As such, it must be completely decoupled from the content that it can migrate,
and instead focus on the software resource: a generic unit of data which may or may not be aware of
the mechanism (see Figure 2). Additionally, to truly be of benefit, the mechanism must fit in with the
existing web architecture. As such, it must reference each resource using a standard URL, not an
architecture-specific reference. With so many businesses using URLs on their promotional material,
any mechanism which required a new format for resource location would not be accepted.

image	 Java applet	 00 coniponent........
If a - 10 then	 erchitectures focus tbr migration

Content	 • '	 I	 mechanisms at the conteflt leveL As a
object.move;

_______	 result, on1 content specific to theI't	 architecture can be migrated
I	 Java	 ORB with

Application	 Image	 Virtual	 j migaturi

viewerj	 Machine	 Lcj
(I	 Focusg a miaon mechani at the

Software	 I	 I	 software resource level, however,
Resource	 allows resources encoding any type of

\	 content to use the same nuaration

Figure 2: Migration Mechanisms at the Content and Resource Levels

Within a distributed system, much use is made of the term 'transparency' (RM-ODP, 1995). This is
used to convey the concept that the services performed by the distributed system (such as migration)
happen without components being aware that anything has changed. Thus, a transparent migration
mechanism is one in which components are migrated to another machine without the component, or a
client wishing to access the component, being aware of the move. However, such a mechanism can
be made 'translucent'; that is, the components can be moved transparently, but if they require the
service themselves, they can use it to initiate their own migration. In this way, the migration is
controlled by the component rather than the server hosting the software resource. For example, static
content has no intelligence, and so cannot make use of a migration mechanism. As such, if the
resource encoding the static content is to be migrated, it must be at the server's discretion. The
server is therefore able to migrate the resource without the resource or any other host being aware of
the move. Intelligent content, however, has the ability to use any service the network can provide.
Thus, a migration mechanism can be used by intelligent content to migrate itself, transforming it into
a mobile agent.

In this way, a translucent migration mechanism on the world wide web can provide a host of new and
extended services. The same mechanism can be used by intelligent content (to autonomously roam
the web), and by web servers, (to optmiise the network); it can solve the 'broken link' problem typical
of hypertext documents, whereby a URL embedded within an HTML document is rendered useless
when the content it refers to is moved. It can also be employed on a company's intranet, allowing
resources to migrate freely, either of their own volition, or transparently by the server hosting them.
By providing its servers with the ability to monitor their own performance, a company can simply
connect a new server to its intranet, and wait for resources to migrate to it from existing servers under
strain. Using dynamic network configuration protocols, and wireless network technology such as
Wireless LAN, this facility can be extended such that a server need only be brought into range of a
mobile basestation, and switched on: the server will connect to the network, and the resources will

populate the server, automatically.

160

Strategies for content
migration on the World
Wide Web

M.E Evans
A.D. Phippen
G. Mueller
S.M. Furnell
EWSanders and
EL. Reynolds

Ii1'TTTTflT7
M.P. Evans, G. Mueller, S.M. Furnell, P.W. Sanders and
P.1. Reynolds are all at the Network Research Group, School
of Electronic, Communication and Electrical Engineering,
University of Plymouth. Plymouth, UK.
A.D. Phippen is at the School of Computing, University of
Plymouth, Plymouth, UK.
E-mail: Mike/Evans@jack.see.plym. ac.uk

Distributed data processing, Distribution, Internet

riT -
The World Wide Web has experienced explosive growth as a
content delivery mechanism, delivering hypertext files and
static media content in a standardised way. However, this
content has been unable to interact with other content,
making the Web a distribution system rather than a distrib-
uted system. This is changing, however, as distributed
component architectures are being adapted to work with the
Web's architecture. This paper tracks the development of the
Web as a distributed platform, and highlights the potential to
employ an often neglected feature of distributed computing:
migration. Argues that all content on the Web, be it static
images or distributed components, should be free to migrate
according to either the policy of the serve or the content
itself. The requirements of such a content migration
mechanism are described, and an overview of a new
migration mechanism, currently being developed by the
authors, is presented.

Internet Research: Electronic Networking Applications and Policy

Volume 9 Number 1 . 1999 . pp. 25-34

C MCB University Press• ISSN 1066-2243

Introduction

The World Wide Web (the Web) is a platform
for distributing software resources across the
Internet, which are then presented as rich,
consistent content by applications on the client
(usually a browser). The three main standards
which define the platform are:
(1) the Uniform Resource Locator (Berners-

Lee eta!., 1994);
(2) HyperText Transfer Protocol (Berners-Lee

etal., 1996);
(3) HyperText Markup Language (Berners-Lee

eta!., 1995).

The Uniform Resource Locator (URL) is used
to locate software resources; the HyperText
Transfer Protocol (HTTP) is the protocol used
to distribute the resources; and HyperText
Markup Language (HTML) is used to
present the information contained within the
software resources in a consistent way across all
computer platforms.

Consequently, today's Web is a large distrib-
ution system. The software resource is a single,
self-contained unit of data (usually a binary or
text file), which the Web can locate (using the
URL) and distribute (using HTTP). It encodes
content, which is presented on the client by
applications according to the media type the
content represents (e.g. images, video, etc.).
Each media type must conform to its own uni-
versal standard, which is not part of the specifi-
cation of the Web itself, but which contributes
to its ubiquity and openness. The content is
decoded from the software resource by the
browser or its own application (generally termed
a "viewer" or "plug-in"), and is presented con-
sistently across all platforms according to the
layout and style specified by the HTML page.
For example, the graphics interchange format
(GIF) standard, developed by CompuServe, is a
standard format for compressing and encoding
images. A GIF viewer is an application which
works inline with the browser to interpret a GIF
image file and display the image it contains.
This GIF viewer essentially reads in a generic,
platform-independent file (the software
resource) which contains an encoding of the
image, and converts the encoded data into
content: platform-dependent information
which can be displayed on the client's screen as
the decoded image in a consistent way across all

25

image
Content

I Image
Application viewer

Software
Resource

Java applet	 component
II a	 10 then

object move.

I Java I	 I Object I
I Virtual I	 IRequestl

Strategies for content migration on the World Wide Web
M P Evans, AD. Phippen. G. Mueller. S.M Fume/I, P W. Sanders. PL Reynolds

platforms according to the layout and style
specified by the HTML. The same can also be
said for other content formats (e.g. JPEG,
MPEG, AVI, QuickTime), each of which
encodes a specific media t'pe according to the
media's own defined standard. In fact, for an\'
type of content to proliferate on the \Xh, it
must have its own platform-independent

Internet Research: Electronic Networking Applications and Policy

Volume 9 Number I . 199925-34

content (such as an image), and resources which
have some form of computational intelligence as
part of their content (such as a Java applet), this
paper will define the terms static content and
intelligent content, respectively.

Intelligent content currentl y consists of small
self-contained blocks of code which reside on a
server as software resources, and are down-

standard with its own platform-specific viewers 	 loaded onto a client machine, where the y are

generally available on ever y platform. 'l the	 executed by a suitable application, usually inline

Web's distribution mechanism (i.e. the \b	 with an HTML page. Java applets are an

servers and HTTP), everything is a generic	 example of such content, as are Microsoft's

software resource (see Figure 1). UnIv when the 	 ActiveX controls. This type of content is limit-
correct application receives it on the client does
it become content.

Static and intelligent content

Web content has traditionall y consisted of static
files without functionalit y, and without the
ability to interact with other software resources.
A GIF file, for example, contains the informa-
tion required to display the image it encodes
with a suitable viewer, but there is no computa-
tional intelligence contained within it; conse-
quently, the user cannot interact with it (the use
of "image maps" within a browser, whereby a
user can click on an image to navigate to
another page, is controlled and formatted by the

HTML in the Web page, not the image file).
Currently, then, the Web is a distribution
system, not a distributed system. However, this
is changing. As the Web matures, its functionali-

ty is increasing, and, more important, the intel-
ligence contained within the resources it is
currently distributing is growing along with the
Web itself. To distinguish between resources
which contain some form of static media

ed, however, by its self-contained nature: a Java
applet, for example, cannot communicate with
other Java applets on machines other than the
server it originated from. In order to distribute
the intelligence of a large scale application, the
components of the application must be able to
interact with each other across a distributed
environment; to achieve this, a distributed
component architecture must be employed.

Distributed components

Component software develops on the potential
of object-based software by constructing soft-
ware from components which encapsulate
functionality and data. This is similar to object
orientation, but allows dynamic component
interaction at runtime (known as "runtime
reuse"). This is achieved through the use of a
component architecture, which is a defined
platform with rules for interaction between
components. Any component developed on top
of this platform will be able to interact with any
other component built on the same platform.
While a general component architecture enables

Figure 1 Relationship between content and the software resource

Client's view of a resource. The client sees
each software resource a a distinct type of
content (be it static, such as an image, or
intelligent, such as a Java applet or a
component) which can only be decoded by the
correct application using the correct content
standard

Web view of a resource. To the web's
distribution mechanism, each instance of
content is simply a binary or text file, and no
distinction is made as to tt'e content it contains.

26

Strategies for content migration on the World Wide Web

M.P. Evans, AD. Phippen, 6. Mueller, £M. FumeII RW. Sanders, RL Reynolds

components on the same computer to interact,
distributed component architectures add to the
functionality by enabling interaction across a
distributed network environment. A client
component can use the services of components
not only on its host machine, but also any other
machine which supports the distributed archi-
tecture. Components within such architectures
are also termed distributed objects, primarily
because the architecture itself is based on the
object-oriented paradigm. Currently, the dis-
tributed component field is dominated by two
major architectures:
(1) Microsoft's distributed component object

model (DCOM); and
(2) the Object Management Group's common

object request broker architecture
(CORBA).

DCOM is the distributed extension to
Microsoft's component object model (COM),
and extends the basic functionality to incor-
porate transparent network distribution and
network security mechanisms into the architec-
ture. Through DCOM, ActiveX controls can
interact with one another, and with other
COM-based components, across a network.

CORBA is a complete architectural specifica-
tion developed by the Object Management
Group (0MG, 1995) which specifies both a
component architecture, and component ser-
vices. CORBA is entirely generic, defining
platform-independent data-types, protocols for
communication across platforms, and a number
of platform-independent services which provide
the components with a number of useful ser-
vices such as security, transaction processing,
and naming and location services for finding
components across a distributed system.
CORBA's functionality is implemented through
an object request broker (ORB), which provides
the transparencies required by the architecture.

Both architectures offer the developer similar
features and similar benefits. They both provide
a component distribution mechanism
employing network and location transparency,
marshalling mechanisms, etc., and both expose
functionality through language-independent
interfaces. They are reliable distributed plat-
forms on which large scale distributed applica-
tions can be built. Such distributed component
systems are increasingly being incorporated into

Internet Research: Electronic Networking Applications and Policy

Volume9•Numberl 1999•25-34

the Web. Distributed components are becoming
the next type of software resource to share
server space with existing types of static and
intelligent content. This allows the Web to
become a true distributed system, being able to
provide distributed applications and services via
a client's browser. Netscape, for example, has
integrated CORBA functionality into its Com-
municator 4.0 browser, allowing it to interact
with CORBA components on CORBA-enabled
servers. Equally, Microsoft's Internet Explorer
4.0 browser is DCOM-enabled, allowing it to
communicate with DCOM components on
DCOM-enabled servers. In this way, the Web is
evolving into a complete distributed system,
termed the "object Web" (Orfali eta!., 1996) to
reflect the object-based nature of the distributed
architectures being employed.

Content migration

An overview of migration in a distributed
system
One of the benefits of a distributed system is the
ability of an application to be distributed across
multiple hosts across a network, in such a way
that no one host has to execute the whole appli-
cation on its own. With a fast enough network,
this "load balancing" functionality can greatly
increase the efficiency and performance of the
application in a way which is entirely transpar-
ent to the client machine. However, the draw-
back to this distributed paradigm is the static
nature of the location of each component. Once
a component has been installed on a host, it
cannot easily be moved to another host. Thus,
should the host's, or its network's, performance
degrade in any way, access to the component
will be affected. Invocations on the component's
interfaces will be slowed down, which in turn
will affect the performance of the application as
a whole. The component can be manually
relocated to a different host, but this is time-
consuming. Most distributed applications
comprise many components, and it would be
impractical to manually redistribute them all
whenever necessary.

Consequently, various automatic component
relocation mechanisms exist. These "migration
mechanisms" can transparently move a compo-
nent from one host to another In such a way that
the client has no awareness of the move. These

27

Strategies for content migration on the World Wide Web
	

Internet Research: Electronic Networking Applications and Policy

M P Evans. AD Phippen, G Mueller, SM Fume!!, P W. Sanders, Pt Reynolds
	

Volume 9 Number 1 1999 25-34

mechanisms are provided by some (though not
all) distributed architectures as a way of dynam-
ically relocating components to provide load
balancing and fault tolerance. Distributed
component architectures can migrate entire
components, including their functionality and
data, and retain the state of the component from
one machine to another.

The problems with distributed components
and the WWW
The distributed component is a new type of
intelligent content, which has the ability to
interact with other content of the same type.
However, components of different architectures
cannot directly communicate with each other.
Thus, Netscape's CORBA-compliant browser
cannot use DCOM components, and
Microsoft's DCOM-enabled browser cannot
use CORBA components. Thus, neither com-
ponent architecture provides its content (the
distributed component) with true ubiquity
across the Web in the way in which traditional
content does.

This problem affects the architectures' use of
migration. Most, including DCOM and Enter-
prise JavaBeans, do not support migration at all.
However, even if they did, current distributed
architectures cannot successfully employ a
ubiquitous migration mechanism across the
Web, because no matter how open they are, the
type of resource that can be migrated is tied too
closely to the architecture itself. The Web treats
each software resource as a generic unit. The
URL is used to reference it, and HTTP to
distribute it, regardless of the resource's content
type. In contrast, distributed architectures work
only with their own content, and use their own
reference formats to locate the components.
Thus, only components created specifically to
an architecture's specifications can be migrated,
and only if both hosts involved in the migration
support the architecture. Currently, however,
the vast majority of content on the Web today
consists of JPEG and GIF files, and Java
applets, which have no concept of a distributed
architecture, much less the services that one
can provide. Equally, servers supporting
CORBA or DCOM are uncommon, leaving
very few places for a component to physically
migrate to.

Requirements for a migration mechanism
on the WWW
For a migration mechanism to be successful on
the Web, then, it must recognise the diverse
range of content that exists. Therefore, it must
be completely decoupled from the content that
it can migrate, and instead focus on the software
resource: a generic unit of data which may or
may not be aware of the mechanism (see Figure
2). Additionally, to truly be of benefit, the
mechanism must fit in with the existing Web
architecture, rather than build its own set of
standards on top of the existing Web platform.
In this way, it can be used by existing Web con-
tent as much as by intelligent content such as
distributed components, and can provide ser-
vices which distributed components can use to
enable the Web to become a distributed
platform.

True content migration, then, where content
of any type can be freely migrated, relies on
implementing migration at the resource level. In
order to achieve this, the following set of
requirements for a resource-level migration
mechanism have been identified:

Universal client access. The mechanism must
be accessible to clients of any type and should
nor require clients to be airered in order to
use it. Thus, existing software does not need
to be rewritten, and future software will not
require any extra facilities in order to use it.
Content neutrality. A Web-based mechanism
must be completely decoupled from the
content it can migrate, enabling it to migrate
all resources, no matter what type of content
they encapsulate (see Figure 2).
Full integration with the Web's current architec-
ture. The mechanism must reuse as much of
the Web's existing architecture as possible.
Specifically, this means the reuse of HTFP
and the URL. There is too much investment
in the infrastructure supporting HTI'P to
change it overnight, and the URL is becom-
ing accepted by the public as the only way to
navigate to Web resources. With businesses
now using the URL as part of their advertis-
ing campaigns, URLs can now be recognised
even by people without access to the Web.
Practical design. Resource migration can be
technically achieved in many different ways,
but adopting a practical approach means
focusing on the requirements of Web

28

Content

Application

image

Image
viewer

Strategies for content migration on the World Wide Web
	

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, AD. PhippefL G. Mueller, £ M. Fume/I, R W Sanders, P.1. Reynolds
	

Volume 9 Number 1 . 1999• 25-34

Figure 2 Migration mechanisms at the content and resource levels

Java applet

!/ • -
10 then

object move;

Java
Virtual

Machine

component Current distributed component architectures
focus their migration mechanisms at the
content level. As a result, only content
specific to the architecture can be migrated.

ORB with

Focusing a migration mechanism at the
Software	 :	 software resource level, however, allows
Resource	 :	 resources encoding any type of content to:

use the same migration mechanism

developers, existing Web software, and (most
important) Web users, rather than focusing
on a technically optimal design. A practical

design also means one that takes into account
the dynamics and characteristics of the Web
(and, by implication, the users of the Web);
an approach that technically works will not

achieve ubiquity if it results in the Web
appearing to run more slowly.

In the next section, this set of requirements will
be used to evaluate existing approaches to
migration to see which is best suited to the
development of a migration mechanism for the

Web.

Developing a Web-based migration
mechanism

Methods of resource migration
For any migration mechanism, there are four
different methods through which a resource can
be tracked once migration has occurred
(Ingham eta!., 1996). These are:
(1) Forward referencing.
(2) Name service.
(3) Callback.
(4) Search.

Forward referencing

Forward referencing involves leaving behind a
reference in place of the migrated resource
which points to the resource's new location.
Thus, an object leaves behind a chain of refer-

ences on each host it visits. For example, the
migration mechanism of the "W3Objects"
system (Ingham et al., 1996), and "Voyager",
from ObjectSpace (an agent-oriented CORBA
implementation), both adopt this approach.

When an object migrates in Voyager, a "vir-
tual reference" is left behind to forward mess-
ages to the new location. As an object migrates,
more virtual references are created, forming
long chains which eventually resolve onto the
object itself. The W3Objects approach is simi-
lar, in that "forward references" are created
each time a resource migrates; however, to
prevent long chains building up, "shortcuts"
can be created which allow a reference holder
(that is, a resource with a link to the migrated
resource) to bypass the chain of references, and
reference the resource directly.

Suita bility for the Web
Voyager's mechanism is unsuitable for the Web
as, like most other distributed architectures, it
only migrates Voyager-aware content, and is
therefore not content-neutral. Surprisingly, the
mechanism used by W3Objects will also only
work with its own, object-oriented resource
(termed a "W3Object") and a specially-defined
reference (termed a "W3reference"), and so it
too is not content-neutral. Furthermore, in
order to use the W3Objects system, each client's
browser must be adapted to work with W3Ref-
erences rather than URLs.

However, the forward reference method itself
is unsuitable for use on the Web. Each link in
the chain of forward references adds another
point of potential failure (Ingham ezal., 1996),
and if the chain breaks, then the resource is lost
completely. Further, the characteristics of the
Web will make managing the chains unrealistic,
as the number of forward references will
increase with both time (some resources, such
as autonomous agents, will migrate constantly)
and space (every resource will require a chain of
references to be maintained).

29

Strategies for content migration on the World Wide Web

M.P Evans, AD, Phippen, G. Mueller, SM. Furnell, P W. Sanders, Pt. Reynolds

f\Ta,ne service
The name service method employs an external
system to maintain references to registered
resources at all times. Such mechanisms gener-
ally focus on the use of the name used to identify

Internet Research: Electronic Networking Applications and Policy

Volume 9• Number 1 199925-34

the references used between resources. Should a
resource move, the database is informed, and all
references are updated. This is similar to the
name service approach, in that an external
service is used, but it is the relationships

a resource, and attempt to abstract any location- between resources which are maintained by the
dependent information out of the name itself.
For example, the uniform resource name
(URN) is a proposed standard by the Internet
Engineering Task Force (JETF) for naming a
resource independently from its location
(Sollins and Masinter, 1994). Specifically, a
URL is used to locate a resource, while a URN
can be used to identify a resource (Berners-Lee
era!., 1994). The URN can then be mapped
onto the URL through an external resolver
discovery service (RDS), which maintains the
location of the resource. Should the resource
have migrated, the RDS will resolve the URN
into a URL that points to another RDS which
can resolve the URL. Thus, a chain of refer-
ences is built up across the resolver service,
rather than across each visited server.

Suitability for the Web
The URN identifies a resource independently
from its location, and so subsumes the URL,
treating it not as a name, but as a pointer to a
location. Thus, while the URN has content-
neutrality, it does not support full integration, as
the URL cannot be used at the user level.

Also the name service method suffers from
the same problems inherent with any "chain" of
references, as described above. Further, the
method is not practical, as it does not take into
account the characteristics of the Web users: it
requires, for example, that a resource's name
remain invariant throughout its lifetime (which
can be "for hundreds of years" (Sollins and
Masinter,1994)), but in real life, the ownership
of a resource can change within its lifetime, and
the new owner may wish to give the resource a
new name.

Callback
The callback method relies on a resource to
inform all other resources with references to it
of any change in its location, in order to ensure
referential integrity. The benefit of this
approach is that there is no indirection, and so
no chain of references need be maintained.

The Hyper-G system (Kappe, 1995) adopts
this approach, maintaining a large database on

service, rather than the resources' locations.

Suitability for the Web
This approach either requires each resource to
know which other resource has references to it,
or requires an external service to maintain the
references. However, the former approach is
unrealistic, as the Web is a federated system,
with no central control: a resource has no way of
knowing who or what is referencing it. Equally,
the latter approach is unrealistic, as the size of
the database of references would become
impossible to manage, and many Web servers
are frequently offline, resulting in the database
being swamped as it must store pending refer-
ence updates until they are online again
(Briscoe, 1997).

Search
The search method does not attempt to update
the references between resources, or to maintain
the location of a resource. Rather, it uses a
sophisticated search mechanism to find the
resource if it migrates. To ensure success, the
entire system must potentially be searched,
which involves flooding the network. This has
the advantage that so long as the server hosting
a particular resource is accessible, the resource
can be guaranteed to be found, as the flood will
eventually cover all servers. Thus, the search
approach has perfect robustness. The Harvest
information system (Mic Bowman eta!., 1995)
uses this approach to catalogue and index a
distributed system's collection of resources.
However, the Harvest system is used to index
and search for pertinent information within
resources, and so is effectively a search engine
which can index an entire distributed system.

Suitability for the Web
While flooding a network provides perfect
robustness, it is also the most costly method in
terms of messaging overheads (Ingham eta!.,
1996). A flooding algorithm must be imple-
mented which spans the entire Web. To
prevent the network being overwhelmed with
packets (which, unchecked, would increase

30

Strategies for content migration on the World Wide Web
	

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, AD. Phippen, G. Mueller, £M. Fume!!, P.W. Sanders, P.L Reynolds
	

Volume 9 Number 1 1999 • 25-34

exponentially), attempts must be made to
restrict the flood. This can be achieved by
including time to live fields in any messages sent
by such a mechanism, but this requires knowl-
edge of the exact diameter of the Web (Tanen-
baum, 1996).

Selecting a migration method
The callback approach
The callback service can be immediately ruled
out. As has been said, a resource on the Web has
no way of knowing who or what is referencing it,
and so any implemented callback service simply
cannot be used.

The chain approach
The forward reference and the name service
approaches can be grouped together and
termed the "chain approach", as both rely on a
chain references to effect migration. The differ-
ence is simply that the forward reference
approach leaves its references on the servers it
has visited, while the name service approach
relies on a separate service to store and maintain
its chain of references. The concept of the chain
approach, then, can be examined in its own
right, but does not meet all of the requirements
specified above. The very fact that a chain exists
exposes the whole approach to the chain's weak-
est link; in this case, the weakest link is the most
unreliable server within the chain, meaning that
a resource may be lost because somebody else's
server has crashed. Finding that server can be
difficult; worse, the resource's owner will have
no control over the maintenance of the crashed
server, and if it goes down permanently, the
resource may be lost permanently. This is not
just impractical, it is unacceptable to a network
such as the Web which is forming the platform
for c-commerce: losing a resource can sever the
relationship between an organisation and its
customers.

The search approach
The search approach comes closest to meeting
all of the requirements specified above. Because
the search would be performed within the net-
work, the client need not be aware that a search
is being performed; it simply receives the
resource once it is located. Thus, universal
client access is achieved. The search process
would be performed using the resource's URL
consequently, as long as the resource has a

URL, it can be located, regardless of its content
type. This achieves the requirement of content
neutrality. HTT'P and the URL can remain. In
fact, so long as the identifier is unique, it can be
of any format, leaving the way open for future
formats of identifier to be used with the same
migration mechanism. Full integration with the
Web's current architecture is, therefore,
achieved. However, the message overhead used
to locate a resource cannot be ignored. Because
it uses a flooding algorithm, the messages will
grow exponentially with the size of the network.
This is, at best, impractical when considering a
network the size of the Internet. Thus, the
search approach fails the practical design
requirement. If this can be resolved, however,
the concept of the search approach is far more
robust and scalable than the chain approach.
With no chains of references to maintain, and
the ability to visit all hosts in a network, there is
no weak link in the system. Resources, by defini-
tion, cannot be lost. Therefore, adopting a
different search algorithm for the search
approach could result in a practical search-
based migration mechanism on the Web.

Adapting the search approach
The problems described thus far relate to a
search algorithm which is parallel in nature,
generating exponential traffic as the search
progresses, and works on unstructured data.
Such an approach cannot be practical on the
Web, because its latency overhead occurs at the
wrong stage of the migration process. The
process of migration can be divided into two
stages: first, a resource migrates; then, it must
be located whenever a client wishes to use the
resource. Generally, the migration stage can
cope with higher latency times than the location
stage. This is because there is no user inter-
action with the resource during the migration
stage, whereas a resource usually needs to be
located because a user wishes to download it.
Currently, there is no migration mechanism on
the Web; locating a resource is simply a matter
of connecting with the appropriate server. Any
mechanism that is required to locate a resource
will incur its own overhead, and this adds to the
latency involved in actually accessing the
resource. To the user, this latency is perceived as
a slower response time of the Web. With the
chain approach, the main overhead occurs

31

Strategies for content migration on the World Wide Web
	

Internet Research: Electronic Networking Applications and Policy

M P Evans. AD. Phippen, G. Mueller. SM. Fume/I. P.W. Sanders. P.L. Reynolds
	

Volume 9 Number 1 1999• 25-34

during the migration process. Location is simply
a matter of following a chain of references, and
so long as this chain is not too large, latency
should not be appreciably increased. However,
with the parallel search approach described
above, all of the overhead occurs during the
location process, with the latency increasing as
the search continues. Worse, the message over-
head also increases (exponentially) as the search
continues, resulting in a network with more
location traffic than resource traffic.

This, however, is simply one end of a
spectrum of search algorithms. For example,
another approach could involve constructing a
look-up table, with the set of all URLs on the
\Veb being mapped to each respective resource's
actual location. The URLs can be ordered as
appropriate, and a trivial search algorithm used
to locate a specific URL within the look-up
table. While this centralised approach is not
fault tolerant, and could result in all resources
being lost, it does illustrate how structuring the
data can fundamentally change the performance
of the search approach. What is required, there-
fore, is an approach which structures the data,
but across a distributed system of migration-
specific machines.

An overview of a Web-based migration
mechanism
This is the approach that is currently being
investigated by the authors. A migration mecha-
nism is being developed which uses an external
(distributed) service to keep track of the URLs
and the actual location of the respective
resources. This is similar to the resolver discov-
ery service adopted by the URN approach, and
provides the indirection required to retain the
format of the URL while allowing the resource
to reside on a machine with a different name.
However, while the resolver discovery service
uses a chain of references to keep track of the
migrating resources, the new approach uses
what is, essentially, a migration-specific distrib-
uted "database". This database is constructed
and queried using Web-based technologies,
such as Extensible Markup Language (XML).
Rather than searching all of the resources on all
of the servers across the Web, the set of all
resources are represented within this distributed
database by their URLs, and it is this database
which is searched to locate a resource. Fault

tolerance techniques will be used to ensure no
resources are lost, and load balancing will mini-
mise the latency incurred. Because the database
contains URLs, any content which can be
addressed using a URL can safely migrate using
this system. All that is required is for the system
to be notified when a migration has occurred.
This can be done by the server the resource has
migrated from, or the server the resource has
migrated to (or, for that matter, by the resource
itself, if it contains intelligent content).

Development of this system is currently a
work-in-progress, and results from the com-
pleted system will be published in a later paper.
The next section discusses some of the new
services such a system can provide to the Web.

Providing new Web-based services

How a migration mechanism can enable
new services
Within a distributed system, much use is made
of the term "transparency" (RM-ODP, 1995).
This is used to convey the concept that the
services performed by the distributed system
(such as migration) happen without com-
ponents being aware that anything has changed.
Thus, a transparent migration mechanism is
one in which components are migrated to
another machine without the component, or a
client wishing to access the component, being
aware of the move. However, such a mechanism
can be made "translucent"; that is, the com-
ponents can be moved transparently, but if they
require the service themselves, they can use it to
initiate their own migration. In this way, the
migration is controlled by the component rather
than the server hosting the software resource.
For example, static content has no intelligence,
and so cannot make use of a migration
mechanism. Therefore, if the resource encoding
the static content is to be migrated, it must be at
the server's discretion. The server is therefore
able to migrate the resource without the
resource or any other host being aware of the
move. Intelligent content, however, has the
ability to use any service the network can pro-
vide. Thus, a migration mechanism can be used
by intelligent content to migrate itself. It may
choose to do this for the purpose of network
optimisation (for example, if it detects that the
server's performance has degraded due to

32

Strategies for content migration on the World Wide Web 	 Internet Research: Electronic Networking Applications and Policy

M.P. Evans, AD. Phippen, G. Mueller, SM. Fume/I, P.W Sanders, P.L Reynolds	 Volume 9 'Number 1 . 1999' 25-34

excess demand), or it may do this to achieve a
goal on behalf of a user. This would effectively
enable the intelligent content to become a
mobile autonomous agent (Franklin and
Graesser, 1996); that is, software which can
roam across a network, performing tasks on
behalf of a user.

In this way, a translucent migration
mechanism on the Web can provide a host of
new and extended services. The same
mechanism can be used by intelligent content
(to autonomously roam the Web), and by Web
servers (to optimise the network); it can solve
the "broken link" problem typical of hypertext
documents, whereby a URL embedded within
an HTML document is rendered useless when
the content it refers to is moved. It can also be
employed on a company's intranet, allowing
resources to migrate freely, either of their own
volition, or transparently by the server hosting
them. By providing its servers with the ability to
monitor their own performance, a company can
simply connect a new server to its intranet, and
wait for resources to migrate to it from existing
servers under strain. Using dynamic network
configuration protocols, and wireless network
technology such as wireless LAN, this facility
can be extended so that a server need only be
brought into range of a mobile basestation, and
switched on: the server will connect to the
network, and the resources will populate the
server, automatically.

Mobile servers
Basing the migration mechanism on a search
approach effectively provides a service which
resolves the IF address of a machine given a
specific resource. Thus, the same host can have
many different IF addresses over time (for
example, if the host is roaming) yet its resources
will still be locatable (providing the host is
accessible to the migration mechanism),
because the mechanism ensures the resource
can be located regardless of the current IF
address associated with it. This implies that
mobile servers can be developed with IF
addresses which change according to the
server's location, without affecting the accessi-
bility of the resources being hosted.

Services for distributed component systems
Distributed component systems can use the
mechanism to migrate components. Any type of
content can use such a migration mechanism,

and this includes intelligent content such as
distributed components. Thus the mechanism
enables the Web to provide a generic migration
service to such component systems. In this way,
the Web can become a distributed platform,
enabling distributed systems to build their own
specific services on top of the Web's generic
services. For example, system-specific messages
between components can be routed to individ-
ual resources (components) irrespective of
where the resources are located, using the
generic services provided by the migration
mechanism.

Optinzising the network through network traffic
profiling
Deciding which content to migrate and when
can optimise both the performance of a server,
and a network as a whole. Currently, certain
network technologies and service level agree-
ments (SLAs) with network providers insist on
the network user specifying the expected quality
of service of the network at certain times of the
day. For example, Frame Relay can ensure a
certain throughput to the user over a short
period of time by guaranteeing a committed
information rate (CIR). This CIR is the rate
which is, on average, available to the user.

Determining the CIR is a difficult process
and involves a good knowledge of the local
traffic. The network manager has to plan for the
expected traffic, keeping in mind that at very
busy times he does not have the same through-
put and availability of capacity above the CIR
for "bursty" traffic. Traffic profiling is very
important in such networks, whereby the traffic
is monitored in order to determine the quality of
service required. Research by the members of
the author team is developing a methodology for
profiling traffic in this way. It has been deter-
mined that while overall network traffic may be
variable over the short term, over time it only
increases. The SLAs, therefore, can provide the
business case for introducing content migration
as a means of balancing the network and staying
within the dR. With a transparent migration
mechanism built into a company's intranet,
software resources can be migrated to balance
the load not just across servers, but across the
network. A traffic profiling system can be used
to monitor the traffic on a company's network.
If network traffic has increased at a particular

33

Strategies for content migration on the World Wide Web
	

Internet Research: Electronic Networking Applications and Policy

M.P. Evans, A.D Phippen. G. Mueller, SM. Fumell, P W. Sanders, P.L. Reynolds
	

Volume 9 Number 1 . 1999 25-34

point, resources can be migrated to ease the
flow of traffic at the bottleneck. If the traffic is
too great only at certain times of day, the profile
will show this, and the resources can be migrat-
ed back and forth according to the time of day.

Conclusion

This paper has examined the various issues
involved in developing a practical migration
mechanism for the Web. It has identified the
requirements of such a mechanism, and exam-
ined some of the different approaches that can
be used to implement a migration mechanism
with respect to these. However, no current
migration system meets these requirements,
largely because they are not content-neutral.
Therefore, the authors are currently working on
a migration mechanism that will meet these
requirements, and thus could form part of the
Web's infrastructure. A transparent, search-
based, resource-level migration mechanism for
the Web, combined with existing distributed
component architectures and sophisticated
network traffic profiling techniques should
optimise both a server and the network, and can
provide a new class of services to users. 'While
the Web is currently a distribution system, the
integration of a migration mechanism can pro-
vide the Web with the services it needs to offer
to become a ubiquitous distributed system.

References

Berners-Lee, 1. and Connolly, D. (1995), "HyperText Markup
Language-2.O", RFC 1866, MITIW3C, November.

Berners-Lee, 1., Fielding, R. and Frystyk, H. (1996), "Hypertext
Transfer Protocol - HTTP/1 .0", RFC 1945, MIT/UCS/UC
Irvine, May.

Berners-Lee, T., Masinter, 1. and McCahill, M. (1994),
"Uniform resource locators CURL)", RFC-1 738,
CERN/Xerox/University of Minnesota, December.

Briscoe, Ri. (1997), "Distributed objects on the Web", BT
Technology Journal, Vol.15 No.2, April, pp.1 58.

lngham, D., Caughey, S. and Little, M. (1996), "Fixing the
'broken link problem': the W3Objects approach", in
Fifth International World Wide Web Conference,
6-10 May, Paris.

Franklin, S. and Graesser, A. (1996), "Is it an agent, or just a
program?: A taxonomy for autonomous agents", in
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages,
Springer Verlag, New York, NY, Berlin, 1996,
http://www.msci.memphis.edu/%7Efranklin/Agent-
Prog.html#agent

Kappe, F. (1995), "A scalable architecture for maintaining
referential integrity in distributed information
Systems", JUCS, Vol. 1 No.2, February pp.84-104.

Mic Bowman, C., Danzig, P.B., Hardy, D.R., Manber, U. and
Schwartz, M.F. (1995), "The harvest information
discovery and access system", Computer Networks and
lSDNsystems, Vol.28, pp.119-25.

0MG (1995), "The Common Object Request Broker: Architec-
ture and Specification, Revision 2.0", Object Manage-
ment Group.

Orfali, R., Harkey, D. and Edwards, J.(1 996), The Essential
Client/Server Survival Guide, John Wiley & Sons,
New York, NY, and Chichester.

RM-ODP (1995), "Open distributed processing reference
model (RM-ODP), ISO/IEC DIS 10746-1 to 10746-4,
1995. http://www.iso.ch:8000/RM-ODP/

Sollins, K. and Masinter, 1. (1994), "Functional requirements
for uniform resource names", RFC 1737.

Taneribaum, A.S. (1996), Computer Networks, 3rd ed.,
Prentice Hall, Englewood Cliffs, NJ.

34

Internet-based security
incidents and the
potential for false
alarms
M.P. Evans and

S.M. Furnell

M.P. Evans is a Research Student and 5.M. Furnell is a
Research Co-ordinator, both at the Network Research
Group, School of Electronic, Communication and Electrical
Engineering, University of Plymouth, Plymouth, UK.

Computer security, Internet, WWW, Hacking

VTI

The paper explains the background to experimental work
that was conducted with the aim of measuring aspects of
the WWW (specifically the average lifetime of a web link and
the impact of the "Millennium Bug"), but which inadver-
tently caused two perceived security breaches on remote
systems. The paper explains the nature of these incidents
and considers why, when over 700,000 IP addresses were
randomly sampled in the experimental study, only two sites
considered the activity to be an attempt to breach their
security. It is concluded that, while the appropriate
protection of Internet-based systems is undoubtedly of
Importance, the problems experienced during the experi-
mental study suggest a lack of uniformity in what different
organisations will class as a security breach.

I4rFrnr4Ti
The current issue and full text archive of this journal is
available at
http:I!www.emerald-library.com

Internet Research Electronic Networking Applications and Policy

Volume 10 Number 3 2000 pp. 238-245
MCB University Press . ISSN 1066-2243

Introduction

The Internet and the World Wide Web
(W\X'W) represent two of the most significant
technological developments of the last century.
The Internet offers a previously unimaginable
potential for connectivity - the possession of
two IP addresses enables a seemingly direct
connection between two systems, no matter
where they may be physically located. With
network connectivity and appropriate software
utilities, it is possible to determine the existence
of a remote system (and, to some extent, the
services it can provide), even if you cannot
actually log into it. From a security perspective,
this can represent a problem, as the mere
knowledge of a system's existence serves to
make it a potential target.

The paper describes the problems posed by
Internet-based attacks and the resulting attitude
that they demand on the part of network
security administrators. The discussion then
proceeds to consider the problem that this
effective state of "connection paranoia" may
represent for normal Internet users wishing to
conduct innocent network activities. This is
supported by the example of an experimental
study into Web site longevity that the authors
attempted, but which was complicated by
inadvertent security side effects.

Internet security issues and examp%es

Computer-based crime and abuse has been
recognised as an unfortunate side-effect of the
information technology revolution for many
years, with computer hackers (crackers) and
viruses representing the most widely recognised
causes of the problem (Audit Commission,
1998; Furnell and Warren, 1996). However,
the Internet has significantly enhanced the
threat posed by attackers, giving rise to a new
series of opportunities for abuse. For example, a
useful tool in the hacker arsenal is the port
scanner, which enables the inspection of a
remote system to determine what software and
services it is running. This knowledge can be
useful in facilitating a more direct attack if
known vulnerabilities of the discovered software
can then be exploited. Probably the most well-
known example of a scanner program is the

238

The facility to launch such attacks can be found
as a "feature" of several cracker toolkits, such as
HackTek. Given that they can be automated in
this way, the mounting of such attacks does not
require any skill or expertise on the part of the
hacker (indeed, more dedicated hackers refer to
those who rely upon such techniques as "script
kiddies"). As such, it has been conjectured that
around 90 percent of hacking is conducted by
people using such methods (Akass, 2000). This
is not to underestimate the serious
consequences that attacks such as denial of
service may have. For example, in the context of
a system used for a sensitive application, such as
providing access to patient records or
controlling direct care provision in a heakhcare
environment, any unavailability or performance
degradation could have significant
consequences.

The sheer range of companies and

Internet-based security incidents and the potential for false alarms

M.P. Evans and SM. Fume!!

Security Administrator Tool for Analyzing
Networks (SATAN), the rationale for which is
described by Farmer and Venema (1993).
SATAN, in common with other scanner
software, offers the facility to find a machine or
network, find out what services are being run
and then automatically test those services for
known security holes. As the full name suggests,
SATAN offers a useful tool to system
administrators wishing to ensure the security of
their network. However, the public availability
serves to make it an accessible tool for hackers
as well. SATAN has been followed by a wealth
of other tools, such as Netlnfo, PortPro,
IPprober and HackTek, from both the
commercial and hacker communities.

Even if an attacker cannot directly enter a
system, they can often still cause problems
through denial of service (DoS) attacks. Such
an attack is one in which a target system is
rendered inaccessible or unusable and will
generally involve the consumption of a system's
resources (such as memory, storage space and!
or network ports), such that it is unable to
provide adequate service for its legitimate users.
At a minimum, the end result can be
inconvenience for legitimate users attempting to
use the system or wishing to gain access to it.
Such incidents represent a growing problem on
the Internet and account for a significant
proportion of reported security problems
(CERT, 2000). The attacks themselves can
take many forms and are frequently system-
specific, taking advantage of known
vulnerabilities on a particular target platform
(e.g. running a particular operating system,
Web server or other system software). However,
some generic categories of DoS attack can also
be identified and two Internet-based examples
are briefly described below (Escamilla, 1998).
(1) Ping of death. Relies on a flaw in some TCPI

IP stack implementations. The attack
relates to the handling of unusually and
illegally large ping packets (which some
systems, e.g. Windows NT and 95, can
generate). Remote systems receiving such
packets can crash as the memory allocated
for storing packets overflows. The attack
does not affect all systems in the same way,
some systems will crash, others will remain
unaffected.

Internet Research: Electronic Networking Applications and Policy

Volume 10 Number 3 2000 238-245

(2) SYN flooding. Exploits the fact that
establishing a connection with the TCP
protocol involves a three-phase handshake
between the systems, as follows:

connecting host sends a SYN packet to
the receiving host;

• receiving host sends a SYN I ACK
packet back;

• connecting host responds with an ACK
packet.

In a SYN flood attack, an attacking host
sends many SYN packets and does not
respond with an ACK to the SYNjACKs.
As the receiving host is waiting for more
and more ACKs, the buffer queue will fill
up. Ultimately, the receiving machine can
no longer accept legitimate connections.

organisations now represented on the Internet
and the WWW means that there are a
significant number of high-profile targets for
potential attackers. One such organisation is the
Pentagon in the United States, which
experienced a total of 5,844 recorded attacks in
1998. Although this is itself significant
(averaging over 16 attacks per day), the number
recorded in 1999 was significantly higher and,
by November, well over 18,000 attacks had
been identified (Daily Telegraph, 1999). More
recently, a distributed DoS attack was
experienced by a series of major Internet sites in
February 2000. The attacks affected a number

239

lnternet .based security incidents and the potential for false alarms
	

Internet Research: Electronic Networking Applications and Policy

M P Evans and SM. Furnell
	

Volume 10 Number 3 2000 238-245

of notable and popular sites, including	 sample of links at random. Each link would
Amazon.com (books), eBay (online auctions) then be tested periodically, and the date and
and CNN (news) and had a significant impact. time would be recorded if and when the link
For example, it was reported that, within a few failed (i.e. the resource pointed to by the link
minutes, the Amazon.com Web site became	 could no longer be found). To ensure the
98.5 percent unavailable to legitimate users 	 randomness of the links, the authors attempted
(McCullagh and Arent, 2000). In addition, 	 to compile a database of Web servers from a
Keynote, a US-based Internet monitoring 	 large list of Internet servers chosen at random.
company, reported that the average 	 Once the list had been compiled, the intention
performance of the Internet was degraded by	 was to let a Web crawler search through the
"as much as 26.8 percent" (Keynote, 2000). 	 various HTML documents on the Web servers,
These statistics serve to reinforce the 	 and choose for itself a set of links at random.
significance of the problem that DoS attacks 	 This would ensure no bias had crept into the
can represent. 	 link selection process. Unfortunately, however,

As a consequence of factors such as those	 the experiment never reached this stage.
described above, many organisations are	 A secondary aim of the experiment was to
sensitive to the threat of Internet-based attacks determine the impact of the "Millennium Bug"
and take measures to guard against them. 	 on the Internet. The list of randomly selected
Success here relies upon being able to	 servers was being compiled between October
accurately detect the signs of an attempted 	 and November 1999. As such, it would be
attack in progress. However, as the next section trivial to extend the experiment and periodically
illustrates, it is not always possible to reliably	 test the state of these servers after midnight on 1
differentiate between attacks and other forms of January 2000. Although not related to the
network activity.	 primary aim of the experiment, this would be

interesting research for little cost.
The intended experiment comprised four

Measuring the Web - a problematic study different stages:
(1) compile a list of random servers;

The authors have first-hand experience in 	 (2) from this list, compile a list of random web
causing Internet security alerts - although in an 	 links;
entirely innocent context, through the conduct (3) periodically determine the state of each
of Web-based experimental research unrelated 	 server;
to security. The nature of the intended 	 (4) periodically determine the state of each
experiment, and the problems that 	 link.
subsequently arose, are described in the
sections that follow.
	 However, only the first stage was ever reached,

as several unanticipated side effects caused two

Experimental background and procedure
	 unintentional security incidents, which forced

The experiment that caused the problems was the experiment to end prematurely. The side

involved in measuring aspects of the Web.	 effects were a direct result of the design of stage

Specifically, the experiment was designed to
	 I of the experiment interacting unpredictably

determine both the average lifetime of a Web
	 with a server's firewall.

link (that is, the average period of time before
	 In stage 1, a list of random Web servers had

the resource pointed to was removed), and the to be compiled. This was achieved by randomly

impact of the "Millennium Bug" on the
	 generating an IP address and sending a simple

Internet. Both of these activities were
	 HTTP HEAD message on port 80 to attempt

conducted as part of a wider research
	 to retrieve the header of the default HTML

programme relating to Web-based content
	 page of the server. If a response was received,

migration (Evans ci a!., 1999). 	 the server's IP address and domain name were
The principal aim of the experiment was to	 recorded as belonging to a Web server. If no

determine the average lifetime of a Web link.	 response was received, however, the machine
To do this, it was necessary to collect a large 	 was pinged. If a response was received, the

240

We have detected unfriendly network activity, directed at our machines.

from 141.163.xx.xx [xx.xx.plymouth.ac.ukj. The activity, which began at

19:04 EDT (GMT-0400) on October 27, 1999 was a port scan (137) and

pinging of many addresses in our subnets (xx.xx.xx.xx, xx.xx.xx.xx).

This type of activity is not desired on the [DeletedJ domain and is

monitored frequently. Please advise your system managers and users that

this activity should stop immediately.

Internet-based security incidents and the potential for false alarms

M.P. Evans and S.M. Fume!!

machine's IP address and domain name were
recorded as belonging to an Internet server (no
attempt was made to determine which type of
Internet service the machine was providing).
This allowed the experiment to determine the
effect of the Millennium Bug on the Internet in
general and on the Web in particular. If no
response was received from the ping, the IP
address was noted as being dead, and played no
further part in the experiment.

Because of the unpredictable nature of the
network at the University, the experiment was
designed to compensate for any network
problems that occurred. For example, the
network would sometimes go down for a few
seconds or several minutes before returning to
normal. At other times, its speed dropped
significantly, due to the network loading of the
University's LAN. Because of this, some ping
messages seemed to take a long time before a
reply was received; equally, some HTTP
requests had to be sent more than once before a
reply was received. To ensure that a server
really was down when no reply was received,
the HTTP HEAD request was sent more than
once, and both the Time To Live of each ping,
and the number of pings sent, was increased to
allow for delayed responses.

The experiment was designed as a multi-
threaded application, with 100 threads
operating at a time, each of which contacted
one server at random. The design was fully
tested on the University's servers before being
allowed to sample the whole Internet. However,
over time, it became apparent that the
experimental procedure was resulting in
perceived security problems and, during the
course of two months, two formal complaints
were received from organisations whose systems
had been randomly targeted. The details of
these incidents, and the remedial actions that
were taken, are described in the sections that
follow.

Security incident one
Table I contains the text of an e-mail received
from the administrators of one of the randomly
selected systems. It should be noted that
elements of the figure have been edited to
preserve the anonymity of the specific machines
involved at the authors' site and of the affected

Internet Research: Electronic Networking Applications and Policy

Volume 10 Number 3 2000 - 238-245

Table I E-mail recieved concerning first perceived intrusion

IDeletedi

Computer & Network Security

references have been deleted and address
elements have been replaced with "xx" where
appropriate.

From the perspective of the remote system, it
is clear that the activity of the program was
considered comparable to that of port scanning
tools such as SATAN. However, in the context
of the experimental study, the use of port 137
(the NetBIOS name resolution service) was not
a feature that had been explicitly included in the
program. Rather, it is a feature of the Windows
NT Server (the operating system that was used
to host the experiment) that NetBIOS is used to
resolve a name, followed by the Internet DNS,
in response to a call to the "gethostbyaddr"
function. This is the default behaviour of the
operating system.

Although completely innocent in this case,
port scans are widely used by hackers as
reconnaissance, in an attempt to determine the
services the victim's servers are providing.
However, in this case the firewall software
would have received one NetBIOS call to port
137, and one subsequent HTTP request to port
80 (although the latter was not mentioned in
their e-mail communication). Further, the
"pinging of many addresses" (ping sweep) that
was detected listed just two IP addresses that
were pinged. Both addresses were selected
completely at random, and were not part of the
same sub-net, or even looked as if they were
remotely related. It was an unfortunate
coincidence that both were pinged at the same
time, and both happened to be owned b y the
same organisation.

Security incident two
The experiment was remounted, with NetBIOS

remote domain. As such, organisational name	 support disabled on the originating NT system,

241

internet-based security incidents and the potential for false alarms

M.P. Evans and SM. Fume!!

and the ping configuration altered such that
each ping packet had a timeout value of one
second, and at most only six packets would ever
be sent to one machine. The experiment was
restarted, and for a time all went well. In fact,
700,000 different IP addresses had been tested
over a period of two weeks, when the second
and final inadvertent security incident occurred.
'('able II presents the e-mail message received in
this case. Note that the IP addresses listed have
again been altered in order to hide the identities
of the machines involved.

At this point, it was decided that the
experiment had attracted too much adverse
attention and the University's Computing
Service was understandably concerned that
further problems could arise if it was to
continue. As such, the mutual decision was
taken to discontinue this element of the study.

The unfortunate situation in this case was the
fact that the incident reported differed greatly
from the behaviour of the experiment under
testing. A total of 338 ping messages were
allegedly received in five seconds, when the
code was explicitly written to send only six.
Indeed, the network traffic generated by the
experiment had been extensively monitored
before the experiment was restarted to ensure

Table lIE-mail received concerning second perceived intrusion

Intrusion attempt report

We have noticed the following behaviour originating from IP addresses

under your control:

ICMP denial of service attempt

The activity took place at approximately:

Dec 7 03:07 GMT

We consider this/these unauthorized attempt(s) to access our networks as

malicious in nature and hereby request that you take steps to identify the

person(s) involved and arrange for this activity to halt immediately.

Here are some samples of the activity in question:

	

03:07:41.035397 141.163.xx.xx 	 xx.xx.xx.xx: icmp: echo request

	

03:07:41.036032 141.163.xx.xx 	 xx.xx.xx.xx: icmp: echo request

	

03:07:41.038980 141.163.xx.xx 	 xx.xx.xx.xx: icmp: echo request

	

03:07:41.039568 141.1 63.xx.xx 	 xx.xx.xx.xx: icmp: echo request

	

03:07:41.042556 141 .1 63.xx.xx	 xx.xx.xx.xx: icmp: echo request

	

03:07:41.043138 141.1 63.xx.xx 	 xx.xx.xx.xx: icmp: echo request

338 instances in five seconds

We further request that you reply back to us with the resolution achieved

in this matter.

Internet Research: Electronic Networking Applications and Policy

Volume 10 Number 3 - 2000 238-245

that no more than six packets were sent to any
one machine. The University's network was
used for the test, and indeed, only six packets
were ever sent to each machine. However, the
incident reported 338 such messages. Whether
this was a fault in the experiment or in the
firewall on the remote machine that reported
the incident is impossible to determine, as the
experiment had to be discontinued and it is
doubtful that the "victim" would be willing to
share their firewall's configuration details.

Discussion

In both incidents, the receipt of the complaint
was immediately followed by corrective action
and a written explanation of the experimental
context. This was considered satisfactory and
defused the possibility of further action.

Reflecting upon the experiences, it could be
argued that in the first incident, the remote
firewall software used was a little overzealous.
The "incident" comprised one name resolution
request to port 137, one HTTP request to port
80 and several ping messages on two separate
servers with widely differing IP addresses. It is
debatable whether this should be considered to
represent a threat. It should also be
remembered that a contributing factor in the
first incident was that the experimental software
performed an unexpected task (i.e. a NetBIOS
call) as a consequence of asking it to perform an
intended function (i.e. a name resolution). In a
sense, it could therefore be argued that the
program author was the victim of an
inadvertent "Trojan Horse" effect. Without this
prior action occurring, it is possible that the
respondent organisation may not have
perceived the subsequent pings to be part of a
hostile attack.

In the second incident, the duration of each
ping was only five seconds, which intuitively
would not suggest that a Denial of Service
attack was intended. It could be argued that this
might have been an initial assault, designed to
overload the firewall system and thereby enable
exploitation of some other vulnerability.
However, the fact that no further activity would
have been apparent from the source IP address
should have provided an indication that this was
not the case.

242

lnternetbased security incidents and the potential for false alarms

M.P. Evans and SM. Fume!!

In both incidents, the ping feature had been
disabled by the firewall (a relatively standard
practice, which is intended to guard against
attacks such as "Ping of Death"). This meant
that the experiment continued sending ping
requests in an attempt to determine whether the
IP address was a live server or not, while the
firewall silently monitored the requests, yet did
not respond. In the absence of a response, the
experimental software was unintentionally
entrapped into appearing as a security threat.

With hindsight, however, it can also be
argued that, from a security perspective, the
practical approach taken by the experimental
study was ill conceived. To select an IP address
at random and then attempt to determine the
state of the server can be seen to have the
potential for mis-interpretation by a security
conscious organisation. From the organisation's
perspective, such a stream of traffic would have
no obviously legitimate purpose and, therefore,
by default would be regarded as suspicious.
However, the fact that only two organisations
flagged a problem during the period of the
experimental study (during which over 700,000
random addresses were targeted in this way),
gives a very strong indication that organisations
are not monitoring their security to a consistent
degree. If it is argued that the two complainant
organisations were correct to interpret the
network activity as attacks, then it could also be
considered that the other organisations were
failing in their network security strategy. This
assertion must, of course, be offset against the
fact that different organisations will be dealing
with systems and data of different levels of
sensitivity, and therefore, in some cases, the
required level of security may legitimately be
lower. Having said that, it is unlikely that in a
random sample only two organisations had data
that they would consider sensitive.

The question remains, however, as to how to
effectively monitor the growth of the Internet
without upsetting soniehodv's security policy.
As e-commerce continues to grow on the Web,
security is becoming more and more of an issue,
with the result that firewalls are being
configured ever more tightly. As has been
shown, this can have the effect of seriously
derailing entirely innocent applications, and has
the potential to cause serious harm to the
reputation of those involved (in this case, the

Internet Research: Electronic Networking Applications and Policy

Volume 10 Number 3 2000 238-245

University was advised that unless the
experiment was discontinued, its network
connection would risk being terminated).

In view of the practical experiences, it is
worth re-examining the Pentagon attack figures
cited earlier in the paper. Closer investigation
reveals that the Pentagon's definition of an
attack includes activities such as port scans and
pings (Wayner, 1999). As such, the level of
genuine abuse may not be as significant as first
suggested by the bare statistics alone, as many
of the incidents recorded may have been the
result of activities thar were not intended to
breach security. This can be regarded as a
counter-argument to the commonl y held belief
that the majority of computer-based crime goes
unreported, due to fears of adverse publicity on
the part of the affected organisations (Nycum
and Parker, 1990). In this case, organisations
may be over-stating their vulnerability to abuse.
In addition, there has been at least one legal
ruling (by the Norwegian supreme court)
stating that probing of systems on the Internet,
using techniques such as port scans, should not
be considered illegal (Jones, 1998).

It can be argued that all parties involved in
the practical incidents described emerged as
losers from their experiences. The authors were
unable to proceed with a potentially interesting
experiment, whilst the remote organisations
had effectively wasted resources in responding
to false alarms. As such, there appears to be the
need for some form of protocol through which
applications such as the experiment detailed
here can safely query a server on the Internet
without upsetting its security arrangement.
Such a protocol exists for the Web in the firm
of the Robot Exclusion Standard (Koster,
1994). This is a mechanism through which a
Web server can define the permissible
behaviour of "visiting" software agents, such as
a search engine's Web crawler. These agents
attempt to index the contents of a Web servers
but have the potential to cause unekomc side
effects. For example, they ma flood the server
with too many requests, or attcnipt to index
areas in which they arc not welcome, either for
privacy reasons, or because their presence tools
the server into thinking that thc are ..i genuine
user. To prevent this, the standard lets the
server owner specify clear boundanes of good
behaviour which the Web crat kr is espected to

243

References

Akass, C. (2000), "On the straight and narrow - not".
Personal Computer World, February, p. 57.

Audit Commission (1998), Ghost in the Machine, Audit
Commission Publications, February, ISBN 1-86240-
056-3.

CERT (2000), "CERT" Advisory CA-2000-01 Denial-of-
Service Developments", CERT Coordination Center and
the Federal Computer Incident Response Capability
(FedCIRC), 3 January, http://www.cert.org/advisoriesl
CA-2000-01 .html

Daily Telegraph (1999), "Pentagon under cyber-seige", The
Daily Telegraph Connected Supplement. 11 November,
p. 2.

Escamilla, 1. (1998), Intrusion Detection, Wiley Computer
Publishing, ISBN 0-471-29000-9, New York, NY.

Internet-based security incidents and the potential for false alarms 	 Internet Research: Electronic Networking Applications and Policy

M.P. Evans and SM. Futnel! 	 Volume 10 Number 3 2000 - 238-245

adhere to. The boundaries are encoded in a text academic relevance. Web masters and network
file called Robots.txt, which a Web crawler
should parse upon arrival at the server.
Although the standard cannot enforce the
behaviour of a Web crawler, it provides an
implicit contract between server owner and
Web crawler designer. Breaking the contract
can lead to the exclusion of all traffic from the
sub-network from which the Web crawler
originated, or even legal disputes (Pallmann,
1999). As such, the Robot Exclusion Standard
could make an ideal model from which to
develop similar protocols for measuring the
Internet. With so many different security
policies in existence, it makes sense for a server
to publish its policy of acceptable behaviour,
rather than expect any visiting software agents
to guess what that policy might be.

Conclusions

The provision of appropriate protection for
Internet-based systems is undoubtedly of
importance. It is necessary for systems to have
"frontline" defences in order to detect potential
abuse and reduce the possibility of successful
system penetration. From this perspective, the
organisations that identified and responded to
the activity of the experimental software can be
commended for having effective security
monitoring procedures that should also enable
detection of genuine attacks. The fact that, in
the cases described, the monitoring software
caused false alarms can be excused in a security
context, as this is preferable to allowing an
intruder to penetrate or disrupt the system.

Incidents such as Denial of Service attacks
represent a significant threat to Internet-based
systems and, while they do not represent a
direct threat to the confidentiality or integrity of
data, they may be employed as a precursor to a
more direct form of attack. In addition, the lack
of system availability may itself represent a
significant threat to individual or organisational
well-being in many scenarios. As such, it is
legitimate and advisable for organisations to
take appropriate steps to protect their assets
from such attack. However, there is also a clear
need for experimental research to be performed
on the Internet. Measurements on the size of
the Internet and its growth are not just of

managers need to know how much network
traffic to expect, while business leaders need to
know the importance of the Internet to their
business. The techniques used to perform such
measurements, however, share certain
characteristics with those used by hackers.
There is, therefore, the potential to trigger
security alerts for innocent reasons, as the
authors have discovered. This finding calls into
question whether the number of "security
incidents" logged by certain organisations
actually represent a realistic indication of their
vulnerability to attack. The experiment
discussed previously was applied to over
700,000 Internet addresses, yet only two
security incidents were flagged and followed up,
demonstrating a lack of uniformity in the
security policies of different organisations and
what they class as an attack.

In view of the above, the security needs of the
Internet must be balanced with the
experimental needs of the research community
(and the activities of legitimate bots performing
necessary services), if only to prevent future
misunderstandings that could potentially lead
to more embarrassing outcomes than those
discussed here. The definition of a standard
enabling server owners to define their
acceptable behaviour policy could prevent such
situations from occurring, and lead to a more
realistic measure of security incidents, reducing
public fear caused by potentially exaggerated
attack statistics.

244

Internet-based security incidents and the potential for false alarms

M.P. Evans and S.M. Fume!!

Internet Research: Electronic Networking Applications and Policy

Volume 10 Number 3 2000 238-245

Evans, M.P., Phippen, A.D., Mueller, G., Furnell, S.M.,
Sanders, P.W. and Reynolds, P.1. (1999), "Strategies
for content migration on the World Wide Web",
Internet Research, Vol. 9 No. 1, PP. 25-34.

Farmer, D. and Venema, W. (1993), "Improving the
security of your site by breaking into it",
http://www.fish.com/—zen/satan/satan-demo/admin-
guide-to-cracking.html

Furnell, S.M. and Warren, M.J. (1996), "Computer abuse:
vandalising the information society", Internet
Research, Vol. 7 No. 1, pp. 61-6.

Jones, C. (1998), "Let the Web server beware", Wired News,
23 December, http://www.wired.com/news/politics/
0,1283,1 7024,00.html

Keynote (2000), "Denial of service attacks this week
degraded Internet performance overall according to
Keynote", Keynote Press Release, 1 2 February, http:II
www.keynote.com .

Koster, M. (1994), "A standard for robot exclusion", The
Web Robots Pages, http://info.webcrawler.com/makI
projects/robots/norobots.html

McCullagh, D. and Arent, L. (2000). "A frenzy of hacking
attacks", Wired News, 9 February, http:II
www.wired.com/news/print/0,1 294,34234,00.html

Nycum, S.H. and Parker, D.B. (1990), "Prosecutorial
experience with state computer crime laws in the
United States", in Grissonnanche, A. (Ed.), Security
and Protection in Information Systems, Elsevier
Science Publishers B.V., North-Holland, pp. 307-1 9.

Pallmann, D. (1999), Programming Bots, Spiders, and
Intelligent Agents in Microsoft Visual C++, Microsoft
Press, ISBN 0-7356-0565-3.

Wayner, P. (1999), "Hacker 'attacks' on military networks
may be closer to espionage", New York Times, 8
March, http://www.nytimes.com/library/tech/99/03l
cyber/articles/O8defense.html

245

The Resource Locator Service: Fixing a
Flaw in the Web

M.P.Evans and S.M.Furnell

Network Research Group
Department of Communication and Electronic Engineering, University of Plymouth,

Plymouth, UK.

Abstract

The architecture of the World Wide Web has scaled beyond its original expectations, but
problems are now emerging that could undermine its effectiveness as an information system,
and restrict its future growth. Nearly 30% of all web pages experience link rot, DNS domain
names are rapidly running out, and older web pages are deleted without being archived,
leading to the loss of potentially important information. These problems are caused by the
URL and its reliance on the Internet's DNS for its namespace, which we argue represent a
serious flaw in the web's architecture. In this paper, we present a new web-specific name
resolution service that has been designed to address these problems. Called the Resource
Locator Service, it offers an unconstrained namespace, and a mechanism for transparent
resource migration that can dynamically locate static resources across time and space.

Keywords: Referential integrity; Resource migration; Link rot; Temporal references; Web
namespace

1. Introduction

The World Wide Web (web) was designed by Tim Bemers-Lee as a social creation rather
than a technical one [14]. The ease with which its users can publish information as well as
read it, combined with its exponential growth, has made it a social platform from which ideas
and concepts emerge at an ever-increasing rate. However, the sheer volume of users and
information has applied enormous pressure on its architectural foundations, which was not
foreseen during its development. As its size continues to grow exponentially, increasing
pressure is placed on its architecture, such that any flaw will become a major weakness in the
system. With the web's role in society becoming increasingly important, and with the
development of new access devices such as Personal Digital Assistants increasing the number
of users, it seems appropriate to address any flaws before they disrupt the system.

In its present design, the most serious flaw in the web's architecture currently stems from
the design of the Uniform Resource Locator (UIRL), which is used to reference a web
resource. The URL has proven to be an unfortunate means of referencing a resource on the
web, and its technical limitations are well documented [8, 14, 18, 27, 30, 35-36, 39]. It sits
uneasily between the machine world of the web's architecture and the human world of the
User Interface: the machines need the URL to be syntactically consistent and constrained to
tell them where a resource is, whereas humans need it to be intelligible and memorable to tell
them what the resource is. For the purposes of this paper, we have focused on three key
problems that are inherent within the URL's design, which together could threaten the web's
development if left unchecked:

1. Link Rot - the URL incorporates a server's hostname in order to provide a name for a
resource. When the resource migrates to a different host, it must use a new URL that
incorporates the new hostname. This causes all hyperlinks that use the old URL to
break, or 'rot'. Currently, 28.5% of web pages suffer from link rot, with 5.7% of all
links broken [38] and an average of 5.3% of links in search engines also broken [21].
The informational content and overall usefulness of the web will decrease as links
become less reliable.

2. Shrinking Namespace - a URL not only defines a resource's location, it is also used
as its name. Any company that wants to be remembered needs a memorable name,
and the trend on the web has been to name a company after a memorable hostname to
create a memorable URL. However, the URL is based on the aging Domain Name
System (DNS) of the Internet, and the namespace this provides is running out. In
March 2000 alone, new hostnames were being requested at a rate of nearly one a
second, and some 14,322,950 distinct hostnames have been registered just for web
server use [29]. The problem is exacerbated by copyright and trademark issues
regarding the ownership of certain URLs, and the centralised nature of the DNS,
making the URL in its role as a resource's identifier, the "web's achilles heel" [3].

3. Lost Histoiy - the web is designed for society, but crucially it neglects one key area:
its history. Information on the web is today's information. Yesterday's information
is deleted or overwritten, with no consistent means of searching through archived
material other than manual navigation through a web site in the hope of fmding
archived material. The URL is a spatial identifier only, unconcerned with the
temporal ordering of the web's resources, and so prevents the consistent retrieval of
archived information [22].

In this paper, we examine existing solutions to these problems and highlight their
weaknesses when confronted with a system the size of the web. We argue that the
architecture of the web itself is flawed, and that solutions built on top of a flawed architecture
cannot work. As such, we present a new approach with the design of the Resource Locator
Service (RLS), which effectively addresses these problems by replacing the DNS with a name
service designed specifically for the web.

The remainder of the paper is presented as follows: Section 2 discusses the background to
the problem, and related work that has tried to provide a solution. Section 3 provides an
overview of the RLS, while section 4 presents the design in much greater depth. Finally,
sections 5 and 6 discuss the RLS in operation, while sections 7 and 8 present the results of
performance measurements that have been taken from a prototype, which has been developed
to demonstrate the effectiveness of the design, and discuss issues and further work that
remains to be done.

2. Background and Related Work

2.1. Solutions to Link Rot

The use of the URL as a means of identifying a resource has caused all links to be
inherently brittle, as once a resource moves to a new location, the link breaks. Designing a
system for the web whose identifier does not change when the resource migrates (i.e. a
location-independent identifier) will help to prevent link-rot. Such systems exist on the web
and can be classified as using one of five approaches:

The Chain Approach
A forward reference is left behind on the machine that the resource has migrated
from, pointing to the new location. Although arguably optimal in terms of network
traffic overhead [14], this approach can lead to forward references outnumbering

2

resources. Various shortcut operations can limit the length of the chain of forward
references, but this approach is still inherently brittle, as locating your resource is
dependent upon the state of someone else's server. Also a resource can only migrate
onto a server that supports this approach. Examples include W3Objects [14].

2. The Callback Approach
A database of all the links on the web is maintained. Each time a resource migrates,
the database is updated and calls back all documents that contain a link to the
resource, enabling each document to update its links. This approach guarantees
referential integrity, as it is modelled on database technology. However, the web is
not a database, and any server on the web may be down at any time. As the database
must store all updates to servers that are down, it would eventually be overwhelmed
by the number of pending updates [6]. This approach also requires the documents to
be intelligent enough to remove links identified as broken, and so is not backwards
compatible with the web's existing architecture. Examples include the HyperG
system [18] and Atlas [30].

3. The Search Approach
Whenever a resource needs to be located, a network-wide search is performed, with a
flooding algorithm used to guarantee that all servers are queried. Although reliable,
such an approach produces too much network traffic overhead for use on the web,
and is the least optimal of all the approaches [14]. No examples currently exist for
web-wide resource location through search.

4. The Name Server Approach
A set of distributed name servers are used that manage a resource-identifier/location
mapping. The name server is queried using the identifier of the resource in much the
same way that a machine's IP address is determined through its hostname using the
DNS [25, 26]. However, a name server system is essentially a distributed database,
whereas the web is a federated system, and so locating the correct name server
without breaking the web's existing architecture presents a significant challenge.
Examples include the Handle System [39], and the Resolver Discovery Service
(RDS) [36], both of which break the web's existing architecture.

The Lecturing the User Approach
Not a technical approach, more a philosophical one. Bemers-Lee and others have
argued that a URL need not break if considered thought is given to its design [2].
However, despite the numerous technical arguments against this viewpoint, it is
people who create URLs and people who are notoriously bad at consistent regular
maintenance. Ultimately, as broken links on the W3C web site itself testify (e.g. the
link http://discuss.w3.org/mhonarc/w3c-techlthreads.html on the document located at
http://www.w3.org/MobileCode/Workshop9507/is broken), lecturing the user will be
ineffective at best.

2.1.1 Semantic Ambiguity

Although each of the five approaches provides its own solution to the problem of link rot,
the semantics of the link and what it references are left in an ambiguous state. Referential
integrity can ensure that links always reference the same resource, but what happens if the
content contained within the resource changes? Should the semantics of the link require the
content to persist for the lifetime of the resource, thus requiring a new resource and identifier
to be created each time the content changes; or should the semantics be defined such that new
content simply overwrites existing content? The former option will preserve all content, but
will lead to an explosion of new resources, each with its own distinct identifier. Web sites
that contain frequently changing content, such as daily news sites, will generate many new

3

resources, making linking to the site virtually impossible. Conversely, the latter option
controls the number of resources but destroys information. Links will only be able to
reference the web site, rather than specific information on the site, requiring the user to search
manually for the story within the site's archives (if they exist). Although this problem of
semantic ambiguity exists in the web's current architecture, the design of a new name service
is a suitable opportunity for the ambiguity to be resolved.

2.2. Solutions to the Shrinking Namespace

Since the birth of the web, the number of domain names registered has exploded
exponentially, leading to the number of memorable names shrinking rapidly. Companies that
register domain names without actually using them in order to resell them for a profit
exacerbate the problem by driving up the price of the remaining names. Furthermore, name
disputes are becoming increasingly common, as the rights to the remaining names are fought
over by companies and organizations with similar trading names. The Internet Corporation
for Assigned Names and Numbers (ICANN) is the organization responsible for assigning
Internet names, and acts as the central registrar for domain names on the web. ICANN has a
defined policy for resolving domain name conflicts, called the 'Uniform Domain-Name
Dispute Resolution Policy' [16], which attempts to resolve the issue of two parties fighting
over the same name. However, before the policy can be invoked, one party must first file a
complaint in a court of law. This is not an elegant solution, and with the number of available
domain names dwindling, the problem can only get worse.

To resolve the problem, ICANN is currently examining ways to extend the top level
domain name space. A Top Level Domain name (TLD) is the last part of a domain name
(e.g. .com, .org, etc.). ICANN has recently extended the original list of seven (excluding
country codes) to include new names such as .biz, .coop, and .aero, etc [13]. However, this
must be seen as a short-term solution, as it simply constricts the same problem to vertical
commercial and organizational domains. Equally, there is no guarantee that the new top level
domains will be used, as companies are currently fighting to use the .com TLD over all other
alternatives. Currently, 82.8% of all registered domain names use.com [20], largely because
it is perceived as being associated with the web in people's minds far more strongly than any
other TLD [37]. As such, the competition for .com names will still remain, regardless of how
many new TLDs are introduced.

An alternative proprietary solution can be found in the RealNames system [31], which
provides an alternative namespace to that of the DNS, and is used by various web portals
including AltaVista, MSN, Google and LookSmart. RealNames uses Internet Keywords as
'human friendly identifiers' [23] that are registered by a company or organization usually
associated with that name (e.g. 'Ford'). The RealNames system maps the human friendly
identifier onto a company's web site, enabling a user to navigate to the site using the brand
name of the company. In addition, it allows more than one party to register a web site under
the same Internet Keyword, presenting several links to the user (either through an affiliated
web site, such as AltaVista, or an affiliated browser, such as Microsoft's Internet Explorer 5)
when a shared name is entered. In effect, it can be seen as occupying the middle ground
between a naming scheme and a search engine, indexing Internet Keywords rather than every
word in a web document, and so makes search results more reliable than a general web
search. However, it is not a true architectural solution, as the same identifier does not
uniquely identify a specific resource, leaving it to the user to manually select the most
appropriate resource from a list. As such, an Internet Keyword cannot be used by the web as
a machine-readable identifier, and so cannot replace the URL. Furthermore, it does not open
up the namespace, as it is a proprietary solution that enables the RealNames company to
determine what is and what is not a suitable Internet Keyword. The company is also in a
position to limit the number of times that an Internet Keyword can be used by users to just
1000 times a year, at a cost of $100 per Internet Keyword per year [32].

The official solution is to use Uniform Resource Names (URNs) rather than URLs.
URNs are designed to be permanent identifiers that identify a resource through a location-

4

independent name, thus simultaneously removing the dependence on the DNS and providing
a solution to link rot. However, URNs have been on the agenda since 1992, and despite many
short-term solutions [7, 27], no architectural method of providing URN to URL resolution has
been developed. Worse, URNs are designed as machine-readable identifiers only [36], and so
ignore the shrinking namespace problem completely as they are not designed for human use.

2.3. Solutions for Archiving the Web

Because the URL is a spatial locator and has no means of referencing a resource
according to its time of creation, the web is always stuck in the present. A user can manually
locate an archived version of a resource using the textual cues contained within a web page,
but a web crawler cannot, as it does not understand the text. Existing solutions to this
problem are again proprietary and unfocused in their approach. For example, the Internet
Archive project [17] was begun in April 1996 by Brewster Kahie to literally archive the entire
Internet. However, access to the archive is free only to researchers, students and not-for-
profit organizations, and only if a research proposal indicating the need for access is first
submitted and approved. Like the RealNames system, this is hardly in line with the open
environment of Berners-Lee' s original vision of the web.

Other systems have been designed in an ad hoc fashion in order to archive a particular
library's digital contents, but no the other resources on the web [12, 28]. Although fully
operational in themselves, these systems are isolated from one another and from the public at
large because they are not part of the web's architecture.

2.4. The Need for a New Approach

The existing solutions described here are all isolated, independent approaches that do not
address the cause of the web's architectural flaw and do not sufficiently integrate with the
web's existing architecture. Consequently, they cannot provide effective long-term solutions
to the flaw.

We argue that it is the use of the URL and its reliance on the DNS that is the root of the
problems identified here, because:

the DNS is designed to map a hostname onto an IP address, whereas the web needs a
system to map a resource name onto a location;
the DNS deliberately constrains its namespace as it only has to deal with the names of
servers, whereas the web needs an unconstrained namespace to cater for all different
types of resources and the needs of their owners;
neither the DNS nor the URL have any way of storing and referencing a resource's
time of creation.

In order to fix the flaw the web needs a new service tailored to its own needs, which can
provide referential integrity, an unconstrained namespace, and can locate a resource according
to its position in time as well as space. In the next section, we present the design principles
for such a service, which we have termed the Resource Locator Service.

3. The Resource Locator Service

3.1 Overview

The Resource Locator Service (RLS) has been designed as a name resolution service that
is specific to the web. The service is fully backwards-compatible with the web's existing
architecture, but provides new functionality that enhances it. It has been designed to work
with the DNS as well as on its own, so that it does not have to completely replace the DNS in
order for it to function effectively. As such, the RLS will only manage those resources that

are explicitly registered with it, giving the user the choice of whether they wish to use its
advanced features or not, while maintaining full backwards-compatibility with the web's
existing architecture. The service is designed to be deployed in an evolutionary way,
becoming increasingly prevalent on the web until it eventually becomes the de facto name
resolution service, leaving the DNS as the Internet's name resolution service.

3.2 Unconstrained Namespace

The RLS has been designed to accept any string as the name for a resource, allowing an
infinite variety of naming schemes and namespaces to be used. As such, the RLS provides a
technical solution to the constrained namespace problem, but does not define a way of
avoiding namespace conflicts. However, this is a matter of policy rather than technology, and
so will be left for future research.

We envisage the RLS being run along similar lines to the DNS, with individual nodes in
the system being independently operated, but an organization such as ICANN managing the
addition or removal of those nodes. However, unlike the DNS, no organization would have
control over the namespace.

3.3 Transparent Resource Migration

The RLS helps to prevent link rot by providing a transparent resource migration service
that maps a persistent name onto a dynamic location. Resources that wish to make use of the
service must first register with it, after which they are free to migrate without breaking the
links that reference them. Resources that do not register will still cause link rot should they
migrate to a different location. As such, the RLS will not provide an immediate solution to
link rot, but will act to retard its growth until all resources register with the service. Once this
happens, link rot will only occur when a resource is no longer required and is deleted.
However, we envisage third-party archiving services being employed to host such unwanted
resources, with the RLS being used to maintain their persistent name. Although this does not
guarantee the integrity of all links, we argue that it is the most appropriate level of integrity
for the web, as persisting all resources forever would be impractical, and unwanted resources
will not have many links referencing them anyway.

Resource migration enables the RLS to shift the responsibility for link management (and
thus link rot) from the resource owner to an automated service. Because a registered
resource's name persists across servers, the resource owner is not required to manage broken
hyperlinks, as their integrity is guaranteed by the RLS. The owner must still inform the RLS
of the new location, but we have automated the entire process through a new Resource
Migration Protocol (RMP - see section 5.1), which remotely instructs the RLS to update the
location of a migrated resource. To demonstrate this, our prototype includes a RMP client
with a drag and drop interface for moving resources across servers using a style very similar
to Microsoft's Windows Explorer (see section 7.1.3). This enables the resource owner to
freely move registered resources across all web servers without any manual link management

3.4 Temporal References

The RLS preserves the web's history through the use of a new temporal reference, which
enables a resource to be identified according to its time of creation as well as its name. In this
way, different versions of the same resource can share the same name, while still being
differentiated by the RLS according to the reference's temporal attribute. This will also
enable resources to be searched for according to their time of creation as well as their subject
matter, enabling temporal search engines to be developed that show the state of the web and
its resources at different points in time.

Temporal references require the resource and its content to be bound tightly together and
treated as an atomic unit. Should the content need to change, a new resource must be created
to contain it. However, rather than requiring a new name, the new resource can use the

6

existing name, but with a different temporal attribute. In this way, different versions of the
same resource can be uniquely identified according to their time of creation, without requiring
different names. References without a temporal attribute are assumed to be current
references, which always reference the most recent version of the resource. This enables the
temporal reference to resolve the semantic ambiguity of the hyperlink, as the current
reference can be used to identify a web page whose content changes frequently, while a fully
defined temporal reference can be used to identify a specific version of the web page
according to the time that it was created.

Note that although the RLS binds a resource to its name and content in a way that appears
similar to the specification of the URN, its functionality is very different. For example, the
namespace of the RLS is completely unrestricted, whereas that of the URN is rigidly
constrained. In addition, a URN can persist beyond the lifetime of its associated resource,
whereas the RLS will persist a resource's name only as long as the resource exists.

4. Architecture of the Resource Locator Service

4.1. The Locator Network

The RLS is a distributed database, deployed across a network of nodes called Locators. A
Locator is analogous to a Resolver [36], but is able to locate a resource through time as well
as space by storing a resource's name, current location, and time of creation. This Locator
Network performs a similar job to the DNS, but with granularity at the resource level.

0
Other Locators

1.GET	 /
www anyserver.com/lmg.gif 	 2 GT...	 Locator

i#IL I	 ______________
4 Frmrfl	 L_..J/ 3.Eder3O2Foundl'j	

I

Request Router ' 	 I /
anvservec.cornñmo out	 www.ServerAcom I /

5.GET
www.ServerA.com/img.gif	 .	 Locator's Lookup Table

6200
('V

-	 RL

,cI Resource Name =
www.anyserver.com/img.gif

7 Resource Location =
www.ServerA.com/img.gif

www.ServerA.com

Figure 1 - Basic Architecture of the Resource Locator Service

Figure 1 shows a high level view of the RLS. The Locator network uses standard HTFP
for communication, with the client being redirected to the correct location of the resource
using the HTTP redirect mechanism [9]. Although this is not the most efficient approach, it
facilitates backwards-compatibility, enabling all web entities to use the RLS.

The Locators take any string as the name of a resource and return that resource's location
as a URL. The only constraint on the name used is that it must identify only one resource
(although that resource may itself be replicated, and so have many values for its location in

0

7

the database). In this way, the RLS removes any technological barrier to future naming
schemes, leaving policy alone to determine their structure.

4.1.1 Migration Approach

Of the five approaches described in section 2.1, the RLS uses the name server approach, as
it is the most appropriate for the required functionality. Of the other approaches:

• the lecture the user approach advocates doing nothing as a solution, and so can be
immediately discounted;

• forward referencing may provide referential integrity, but it still relies on the URL
and thus the DNS's constrained namespace, and cannot support temporal
references;

• the search approach will not scale to a system the size of the web [14], and the
situation would be made worse if it had to manage temporal as well as spatial
references;

• the callback approach provides referential integrity without providing a true
naming service, and so the URL and the DNS would remain.

The name server approach, in contrast, is simply a distributed database, and so will scale
to the size of the web and support temporal references. However, designing the system such
that it interoperates with the web's existing architecture has been a major engineering
challenge. Our solution to this problem is presented in the following sub-section.

4.2. Request Routing

Figure 1 is a high level representation of the RLS and depicts the client querying an
appropriate Locator. However, in practice, a client must be made aware of exactly which
Locator contains the required name/location mapping, but in a way that does not require the
client or the hosting server to be altered. As such, some form of mediation is required
between the client and the RLS that can transparently route the client's request to the
appropriate Locator, without requiring any modifications in the client or server. This is
difficult to achieve, however, as the constraints imposed on the RLS directly conflict with its
distributed nature. For example, some distributed systems, such as the DNS or directory
services, use the structure of the namespace itself to identif' the correct node, but the RLS
cannot, as the namespace must be left completely unconstrained. The alternative is a flat
architectural configuration, with nodes arranged as peers and the namespace left
unconstrained, but this requires the search approach to be used, which will not scale to a
system the size of the web [14].

The IETF has also faced this problem with the design of the URN, and their proposal
involves using the DNS to locate the correct node (termed a Resolver) in their Resolver
Discovery Service [7]. A URN is sent to the DNS, which then forwards the URN onto the
correct Resolver, which in turn resolves the URN to the correct URL. Essentially, the DNS's
architecture is adapted so that it acts as an access system into a network of distributed name
servers (the Resolvers), which perform the actual URN/URL mapping. Although this can
work without requiring every browser and server to be changed, it has several disadvantages:

It fundamentally changes the purpose of the DNS (from a name/address resolution
service to an access service to another network).
The DNS '5 importance in basic network routing prohibits its use in experimental
work [3].
URNs would still be constrained by the DNS namespace [7].

8

To resolve this problem for the RLS, we have developed a new system of mediation using
an object called the Request Router, which transparently routes a standard HTTP request to
the appropriate Locator in the RLS. The Request Router can work with any string as a
resource identifier, and does not flood the entire RLS in order to locate the node with the
required information. Furthermore, the system is fully backwards compatible with the web's
existing architecture, and generic enough to provide mediation between the web and any
distributed system.

4.2.2 The Request Router

The Request Router (RR) provides transparent, scalable mediation between the web and
the RLS through the use of a hash routing algorithm. Specifically, a hash routing algorithm
takes a string and maps it onto a hash space. The hash space is partitioned such that the string
is mapped onto one and only one node in a distributed system [33, 40]. Using a hash routing
algorithm as the basis for locating nodes in the RLS, therefore, enables any string to
deterministically identif' the Locator that contains the required name/location mapping. As
the Locator is a database, it can be defined to store any type of information, and so the
resource's location can be defined as any string. Thus, the hash routing algorithm solves the
problem of how to use an unconstrained namespace for both a resource's name and location,
whilst efficiently locating the correct Locator without flooding the system.

4.2.3 The Hash Routing Algorithm

The RR uses the same hash routing algorithm as the Cache Array Routing Protocol
(CARP) [41], which maps a URL onto a specific cache in a distributed caching system, such
that resources are distributed evenly across all caches in the system. The algorithm used in
CARP works by mapping the URLs of resources that need to be cached onto a partitioned
hash space, with each set in a partition being associated with one caching node [33]. The
algorithm deterministically identifies the node as follows:

1. The URL of the resource is hashed.
2. The URLs of each of the caches in the array are also hashed in turn, with a weighting

factor being applied that is set according to the physical characteristics of each node
(see below).

3. The hash value of the resource and the hash values of the nodes are XORed together,
producing a score for each resourceURL_hash/cacheNode_hash combination.

4. The cache node whose resourceURL_hash/cacheNode_hash combination scores
highest is the one that hosts the resource.

Thus, given only the name of the resource and the names of all the machines in the array,
the exact machine that holds the resource is uniquely and deterministically found. The
resources are distributed uniformly across the system, but the weighting factor can be used to
skew the distribution such that those nodes with a higher performance will host more of the
resources.

4.2.3.1 Adapting the Hash Routing Algorithm for the Resource Locator Service

Although highly effective in large cache arrays, we have adapted the CARP protocol for
use in the Request Router to better meet the needs of the RLS. Specifically, each node in a
CARP system keeps a list of the URLs of all the caches in the system, and this causes a
degree of network overhead. When applied to the RLS, however, every RR would need to
know the URL of every Locator in the Locator Network, and periodically check for system
configuration changes. This would create an unacceptable increase in network overhead, and
would limit the types of device that could use the RR to those that could store and maintain
the large lists of Locators that would be required.

9

The RLS avoids this limitation, however, by removing the weighting factor from the
algorithm, and leaving the namespace of the resources open while restricting the namespace
of the Locators. As such, a URL pattern is defined, which all Locators must use for their own
name. The pattern encapsulates a number, which can be thought of as that Locator's identity
number. Each number must be unique in the system, and all numbers must be sequentially
ordered, starting from 0. An example URL pattern is:

http://www.nodeX.Locator.net/

where X represents the Locator's number in the system. For example, the first three nodes in
the system (assuming a zero-indexing system) would have the following URLs:

http://www.nodeO.Locator.net/
http://www.node 1 .Locator.netl
http://www.node2.Locator.net!

Effectively, the URL pattern of the Locators acts as a well-known URL in a similar way to the
well-known ports defined for TCP applications. Note that the TJRL pattern must be
sequential, and there can be no gaps in the sequence. The URLs of a complete sequence of
nodes, each of which has a URL that corresponds to the URL pattern, is therefore known as a
URL sequence. In this way, the URLs of the Locators themselves become deterministic.

4.2.4 Updating the Request Router

Adding a new Locator to the RLS will cause the hash routing algorithm to implicitly re-
map 1/n resources in an n-node system (note that n includes the new node) [33, 40]. As such,
if a Request Router is unaware of this change in the system's configuration, then 1/n of its
requests will go to the wrong Locator. However, the RR does not need to be synchronized
with the configuration of the RLS, as the deterministic nature of the URL sequence enables it
to detect any change automatically. Specifically, once the RR has the URL pattern for the
RLS, it is a trivial matter for it to iterate along the resulting URL sequence, querying the
existence of nodes at each point in the sequence. If a Locator fails to respond, then the RR
has found the limit of the sequence. Thus, if a Locator cannot find a resource, the RR can
simply query the existence of the Locators that have a node number that matches this limit (in
case a Locator has been removed), or is one greater (in case a Locator has been added). If the
limit remains unchanged, then the RR knows that the resource is unregistered with the RLS;
otherwise, the RR simply rehashes the resource's name using the updated value, and sends the
request to the newly calculated Locator. In this way, the RB. is completely decoupled from
the configuration of the Locator Network, and so any change in the configuration of the
system does not result in a flood of update messages. Furthermore, the only information that
the RR needs to store about the configuration of the system is the URL pattern and the
number of nodes.

Note that the system's reliance on the URL sequence makes it vulnerable to node failure.
Should a Locator fail, not only will its records not be available, but any RB. that performs an
automatic update during the failure will calculate the wrong number of nodes in the system,
and will map most URLs onto the wrong Locator. However, the disruption can be limited if
the RR continues to check for the existence of nodes beyond that at which no response is
received, effectively enabling it to jump any holes in the URL sequence. Although the RR
will still not be able to access the records in the failed Locator, it will at least know the correct
configuration of the system, and so all other records will be available.

To further improve the resilience of the RLS, future work will look at introducing
redundancy to the system, either by clustering several servers to provide a more fault-tolerant
Locator design, or by using a duplicated hash routing algorithm, such as that proposed by
[19]. Duplicated hash routing uses two hash routing functions and two cloned systems, one of
which is a secondary system that acts as a backup in the event of a node in the primary system

10

failing. However, the benefits of this algorithm need to be determined, as although the
reliability of the system is improved, the size and complexity are increased.

4.2.5 Integrating the Request Router into the Web

Because the RR is decoupled from the RLS, and needs only minimal information in order
to function, it can be deployed virtually anywhere on the web. For example, it can be:

• embedded into an HTML document as a Java applet, ActiveX control or even script.
When the user clicks on a hyperlink, the click event can be captured by the embedded
RR, the hash routing operation performed, and the location of the Locator discovered.
Thus, the node location process occurs within the HTML page itself. This ensures
total transparency and maximum backwards compatibility, but permits only HTML
documents to use the RLS;

• built into a browser.
The browser automatically locates the appropriate Locator, allowing all servers to be
unaware of the RLS, but requiring the client to be modified;

• designed as a browser plug-in.
The browser is extended rather than redesigned, with the P.R being downloaded by
the user when required. This provides seamless evolution, and a solution that is more
backwards-compatible than the previous example. Again, all servers are unaware of
the RLS;

• built into a server, or added as a server module.
The RR can be deployed on the server, which can perform the hash routing algorithm
for each request it receives. This allows all browsers to be unaware of the RLS, and
gives server owners the choice of whether to use the RLS or not;

• em bedded within a proxy server or a reverse proxy server.
The proxy server intercepts the request, and routes it to the appropriate Locator. This
requires reconfiguration rather than redevelopment, allowing all browsers, servers
and resources to be unaware of the RLS;

• designed into a layer 4 switch or policy based router.
The switch or router contains the RR, transparently routing the request to the
appropriate Locator without the knowledge of the client or the server. This provides
total transparency and maximum backwards compatibility.

This allows the RR to be integrated into the web wherever it is required. In this way, the
number of resources registered with the RLS can grow over time as more people decide they
wish to use its services. As such, we envisage the adoption of the RLS to be evolutionary,
rather than revolutionary, proceeding in a distributed way across different sectors of the web,
as its services become useful to different types of user For example, to begin with, small
numbers of web authors may embed a RR within a HTML document. After a short period,
server owners may decide to embed a P.R into their servers in order to use the RLS without
affecting the clients. From this, plug-ins can be made available for existing browsers,
allowing resources to be located directly in the browser, via both the DNS and the RLS. Once
a reasonable number of people use the RLS, Internet Service Providers can embed a P.R into

their proxy servers. Eventually, the RLS will reach a critical mass of users, whereby a P.R
will become an integral part of a browser and server, and thus part of the web itself. In this
way, the RLS's database becomes populated over time by resource owners who choose to
register their resources with it. As such, the database does not need to be initialized, and
because it freely co-exists with the DNS, does not prevent non-registered resources from
being accessed.

11

5. The Functionality of the Resource Locator Service

5.1 Transparent Resource Migration

In order to help solve link rot, the RLS must be able to dynamically reassign the location
of a resource while persisting its name. This can be done using a new protocol that we have
developed specifically for this task, called the Resource Migration Protocol (RMP), which is
briefly described in this section (see figure 2). A more detailed discussion will be the focus of
a future publication.

RMP is based on WebDAV (Web Distributed Authoring and Versioning [11]), a new
extension to HTTP designed to enable group authoring of web resources. WebDAV has been
chosen because of its new file manipulation semantics, such as the ability to lock files, which
are implemented via HTTP. However, RMP is flexible enough to allow existing HTTP
servers that are not WebDAV compliant to participate in the migration process, but without
the extra safeguards that WebDAV provides.

Figure 2 - The Resource Migration Protocol

12

5.1.1 The Resource Migration Protocol

The Migration Manager, defined as any entity that wishes to migrate a resource, manages
the entire migration process, and is the only participant allowed to act as a client throughout,
while the Source and Destination servers do not communicate with one another at all. The
process begins with the Manager contacting the Destination in order to ascertain whether or
not it is willing to host the resource. It does this by sending a WebDAV LOCK message
(message 1) for the resource identified by URLdt, together with authentication details (see
figure 2). As the resource still exists on the Source server, there should be no resource
physically located on the Destination that is bound to this location. Locking a null resource in
this way has the effect of reserving the URL, ensuring that no other user can use URL until
the Manager unlocks the resource [11].

Upon a satisfactory response, the resource must be migrated from the Source to the
Destination in such a way that it is accessible throughout the process. As such, the Manager
must locate the Source using its own RR (messages 3 and 4), and LOCK the resource
(messages 5 and 6), to ensure that it is not updated in the middle of the migration process.
The Manager then sends the Source a WebDAV PROPFIND request (which allows a resource
to be queried according to its attributes) in order to retrieve the resource's name, location and
time of creation (messages 7 and 8), before sending a standard HTTP GET message to
retrieve the resource itself (messages 9 and 10). The resource is copied to the Destination
using a standard HTFP PUT message (messages 11 and 12), using URLd ,t as the new
location for the resource on the Destination. Note that although WebDAV provides MOVE
and COPY methods for moving and copying a resource, they have not been defined for cross-
server implementation; that is, a MOVE, for example, is only defined for moving a resource
to a new location on the same server. This limitation prevents these methods from being used
in the RMP, as WebDAV servers will not support moving a resource onto a different
WebDAV server.

At this stage of the process, the resource is physically located on both the Source and the
Destination. Before the resource on the Source is deleted, however, the Manager must update
the appropriate Locator. It does this by sending a PROPPATCH message (message 15) to the
Locator, which includes the resource's name and time of creation to identify the resource, and
URLdeSt as the property to be updated (i.e. its location). Once the Locator responds that the
change has been successful, the resource located on the Source can be deleted using either a
WebDAV DELETE message, or a standard HTFP DELETE request message. Once the
DELETE response message (message 18) has been received, the migration process is
complete.

5.2 Initializing and Updating the Resource Locator Service

The RLS is designed to be used in a way similar to that of the DNS; that is, a resource
owner must first register the details of their resource in order to use the services of the RLS,
and must then inform the RLS should the resource be deleted. The registration process acts to
initialize the Locators' databases, and ensures that the resources that are managed are those
whose owners explicitly requested the management service.

The Locators have been designed to enable a resource owner to automatically register and
deregister a resource through the Locator's interface, using WebDAV messages. In order to
add a resource's details to the RLS, a client can send a WebDAV PROPPATCH message [11]
to the appropriate Locator, with the resource's name and time of creation properties encoded
in the message body. The WebDAV specification defines PROPPATCH to set and remove
properties, but the Locator cannot allow it to change the name of a resource or its time of
creation (see section 3.2). As such, the Locator's interface restricts the client to adding or
removing entire records only, with RMP used to automatically modify the location data. In
this way, the complete functionality of the RLS is fully automated, while referential integrity
is enforced.

13

In order to remove a resource's details from a Locator, the client must send it a
PROPPATCH message containing a remove XML element (see [11], section 12.13.1), which
acts to delete the details from the locator, but not the resource from the web. The Locator
essentially delegates that responsibility to the resource owner, viewing the message as a
request for the resource to leave the RLS, rather than for the resource to be destroyed. As
such, the Locator will include the current location of the resource in a location header in the
response message, allowing the client to send a H1TP DELETE message to the hosting server
to physically delete the resource, if required.

Note that new H1TP headers could also achieve the same purpose as PROPPATCH, but
the use of WebDAV messages is more consistent with RMP, and the semantics of the
messages fit well with the needs of the Locator. Specifically, PROPPATCH ". . .processes
instructions specified in the request body to set and/or remove properties defined on the
resource identified by the Resource-URI" [11]. In this way, the Locator acts as a third party
that manages the properties of the resource on behalf of its current host. In addition, the
WebDAV error message 409 conflict is used if a client tries to change the name of a resource
within the Locator, as this message informs the client that it has ". . .provided a value whose
semantics are not appropriate for this property" [11].

5.3 Temporal References

5.3.1 Defining the Temporal Reference

A client must be able to query a Locator for a resource according to its time of creation,
and so some form of temporal identifier is required. As such, although the RLS can use any
string as an identifier, we have specified two types of temporal reference in order that
temporal referencing can be used immediately. Specifically, we have designed the Locators
to work with standard URLs with a timecreated temporal component appended as a Query
String (e.g. http://www.aserver.com/index . htm?timecreated=Sun, %2006%2ONov%201994),
which allows existing URLs to be used as temporal references; and with a new temporal URL
scheme that we have defined as a more long term, architectural solution. The new temporal
URL scheme conforms to the encoding rules defined in [4], and encapsulates the same
semantics of the URL, but with the addition of a temporal component. Specifically, the new
scheme, called TURL (Temporal Uniform Resource Locator), has been defined as:

turl://authority/path;time-created?query

The authority component of the 'FURL is identical to that of the URL (i.e. the domain name
of the hosting server). The path component, too, is identical to the URL, but with one
exception: a semi-colon separates the path that the server uses to locate the resource from the
temporal information used to identif' the time that the resource was created. The query
component remains as it is defined for the URL, but the whitespace of the temporal
component has been replaced with a dash (-) for clarity. Thus the URL:

http://www.aserver.com/index. htm?timecreated =Sun, %2006%2ONov%201994

can be re-written as a TURL as:

turl://www. aserver. com/index.htm;Sun, 06-Nov-1994

In addition, as H1TP essentially forms the interface between the RR and the Locator, we
have had to extend it in order to map the temporal component of the 'FURL onto a H1TP
header. HTTP's existing headers already encode temporal information, but they are largely
used for caching, and are normally sent by the server rather than the client. For example, the
Last-modUled entity header is used to represent the time at which the resource was last
modified, which is another way of saying the time at which the resource was created.

14

However, it can only be used by servers in a response message, and cannot be used by a client
at all. Equally, the Age entity header [9], which provides the estimated age of the resource on
the origin server, is also a response header, only sent by a server (usually a caching proxy
server). Alternatively, the Date header field is a general header, which can be used by both
client and server, but only to represent the date and time at which the message was originated,
not the resource [9]. Finally, the ETag header could encode the temporal information, as it
provides a means of encoding user-defined values, but it, too, is a response header [9].

As such, faced with the decision of subtly altering the semantics of HTTP or defining a
new general header, we have chosen the latter option, and defined a header called time-
created, which can be used by both client and server, and which defines the time at which the
resource was created. The value of the new header must be formatted according to [5], and it
must map exactly onto the temporal component of the TUIRL. The new header provides the
preferred means for querying a Locator according to a resource's time of creation, thus
separating the temporal information from the resource's name. In this way, any appropriately
specified namespace is able to become a temporal reference, enabling the RLS to retain its
unconstrained namespace.

5.3.2 Defining the Scope of the Temporal Reference

A temporal reference supported by the RLS can enable one resource to persist across time,
but not the resources behind any hyperlinks that might be embedded within it. For example, a
HTML document registered with the RLS may contain several hyperlinks, but if the resources
underlying the hyperlinks are not registered with the RLS, then they may not persist. As
such, the RLS can only prevent link rot for those resources that it has been instructed to
manage, and so web-wide link rot prevention can only be achieved if the RLS manages all
web resources.

In addition, transient resources, such as dynamically created HTML documents, or
streaming audio or video, are also not covered by the current design of the RLS and the
temporal reference. This is because the 11JRL simply extends the existing URL protocol to
encompass time, rather than adding any new functionality, and an existing URL references
the object that creates a dynamic resource or a multimedia stream, rather than the transient
resource itself. For example, a URL might identify an application behind a CGI (Common
Gateway Interface) gateway, which in response returns a dynamically generated HTML
document, but it does not identify the HTML document. Similarly, temporal references may
enable the application to persist (although their definition does not cover persisting the
application's state, merely its existence as a discrete file), but they do not cover its output,
unless it is explicitly saved as a permanent web resource and given its own (temporal) URL.

6. Changing the Configuration of the Resource Locator Service

When the configuration of the RLS changes, the hash routing algorithm will re-map 1/n
(where n = total number of Locators) of all records onto a different Locator. This will make
the RR incorrectly route 1/n of all subsequent requests, unless the appropriate records are
transparently migrated to the correct Locator. As such, the RLS must carefully manage
transparent record migration (termed to reflect the fact that it is individual records in a
Locator's database that must migrate) if it is to remain robust in the face of a changing
configuration.

To manage this migration, we have developed the Locator Control Protocol (LCP), which
allows all Locators in the RLS to be controlled such that the location of remapped records can
be corrected without the knowledge of the RR. LCP is based on HTFP, ensuring its
compatibility with existing web server technology. However, its full specification is beyond
the scope of this paper, and so the following sections will present an overview of the protocol
only. Section 7 will discuss the performance implications of the protocol.

The role of the LCP is to ensure that a Locator can be added to or removed from the RLS
transparently, such that a RR is able to access all records throughout the system's

15

1RR unaware of
! configuration

change

New
Locator,

with RLS
domain
name	 delete the copied records

•l;
._., \

Figure3b—RRsineitherstate	 Figure3c—oldconflgurabonus
can access all records	 deleted, forcing all RRs to recognize

the new ccrdlgizetian

.'	 .9.-.-.-

.' I

i	 ii'
E

RR aware of
configuration

change

1:i Cheddar j

H Request F1 new Locator
sent to I # I) and update
original 1' \ confIguration

i iocator	 settings

New Locator instructs
I	 existing Locators to

configuration change. The key to achieving this is to enable both configurations to co-exist
for a short period by copying those records that must move, before the existing configuration
is deleted to make way for the new one. In this way, all records are accessible whichever
configuration the RR attempts to use.

6.1 Adding a New Locator

When a Locator is added to the system, a RR will only notice the change when it updates
itself and the new Locator has adopted a domain name that complies with the appropriate
URL pattern. In this way, the adoption (or removal) of a RLS-compliant domain name acts as
a switch: with the domain name, a Locator is recognized by a RR as part of the RLS; without
it, the Locator is not recognized, and so will simply be ignored. As such, by first copying all
migrating records to their new locations before the new Locator adopts its new domain name
(figure 3a), the LCP can enable both configurations to co-exist, ensuring that all records are
accessible both before and after the new Locator is recognized by the RR.

The protocol requires the new Locator to act as the record migration manager,
coordinating the migration process to ensure integrity of the records. While the migration is
occurring, all Locators can still perform their standard name resolution service. Once the new
Locator adopts a domain name that complies with the URL pattern, both configurations
effectively co-exist. Those RRs that have not updated will be able to access the records in
their existing location; those RRs that have updated, will be able to access the records at their
new location (figure 3b). Once in this state, the old configuration can safely be deleted
(figure 3c), causing those RRs that have not updated to receive an Error 404 when they try to
access a remapped record, which will prompt them to update and thus to recognize the new
configuration. In this way, no configuration updates need be sent to any RR throughout the
entire process.

f

Get
i resourceS.

location

RRI#jJ

Records
I	 copiedto
LJ1 new

New LocatorLJ locations
noRLS

domaun name
•1

Figure 3a - migrating records
are copied to new locations

Figure 3a-c - Adding a New Locator

16

6.2 Removing an Existing Locator

Removing a Locator requires a different approach, however, as deleting its RLS-compliant
domain name may leave a hole in the sequential numbering of the URL sequence, confusing
the RRs. The process begins when the detaching Locator (Locatord,O h - coloured black in
figure 4), acting as a coordinator, instructs all other Locators in the system that the
configuration is about to change, thus causing them to copy the records that must migrate to
their new locations. Note that some of the records will be copied onto Locatord h, even
though it is about to leave the system (figure 4a). Once this is complete, Locatorach remains
in the RLS, and instructs the last Locator in the sequence (Locator1 , - coloured grey in figure
4) to detach itself from the system, even though Locator 1 is not the one that wishes to leave
(figure 4b). In this way, the RLS shifts to the new configuration, with the existing
configuration still operational (note that the RRs that have not updated may attempt to reach
Locatori , but will not receive a response; this will cause them to update automatically,
however, thus moving them to the new state).

Once the new configuration has been reached, Locatordh will instruct the (now removed)
Locatori est to delete all of its records, before copying its own records over to make both
Locators mirrors of one another. In addition, Locator will also be given the same domain
name as Locatordetach, making the two Locators identical clones (figure 4c). Once this
happens, Locatordetach is free to detach itself by removing its IP address from the DNS entry
for its domain name, leaving the RLS in the new configuration. Again, the process of
removing a Locator requires no synchronization messages from any Locator, as all RRs will
automatically update themselves.

	

/ RR aware of
	 RR unaware o' #'

	

configuration 	 configuration
change	 change
IrI

Get
resources	 I

location

iRR

Copyrecords

Figure 4a - Detaching Locator
Instn,cts other Locator, to

copy their records to the new
locations

E _-', Reque4t
I	 t '	 I I	 times; i
LS/Y out;iLk&t
LJJLJ UUtJJ1	 i!	 J Clone

oet°

Figure 4b - Last Locator	 Figure 4c - Last Locator and
leaves the RLS first, forcing all 	 detaching Locator are doned,

RRs to update	 before detaching Locator leaves
the RLS

Figure 4a-c - Removing an Existing Locator

7. System Evaluation

To test the concepts discussed here, we have developed a prototype RLS, which
comprises:

• a small network of Locators;
• a Request Router;
• a HTTP proxy server;
• a management interface.

17

This section presents the implementation details of the prototype, and performance data that
we have gathered to demonstrate the scalability of the design.

7.1. Prototype Implementation

7.1.1 Prototype Locator

The Locator has been designed as a web server using Microsoft 11S on NT 4 Server, which
uses Active Server Pages (ASP) to implement the functionality, and integrates with a
Microsoft Access database that stores the name, location, and time of creation of each
managed resource. The same resource name can reference multiple entries in the database, as
each resource may have multiple locations (i.e. replicated resources) and multiple times of
creation (i.e. when its content is changed). As such, the resource's name, time of creation,
and location represent a compound key that together uniquely identify a single record,
allowing the Locator to support replication and temporal referencing.

When a Locator receives a standard HTFP request, it looks up the resource's details in its
database. If it contains the resource's name/location mapping, it returns a302 Found HTP
response message, with the current location of the resource contained within its location
header; otherwise it returns a 404 Not Found HTTP error message. In this way, a client can
communicate with the RLS transparently, providing full backwards compatibility. If the
Locator receives a HITP request with a 'HEAD' method, it will simply return a HTFP 200
OK response, enabling RRs to safely query for the existence of a Locator.

Finally, the Locator supports the RMP, using both WebDAV-enabled and standard HTI'P
servers as source and destination machines, enabling transparent resource migration to be
implemented across all web servers.

7.1.2 Prototype Request Router

The Request Router is perhaps the most important part of the system, as it must be
integrated into the web's existing architecture. To do this, we have created a Request Router
object in C++ and embedded it into a simple HTFP proxy server, which routes the incoming
request to the appropriate Locator, and then downloads the resource (if found) from the
appropriate server. Any user who wishes to use the RLS can configure their browser to use
the proxy server, enabling all legacy browsers and servers to use the RLS transparently. The
proxy server application is also small enough for deployment on a client machine, allowing it
and the browser to co-exist on the same machine if required. Future versions of the RR will
include an ActiveX version, allowing the RR to be embedded into HTIvIL pages, browsers
such as Microsoft's Internet Explorer, or standard web servers.

The RR's client-side interface has two functions that are used to identify the correct
Locator. The first, RouteRequestO, takes the name of a resource, and returns the appropriate
Locator's URL with the resource's name appended onto it as a Query String (e.g.
http://www.nodel.Locator.net/query?resourcename=http:IIwww.aserver.com/aresource.htm) .
This URL can then be sent directly to the appropriate Locator without the need for adding any
new HTFP headers. The second, GetLocatorByNameO, returns the appropriate Locator's
URL without the resource's name being appended as a Query String. The resource's name
must be encoded in a H1TP request header in a subsequent HTIP GET message. In both
functions, the location of the resource is provided by the appropriate Locator via a HTrP
redirect message (302 Found).

The RR also has functions that enable the URL pattern to be changed (thus allowing it to
interface with other distributed systems on the web), and a function called UpdateO, which
enables it to determine the number of Locators in a network by performing an automatic
update.

18

7.1.3 A Prototype Management Interface and Resource Migration Protocol Client

In order to test the system, we have developed a management interface for controlling the
Locators (see figure 5). The interface includes a RMP client, which enables it to act as the
migration manager during a resource migration operation, and a Request Router object,
enabling it to query the Locator Network.

File flesnurce Irnnsler Qenionstrations TooTs IJeip

Address	 jhi

vrb 5 L'vc
j hiip /Jed see psm c u/M.edrnof
• _J _pnvnie

• .J Scuico
• .J Mobuc Code

.J LodBeIneSource

• _i rsges
.J Feulilolororuco Sou,c

.JDer
.1 hltp i/du.J/MAT/
• _J
* ..J LdEeIcrrorg

- _J Desi
• _J
• .J iiih:eCodc
• .J Peplic
J hitp f/u1I/rshest

Rourc.3 tin	 'rrrrscd
Pesource2 him	 unrnnoged
Roource6 him	 Jrrssrr,ugod
Feso,jrce5 him	 Unm3n3ged
Posourc4 tim	 UnmrI'ugr4d
sewth him	 Ursmnringed
TEST1	 Jrrnjrinwd
IlohiIeCodeFend	 Unmrnged

Em

Figure 5 - Prototype Management Interface

The user interface is similar to Microsoft's Windows Explorer, allowing the user to drag
and drop resources across web servers, while the underlying RMP functionality automatically
updates the appropriate Locator's name and location details. The interface demonstrates the
backwards-compatibility of the system, as the web servers shown in figure 5 have not been
altered in any way, and are completely unaware of the RLS as a system.

7.1.4 Enhanced Web Services

In addition to the prototype RLS, we have developed several extra services that build on
the services provided by RLS to extend the functionality of the web. These services take
advantage of the RLS 's resource migration mechanism, in order to provide transparent fault
tolerance, load balancing, and mobile code functionality to existing web servers. Due to
space restrictions, however, these services will not be discussed here, but will instead be
presented in a future paper.

7.2 Scalability and Performance Issues

The prototype contains code that instruments performance, allowing us to measure its
impact on standard web browsing. The results from our measurements, together with a
general discussion on the scalability of the design, are presented in this section.

19

7.2.1 Network Overhead

Hash routing is a very fast algorithm for locating a node in a distributed system, providing
a deterministic request resolution path through an array of machines, which results in locating
a specific node in a single hop [24]. As such, the network overhead introduced by the RLS
for both a successful and an unsuccessful resolution operation is always two additional HTFP
messages (either a GET and an Error 302 Found response, or a GET and an Error 404 Not
Found response).

If the RLS cannot find the resource, then a client application may contact the DNS if
required, and if this is successful, the round-trip time to the RLS via the RR has been wasted.
If, however, the RLS is completely integrated into the web, such that the DNS is not used to
find the locations of resources, then all resources will be registered, and an Error 404 means
that the resource does not exist on the web, not just in the RLS. As such, there will be no
added overhead, as the resource is unattainable.

Note that the RLS will not attempt to contact the DNS to find a resource, as it may not be
appropriate in all cases. For example, a server hosting a RR may have registered all of its
resources with the RLS, and so an Error 404 means that the resource does not exist, not just
that it is not registered. As such, it would serve no purpose for the RLS to contact the DNS in
this situation, and so the RLS only manages its own registered resources, leaving clients to
determine what to do with those that are unregistered.

7.2.2 CPU Overhead

The design of the RLS is such that the network overhead is constant, regardless of how
many Locators are in the system, whereas the CPU overhead required by the RR scales
linearly with respect to the number of Locators. As such, the scalability of the design is
constrained more by CPU overhead than network overhead.

The linear scaling of the RR results from the hash function being used to distribute a set of
records across many Locators, rather than to generate a unique value each time it is used, and
so it does not have to worry about managing collisions, as the same result (i.e. the identified
Locator) can be used many times for different resource names. The function distributes the
records by hashing the URL of each Locator in the system, and as the time taken to hash each
URL is virtually uniform (dependent solely upon the number of characters in the URLs that
are hashed), the CPU overhead increases linearly with respect to the number of URLs (and
thus Locators) it must hash.

We tested our Request Router on a Pentium Pro 200MHz with 64MB RAM, a Pentium Ill
400MHz with 128MB RAM, and an Athlon 1.1GHz with 128MB RAM. We set the number
of nodes that the RR believed existed within the RLS to different levels, and measured the
length of time that the RR took to identif' the correct Locator. The results are presented in
figure 6, which clearly reveals the linear relationship between time and the number of
Locators. The results show that for small numbers of Locators, the time taken is insignificant,
and that even with more Locators, the time taken is still small. As such, even with a relatively
slow machine such as the Pentium Pro 200MHz, the RR can determine the correct Locator
from a 10,000-node Locator Network in only 0.35 seconds.

20

100

10

0.1

0.01

0.001

.v..
C

I
a
E

Request Router Peiformance

1	 10
	

11%]	 1000

•...AthIon1100MHz
	

0.007	 0.071
	

0.718	 7.402

-	 FnIiinim400M1z
	 001	 014

	
1.51	 16.14

I. FntjmRo200M-1z
	 003	 035

	
3.65	 37.404

Number of Locators (xl000)

Figure 6 - Performance of the Request Router

In addition, the prototype RR was designed for experimental purposes, and is non-optimal.
Specifically, it rehashes every Locator URL for every request that it routes, but unless the
number of Locators changes, these hash values will remain static. As such, a more optimal
design would cache the hash values in memory, and only rehash them when the configuration
changes, thereby drastically reducing the length of time it would take to locate a Locator.

7.2.3 Total System Overhead

The total overhead introduced by the system was measured to provide a real-world
indication of the system's performance. To do this, we first measured the time it took to visit
the homepage of www.lycos.co.uk using a standard browser (Microsoft IE 5.0) and no RLS.
The web site was visited 25 times, with the browser's cache deleted each time. We then
connected the browser to our proxy server with the embedded R.R, and visited the same sites
again, once more taking 25 distinct measurements. The experiment was run using an Athion
1.1 GHz PC with 128MB RAM, which acted as the proxy server with an embedded RB., and a
Pentium Pro 200MHz PC with 64MB RAM, which encoded the functionality of the Locator.
Both machines used Microsoft Windows NT 4 Server, and were connected via a 10Mbps
Ethernet LAN.

The RB. in the proxy server was manually configurable, allowing us to set the number of
Locators according to requirements. For this experiment, we varied the number of Locators
in the system from one to 1 million. However, to avoid having to physically deploy 1 million
Locators, we reconfigured the proxy server so that it always forwarded the request onto the
same Locator, regardless of which one the RR actually identified. The Locator would then
return an Error 404 message, which would cause the proxy server to redirect the request to
the origin server, from where the resource would ultimately be retrieved. Because the
overhead for the RLS is the same whether the resource is found or not (i.e. one extra HTFP
request and one extra HTFP response), the measurements of the overall system overhead
remained unaffected. In addition, this configuration removed any differences between servers
that would have been introduced had each Locator been deployed on a separate physical
machine.

The results presented in table 1 show the time taken to visit the Lycos web site both
without the RLS, and with it, using one, 1,000, 10,000, 100,000, and 1 million Locators in the
system. Each value is the 10% trimmed mean of 25 trials, with the overheard calculated by
subtracting the mean from the value obtained without the RLS. The results show that the

21

overhead introduced by the RLS ranges from 0.869 seconds with only one Locator in the
system, to 8.38 seconds with I million Locators. However, despite the large overhead for 1
million Locators, it remains small up to 100,000 Locators, with 1.582 seconds recorded.

Download time for
Number of	 www.lycos.co.uk	 Overhead
Locators	 (time without RLS = 7.608 sec)

1	 8.477 seconds	 0.869 seconds

1,000	 8.483 seconds	 0.875 seconds

10,000	 8.546 seconds	 0.938 seconds

100,000	 9.190 seconds	 1.582 seconds

1,000,000	 15.985 seconds	 8377 seconds

Table I - Overhead Introduced by the RLS with different configurations

The results show that the RLS introduces negligible overhead for a configuration of
10,000 Locators or less, and a relatively small overhead up to 100,000. However, it should be
noted that neither the design of the RR or the proxy server are optimal, and that significant
performance improvements can easily be made. We expect such improvements to enable the
deployment of a 100,000 Locator system with negligible overhead.

7.2.4 Scalability of the Overall Design

In terms of growth, the hash routing algorithm can scale to over 4 billion (2 32 =
4,294,967,296) Locators, performing single-hop resolution throughout [24]. Assuming each
Locator can store the names and locations of 1 million resources (which, assuming an average
URL of 50 characters, will require a database only 50 MB in size), today's web, with over 1
billion documents [15], would need the deployment of 1,000 Locators to fully manage all
resources, which will take the RR on a Pentium Pro 200 machine just 0.03 seconds.
However, even 10,000 Locators will only take 0.35 seconds, and this can accommodate ten
times as many resources as currently exist on the web. Clearly, the configuration of the RLS
can be better optimized, but this provides a good indication of the scalability and practicality
of the design.

7.2.5 The Cost of Changing the Configuration

Changing the configuration of the RLS is not a time-critical process, as the name
resolution service provided by the RLS is unaffected throughout the change. However, the
change should still occur in a reasonable time-frame, and with a reasonable amount of
network traffic, and so this section presents an estimate of the order of time that will be
needed for a new Locator to be added to the system. Note that no estimations are provided
for removing a Locator, as the operations are very similar, and so the time taken will be of a
similar order.

The addition of a new Locator involves two steps that could significantly affect the time
taken to update the system:

determining which records need to move;
physically moving the records.

22

The other steps involve data manipulation, such as deleting records, which will not
negatively affect the scalability of the design or the time taken to change the configuration,
and so will not be considered in the following calculations.

The first step involves every record in the system being processed by a RR whose node
configuration is set at one node higher than its current value (i.e. set to n + 1). The time taken
to do this can be significantly reduced if each Locator works in parallel with its peers,
processing only the records contained in its own database. This is how the LCP operates. As
such, ignoring the network overhead of the LCP, the time taken for step one will be:

Rtr

n+1

where R is the total number of records in the system, and t, is the time taken to process one
record. Clearly, for the same R, the time will decrease with the number of Locators in the
system, and as section 7.2.2 has shown, tr is very small on even a low powered machine.
Thus, the cost incurred by this first step is small. For example, suppose the existing
configuration has 999 Locators managing i0 9 records, with an Athlon 1100MHz processor
inside each Locator, giving t, = 0.007 seconds (see figure 6). In this scenario, the time taken
for step 1 will be:

109 x 0.007
= 7000 seconds (or 1 hour 57 minutes, 7 seconds).

999 + 1

The cost incurred by the second step is dependent upon the number of Locators in the
system and the number of records. When a new Locator is added to an n-node system, the
records that are re-mapped will be evenly distributed across all Locators in the RLS [40]. IfR
is large compared to n, then every Locator in the system will contain records that are re-
mapped. As such, each Locator will evenly distribute 1/(n+l) of its own records to the n
other Locators in the RLS. This results in n Locators transmitting ton Locators (including the
newly added one), resulting in the propagation of up to n2 messages. This value represents
the message limit, however, as each message can carry more than one record if required.

The time taken to transmit these messages can be shown to be acceptable for even the
worst-case scenario, in which the configuration results in the maximum number of messages
being sent (n2), and only one message is in transit at any one time. For example, the
configuration of step one is such that the addition of a new Locator requires the maximum
number of messages to be sent for this configuration (i.e. n2 = 1,000 x 1,000 = 106 messages).
The time taken to send these messages can be estimated if the data transfer rate between
Locators is known, as well as the number of bytes in each record. As such, if we assume that
a conservative data transfer rate of 1.544 Mbps can be maintained between Locators, and the
average record size is 150 bytes (50 bytes each for name, location, and time of creation), then
the total time taken to transmit all messages (ignoring protocol overhead and converting bytes
to bits) is:

1,000,000 x 150 x 8
= 777.20 seconds (or 12 minutes 57 seconds).

1,544,000

Thus, for this scenario, the total time taken to complete the addition of a new Locator is only
2 hours, 10 minutes, 4 seconds, which is entirely acceptable. Furthermore, this figure
represents a maximum value, and can be decreased by sending messages in parallel, and by
balancing the number of records per Locator with the number of Locators in the system,
according to the available bandwidth and the performance requirements of the RRs. Finally,
it is worth reiterating that a configuration change is not a time-dependent task, as the RLS is
fully operational throughout the change, and it will not happen often, as the configuration of

23

the RLS should remain stable for relatively long periods of time. As such, the design of the
RLS remains scalable and practical for a system the size of the web.

8. Discussion and Conclusions

Security is critical within the RLS, and is an area that needs further work before the RLS
can be deployed. The RLS should use the H1TP digest authentication scheme [9], as it is
stronger than the basic scheme, but both schemes have been determined too weak for the
WebDAV working group, which faces similar problems, and is working on its own solution
[101. The RLS must use strong authentication techniques, as malicious use could potentially
route requests to unwanted resources. As such, we anticipate future versions of the RLS to
use the WebDAV Access Control Protocol [34] for its authentication requirements.

In addition, our prototype system has so far only been tested locally as a proof of concept.
The next step is to build a bigger system and to stress test it under varying loads. However,
its design is based on an existing, commercially proven distributed system (CARP), and so we
expect it to stand up well to such a test. The LCP will also be redesigned to provide a more
optimal solution that employs concurrent operation.

Overall, the Resource Locator Service provides an effective and elegant approach that
addresses the problems of link rot, a shrinking namespace and a lost history, by providing a
replacement for the URL and the DNS. We believe the RLS offers a better solution than
existing systems, as it offers a single, coherent, architectural solution, which addresses all
three problems at once. Further, the RLS is fully backwards-compatible with the web's
existing architecture, yet extensible enough for it to be future proof. A web page creator, a
browser developer, or a proxy server developer, can use the RLS today without affecting any
other system within the web. Equally, the system should be scalable enough for it to become
an integral part of the web's architecture in future years.

The resource migration aspect of the RLS will also enable it to become part of a nascent
platform for distributed computing on the web, providing services such as fault tolerance and
load balancing, and allowing new services to be deployed, including a temporal search
engine, that are currently impossible to implement on a web-wide scale. We intend to
develop these services to fully exploit the potential of the RLS in future work.

Acknowledgements

We would like to thank Paul Dowland for his help with the experiments that were
conducted for this paper.

References

[1] Babich, A, Davis, 3, Henderson, R, Lowry, D, Reddy, S and Reddy, S, DAV Searching
and Locating, Internet Draft, http://www.webdav.org/dasllprotocol/draft-davis-dasl-
protocol-00.html, April 20, 2000.

[2] Berners-Lee, T, Cool URIs Don't Change, 1998, http://www.w3.org/Providerl5tylelUR1.
[3] Berners-Lee, T and Fischetti, M, Weaving the Web - the Past, Present and Future of the

World Wide Web by its Inventor, Orion Business Books, 1999, p. 133.
[4] Berners-Lee, T., R. Fielding and L. Masinter (1998), "Uniform Resource Identifiers

(URI): Generic Syntax", RFC 2396, http://www.ietf.org/rfc/rfc2396.txt
[5] Braden, R, Requirements for Internet Hosts - Communication layers, STD 3, RFC 1123,

October 1989.
[6] Briscoe, RJ, Distributed Objects on the Web, BT Technology Journal vol. 15 No 2, April

1997, pp.157-171.
[7] Daniel, R and Mealling, M, Resolution of Uniform Resource Identifiers using the Domain

Name System, RFC 2168, June 1997.

24

[8] Evans, MP, Phippen, AD, Mueller, G, Furnell, SM, Sanders, PW and Reynolds, PL,
Strategies for Content Migration on the World Wide Web, Internet Research, vol. 9, no. 1,
1999, pp25-34.

[9] Fielding, R, Irvine, UC, Gettys, J, Mogul, JC, Frystyk, H, Masinter, L, Leach, P, Berners-
Lee, T, HyperText Transfer Protocol - HTFP/1.1, RFC 2616, June 1999.

[101 Franks, J, Hallam-Baker, P, Hostetler, J, Lawrence, 5, Leach, P, Luotonen, A, Stewart,
L, HITP Authentication: Basic and Digest Access Authentication, RFC 2617, June
1999.

[11] Goland, Y, Whitehead, J, Faizi, A, Carter, S and Jensen, D, HTTP Extensions for
Distributed Authoring - WebDAV, RFC 2518, February 1999,
http://andrew2.andrew.cmu.edu/rfc/rfc2518.htm1.

[12] Hogarth, J, The National Register of Archives/ARCHON: a study to inform a
development strategy for a National Name Authority File, for the Historical Manuscripts
Commission, September 1999, http://www2.hmc.gov.uk/pubs/jhreport.htm.

[13] ICANN Announcement, November 16th 2000,
http://www.icann.org/announcements/icann-prl 6novOO.htm

[14] Ingham, D, Caughey, S and Little, M, Fixing the 'Broken-Link' Problem: The
W3Objects Approach, in: The Fifth International World Wide Web Conference, Paris,
France, May 6-10 1996.

[15] Inktomi and NEC Research institute, http://www.inktomi.com/webmap/.
[16] Internet Corporation for Assigned Names and Numbers, Uniform Domain-Name

Dispute-Resolution Policy, http://www.icann.org/udrp/udrp/-policy-24oct99.htm, 24
October 1999.

[17] Kahle, B, Preserving the Internet, Scientific American, March 1997. See also the
Internet Archive, www.archive.org .

[18] Kappe, F. A Scalable Architecture for Maintaining Referential Integrity in Distributed
Information Systems, in J. UCS Vol. 1, No. 2, Springer, February 1995, pp. 84-104.

[19] Kawai, E, Osuga, K, Chinien, K and Yamaguchi, 5, Duplicated Hash Routing: A Robust
Algorithm for a Distributed WWW Cache System, in: IEICE Trans. Inf. & Syst.,
Vol.E83-D, No.5, May 2000.

[20] Kosters, M, Massive Scale Name Management: Lessons Learned From the .COM
Namespace, in: The Workshop on Internet-scale Software Technologies, University of
California, Irvine, California, USA, August 19-20, 1999,
http://www.ics.uci.edu/IRUS/twist/twist99/.

[21] Lawrence, S and Lee Giles, C, Accessibility of Information on the Web, Nature,
Vol.400, 8 July 1999, pp107-109.

[22] Lyman, P and Kahle, B, Archiving Digital Cultural Artifacts, Dub Magazine, July/august
1998, http://www.dlib.org/dlib/july98/07lyman.htm1.

[23] Mealling, M, Requirements for Human Friendly Identifiers, Internet Draft, June 1998,
http://www.ics.uci.edu/pub/ietf7uri/draft-mealling-human-friednly-identifier-req-00.txt.

[24] Microsoft Corporation, Cache Array Routing Protocol (CARP) and Microsoft Proxy
Server 2.0, 1997, http://msdn.microsoft.com/libraryfbackgrnd/html/carp.htm.

[25] Mockapetris, P, Domain names - concepts and facilities, RFC 1034, November 1987,
http://www.ietf.org/rfc/rfcl034.txt.

[26] Mockapetris, P, Domain names - implementation and specification, RFC1O3S,
November 1987, http://www.ietf.org/rfc/rfc1035.txt.

[27] Moore, K, Location-Independent URLs or URNs Considered Harmful, Internet Draft, 7
January 1996, ftp://cs.utk.edu/pub/moore/draft-ietf-uri-urns-harmful-00.txt.

[28] Moore, R, Barn, C, Rajasekar, A, Ludescher, B, Marciano, R, Wan, M, Schroeder, W
and Gupta, a, Collection-Based Persistent Digital Archives - Part 1, D-Lib Magazine,
Volume 6 Number 3, http://www.dlib.org/dlib/marchoo/moore/O3moore-ptl .html, March
2000.

[29] NetCraft WebServer Survey, http://www.netcraft.com/Survey/.

25

[30] Pitkow, JE and Jones, RK, Supporting the Web: a Distributed Hyperlink Database
System, in: The Fifth International World Wide Web Conference, Paris, France, May 6-
10 1996.

[31] Popp, N, Masinter, L, The RealName System: a Human Friendly Naming Scheme,
Internet Draft, draft-popp-realname-hfh-00.txt. See also www.RealNames.com .

[32] RealNames.com, Internet Keyword Subscription Policy, January 2001,
http://web.realnames.com/Virtual.asp?page=Eng_Policy_Subscribe_Agreement

[33] Ross, KW, Hash Routing for Collections of Shared Web Caches, IEEE Network,
November/December (1997), pp. 37-44.

[34] Sedlar, E and Clemm, G, Access Control Extensions to WebDAV, Internet Draft,
http://www.webdav.org/acllprotocolldraft-ietf-webdav-acl-0 I .htm, April 28 2000.

[35] Shafer, K, Weibel, S, Jul, E and Fausey, J, Introduction to Persistent Uniform Resource
Locators, in: Proceedings of rNET96, Montreal, Canada, 24-28 June 1996.

[36] Sollins, K, Architectural principles of Uniform Resource Name Resolution, RFC 2276,
January 1998, ftp:llftp.isi.edu/in-notes/rfc2276.txt.

[37] Sullivan, D, Goodbye Domain Names, Hello Real Names, in: The Search Engine Report,
May 2000, http://www.searchenginewatch.com/sereportloO/05-realnames.html.

[38] Sullivan, T, All Things Web, http://www.pantos.org/atw/35654.htm1.
[39] Sun, SX and Lannom, L, The Handle System: A Persistent Global Name Service -

Overview and Syntax, Internet-draft, February 2000, http://www.ietf.org/internet-
drafts/draft-sun-handle-system-04.txt.

[40] Thaler, D.G., and Ravishankar, C.V., "Using Name Based Mappings to Increase Hit
Rates", IEEE/ACM Transactions on Networking, 6(1), Feb.. 1998.

[41] Valloppillil, V and Ross, KW, Cache Array Routing Protocol vl.0, Internet Draft, draft-
vinod-carp-vl -02.txt, http://www.cs-ipv6.lancs.ac.uk/ipv6/documents/standards/general-
comms/internet-drafts/draft-vinod-carp-vl -03 .txt, February 26 1998.

26

