University of Plymouth

PEARL

https://pearl.plymouth.ac.uk
01 University of Plymouth Research Outputs
University of Plymouth Research Outputs

Characterisation of microsatellites for Litoria nannotis (Amphibia: Hylidae), an endangered waterfall frog endemic to the Australian Wet Tropics

Robert Puschendorf ${ }^{1,2}$, Erica V. Todd ${ }^{3}$ and Michael G. Gardner ${ }^{4}$
${ }^{1}$ School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, Devon PL48AA
${ }^{2}$ College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
${ }_{3}$ Department of Anatomy, University of Otago, Dunedin, New Zealand 4School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001 South Australia, Australia; Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, 5005 Adelaide, South Australia, Australia; and Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide 5000 South Australia, Australia. Corresponding author. Email: robert.puschendorf@plymouth.ac.uk

Abstract

Litoria nannotis is an endangered waterfall frog from the wet tropics region in north Queensland which has suffered significant population declines due to the emerging fungal disease known as chytridiomycosis. The species has two deeply divergent lineages, and we used 454 shotgun sequencing of DNA extracted from one individual of the northern lineage to identify and design PCR primers for 576 microsatellite loci. Thirty markers were tested for amplification success and variability in a population sample from each lineage. Of these, 17 were found to be polymorphic in the northern lineage and 10 loci were polymorphic in the southern lineage. Numbers of alleles per locus ranged from 2 to 14 (mean 6.47, SD 4.02) for the northern lineage (17 polymorphic loci), and from 2 to 8 (mean 5.40, SD 2.55) in the southern lineage (10 polymorphic loci). Levels of heterozygosity were high in both lineages (northern mean $\mathrm{HE}=0.63, \mathrm{SD} 0.21$, range $0.27-0.89$; southern mean $\mathrm{HE}=0.57, \mathrm{SD} 0.25$, range $0.18-0.81$). These loci will be useful in understanding the genetic variation and connectivity amongst populations of this species recovering from mass population declines

due to disease.
Keywords: Litoria nannotis; waterfall frog; Australian Wet Tropics; microsatellites; 454 GSFLX; shotgun sequencing; populations declines

The waterfall frog (Litoria nannotis) is an endangered species from the Australian Wet Tropics. High elevation populations declined significantly in the early 1990's due to the emergence of the fungal disease known as chytridiomycosis caused by the fungus Batrachochytrium dendrobatidis (Berger et al. 1998), but lowland populations persisted (Richards et al. 1993). Litoria nannotis is part of the torrent frog group comprised of four species, two of which were feared extinct during the declines (Richards et al. 1993). All species in this group seem to have a similar biology (Cunningham 2001), and understanding population dynamics and potential gene flow between high and low elevations as well as between dry and wet forest sites is crucial when designing conservation strategies for these amphibians in this system. This species is comprised of at least two distinct lineages, product of historical climatic shifts and expansions and contractions in their habitat (Schneider et al. 1998; Cunningham 2002; Bell et al. 2011). Knowledge of current and recent historical population structure, gene flow and levels of genetic diversity is especially pertinent for L. nannotis, as some higher elevation populations are showing some signs of recovery (Puschendorf et al. 2011).

We isolated genomic DNA ($1 \mu \mathrm{~g}$) from liver of one individual Litoria nannotis from the northern lineage ($16.466291^{\circ} \mathrm{N}$, $145.152538^{\circ} \mathrm{W}$, WGS84, 668 m elev) using a DNeasy spin column tissue extraction kit (Qiagen) and following manufacturers instructions. DNA was then sent to the Australian Genomic Research Facility (AGRF) in Brisbane Australia for shotgun sequencing on a Titanium GS-FLX (454 Life Sciences/Roche FLX) following

Gardner et al. (2011). The sample occupied 12.5 \% of a plate and produced 110,205 individual sequences, with an average fragment size of 314.2 (Stdev 132.2). Raw sequences are available on DRYAD (doi: 10.5061/dryad.jd183; Meglécz et al. 2012). We used the program QDD v. 1.3 (Meglecz et al., 2010) to screen the raw sequences for> eight di-, tetra- or penta-base repeats, and to remove redundant sequences and design primers for PCR amplification of products 80-480 base pairs (automated in QDD using Primer3; Rozen \& Skaletsky 2000). We identified 576 in silico microsatellite loci and ordered primer pairs for 30 of these. Initially, the loci were trialed for amplification success in eight individuals four from each lineage using the Type-it microsatellite PCR kit (Qiagen). We performed amplifications in $10 \mu 1$ reactions, containing 20-50 ng template, 1x Type-it Multiplex PCR Master Mix (Qiagen) and $0.2 \mu \mathrm{M}$ each primer (forward and reverse). Indirectly labelled reactions contained a tailed forward primer and a reporter primer (5' labelled with fluorescent dye modification HEX, TET or FAM) at a $1: 4$ ratio (total $=0.2 \mu \mathrm{M})$. PCR cycling conditionswere as follows: initial 5 min denaturation at $95^{\circ} \mathrm{C}$, followed by 28 cycles of $95^{\circ} \mathrm{C}$ for 30 s (denaturation) $/ 58^{\circ} \mathrm{C}$ for 90 s (annealing) $/ 72^{\circ} \mathrm{C}$ for 30 s (extension), with a final extension 30 min at $60^{\circ} \mathrm{C}$. Following visualization by electrophoresis through a 1.5\% agarose gel, loci exhibiting reliable amplification of a single product of expected size were assessed for polymorphism. We separated DNA fragments on a MegaBACE 1000 capillary sequencer and sized with GeneMarker v 2.2 software (SoftGenetics) using a 400 base pair DNA ladder as internal size standard.

For all polymorphic loci, forward primers were synthesised with a 5' flourescent tag: FAM (GeneWorks), NED, PET or VIC (Applied Biosystems). Loci were then screened for variation in 44 individuals from a single locality within the northern L. nannotis lineage ($16.236250{ }^{\circ} \mathrm{N}$; $144.935690^{\circ} \mathrm{W}$, WGS84, 959 m asl) and 40 individuals collected from a
single locality representing the southern lineage $\left(18.992422^{\circ} \mathrm{N}, 146.191184^{\circ} \mathrm{W}\right.$, WGS84, 742 nm asl; Table 1). We used the same PCR conditions and allele scoring software described above, with allele binning to ensure consistent scoring across genotyping runs. Due to consistent differences in allele profiles among lineages, independent scoring panels were used for each lineage. Multiplex PCR combinations (Table 1) were later designed in silico with the aid of MULTIPLEX MANAGER 1.0 software (Holleley and Geerts 2009), and tested using PCR conditions described above. Characteristics of each locus in each lineage are summarised in Table 1. Data are presented for 19 loci that amplified consistently in the northern lineage, and similarly for 17 loci in the southern lineage. Basic summary statistics (number of alleles, observed and expected heterozygosities) were calculated in GENALEX 6.5 (Peakall and Smouse 2012), which was also used to test for deviations from HardyWeinberg Equilibrium (HWE). Polymorphic Information Content (PIC) values were calculated for each locus in CERVUS (Kalinowski et al. 2007). Potential linkage disequilibrium (LD) between pairs of loci was investigated using GENEPOP 4.2 online, with 10,000 iterations (http://genepop.curtin.edu.au/; Raymond and Rousset 1995; Rousset 2008) (Table 1). P values from HWE and LD tests were adjusted for multiple tests of significance using the false discovery rate (FDR) correction and included in Table 1. (Benjamini and Hochberg 1995). We used MICROCHECKER 2.2.3 (Van Oosterhout et al. 2004) to check each locus for evidence of null alleles, scoring error due to stuttering, and large allele drop out, using a 95% confidence level and 10,000 iterations.

In the northern lineage, 17 of 19 polymorphic loci conformed to HWE expectations and are considered suitable for population genetic studies (bold in table 1). In the southern lineage, 10 of 17 polymorphic loci met HWE expectations. Of those loci not in HWE, there was evidence for null alleles at locus Lnan15 in the northern lineage, and Lnan17 and Lnan25 in the southern lineage. There was no evidence of large allele drop out at any locus. Following FDR
correction, all loci were found to be inherited independently (North $\mathrm{P}>0.002$, FDR value 0.0003 ; South $P>0.02$, FDR value 0.0006). Overall, the markers exhibit high levels of polymorphism in northern and southern L. nannotis lineages suitable for studies of relatedness, population genetic structure and connectivity. For polymorphic loci also in HWE, numbers of alleles per locus ranged from 2 to 14 (mean 6.47, SD 4.02) forthe northern lineage (17 polymorphic loci), and from 2 to 8 (mean 5.40, SD 2.55) in the southern lineage (10 polymorphic loci). Levels of heterozygosity were high in both lineages (northern mean $\mathrm{HE}_{\mathrm{E}}=0.63, \mathrm{SD} 0.21$, range $0.27-0.89$; southern mean $\mathrm{HE}=0.57, \mathrm{SD} 0.25$, range $0.18-0.81$). Overall, the markers exhibit high levels of polymorphism in northern and southern L. nannotis lineages suitable for studies of relatedness, population genetic structure and connectivity.

These markers will be used to document patterns of gene flow, population structure and genetic diversity in L. nannotis and to investigate their recovery from the amphibian population declines linked to chytridiomycosis documented since the early 1990's (Berger et al. 1998). More recently, high elevation populations seem to be recovering, and larger seemingly healthy populations have been described in the western slopes of the wet tropics region, including one sister species, Litoria lorica which was previously thought to be extinct (Puschendorf et al. 2011). How these populations are interconnected and the source of the recovering populations is a key aspect of frog conservation in this region.

Acknowledgements

David Blair, Martin van der Meer, Blanche Danastas and Giana Gomez provided help in the laboratory as well as in the design of these primers . We acknowledge the assistance and
support of Alison Fitch from Flinders University. This project was funded by the Australian Research Council (DP1094540).

References

Benjamini Y., and Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289-300.

Bell, R. C., MacKenzie, J. B., Hickerson, M. J., Chavarría, Krystle L., Cunningham, M., Williams, S. and Moritz, C. (2012). Comparative multi-locus phylogeography confirms multiple vicariance events in co-distributed rainforest frogs. Proceedings of the Royal Society B: Biological Sciences 279: 991-999. doi: 10.1098/rspb.2011.1229

Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G, and Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. Proceedings of the National Academy of Science USA 95: 9031-9036. doi: 10.1073/pnas.95.15.9031

Cunningham, M. (2002). Identification and evolution of Australian torrent treefrogs (Anura: Hylidae: Litoria nannotis group). Memoirs of the Queensland Museum 48: 93-102.

Gardner M.G., Fitch A.J., Bertozzi T, and Lowe, A.J. (2011). Rise of the machines recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093-1101. doi: 10.1111/j.17550998.2011.03037.x

Holleley C.E., and Geerts P.G. (2009). MULTIPLEX MANAGER 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511-517.doi: 10.2144/000113156

Kalinowski S., Taper M., and Marshall T. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099-1006.doi: 10.1111/j.1365-294x.2007.03089.x

Meglécz E., (2007). Microfamily (version 1): a computer program for detecting flankingregion similarities among different microsatellite loci. Molecular Ecology Notes 7, 18-20. doi: 10.1111/j.1471-8286.2006.01537.x

Meglecz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N., and Martin J.-F. (2010). QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics, 26, 403-404.doi: 10.1093/bioinformatics/btp670

Meglécz E., Nève G., Biffin E. and Gardner M.G. (2012) Breakdown of Phylogenetic Signal: A Survey of Microsatellite Densities in 454 Shotgun Sequences from 154 Non Model Eukaryote Species. PLoS ONE 7, e40861.doi: 10.1371/journal.pone. 0040861

Peakall, R., and Smouse P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537-2539.doi: 10.1093/bioinformatics/bts460

Puschendorf, R., Hoskin, C.J., Cashins, S.D., McDonald, K., Skerratt, L. F., Vanderwal, J., and Alford, R. A. (2011). "Environmental Refuge from Disease-Driven Amphibian Extinction." Conservation Biology 25, 956-964.doi: 10.1111/j.1523-1739.2011.01728.x

Raymond M., and Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.

Richards, S. J., McDonald, K. R., Alford, R. A (1993). Declines in populations of Australia's endemic tropical rainforest frogs. Pacific Conservation Biology 1: 66-77. doi: 10.1071/pc930066

Rousset, F., 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103-106.doi: 10.1111/j.14718286.2007.01931.x

Rozen S., and Skaletsky H.J. (2000). Primer3 on the WWW for general users and for biologist programmers. In 'Bioinformatics Methods and Protocols: Methods in Molecular Biology’ (eds. Krawetz S, Misener S), pp. 365-386. (Humana Press: Totowa). doi: 10.1385/1-59259-192-2:365

Schneider, C. J., Cunningham, M. and Moritz, C. (1998). Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Molecular Ecology 7: 487-498. doi: 10.1046/j.1365-294x.1998.00334.x

Van Oosterhout C., Hutchinson B., Wills D. and Shipley P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538. doi: 10.1111/j.1471-8286.2004.00684.x

Table 1. Details for 19 Litoria nannotis microsatellite loci developed from 454 shotgun sequence data. Loci in bold are in Hardy-Weinberg equilibrium.

NORTHE													
Locus	Primer sequence 5' ti 3'	Repeat Motif	Primer conc. ($\mu \mathrm{M}$)	$\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$	N	Allele size range	Na	HO	HE	PIC	P HWE*	Multiplex group	Genbank accession no.
Lnan03	F:GCCATGCACATGAGCTTTTA	(AT)8	0.2	58	44	140-142	2	0.568	0.500	0.375	0.364	4	KX518722
	R: CCAATACGCGCCAATTTTAC												
Lnan04	F: GGTGGACATCATGTGGATCA	(AT) 8	0.2	58	44	190-192	2	0.068	0.107	0.101	0.016	5	KX518723
	R: CCAATACGCGCCAATTTTAC												
Lnan06	F: GAGTTTCCTTCCCAAAAGCA	(TG)9	0.2	58	44	100-106	3	0.250	0.271	0.24	0.118	5	KX518724
	R: GCATCAATCCCTGTCTCCAA												
Lnan08	F: GTATAACAGGGCGGAACTGC	(GT)9	0.2	58	44	131-139	4	0.727	0.667	0.611	0.644	2	KX518725
	R: GTGTAACTCGCCTTCCTTGC												
Lnan10	F: TGTGTAAATTGCTCCAGGCA	(AT)11	0.2	58	44	140-184	10	0.750	0.761	0.734	0.654	4	KX518726
	R: TGAATGATGCCAGACCAAGA												
Lnan14	F: GCAACCAATATGGGTGACATT	(AT)12	0.2	58	44	210-216	4	0.591	0.582	0.504	0.285	5	KX518728
	R: GCACTTATGTTGCGATGCAC												
Lnan15	F: TGCAGATCCATGCAATACTGA	(AAT)8	0.2	58	44	149-167	7	0.636	0.774	0.74	0.021	1	KX518729
	R: TCAACGTTCAATGGTCAAGG												
Lnan16	F: ACTTTGTTAGGTGCTGCGGA	(AAT)8	0.2	58	43	103-109	2	0.419	0.381	0.308	0.514	3	KX518730
	R: GCACCCTTAATGTGTTCCTGA												
Lnan17	F: GCGGTTACAGGGTACAGCAT	(TTA)8	0.2	58	44	207-219	4	0.432	0.440	0.377	0.960	1	KX518731
	R: TGTACTTTGTTAGGCGCTGC												
Lnan18	F: CCAAAACCGCTTTTCTGTTG	(CTA)8	0.2	58	44	136-142	2	0.386	0.363	0.297	0.675	2	KX518721
	R: TGGGTTAATAACATGAGGAAGAGTT												
Lnan20	F: AAGTGCTCCGGATACCAATG	(TAT)11	0.2	58	43	285-294	4	0.721	0.653	0.589	0.466	3	KX518720
	R: TTGTTGATGAATCTGGTGCC												
Lnan21	F:TACTTTGTTAGTCGCTGCGG	(ATT)12	0.2	58	44	124-136	4	0.386	0.326	0.296	0.866	4	KX857664
	R:CTCTTGTTGGCCTCCCATAA												
Lnan22	F: CAAGGTTGACACCAAGCAGA	(TTA)12	0.2	58	44	107-134	7	0.864	0.808	0.781	0.519	1	KX518732
	R: TGTAACTTTGTTAGGCGCTGC												
Lnan24	F: GCCATTTAAGACACCTGGGA	(ATCT)12	0.2	58	43	136-170	9	0.884	0.858	0.841	0.771	3	KX518733
	R: CCATTGTGTGCTGCAGTGAT												
Lnan25	F:TAAGGGGATTGGTATGCTGG	(CTAT)13	0.2	58	44	155-187	9	0.818	0.793	0.771	0.441	5	KX857663
	R:GAAGTGCCACTACCATTCTTTTG												
Lnan26	F: CTTTCACGTCATAGGAACCCA	(GATA)13	0.2	58	43	133-171	12	0.837	0.839	0.822	0.997	3	KX518734
	R: CAACAGGGCTTTCAACCATT												
Lnan27	F: CCACTCCTGTTGGGGAGATA	(GATA)14	0.2	58	44	81-159	9	0.886	0.839	0.821	0.081	1	KX518719
	R: AAATGTGGGAAAAGTGAAGCA												
Lnan29	F: CTATGCGGCCATCTTCTCTC	(ATCT)17	0.2	58	44	178-249	13	0.909	0.894	0.885	0.499	4	KX518735
	R: GTGACTTGCAGCCTGTTGAG												
Lnan30	F: GTGAAAAGCAATGCCACCTT	(ATCT)17	0.2	58	43	127-210	14	0.791	0.860	0.847	0.266	2	KX518736
	R: TCAGTAGACCACAAAGAGCGTT												

SOUTHERN

Locus	Primer sequence 5' ti 3'	Repeat Motif	Primer conc. ($\mu \mathrm{M}$)	$\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$	N	Allele size range	Na	HO	HE	PIC	P HWE*	Multiplex group	Genbank accession no.
Lnan03	F:GCCATGCACATGAGCTTTTA	(AT)8	0.2	58	40	140-142	2.000	0.200	0.180	0.164	0.482	4	KX518722
	R: CCAATACGCGCCAATTTTAC												
Lnan04	F: GGTGGACATCATGTGGATCA	(AT) 8	0.2	58	39	192	1.000	NA	NA	NA	NA	5	KX518723
	R: CCAATACGCGCCAATTTTAC												
Lnan08	F: GTATAACAGGGCGGAACTGC	(GT)9	0.2	58	40	131	1.000	NA	NA	NA	NA	2	KX518725
	R: GTGTAACTCGCCTTCCTTGC												
Lnan10	F: TGTGTAAATTGCTCCAGGCA	(AT)11	0.2	58	40	139-162	4.000	0.575	0.641	0.574	0.115	4	KX518726
	R: TGAATGATGCCAGACCAAGA												
Lnan12	F: TCAAATCCATTGTGGTGGTG	(TA)11	0.2	58	40	191-221	8.000	0.700	0.681	0.631	0.997	2	KX518727
	R: CCACATGTTGCCTACTCCCT												
Lnan14	F: GCAACCAATATGGGTGACATT	(AT)12	0.2	58	39	206-232	6.000	0.718	0.673	0.624	0.198	5	KX518728
	R: GCACTTATGTTGCGATGCAC												
Lnan15	F: TGCAGATCCATGCAATACTGA	(AAT) 8	0.2	58	39	148	1.000	NA	NA	NA	NA	1	KX518729
	R: TCAACGTTCAATGGTCAAGG												
Lnan16	F: ACTTTGTTAGGTGCTGCGGA	(AAT)8	0.2	58	39	112-127	5.000	0.538	0.617	0.583	0.228	3	KX518730
	R: GCACCCTTAATGTGTTCCTGA												
Lnan17	F: GCGGTTACAGGGTACAGCAT	(TTA)8	0.2	58	40	210-213	3.000	0.100	0.184	0.174	<0.001	1	KX518731
	R: TGTACTTTGTTAGGCGCTGC												
Lnan18	F: CCAAAACCGCTTTTCTGTTG	(CTA)8	0.2	58	40	133-136	2.000	0.200	0.180	0.164	0.482	2	KX518721
	R: TGGGTTAATAACATGAGGAAGAGTT												
Lnan20	F: AAGTGCTCCGGATACCAATG	(TAT)11	0.2	58	39	273-283	3.000	0.359	0.325	0.296	0.710	3	KX518720
	R: TTGTTGATGAATCTGGTGCC												
Lnan21	F:TACTTTGTTAGTCGCTGCGG	(ATT)12	0.2	58	40	121	1.000	NA	NA	NA	NA	4	KX857664
	R:CTCTTGTTGGCCTCCCATAA												
Lnan24	F: GCCATTTAAGACACCTGGGA	(ATCT)12	0.2	58	39	123-145	6.000	0.718	0.739	0.705	0.023	3	KX518733
	R: CCATTGTGTGCTGCAGTGAT												
Lnan25	F:TAAGGGGATTGGTATGCTGG	(ATCT) 12	0.2	58	37	142-224	13.000	0.676	0.874	0.861	0.005	5	KX857663
	R:GAAGTGCCACTACCATTCTTTTG												
Lnan26	F: CTTTCACGTCATAGGAACCCA	(GATA)13	0.2	58	39	121-151	8.000	0.744	0.811	0.787	0.508	3	KX518734
	R: CAACAGGGCTTTCAACCATT												
Lnan27	F: CCACTCCTGTTGGGGAGATA	(GATA)14	0.2	58	39	106-138	8.000	0.769	0.812	0.786	0.862	1	KX518719
	R: AAATGTGGGAAAAGTGAAGCA												
Lnan30	F: GTGAAAAGCAATGCCACCTT	(ATCT)17	0.2	58	40	123-153	8.000	0.775	0.814	0.789	0.414	2	KX518736
	R: TCAGTAGACCACAAAGAGCGTT												

*Lnan17, Lnan25 significant after FDR correction, FDR value 0.012

