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Abstract
Giovanni Sirio Carmantini

Dynamical Systems Theory for Transparent Symbolic Computation in

Neuronal Networks

In this thesis, we explore the interface between symbolic and dynamical system computa-

tion, with particular regard to dynamical system models of neuronal networks. In doing

so, we adhere to a definition of computation as the physical realization of a formal system,

where we say that a dynamical system performs a computation if a correspondence can

be found between its dynamics on a vectorial space and the formal system’s dynamics

on a symbolic space. Guided by this definition, we characterize computation in a range

of neuronal network models. We first present a constructive mapping between a range

of formal systems and Recurrent Neural Networks (RNNs), through the introduction of

a Versatile Shift and a modular network architecture supporting its real-time simulation.

We then move on to more detailed models of neural dynamics, characterizing the compu-

tation performed by networks of delay-pulse-coupled oscillators supporting the emergence

of heteroclinic dynamics. We show that a correspondence can be found between these

networks and Finite-State Transducers, and use the derived abstraction to investigate how

noise affects computation in this class of systems, unveiling a surprising facilitatory effect

on information transmission. Finally, we present a new dynamical framework for compu-

tation in neuronal networks based on the slow-fast dynamics paradigm, and discuss the

consequences of our results for future work, specifically for what concerns the fields of

interactive computation and Artificial Intelligence.
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Figure shows a stylized depiction of a saddle point, a heteroclinic connection
between two saddles, and a cycle between three saddles. The arrows pointing
to a saddle, or away from it, represent its stable and unstable manifold,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Generalized Shift emulating a Turing Machine. The Turing Machine
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the same tape cell with symbol “t”, and finally moving the control head to
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shifting it to the right in this case, and therefore obtaining a dotted sequence
equivalent of the Turing Machine updated tape configuration. . . . . . . . . 35

3.2 Three representations of the Gödel Encoding of a sequence. The
first one is just the definition of the Gödel encoding, with details on the
specific choice of the enumerating γ function and the definition of the g
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The second one is an expansion of the series in the definition. The third one
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4.4 Layer connectivity in the Recurrent Neural Network architecture.
In the network, the Machine Configuration Layer sends output to the Branch
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Introduction

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan Turing (1950)

The concept of computation is at the center of many of the most important theoretical

and technological advancements of the last century. Digital computers surround us and

support us in almost every activity and, as the field of Machine Learning advances at an

unprecedented speed, we witness the dawning of the age of intelligent machines.

The scientific foundations for the digital revolution were laid almost a century ago, as a

result of Alan Turing’s groundbreaking work. In order to solve a long-standing problem

in mathematical logic, the brilliant British scientist imagined a hypothetical machine that

could read and write symbols on a tape, modelling the action of a person performing

calculations with pen and paper (Turing, 1937). The machine proved to be an exceptionally

powerful conceptual tool, marking the origins of the Theory of Computation, and inspiring

the creation of the first re-programmable digital computers. In particular, through the

Turing Machine, computation came to be defined as the mechanical application of a finite

sequence of symbolic operations to an input string of symbols, in order to produce a

symbolic output. The success of digital computers and of the theory that describes their

operation has been so striking that computation today is almost exclusively understood as

Turing computation.

In recent years, however, technological progress and theoretical developments in disciplines

such as Biology, Neuroscience, and Physics have started to bring attention to the limits

1
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of the traditional understanding of computation as a sequential input-output process of

symbolic manipulation.

As a first problematic point, real-world digital computing systems have evolved far beyond

what the classical Theory of Computation can describe. In an age where computers inter-

act with each other and their environment constantly and asynchronously, it is not clear

how their action can be modelled as discrete input-output relations, especially when the

computation they perform does not “halt”. A digital thermostat, for example, constantly

reads and reacts to its environment in a non-terminating interaction; moreover, by reac-

ting to its environment, the thermostat also modifies it, thus affecting its future readings.

These forms of open-ended and interactive computation, while ubiquitous in our modern

world, are not captured by the classical framework of Turing Computation.

Secondly, as our understanding of many important biological and physical systems in-

creases, we encounter phenomena which call for a description in terms of information

processing, but which do not quite fit in the categories of the sequential rule-based ma-

nipulation of strings of symbols (i.e. Turing Computation). That is, we may talk for

example of a neuronal assembly “computing” the movement direction of a visual stimulus

(Emerson et al., 1992), or “information processing” of auditory stimuli (Näätänen, 1990),

or “storing” data in the connection patterns of its neurons (Chklovskii et al., 2004). Yet,

it is not clear how these phenomena may relate to our understanding of computation, as

rooted in the classical Theory of Computation. In such systems, computation is realized

within the dynamical evolution of a physical process, best modeled through the framework

of difference/differential equations, the realm of Dynamical Systems Theory, rather than

rewriting rules acting on symbols. When these systems are analyzed for the forms of com-

putation they can support (rather than for their biological or physical significance), their

study falls under the umbrella term of natural computation.

Recent years have seen the characterization of a number of dynamical mechanism for na-

tural computation. Of particular interest for this work are systems modelling neuronal

dynamics, for which many such mechanisms have been uncovered for the transmission

(Borisyuk and Borisyuk, 1997, Mazor and Laurent, 2005, Neves and Timme, 2009, 2012,
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Wordsworth and Ashwin, 2008), transformation (Ashwin and Borresen, 2005, Jaeger and

Haas, 2004, Larger et al., 2012, LukošEvičIus and Jaeger, 2009, Maass et al., 2002, Rabino-

vich et al., 2008a) and storage of information (Bick and Rabinovich, 2009, Hopfield, 1982).

In parallel with the proliferation of dynamical paradigms for computation, important on-

going efforts are in place for the creation of a general theory of computation in dynamical

systems (Bournez and Campagnolo, 2008, Dambre et al., 2012, Langton, 1990, Orponen,

1997, Siegelmann and Fishman, 1998, Stepney, 2012).

Unfortunately, the present state of our understanding of computation is a set of insular and

contextualized descriptions. As the limits of the classic approaches to computation become

more evident, we witness a disconnect between how we think of information processing in

symbolic/digital systems, and how we think of it in dynamical/analog systems; between

the theory of idealized computing machines, and the far more complex reality of how they

operate in the world.

Nevertheless, there have been encouraging achievements towards bridging the gaps in our

knowledge and pursue a more general theory of computation. Crucial work has been

done, for example, in the field of interactive computation (Cabessa and Siegelmann, 2012,

Goldin et al., 2006, Wegner, 1998) and in the integration between dynamical system and

symbolic computation (beim Graben, 2008, beim Graben et al., 2008, 2004, beim Graben

and Potthast, 2014, Branicky, 1995, Cabessa and Villa, 2012, 2013, MacLennan, 2004,

Moore, 1990, 1991, Siegelmann and Sontag, 1995, Tabor, 2009, Tabor et al., 1997).

In this work, we take heed of these crucial integrative achievements, and explore the com-

mon area where symbol manipulation and the dynamics of neuronal systems meet together,

with the hope to contribute to a richer and more unified understanding of computation.

We do so by adopting the general framework proposed by MacLennan (2004), who pro-

poses an extended definition of computation as a “physical process the purpose of which

is the abstract manipulation of abstract objects”, where a system is seen as performing a

computation if it is a physical (possibly approximate) realization of an abstract mathema-

tical structure – a formal system – and if it serves a function which depends only on its
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formal properties, rather than its physical instantiation. 1 In this framework, if a system

is computational, the specific physical surrogates by which its formal properties are in-

stantiated do not matter. In fact, given that the formal properties of the system stay the

same, then a computational system will serve its purpose (whatever this might be) just as

well. As an example, if we say that a neuronal assembly in the brain computes the orien-

tation of a stimulus in a region of the visual field, then in terms of computation it should

not matter to the rest of the brain whether we substitute the neuronal assembly with a

silicon microprocessor implementing the same functionality: assuming that the physical

surrogates are appropriately transduced (such that the interaction of the microprocessor

with the rest of the brain is the same as the one of the neural assembly it substitutes), it

will serve the same purpose – computing orientation – just as well. As a second example,

if the purpose of a system is to perform the addition of two natural numbers, it does not

matter from a computation standpoint whether the system is a simple abacus, a complex

mechanical device such as the Pascaline, or a digital one such as a modern calculator, as

far as a (possibly approximate) correspondence between physical quantities in such diverse

systems and the addition of natural numbers can be found.

In adopting MacLennan’s broader definition of computation (admittedly imprecise, but

nevertheless useful here as a conceptual framework), in this work we characterize com-

putation in a variety of dynamical systems by showing how they instantiate the abstract

properties of some formal system2, thus defining a correspondence between the two (see

Figure 1). That is, to show that some dynamical system performs a given form of com-

putation (e.g. a Finite-State computation), we can present a correspondence between the

structure and dynamics of the dynamical system and the formal system that defines that

form of computation (e.g. a Finite-State Machine). Similarly, to demonstrate how a form
1The word “purpose”, while problematic, is there to avert the pitfalls of pan-computationalism, or the

idea for which every physical process can be seen as a form of computation.
2A formal system here is intended as a mathematical object defining a set of symbols, a grammar

specifying how well-formed formulas in the system are constructed, a set of axioms which are themselves
well-formed formulas, and a set of inference rules combining well-formed formulas to obtain new well-formed
formulas. Every model of symbolic computation can also be expressed as a formal system, but a formal
system need not necessarily be a model of computation. What distinguishes a model of computation from
the more general class of formal systems is that a model of computation is explicitly constructed and used
in the study of computation, which is not true in general for formal systems. Yet, it is always possible to
study the class of functions that can be computed by any given formal system, such that the distinction
between formal models and models of computation is really only of the use which is made of the model in
practice.
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of computation can be performed by a dynamical system, can we show how to instantiate

the structure and evolution of the formal system which defines that form computation in

the structure and dynamics of the dynamical system. We will in fact introduce results in

both directions, where we i) construct dynamical systems that realize a range of formal sys-

tems, and ii) characterize the formal properties of a class of dynamical systems to specify

the forms of computation they support. We do so in order to tackle the following research

question, which we put at the center of this work: Is it possible to define a constructive

mapping between formal models of symbolic computation and models of neural dynamics

such that the defined mapping is general (i.e. it can be applied to a wide range of symbolic

models of computation), and the models of neural dynamics are biologically plausible?

Structure of this thesis

The thesis is divided in two parts. The first part sets the theoretical background of our

work with three Chapters, each containing the relevant literature review:

– In Chapter 1, we present some fundamental systems from an important branch of the

classical Theory of Computation, i.e. the theory of automata and formal languages.

We will use these objects to support the modelling of different forms of symbolic

computation in the rest of the thesis.

– In Chapter 2, we provide key definitions and concepts from Dynamical Systems

Theory, such as continuous- and discrete-time dynamical systems, fixed points, and

heteroclinic dynamics.

– In Chapter 3, we discuss the theory of Symbolic Dynamics, i.e. the theoretical

apparatus that allows us to bridge the realm of symbolic computation to that of

dynamical systems.

The second part will then dedicate efforts to the presentation and discussion of the origi-

nal theoretical advancements we put forward, with each Chapter containing the relevant

literature review:
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– In Chapter 4, we introduce a formal system allowing for the parsimonious real-time

simulation of a range of models of computation, i.e. the Versatile Shift. We then

show that the Gödelization of Versatile Shifts defines piecewise affine-linear dynami-

cal systems on the unit square, i.e. Nonlinear Dynamical Automata. By presenting a

constructive mapping between Nonlinear Dynamical Automata and Recurrent Neural

Networks (RNNs), we are able to relate symbolic dynamics in the Versatile Shift for-

mal system to vectorial dynamics in a neural system. The network architecture

defined by the mapping is characterized by its granular modularity; coupled with a

transparent implementation of the original symbolic dynamics, our work allows for

the construction of neural implementations of interactive models of computation. We

demonstrate this possibility with two examples. In one example we construct a RNN

Central Pattern Generator from a Finite-State Machine, and show that it supports

continuous interaction with the environment through a non-terminating computation

(the generation of the pattern). In a second example we demonstrate the mapping of

an Interactive Automata Network to RNN dynamics, implementing the interactive

communication between different automata as interactive communication between

sub-networks in the RNN. The constructive mapping opens the possibility of preli-

minary correlational studies between real neural dynamics and RNN implementations

of Versatile Shifts, allowing the characterization of computation in the real system

(as per MacLennan’s framework). Elements from this Chapter have been published

in Carmantini et al. (2016) and Carmantini et al. (2015).

As we argue at the end of this Chapter, there are important concerns about the

biological plausibility of RNNs and of our architecture in particular, especially in

relation to the disruptive effect of noise on the dynamics of these networks. In order

to find more suitable candidates for the definition of a constructive mapping between

formal systems and neural models, we turn in the following Chapter to a more robust

and biologically plausible class of neural models which are known to support Finite-

State computation, a simple form of symbolic computation. Specifically, we test the

suitability of such models to robustly support symbolic computation by exploring

the effect of noise on their dynamics.
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– In Chapter 5 we first characterize the computation performed by systems of oscilla-

tors supporting the emergence of heteroclinic networks, by defining a correspondence

between their dynamics and the symbolic dynamics of Finite-State Transducers, set-

ting the language needed for the subsequent analyses. We then study the information

transmission capabilities of this class of systems when a noise source is present, sho-

wing that the state-switching they implement becomes probabilistic, as opposed to

the deterministic switching in the absence of noise. We also show that for a certain

range of noise levels, the probabilistic state-switching allows for a more efficient trans-

mission of information by the system. This is particularly relevant when considering

that heteroclinic dynamics is thought to have a key role in the sensory processing

of some animals. Given that noise adds non-determinism to the dynamics of these

models, in future work we plan to define a correspondence between noisy heteroclinic

systems and probabilistic formal systems, such as probabilistic Finite-State Trans-

ducers or Markov Chains. Elements from this Chapter are part of a paper which is

being prepared for submission.

While this class of models of neural dynamics is of higher biological relevance than

that studied in Chapter 4, there are still key concerns about the strict set of conditions

in which the heteroclinic dynamics they support can be maintained. Specifically,

heteroclinic dynamics is only possible when perturbations to the system (whether

from noise or input sources) are extremely small. Additionally, the state switching

supported by this class of systems is asymptotic in absence of noise, i.e. a state is

only reached in the limit as time goes to infinity. These characteristics cast doubts

about the biological plausibility of this type of dynamics. For this reason, in Chapter

6 we further our search of viable candidates for the definition of a general mapping

between formal systems and neural models, by exploring the dynamics of a class of

systems with even stronger biological plausibility.

– In Chapter 6, we present preliminary numerical evidence for a new framework for

computation in dynamical systems to be explored in future work, which implements

the dynamic switching of states while not suffering from the drawbacks of systems in

which the state switching is based on heteroclinic dynamics. In particular, the new
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framework relies on smooth excitable neural models, which are the most appropriate

level of abstraction with regards to the modelling of electrophysiological measures

from real neural systems. We believe that a correspondence can be found between the

dynamics of some slow-fast neural systems (an important class of smooth excitable

neural models) and Finite-State computation.

– Finally, in Chapter 7 we summarize the contributions presented in this thesis, and

discuss the implications of our work for the field of Artificial Intelligence, with special

regards to the formalization of interaction in intelligent systems.

Formal System Formulas

Physical model Observables

Physical reality Observables

Figure 1: Characterization of computation as physical realization of a for-
mal system. To characterize computation in physical and biological systems, we create
mathematical models that capture their dynamics, and define a correspondence between
these and formal systems. In this way, we are able to interpret observables from measu-
rements of the physical world in terms of the underlying computation they reflect.



Chapter 1

Symbolic Computation

As discussed in the Introduction, computation is normally understood in terms of algo-

rithms, rewriting systems and automata. In the rest of this work we will make use of

automata models to characterize computation in a range of neuronal network models. For

this reason, this Chapter presents an introduction to some important classes of automata

and formal languages. Subsequently, we will briefly discuss the relation between symbolic

computation and information processing, and introduce important measures from the clas-

sical Information Theory (Shannon, 1948) which we will use in later Chapters to quantify

the transmission of information in a class of neural systems realizing symbolic computation.

1.1 Automata and Formal Languages Theory

We will now discuss some important models of computation from the classical Theory of

Computation. For a more in-depth introductory treatment of these models, we point the

reader to the excellent books by Sipser (2006) and Hopcroft and Ullman (1979).

1.1.1 Finite-State Machines

The dynamics of many real-world systems can be effectively abstracted in terms of transi-

tions between a finite set of discrete states, such that the state-to-state transition at each

9
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time step only depends on some current input to the system, where the set of possible

inputs is finite; this abstraction defines a class of models known as Finite-State Machi-

nes (FSMs; McCulloch and Pitts, 1943). FSMs are very much relevant for modeling in a

broad range of fields, including but not limited to computer science, biology, physics and

engineering.

Definition 1.1. A Deterministic Finite-State Machine (DFSM, or simply FSM) can be

formally defined as a 5-tuple MFSM = (Q,T, q0, F, δ), where

1. Q is a finite set of machine states, or control states

2. T is a finite set of symbols known as the input alphabet,

3. q0 ∈ Q is a distinguished state from the set of states known as starting state, i.e. the

state which the machine is in at the beginning of its computation,

4. F ⊆ Q is a set of final (or accept) states,

5. δ : Q×T→ Q is a transition function. Specifically, δ can be defined as follows:

δ : (qt, d0t) 7→ qt+1, (1.1)

where qt, qt+1 ∈ Q are states, and d0t ∈ T is an input symbol.

A FSM acts on input strings of symbols. Given an input string s = d0 . . . dn a FSM

sequentially consumes (reads and discards) an input symbol dt from the string at each

computation step t and, given the current read symbol and its current state qt, the

machine transitions to a new state qt+1 = δ(qt, dt) as prescribed by its transition function.

f the last state reached by the machine once all symbols in the input string are consumed

is in F , i.e. the set of final states, the machine is said to accept the input string.

Let us now give an example of a FSM. For this example, we present a FSM accepting all

binary strings ending in 1. This machine can be defined as Mend1 = (Q,T, q0, F, δ) where

Q = {q0, q1} is the set of states, T = {0, 1} is the binary input alphabet, F = {q1} is the
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set of accept states (with q1 as the only accept state) and where δ is defined such that

δ :





(q0, 0) 7→ q0,

(q0, 1) 7→ q1,

(q1, 0) 7→ q0,

(q1, 1) 7→ q1.

Let us present this machine an input string s = 101. The machine starts in state q0, i.e.

the starting state. It then reads the first symbol in s, i.e. a 1. Given the current read

symbol 1 and the current state q0, the machine transitions to a new state q1, as instructed

by its transition function δ. In fact, δ(q0, 1) = q1. The machine is now ready to consume

the second symbol in s, which is a 0. By application of the δ function, the machine now

transitions to state q0. Finally, by consuming the last symbol in s, a 1, the machine tran-

sitions again to state q1. As the input string has now been completely consumed, q1 is the

last state reached by the machine. Given that q1 ∈ F , the set of accept states, the machine

is said to accept the input string s.

A second important flavor of FSMs is that of Nondeterministic FSMs (NFSMs). In the

Nondeterministic case, the transition function δ is defined as a function δ : Q×T→ P (Q)

that maps each state/symbol pair (qt, d0t) to a set of states O ∈ P (S), rather than a

single state as in the deterministic case. P (S) is here the powerset of a set S, defined as

P (S) = {O : O ⊂ S}), i.e. the set of all possible subsets of S. In this way, a NFSM is not

restricted in performing a single transition at each computation step, but can split in a set

of parallel processes, each performing one of a set of possible transitions. Each of these

processes can in turn split into a new set of parallel processes, and so on. Importantly,

Nondeterministic FSMs and Deterministic ones are completely equivalent in power, as it

is always possible to convert a Nondeterministic FSM into a Deterministic one (Sipser,

2006).
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1.1.2 Regular Languages

Let us first extend the notion of transition function of a FSM to operate on entire strings

rather than single symbols.

Definition 1.2. We define the FSM extended transition function as a function δ̂ : Q,T∗ →

Q, where Q is the set of states of the FSM, and T ∗ is known as the Kleene star of alphabet

T, i.e. the (infinite) set of all possible strings that can be formed by the finite concatenation

of symbols from T, which includes the empty string ε, the string containing no symbols.

We define δ̂ by induction as follows:

Base case: δ̂(q, ε) = q, that is, if the current state is q and no input is present, the state

does not change.

Inductive step: let w = w1d be a string where d ∈ T is the last symbol in w and w1 ∈ T∗

is the string obtained by considering all but the last symbol in w, then we define δ̂

such that

δ̂(q, w) = δ
(
δ̂(q, w1), d

)
(1.2)

By the extended transition function, if we let w be some input string and q be some

initial state (not necessarily the starting state), we can express the state reached by a FSM

processing w and starting from q as q̂ = δ̂(q, w). Through the extended transition function,

we can now define the language of a FSM.

Definition 1.3. The language of a FSM MFSM = (Q,T, q0, F, δ) is defined as

L(MFSM) = { w | δ̂(q0, w) ∈ F}, (1.3)

where w ∈ T∗ is a string of symbols from the FSM input alphabet T, and F is the set

of accept states in the FSM, such that MFSM is said to accept or recognize the language

L(MFSM). If a language is accepted by a FSM, it is said to be a Regular Language.

In the Nondeterministic case, a FSM is said to accept a string if at least one of the sub-

processes created by the FSM accepts it. In this case, the language of a Nondeterministic
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FSM (NSFM) is defined as L(MNFSM) = { w | δ̂(O,w) ∩ F 6= ∅}, where δ̂ is defined as

before, but for sets of states rather than single ones.

1.1.3 Finite-State Transducers

Finite-State Transducers are an extension of Finite-State Machines, with the additional

capability of producing an output symbol at every transition. This model is particularly

relevant to the domain of Natural Language Processing, as it has been widely applied e.g.

to morphology analysis, to tokenization and shallow parsing (Karttunen, 2000). We will

later use this model to describe some forms of heteroclinic computation. We will only define

Deterministic FST, as they are equivalent in power to their Nondeterministic counterpart.
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Definition 1.4. A Deterministic Finite-State Transducer (DFST, or simply FST) can be

formally defined as a 6-tuple MFSM = (Q,T,Γ, , q0, F, δ), where

1. Q is a finite set of machine states or control states,

2. T is a finite set of symbols known as input alphabet,

3. Γ is a second finite set of symbols known as output alphabet,

4. q0 ∈ Q is a distinguished state in Q known as the starting state, i.e. the state the

FST is in at the beginning of its computation,

5. F ⊆ Q is a set of final (or accept) states,

6. δ : Q×T→ Q×
(
Γ ∪ {ε}

)
is a transition function. Specifically, δ can be defined as

follows:

δ : (qt, dt) 7→ (qt+1, pt), (1.4)

where qt, qt+1 ∈ Q are states, dt ∈ T is an input symbol, and pt ∈
(
Γ ∪ {ε}

)
is an

output symbol or the empty string ε.

A FST behaves similarly to a FSM, by consuming an input string symbol by symbol,

and changing state at each step given its current state and the read symbol, as specified

by the transition function δ. In addition to the usual repertory defined by FSMs, FSTs

also produce output strings. In fact, the transition function δ of a FST specifies at each

computation step t the production of an output symbol pt by the machine.

As an extension of FSMs, FSTs can not only recognize the class of Regular Languages, but

also, through the productions of output symbols, generate them.

1.1.4 Push-Down Automata

Finite-State Machines model computation with finite memory. Extending this class of

models by endowing it with the additional capability of pushing and popping symbols from
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a stack memory defines a more powerful1 computing machine, the Push-Down Automaton

(PDA).

Definition 1.5. A Deterministic Push-Down Automaton (DPDA, or simply PDA) can be

formally defined as a 6-tuple MPDA = (Q,N,T, q0, F, δ), where:

1. Q is a finite set of machine, or control, states,

2. N is the a finite set of symbols known as the stack alphabet,

3. T is a second finite set of symbols known as the input alphabet,

4. q0 ∈ Q is a distinguished state from the set of possible machine states known as the

starting state, i.e. the state the machine is in at the beginning of its computation,

5. F ⊆ Q is a set of final, or accept states,

6. δ is a transition function.

At each computation step the PDA consumes an input symbol and, given the input symbol,

the current symbol on the top of the stack and the current state, it transitions to a new

state, pushing or popping a symbol to the top of the stack, as prescribed by its δ function.

For a Deterministic PDA, the transition function can be defined as

δ : Q×
(
T ∪ {ε}

)
×
(
N ∪ {ε}

)
→ Q×

(
N ∪ {ε}

)
, (1.5)

where ε is the empty string, whereas the transition function of a Nondeterministic PDA

can be defined as

δ : Q×
(
T ∪ {ε}

)
×
(
N ∪ {ε}

)
→ P

(
Q×

(
N ∪ {ε}

))
. (1.6)

where P
(
Q×

(
N ∪ {ε}

))
is the powerset of the set of possible combinations of state

and top-of-stack that can occur in the PDA. That is, similarly to what discussed in the

case of Nondeterministic FSM, a Nondeterministic PDA can, at every computation step,

span concurrent subprocesses each transitioning to a different configuration, where each

subprocess can subsequently span new subprocesses and so on.

1The adjective “powerful” here is relative to the computational power of the model; if a model is
computationally more powerful than another, then the class of languages the first model recognizes strictly
contains that of the second model. Equivalently, the class of languages recognized by the first model is
higher up in the Chomsky hierarchy (Chomsky, 1956).
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Because of the additional capabilities of PDA with respect to FSMs, the notation for

transitions is here slightly more complex. In particular for a PDA, if s0t . . . smt ∈ N∗ is

the current content of the stack (where N∗ is the set of all possible strings that can be

obtained from concatenation of symbols in N, included the empty string ε), with s0t as the

current top-of-stack, and if qt is the current state, qt+1 the new state, and d0t the current

input symbol, transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, ε)

apply a pop operation, such that the new stack content becomes s1t . . . smt . Push opera-

tions are instead applied by transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, s0t+1),

where s0t+1 is the new top-of-stack, so that the updated stack contains the symbols

s0t+1s0t . . . smt . Finally, for transitions of the form

δ : (qt, ε, s0t) 7→ (qt+1, χ ∈ {ε} ∪N),

the PDA does not consume any input symbol (i.e. it does not access its input at all), but

either pops its top-of-stack, if χ = ε, or pushes symbol χ, if χ ∈ N.2 If the set of final

states is empty, i.e. F = ∅, the PDA accepts its input when both the input tape and the

stack are empty, and it is thus said to accept by empty stack. A NPDA accepts its input

if one of the parallel processes it creates either ends its computation with an accept state,

or with empty input and stack in the case where F = ∅.

Let us now give an example of a simple computation performed by a Deterministic PDA.

Consider a PDA accepting binary strings which contain a certain number of 1’s followed by

the same number of 0’s. The PDA can perform this computation by, say, pushing a special

x symbol on its stack every time a 1 is read in input, and popping its top-of-stack every

time a 0 is read instead. Such a DPDA can be defined as Meq = (Q,N,T, q0, F, δ) where

Q = {q0, qcount, qaccept} is the set of states, N = {0, 1 is the input alphabet, T = {x, $} is

the stack alphabet, with a special symbol $ which we will use to allow the PDA to recognize
2Note that Deterministic PDA do not allow transitions of the form δ(qt, ε, ε) 7→ (qt+1, ε), known as

empty transitions, as this would introduce for each configuration of state, input and stack, the possibility
to perform an empty transition, breaking determinism if any other transition is defined.
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when everything has been popped from the stack, F = {qaccept} is the set of accept states

containing only state qaccept, and where δ is defined as follows

δ :





(q0, ε, ε) 7→ (qeq, $),

(qcount, 1, ε) 7→ (q!eq, x),

(qcount, 0, x) 7→ (qcount, ε),

(qcount, ε, $) 7→ (qaccept, ε),

. (1.7)

At the very beginning of the computation, the machine pushes a $ symbol as the top-

of-stack, to function as a signal that the stack does not contain any further symbols.

Subsequently, the machine starts reading its input string, by moving to state qcount. For

each 1 it reads from its input string, the machine pushes an x on its stack; for each 0,

it pops an x. If all x’s are popped, the machine reads the $ on the top of its stack, and

transitions to state qaccept. If the input string has been completely read at this point,

the machine completes its computation in qaccept, thus accepting the input string. Note

that any string not matching the 1n0n pattern (where the exponent denotes repetition)

will cause the machine to ’crash’ because of undefined transitions. That is, consider for

example an input string of 100. The machine will

1. push the $ symbol on the stack, moving from state q0 to state qcount,

2. read the 1, pushing an x on the stack

3. read the 0, popping an x from the top-of-stack

4. read the $ symbol at the top-of-stack, transitioning to state qaccept.

At this point, the machine has yet another 0 left to read in its input, but the transition

function is not defined for the triple (qaccept, 0, ε) of state, input symbol and top-of-stack.

The machine is thus said to reject the input string.
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1.1.5 Context-Free Grammars and Languages

Definition 1.6. A Context-Free Grammar (CFG) can be formally defined as a 4-tuple

GCF = (N,T, R, S), where

– N is a finite set of symbols known as non-terminals,

– T is a finite set of symbols known as terminals,

– R ⊂ N×(N∪T)∗ is a set of substitution rules (or productions, or rewriting rules) spe-

cifying how to substitute non-terminals with strings of terminals and non-terminals.

– S a distinguished start symbol.

Each rule (X,w) in R can be written as X → w, with X ∈ N and w ∈ (N ∪T)∗.

A Context-Free Language is a language generated by a CFG. A CFG generates a language

by the recursive rewriting of its non-terminals starting from the distinguished starting non-

terminal symbol S. The rewriting steps involved in the generation of a string are called

the derivation of the string.

For example, let’s define a grammar GCFG with N = {A, B}, T = {a, b}, starting symbol S

and rules

S→ A

S→ B

S→ a

S→ b

S→ ε

A→ aSa

B→ bSb.

This grammar generates the language of palindromes on a and b. An example derivation

is

S→ B→ bSb→ bAb→ baSab→ baaab.
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Importantly, it is always possible to construct, given any CFG, a NPDA recognizing its

language, and vice versa. That is, NPDA recognize the class of languages generated by

CFGs. Note that, contrary to Deterministic FSMs and Nondeterministic FSMs, Determi-

nistic and Nondeterministic PDA differ in power. Specifically, DPDA can only recognize

a subset of CFGs, known as Deterministic CFGs (DCFGs).

1.1.6 Top-Down Recognizers

Top-Down Recognizers (TDRs) are a subclass of NPDA that can simulate rule expansion

to accept Context-Free Languages. They are particularly important as they are used prove

the equivalence in power between CFGs and NPDA. Moreover, the deterministic restriction

of TDRs has very important uses for parsing in real-world applications (Aho and Ullman,

1972).

Definition 1.7. Given a CFG GCFG = (N,T, R, S), a Top-Down Recognizer (TDR) is a

NPDA MTDR = ({q},N,T, q, F, δ) with the following characteristics:

– If (A→ s) ∈ R then (q, sr) ∈ δ(q, ε, A), where sr denotes the reversed string s.

– δ(q, a, a) = (q, ε) for all a ∈ T

Informally, at each computation step a TDR checks its top-of-stack. If it is a nonterminal

A ∈ N of the GCFG grammar, the TDR nondeterministically applies all rule expansions

for A, by popping A and pushing its reversed expansion sr on the stack. If the top-of-stack

is instead a terminal symbol a ∈ T, the TDR checks whether it matches the current input

symbol. If it matches, then the input symbols is consumed, and its match popped from

the stack. If it does not match then the associated nondeterministic process rejects the

input string. A TDR accepts its input if one of its processes ends its computation with an

empty stack and input.
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1.1.7 Turing Machines

To investigate the nature of computation and to probe its limits, Alan Turing devised

an imaginary machine able to read and write symbols on an infinite memory support,

simulating the action of a human computer (Turing, 1937). Turing imagined the action of

a person carrying out a computation with pencil and paper. Stripping away the distracting

details, Turing argues that the human computer performs a computation by going through

a sequence of “mental states”, while reading and rewriting a finite number of symbols on

the paper at each step of the sequence.

Turing creates his machine in the image of a human computer: the mental states of the

human computer become internal states of the machine; the pencil becomes a read-write

head; the paper becomes a one-dimensional tape. At each step of a computation, the

machine reads the current symbol under its read-write head and, depending on its internal

state, rewrites the symbol, moves the head to the left or to the right, and updates its state

(see 1.1 for a pictorial representation).

With this simple model, Turing is able to identify the atomic structure of Universal Com-

putation: the widely held thesis known as the Church-Turing conjecture states that every

function that can be computed by a human computer under no restraint on resources can

be computed by a Turing Machine, and vice-versa.

While the conjecture has never been proven (and is actively challenged, for example, by

proponents of hypercomputation, see Copeland, 2002) it has had and continues to have a

profound influence on Science. Its consequences are central to many important theories in

disparate fields such as Physics, Neuroscience, Biology, Cognitive Science and Philosophy.

Let us now introduce a formal definition of Turing Machine.
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Definition 1.8. A Turing Machine (TM) is a 7-tupleMTM = (Q,N,T, q0,t, F, δ), where:

1. Q is a finite set of machine states, or control states,

2. N is a finite set of tape symbols, always including the blank symbol t,

3. T ⊂ N \ {t} is the input alphabet,

4. q0 is a distinguished state from the set of states known as starting state, i.e. the

state which the machine is in at the beginning of its computation,

5. t is the blank symbol, the symbol contained in each empty cell of the TM tape,

6. F ⊂ Q is a set of ‘halting’ states which, when reached, define the end of the compu-

tation performed by the TM,

7. δ is a partial transition function, the so-called machine table, that determines the

dynamics of the machine. In particular, δ is defined as follows:

δ : Q×N→ Q×N× {L,R}, (1.8)

where L and R denote a movement of the read/write head to the left or to the right,

respectively.

A Turing Machine has read/write access to a memory support, a tape divided in cells,

each containing one symbol. An empty cell contains the blank t symbol. At every step

of the computation, a Finite-State controller endowed with a read-write head follows the

instructions encoded by the δ transition function. Given the current symbol under the

head and its current state, the controller determines the transition to a new state, the

writing of a new symbol in the current cell, and the movement of the head to the cell to

the left (L) or to the right (L) of the current one. To simplify notation, it is possible to

add a third movement to the repertoire of the Turing Machine, allowing for the read/write

head to stay in place after rewriting. This stay operation will be denoted as S. Note that

any Turing Machine endowed with the additional S operator can be trivially implemented

by one without, where every S can be substituted by two subsequent transitions in which

the head is moved in two opposite directions, resulting in an equivalent null displacement.
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Figure 1.1: A Turing Machine. The Figure shows the three operations (read, rewrite,
move head) that a Turing Machine performs at each computation step, as instructed by
its transition table (not shown).

1.2 Information

Information and computation are two complementary ideas in a similar way to conti-
nuum and a discrete set. In its turn continuum–discrete set dichotomy may be seen
in a variety of disguises such as: time–space; wave–particle; geometry–arithmetic;
interaction–algorithm; computation–information. Two elements in each pair presup-
pose each other, and are inseparably related to each other. [. . . ] The field of Philoso-
phy of Information is so closely interconnected with the Philosophy of Computation
that it would be appropriate to call it Philosophy of Information and Computation,
having in mind the dual character of information–computation.

– Gordana Dodig-Crnkovic (2011)

The term “information” has not yet found a systematic definition, but rather determines

a constellation of meanings that depend on the specific context in which the term is used

(Burgin, 2003). Nevertheless, it is somewhat theoretically easier to give a general defi-

nition of information processing. In his General Theory of Information, Burgin (2010)

distinguishes three basic ways in which information can be processed, as

– Transmission, i.e. changing the position of information in space,

– Transformation, i.e. changing the information itself, or its representation,
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– Storage, i.e. changing its position in time.

Traditionally, computation is seen as any process that transforms information, or its re-

presentation, whereas information transmission is seen as a process of communication.

Importantly, the communication of information has been very well characterized by the

apparatus of classical Information Theory, founded by Claude E. Shannon in his 1948

seminal paper (for a complete introduction, see MacKay, 2003).

Nevertheless, as the limits of the classical Theory of Computation become more and more

evident and interactive extension to the theory are being formulated, the boundary between

computation and communication is increasingly being perceived as artificial, and efforts

are being made to integrate the two concepts (Dodig-Crnkovic, 2011).

In this Section, we introduce measures of information (with the specific definition of ’elimi-

nated uncertainty’, discussed later) developed in the study of information communication

from classical Information Theory. In later Chapters, we will use these quantities to explore

the information transmission characteristics of a class of neuronal networks implementing

formal systems.

1.2.1 Entropy

Entropy is a measure of information which characterizes the unpredictability of the out-

comes of a certain process. Given an intuitive understanding of “information content” of

some outcome, it can be argued that observing the outcome of a completely predictable

process does not have any informative value: the outcome is already known in advance.

On the other hand, observing the outcome of more unpredictable processes has a higher in-

formative value, as the observer knowledge has to be updated upon observation. The more

the outcome is unexpected, the more radical the updating has to be, the more informative

the content of the outcome is.

A measure for the information content of an outcome, argues Shannon, should have some

key desirable properties. First of all, one would like this measure to be a decreasing function

of the probability of the outcome. In fact a rather unlikely outcome is less expected, less



24

predictable, and thus more informative. Second, the information content of two outcomes

from two independent processes happening together should intuitively equal to the sum of

the information contents of the single outcomes. An observer should not be able to acquire

more information on a process by observing an additional, independent one.

Shannon demonstrated that the negative logarithm is the only function that satisfy these

constraints . In fact− log p(y) decreases as the probability p of the outcome increases, and if

the probability of two independent outcomes happening together is the product p(y1)p(y2)

(i.e. the two events are independent), then − log p(y1)p(y2) = − log p(y1) − log p(y2).

The base of the logarithm can be chosen arbitrarily, but is traditionally set to 2, so that

information can be related easily with results from systems relying on binary encodings

(such as most digital computers).

The Entropy H of a process is defined as the average information of its outcomes, i.e.

H(Y ) = −
∑

y

p(y) log2 p(y), (1.9)

where Y is the random variable representing the process, and y one of its outcomes.

1.2.2 Mutual Information

We introduce a second important measure of information, relating the outcomes of two

processes X and Y in terms of how much information about one of the processes can be

extracted by observing the other (where X and Y are again random variables). This is the

Mutual Information I(X;Y ) between X and Y , defined as

I(X;Y ) = H(X)−H(X|Y ), (1.10)

where H(X) is here known as the marginal entropy of X and defined as in Equation 1.9,

whereas H(X|Y ) is known as the conditional entropy of X given Y , defined as

H(X|Y ) =
∑

y

p(y)H(X|Y = y)

= −
∑

y

p(y)
∑

x

p(x|y) log p(x|y), (1.11)
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that is, the entropy of X given that Y = y was observed, averaged over all possible y’s.

We can think about the Mutual Information I(X;Y ) as the answer to the question: how

much information can we obtain about X by observing Y ? The Mutual Information

between X and Y can thus be thought of as a drop in the uncertainty about X given

that Y was observed. In fact, if I(X;Y ) = H(X) − H(X|Y ) = 0, then the entropy

H(X) = H(X|Y ), meaning that observing Y does not modify the unpredictability of

X (i.e. Y does not give any information about X). Mutual Information is instead at its

maximum when H(X|Y ) = 0, and thus I(X;Y ) = H(X); in this case, the unpredictability

of X given that Y is observed becomes null, i.e. by knowing the outcome y of Y we are

able to perfectly predict the outcome x of X, leading to a drop in uncertainty equal to

I(X;Y ) = H(X).





Chapter 2

Dynamical Systems

In this Chapter, we give a short overview of some important objects in Dynamical Sys-

tems theory which we will use throughout the thesis. For a more complete introductory

treatment of Dynamical Systems see ,for example, Glendinning (1994), Strogatz (2014),

Wiggins (2003).

A dynamical system is characterized by a state or phase space X, a set containing points

corresponding to all the possible states of the system, and by an evolution function that

describes the time dependence of a point in this space.

At a coarse level, we can distinguish between dynamical systems evolving in discrete time,

and those that evolve in continuous time.

Discrete-time dynamical systems. The evolution of a discrete-time dynamical system

can be described by a map

xn+1 = Φ(xn), (2.1)

where xn+1 and xn are states in the system and Φ : X → X a function mapping

states to states.

27
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Discrete-time piecewise affine-linear systems. This specific class of discrete-time sys-

tems will play a key role in the following Chapters. Discrete-time piecewise affine-

linear systems are dynamical systems characterized by a set of affine-linear transfor-

mations in the form

xn+1 = Λαxn +Aα (2.2)

where α(x) ∈ {1, . . . ,M} is a switching rule depending on the current state of the

system. That is, given the current state of the system the switching rule selects

one transformation to apply to the state of the system from a set of affine-linear

transformations.

Continuous-time dynamical systems. The class of continuous-time systems we will

encounter in this work can be described by systems of ordinary differential equations

of the form

ẋ = f(x), (2.3)

where x ∈ X is the state of the system, and where ẋ denotes the rate of change of x

over time as a function f : X → X.

The dynamics of a discrete- or continuous-time system in the state space can be characte-

rized by points and orbits with specific properties that define the long-term behaviour of

the system:

Fixed points. A fixed point (or equilibrium) in the state space of a dynamical system is

a point such that, i f the system is in that point, it stays there forever.

In the case of a discrete-time dynamical system as defined in Equation 2.1, this is a

point x∗ such that x∗ = Φ(x∗). Here x∗ is said to be a stable fixed point if all the

eigenvalues of the Jacobian J of the linearization of Φ(x) at x = x∗ have magnitude

smaller than 1; it is said to be unstable if all the eigenvalues of J have magnitude

greater than 1; it is said to be a saddle point if at least one eigenvalue of J is greater

than 1, at least one is smaller than 1, and no eigenvalue is equal to 1.

In the case of a continuous-time dynamical system as defined in Equation 2.3, a fixed

point is a point x∗ such that f(x∗) = 0. The point x∗ is said to be a stable fixed point
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if all the eigenvalues of the Jacobian J of the linearization of f(x) at x = x∗ have

negative real part; it is said to be unstable if all the eigenvalues of J have positive

real part; it is said to be a saddle point if at least one eigenvalue of J has positive

real part, and at least one has negative real part.1

Both in discrete- and continuous-time dynamical systems, a stable point is attrac-

tive, with nearby trajectories converging to it; an unstable point is repulsive, such

that nearby trajectories diverge from it; a saddle point is instead attractive in some

directions and repulsive in others.

Stable and unstable manifolds. The stable manifoldWs(x∗) of a fixed point x∗ is a set

of points in the phase space of a dynamical system which converge to x∗ in forwards

time, whereas the unstable manifold Wu(x∗) of a fixed point x∗ is a set of points in

the phase space of a system which converge to x∗ in backwards time. That is,

Ws =

{
x
∣∣∣ lim
t→∞

(
f(x, t)

)
= x∗

}
(2.4)

Wu =

{
x
∣∣∣ lim
t→−∞

(
f(x, t)

)
= x∗

}
(2.5)

where f is the evolution function of the dynamical system.

Periodic orbit. A periodic orbit is a solution of a dynamical system that repeats itself

over time.

For a discrete-time dynamical system defined as in Equation 2.1, a periodic orbit is

defined as a set of points on the phase space
{
pi = Φi(p0) | i = 1, . . . , k − 1

}
such

that pk = Φ(p0), where Φi denotes the composition of Φ with itself i times.

For a continuous-time dynamical system defined as in Equation 2.3, instead, a peri-

odic orbit is defined as a set of points on the phase space
{
x(t) | t ∈ [0, T ]

}
such that

x(t) = x(t+ T ), where T is known as the period of the orbit.

Limit cycle. A periodic orbit is said to be a limit cycle if it is the limit set of some other

trajectory of the dynamical system, i.e. the set of points to which the trajectory
1While some schools add an additional constraint to the definition excluding points with zero real part

eigenvalues, we here choice to adhere to a more encompassing definition for the sake of simplicity.
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converges after an infinite amount of time has passed (either forward of backward in

time).

Of particular interest for this work, multiple saddle fixed points can sometimes be connec-

ted, thus defining specific graph-like structures in the phase space of a system:

Heteroclinic connections, cycles, networks. Two saddle points x∗1 and x∗2 are he-

teroclinically connected if at least part of the unstable manifold of x∗1 is contained in

the stable manifold of x∗2, where a stable manifold is defined as the set of points in

phase space which converge in forwards time, and an unstable manifold as the set to

which it converges in backwards time. When multiple saddles are connected to form

a cycle, they are said to form a heteroclinic cycle. If multiple heteroclinic cycles are

present in a system, they are said to be a heteroclininic network (see 2.1 for a visual

depiction).

Saddle

Heteroclinic
connection

Heteroclinic
cycle

Figure 2.1: Saddle point, heteroclinic connection and heteroclinic cycle. The
Figure shows a stylized depiction of a saddle point, a heteroclinic connection between two
saddles, and a cycle between three saddles. The arrows pointing to a saddle, or away
from it, represent its stable and unstable manifold, respectively.



Chapter 3

Symbolic Dynamics

In this Chapter, we introduce some key elements of the theory of Symbolic Dynamics

to present the fundamental concepts that the latter Chapters will build upon. For a

more comprehensive treatment of symbolic dynamics, we point the reader to the excellent

introductory book by Lind and Marcus (1995).

We will first provide a few definitions for the basic abstractions in Symbolic Dynamics,

to introduce the concepts and language essential to the description of the results of this

thesis, specifically when discussing the dynamics of objects evolving in symbolic spaces.

We will then move on to describe the Generalized Shift first introduced in Moore (1990),

which we will extend in Chapter 4 to allow for the creation of Recurrent Neural Networks

that transparently perform symbolic computation. In Section 3.2.1 we will present an

adaptation of Moore’s proof showing that the Generalized Shift is a Universal model of

computation, and re-prove in Section 3.3 that the symbolic dynamics of a Generalized Shift

can be mapped to point dynamics on a vector space.

3.1 Elements of Symbolic Dynamics

In this Section, we simply present a list of definitions functioning as an essential dictionary

of the key objects in Symbolic Dynamics, and specifying the terminology used throughout

the rest of this work when discussing dynamics (and computations) on strings of symbols.
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Alphabet. An alphabet A is a finite set of symbols.

Dotted sequence. A dotted sequence s = . . . d−1 . d0 d1 . . . , on some alphabet A is a

sequence of symbols (di)i∈Z ∈ AZ where di ∈ A, ∀i ∈ Z.

One-sided infinite sequence. A one-sided infinite sequence s ∈ AN on some alphabet

A is a sequence of symbols (di)i∈N where di ∈ A, ∀i ∈ N.

Word (block). A word, or block, over an alphabet A is a finite sequence of symbols from

A. The length of a word d is denoted |d| and is equal to the number of symbols in

d. If |d| = 0 then d is the empty word, denoted as ε. A word of length k is called a

k-word. The set containing all possible k-words over and alphabet A is denoted as

Ak. Let s ∈ AZ, we denote the word with coordinates i, j in s (with i, j ∈ Z) as s[i,j],

and the word with coordinates i, j−1 (with i < j−1) as s[i,j). By extension, we will

write s[i,∞) to denote a right-infinite sequence and s[−∞,j] to denote a left-infinite

one.

Sub-word (sub-block). A sub-word or sub-block of some word d = d0d1 . . . dk is a word

w such that w = didi+1 . . . dj with 0 ≤ i ≤ j ≤ k.

Full shift and shift space. The space AZ of dotted sequences is also known as full

A-shift. A subset X of the full shift AZ is a shift space (or just shift), which can be

defined by specifying a collection of forbidden words F , and denoted as XF . The set

of all possible n-words in a shift space X is denoted as Bn(X).

Shift of finite type. A shift of finite type is a shift space that can be described by a

finite set of forbidden words F .

Shift map. The shift map σ : AZ → AZ maps a dotted sequence s ∈ AZ to another

sequence ŝ = σ(s) by shifting all symbols in s to the right. Its inverse operation σ−1

shifts the symbols to the left.

Periodic dotted sequence. A dotted s sequence is periodic if σn(s) = s for some n ≥ 1,

where n is said to be the period of x. The smallest n such that x is periodic with

period n is the least period of x.
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Language. The language of a shift space X is the collection L(X) =
⋃∞
n=0 Bn(X), where

Bn(X) denotes the set of all n-words in X.

Cylinder set. Given a shift space X, a block u ∈ B(X), and an integer k ∈ Z, a cylinder

set Ck(u) is defined as the set of all points in X containing the block u starting from

position k, i.e. Ck(u) = {x ∈ X | x[k,k+|u|) = u} where |u| is the length of the block

u.

N-th higher word code. The n-th higher word code is a bijective function βn that maps

n-words on an alphabet A to single symbols of a new alphabet A[n]. In other words,

each n-word is now a single symbol in the new alphabet, such that

(
βn (x)

)
i

= x[i,i+n) (3.1)

maps the original dotted sequence to its n-th higher word representation.

3.2 Generalized Shifts

By extending the notion of shift map, it is possible to construct a more general map which

can rewrite a finite number of symbols in a dotted sequence and shift it as a function of a

finite number of places in the original dotted string. This map was introduced in Moore

(1990, 1991) and named Generalized Shift.
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Definition 3.1. A Generalized Shift (GS) on some alphabet A is a pair MGS = (AZ,Ω),

with AZ being the space of dotted sequences on A, and Ω : AZ → AZ defined by

Ω(s) = σF (s)
(
s⊕G(s)

)
(3.2)

with

⊕ : AZ ×
(
A ∪ {χ}

)Z → AZ (3.3)

F : AZ → Z (3.4)

G : AZ →
(
A ∪ {χ}

)Z
. (3.5)

Specifically,

1. G has the purpose of defining which symbols should be rewritten in the original dotted

sequence s, by specifying the new symbols to be substituted to the old ones, and

their positions. To do so, G produces a dotted sequence containing a distinguished χ

symbol everywhere, with the exception of a finite number of symbols in the sequence,

which position is specified by a fixed set of indices known as the Domain of Effect

(or DoE) of the Generalized Shift. At these positions, the sequence produced by

G contains the new symbols from A that the ⊕ operator will rewrite over the old

ones in s. The identity of these new symbols depends on the contents of s, for a

finite number of symbols in s specified by a set of indices known as the Domain of

Dependence (DoD) of the Generalized Shift.

2. The ⊕ operator applies the substitution defined by the “blueprint” defined by G, i.e.

G(s) = (gi)i∈Z. Let us define s∗ = s⊕G(s) = (s∗i )i∈Z, then for each index for which

gi = χ, ⊕ leaves s = (si)i∈Z unchanged, such that s∗i = si. For all other indices

k ∈ DoE instead, i.e. for the indices in the Domain of Effect of the Generalized Shift,

s∗k = gk. In this way, the combined action of the ⊕ operator and the function G

applies the rewriting of a finite number of symbols in the original dotted sequence.

3. σ and F are respectively a shift map and a function defining how many positions

and in which direction to shift. Specifically, the value of F depends on the contents

of s in the indices specified by the Domain of Dependence of the Generalized Shift.
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In the following Section we will present a concrete example of a Generalized Shift while

discussing the simulation of Turing Machines with this model.

Figure 3.1: Generalized Shift emulating a Turing Machine. The Turing Machine
starts in state q1 with the tape contents being “nice spring” and the machine head being
on “p”. The toy computation that this machine is performing is the rewriting of symbols
on the tape to obtain “nice string”. This is achieved by first reading the tape cell with
the symbol “p”, then rewriting the same tape cell with symbol “t”, and finally moving the
control head to the left where the computation terminates in state q2. The Generalized
Shift mimics this computation by first applying a rewriting in the domain of effect (DoE)
as a function of the contents of the domain of dependence (DoD) of the sequence, both set
to be the set of indices {−2,−1, 0} (highlighted in orange). Finally the Generalized Shift
applies a shift map σ to the sequence, shifting it to the right in this case, and therefore
obtaining a dotted sequence equivalent of the Turing Machine updated tape configuration.

3.2.1 Universality of Generalized Shifts

In what follows, we will give a short overview of the proof presented in Moore (1991) to

show that the Generalized Shift can simulate any Turing Machine, and is thus a Universal

model of computation.

The symbolic computation performed by a Turing Machine can be seen as a sequence

of transitions between machine configurations. Each machine configuration is a complete

description of the Turing Machine at that computation step, and consists of the current

state of the controller, the current position of the read-write head on the tape, and the

current content of the tape. The canonical description of a Turing Machine configuration

is that of a triple (lt, q, rt), with q being a controller state, lt = . . . d−2td−1t being the

contents of the tape to the left of the read-write head, and rt = d0td1td2t . . . being the
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contents to its right (and the d0t symbol currently under the head). Note how the position

of the head-write head on the tape is implicitly encoded in this representation.

Equivalently, the configuration c of a TM MTM = (Q,N,T, q0,t, F, δ) can be represented

as a dotted sequence s ∈ (Q ∪N ∪T)Z as follows

Σs(c) = . . . d−2t d−1t︸ ︷︷ ︸
lt

qt . d0t d1t d2t . . .︸ ︷︷ ︸
rt

, (3.6)

where lt = . . . d−2t d−1t and rt = d0t d1t d2t . . . are respectively the part of the tape to the

left and the right of the read-write head (d0t being the symbol currently under the head),

and qt being the state of the machine controller. The central dot specifies the current

position of the read-write head (i.e. d0t , the symbol to its right).

For a Generalized Shift Ω(s) = σF (s)
(
s⊕G (s)

)
to emulate a Turing Machine, it is suffi-

cient to set both the DoD and DoE of the Generalized Shift to coincide with the indices

{−2,−1, 0}, thus specifying the sub-word di−1 qt . di0 , and to construct F and G appropria-

tely (see Figure 3.1 for a visual depiction). Specifically, given δ : (qt, d0t) 7→ (qt+1, d̂0t ,m),

i.e. the TM transition function defined in 1.8, F and G can be defined as

G : s = . . . d−1t qt . d0t . . . 7→





. . . (χ) d−1t d̂0t . qt+1 (χ) . . . if m = R

. . . (χ) qt+1 d−1t . d̂0t (χ) . . . if m = L

F : s = . . . d−1t qt . d0t . . . 7→




−1 if m = R

+1 if m = L

(3.7)

for all d−1t ∈ N.

We will now introduce an example to better show how Generalized Shifts can support the

real-time simulation of Turing Machines. Consider a dotted sequence “wq0.ord” represen-

ting the configuration of a TM with δ : (q0, o) 7→ (q1, a,R) and δ : (q1, r) 7→ (q1, n,L). Gi-

ven this transition function, running the TM for two time steps starting from the “wq0.ord”

configuration would yield

c1 = wq0.ord, c2 = waq1.rd, c3 = wq0.and
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where ct is the dotted sequence representing the machine configuration at time t. Con-

structing a GS Ωex as defined in 3.7, and applying it to “wq0.ord” two times yields

Ω2
ex(c1) = Ω2

ex(wq0.ord)

= Ωex

(
σF(wq0.ord)

(
wq0.ord⊕G

(
wq0.ord

)))

= Ωex

(
σ−1

(
wq0.ord⊕ wa.q1

))

= Ωex

(
σ−1 (wa.q1rd)

)

= Ωex(waq1.rd)

= Ωex(c2) = σF (waq1.rd)
(
waq1.rd⊕G

(
waq1.rd

))

= σ+1
(
waq1.rd⊕ q0a.n

)
(3.8)

= σ+1 (wq0a.nd) (3.9)

= wq0.and

= c3

where the DoD of the input string to the VS has been highlighted for clarity. Dotted

sequences representing TM machine configurations always contain a machine state at index

−1, as shown in Equation 3.6. This is the reason why the DoD and DoE of GSs simulating

Turing Machines must span not only the indices for the current state and symbol under

the read-write head (respectively indices −1 and 0), but also – contrary to intuition – the

index for the symbol to the left of the read-write head, i.e index −2. In fact, for a GS

to simulate a TM transition δ(qt, d0t) = (qt+1, d̂0t ,L) where the read-write head is shifted

to the left after rewriting of the current symbol, the GS rewriting s ⊕ G(s) must leave

the current state displaced one place to the left (i.e. occupying index −2), such that the

subsequent shift σ+1
(
s⊕G(s)

)
can re-place it in its reserved index −1 (see lines 3.8 and

3.9 in the previous example).
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3.3 Dynamical Systems from Symbolic Dynamics

In this Section, we discuss how the theory of Symbolic Dynamics can be used to construct

dynamical systems that perform symbolic computation in vectorial spaces. We first intro-

duce the key tool allowing the passage between symbolic shifts and vectorial spaces, i.e. the

Gödel encoding (or Gödelization). We then show that the representation of Generalized

Shifts on a vectorial space through Gödelization defines piecewise affine-linear systems on

the unit square, known as Nonlinear Dynamical Automata.

3.3.1 Gödel encodings and the symbol plane

A Gödel encoding Gödel (1931) is a type of fractal encoding that maps one-sided infinite

sequences to real numbers and thus allows the mapping of symbolic spaces to vectorial

spaces. In this way, it becomes possible to describe classical symbolic models of computa-

tion as discrete time dynamical systems evolving on real vector spaces.

In what follows, the encoding process is discussed. See Figure 3.2 for a graphical represen-

tation.

Definition 3.2. A Gödel encoding ψ : AN → [0, 1] ⊂ R can be defined as

ψ(s) :=

∞∑

k=1

γ(rk)g
−k, (3.10)

where s is a right-infinite sequence from AN, the space of right-infinite sequences over

some alphabet A, rk is the k-th symbol in s, g = |A| is the number of symbols in A, and

γ : A→ N is a one-to-one function enumerating the symbols in A with maxr γ(r) < g.

It is possible to Gödelize dotted sequences wl.wr by defining two Gödel encodings ψx

and ψy and applying them to the two right-infinite sequences wr
l and wr obtained by

splitting the original dotted sequence at the dot and reversing its left constituent. The

pair
(
ψx
(
wr
l

)
, ψy (wr)

)
with wr

l , wr ∈ AN induces a bi-dimensional representation of

dotted sequences on the unit square [0, 1]2 ⊂ R2, known as symbol plane or symbologram

(See Figure 3.3).
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Figure 3.2: Three representations of the Gödel Encoding of a sequence. The
first one is just the definition of the Gödel encoding, with details on the specific choice
of the enumerating γ function and the definition of the g constant, given the alphabet A
from which the sequence takes its symbols. The second one is an expansion of the series
in the definition. The third one visually conveys the fractal and convergent nature of the
series, highlighting the relation between numbers and symbols by the use of the colour
orange.

Some important limits of the Gödelization approach in mapping symbolic to vectorial

spaces are discussed in Section 4.6.

3.3.2 Shifts and rewritings as affine-linear transformations

In what follows, we introduce a push � and pop 	 operator on one-sided infinite sequences,

and show that rewritings and shifts by a Generalized Shift on dotted sequences can be

mapped to push and pop operations on their one-sided infinite constituents. We will

then show that the Gödelization of a one-sided infinite sequence ŝ resulting from push
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0

1

0 1

Figure 3.3: Example symbologram representation for gödelized dotted sequences
over an alphabet A = {a, b, c}. Four encoded dotted sequences are shown on the unit
square. Furthermore, a grid is imposed over the unit square, such that each cell specified
by the n-th subdivision level contains dotted sequences agreeing on the first n symbols
to the left and to the right of the dot. This is done to highlight the fractal nature of the
symbologram.

and pop operations on an original sequence s is equivalent to the application of a linear

transformation on the Gödelization of the original sequence. In this way, we can prove

that rewritings and shifts by a Generalized Shift on dotted sequences are equivalent, on the

symbologram, to linear transformations applied to their Gödelized one-sided constituents.

Definition 3.3. The push operator � : A∗ ×AN → A∗ is defined as

s� b = bs, (3.11)

such that s� b adds the contents of a word b ∈ A∗ to the beginning of s ∈ AN. The pop

operator 	 : N×AN → AN is instead defined as

	p s = s[i≥p], (3.12)

such that 	ps removes the first p symbols in s.

It is very easy to show that shifting a dotted sequence s = . . . d−2 d−1 . d0 d1 . . .

is equivalent to applying push and pop operations on its one-sided constituents wl =
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. . . d−2 d−1 and wr = d0 d1 . . ., as follows

σ−1(. . . d−2 d−1 . d0 d1 . . .) = (wr
l � d0)r.(	1wr)

= . . . d−1 d0 . d1 d2 . . . ,

and

σ1(. . . d−2 d−1 . d0 d1 . . .) = (	1wr
l )r.(wr � d−1)

= . . . d−3 d−2 . d−1 d0 . . . ,

where xr denotes the x sequence in reverse order.

For what concerns the GS rewriting, instead, let us consider a GS with DoE = D ⊂ Z with

|D| = n ∈ N+. As the DoE is finite, it contains a minimum index kmin = min(DoE) and

a maximum index kmax = max(DoE) (the two can coincide). This means that symbols in

s with indices i > kmax or i < kmin will never be rewritten by the GS. We thus have the

three following possibilities:

– kmin < 0, kmax < 0. Let us define s = wl u . wr, such that wl = s[−∞,kmin), u =

s[kmin,0) and wr = s[0,+∞]. Additionally, let us define G(s) = χl û . χr, with û =
(
s⊕G(s)

)
[kmin,0]

, and χl, χr being respectively an infinite left and right padding of

the χ symbol. Note that here s ⊕ G(s) = wl û . wr, as the GS rewriting does not

affect wl and wr, because they are outside its DoD. It is possible in this case to map

the GS rewriting s⊕G(s) to pop and push operations on one-sided infinite sequences

as follows:

wl u . wr ⊕ χl û. χr =
(
(	|u|urwl

r)� ûr)r.wr

=
(
wl

r � ûr)r .wr

= wl û . wr,

– kmin ≥ 0, kmax ≥ 0. Let us define s = wl . u wr, such that wl = s[−∞,−1], u =

s[0,kmax] and wr = s(kmax,+∞]. Additionally, let us define G(s) = χl . û χr, with

û =
(
s⊕G(s)

)
[0,kmax]

, and χl, χr being respectively an infinite left and right padding

of the χ symbol. Here s ⊕ G(s) = wl . û wr. The GS rewriting s ⊕ G(s) is thus
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mapped to pop and push operations as follows:

wl . u wr ⊕ χl . û χr = wl . (wr � û)

= wl . û wr,

– kmin < 0, kmax ≥ 0. Let us define s = wl u . v wr, such that wl = s[−∞,kmin),

u = s[kmin,0), v = s[0,kmax] and wr = s(kmax,+∞]. Additionally, let us define G(s) =

χl û . v̂ χr, with û =
(
s⊕G(s)

)
[kmin,0)

, v̂ =
(
s⊕G(s)

)
[0,kmax]

, and χl, χr being an

infinite left and right padding of the χ symbol. Here s ⊕ G(s) = wl û . v̂ wr. The

GS rewriting s⊕G(s) is here mapped to pop and push operations as follows:

wl u . v wr ⊕ χl û . v̂ χr =
(
(	|u|urwl

r)� ûr)r.
(
(	|v|vwr)� v̂

)

=
(
wl

r � ûr)r . (wr � v̂)

= wl û . v̂ wr.

Shifts and rewritings by a GS on dotted sequences can thus be mapped to pop and push

operations on their one-sided infinite constituents. We will now show that the Gödelization

of a one-sided sequence ŝ resulting from pop and push operations on some original sequence

s is equivalent to the application of an affine-linear transformation (a transformation of

the form λx+ a, with λ, a ∈ R) to the Gödelization of the original sequence x = ψ(s). In

fact, given a sequence s = d0 d1 d2 . . . and its Gödelization ψ (s) = γ(d1)g−1 +γ(d2)g−2 +

γ(d3)g−3 + . . ., for a pop operation we obtain

ψ(	ps) = γ(dp+1)g−1 + γ(dp+2)g−2 + γ(dp+3)g−3 + . . .

= gp · ψ(s)−
p∑

i=1

γ(di)g
p−i, (3.13)
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where the parameters of the affine-linear transformation are λ = gp and a = −
p∑
i=1

γ(di)g
p−i.

For a push operation, instead, we have

ψ(s� b) = γ(b1)g−1 + . . .+ γ(br)g
−r+

γ(d1)g−(r+1) + γ(d2)g−(r+2) + . . .

= g−r · ψ(s) +

r∑

i=1

γ(bi)g
−i, (3.14)

where the parameters of the affine-linear transformation are λ = g−r and a =
r∑
i=1

γ(bi)g
−i.

In this way we can represent dotted sequences on the unit square by defining an appro-

priate pair of Gödelizations, and GS on dotted sequences as bidimensional affine-linear

transformations, with the parameters of the transformations only depending on the sym-

bols of the dotted sequence in the DoD of the GS. All dotted sequences sharing the same

DoD symbols are thus associated with the same transformation, so that the symbologram

representation of GSs naturally leads to piecewise affine-linear systems on the unit square,

known as Nonlinear Dynamical Automata (NDA).

3.3.3 Nonlinear Dynamical Automata

We now present a formal definition of Nonlinear Dynamical Automata (beim Graben et al.,

2008, 2004, Moore, 1991, Tabor, 2000, Tabor et al., 2013) to support discussion in the next

Chapters.
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Definition 3.4. A Nonlinear Dynamical Automaton (NDA) can be defined as a triple

MNDA = (X,P,Φ), where the pair (X,Φ) defines a discrete-time dynamical system, and

such that

– P is a rectangular partition of the unit square, that is

P = {Di,j ⊂ X| 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N}, (3.15)

so that each cell is defined as Di,j = Ii × Jj , with Ii, Jj ⊂ [0, 1] being real intervals

for each bi-index (i, j), with Di,j ∩Dk,l = ∅ if (i, j) 6= (k, l), and
⋃
i,j D

i,j = X,

– X = [0, 1]2 ⊂ R2, is the phase space of the (X,Φ) dynamical system, X corresponding

in this case to the unit square,

– the flow Φ : X → X is a piecewise affine-linear map such that Φ|Di,j := Φi,j , where

Φi,j is defined as:

Φi,j(x) =




ai,jx

ai,jy


+




λi,jx 0

0 λi,jy







x

y


 (3.16)

We also explicitly define a switching rule Θ : [0, 1]2 → N2 for the piecewise affine-linear

system (X,Φ), selecting the appropriate branch given the current state (x, y) of the system,

such that

(x, y) ∈ Di,j ⇒ Θ(x, y) = (i, j) ⇒ Φ(x, y) = Φi,j(x, y). (3.17)

The switching rule is implied in the original formulation of NDA, but we prefer to make it

explicit to facilitate the discussion of the system later on.

We can define a mapping between GSs and NDA following the methods outlined in Sections

3.3.1 and 3.3.2. Specifically, the symbologram representation of dotted sequences can be

partitioned in I×J cells such that each cell contains all Gödelized dotted sequences which

have the same symbols in the DoD of the GS (see Figure 3.3 for a pictorial representation).

As each cell in the rectangular partition P corresponds to a specific DoD content, it

is also associated with a specific action of the GS, which can be mapped to pop and

push operations on the left and right components of a dotted sequence, and thus to a
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bi-dimensional affine-linear transformation which parameters can be derived by following

Section 3.3.2. As we have shown in Section 3.2.1, GSs can simulate any Turing Machine

by setting the DoD = DoE = {−1, 0, 1} and appropriately constructing the G and F

functions. Given that the symbolic dynamics of GSs can be mapped to the NDA vectorial

dynamics on the unit square, NDA can thus also simulate any Turing Machine in real time.

TMs can thus be represented as NDA through the Gödelization of their simulating GSs.





Chapter 4

Transparent symbolic computation in

Neural Networks

The field of computational neuroscience is devoted to understanding how networks of bio-

logical neurons are able to process information and thus perform computation. In spite of

that, there is a stark disconnect between our descriptions of symbolic computation, tradi-

tionally formulated in terms of algorithms, automata and formal languages, and descripti-

ons of neuronal computation, which are instead usually formulated in terms of dynamical

evolutions on state spaces. Early attempts to bridge these two levels of description can

be traced back to pioneering work by McCulloch and Pitts (1943), who modelled neurons

as binary logic gates. Networks of McCulloch-Pitt neurons have since been proven to be

equivalent in power to Finite-State Machines thanks to seminal work by Kleene (1956)

and Minsky (1967). More recently, Siegelmann and Sontag (1991, 1995) showed that a

constructive mapping can be defined between Turing Machines and Recurrent Neural Net-

works (RNNs) with rational weights and ramp activation functions. Moreover, they proved

that, given an appropriate adjacency matrix, a network of 886 ramp units can simulate a

Universal Turing Machine, thus showing that RNNs are, in fact, Universal models of com-

putation. Stemming from this work, Cabessa and Siegelmann (2012), Cabessa and Villa

(2012) showed that RNNs can also support the simulation of interactive Turing Machines,

further extending the boundaries of RNN information processing to the realm of interactive

47
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computation (Wegner, 1998). Furthermore, these authors have also shown that RNNs can

theoretically support forms of computation which are fundamentally outside what can be

modelled in terms of Turing Machines (Cabessa and Villa, 2013, Siegelmann, 1995).

In this Chapter, we set ourselves to lay a new stone on the path traced by these pioneers.

Specifically, we first extend work done by Moore (1990, 1991) on Generalized Shifts and

Nonlinear Dynamical Automata (GSs and NDA, see Chapter 3), by presenting a new shift

map, the Versatile Shift (VS, discussed in Section 4.1), that supports the parsimonious real-

time simulation of a range of symbolic computation models (including but not restricted

to TMs, see Section 4.2), and show that its Gödelization defines NDA evolving on the

unit square (Section 4.3). Secondly, we present a constructive mapping between NDA and

RNNs (in Section 4.4), describing a transparent, modular and parsimonious architecture

for symbolic computation in Neural Networks.

The key novelty of this contribution stems from the relation between the network architec-

ture and the structure of NDA. Crucially, similarly to how symbolic models of computation

(or any formal system) distinguish between data, operations on data, and their control-

led application, NDA also preserve, in their formulation, the distinction between these

three. By constructing RNNs modularly from the NDA components, our architecture

keeps this distinction and thus implements symbolic computation in a transparent and

straightforward manner, as we will discuss in Section 4.4. To demonstrate the power of

our framework, we will present three examples (Section 4.5). With these, we show that the

granular modularity and transparency of the architecture allows for the constructive map-

ping of Interactive Automata Networks to RNNs, and opens the possibility of correlational

studies with electrophysiological data.

In Figure 4.1, we present a commutativity diagram tracing the various steps involved in

our formulation (on the left), and which Section discuss them (on the right). Starting from

an automaton evolving on its configuration space, we derive a Versatile Shift evolving in

the space of dotted sequences, by mapping configurations to sequences through a map Σs,

and the automaton transition function δ to the Versatile Shift update function Ω through

a map Σδ. The Versatile Shift object is discussed in Section 4.1, whereas the mapping
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between various automata dynamics to Versatile Shift dynamics through the Σs and Σδ

maps is discussed in Section 4.2. From the Versatile Shift, we then map dotted sequences

to points on a bi-dimensional vector space through a Gödel encoding ψ, and the Versatile

Shift Ω update rule to the piecewise affine-linear dynamics Φ of a NDA through a map Ψ.

In this way, the Versatile Shift dynamics on the symbolic space of dotted sequences can be

mapped to point dynamics on the unit square. The maps ψ and Ψ are presented in Section

4.3. Finally, we show how the dynamics Ω of a NDA can be mapped to the dynamics ζ

of a Recurrent Neural Network endowed with a specific structure through a map ρ. The

maps ζ and ρ are discussed in Section 4.4.
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Figure 4.1: Complete commutativity diagram for mapping of models of com-
putation to the proposed RNN architecture. In the Figure, we show how an auto-
maton can be mapped to a RNN simulating its computation in real-time. The automaton
configurations are first represented as dotted sequences through a Σs map, and the au-
tomaton itself mapped to a Versatile Shift (see Section 4.1) on dotted sequences through
a Σδ map (the maps Σs and Σδ are discussed in Section 4.2 for FSMs, PDA, TDRs and
TMs). The dotted sequences can then be represented as points on a bi-dimensional vector
space through a ψ Gödelization, and the Versatile Shift as a piecewise affine-linear system
through a map Ψ, obtaining a Nonlinear Dynamical Automaton (the maps ψ and Ψ are
discussed in Section 4.3). Finally, a map ρ maps the Nonlinear Dynamical Automaton
to a specific Recurrent Neural Network architecture with internal dynamics ζ, and iden-
tically maps encoded dotted sequences to the activation of a specific pair of neural units
in the network (the maps ρ and ζ are discussed in Section 4.4).
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4.1 Versatile Shifts

As we discussed in Section 3.2.1, GSs can simulate any Turing Machine (as proved by

Moore, 1990, 1991), and are thus a Universal model of computation. This implies that

GSs can simulate any other model of computation of power equal or inferior than that of

Turing Machines. This, however, does not guarantee that the simulation will be efficient,

as each machine model has its own set of atomic operations which is not necessarily easy

to simulate through the operations of a different machine, requiring multiple computation

steps for each step in the original machine. This is as true for abstract automata as

it is in the real world: virtual machines simulating some system, for example, require

more processing power to run than that necessary to run the simulated systems natively

(Smith and Nair, 2005). Simulating automata through GSs will thus lead in many cases to

unnecessarily complicated shift spaces, reflecting the complicated machine tables needed

by the TMs themselves to simulate the original automata. We thus add more flexibility to

the GS object, allowing it to simulate different atomic operations from different automata

parsimoniously and in real time. We do so by relaxing some of the constraints in the model,

while at the same time preserving the possibility to map its dynamics to that of NDA. We

refer to this novel shift map as Versatile Shift (VS).

In order to present the model, we redefine the concept of dot in a dotted sequence. Whereas

until now the dot was only used to facilitate notation (i.e. to denote the 0-th coordinate

of a dotted sequence), we will now consider the dot as a meta-symbol used to concatenate

two words, such that the set of dotted words can be defined as Â∗ = {v1.v2 | v1, v2 ∈ A∗}.

If we denote the set of left-infinite and right-infinite sequences respectively as AZ− and

AZ+ , then a dotted sequence can be defined as a bi-infinite sequence of symbols s ∈ AZ

where s = wl v wr with v ∈ Â∗ being a dotted word v = v1 . v2, such that wlv1 ∈ AZ−

and v2wβ ∈ AZ+ . That is, the indices in the newly defined dotted sequence are now

inherited from the dotted word v rather than specified beforehand (this may seem of little

consequence at the moment, but will be important later).



52

DoD{

o r

a n

Substitution by
Generalized Shift

o n d e r  

Rewriting by
Versatile Shift

DoD{

dw

dw

o r dw

w dl a n

Figure 4.2: Substitution by a Generalized Shift versus rewriting by a Versatile
Shift. The key difference between a Generalized Shift and a Versatile Shift is the way
they perform symbol replacement on dotted sequences. Specifically, as the Figure shows,
a Generalized Shift can only replace each symbol in its Domain of Dependence with a new
one; a Versatile Shift can instead substitute the dotted word in its Domain of Dependence
with a new dotted word, with no length restrictions. A Versatile Shift reduces to a
Generalized Shift when the substituted dotted words always have the same length and
indexing as the original dotted word in the Domain of Dependence.

The key difference between our novel VS and the GS is in the rewriting operation (see

Figure 4.2). In fact, the GS is defined such that the joint action of a G function and

of a ⊕ operator results in the rewriting of a finite number of symbols in the original

sequence with new ones. In the VS we redefine G and ⊕ such that their operation results

in the substitution of a dotted word of some length in the original sequence with a new

dotted word of equal or different length. Through this, we add expressiveness to VSs in

comparison to GSs while still maintaining the possibility to map the shift’s dynamics to

NDA, thus being able to simulate a greater range of models of computation in real time

through piecewise affine-linear systems on the unit square. We will now introduce a formal

definition of VS.
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Definition 4.1. we define a Versatile Shift (VS) as a pair MV S = (AZ,Ω), with AZ being

the space of dotted sequences, and Ω : AZ → AZ defined by

Ω(s) = σF (s)(s⊕G(s)) (4.1)

with

F :AZ → Z, ⊕ :AZ × Â∗ → AZ, G :AZ → Â∗, (4.2)

where the substitution operator “⊕” substitutes the dotted word v1.v2 ∈ Â∗ in s with

a new dotted word v̂1.v̂2 ∈ Â∗ specified by G, while F (s) determines the number and

direction of the shifts. The action of F , G and ⊕ in a VS is determined by the contents

of a finite set of consecutive cells in the original dotted sequence, which indices define the

DoD of the VS.

The DoD can be specified by an open interval (kl, kr) ⊂ Z, with kl ≤ 0 and kr ≥

0. Additionally, we define DoDl = (kl, 0) and DoDr = (−1, kr) to be the left and

right part of the complete DoD of the VS, such that DoD = DoDl ∪ DoDr. The set

V ⊂ Â∗ of dotted words that can appear in the DoD of a VS can be defined as V =
{
v
∣∣ v = v1.v2 ∈ Â∗, |v1| = |DoDl|, |v2| = |DoDr|

}
.

We will now present an example to illustrate the action of VSs on dotted sequences. Let

us define a VS ΩVS such that

DoD = (−2, 1) = {−1, 0}, G|DoD :





o.r 7→ a.n

a.n 7→ on.derlan,
F |DoD :





o.r 7→ 0

a.n 7→ 1.
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Then, applying ΩVS to “wo.rd” two times yields

Ω2
VS(wo.rd) = ΩVS

(
σF (wo.rd)

(
wo.rd⊕G(wo.rd)

))

= ΩVS

(
σF (wo.rd)

(
wo.rd⊕ a.n

))

= ΩVS

(
σF (wo.rd) (wa.nd)

)

= ΩVS

(
σ0 (wa.nd)

)

= ΩVS(wa.nd) = σF (wa.nd)
(
wa.nd⊕G(wa.nd)

)

= σF (wa.nd)
(
wa.nd⊕ on.derla

)

= σF (wa.nd) (won.derland)

= σ1 (won.derland)

= wo.nderland

where the DoD of the input string has been highlighted for clarity.

4.2 Simulation of various automata by Versatile Shifts

We will now show how Versatile Shifts can seamlessly support the simulation of a range

of models of computation. Importantly, given that the mapping of non-deterministic mo-

dels of computation to RNNs is outside the scope of our work, in what follows we imply

determinism for all the discussed automata.

4.2.1 Finite-State Machines

It is possible to encode a FSM configuration c on a dotted sequence as

Σs(c) = qt . d0t d1t . . . dnt (4.3)

where qt, d0t and d1t . . . dnt are respectively the state, input symbol, and the rest of the

unconsumed input of the FSM at time t.

Given any FSM, it is possible to construct a VS simulating it in real-time by defining a

map Σδ : δFSM 7→ F,G between the FSM transition function δFSM and the VS F and G
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functions such that
F |DoD(qt.d0t) = 0

G|DoD(qt.d0t) = qt+1.ε,

(4.4)

with Domain of Dependence DoD = (−2, 1) = {−1, 0} and where qt+1 = δ(qt, d0t).

4.2.2 Push-Down Automata

A PDA configuration c can be encoded on a dotted sequences as follows:

Σs(c) = smt . . . s0t︸ ︷︷ ︸
st

qt . d0t . . . dnt︸ ︷︷ ︸
dt

(4.5)

where qt, dt and st are respectively the state, the unconsumed input and the content of

the stack of the automaton in reversed order at time t.

Given any PDA, it is possible to construct a VS simulating it in real-time by defining a

map Σδ : δPDA 7→ F,G between the FSM transition function δPDA and the VS F and G

functions such that

F |DoD(s0tqt.κ) = 0

G|DoD(s0tqt.κ) =





ε qt+1 . ε if χ = ε

s0t χ qt+1 . ε otherwise.

(4.6)

with Domain of Dependence DoD = (−3, 1) = {−2,−1, 0}, and where (qt+1, χ) = δ(qt, κ, s0t),
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4.2.3 Top-Down Recognizers

In this work we use Top-Down Recognizers to process locally unambiguous non-left-recursive

CFGs 1. This class of Top-Down Recognizers only have one state q0, and we can thus de-

scribe their machine configuration without referring to the current state. It is possible to

encode a (single-state) TDR configuration c on a dotted sequences as follows:

Σs(c) = smt . . . s0t︸ ︷︷ ︸
st

. d0t . . . dnt︸ ︷︷ ︸
dt

(4.8)

where dt and st are respectively the unconsumed input and the content of the stack of

the automaton in reverse order at time t. Similarly, simpler VSs than those needed to

simulate PDAs can be constructed from a TDR’s transition function, by defining the map

Σδ : δTDR 7→ F,G such that

F |DoD(s0t .κ) = 0

G|DoD(s0t .κ) = χ.ε

(4.9)

with Domain of Dependence DoD = (−2, 1) = {−1, 0}, and where (q0, χ) = δ(q0, κ, s0t).

4.2.4 Turing Machines

It is possible to encode a TM configuration c on a dotted sequence as shown in 3.6, i.e as

Σs(c) = . . . d−2t d−1t︸ ︷︷ ︸
lt

qt . d0t d1t d2t . . .︸ ︷︷ ︸
rt

,

where lt describes the part of the tape to the left of the read-write head, rt describes the

part to its right, qt describes the current state of the machine controller, and the central

dot denotes the current position of the read-write head, i.e. d0t , the symbol to its right.
1A recursive CFG is defined as a CFG which includes at least one rule of the form A → uAv, which

expands a non-terminal symbol A into a string that contains the same non-terminal; a left-recursive CFG
is a recursive CFG where all such rules are in the form A→ Aw; A CFG is locally unambiguous if no two
rules expand the same nonterminal.
Note that, in relation to the CFG grammar GCF = (N,T, R, S) from which the TDR is derived, the

previous equation implies that

G|DoD :

{
a .a 7→ ε .ε
X.a 7→ w.ε

(4.7)

for all a ∈ T, (X → w) ∈ R.
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A VS simulating a TM in real-time can be constructed from the TM’s transition function

by defining the Domain of Dependence to be DoD = (−3, 1) = {−2,−1, 0}, and G and F

so that, given δ : (qt, d0t) 7→ (qt+1, d̂0t ,m),

G :





d−1t qt . d0t 7→ d−1t d̂0t . qt+1 if m = R

d−1t qt . d0t 7→ qt+1 d−1t . d̂0t if m = L

F :





d−1t qt . d0t 7→ −1 if m = R

d−1t qt . d0t 7→ +1 if m = L

(4.10)

for all d−1t ∈ N.

4.3 Dynamical Systems from Versatile Shifts

We will now show that the action of a VS can be mapped to that of a piecewise affine-

linear system on the symbologram, yielding a NDA. This is achieved through a map Ψ

that, given the VS and two Gödelizations (ψx, ψy) mapping its dotted sequences to points

on the symbologram, derives the rectangular partition P = {Di,j} of the unit square and

the set of linear transformations Φi,j defining the NDA.

Specifically, the P partition is defined by the Gödelization of cylinder sets containing

sequences which agree on their DoD symbols. The Gödelization of each cylinder set is

a rectangle Di,j = Ii × Jj , where Ii = [ξi, ξi+1), Jj = [ηj , ηj+1). The Ii and Jj intervals

are defined respectively by the Gödelization of the left and right constituents of dotted

sequences in the cylinder set. The lower bound of each Ii interval (equivalently, the upper

bound of each Ii−1 interval) can be derived as the minimum of the Gödelization of the

cylinder set for a given content of the DoD. In fact, if we let zl = |DoDl| be the number

of symbols in the left DoD of the VS and γx(r∗) = minr
(
γx(r)

)
be the minimum of the

γx enumerating function for the Gödelization of the left constituents, we can derive the
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minimum of the Gödelized left constituent as

ξi = min
w

(
ψx(wr

l )
)

=

zl∑

k=1

γx(rk)g
−k +

∞∑

k=zl+1

γx(r∗)g−k

=

zl∑

k=1

γx(rk)g
−k + γx(r∗)


 g

1− g −
zl∑

k=1

g−k




=

zl∑

k=1

γx(rk)g
−k + γx(r∗)

(
g

1− g −
g − gzl+1

1− g

)

=

zl∑

k=1

γx(rk)g
−k + γx(r∗)

gzl+1

1− g

(4.11)

where we have used that, given g−1 < 1,
∞∑
k=1

g−k is a geometric series converging to g
1−g ,

and that, for a, b ∈ N,
b∑

k=a

gk = ga−gb+1

1−g . The same argument as in Equation 4.11 can

be used to show that ηj =
|DoDr|∑
k=1

γy(rk)g
−k
y + γy(r

∗)g
|DoDr |+1
y

1−gy . With ξm+1 = ηn+1 = 1 as

boundary conditions, the Gödelized cylinder sets are disjoint intervals covering all of the

unit square, thus defining the partition P of the NDA.

Each of the Dij Gödelized cylinder sets is associated with a specific dotted word in the

DoD of the VS, and thus to a specific substitution and shift by the VS. We will now show

that each DoD-specific substitution and shift by a VS can be represented as a linear trans-

formation on the symbologram, enabling us to obtain the Φi,j set of linear transformations

of the NDA.

We have previously proved that rewriting and shift operations on dotted sequences by a GS

can be mapped to push and pop operations on their one-sided infinite constituents, and that

push and pop operations can be represented on the symbologram as linear transformations

on the Gödelized dotted sequences. By introducing the VS, we extended the GS rewriting

operation with a more general substitution operation, which can substitute a dotted word

in the original dotted sequence with any other arbitrary dotted word of similar or different

length. We will now show that this rewriting operation can also be mapped to push and

pop operations on the one-sided infinite constituents of the original dotted sequence. This
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result implies that substitutions and shifts by a VS can be represented as affine-linear

transformations on the symbologram.

Let s ⊕ G(s) = wlu.vwr ⊕ û.v̂ be a substitution replacing the dotted word u.v in s with

the dotted word û.v̂, then s ⊕ G(s) can be straightforwardly mapped to pop and push

operations on (wlu)r and vwr, the one-sided constituents of the original dotted sequence

s, as follows:

wlu.vwr ⊕ û.v̂ =

((
	|u|urwα

r
)
� ûr

)r

.

((
	|v|vwr

)
� v̂
)

=
(
wr
l � ûr)r. (wr � v̂)

= wlû.v̂wr.

We are thus able to represent a VS on the symbologram by deriving the parameters of

the affine-linear transformations associated with its operations. In fact, given that i) a

substitution and shift by VS can be represented as the composition of push and pop

operations, ii) push and pop operations can be represented on the symbologram as affine-

linear transformations (as shown in Section 3.3.2), and iii) the composition of affine-linear

transformations is an affine-linear transformation, then each VS substitution and shift can

be represented as a bi-dimensional affine-linear transformation on the symbologram.

4.3.1 A refined Gödelization

In the coming Sections, we will often encounter dotted sequences wl.wr representing ma-

chine configurations such that the index −1 only ever contains a state symbol, with the

rest of the dotted sequence only containing tape symbols (as discussed in Sections 4.2.1,

4.2.2 and 4.2.4). In order to cover all of the available representational space [0, 1]2, we can

define a refined Gödelization as

ψx(s) := γq(d1)n−1
q +

∞∑

k=1

γs(dk+1)n−ks n−1
q , (4.12)

with γq and γs respectively enumerating the set of states Q and that of tape symbols

A, and where nq = |Q|, ns = |A|. It is trivial to show, through the same arguments

presented in Sections 3.3.1, 3.3.2 and 4.3, that the refined Gödelization of a VS preserving
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the machine configuration encoding in the original dotted sequence (i.e. with the resulting

sequence only containing state symbols at index −1 and never elsewhere) is akin to linear

transformations on the original refined Gödelization of the dotted sequence.

4.4 NDA to Recurrent Neural Networks

We have introduced VSs on dotted sequences and shown that their symbolic dynamics

can simulate a range of models of computation in real-time, and can be mapped to point

dynamics of NDA, discrete-time piecewise affine-linear dynamical systems on the unit

square. In this Section, we will present a mapping between NDA and Recurrent Neural

Networks (RNNs). This allows us to simulate VSs in real time, and thus a variety of models

of computation in real-time, through Neural Network dynamics.

The mapping defines a RNN architecture which is modular and transparently reproduces

the structure of NDA through three layers, the machine configuration layer (MCL), the

branch selection layer (BSL) and the linear transformation layer (LTL), as shown in Figure

4.4. Specifically, the action of the three layers can be summarized as follows:

Machine Configuration Layer. The MCL encodes the state of the NDA, and thus the

symbolic data of the simulated machine, and functions as a read-out layer in this

architecture. Given that the state space X of the NDA is the unit square, the MCL

only needs two neural units to maintain the machine configuration encoding, units

which we will refer to as cx and cy. The MCL has a forward connection to the BSL

and the LTL.

Branch Selection Layer. The BSL receives as an input the activation values of the cx

and cy MCL units, and outputs to the LTL. The BSL is divided in two sets of units,

bx and by, each connected to one of the two MCL units, and acting as a switching

system with regards to the LTL. In relation to the NDA dynamics, at each time

step the BSL determines to which Di,j cell the machine configuration encoded in the

MCL activation belongs. As a result, thanks to an interplay between inhibitory and
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Figure 4.3: Activation functions for units in the proposed architecture. The
Ramp activation function (on the right) is used by units in the Machine Configuration
Layer and the Linear Transformation Layer of the network. The Heaviside activation
function (on the left) is instead used by units in the Branch Selection Layer.

excitatory connections to the LTL, only two units in the LTL are allowed to stay

active and perform their function.

Linear Transformation Layer. The LTL receives input both from the MCL and the

BSL, and has output recurrent connections to the MCL. The LTL can be divided in

pairs of tx and ty neural units, each applying one of the Φi,j decoupled bi-dimensional

affine-linear transformations. Each tx neural unit is connected to the cx MCL unit,

and each ty unit to the cy MCL unit. In this way, at each time step the BSL makes

sure only a pair of LTL units is active, and the pair applies its Φi,j(x, y) affine-linear

transformation to the (cx, cy) input from the MCL, reproducing in vectorial space

a symbolic operation by the original simulated machine, and updating the MCL

activation with the new encoded machine configuration.

The activation functions for the neural units in this architecture are the Heaviside (H) and

the Ramp (R) activation functions, defined as follows (and shown in Figure 4.3):

H(x) =





0 if x < 0

1 if x ≥ 0

R(x) =





0 if x < 0

x if x ≥ 0.

(4.13)

To formally characterize the construction of our architecture, we define a map ρ between

NDA and RNNs, with the objective of mapping the NDA dynamics Φ to neural dynamics

ζ, as

ζ = ρ(I,A,Φ,Θ), (4.14)
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Branch
 Selection 

Layer

Linear
Transformation 

Layer

Machine
Configuration

Layer
External Input

Figure 4.4: Layer connectivity in the Recurrent Neural Network architecture.
In the network, the Machine Configuration Layer sends output to the Branch Selection
Layer and the Linear Transformation Layer; the Branch Selection Layer receives input
from the Machine Configuration Layer and outputs to the Linear Transformation Layer;
the Linear Transformation Layer receives input from the Machine Configuration Layer
and the Branch Selection Layer, and has a recurrent output connection to the Machine
Configuration Layer. In this architecture, the Machine Configuration Layer acts as a read-
out layer (as it stores the encoded machine configuration of the simulated automaton),
and is initialized at the beginning of the computation through external input.

where I2×2 =
[

1 0
0 1

]
is an identity matrix identically mapping the NDA initial conditions to

the MCL initial conditions, A is the weight matrix of the network architecture, and Φ and

Θ are respectively the flow and switching rule of the NDA to be simulated. Furthermore,

ζ can be divided in three distinct components ζ = (ζMCL, ζBSL, ζLTL), each corresponding

to the dynamics of one of the layers in the network.

In the following Sections, we will discuss the role for the ρ map for each of the three layers

in the network.

4.4.1 Machine Configuration Layer

The MCL encodes at each time step the state of the simulated NDA, which in turn encodes

the Gödelized representation of the symbolic data of the machine that the NDA simula-

tes. Given that the Gödelized representation of machine configurations is a point on the

symbologram (as discussed in Section 3.3.1), i.e. the unit square, the MCL only requires

two neural units, cx and cy, to store the encodings. In addition to storing the encoded

symbolic data of the simulated machine, and thus acting as a read-out layer for the RNN,

the MCL also makes this information available to the rest of the network through forward

connections to the BSL and LTL (see Figure 4.5 for the detailed connectivity).

The MCL is initialized at the beginning of the computation with the encoded initial configu-

ration of the simulated machine. Specifically, the NDA initial conditions
(
ψx(wr

l ), ψy(wr)
)
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Figure 4.5: Detailed connectivity of network architecture. The Figure shows the
connectivity of an example network simulating a NDA with 3 × 2 cells Di,j . In panel
(A), the MCL cx and cy units have a forward connection with weight 1 to respectively
the bx = {b1x, b2x, b3x} and by = {b1y, b2y} units. The BSL units are instead connected with a
specific excitatory-inhibitory pattern to the relevant pairs of units in the LTL, such that
only a given pair (in this case the pair corresponding to cell D1,2 in the simulated NDA)
receives a cumulative input of h from the BSL, with all other pairs receiving either h

2
or 0. As shown in panel (B), each pair has an intrinsic inhibitory bias component of h,
such that only pair the D1,2 pair in this example receives enough input from the BSL
to fully counteract the inhibition. Additionally, each ti,jx unit in the LTL is connected
with weight λi,jx to the cx unit in the MCL, and has an intrinsic bias component of ai,jx ;
each ti,jy unit in the LTL is instead connected with weight λi,jy to the cy unit and has an
intrinsic bias component of ai,jy . This allows each pair, when de-inhibited by the BSL,
to apply the corresponding Φi,j = (λi,jx x + ai,jx , λ

i,j
y x + ai,jy ) linear transformation of the

simulated NDA.

are directly encoded as the MCL initial activation values by the ρ map as

(cx, cy) =
(
ψx(wr

l ), ψx(wr)
)
≡ ζMCL(0) = ρ(I, ·, ·, ·)|(ψx(wr

l ),ψx(wr)) (4.15)

where, to avoid abusing notation, we denote the activation of the cx and cy units with

the same symbols as the units themselves. For each computation step following the in-

itialization (i.e. for each t > 0), the MCL units are activated by input from the tx

and ty LTL units through a R ramp activation function, such that ζMCL ≡ (cx, cy) =(
R
(∑

i t
i
x

)
, R
(∑

j t
j
y

))
.

4.4.2 Branch Selection Layer

The BSL implements the Θ(x, y) switching rule of the simulated NDA, controlling which

of the affine-linear transformations Φi,j is applied at each time step by the LTL by coor-

dinating the dynamic switching of LTL units. That is, the BSL uses an interplay between
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excitatory and inhibitory connections to make sure that, given an activation of (cx, cy)

in the MCL, only the pair of (ti,jx , t
i,j
y ) LTL units associated with the application of the

Φi,j affine-linear transformation is activated, as prescribed by the NDA switching rule

Θ(cx, cy) = (i, j). The switching rule is thus mapped by ρ(·) to the dynamics of this neural

layer as follows:

ζBSL(x, y) = ρ(·, ·, ·,Θ(x, y) = {i, j}). (4.16)

The NDA switching rule Θ maps a point on the unit square to the indices of the cell in

the NDA P partition which the point belongs to, i.e. if (x, y) ∈ Di,j then Θ(x, y) = (i, j).

Note that, as Di,j = Ii × Jj is a rectangular cell, then Θ(x, y) = (i, j) when x ∈ Ii and

y ∈ Jj . The BSL performs these two checks through two separate sets of Heaviside neural

units, where a bx set of m units checks for which i x ∈ Ii, and a by set of n units checks

for which j y ∈ Jj . Each bix unit receives a synaptic projection from the MCL cx unit and

has bias −ξi, whereas each bjy unit receives a projection from the cy unit and has bias −ηj ,

such that
bix = H(cx − ξi) with ξi = min(Ii),

bjy = H(cy − ηj) with ηj = min(Jj).

(4.17)

where bix and bjy denote the activation of the bix and bjy units. The biases −ξi and −ηj
function as an activation threshold, where the biased Heaviside neural units are active

with activation 1 only if their input is equal to or exceeds the threshold (see Equation

4.13). The effect is that, given an input (cx, cy) ∈ Dk,z from the MCL, all units bix and bjy

in the BSL with i ≤ k and j ≤ z would be triggered active.2

To attain the capability of selectively activating pairs (tix, t
j
y) of LTL units, the BSL is

connected to the LTL with a specific pattern of excitatory and (lateral) inhibitory connec-

tions, which interaction with a strong inhibitory bias in the LTL determines the pair to be

activated. That is, each unit in the LTL is naturally inactive through the use of a strong

negative bias h, which the BSL fully counteracts only for the specific pair of “selected”

units.
2As a side note, this means that the sum of the activations in the BSL bx and by groups (

∑
i b
i
x,
∑
j b
j
y) =

(i, j), i.e. the two groups transparently encode Θ(x, y) = (i, j).
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Each neural unit bkx establishes an excitatory connection with weight h
2 with all (tk,jx , tk,jy )

units in the LTL for 1 ≥ j ≥ n, i.e. the units corresponding to the linear transformations

Φk,j associated with cells Dk,j in the simulated NDA. Moreover, each bkx unit also esta-

blishes an inhibitory connection with weight h
2 with all (tk,j−1

x , tk,j−1
y ) units in the LTL for

2 ≥ j ≥ n (implementing a kind of lateral inhibition). Specularly, each unit bzy is connected

with weight h2 to all (ti,zx , t
i,z
y ) LTL units, and with weight −h

2 to all (ti−1,z
x , ti−1,z

y ) LTL units

with 2 ≥ i ≥ m, i.e. the units corresponding respectively to the linear transformations Φi,z

and Φi−1,z associated with cells Di,z and Di−1,z in the simulated NDA.

The two bx and by groups act together to fully counterbalance the strong LTL h bias for a

pair of LTL units. Specifically, it is useful to think about the LTL as a bi-dimensional grid

of pairs of units (each pair corresponding to a cell Di,j of the P unit square partition of

the simulated NDA). At each step of the computation, the bx group then counterbalances

half of the h inhibition for a row k of LTL units, whereas the by counterbalances half of

the h inhibition for a column z of the LTL. The pair of units at the crossing between the

k row and the z column is then fully de-inhibited by the BSL. More formally, each pair of

LTL units (ti,jx , t
i,j
y ) receives input from the BSL as

Bi
x = bix

h
2 + bi+1

x
−h
2

Bj
y = bjy

h
2 + bj+1

y
−h
2 ,

(4.18)

where the input sum

Bi
x +Bj

y =





h if (cx, cy) ∈ Di,j

h
2 if cx ∈ Ii, cy 6∈ Jj or cx 6∈ Ii, cy ∈ Jj

0 if (cx, cy) 6∈ Di,j

(4.19)

only fully de-inhibits the a LTL unit if it reaches the value h. In other words if (cx, cy) ∈

Dk,z, then Bk
x +Bz

y = h only for the LTL pair (tk,zx , tk,zy ). For all other pairs, Bk
x +Bz

y does

not reach h, but is either equal to h
2 or 0. A pictorial representation of this mechanism is

shown in Figure 4.5.
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4.4.3 Linear Transformation Layer

The LTL is composed of pairs of units, each one implementing one of the Φi,j(x, y) =

(λi,jx x + ai,jx , λi,jy y + ai,jy ) bi-dimensional affine-linear transformations of the simulated

NDA, where each unit in the pair applies one component of the decoupled transformation.

That is,

(ti,jx , t
i,j
y ) = ζi,jLTL(x, y) = ρ(·, ·,Φi,j(x, y), ·). (4.20)

From the point of view of the symbolic computation the RNN simulates, each pair essen-

tially implements the application of a specific symbolic operation on input data (one cell

of the machine transition table), here encoded through input from the MCL to the pair.

Through the transformation mediated by the pair (if the pair is selected by the BSL), an

encoded output string is obtained, which is then fed to the MCL for the next time step as

the updated machine configuration. The affine-linear transformation is applied through a

combination of synaptic computation and intrinsic dynamics of the units in the pair, only

triggered when enough excitatory input is received from the BSL. In fact, for each pair of

units,

ti,jx = R(λi,jx cx + ai,jx − h+Bi
x +Bj

y)

ti,jy = R(λi,jy cy + ai,jy − h+Bi
x +Bj

y),
(4.21)

where R is the ramp function defined in Equation 4.13, and where h is defined such that

− h

2
≤ −max

i,j,k
(ai,jk + λi,jk ). (4.22)

As summarized in Equation 4.21, the activation of a pair (ti,jx , t
i,j
y ) is only equal or greater

than 0 when Bi
x + Bj

y = h (i.e. when Bi
x = Bj

y = h
2 , as discussed in Section 4.4.2). In

case the BSL selects the pair and thus fully counterbalances the natural inhibition of the

units, the activation of the pair in Equation 4.21 can be rewritten simply as (ti,jx , t
i,j
y ) =(

R
(
λi,jx cx + ai,jx

)
, R
(
λi,jy cy + ai,jy

))
, where the input from the MCL (cx, cy) is modulated

synaptically by weights (λi,jx , λ
i,j
y ), and an intrinsic constant neural dynamics (ai,jx , a

i,j
y ) is

added in the form of bias, completing the bi-dimensional affine-linear transformation.
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4.4.4 Number of units in the architecture

Let us consider a network simulating a NDA with a partition P of the unit square composed

by cells Di,j = Ii × Jj , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, for a total of m × n cells. Given

the way our architecture is constructed, we can easily derive the number of units in a the

network. In fact, for each layer:

MCL. the MCL only comprises of 2 units, cx and cy, each encoding one of the two one-

sided constituents of a configuration dotted sequence, as discussed in Section 4.4.1.

BSL. the BSL contains two groups of units, bx and by, where the number of units in bx is

equal to m, i.e. the number of Ii intervals of the NDA, and the number of units in

by is equal to n, i.e. the number of Jj intervals of the NDA, as discussed in Section

4.4.2.

LTL. the LTL contains a pair (tx, ty) of units for each cell Di,j in the NDA P partition of

the unit square, as discussed in 4.4.3. The total number of units in the LTL is thus

equal to 2 ·m · n.

The total number of units in a network simulating a given NDA is thus equal to

nunits = 2︸︷︷︸
MCL

+ n+m︸ ︷︷ ︸
BSL

+ 2 · n ·m︸ ︷︷ ︸
LTL

. (4.23)

4.5 Examples

We will now present three examples of the mapping of automata computation to RNN

dynamics. In the first example, we show that through Versatile Shifts and NDA, we are

able to simulate the computation performed by Turing Machines in real-time through

neural computation (thus implying that the architecture we present is indeed universal).

In the second example, we will present the implementation of a Central Pattern Generator

as a Finite State Machine, and show that the RNN resulting from the mapping of the Finite

State Machine transparently produces the desired pattern in the form of spatial-temporal
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Symbols States

qeven qodd

1 (qodd, 1,R) (qeven, 1,R)

t (qacc,t,L) (qrej ,t,L)

Table 4.1: Transition table for Turing Machine recognizing the language of
unary strings composed by an even number of ones.

localized patterns of activation; we will also discuss the implications of these results for

the field of robotic locomotion. In the third example, we construct a network of interactive

automata performing the parsing of ambiguous sentences, and show that the modular

construction of the network architecture we define easily accommodates the mapping of

the network of automata to a neural network simulating it in real time; additionally, we

show that by doing so, we make it possible to extract observables that can be put in

comparison with electrophysiological data from linguistics experiments.

4.5.1 Odd vs even strings recognizer

To summarize the methods presented in this Chapter, we present a simple example on

TMs, with a machine recognizing unary strings containing an even number of 1’s (and,

conversely, rejecting unary strings with an odd number of 1’s). We construct the machine

to have four states. Two states, qeven and qodd, are used to keep track of whether the

number of 1’s seen until that moment is even or odd, with the machine switching state for

each new 1 it reads. Depending on which between the qeven and qodd states the machine

is in once the reading of the whole input string is completed, the machine will go to a

qacc accept state or a qrej reject state. As the strings are unary, the set of tape symbols is

defined to be simply N = {t, 1}, whereas the δ transition function is shown in Table 4.1.

We construct a VS simulating this machine as outlined in Section 4.2.4. Given that the

left constituents of the dotted sequences encoding machine configuration always contain a

state as first symbol and always tape symbols in all other positions, we can use a refined
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Figure 4.6: Activation of cx and cy units in the Machine Configuration Layer
as points on the symbologram, for an input string of even ones 1111 (A) and odd
ones 111 (B). Note how the point dynamics alternates between cells corresponding to the
qeven and qodd symbols in the DoD. (A) The network is initialized with an encoded input
string of even ones, and thus ends its computation with a MCL activation corresponding
to the encoded 111qacc.1 machine configuration. (B) The network is initialized with
an encoded string of odd ones, and thus ends its computation on the encoded 11qrej.1
machine configuration.

Gödelization as discussed in Section 4.3.1, yielding the following encodings

ψx(s) := γq(d1)n−1
q +

∞∑

k=1

γs(dk+1)n−ks n−1
q , ψy(s) :=

∞∑

k=1

γs(dk)n
−k
s ,

where di is the i-th symbol in the one-sided infinite component to be Gödelized, γq and

γs are enumerating functions for respectively states and tape symbols, and nq = |Q| and

ns = |N| are the number of states and tape symbols of the machine, respectively. In

particular, we define the γq, γs enumerating functions as

γq(x) =





0 if x = t,

1 if x = 1,
γs(x) =





0 if x = qacc,

1 if x = qrej,

2 if x = qeven,

3 if x = qodd.

As discussed in Section 4.3, the VS can be mapped to a NDA on the symbologram through

the Gödelization of its symbolic space, the partition of the symbologram in cells Di,j

induced by the VS DoD, and the set of bi-dimensional affine-linear transformations defined

on each cell by the Gödelized substitution and shift of the VS.

Through the methods presented in Section 4.4 we are then able to map the obtained

NDA to a RNN, and thus to simulate the TM in real time via the RNN dynamics. The
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Figure 4.7: Decoding of point dynamics on the symbologram. (A) The MCL
activation dynamics on the symbologram for an input string of even ones 1111 corresponds
to (B) pairs of numbers in [0, 1]2 ⊂ R2 which store the Gödelization of a dotted sequence
representing a machine configuration. The Gödelized configuration can thus be decoded
for each step of the computation, (C) retrieving the symbolic dynamics of the simulated
machine.

Input: 1111 Input: 111

t t

Figure 4.8: Full network activation for even and odd encoded input sequence.
The Figure shows the activation in time of each of the 44 units in the network, for the
two input sequences tested in the example.

resulting network is composed by 44 neural units (see Equation 4.23), and its dynamics

can be observed in Figure 4.6 (only the MCL activation is reported), and Figure 4.8 (all

activations reported). By decoding the MCL activation at each time step, we can fully

recover the symbolic dynamics of the simulated machine, as shown in Figure 4.7. Note that

in this example, we enforce a fixed point halting condition; that is, we consider the RNN

computation complete when its dynamics reaches a fixed point, where it stays forever.
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4.5.2 Central Pattern Generator

Central Pattern Generators (CPGs), i.e. neur(on)al networks producing rhythmic patterns

in the absence of rhythmic input, offer many advantages with regards to the control of

robotic locomotion, as argued in Ijspeert (2008). In his paper, the author identifies several

advantages of CPGs as locomotion controllers, in fact CPGs

1. produce rhythmic patterns which are robust to perturbation of the system’s state

variables,

2. are suitable for distributed implementations (as in modular robotics),

3. allow for the meaningful control of the pattern they produce through a few high-level

parameters,

4. can integrate sensory feedback through coupling terms in the differential equations,

5. often work well with learning and optimization algorithms.

The key issue of using CPGs as locomotion controllers in robots is that, as underlined

by Ijspeert, designing a CPG to produce a given pattern is not an easy task; a sound

general design methodology is still lacking, as well as a strong theoretical grounding for

the description of CPGs in the general case.3

On the other hand, FSMs are a widespread approach in the construction of controllers

for robotic locomotion, as they are trivial to describe, design, implement, and debug (see

Alvarez-Alvarez et al., 2012, Collins and Ruina, 2005 for examples of FSMs as locomotion

controllers in articulated robots). Additionally, they are very well understood, and their

relation with animal locomotion has long been characterized (McGhee, 1968).

In this example, we outline a methodology for constructing arbitrary discrete-time CPGs

starting from given patterns. This is done by first designing a FSM producing the desired

pattern, representing it as a VS as shown in Section 4.2.1, mapping the VS to a NDA

through Gödelization as shown in Section 4.3, and finally the NDA to a RNN through the
3Note that the theoretical concerns advanced here are not relative to the biological plausibility of CPGs,

but to the construction of CPGs to produce arbitrary desired patterns, and how, in the general case, key
pattern parameters can be controlled by manipulation of the system’s parameters.
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methods described in 4.4. Because of the modularity of the RNN architecture we introduce,

it is possible to observe the production of the desired patterns as peaks in activation of

localized assemblies in the network.

In order to demonstrate the methods, we qualitatively model the results of an important

experiment on cat gait by Shik et al. (1966). In this influential experiment, the authors

stimulated the mesencephalic locomotor region of a decerebrated cat with increasing levels

of electrical currents, applied through an electrode inserted directly in the cat’s midbrain.

As a result, the authors observed that the cat produced different gaits as a function of

the level of stimulation applied, with increasing levels of stimulation eliciting transitions

between first a walk, then a trot and finally a gallop gait.

To keep exposition simple, we here ignore the trot gait and model a transition between

a walk and a gallop gait depending on a “low” vs “high” level of stimulation. In order to

characterize gaits by their patterns, the literature on mammalian quadruped gaits tradi-

tionally enumerates the legs of the animal, such that each gait is defined by a sequence

of numbers describing the order in which the legs touch the ground. The traditionally

adopted leg enumeration is reported in Figure 4.9.

1 2 3 4

Figure 4.9: Leg enumeration in the study of mammalian gaits. Through this
enumeration, a gait can be represented by the sequence with which the legs touch the
ground, starting from leg 1.

The gait pattern is normally reported starting with leg 1 (i.e. the left hind leg), such that

a walk gait is characterized by the sequence (1, 3, 2, 4), and a gallop gait by the sequence

(1, 2, 3, 4). The production of these patterns can be easily abstracted through a FSM.

Specifically, as we want the produced pattern to depend on a “stimulation level” control

parameter, we construct the FSM to produce one of the two patterns depending on which

of two input symbols is present, i.e. a <lo> and a <hi> input symbols. We model the
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Symbols States

q1 q2 q3 q4

<lo> q3 q4 q2 q1

<hi> q2 q3 q4 q1

Table 4.2: State transition table for the simulated Finite-State Automaton
generating gait patterns through state switching.

production of the gait patterns as the continue transition between a sequence of internal

states. The complete transition table defining the FSM is thus reported in Table 4.2.

Having constructed the FSM, we can now use our methodology to construct a RNN si-

mulating it in real-time. We first map the FSM to a VS and define the Gödelizations of

the dotted sequences encoding FSM configurations, making it possible to derive a NDA

simulating the FSM in real-time. Specifically, the encodings are defined as in Equation

3.10, with the enumerating functions specified as

γs(σ) =





0 if σ = <lo>

1 if σ = <hi>
γq(q) =





0 if q = q1

1 if q = q2

2 if q = q3

3 if q = q4

.

From the NDA, it is possible to derive a RNN simulating it in real-time with 24 units, as

shown in Section 4.4. Specifically, the set of states Q = {q1, q2, q3, q4} and the set of input

symbols T = {<lo>, <hi>} of the FSM induces a BSL layer with respectively |Q| = 4 and

|T| = 2 units in its bx and by sub-assemblies, and a LTL layer with 2|Q||T| = 16 units. The

LTL of the network contains two units for each entry in the transition table in Table 4.2,

which receive connections from the BSL layer with the lateral inhibition pattern discussed

in Section 4.4.2, such that each pair of units in the LTL is only activated when the BSL

selects it. A pair in the LTL is selectively de-inhibited by the BSL only if the transformation

it applies corresponds to the transition rule which is to be applied given the contents of

the current encoded FSM configuration. That is, each pair in the LTL corresponds to a

pair q, σ of current state q and current input symbol σ of the FSM, and is only activated
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when the MCL encodes a FSM configuration with q and σ as current state and symbol.

When a pair is activated, each unit in the pair applies a linear transformation to one of

the units in the MCL layer, updating its activation through a recurrent connection. This

action simulates by design the symbolic updating of the FSM configuration (as discussed

in 4.4.3), which is now encoded in the new MCL activation.

In an experiment to test the pattern-generation capabilities of the network, we continuously

manipulate the activation of the cy unit (which encodes the input tape of the simulated

FSM, and thus the “level of stimulation”) to qualitatively reproduce the methods in Shik

et al. (1966). Interestingly, we are here introducing a continuous control parameter into

what was originally a purely symbolic form of computation. This allows us to carry out

bifurcation studies by parameter manipulation, as traditionally done for coupled oscillator

model (see Collins and Richmond, 1994, Golubitsky et al., 1998, 1999, Schöner et al.,

1990). We report the dynamics of the pattern-generating RNN for increasing levels of

input stimulation in Figure 4.10. Note how increasing the levels of stimulation elicits the

transition from a walk to a gallop produced gait as transparently encoded in a spatial-

temporal pattern of the network activation. This is made possible by letting the order in

the γs enumeration be consistent with the semantic order of the two <lo> and <hi> input

symbols. That is, we define γs such that γs(<lo>) < γs(<hi>).

In particular, note in Figure 4.11 how each pair in the LTL is selectively activated by

the BSL at each time step, and how the sequence of selective activations reproduces the

sequence of transitions in the simulated FSM.

To summarize, we have constructed a 24-units RNN network from a FSM designed to

produce two patterns (walk and gallop) depending on the symbols in its input string, as

a high-level abstraction of a CPG. In particular, the RNN network produces one of the

two rhythmic patterns depending on the activation value of the cy input unit in the MCL

layer, which we experimentally manipulated. The rhythmic pattern is here encoded in the

sequence of activations of the units in the LTL layer of the network (as shown in Figure

4.11), which can thus here be considered as the output of the network. As the network is
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Walk Gallop

1 3 2 4 1 2 3 4

Figure 4.10: Network activation for Recurrent Neural Network functioning
as a cat gait Central Pattern Generator. In the experiment, we manipulate the
activation of the MCL cy unit encoding the level of input stimulation. Note how an
increasing level of stimulation leads to a transition between a produced walk gait and
a gallop gait, transparently encoded through a spatial-temporal pattern in the network
LTL.

able to produce a rhythmic pattern in the absence of rhythmic input, it can be considered

a very simple form of CPG.

By constructing a discrete-time CPG (implemented as a RNN) from an appropriately

designed FSM, we essentially outlined a methodology for the design of CPGs that does not

suffer from some of the drawbacks of these models, while benefiting from the advantages

given by FSM locomotive controllers. This opens exciting possibilities for future research

and applications in robot locomotion. However, some issues must be tackled in order for

this methodology to provide the full range of advantages of CPGs as summarized at the

beginning of this Section. Specifically, many of the benefits of CPGs for robot locomotion

can only be ascribed to continuous-time CPGs. Importantly, methods similar to those

proposed in Ashwin and Postlethwaite (2013) and Horchler et al. (2015) could be used to

construct such CPGs from Finite-State descriptions of the desired pattern generation.
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Figure 4.11: Active units in the network for simulation time t = 4 . . .11 (com-
pare with Figure 4.10). In this figure, each of the units in the network architecture
(shown reproducing the visual layout presented in Figure 4.5) is highlighted for a given
time step if its activation at that time step is greater than zero. Additionally, the current
state, symbol an new state (which can be decoded from the MCL activation in the RNN)
are highlighted in the transition table of the FSM for each time step. The upper row
shows the RNN activation sequence and FSM transitions for a walk gait (corresponding
to time steps 4 to 7 in the complete simulation), whereas the lower row shows the RNN
sequence and FSM transitions for a gallop gait (corresponding to time steps 8 to 11 in
the complete simulation).

Recent research has uncovered a high degree of hierarchical organization in mammalian re-

spiratory CPGs, with many interacting components that allow for the production of robust

and flexible patterns in a range of conditions (see Smith et al., 2007, 2013). Importantly,

as we will show in the next Section, our methodology is ideally suited for the construction

of RNN simulating networks of automata that interact with each others and the external

environment. For this reason, we believe the present work introduces a unique view on the

construction of hierarchically organized CPGs, which are especially relevant once again in

the realm of robotics locomotion, especially in the case of modular robots (see Spröwitz

et al., 2014 for an example of CPG-controlled modular robot).
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4.5.3 Garden-path parser

In this example, we will demonstrate the suitability of our approach for the construction of

cognitive models, given in particular by the possibility of tapping the power of interactive

computation. Whereas the abstraction underlying the classical approach to computation

through the theory of automata and formal languages is that of computation as the inter-

vening step between some initial input and a final output, in the framework of interactive

computation (Wegner, 1998) a model of computation can interact with the external world

at any time. This is of course a much more powerful approach to the modelling of compu-

tation, providing a rich language to express notions of compositionality and concurrency

that are of great importance in the description of computation in a range of systems. In-

teraction with an external environment is, in fact, a hallmark of cognitive systems; as such,

by supporting the implementation of interactive systems in RNNs through our approach,

we are able to construct transparent connectionist cognitive architectures.

In what follows, we will construct a cognitively inspired parser for locally ambiguous sen-

tences (garden-path sentences, discussed in Section 4.5.3.1). The parser is composed by

distinct interactive automata, each one playing a specific role in the overall processing

of incoming sentences, and implementing different forms of computation and interaction

between each other, demonstrating the strengths of our proposed approach.

4.5.3.1 Garden-path sentences

Consider the following sentence:

The dog that I really had loved bones.

Upon reading the sentence, a reader sequentially constructs a parse with “The dog” as the

subject of the phrase, and “that I really had loved ” as a relative clause. In encountering the

last word “bones”, however, the reader becomes aware that their initial parse was incorrect.

In fact, “ loved ” was actually part of the main clause “The dog . . . loved bones” and not of

a “that I really had loved ” relative clause which the reader incorrectly constructed. The
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reader thus reanalyzes the sentence to produce the correct parse. This is an example

of garden-path sentence, i.e. a sentence containing a local ambiguity such that a reader

sequentially processing the sentence is led to the construction of an incorrect parse, which

is then unveiled as incorrect by later material in the sentence, forcing the reader into a

re-processing of the sentence. This process of reanalysis is associated in the brain of the

reader with a positive deflection in potential after 600 milliseconds (P600) from the onset

of a garden-path (“bones” in the above sentence), as shown by Osterhout et al. (1994) by

measuring the trial averaged electroencephalogram during the sequential presentation of

garden-path and control sentences.

In particular, Frisch et al. (2004) have conducted Event-Related Potential (ERP) studies

on German speakers processing garden-path sentences that arise from subject-object am-

biguities. In German, as in a number of other languages, when a nominal constituent is

ambiguous in regard to its object/subject role, native speakers prefer to interpret it as a

subject rather than an object.

Let us introduce two example sentences, extracted from the ERP study by Frisch et al.

(2004). The two sentences are both locally ambiguous. However, while the first sentence

is compatible with the preferred strategy of assigning the “subject” role to an ambiguous

nominal constituent, the second sentence does not reflect the preferred order, and thus

causes a temporary incorrect parse which must be resolved (a garden-path). Specifically,

we present the first sentence as

Nachdem die Kommissarin den Detektiv getroffen hatte, sah sies den Schmugglero

After the cop the detective had met saw she the smuggler

“ After the cop had met the detective, she saw the smuggler”

For this first sentence, the human parser correctly interprets the ambiguous “sie” as the

subject of the second clause (as per the preferred strategy) in the nominative case, and thus

then correctly interprets “den Schmuggler” as the object in the accusative case, successfully

completing the parse.



79

The second sentence is instead formulated in the dispreferred object-subject (o-s) order,

eliciting a garden-path in parsing:

Nachdem die Kommissarin den Detektiv getroffen hatte, sah sieo der Schmugglers

After the cop the detective had met saw she the smuggler

“ After the cop had met the detective, the smuggler saw her”

As in the case of the first sentence, upon encountering “sie” the human parser initially

constructs a parse with it as a nominative pronoun and thus the subject of the main

clause, following the preferred strategy. At this point, the parser expects an object in the

accusative case to appear shortly thereafter. This time, however, the ambiguous pronoun

actually defines the object of the clause, as the parser quickly realizes upon encountering

“der Schmuggler”. In fact “der Schmuggler” is unambiguously declensed in the nominative

case, and thus must be the subject of the clause. The human parser has to revise their parse,

assigning to “sie” the role of object of the verb “sah”, and finally correctly re-interpreting

“sie” as a pronoun in the accusative case. As shown by Frisch et al. (2004), this reanalysis

is reflected in the ERP by a P600 effect.

The reanalysis of incorrect partial parses in sentences presenting garden-paths has received

much attention in the literature, and many models have been proposed to account for its

underlying mechanisms. In what follows, we will essentially adhere to a diagnosis and

repair account of reanalysis, as described in Lewis (1998), to construct a parser that can

process toy sentences presenting subject/object ambiguities. In this model, when the parser

gets stuck in a garden-path, a need for reanalysis is diagnosed, and the parse is repaired

by some repair operator that re-places the parse in another point of the search space, such

that the parser is able to continue its processing of the input sentence and finally produce

a correct and complete parse.

4.5.3.2 Constructing the neural parser

To model the sentences with subject/object ambiguities, we resort to a very high level of

abstraction (as in beim Graben et al., 2004), where two possible sentence structures are
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defined through a CFG G with non-terminals N = {S}, terminals T = {s, o} (standing

respectively for “subject” and “object”), starting symbol S and with the set of production

rules R containing two rules

S→ s o (s-o sentence)

S→ o s. (o-s sentence)

The reason why we decide to use such a simple sentence model is that in this example

we want to focus on the interaction between the components in the parser and the overall

computation performed, rather than the intricacies of complex – although more detailed

and accurate – grammars.

The parser we construct (which structure is shown in its entirety in Figure 4.12) has two

sub-modules specialized in the selective recognition of the two types of sentences, in the

form of two TDRs. These are defined by splitting the G grammar in two Gs-o and Go-s,

each one comprising of one of the two production rules in R, and deriving their transition

function through the methods in Section 1.1.6. In this way, the s-o TDR can recognize

sentences where the subject/object pronoun ambiguity can be correctly resolved with the

preferred strategy (i.e. interpreting the ambiguous pronoun as the subject), whereas the

o-s TDR is able to recognize sentences that are formed such that the ambiguous pronoun

is actually the object of the sentence. The parser first tries to parse its input through

the s-o TDR, consistently with the preferred strategy observed in native speakers. If the

input sentence is not in the subject-object, then parser becomes stuck in a garden-path, as

the s-o TDR is not able to successfully recognize the sentence. In this case, as our parser

adheres to a diagnosis and repair account of reanalysis, it first diagnoses that the parse

has become stuck, repairs it, and finally completes the parse by using the o-s TDR on the

remaining input.

The diagnosis step is implemented through the action of a Diagnosis PDA, which uses its

stack memory to keep track of the parse at each time step, such that it is able to compare

the current parse with that of the previous computation step. If the current parse is the

same as that of the last step, it means that no progress was made in parsing and thus

the parser has become stuck in a garden-path. In this case the Diagnosis PDA is able to
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Symbols States

pdaqidle
pdaqparsing

pdaqerror

(t,t) (pdaqidle , t) (pdaqidle , t) (pdaqidle , t)

(x, y) (pdaqparsing , y) (pdaqparsing , y) (pdaqparsing , y)

(x, x); x 6= t (pdaqerror , x) (pdaqerror , x) (pdaqerror , x)

Table 4.3: State transition table for the Diagnosis Push-Down Automaton.
The automaton pushes its input at the top of the stack for every state and input, after
comparing the current input with its top-of-stack (i.e. the input stored from the previous
time step). If the input and top-of-stack are the same, then the parser is stuck, and
the automaton switches to an error state pdaqerror. Otherwise, it stays in a parsing state
pdaqparsing. If no input is present at the current and preceding time step, instead, the
automaton switches to an idle state pdaqidle. This diagnostic information is used by the
Strategy Finite-State Machine to control the parsing strategies to apply on the input.

diagnose the problem and signal it to an upper control system by switching its state to an

“error” state. The transition function for the Diagnosis PDA is reported in Table 4.3.

The repair operation is implemented through a Repair VS, which modifies the current

parse, allowing the parser to continue its computation. The VS can be defined by the

rewriting rule

s o . w → o s . w, (4.24)

which corresponds to a reanalysis of the input sentence, such that it is interpreted through

the dispreferred object-subject sentence structure. This makes it possible for the o-s TDR

to take over and thus correctly recognize the input sentence.

We have introduced four of the five basic components of the parser, i.e. three parsing

automata (the s-o and o-s TDR and the Repair VS), and the Diagnose PDA. The last

component left to describe is the Strategy FSM, a high-level controller that receives dia-

gnostic information from the Diagnosis PDA as input, and thus decides which parsing

strategy to apply to the input at each time step by selectively activating the corresponding

automaton. Note that this form of interaction, i.e. the “function call” of an automaton

from another automaton, however intuitive from the point of view of its logic, was not

defined for the VS introduced in Section 4.1. In fact, we did not endow VS with the ca-

pability of calling other VSs. While on the one hand we leave the implementation of such

capabilities for future work, to best adapt the VS object to the interactive computation
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Symbols States

fsmqs-o
fsmqo-s

fsmqrepair

pdaqidle
fsmqs-o

fsmqs-o
fsmqs-o

pdaqparsing
fsmqs-o

fsmqo-s
fsmqo-s

pdaqerror
fsmqrepair

fsmqo-s
fsmqo-s

Table 4.4: State transition table for the Strategy Finite-State Machine. The
Strategy Finite-State Machine selectively activates the three s-o, o-s and Repair automata
for the parsing of the input, depending on the diagnostic information received from the
Diagnosis Push-Down Automaton. The machine start in state fsmqs-o, applying the pre-
ferred s-o parsing strategy. If the input sentence does not respect the preferred structure,
the parsing gets stuck in a garden-path, and thus the Diagnosis Push-Down Automaton
signals an error by switching to a pdaqerror error state. In this case, the Strategy automa-
ton first switches to a fsmqrepair state, activating the Repair Versatile Shift, which repairs
the parse. As a result, the Diagnosis automaton diagnoses that the parsing is restored by
switching to a pdaqparsing state, thus leading the Strategy Finite-State Machine to transi-
tion to a fsmqo-s state, activating the o-s Top-Down Recognizer which can finally complete
the parsing of the input sentence.

framework (and extend the mapping with RNN to incorporate the new possibilities), on

the other hand we are eager to demonstrate the power of our approach and show how

the network architecture we introduce can easily accommodate these capabilities thanks

to its modularity and transparency. We will thus ignore, for the moment, the missing link

with VSs and implement the “function call” capability in the RNN by employing the same

lateral inhibition mechanism which we already described in Section 4.4.2 while describing

the BSL in the network. We define the FSM such that, when a sentence is first presented,

it activates the s-o TDR, associated with the preferred parsing strategy. If the sentence is

not in the subject-object order, then the defined Strategy FSM reads the error signalled by

the Diagnosis PDA, and thus first activates the Repair VS in order to reanalyze the input

sentence, and then the o-s TDR to complete the parsing. The FSM selectively activates

each of the three parsing automata by switching to one of its three states, i.e. a “s-o” state,

a “o-s” state and a “repair ” state, as prescribed by its transition function, reported in Table

4.4. By selectively activating one between the three parsing automata at any given time,

the Strategy FSM also makes sure that race conditions are avoided in the rewriting of the

“input” and “parse” sub-sequences by these automata. At the same time, the Strategy FSM

can only read, but not rewrite, the “diagnosis” sub-sequence, and the Diagnosis PDA can

only read, but not rewrite, the “parse” subsequence. In this way at most one automaton
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in the interactive network has rewriting access to a given sub-sequence at any given time,

thus avoiding race conditions for all the sub-sequences. The complete parser is shown in

Figure 4.12.

Diagnose 
PDA

s-o 
TDP

Repair 
Shift

o-s 
TDP

Strategy 
FSM

InputParseDiagnoseStrategy

Configurations

Automata

Figure 4.12: Diagram of Interactive Automata Network for parsing of garden-
path sentences. The bottom panel shows the components of the automata network,
which communicate through networked access to the relevant parts of each other’s confi-
gurations, shown in the top panel as dotted sequences. Note how the Strategy Finite-State
Machine is endowed with an additional form of interaction, selectively activating the s-o
and o-s Top-Down Recognizers, and the Repair Shift, depending on its current state.

We will now map the parser to a RNN, by first representing each of its automaton as VSs

acting on dotted sequences (by the methods discussed in Section 4.2), mapping each of the

obtained VS to a NDA simulating its computation (as discussed in Section 4.3), each NDA

to the simulating RNN (as in Section 4.4), and finally, by appropriately connecting the

obtained sub-networks allowing for their interaction. In particular, the last step is made

trivial thanks to the transparency and modularity of the presented architecture.

To map VSs to NDA, we first need to define the appropriate Gödelizations, as shown in 4.3.

Hence, we define the Gödelizations of the “input”, “parse” and “strategy” sub-sequences as

in Equation 3.10, whereas we define the Gödelization of the “diagnosis” subsequence as in

Equation 4.12. The four γ functions enumerating the symbols in the four sub-sequences
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are specified to be

γinput(x) =





0 if x = t

1 if x = S

2 if x = o

3 if x = s

, γparse(x) =





0 if x = t

1 if x = o

2 if x = s

,

γdiagnosis(x) =





0 if x = pdaqidle

1 if x = pdaqparsing

2 if x = pdaqerror

, γstrategy(x) =





0 if x = fsmqs-o

1 if x = fsmqo-s

2 if x = fsmqrepair

.

(4.25)

Specifying the Gödelizations for the dotted sequences allows us to construct NDA from the

VS, and thus derive the RNNs simulating the original models of computation in real-time.

Each of the derived RNNs constitutes a component of a bigger recurrent network, which

is shown in Figure 4.13. In order to facilitate exposition, we construct the overall archi-

tecture to contain 4 intermediate “Configuration Layers” (CLs), each one comprising of 4

units, encoding respectively the “strategy”, “diagnosis”, “parse” and “input” sub-sequences.

In this way, the parsing sub-networks (i.e. the s-o, o-s and repair sub-networks) receive

input from the “parse” and “input” units of CL 1, and send their updated encoded confi-

guration to the corresponding units in CL 2; the Diagnosis sub-network, instead, receives

the encoded current “diagnosis” and “parse” from the corresponding units in CL 2, and

outputs the result of its computation to the corresponding units CL 3; finally, the Strategy

sub-network receives input from the “strategy” and “diagnosis” units in CL 3 and outputs

to the corresponding units in CL 4, which is recurrently connected to CL 1 with connection

matrix I4×4. Additionally, a Meta BSL is added to the network to implement the “function

call” capability of the Strategy FSM. This layer is constructed as a single bx BSL group of

three units, taking input from the “strategy” unit in CL 1 and selectively activating one

of the parsing sub-networks through the pattern of lateral inhibition discussed in Section

4.4.2. Interestingly, this creates a kind of nested structure, with each of the three parsing

sub-networks acting like a single operation of a higher-level symbolic automaton, and thus
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Parsers
MCL
(output)

Diagnosis
MCL
(input)

Diagnosis
MCL
(output)

Parsers
MCL
(input)

Strategy
MCL
(input)

Strategy
MCL
(output)

CL 1

CL 2

CL 3

CL 4

strategy diagnosis parse input

Parsers

Diagnosis PDA

Strategy FSM

s-o TDR o-s TDR  Repair VS

Diagnosis LTL

Meta BSL

Diagnosis BSL

Strategy LTL

Strategy BSL

Figure 4.13: Garden-path parsing network architecture. In this example, we
construct the network to only contain one set of recurrent connections, from Configuration
Layer (CL) 4 to 1, to simplify exposition. The sub-networks corresponding to the various
automata are shown. In particular, note how the Parser sub-network is itself composed
by the s-o, o-s and Repair sub-networks, each simulating their corresponding automata
from the original interactive system.

as cells in a NDA, or pair in a LTL.

4.5.3.3 Results

We have constructed a RNN simulating a network of interactive automata in real-time with

265 units (see Equation 4.23), performing the parsing of toy input sentences modelling

pronominal subject-object ambiguity. We are now able to observe this computation in the
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Figure 4.14: Network activation for subject-object and object-subject input
sentence. The activation in time of each unit is reported for a presented input encoding
an s-o sentence (on the left) and a o-s sentence (on the right). In particular, the o-
s sentence elicits a diagnosis-and-repair operation in the neural parser, which can be
observed in the form of a switching between the s-o, o-s and Repair sub-networks, and
by the longer tail of activation reflecting the additional computational payload in the
processing of the dispreferred sentence structure.

form of neural dynamics in the network, as shown in 4.14, where we report the activation

in time for each unit when encoded input sentences with subject-object and object-subject

structure are presented.

In particular, the Figure shows the sequential activation of the three parsing networks in the

case of the sentence in the object-subject order, consistently with the diagnose-and-repair

mechanism discussed in the previous Sections.

Interestingly, by mapping the interactive networks symbolic dynamics to neural dynamics

defined on a vector space, we can extract interesting measures that were not defined for the

original symbolic model of computation. For example, we can reduce the high-dimensional

neural dynamics to a lower-dimensional space, allowing for the comparison with experi-

mental measures from neurophysiology or psychology, such as ERP, EEG, and Local Field

Potentials (LFP) measures. The possibility of performing such comparisons by developing
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appropriate biophysically-inspired observation models (such as synthetic ERPs, LFPs, or

EEGs) has received attention in recent years in the field of computational neuroscience

(see Barrès et al., 2013, beim Graben and Rodrigues, 2013).

Examples of standard techniques that can be employed to perform the dimensionality

reduction and thus derive synthetic ERPs from the dynamics of our network are Principal

Component Analysis (PCA), as shown in beim Graben et al. (2008), Smolensy’s harmony

(Smolensky, 1986), defined as H =
∑

ij uiwijuj with u = (ui) being the network activation

vector and W = (wij) being the synaptic weight matrix, and Amari’s mean network

activity (Amari, 1974), simply defined as the arithmetic mean of the neural activation over

all neurons in the network, i.e. as

A =
1

n

∑

i

ui . (4.26)

To extract the synthetic ERPs, we will here use Amari’s measure to compute the mean glo-

bal network activation for the parser RNN, and average it over a number of trial with “noisy”

input stimuli. Specifically, we run two different simulations, with input stimuli being re-

spectively the encoded sequences “. . . (t)S.so(t) . . .” and “. . . (t)S.os(t) . . .”, where (t)

denotes an infinite padding of the blank symbol. For each simulation, we run 100 trials,

where the input stimulus is presented at time t = 2, and prepared as in beim Graben et al.

(2008), where random noise is added to the input stimulus at each trial. The strength of

the added random noise is such that the initial dotted words S.so and S.os can still be

recovered correctly by decoding the input, but with the rest of the decoded sequence being

a random symbolic continuation. This is done to avoid noise destroying key information

relative to the computation to be performed by the network. To extract the synthetic

ERPs from each of the two simulations, we compute the network mean activation for each

time step, and average it over the 100 presented input stimuli. The results of these simu-

lations are shown in Figure 4.15. In particular, the Figure shows a P600-like effect in the

processing of garden-path sentences by the network, where a garden-path sentence elicits

a significant peak in activation, sustained until the end of the computation. While the toy

model of garden-path processing used in this example is not detailed enough to allow for a

quantitative comparison with real ERP data from experiments such as Frisch et al. (2004),
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Figure 4.15: Synthetic Event-Related brain Potential for random cloud of
initial conditions. We simulate the network dynamics for two sets of noisy encoded
input sentences (refer to Section 4.5.3.3 for details). The first set (control condition)
consists of 100 encoded input sentences in the preferred subject-object form, while the
second (garden-path condition) consists of 100 encoded input sentences in the dispre-
ferred object-subject form. We report the mean of the average network activation (see
Equation 4.26) at each computation step for the control condition (in light blue) and
the garden-path condition (in light red), as well as its standard deviation (respectively
in dark blue and dark red). We also present, for each computation step, the correspon-
ding state of the parse (the dotted sequence composed of the parse and input one-sided
sequences) for both conditions. Furthermore, we highlight for the garden-path condition
the computation steps corresponding to the Diagnose and Repair operations. Note how
the garden-path condition is associated with a long-lasting increase in activity, peaking
at t = 5. This is reminiscent of the P600 ERP effect in psycholinguistic garden-path
experiments. While the model we constructed is too crude for a direct quantitative com-
parison with experimental data, these simulations could be the starting point for more
sophisticated modelling, allowing correlational analyses with real data from experiments.

the construction of more detailed models will lead, through the methods we outlined here,

to the possibility of more detailed correlation analyses with electrophysiological data (see

beim Graben and Drenhaus, 2012, Frank et al., 2015).

4.6 Conclusions

In this Chapter we introduced a new methodology to map automata computation to the

dynamics of RNNs that simulate the computation in real time. Our construction relies on

the introduction of a novel shift map, the Versatile Shift, which can be simulated by the

dynamics of a NDA evolving on a vectorial space, and the definition of an appropriate RNN

architecture which reproduces the NDA structure and dynamics as the time evolution of

the activations of the neurons in the network.
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The Versatile Shift we introduce is a much more expressive model of computation than the

Generalized Shift it extends. Whereas the GS can only rewrite symbols in a predefined

region of a dotted sequence with new symbols (such that each symbol in the region is

rewritten with a new one), a VS allows for the localized rewriting of sub-sequences with

new sub-sequences of arbitrary length (where, for example, a sub-sequence of 3 symbols

can be substituted with one of 10). In this way, it is possible to simulate a wider range

of models of computation parsimoniously and in real-time. That is, as we discussed in

Section 4.2, it is possible for a range of automata to define a one-to-one map from an

automaton transition function δ to the update function Ω of some Versatile Shift, such

that each computation step in the obtained Versatile Shift is in direct correspondence with

a computation step of the automaton it simulates. Importantly, the arbitrary localized

substitution of sub-sequences by a Versatile Shift clearly suggests its straightforward app-

lication in future work to the simulation of models of computation based on term rewriting,

such as Grammars and Calculi (Smullyan, 1961). Thanks to the maps we have introduced

in order to map VSs to NDA, and these to RNN, the characteristics of the VS would

allow for the simulation of such symbolic rewriting systems as NDA and RNN dynamics

on vectorial spaces, in very much the same way we have discussed for the case of auto-

mata models of computation. As such, our contribution is wider in scope in respect to

previous work and defines a general framework for the simulation of symbolic computation

through RNN dynamics. Additionally, as discussed in Section 4.4, our approach differs

from previous work in that, thanks to the relationship between the network architecture

we present and its defining model of computation (as mapped through the intermediate VS

and NDA), the presented network is strongly modular in its structure. It is in fact possible

to clearly pinpoint, for each atomic operation defined in the simulated automaton, which

part of the network implements its action. This transparency is of particular importance

when considering the simulation of Interactive Automata Networks. In fact, as we show

in Section 4.5.3, the structure of the architecture we present allows for the straightforward

composability of simulating RNNs, where sub-networks implementing specific operations

(in the form of automata computation) can be easily wired together to form a larger overall

network implementing some higher-level computation, much like different sub-routines can

be composed to obtain a program.
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It has to be noted that the presented framework also suffers from important drawbacks,

mainly stemming from discontinuities in the dynamics of the RNN, which derive from the

nature of the encoding used to map symbolic sequences to points in vectorial spaces, i.e.

the Gödelization. Specifically, the Gödelization can map sequences that are arbitrarily

different in terms of the symbols they contain, to points in the vectorial space that are

arbitrarily near each other. This is in fact the reason why NDA are piecewise systems,

with a switching rule splitting the unit square in a set of disjoint cells which cover it.

The discontinuities that Gödel encodings impose on the NDA dynamics (and thus on the

simulating RNN dynamics) lead to two important consequences. The first one is that the

dynamics of NDA, and thus of the RNN architecture we define, is extremely sensitive to

noise in the encoding of the dotted sequences, and in particular when the encoded dotted

sequence lies near to the boundary between cells of the NDA. In this case, in fact, arbitrarily

small noise applied to the state of the NDA (the encoded dotted sequence) can cause it to

lie within another cell from the one in which the state would have lied in the noiseless case.

This displacement destroys all the symbolic information encoded in the NDA state, in that

decoding the state leads to a completely different sequence from the one we started with.

Of course, this also destroys the computation performed by the NDA, as its behaviour is

now completely uncorrelated to its initial encoded symbolic input. As the RNN dynamics

simulates the underlying NDA dynamics, the same sensitivity to noise is present in the

proposed architecture. The second consequence of the discontinuous dynamics caused

by Gödelization, is that gradient-based methods for the training of neural networks do

not apply readily to our architecture, as arbitrarily small changes in the weights of the

network can cause large differences in the computation it performs. It might be possible

to overcome these drawbacks in future work by employing a different class of encodings in

which vectorial and symbolic distances correspond more faithfully. A promising candidate

is the class of tensor encodings, introduced by Smolensky in 1990. In particular, tensor

encodings offer a fully distributed representation which can be used to store structured

(possibly recursively structured) data in the pattern of activation of neural units, while

preserving a more natural correspondence between euclidean distance in vectorial space and

distance in the encoded symbolic data, which is reflected in the absence of the catastrophic

effects of noise discussed for Gödel encodings, and in the suitability of the encoding to be
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used with gradient descent methods for learning.





Chapter 5

Heteroclinic computation in

networks of oscillators

The dynamics of systems of artificial oscillators can support the presence of networks of un-

stable states (saddles), i.e. heteroclinic networks (see Chapter 2). External inputs applied

to the oscillators can then force the dynamics to continuously switch between states (Ne-

ves and Timme, 2009, 2012), realizing a computation (Ashwin and Borresen, 2005, Ashwin

and Marc, 2005a, Kirst et al., 2009, Krupa, 1997, Timme et al., 2003, Wordsworth and

Ashwin, 2008), and giving rise to the paradigm known as heteroclinic computing. In what

follows, we first characterize the form of computation performed by this class of systems in

terms of symbolic dynamics, showing that they are dynamical implementations of Finite

State Transducers (Section 5.1). Secondly, we characterize the amount of information they

can transmit (Section 5.3). We then introduce a class of systems where the heteroclinic

dynamics is given by the transition between synchronized states of oscillator activation

(Section 5.2). Finally, we simulate a heteroclinic system exhibiting a network of synchro-

nized states to show that, when input from a noise source is included in the system, it

can allow for a greater capacity and speed of information transmission (Section 5.4). This

result interestingly hints to the fact that dynamical implementations of symbolic models

of computation can support emerging phenomena fundamentally outside what the original

93
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symbolic models can capture, while still falling within an intuitive and intelligible notion

of information processing.

5.1 Symbolic Dynamics of heteroclinic networks

To study how heteroclinic networks in the state space of a dynamical system can support

the processing of symbolic information, we can apply the theory of symbolic dynamics.

The discretization of a dynamical system’s dynamics is normally achieved in the symbolic

dynamics framework by defining a partition of the state space, such that a sequence of

output symbols is induced by the sequence of cells in the partition visited by the dynamical

system state. Crucially, in the case of heteroclinic networks, the partition of the state space

is naturally induced by the graph structure characterizing the network.

A heteroclinic network can be represented as a directed graph G where the set of vertices

V (G) is the set of unstable states (saddles) in the network, and where the edges E(G)

are the heteroclinic connections between those states. The transition between states in

the noiseless system depends on the sign of the difference of perturbations to the unsta-

ble directions of the approached state. That is, the signal component with the largest

magnitude in the direction of one of the unstable manifolds of the current saddle forces

the dynamics of the system towards that specific unstable direction and, finally, to the

associated saddle. For this reason, we can define an input labeling I of G where each edge

e from a vertex vi to a vertex vj is labelled corresponding to which signal component to

the unstable directions of vi has to be the strongest in order to drive the system towards

vj (see Figure 5.1)

Through this abstraction, we can give a symbolic interpretation of the dynamics of systems

with heteroclinic networks, where input perturbations take the role of input symbols, and

the reaching of a state can be interpreted as the production of an output symbol from an

alphabet O = V (G). That is, a heteroclinic network can be seen as implementing a Finite-

State Transducer (see Section 1.1.3), allowing the re-encoding of input perturbations into

output sequences of states.
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Figure 5.1: Graph representation of heteroclinic network. (A) A heteroclinic
network of 3 saddle states is shown, where at each saddle perturbations to the state of
the system drive the dynamics towards the unstable direction corresponding to the largest
perturbation component. (B) By seeing each saddle as a discrete state, each heteroclininic
connection as a discrete state-to-state vertex, and by labelling each vertex by the signal
component that, if strongest, would drive the dynamics towards its associated connection,
we can obtain a Finite-State Transducer (see Section 1.1.3) abstraction of the system.

The space of possible bi-infinite heteroclinic sequences defined by a heteroclinic network is

the vertex shift XG defined on the network graph G, i.e.

XG = {x = (xi)i∈Z ∈ OZ | Axixi+1 = 1 for all i ∈ Z} (5.1)

where A is the adjacency matrix of the heteroclinic network, with Aij = 1 if state i has

a heteroclinic connection to j, and Aij = 0 otherwise. This shift space defines a language

L(XG) =
⋃∞
n=0 Bn(XG), i.e. the set containing all possible words in XG. Given that

the vertex shift XG can be described by a finite set of forbidden 2-words (i.e. the set of

forbidden state-to-state transitions in the heteroclinic graph), XG is a shift of finite type,

and thus the language L(XG) is a regular language. This of course should come as no

surprise, given how we characterized computation in heteroclinic networks as being that

of Finite-State Transducers (the class of automata generating regular languages).
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5.2 Heteroclinic networks emerging from systems of oscilla-

tors

Let us broadly define a system of N identical oscillators having the form

dVi
dt

= F (Vi) +
N∑

j 6=i
Wji(t) + Si(t) + ηi (5.2)

where F (Vi) : R → R is a non-autonomous function of Voltage-like variable Vi ∈ R of the

i-th oscillator,
∑N

j 6=iWji(t) is input to oscillator i from other oscillators j = 1, . . . , N with

j 6= i, Si(t) an external input and ηi a Gaussian noise source. Here the choice of F is

further constrained on the condition that for no external and network input and no noise,

the dynamics dVi
dt of each oscillator is periodic. That is, when

∑N
j 6=iWji(t) +Si(t) + ηi = 0

for all t), a period T exists such that Vi(t+ T ) = Vi(t) for all t. Systems of this form can

sometimes support the emergence of heteroclinic networks, and thus function as symbolic

computing machines as outlined in the previous Section. Specifically, when exploring the

forms of computation these systems can support, it is natural under a Dynamical Systems

perspective to characterize their dynamics in state space as the output they produce given

some external input; in the simplest case, the external input S = (Si) to the system can

be characterized as a vector of fixed detuning currents ∆ = (∆1,∆2, . . . ,∆N ) ∈ RN , such

that Si = ∆i.

Wordsworth and Ashwin (2008) and Neves and Timme (2012) have shown that symme-

tric systems of N oscillators receiving N independent detuning currents can implement

a persistent switching of states characterized by the production of cyclic sequences, im-

plementing a k-winner-take-all (k < N) computation separating the k stronger from the

N − k weaker detuning currents (with k depending on the specific system). That is, they

compute a partial ordering of their input currents. We will refer to this class of systems as

State-Switching Machines (SSMs). In SSMs, the output states of the emerging heteroclinic

network correspond to partial synchronizations (clusters) of the oscillator voltages, where

perturbations to the voltages can result in the de- and re-synchronization of subsets of

oscillators, resulting in the approaching of a new clustered state (see Section 5.4.1 for a
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concrete example). The input sequences to the emerging heteroclinic Finite State Trans-

ducer are instead induced by the application of the ∆ vector of detuning currents to the

system of oscillators. In the noiseless system (ηi = 0 for all i = 1, . . . , N), a fixed detuning

signal to the oscillators drives the system towards specific unstable directions each time a

state is approached. The input symbol at each state is thus just the strongest between the

signal components towards the unstable directions, as it determines the next approached

state. In other words, at each state state the system performs a comparison between the

strength of the perturbations to the unstable directions of its associated saddle (see panel

A of Figure 5.1). We are thus able to retrieve a partial ordering of the detuning currents

to the oscillators of a SSM by simply observing which output sequence of states it induces.

5.3 Information transmission in noiseless SSMs

We want to characterize the amount of information that can be transmitted by SSMs

emerging from systems of oscillators, when they are seen are re-encoders of input currents

to the oscillators into output sequences of states. To do so, we will define a discrete input

set of vectors of currents for a generic SSM, where each vector is seen as a discrete symbol,

and compute the Mutual Information (see Sections 1.2.1 and 1.2.2) between these and the

output sequences which the machine produces. The input set can be chosen arbitrarily,

and many reasonable choices are possible; nevertheless, given that SSMs compute a partial

ordering of their input currents, as discussed in the previous Section, a natural choice of

input set X is that containing all the possible orderings of the currents of a given ordered

∆ vector, i.e. the set {r(∆)|r ∈ P(∆)} of all possible permutations of the currents in ∆

(where P is the set of all bijections from ∆ to itself).

For a SSM of N oscillators, the number of possible orderings is thus equal to |X| = N !

(as N ! is the number of ways n different object can be permuted). The output periodic

sequence of states of the noiseless SSM allows the categorization of the N input signals to

the oscillators in two groups of size k and N −k; the system cannot determine the internal

orderings of the two groups. This means that the system can only effectively distinguish

between
(
N
k

)
= N !

(N−k)!k! percepts.
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To derive the Mutual Information I(X;Y ) = H(X)−H(X|Y ) between input and output

of the SSM (represented by random variables X and Y , see Section 1.2), and thus charac-

terize the amount of information the system can transmit, let us first assume a uniform

distribution for the probability of the different X inputs. In this case, it is easy to compute

the marginal input entropy as

H(X) = −
∑

x

p(x) log p(x) = − log
1

N !
. (5.3)

where x is one of the possible outcomes of the random variable X representing the input

to the system.

For what concerns the conditional entropy H(X|Y ) = −∑y p(y)
∑

x p(x|y) log p(x|y), we

know that p(x|y) in the noiseless system is equal to 0 if x does not have the partial ordering

associated with the sequence y, and equal to 1
(N−k)!k! if it has (as (N − k)!k! inputs share

the same partial ordering). This leads to a conditional entropy of

H(X|Y ) = − log
1

(N − k)!k!
. (5.4)

and, finally to a Mutual Information of

I(X;Y ) = − log
1

N !
+ log

1

(N − k)!k!

= log
N !

(N − k)!k!

= log

(
N

k

)
.

(5.5)

5.4 Information transmission in noisy SSMs

When noise is present in SSMs, the sequences of states produced by the heteroclinic swit-

ching are not periodic anymore, as the stochastic effects of noise makes the switching

probabilistic (as we will later show in 5.4.2.3).

The way in which the heteroclinic dynamics is affected by noise depends on a complex

interplay between the specific system, its input, and the nature of the noise present in

the system. For this reason, we cannot rely on the simple properties of the heteroclinic

graph (as we did in Section 5.3 for the noiseless system) to approximate the conditional
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distribution p(X|Y ) of the input given observed output, which we need in order to compute

the Mutual Information in the system. We must instead simulate the system and collect the

frequencies with which the sequences are produced. Additionally, simulating the system

will not allow us to collect bi-infinite sequences of output states, so that we must settle for

the collection of finite n-words instead.

Even under these constraints, studying how noise modifies the input-output Mutual Infor-

mation in SSMs is a worthy endeavour, and will lead us to uncover a surprising facilitatory

effect for noise on the information transmission in these systems; moreover, we will later

argue that this effect is not specific to the particular system we chose to simulate here, but

can be generalized to computation in SSMs in general.

In what follows, we will first present the specific system that will guide our exploration of

the effects of noise on SSMs. We will then discuss how noise was implemented, and some

of its important effects on the system’s dynamics. Finally we will discuss the results of the

simulations and their consequences.

5.4.1 The model

In order to collect the frequencies of n-words from the dynamics of a SSM when noise is

present, we want a system with key desirable characteristics:

– The system is Efficiently simulable. That is, it should allow for the efficient simu-

lation of its dynamics. In fact, approximating the conditional output probabilities

needed to compute the I(X;Y ) Mutual Information in the system can quickly become

computationally burdensome.

– The heteroclinic network in the system must be small in the number of states. The

emerging network of states should be small enough that the frequency of n-words

from its output sequences can be computed in a reasonable time (larger network of

states is associated with larger graphs, and thus to a larger set of possible n-words).
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– The heteroclinic network in the system must be complex. That is, the network of

states should not be so small to be trivial. This would impact the generalizability of

the results.

A system with these properties has been characterized in Neves and Timme (2009). To

study the impact of noise on the computation performed by SSMs, we will base our analysis

on the work of Neves and Timme, who consider a system of N = 5 delta-pulse-coupled

integrate and fire oscillators with an emerging heteroclinic network of 30 states. The

simulation of this system is particularly efficient because of the small number of oscillators

involved, and because its dynamics can be analytically integrated between events (resets

and pulses). Furthermore, the emerging network of states is small enough to allow for

the approximation of the probability of output sequences within reasonable computation

time, but not so small to make the endeavour trivial. We will now describe this system by

specifying its form from the general blueprint presented in Equation 5.2.

The intrinsic dynamics F (V ) of oscillator i is defined as

F (V ) = I − V (5.6)

where I can be thought as a driving current to the oscillator. We further define a reset

condition on the Voltage of the oscillator, such that

V (t) =





V (t) if V (t) < θ

0 if V (t) ≥ θ,
(5.7)

where θ is the firing threshold. That is, when the Voltage of the oscillator reaches the

threshold, the oscillator fires (sends a pulse) and its Voltage is reset to 0.

The network of delta-pulse-coupled oscillators is connected homogeneously all-to-all with

no self-connections, as in Figure 5.2.

Every time an oscillator reaches its threshold, it sends a pulse to the rest of the network.

In this model, the pulse is transmitted to the other oscillators with a delay, so that the

network input to the i-th oscillator for the general system in Equation 5.2 can be specified
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θ τ ε I V1,2 V3,4 V5

1 1.59646730 0.025 1.04 0 0.74039804 0.96216636

Table 5.1: Set of parameters and initial conditions associated with the emer-
gence of symmetrical periodicities in the system of N = 5 oscillators described in
this Section.

Figure 5.2: Couplings between oscillators in the network. Each oscillator is
coupled to all other oscillators in the network through a connection with delay τ .

as

Wi(t) =
n∑

j=1,j 6=i
εδ(t− τ − tj), (5.8)

i.e. a weighted sum of incoming pulses to oscillator i from the rest of the network at time

t, where pulses are received with connection delay τ , leading to instantaneous jumps in

voltage of amplitude ε. The external input Si to each oscillator is instead defined as

Si(t) = ∆i (5.9)

where ∆i � I is a small detuning current to oscillator i.

Given the parameters and initial conditions reported in Table 5.1, the dynamics of the

system exhibits periodic orbits characterized by the partial synchronization of its oscillators

(i.e. clusters), with

V1(t) = V2(t)

V3(t) = V4(t)

V5(t) 6= V4(t) 6= V2(t),

V (t) = V (t+ kT ) for k = 1, . . . , n ,

(5.10)

where V1(t) is the voltage of oscillator 1 at time t, V is the voltage vector, T is the period,

and where j 6= k for j 6= k (see 5.3 for a phase depiction of a synchronized state). Note

that this particular pattern of oscillator synchronization relies upon a careful initialization
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of the oscillator voltages, and does not emerge otherwise. The parameters and initial con-

ditions allowing for the emergence of this pattern have been found through a systematic

numerical search (Neves, 2010).

Let us now introduce some notation to describe the clustered states in this system. We will

denote the three synchronization clusters (i.e. the three groups of synchronized oscillators,

{V1, V2}, {V3, V4} and the singleton {V5}) with the labels “a”, “b” and “c”. Given a vector

(1, 2, 3, 4, 5) in which each entry corresponds to the index of one of the 5 oscillators in

the network, we can assign a cluster label to each oscillator, such that
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
a a b b c

)
is an

example of clustered state. Throughout this Chapter, we will often simplify notation by

reporting the cluster labels only, thus implying the associated oscillator indices. Examples

of clustered states would thus be (a, b, a, c, b), or (b, c, a, a, b), or (c, b, a, b, a). Permuting

the labels in one of these vectors yields a total number of possible clustered states in the

system equal to
(

5
2,2,1

)
= 5!

2!2!1! = 30.1

In what follows, we will first review and summarize key results presented in Neves (2010),

applying the methods introduced in Mirollo and Strogatz (1990) to

1. present an equivalent representation for the dynamics of the discussed system of

oscillators, i.e. its phase representation,

2. show the relation between the voltage and phase representations,

3. use the phase representation to derive return maps (in the form of tables of events)

for the unperturbed and perturbed noiseless system and, finally,

4. characterize the heteroclinic switching of states in the system by performing a stabi-

lity analysis on the return map for the perturbed system.

After having introduced these methods, we will proceed with the exposition of our results.
1( n
k1,k2,...,kn

)
with n =

∑
i ki is the multinomial coefficient, expressing the number of ways in which n

objects can be split in groups of respectively sizes k1, k2, . . . , kn.
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5.4.1.1 Phase representation

The dynamics of a single uncoupled oscillator with driving current I and firing threshold

θ, when considered in the parameter range I > θ, is characterized by a periodic oscillation

of period Tif, i.e. the time needed for the voltage V to increase from 0 up to the firing

threshold (where it is reset), such that V (t + kTif) = V (t). The time evolution of the

voltage of the uncoupled oscillator is defined as

dV

dt
= F (V ) = I − V. (5.11)

Solving this differential equation for initial conditions V (0) = 0 yields

V (t) = I(1− e−t), (5.12)

such that the θ firing threshold can be rewritten as θ = I(1− e−Tif), yielding

Tif = ln(I)− ln(I − θ). (5.13)

By knowing that the voltage V (t) = I(1− e−t), and restricting t to the interval [0, Tif], we

can derive a formula for the time t as a function of V and I as

t = ln(I)− ln(I − V ), (5.14)

allowing us to derive the oscillator’s phase φ(t) = t
Tif

from its voltage as

φ(t) = U
(
V (t)

)
=

ln(I)− ln
(
I − V (t)

)

ln(I)− ln(I − θ) (5.15)

such that U : [0, θ] → [0, 1] maps the voltage representation to the phase representation

of the state space of the oscillator. For V ≤ θ (and thus V < I), U is monotonic,

allowing us to also derive the inverse mapping U−1 from phase to voltage representation

U−1
(
U
(
V (t)

))
= U−1

(
φi (t)

)
= V (t). Given that φi = t

Tif
, we can straightforwardly

derive the inverse of U
(
V (t)

)
, i.e. The function mapping the phase representation to the

voltage representation. Specifically, given that t = φi(t)Tif,

U−1
(
φ (t)

)
= V (t) = I

(
1− eφ(t)Tif

)
. (5.16)
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event time φ1, φ2 φ3, φ4 φ5 event
num.

σ1,2 0 0 D E 0

ρ3,4;σ5 τ ′ H2ε(τ
′) = p1,1 Hε(D + τ ′) = p3,1 H2ε(E + τ ′) > 1→ 0 1

ρ1,2;σ3,4 τ Hε(p1,1+τ − τ ′) = p1,2 H2ε(p3,1 + τ − τ ′) > 1→ 0 H2ε(τ − τ ′) = p5,2 2

ρ5 τ ′ + τ Hε(p1,2 + τ ′) = p1,3 Hε(τ
′) = p3,3 p5,2 + τ ′ = p5,3 3

σ1,2 τ ′ + τ + 1− p1,3 1→ 0 p3,3 + 1− p1,3 p5,3 + 1− p1,3 4

Table 5.2: Table of events for the unperturbed orbit (adapted from Neves, 2010).
Here three periodic conditions are implied, i.e. D = p3,3 + 1 − p1,3, E = p5,3 + 1 − p1,3,
and τ ′ =

τ−1+p1,3
2 , which are met, e.g., for D = .381978, E = .795680, τ ′ = .119095. Note

that H2ε denotes the reception of two pulses from an oscillator.

To characterize the relation between the phase and the voltage representations for the

coupled oscillator, we need to show how the voltage jump caused by the reception of a

pulse is mapped to a phase jump. The reception of a pulse by the coupled oscillator is

associated with an instantaneous jump in voltage of amplitude ε. On the other hand,

the amplitude of the associated phase jump εφ is not fixed (as the voltage function is

concave down) but is rather a function g of the oscillator’s phase immediately preceding

the reception of the pulse at time tρ, i.e. εφ = g
(

limt→t−ρ φ(t)
)
. Having shown how to map

from voltage to phase and vice-versa in Equations 5.15 and 5.16, the new phase resulting

from the reception of a pulse can be trivially derived as

Hε

(
φi(t

−
ρ )
)

= U

[
U−1

(
φi(t

−
ρ )
)

+ ε

]
= φi(tρ) (5.17)

where Hε

(
φ (t)

)
maps a voltage jump due to the reception of a pulse at time tρ to the

resulting phase.

5.4.1.2 Tables of events

Having specified the relation between the voltage and phase representation of the dynamics

of the oscillators, we can now derive the table of events for a clustered periodic orbit in the

noiseless and unperturbed system. Let us denote the production of a pulse by oscillator i

with σi, and the reception of a pulse by oscillator j by ρj . The table of events for a periodic

orbit in this system can then be derived as in Table 5.2. In Figure 5.3 we show the phase
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Figure 5.3: Phase of a periodic orbit in the unperturbed and noiseless system
of oscillators. The dynamics of the system is characterized by discrete reset and pulse
reception events. In the Figure, we highlight the events by vertical green dotted lines,
and cross-reference them with Table 5.2.

of a clustered periodic orbit in the unperturbed noiseless system, cross-referenced with the

events reported in Table 5.2.

After deriving the table of events for a periodic orbit in the unperturbed system, we can

extend it by adding a perturbation vector to the phase of the oscillators at the reference

reset, deriving a new table of events describing the phase evolution of the perturbed system

between resets of the reference oscillator.

We define each component of the perturbation vector δ(n) as the difference in phase bet-

ween the oscillators in the perturbed vs unperturbed system, measured at the n-th reset

of a reference oscillator, i.e.

δi(n) := φi(t1,n)− φ∗i (t1,n), (5.18)

where φi(t1,n) denotes the phase of the perturbed system at time t1,n (the time of the n-th

reset of oscillator 1, taken as the reference oscillator), and φ∗i denotes the phase of the

unperturbed system at that time. The derived table of events is shown in Table 5.3.
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Figure 5.4: Phase of system after perturbation. The reset and pulse reception
events are highlighted with green dotted lines, and cross-referenced with those in Table
5.3.

5.4.1.3 Stability analysis

It is now possible, through the return map defined by the table of events in Table 5.3

for a perturbed system in the (a, a, b, b, c) clustered state, to perform a stability analysis

on the perturbation vector δ(n) =
(
δ2(n), δ3(n), δ4(n), δ5(n)

)
. 2 The stability analysis

is performed by tracking the evolution of the perturbation vector from one reset of the

reference oscillator to the next, which can be analytically traced thanks to the table of

events for the perturbed orbit, in Table 5.3. The evolution of the perturbation vector at

reset n+ 1 can then be expressed as a function of its state at reset n, that is

δ(n+ 1) = F
(
δ (n)

)
.

It then becomes possible to analyze the stability of the perturbation vector by performing

a linear approximation on F , such that

δ(n+ 1) ≈ Jδ(n).

2Note that reference oscillator 1 is here omitted, as the perturbation vector is defined in relation to its
reset times t1,n, and thus δ1(n) = 0 for all n (see Equation 5.18). That is, the return map is constructed
by taking a “snapshot” of the oscillator phases every time the reference oscillator 1 fires, so that its phase
at the time of the snapshot is always 0, and can thus be omitted.



108

where J is the Jacobian at δ(n) = 0. Assuming {δ2, δ5} > 0, and δ3 < δ4, the stability

analysis on J reveals a single non-zero eigenvalue with its eigenvector in the direction of δ2,

and three zero eigenvalues in the direction of δ3, δ4 and δ5. That is, for the system in the

(a, a, b, b, c) synchronized state, only perturbations causing a positive difference in phase

between oscillator 2 and reference oscillator 1 have an effect on the return map, whereas all

other perturbations are cancelled within one reset of the reference oscillator. Specifically,

a positive perturbation to oscillator 2 (or a negative one to oscillator 1) causes the a

synchronization cluster to split, such that oscillator 2 synchronizes in time with oscillator

5, becoming the new stable cluster b, whereas oscillator 1 becomes the new singleton c,

and oscillators 3 and 4 become the new unstable cluster a. That is, the new approached

synchronized state has the same symmetry as the starting one. We are thus able to derive

a transition rule of the form

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
a a b b c

)
δ2>0−−−→

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
b c a a b

)
(5.19)

where δ2 is a difference in phase between oscillator 2 and reference oscillator 1 caused by

a positive perturbation to oscillator 2, or a negative one to oscillator 1. Because of the

symmetry of the system, a second transition is possible from the (a, a, b, b, c) clustered

state, which is easily derived by considering that the perturbation analysis results hold

unchanged when using oscillator 2 as a reference, yielding

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
a a b b c

)
δ1>0−−−→

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
c b a a b

)
, (5.20)

where δ1 is a difference in phase between oscillator 1 and reference oscillator 2 caused by

a positive perturbation to oscillator 1, or a negative one to oscillator 2.

A consequence of the two transition rules in Equations 5.19 and 5.20 is that, starting from

the (a, a, b, b, c) clustered state, which of the two clustered states (b, c, a, a, b) or (c, b, a, a, b)

is approached after a perturbation to the unstable cluster is determined by which of the

two oscillators in the cluster receives the strongest perturbation. In Figure 5.5, we perturb

one of the oscillators in the unstable cluster and show the effect of the perturbation on

the reset timings of the oscillators in the system, highlighting the different synchronized

clusters in different colors.
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Figure 5.5: Reset timings of oscillators in the noiseless system for a positive
perturbation applied to oscillator 2 (at t ≈ 28). The stable cluster is highlighted
in green, the unstable cluster in red and the singleton in yellow. In grey, we highlight
the de-synchronized unstable cluster. Note how, after a transient de-synchronization, the
oscillators in the system re-synchronize in a new clustered state, with the same symmetry
as the initial clustered state. In the approached state, the original stable cluster becomes
the new unstable cluster, the perturbed oscillator of the original unstable cluster becomes
the new singleton, while the other synchronizes with the old singleton to form the new
stable cluster.

The heteroclinic graph defined in 5.1 for this system can be derived by defining the set

of vertices V (G) to be equal to the set of clustered states in the system, and the set of

edges E(G) to be equal to the set of transitions between states, which can be obtained by

permutation of the indices of the oscillators in the transition rule in Equation 5.19, i.e.

E(G) =

{(
r( 1 2 3 4 5 )
↓ ↓ ↓ ↓ ↓
a a b b c

)
δr(2)>0−−−−→

(
r( 1 2 3 4 5 )
↓ ↓ ↓ ↓ ↓
b c a a b

) ∣∣∣∣∣ for all r ∈ P(1, 2, 3, 4, 5)

}
(5.21)

where P(1, 2, 3, 4, 5) is the set of all possible bijections from the set of oscillator indices

to itself (i.e. all possible permutations of the oscillator indices). The set of edges E(G)

could have equivalently been obtained by permutation of the oscillator indices in the second

transition rule defined in Equation 5.20, as each of the two transition rules can be obtained

by permutation of the oscillator indices in the other.

When perturbed through the application of a fixed vector of detuning currents ∆ =
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(∆1, . . . ,∆5) to its oscillators (as defined in Equation 5.9), the system performs a 3-winners-

take-all computation separating the three highest detuning currents from the lowest two.

For example, given ∆1 > ∆2 > ∆3 > ∆4 > ∆5 and an initial clustered state (c, b, a, a, b),

the system traces a periodic sequence of states of the form

(c,b,a,a,b)

(b, a, c, b, a)

(a, c, b, a, b)

(c, b, a, b, a)

(b, a, c, a, b)

(a, c, b, b, a)

.

Note that, by the transition rules in Equations 5.19 and 5.20, observing this orbit implies

that {∆1,∆2,∆3} are all larger than {∆4,∆5}.

In the absence of noise, we can compute a baseline Mutual Information for this system

by the results discussed in 5.3. Specifically, given 5.5, the Mutual Information I(X;Y )

between the input set X of all possible orderings for the currents in the ∆ vector and

the output set Y of all possible periodic sequences of states can be derived as I(X;Y ) =

log2

(
5
3

)
= log2 10 ≈ 3.32.

5.4.2 Effects of noise on switching dynamics

In the previous Sections, we have characterized the dynamics of our small system of oscil-

lators in the absence of noise. We are now ready to investigate how noise modifies these

dynamics.

We complete the specification of the general system in Equation 5.2 by adding a Gaussian

noise source ηi to each of the oscillators in the network, implemented in the form of an

external random pulse generator. We do so in order to preserve the between-event integra-

bility of the system, keeping its simulation efficient. The cumulative current produced by

the pulses from the noise source in unit time approximates a Gaussian distribution with

mean 0 and variance a2. Specifically, each oscillator is connected to two Poisson pulse

generators, producing pulses with rate λ
2 and amplitude respectively of a and −a (i.e. one
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generates excitatory input, the other inhibitory). In a unit of time, each pulse generator

produces a Poisson-distributed number of pulses, which we will denote as respectively K+

and K−, and a cumulative current of respectively C+ = aK+ and C− = aK−. The mean

E and variance Var of C+ and C− can be derived as follows

E(C+) = E( aK+) = a E(K+) = a
λ

2
,

E(C−) = E(−aK−) = −a E(K−) = −a λ

2
,

Var(C+) = Var( aK+) = a2Var(K−) = a2λ

2
,

Var(C−) = Var(−aK+) = a2Var(K−) = a2λ

2
.

Together, in unit time the two generators produce an overall current of Z = C+ + C−.

Given the independence of the the two C+ and C− random variables, we can derive the

mean and variance of Z as follows

E(Z) = E(C+ + C−) = E(C+) + E(C−) = 0, (5.22)

Var(Z) = Var(C+ + C−) = Var(C+) + Var(C−) = a2λ. (5.23)

For sufficiently high λ rate and small amplitude a, the pulses produced by the two gene-

rators approximate the application of a continuous current. For this reason, the variance

of the cumulative current produced in unit time Var(Z) becomes a control parameter for

the noise “strength”, thus governing its effects on the system.

In Figure 5.6 we show the results of a simulation where we measure the timings of resets for

a decoupled oscillator with dynamics dV
dt = I − V + η, where the η noise source is defined

as discussed in the previous paragraphs, and where we vary the λ and a noise parameters,

measuring the reset timings variance for a number of reset equal to 100, 000. In the Figure,

it is possible to observe that varying a or λ has approximately the same effect on the reset

timings as long as the noise variance Var(Z) is kept the same. To manipulate the noise

variance in our simulations, we will keep the λ pulse rate fixed, and act on the squared

amplitude a2 instead. This is because increasing λ also linearly increases the computation

time for the event-based simulations, as more pulses are produced by the pulse generators.

In contrast, manipulating a2 does not lead to an increase in simulation time.
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Figure 5.6: Reset timings variance for a range of noise parameter values. On
the left, a noise rate λ = 102 is fixed, and the squared noise amplitude a2 is manipulated.
On the right, a squared noise amplitude a2 = 10−12 is fixed, and the noise rate λ is
manipulated. Note how, for the same resulting noise variance in the manipulation of the
two parameters (shown in the top axis), the resulting reset timings variance in the left
and right plot is approximately the same (highlighted by the dotted horizontal lines).

5.4.2.1 Switching time for noiseless system

As the effect of perturbations to the stable clusters are cancelled by resets elicited from

the reception of pulses in the corresponding oscillators (i.e. events 2 and 4 in Table 5.2),

the switching time between states is driven primarily by the magnitude of the difference

D = ∆1−∆2 between the currents ∆1 and ∆2 to the two oscillators in the unstable cluster.

In fact, when the difference between detuning currents is zero i.e. when the two oscillators

receive the same current, they stay synchronized and thus no transition is induced; when

D 6= 0, instead, stronger differences |D| are associated with a faster de-synchronization,

and thus a faster switching to the next state in the heteroclinic network. We show this

effect in Figure 5.7.

Note that the discrete jumps in switching time present in Figure 5.7 are due to the fact

that smoothly increasing/decreasing the magnitude |D| of differences in currents to the

unstable cluster eventually leads to the addition/subtraction of a reset in the transition

between clustered states, thus suddenly causing a jump in switching time. Furthermore,

note that the switching time increases exponentially as the magnitude decreases. In Figure
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Figure 5.7: Switching time as a function of currents applied to oscillators
in unstable cluster. The Figure shows how the switching time depends primarily on
the difference between the input currents to the oscillators in the unstable cluster, rather
than their magnitude.
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Figure 5.8: Switching time and number of resets as functions of D difference.
This Figure highlights the exponential relationship between the difference in currents to
the unstable cluster (D = δi − δj , δi > δj ) and the switching time. In particular, notice
how the discrete time jumps are related to the underlying change of the number of resets
in switching.

5.8 we highlight both the addition/subtraction of resets for varying magnitude |D| of the

difference, and the exponential relationship between the latter and switching time.

5.4.2.2 Switching time for system with noise

In Figure 5.9 we show the mean switching time and its standard deviation for the unper-

turbed noisy system, computed from runs of k = 1000 transitions, for a range of 20 values

of the noise Variance Var(Z) sampled logarithmically over the [10−27, 10−7] interval. As
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Figure 5.9: Mean and standard deviation of switching time for varying noise
variance Var(Z). We denote one standard deviation above and below the mean by
a blue bar. In the absence of input, the mean switching time in the system increases
exponentially as the noise strength decreases.

the Figure shows, greater noise variance (i.e. greater noise strength) causes the switching

to accelerate in a predictable fashion. This is because (as shown in Neves, 2010) stronger

noise causes the dynamics of the system to spend less time on average near the attractors,

and thus to not suffer from their associated exponential slowdown.

5.4.2.3 Errors in state switching

It is possible to look at each state-to-state transition in the heteroclinic network as a

computation on the input currents, where the result of the comparison between the two

input currents to the unstable cluster determines the next state (between two possible) in

the sequence of approached states. In this sense, noise can lead to “errors” in switching

when it forces the system to approach the wrong state, i.e. the state associated with the

wrong result when looking at the comparison between input currents.

To study how the relative strength between input and noise affects the frequency of errors

in switching, we simulate the system by fixing the noise variance to Var(Z) = 10−9 and the

vector of detuning currents to 0 with the exception of one component (∆1), which we vary

to control the Signal-to-Noise Ratio (SNR), defined here as (∆1)2

Var(Z) . For each level of SNR,

we record 100 transitions from an initial state, and compute the frequency with which the

right vs wrong state is approached after de-synchronization due to the ∆1 current to the
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unstable cluster. We report the results in Figure 5.10, where we show that the probability

for the system to perform the correct transition (and thus to correctly compare the two

input currents) drops to chance for low SNR levels.
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Figure 5.10: Frequency with which the correct state is approached for a range
of SNR levels. We simulate a transition in the system by initializing the system to
be on an initial clustered state s0 = (a, a, b, b, c), fixing the noise variance Var(Z) to
a value of 10−9, and varying the magnitude ∆ of the input vector of currents, with
∆ = (∆1, 0, 0, 0, 0),∆1 > 0. For each level of SNR, we collect the number of times n1
and n2 each of the two possible ending states s1 = (c, b, a, a, b) and s2 = (b, c, a, a, b) is
approached over ntot = 100 trials. Finally, we obtain the frequency of each of the two
states as n1

ntot
and n2

ntot
. In the noiseless system, the transition rule prescribes s1 as the

correct state to be approached given s0 as the initial state and (∆1, 0, 0, 0, 0) with ∆1 > 0
as input; in the Figure, we show the frequency n1

ntot
with which state s1 is approached,

for each level of SNR.

5.4.3 Mutual Information in noisy system

In the previous Sections, we characterized the effect of noise on the local switching dyna-

mics, showing that noise accelerates the overall switching rate and that it causes errors in

the transition between states (if we see transitions as computations on the input, where

the input currents to the oscillators of the unstable cluster are compared).

In the next Sections, we will show that, globally, these two effects of noise can lead to

an increased capacity and speed of information transmission in the system (seen as a re-

encoder of its input currents into output sequences). We do so by computing the Mutual

Information I(X;Y ) and its rate in this system for varying noise strength.
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We will now describe the input and output sets used to test the system in the following

simulations, and introduce a Signal-to-Noise Ratio (SNR) to quantify the noise strength

compared to the input.

Input set. We first define theX input set as discussed in Section 5.3 for the noiseless case,

i.e. as the set of all possible orderings of a vector of input currents. As shown in 5.4.2,

the magnitude of the difference between the currents has a key role in determining

the robustness to noise of the system (all things equal, greater differences lead to less

errors in switching). For this reason, we will simulate the system for a range of vectors

of detuning currents, differing for the specific way in which the differences between

the currents are chosen. Specifically, a generic vector ∆g of detuning currents (which

we call generating vector as it generates theX input set by permutation of its entries),

is defined as

∆g
i =





b i = 1

∆i−1 +Di−1 i = 2, . . . , N,

(5.24)

where b ∈ R is some constant, and D1, D2, . . . , DN−1 are independent and identically

distributed random variables from some chosen probability distribution F . That is,

the differences between consecutive currents in the ∆g vector are chosen randomly

from some distribution F , which we will vary in order to test the system for a range

of conditions.

Output set. In the noiseless case we could define the output set Y as the set of all possible

periodic sequences given by the persistent cyclic switching between states due to a

fixed vector of input currents to the oscillators. On the other hand, we have shown

in Section 5.4.2.3 that noise disrupts the cyclic switching by sometimes causing the

wrong state to be approached. For this reason, whereas before we could consider

a finite set of periodic infinite sequences, we must now choose a finite set of finite

sequences as an output set, as our results will be derived through simulation.

A natural choice of output set given these conditions is the set of all possible n-words

in the vertex shift XG defined by the heteroclinic graph G (see Equation 5.1). That
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is, the set of all possible sequences of n states that the heteroclinic dynamics of the

system can trace in the network of states. In the following Sections, we will set n = 11

as a reasonable trade-off between the increase in computation time for the analysis

of the data and the clarity of exposition of our results. Note that each n-word (each

sequence of n states) in the output set is now effectively considered a single output

symbol.

Signal-to-Noise Ratio. Given the probability distribution F from which the difference

between consecutive currents are generated (as specified in Equation 5.24), we define

the SNR as

SNR =
E(D2)

Var(Z)
, (5.25)

where D is a random variable distributed as F , E(D2) is the expected value of its

square, and Var(Z) is the variance of the noise random variable Z (i.e. λa2, as shown

in Section 5.4.2). Note that we chose to use the D difference random variable as a

measure of input strength because, as we discussed in Sections 5.4.2.2 and 5.4.2.3,

a stronger difference between currents to the unstable cluster is associated with a

switching which is faster and more robust against noise.

For each input set tested in the simulations presented in the following Sections, we measure

the Mutual Information of the system for 20 levels of SNR (sampled logarithmically from

the [ 1
10 , 10] interval), and testing each of the 30 states in the network as initial conditions.

For each run (i.e. for each level of SNR and initial condition), we record a long-running

switching sequence of length k = 1000, from which we collect the needed output n-words

through the n-th higher word code in Equation 3.1. In this way, for each level of SNR we

are able to collect 29700 n-words, i.e. the system’s output sequences.

We test the system for three distributions F of the differences between consecutive detuning

currents.

In a first set of simulations, we generate the input set X by permutation of a vector of

currents ∆g where the difference between consecutive currents is fixed to some value d.

When considering the generic ∆g vector introduced in Equation 5.24, this is equivalent
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to defining the distribution F of the Di differences to be the deterministic distribution

localized at d. The results are reported in panel A of Figure 5.11, where we observe

an increase of up to 14% in the Mutual Information and one of up to 12% in the Mutual

Information Rate, with respect to the baseline Mutual Information and Mutual Information

Rate for the noiseless system.

In a second set of simulations, we test 100 different input sets, each from a vector of currents

in which the differences Di between consecutive currents are generated from the U(0, 10−5)

uniform distribution on the (0, 10−5) interval. The squared expectation E(D2), D ∼ U(a, b)

needed to specify how the SNR is computed can be derived as

E(D2) =

∫ b

a
x2 · 1

b− adx

=
1

b− a

∫ b

a
x2dx

=
1

b− a
b3 − a3

3

=
a2 + ab+ b2

3
.

Like for the first set of simulations, the results (shown in panel B of Figure 5.11) suggest

an increase in Mutual Information for intermediate levels of noise.

In a last set of simulations (panel C of Figure 5.11), we test 100 input sets from input vectors

with differences Di generated from a distribution 10N(µ,σ) where N(µ, σ) is the normal

distribution with mean µ and variance σ. The reason for this rather exotic distribution is

that, as we have seen in Section 5.4.2, the relationship between the difference in ∆ currents

and the switching time is exponential (Section 5.4.2.1), as is the relationship between noise

strength and switching time (Section 5.4.2.2). We thus wanted the differences between

currents to be random but within approximately the same order of magnitude (which we

fixed to 10−6, yielding µ = −6), with some controlled deviation (the σ parameter, which

we vary in simulation). The squared expectation E(D2), D ∼ 10N(−6,σ) needed to specify
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how the SNR is computed can be derived as

E(D2) =

∫ ∞

−∞
102x 1

σ
√

2π
e−

(x−µ)2
2σ2 dx

=

∫ ∞

−∞
102xe−

(x−µ)2
2σ2

1

σ
√

2π
dx but 102x = eln(10)2x, so that

=

∫ ∞

−∞
e−

(x−µ)2
2σ2

+ln(10)2x 1

σ
√

2π
dx

=

∫ ∞

−∞
e−

x2−2xk+µ2+k2−k2
2σ2

1

σ
√

2π
dx where k = (µ+ 2σ2 ln(10))

=

∫ ∞

−∞
e−

(x−k)2+µ2−k2
2σ2

1

σ
√

2π
dx

= e
k2−µ2
2σ2

∫ ∞

−∞
e−

(x−k)2
2σ2

1

σ
√

2π
dx Using that integral of Gaussian is equal to 1

= e
(µ+2σ2 ln(10))2−µ2

2σ2

= e
4σ4 ln(10)2+4µσ2 ln(10)

2σ2

= e2(σ2 ln(10)2+µ ln(10)).

The results from this last set of simulations also show an increase in Mutual Information

and its rate for a range of SNR levels.

How to explain the noise-dependent facilitation for the transmission of information in this

system?

At the beginning of this Chapter, we have discussed how, in the absence of noise, the

perturbation-driven transition between saddle states in a heteroclinic network is determi-

ned by the largest perturbation component in the direction of the unstable manifolds of

the saddle which the system has approached. In this way, a noiseless heteroclinic network,

at each saddle state, performs a “comparison” between the perturbation components, de-

termining which saddle state is approached next. For systems with complex heteroclinic

networks, a fixed vector of detuning currents can induce a persistent switching between

states, realizing heteroclinic cycles.

In Section 5.4.2.3, we have shown that, when noise is present, the switching becomes proba-

bilistic; noise causes errors in switching, where the probability of performing the “correct”

transition approaches chance as noise increases. Moreover, we have shown that noise ac-

celerates switching (see Section 5.4.2.2). What our simulations reflect is the existence of
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C

Figure 5.11: Simulation results for system of N = 5 oscillator with input from
different distributions. (A) Mutual Information (MI) and its rate (MIR) for three
input sets each generated from an ordered vector of equispaced currents, with the diffe-
rence between one current and the next determined by a parameter d. (B) Distribution
(in grey) and median (in black) of 100 values of MI and MIR computed for each SNR
level from randomized input sets. Each input set is generated from an ordered vector of
currents where the difference between each current and the next is randomly extracted
according to a uniform distribution on the (0, 10−5) interval. The MI and MIR distribu-
tions, shown rotated and mirrored for each SNR level, are estimated through Gaussian
kernel density estimation. (C) To the right, a heat-map visualization of the average MI
for 100 generating vectors with differences distributed as 10N(−6,σ), where N(−6, σ) is
a Gaussian distribution with mean −6 and variance σ. We test 20 levels of σ. In the
middle, selected slices for three values of σ. To the right, the averaged MIR. In the MI
plots of each panel, a thick white line denotes the baseline MI value as computed for the
noiseless system (see Section 5.3).

a “sweet spot” in the noise levels, where noise causes occasional errors in switching, al-

lowing the system to explore more of the underlying network of states and thus perform

comparisons that are not accessible in the noiseless case (as the system is stuck in a cy-

cle, performing the same comparisons over and over again). If the noise is too high, then

the exploration advantage is nullified by the unreliability of the switching: the output

sequences become more and more independent from the input. If it is too low, then the
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result of each comparison (i.e. each transition) is reliable, but only a limited number of

comparisons is ever made. Between these extremes, however, there is a region of noise le-

vels where the trade-off between exploration of the network of saddle states and reliability

of the comparisons performed at each state is favourable, such that predictable orbits still

exist (see the audio-visual demonstration in Carmantini, 2016), and leading to an increase

in the Mutual Information between the system’s input and output. Additionally, as dis-

cussed in Section 5.4.2.2, noise accelerates switching, explaining the increase in the Mutual

Information Rate of the system for intermediate levels of noise. In Figure 5.12 we present

the frequency for which each state is visited and the frequency of error for each state, for

low/intermediate/high levels of noise in runs of n = 1000 recorded states.
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Figure 5.12: Frequency with which each of the 30 states in the system is visited
and frequency of errors in switching at each state for a recorded sequence of
k = 1000 states and three levels of SNR. For high SNR, only six of the states are
ever visited, as the system’s switching is stuck in a cycle. For intermediate SNR, errors
in switching allow the system to explore more of the network of states, thus performing
a larger number of computations on the input. For low SNR, a large number of errors in
switching renders the computations very unreliable, thus overtaking the advantage given
by the increased exploration of the network of states.

5.5 Conclusions

By analyzing how the output sequences produced by the dynamic state-switching of a

simple State Switching Machine depend on the strength of its input and noise, we unveiled

a facilitatory effect of noise in the computation performed in such systems. In particular,

by measuring the Mutual Information and its Rate in the simulated system, we show the

presence of a trade-off between increased exploration of the network of states and the
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growing unpredictability in the heteroclinic switching due to increasing levels of noise.

The discussed trade-off does not depend on the specific characteristics of the simulated

SSM, but only on the saddle instability and presence of a network of states. For this

reason, the noise-dependent facilitatory effects we have unveiled are general and hold for

any realization of SSM. This is especially relevant when considering the possibility of

physical implementations of SSMs. In fact, “imprecise” but faster and energy efficient

microprocessors are being explored in industry (Chakrapani et al., 2007, Palem, 2005). If

SSMs can be realized in physical systems, they could give rise to processors that function

at a controlled continuum of regimes, from a slower/precise regime, to a faster/imprecise

one.

SSMs can support Finite-State computations. In particular, a constructive mapping bet-

ween arbitrary graphs and heteroclinic networks has been described in Ashwin and Post-

lethwaite (2013), which implies that SSMs are in fact equivalent in power to FSMs, and

can thus implement any Finite-State computation. For this reason, the heteroclinic dy-

namic framework is a promising one in the search of symbolic computation in real neural

systems. As a matter of fact, heteroclinic computation is hypothesized to play a role in

the computation performed in the olfactory systems of some animals (Afraimovich et al.,

2004, Ashwin and Marc, 2005b, Huerta et al., 2004, Laurent et al., 2001). 3

While this framework allows us to more closely approach an appropriate level of descrip-

tion for symbolic computation in real neural systems (when compared with the previously

discussed results on RNNs) , it also suffers from some key disadvantages. In particular,

systems implementing the heteroclinic switching of states are exceptionally susceptible to

perturbations. That is, persistent heteroclinic switching can only be maintained when

perturbations due to noise or input have extremely small magnitude. If the level of pertur-

bation is too high, the dynamics becomes disrupted and the switching ceases. The presence

of this extreme sensitivity is not particularly plausible in real neural systems, where a reaso-

nable degree of robustness to perturbation is to be expected. Secondly, in the unperturbed
3Importantly, our results show that these systems could actively harvest noise to facilitate their informa-

tion processing capabilities, contributing to similar considerations from the field of “stochastic facilitation”
(Magalhães and Kohn, 2011, McDonnell and Ward, 2011, Wiesenfeld et al., 1995, Zeng et al., 2000), which
more generally explores and characterizes how neural systems can benefit from the presence of noise.



123

heteroclinic system the switching between one state and the next is asymptotic, where the

final state is only reached at the limit as time goes to infinity. It is doubtful whether this

appropriately reflects some characteristics of real dynamics in neural populations.

The limits of heteroclinic dynamics push us in the next Chapter to explore an alternative

dynamical framework, which promises to deliver robust state switching in a more neurally

plausible way.





Chapter 6

Switching in slow-fast dynamical

systems

In Chapter 4 of this thesis, we introduced several objects which we used to derive a con-

structive mapping between a range of models of computation and the dynamics of Recur-

rent Neural Networks. While the architecture we put forward has a number of desirable

characteristics, such as its modularity and the transparency of its operation in relation

to the simulated models, its biological relevance is limited. Together with more general

concerns about the biological relevance of RNNs, the fractal encoding at the core of the

definition of our architecture makes its dynamics exceptionally susceptible to noise. In

order to escape the shortcomings of our proposed architecture, we turned in Chapter 5 to

the study of a class of neural models of stronger biological plausibility, which we named

State-Switching Machines. SSMs can support Finite State Machine computation, and a

constructive mapping between FSMs and SSMs has been defined in previous work (Ashwin

and Postlethwaite, 2013). These characteristics make SSMs a good candidate for the search

of a more general constructive mapping between the symbolic dynamics of formal systems

and neuronal dynamics. As the results in the previous Chapter show, it is important to

understand how noise can modify the computational capabilities of the neural systems

we analyze. In Chapter 5 we do just that, showing that noise in systems supporting the

125
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heteroclinic switching of states (SSMs) is not necessarily disruptive, but can actually facili-

tate the transmission of information in these systems. Nevertheless, heteroclinic dynamics

is still only possible when perturbations due to noise or input are vanishingly small in ma-

gnitude, which is not particularly plausible from a biological standpoint. The asymptotic

nature of the state switching in this class of systems, which we discussed in the previous

Chapter, is also a point of concern.

In this Chapter we further our search for biologically relevant models of neural dynamics

which can support symbolic computation, by showing evidence that an important class

of smooth excitable circuit models, i.e. slow-fast neural models, can realize Finite-State

computation through a controlled switching between clustered states, the same mechanism

underlying Finite-State computation in the heteroclinic computing framework discussed in

Chapter 5. Importantly, the same constructive mapping between arbitrary graphs and

heteroclinic networks described in Ashwin and Postlethwaite (2013) could lead in future

work to similar advancements in the slow-fast framework we introduce.

The defining characteristic of a slow-fast dynamical system is the presence of dynamical

variables that evolve on different timescales; some of the variables only change slowly over

time, whereas other can change very quickly. A slow-fast system is usually expressed as

εẋ = f(x, y)

ẏ = g(x, y)

(6.1)

where x ∈ Rn and y ∈ Rm are known as respectively the fast and slow variables, and

where 0 < ε� 1.

By using slow-fast systems, we can reproduce the delayed pulse-coupling underlying the

heteroclinic switching dynamics in systems such as the one described in Neves and Timme

(2009). In fact, through the phenomenon of delayed or dynamic bifurcations (Benoît,

1991), we can design slow-fast systems in which positive pulse-like inputs to a slow varia-

ble causes the production of a “spike” through the fast variable after a time delay τ , which

can be computed analytically via a way-in, way-out function. This is done by endowing

the slow-fast system with an activity-induced transcritical canard, introduced in Rodrigues
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et al. (2016). We can then couple multiple slow-fast nodes in a network to study the emer-

gence of clustered states of synchronizations, and eventual switching (yet, not heteroclinic)

dynamics between these states, as we did in Chapter 5 for the N = 5 system of Leaky

Integrate-and-Fire oscillators.

The goal of this endeavour is to obtain a system evolving on a continuous phase space

(rather than a space with discontinuities as in the delayed pulse-coupled system described

in Chapter 5). By doing so, we gain access to the possibility of using numerical continuation

techniques to search for stable and unstable periodicities (clustered states) in the phase

space, and the bifurcation points that connect them in parameter space. This would allow,

for example, to understand how the number of periodic states in the network depends on

a given parameter. Additionally, slow-fast systems can be made to be very robust to noise

and perturbations. While 2D slow-fast systems such as the one we will introduce in what

follows are only partially robust, it has been shown that 3D slow-fast systems can support

robust dynamics (Desroches et al., 2012). In future work, we will extend the basic model

in this Chapter in order to obtain a robust input-driven state switching.

In the following Sections, we show preliminary results on the emergence of clustered states

in a network of slow-fast nodes, akin to what shown in Chapter 5.

6.1 The model

The model we consider is a network of oscillators with topology as in 5.2, where each node

i is a bi-dimensional slow-fast system (inspired by Rodrigues et al., 2016) defined by the

equations

ṗi1 = ε


(pi2 − qi1)(α− pi2) +

N∑

i 6=j
gpj2


+ Ii(t) (6.2)

ṗi2 = pi2(pi1 − qi2) (6.3)
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where ε > 0 is a small parameter,
∑N

i 6=j gpj2 is input from other oscillators with coupling

strength g, Ii(t) is external input to oscillator i, and

qi1 = c1 · (pi1−h1) · (pi1−h2) (6.4)

qi2 = c2 · (pi2−v1) · (pi2−v2), (6.5)

where c1, c2, h1, h2, v1, v2 ∈ R are the parameters of the system and i is the index of the

oscillator.

The small parameter ε endows the system with a slow-fast stucture by separating the

timescale of the evolution of pi1 and pi2 such that pi1 is much slower than pi2. For each

node, the fast nullcline or critical manifold is defined as

So := {ṗi2 = 0} =
{
pi2
(
pi1 − c2(pi2 − v1)(pi2 − v2)

)
= 0
}
,

and contains two connected components, i.e. the horizontal line {pi2 = 0} and the parabola

{pi1 − c2 · (pi2 − v1) · (pi2 − v2) = 0}.

By simulating the system, as in Figure 6.1, we can observe that the slow segments of

the system trajectories remain in a neighborhood of S0 past its self-intersection point

(dynamic transcritical bifurcation, a bifurcation of the fast system obtained by keeping pi1

fixed such that it becomes a parameter in the remaining equation, with pi2 as the only

variable, discussed for example in Boudjellaba and Sari, 2009), where it becomes repulsive

in the normal (pi2) direction. Therefore the solution reacts to this change of attractivity

of S0 with a delay until the fast dynamics takes over, causing “jumps” between the two

components of the critical manifold. The strong contraction on the left side of the self-

intersection point is what endows this system with robust dynamics, as perturbations to

the Voltage-like variable pi2 are very quickly cancelled in this region (see Figure 6.2).

The parameters of the simulation in Figure 6.1 are chosen such that the long-term dyna-

mics of the system is oscillatory, with trajectories approaching a limit cycle. This results

from the specific arrangement of the fixed points in the system, which give it an excitable

structure in the transient dynamics (upon response to the first input spike) and subse-

quently an oscillatory structure. In fact, if the system is initialized at the only stable
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Figure 6.1: Oscillatory regime for planar slow-fast system described in Equation
6.3. The dynamics of the system is shown for a single node with parameter values (c1 =
−5, h1 = −1.0, h2 = −0.5, c2 = 0.5, v1 = 0.5, v2 = 1.5, α = 0.4, ε = 1 · 10−3)
and initial conditions (p1 = -1.0, p2 = 0.05). The critical manifold is here shown in red,
whereas the slow nullcline is shown in blue. The intersections between these are the fixed
points of the system. The two unstable fixed points are shown as empty circles, whereas
the stable one is shown as a filled circle. Additionally, we include the vector field (in
the background), where darker arrows are associated with points where the vector field
has larger magnitude. The system’s trajectory is shown as a black curve. A single black
triangle on the curve denotes a slow segment in the system’s trajectory, whereas a double
black triangle denotes a fast one. The state of the system is initialized near a stable
fixed point (the filled red dot on the left), and destabilized at time t = 100 by an input
perturbation I, of amplitude K = 4 and duration s = 0.4 (in orange). The perturbation
force the system’s dynamics to escape the basin of attraction of the stable fixed point,
and move to the right of the unstable fixed point on the linear component of the critical
manifold, at pi2 = 0. The dynamics slowly move along the linear component of the critical
manifold, until they quickly jump on its parabolic component. There, they move slowly
along the parabola (but in the inverse pi1 direction), finally jumping again towards the
linear component of the critical manifold, to the right of the unstable fixed point on this
component. The described dynamics is then repeated; the initial perturbation caused
the system to enter an oscillatory regime, where the dynamics asymptotically approach a
limit cycle. Note that an analytical solution to the limit cycle is not available, although
the second oscillation (labelled with a 2 in the Figure) is already very close to it.

equilibrium, and in the absence of any perturbation I, its dynamics just stays there fore-

ver. For a small perturbation I, the system is displaced from the stable fixed point, but

remains in its basin of attraction, so that the dynamics takes the trajectory back to the

stable equilibrium without any oscillatory transition. For a strong enough perturbation

I, the trajectory is kicked to the right of the unstable fixed point (which thus works as a

threshold), moving towards the oscillatory dynamics and the limit cycle.

It is also possible to choose the system’s parameters such that its dynamics is excitable,
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Figure 6.2: Contraction-Expansion of trajectories before and after the dyna-
mic transcritical bifurcation. The contraction and expansion of trajectories before vs
after the dynamic transcritical bifurcation is emphasized by a sand-watch shaped area,
where the contraction is shown in purple, and the expansion in pink. An example trajec-
tory is also shown, where we use a double triangle symbol to denote its fast segment, and
a single triangle symbol to denote its slow segment.

but not oscillatory. In Figure 6.3, we show the results of a simulation for such a parameter

set. In particular, the fixed points in the system can be arranged such that excitability is

preserved, (i.e. a strong enough perturbation for a system on the stable fixed point moves

its state to the right of an unstable fixed point, causing an oscillation, as shown in Figure

6.3), but the dynamics is not periodic anymore. In fact, as shown in the Figure, after

an oscillation, the dynamics returns to the basin of attraction of the system’s fixed point,

approaching it and thus settling towards a “resting state”.

Both of these regimes could give rise to clustered periodicities in a network of coupled

slow-fast oscillators, and thus deserve attention in future work.

6.2 Preliminary results

Importantly, preliminary simulations with a system ofN = 5 slow-fast oscillators as defined

in Equation 6.3 show promising results for the re-implementation of the system discussed

in Chapter 5. In fact, for initial conditions with de-synchronized oscillators, we observed

an attracting synchronized state akin to that of the N = 5 system of delay pulse-coupled

LIF oscillators (see Figure 6.4).

Furthermore, we were also able to observe (for a slightly different parameter set) perturba-

tion-driven de- and re-synchronization (see Figure 6.5). Because of the timescale separation
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Figure 6.3: Purely excitable regime for planar slow-fast system in Equation
6.3. The dynamics of the system is shown for a single node with parameter values (c1 =
−5, h1 = −0.5, h2 = −0.1, c2 = 0.5, v1 = 0.5, v2 = 1.5, α = 0.4, ε = 1 · 10−3) and
initial conditions (p1 = -0.5, p2 = 0.05). The state of the system is initialized near a stable
fixed point (the filled red circle on the left), and destabilized by an input perturbation I
at time t = 100 (of amplitude K = 4 and duration s = 0.4). The perturbation causes the
state of the system to move away from the basin of attraction of the stable fixed point,
to the right of the unstable fixed point on the pi2 = 0 component of the critical manifold
(the empty red circle on the line pi2 = 0). The dynamics slowly move along the linear
component of the critical manifold, until they quickly jump on its parabolic component.
There, they move slowly along the parabola (in the inverse pi1 direction), finally jumping
again towards the linear component of the critical manifold and returning in the basin of
attraction of the stable fixed point, which the dynamics then asymptotically approach;
no further oscillations are thus possible in the absence of input perturbations.

and its dimension, the system is quite stiff;1 for this reason, we decided to collect additional

numerical evidence for the existence of the synchronized states found in the simulations

in Figure 6.5. To do so we performed a periodic continuation in ε for the clustered states

(a, b, b, c, c), (a, b, a, c, c) and (a, a, b, c, c), which we report in Figure 6.6 for two solution

measures. Given that the solver converges at each step of the continuation, we believe

that these results give good evidence that the solutions are truly periodic, and that they

coexist in the parameter set considered in our simulations. Assessing the stability of these

synchronized states is not trivial, given the stiffness of the system; nevertheless, the state

transitions observed in the simulations shown in Figure 6.5 provide reasonable evidence

for the existence of attractive directions.

Moreover, the simulations bring numerical evidence that transitions between these states,
1We simulated the system with different libraries and solvers, and encountered numerical instability

with some of the solvers used.
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Figure 6.4: Clustered synchronization in slow-fast system. The dynamics of a
system of 5 slow-fast oscillators as described in Equation 6.3 is shown (time is rescaled as
s = εt, also known as fast time). Here the system parameters are set as (c1 = −5, h1 =
−1.0, h2 = −0.5, c2 = 0.5, v1 = 0.5, v2 = 1.5, α = 0.4, ε = 1 · 10−3, g = 1 · 10−4),
and initial conditions as (p11 = −1.2, p21 = −1.1, p31 − 1.0, p41 = −0.9, p51 = −0.8) and
pi2 = 0.05 for i = 1, . . . , 5. An input perturbation I of amplitude K = 4 and duration
d = 4 · 10−4 is applied at time s = 0.1 to all oscillators.

and even cycles are possible in this new slow-fast framework, akin to those already cha-

racterized in the heteroclinic paradigm. We thus believe we will be able in future work

to further characterize periodicities (and associated clustered states) in parameter space,

by means of e.g. numerical continuation, and search for other synchronized states in the

phase space, thus verifying if it is indeed possible to re-implement heteroclinic network

computation (such as the one described in Chapter 5) with a fundamentally different kind

of dynamics, which presents several advantages over the heteroclinic dynamics framework,

as previously discussed.
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Figure 6.5: Perturbation-driven synchronized state transitions in slow-fast
system, (time rescaled as s = εt). We simulate the system for parameter set (c1 =
−5, h1 = −1.3, h2 = −1.1, c2 = 0.5, v1 = 0.5, v2 = 1.5, α = 0.4) and initial conditions
pi1 = −1.3, pi2 = 0.005 for all i. We first apply an input pulse to p12 of amplitude
K = 15 and duration d = 1.5 · 10−3 to p12 at time t = 1, causing a de-synchronization
of the first oscillator, leading to a synchronized state (a, b, b, b, b) (panel A). We start a
new simulation where the initial conditions are the last state pi1, pi2 with i = 1, . . . , 5 of
the previous simulation, and perturb oscillator 2 with another pulse (same parameters as
before), leading to a synchronized state (a, a, b, b, b) (panel B). We now perturb oscillator 3,
leading to a synchronized state (a, b, b, c, c) (panel C). A perturbation to oscillator 1 leads
to a state (a, b, a, c, c) (panel D), then to a state (a, a, b, c, c) when oscillator 2 is perturbed
(panel E) and finally to a state (a, b, b, c, c) when oscillator 3 is perturbed (panel F). These
simulations shows that not only the slow-fast system presents synchronized states, but
these are also connected, and they can form cycles (the synchronized states in panel C
,D, E, F).

Figure 6.6: Periodic continuation in ε of synchronized states found in simula-
tion. Data from one period of the orbit in each of the synchronized states (a, b, a, c, c),
(a, a, b, c, c) and (a, b, b, c, c) found in the simulations reported in Figure 6.5 is used as an
initial guess for the periodic continuation. We show two solution measures for the conti-
nuation, an L2 norm measure on the left, and max(p12) on the right. The convergence of
the solver at each step gives evidence that these states are in fact synchronized.





Chapter 7

Conclusions and future directions

In the Introduction to this thesis we purported to explore the interface between symbolic

models of computation and dynamical system models of neural dynamics. In characterizing

computation in such models, we adopted a restricted form of the framework proposed by

MacLennan (2004), where we say that a dynamical system performs a computation if a

correspondence can be found between it and a formal system.1 The broader context of the

contributions presented in this thesis, i.e. the long term goal inspiring this exploration, is

thus to attain a correspondence between suitable formal systems and the dynamics of real

neural circuits.

In order to do so, we have first introduced the Versatile Shift, a formal system which allows

for the parsimonious real-time simulation of a range of models of computation, and which

Gödelization defines Nonlinear Dynamical Automata, a class of piecewise affine-linear dy-

namical systems. Simulable models include, for example, Finite-State Machines, Push-

Down Automata, Top-Down Recognizers and Turing Machines. We have then defined a

constructive mapping between Nonlinear Dynamical Automata and Recurrent Neural Net-

works, thus allowing the realization of Versatile Shifts (and the models they can simulate)
1The framework in MacLennan (2004) is in fact more broadly defined, where a physical system is said

to perform a computation if a perfect or approximate correspondence can be found between it and an
abstract mathematical object (not necessarily a formal system), and this correspondence has a use in the
wider context which the system is a part of (that is, realizing said abstract object can be seen as the
system’s purpose). In this thesis, we ignored issues of purpose for the systems studied, as we characterized
their dynamics in isolation and in the abstract.
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in the form of RNN dynamics. The Neural Networks we construct implement the ori-

ginal symbolic computation parsimoniously, transparently and modularly. Crucially, the

granular modularity of the network architecture defined by the mapping has important

consequences for the implementation of interactive models of computation, distinguishing

our contribution from previous work. Furthermore, we presented initial evidence that the

constructive mapping could lead in future work to the possibility of correlational studies

with, e.g., Event-Related Potential measures from large-scale brain recordings.

Mapping formal systems to RNN dynamics in order to compare observables with those

from real neural systems suffers from severe limitations. In fact, the level of description

of RNNs is quite removed from that required to characterize computation in real neural

systems. In Chapter 5 we thus moved our attention to the characterization of computation

in a class of continuous-time neural models, moving a step closer to the desired level of ab-

straction. Specifically, we showed that noiseless systems of neural oscillators supporting the

emergence of heteroclinic networks (as characterized by Neves and Timme, 2009, 2012) can

be seen as realizations of Finite-State Transducers. We have also shown that, when noise

is present, the state switching they implement becomes probabilistic, with the probability

distribution of the possible transitions at each state smoothly flattening as a noise strength

parameter is increased. That is, for noise strength approaching zero, the probability of one

of the transitions approaches 1; for increasing noise, other transitions become more and

more likely, approaching a uniform distribution over the transitions. Furthermore, we have

shown that for intermediate levels of noise, the amount of information that the system is

able to transmit increases. This is a key result in relation to the modelling of biological

systems that are hypothesized to implement heteroclinic computation; we now know that

such systems could harvest noise to promote information processing, consistently with re-

sults from the field of stochastic facilitation (Magalhães and Kohn, 2011, McDonnell and

Ward, 2011, Wiesenfeld et al., 1995, Zeng et al., 2000). In order to formally characterize

computation in noisy heteroclinic networks, future work will see the definition of a cor-

respondence between these systems and probabilistic Finite-State Transducers (or similar

models based on a Markov Chain abstraction).

Systems supporting the emergence of heteroclinic networks also suffer from important
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drawbacks that limit the possibility of relating their dynamics to the dynamics of real

neural systems. In particular, persistent heteroclinic switching in these systems is only

possible when input and noise perturbations have extremely small magnitude (as in the

system discussed in Chapter 5). While efforts are being made to increase stability in the

heteroclinic computing framework (e.g. the possibility of Stable Heteroclinic Channels, as

in Rabinovich et al., 2008b), this is proving to be an elusive objective. Additionally, in the

noiseless heteroclinic system, the transition between states is always asymptotic. That is,

an infinite amount of time is needed for the system to complete a transition between one

saddle state and the next.

To attain the possibility of detailed correlational studies with observables from real neural

circuits, we must thus look even further, by turning to the class of models that most

closely relate to the level of description of electrophysiological measurements, i.e. smooth

excitable neural circuit models (such as the well-known neural model proposed by Hodgkin

and Huxley, 1952). As discussed in Chapter 6, slow-fast dynamical systems are interesting

candidates in this direction, as preliminary numerical results suggest they can support non-

asymptotic and robust state-switching dynamics, overcoming the drawbacks of heteroclinic

systems.

The definition of a constructive mapping between a formal system and a smooth excitable

neural circuit model would allow us to effectively explore the extent to which the dynamics

of real neuronal systems could be modeled in terms of symbolic computation (see Figure

7.1). This exploration can be guided by the use of Machine Learning techniques, as we

will discuss in Section 7.2.

To summarize, in this work we presented the following key contributions:

– Introduction of the Versatile Shift, a formal system which can efficiently simulate a

range of models of computation, and which presents important similarities with the

action of rewriting systems, leading to promising possibilities in future work.
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Figure 7.1: Characterization of computation in neural tissues through smooth
excitable neural models. In order to characterize computation in neural tissues, we
believe a constructive mapping must be devised between a formal system and smooth
excitable neural circuit models, i.e. the class of neural models that most closely relate to
the level of description of electrophysiological measures of neural activity. In particular,
the formal system should capture notions of interactive computation (as discussed in
Section 7.1), as a neural tissue is in constant interaction with other neural assemblies and
possibly the environment, and this interaction is a defining characteristic of its dynamics.

– Definition of a constructive mapping between Versatile Shifts and Nonlinear Dyna-

mical Automata through Gödelization, allowing for the mapping of string rewriting

on a symbolic space to piecewise affine-linear dynamics on a vectorial space.

– Definition of a transparent and modular network architecture simulating Nonlinear

Dynamical Automaton dynamics on the unit square through the evolution of neural

activations in time. As we have shown that Nonlinear Dynamical Automata can

simulate Versatile Shifts efficiently, the presented architecture is thus able to simulate

Versatile Shifts efficiently.
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– Identification of a facilitatory effect of noise on the Finite State computation perfor-

med by class of neural systems which can support the dynamic switching of states

(State-Switching Machines). If a general constructive mapping between formal sys-

tems and biologically plausible neuronal systems can be found, it is crucial to under-

stand how noise (undefined in formal systems) can affect the symbolic computation

supported by suitable neural systems. These results suggests that noise can actually

facilitate computation in these systems, under the right conditions.

– Presentation of preliminary results suggesting the possibility of robust dynamical

switching of states in slow-fast systems, which, if confirmed in future work, would

mean the possibility of robust Finite State Machine computation in a class of models

of special biological relevance.

While the advancements outlined in this thesis bring us closer to our goal, the definition

of a general constructive mapping between formal systems and smooth excitable circuit

models is not yet within our reach, although we hope that this work will contribute to the

laying of the necessary foundations that will make the endeavour possible.

7.1 Formalizing interaction in dynamical systems

Computation in real neuronal circuits is carried out in the context of a continuous in-

teraction with the environment and other neural circuits. It is therefore crucial, when

characterizing their computation in terms of some formal system, that the chosen system

can capture notions of interactivity (see Milner et al., 1992 for an example of a purely

formal system that can model interactions).

In Chapter 4 we have presented two examples of interactive neural systems, as we have

shown how to construct a RNN implementation of i) a Central Pattern Generator modelled

as a Finite-State Machine, and ii) an Interactive Automata Network. In the first case, we

(implicitly) used the Finite-State Machine as an interactive model of computation, by

considering its output to be the sequence of states induced by a continuous input stream.
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In the second, we allowed communication between automata without defining a matching

mechanism in Versatile Shifts (VSs).

In both instances, we deliberately ignored the fact that our methods do not define a

way in which Versatile Shifts and, consequently, NDA, can interact with the external

world. Therefore, we aim in future work to formally characterize interaction at two levels

in our methodology, that is, at the symbolic the level of the VS, and at the vectorial

level of NDA. Additionally, we must define the relation between interactions at the two

level, in order to maintain the possibility of mapping one to the other. Critically, beim

Graben (2008) has shown that interactive computation in NDA can be modelled through

the definition of “quantum operators”, where the interactive machine’s configuration is

represented in the NDA as a point on the unit square, whereas incoming input is mapped

to functions modifying the landscape of the vector space on which the NDA evolves, thus

transforming the NDA state compatibly with the symbologram representation of the input-

perturbed machine configuration (see Figure 7.2). Future work will see the integration of

this approach with the methods presented in Chapter 4.

It is important to point out that, in order to attain a constructive mapping between

formal systems and dynamical models of excitable neural circuits (as envisioned in Figure

7.1), or any class of continuous-time dynamical systems for that matter, the seminal work

by beim Graben (2008) formalizing interaction in NDA must be extended to account

for continuous time interaction with the environment. This could eventually inspire the

creation of a general framework for the characterization of computation in open physical

systems. Importantly, this could also lead to a greater understanding of the interactive

computation performed by Machine Learning models such as Liquid State Machines (Maass

et al., 2002), which have proved to be especially powerful models, yet especially obscure

with regards to how the computation they perform is implemented.
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Figure 7.2: Quantum operator acting on the symbologram representation
of a bounded queue. The symbologram encodes the contents of a first-in-first-out
(FIFO) queue of capacity 4, where incoming input symbols added at the front of the
queue force the queue to “drop” symbols at its back when the queue is full. On the
symbologram, the reception of an input symbol a is equivalent to the application of
a “quantum operator” ρ (beim Graben, 2008) to the encoded queue, which maps each
encoded queue configuration to a new encoded input-perturbed configuration. In the
Figure we show how the ρ operator transforms 3 points on the symbologram, where each
point is associated to its corresponding symbolic sequence, and where we highlight the
incoming input symbol a in orange.

7.2 Machine Learning of physical computation

A constructive mapping between a suitable interactive formal system and excitable dy-

namical system models of neural circuits would allow us to characterize the computation

performed by real neuronal assemblies. In fact, given electrophysiological measurements

from the activity of a neural circuit, and a hypothesis (or hypothesis set) towards the spe-

cific computations that the circuit might be performing, we would be able to construct an

excitable model realizing the computation and then explore possible correlations between

its observables and the measurements from the real system (see Figure 7.1). However, the

hypothesis set to explore can be huge, as the same computation can be performed in an

infinite number of ways by the formal system, leading to an infinite number of possible

dynamical systems that realize the computation.

The search process could be automated by using Machine Learning techniques such as
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symbolic regression and genetic programming (Koza, 1994, Schmidt and Lipson, 2009).

The learning algorithm would start from random guesses in the hypothesis space for the

computation performed in the real physical system, by randomly composing primitives in

the formal system. Given that a constructive mapping to excitable systems is provided, the

algorithm would derive the dynamical system from its guesses (i.e. specific instances of the

formal system), and compare its dynamics with the real dynamics of the physical system.

By an evolutionary selection mechanism, the best guesses (i.e. the ones that lead to better

“fit” between the generated dynamics and the dynamics to be modelled) would be used at

the next step to generate new guesses, which are then compared based on the goodness of

fit of the dynamical systems they define, and so forth. The search space could be further

restricted through the addition of appropriate constraints (e.g. notions of parsimony for

the generated formal systems).

Such an algorithm would automatically search the space of possible formal systems that can

be used to describe the computation performed by the real neural circuit, and return a set

of “best guesses”. Of course, once suitable formal systems are found, it is up to the scientist

to specify reasonable “semantics” for the formal systems guessed by the algorithm, which

could be a tricky endeavour itself, depending on the complexity of the system’s description.

Note that the procedure we outline here is not restricted to excitable neural circuits. Given

any class of physical systems that can be seen as performing a computation, and a con-

structive mapping between a formal system and a model of the physical system dynamics,

then symbolic regression could be applied to automatically characterize the computation

performed by the physical system in terms of the defined formal system. Importantly, if the

formal system in the constructive mapping is interactive, and operators can be defined that

map interactions in the formal systems to their representation in the physical system model

(as discussed in Section 7.1), then it will also be possible to characterize the computation

performed by open physical systems. This is especially relevant for the field of Artificial

Intelligence, which is interested in characterizing computation in intelligent systems, an

important class of open physical systems. Crucially, research in Machine Learning has for

a long time adopted the classical approach to computation as an input-output process;

recent developments, however, reflecting similar considerations emerged in contemporary
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trends in the Theory of Computation (Goldin et al., 2006, Wegner, 1998), have highlighted

the limits of such approach (Cristianini, 2010). It is now clear that any general theory of

intelligent behaviour, if one can be found, must pursue the formalization of the concept of

interaction in intelligent systems, and its role in the computations they realize.
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Appendix

This appendix contains two papers published as a result of the research underlying this
thesis, respectively titled “Turing Computation with Recurrent Artificial Neural Networks”
(Carmantini et al., 2015), and “A modular architecture for transparent computation in
Recurrent Neural Networks”(Carmantini et al., 2016).
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Abstract

We improve the results by Siegelmann & Sontag [1, 2] by providing a novel and parsi-
monious constructive mapping between Turing Machines and Recurrent Artificial Neural
Networks, based on recent developments of Nonlinear Dynamical Automata. The architec-
ture of the resulting R-ANNs is simple and elegant, stemming from its transparent relation
with the underlying NDAs. These characteristics yield promise for developments in machine
learning methods and symbolic computation with continuous time dynamical systems. A
framework is provided to directly program the R-ANNs from Turing Machine descriptions,
in absence of network training. At the same time, the network can potentially be trained to
perform algorithmic tasks, with exciting possibilities in the integration of approaches akin
to Google DeepMind’s Neural Turing Machines.

1 Introduction

The present work provides a novel and alternative approach to the one offered by Siegelmann and
Sontag [1, 2] of mapping Turing machines to Recurrent Artificial Neural Networks (R-ANNs).
Here we employ recent theoretical developments from symbolic dynamics enabling the mapping
from Turing Machines to two-dimensional piecewise affine-linear systems evolving on the unit
square, i.e. Nonlinear Dynamical Automata (NDA)[3, 4]. With this in place, we are able to
map the resulting NDA onto a R-ANN, therefore providing an elegant constructive method to
simulate a Turing machine in real time by a first-order R-ANN. There are two main advantages
to the proposed approach. The first one is the parsimony and simplicity of the resulting R-
ANN architecture in respect to previous approaches. The second one is the transparent relation
between the network and its underlying piecewise affine-linear system. These two characteristics
open the door to key future developments when considering learning applications (see Google
DeepMind’s Neural Turing Machines[5] for a relevant example with promising future integration
possibilities) – with the exciting possibility of a symbolic read-out of a learned algorithm from
the network weights – and when considering extensions of the model to continuous dynamics,
which could provide a theoretical basis to query the computational power of more complex
neuronal models.

∗giovanni.carmantini@gmail.com
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2 Methods

In this section we outline a mapping from Turing machines to R-ANNs. Our construction
involves two stages. In the first stage a Generalized Shift [3] emulating a Turing Machine is
built, and its dynamics encoded on the unit square via a procedure called Gödelization, defining
a piecewise-affine linear map on the unit square, i.e. a NDA. In the second stage, the resulting
NDA is mapped onto a first-order R-ANN. Next, the theoretical methods employed are discussed
in detail.

2.1 Turing Machines

A Turing Machine [6] is a computing device endowed with a doubly-infinite one-dimensional tape
(memory support with one symbol capacity at each memory location), a finite state controller
and a read-write head that follows the instructions encoded by a δ transition function. At each
step of the computation, given the current state and the current symbol read by the read-write
head, the machine controller determines via δ the writing of a symbol on the current memory
location, a shift of the read-write head to the memory location to the left (L) or to the right
(R) of the current one, and the transition to a new state for the next computation step. At a
computation step, the content of the tape together with the position of the read-write head and
the current controller state define a machine configuration.

More formally, a Turing Machine is a 7-tuple MTM = (Q,N,T, q0,t, F, δ), where Q is a
finite set of control states, N is a finite set of tape symbols containing the blank symbol t,
T ⊂ N \ {t} is the input alphabet, q0 is the starting state, F ⊂ Q is a set of ‘halting’ states
and δ is a partial transition function, determining the dynamics of the machine. In particular,
δ is defined as follows:

δ : Q×N→ Q×N× {L,R}. (1)

2.2 Dotted sequences and Generalized Shifts

A Turing machine configuration can be described by a bi-infinite dotted sequence on some
alphabet A; it can then be defined as:

s = . . . di−3di−2di−1 .di0di1di2 . . . , (2)

where l = . . . di−3di−2 describes the part of the tape on the left of the read-write head, r =
di0di1di2 . . . describes the part on its right, q = di−1 describes the current state of the machine
controller, and the dot denotes the current position of the read-write head, i.e. the symbol to its
right. The central dot splits the tape into two one-sided infinite strings α′, β, where α′ is the left
part of the dotted sequence in reverse order. The first symbol in α represents the current state
of the Turing Machine, whereas the first symbol in β represents the symbol currently under the
controller’s head. The transition function δ can be straightforwardly extended to a function δ̂
operating on dotted sequences, so that δ̂ : AZ → AZ.

A Generalized Shift acts on dotted sequences, and is defined as a pair MGS = (AZ,Ω), with
AZ being the space of dotted sequences, Ω : AZ → AZ defined by

Ω(s) = σF (s)(s⊕G(s)) (3)

with

F : AZ → Z (4)

G : AZ → Ae (5)

2
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where σ shifts the symbols to the left or to the right, or does not shift them at all, as determined
by the function F (s). In addition, the Generalized Shift can operate a substitution, with G(s)
being the function which substitutes a substring of length e in the Domain of Effect (DoE) of
s with a new substring. Both the shift and the substitution are functions of the content of the
Domain of Dependence (DoD), a substring of s of length `.

A Turing Machine can be emulated by a Generalized Shift with DoD = DoE = di−2
di−1

.di0
and the functions F,G appropriately chosen such that Ω(s) = δ̂(s) for all s (see [7] for a detailed
exposition).

2.3 Gödel codes

Gödel codes (or Gödelizations) [8] map strings to numbers and, in particular, allow the mapping
of the space of one-sided infinite sequences to the real interval [0, 1]. Let AN be the space of
one-sided infinite sequences over an alphabet A, s be an element of AN, rk the k-th symbol in
s, γ : A → N a one-to-one function associating each symbol in the alphabet A to a natural
number, and g the number of symbols in A. Then a Gödelization is a mapping ψ from AN to
[0, 1] ⊂ R defined as:

ψ(s) :=
∞∑

k=1

γ(rk)g−k. (6)

Conveniently, Gödelization can be employed on a Turing machine configuration, represented as
a dotted sequence α.β ∈ AZ. The Gödel encoding ψx and ψy of α′ and β define a representation
of s (ψx(α′), ψy(β)) known as symbol plane or symbologram representation, which is contained

in the unit square [0, 1]
2 ⊂ R2. The choice of encoding ψx and ψy to use on the machine

configurations is arbitrary. Therefore, to enable the construction of parsimonious Nonlinear
Dynamical Automata our encoding will assume that β always contains tape symbols only, and
that the first symbol of α′ is always a state symbol, the rest being tape symbols only. Based on
these assumptions, the particular encoding is defined as:

ψx(α′) = γq(a1)n−1q +

∞∑

k=1

γs(ak+1)n−ks n−1q ,

ψy(β) =
∞∑

k=1

γs(bk)n−ks ,

(7)

with nq = |Q|, i.e. the number of states in the Turing Machine, ns = |N|, i.e. the number of
tape symbols in the Turing Machine, γq and γs enumerating Q and N respectively, and with ak
and bk being the k-th symbol in α′ and β respectively.

2.3.1 Encoded Generalized Shift and affine-linear transformations

The substitution and shift operated by a Generalized Shift on a dotted sequence s = α.β can be
represented as an affine-linear transformation on (ψx(α′), ψy(β)), i.e. the symbologram repre-
sentation of s. In particular, a substitution and shift on a dotted sequence can be broken down
into substitutions and shifts on its one-sided components. In the following, we will show how
substitutions and shifts on a one-sided infinite sequence can be represented as affine-linear trans-
formations on its Gödelization. These results will be useful in showing how the symbologram
representation of a Generalized Shift leads to a piecewise affine-linear map on a rectangular
partition of the unit square.

3
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Let s = d1d2d3 . . . be a one-side infinite sequence on some alphabet A. Substituting the n-th
symbol in s with d̂n yields ŝ = d1 . . . dn−1d̂ndn+1 . . ., so that

ψ(s) = γ(d1)g−1 + . . . γ(dn−1)g−(n−1) + γ(dn)g−n + γ(dn+1)gn+1 + . . . ,

ψ(ŝ) = γ(d1)g−1 + . . . γ(dn−1)g−(n−1) + γ(d̂n)g−n + γ(dn+1)gn+1 + . . . ,

= ψ(s)− γ(dn)g−n + γ(d̂n)g−n.

As the previous example illustrates, Gödelizing a sequence resulting from a symbol substitution
is equivalent to applying an affine-linear transformation on the original Gödelized sequence. In
particular, the parameters of the affine-linear transformation only depend on the position and
identities of the symbols involved in the substitution. Shifting s to the left by removing its first
symbol or shifting it to the right by adding a new one yields respectively sl = d2d3d4 . . . and
sr = b d1d2d3d4 . . ., where b is the newly added symbol. In this case

ψ(sl) = γ(d2)g−1 + γ(d3)g−2 + γ(d4)g−3 + . . .

= gψ(s)− γ(d1),

and

ψ(sr) = γ(b)g−1 + γ(d1)g−2 + γ(d2)g−3 + γ(d3)g−4 + . . .

= g−1ψ(s) + γ(b)g−1.

Again, the resulting Gödelized shifted sequence can be obtained by applying an affine-linear
transformation to the original Gödelized sequence.

2.4 Nonlinear Dynamical Automata

A Nonlinear Dynamical Automaton (NDA) is a triple MNDA = (X,P,Φ), with P being a
rectangular partition of the unit square, that is

P = {Di,j ⊂ X| 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N}, (8)

so that each cell Di,j is defined as the cartesian product Ii × Jj , with Ii, Jj ⊂ [0, 1] being real
intervals for each bi-index (i, j), Di,j ∩Dk,l = ∅ if (i, j) 6= (k, l), and

⋃
i,j D

i,j = X.

The couple (X,Φ) is a time-discrete dynamical system with phase spaceX = [0, 1]
2 ⊂ R2 (i.e. the

unit square) and with flow Φ : X → X, a piecewise affine-linear map such that Φ|Di,j := Φi,j .
Specifically, Φi,j takes the following form:

Φi,j(x) =

(
ai,jx
ai,jy

)
+

(
λi,jx 0
0 λi,jy

)(
x
y

)
. (9)

The piecewise affine-linear map Φ also requires a switching rule Θ(x, y) ∈ J1,mK×J1, nK to select
the appropriate branch, and thus the appropriate dynamics, as a function of the current state.
That is, Φ(x, y) = Φi,j(x, y) ⇐⇒ Θ(x, y) = (i, j).

Each cell Di,j of the partition P of the unit square can be seen as comprising all the Gödelized
dotted sequences that contain the same symbols in the Domain of Dependence. That is, for a
Generalized Shift simulating a Turing Machine, the first two symbols in α′ and the first symbol
in β.
The unit square is thus partitioned in a number of I intervals equal to m = nqns, and one of J
intervals equal to n = ns, with nq being the number of states in Q and ns the number of symbols
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in N, for a total of nqn
2
s cells. As each cell corresponds to a different Domain of Dependence

of the underlying Generalized Shift in symbolic space, it is associated with a different affine-
linear transformation representing the action of a substitution and shift in vector space. The
transformation parameters (ai,jx , a

i,j
y ) and (λi,jx , λ

i,j
y ) can be derived using the methods outlined

in subsubsection 2.3.1.
Thus, a Turing Machine can be represented as a Nonlinear Dynamical Automaton by means of
its Gödelized Generalized Shift representation.

3 NDAs to R-ANNs

The aim of the second stage of our methodology is to map the orbits of the NDA (i.e. Φi,j(x, y))
to orbits of the R-ANN, which we will denote by ζi,j(x, y).

Let ρ(·) denote the proposed map. Its role is to encode the affine-linear dynamics at each
Φi,j branch in the architecture and weights of the network, and emulate the overall dynamics
Φ by suitably activating certain neural units within the R-ANN given the switching rule Θ.
Therefore, we generically define the proposed map as follows:

ζ = ρ(I,A,Φ,Θ), (10)

where I is the identity matrix mapping (identically) the initial conditions of the NDA to the
R-ANN and A is the adjacency matrix specifying the network architecture and weights, which
will be explained in subsequent sections. In addition, ρ defines different neural dynamics for each
type of the neural units, that is, ζ = (ζ1, ζ2, ζ3) corresponding to MCL, BSL and LTL, respec-
tively (see below for the definitions of these acronyms). The details of the R-ANN architecture
and its dynamics are subsequently discussed.

3.1 Network architecture and neural dynamics

The proposed map, ρ, attempts to mirror the affine-linear dynamics (given by Equation 9) of an
NDA on the partitioned unit square (see Equation 8) by endowing the R-ANN with a structure
capturing the characteristic features of a piecewise-affine linear system, i.e. a state, a switching
rule and a set of transformations.
To achieve this, we propose a network architecture with three layers, namely a Machine Con-
figuration Layer (MCL) encoding the state, a Branch Selection Layer (BSL) implementing the
switching rule and a Linear Transformation Layer (LTL), as depicted in Figure 1.
The neural units within the various layers make use of either the Heaviside (H) or the Ramp
(R) activation functions defined as follows:

H(x) =

{
0 if x < 0

1 if x ≥ 0
(11) R(x) =

{
0 if x < 0

x if x ≥ 0
. (12)

Since Φ is a two-dimensional map, this suggests only two neural units (cx, cy) in the MCL
layer encoding its state at every step. A set of BSL units functionally acts as a switching system
that determines in which cell Di,j the current Turing machine configuration belongs to and then
triggers the specific LTL unit emulating the application of an affine-linear transformation Φi,j

on the current state of the system. The result of the transformation is then fed back to the MCL
for the next iteration. On the symbolic level, one iteration of the emulated NDA corresponds to
a tape and state update of the underlying Turing machine, which can be read out by decoding
the activation of the MCL neurons.
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Figure 1. Connectivity between neural layers within the network.
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Figure 2. Detailed feedforward connectivity and weights for a neural network simulating a
NDA with only 6 branches.

3.1.1 Machine Configuration Layer

The role of the MCL is to store the current Gödelized configuration of the simulated Turing
Machine at each computation step, and to synaptically transmit it to the BSL and LTL layers.
The layer comprises two neural units (cx and cy), as needed to store the Gödelized dotted
sequence representing a Turing Machine configuration (see Equation 7).

The R-ANNs is thus initialized by activating this layer, given the NDA initial conditions
(ψx(α′), ψx(β)) which are identically transformed via I by the map ρ(·) as follows:

(cx, cy) = (ψx(α′), ψx(β)) ≡ ζ1 = ρ(I, ·, ·, ·)|(ψx(α′),ψx(β)) (13)

At each iteration, the units in this layer receive input from the LTL units, and are activated via
the ramp activation function (Equation 12); in other words ζ1 ≡ (cx, cy) = (R(

∑
i t
i
x), R(

∑
j t
j
y)).

Finally, the MCL synaptically projects onto the BSL and LTL (refer to Figure 2 for details of
the connectivity).

3.1.2 Branch Selection Layer

The BSL embodies the switching rule Θ(x, y) and coordinates the dynamic switching between
LTL units. In particular, if at the current step the MCL activation is (cx, cy) ∈ Di,j = Ii × Jj ,
with Ii = [ξi, ξi+1) being the i-th interval on the x-axis and Jj = [ηj , ηj+1) being the j-th
interval on the y-axis, the BSL units activate only the (ti,jx , t

i,j
y ) units in the LTL. In this way,

only one couple of LTL units is active at each step. The switching rule is mapped by ρ(·) as

6
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follows:

ζ2(x, y) = ρ(·, ·, ·,Θ(x, y) = (i, j)). (14)

The BSL is composed of two groups of Heaviside (Equation 11) units, implementing respectively
the x and the y component of the switching rule of the underlying piecewise affine-linear system,
namely: i) the bx group receives input with weight 1 from the cx unit of the MCL layer, and
comprises nqns units (i.e. bix, 1 ≤ i ≤ nqns); ii) the by group receives input with weight 1 from
cy and comprises ns units (i.e. bjy, 1 ≤ i ≤ ns). The activation of the two groups of units is
defined as:

bix = H(cx − ξi) with ξi = min(Ii),

bjy = H(cy − ηj) with ηj = min(Ji).
(15)

Each bix and bjy BSL unit has an activation threshold, defined as the left boundary of the Ii
and Jj intervals, respectively, and implemented as input from an always-active bias unit (with
weight −ξi for the bix unit and −ηj for bjy). Therefore, an activation of (cx, cy) in the MCL

corresponding to a point on the unit square belonging to cell Di,j , would trigger active all units
bkx with k ≤ i. The same would occur for all neural units bky with k ≤ j.1

Each bix unit establishes synaptic excitatory connections (with weight h
2 ) to all LTL units cor-

responding to cells Dk,i (i.e. (tk,ix , tk,iy )) and inhibitory connections (with weight −h2 ) to all LTL

units corresponding to cells Dk,i−1 (i.e. (tk,i−1x , tk,i−1y )), with k = 1, . . . , ns; for a graphical rep-

resentation see Figure 2. Similarly, each bjy unit establishes synaptic excitatory connections to all

LTL units corresponding to cells Dj,k and inhibitory connections to all LTL units corresponding
to cells Dj−1,k, with k = 1, . . . , nqns. Together, the bix and bjy units completely counterbalance
through their synaptic excitatory connections the natural inhibition (of bias h, which value and
definition will be discussed in the following section) of the LTL units corresponding to cell Di,j

(i.e. (ti,jx , t
i,j
y )).

In other words each couple of LTL units (ti,ix , t
i,j
y ) receives an input of Bix + Bjy, defined as

follows:

Bix = bix
h

2
+ bi+1

x

−h
2
,

Bjy = bjy
h

2
+ bj+1

y

−h
2
,

(16)

where the input sum

Bix +Bjy =





h if (cx, cy) ∈ Di,j

h
2 if cx ∈ Ii, cy 6∈ Jj or cx 6∈ Ii, cy ∈ Jj
0 if (cx, cy) 6∈ Di,j

(17)

only triggers the relevant LTL unit if it reaches the value h. That is, if (cx, cy) ∈ Di,j then
Bix + Bjy = h, and the pair (ti,ix , t

i,j
y ) is selected by the BSL units. Otherwise (ti,ix , t

i,j
y ) stays

inactive as Bix +Bjy is either equal to h
2 or 0, which is not enough to win the LTL pair natural

inhibition. An example of this mechanism is shown in Figure 2 , where the LTL units in cell
D1,2 are activated via mediation of bx = {b1x, b2x, b3x} and by = {b1y, b2y}. Here, both b3x and b2y
are not excited since cx and cy, respectively, are not activated enough to drive them towards
their threshold. However, b2x excites (with weights h

2 ) the LTL units in cell D2,2 and D1,2 and

inhibits (with weights −h2 ) the LTL units in cell D2,1 and D1,1. Equally, b2y excites (with weights

1Note that the action of the BSL could be equivalently implemented by interval indicator functions represented
as linear combinations of Heaviside functions.
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h
2 ) the LTL units in cell D2,1, D2,2 and D2,3 and inhibits (with weights −h2 ) the LTL units in
cells D1,1, D1,2 and D1,3. The b1x and b1y units excite cells {D2,1, D1,1} and {D1,1, D1,2, D1,3},
respectively, but these do not inhibit any cells (due to boundary conditions).

3.1.3 Linear Transformation Layer

The LTL layer can be functionally divided in sets of two units, where each couple applies two
decoupled affine-linear transformations corresponding to one of the branches of the simulated
NDA. On the symbolic level, this endows the LTL with the ability to generate an updated
machine configuration from the previous one. In the LTL, a branch (i, j) of a NDA, Φi,j(x, y) =
(λi,jx x+ ai,jx , λ

i,j
y y+ ai,jy ), is simulated by the LTL units (ti,jx , t

i,j
y ). Mathematically, this induces

the following mapping:

(ti,jx , t
i,j
y ) = ζi,j3 (x, y) = ρ(·, ·,Φi,j(x, y), ·). (18)

The affine-linear transformation is implemented synaptically, and it is only triggered when the
BSL units provide enough excitation to enable (ti,jx , t

i,j
y ) to cross their threshold value and

execute the operation. The read-out of this process corresponds to:

ti,jx = R(λi,jx cx + ai,jx − h+Bix +Bjy),
ti,jy = R(λi,jy cy + ai,jy − h+Bix +Bjy).

(19)

A strong inhibition bias h (implemented as a synaptic projection from a bias unit) plays a key
role in rendering the LTL units inactive in absence of sufficient excitation. The bias value is
defined as follows

−h
2
≤ −max

i,j,k
(ai,jk + λi,jk ) with k = {x, y}. (20)

Hence, each of the BSL inputs Bix and Biy contributes respectively to half of the necessary

excitation (h2 ) needed to counterbalance the LTL’s natural inhibition (refer to Equation 16
and Equation 17).

The LTL units receive input from the two CSL units (cx, cy), with synaptic weights of
(λi,jx , λ

i,j
y ), and they are also endowed with an intrinsic constant LTL neural dynamics (ai,jx , a

i,j
y ).

If the input from the BSL layer is enough for these neurons to cross the threshold mediated by
the Ramp activation function, the desired affine-linear transformation is applied. The read-out
is an updated encoded Turing machine configuration, which is then synaptically fed back to the
CSL units (cx, cy), ready for the next iteration (or next Turing machine computation step on
the symbolic level).

3.1.4 NDA-simulating first order R-ANN

The NDA simulation (and thus Turing machine simulation) by the R-ANN is achieved by a
combination of synaptic and neural computation among the three neural types (MCL, BSL, and
LTL) and with a total of

nunits = 2︸︷︷︸
MCL

+ns + nsnq︸ ︷︷ ︸
BSL

+ 2n2snq︸ ︷︷ ︸
LTL

+ 1︸︷︷︸
bias unit

(21)

neural units, where nq and ns are the number of states and the number of symbols in the Turing
Machine to be simulated, respectively. These units are connected as specified by an adjacency
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matrix A of size nunits × nunits, following the connectivity pattern described in Figure 1 and
with synaptic weights as entries from the set

{0, 1, h
2
,
−h
2
} ∪ {ai,jk − h | i = 1, . . . , nqns , j = 1, . . . , ns , k = x, y},

the second component being the set of biases.
An important modelling issue to consider is that of the halting conditions for the ANN, i.e.

when to consider the computation completed. In the original formulation of the Generalized
Shift, there is no explicit definition of halting condition. As our ANN model is based on this
formulation, a deliberate choice has to be made in its implementation. Two choices seem to
be the most reasonable. The first one involves the presence of an external controller halting
the computation when some conditions are met, i.e. an homunculus [4]. The second one is the
implementation of a fixed point condition, intrinsic to the dynamical system, representing a TM
halting state as an Identity branch on the NDA. In this way a halting configuration will result in
a fixed point on the NDA, and thus on the R-ANN. In other words, the network’s computation
is considered completed if and only if

ζ1(x′, y′) = (x′, y′). (22)

In the present study we decided to use a fixed point halting condition, but the use of a ho-
munculus would likely be more appropriate in other contexts such as interactive computation
[9, 10, 11] or cognitive modelling, where different kinds of fixed points are required in order to
describe sequential decision problems [12], such as linguistic garden paths [4, 10].

The implementation of the R-ANN defined like so simulates a NDA in real-time and, thus,
it simulates a Turing Machine in real time. More formally, it can be shown that under the
map ρ(·) the commutativity property ζ ◦ ρ = ρ ◦ Φ is satisfied, which extends the previously
demonstrated commutativity property between Turing machines and NDAs [9, 13, 14].

4 Discussion

In this study we described a novel approach to the mapping of Turing Machines to first-order R-
ANNs. Interestingly, R-ANNs can be constructed to simulate any piecewise affine-linear system
on a rectangular partition of the n-dimensional hypercube by extending the methods discussed

The proposed mapping allows the construction, given any Turing Machine, of a R-ANN
simulating it in real time. As an example of the parsimony we claim, a Universal Turing Machine
can be simulated with a fraction of the units than previous approaches allowed for: the proposed
mapping solution derives a R-ANN that can simulate Minsky’s 7-states 4-symbols UTM [15] in
real-time with 259 units (as per Equation 21), approximately 1/3 of the 886 units needed in the
solution proposed by Siegelmann and Sontag [1], and with a much simpler architecture.

In future work we plan to overcome some of the issues posed by the mapping and parts of
its underlying theory, especially in relation to learning applications. Key issues to overcome
are the missing end-to-end differentiability, and the need for a de-coupling of states and data
in the encoding. A future development would see the integration of methods of data access
and manipulation akin to that in Google DeepMind’s Neural Turing Machines [5]. A parallel
direction of future work would see the mapping of Turing machines to continuous-time dynamical
systems (an example with polynomial systems is provided in [16]). In particular, heteroclinic
dynamics [12, 13, 17, 18] – with machine configurations seen as metastable states of a dynamical
system – and slow-fast dynamics [19, 20] are promising new directions of research.
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Abstract

Computation is classically studied in terms of automata, formal languages
and algorithms; yet, the relation between neural dynamics and symbolic
representations and operations is still unclear in traditional eliminative con-
nectionism. Therefore, we suggest a unique perspective on this central issue,
to which we would like to refer as to transparent connectionism, by propos-
ing accounts of how symbolic computation can be implemented in neural
substrates. In this study we first introduce a new model of dynamics on a
symbolic space, the versatile shift, showing that it supports the real-time
simulation of a range of automata. We then show that the Gödelization
of versatile shifts defines nonlinear dynamical automata, dynamical systems
evolving on a vectorial space. Finally, we present a mapping between non-
linear dynamical automata and recurrent artificial neural networks. The
mapping defines an architecture characterized by its granular modularity,
where data, symbolic operations and their control are not only distinguish-
able in activation space, but also spatially localizable in the network itself,
while maintaining a distributed encoding of symbolic representations. The
resulting networks simulate automata in real-time and are programmed di-
rectly, in absence of network training. To discuss the unique characteristics
of the architecture and their consequences, we present two examples: i) the
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design of a Central Pattern Generator from a finite-state locomotive con-
troller, and ii) the creation of a network simulating a system of interactive
automata that supports the parsing of garden-path sentences as investigated
in psycholinguistics experiments.

Keywords: Automata Theory, Recurrent Artificial Neural Networks,
Representation Theory, Nonlinear Dynamical Automata, Neural Symbolic
Computation, Versatile Shift

1. Introduction

The relation between symbolic computation and neural dynamics is one
of the most pertinent problems in computational neuroscience, artificial in-
telligence, and cognitive science. On the one hand, symbolic computation
is generically codified in terms of production systems, formal languages, al-
gorithms and automata (Hopcroft and Ullman, 1979). On the other hand,
neural dynamics in artificial neural networks (ANN) is described by nonlin-
ear evolution laws (Hertz et al., 1991). Approaches to connect these different
realms of research go back to the seminal paper of McCulloch and Pitts
(1943) on networks of idealized two-state neurons that behave as logic gates.
Furthermore, fundamental work by Kleene (1956) and Minsky (1967) demon-
strated the equivalence between such networks and finite-state automata, and
thus digital computers (which are essentially large-scale networks of logic
gates). Later examples for connectionist modeling of symbolic computation
are the speech perception and production models TRACE by McClelland and
Elman (1986) and NETtalk by Sejnowski and Rosenberg (1987). A further
important step was achieved by Elman when introducing simple recurrent
networks (SRN) as prediction devices for letters in words (Elman, 1990) and
syntactic categories in sentences (Elman, 1995). SRN found a number of suc-
cessful applications in linguistics and cognitive science (Tabor et al., 1997;
Christiansen and Chater, 1999; Lawrence et al., 2000; Farkas and Crocker,
2008) where formal grammars have been employed for the generation of train-
ing sets. After training, grammatical relations emerged in the connectivity
and activation patterns of the network’s hidden layer which could be exam-
ined through clustering and principal component analysis (PCA).

A key problem of this and similar approaches based on eliminative con-
nectionism (Blutner, 2011), a theoretical stance aiming at the elimination of
symbolic representations in connectionist models, is that the emerging rep-

c©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
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resentations, while comparable in a metric space through empirical methods
such as clustering or PCA, do not allow inferences about the syntactic or
structural relationships of the symbolic training data. This is even more
the case with contemporary deep-learning (Li, 2014; Bengio et al., 2013),
and reservoir computing approaches featuring large networks of randomly
and recurrently connected nonlinear units (Dominey, 1995; Jaeger, 2001;
Maass et al., 2002; Steil, 2004). For that reason, another branch of research,
which we may call transparent connectionism, has been developed in the
framework of vector symbolic architectures (VSA) (Mizraji, 1989; Smolen-
sky, 1990; Smolensky and Legendre, 2006a,b; Gayler, 2006; Gayler et al.,
2010; beim Graben and Potthast, 2009). Here, one explicitly starts with the
symbolic data structures and processes, which are first decomposed into so-
called filler-role bindings and then used to create vectorial images through
tensor product representations (Smolensky, 1990; beim Graben and Potthast,
2009). These serve as training patterns for subsequent connectionist mod-
eling. In contrast to eliminative connectionism where representations that
emerge during training are to a great extent opaque, representations in VSAs
are completely transparent as they can be resolved in each step of the encod-
ing procedure. Depending on the structure of the chosen vector space one
arrives at different kinds of integrated connectionist/symbolic architectures
(ICS) (Smolensky, 1990; Smolensky and Legendre, 2006a,b): Gödelizations
for one-dimensional representations in the field of real numbers, proper vecto-
rial representations for finite-dimensional vector spaces, and functional repre-
sentations for infinite-dimensional vector spaces (beim Graben and Potthast,
2009). Importantly, Siegelmann and Sontag (1991, 1995) used a combina-
tion of Gödelization and localist finite-dimensional representation to prove
that Recursive ANNs (R-ANN) with rational weights and ramp activation
functions can simulate any n-tape (n ≥ 2) stack machine – or, equivalently,
any Turing machine (TM) and any partial recursive function – when en-
dowed with a specific localist architecture. Moreover, Siegelmann and Son-
tag showed that a R-ANN consisting of 886 units can simulate a universal
Turing machine (UTM). Recent work by Cabessa (Cabessa and Siegelmann,
2012; Cabessa and Villa, 2012, 2013) extends these results on R-ANNs to the
realm of interactive computation (Wegner, 1998), a framework studying sys-
tems that can interact with the environment throughout their computation
(as opposed to the framework of classical computation, where the interaction
is limited to the input-output exchange), proving that R-ANNs are equivalent
in power to interactive TMs.

c©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
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Very-large-scale and reservoir-like neural network approaches can also rely
on VSA as a key ingredient, as in the neural engineering framework (Elia-
smith et al., 2012; Stewart et al., 2014), which employs semantic pointers
for addressing symbolic representations in activation space, and recent work
at the interface between reservoir computing and connectionist/symbolic ap-
proaches (Hinaut and Dominey, 2013; Hinaut et al., 2014)

In contrast, the present work focuses on parsimonious VSA implementa-
tions, building upon the seminal results from Siegelmann and Sontag (1991,
1995), and work from Moore (1990, 1991) who has shown that nonlinear dy-
namical automata (NDA), piecewise-affine linear dynamical systems on the
unit square, can simulate the dynamics of any TM in real-time1 when the
machine is represented as a generalized shift (GS) on dotted sequences. In
this work we first extend Moore’s results by showing that NDA can support
the real-time simulation of a range of models of computation, including but
not limited to Turing Machines (of course, TMs can simulate any other model
of computation of lesser or equal power, but not necessarily in real-time; see
Section 2.1.1 for a discussion). We achieve this by relaxing the definition of
GS, which leads to a novel and more expressive shift map, the versatile shift
(VS) which enables the parsimonious and real-time emulation of symbolic
computation in a range of models. We then show that VS dynamics can be
mapped to NDA dynamics on the unit square through Gödelization. Finally,
we present a mapping between VS and R-ANNs through NDA (extending
preliminary results shown in Carmantini et al., 2015).

Symbolic models of computation distinguish between data, operations on
data and the control of these operations. For example, automata implement
a set of symbolic operations and its control through a look-up table (the tran-
sition function), and the data as a string encoding the so-called configuration
of the automaton. In grammars and term rewriting systems, operations are
instead defined as a set of substitution/rewriting rules on some symbolic
string, where the application of these rules is controlled by a set of condi-
tions. NDA can perform symbolic computation on a vectorial space while
preserving, in their formulation, the division between data, operations on
data, and their control. Basing our construction on NDA, we derive an ar-
chitecture that also preserves this division, thus obtaining networks that are

1In a real-time simulation, a single computation step in the original model is mapped
to a single computation step in the model simulating it.
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transparent, modular and parsimonious. Importantly, the operations embed-
ded within the architecture we propose herein are not only distinguishable
in activation space, but are also spatially localized, while still relying on a
distributed representation of the symbolic data. The granular modularity
of the architecture brought about by its relation with NDA differentiates
our approach from previous work, and has important consequences for the
constructive mapping of interactive automata networks (IANs) to R-ANNs,
and for the possibility of correlational studies with electrophysiological data,
which we will discuss in subsequent Sections.

We illustrate our approach by means of two examples. As a first ex-
ample, we construct a central pattern generator (CPG) from a finite-state
automaton for gait patterns of quadruped animals (Grillner and Zangger,
1975; Collins and Richmond, 1994; Golubitsky et al., 1999). The neuronal
sequential activations by CPGs are usually modeled through networks of
coupled nonlinear oscillators that undergo symmetry-breaking bifurcations
under changes in their driving input (Golubitsky et al., 1999, 1998; Schöner
et al., 1990; Collins and Richmond, 1994). We show that our construction,
although symbolically inspired, allows the investigation of similar bifurca-
tion scenarios. Additionally, the results of these example are relevant to the
design of CPGs for the control of robotic locomotion (Ijspeert, 2008). As a
second example, we show how our approach is ideally suited to tackle the
mapping of interactive machines to neural networks, because of the separa-
tion in the network architecture of data, transformations and their control.
This makes it straightforward to construct R-ANNs simulating networks of
automata that e.g. share states, are organized in complex hierarchies, or
are bound by interactions of conditions in the application of symbolic trans-
formations. We demonstrate this by constructing an interactive automata
network (IAN) that implements a diagnosis and repair parser for syntac-
tic language processing (Lewis, 1998) and by subsequently mapping it to
a R-ANN performing the same computation. We are then able to derive
vectorial observables from the network; specifically, we compute synthetic
event-related brain potentials (synth-ERPs, Barrès et al., 2013) and discuss
their relation with event-related potentials as measured in experiments in-
volving garden-path sentences (Frisch et al., 2004).

c©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
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Abbreviation Extended name

ANN Artificial neural network
BSL Branch selection layer
CFG Context-free grammar

CL Configuration layer
CPG Central pattern generator
EEG Electroencephalography
ERP Event-related brain potentials
FSM Finite-state machine

GS Generalized shift
LFP Local field potentials
LTL Linear transformation layer

MCL Machine configuration layer
NDA Nonlinear dynamical automaton
PCA Principal component analysis
PDA Push-down automaton

R-ANN Recurrent artificial neural network
SRN Simple recurrent network

synth-ERP Synthetic event-related brain potential
TDR Top-down recognizer

TM Turing machine
UTM Universal Turing machine

VS Versatile shift
VSA Vector symbolic architecture

Table 1: List of abbreviations used in this paper.
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2. Methods

The present Section outlines our general method which allows the map-
ping of a range of models of computation to R-ANNs. In Figure 1 we sum-
marize the complete mapping procedure to accompany its exposition. Our
construction is a two-step process. We first define a Versatile shift (a gen-
eralization of the shift map introduced in Moore, 1990) that emulates some
model of computation, and we subsequently encode its dynamics on the unit
square via Gödelization, obtaining a two-dimensional piecewise affine-linear
map on the unit square, i.e. a NDA. As a second step, the NDA is mapped
onto a first-order R-ANN, which is endowed with an architecture that cap-
tures the NDA’s three key components: i) a state, encoding the symbolic
data of the model of computation; ii) a set of affine-linear transformations,
encoding its operations on data; iii) a switching rule that selects the relevant
affine-linear transformation to apply given the state, thus implementing the
control of the symbolic operations.

Next, the theoretical methods employed are discussed in detail. In the
presentation of various objects from Formal Language Theory and Automata
Theory, we essentially follow the well-established definitions in Hopcroft and
Ullman (1979), and in Sipser (2006).

2.1. Elements of Symbolic Computation

A symbol is meant to be a distinguished element from a finite set A,
which we call an alphabet. Symbols can be concatenated, i.e. for a, b ∈ A,
ab ≡ (a, b) ∈ A2. A sequence of symbols w ∈ An is called a word of length
n, denoted n = |w|. The set of words of all possible lengths w of finite length
|w| ≥ 0 is denoted A∗ (for |w| = 0, w = ε denotes the “empty word”).

2.1.1. From Generalized to Versatile Shifts

The theory of symbolic dynamics (Lind and Marcus, 1995) is a tool to
study dynamical systems based on the discretization of time and space in
order to interpret trajectories in a vectorial space as discrete sequences of
infinite strings of symbols. Importantly, its theoretical apparatus can also be
used to do the opposite, mapping sequences of strings to a vectorial space.
We start by redefining a representation for strings of symbols, the dotted
sequence.

According to Moore (1990, 1991), a dotted sequence s ∈ AZ on an alpha-
bet A is a two-sided infinite sequence of symbols “s = . . . d−2 d−1 . d0 d1 d2 . . .”
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Figure 1: An automaton is mapped to a recurrent artificial neural network (R-
ANN). The representation of machine configurations as dotted sequences allows for the
mapping of the machine transition function to the action of a Ω versatile shift (VS) map
upon said sequences, simulating the computation performed by the automaton. A Gödel
encoding ψ acts as a bridge between the Symbolic and the Vectorial representation of
the automaton’s dynamics, and enables the representation of Ω as an affine-linear map
Φ by a nonlinear dynamical automaton (NDA). Finally, a map ρ generates a R-ANN,
with a specific network architecture and internal dynamics ζ that operates on the same
Vectorial space as Φ, where the NDA states are identically mapped through ρ(I, ·, ·, ·) to
the activation of a specialized layer in the R-ANN.
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where di ∈ A, for all indices i ∈ Z. Here, the dot “.” is simply used as a
mnemonic sign, indicating that the index 0 is to its right. A shift space
MS = (AZ, σ) is then given by a shift map σ : AZ → AZ (Lind and Marcus,
1995), such that σ(s)i = (s)i+1, i.e. σ shifts all symbols in s one place to the
left (or, equivalently, shifts the dot one place to the right). Similarly, it is
possible to define an inverse to the shift map, σ−1, shifting all symbols in s
one place to the right (or, equivalently, the dot one place to the left).

Notice how shifting the dot in a dotted sequence to the left or the right
resembles the movement of the read-write head of a Turing machine on its
tape (see section 2.1.2 for more details on Turing machines). In order to fully
attain the power of Turing machines, Moore (1990, 1991) endows the shift
space MS with three additional maps

F : AZ → Z
⊕ : AZ × (A ∪ {φ})Z → AZ

G : AZ → (A ∪ {φ})Z,
(1)

such that their composition Ω(s) = σF (s)(s ⊕ G(s)) can fully simulate any
Turing machine. The augmented shift space MGS = (AZ,Ω) is called gener-
alized shift (GS) if there is an open interval of indices around the dot, called
Domain of Dependence DoD = (kl, kr) (kl ≤ 0 ≤ kr), such that F (s) and
G(s) only depend on the content of s within the DoD, F (s) determines a
number of left shifts (F (s) > 0), right shifts (F (s) < 0), or no shift at all
(F (s) = 0) and G(s) maps the symbols si within the DoD onto other symbols
gi, while all symbols outside the DoD are mapped onto an auxiliary symbol
φ. Finally, the composition operator overwrites all symbols si within the
DoD through their images gi under G while not changing s outside the DoD,
i.e. (s⊕ g)i = si if gi = φ, but (s⊕ g)i = gi if gi 6= φ.2

According to Moore’s proof (Moore, 1990, 1991), any Turing machine
can be realized as a GS MGS. Since Turing machines can be programmed
to simulate the computation carried out by any model of lower or equal
computational power, such as finite-state automata or push-down automata,

2In his 1991 paper, Moore actually defines the DoD of a GS as a finite set of integers
which need not be consecutive, and introduces a second finite set of integers, the Domain
of Effect (DoE) to indicate the cells to be rewritten (as a function of the cells in the DoD).
Nevertheless, it is always possible, given any GS with arbitrary DoD and DoE, to construct
an equivalent GS as defined here; we thus decided to propose a simplified definition.
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this implies that these can also be described in terms of equivalent GSs. In
practice, however, simulating other automata via Turing machines will lead
to rather complicated machine tables even for the simplest symbolic algo-
rithms, and thus to unnecessarily complicated shift spaces. In fact, different
automata implement different atomic operations, so that a Turing machine
can require multiple computation steps to simulate a single computation step
of another automaton, even when the automaton is computationally less pow-
erful. Therefore, we introduce a novel shift space to which we shall hence-
forth refer as versatile shift (VS), which will allow us to represent automata
configuration dynamics on dotted sequences in a more straightforward and
parsimonious fashion, simulating it in real-time. Our construction essentially
relies on a redefinition of the concept of dotted sequence. Above, the dot was
only used as a mnemonic symbol without any functional implication. Now,
we introduce the dot as a meta-symbol which can be concatenated with two
words v1, v2 ∈ A∗ through v = v1.v2. Let Â∗ denote the set of these dotted
words. Moreover, let Z− = {i | i < 0, i ∈ Z} and Z+ = {i | i ≥ 0, i ∈ Z}
the sets of negative and non-negative indices. We can then reintroduce the
notion of a dotted sequence as follows. Let s ∈ AZ be a bi-infinite sequence
of symbols such that s = wαvwβ with v ∈ Â∗ as a dotted word v = v1.v2
and wαv1 ∈ AZ− and v2wβ ∈ AZ+

. Through this definition, the indices of s
are inherited from the dotted word v and are thus not explicitly prescribed.
Whereas GSs can only rewrite each symbol in their DoD with a new one,
VSs are endowed with a more general rewriting operation, substituting dot-
ted words in their DoD with other dotted words of equal or different lengths
(as already hinted, yet not implemented, by Moore, 1990). This adds expres-
siveness to VSs, allowing for the parsimonious real-time simulation of a range
of automata (see Figure 2 for a pictorial representation of the difference in
substitution operations between GSs and VSs).

More formally, we define a VS as a pair MV S = (AZ,Ω), with AZ being
the space of dotted sequences, and Ω : AZ → AZ defined by

Ω(s) = σF (s)(s⊕G(s)) (2)

with
F : AZ → Z
⊕ : AZ ×AZ → AZ

G : AZ → AZ,

(3)

where the operator “⊕” substitutes the dotted word v1.v2 ∈ Â∗ in s with
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DoD{

o r

a n

Substitution by
Generalized Shift

o n d e r e

Substitution by
Versatile Shift

DoD{
dw

dw

o r dw

w d

Figure 2: Difference between substitution operation in generalized and versatile
shifts. In this Figure, we show two example substitutions by respectively a generalized
shift and a versatile shift. While a generalized shift can only rewrite each symbol of the
dotted word in its Domain of Dependence (DoD) with a new one, a versatile shift can
substitute the dotted word in its DoD with any other arbitrary dotted word.

a new dotted word v̂1.v̂2 ∈ Â∗ specified by G, while F (s) = F |Â∗(v1.v2)
determines the number of shift steps as for the GS above. The action of
F , G and ⊕ in the VS depends on a finite dotted sub-sequence v1.v2 inside
the original dotted sequence s = wαvwβ, as determined by the DoD of the
VS, again defined as a set of consecutive integers denoting cell positions on
the original dotted sequence. The DoD of a GS can be specified by an open
interval (kl, kr) on the integers, with kl ≤ 0 and kr ≥ 0. Additionally, for a
DoD = (kl, kr), it is useful to define DoDα = (kl, 0) and DoDβ = (−1, kr)
to denote the left and right part of the complete DoD on dotted sequences
α.β, with DoD = DoDα ∪DoDβ. The set V of dotted words that can appear

in the DoD of a VS is a subset of Â∗, and can be defined as V = {v | v =
v1.v2 ∈ Â∗, |v1| = |DoDα|, |v2| = |DoDβ|}.

To illustrate how VSs act on dotted sequences, consider for example the
dotted sequence “wo.rd”, and define a VS Ωexwith

DoD = (−2, 1) = {−1, 0},

G :

{
o.r 7→ a.n

a.n 7→ on.dere,

F :

{
o.r 7→ 0

a.n 7→ 1,
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then, applying Ωex to “wo.rd” once yields

Ωex(wo.rd) = σF (wo.rd)
(
wo.rd⊕G(wo.rd)

)

= σF (wo.rd)
(
wo.rd⊕ a.n

)

= σF (wo.rd)
(
wa.nd

)

= σ0
(
wa.nd

)

= wa.nd

and applying it again to the resulting “wa.nd” dotted sequence yields

Ωex(wa.nd) = σF (wa.nd)
(
wa.nd⊕G(wa.nd)

)

= σF (wa.nd)
(
wa.nd⊕ on.dere

)

= σF (wa.nd)
(
won.dered

)

= σ1
(
won.dered

)

= wo.ndered

where the DoD of the input string has been highlighted for clarity (again,
contrast this with the pictorial representation given in Figure 2). Note that
a VS reduces to a GS in the special case when G always substitutes a dotted
sequence with one of the same (finite) length in both the left and the right
sub-sequences, as in the previous example where wo.rd⊕G(wo.rd) = wo.rd⊕
a.n = wa.nd.

A point worth noting is that endowing VS with the rewriting capability
extends the GS in the direction of semi-Thue systems (also known as string
rewriting systems), a universal model of computation introduced by Axel
Thue in 1914 (see chapter 7 of Davis et al., 1994). These rewriting systems
play an important role, for example, in algebraic specifications of abstract
data structures, equational programming, program transformation and au-
tomated theorem proving, where the conditional and successive application
of a finite set of rewrite rules transforms a given symbolic structure.

2.1.2. Simulation of Various Automata by Versatile Shifts

We will now discuss how a range of automata can be simulated in real-time
by VSs by choosing appropriate dotted sequence representations of machine
configurations, and by constructing F and G to reproduce the machine’s
operations and their conditional application.
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Finite-state machines. The finite-state machine (FSM) model of computa-
tion has been introduced by McCulloch and Pitts in 1943 and is widely used
to describe systems in many application fields, ranging from computer science
to engineering and biology, to name a few. At every step of a computation
a FSM is in one of a finite set of states, and it can change its state as a
result of an incoming input signal. More formally, a FSM can be defined as
a 5-tuple MFSM = (Q,T, q0, F, δ), where Q is a finite set of control states, T
is the input alphabet, q0 ∈ Q is the starting state, F ⊆ Q is a set of accept
states, and δ : Q×T→ Q is a transition function defined as follows:

δ : (qt, d0t) 7→ qt+1, (4)

where qt, qt+1 ∈ Q are states, and d0t ∈ T is an input symbol. At each
computation step, a FSM reads its current state qt, consumes (i.e. reads
and discards) its current input symbol dt, and transitions to a new state
qt+1 = δ(qt, dt) as prescribed by its transition function. It is possible to
encode FSM configurations on dotted sequences as

qt . d0t d1t . . . dnt (5)

where qt, d0t and d1t . . . dnt are respectively the state, input symbol, and the
rest of the unconsumed input of the FSM at time t. A VS simulating a FSM
in real-time can be constructed by defining the Domain of Dependence to
be DoD = (−2, 1) = {−1, 0}, F to always map to 0, and G so that for all
qt ∈ Q, dt ∈ T:

G : qt.d0t 7→ qt+1.ε (6)

where qt+1 = δ(qt, d0t).

Push-down automata and Context-Free Grammars. A push-down automaton
(PDA) is a computing machine that has sequential access to its input and can
manipulate a stack memory by popping and pushing symbols on top of it.
More formally, a PDA can be defined as a 6-tuple MPDA = (Q,N,T, q0, F, δ),
where Q is a finite set of control states, N is the stack alphabet, T is the
input alphabet, q0 ∈ Q is the starting state, F ⊆ Q is a set of accept states,
and δ is a transition function. If F = ∅, the PDA accepts its input when
both the input tape and the stack are empty, and it is thus said to accept by
empty stack.

A Deterministic PDA is a PDA in which any configuration of the ma-
chine defines at most one transition. As the mapping of non-deterministic
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automata computation to Neural Networks is outside the scope of this work,
in what follows we will only discuss Deterministic PDAs. Determinism will
thus be implied from this point on. The transition function of a PDA is
defined as follows:

δ : Q×T ∪ {ε} ×N→ Q× (N ∪ {ε}). (7)

At each computation step, a PDA consumes an input symbol, pushes or pops
a symbol on the top of its stack, and changes state as prescribed by its tran-
sition function applied to the current state qt, currently read input symbol
d0t , and the current top-of-stack symbol s0t . In particular, if s0t . . . smt is the
current content of the stack, transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, ε)

apply a pop operation, such that the new stack content becomes equal to
s1t . . . smt . Push operations are instead applied by transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, s0t+1),

so that the updated stack contains the symbols s0t+1s0t . . . smt . Finally, for
transitions of the form

δ : (qt, ε, s0t) 7→ (qt+1, χ),

the PDA does not consume any input symbol (i.e. it does not access its
input at all), but either pops its top-of-stack, if χ = ε, or pushes symbol χ,
if χ ∈ N.

PDA configurations can be encoded on dotted sequences as follows:

smt . . . s0t︸ ︷︷ ︸
st

qt . d0t . . . dnt︸ ︷︷ ︸
dt

(8)

where qt, dt and st are respectively the state, the unconsumed input and the
content of the stack of the automaton in reversed order at time t.

A VS simulating a PDA in real-time can be constructed from the PDA’s
transition function by defining the Domain of Dependence to be DoD =
(−3, 1) = {−2,−1, 0}, F to always map to 0, and G so that, given δ :
(qt, κ, s0t) 7→ (qt+1, χ),

G :

{
s0t qt . κ 7→ ε qt+1 . ε if χ = ε
s0t qt . κ 7→ s0t χ qt+1 . ε otherwise.

(9)
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PDA recognize the class of languages generated by context-free grammars
(CFG). PDA and CGFs are thus equivalent in power. A CFG specifies a
language, i.e. a set of strings on some alphabet, by defining how its words can
be constructed, moving from a distinguished starting symbol and applying
substitution rules until a string of unsubstitutable symbols (terminals) is
reached.

A CFG can be formally defined as a 4-tuple GCF = (N,T, R, S), where
N is a set of non-terminal symbols, T is a set of terminal symbols, R ⊂
N× (N∪T)∗ a set of substitution rules and S a distinguished start symbol.
In particular, each rule in R can be written as X → w, with X ∈ N and
w ∈ (N ∪T)∗.

For example, let us define a CFG Gex with N = {S}, T = {(, [, ), ]},
and R containing the rules

S→(S)

S→[S]

S→ ε.

Then Gex generates the language Lex of balanced round and square brackets.
By applying the substitution rules we can in fact derive any string in that
language. For illustration purposes, an example derivation would be: S →
[S] → [(S)] → [()] ∈ Lex. It is always possible to construct, given any
CFG, a PDA recognizing its language, and viceversa.

Top-down recognizers. In one of the examples presented later in the text, we
will make use of top-down recognizers (TDRs, see Aho and Ullman, 1972)
that can process locally unambiguous non-left-recursive CFGs3. TDRs are
a subclass of PDA that can simulate rule expansion to accept languages
generated by non-left-recursive CFGs. Given any CFG GCF that is not left-
recursive, it is possible to construct a TDR that can parse strings belonging to
the context-free language generated by that grammar. If the input string of
a TDR constructed from GCF is in the language generated by that grammar
(and thus it can be derived by the grammar), then the TDR will end its

3A recursive CFG is a CFG including rules A → uAv that expand a non-terminal
symbol A into a string containing the same non-terminal. A CFG is called left-recursive
if such rules appear in the form A → Aw. A CFG is locally unambiguous if there are no
two rules expanding the same nonterminal.
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computation with an empty stack and input, and is said to accept the string
by empty stack. We are specifically interested in TDRs that process locally
unambiguous CFGs, which have the additional property of needing only one
state to perform their computation. To construct such a TDR from a locally
unambiguous non-left-recursive CFG GCF = (N,T, R, S) it is sufficient to
define its δ function in the following way:

δ :

{
(q0, a, a) 7→ (q0, ε) for all a ∈ T
(q0, ε, X) 7→ (q0, w) for all (X → w) ∈ R (10)

where X ∈ N is a non-terminal, w ∈ (N ∪ T)∗ is a string of terminals and
non-terminals, and q0 is the TDR’s only state. Note that in the definition
above we endow TDRs with the additional capability of pushing strings w
on the stack rather than single symbols.

As our TDRs only have one state q0, we can describe their machine con-
figuration without referring to the current state. It is thus possible to encode
TDR configurations on dotted sequences as follows:

smt . . . s0t︸ ︷︷ ︸
st

. d0t . . . dnt︸ ︷︷ ︸
dt

(11)

where dt and st are respectively the unconsumed input and the content of
the stack of the automaton in reverse order at time t. Similarly, simpler
VSs than those needed to simulate PDAs can be constructed from a TDR’s
transition function, by defining the Domain of Dependence to be DoD =
(−2, 1) = {−1, 0}, F to always map to 0 and G to mirror Equation 10 so
that

G :

{
a .a 7→ ε .ε
X.a 7→ w.ε

(12)

for all a ∈ T, (X → w) ∈ R.

Turing machines. A Turing machine (TM) is an automaton with read-write
random access to a two-sided infinite tape (Turing, 1937; Sipser, 2006). TMs
are central to the Theory of Computation, and they are thought to be pow-
erful enough to model any physically realizable computation (with assump-
tions of unbounded resources). A TM has an in-built tape (doubly-infinite
one dimensional memory with one symbol capacity at each memory location)
and a finite-state controller endowed with a read-write head that follows the
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instructions encoded by the transition function. At each step of the compu-
tation, given the current state and the current symbol read by the read-write
head, the controller determines via a δ transition function the writing of a
symbol on the current memory location, a shift of the read-write head to
the memory location to the left (L) or to the right (R) of the current one,
and the transition to a new state for the next computation step. Formally, a
TM (Turing, 1937) can be defined as a 7-tuple MTM = (Q,N,T, q0,t, F, δ),
where Q is a finite set of control states, N is a finite set of tape symbols also
containing the blank symbol t, T ⊂ N \ {t} is the input alphabet, q0 ∈ Q
is the starting state, F ⊂ Q is a set of ‘halting’ states reached at the end of
the computation and δ : Q × T → Q × T × {L,R} is a partial transition
function, the so-called machine table, that determines the dynamics of the
machine. In particular, δ is defined as follows:

δ : (qt, d0t) 7→ (qt+1, d0t+1 ,m) (13)

where qt, qt+1 ∈ Q are the state of the machine before and after the transition,
d0t , d0t+1 ∈ N are respectively the read and rewritten symbol, and m ∈
{L,R} denotes the shift of the read-write head to the left or to the right.

At a given computation step, the content of the tape together with the
position of the read-write head and the current controller state define a ma-
chine configuration. It is possible to encode TM configurations on dotted
sequences as follows:

s = . . . d−2t d−1t︸ ︷︷ ︸
lt

qt . d0t d1t d2t . . .︸ ︷︷ ︸
rt

, (14)

where lt describes the part of the tape to the left of the read-write head, rt
describes the part to its right, qt describes the current state of the machine
controller, and the central dot denotes the current position of the read-write
head, i.e. d0t , the symbol to its right.

A VS simulating a TM in real-time can be constructed from the TM’s
transition function by defining the Domain of Dependence to be DoD =
(−3, 1) = {−2,−1, 0}, andG and F so that, given δ : (qt, d0t) 7→ (qt+1, d̂0t ,m),

G :

{
d−1t qt . d0t 7→ d−1t d̂0t . qt+1 if m = R
d−1t qt . d0t 7→ qt+1 d−1t . d̂0t if m = L

F :

{
d−1t qt . d0t 7→ −1 if m = R
d−1t qt . d0t 7→ +1 if m = L

(15)
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for all d−1t ∈ N.
The following example will clarify how the VS defined as above (Equa-

tion 15) can simulate a TM. Consider, for instance, the dotted sequence
“wq0.ord”, and define a TM such that δ : (q0, o) 7→ (q1, a,R) and δ : (q1, r) 7→
(q1, n,L). Then a computation step of the TM starting from the “wq0.ord”
configuration would yield a new configuration “waq1.rd”; by running the
TM again, this time starting from “waq1.rd”, a computation step would
yield “wq1.and”, as prescribed by the transition function we defined. Con-
structing a VS Ωex as specified by Equation 15 and applying it to “wq0.ord”:

Ωex(wq0.ord) = σF (wq0.ord)
(
wq0.ord⊕G(wq0.ord)

)

= σ−1
(
wq0.ord⊕ wa.q1

)

= σ−1
(
wa.q1rd

)

= waq1.rd

(16)

and by applying it again to the resulting “waq1.rd” dotted sequence we
obtain

Ωex(waq1.rd) = σF (waq1.rd)
(
waq1.rd⊕G

(
waq1.rd

)

= σ+1
(
waq1.rd⊕ q0a.n

)

= σ+1
(
wq0a.nd

)

= wq0.and

(17)

where the DoD of the input string to the VS has been highlighted for clarity.
Note that the dotted representation of the machine configuration requires
index −1 to always contain the machine state. For this reason, it is not
enough to only rewrite the symbols in {−1, 0} (i.e. the machine state and
the current symbol under the read-write head) to simulate a TM, as intuition
would instead suggest. In fact, a VS first applies a rewriting of its DoD, and
then shifts the resulting dotted sequence to the left (when F (s) = −1) or the
right (when F (s) = +1). In particular, the shift is needed to simulate the
movement of the read-write head on the machine tape. In order to make sure
that at the end of the substitution and shift the machine state is correctly
placed at its reserved index −1, the substitution must leave it displaced one
place to the right if a left shift is to be applied (as in Equation 16), or one to
the left in case of a right shift (as in Equation 17). This last case requires the
additional dependence of the VS on index −2. Furthermore, note that our
construction is equivalent to that from Moore (1990, 1991): the VS defined
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in Equation 15 is nothing more than the GS introduced by Moore to prove
the equivalence between GSs and TMs.

2.2. Introducing Nonlinear Dynamical Automata

We will now discuss how VSs, and thus the models of symbolic computa-
tion they can simulate, can be mapped to piecewise affine-linear systems on
a vectorial space, obtaining nonlinear dynamical automata.

2.2.1. Gödel Encodings and the Symbol Plane

A Gödel encoding (or Gödelization, see Gödel, 1931) allows one to uniquely
assign a real number to a sequence such that the space of one-sided infi-
nite sequences can be mapped to the real interval [0, 1].4 For completeness,
Gödelization is subsequently discussed alongside its graphical representation,
provided in Figure 3.

Let AN be the space of one-sided infinite sequences over an alphabet A
containing |A| = g symbols, and s = d1d2 . . . a sequence in this space, with
dk being the k-th symbol in s. Additionally, let γ : A → N be a one-to-one
function associating each symbol in the alphabet A with a natural number.
Then a Gödelization is a mapping from AN to [0, 1] ⊂ R defined as follows:

ψ(s) :=
∞∑

k=1

γ(dk)g
−k. (18)

Conveniently, Gödelization can also be employed on a dotted sequence α.β ∈
AZ — herein representing a machine configuration — by splitting it into its
two one-sided constituents α′ (the reversed α) and β. Defining two Gödel
encodings ψx and ψy for α′ and β respectively, induces a two-dimensional
representation for α.β, i.e.

(
ψx(α

′), ψy(β)
)
, known as symbol plane or sym-

bologram, which is contained in the unit square [0, 1]2 ⊂ R2. In encoding
dotted sequences α.β representing configurations of the machines we con-
sider in this paper, α often only ever contains states as first symbols, and

4A Gödel encoding maps sequences on some alphabet A to real numbers through the
use of a base-b expansion, with b = |A|. It can be proven that any base-b expansion
represents a real number, and that any real number has a unique base-b representation
under a weak condition. The uniqueness of the Gödel encoding (and decoding) of any
sequence follows from the same proof.
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Figure 3: Three representations of the Gödel Encoding of a sequence. The
first one is just the definition of the Gödel encoding, with details on the specific choice
of the enumerating γ function and the induction of the g constant, given the alphabet
A from which the sequence takes its symbols. The second one is an expansion of the
series in the definition. The third one visually conveys the fractal and convergent nature
of the series, highlighting the relation between numbers and symbols by the use of the
color orange. At each level of this representation, from top to bottom, the encoding of
the sequence “abba t t t . . .” is sequentially constructed, highlighting the contribution of
each encoded symbol to the real number resulting from the complete Gödelization.
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tape symbols in the rest of the sequence. In this case we can define a more
refined Gödelization that covers all of the representational space [0, 1] ∈ R:

ψx(s) := γq(d1)n
−1
q +

∞∑

k=1

γs(dk+1)n
−k
s n−1q , (19)

where γq and γs respectively enumerate the set of states Q and the tape
alphabet A, and where nq = |Q|, ns = |A|.

2.2.2. Versatile Shifts as Affine-Linear Transformations

Push and pop operators can be defined on one-sided infinite sequences
AN on some alphabet A. The push operator � is defined so that s � b
adds the contents of a word b ∈ A∗ to the beginning of s ∈ AN, whereas
the pop operator 	 is defined so that 	ps removes the first p symbols in
s. We will now show that Gödelizing a sequence resulting from the appli-
cation of pop and push operations is equivalent to applying an affine-linear
transformation on the original Gödelized sequence. We will then show that
VSs on a dotted sequence α.β can be mapped to push and pop operations
on its one-sided constituents α′ and β. Let s = d1d2d3 . . . be a one-sided
infinite sequence on an alphabet A. Applying a pop operation 	p to s yields
	ps = dp+1dp+2dp+3 . . ., while pushing a word b = b1 . . . br to the beginning
of s yields s� b = b1 . . . brd1d2 . . . . In this case

ψ (s) = γ(d1)g
−1 + γ(d2)g

−2 + γ(d3)g
−3 + . . . ,

so that

ψ(	ps) = γ(dp+1)g
−1 + γ(dp+2)g

−2 + γ(dp+3)g
−3 + . . .

= ψ(s) · gp −
p∑

i=1

γ(di)g
p−i,

and

ψ(s� b) = γ(b1)g
−1 + . . .+ γ(br)g

−r+

γ(d1)g
−(r+1) + γ(d2)g

−(r+2) + . . .

= ψ(s) · g−r +
r∑

i=1

γ(bi)g
−i,

c©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Formal publication available at https://dx.doi.org/10.1016/j.neunet.2016.09.001.

185



proving that the resulting Gödelized sequences can be obtained by apply-
ing affine-linear transformations to the original Gödelized sequences. For
both pop and push operations, the parameters of the affine-linear transfor-
mations only depend on the number and identities on the symbols that are
respectively removed from or added to the beginning of the original sequence.
This is of particular importance in the framework of interactive computation
(Wegner, 1998), where the newly added symbol stems from the network’s
interaction with its environment. Accordingly, the symbol b becomes repre-
sented by a linear operator acting on the system’s state space, analogous to
quantum operators acting on Hilbert spaces (beim Graben et al., 2008).

As previously discussed, a VS defines two operations on dotted sequences,
a substitution operation s⊕G(s) which replaces the dotted sub-sequence in
the DoD of the shift with a new dotted sequence G(s), and a shift oper-
ation σF (s) shifting the symbols in s to the left or to the right by F (s)
positions. Let s ⊕ G(s) = wαu.vwβ ⊕ û.v̂ be a substitution replacing the
dotted sub-sequence u.v in s with the dotted word û.v̂, then s ⊕ G(s) can
be straightforwardly mapped to pop and push operations on u′wα′ and vwβ,
the one-sided constituents of the original dotted sequence s, as follows:

wαu.vwβ ⊕ û.v̂ =
(
(	|u′|u′wα′)� û′

)′
.
(
(	|v|vwβ)� v̂

)

= (wα
′ � û′)′ . (wβ � v̂)

= wαû.v̂wβ

showing that substitutions on dotted sequences can be mapped to pop and
push operations on its one-sided constituents. A left shift σ−1 and a right
shift σ1 on a dotted sequence α.β = . . . d−2 d−1 . d0 d1 . . . can be mapped
to push and pop operations on its one-sided constituents as follows:

σ−1(. . . d−2 d−1 . d0 d1 . . .) = (α′ � d0)′.(	1β)

= . . . d−1 d0 . d1 d2 . . . ,

and

σ1(. . . d−2 d−1 . d0 d1 . . .) = (	1α′)′.(β � d−1)
= . . . d−3 d−2 . d−1 d0 . . . ,

showing that shifts on dotted sequences can be mapped to pop and push oper-
ations on its one-sided constituents. Any arbitrary shift σk with k ∈ Z can be
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obtained by composition of left and right shifts; as the composition of affine-
linear transformations is an affine-linear transformation, the Gödelization of
a sequence resulting from the composition of shift operations is equivalent
to an affine-linear transformation on the original Gödelized sequence. We
have thus shown that VSs on dotted sequences can be mapped to pop and
push operations on one-sided infinite sequences, and that the Gödelization
of these operations can be mapped to affine-linear transformations on the
original sequences. On the symbologram, each substitution and shift opera-
tion on a Gödelized dotted sequence α.β by a VS involves two affine-linear
transformations, one acting on the Gödelized α′ (the reversed α) and one on
the Gödelized β. The parameters of the affine-linear transformations only
depend on the symbols of the dotted sequence in the DoD of the VS. All dot-
ted sequences which share the same DoD symbols are thus associated to the
same pair of affine-linear transformations. For this reason, the symbologram
representation of VSs leads to piecewise affine-linear maps on rectangular
partitions of the unit square, referred to as a nonlinear dynamical automata
(Tabor, 2000; Tabor et al., 2013; beim Graben et al., 2004, 2008).

2.2.3. Nonlinear Dynamical Automata

A nonlinear dynamical automaton (NDA) is a triple MNDA = (X,P,Φ),
where P is a rectangular partition of the unit square X = [0, 1]2 ⊂ R2, that
is

P = {Di,j ⊂ X| 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N}, (20)

so that each cell is defined as Di,j = Ii × Jj, with Ii, Jj ⊂ [0, 1] being real
intervals for each bi-index (i, j), with Di,j ∩ Dk,l = ∅ if (i, j) 6= (k, l), and⋃
i,j D

i,j = X. The couple (X,Φ) is a time-discrete dynamical system with
phase space X and the flow Φ : X → X is a piecewise affine-linear map such
that Φ|Di,j := Φi,j, with Φi,j having the following form:

Φi,j(x) =

(
ai,jx
ai,jy

)
+

(
λi,jx 0
0 λi,jy

)(
x
y

)
. (21)

Note that the NDA, as any piecewise affine-linear system, also requires a
switching rule Θ(x, y) ∈ {(i, j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n}, which selects
the appropriate branch, and thus dynamics (i.e. Φ(x, y) = Φi,j(x, y) ⇐⇒
Θ(x, y) = (i, j)). A mapping between a VS and a NDA can be defined
following the methods outlined in Section 2.2.1 and Section 2.2.2, therefore
enabling the derivation of the parameters of the NDA. That is, first each cell
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Di,j = Ii × Jj can be seen as containing all the Gödelized dotted sequences
α.β which agree (i.e. have the same symbols) in the Domain of Dependence.
In particular, the Ii interval contains all the DoD-agreeing Gödelized α′ (the
reversed α) sub-sequences, whereas the Jj interval contains all the DoD-
agreeing Gödelized β sub-sequences. This leads to a partition of the unit
square with a number i of I intervals equal to the number of possible one-
sided sub-sequences that can appear in the left DoD of the VS, and a number
j of J intervals equal to the number of possible one-sided sub-sequences that
can appear in the right DoD. For example, for a VS simulating a FSM, the left
Domain of Dependence DoDα = {−1} of the dotted sequences representing
machine configurations only ever contains states, and the right Domain of
Dependence DoDβ = {0} only ever contains input symbols. In this case the
number of Ii intervals becomes equal to the number of states nq = |Q| in the
FSM, and the number of Jj intervals equal to the number of input symbols
ns = |T|, where Q and T are respectively the set of states and that of input
symbols in the FSM. For a VS simulating a TM, instead, the left Domain of
Dependence DoDα = {−2,−1} only ever contains states at index −1, and
tape symbols at index −2, and the right Domain of Dependence DoDβ = {0}
always contains tape symbols. This leads to a partition of the unit square
with a number of Ii intervals equal to m = nqns, and one of Jj intervals equal
to n = ns, leading to a total of nqn

2
s cells, where ns is the number of symbols

in the tape alphabet N and nq is the number of states in Q.
Following Section 2.2.2, substitutions and shifts on a sequence can be

mapped to affine-linear transformations on its Gödelization. For this reason,
each cell in the partition P of the unit square is associated with a different
affine-linear transformation with parameters (ai,jx , a

i,j
y ) and (λi,jx , λ

i,j
y ), which

can be derived using the methods outlined in Section 2.2.2. Therefore a model
of computation can be represented as a NDA by means of its Gödelized VS
representation.

2.3. Solution Map between NDA and R-ANNs

The design of the map between the NDA and a first order R-ANN follows a
conceptually natural and simple solution, which attempts to mimic the affine-
linear dynamics (given by Equation 21) of the NDA on the partitioned unit
square (see Carmantini et al., 2015 for preliminary work in this direction).

Let ρ(·) denote the proposed map. The objective is to map the orbits of
the NDA (i.e. Φi,j(x, y)) to orbits of the R-ANN, denoted as ζ i,j(x, y). The
role of ρ is to encode both the affine-linear dynamics within each partition cell
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Figure 4: Connectivity between neural layers within the network. The ma-
chine configuration layer (MCL) receives external input (in this case the encoded initial
machine configuration), and synaptically couples to the branch selection layer (BSL) and
linear transformation layer (LTL). The BSL feed-forwards to the LTL and finally the LTL
recurrently feedbacks to the MCL, where the output is read-out.

(Di,j) and to emulate the transitions from cell to cell by suitably activating
certain neural units within the R-ANN. To achieve this, we propose a network
architecture with three layers, namely a machine configuration layer (MCL),
a branch selection layer (BSL) and a linear transformation layer (LTL), as
depicted in Figure 4. Therefore, we generically define the proposed map as
follows:

ζ = ρ(I,A,Φ,Θ), (22)

where I2×2 is the identity matrix that maps (identically) the initial condi-
tions of the NDA to the R-ANN and A is the synaptic weight matrix that
defines the network architecture, which will be discussed in subsequent Sec-
tions. In addition, ρ generates different neural dynamics for each type of
the neural units, i.e. ζ = (ζ1, ζ2, ζ3), corresponding to MCL, BSL and LTL,
respectively. The details of the R-ANN architecture and its dynamics will
now be presented.

2.3.1. Network Architecture and Neural Dynamics

The simulation of a NDA orbit within the R-ANNs is distributed among
MCL, BSL and LTL. Since Φi,j(x) is a two-dimensional de-coupled discrete
map it suggests only two neural units in a read-out layer, which is a role
taken by the MCL. We refer to the two MCL units as cx and cy. At each
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Figure 5: Activation functions employed in the network. In particular, the Heav-
iside function H(x) is employed by units in the branch selection layer and the Ramp
function R(x) is used in both machine configuration layer and linear transformation layer.

computation step the MCL stores the encoding of the current machine con-
figuration, which is then passed on to the BSL and LTL units. Subsequently,
two sets of BSL units (bx and by) functionally act as a switching system
that determines to which cell Di,j the current machine configuration be-
longs, triggering the appropriate units within two sets of LTL units (tx and
ty), effectively emulating the application of an affine-linear transformation
Φi,j on an encoded machine configuration. This action corresponds to the
application of a symbolic operation by the original machine, leading to a
configuration update. The result of the transformation is then fed back to
the MCL, representing the configuration (i.e. the machine’s symbolic data)
for the next computation step. These successive transformations effectively
emulate the action of a NDA, where for every computational step an affine-
linear transformation is applied to the values encoding the representation of
the machine configuration. The neural units in the various layers make use
of either the Heaviside (H) or the Ramp (R) activation functions defined as
follows (see also Figure 5):

H(x) =

{
0 if x < 0

1 if x ≥ 0
R(x) =

{
0 if x < 0

x if x ≥ 0.
(23)

2.3.2. Machine Configuration Layer

The MCL encodes the state of the simulated NDA, and thus the data
of the simulated automaton, while acting as a read-out neural layer. At
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the same time it mediates at each computation step the transmission of the
current Gödel encoding of the emulated machine’s configuration to the BSL
and LTL units. Since the Gödel encoding of a dotted sequence representing a
machine configuration consists of two values (see Section 2.2.1), this implies
that the MCL solely requires two neural units (cx and cy) to code for the
current configuration. As a consequence, the initialization of the R-ANNs
is performed in this layer, where the initial conditions (ψx(α

′), ψx(β)) are
identically transformed (via I) by the map ρ(·) as follows:

(cx, cy) = (ψx(α
′), ψx(β)) ≡ ζ1 = ρ(I, ·, ·, ·)|(ψx(α′),ψx(β)) (24)

Following every computation step, these neural units receive inputs from the
LTL units and are subsequently activated via the ramp activation function
(Equation 23); in other words ζ1 ≡ (cx, cy) = (R(

∑
i t
i
x), R(

∑
j t
j
y)). Finally,

these synaptically project onto the BSL and LTL neural units (refer to Fig-
ure 6 for details of the connectivity).

2.3.3. Branch Selection Layer

The BSL acts as a control unit that enables the sequential mapping of the
orbits of the NDA, Φi,j(x, y), to orbits of the R-ANNs, ζ i,j(x, y). Specifically,
the BSL functionally embodies the switching rule Θ(x, y) and coordinates
the dynamic switching between LTL units. Sequentially, under the action of
BSL units, only a single pair of LTL units (ti,jx , t

i,j
y ) dedicated to emulate Φi,j

become active, which then operate on an encoded Machine configuration.
In particular, the BSL units make sure that (ti,jx , t

i,j
y ) become active only if

(cx, cy) ∈ Di,j = Ii × Jj, with Ii = [ξi, ξi+1) being the i-th interval on the
x-axis and Jj = [ηj, ηj+1) being the j-th interval on the y-axis. The switching
rule is mapped by ρ(·) as follows:

ζ2(x, y) = ρ(·, ·, ·,Θ(x, y) = {i, j}) (25)

The implementation of ζ2(x, y) is mediated by two sets of neural units, i) the
bx set with m units (the number of I intervals on the x-axis) and ii) the by set
with n units (the number of J intervals on the y axis), which are activated
via a Heaviside activation function (Equation 23) after receiving excitatory
inputs with synaptic weight 1 from the MCL layer (i.e. cx and cy units) in
the following way:

bix = H(cx − ξi) with ξi = min(Ii),

bjy = H(cy − ηj) with ηj = min(Jj).
(26)
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Figure 6: Detailed feedforward connectivity and weights for neural network
simulating a nonlinear dynamical automaton with only 6 branches. (A) The
machine configuration layer (MCL) units (cx, cy) feed-forward connect to all the branch
selection layer (BSL) units with weight of 1. Every BSL unit excites with weights h

2 (in red)

and also inhibits with weights h
2 (in blue) the relevant linear transformation layer (LTL)

units contained within each cell (as indicated by the red and blue arrows respectively).
Each cell Dij indicates the overall summed input value received by each LTL unit (for
visualization purpose/convenience not shown) from the BSL. In this case only the LTL
units in cell D1,2 are activated with overall BSL input value of h (red). (B) A zoom-in of
panel (A), shows in detail how each pair of LTL units contained within each cell (in this
case D1,2) receives inputs from the MCL and BSL units as shown. In addition, the LTL
units may have internal dynamics described by parameter a (equivalently, this can be seen
as input from an always-active unit). To actually produce output, the overall input to an
LTL unit must overcome its internal h inhibition. Upon activation, the LTL unit’s output
is fed back to the paired MCL unit with weight of 1.
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That is, the activation of the BSL units depends on a threshold, implemented
here as a synaptic projection from an always-active bias unit, that is defined
as the minimum of the intervals Ii and Jj respectively for the bix and biy units.
This has the effect of centering the threshold towards the left boundary of
each interval (i.e. a bias of −ξi for bix unit and −ηj for bjy). Therefore, if
the read-out (i.e. encoded machine configuration) of the cx and cy units
in the MCL corresponded to a point on the unit square belonging to cell
Di,j, then the bix unit would be triggered active as well as all units bkx with
k < i. The same would occur for neurons bjy and all neural units bky with
k < j.5 Upon excitation, these BSL units then synaptically project to the
relevant LTL units, (ti,jx , t

i,j
y ) that are naturally inactive due to a strong in-

hibitory bias with magnitude h (the role and value of h will be clarified in
the subsequent Section). Specifically, each neural unit bix establishes synap-
tic excitatory connections (with weight h

2
) to all LTL units within the cells

Dk,i (i.e. (tk,ix , t
k,i
y )) and also project with synaptic inhibitory connections

(with weight −h
2

) to all LTL units within the cells Dk,i−1 (i.e. (tk,i−1x , tk,i−1y )),
where k = 1, . . .m; for a graphical depiction see Figure 6. Similarly, each
neural unit bjy projects with synaptic excitatory connections (with weight h

2
)

to all LTL units within the cells Dj,k (i.e. (tj,kx , t
j,k
y )) and also projects with

synaptic inhibitory connections (with weight −h
2

) to all LTL units within
the cells Dj−1,k (i.e. (tj−1,kx , tj−1,ky )), where k = 1, . . . n; see Figure 6. The
combined effect of the bix units and bjy is therefore to counterbalance through
their synaptic weights the natural inhibition (of bias h) of the LTL units in
cell Di,j. In other words each couple of LTL units (ti,jx , t

i,j
y ) receives an input

Bi
x +Bj

y, defined as follows:

Bi
x = bix

h

2
+ bi+1

x

−h
2

Bj
y = bjy

h

2
+ bj+1

y

−h
2
,

(27)

where the input sum

Bi
x +Bj

y =





h if (cx, cy) ∈ Di,j

h
2

if cx ∈ Ii, cy 6∈ Jj or cx 6∈ Ii, cy ∈ Jj
0 if (cx, cy) 6∈ Di,j

(28)

5Note that the action of the BSL could be equivalently implemented by interval indi-
cator functions represented as linear combinations of Heaviside functions.
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only triggers the relevant LTL unit if it reaches the value h. That is, if the
pair (ti,ix , t

i,j
y ), is selected by the BSL units (and thus (cx, cy) ∈ Di,j), then

Bi
x + Bj

y = h. Otherwise Bi
x + Bj

y is either equal to h
2

or 0. An example of
this mechanism is shown in Figure 6, where the LTL units in cell D1,2 are
activated via mediation of bx = {b1x, b2x, b3x} and by = {b1y, b2y}. Here, both b3x
and b2y are not excited since respectively cx and cy are not activated enough to

drive them towards their threshold. However, b2x excites (with weights h
2
) the

LTL units in cell D2,2 and D1,2 and inhibits (with weights −h
2

) the LTL units
in cell D2,1 and D1,1. Equally, b2y excites (with weights h

2
) the LTL units in

cell D2,1, D2,2 and D2,3 and inhibits (with weights −h
2

) the LTL units in cells
D1,1, D1,2 and D1,3. The b1x and b1y units excite respectively cells {D2,1, D1,1}
and {D1,1, D1,2, D1,3}, but these do not inhibit any cells (due to boundary
conditions).

2.3.4. Linear Transformation Layer

The LTL embodies the set of affine-linear transformations of the NDA
from which the network is constructed, and thus the set of symbolic op-
erations defined by the transition table of the simulated automaton. This
endows the LTL with the functional ability of generating an updated encoded
machine configuration from the current one. That is, the affine-linear trans-
formation of a NDA, Φi,j(x, y) = (λi,jx x+ ai,jx , λ

i,j
y y+ ai,jy ) within a cell Di,j is

simulated by the LTL unit (ti,jx , t
i,j
y ). This induces the following mapping:

(ti,jx , t
i,j
y ) = ζ i,j3 (x, y) = ρ(·, ·,Φi,j(x, y), ·). (29)

This affine-linear transformation is implemented in the form of synaptic com-
putation, which is only triggered when the BSL units provide enough exci-
tation enabling the two neural units (ti,jx , t

i,j
y ) to cross their threshold value

and execute the operation. The read-out of this process is as follows:

ti,jx = R(λi,jx cx + ai,jx − h+Bi
x +Bj

y)
ti,jy = R(λi,jy cy + ai,jy − h+Bi

x +Bj
y),

(30)

that is, initially the LTL units are rendered inactive with a strong inhibition
bias h implemented as a synaptic projection from a bias unit, which is defined
as follows:

− h

2
≤ −max

i,j,k
(ai,jk + λi,jk ) with k = {x, y}. (31)
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This results from the fact that each BSL inputs Bi
x and Bi

y contribute respec-

tively to half of the necessary excitation (h
2
), that sum up and counterbalance

the LTL’s natural inhibition (refer to Equation 27 and Equation 28). The
LTL units also receive inputs from the MCL units (cx, cy), which are re-
spectively modulated by the synaptic weights (λi,jx , λ

i,j
y ) and once the LTL

units cross their threshold (mediated by the ramp activation function) then
the intrinsic constant LTL neural dynamics (ai,jx , a

i,j
y ) completes the desired

affine-linear transformation. The read-out is an updated encoded machine
configuration, which is then synaptically projected back to the MCL units
(cx, cy), initiating the next computation step (related to the original ma-
chine).

2.4. Neuronal Observation Models

In order to compare connectionist simulation results with experimental
evidence from neurophysiology or psychology, one needs a mapping from
the high-dimensional neural activation space Γ ⊂ Rn into a much lower-
dimensional observation space that is spanned by p ∈ N observables ϕk :
Γ → R (1 ≤ k ≤ p). A standard method for such a projection is PCA
(Elman, 1991). If PCA is restricted to the first principal axis, the resulting
scalar variable could be conceived as a measure of the overall activity in the
neural network (as in beim Graben et al., 2008). Other important scalar ob-
servables that have been discussed in the literature are Smolensky’s harmony
(Smolensky, 1986)

H =
∑

ij

uiwijuj

with u = (ui) as the network’s activation vector and W = (wij) its synaptic
weight matrix, or Amari’s mean network activity (Amari, 1974)

A =
1

n

∑

i

ui . (32)

The development of biophysically inspired observation models is an impor-
tant research field in computational neuroscience (beim Graben and Ro-
drigues, 2013) as it could eventually lead to “synthetic” local field poten-
tials (LFPs), electroencephalogram (EEG), or event-related brain potentials
(ERPs) (Barrès et al., 2013). We shall use Amari’s measure (32) to derive
such synthetic ERPs in what follows.
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3. Results

The implementation of the R-ANN discussed in the previous Sections
simulates a NDA in real-time and thus simulates its associated machine in
real-time. More formally, it can be shown that under the map ρ(·) the com-
mutativity property, ζ ◦ ρ = ρ ◦ Φ (see commutative diagram of Figure 1)
is satisfied. The NDA simulation (and thus the machine simulation) by the
R-ANN is achieved by a combination of synaptic and neural computation
among three neural types (MCL, BSL, and LTL) and with a total of neural
units equal to

nunits = 2 + nα + nβ + 2nαnβ + 1 (33)

where nα and nβ are the number of sub-sequences that can appear respec-
tively in the left and right Domain of Dependence of the VS from which
the NDA and the R-ANN are constructed. That is, a total of 2 MCL units,
(nα+nβ) BSL units, 2nαnβ LTL units and a bias unit, that establish synaptic
connections according to a synaptic weight matrix A of size (nunits × nunits)
following the connectivity pattern described in Figure 4. Specifically, the
synaptic weights in A are entries from the set {0, 1, h

2
, −h

2
} ∪ {ai,jk − h | i =

1, . . . , nαnβ , j = 1, . . . , nβ , k = x, y}, with the second set being the set
of biases. A point worth mentioning is that the original formulation of the
NDA relied on a simple Gödel encoding of the machine configurations, but
subsequent work highlighted the advantages of using a more flexible represen-
tation by employing Cylinder sets, in order to preserve important structural
relationships of the symbolic descriptions and to facilitate modeling (beim
Graben and Potthast, 2009; beim Graben et al., 2008, 2004). Our R-ANN
can be extended to incorporate a Cylinder set encoding of machine configu-
rations by simply doubling the MCL and LTL layer.

An important modeling issue to consider is that of the halting conditions
for the ANN, i.e. when to consider the computation as terminated. VSs,
on which NDA and consequently our ANN model depend, do not define ex-
plicit halting conditions. However, two equally reasonable choices of halting
conditions could be employed as follows. The first one is that of using a
homunculus (beim Graben et al., 2004), an external observer which decides
to intervene on the computation once some condition is met (for example,
halting the computation when the input is in a certain region of the unit
square). The second one is that of using a fixed point condition: implement-
ing a machine halting state as an Identity branch on the NDA. This way a
halting configuration will result in a fixed point on the NDA, and thus on
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the R-ANN. In other words, the network’s computation halts if and only if

ζ1(x
′, y′) = (x′, y′). (34)

A halting by homunculus could be more appropriate in the context of in-
teractive computation (beim Graben et al., 2008; Wegner, 1998) where con-
stant and non-terminating interaction with the environment is assumed, or
in cognitive modeling, where different kinds of fixed points, either desired or
unwanted ones, are required in order to describe sequential decision prob-
lems (Rabinovich et al., 2008), such as linguistic garden paths (beim Graben
et al., 2004, 2008).

We will now present two examples to demonstrate the strength of our
developed methodology in mapping automata computation to R-ANN com-
putation in real-time (an additional example on Turing Machines is available
in the supplementary materials). The source code for all the examples is
freely accessible via Carmantini (2015).

3.1. Example 1: Finite-State Locomotive Pattern Generator

FSMs are at the basis of many state-of-the-art approaches to the con-
struction of locomotion controllers for articulated robots (see for example
Alvarez-Alvarez et al., 2012; Collins and Ruina, 2005). They are easy to de-
sign, implement, and debug, and their relation with animal gait is well char-
acterized (McGhee, 1968). On the other hand, recent research in robot loco-
motion control shows an increasing interest towards alternative approaches
based on CPGs, neural networks capable of producing rhythmic patterns of
activation in absence of rhythmic input sources. In his 2008 paper, Ijspeert
presented the benefits and drawbacks of CPGs with respect to other ap-
proaches for robot locomotion control. We briefly summarize the benefits
identified by the author: i) the rhythmic behavior supported by CPGs is ro-
bust to the transient perturbation of state variables; ii) CPGs are well-suited
for distributed implementations (such as in modular robots); iii) CPGs re-
duce the dimensionality of the control problem by introducing few high-level
control parameters allowing for the modulation of the locomotion; iv) CPGs
are ideally suited for the integration of sensory feedback through coupling
terms in the differential equations of the controller; v) CPGs often work well
with learning and optimization algorithms. On the other hand, as specified
by the author, CPG-based approaches are still lacking of a sound design
methodology and theoretical grounding for their description. In the example
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presented in this Section, we will show how our mapping could aid the design
of CPGs producing arbitrary patterns for locomotion in robots, starting from
a FSM description of the desired rhythmic pattern. By combining the two
approaches, the design of these controllers benefits from the solid theoretical
grounding of FSM-based locomotion and from its ease of design and imple-
mentation. To contextualize our derived CPG in terms of familiar animal
locomotion, we qualitatively model the results of a well-known experiment
on cat gait.

In their seminal work, Shik et al. (1966) applied different levels of electri-
cal stimulation to the midbrain of a decerebrated cat. The authors observed
transitions in the gait of the animal as an increasing level of stimulation
was applied, eliciting first a walk, then a trot and finally a gallop gait. Our
theoretical framework can qualitatively reproduce these experimental obser-
vations, by deriving a R-ANN which generates the relevant gait patterns,
and reproduces the transition between them as a function of the applied
stimulus strength. To keep the exposition simple, we will only consider the
walk and gallop gaits, and the transition between the two. In the study of
the mammalian quadruped gait, the four legs are numbered so that each
gait can be associated with a certain sequence, given by the order in which
the legs touch the ground over one gait cycle. The left and right hind legs
are associated respectively with the numbers 1 and 2, and the left and right
fore legs are associated respectively with the numbers 3 and 4. The gait
cycle is assumed to start when the left hind leg touches the ground. A walk
gait is thus defined by the sequence (1, 3, 2, 4), and a gallop gait is defined
by the sequence (1, 2, 3, 4). At a very high level, the computation carried
out by the CPG in charge of producing the gait patterns in the quadruped
mammalian can be informally stated as: if stimulation from midbrain is low,
sequentially activate legs following pattern (1, 3, 2, 4). If it is high, sequen-
tially activate legs from pattern (1, 2, 3, 4). We can implement the low level
and high level of stimulation as the two input symbols of a FSM, and con-
struct the δ transition function to sequentially reproduce the two patterns
by switching between states. The FSM can thus be defined as in Table 2.
This FSM can now be mapped (via our proposed approach) into a R-ANN,

consisting in this case of 22 neural units (according to Equation 33). The
chosen gamma functions for the Gödel encoding of this FSM are defined as
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Symbols States

q1 q2 q3 q4

<lo> q3 q4 q2 q1

<hi> q2 q3 q4 q1

Table 2: State transition table for the simulated Central Pattern Generator
finite-state automaton. It is possible to observe how different input leads to different
produced patterns, implemented as sequences of states.

follows:

γs(σ) :=

{
0 if σ = <lo>

1 if σ = <hi>
γq(q) :=





0 if q = q1

1 if q = q2

2 if q = q3

3 if q = q4

The step-by-step dynamics of the derived R-ANN can be observed in Fig-
ure 7. Here we use the machine’s input as the substrate for the external
stimulus, which is ultimately encoded by the neural unit cy within our R-
ANN as shown in the bottom plot of Figure 7. Note how we manipulate the
activation of cy to gradually increase from a low to a high level of stimulation.
That is, we introduce a continuous control parameter into an originally pure
symbolic model, enabling us to carry out a bifurcation study in analogy with
traditional coupled oscillator models (Golubitsky et al., 1999, 1998; Schöner
et al., 1990; Collins and Richmond, 1994). Under this stimulation, the R-
ANN defined by the mapping qualitatively reproduces the key features of
the CPG involved in the locomotion and transitions described in Shik et al.
(1966). In particular, it is possible to observe how low levels of stimulation
elicit the production of the walk gait cycle, whereas an increase in the level
of stimulation induces a sudden transition to the gallop gait cycle.

This key relation between the stimulation level (i.e a real control param-
eter) and the computation carried out by the network, which can be related
to the underlying symbolic space thanks to the mapping, depends upon an
informed decision in the gamma numbering of the states for the Gödel en-
coding. In fact, the chosen gamma numbering ensures that the unit square
encoding of machine configurations where <lo> is the current input symbol
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corresponds to all points (x, y) such that x < ψy(<hi>) where ψy is defined
as in Equation 18, and specifically ψy(<hi>) = γs(<hi>)g−1s = 1

2
. In terms

of the underlying NDA representation, increasing the activation of cy until
its value reaches and exceeds 1

2
corresponds to forcing the encoded machine

state to cross the boundary between cells associated to a <lo> input symbol
to those associated to a <hi> input symbol, thus causing a transition between
a walk and a gallop gait. Note that in this example, we do not model halting
conditions for the derived network, as it is not clear what halting means in
the context of the computation performed by CPGs.

To summarize, we derived a CPG from a FSM description of a locomotion
controller, inspired by results on the generation of gait patterns in the cat
midbrain. By doing so, we outlined a new design methodology for CPG-
based locomotion control in robots which does not suffer from some of the
drawbacks of other CPG approaches, by grounding the description and design
of the CPG on the theoretical grounding of FSM-based approaches. Some
problematic aspects of the methodology we outlined are due to the discrete-
time nature of our mapping. In fact, fully realizing the benefits of CPG-based
approaches summarized at the beginning of this Section requires continuous
time models. This notwithstanding, we believe that the proof of concept we
provide here already shows encouraging results for future developments.

As an additional remark, the methods we describe in this paper are ide-
ally suited for the deriving of neural networks implementing paradigms of
interactive computation, as we will demonstrate shortly. This is especially
relevant for the design of CPGs. In fact, recent research has unveiled a sur-
prising degree of hierarchical organization in mammalian respiratory CPGs,
which allows for a highly robust and flexible pattern production that can
adapt to a variety of conditions (see for example work by Smith et al., 2013,
2007). Our methodology easily accommodates the mapping of hierarchies of
automata to hierarchically organized neural networks, as we demonstrate in
the next example through the modeling of garden-path parsing, a concept
employed in language processing (beim Graben et al., 2004). Importantly,
networks of automata could be used to design complex pattern generation in
modular robots (see Spröwitz et al., 2014 for a recent example of modular
robots using a distributed CPG for locomotion).

3.2. Example 2: Interactive Automata Networks

Interactive computation (Wegner, 1998) is a recent theoretical develop-
ment that seeks to formalize the complexity of interactions that we observe in
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Walk Gallop

1 3 2 4 1 2 3 4

Figure 7: Recurrent artificial neural network functioning as a Central Pattern
Generator. The network reproduces the qualitative behavior of the locomotive Central
Pattern Generator described in Shik et al. (1966). In the bottom plot, the level of stim-
ulation applied to the network through neuron cy is shown. In the top three plots, the
levels of activation of each neural unit in the three layers is shown for each time step.
Note how two different patterns, walk and gallop, are generated depending on the level of
stimulation. This results from the way the original finite-state machine was programmed.
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real-world computing. In classical Automata Theory, the interaction between
an automaton and the external world is restricted to an input-output rela-
tion. That is, the external world provides an input, the automaton performs
its computation on that input, and then returns an output to the external
world. Within the framework of interactive computation, instead, automata
can interact with the external world (and with other automata) at every step
of their computation. External forces can act on the configuration of the au-
tomaton, and the configuration can itself affect the external world. Clearly,
this framework provides a much richer language to describe models of com-
putation, and is especially useful to express notions of compositionality and
concurrency. These constructs are essential not only in the study of modern
computing systems, but also in the context of cognitive modeling. In this
example, we will build a model of the human processing of locally ambiguous
sentences by constructing a network of interactive automata. Through this
proof-of-concept, we want to demonstrate the flexibility of our approach by
showing how it can be seamlessly used to construct neural networks imple-
menting interactive systems. In order to do so, we choose a system that i)
is simple enough to allow for clear exposition, but complex enough to carry
out a meaningful computation; ii) is composed by a range of different au-
tomata; iii) incorporates different forms of interaction between its automata
components.

Garden-path sentences are locally ambiguous sentences that induce the
temporary production of an erroneous parse by the reader, which is then
forced to reconsider their interpretation of the previously presented material
in order to finally reach a correct parse. Consider for example the sentence
“I convinced her children are noisy”. In reading the sentence, the reader
first constructs an intermediate parse where “her children” is the object of
the phrase “I convinced”. After reading the rest of the sentence, the reader
realizes that the intermediate parse was incorrect: “her” is the object of “I
convinced”, and “children are noisy” is a subordinate clause. The reader
thus reanalyzes the sentence to produce a correct parse. Osterhout et al.
(1994) have shown that the reanalysis of a sentence due to a garden-path is
associated in the brain of the reader with a positive deflection 600 millisec-
onds (P600) after the onset of a garden-path – the word “are” in the example
above – in sequentially presented sentences, as measured by a trial averaged
electroencephalogram (thus obtaining event-related brain potentials).

Many proposals have been advanced to account for the mechanisms un-
derlying the reanalysis of incorrectly parsed sentences due to garden-path
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effects. In our model, we implement the reanalysis through a diagnosis and
repair mechanism, described in Lewis (1998). By this account, the parser
tries to incrementally build a parse as the sentence material is presented.
If a dead-end is reached (i.e. the parser becomes stuck in a garden-path),
the parser diagnoses the need for reanalysis, and the search space of possible
continuations of the parse is modified by some repair operator that “bridges”
the dead-end to another point in the search space, allowing the parser to cor-
rectly complete the processing of the sentence. The parser model we create
implements this mechanism to process garden-path sentences where the lo-
cal ambiguity is given by the incorrect assignment of the subject and object
grammatical constituents.

In many languages, native speakers have been shown to prefer to inter-
pret an ambiguous nominal constituent as a subject rather than an object.
Consider for example the following two sentences, extracted from the ERP
study on ambiguous pronouns by Frisch et al. (2004) on German speakers.
Both sentences start with

Nachdem die Kommissarin den Detektiv getroffen hatte . . .
After the cop the detective had met . . .

“After the cop had met the detective, . . . ”

One of the sentences then continues with a clause in subject-object order (s-o
sentence), i.e. the preferred order in the parsing of ambiguous constituents:

(s-o sentence)

. . . sah sies den Schmugglero

. . . saw she the smuggler

. . . “she saw the smuggler”

In this case, the reader correctly interprets “sie” to be the subject of the
second clause, and “den Schmuggler” as the object (as “den Schmuggler” is
in the accusative case, thus specifying a direct object to the verb “sah”).
The second sentence is instead in the dispreferred object-subject order (o-s
sentence):

(o-s sentence)

. . . sah sieo der Schmuggler s

. . . saw she the smuggler

. . . “the smuggler saw her”
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The psycholinguistic study by Frisch et al. (2004) has shown that the reader
first tries to apply the preferred subject-object parsing strategy to this clause
(and sentences with similar subject/object pronoun ambiguity). The reader
thus initially interprets “sie” as the subject of the clause in nominative case,
expecting it to be followed by the object in accusative. Upon further reading,
however, they realize that “der Schmuggler” is in the nominative case instead,
and thus has to be the subject. This leads the reader to reconsider the
previous material to correctly parse “sie” as a pronoun in accusative case,
the direct object of the verb “sah”. This reanalysis was observed as a P600
effect in the ERP.
At a high level of abstraction (beim Graben et al., 2004), we can capture the
structure of these sentences through a CFG G with production rules:

S→ s o (s-o)

S→ o s, (o-s)

where S is a distinguished starting non-terminal, and where the s and o

terminals stand respectively for “subject” and “object” phrase.
In our model we thus split the G grammar into two grammars Gs-o

and Go-s, comprising respectively of the s-o and o-s production rules (beim
Graben et al., 2004), and reflecting the existence of two strategies in the
parsing of sentences with subject/object pronoun ambiguity. To recognize
the two different sentence structures, our model is endowed with two spe-
cialized TDRs, constructed from the Gs-o and Go-s grammars as shown in
section 2.1.2. Initially, the s-o TDR is tried on the input, to model the
subject-object interpretation preference. In case it fails because of a garden
path, the model acts as prescribed by a diagnosis and repair account. That
is, it first diagnoses that a problem has arisen in parsing, repairs the parse,
and finally switches strategy to correctly parse the input. In order to imple-
ment the diagnosis step, our model needs a way to monitor the state of the
parse and extract the relevant diagnostic information. We implement this
through a Diagnosis PDA (see Table 3), which compares the current parse
with that from the previous time step; if the parse didn’t change, that means
that the parser is stuck and can’t process the input further. In that case the
Diagnosis PDA changes its state to an “error” state, thus implementing the
diagnosis step. The repair step is realized by introducing a Repair VS , that
can be described by the following rewriting rule:

s o . w → o s . w, (35)
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Symbols States

pdaqidle
pdaqparsing

pdaqerror

(t,t) (pdaqidle , t) (pdaqidle , t) (pdaqidle , t)

(x, y) (pdaqparsing , y) (pdaqparsing , y) (pdaqparsing , y)

(x, x); x 6= t (pdaqerror , x) (pdaqerror , x) (pdaqerror , x)

Table 3: State transition table for the Diagnosis push-down automaton (PDA).
The input to this machine is the parse produced by the top-down recognizers (TDRs). For
any state, input symbol and stack symbol, the machine pushes its input to the stack, in
order to be able to compare its current input with the one from the previous time step. In
particular, if the input symbol and top-of-stack are blank symbols, the machine transitions
to an “idle” state, signaling that nothing is happening; if the current input and the one
from the previous time step are different, the machine transitions to a “parsing” state,
signaling that the TDRs are successfully parsing their input; if the current input and the
one from the previous time step are the same (but not both blanks), then the TDR parsing
the input is stuck, and the machine transitions to an “error” state.

corresponding to a reanalysis of the ambiguous sentence in terms of the dis-
preferred object-subject sentence structure. Once the sentence has been rean-
alyzed and thus the parse repaired, the second parser can proceed to process
the input until it has been completely consumed and the stack is emptied. In
order to switch strategies, our model needs a higher-level controller that has
access to diagnostic information about the current parse, and decides which
parsing strategy to apply. In particular, this controller should first activate
the preferred s-o TDR. If the parser failed (as signaled by the Diagnosis
PDA) then the higher-level controller should first activate the Repair VS to
allow for the reanalysis of the ambiguous sentence, and subsequently acti-
vate the o-s TDR. We implement the high level controller through a Strategy
FSM (see Table 4), endowed with the capability of selectively activating the
s-o and o-s TDRs, as well as the Repair VS, by switching its internal state.
This machine receives the diagnostic information provided by the Diagnosis
PDA as input. The FSM has three states, namely an “s-o” state, a “repair”
state, and an “o-s” state. By switching between these states, the FSM can
activate the respective automata. Note that this form of interaction is not
defined for the VS introduced in Section 2.1.1. That is, we do not define a
way for a VS to “call” other shifts. Extending VSs to incorporate notions
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Symbols States

fsmqs-o
fsmqo-s

fsmqrepair

pdaqidle
fsmqs-o

fsmqs-o
fsmqs-o

pdaqparsing
fsmqs-o

fsmqo-s
fsmqo-s

pdaqerror
fsmqrepair

fsmqo-s
fsmqo-s

Table 4: State transition table for the Strategy finite-state machine (FSM). The
input to this machine is the diagnostic information produced by the Diagnosis push-down
automaton (PDA), i.e. its state. The FSM starts in state fsmqs-o. In fact, the preferred
parsing strategy is that implemented by the s-o top-down recognizer (TDR), corresponding
to the parsing of subject-object sentences, so that it is tried first. If the s-o TDR fails,
the Diagnosis PDA signals an error; the input sentence is not in subject-object order, and
a switch of parsing strategy is needed. The Strategy FSM first changes state to fsmqrepair,
activating the Repair versatile shift (VS) so that the switch can take place. Repairing
the parse leads the Diagnosis PDA to signal that the parsing started again, so that the
new input for the Strategy FSM becomes again pdaqparsing. Given pdaqparsing in input and
fsmqrepair as a current state, the FSM moves to the fsmqo-s state, leading to the activation
of the o-s TDR, until the input has been parsed.

of compositionality and concurrency will allow the refining of the mapping
presented in this paper to reflect these new capabilities. For the moment,
we just want to demonstrate the possibilities opened by the present work;
for this reason, we will implement the “subroutine” capability in our neural
network through a familiar mechanism already encountered in the previous
Sections, ignoring momentarily the missing theoretical details and leaving
their definition for future work.

To avoid race conditions, at most one automaton in the interactive net-
work can re-write symbols in a sub-sequence at any given computation step .
The “parse” sub-sequence can only be read, but not re-written, by the Diag-
nosis PDA. Similarly, the “diagnosis” sub-sequence can only be read, but not
re-written, by the Strategy FSM. Furthermore, the selective activation of the
s-o TDR, the o-s TDR, and the Repair VS operated by the Strategy FSM
ensures that at any given computation step only one between these automata
can perform symbolic re-writing on the “input” and “parse” sub-sequences.

To map the system of interactive automata to a R-ANN, we first con-
vert each of its component in the familiar way, as described in the previous
Sections. That is, the s-o and o-s TDRs, the Repair VS, the Diagnosis
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Figure 8: Interactive automata network for parsing of garden path sentences.
The figure shows the complete system described in Section 3.2. For simplicity, we show
the various automata components as acting on their configurations represented as dotted
sequences. Dotted sub-sequences of the same color are coupled, i.e. they are for all intents
and purposes the same sub-sequence. For example, the “parse” dotted sub-sequence that
contains the current stack of the top-down recognizers (TDRs) and of the Repair versatile
shift (VS), is at the same time the input tape of the Diagnosis push-down automaton
(PDA). Similarly, the “diagnosis” sub-sequence that stores the current state and stack
of the Diagnosis PDA, is at the same time the input tape of the Strategy finite-state
machine (FSM). Note that a second form of interaction, other than that allowed through
the sharing of dotted sequences, is present in the automaton. In particular, the s-o and
o-s TDRs and the Repair VS are activated based on the state of the Strategy FSM.
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PDA, and the Strategy FSM are first converted to VSs acting on dotted se-
quences, then mapped to their NDA representation and finally to R-ANNs.
The Gödelizations of the “input”, “parse” and “strategy” sub-sequences are
defined as in Equation 18, with each of the gamma enumerating functions
defined as follows:

γinput := {(t, 0), (S, 1), (o, 2), (s, 3)}
γparse := {(t, 0), (o, 1), (s, 2)}

γdiagnosis := {(pdaqidle, 0), (pdaqparsing, 1), (pdaqerror, 2)}
(36)

where each function is represented as a set of (σ, k) pairs, with σ being a
symbol and k ∈ N its enumeration. The Gödelization of the “diagnosis”
sub-sequence is instead defined as in Equation 19, with

γstrategy := {(fsmqs-o, 0), (fsmqo-s, 1), (fsmqrepair, 2)}

enumerating the states of the Diagnosis PDA, and γparse (already defined
in Equation 36) enumerating its stack symbols. Having mapped each of the
machines to a R-ANN, we can use the derived networks as components of the
overall system architecture (see Figure 9 for the full architecture). In order
to simplify the exposition, we construct the overall network to feature only
one set of recurrent connections. To do so, we endow our architecture with 4
Configuration Layers (CLs), containing the “strategy”, “diagnosis”, “parse”,
and “input” sub-sequences. Between each CL and the next, the network
components derived from the automata are connected to perform their part
of the processing on the relevant subsequences. In particular, if the VS
representation of an automaton acts on some α.β dotted sequence, the input
of its associated network component is connected to the units encoding the α
and β subsequences in the i-th CL, whereas its output (which is a recurrent
connection to the MCL layer in the original mapping) is connected to the
units encoding α and β in the (i+ 1)-th CL. The final CL is connected with
a I4×4 synaptic weight matrix to the first CL layer (i.e. each unit encoding
a subsequence of the last CL is connected with a weight of 1 to the same
unit in the first CL). Finally, to implement the subroutine call capabilities
of the strategy FSM, we add a Meta branch selection layer that takes the
“strategy” subsequence as input, and is connected with the lateral inhibition
connection pattern specified in Section 2.3.3 to the s-o and o-s TDRs, and
to the Repair VS. Note how this creates a nested structure, with the s-o
TDR, the o-s TDR, and the Repair VS functioning as higher-level symbolic
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operations of a Parser machine. This is reflected in the nested structure of
the Parser R-ANN sub-network, where the lower-level machines function as
cells in a LTL, controlled by the Meta BSL (see Figure 9).

In Figure 10 we show the network activation when two different sentence
structures are presented in input. In particular, note the serial activation of
the s-o TDR, Repair VS and o-s TDR sub-networks when a object-subject
sentence is presented. By mapping the parser from a machine evolving in
a symbolic space to a neural network evolving in a vectorial space, we are
now able to compute synthetic event-related potentials, or “synth-ERPs”,
(beim Graben et al., 2008; Barrès et al., 2013) as trial-averages of the mean
network activation, as discussed in Figure 11. This is achieved by calculating
the mean global network activation according to Amari (1974) (Equation 32)
for a simulation over 100 trials for each input stimulus, where random initial
conditions compatible with the symbologram representation of the input are
prepared according to beim Graben et al. (2008). In brief, symbologram-
compatible random initial conditions are generated through the Gödelization
of sequences of the form wαu.vwβ, where u.v is the dotted sequence describing
the input to the system, and wα, wβ ∈ A∗ are random sequences of symbols
in A.

As Figure 11 reveals, the network shows a P600-like effect in the pro-
cessing of garden-path sentences, with a peak of increased and sustained
activation with respect to the control condition. The simplified model of
garden-path processing we presented here does not yet allow for a direct
quantitative comparison with experiments such as in Frisch et al. (2004) (in
fact, a carefully crafted model would require a level of detail and attention
which goes beyond the scope of this paper). Yet, these simulations could
be the starting point for more detailed statistical correlation analyses (beim
Graben and Drenhaus, 2012; Frank et al., 2015) in future work, relating these
computations to electrophysiological measurements.

4. Discussion and Outlook

In this study we have developed a constructive, transparent, modular and
parsimonious mapping from symbolic algorithms to neural networks. We first
introduced a novel shift map, the versatile shift, that extends the generalized
shift and allows for the real-time simulation of a range of symbolic models
of computation. We then showed how VSs can be represented on a vec-
torial space through Gödelization, obtaining piecewise affine-linear systems
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Figure 9: Garden-path parsing network architecture. In order to simplify the ex-
position, we construct our network such that the only recurrent connection is that from
the last to the first layer of the network (i.e. CL 4 to CL 1, where CL stands for Config-
uration Layer). Note that the Parser sub-network is itself composed of the s-o top-down
recognizer (TDR), the o-s TDR, and the Repair versatile shift (VS) sub-networks. These
are arranged as cells of a linear transformation layer (LTL), and selectively activated by
a Meta branch selection layer (BSL) controlled by a “strategy” neural unit.
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Figure 11: Synthetic P600 event-related brain potential as mean Network acti-
vation for random cloud of initial conditions. In this figure we show the mean global
network activation calculated through Equation 32 for each time step of two simulations,
averaged over 100 trials. For each of the two simulations, we run the network presenting
at time t = 2 one of 100 random inputs generated compatibly to the symbologram rep-
resentation of one of two sequences. In other words, noise is added to each input such
that, if the input was generated by Gödelizing a sequence of length n, decoding the input
would yield the original sequence in the first n symbols, with the rest being a random
symbolic continuation. If stronger noise was added instead, that would have prevented
the network to correctly perform its computation, as we would have destroyed essential
input information. In blue, we show the averaged mean activation (light blue) and its
standard deviation (dark blue) for a presented input encoding the sequence S.so, repre-
senting an input sequence in subject-object order, i.e. the network’s preferred order as
explained in Section 3.2. Note that the parsing is completed at t = 5. In red, the averaged
mean activation (light red) and its standard deviation (dark red) for an input encoding
the sequence S.os, representing an input sequence in object-subject order, leading to a
garden path in the parsing of the input. The time at which the diagnosis (t = 4) and
repair (t = 5) steps are carried out in the symbolic interactive system (and thus in its
recurrent artificial neural network mapping) is indicated by arrows. We also report, at the
top and bottom of the plot, the configuration of the parser networks as a dotted sequence
for each time step, for respectively the garden path and the control condition. Note how
the garden-path processing is associated with a strong divergence in activation starting
from time t = 5, and followed by a longer tail than that of the network in the control
(preferred) condition. This reflects the additional computation needed by the network to
successfully resolve the garden path in parsing, and qualitatively corresponds to the P600
event-related brain potential measured in psycholinguistics experiments (see Section 3.2).
Furthermore, note that in both conditions the network starts and returns to a “resting
state”, waiting for input to process from the external world, implementing a notion of
continuous computation which is the hallmark of interactive systems.

c©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Formal publication available at https://dx.doi.org/10.1016/j.neunet.2016.09.001.

212



on the unit square known as nonlinear dynamical automata (Tabor, 2000;
Tabor et al., 2013; beim Graben et al., 2004, 2008). Finally, we presented
a modular R-ANN architecture that simulates the dynamics of NDA. The
proposed architecture consists of three layers: a machine configuration layer
representing the NDA state, and thus the symbolic data in the simulated
automaton; a branch selection layer implementing the NDA switching rule,
thus characterizing the automaton’s decision space, or control; and the linear
transformation layer implementing the set of piecewise affine-linear functions
in the NDA, i.e. the vectorial representation of the symbolic operations de-
fined in the transition table of the simulated automaton. Additionally, the
linear transformation layer is itself modular, in that each operation speci-
fied by the δ transition function of the simulated automaton is applied by a
specific pair of units in the layer.

The mapping can be used to simulate any Turing machine through R-
ANNs, thus making the architecture universal (an example of the mapping on
Turing Machines is reported in the supplementary materials). In particular,
it is possible to simulate the 7-states 4-symbols UTM by Minsky (1962) in
real-time with a R-ANN consisting of 259 units 6 (see Equation 33), and the
6-states 4-symbols UTM by Neary and Woods (2009) with one consisting of
223 units.

It is important to analyze some of the modeling choices that have been
made in the R-ANN architecture we described. A choice worth discussing
is that of implementing biases as synaptic projections from an always-active
unit as opposed to implementing them as parameters intrinsic to the indi-
vidual units. We decided for simplicity to add a bias unit. Nonetheless, a
parameterized bias would have been equally reasonable. While it does not
have strong bearings on the model here discussed, it is interesting to note
that the specific choice of implementation does more or less put the empha-
sis on a predominantly synaptic computation versus a computation which is
more distributed between the synaptic and the neuron level, reflecting simi-
lar issues to be considered in the biological domain. A second consideration
concerns the cell’s boundaries in the NDA. In fact, the distance between
the right bound of a cell and the left bound of the next one is zero. This
poses some challenges, as even extremely small noise on the state vector at a

6This implies a reduction factor of 1/3 when compared to the solution by Siegelmann
and Sontag (1991, 1995), which simulates Minsky’s UTM with a network of 886 units.
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boundary can lead to an erroneous application of the switching rule on the
real state, and thus to a disruption of the computation. This is of course
reflected in the dynamics of the associated R-ANN as well. Siegelmann and
Sontag (1995) solve this issue by using a Cantor encoding as opposed to a
simple Gödelization, ensuring a greater than zero distance between two en-
coded configurations with different leading symbols. The same methods can
be applied here. Interestingly, by switching to a Cantor encoding, the Heav-
iside units in the BSL layer can be substituted with functionally equivalent
Ramp units, so that the R-ANN would only make use of linear units à la
Siegelmann and Sontag.

We will now first discuss the advantages of our approach over those based
on eliminative connectionism, and then the advances that the present work
brings to transparent connectionism.

Compared to eliminative approaches, our work allows the direct inter-
pretation of the representations and the dynamics in the derived network
in terms of symbolic computation. This has many important consequences.
First, while conventional neural networks have to be trained on large data sets
(usually using backpropagation or related algorithms, see Werbos, 1990) our
method does not require any training, as the synaptic weight matrix is explic-
itly designed from the machine table of the encoded automaton. Emergent
representations and operations are not opaquely encoded in several hidden
layers but transparently realized through Gödelization of symbolic configura-
tions. Second, even when considering learning applications – which we plan
to explore in future developments – the derived approach could bring about
the exciting possibility of a symbolic read-out of a learned algorithm from
the network weights; Note that in this architecture all weights are necessarily
fixed, with the exception of the connections encoding the symbolic operations
in the simulated automaton, i.e. those between the MCL and the LTL layer.
Third, anchoring the computation of the network to well-understood com-
putation models is worthwhile when tackling problems that can benefit from
the integration of the two perspectives. In the first example, we constructed
a R-ANN (24 units) performing a FSM machine computation abstracting a
CPG for animal locomotion. FSMs are widely used in locomotion controllers
in robotics, because of their simplicity and strong theoretical grounding in
relation to animal locomotion. On the other hand, neural implementations
of CPG have many desirable characteristics (as discussed in Ijspeert, 2008)
that are not present in FSM-based implementations, but they are difficult to
engineer. We showed that by integrating the two approaches we can tackle
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the problem of pattern generation in robotic locomotion more effectively. Of
course, a satisfactory solution would entail the use of continuous-time models
in the mapping; nevertheless, our preliminary results already present distinct
benefits in the integration of the two approaches as compared with their use
in isolation. Fourth, having a complete understanding of the network’s inner
workings allows for the intelligent manipulation of its parameters. In the
discussed CPG example, understanding the computation carried out by the
derived network allowed us to introduce a continuous control parameter elic-
iting a bifurcation in the dynamics of the network, as present in systems of
coupled nonlinear oscillator models (Golubitsky et al., 1999, 1998; Schöner
et al., 1990; Collins and Richmond, 1994), widely studied in the CPG liter-
ature.

In regards to previous work on transparent connectionism, our work ad-
vances the field in several ways. As a first advancement, by introducing VSs
we are now able to use NDA to simulate a broad range of symbolic com-
putation models in real-time, extending the original work by Moore (1990,
1991). Interestingly, it would be straightforward to define n-sided infinite
dotted sequences (where the dot splits a sequence in its n one-sided infi-
nite components), and extended VSs on these. By Gödelization, we would
obtain NDA on the n-dimensional hypercube, which could be simulated by
R-ANNs through a straightforward extension of the architecture presented in
this work. This would further extend the range of real-time simulable com-
putational models to automata with multiple tapes or stacks (Aho, 1969;
Weir, 1994). Secondly, by basing our construction on NDA, we obtain an
architecture characterized by a fully distributed representation coupled with
a granular modularity, differentiating our approach from previous work and
granting a series of advantages. The mapping is transparent not only with re-
gards to the representations (the data), but also with regards to the symbolic
operations defined in the simulated computational model and their control,
all clearly localizable in the architecture. We regard this as an advance in
itself (in line with the goals of transparent connectionism), but it also allows,
for example, for the straightforward mapping of interactive automata net-
works to R-ANNs. This is of fundamental importance, as the framework of
interactive computation provides a rich language for the description of many
complex systems, for example in cognitive modeling. In the second example
we constructed a network of interacting automata as a diagnosis and repair
model (Lewis, 1998; beim Graben et al., 2004, 2008) for the reanalysis of
linguistic garden path sentences. The network consisted of three PDA (two
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of them as TDRs), a VS, and one FSM as a master control program, with
each component carrying out a specific and intelligible task in the overall
computation. We then mapped this network to a R-ANN (266 units), thus
obtaining a symbolic/connectionist implementation of a cognitive model. In-
terestingly, due to the multiple levels of hierarchical organization that can be
present in the automata network (which comprises nesting, as in the diag-
nosis and repair network) and, thus, in the derived R-ANN, one could even
speculate about thermodynamic limit networks when the number of modules
approaches infinity, presenting emergent scale-free or small world proper-
ties (Albert and Barabási, 2002). The granular modularity of our approach
is also a key advancement when considering the possibility of correlational
studies with neurophysiological measurements. In previous work we showed
how to devise large-scale biophysical observation models in order to correlate
top-down modeling approaches with neurophysiological data obtained from
bottom-up measurements (Amari, 1974; beim Graben and Rodrigues, 2013).
The process involves associating neural units of our model with neuronal
masses (Lopes da Silva et al., 1974; Jansen and Rit, 1995) or Hebbian cell as-
semblies (Hebb, 1949; Wennekers and Palm, 2009; Huyck, 2009) in large-scale
brain models, as investigated, e.g., in neural field theory. With this setup we
then show that our observational models lead to improved interpretation, e.g
of “synthetic event-related brain potentials” (as discussed in Section 2.4, see
beim Graben et al., 2008; Barrès et al., 2013) as used in computational neu-
rolinguistics studies (Gigley, 1985; beim Graben and Drenhaus, 2012; Barrès
et al., 2013), where mental/cognitive states can be associated to metastable
states of a dynamical system. In the second example presented here, we
computed Amari’s mean activation (Amari, 1974) as an observation model
for the diagnose and repair R-ANN, in order to obtain synthetic ERPs (beim
Graben et al., 2008; Barrès et al., 2013). Qualitatively, the computed signal
exhibited a similar divergence between conditions as measured in the exper-
iment presented in Frisch et al. (2004). While preliminary, these are already
encouraging results for the development of our approach in this direction. In
future work, we envisage that it will be possible to selectively correlate elec-
trophysiological measurements with specific components in a derived R-ANN,
as informed by a suitable symbolic model for the computation underlying the
measured quantities. As a third point of interest, the architecture presents
a clear 2D spatial organization in its layout, particularly at the level of LTL
(as highlighted in Figure 6). In a NDA, different transformations are applied
based on the position of the Gödelized automaton data on the unit square.
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In the R-ANN architecture, this is implemented through the BSL, which per-
forms a form of spatial pattern matching, activating a specific pair of units
in the LTL through a lateral inhibition mechanism. When considering ex-
tensions to models of higher complexity, the functionality of BSL and LTL
could be implemented through the use of a grid of units with receptive fields,
as defined for example in self-organizing maps (SOMs, see Kohonen, 1982;
Kohonen and Somervuo, 1998).

In future work, we plan to overcome fundamental issues with the current
model which have bearing both in relation to learning applications and to
the extension of the model to continuous dynamics. For what concerns the
learning of algorithms from data, the current model suffers from a missing
end-to-end differentiability, due to the use of Gödel encodings. This is a
serious limitation, as it prevents the use of gradient descent methods for
the training of the network’s weights. Future work will have to address this
limitation, possibly relying on methods of data access and manipulation akin
to modern R-ANN approaches such as in Weston et al. (2014); Graves et al.
(2014); Grefenstette et al. (2015); Joulin and Mikolov (2015); Sukhbaatar
et al. (2015). Encouraging work on the learning of exponential state growth
languages by Fractal Learning Neural Networks (Tabor, 2003, 2011) could
also inform a revised trainable architecture.

With regards to the extension of the model to continuous dynamics, there
are many ways in which this could be achieved in future work. Importantly,
we are mostly interested in extensions to continuous-time models that are
excitable. In such systems, trajectories can be perturbed away from a stable
equilibrium (or rest state) and come back to it only after a large excursion (or
spike) in the phase space, upon sufficiently strong input; biophysical examples
of excitable models were initiated in Hodgkin and Huxley, 1952. One possi-
bility would be to first extend the mapping to discrete-time excitable models
(as in map-based neuronal models, see Ibarz et al., 2011; Girardi-Schappo
et al., 2013), and then move to continuous time via so-called suspension pro-
cedures. There are some potential issues in this endeavor. First of all it would
be crucial to first explore and understand the possible relationships between
excitable regimes in neural models and symbolic dynamics in a computation.
That is, to answer the question: how does the excitability property translate
in the realm of symbolic computation? We think there could be meaningful
answers to this question when tackled through the framework of interactive
computation. Another potential issue is that the suspension process is non-
unique and non-trivial in the general case; moreover, it does not guarantee
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that the excitability property will be preserved.
Excitability is a crucial matter when dealing with neural tissue of lower

brain structures, such as the Brain stem, where it is possible to neurophys-
iologically identify clear and small neuronal networks. However, neural net-
works models are not the most appropriate level of description for higher
cortical structures, due to the presence of large and highly interconnected
neuronal masses. Models of these structures express slow but large scale pro-
cesses as measured by LFP/EEG. In this context, an alternative approach to
achieve continuous-time dynamics, which we have already explored to some
extent in previous work, is by the framework of heteroclinic dynamics, where
Turing machine configurations can be interpreted as metastable states with
attracting and repelling directions (beim Graben and Potthast, 2009; Tsuda,
2001; Rabinovich et al., 2008; Krupa, 1997), or by the framework of multiple-
time scale dynamical systems (Desroches et al., 2013; Fernández-Garćıa et al.,
2015).
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