The Miocene elevation of Mount Everest

Gebelin, A

http://hdl.handle.net/10026.1/8620

10.1130/G34331.1

Geology

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
The Miocene elevation of Mount Everest

Aude Gébelin, Andreas Mulch, Christian Teyssier, Micah J. Jessup, Richard D. Law and Maurice Brunel

Geology published online 24 May 2013; doi: 10.1130/G34331.1

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA’s journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization’s Web site providing the posting includes a reference to the article’s full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by GeoRef from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

© Geological Society of America
The Miocene elevation of Mount Everest

Aude Gébelin1,3, Andreas Mulch1,2,3, Christian Teyssier4, Micah J. Jessup5, Richard D. Law6, and Maurice Brunel7

1Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt, Germany
2Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
3Senckenberg, Senckenberganlage 25, 60325 Frankfurt, Germany
4Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
5Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
6Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
7Géosciences Montpellier UMR 5243, Université Montpellier 2, 34095 Montpellier, France

ABSTRACT

The Neogene elevation history of the Mount Everest region is key for understanding the tectonic history of the world’s highest mountain range, the evolution of the Tibetan Plateau, and climate patterns in East and Central Asia. In the absence of fossil surface deposits such as paleosols, volcanic ashes, or lake sediments, we conducted stable isotope paleoaltimetry based on the hydrogen isotope ratios (δD) of hydrous minerals that were deformed in the South Tibetan detachment shear zone during the late Early Miocene. These minerals exchanged isotopically at high temperature with meteoric water (δDwater = −156‰ ± 5‰) that originated as high-elevation precipitation and infiltrated the crustal hydrologic system at the time of detachment activity. When compared to age-equivalent near-sea-level foreland oxygen isotope (δ18O) paleosol records (δ18Owater = −5.8‰ ± 1.0‰), the difference in δ18Owater is consistent with mean elevations of ≥25000 m for the Mount Everest area. Mean elevations similar to modern suggest that an early Himalayan rain shadow may have influenced the late Early Miocene climatic and rainfall history to the north of the Himalayan chain.

INTRODUCTION

How the elevation of the Himalayan mountain range, including the Mount Everest region, has evolved over Neogene time is of particular interest for understanding collisional tectonics, orogenic plateau and summer monsoon development (e.g., Harrison et al., 1992; Boos and Kuang, 2010), global climate change, and evolutionary and biotic changes in Central Asia (e.g., Liu et al., 2006). Quantifying the evolution of topography provides a link among Earth surface changes, atmospheric processes, and orogen-scale tectonics. Although paleoelevation reconstruction is challenging (Mulch and Chamberlain, 2007), stable isotope paleoaltimetry has emerged as a reliable method to gauge the evolution of topography in eroded orogens (e.g., Garzione et al., 2000; Poage and Chamberlain, 2001; Mulch et al., 2004; Rowley and Currie, 2006; Gébelin et al., 2012). Stable isotope paleoaltimetry relies on the systematic relationship between depletion in deuterium (D) and 18O of meteoric water and the elevation of an orographic barrier over which air masses rise and cool; as a result, oxygen (δ18O) and hydrogen (δD) isotope ratios of rainfall scale with elevation on the windward side of a mountain range (e.g., Poage and Chamberlain, 2001; Rowley et al., 2001). In contrast, an orographic rain shadow commonly develops on the leeward side and promotes arid to semiarid conditions, where low δ18O and low δD precipitation, as well as above-ground and subsurface evaporation (e.g., Quade et al., 2011), result in δ18O and δD values of rainfall that no longer correlate directly with elevation. Here we reconstruct the Early Miocene paleoaltimetry of the Mount Everest region to better understand the impact of high topography on Himalayan erosional and degradational processes and to evaluate the time at which the Himalayan belt was sufficiently high to promote a leeward rain shadow.

None of the commonly used geologic materials (paleosols, volcanic ashes, or lacustrine sediments) amenable to record the stable isotopic composition of Early Miocene meteoric water are preserved within the highly erosive Himalayan range. In the following we use an approach that was pioneered in the North American Cordillera (Mulch et al., 2004) and is based on water-rock interaction in crustal-scale shear zones that we reference to near-sea-level foreland rainfall records (e.g., Gébelin et al., 2012; Campani et al., 2012). We determine δD values of meteoric water that permeated the South Tibetan detachment (STD) system in the Mount Everest region and exchanged isotopically with hydrous silicates (mica, amphibole) during deformation. If mineral-water hydrogen isotope equilibrium was achieved during deformation and recrystallization, δD values measured in synkinematic minerals likely reflect 105–106 yr of isotopic exchange, and can be retrieved through experimentally calibrated isotope exchange parameters (e.g., Mulch et al., 2004; Gébelin et al., 2011). For our paleoaltimetry reconstruction, we compare δD values from the high-elevation STD to age-equivalent δ18O values within pedogenic carbonate from near-sea-level Siwalik foreland basin paleosols that record Miocene rainfall conditions in the Himalayan foothills. The difference in δ18Owater obtained by these two approaches is consistent with late Early Miocene mean elevations of ≥5000 m for the Mount Everest region.

GEOLOGICAL SETTING AND RESULTS

We collected oriented samples from the STD in the underlying mylonitic footwall in the Rongbuk Valley, north of Mount Everest (Fig. 1; Figs. DR1–DR3 in the GSA Data Repository1). In this area, the STD consists of the upper (brittle) Qomolangma detachment

Figure 1. Simplified geological map of Mount Everest region and Rongbuk Valley (after Searle, 2003; Jessup et al., 2006, 2008).

1GSA Data Repository item 2013220, Figure DR1 (north-south cross section across Mount Everest), Figure DR2 (sampling sites), Figure DR3 (DEM from which modern mean elevations have been calculated), and Table DR1 (hydrogen isotope results and methods), is available online at www.geosociety.org/pubs/ftr2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
and the lower (ductile) Lhoksse detachment shear zone that merge northward (Carosi et al., 1998) and collectively separate upper plate, nonmetamorphosed Ordovician limestone from high-grade metamorphic rocks and syntectonic leucogranite below (Carosi et al., 1998; Searle et al., 2003) (Fig. DR1). The shear zone includes marble, calc-silicate, leucogranite, and biotite-sillimanite schist and gneiss. All rocks contain a strong, shallowly northeast dipping foliation (5°–20°N) and NNE-SSW–trending stretching lineations. Kinematic criteria (C-S microstructures, mica fish, and asymmetric porphyroclast tails) indicate top-to-the-north shearing (Burg et al., 1984; Law et al., 2004). Quartz microstructures and c-axis fabrics suggest that rocks in the shear zone deformed at temperatures >500 °C (Law et al., 2004, 2011) (Fig. 2; Table DR1 in the Data Repository). Based on radiometric dating of mylonitic and undeformed leucogranite, the maximum age of ductile shearing is ca. 17 Ma, while brittle faulting on the Qomolangma detachment was likely younger than 16 Ma (Hodges et al., 1998; Murphy and Harrison, 1999; Searle et al., 2003); in the following, we refer to the timing of shearing on this part of the STD as late Early Miocene. Together with quantitative data on strain and vorticity of flow (Jessup et al., 2006), microstructures and quartz c-axis fabrics are interpreted to have developed during top-to-the-north high-temperature shearing associated with southward-directed extrusion of the Himalayan crystalline core (Burg et al., 1984; Law et al., 2004, 2011).

At Rongbuk Valley, we analyzed δD values of biotite and hornblende in 17 samples of sheared leucogranite, pegmatite, biotite schist and/or gneiss, and calc-silicate collected across ~200 m of structural section from the STD to the underlying mylonitic footwall (Fig. 1; Figs. DR1 and DR2; Table DR1). Biotite shows very low δD values of ~126‰ to ~182‰ within 0–100 m of section, while the base of the section (130–177 m) is characterized by higher biotite δD values (~97‰ to ~85‰), typical for δD values in metamorphic rocks (Fig. 2). Similarly, hornblende separates at 24 m and 98 m in the section yield very low δD values of ~181‰ and ~183‰, respectively. The low δD values within the uppermost 100 m of the section require the presence of low δD meteoric water (Fig. 2) during high-temperature deformation in the STD footwall.

δD values of meteoric water that exchanged with hydrous minerals during STD shearing can be calculated if the hydrogen isotope mineral-water fractionation and the associated exchange temperatures are known (Figs. 2 and 3; Table DR1). Using a deformation and isotopic exchange temperature of ~581 ± 50 °C inferred from the opening angles of quartz c-axes girdles (Law et al., 2011), combined with the calibration of biotite-water hydrogen exchange with clear δD−elevation relationship. Modern δ18Ovalues in Rongbuk-Tingri and Hermits Gorge areas (~21‰; Quade et al., 2011) are similar to lowest δ18Owater values calculated from Miocene biotite and hornblende. B: Miocene paleoaltimetry reconstruction of Mount Everest (this study) compared to oxygen isotope record in Siwalik foreland basin (FB; Quade and Cerling, 1995; Quade et al., 1995; Leier et al., 2009). Calculated 7.0–17.5 Ma δ18Owater values for carbonate in foreland are from δ18Ocarbonate data (Quade et al., 1995; Quade et al., 1995; Leier et al., 2009), using surface temperature of 29 °C (Quade et al., 2013). White hexagon is calculated δ18Owater from lacustrine carbonate in Thakglaha graben (TG; Garzione et al., 2000). Difference in δ18Owater of ~15‰ between high elevation (South Tibetan detachment) and low elevation (Siwalik foreland basin) is consistent with Miocene paleoelevation of Everest region in excess of 5000 m. Bt—biotite; Hbl—hornblende.
isotope exchange (Suzuki and Epstein, 1976), δD$_{	ext{biotite}}$ values between 0 m and 100 m of the STD footwall yield δD$_{	ext{water}}$ values as low as −150‰ ± 5‰ to −4‰. Similarly low δD$_{	ext{water}}$ values of −156‰ ± 5‰ can be reconstructed from δD$_{	ext{hornblende}}$ = −183‰ in sheared calc-silicate rocks using an exchange temperature of 555 ± 50 °C (Law et al., 2011).

Because single-site paleoaltimetry reconstructions frequently lack adequate knowledge of changes in atmospheric circulation patterns, paleoecolimatic, and paleoenvironmental conditions, we recast our δD$_{	ext{water}}$ values as δ18O$_{	ext{water}}$ by means of the global meteoric water line (8D = 8 × δ18O + 10; Craig, 1961; Table DR1) and then compare the high-elevation STD record to age-equivalent δ18O values measured within pedogenic carbonate from Siwalik foreland paleosols. These paleosols record Miocene near-sea-level rainfall conditions in the Himalayan foothills (Quade and Cerling, 1995; Quade et al., 1995; Leier et al., 2009) (Fig. 3B). The relative difference in δ18O between late Early Miocene meteoric water in the low-elevation Siwalik foreland basin (δ18O$_{	ext{water}}$ = −5.8‰ ± 1.0‰ based on δD of pedogenic carbonate and mean annual temperatures of Quade et al., 2013) and the high-elevation precipitation that infiltrated the STD (δ18O$_{	ext{water}}$ = −20‰ ± 1‰ to −21‰ ± 1‰ based on δD of biotite and hornblende, respectively) yields δ18O$_{	ext{water}}$ = 14.2‰ ± 1.0‰ (calcite-biotite) and 15.0‰ ± 1.0‰ (calcite-hornblende) (Fig. 3B; Table DR1). Because stable isotopes in precipitation systematically scale with elevation (−2.8‰/km in δ18O or −22‰/km in δD; e.g., Poage and Chamberlain, 2001; Quade et al., 2011), this Miocene δ18O$_{	ext{water}}$ between Rongbuk Valley (STD) and the Siwalik basins is consistent with an elevation difference of −5100 ± 400 m and −5400 ± 350 m, respectively (error estimate includes isotopic analysis and temperature [Table DR1], but excludes uncertainty in the isotopic lapse rate, which for model elevations of −5000 m is ±700 m; Rowley, 2007).

DISCUSSION AND IMPLICATIONS

Our paleoelevation estimates (5100–5400 m) indicate that the late Early Miocene central Himalaya was at mean elevations similar to modern (5189 ± 390 m with present-day minimum and maximum values of 4553 m and 5982 m; see Fig. DR3). Furthermore, modern precipitation collected in the Rongbuk-Tingri area, to the northwest of our sampling transect, and the Hermit’s Gorge area (Fig. DR1) has δ18O$_{	ext{water}}$ values of −21.1‰ to −21.5‰ (Quade et al., 2011; Fig. 3A), almost identical to our calculated Early Miocene δ18O$_{	ext{water}}$ (−156‰ ± 5‰) and δ18O$_{	ext{water}}$ (−21‰ ± 1‰). Documenting high elevations in the Himalaya since the late Early Miocene puts into perspective a series of observations: (1) the oldest known Siwalik sediments in Nepal (Dumri Formation; Ojha et al., 2009), (2) loess deposition in northern China ca. 22 Ma in a leeward rain shadow environment of the Tibetan-Himalayan orogen (Guo et al., 2002), (3) paleoelevation estimates of 4500 m ± 430 m and 6300 m ± 330 m obtained from carbonates deposited ca. 11 Ma in the Thakhkholra graben (Garzone et al., 2000; Fig. 3), (4) low δD$_{	ext{water}}$ values in biotite from leucogranite in the Manaslu region ca. 20 Ma (France-Lanord et al., 1988), and (5) paleoenthalpy and stable isotope results suggesting that the elevation of the southern Tibetan Plateau has remained unchanged for the past 9–15 m.y. (Spicer et al., 2003; Saylor et al., 2009).

A consequence of the high topography of the central Himalaya is enhanced aridity on the Tibetan Plateau over most of the Neogene, resulting in high evaporative water flux over the plateau region. Strongly evaporative conditions may have shifted lake and near-surface ground-water δ18O to higher values, which could lead to an underestimate of Miocene Tibetan Plateau elevation when assessed through the stable isotope record of surface deposits. In addition, a strong Himalayan orographic rain shadow causes isotopically D (and 18O) depleted precipitation over the plateau region, such that any freshwater stable isotope–based paleoelevation reconstruction from the plateau interior may be biased by rainfall that occurred upstream along the Himalayan flanks. Collectively, stable isotope records on the Tibetan Plateau register the combined effects of local evaporation and Himalayan rainout, resulting in paleo–meteoric water compositions that do not necessarily correlate with plateau elevation.

The low biotite and hornblende δD values within the STD indicate that meteoric fluids penetrated the ductile segment of the extensional system during mylonitic deformation. Two conditions favor the downward flow of surface fluids to the brittle-ductile transition zone (Person et al., 2007): (1) upper crustal extension enhances porosity and permeability and permits fracture-dominated flow of meteoric fluids down to the brittle-ductile transition; and (2) sustained high heat flow induces buoyancy-driven fluid convection. The latter condition was likely met when symmetrogenization leucogranite bodies intruded the STD footwall. In addition, the hydraulic head generated in high-relief areas may be an important driving force for hydrothermal fluid circulation in detachment systems (Person et al., 2007). The interplay among surface topography, orographic rainfall, and heat advection makes the STD system an important orogen-scale structure for fault-controlled hydrothermal activity. It is likely that the presence of meteoric fluids affected the style and rates of normal faulting in the upper plate and ultimately governed the rates of extension-related exhumation of high-grade metamorphic rocks (Fig. 4). Tracking the interaction of deformatonal processes and surface-derived meteoric fluids in such detachment systems provides a critical link between processes that characterize the internal dynamics of orogens and those that shape the Earth’s surface.

ACKNOWLEDGMENTS

This study was funded through the LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) program of the government of the State of Hesse (Germany) Ministry of Higher Education, Research, and the Arts. Teysseier acknowledges support from U.S. National Science Foundation (NSF) grant EAR-0838541, and Law acknowledges support from NSF grant EAR-0207524. We thank S. Dominguez (Montpellier) for support in interpreting Himalayan digital elevation models, and D. Newell and J. Cottle for assistance during field work. Comments and suggestions by J. Quade and an anonymous reviewer are gratefully acknowledged.

REFERENCES CITED

Boos, W.R., and Kuang, Z., 2010, Dominant control of the South Asian monsoon by orographic...