Meteoric water circulation in a rolling-hinge detachment system (northern snake range core complex, Nevada)

Gebelin, A

http://hdl.handle.net/10026.1/8614

10.1130/B31063.1
Bulletin of the Geological Society of America

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Meteoric water circulation in a rolling-hinge detachment system (northern Snake Range core complex, Nevada)

Aude Gébelin1,†, Christian Teyssier2, Matthew T. Heizler3, and Andreas Mulch1,4
1Biodiversity and Climate Research Centre (BiK-F) and Senckenberg, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
2Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
3Bureau of Geology and Mineral Resources, Socorro, New Mexico 87801, USA
4Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt/Main, Germany

ABSTRACT
Combined petrofabric, microstructural, stable isotopic, and 40Ar/39Ar geochronologic data provide a new perspective on the Cenozoic evolution of the northern Snake Range metamorphic core complex in east-central Nevada. This core complex is bounded by the northern Snake Range detachment, interpreted as a rolling-hinge detachment, and by an underlying shear zone that is dominated by muscovite-bearing quartzite mylonite and interlayered micaschist. In addition to petrofabric, microstructural analysis, and 40Ar/39Ar geochronology, we use hydrogen isotope ratios in white mica to characterize fluid-rock interaction across the rolling-hinge detachment. Results indicate that the western flank of the range preserves mostly Eocene deformation (49–45 Ma), characterized by coaxial quartz fabrics and the dominant presence of metamorphic fluids, although the imprint of meteoric fluids increases structurally downward and culminates in a shear zone with a white mica 40Ar/39Ar plateau age of ca. 27 Ma. In contrast, the eastern flank of the range displays pervasive noncoaxial (top-to-the-east) fabrics defined by white mica that formed in the presence of meteoric fluids and yield Oligocene–Miocene 40Ar/39Ar ages (27–21 Ma). Evolution of the Oligocene–Miocene rolling-hinge detachment controlled where and when faulting was active or became inactive owing to rotation, and therefore where fluids were able to circulate from the surface to the brittle-ductile transition. On the western flank (rotated detachment), faulting became inactive early, while continued active faulting on the eastern flank of the detachment allowed surface fluids to reach networks with enhanced permeability and porosity; (2) surface topography and relief are sufficiently high to create the necessary hydraulic head; and (3) high geothermal gradients created by exhumation of deep(e) crustal rocks promote buoyancy-driven fluid convection. Therefore, the interplay among surface topography, orographic rainfall, groundwater storage, and heat advection makes detachment systems important orogenic-scale structures for fault-controlled hydrothermal activity. In such hydrothermal systems, synkinematic hydrous minerals represent tracers that record and fingerprint the origin of syndeformational fluids (meteoric, metamorphic, evolved) and permit estimates of time-integrated fluid-rock interaction at various structural levels of the detachment system.
Here, we present combined petrofabric, microstructural, electron backscatter diffraction (EBSD), 40Ar/39Ar thermochronological, and hydrogen isotope (δD) data from mylonitic quartzite exposed across the northern Snake Range detachment footwall. These data provide insight into the spatial and temporal evolution of localized deformation and associated fluid-rock interaction across the detachment, the influence of the dynamics of the detachment system (rolling hinge) on water-rock interaction, and the timing and duration of fluid flow and water-mineral isotopic exchange.

INTRODUCTION
In most Cordilleran metamorphic core complexes, extensional detachment systems represent the critical interface that separates the cold, brittle upper crust from the ductile middle crust (e.g., Armstrong, 1972; Wright et al., 1974; Coney, 1974, 1980; Miller et al., 1983). This interface is characterized by high shear strain and a sharp metamorphic gradient across it (e.g., Davis and Coney, 1979; Wernicke, 1981; Lister and Davis, 1989; Brun and van den Driessche, 1994). Extensional detachment systems also represent an interface where meteoric and metamorphic fluids interact—a process that is repeatedly documented through the oxygen and hydrogen isotope ratios of synkinematic minerals (e.g., Fricke et al., 1992; Nesbitt and Muehlenbachs, 1995; Losh, 1997; Mulch et al., 2004). This interaction is particularly well recorded in the hydro isotopic ratios of synkinematic hydrous minerals within highly sheared detachment footwall rocks (e.g., Mulch et al., 2004, 2005, 2006; Gottardi et al., 2011; Gébelin et al., 2011, 2012, 2013).

GEOLOGICAL SETTING AND PREVIOUS WORK
The northern Snake Range detachment defines the Snake Range metamorphic core complex in east-central Nevada (Fig. 1), which resulted from Oligocene–Miocene extension of the Basin and Range Province (Wernicke, 1981; Miller et al., 1983; Bartley and Wernicke, 1984; Gans et al., 1985, 1989; Lee and Sutter, 1991; Lewis et al., 1999; Miller et al., 1999a; Gébelin et al., 2011). The Snake Range metamorphic...
core complex represents a 150-km-long, north-trending mountain range that extends from the southern Snake Range to the Kern Mountains and Deep Creek Range in the north (Fig. 1) (Gans et al., 1999a, 1999b; Lee et al., 1999a, 1999b, 1999c; Miller and Gans, 1999; Miller et al., 1999b).

The northern Snake Range detachment accommodated top-to-the-east ductile shearing and exhumed metamorphosed Precambrian (McCoy Creek Group) and Cambrian (Prospect Mountain) quartzite and metapelites, as well as Middle Cambrian to Ordovician marble beneath the late Paleozoic and Tertiary unmetamorphosed sedimentary rocks of the upper plate (Wernicke, 1981; Lee et al., 1987; Miller et al., 1999a). The amount of extensional displacement has been a topic of considerable debate. Wernicke (1981) interpreted the northern Snake Range detachment as a Cenozoic low-angle normal fault system that accommodated several tens of kilometers of extensional displacement, while other authors have viewed the northern Snake Range detachment as a subhorizontal brittle-ductile transition zone with only limited (<10 km) slip (Miller et al., 1983; Gans and Miller, 1983; Gans et al., 1985; Lee et al., 1987; Miller and Gans, 1989; Lee and Sutter, 1991). In the Wernicke (1981) model, the northern Snake Range detachment cuts out several kilometers of crust and excises at least one major Mesozoic thrust that can be found as a relic in the hanging wall.

Thermobarometric data show that metapelitic strata in the footwall were metamorphosed at 810 ± 70 MPa and 610 ± 50 °C, suggesting burial to crustal depths of ~30 km (Lewis et al., 1999). The same authors proposed a kinematic model where Jurassic–Cretaceous crustal shortening was first accommodated by a major west-directed thrust system responsible for tectonic burial. Subsequently, Tertiary unroofing was
achieved by the northern Snake Range detachment in a rolling-hinge fashion (Lee, 1995), where a steeply dipping large-scale listric fault in the upper 8 km crustal segment flattens to a dip of ~15° at a depth of 12–18 km, accommodating up to 50 km of eastward displacement of hanging-wall rocks (Lewis et al., 1999).

In an alternative model (Miller et al., 1983; Lee et al., 1987), the northern Snake Range detachment separates a brittlely extended (450%) upper plate from an equally stretched lower plate. Based on the observation that there is no structural repetition or omission of stratigraphic sections across the northern Snake Range detachment, these authors proposed a small displacement of up to ~10 km. They also described a strong west-to-east increase in strain intensity accompanied by a dominant top-east shearing and suggested that the shear zone evolved from dominantly coaxial strain to noncoaxial strain, which is best exemplified on the eastern flank of the northern Snake Range detachment.

Using previous (Armstrong and Hansen, 1966; Lee et al., 1970, 1980, 1987) and new 40Ar/39Ar thermochronology data, Lee and Sutter (1991) highlighted a systematic decrease in 40Ar/39Ar ages from ca. 80 Ma on the west flank of the Snake Range metamorphic core complex to ca. 20 Ma on the east flank, and they suggested that rock units in the east record prolonged residence at higher temperature. Further modeling of 40Ar/39Ar data indicates that the western flank of the range cooled below 300 °C at ca. 49–45 Ma, while the east remained at temperatures above 300 °C until ca. 19 Ma (Lee, 1995). Based on these relationships, Lee (1995) proposed that the northern Snake Range detachment acted as a rolling-hinge detachment that rotated from steep (>40°) to shallow (10°–20°) dips in response to exhumation by isostatic unloading of the footwall.

The initiation of northern Snake Range detachment activity is thought to have occurred in the latest Eocene, with contemporaneous lower-crustal flow and upwelling of rocks followed by significant slip on the detachment and ultimate unroofing of the lower plate in the middle Miocene (ca. 17 Ma; Miller et al., 1999a). This last stage of slip accommodated at least 12 km of displacement (Miller et al., 1999a) and overprinted a preexisting Oligocene–Miocene mylonitic fabric associated with hydrothermal activity (Gébelin et al., 2011).

There is general agreement that the northern Snake Range detachment juxtaposes a lower-grade hanging wall against a higher-grade underlying metamorphic footwall and that this underlying footwall contains a top-to-the-east mylonitic shear zone that exposes a few hundred meters of muscovite-bearing quartzite mylonite and schist. During the late Oligocene and early Miocene, deuterium-depleted (low-δD) meteoric fluids infiltrated this zone of high strain, as recorded by the hydrogen isotope composition of recrystallized muscovite grains (Gébelin et al., 2011). Recrystallized muscovite and quartz grains define a strong foliation containing mineral and stretching lineations that are particularly well developed at Hendry’s Creek (HC; Fig. 1).

NORTHERN SNAKE RANGE DETACHMENT SHEAR ZONE: STRUCTURE AND INTERNAL DEFORMATION

The southern part of the northern Snake Range provides excellent exposure of the northern Snake Range detachment footwall, composed almost entirely of sheared quartzite and interlayered schist units (e.g., Lee et al., 1987; Lee and Sutter, 1991; Miller et al., 1999a) in the Hendry’s Creek and Negro Creek areas, located on the eastern and western flanks of the range, respectively (Fig. 1). The deepest levels of lower-plate mylonite crop out at Hendry’s Creek and consist of an ~300-m-thick structural section of muscovite-bearing quartzite and mica schist, which are part of a metamorphosed Late Precambrian to early Mesozoic shelf-facies sequence (Hose and Blake, 1976; Whitebread, 1969; Stewart, 1980). Shallower levels are exposed to the west of the range in Negro Creek, where deformed quartzite can be observed over ~160 m of structural thickness. Owing in part to the lack of continuity of quartzite exposure from east to west and a likely difference of structural depth variation within the northern Snake Range detachment footwall, the relationship between deformed rocks on either side of the metamorphic core complex is not straightforward.

Hendry’s Creek

The northern Snake Range detachment footwall is particularly well exposed at Hendry’s Creek, with more than 300 m of Lower Cambrian (Prospect Mountain) and Upper Proterozoic (McCoy Creek) quartzite and schist (Fig. 1). The Prospect Mountain Quartzite and the Pioche Shale, which locally appears above, form the top 60 m of the section and overlie the McCoy Creek Group fine- to coarse-grained quartzite and staurolite-garnet–bearing schist. These rocks are overprinted by a mylonitic fabric and contain a shallowly E-dipping foliation and a WNW-ESE-trending mineral lineation. Synkinematic muscovite grains collected systematically over 300 m of section within the detachment footwall reveal Oligocene–Miocene 40Ar/39Ar ages that become increasingly younger from top to bottom (26.9 Ma to 21.3 Ma; Gébelin et al., 2011). The same minerals show δDmuscovite values as low as ~15‰ at the top of the detachment zone and attain progressively higher values of up to ~72‰ at the bottom of the section (see following). This general trend is disrupted at two depth intervals (15–25 m and 91–144 m), where δDmuscovite increases rapidly to high values (~70‰). The low δDmuscovite values within the uppermost northern Snake Range detachment footwall mylonite are consistent with recrystallization of muscovite in the presence of meteoric water, with calculated δDmuscovite values of ~113‰ +12/−11‰ at the inferred temperature of ductile deformation and isotopic equilibration of 402 ± 52 °C (Gébelin et al., 2011). The hydrogen isotope pattern correlates with quartz microstructures (Fig. 2) that are characterized by very fine-grained neoblasts showing subgrain rotation at the top of the detachment (Figs. 2E and 2F), and a coarser quartz fabric characterized by grain boundary migration toward the bottom of the section (Figs. 2G and 2H). The quartz c-axis fabric is defined by a strong maximum parallel to Y and a single girdle shape that stretches into an inclined girdle, the pole of which is the largest concentration of c axes, consistent with top-to-the-east shearing (Fig. 2). Quartz c-axis and a-axes fabrics are consistent from the top to the base of the section. These data are compatible with plastic deformation dominated by prism-a glide that typically occurs at temperatures above 350–400 °C (Tullis et al., 1973; Mainprice and Paterson, 1984).

The fabric strength for Hendry’s Creek samples was investigated using the J index (Bunge, 1982) for the c-axis (Jc) and a-axis (Ja), as well as the P, G, and R indices of c-axis distributions (e.g., Vollmer, 1990; Ulrich and Mainprice, 2005), using PFch5 (Mainprice, 2005; Fig. 3; Supplementary Table DR1). The magnitude of those indices indicates whether the crystallographic preferred orientation defines a point (P), a girdle (G), or a random (R) distribution (R = 1 indicates the absence of a preferred orientation). In a ternary PGR diagram (Abalos, 1997), the
Figure 2. Electron backscatter diffraction quartz microstructures and lattice preferred orientation of mylonitic quartzite from Negro Creek and Hendry’s Creek. Equal-area projection, lower hemisphere. Foliation (X-Y plane) is vertical, and lineation (X) is horizontal in this plane. Note that quartzite at Negro Creek experienced a strong coaxial deformation, while at Hendry’s Creek, a top-to-the-east noncoaxial strain characterizes rocks in the northern Snake Range detachment footwall.
Meteoric water circulation and rolling-hinge detachment faulting

samples cluster in the high P (0.48 < P < 0.75) and medium G (0.22 < G < 0.47) segment. R indices are very low (0.03 < R < 0.09). The corresponding Jc index, which ranges between 4.87 and 8.23, reveals a high fabric strength (Supplementary Table DR1 [see footnote 1]).

Negro Creek

Mylonitic quartzite and schist that comprise Lower Cambrian Prospect Mountain Quartzite and Pioche Shale were collected across ~160 m of section (sample spacing ~10 m) at Negro Creek on the western flank of the Snake Range (Fig. 1). The primary thickness before Mesozoic metamorphism and Tertiary extension is estimated at ~1200 m (Prospect Mountain quartzite) and ~120 m (Pioche Shale; Fig. 1; Hose and Blake, 1976; Whitebread, 1969; Stewart, 1980). Currently, the entire section has been tectonically thinned (160 m), with minimum structural thickness further east (60 m) in Hendry’s Creek (Fig. 1).

The Prospect Mountain Quartzite at Negro Creek consists of light-gray to white layers that display well-preserved cross-stratification. These beds are occasionally interlayered with discontinuous, up to 50-cm-thick schist intervals. The quartzite and schist exhibit shallowly W-dipping foliation and WNW-trending mineral lineation. Thinly bedded calcareous quartzite and dark-colored siltstone of the Pioche Shale form the top 20 m of the studied section. This unit represents an important lithologic transition with the overlying Middle Cambrian limestone (Fig. 1). Based on the contrast in their internal deformation style and metamorphic grade, Lee and Sutter (1991) placed the northern Snake Range detachment at the top of the Pioche Shale (Fig. 1). The Osceola Argillite and McCoy Creek Group, which underlie the Prospect Mountain Quartzite, are both well exposed at Hendry’s Creek but do not crop out in Negro Creek (Fig. 1). As a result, the 160 m thickness of Prospect Mountain Quartzite at Negro Creek represents a minimum estimate.

We investigated quartz microfabrics of representative quartzite samples by EBSD (Fig. 2; analytical procedure in supplementary text 1 [see footnote 1]). These samples are distributed over the exposed part of the northern Snake Range detachment footwall, with the top of the section, i.e., the contact with the hanging wall, as reference level (Lee and Sutter, 1991). Quartz microstructures in the Prospect Mountain Quartzite are similar across the section (Fig. 2). They are characterized by large relict quartz grains (~5%–10%), recrystallized large quartz grains (30%–50%), and fine-grained recrystallized quartz within the quartz-mica matrix (>50%; Figs. 2 and 4). Relict grains are elongate or ribbon-like (≥1000 × 120 μm) and define the

![Figure 3. Vollmer diagram based on quartz lattice preferred orientation showing a clear difference between quartzite fabrics from Negro Creek and Hendry’s Creek (see text for details).](gsabulletin.gsapubs.org)

![Figure 4. Right: Quartz c-axis fabrics plotted against different quartz grain sizes (0 < size < 50 μm, 50 < size < 100 μm, size > 100 μm) for samples collected at Negro Creek. Left: Mapping of subgrains and recrystallized grains for sample SR09-NC07A.](gsabulletin.gsapubs.org)
macrotomographic foliation (Figs. 2A, 2B, and 2C), which is also defined by shearing surfaces and mica fish. Quartz ribbons display undulatory extinction (Fig. 2A), contain deformation lamellae and recrystallized new grains ranging from 50 to 100 μm in diameter, and are surrounded by small recrystallized grains (<30 μm) along grain margins. Recrystallized quartz grains in the matrix vary from 10 to 50 μm in size and are clumped together or distributed along shear bands oblique (15°–40°) to the macroscopic foliation (Figs. 2 and 4). “Castellate” microstructures and “leftover grains” (Jessel, 1987; Fig. 2B) indicate recrystallization dominated by grain boundary migration. Quartz c-axis fabrics correspond to type-I cross-girdle patterns (Figs. 2A, 2B, 2C, and 2D; Lister, 1977). Three fabric subtypes can be distinguished: The c-axis maxima in the first fabric subtype are located at positions between Y and Z, suggesting operation of rhomb <a> slip (Figs. 2A and 2B). In this case, the a-axes are asymmetrically distributed with respect to the lineation and cluster in a point maximum at ~25° to the shear plane, consistent with top-to-the-east sense of shear. The second fabric subtype displays a symmetric density distribution of c-axis maxima about the macroscopic strain axes (Fig. 2C). In this case, the c-axis maxima are located along Y, suggesting that prism and rhomb <a> were the dominant slip systems, and the a-axis maxima are distributed nearly symmetrically, indicating a strong coaxial component during ductile deformation. In the third fabric subtype, the quartz c axes define a great-circle girdle with submaxima that indicate almost equal components of basal, prism, and rhomb <a> slip. The corresponding a axes are concentrated in a maximum at 20°–25° to the macroscopic foliation, indicating top-to-the-west sense of shear (Fig. 2D).

We used the EBSD software to define quartz grain boundaries (>10° misorientation) and measure grain sizes in the samples for which the fabric is described here. Results within the top 80 m of the detachment footwall indicate that ~83% of the quartz grains (interpreted as dynamically recrystallized new grains) have a size smaller than 50 μm, ~15% range between 50 and 100 μm, and only ~1% are larger than 100 μm (Fig. 4; Supplementary Table DR2 [see footnote 1]). The calculated surface areas indicate two equally represented main populations (~45% each), except for one sample located at the bottom of the section, which displays a slightly different distribution, with medium grains (50–100 μm) covering 54% of the surface, while the smallest and largest grains represent 29% and 17%, respectively (Supplementary Table DR2 [see footnote 1]). Although the microstructures of these four samples display some differences, there is no clear correlation between the distribution of quartz c-axis fabrics and quartz grain size (Fig. 4).

On the ternary PGR Vollmer diagram (Fig. 3; Supplementary Table DR1 [see footnote 1]), the Negro Creek samples cluster in the very low P (0.05 < P < 0.12) and medium G (0.32 < G < 0.43) and R (0.47 < R < 0.59) region. The corresponding Jc index ranges between 1.31 and 1.50 and indicates that the fabric is weak to moderate (Supplementary Table DR1 [see footnote 1]). In summary, quartz fabrics at Negro Creek bear moderate strengths from the top to the base of the section and indicate a large component of coaxial deformation.

Microstructural Differences between Hendry’s Creek and Negro Creek

Comparison of Negro Creek quartz microstructure and crystallographic preferred orientation to those at Hendry’s Creek indicates that quartzite from the two areas did not experience the same type of deformation: (1) The J index at Negro Creek has low values (1.31 < Jc < 1.50) when compared to Hendry’s Creek (4.87 < Jc < 8.23) (Fig. 3; Supplementary Table DR1 [see footnote 1]). (2) In contrast to Negro Creek samples displaying cross girdles indicative of coaxial deformation, Hendry’s Creek quartz c-axis fabrics are characterized by oblique partial single girdles indicating top-to-the-east shear (Figs. 2E, 2F, 2G, and 2H). (3) In contrast to quartz microstructures at Negro Creek that are similar across the section, those observed from Hendry’s Creek samples vary from top to bottom of the section and record different dislocation creep regimes (Hirth and Tullis, 1992), from subgrain rotation to grain boundary migration, and recrystallized quartz grain size increases from 5 to >200 μm from the top to the bottom of the section (Figs. 2E, 2F, 2G, and 2H). (4) Recrystallized quartz grains from samples within the top 60 m of the Hendry’s Creek section are elongate obliquely (~25°) to the macroscopic foliation, in agreement with top-to-the-east sense of shear.

*Ar/39Ar Geochronology

Furnace step-heating *Ar/39Ar geochronology of multigrain muscovite separates within the top 120 m of Negro Creek footwall mylonite yielded disturbed age spectra that show a monotonous rise in apparent *Ar/39Ar ages in the low-temperature release steps, followed by a “saddle”-shaped release spectrum at higher temperatures (Fig. 5; supplementary Table DR3 and text 2 [see footnote 1]). Integrated *Ar/39Ar ages of muscovite fish from samples SR09-NCTA (39 m), SR09-NC11 (77 m), and SR09-NC15 (114 m) are 47.7 ± 0.1 Ma, 44.7 ± 0.1 Ma, and 48.8 ± 0.1 Ma, respectively (Figs. 5A, 5B, and 5C). In contrast, sample SR09-NC18 (at 154 m) provides a plateau age of 26.8 ± 0.1 Ma, which includes >95% of 39Ar released (Fig. 5D).

Muscovite Microstructure and Chemical Composition

Muscovite within the top ~120 m of section at Negro Creek exhibits lozenge-shape grains (group 2 of Ten Grotenhuis et al., 2003; Figs. 5A, 5B, and 5C). Their long axes (≥150 μm) are inclined at an angle of ~25° to the shear plane. Cleavage planes are locally sigmoidal and converge at both tips of the mica grain. When isolated, trails extending from oblique mica fish form stair-stepping patterns in agreement with top-to-the-east sense of shear. Most of these lenticular mica fish display intense recrystallization of small muscovite grains along their rims and in pressure shadows but are devoid of intragrain deformation features, such as kink bands or microfractures. Based on their shape, it is likely that the mica fish and associated fine-grained muscovite tails formed by solution precipitation (Wilson and Bell, 1979; Dunlap, 1992). No significant difference in chemical composition is observed in muscovite samples collected in the top ~120 m of the northern Snake Range detachment footwall quartzite (Fig. 6; Supplementary Table DR6 [see footnote 1]).

In contrast, muscovite microstructures from sample SR09-NC18, located in the deepest part of the Negro Creek section (154 m), are distinctly different (Fig. 5D). Muscovite grains are large (~1000 by 300 μm) and lenticular and display cleavage planes at an angle of ~40° to the shear plane. Whereas cleavage planes can be sigmoidal and converge at the tips of the grain (group 2 of Ten Grotenhuis et al., 2003), there is a significant fraction of grains where cleavage planes are kinked, as observed in rhombohedral shaped fish (group 4 of Ten Grotenhuis et al., 2003). Small muscovite grains commonly surround these large grains (Fig. 5D). The chemical composition of both small and large muscovite grains differs from muscovite collected within the uppermost 120 m of the Negro Creek transect. The latter is characterized by low Al VI and high Mg + Fe total contents, whereas the former (e.g., SR09-NC18) reveals higher Al VI and lower Mg + Fe total contents, similar to muscovite present at Hendry’s Creek (Gébelin et al., 2011; Fig. 6).
Figure 5. 40Ar/39Ar step-heating spectra of muscovite fish and muscovite microstructure from samples collected at Negro Creek (left) and Hendry’s Creek (right). TGA—total gas age.
HYDROGEN ISOTOPE GEOCHEMISTRY OF NEGRO CREEK QUARTZITE

Muscovite δD values were analyzed in 14 samples of mylonitic quartzite and schist collected over ~160 m of section beneath the northern Snake Range detachment at Negro Creek (Fig. 7; Supplementary Table DR4 and analytical procedures in supplementary text 3 [see footnote 1]). Muscovite shows high δD values, ranging from ~–64‰ to ~–86‰ at the top of the section, and attains progressively lower values ranging from ~–64‰ to ~–86‰ at the top of the section (Fig. 7). Supplementary Table DR5 [see footnote 1]). In contrast, muscovite from Negro Creek displays high δD values at the top of the section (~–85‰) that gradually decrease to lower values toward the bottom of the section (~–140‰; Fig. 7; Supplementary Table DR4 [see footnote 1]). The lowest observed δDmuscovite values at Negro Creek (SR09-NC11, 77 m, ~–124‰; SR09-NC15, 114 m, ~–130‰; SR09-NC18, 154 m, ~–142‰) require interaction with meteoric water (e.g., Fricke et al., 1992; Mulch et al., 2006). Previous studies in the same area estimated temperatures of deformation between 300 °C and 450 °C (Lee et al., 1987; Lee, 1995; Gebelin et al., 2011). Using a temperature estimate of 375 ± 75 °C, appropriate hydrogen isotope muscovite-water fractionation parameters (Suzuoki and Epstein, 1976), and measured δDmuscovite values of these four samples, δDwater values present during recrystallization of muscovite from these three samples were ~–90‰ ±14/–11‰, ~–96‰ ±14/–11‰, and ~–108‰ ±14/–11‰, respectively. The δDwater values as low as ~–108‰ ±14/–11‰ (SR09-NC18) at Negro Creek are in good agreement with δDwater calculated from mylonitic quartzite in the Hendry’s Creek section indicating strong time-integrated water-rock interaction with low-δD meteoric fluids (~–115‰ ± 5‰; Gebelin et al., 2011).

Interpretation of 40Ar/39Ar Data

To determine the timing of meteoric water–muscovite hydrogen isotope exchange, we used 40Ar/39Ar thermochronology on Negro Creek samples with low (SR09-NC11, SR09-NC15, and SR09-NC18) and high (SR09-NC07A) δDmuscovite values. Even though first-release steps display early Oligocene apparent ages in the age spectrum, samples within the 0–120 m section interval yield relatively simi-
lar, yet complex spectra with Eocene total gas ages of ca. 49–45 Ma (Fig. 5). Similar results were reported by Lee and Sutter (1991), who attributed the low-temperature steps to a thermal event (e.g., intrusion of ca. 37 Ma rhyolite porphyry dikes) that led to partial degassing of 40Ar from these muscovites. These authors considered the 46 Ma to 58 Ma high-temperature steps to represent a minimum estimate for muscovite closure to argon diffusion (~325 °C) subsequent to Late Cretaceous peak metamorphic temperature conditions.

The observed constant orientation of foliation and lineation, microstructures, and c-axis fabrics reflect early Eocene pure shear–dominated deformation associated with collapse of the Sevier thrust belt (Lewis et al., 1999). The different quartz grain sizes displaying similar fabrics suggest that all quartz grains heterogeneously recrystallized during this coaxial deformational event (Fig. 4). Asymmetric/sigmoidal mica fish, shear bands, and muscovite tails indicate that muscovite most likely recrystallized by combined dissolution/precipitation and migration recrystallization in a recrystallized quartz matrix during deformation (Fig. 2). Furthermore, no trend in intragrain muscovite composition is detected from the core to tip, suggesting that muscovite grew during the same Eocene deformation event (Supplementary Table DR6 [see footnote 1]). Eocene recrystallization of muscovite is also supported by elongated muscovite from deformed pegmatite and aplite bodies collected along the western part of the range that yield plateau ages of ca. 48 Ma (Lee and Sutter, 1991).

The 49–45 Ma 40Ar/39Ar ages within the top 120 m of section may represent progressive cooling owing to exhumation after Cretaceous tectonic burial (Fig. 8). The observed saddle-shaped spectra reflect the combined effects of synkinematic white mica growth, cooling-related closure to 40Ar diffusion, and/or mixing of different white mica populations owing to various degrees of recrystallization of Cretaceous muscovite in the respective samples. In contrast, sample SR09-NC18, collected at the bottom of the section, yields a 40Ar/39Ar plateau age of ca. 27 Ma. This age is, within error, identical to the 40Ar/39Ar ages at the top of the Hendry’s Creek section (Fig. 5). Muscovites from SR09-NC18 are large and kinked and, in contrast to samples within the 0–120 m section interval at Negro Creek, have chemical compositions that fall into the segment of Al-rich muscovite (Fig. 6). This sample, with a perfect late Oligocene plateau age, a low δDmuscovite value, and an Al-rich muscovite composition, therefore, shares similar features with samples from the top of the Hendry’s Creek section.
Figure 8. Kinematic model of Jurassic–Cretaceous crustal shortening and Tertiary unroofing (after Lewis et al., 1999). MP—Mississippian through Permian strata; OD—Ordovician through Devonian strata; C—Cambrian strata; Cpm—Prospect Mountain Quartzite; pC—Precambrian; NC—Negro Creek section; HC—Hendry’s Creek section. (A) West-directed thrust system responsible for Jurassic–Cretaceous tectonic burial, with Water Canyon anticline in the southern Deep Creek Range located at the top of the thrust zone (e.g., Nelson, 1966; Rodgers, 1987). Note the initial structural position of Hendry’s Creek required for the formation of the staurolite–garnet schist unit (Lewis et al., 1999; Gébelin et al., 2011). (B) Early Eocene collapse of thickened crust, inducing exhumation, flattening, and \(^{40}\)Ar/\(^{39}\)Ar resetting in the metamorphic units (including Negro Creek). Black dashed lines represent the initial trajectory of the northern Snake Range detachment (NSRD) and associated normal fault system. (C) Initial stages of low-angle detachment faulting (northern Snake Range detachment) and propagation of normal faults within the hanging wall. Normal faults and tension fractures facilitate downward transport of meteoric fluids to the active northern Snake Range detachment footwall. (D) Oligocene–Miocene extension showing the evolution of a rolling hinge with Negro Creek and Hendry’s Creek remaining in the footwall of the developing northern Snake Range detachment. Intensively developed east-dipping normal faults and tension fractures permit circulation of meteoric fluids to the northern Snake Range detachment footwall mylonites (Hendry’s Creek) with high heat flow as driving force for hydrothermal fluid circulation in this part of the northern Snake Range detachment. Note the presence of basins that form directly above the zone of active faulting and connect fluids from the surface to depth. In contrast, along the western flank of the range (Negro Creek), the rolling hinge detachment system induces the rotation and translation of blocks preventing the fluid connection between Earth’s surface and the northern Snake Range detachment footwall.
Proposed Model for Northern Snake Range Detachment Evolution

We propose that quartzite observed along the western and eastern flanks of the northern Snake Range metamorphic core complex records two distinct deformation events (Fig. 8). Following Jurassic–Cretaceous crustal shortening, collapse of the thickened Sevier-Laramide hinterland region affected the southern Cordilleran from Late Cretaceous to early Eocene time. This extensional event induced a rotation from steep to moderate dip of the west-directed thrust system responsible for tectonic burial of late Precambrian to early Mesozoic strata (Fig. 8A; Lewis et al., 1999). Partial exhumation of the near-horizontal metamorphosed sequence was likely enhanced by Eocene volcanism and plutonism (e.g., Brooks et al., 1995a, 1995b; Henry and Ressell, 2000; Henry, 2008), which heated and softened the crust, facilitating crustal thinning. We suggest that during that time (ca. 49–45 Ma), the Lower Cambrian Prospect Mountain Quartzite and Pioche Shale, which are preserved today along the western flank of the northern Snake Range, experienced coaxial deformation and cooling, with cross-girdle c-axis fabric development and Eocene 40Ar/39Ar resetting of Cretaceous muscovite (Fig. 8B). In response to lithospheric extension, a moderately dipping brittle-to-ductile normal detachment zone developed and was rooted deeply beneath the thick and rigid foreland region (Fig. 8C). This high-strain zone used the preexisting discontinuity formed by early west-directed thrust systems (Fig. 8B) and localized preferentially in quartzite-dominated lithologies (e.g., Whitney et al., 2013). Moderately to steeply dipping normal faults accommodated extension in the upper brittle crust, producing a fan-shaped fault pattern (e.g., Brun and van den Driessche, 1994). Here, upper-crustal extension generated shear and tension fractures, which enhanced porosity and permeability, with the potential of channelizing surface fluids down to the brittle-ductile transition (Fig. 8C).

As extension proceeded, the detachment zone was rotated toward the horizontal, with the footwall and hanging wall undergoing upward and downward motion, respectively (e.g., Buck, 1988; Brun and van den Driessche, 1994). It is very likely that this rolling-hinge motion was triggered by the presence of low-viscosity material, which flowed in the lower crust to fill the gap created by rotation of the detachment footwall (Whitney et al., 2013).

In accordance with the rolling-hinge model proposed by Buck (1988), Wernicke and Axen (1988), Wernicke (1990), and Brun and van den Driessche (1994), the brittle normal faults that dissect the upper crust were gradually rotated and translated above the detachment fault and became inactive; in the northern Snake Range detachment, the Negro Creek section may be an example of such a tilted block. In our model, new faults continuously developed in the active wedge of the hanging wall, while footwall rocks were uplifted. The top-to-the-east sheared rocks in the detachment footwall and associated ductile deformation microstructures underwent rapid cooling (Fig. 8D). This rolling-hinge mechanism (e.g., Buck et al., 2005; Smith et al., 2008) explains the characteristic convex-upward shape of the northern Snake Range detachment as well as our 40Ar/39Ar and hydrogen isotope results from Hendry’s Creek, which indicate a main exhumation event during the Oligocene–Miocene (e.g., Bartley and Wernicke, 1984; Miller et al., 1999a; Gébelin et al., 2011). Continued active faulting along the eastern flank of the detachment permitted fracture-dominated flow of surface fluids down to the brittle-ductile transition (Fig. 8D). This downward flow of surface fluids to the brittle-ductile transition zone was sustained by rapid upward transfer of hot rocks (Gans and Miller, 1983; Miller et al., 1988, 1999a; Gans et al., 1989), which induced buoyancy-driven fluid convection (Person et al., 2007).

The consistently low white mica δD values from the Hendry’s Creek mylonitic quartzite (δD$_{\text{muscovite}}$, -150%) suggest that meteoric fluids continued to permeate the east-dipping segment of the rolling-hinge detachment. In contrast, meteoric fluid flow may have ceased on the western limb as the rolling-hinge detachment developed and the upper-crust normal faults rotated and became inactive (Brun and van den Driessche, 1994). We note that sample SR09-NC18, collected at the bottom of the Negro Creek section, displays a low δD$_{\text{muscovite}}$ value (δD$_{\text{muscovite}}$, -142%) and a plateau age at 27 Ma, which is consistent with early (late Oligocene) northern Snake Range detachment activity. Therefore, the Negro Creek section may reflect an early stage of fluid connection to the surface that was lost during development of the rolling hinge. In contrast, the mylonitic quartzite at Hendry’s Creek recorded cumulative fluid-rock interaction until Miocene time (ca. 21 Ma), with surface fluids that were fed to the detachment zone by numerous brittle normal faults. This style of faulting is well preserved today in the Miocene Sacramento Pass supradetachment basin (Grier, 1984) (Fig. 8D).

In summary, the kinematics of the northern Snake Range rolling-hinge detachment can be associated with progressive fluid flow from the surface to ductile levels of the extending crust. Microstructural, stable isotopic, and thermochronological data suggest that detachment activity started in Oligocene time; this early detachment stage is preserved in the rotated, western flank of the detachment system (Negro Creek section), which also preserves Eocene fabrics. In contrast, continued Miocene hydration of the ductile detachment fabrics on the eastern flank of the detachment system was promoted by active faulting of the upper crust, as observed in the faulted/tilted Sacramento Pass supradetachment basin.

CONCLUSION

Hydrogen isotope, microstructural, and 40Ar/39Ar thermochronology data from the northern Snake Range detachment footwall shed new light on crustal hydrology during extensional tectonics. Oligocene–Miocene extension was accommodated by an east-dipping rolling-hinge detachment system that exhumed detachment footwall rocks in an anticlinal structure of quartzite and schist. The western limb of this anticline was exhumed first and rotated around the rolling hinge. A section of this western limb at Negro Creek preserves Eocene fabrics (49–45 Ma, 40Ar/39Ar muscovite ages) that developed during coaxial deformation in the presence of metamorphic fluids. The Eocene fabrics are locally overprinted by late Oligocene shear zones containing muscovite with δD values characteristic of meteoric water interaction. The eastern flank of the detachment footwall is characterized by intense Oligocene–Miocene (27–21 Ma) ductile deformation and pervasive infiltration of meteoric fluids that likely originated at high elevation (δD$_{\text{muscovite}}$, -150%).

Circulation of meteoric fluids through the brittle-ductile transition was possible by continued faulting of the upper crust on the eastern flank of the detachment during progressive development of the rolling hinge.

More generally, results from this study confirm that rolling-hinge detachments result in diachronous deformation and exhumation patterns as the detachment footwall goes through the rolling hinge. In addition, results suggest that fluid flow is intimately coupled to the porosity-permeability structure that is associated with progressive rolling-hinge deformation (active faults, faults rendered inactive by rotation), and exhumation. Sustained fluid flow through the upper crust and hydration of the ductile crust by meteoric fluids are expected in the downdip direction of a rolling-hinge detachment.

ACKNOWLEDGMENTS

This study was funded through the LOEWE program of Hesse’s Ministry of Higher Education, Research, and the Arts and additional support through a
Mans Canyon 7.5’ Quadrangle, Northern Snake Range, White Pine County, Nevada: Nevada Bureau of Mines and Geology Field Studies Map 21, scale 1:24,000.

SCIENCE EDITOR: DAVID SCHOFIELD
ASSOCIATE EDITOR: BERNHARD GRASEMANN
MANUSCRIPT RECEIVED 9 JANUARY 2014
REVISED MANUSCRIPT RECEIVED 23 MAY 2014
MANUSCRIPT ACCEPTED 1 JULY 2014
PRINTED IN THE USA

Downloaded from gsabulletin.gsapubs.org on January 27, 2015

Manuscript Accepted 1 July 2014
Printed in the USA

Meteoric water circulation and rolling-hinge detachment faulting
Meteoric water circulation in a rolling-hinge detachment system (northern Snake Range core complex, Nevada)

Aude Gébelin, Christian Teyssier, Matthew T. Heizler and Andreas Mulch

Geological Society of America Bulletin 2015;127, no. 1-2;149-161
doi: 10.1130/B31063.1

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

© 2014 Geological Society of America