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One of the best supported patterns in life history evolution is that organisms cope with 

environmental fluctuations by buffering their most important vital rates against them. This 

demographic buffering hypothesis is evidenced by a tendency for temporal variation in rates 

of survival and reproduction to correlate negatively with their contribution to fitness. Here, 

we show that widespread evidence for demographic buffering can be artefactual, resulting 

from natural relationships between the mean and variance of vital rates. Following statistical 

scaling, we find no significant tendency for plant life histories to be buffered 

demographically. Instead, some species are buffered, while others have labile life histories 

with higher temporal variation in their more important vital rates. We find phylogenetic 

signal in the strength and direction of variance-importance correlations, suggesting that 

clades of plants are prone to being either buffered or labile. Species with simple life histories 

are more likely to be demographically labile. Our results suggest important evolutionary 

nuances in how species deal with environmental fluctuations.  
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All organisms face the challenges of environmental variation through time. One important 

adaptation to reduce the impacts of environmental changes on fitness is to buffer important 

life history traits against them1. This Demographic Buffering Hypothesis (DBH) is well-

established in classical theory2 and has three interlinked premises. First, the vital rates (age- 

or stage-specific survival, growth and reproduction) of any life history will vary in their 

contribution to population growth. Second, variation in vital rates reduces long term 

geometric mean fitness and increases extinction risk1,3. Third, life history constraints prevent 

organisms from buffering all vital rates. Consequently, natural selection should favour 

stronger buffering against temporal variability in the demographic rates to which population 

growth is most sensitive, also termed environmental canalization4. Support for the DBH 

comes from observations of negative correlations between the importance and variability of 

demographic or vital rates across a wide range of taxa, including birds5,6, plants7, large 

herbivorous mammals8,9 and reptiles7,10. Despite this evidence, demographic buffering has 

been criticised for two main reasons. First, few studies consider alternative demographic 

strategies11. Second, standard comparative analyses often fail to account for important natural 

constraints4,12-14 on the mean-variance relationship for each vital rate.  

An alternative, but less explored, life history strategy for dealing with environmental 

variability is demographic lability, whereby life histories are selected to track environmental 

fluctuations15, but are constrained to do this only among their most important vital rates11. 

Demographic lability implies a positive correlation between the importance and variability of 

a demographic rate. These demographic strategies emerge as a consequence of phenotypic 

adaptations in response to a changing environment. Whereas buffering of demographic rates 

is mediated through selection on underlying phenotypes against variability (canalization), 

lability occurs with the phenotype exhibiting a degree of plasticity in response to changing 

environmental conditions. Theoretically, temporal variation in life history parameters can 
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enhance fitness under certain scenarios11,16. Jensen’s inequality17,18 reveals that an 

accelerating response of fitness to environmental parameters, mediated by vital rates, can 

yield higher geometric mean fitness for life histories that track fluctuations, rather than buffer 

against them11.  

A further consideration is that evidence for the DBH might arise not because life histories 

have been favoured by natural selection to buffer their most important vital rates, but because 

demographic parameters with steepest selection gradients are inevitably those constrained to 

have low variance. Survival and growth probabilities, which are bounded to lie between zero 

and one, are constrained to have smallest variance at either limit4 (Supplementary Fig. 2). 

Rates of sexual and clonal reproduction are able to take any positive value with variances that 

tend to increase with an increasing mean12 (Supplementary Fig. 2). Therefore, survival 

probabilities with mean magnitudes close to one might be strongly favoured by natural 

selection but have negligible variance. The coefficient of variation, an alternative measure of 

variation19, also suffers from strong statistical constraints (see supplementary material and 

Supplementary Fig. 3).  Bias due to variance constraints manifests itself not only in measures 

of variance but also as inconsistencies in the sensitivity of population growth to demographic 

rates14. These statistical constraints are well established in the literature4, yet are often 

overlooked in analyses.   

Although theories of demographic strategies in variable environments have been widely 

tested among plants and animals4,7,15, to reveal the biological underpinnings of demographic 

patterns, we must first consider the influence of statistical constraints on both variance and 

importance. In doing so we are able to provide the first comparative assessment of the 

distribution of buffering and labile strategies across plant taxa. 
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Results 

To demonstrate the statistical artefact, we simulated 12000 random life histories as stage-

structured population projection matrices (PPMs20; Supplementary Fig. 1). We created five 

temporal replicates of each life history to simulate annual variation. For each simulated time 

series of structured vital rates, we correlated importance (sensitivity) and variability (standard 

deviation) of demographic rates. This test for the DBH on simulated life histories revealed 

consistently negative correlations (96%; Supplementary Table 1), even in the complete 

absence of natural selection. Therefore, without statistical correction, any naïve analysis of 

demographic strategies in wild populations will tend to find evidence for the DBH. 

Resolving the relative prevalence of demographic buffering and lability requires a fair 

quantitative treatment. We applied a link-scaling correction that removes the functional 

relationship between mean and variance across rates14 to create variance-standardised values 

for measures of both variability and importance (see Supplementary Results). This 

framework successfully stabilised the structural relationship between the mean and variance 

both within and across demographic categories (Supplementary Results; Supplementary Figs 

2-5). Link scaling removed the spurious bias towards negative correlations in simulated life 

histories where evidence for demographic buffering should not exist (the prevalence of 

negative correlations dropped from 96% to 51%; Supplementary Table 1). Link-scaling 

therefore provides a method to deal with statistical constraints in demographic analyses, 

allow analyses to work with both demographic probabilities and rates, and better assesses 

evidence for different demographic strategies across wild populations. 

Using data from the COMPADRE Plant Matrix Database21, we analyse correctly the 

demographic strategies of 141 different plant populations that are representative of 73 species 

drawn from a diverse range of plant evolutionary lineages, growth forms and habitats. 
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Among wild plant populations the prevalence of negative correlations between the 

importance and variability of uncorrected demographic parameters was 87.2%. This dropped 

to 67.4% following link-scaling (Fig. 1), with correlations reversed in several individual 

cases (Supplementary Fig. 6). A mixture of negative, null and positive patterns highlights the 

existence of divergent demographic strategies (Fig. 1): selection on life histories has yielded 

species with sets of vital rates that are buffered against environmental change (negative 

correlations), and others that are labile (positive correlations).  

Using Bayesian mixed effects models (MCMCglmm22) to account for shared evolutionary 

history revealed phylogenetic signal accounted for an important amount of heterogeneity in 

the evidence for demographic buffering (Table 1), resulting in a global mean correlation (at 

average life-stage complexity) not credibly different from zero across variance-standardised 

life histories (Fig. 2). As a consequence, evidence for demographic buffering in plants is 

reduced dramatically. The overall reduction in evidence for buffering, the phylogenetic signal 

and the reversal of strategies at an individual population level, reveal two things. First, there 

is a need to account for statistical constraints when assessing demographic strategies. Second, 

alternative demographic strategies exist across populations and species. Different plant 

groups distribute unevenly in the global spectrum of demographic strategies (Fig. 3). Note 

there was no evidence of phylogenetic signal of uncorrected correlations (H2=0.003 (95% 

CRI 0.001-0.658)).  

To investigate potential characteristics that influence demographic strategy, we tested 

whether proxies for environmental variability (latitude and ecoregion), demographic 

variability (mean variance standardised standard deviation across demographic parameters 

for each population), life history (life expectancy and number of lifestage classes) and 

ecology (invasive status) affected the degree to which populations were buffered or labile. 

We consolidated our analysis to four main predictors. First, lability might be more frequent in 
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more variable environments where plasticity is favoured23,24, or less frequent due to 

extinction risks associated with environmental stochasticity1. Second, species experiencing 

more demographic variation might have less labile responses due to extinction risks 

associated with demographic stochasticity25. Third, short-lived species with simple life 

histories might have more labile responses, because those species are more likely to show 

convex reaction norms between fitness, vital rates and environmental conditions11. Fourth, we 

considered the possibility that invasive species in their invaded range might be less adapted to 

their novel environments, might be unusually buffered or labile, and might be over- or under-

represented in the COMPADRE database. Phylogenetically-informed MCMCglmm analysis 

found that buffering increased in strength with increasing number of lifestage classes, while 

proxies for environmental variation, demographic variation and invasive status had no 

credible influence (Supplementary Fig. 7).  

The observation of stronger demographic buffering among species with more lifestages might 

be due to impacts on fitness of nonlinear averaging across concave reaction norms. It might 

reflect the ability of those species to spread risk among stage-specific vital rates. It might also 

be driven by a correlation between life history complexity and longevity, such that risks are 

spread among lifestages, across years. However, there are two alternative, statistical 

explanations. First, stronger evidence for demographic buffering might arise from a tendency 

of “simplified” models of life histories, with fewer stages, to under-predict the population’s 

degree of demographic buffering by averaging over peaks and troughs in the variation and 

importance of stage-specific rates of survival and fecundity26. Second, the inclusion of 

multiple demographic rates might simply increase the statistical power to detect any negative 

correlation between importance and variance. 

Discussion 
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Despite suggestions that a range of demographic strategies can be selected for in variable 

environments, the weight of empirical evidence has, to date, favoured demographic buffering. 

However, issues of statistical scaling with measures of both sensitivity and variability, which 

are inherent in comparative analysis of demographic rates, despite being previously 

identified4,12,14, are commonly neglected. We have accounted for mean-variance relationships 

across demographic rates, and revealed a continuum of demographic strategies across the 

plant kingdom, from demographic buffering to demographic lability. An important challenge 

is now to understand the environmental, phylogenetic and demographic properties that favour 

buffering or lability 

Our observation, that buffering is more likely among species with many lifestages, supports 

the contention that lability is more likely among short-lived species, because they exploit 

nonlinear averaging across convex reaction norms11. This was also supported by evidence for 

lability within a group of herbaceous perennials in the subfamily Asteroideae, of the family 

Asteraceae, whose average life expectancies were all less than 18 months. However, we also 

find lability to be present among some long-lived trees (e.g. firs, genus Abies), even when 

controlling for number of lifestages. This runs counter to the argument that only short-lived 

species should be labile. We consider three explanations for lability among some trees. First, 

long-lived plants might spread their reproductive output across several years, and can 

therefore hedge their bets against environmental fluctuations27. Second, greater storage of 

resources in large adult lifestages might allow them to exploit good reproductive and/or 

growth conditions in a stochastic environment16,28, but suffer little loss in bad years. Third, 

trees might persist only in predictable environments where buffering is not required and the 

cost of lability is reduced.  

Better understanding of links between life history and environmental fluctuations should 

inform management strategies for endangered or invasive species, particularly in the face of 
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present and future environmental change. However we currently lack the environmental data 

to capture such effects using the COMPADRE database. This suggests a rich future research 

programme to discover the ecological, evolutionary and environmental predictors of 

demographic strategy.  

Methods 

Empirical data 

Demographic data was obtained from an open source, online repository of plant PPMs 

(COMPADRE21). These matrices summarize the life cycle transitions for over 500 plant 

species, such as rates of stasis, progression and recruitment for stage-based matrices. Only 

replicated studies of the same population, using a yearly time period, were included. 

Therefore we excluded mean PPMs (where demographic traits have been averaged across 

time), studies of populations undergoing experimental treatment and PPMs quantifying 

seasonal transitions (< 1 year). Reducible and non-ergodic matrices were also removed to 

prevent potential problems associated with these model structures29. To prevent conflicting 

demographic rates and probabilities we used matrices in COMPADRE where the matrix 

population model had been divided into the process based submatrices, enabling us to 

identify and distinguish between survival based transitions and reproduction (both sexual and 

clonal). 

Matrices were classified by species, matrix dimension, as well as replicate population, to 

ensure calculations of variability were of temporal and not spatial origin. Only demographic 

data that spanned a minimum of three annual transitions were included, with the number of 

temporal replicates ranging from three to 12 matrices per population.  
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A total of 839 PPMs describing 141 different populations representing 73 unique species 

satisfied our demographic requirements and were included in the analysis.  

Simulated data 

We generated a series of 12000 random populations. For every population, five replicate 

matrices were generated (five years was the mean number of replicates in the plant 

demographic data). The dimensions of the simulated PPMs were set to lie between four and 

15 classes, with 1000 populations randomly generated for each matrix dimension.  

The Lefkovitch matrix structure30, composed of stage classes, was chosen to represent our 

simulated life histories. We simulated stage-specific survival and growth probabilities (σ and 

γ, respectively) and stage-specific rates of reproduction (φ). Surviving individuals either 

remained in stage i (stasis = σi (1- γi)) or moved to the next stage class i+1 (progression = σi 

γi). For simplicity we did not incorporate negative growth or retrogression. We assumed a 

pre-breeding census so that the reproduction elements in the first row did not include survival 

of adults. We also assumed survival occurred before transition, that is transition from stage 

class i required survival of individuals in stage i.  

Demographic parameters were randomly generated for every non-zero matrix entry. 

Parameters bounded between zero and one (survival σ and growth γ) were initially simulated 

from a uniform distribution between these two values. To generate temporal variability in 

these vital rates, replicate values were drawn from a normal distribution specifying the logit-

transformed vital rate as the mean and a standard deviation of one, thus variation was 

equivalent across all vital rates. The inverse-logit transformation then scaled the parameters 

to lie between zero and one. The subsequent value for each matrix coefficient was calculated 

from these vital rates using the equations in Supplementary Fig. 1. The bounded probability 
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nature of the vital rates (σ and γ) guarantees that stasis and progression rates from each stage 

class cannot sum to more than one.  

Initial mean reproduction rates (φ) were randomly sampled from a uniform distribution 

between 2 and 8. To generate temporal variation in these rates, replicate values were drawn 

from a normal distribution specifying the log-transformed reproductive rate as the mean and a 

standard deviation of one. The exponential function then back-transformed the parameters, 

ensuring values did not fall below zero. The choice of one for standard deviation was 

representative of plant demographies, and changing this value did not qualitatively change 

the results. 

Observing the mean variance relationship 

For every simulated and average matrix from COMPADRE we estimated the variation of 

each matrix entry in terms of the standard deviation (sd) of the mean and also the coefficient 

of variation (CV; σ/µ).  

Testing the demographic buffering hypothesis 

We tested for evidence of demographic buffering by exploring whether the standard deviation 

of matrix entries correlated with the contribution of a demographic rate to population growth, 

estimated as its sensitivity, for the simulated dataset and for the COMPADRE populations. 

Measures of absolute perturbations (sensitivity) were estimated using the popdemo package31 

in R32.  We looked at the direction (positive/negative) of Spearman rank coefficients to 

provide insight into the ubiquity of negative associations, and the mean correlation 

coefficient (and 95% confidence intervals) to indicate the strength of the associations.  

Link-scaling 
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We used a transformation approach to account for dissimilar demographic scales and 

heterogeneity of sensitivity estimates14. To achieve this, matrix entries were corrected by 

logit- and log- transformation of demographic probabilities (stasis and growth) and 

demographic rates (reproduction or recruitment) respectively. Specifically, for matrix entries 

that are probabilities (θ; e.g. survival and growth between classes) the variance is dependent 

upon the mean (µ). This restriction arises because14 

0 ≤ Var (θ) ≤ µ(1-µ) 

To avoid this, and ensure survival and mortality have equal rankings, we apply a variance-

stabilizing transformation to sensitivity calculations. We use logit variance stabilised 

sensitivity (VSS), logit (θ) = ln (θ/ (1-θ)) and applied the following formula adapted from 

Link and Doherty Jr 14, logit VSS = 
(1 )θ θ λ
λ θ
− ∂

∂ . For fecundities, which are constrained 

below by zero but can have any positive value, the logarithm transforms the parameter to a 

scale on which changes are independent of the mean14, thus we applied log–scaled sensitivity 

(elasticity).  Additionally, we applied a logit transformation to probabilities and log 

transformed rates to every replicate matrix to calculate a matrix of link-scaled standard 

deviations for each population. The simulated and COMPADRE dataset was retested using 

link-scaling in addition to observing the mean-variance relationship. We also tested that link-

scaling removed within species associations between the variance and mean of demographic 

rates. 

We initially applied an intercept only model to test whether the (overall) mean of the 

correlation coefficients was different from zero. We also tested for the effect of 

environmental variability, demographic variability and life history. Two covariates were used 

to explore whether environmental variability informs demographic strategy; latitude and 
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ecoregions. The ecoregions in COMPADRE were collapsed into major habitat classes to 

increase the statistical power: Alpine & Arctic, Arid, Temperate and Tropical and 

Subtropical33. To test whether demographic variability influenced demographic strategy we 

used the mean variance standardised standard deviation as a predictor value. This was 

calculated for each population from the variance standardised standard deviations of vital 

rates. Life expectancy was calculated as a life history index, as the mean time to death given 

that the individual starts in the first year of their lifecycle. This was calculated from the 

fundamental matrix (N) of a transition matrix that includes transitions that depend only on 

survival. Methods described in Caswell20 . The number of stage classes was also included as 

a measure of life history complexity. Additionally, to account for potential bias in species 

studied we incorporated invasive status. Each of the plant species was classified as native or 

invasive at the location in which they were studied. Plant status was determined by searching 

the Global Invasive Species Database (GISD)34, the Invasive Species Compendium35, the 

Australian Invasive Weed List36, the Australian Plant Census37, the European and 

Mediterranean Plant Protection Organization database38, Schedule 9 of the Wildlife and 

Countryside Act (1981), the United States Department of Agriculture (USDA) Plant 

Database39 and by using the following search term in Google ‘Latin name invasive’.  Species 

are considered invasive when designated as ‘invasive’ (also ‘weedy’ or ‘noxious’ in the 

USDA Plant Database39) in one or more of the databases listed above or when designated as 

invasive by a Government Agency or Academic Institution. Twelve populations comprising 

two plant species were identified as invasive plants at the study location. 

We fitted our model using a Bayesian MCMCglmm package22 in R v.3.1.132 to account for 

non-independence due to species and phylogeny, by scaling random effects by the inverse 

variance–covariance distance matrix estimated by the phylogeny associated with our 

species21. We excluded two fern species that made up all ferns in our sample (Asplenium 
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adulterinum and A. cuneifolium), which were not present in the phylogeny. Consequently, 

138 populations consisting of 71 species were included in our MCMCglmm analysis. Our 

response variable (correlation coefficients) was modelled using a Gaussian distribution. We 

determined the number of iterations, burn-in and thinning by visually assessing the mixing of 

three chains and formally using Gelman and Rubin’s convergence diagnostic using R 

package coda40. We let the MCMC algorithm run for 800,000 iterations, with a burn in period 

of 80,000 and a sampling interval of 400. Each model generated ~1,800 independent samples 

of model parameters. Parameter-expanded proper diffuse priors were used for random effects 

(inverse Wishart distribution with V=1 and ν=0.001, alpha-μ=0 and alpha-V=100), and 

proper diffuse priors for residuals (inverse Wishart distribution with V=1 and ν=0.001). We 

confirmed results were not sensitive to the choice of prior by fitting multiple models. The 

adequacy of models with and without phylogeny was assessed by comparing the Deviance 

Information Criterion (DIC) of the two models41. The relative variance attributable to the 

phylogenetic random effect component was subsequently calculated as the ratio of variance 

explained by phylogeny to the sum of phylogenetic variance, species variance and residual 

variance. 

To visualize evidence for demographic buffering through phylogeny we used the 

contmap function of the phytools R package42. The mapping of the degree of demographic 

buffering (represented by the mean correlation coefficient per species) is based on maximum-

likelihood estimation of states at internal nodes and interpolation of the states along each 

edge43,44. 

Phylogeny 

Study species were allocated to their currently recognised families under the Angiosperm 

Phylogeny Group classification45,46 and guided by The Plant List 



15 
 

(http://www.theplantlist.org/). The full species list with corresponding families was then 

submitted to PHYLOMATIC (http://phylodiversity.net/phylomatic/47) to produce a 

topologically correct tree at family level. Further resolution was accomplished by reference to 

more specific phylogenetic studies. These more specific studies are listed in the Supporting 

Information (Electronic Appendix S5) of Salguero-Gomez, et al.21. For this purpose, the tree 

topology was manipulated in MESQUITE (http://mesquiteproject.wikispaces.com/48). Our 

priority was to produce a topologically accurate tree given expert knowledge on systematics 

of the taxa concerned including all the information available (e.g., genetic, morphological and 

chemical). In this respect, we followed the philosophy employed for the NCBI taxonomy, 

which is not generated directly from DNA sequence data, but from authoritative primary 

literature sources for nomenclature and classification49. Finally, in order to temporally 

calibrate this topologically acceptable tree, phylogenetic distances were interpolated with the 

bladj function of PHYLOCOM50, using the node ages provided by Wikström, et al.51. 
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Figure legends 

Figure 1. Distribution of correlation coefficients from uncorrected (sd, sensitivity) and 

corrected (variance standardised standard deviation, variance standardised sensitivity) 

Spearman correlations (N=141) 
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Figure 2: Posterior distributions of the correlation coefficient (at average number of stage 

classes) between sensitivity and standard deviation of vital rates, as predicted from 

MCMCglmm models that account for species identity and the number of stage classes. 

Posterior distributions are shown for a naïve uncorrected analysis, an uncorrected analysis 

with phylogenetic control, a variance standardised (vs) analysis and a vs analysis with 

phylogenetic control. Naïve analyses using unscaled sensitivities and standard deviations 

yield highly credible evidence for demographic buffering throughout the plant kingdom. 

Link-scaling, to remove mean-variance relationships, yielded no credible bias towards 

demographic buffering in the presence of phylogenetic control. **pMCMC<0.01; * 

pMCMC<0.05; ns not significantly different from zero (N=138) 

Figure 3: Maximum likelihood ancestral state reconstruction of demographic strategy onto 

the phylogeny. Legend shows the colour range from blue-green (demographic buffering) to 

yellow-red (demographic lability). 

Tables 

Table 1: Phylogenetic MCMCglmm model on predictors of demographic buffering across 

plant populations (N=138) with dimension standardised.  

 Estimate 95% CRIs Posterior Density 

fixed term  

Intercept -0.04 (-0.49,0.44) 

 

number of stage 

classes 
-0.22 (-0.31,-0.11) 
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random terms    

residual variance 0.11 (0.08,0.15) 

 

species variance 0.02 (0.00,0.07) 

 

phylogenetic 

variance 
0.19 (0.00,0.39) 

 

To account for phylogenetic non-independence, models included a phylogenetic random 

effect derived from the Angiosperm phylogeny associated with our species21. Provided are 

the posterior means and 95% credible intervals of fixed and random effects, with number of 

stage classes as the fixed variable, and species and phylogeny as random variables. After 

accounting for species, the phylogenetic signal, estimated as heritability52, was H2 = 0.57 

(95% CRI: 0.17–0.81). 
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Figure 3 

 

 


