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Abstract

Renormalized energy momentum tensor from the Gradient
Flow

by
Francesco Capponi.

Strongly coupled systems are elusive and not suitable to be described by conventional pertur-
bative approaches. However, they are ubiquitous in nature, especially in particle physics.
The lattice formulation of quantum field theories provided a unique framework in which the physical
content of these systems could be precisely determined. Combined with numerical techniques, the
lattice formalism allowed to precisely determined physical quantities describing the thermodynam-
ics, as well as the spectroscopy of strongly interacting theories.
In this work, the lattice formulation has been employed to probe the e↵ectiveness of a recently
proposed method, which aims at determining the renormalized energy-momentum tensor in non
perturbative regimes. The latter plays a fundamental role to quantitatively describe the thermody-
namics and fluid-dynamics of hot, dense systems, or to characterize theories that enlarge the actual
standard model. In all these aspects, only a non perturbative approach provides physically reliable
results: hence a non perturbative determination of the energy momentum tensor is fundamental.
The new method consists in defining suitable lattice Ward identities probed by observables built
with the gradient flow. The new set of identities exhibits many interesting qualities, arising from
the UV finiteness of such probes, and allows to define a numerical strategy for estimating the renor-
malization constants of the lattice energy-momentum tensor.
In this work the method has been tested within two di↵erent quantum theories, with the purpose
of understanding its e↵ectiveness and reliability.
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Introduction

Quantum field theory (QFT) is recognised as the natural theoretical framework for describing
the dynamics of fundamental particles and their interactions. Since its inception [1], it has been
subjected to a continuous evolution process, characterized by several significant phases. Among
these, one could recollect the formulation of Fermi theory of beta decay, the adoption of Feynman
path integral formalism in perturbation theory, or, last but not less important, the establishment
of the Standard Model.

Along this evolution path, one of the most important landmarks is surely represented by the
emergence of the renormalization group (RG) apparatus. Its first appearance is dated back to the
works of Stueckelberg and Petermann [2], Gell-Mann and Low [3], who studied the ambiguities in
the regularization procedures of divergences that plague perturbative quantum field theory. They
realized that, in renormalizable field theories, the ambiguities in the energy scale, introduced during
the renormalization procedure, can be used to relate the behaviour of the theory at small and large
energies. In this scenario, the parameters of the renormalized theory depend on the energy scale
according to a set of identities called renormalization group equations, the most famous one being
the well known � function [4, 5]. The RG machinery has been successfully applied to Quantum
Chromodynamics (QCD): in this case, the integration of the QCD � function showed how the
renormalized coupling tends to zero at short distances (asymptotic freedom [6]), while it increases
at the large ones. This theoretical result allowed to explain the famous scaling phenomenon that
Bjorken observed in deep inelastic experiments, as well as making plausible the idea that the quarks
would be confined inside hadrons. At the same time, it also limited the applicability of perturbative
methods to the high energy regime, pointing out that new strategies had to be employed to probe
low energy properties of the theory from first principles.

Initially confined to renormalizable field theories [2, 3, 4, 5], the RG was then reformulated
by Wilson [7, 8, 9, 10], opening the way for applications also in condensed matter and statistical
mechanics. The Wilsonian RG was based on the concept of a scale-dependent e↵ective action,
obtained by integrating out degrees of freedom at energies above a given cut-o↵ ⇤. In this setting,
as long as the theory is studied at energies well below ⇤, the correctly normalized correlation
functions should be independent on its value. From this assumption, one can derive a set of RG
equations describing how the e↵ective couplings vary with the cut-o↵ in order to leave the physics of
the system unchanged. The behaviour of the theory at small and large scales is totally determined
by analyzing the possibly existing RG fixed points and the cut-o↵ value at which they occur. Since
the all apparatus can be constructed without making any strong assumption on the structure of
the theory (such as renormalizability), it has a more general use than its original version. Through
the concepts of universality and universality class, it has allowed to understand why di↵erent high
energy theories flow to look the same in the infrared (IR) regime, showing how it is possible to study
a physical problem, at a given scale, without worrying about what the degrees of freedom at much
higher energies are doing. This result had important consequences in the study and characterization
of critical phenomena in statistical physics. Similarly, the same concepts have been the premise for
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the definition of a continuum limit in quantum field theory, a fundamental prerequisite for proving
the existence of continuum, renormalized interacting theories.

Along with the Wilsonian RG, another important step has been its e↵ective representation
within the framework of lattice field theory [11]. The lattice regulator enabled to e�ciently apply
Wilson’s idea of RG, and became an essential device for studying quantum theories non pertur-
batively. For example, it has allowed to consistently verify the triviality of the O(n) models with
quartic interaction in four dimensions [12, 13, 14], leaving little doubt that the current Standard
Model can only be interpreted as an e↵ective theory bounded by a cut-o↵. On the other hand,
lattice QCD has made possible to tackle several problems characterizing hadron phenomenology,
like quark confinement, spontaneous chiral symmetry breaking, hadrons spectroscopy, running of
couplings and thermodynamics. All these theoretical issues characterize the low energy regime of
the theory, where quantitative results, based on perturbation theory, are not reliable: the lattice
regularization, combined with the application of numerical methods, allowed to quantitatively in-
vestigate them, bringing new insights about the world of strongly interacting particles. Nowadays,
the lattice formalism is widely recognized as an essential tool for investigating non perturbative
properties of quantum field theories.

In this work, the lattice regularization has been the technical framework for studying a well
known, hot topic of quantum field theory: the renormalization of composite operators. The main
goal of this procedure is to render Green’s functions containing the insertion of some local operators,
which are not in the action, finite as the cut-o↵ is removed. These operator insertions are usually
related to order parameters, like the chiral condensate, or physical observables, like the energy
density: their renormalization then plays a crucial role for quantitatively describing the physical
properties of a system.

Usually, the whole procedure can be performed writing the renormalized operator as a sum
over local terms, with mass dimension less or equal than the original operator. With respect the
latter, each of these terms has to share the same symmetry properties. In the sum, each operator
is multiplied by a possibly divergent coe�cient, called renormalization constant [15]. The renor-
malization constants encode the divergences that have to be subtracted to make insertions of the
renormalized operator finite, and are determined using some specific local conditions (e.g. Ward
identities). In perturbation theory, the all method can be carried out using analytic calculations,
giving the renormalization constants as a power expansion in the couplings of the theory, up to a
given order. Non perturbatively, the same procedure can be implemented only imposing a renor-
malization condition for the original operator, and then solving it with numerical methods: in this
case, the lattice formulation represents the perfect candidate for the execution of this task.

Here, all the interest has been focused on the non-perturbative renormalization of the energy
momentum tensor. It is important to determine the renormalized form of such operator in many
aspects of quantum field theory. In thermodynamics, it is needed to correctly measure the energy,
pressure and entropy density of a system at thermal equilibrium, or the shear viscosity of a fluid
medium. It can also be used as an order parameter for probing fundamental properties of a theory,
like translational and conformal invariance, the latter being particularly relevant when beyond
Standard Model (BSM) theories are under investigation.

The energy momentum tensor is related to the Noether current of translational symmetry: in
quantum field theory, the invariance of a physical system under this symmetry results in a collection
of Ward identities that can be used to define the corresponding renormalized operator [16, 17,
18]. In the continuum formulation, Poincaré invariance and, if any, other internal symmetries,
play an important role in limiting the number of possible operators that come into play during
the renormalization process. However, when a lattice regulator is adopted, Poincaré invariance is
broken and its restoration is only guaranteed in the continuum limit. For this reason, at finite
lattice spacing, the correctly renormalized energy momentum tensor is obtained as a mixing of all
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operators allowed by the lattice symmetries [19, 20], i.e. those of the hypercubic group. This is
not an insignificant detail, since the lost of Poincaré symmetry could cause an impressive growth
in the number of operators to be added, and this would make definitely more di�cult the all
renormalization procedure, as well as a↵ect its outcome. The assumption that Poincaré invariance
is recovered in the continuum implies that it is possible to tune the renormalization constants in such
a way that translation Ward identities are satisfied up to terms that vanish when the lattice spacing
goes to zero. Unfortunately, the main problem of all this approach is that local Ward identities
are plagued by additional divergences (contact terms) which make the numerical extraction of the
coe�cients incredibly challenging.

A possible strategy to overtake this obstacle can be the definition of a new kind of observables,
whose employment for probing the Ward identities does not give rise to contact terms, and then
allows to get a better signal from numerical simulations. The fulfilment of such a strategy is possible
thanks to a particular, exact-smearing procedure, firstly introduced in the framework of strongly
interacting theories [21, 22, 23, 24], and then extended to other interesting cases [25, 26]: the
gradient flow. Starting from an initial field configuration, the gradient flow evolves the field as a
function of a parameter t � 0 that is referred to as the flow time. The nature of the evolution is
governed by the gradient of a “flow action”, whose form depends on the theory under study. The
outstanding property of this evolution procedure is to render the renormalization of correlation
functions, built with flowed fields, really simple, if not totally absent. During the last year, the nice
features of the gradient flow have been employed in many di↵erent fields, like the study of running
couplings [21, 27, 28, 29, 30], thermodynamics [31, 32, 33], and the emergence of topological sectors
in gauge theories [21, 22]. For what concerns the renormalization of the energy momentum tensor,
the smoothing properties of the flow can be used to formulate a set of (local) translation Ward
identities that are probed by observables built along the flow, following the methodology proposed
in [34]. The new set of identities is characterized by the total absence of contact terms, and then
represents an appealing solution to the numerical issues encountered in the past. The purpose of
this research work is to test the e�ciency of this new method, applying it to di↵erent physical
models, and reporting the numerical results.

It should be said that, in addition to the above mentioned method, other two alternative
strategies have been proposed.

The first one is based on an interesting property that characterizes composite operators built
along the flow: the so-called small flow time expansion. It has been shown [23] that, for su�ciently
small flow times, operators composed with flowed fields allow an expansion in terms of renormalized
operators, at zero flow time, coupled with coe�cients that encode the remnant flow dependence.
Once the value of this small flow time coe�cients is known, it is possible to setup a set of identities
from which the numerical value of a given renormalized operator can be extracted. The small flow
time coe�cients can be determined analytically in the perturbative regime. However, the method
has been applied very far from this regime, to study the thermodynamic of pure SU(3) gauge
theory, close to the scale of the critical temperature[31, 32, 35, 36].

The second strategy is totally orthogonal to the previous ones and employs a di↵erent paradigm
to renormalize the energy momentum tensor. In this case, the lattice theory is formulated on a
finite box, with shifted boundary conditions along the temporal direction, the value of the shift
given by a free parameter ⇠. Requiring that rotational invariance is restored in the thermodynamic
limit, it is possible to derive a set of thermal Ward identities, parametrized with ⇠, from which the
renormalization constants of the energy momentum tensor can be extracted [37, 38]. The advantage
of this strategy relies in the possibility to determine the renormalization constants using one-point
correlators, which usually can be numerically well measured. The method has been successfully
applied for measuring thermodynamic quantities in SU(3) pure gauge theory.

This work is structured as follows.
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In the first chapter, the Wilsonian RG is presented in a quite generic manner. Then, it is e↵ectively
integrated within the lattice formulation of a simple scalar �4 theory, with the aim of focusing on
all the fundamental details of the lattice regularization.

The second chapter is centred on the definition of the energy momentum tensor in the clas-
sical theory, and the renormalization of its continuum, quantum counterpart. Then, the lattice
formulation is considered, as well as the additional di�culties that arise during the renormalization
procedure.

The third and fourth chapter constitute the core of this research work, and study the renor-
malization procedure for two di↵erent models

• A SU(3) Yang-Mills theory in four dimensions. This represents a first test bench for physically
interesting, strongly interacting theories, with the idea of including matter fields in the future.

• A scalar ��4 theory in three dimensions, a good playground for testing both the method and
its possible applications in BSM theories. In this case, the existence of an infrared fixed point
(also known as the Wilson-Fisher fixed point), would allow to probe dilatation invariance
using the renormalized energy momentum tensor.

In these chapters, the gradient flow, its properties, and applications in the definition of the new
Ward Identities is explained in detail. The method for measuring the renormalization constants is
explained and numerical results are reported and discussed.

In the last chapter all the interesting results of the project are resumed, and conclusions, along
with possible future applications, formulated.
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Chapter 1

Wilsonian RG and lattice field
theory

1.1 Introduction

This chapter is dedicated to the lattice regularization of quantum field theory and its interpretation
in terms of Wilson’s idea of RG. In the first section, the Wilsonian RG is presented for a generic
quantum field theory, with the purpose of underlining its main features. The concepts of RG flows,
critical points, and universality, as well as their importance in the definition of a continuum limit,
are explained. Here, the exposition closely follows the approach of [39]. The second section aims at
including Wilson’s ideas within the lattice formulation of quantum field theory. Firstly, the basic
notions and formalism are introduced, then a simple lattice ��4 theory is considered, and its phase
structure explained. In the third section, the perturbative analysis of the theory is carried out, and
then the lattice renormalization group equations are written: here an e↵ective application of the
perturbative Wilsonian RG is shown.

1.2 Wilsonian RG

1.2.1 E↵ective action

The starting point for the formulation of the Wilsonian RG consists in defining a euclidean QFT,
governed by the action

S⇤0 ['] =

Z
ddx

"
1

2
@µ'@µ'+

X

i

⇤d�d
i

0 gi0Oi(x)

#
. (1.1)

Here, local operators Oi(x) have all dimension di > 0, and can be SO(d) invariant monomials
involving ni powers of the fundamental field and their derivatives

Oi(x) ⇠ (@')ri's
i ri + si = ni. (1.2)

Explicit factors of some energy scale ⇤0 are included in (1.1) to make the coupling constants gi0
dimensionless, for later convenience.

After having summed over all the possible terms allowed by the symmetry of the system, the
obtained action is totally general: it can be used to define a regularized path integral

Z⇤0(gi0) =

Z

C1(M)⇤0

D'e�S⇤0 ['], (1.3)
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where the integral is taken over the space C1(M)⇤0 of smooth functions on M whose energy is at
most ⇤0. The integral in equation (1.3) makes sense, since it describes a regularized theory, with a
momentum cut-o↵ given by ⇤0

1.
The integral can be performed in di↵erent ways: for example, one could first integrate out

modes with energy between ⇤0 and ⇤ < ⇤0. The space C1(M)⇤0 is naturally a vector space with
addition just being point-wise addition on M . Hence, a general field '(x) can be split as

'(x) =

Z

|p|⇤0

ddp

(2⇡)d
eipx�̃(p) (1.4)

=

Z

|p|⇤

ddp

(2⇡)d
eipx�̃(p) +

Z

⇤<|p|⇤0

ddp

(2⇡)d
eipx�̃(p) (1.5)

=: �(x) + ⇠(x), (1.6)

with � 2 C1(M)⇤ and ⇠ 2 C1(M)(⇤,⇤0] being the corresponding low and high-energy part of
the field '. The path integral measure on C1(M)⇤0 likewise factorizes as

D' = D�D⇠. (1.7)

Performing the integral over the ⇠ modes provides an e↵ective action at scale ⇤

Se↵
⇤ [�] := � log

"Z

C1(M)(⇤,⇤0]

D⇠ exp(�S⇤0 [�+ ⇠])

#
, (1.8)

that actually depends only on the low energy modes. This process of integrating out modes is called
changing the cut-o↵ of the theory, and it can be iterated, providing a new e↵ective action, defined
at a scale ⇤0

Se↵
⇤0 [�] := � log

"Z

C1(M)(⇤0
,⇤]

D⇠ exp(�S⇤[�+ ⇠])

#
, (1.9)

whit ⇤0 < ⇤. Equation (1.8) is known as the renormalization group (RG) equation for the e↵ective
action: its successive iterations describe how the e↵ective action used to describe the regularized
theory changes as the cut-o↵ is lowered.

1.2.2 Running couplings and �unctions

The original path integral, Z⇤0(gi0;⇤0), is the same as the one rewritten in terms of the e↵ective
action (1.8)

Z⇤(gi(⇤)) =

Z

C1(M)⇤

D'e�Seff
⇤ , (1.10)

the di↵erence among the two being just how the integration over the entire range of momenta up
to ⇤0 is performed. For this reason, the following identity holds

Z⇤(gi(⇤)) = Z⇤0(gi0;⇤0). (1.11)

1All the di�culties in defining a QFT reside in the definition of the path integral measure D'. Since a classical field
has an infinite number of degrees of freedom, it is a non trivial issue to integrate over such an infinity. In perturbation
theory, this di�culty is mirrored by the high momenta divergences that occur in loop integrals. Regularization
procedures, like sharp momentum cut-o↵ or lattice discretization, provide a method to well define the integration
measure, and make radiative corrections finite.
Beside this issue, on a non-compact space-time manifold M , IR divergences could occur. This is a separated issue,
not related with renormalization. It can be avoided if the theory is considered in a large box of side L, with periodic
or reflecting boundary conditions on fundamental degrees of freedom. In this case, momentum gets quantized in
units of 2⇡/L, and the space C

1(M)⇤0 is finite dimensional.
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Allowing the scale to be lowered infinitesimally, the following di↵erential equation is obtained

⇤
dZ⇤(g)

d⇤
=

✓
⇤
@

@⇤
+ ⇤

@gi(⇤)

@⇤

@

@gi

����
⇤

◆
Z⇤(g) = 0, (1.12)

where repeated indices obey Einstein’s summation rule. Equation (1.12) is known as the RG
equation for the path integral, and is an example of Callan-Symanzik equation [4, 5]. It says that,
by integrating out modes, the couplings of the e↵ective action Se↵

⇤ vary to account for the change
in the degrees of freedom over which the path integral is taken. In this way, the path integral is
independent on the scale at which the theory is defined, provided such a scale is below the original
cut-o↵ ⇤0.

Starting from a generic initial action, the e↵ective action will also take the general form

Se↵
⇤ =

Z
ddx

"
Z⇤

2
@µ�@µ�+

X

i

⇤d�d
iZn

i

/2
⇤ gi(⇤)Oi(x)

#
, (1.13)

where the wave function renormalization factor Z⇤ takes into account quantum corrections to the
kinetic term coe�cient, arising from integrating out modes. At any given scale, it is always possible
to define a renormalized field

' := Z1/2
⇤ �, (1.14)

in terms of which the kinetic contribution is canonically normalized (powers of Z⇤ have been also
included in the definition of the other couplings. In this way, when the action is rewritten in terms
of renormalized fields, this renormalization factor cancels out.).

The running of the couplings is clearly an important feature of the theory, and is given a
particular name through the definition of the so-called � function [4, 5]

�i = ⇤
@gi
@⇤

, (1.15)

which is the derivative of the couplings gi with respect the logarithm of the scale. For dimensionless
couplings, it takes the form

�i(gj(⇤)) = (di � d)gi(⇤) + �quant
i (gj), (1.16)

where the first term compensates the variation of the explicit power of ⇤ in front of the coupling in
(1.13). The second term in equation (1.16) represents the quantum e↵ects arising from integrating
out high-energy modes. To actually compute this contribution requires to perform the path integral.
This will generally introduce dependence on all the other couplings that appear in the original action
(1.1), so that the � function for gi is a function of all the couplings �i(gj(⇤)).

Likewise, even if at any given scale it is possible to remove the wave function renormalization
factor, moving to a lower scale will usually cause it to re-emerge. Then one can define a sort of �
function for Z⇤ as

�� := �1

2
⇤
@ lnZ⇤

@⇤
, (1.17)

which is called the anomalous dimension of the field �. Besides the di↵erence of definition with
respect (1.15), �� really expresses the variation of the “kinetic term coupling” with the energy
scale. The reason for such a name comes from the behaviour of correlation functions under scale
transformations and will be more clear in the next section. If the theory contains more than one type
of field, then there are a wave function renormalization and a corresponding anomalous dimension
for each field 2

2More generally, one would have a matrix of wave function renormalization factors, allowing di↵erent fields (with
same symmetry properties) to mix their identities as modes get integrated out.
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1.2.3 Anomalous dimension

The wave function renormalization plays an important role in the definitions of correlation functions.
Suppose to compute the n-point correlator

h�(x1)...�(xn)i := 1

Z
Z

C1(M)⇤

D�e�Seff
⇤ [Z1/2

⇤ �;g
i

(⇤0)]�(x1)...�(xn) (1.18)

using the scale ⇤ theory, with field insertions at points �(x1)...�(xn), without having canonically
normalized the field in the e↵ective action. In terms of the renormalized field (1.14), the following
identity holds

h�(x1)...�(xn)i = Z�n/2
⇤ h'(x1)...'(xn)i, (1.19)

and, performing the path integral over '3, one evaluates the r.h.s. correlator as some function
�(n)
⇤ (x1, ..., xn; gi(⇤)) that depends on the scale ⇤, the couplings and the fixed points xi. In principle,

the field in coordinate space always involves all modes. However, when large distances with respect
to ⇤�1 are considered, it is reasonable to assume that only low-modes contribute. Then it should
be possible to compute the same correlator using just a lower scale theory: the operator insertions
will be una↵ected as one integrates out modes in a range (⇤/s,⇤] for some factor s > 1. Taking
into account the wave function renormalization, one obtains

Z�n/2
⇤/s �(n)

⇤/s(x1, ..., xn; gi(⇤/s)) = Z�n/2
⇤ �(n)

⇤ (x1, ..., xn; gi(⇤)). (1.20)

For infinitesimal lowering (s = 1 + �s, �s⌧ 1), one finds

⇤
d

d⇤
�(n)
⇤ (x1, ..., xn; gi(⇤)) =

✓
⇤
@

@⇤
+ �i

@

@gi
+ n��

◆
�(n)
⇤ (x1, ..., xn; gi(⇤)) = 0, (1.21)

which is the generalized Callan-Symanzik [4, 5] equation for correlation functions. As in the case
of equation (1.12), it simply states that couplings and wave function renormalization change with
the scale in order to render correlation functions unaltered.
If the theory is Poincaré invariant, correlation functions depend on the distance between pairs
of insertion points. The typical size of these separations defines a new scale, quite apart from
any choice of ⇤. The former can be used to obtain another interpretation of the renormalization
group. One could in principle integrate out the modes in the range (⇤/s,⇤], and then apply a scale
transformation

x0µ := xµ/s (1.22)

�0(x) := s(d�2)/2�(x) (1.23)

⇤0 := s⇤ (1.24)

according to which the form of the e↵ective action does not change, the couplings are not touched
(since rescaling does not have anything to do with integrating out modes), and the energy scale
⇤/s is restored to its original value ⇤. Under these combined operations, one finds

�(n)
⇤ (x1, ..., xn; gi(⇤)) =


Z⇤

Z⇤/s

�n/2
�(n)
⇤/s(x1, ..., xn; gi(⇤/s)) (1.25)

=


sd�2 Z⇤

Z⇤/s

�n/2
�(n)
⇤ (x1/s, ..., xn/s; gi(⇤/s)), (1.26)

3The change in the integration measure cancels out since the correlator is given in terms of a normalized path
integral.
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where the wave function renormalization and the couplings gi in the last line are taken at the scale
⇤/s, since their value is not a↵ected by the previous rescaling.

Equation (1.25) admits the following, interesting interpretation. If one would have started with
insertions at points sxi, then one could equivalently write

�(n)
⇤ (sx1, ..., sxn; gi(⇤)) =


sd�2 Z⇤

Z⇤/s

�n/2
�(n)
⇤ (x1, ..., xn; gi(⇤/s)). (1.27)

The l.h.s. of (1.27) shows a correlator computed with the ⇤ scale e↵ective theory that probes
separations s|xi � xj |. So, as s ! 1, this correlator is is testing the long distance, or infra-red
properties of the theory. On the other hand, the r.h.s. tells that the same correlator could be
obtained studying correlation functions where the insertions points are held fixed, but the e↵ective
theory employed runs over di↵erent values of gi(⇤/s). This makes perfect sense: the IR properties
of the theory are governed by the low-energy modes that survive as more and more high-energy
modes are integrated out.

Equation (1.26) also yields insights into the meaning of the anomalous dimension ��. Looking
at the r.h.s. of (1.26), one could recognize the factor sn(d�2)/2 as the classical scaling behaviour
for a correlation function with dimension n(d � 2)/2. However, this classical scaling is modified
by the factor [Z⇤/Z⇤/s]

n/2 that arises when high-energy modes gets integrated out. To quantify
such departures from the classical behaviour, one could look for the e↵ect of an infinitesimal scaling
transformation, parametrized as s = 1 + �s, with 0 < �s⌧ 1. Expanding (1.26) up to O(�s) gives


sd�2 Z⇤

Z⇤/s

�n/2
= n

⇢
1 +


d� 2

2
+ ��

�
�s+ ...

�
, (1.28)

with �� given by (1.17). From equation (1.28) seems that correlation functions behaves as if the
fundamental field scaled with the following mass dimension

�� = (d� 2)/2 + ��, (1.29)

rather than the classically expected value. �� is known as the scaling dimension of the fundamental
field, and the anomalous dimension �� represents the di↵erence between the scaling dimension and
the näıve classical dimension.

1.2.4 RG flows

To better understand what happens under renormalization, it is important to study the RG equa-
tions of the couplings gi. The easiest way to do this is by starting from a theory, whose initial
couplings gi0 are defined such that all the � functions vanish

gi0 = g⇤i , �j |g
j

=g⇤
i

= 0. (1.30)

Hence the couplings do not depend on the scale. This theory represents a particular configuration
in the evolution described by the RG equation, and is defined as a critical point of the RG flow.
The most simple example of critical point is given by the prescription

g⇤i = 0, (1.31)

where all the operators but the mass-less kinetic term are zero. This theory is know as the Gaussian
critical point, and has clearly vanishing � functions since it has no interaction responsible for the
emergence of vertices as the cut-o↵ is lowered. Nonetheless, with a proper tuning of the initial
couplings, it should be possible to induce quantum corrections to cancel precisely the classical
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rescaling term in (1.16) and let the � functions vanish. Hence, even if not so easily, other critical
points, beside the gaussian one, could be defined.

The independence of the couplings g⇤i on the scale yields important implications for the correla-
tion functions of the theory. The first thing to note is that, being �� a dimensionless function of the
other couplings, it is scale independent at the critical point. Then the Callan-Symanzik equation
(1.21) for the two-point correlator becomes

⇤
@�(2)

⇤ (x, y)

@⇤
= �2�⇤��(2)

⇤ (x, y), (1.32)

with �⇤� = ��(g⇤i ). Equation (1.32) tells that �(2) is a homogeneous function of the scale: because
of SO(d) invariance, it can only depend on the insertion points through |x� y|. Using dimensional
analysis, one shows that

�(2)
⇤ (x, y) = ⇤d�2G(⇤|x� y|, g⇤i ), (1.33)

with G(⇤|x� y|, g⇤i ) being a dimensionless function of the dimensionless combination ⇤|x� y| and
couplings g⇤i . Plugging this formula in equation (1.32) results in

�(2)
⇤ (x, y) = ⇤d�2�2�

�

c(g⇤i )

|x� y|2��

⇠ c(g⇤i )

|x� y|2��

, (1.34)

where �� is the scaling dimension defined in (1.29). The power law described by (1.34) is typical
of correlation functions of a scale-invariant theory, i.e. a theory with zero mass gap and infinite
correlation length. Well known examples of this kind of behaviour can be found in the theory of
second order phase transitions, where actually the Wilsonian RG was originally formulated[7, 8].

The next step to characterize RG flows is to study small deviations from the critical point:
starting from a neighbourhood of gi = g⇤i and linearizing around it, one gets

⇤
@gi
@⇤

����
g⇤
j

+�g
j

= Bij�gj +O(�g2), (1.35)

with �gi = gi � g⇤i , and Bij being a constant (infinite dimensional) matrix. Equation (1.35) can be
better studied working with a vector basis that diagonalizes the matrix Bij . Let �i be one of the
eigenvectors 4, then equation (1.35) becomes

⇤
@�i
@⇤

= (�i � d)�i +O(�2), (1.36)

�i�d being the eigenvalue of �i. Näıvely, one would expect the coupling to scale with a power of ⇤
given by the classical dimension of the operator coupled to �i, so one should have �i = di. However,
quantum corrections modify the scaling behaviour close to the critical point, the deviations being
given by the eigenvalues of the linearized � function matrix B. In total analogy with the definition
of ��, an anomalous dimension for the operator �i can be defined

�i = �i � di, (1.37)

where �i represents the scaling dimension of the operator. At this order in perturbations away
from the critical point, the solution of equation (1.36) provides the following RG flow

�i(⇤) =

✓
⇤

⇤0

◆�
i

�d

�i(⇤0). (1.38)

4To be precise, �

i

is a linear combination of couplings associated to operators with classical dimension d

i

. It
should be also stressed that the matrix B is generally not normal. If this is the case, then �

i

represents a left
eigenvector of B.
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The above equation is the starting point for characterizing a quantum theory in the IR, as well as
in the UV energy regime.

Starting from eigenvectors �i with �i > d, equation (1.38) states that, as the theory gets
probed in the infrared, these deformations shrink to zero. So, as the scale is lowered, the theory
flows back to the critical point along the directions identified by �i. Couplings, and corresponding
eigenoperators, that behave in this fashion are called irrelevant. The condition �i > d can be easily
fulfilled by operators with higher and higher mass dimension (all of them included in the original
action): for this reason, the critical point g⇤i is expected to sit on an infinite dimensional surface C
of the couplings space, such that, turning on any combination of operators that moves along C, the
RG flow will make the theory flow back at the critical point. C is known as the critical surface and
the couplings of irrelevant operators can be thought of as provided coordinates on C, at least in the
neighbourhood of g⇤i (figure 1.1). On this infinite dimensional subspace of theories, the mass gap
vanishes, and the fixed point represents a non trivial IR limit at which only the massless degrees of
freedom survive. 5

Figure 1.1: Schematic plot of the RG flows, taken from [40]. The region within the blue contour represents

the critical surface, on which the RG acts driving a given theory towards the fixed point g⇤
i

. All the quantum

theories that lie on this surface have been obtained switching on only irrelevant couplings. The red line

emanating from the fixed point represents the renormalized trajectory, whose evolution is obtained only

by deforming the relevant couplings from their critical value. Black solid lines are lines of constant physics

starting somewhere o↵ the critical surface, and then driven away by the relevant operators.

Conversely, eigenvectors with �i < d grows as the scale is lowered, so their separation from the
critical point increases as the theory is probed in the IR. For this reason they are called relevant
couplings. Starting exactly from the critical point and then deforming only relevant operators gen-
erates a particular flow called the renormalized trajectory. As one investigates the theory deeper
and deeper in the IR, the latter evolves according to the flow described by the renormalized tra-
jectory6. Since every power of field or derivative of the field increases the classical dimension of an
operator, at fixed space-time dimension d there will be just a finite number of relevant operators.
This implies that the critical surface has finite codimension.

5In statistical physics, the critical surface identifies a region of the coupling space where a second order phase
transition takes place: in this case, the study of the linearized RG transformation around the IR fixed point provides
quantitative knowledge of the critical exponents of the theory. The latter are intimately related to the eigenvalues
of the relevant couplings. Knowledge of such exponents allows to determine how correlation length, correlation
functions and other physical observables behave as the phase transition is approached.

6When more than one relevant operator is deformed, infinite renormalized trajectories are created.
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The other possible case is the one described by marginal operators, whose eigenvalue is zero
and then do not evolve under the action of the RG. At the Gaussian point, where no interaction
occurs, the scaling dimension of these operators just equals their engineered dimension, so one would
expect di = d. Close to a critical point, higher quantum corrections could result in weak (usually
logarithmic) dependence to a classically marginal operator, turning it to marginally relevant or
marginally irrelevant. If the value of the eigenvalues is su�ciently small, one would expect that the
size of nearly marginal couplings could stay unchanged for long “RG flow times”, and then finally
turn to relevant or irrelevant. From a phenomenological point of view these operators play a really
important role.

The final possibility is represented by couplings whose eigenvalue is zero at all orders: this is
the case of a truly marginal coupling, for which the original fixed point is actually part of a whole
line of fixed points.

The most general QFT is characterized by several di↵erent types of operators, and then could
be represented by a specific point, in couplings space, positioned somewhere o↵ the critical surface.
As one turns on the RG machinery, the theory starts to evolve, the irrelevant couplings converge
to the fixed point, while the relevant ones depart from it as the scale is lowered. Thus, the flow
line of a generic theory will strongly focus around the renormalized trajectory, and in the IR a
generic theory will resemble the theory emanating from the critical point, characterized only by
relevant operators. Hence, many di↵erent high energy theories will look all the same in the IR: this
phenomenon is called universality, and it guarantees that only a finite set of couplings, the relevant
ones, is needed to study the properties of a theory at the large scales. Theories whose RG flows
focus around the same renormalized trajectory7 are said to belong the same universality class8.
Theories in a given universality class could look very di↵erent at the microscopical level, but they
will all end up looking the same at large distances. This is not a trivial fact, since it explains why
is it possible to study a physical problem, at a given scale, without worrying about what higher
energy degrees of freedom are doing.

1.2.5 Continuum limit

The original action (1.1) is characterized by an explicit cut-o↵ ⇤0, which guarantees the mean-
ingfulness of the path integral (1.3) and the finiteness of the correlation functions of the theory.
Up to now, it has been showed how the couplings, starting from their initial value gi0, evolve as
the theory is probed at a lower scale ⇤. For a theory described by the e↵ective action (1.8), this
evolution results in an independence of the correlation functions from the cut-o↵ ⇤. The remaining
question is: what about the dependence on the cut-o↵ ⇤0? In QFT this is an important question,
since ideally one would like to send ⇤0 to infinity, allowing the field to fluctuate on arbitrarily small
length scales, without a↵ecting the value of physical observables. This procedure is called taking
the continuum limit of the theory and plays a fundamental role in the definition of renormalized
quantum field theories. To better examine this issue, it could be useful to start from a given low-
energy, e↵ective theory (whose validity could have been probed by the results of some experiment)
and wonder how is it possible to remove the cut-o↵ without a↵ecting what the theory predicts for
low-energy phenomena.

In taking the continuum limit, the concept of universality of RG flows plays a key role. The
easiest way to study this procedure is first looking at a theory defined on the critical surface, within
the domain of attraction of the critical point g⇤i . In this case, only irrelevant couplings have been
deformed from their critical value and, as can be seen from equation (1.36), as ⇤0 is sent to infinity

7When more than one relevant operator is deformed, a surface of relevant trajectories has to be considered.
8In statistical physics, a universality class is usually identified by a specific set of critical exponents. These

exponents are related to the RG eigenvalues of the relevant operators that parametrize the renormalized trajectory.
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while keeping ⇤ fixed, such deformations goes to zero, driving the theory back to the critical point.
Here, the theory is scale invariant, and then the cut-o↵ can be easily removed. To be precise, given
a theory S⇤0 on the critical surface, the following limit

lim
⇤0!1

"Z

C1(M)(⇤,⇤0]

D⇠ exp(�S⇤0 [�+ ⇠])

#
(1.39)

exists, provided the cut-o↵ is removed after having computed the integral. The critical surface has
finite codimension, so one just needs to tune a finite number of coe�cients, i.e. those of the relevant
operators, in order to guarantee that the set gi0 belongs to C .

Physically interesting theories, like Yang-Mills theory or QCD are not scale invariant, but their
actions rather have relevant and marginally relevant operators. In this case, the continuum limit
can be understood through the concept of universality. This kind of theories have a starting point
that lies somewhere o↵ the critical surface. The RG flow moves them towards the critical point
for a while, and then drives them away, close to the renormalized trajectory (1.1). The theory will
pass close to g⇤i at an energy scale µ, whose value is determined by the initial conditions of the RG
flow. Using dimensional arguments, one could write

µ = ⇤0f(gi0), (1.40)

with f(gi0) a dimensionless function of the initial couplings satisfying the condition

f(gi0) = 0, gi0 2 C. (1.41)

If one wants a theory with relevant or marginally relevant operators at the scale µ, then the initial
couplings gi0 have to be tuned in order to keep µ finite as ⇤0 !1. If this is possible, then the set
of couplings {gi0(⇤0 =1)} will define a UV fixed point of the RG, that lies on the critical surface.
The question is: how many couplings have to be tuned to get the correct continuum limit? The UV
fixed point will be characterized by an infinite number of irrelevant couplings and a finite subset
of relevant and marginally relevant ones: these are the couplings that need to be tuned in order
to remove the cut-o↵ and leave the IR physics unchanged. These couplings will equal in number
exactly the parameters that describes the physics of the system at the IR scale µ. The corresponding
RG flow emanating from the UV fixed point will be a renormalized trajectory that defines a theory
on all length scales. Both how the IR physics is fixed and how the irrelevant couplings of the UV
fixed point behave in the UV can be chosen in di↵erent ways. As a consequence, there can be many
“RG schemes” to take the continuum limit, which all lead to the same continuum theory.

The tuning procedure of the relevant UV couplings is usually achieved adding a counterterm
SCT[',⇤0] to the original action, characterized by and explicit dependence on the field as well as
the cut-o↵.

S⇤0 [']! S⇤0 ['] + SCT[',⇤0]. (1.42)

In principle, SCT [',⇤0] does not add anything new, since, in eq (1.1), all the possibly allowed
interacting terms have been included. The reason of making SCT explicit is to make contact with
the familiar picture of perturbation theory, where the values of the counterterm couplings are tuned,
order by order, with the purpose of render the path integral, and its correlation functions, finite
when the cut-o↵ is removed 9. So the following limit

e�Seff⇤[']

= lim
⇤0!1

"Z

C1(M)(⇤,⇤0]

D⇠ exp[�(S⇤0 [�+ ⇠] + SCT[�+ ⇠,⇤0])]

#
(1.43)

9From this requirement, one can extract the dependence for the original couplings, also-called bare couplings, on
the cut-o↵ ⇤0: this dependence is again described by an RG flow.
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exist. Here again, one should stress that the limit has to be taken after having performed the
field integration. If the limit defined in equation (1.43) exists, then the procedure of sending ⇤0 to
infinity will define a renormalized QFT with renormalized relevant couplings at scale ⇤.

When it is not possible to send ⇤0 to infinity, without a↵ecting the IR physics, then the theory
is not renormalizable, and it does not have a continuum limit. This could happen when, in order
to explain some experimental result, some UV irrelevant operators need to be included. When the
cut-o↵ is removed, these operators will be arbitrarily suppressed at any finite energy scale. Their
presence then indicates that the theory cannot be valid up to arbitrarily high energies. However,
this does not imply that such a theory is useless for study the physics of a system, but only that
its applicability is limited to a definite energy range, upper bounded by a cut-o↵ ⇤⇤

0. In order to
go deeper in the UV regime, new physical input is needed.

1.2.6 RG flows and perturbation theory

The RG flows of a theory can be determined in several di↵erent ways. When the analytic approach is
preferred, approximation methods are usually needed to get some insights about the theory under
study. These approximation could depend also on the regulator adopted, whose choice, usually,
depends on the symmetries characterizing the quantum theory. In this chapter, for example, a
sharp momentum cut-o↵ has been applied to regularize the theory: this regulator is usually quite
good for study the RG flows of scalar theories. For a generic d-dimensional scalar theory, the
Lagrangian density is

L =
1

2
@µ'@µ'+ V ('), (1.44)

where
V (') =

X

n

⇤n�n(d�2) g2n
2n!

'2n, (1.45)

is what is called the e↵ective potential, and a Z2 symmetry has been assumed. Equation (1.45)
represents a first level of approximation: using classical scaling arguments, derivative couplings
gets ruled out. This procedure is called the local potential approximation, and it tells the shape of
the e↵ective potential experienced by a slowly varying field. Within this formulation, Wilson’s RG
approach can be straightforwardly applied: one has to first split the field in fast and slow modes,
as in equation (1.6), and then apply equation (1.8) for an infinitesimal RG transformation.

S[Z(⇤� �⇤)1/2�;⇤� �⇤, g2n(⇤� �⇤)] := � log

"Z

C1(M)(⇤��⇤,⇤]

D⇠ exp(�S[�+ ⇠;⇤, g2n(⇤)])

#
.

(1.46)
Expanding the action on the r.h.s. of the above equation gives

S[�+ ⇠;⇤, g2n(⇤)] = S[�;⇤, g2n(⇤)] +

Z
dd

1

2
(@⇠)2 +

1

2
⇠2V

00
(�) +

⇠3

3!
V

000
(�) + ...

�
. (1.47)

Now the fast modes ⇠ need to be integrated out. The Feynman diagrams that contributes to the
path integral (1.46) have only ⇠ on internal lines, contributing with propagator

⇠ ⇠ ⇠ 1

p2 + g2⇤2
(1.48)

and only � on external lines (but with no propagators). The interaction vertices are provided by
the expansion (1.47) in powers of � and ⇠. As an example, there will be a vertex of the form
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�

�

�

⇠

⇠

⇠ g6
4!2!

�4⇠2 (1.49)

Each loop involves an integral over the momentum of ⇠ in a shell between radii ⇤ and ⇤ + �⇤ in
momentum space Z

⇤��⇤<|p|⇤

ddp

(2⇡)2
(...) =

⇤d�1�⇤

(2⇡)d

Z

Sd�1

d⌦(...), (1.50)

where Sd�1 is the d � 1 dimensional unit sphere. Here a second level of approximation has to be
done: since each loop integral contributes with a factor �⇤, then, to lowest non trivial order, only
1-loop diagrams have to be considered. It can be shown that, in order to keep track just of 1-loop
diagrams, only vertices with 2 ⇠ fields have to be retained in equation (1.47), which becomes

S[�+ ⇠;⇤, g2n(⇤)] = S[�;⇤, g2n(⇤)] +

Z
dd

1

2
(@⇠)2 +

1

2
⇠2V

00
(�)

�
. (1.51)

The path integral (1.46) can now be evaluated, giving as result

�⇤S[�] = a⇤d�1�⇤

Z
ddx log[⇤2 + V 00(�)], (1.52)

where a = Vol(Sd�1)/[2(2⇡)d] = (4⇡)�d/2/�(d/2) and

�⇤S[�] = S[�;⇤� �⇤, g2n(⇤� �⇤)]� S[�;⇤, g2n(⇤)]. (1.53)

Notice that no wave function renormalization has been generated in this case10. Expanding the
l.h.s. of (1.52) to order �⇤, one obtains

✓
@

@⇤
+

dg2n
d�

@

@⇤

◆
S[�;⇤, g2n(⇤)] = �a⇤d�1

Z
ddx log[⇤2 + V 00(�)], (1.54)

and expanding the r.h.s. in powers of � allows to extract the beta functions for the couplings
directly

⇤
dg2n
d⇤

= (n(d� 2)� d)g2n � a⇤n(d�2) d2n

d�2n
log[⇤2 + V 00(�)]

�����
�=0

. (1.55)

From (1.55), the first beta functions in the hierarchy can be easily written down

⇤
dg2
d⇤

= �2g2 � ag4
1 + g2

, (1.56)

⇤
dg4
d⇤

= (d� 4)g4 +
3ag24

(1 + g2)2
� ag6

1 + g2
, (1.57)

⇤
dg6
d⇤

= (2d� 6)g6 � 30ag34
(1 + g2)3

+
15ag4g6
(1 + g2)2

� ag8
1 + g2

. (1.58)

It should be noticed that, with this renormalization scheme, quantum contributions involve inverse
powers of 1 + g2, which physically is 1 + (m/⇤)2, m being the mass of the field. These factors
are generated by the propagators of the fast modes inside the loops: when ⇤ ⌧ m, quantum
contributions gets suppressed, as one wold expect on the basis of decoupling.

10In this theory, at 1-loop order, the only Feynman diagram with two external legs has no external momentum
dependence, so it cannot give rise to terms like (@�)2.
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The method used above for the scalar, Z2-invariant theory is one of the possible strategies
that could be employed to get quantitative knowledge about the RG flows. RG ideas can be also
implemented in the context of perturbation theory, using regularization schemes di↵erent from the
sharp momentum cut-o↵11. In this case, only relevant (and marginally relevant) couplings for the
UV fixed point are considered, since they play a fundamental role in determining the continuum
limit of the theory, while the irrelevant ones can be set to zero. Writing down the path integral
as a power series in the relevant couplings, one evaluates correlation functions up to a given order
in the couplings: in principle, this correlation functions will depend on the external momenta, the
parameters of the theory and the adopted regulator. The perturbative expansion can be carried out
in terms of the bare parameters of the theory, those defined at the cut-o↵ scale ⇤0 in the Wilsonian
formulation. However, this is not the only possible choice: in principle, one could also expand the
theory in terms of the “renormalized” couplings, defined at a physically relevant scale ⇤. In this
case, one has simply to write the original action as

S[�b;⇤0, gb(⇤0)] = S[�R;⇤, gR(⇤)] + SCT [Z(⇤)�1/2�R;⇤0,⇤, gR(⇤)], (1.59)

where the subscripts b and R mean bare and renormalized. The l.h.s. of equation (1.59) is in-
dependent on the scale ⇤, and this is ensured by the appropriate dependence of gR(⇤) and Z(⇤)
on ⇤ according to the RG flows. The role of the counterterm action on the r.h.s. is to render
(renormalized) correlation functions finite as the regulator (the cut-o↵ ⇤0 in this representation)
is removed. This is mirrored in S[�b;⇤0, gb(⇤0)] by the appropriate tuning of gb(⇤0) (as described
in equation (1.42), but, at this point, adding also a counterterm for the bare action sounds only
redundant). Both representations allow to extract quantitative knowledge about the RG flows, the
di↵erence being simply the way these flows are obtained. Whichever formulation has been chosen,
it is necessary to check the consistency of perturbation theory, making certain that the parameters
adopted for the expansion are actually small at their proper energy scale.
As already mentioned, tuning the bare parameters (or adding counterterms) is fundamental to ren-
der correlation functions finite and regulator independent, as the latter gets removed: this procedure
is usually accomplished imposing specific renormalization conditions on renormalized correlation
functions. There are several ways this conditions can be formulated: for example, one could use
the following tower of equations

�(2)
R (p) = �(p2 +m2),

d�(2)
R (p)

dp2

�����
p2=�m2

= �1,

�(3)
R (p1, p2, p3) = g⇤3 ,

......

�(n)
R (p1, p2, ..., pn) = g⇤n,

that fixes the physical mass and couplings in terms of the renormalized two, three and n-point vertex
functions, at some specific momentum scale µ, such that p2i = µ2. Using the r.h.s. representation
of (1.59) one finds counterterms explicitly depending on the scale µ (which is now the physically
relevant scale) and, once divergences have been removed, the Callan-Symanzik equation (1.12) can
be used to determine RG flows of the couplings gR as a function of µ. Nonetheless, one can also
use the l.h.s. representation in (1.59), write �b = Z1/2�R, and impose renormalized correlation

11This kind of formulation is usually very useful to introduce the concepts of the RG flow. However, it has also its
frailties. When gauge theories are under investigation, it is not obvious how to make the sharp momentum cut-o↵
consistent with gauge invariance.

34



functions to be regulator independent up to violations that reduce to zero when the regulator is
removed: from this condition one determines the RG flows of the bare parameters as functions
of the regulator itself.12 What is really important is that, independently on the specific “RG
scheme” adopted, the first two coe�cients of the perturbative expansion of the beta function will
be universal. Therefore, one can study the nature of perturbative RG flows choosing the method
he prefers.

In this work, the lattice regularization has been adopted, the role of the regulator being per-
formed by the lattice spacing, usually called a in the literature. From the Wilsonian point of view,
it allows to define a theory with an e↵ective action at a cut-o↵ ⇤0 ⇠ a�1: within this formulation,
Wilson’s ideas of RG can be straightforwardly applied, both in perturbative and non perturbative
regimes. As a proof for that, the perturbative study of the RG flows of a scalar ��4 theory will be
described in the next sections.

1.3 Lattice formulation

In this section, the structure of a scalar quantum field theory on a lattice is presented, with the
aim of defining the basic formalism to be then employed in the next sections. The geometry of the
system consists of a flat, four-dimensional, euclidean space-time, discretized as a hypercubic lattice

⇤ = {x 2 aZ4|0  xµ  a(Lµ � 1)}, (1.60)

where a is the lattice spacing, L = Li i = 0, ..., 3, ⌦ =
Q3

i=0 Li is the total number of lattice
points. Functions defined on the lattice satisfy periodic boundary conditions

f(x+ aµ̂Lµ) = f(x). (1.61)

In analogy to the continuous case, it is possible to define a scalar product in Hilbert space as

(f, g) = a4
X

x

f(x)g(x)⇤, (1.62)

and a discretized derivative operator, using, e.g., the forward representation

@µF g(x) =
1

a
[f(x+ aµ̂)� f(x)], (1.63)

where µ̂ is a unit four-vector along the direction µ. A possible alternative is given by the backward
formulation

@µBg(x) =
1

a
[f(x)� f(x� aµ̂)], (1.64)

the two being related by the following relation

(@µF g(x), h(x)) = �(g(x), @µBh(x)), (1.65)

from which one deduces that
(@µF )

† = �@µB , (1.66)

and

⇤ =
3X

µ=0

@µF@µB . (1.67)

12This is true for renormalization schemes like lattice, sharp momentum cut-o↵ and Pauli Villard, where the
regulator has the dimension of an energy. Things are slightly di↵erent in dimensional regularization. When the latter
is employed, the coordinate integration measure changes dimension and a scale parameter (usually called µ) has to
be introduced to keep the action dimensionless. In this case, the dependence on µ is encoded only in the renormalized
parameters of the theory.
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A function defined on the lattice can be expanded in Fourier modes as

f(x) =
1

a4⌦

X

p

eipxf̃(p), (1.68)

where the allowed lattice momenta are constrained inside the Brillouin zone

pµ =
2⇡

aLµ
nµ, nµ = 0, 1, ..., Lµ � 1, (1.69)

and the Fourier transform of f(x) is

f̃(p) = a4
X

x

e�ipxf(x). (1.70)

The theory is described by a scalar field �(x) whose action has the following form

S[�, a] = S0[�] + SI [�], (1.71)

where S0[�] represents the free field contribution to the global action

S0[�] =
1

2
(�, (⇤+m2

0)�), (1.72)

while SI [�] is the interacting contribution 13

SI [�] = a4
X

x

1X

j 6=2,k,m

gjk
j!k!

�(x)j(@µF�(x)@µF�(x))
k(⇤�)m. (1.73)

In four space-time dimensions, keeping only relevant or marginal operators, the interaction simply
becomes

SI [�] = a4
X

x

�0
4!
�(x)4, (1.74)

with �0 = g40. The generating functional for this theory is given by the following path integral

Z0[J, a] =
1

Z0(a)

Z
D[�] exp

⇢
�

1

2
(�, (⇤+m2

0)�) + SI [�]

�
+ (J,�)

�
, (1.75)

where J represents the usual source term, and

Z0(a) =

Z
D[�] exp

⇢
�

1

2
(�, (⇤+m2

0)�) + SI [�]

��
, (1.76)

is the vacuum normalization. With this formulation, a generic, lattice connected correlation function
is obtained as

h�(x1)�(x2)...�(xn)ic = �

�J(x1)

�

�J(x2)
...

�

�J(xn)
lnZ0[J, a]

�����
J=0

. (1.77)

At finite lattice spacing, the integration measure

D[�] =
Y

x2⇤

d�(x), (1.78)

is well defined, so the path integral (1.75) and the expectation value (1.77) can be evaluated either
analytically, in perturbation theory, or, since the integrand e�S is strictly positive, numerically in
the non perturbative case. Before going on with the perturbative analysis of the theory, it is better
to stop for a moment and take a look at its phase structure.

13According to the notation of the previous sections, g2 = a

2
m

2
0
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1.3.1 ��4 theory: phase structure

The ��4 theory is characterized by two di↵erent phases, yielding two di↵erent minimum configura-
tions of the field. Writing down the action

S =

Z
ddx


1

2
@µF�@µF�+ U(�)

�
,

U(�) =
m2

0

2
�2 +

�0
4!
�4,

one identifies the ground state of the theory as the field configuration with lowest energy. This
corresponds to

@µF�
⇤ = 0,

@U

@�

����
�⇤

= 0, (1.79)

where obviously �0 > 0, so S is bounded from below for all values of �. The constraints in (1.79)
are satisfied by a constant-field configuration that takes the value

�⇤ = 0, U(�⇤) = 0, m2
0 > 0; (1.80)

�⇤ = ±v, U(±v) = �3(m2
0)

2

2�0
, v2 = �6m2

0

�0
, m2

0 < 0; . (1.81)
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Figure 1.2: Values of U(�) as a function of � when m

2
0 < 0. Here di↵erent theories, characterized by the

ratio ⇢0 = �0/m0 have been considered. It can be seen how the theory exhibit two degenerate minima at

� = ±
q

6
�0

|m0|

The case in (1.81) leads to a doubly degenerate ground state. When the theory chooses one
of the two minima, the Z2 symmetry of the action (�(x) ! ��(x)) is broken, and one speaks of
spontaneous symmetry-breaking. Hence the theory is characterized by two di↵erent phases, one in
which Z2 symmetry is conserved, and one in which is broken: the action characterizing each phase
will be

S = a4
X

x

 
3X

µ=0

@µF�@µF�+
m2

0

2
�2 +

�0
4!
�4
!

unbroken, (1.82)

S = a4
X

x

 
3X

µ=0

@µF ⇠@µF ⇠ �m2
0⇠

2 +
v�0
6
⇠3 +

�0
4!
⇠4
!

broken. (1.83)
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When m2
0 < 0, the transition between the two phases occurs at a specific value of the couplings of

the theory: in the (m0,�0) plane the subset of values (m0c,�0c) represents a critical line at which
the phase transition takes place.

Figure 1.3: Schematic plot of the phase diagram in the (m0,�0) plane. The symmetric phase comprises

the m

2
0 > 0 and part of the m

2
0 < regions.

To better understand this fact, the original lattice action has to be rewritten in the following
way (lattice units, a = 1 have been adopted)

S = �1

2

X

x

±3X

µ=±0

�(x)�(x+ µ̂) +
X

x


1

2
(8 +m2

0)�
2 +

�0
4!
�4
�
. (1.84)

Then, the following parametrization

� =
p
2k', m2

0 =
1� 2�


� 8, �0 =

6�

2
, (1.85)

brings the original action into the new form

S = �
X

x

±3X

µ=±0

'(x)'(x+ µ̂) +
X

x

['2 + �('2 � 1)2], (1.86)

and the path integral becomes

Z =

Z
Dµ(') exp

 

X

x

±3X

µ=±0

'(x)'(x+ µ̂)

!
. (1.87)

The integration measure

Dµ(') =
Y

x

dµ('(x)), dµ(') = d' exp(�'2 � �('2 � 1)2) (1.88)
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sets a constraint on the magnitude of ' as a function of �, which has to be positive in order to
make the integration

R
dµ(') meaningful. Equation (1.87) shows the path integral as the partition

function of a generalized Ising model14. When �!1 the distribution dµ(') peaks at '2 = 1

R
dµ(')f(')R

dµ(')
! 1

2
[f(1) + f(�1)] (1.89)

Hence, for infinite �, one gets precisely the Ising model in 4 dimensions. The representation of the
theory given by (1.87) allows to better understand the transition between the two phases. For a
fixed �, the system could be in a ferromagnetic (broken) or in a paramagnetic (unbroken) phase,
such that, in the infinite volume limit,

h'i = v, k > kc(�),

h'i = 0, k < kc(�).

The critical line kc(�) represents the boundary between the two phases in the � �  plane. It is
possible to give a mean field estimate of the critical coupling c using the following approximation


X

x

±3X

µ=±0

'(x)'(x+ µ̂) = (1.90)

= 
X

x

±3X

µ=±0

[(v + ('(x)� v))(v + ('(x+ µ̂)� v))] (1.91)

' �2kV dv2 + 4d
X

x

'(x) +O(�'2) (1.92)

= �8k(L0L1L2L3)v
2 + 16

X

x

'(x), d = 4, (1.93)

(1.94)

where higher powers in the variation �' = ('� v) have been ignored. Within this approximation,
the mean value of '(x) becomes

' =

R
dµ(')' exp(16v')R
dµ(') exp(16v')

. (1.95)

One now impose h'i = v and uses the path integral formalism to get

h'i = 1

z(J)

@

@J
z(J)

�����
J=16kv

,

z(J) =

Z
dµ(') exp(J').

The integral z(J) can be evaluated analytically in various limits, numerically otherwise: the two
extreme cases are

• � = 0: this case is called the gaussian limit, the integral defining z(J) can be easily done

z(J) =
p
⇡ exp(64k2v)

and the corresponding critical value is c(0) = 1/8

14This is true because all the four directions have been compactified.
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• � =1: this is the Ising limit, where one obtains

z(J) = z(0) cosh(J),

v = tanh(16kv).

As  approaches c from above, v ! 0, then the following expansion is legitimate

v ' 16kv � 1

3
(16kv)3 + ...,

from which one get

c(1) =
1

16
v2 / (� c)

Unbroken

Broken

Broken

Figure 1.4: Schematic plot of the phase diagram in the (,�) plane.

Close to the critical line, the behaviour of v / ( � c(�))� is typical of a second order phase
transition, with � = 1/2 representing a critical exponent in the mean field approximation. As
the critical line is approached, the correlation length of the system will diverge with ( � C(�)),
according to another critical exponent. In the language of the RG, the critical line represents the
intersection of the critical surface with the theories subspace (m0,�0). As can be seen from (1.55)
in d = 4 dimensions, there exists only one fixed point that lies on such a surface, and this is the
Gaussian fixed point. For the statistical theory represented by (1.87), the full critical exponents
(which in general are di↵erent from their mean field approximation counterparts) are determined
by the RG eigenvalues of the relevant couplings around the Gaussian fixed point.

Since only the Gaussian fixed point is available, a continuum limit for the interacting theory, if
existing, can only be represented by a renormalized trajectory emanating from such a point in the
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(m0,�0) plane. To check for this possibility, a perturbative study of the theory can be performed
to determine the nature of the perturbative RG flows. The analysis can be carried out both in the
broken and in the unbroken phase. For simplicity, only the symmetric phase will be considered.

1.4 Perturbation theory

The perturbative study of a QFT is performed by expanding the path integral in powers of the
bare parameter �0 and then evaluating correlation functions like in (1.77). The expansion can be
represented in terms of Feynman diagrams both in coordinate and momentum space. From now
on, the momentum space representation will be adopted, focussing on the determination of the
(connected) two and four-point vertex functions at leading order in the coupling.

1.4.1 Perturbative expansion

The two fundamental pieces for constructing the diagrammatic expansion are the free theory prop-
agator

G̃(p) =
1

m2
0 + p̂2

=
p

(1.96)

and the tree level four vertex function

�(4)(p1, p2, p3, p4) = ��0 =

p1

p2

p3

p4

(1.97)

Where lattice unit a = 1 have been assumed and

p̂2 = 2
3X

µ=0

(1� cos pµ).

The leading contribution to the two-point function is given by the following diagrams

G̃(2)(p) =
p

+
p p

l

. (1.98)

The corresponding two-vertex function is obtained taking the (negative) inverse propagator

�(2)(p) = �

m2

0 + p2 +
�0
2
I(m0)

�
. (1.99)
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On the other hand, the leading contribution to the four-point vertex function is given by

�(4)(p1, p2, p3, p4) =

p1

p2

p3

p4

+

l

l + p1 + p2

p1

p2

p3

p4

+

l

l + p1 + p3

p1

p3

p2

p4

+

l

l + p1 + p4

p1

p4

p3

p2

(1.100)

�(4)(p1, p2, p3, p4) = �
⇢
�0 � �20

2
[J(m0, p1 + p2) + (p2 $ p3) + (p2 $ p4)]

�
, (1.101)

where the functions I and J are given by

I(m0) =

Z ⇡

�⇡

d4l

(2⇡)4
1

m2
0 + l̂2

, (1.102)

J(m0, p) =

Z ⇡

�⇡

d4l

(2⇡)4
1h

m2
0 + l̂2

i h
m2

0 + 2
P

µ(1� cos(l + p)µ)
i . (1.103)

Here the infinite volume limit
P

l !
R
d4l/(2⇡)4 has been assumed. The integrals I(m0) and

J(m0, p) diverge quadratically and logarithmically with the cut-o↵ a�1. To determine how the bare
parameters get tuned, one has simply to retain the divergent and non vanishing terms arising from
the expansion of I(m0) and J(m0, p) as a! 0. There are several ways this procedure can be carried
out [41, 42], here only the final results are reported

I(m0) =
C0

a2
� C2m

2
0 +

1

16⇡2
log(a2m2

0) +O(a2),

J(m0, p) = � 1

16⇡2

Z 1

0
dx log[a2(m2

0 + x(1� x)p2)] + C2 � 1

16⇡2
+Oa2,

C0 = 0.154933...,

C2 = 0.0303457...

The two and four vertex functions are then given by

�(2)(p) = �
⇢
m2

0 + p2 +
�0
2


C0

a2
� C2m

2
0 +

1

16⇡2
m2

0 log(a
2m2

0)

��
, (1.104)

�(4)(p1, p2, p3, p4) = ��0 + �20
2

⇢
C2 � 1

16⇡2

� 1

16⇡2

Z 1

0
dx log[a2(m2

0 + x(1� x)(p1 + p2)
2)]

�
+ (p2 $ p3) + (p2 $ p4)

�
. (1.105)

1.4.2 Renormalization

To determine the perturbative RG flows, the Callan-Symanzik equations for renormalized two
and four-point vertex functions have to be solved. This can be done after having specified a
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renormalization condition for correlation functions15. One possible choice could be represented by

lim
a!0

Z(�0, m̂0)�
(2)(p;�0, m̂0, a) = �(m2

R + p2 +O(p4)),

lim
a!0

Z(�0, m̂0)�
(4)(0, 0, 0, 0;�0, m̂0, a) = ��R, (1.106)

where, following the notation adopted in (1.2), correlation functions have been written in terms of
the cut-o↵ 1/a and dimensionless couplings �0, m̂0 = m0a. The above conditions state that the
bare parameters have to be tuned with the lattice spacing to make the renormalized correlation
functions finite and cut-o↵ independent as continuum limit is approached. The quantities mR

and �R are defined as the renormalized mass and renormalized coupling of the theory. These are
physical observables that define a specific interacting theory in the continuum. More precisely, mR

fixes the scale for all the dimensionful quantities16, and �R the strength of the interaction at zero
momentum. At leading order in �0, no divergences proportional to p2 have been introduced, hence

Z(�0,m0a) = 1 +O(�20) (1.107)

From the set of equations (1.106), one infers

m2
R =

m̂2
0

a2
+
�0
2


C0

a2
� C2

m̂2
0

a2
+

m̂2
0

16⇡2a2
log(m̂2

0)

�
, (1.108)

�R = �0 +
3�20
32⇡2


log(m̂2

0)� C2 +
1

16⇡2

�
. (1.109)

Using �R as an expansion parameter, the set of equations (1.106) allows to rewrite the bare couplings
as functions of the renormalized ones

m̂2
0 = (amR)

2 � �R
2


C0 � C2(amR)

2 +
(amR)2

16⇡2
log(a2m2

R)

�
+O(�2R), (1.110)

�0 = �R � 3�2R
32⇡2


log(a2m2

R)� C2 +
1

16⇡2

�
+O(�3R). (1.111)

With this definitions, one determines the renormalized vertex functions in terms of �R and mR

�(2)
R (p;�R,mR) = �(m2

R + p2) +O(�2R), (1.112)

�(4)
R (p1, p2, p3, p4;�R,mR) = ��R � �2R

2

⇢
1

16⇡2

Z 1

0
dx log


m2

R + x(1� x)(p1 + p2)2

m2
R

�
+

(p2 $ p3) + (p2 $ p4)

)
+O(�3R), (1.113)

which are, indeed, independent on the lattice spacing a. It has to be noticed that the constants
C0 and C2 are absent: all reference to the lattice has disappeared from the renormalized vertex
functions. Quantitative knowledge of the RG flows can be obtained studying the behaviour of the
bare couplings: one has simply to require renormalized vertex functions to be independent on the
cut-o↵. At finite lattice space, one should write

Z(�0, m̂0)�
(n)(p1, ..., pn;�0, m̂0, a) = �(n)

R (p1, ..., pn;�R,mR, a), (1.114)

15In the following, the momentum space version of the Callan-Symanzik equations will be adopted.
16It should be noticed that m

R

, in principle, does not represent the physical mass of a particle, which is usually
identified with the pole of the propagator, or the zero of �(2)(p). In the low momentum expansion defined in (1.106)
the two quantities coincide only at tree level.
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where, from a detailed analysis in perturbation theory [43], it can be shown that

�(n)
R (p1, ..., pn;�R,mR, a) = �(n)

R (p1, ..., pn;�R,mR, 0) +O(a2(log a)k), (1.115)

i.e. the renormalized vertex functions di↵er from their continuum limits by terms O(a2(log a)k) in
k-loop order. Consequently, the Callan-Symanzik equation for these correlation functions will be

a
d

da
�(n)
R (p1, ..., pn;�R,mR, a) = O(a2(log a)k). (1.116)

The terms on the r.h.s. are the so called scaling violations : close to the continuum limit, these
contributions are small and then can be neglected17, and then it is possible to set the r.h.s equal to
zero. Writing the renormalized vertex functions in (1.116) in terms of the bare ones, one obtains18

✓
a
@

@a
+ �m0(�0, m̂0)

@

@m̂0
+ ��0(�0, m̂0)

@

@�0
+ n��

◆
�(n)(p1, ..., pn;�0, m̂0, a) = 0, (1.117)

where

�m0(�0, m̂0) = a
dm̂0

da
,

��0(�0, m̂0) = a
d�0
da

,

�� =
1

2
a
d logZ

da
,

are the � functions for the dimensionless couplings and field renormalization in terms of the cut-o↵
scale a�1. Equation (1.117) is a sort of Callan Symanzik equation for the bare vertex function.19

Since Z is 1 at leading order, the contribution from the anomalous dimension �� in (1.117) can be
removed, and one can solve the following system of equations.

✓
a
@

@a
+ �m̂0(�0, m̂0)

@

@m̂0
+ ��0(�0, m̂0)

@

@�0

◆
�(2)(p;�0, m̂0, a) = 0, (1.118)

✓
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@a
+ �m̂0(�0, m̂0)

@

@m̂0
+ ��0(�0, m̂0)

@

@�0

◆
�(4)(0, 0, 0, 0;�0, m̂0, a) = 0, (1.119)

with respect �m̂0 and ��0 . Plugging equations (1.104) and (1.105) in the above system, one finds

✓
�0 � ��0

2

◆ 
C2m̂2

0

a2
� C0
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� m̂2
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�
m̂2

0
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16⇡2a2

!
� 2m̂2

0

a2
(1.120)

+ �m̂0

"
�0

 
�C2m̂0

a2
+

m̂0 log
�
m̂2

0

�

16⇡2a2
+

m̂0

16⇡2a2

!
+

2m̂0

a2

#
= 0, (1.121)

��0
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3 log
�
m̂2

0

�

16⇡2
� 16⇡2

!
� 1

#
� 3�20�m̂0

16⇡2m̂0
= 0. (1.122)

The system can be solved using brute force, and at leading order in �0 gives

�m̂0 = m̂0 +

✓
C0

2m̂0
� m̂0

32⇡2

◆
�0 +O

�
�20
�
, (1.123)

��0 = � 3�20
(4⇡)2

+O
�
�0.

3
�

(1.124)

17In the previous perturbative analysis, this is mirrored by ignoring terms that vanish when a ! 0.
18In principle, equation (1.117) holds only when contributions from irrelevant couplings are also included, otherwise

violations appear. To a first level of approximation, these violations can be neglected, and equation (1.117) used just
to determine the running of relevant and marginal couplings.

19As a matter of fact, the real Callan Symanzik equation involves renormalized couplings and vertex functions
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Figure 1.5: Qualitative plot of the RG flows in the (m0,�0) plane. The arrows describes the vector field

associated to RG trajectories evolving towards the infrared (increasing lattice spacing). As can be seen,

the mass parameter is a relevant coupling for the Gaussian fixed point (as one could have expected on the

basis of classical scaling), while the quartic coupling �0 is marginally irrelevant.

The above set of di↵erential equations can be solved: ignoring the subleading O(�0) contribution
to �m̂0 , the following identities are obtained

m̂0(a1) =
a1
a2

m̂0(a2), (1.125)

�0(a1) =
�0(a2)

1 + 3
16⇡2�0(a2) log

a1
a2

, a1 < a2 (1.126)

(1.127)

which describes the perturbative RG flows of the dimensioless couplings.20 From figure (1.5) one
could see that the direction identifying �0 is “UV-repulsive” to the Gaussian fixed point: following
the RG flows backward, it is impossible to reach the fixed point, because the bare coupling diverge.
The only possible theory emanating from the Gaussian fixed point is represented by the free field
one. This means that scalar theories in 4 dimensions are trivial. Looking at the RG group equations
(1.125-1.126), one could estimate the value of the cut-o↵ at which �0 diverges

a⇤1 = a2e
� (4⇡)2

3�0(a2) (1.128)

the value of a⇤1 is called a Landau Pole for the coupling �0: the name is due to Landau, who first
observed the triviality problem studying the QED coupling. Equation (1.128) tells that the only

20This result could have also been obtained in an easier way imposing m̂0 = am

R

in the O(�0), O(�2
0) terms of

equations (1.104),(1.105)
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possible way to let a1 vanish is setting �0(a2) equal to zero, which e↵ectively means to rule out the
quartic interaction. However, the perturbative analysis shows a flaw in one aspect: as the lattice
space is lowered down, the value of �0 increases: this means that perturbation theory will lose its
reliability at a certain point. To gain a better knowledge of the RG flows in the non perturbative
regime, other methods have to be employed.

Numerical investigations of the ��4 triviality have been performed by Lüscher and Weisz, who
determined the RG flows of O(n) scalar models both in perturbative and non perturbative regimes.
The authors addressed the problem for n = 1 component fields [12, 13] and the general n case [14].
Combining results from the high temperature expansion with numerical integration of the Callan-
Symanzik equations, the authors determined the renormalized trajectories (where �R is fixed) in
the entire (m0,�0) plane21. The outcome of their numerical study is that the only available RG
fixed point is the Gaussian one, and is UV-repulsive. This implies that O(n) scalar models with
quartic interaction do not have a continuum limit, and can only be regarded as e↵ective theories,
bounded by a cut-o↵.

21Renormalized trajectories have been initially determined in the unbroken phase of the theory. Extensions to the
broken phase have been done using mass perturbation theory.
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Chapter 2

Renormalization of the energy
momentum tensor

2.1 Introduction

This chapter focuses on the renormalization of the energy momentum tensor in QFT. The procedure
is described using both continuum and lattice formulations. First, the definition of the conserved
energy momentum tensor is given through the Ward Takahashi identities. Then, its renormalization
is discussed and a continuum example is given. Finally, the lattice formulation of the problem,
along with its related issues, is introduced. Some known results in lattice perturbation theory are
presented and then a strategy for a non perturbative determination of the renormalized energy
momentum tensor is discussed.

2.2 Ward-Takahashi Identities

Consider the following path integral in the continuum formulation

Z[J ] =

Z
D[�]e�S+

R
ddyJ

a

�
a , (2.1)

where the index a could in principle represent a Lorentz index, or an internal index (like color in
QCD), or a collection of both. The value of the path integral is clearly invariant under a change
of the variable of integration �a(x)! �a(x) + ��a(x). If the integration measure is left unchanged
by the infinitesimal deformation ��a(x)1, the following identity holds

0 = �Z(J)

=

Z
D[�]e�S+

R
ddyJ

a

�
a

Z
ddy

✓
� �S

��b(y)
+ Jb(y)

◆
��b(y).

One now can take n functional derivatives with respect to Ja
j

(xj) and set J = 0, to get

0 =

Z
D[�]e�S

Z
ddy


� �S

��b(y)
�a1(x1)...�a

n

(xn)

+
nX

j=1

�a1(x1)...�b,a
j

�d(y � xj)...�a
n

(xn)

3

5 ��b(y). (2.2)

1This point is crucial. If this condition is not fulfilled, then other terms appear, usually defined as quantum

anomalies. A quite famous example is given by the U(1)
A

anomaly for chiral theories [44, 45, 46]
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Di↵erentiating both sides with respect ��a(x), one finally gets

h �S

��a(x)
�a1(x1)...�a

n

(xn)i =
nX

j=1

h�a1(x1)...�a,a
j

�d(x� xj)...�a
n

(xn)i. (2.3)

These are the Schwinger-Dyson equations for the quantum theory: they simply state that classical
equations of motions are satisfied by a quantum field inside correlation functions, as long as its
space-time argument di↵ers from those of all other fields

h �S

��a(x)
�a1(x1)...�a

n

(xn)i = 0 for x 6= x1,...,n. (2.4)

If this is not the case, extra contact terms arise, whose nature will be explained later. More
information can be extracted from (2.2) when ��a(x) is a symmetry transformation of the classical
theory. In this case, the Noether theorem has to be recalled: “To every di↵erentiable symmetry
generated by local actions, there corresponds a conserved current”

��a(x)
�S

��a(x)
= �@µJµ. (2.5)

If the field �a(x) satisfies the classical equation of motions, then the current Jµ is a conserved
quantity. However, in the quantum theory, not only classical configurations contribute to the path
integral. So, from equation (2.2), one infers

h@µJµ(x)�a1(x1)...�a
n

(xn)i = �
nX

j=1

h�a1(x1)...��a
j

(x)�d(x� xj)...�a
n

(xn)i, (2.6)

which are defined as the Ward-Takahashi identities (WI). At the quantum level, the conservation
of the Noether current holds inside correlation functions up to contact terms2. The specific form
of these violations depends on the details of the infinitesimal (local) transformations. A di↵erent
version of (2.6) is obtained by integrating both terms of the identity over a space-time volume ⌦

h
Z

@⌦
d�µJµ(x)�a1(x1)...�a

n

(xn)i = �
nX

j=1

h�a1(x1)...��a
j

(xj)...�a
n

(xn)i, (2.7)

where, on the left hand side, a surface integral over the boundary of ⌦ is obtained.3 Equation (2.7)
represents the global version of the Ward-Takahashi identities. A more general form of the WI can
be derived coupling the source term in (2.1) to a generic operator Oa(x) = O(�(x))a: in this case
one gets

h@µJµ(x)Oa1(x1)...Oa
n

(xn)i = �
nX

j=1

hOa1(x1)...�xOa
j

(xj)...Oan(xn)i, (2.8)

where

�xOa
j

(xj) =

Z
ddz

�Oa
j

(xj)

��b(z)
��b(z)�

d(x� z). (2.9)

The main feature of equation (2.8) is that composite operators enter in the definition of correlation
functions. Such operators are built with fields coalescing at the same point, so they could generate
contact terms too.

2Said in another way, the Ward-Takahashi identities probe the response of the theory under ultra-local infinitesimal
di↵eomorphism ��

a

(x)�d(x� y).
3Usually, one requires fields to vanish at spatial infinity and sends ⌦ ! 1 in order to obtain an equation for the

Noether charge Q =
R
d

d�1
xJ0.
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At the quantum level, it is important to understand under which conditions the identities (2.6-
2.8) hold. These equations involve correlation functions of fields and other complicated operators
and will generate divergences in the bare theory. After having rewritten everything in terms of
renormalized fields and parameters, one obtains

h@µJµ(x)�R,a1(x1)...�R,a
n

(xn)i = �
nX

j=1

h�R,a1(x1)...��R,a
j

(x)�d(x � xj)...�R,a
n

(xn)i, (2.10)

which is an expression that still contains divergences arising from the insertion of Jµ(x) and
��R,a

j

(x): these operators usually represent vertices that are not present in the action of the
theory, and whose divergences need to be subtracted.

Both sides of (2.10) can be proved to be finite, if the following conditions are satisfied:

1. the regularized action and path integral measure are invariant under the transformation de-
scribed by ��R,a

j

(x);

2. the symmetry transformation ��R,a
j

(x) is linear in the fundamental fields.

If this two conditions are satisfied, then, integrating equation (2.10) over a small sphere ⌦ centered
around one of the fields, the following identity holds

Z

@⌦
x

j

d�µhJµ(x)�R,a1(x1)...�R,a
n

(xn)i = �h�R,a1(x1)...��R,a
j

(xj)...�R,a
n

(xn)i j = 1, ..., n,

(2.11)

In the above equation, none of the fields but �R,a
j

(xj) are contained in the sphere ⌦x
j

. On the r.h.s.
no divergence can be produced, since the variation ��R,a

j

(xj) is proportional to the renormalized
field. This is true for all the field inserted. Hence the r.h.s. of (2.10) is finite and, as a consequence,
also @µJµ4.

Whenever the conditions (1-2) do not hold, then the insertion of Jµ(x) and ��R,a
j

(x) generate
divergences that need to be subtracted. In this case, a set of counterterms, to make both sides of
(2.10) finite, is needed. The role of these counterterms will be that of defining new renormalized
operators (Jµ)R and (��R,a

j

(xj))R, whose insertions in the Ward-Takahashi identities are free from
any UV divergence. The process of determining the right counter terms is called renormalization
of composite operators and it will be discussed in the following section.
It should be stressed that the whole procedure works if the field insertions in (2.10) are taken at
separate space-time points. If this is not the case, then the arising contact terms produce further
divergences. This is a situation that is better to avoid, since it makes the renormalization of the
operator Jµ and ��R,a

j

(xj) harder.

In this work, a specific composite operator has been studied: the Energy Momentum Tensor
(EMT) of the quantum theory.
Classically, the EMT is the generator of infinitesimal translations, and is related to the Noether
current Jµ by

↵µTµ⌫ = J⌫ , (2.12)

where ↵µ is a vector parametrizing the direction of an infinitesimal translation. More generally, the
EMT is related to a larger class of fundamental space-time symmetries. The latter, for a non-zero

4
J

µ

can still contain a divergent contribution K

µ

with vanishing total divergence @

µ

K

µ

.
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spin field theory, are described by

�↵�a(x) = ↵µ@µ�a(x) translations, (2.13)

�↵�a(x) =
↵µ⌫

2
[(xµ@⌫ � x⌫@µ)�ab + (Sµ⌫)ab]�b(x) SO(d), (2.14)

�↵�a(x) = ↵(d� + x⇢@⇢)�a(x) dilatation, (2.15)

�↵�a(x) = ↵µ[(x
2@µ � 2xµx⌫@⌫ � 2d�xµ)�ab � 2x⌫(Sµ⌫)ab]�b(x) special conformal, (2.16)

where �a transforms according to a given representation of SO(d), spanned by the index a. The
matrices (Sµ⌫)ab are the generators of the group in such representation.
To each of the previous symmetries corresponds a (canonical) Noether current5, given by [16]

(Tµ⌫)c =
@L

@(@µ�a)
@⌫�a � �µ⌫L., (2.17)

(M⌫µ�)c = [x⌫(Tµ�)c � x�(Tµ⌫)c] + (⇧µ)b(S⌫�)bc�c(x), (2.18)

(Dµ)c = x⇢(T⇢µ)c + d�(⇧µ)b�b(x), (2.19)

(K�µ)c = [2x�x⌫ � ��⌫x2](Tµ⌫)c + 2x⌫(⇧µ)b[�⌫��bcd� � (S⌫�)bc]�c(x)� 2��µ, (2.20)

@��↵� = (⇧�)b[�↵��bcd� � (S↵�)bc]�c(x),

(2.21)

where

(⇧µ)a =
@L

@(@µ�a)
, (2.22)

and (Tµ⌫)c represents the canonical EMT. Unless spin-zero fields are concerned, the canonical EMT
(2.17) is usually not symmetric under the exchange of indices. A corresponding symmetrized form
can be obtained using the fact that the EMT is always defined up to terms with vanishing four-
divergence

(Tµ⌫)imp = (Tµ⌫)c +Oµ⌫ , (2.23)

@µOµ⌫ = 0, (2.24)

where on the l.h.s an improved EMT has been defined. When a theory with non zero spin field is
considered, the following tensor

(Tµ⌫)B = (Tµ⌫)c + @�X�µ⌫ , (2.25)

X�µ⌫ =
1

2

⇥
(⇧�)

a(Sµ⌫)
ab�b � (⇧µ)

a(S�⌫)
ab�b � (⇧⌫)

a(S�µ)
ab�b

⇤
(2.26)

is symmetric and defines an improved conserved current for SO(d) rotations

M⌫µ� = [x⌫(Tµ�)B � x�(Tµ⌫)B ]. (2.27)

Here (Tµ⌫)B is defined as the Belinfante tensor [47]. In terms of (2.27), the generators of the SO(d)
group can be easily determined

Mµ� =

Z
dd�1xM0µ�. (2.28)

Another improved version of the EMT is obtained when invariance under dilatations is studied.
Rewriting the canonical current (2.19) in terms of the Belinfante EMT, one obtains

Dµ
B = x⌫(T

µ⌫)B + V µ, (2.29)

Vµ = ⇧a
⇢

⇥
�ab�⇢µd� � (S⇢µ)

ab
⇤
�b, (2.30)

5In literature, Noether currents are defined disregarding the infinitesimal parameters that define the symmetry
transformation.
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up to terms whose four-divergence vanishes. The term on the second line is called field virial. An
improved EMT can be defined provided the field virial can be rewritten as a total divergence

Vµ = @↵�µ↵. (2.31)

If the above condition is verified, the improved EMT is given by the following definition

Tµ⌫ = (Tµ⌫)B +
1

2
@⇢@�X

�⇢µ⌫ , (2.32)

where

X�⇢µ⌫ = ��⇢�
µ⌫
+ � ��µ�⇢⌫

+ � ��⌫�µ⇢
+ + �µ⌫�

�⇢
+ �

1

3
��⇢�µ⌫�

��
+ +

1

3
��µ�⇢⌫�

��
+ (2.33)

and

�µ⌫
+ = 1

2 (�
µ⌫ + �⌫µ), (2.34)

�µ⌫
� = 1

2 (�
µ⌫ � �⌫µ). (2.35)

This new EMT is symmetric and defines improved currents both for dilatations and conformal
transformations

Dµ = x⇢T⇢µ, (2.36)

K�µ = [2x�x⌫ � ��⌫x2]Tµ⌫ . (2.37)

In section (2.4), an example of improved EMT will be given for a ��4 scalar theory. The interesting
feature of equations (2.36-2.37) is that the conservation of dilatation and conformal currents is
related to the trace of the EMT 6

@µDµ = Tµµ, (2.38)

@µK�µ = 2x�@µDµ. (2.39)

When theories with local internal symmetries are considered, the Belinfante improvement is
not su�cient to define a symmetric EMT satisfying such symmetries. The same statement holds
also for the improvement related to dilatations. A conserved current with the correct symmetry
properties can be obtained by requiring invariance under a more general transformation. The latter
is a composition of a local space-time transformation and internal symmetry transformations that
leaves the action unchanged. A clear example will be given in section (2.6.2), where the EMT for
gauge theories is considered7.

When derived from the path integral, the WIs for space-time symmetries involve the Noether
currents written in terms of the canonical EMT. With some manipulation, it is always possible to
rewrite these identities in terms of the classically improved operator. For example, the Dilatation
Ward identities (DWI) take the following form [16]

�µ⌫hTµ⌫(x)�a1(x1)...�a
n

(xn)i

= hTµµ(x)�a1(x1)...�a
n

(xn)i � d�

nX

j=1

�d(x� xj)h�a1(x1)...�a
n

(xn)i, (2.41)

6Indeed, it can be shown [16] that the condition for expressing the dilatation current as in (2.36) also guarantees
conformal invariance.

7There is also an easier way to obtain the improved energy momentum tensor. If the original QFT is coupled to
gravity, then the EMT can be found varying the action with respect the metric g

µ⌫

(x)

⇥
µ⌫

=
�S

�g

µ⌫

(x)
. (2.40)

The resulting ⇥
µ⌫

will be symmetric by construction and will also preserve all the internal symmetries of the theory
(like gauge invariance, for example). This happens because the variation in (2.40) acts on the geometry of the system,
leaving the internal symmetries unchanged.
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where the first insertion on the r.h.s. includes terms that could violate the symmetry at the classical
level. These terms are identified by having dimensionful couplings8.

From a classical point of view, a EMT with vanishing trace describes a scale invariant theory,
as can be seen from equation (2.38). At the quantum level, this is not true anymore. Even if
dimensionful couplings are absent, a scale dependence on dimensionless couplings is induced by the
renormalization of the quantum theory.
In the perturbative regime, this is quantitatively described by the so-called trace anomaly, which
directly relates the renormalized trace of the EMT to the beta functions of the quantum theory. A
simple example of trace anomaly can be found in non abelian gauge theories

(Tµµ)R =
�(gR)

gR(µ)3
(tr{Fµ⇢Fµ⇢})R, (2.42)

where gR denotes the renormalized coupling of the theory. Equation (2.42) tells that the trace of
the EMT yields information about possibly existing RG fixed points. Indeed, the latter could be
identified by a theory whose renormalized EMT has vanishing trace.
Non perturbatively, the above statement does not hold, since equation (2.42) loses its validity.
However, RG fixed points could still be determined by studying the space-time symmetries of the
system. Indeed, RG fixed points denote theories which are invariant under scale transformations.
Such invariance should be mirrored in the corresponding DWI. Non perturbative studies of the
latter can be performed only if the fully renormalized EMT has been previously determined. Hence,
knowledge of the renormalized EMT is crucial to probe a fundamental property of quantum theories,
both in perturbative and non perturbative regimes.

Moreover, the renormalized EMT can also be used for other physical applications. For example,
it is fundamental for the determination of extensive quantities, like9

• pressure density

h✏� 3piT = �hTµµiT . (2.43)

• entropy density

hsiT =

 
�hT00iT +

3X

i=1

hTiiiT
!
/T. (2.44)

These observables enter in the equations of state of a thermodynamic system, and their numerical
determination is important, especially in non perturbative regimes.
Another physical application consists in the determination of the shear viscosity

⌘ = ⇡ lim
!!0

Im

⇢
i

Z 1

0
dtei!t

Z
d3x

⌦
T12(t, x)T

12(0, 0)
↵
T

��
, (2.45)

which expresses the resistance of a fluid to shearing flows, where adjacent layers move parallel to
each other with di↵erent speeds. This quantity is crucial in describing the dynamic of hot, dense
matter (Quark Gluon Plasma) in heavy ion collisions.

These few examples should have made quite clear why the renormalized EMT plays a key
role in di↵erent aspects of QFT. The latter can be quantitatively determined only if a proper
renormalization procedure has been established. As it will become clear in the following, the
renormalization of this operator can be performed using the WI for space-time symmetries.

8Equation (2.41) shows that the trace operation does not commute with taking expectation values. This is because
the regularized theory is not scale invariant, even if dimensionful couplings are excluded.

9All these quantities are defined subracting the expectation value of the EMT at zero temperature.
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2.3 Renormalization of composite operators

As already mentioned, a composite operator consists of a product of elementary fields (and their
derivatives) at the same space-time point. At tree level, its insertion can be seen as a new kind of
vertex that, in principle, is not present in the action of the theory. For example, the operator �2

can be described by the following Feynman graph

1

2
h�(x)�2(0)�(y)i =

x y

0
(2.46)

at tree level, in coordinate space. When loop corrections are included, UV divergences arise. In
principle, these divergences are not the same that appear in the Green’s functions of elementary
fields. To make expectation values of �2 finite, an ad hoc renormalization is needed. This is
performed looking for appropriate counterterms for the insertion of �2. In the perturbative regime,
this procedure can be carried out order by order in the couplings of the theory. For example, the
1-loop renormalization of 1

2�
2 for a g�3 theory in 6 dimensions [15] is given by

1

2
(�2)R =


1� g2

64⇡3✏

�
1

2
�2 � gµ�✏/2

64⇡3✏
(m2 +

1

6
⇤)�+O(g3), (2.47)

where dimensional regularization (d = 6 � ✏) has been adopted. The renormalized operator is
represented by a sum of bare operators coupled to divergent coe�cients. The first thing to note is
that the operators that enter in the definition of �2R have dimension smaller than or equal to the
original operator �2. Moreover, the only operators of such dimension are those actually appearing
in (2.47). The renormalization (2.47) can also be written as a matrix equation

0

@
1
2 (�

2)R
�R
⇤�R

1

A =

0

@
Za µ�✏/2Zbm2 µ�✏/2Zc

0 Z� 0
0 0 Z�

1

A⇥
0

@
1
2 (�

2)
�
⇤�

1

A , (2.48)

where the values of Za,b,c can be read o↵ from equation (2.47). In this case, the operators �, ⇤�
are said to mix with �2 under renormalization, because the matrix (2.48) is not diagonal. In a more
general form, a renormalized composite operator AR is given by

AR =
X

B

ZABB, (2.49)

the sum running over all the operators that

• have dimension dB  dA

• have the same SO(d) structure of A

• transform as A under the action of a given internal symmetry

The (possibly divergent) entries of the matrix ZAB are called the renormalization constants of the
operator AR. In perturbation theory, these constants are determined from the renormalization of
the operator insertions, at a given order in the couplings. Non perturbatively, their determination
is achieved through the imposition of specific renormalization conditions.
The role of symmetries is crucial to constrain the operators that could mix with A and then minimize
their number. However, these symmetries are usually derived from the regularized theory; some of
these could be broken by a specific regularization, and will be restored only after the regulator has
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been removed. As a consequence, the number of mixing operators could increase in the regularized
theory. A clear example is given by the lattice regulator and space-time symmetries, as it will be
explained later. Other interesting properties of renormalized composite operators are 10

• Linearity

aAR + bBR = (aA+ bB)R. (2.50)

The above equation has to be intended inside Green’s functions.

ahARXi+ bhBRXi = h(aA+ bB)RXi, (2.51)

where X is a product of fields and their derivatives.

• Di↵erentiation is distributive. Suppose A is a composite operator

A =
nY

j=1

�j(x), (2.52)

where �j(x) is an elementary field or one of its derivative. Then

@

@xµ
AR =

✓
@

@xµ
A

◆

R

, (2.53)

where, again, the equation makes sense only inside correlation functions.

• Ward Identities. If the Noether current, as well as classical violation terms, are rewritten in
terms of their renormalized counterparts, then the renormalized WI hold

@µh(Jb
µ)RXiR = h(�b)RT i+

⌧
�b�(x)

�X

��(x)

�

R

, (2.54)

where the subscript b means that transformations of the bare action are considered. The
above equation plays a fundamental role in the definition of renormalized Noether currents.
It can be used to determine the renormalization constants of Jµ both in perturbative and non
perturbative regimes.

• Non renormalization of current. Under certain assumptions, it can be proved that Noether
currents do not renormalize at all.
To show this, let consider a quantum theory, whose bare action is invariant under a given
symmetry transformation. To the latter a classically conserved Noether current corresponds.
Then, two basic conditions need to be satisfied (cfr. (1)-(2)):

1. the symmetry is preserved by the regularized theory;

2. the symmetry transformation is linear in the fundamental fields.

If these two conditions are verified, then it can be proved that @µJµ is finite (cfr. section
(2.2)): however, nothing guarantees the finiteness of Jµ. The latter could still be defined
up to a divergent term Kµ whose total derivative vanishes. The form of Kµ depends on the
symmetry under study and on the dimensions of the system. In the following, the case of four
space-time dimensions is considered.

10The proofs of the above properties can be found in [15].
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– Internal symmetry : in this case Kµ is an operator with mass dimension 3, and takes the
following form

Kµ = ↵⌫ [@µ@⌫ �⇤�µ⌫ ]O(x), (2.55)

with ↵⌫ a dimensionless vector. The operator O(x) contains only matter fields. Since
Kµ has dimension 3, O(x) can only be proportional to a single scalar field

Kµ = ↵⌫ [@µ@⌫ �⇤�µ⌫ ]�(x), (2.56)

where � is complex or real. Noether currents for internal symmetries are hermitean, and
always invariant under phase transformations, being quadratic in the matter fields. For
complex scalar fields, these properties cannot be satisfied by (2.56): for real fields, the
same statement holds if the Z2 symmetry is used. Hence, Jµ cannot mix with divergent
terms with zero total derivative, and the following identity holds

(Jµ)R = Jµ. (2.57)

– Space-time symmetry : the operator Kµ has the same form as in (2.55). However, it has
mass dimension 4, a fact that allows di↵erent types of fields to be included

Kµ = ↵⌫ [@µ@⌫ �⇤�µ⌫ ]O(x), (2.58)

O(x) = �2(x),�†�... matter fields, (2.59)

O(x) = A⇢A⇢ gauge fields, (2.60)

O(x) = c̄c ghost fields. (2.61)

Combinations described by (2.59-2.60-2.61) provide a Kµ with the same properties of
the usual Noether currents of space-time symmetries, and cannot be ruled out. A clear
example will be given in section (2.4), where the renormalization of the EMT for a ��4

theory is considered.
The term described by (2.60) and (2.61) are in principle allowed when theories with a
gauge fixing are investigated. In this case, one can still use BRST symmetry to check if
some of these contributions can be excluded.

When gauge invariant theories are considered, a gauge invariant EMT can be formu-
lated using a properly generalized symmetry transformation. In this case, the terms in
(2.59-2.60-2.61) can be ruled out and the corresponding bare Noether current does not
renormalize11.

Coming back to the EMT, it should be clear that a renormalized form of this operator can be
obtained imposing equation (2.54). Given the renormalized EMT as12

(Tµ⌫)R =
nX

i=1

Zi(T
(i)
µ⌫ � hT (i)

µ⌫ i), (2.62)

then, if the space-time symmetries are exact and not broken by the regulator, the renormaliza-
tion constants can be obtained by imposing space-time WI. For example, the WI for translation
invariance can be applied

h@µ
nX

i=1

ZiT
(i)
µ⌫ �R,a1(x1)...�R,a

n

(xn)i =

= �
nX

j=1

h�R,a1(x1)...@⌫�R,a
j

(x)�d(x� xj)...�R,a
n

(xn)i. (2.63)

11The corresponding VEV needs always to be subtracted.
12When the renormalized operator is defined, also a possible mixing with the identity has to be considered.
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In this case, one would need just a set of n TWIs, as many as the mixing operators, and could solve
the system with respect the renormalization constants Zi. It should be stressed that this procedure
can be performed only if

• The arguments of each field insertion are separated, otherwise contact terms arise. In the
latter case, one has to take care separately of the divergences related to Tµ⌫ and those related
to fields coalescing in the same point. From the point of view of equation (2.8), this means
that each operator Oa(xi) has to be substituted by its renormalized counterpart, as well as
the variation �xOa

j

(xj). After this, the renormalization of the EMT can be take into account.

• The arguments of each field (or operator, if one is using (2.8)) have to be di↵erent from that
of the EMT. If this is not the case, then another kind of contact term appears. One will have
to renormalize the operator given by the product of the EMT and a collection of fields (or
operators). A possible example is represented by

O(x)µ⌫ = Tµ⌫(x)�
2(x). (2.64)

This is an operator of dimension dT + 2d�, defined by a di↵erent mixing with respect Tµ⌫ .
Clearly this is not the operator that one wants to renormalize.

In the following section, an example of renormalized EMT, using continuum formulation, is pro-
vided.

2.4 Renormalized EMT: a continuum example

To give an idea of how the renormalization of the EMT has been implemented, an example in
the continuum will be rapidly shown. The theoretical framework is a ��4 theory in 4 space-time
dimensions. For this theory, the renormalization of the EMT has been addressed by Coleman,
Callan and Jackiw [17]. They provided an improved version of the energy momentum tensor that
does not need any kind of renormalization, beside the ones coming from the underlying theory. The
Lagrangian density of the theory is

L =
1

2
@µ�@µ�+

m2
0

2
�2 +

�0
4!
�4. (2.65)

The improved operator is given by

⇥µ⌫ = (Tµ⌫)c � 1

6
(@µ@⌫ � gµ⌫⇤)�2, ⇥µ⌫ = ⇥⌫µ, (2.66)

where (Tµ⌫)c is the canonical EMT, given by equation (2.17). The first thing to note is that the
extra term on the l.h.s of (2.66) does not violate the conservation of the current. The second detail
to appreciate, is that the dilatation current can be written elegantly as

Dµ = x⌫⇥µ⌫ . (2.67)

This is a consequence of a general result: the canonical dilatation current is

(Dµ)c = x⌫(Tµ⌫)c + Vµ, (2.68)

Vµ = ⇧µ(x)�(x), (2.69)

⇧µ =
@L

@(@µ�)
. (2.70)
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The term Vµ is called the field virial. The reason behind this nomenclature is that Vµ consists of
the product between the field momentum ⇧µ and the field �, a structure analogous to the virial
in non-relativistic Lagrangian theory13. It can be easily proved that the vanishing of the trace of
(Tµ⌫)c does not ensure scale invariance

@µDµ = (Tµµ)c + @µVµ, (2.71)

however, if the field virial is a total divergence

Vµ = @⇠�⇠µ, (2.72)

further simplifications can be obtained. The following substitution has to be adopted

⇥µ⌫ = (Tµ⌫)c +
1

2
@⇢@�X

�⇢µ⌫ , (2.73)

where

X�⇢µ⌫ = ��⇢�
µ⌫
+ � ��µ�⇢⌫

+ � ��⌫�µ⇢
+ + �µ⌫�

�⇢
+ �

1

3
��⇢�µ⌫�

��
+ +

1

3
��µ�⇢⌫�

��
+ (2.74)

and

�µ⌫
+ = 1

2 (�
µ⌫ + �⌫µ), (2.75)

�µ⌫
� = 1

2 (�
µ⌫ � �⌫µ). (2.76)

Substituting for (Tµ⌫)c, one finds

Dµ = x⌫⇥µ⌫ � 1

2
@⇢@�(X

�⇢µ⌫x⌫) + @��
µ�
� . (2.77)

Since the last two terms have zero divergence, they can be dropped, allowing to recover equation
(2.67). What is really interesting is that the condition (2.72) is also the one that allows the theory to
be conformal invariant [16]. In their work, Coleman, Callan and Jackiw proved that the space-time
WI are fully satisfied (i.e. free from any divergence) only if the renormalized EMT is represented
by ⇥µ⌫ . This means that the canonical EMT, (Tµ⌫)c, which is derived from a variation of the basic
action, does not su�ce to make all the possible insertions finite when the cut-o↵ is removed. This
is exactly one of the cases that has been presented in (2.59).14 They proved the finiteness of ⇥µ⌫

using a combination of translation and dilatation Ward Identities:

@µh⇥µ⌫(x)�a1(x1)...�a
n

(xn)i = �
nX

j=1

�d(x� xj)h�a1(x1)...@µ�a
j

(xj)...�a
n

(xn)i, (2.78)

�µ⌫h⇥µ⌫(x)�a1(x1)...�a
n

(xn)i

= h⇥µµ(x)�a1(x1)...�a
n

(xn)i �
nX

j=1

�d(x� xj)h�a1(x1)...�a
n

(xn)i, (2.79)

In momentum space, these identities take the following form

kµ�
(n)
µ⌫ (k; p1, ..., pn) = �

X

P

(p1 + k)⌫G
(n)(p1 + k, p2, ..., pn), (2.80)

�µ⌫�
(n)
µ⌫ (k; p1, ..., pn) = �(n)(k; p1, ..., pn)�

X

P

G(n)(p1 + k, p2, ..., pn), (2.81)

13When non-zero spin fields are included, the field virial acquires also a contributions from the Lorentz generators,as
can be seen in eqs (2.18-2.19-2.20).

14Said in another way, the canonical EMT can only renormalize the translation WI, but not the identities related
to dilatation invariance.
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where �(n)
µ⌫ is the insertion of the EMT, �(n) the insertion of its trace and G(n) is the n-point

correlation function. The sum in the above equations is on the ciclic permutations of the indices 1
to n. Another equation that has been used is the following corollary

�(n)
µ⌫ (0; 0, ..., 0) = �(n� 1)�µ⌫G

(n)(0, ..., 0), , (2.82)

which can be obtained deriving (2.80) with respect kµ and then setting all momenta to zero. Using
the BPH approach [48], the authors started from the analysis of the trace term whose form is, using
the equation of motion

⇥µµ = m2�2. (2.83)

One of the advantages of using the operator ⇥µ⌫ is that the violation of scale invariance is charac-
terized by a single operator, which is close under renormalization15, i.e.

(⇥µµ)R = Z0⇥µµ. (2.84)

The renormalization constant can be fixed imposing

�(2)(0; 0, 0) = Z0, (2.85)

however, from equations (2.81-2.82) follows

�(2)(0; 0, 0) = �2G(2)(0, 0). (2.86)

Since G(2)(0, 0) is finite, then also c is. This means that all the insertions of ⇥µµ are finite. For the
non-diagonal components, the operator mixing is defined by

{�µ⌫�2, �µ⌫@��@��, �µ⌫�⇤�, @µ�@⌫�,�@⌫@µ�, �µ⌫�4} (2.87)

which represents a closed set under renormalization. The bare operator ⇥µ⌫ is just a linear combi-
nation of these operators. Therefore, a proper counterterm for it could be given by

(⇥µ⌫)CT =
6X

i=1

ZiO
(i)
µ⌫ . (2.88)

According to the BPH procedure, the Zi can be chosen in order to cancel the first relevant terms16

in the Taylor expansion of divergent diagrams about the point zero (which is identified by zero
external momenta). This means that the coe�cients Zi could be, in principle, divergent. The
renormalized operator could then be given by

(⇥µ⌫)R = ⇥µ⌫ +
6X

i=1

ZiO
(i)
µ⌫ =

6X

i=1

Z̃iO
(i)
µ⌫ (2.89)

To show the finitess of ⇥µ⌫ , the key point is to prove that the coe�cients Z̃i are finite. The
counterterms can be chosen such that the two and four point insertions obey

�(2)
µ⌫ (k; p1, p2) = �µ⌫(Z̃1 + Z̃2q

2 + Z̃3k
2) + Z̃4(kµk⌫ � �µ⌫k2) + Z̃5qµq⌫ + ... (2.90)

�(4)
µ⌫ (0; 0, 0, 0, 0) = Z̃6�µ⌫ , (2.91)

with triple dots indicating higher terms and q = p1� p2. Equation (2.80) tells that kµ�
(n)
µ⌫ is finite,

since the r.h.s. does not diverge when everything is written in terms of renormalized fields. As a
consequence, one has that

(Z̃1 + Z̃2q
2 + Z̃3k

2)kµ + Z̃5(qk)qµ, Z̃6kµ, (2.92)

15Disconnected contributions can be avoided defining ⇥
⇢⇢

= ⇥
⇢⇢

� h⇥
⇢⇢

i.
16The number of these terms is given by the superficial degree of divergence of the diagram
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have to be finite. Working on the coe�cients multiplying kµ and qµ, it is possible to show that all
the Z’s are finite, with the exception of Z4. Since the trace is finite, then the dilatation identities
can be used to write

4(Z̃1 + Z̃2q
2 + Z̃3k

2)� 3Z̃4k
2 + Z̃5q

2 (2.93)

The finiteness of �µ⌫�
(n)
µ⌫ automatically implies the finiteness of Z4. Hence, no counterterms are

really needed to renormalize ⇥µ⌫ . The bare operator is already the renormalized one. As a consis-
tency check, Coleman, Callan and Jackiw probed the space-time WI at 1-loop level, finding that
the above result is correct.

2.5 Renormalized EMT: lattice regularization

When a lattice regulator is adopted, the renormalization procedure becomes more cumbersome.
The main problem is that fundamental space-time symmetries are broken at finite lattice spacing17.
Starting from the simplest symmetry, i.e. translations, one finds

@µT̂
naive
µ⌫ = ��Ŝ

��̂
@⌫ �̂+ X̂⌫ , (2.94)

where

• T̂naive
µ⌫ is the näıve discretization of the classical energy momentum tensor18.

• X̂⌫ is a dimension 5 operator that vanishes in the continuum limit, when translational invari-
ance is restored.

At the quantum level, the corresponding TWI becomes

h(@µT̂µ + X̂⌫)(x)�̂a1(x1)...�̂a
n

(xn)i = �
nX

j=1

h�̂a1(x1)...(�̂x,⌫�̂a
j

(xj))...�̂a
n

(xn)i, (2.95)

Here the representation in terms of a generic, renormalized operator �̂a(x)19 has been preferred,
the reason to become clear in the next chapter. In the above representation, the operator �̂x,⌫
produces (discretized) local translations on fields or composite probes. For the latter, the action of
�̂x,⌫ can be syntetized by the following formula

�̂x,⌫�̂a
j

(xj) = ad
X

z

��̂a
j

(xj)

��̂b(z)
�̂x,⌫ �̂b(z), (2.96)

where �̂x,⌫ �̂b(z) is the discretized form of a local translation applied to elementary lattice fields.
For the theories considered in this work, it will be described by the following equations

�̂x,⌫ �̂(z) = �x,z @̂µ�(z) scalar field, (2.97)

�̂x,⌫Uµ(z) = �x,zF̂⌫µUµ(z) gauge field. (2.98)

The set of transformations described by (2.97-2.98) represents one of the possible discretized forms
that can be employed on the lattice. In principle, any formulation of �̂x,⌫ �̂b(z) which converges to
the correct transformation in the continuum can be adopted. This is not a trivial fact, since the

17Said in another way, the Leibniz rule does not hold.
18From now on, lattice operators will be denoted with aˆsymbol.
19The subscript

R

for renormalized operators �̂
a

(x)
R

is omitted to lighten the formulation.
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renormalization of �̂x,⌫�̂a
j

(xj) depends both on the choice of the composite probe �̂a
j

(xj) and the
specific form of �̂x,⌫ �̂b(z) adopted on the lattice.

The operator X̂⌫ that appears in equation (2.94) vanishes at tree level when a! 0. However,
radiative corrections can make its insertion to produce finite and divergent contributions to the WI.
These contributions need to be subtracted if one wants to recover the correct WI in the continuum.
This implies that the näıvely discretized EMT will not su�ce to render the WI finite when the
regulator is removed. To remove divergences (and finite contributions) generated by the lattice
regularization, a properly renormalized form of T̂µ⌫ has to be determined. For the latter, a mixing
with operators with mass dimension 4 has to be considered. Their classification is accomplished by
taking into account the internal symmetries of the action and the remnants of Poincaré invariance,
i.e. hyper-cubic symmetry. It comes out that the possible mixing takes the form

X̂⌫ ⇡ @⇢Ô⇢⌫ , (2.99)

the approximate identity to be understood inside Green’s functions. Then a renormalized energy
momentum tensor could be devised imposing

(T̂µ⌫)R = T̂naive
µ⌫ � Ôµ⌫ =

nX

i=1

ZiT̂
(i)
µ⌫ , (2.100)

and the lattice WI can be written as

h[@µ(T̂µ⌫)R +R⌫ ](x)�̂a1(x1)...�̂a
n

(xn)i = �
nX

j=1

h�̂a1(x1)...(�x,⌫�̂a
j

(xj))...�̂a
n

(xn)i, (2.101)

where the quantity R⌫ is a finite operator whose insertion vanishes in the continuum limit. The
above equation does still not represent the correct form of renormalized lattice WI. Renormalizations
coming from the term

�̂x,⌫�̂a
j

(xj), (2.102)

have also to be taken into account. The operator mixing that defines the renormalized version of
�̂x,⌫�̂a

j

(xj) depends on:

• the specific lattice formulation of �̂x,⌫�̂a
j

(xj);

• the choice of composite probe �̂a
j

(xj).

Once these two conditions have been specified, the renormalized form of �̂x,⌫�̂a
j

(xj) can be written
as a sum of bare lattice operators coupled to specific renormalization constants20. Collecting all the
pieces together, one can write down a proper lattice WI, which converges to the expected continuum
form, when a! 0

h[
nX

i=1

Zi@µT̂
(i)
µ⌫ +R⌫ ](x)�̂a1(x1)...�̂a

n

(xn)i = �
nX

j=1

h�̂a1(x1)...(�̂x,⌫�̂a
j

(xj))R...�̂a
n

(xn)i. (2.103)

It is important to clearly explain what does it mean to recover the correct continuum limit. The
renormalization constants of (T̂µ⌫)R and (�̂x,⌫�̂a

j

(xj))R can be expressed in terms of the bare
couplings of the theory, the lattice spacing and logarithms of dimensionless combinations like (am0)2

or similar. These constants encode all the subtractions needed to render equation (2.103) finite and

20At finite lattice spacing, these operators will be non vanishing only in a small region of the spacetime, defined
by a radius � = |x� x

j

|.
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lattice independent in the a ! 0 limit. As a consequence, when correlation functions are written
in terms of the renormalized parameters and fields of the theory

h[
nX

i=1

ci@µT̂
(i)
µ⌫ +R⌫ ](x)�̂a1(x1)...�̂a

n

(xn)i !
a!0
h@µ(Tµ⌫)R(x)�a1(x1)...�a

n

(xn)i+O(a),

nX

j=1

h�̂a1(x1)...(�̂x,⌫�̂a
j

(xj))R...�̂a
n

(xn)i !
a!0

nX

j=1

h�a1(x1)...(�x,⌫�a
j

(xj))...�a
n

(xn)i+O(a).

So, continuum TWI are recovered up to lattice artefacts that vanish, at least, with a21. This is
the result of the so-called Symanzik improvement program [43] and plays an important role both
in perturbative and non perturbative lattice field theory. Taking a look at the previous chapter, it
exactly corresponds to what has been shown in section (1.4) for the renormalized vertex functions
of ��4 theory.

Even if only the case of translations has been treated, the renormalization procedure can be
straightforwardly extended to the case of SO(d) rotations and dilatations. In the following, an
application of the method in perturbation theory is provided.

2.6 Lattice Perturbative EMT

The perturbative renormalization of the lattice EMT has been pioneered by S. Caracciolo, G. Curci,
P. Menotti and A. Pelissetto, who studied the problem for di↵erent kind of theories and defined a
method for a systematic renormalization of this operator22. In the following, two examples will be
given. The first will be the, now well known, lattice ��4 theory [19] , while the second one is the
case of lattice gauge theory [20, 49, 50].

2.6.1 Scalar lattice EMT

Scalar field theory represents the best laboratory for studying the restoration of space-time sym-
metries broken by the lattice. In this case, the attention was focused on the recover of translational
invariance, studying the TWI. In the continuum, these identities are satisfied by the canonical EMT

Tµ⌫(x) = @µ�(x)@⌫�(x)� �µ⌫

1

2
@⇢�@⇢�+

1

2
m2

0�
2(x) +

�0
4!
�4(x)

�
. (2.104)

The interest, in this case, was to determine a lattice-renormalized EMT, at one loop, satisfying the
Ward identity up to O(a).

To perform this task, a specific strategy, based on the local e↵ective lagrangian, has been
adopted.
Given the ��4 lattice action (1.82), and the corresponding generating functional (1.75), lattice
correlation functions can be computed in weak coupling perturbation theory. At small lattice
spacing, they admit the following expansion

Gn(p1, ..., pn;�0, m̂0, a) =
1X

j=0

1X

k=0

aj(log a)kK(n)
jk (p1, ..., pn,�0, m̂0). (2.105)

The same expansion can be obtained in terms of a local e↵ective Lagrangian [51] defined in the
continuum, at scale 1/a

Leff = Lcont +
1X

j=1

ajLj (2.106)

21This is a general result that could be modified according to the theory under study. For example, the TWI in
Yang Mills theory are supposed to converge O(a2) for symmetry reasons.

22Actually, they devised the renormalization procedure presented in the previous section.
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Each term in the equation above contain continuum operators coupled to a specific low energy
constant. The value of the latter can be fixed by double expanding lattice correlation functions
with respect a and �0 and requiring the following identity

Gn(p1, ..., pn;�0, m̂0, a) = Gn(p1, ..., pn;�0, m̂0, a)eff

=
1X

j=0

1X

k=0

aj(log a)kK(n)
jk (p1, ..., pn,�0, m̂0). (2.107)

to be valid up to a given order in a and �0. On the r.h.s, continuum correlation functions are
computed using dimensional regularization, the value of the arbitrary scale µ having been fixed to
1/a.
Hence, the identity (2.107) defines a mapping between two di↵erent regularizations, one that violates
translational invariance and one that preserves it.
In this case, only the leading order terms in the expansion in a have been considered, disregarding
contributions which vanish as a! 0. As a consequence, the identity (2.107) becomes

G(N)
latt(p1, ..., pn,�0, a,m0) ⇡ G(N)

continuum(p1, ..., pn,�0,m0)1/a (2.108)

where G(N)
continuum(p1, ..., pn,�0,m0)1/a is computed using the continuum Lagrangian Lcont. The

latter is given by

Lcont ⇡ 1

2
Z�@µ�@µ�+

1

2
m2

0Zm�
2 +

�0
4!

Z�0�
4, (2.109)

where the factors Zi(�0) are finite renormalizations that link the two di↵erent regularizations, and
have been determined at one loop [19].
With this identification, at one loop order in perturbation theory and at leading order in the
expansion in a, the lattice EMT is given by

T eff
µ⌫ = Z�N [@µ�@⌫�]� �µ⌫N [L], (2.110)

where the operation N [] represents the renormalization procedure in a continuum scheme. Then,
the whole procedure is reduced to define a lattice form of T̂µ⌫ such that23

T̂µ⌫ ⇡ T eff
µ⌫ . (2.111)

At tree level, a possible lattice discretization of (2.104) is given by

T̂naive
µ⌫ (x) = @µS�@⌫S�� �µ⌫


1

2
@⇢S�@⇢S�+

1

2
(m2 + �m2)�2 +

�0
4!
�4
�
. (2.112)

where �m2 is an additive renormalization of the form a�2f(�). The value of this term can be read
o↵ from the set of equations (1.110), in section (1.4)

�m2 = � �R
2a2

C0,

C0 = 0.15493...

and can be determined requiring the self energy to vanish at zero mass and momentum. This
kind of renormalization is motivated by the possibility to relate m2 to a physical correlation length
⇠, such that the ⇠ ! 1 limit represents a massless theory. The operator @µS represents the
symmetric derivative, as described in section (1.3). This choice allows to preserve the hermiticity
of the tensor, and ensure O(a2) corrections to physical quantities in the continuum limit. When

23The approximate equality has to be intended inside correlation functions.
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radiative corrections are included, the tree-level operator Tnaive
µ⌫ does not su�ce to absorb all the

divergencies, and it has to be modified with a proper operator mixing. Following the strategy
explained in the previous section, one has

T̂µ⌫ = T̂naive
µ⌫ � Ôµ⌫ ⇡ T eff

µ⌫ , (2.113)

where

Ôµ⌫(x) = b1@µS�@⌫S�+ �µ⌫


b2
2
@⇢S�@⇢S�+

b3
2
�2 +

b4
4!
�4 +

b5
2
@µS�@µS�

�
. (2.114)

In this way, all the b’s are at least O(�0). Note that the last term on the r.h.s of the equation is not
SO(4) covariant, since the index µ is not summed. This is a simple example of how breaking the
SO(4) symmetry induces new contributions in the mixing which are not expected in the continuum.
The renormalization of Tµ⌫ is now established imposing the WI for translations. The structure of
Tµ⌫ suggests that the restoration of continuum WI has to be checked just for two and four-point
functions. The renormalization constants have been determined imposing the WI for 1PI (fully
propagator amputated) vertex functions at zero momenta: for the four vertex function one gets

�naive(4)
µ⌫ (0; 0, 0, 0, 0)�O(4)

µ⌫ (0; 0, 0, 0, 0) = ��µ⌫�(4)(0, 0, 0, 0), (2.115)

the insertion on the r.h.s being the four-vertex function of the theory. The above equation serves
to fix the value of the constant b4: the relevant diagrams for the insertion of Tnaive

µ⌫ are

�naive(4)
µ⌫ (0, 0, 0, 0) = +

l

+

l

= �0

(
��µ⌫ + 3�0

Z
d4l

(2⇡)4

"
2l̄µ l̄⌫ � �µ⌫(l̄2 +m2)

(l̂2 +m2)3
+

�µ⌫

(l̂2 +m2)2

#)
,

and exhibit just a logarithmic divergence24. The value of b4 is set to

b4 =
3

2
�20

1

(4⇡)2
(2⇡2Z0000 � 1) (2.117)

Z0000 = 4.369... (2.118)

The same procedure is done for the two-point function. In this case, the contributing diagrams

�naive(2)
µ⌫ (0, 0) = +

l

+

l

= �3�20�µ⌫
Z

d4l

(2⇡)4

"
a2 l̂2

16(l̂2 +m2)2
+

l̄2 � l̂2

(l̂2 +m2)3

#
,

24In this case

l̄

µ

=
1

a

sin l

µ

a, l̂

µ

=
2

a

sin
l

µ

a

2
(2.116)
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are quadratically divergent, then two subtractions would need to be done, in the spirit of the BPH
approach. Since the renormalization is carried out at zero external momentum, no dependence on
external momenta is generated, so the constants b1,2,5 will be determined only at two loop level25.
This leaves only b3 to be determined. The final result for Tµ⌫ is given by the following equation.

T̂µ⌫(x) = @µS�@⌫S�� �µ⌫
⇢
1

2
@⇢S�@⇢S�+


m2

✓
1 +

�0
2(4⇡)2

(2⇡2Z0000 � 1)

◆
� �0

16a2

�
�2

2

+


1 +

3�0
2(4⇡)2

(2⇡2Z0000 � 1)

�
�0
4!
�4
�

(2.119)

An analogous calculation has been carried out using the continuum e↵ective theory at scale 1/a.
The renormalized operators defined in (2.110) have been transcripted in terms of lattice operators
imposing the equality O(a) of the Green functions computed in the two di↵erent regularization
schemes. Then the transcription has been applied to equation (2.110). The result obtained is the
same as equation (2.119), showing that the T̂µ⌫ is the correctly renormalized operator on the lattice.
As a proof of consistency, the authors investigated the form of the trace identities, showing that
the trace of (2.119) exhibit the correctly expected anomaly.

2.6.2 Gauge lattice EMT

The lattice gauge theory presents some additional di�culties arising from the necessity of defining
an EMT that could be symmetric and gauge invariant. The canonical EMT, defined from the
variation of the action under canonical translations of the field, is neither symmetric nor gauge
invariant. In pure Yang-Mills theory, a tensor that satisfies such symmetries can be obtained from
the following transformation

Aµ ! ↵⇢(x)F⇢µ, (2.120)

which is simply the composition of a (local) canonical translation and a gauge transformation
parametrized with the gauge field [52]. Equation (2.120) can be also generalized to gauge invariant
theories that comprise matter fields.
A more general method consists in defining the theory on a curved manifold and varying the
action with respect the metric, holding the other fields fixed26. A simple example can be given by
considering a pure gauge theory. Disregarding the gauge fixing term for a moment, the action on a
curved manifold is described by

S =

Z
d4x
p�g 1

2
tr{F�⌧F��}g��g⌧�, (2.125)

25The tree-level contributions of the counterterms coupled to b1,2,5 are polynomial in the external momenta. If
the latters are set to zero, then these counterterms can contribute only at two-loop order. From the BPH point of
view, this means that only the zeroth order in the Taylor expansion of the loop integral has to be subtracted.

26There is an easy way to understand this. On a curved manifold, the action is invariant under local coordinate
transformations. These transformations induce local deformations both of the metric tensor, as well as of the other
fields. For the latter, a generic local di↵eomorphism can be described by

�� = �⇠

⌫

@

⌫

�, spin zero, (2.121)

�A

µ

= �⇠

⌫

@

⌫

A

µ

� @

µ

⇠

⌫

A

⌫

spin one, (2.122)

... ... (2.123)

For a constant vector ⇠, the set of transformations (2.121-2.122), reduces to a global infinitesimal translation, whose
generator is exactly the EMT of the theory. This result can be used to trade variations with respect the fields, from
which the EMT is usually derived, with variations with respect the metric.

� �S

�g

µ⌫

�g

µ⌫

=
nX

i=1

�S

�B

i

�B

i

(2.124)
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The variation of the action with respect the metric brings

�S

�gµ⌫
=
p�g 1

2
tr{F�⌧F��}(4��µ��⌫ g⌧� � gµ⌫g

��g⌧�), (2.126)

from which one infers (gµ⌫ ! �µ⌫)

Tµ⌫ =
1p�g

�S

�gµ⌫
= 2tr


Fµ⌧F⌫⌧ � �µ⌫

4
F�⌧F�⌧

�
. (2.127)

The above EMT is clearly gauge invariant and symmetric, and its trace is zero, as it would be
classically expected from a theory with massless particles27.
When matter fields are included, a similar approach can be followed. In this case the action on the
manifold is given by

S =

Z
d4x
p�g


 ̄�ce�c

✓
D� +

1

2
�ab!ab

�

◆
 +m ̄ +

1

4
tr{F�⌧F��}g��g⌧�

+
1

2⇠
tr{r⇢A

⇢rµA
µ}+ gµ⌫@µc̄D⌫c

�
, (2.128)

where also gauge fixing terms have been included. The operator Dµ is the covariant derivative for
gauge transformations

Dµ = @µ + ig0Aµ fundamental,

Dµ = @µ + ig0[Aµ, ] adjoint,

for fundamental and adjoint representation. rµ represents the covariant derivative in the metric
gµ⌫

rµV
⌫...
↵... = @µV

⌫...
↵... + �⌫

µ�V
�...
↵... � ��

µ↵V
⌫...
�... (2.129)

where �⌫
µ� is the Christo↵el symbol and �ab is the �-matrix commutator divided by four. The

vierbein field eaµ are related to the metric by the following relations

eaµe
a
⌫ = gµ⌫ ,

e =
p�g = det(eaµ)

They represent a coordinate transformation on the tangent space that diagonalyze the scalar product

x⌫y
⌫ = gµ⌫x

µy⌫ = �ab(e
a
µx

µ)(eb�x
�). (2.130)

On the other hand, the spin connection ! ab
µ is given by

! ab
µ = e a

⌫ �⌫
�µe

�b + e a
⌫ @µe

⌫b = e a
⌫ �⌫

�µe
�b � e⌫a@µe

b
⌫ (2.131)

and is necessary to construct a generally covariant Dirac equation.

To derive the EMT, the following quantity has to be defined28

⇥µ
⌫ = �1

e
ea⌫
�S

�eaµ
. (2.132)

27This method can be adopted also when theories with gauge fixing are studied: in this case, clearly, the corre-
sponding EMT will no be gauge invariant.

28Variations with respect the metric are here traded with variations with respect the vierbein field.
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Then, the invariance of the action under the following reparametrization

�B = �⇠⌫@⌫B, B = {c, c̄, ,  ̄}, (2.133)

�Aµ = �⇠⌫@⌫Aµ � @µ⇠⌫A⌫ , (2.134)

�eaµ = �⇠⌫@⌫eaµ � @µ⇠⌫ea⌫ (2.135)

is employed to write

e⇥µ⌫
;µ � eea⇢e

a;⌫
µ

⇥µ⇢ �⇥⇢µ

2
= �


�S

�c
@⌫c+ @⌫ c̄

�S

�c̄
+
�S

� 
@⌫ + @⌫ ̄

�S

� ̄

�

+
p�g

✓
A⌫

p�g
�S

�Aµ

◆

;µ

�A;⌫
µ
�S

�Aµ
. (2.136)

Further simplifications can be obtained exploiting the invariance under internal local SO(4) rota-
tions

�eaµ = ✏abe
b
µ, (2.137)

� =
1

2
�ab✏ab , (2.138)

� ̄ = � ̄✏abebµ, (2.139)

from which it can be shown that

e(⇥µ⇢ �⇥⇢µ) =  ̄�µ⇢ �S

� ̄
� �S

� 
�µ⇢ . (2.140)

Defining the energy momentum tensor as

Tµ⌫ =
1

2
(⇥µ⌫ +⇥⌫µ) (2.141)

and using equation (2.140), one finally finds

Tµ⌫
;µ = � 1p�g


�S

�c
@⌫c+ @⌫ c̄

�S

�c̄
+
�S

� 
@⌫ + @⌫ ̄

�S

� ̄
+A;⌫

µ
�S

�Aµ

�

+
p�g

✓
A⌫

p�g
�S

�Aµ

◆

;µ

�


1

2
p�g

✓
 ̄�µ⌫ �S

� ̄
� �S

� 
�µ⌫ 

◆�

;µ

+
ea⇢e

a;⌫
µ

2
p�g

✓
 ̄�µ⌫ �S

� ̄
� �S

� 
�µ⌫ 

◆
. (2.142)

On a flat manifold, the above equation reduces to

@µT
µ⌫ = �

✓
�S

�c
@⌫c+ @⌫ c̄

�S

�c̄

◆
�
✓
�S

� 
@⌫ + @⌫ ̄

�S

� ̄

◆

�

@⌫Aµ

�S

�Aµ
� @µ

✓
A⌫ �S

�Aµ

◆�
� 1

2
@µ

✓
 ̄�µ⌫ �S

� ̄
� �S

� 
�µ⌫ 

◆
. (2.143)

The r.h.s of the equation is proportional to the equation of motion, and tells that the symmetrized
Tµ⌫ is conserved at the classical level. Using the explicit formula for the EMT, one finds

Tµ⌫ = TF
µ⌫ + T �

µ⌫ + T g.f.
µ⌫ + T ghost

µ⌫ , (2.144)
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where (sum over color indices is intended)

TF
µ⌫ =

1

4
( ̄�µ

 !
D ⌫ +  ̄�⌫

 !
D µ )� �µ⌫(1

2
 ̄�⇢
 !
D ⇢ +m ̄ ), (2.145)

T �
µ⌫ = Fµ⌧F⌫⌧ � �µ⌫

4
F�⌧F�⌧ , (2.146)

T g.f.
µ⌫ =

1

⇠

⇢
�(Aµ@⌫ +A⌫@µ)@�A� + �µ⌫


1

2
@⇢A⇢@�A� +A�@�@⇢A⇢

��
, (2.147)

T ghost
µ⌫ = @µc̄D⌫c+ @⌫ c̄Dµc� �µ⌫@�c̄D�c (2.148)

The operator described by (2.144) is symmetric, gauge invariant, but only the first two terms are
BRS invariant. However, one can writes the sum T g.f.

µ⌫ + T ghost
µ⌫ as a BRS variation of an operator

⌦µ⌫

T g.f.
µ⌫ + T ghost

µ⌫ = �BRS⌦µ⌫ ,

⌦µ⌫ = Aµ@⌫ c̄+A⌫@µc̄� �µ⌫

1

2
@�A�c̄+A�@�c̄

�

so that

�BRS(�BRS⌦µ⌫) =
�

⇠
[(A⌫@µ +Aµ@⌫)@⇢D⇢c� �µ⌫@⇢(A⇢@⇢D⇢c)], (2.149)

where � is the parameter related to the BRS transformation. Since the above equation is propor-
tional to the ghosts’ equation of motion, then the EMT in (2.144) is BRS invariant modulo the
equation of motion of the ghost fields 29. This tensor is already finite [18], i.e. its insertions in the
WI do not generate further divergences beside the ones of the elementary theory 30.

On the lattice, the näıvely discretized version of (2.144) does not allow to recover the right
WI in the continuum, and a proper renormalization procedure is needed. Starting from the näıve
operator, the authors chose a discretization that could preserve

• hyper-cubic symmetry;

• locality;

• hermiticity;

• BRS invariance modulo equation of motions.

The di↵erent terms contributing to this operator, which will be defined as T tree
µ⌫ from now on, are

• Gluonic term (sum over colors is intended)

T̂ �tree
µ⌫ =

X

⇢

Fµ⇢F⌫⇢ � �µ⌫
4

X

⇢�

F�⇢F�⇢, (2.150)

where the Clover definition of the operator F a
µ⌫ has been adopted

F a
µ⌫(x) =

1

4a2
tr{[P (x;µ, ⌫) + P (x;�µ,�⌫) + P (x; ⌫,�µ) + P (x;�⌫, µ)

� P (x; ⌫, µ)� P (x;�⌫,�µ)� P (x;µ,�⌫)� P (x;�µ, ⌫)]T a}. (2.151)

29It has to be stressed that such a tensor cannot be obtained just through the Belinfante symmetrization procedure.
30The authors verified this property for the simplest case of continuum QED at 1-loop level [20].
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Here P (x;µ, ⌫) is the Plaquette operator defined in terms of the gauge links Uµ(x)

Uµ(x) = eiagT
cAc

µ

(x),

tr{T aT b} =
�ab

2
,

P (x;µ, ⌫) = Uµ(x)U⌫(x+ a⌫̂)U †
µ(x+ ⌫̂)U†

⌫ (x).

• Fermionic term

T̂ ftree
µ⌫ =

1

8a
 ̄(x)�µ[U⌫(x) (x+ a⌫̂)� U†

⌫ (x) (x� a⌫̂)] (2.152)

+
1

8a
[ ̄(x+ a⌫̂)U⌫(x)�  ̄(x� a⌫̂)U†

⌫ (x)]�µ (x) (2.153)

+
1

8a
 ̄(x)�⌫ [Uµ(x) (x+ aµ̂)� U †

µ(x) (x� aµ̂)] (2.154)

+
1

8a
[ ̄(x+ aµ̂)Uµ(x)�  ̄(x� aµ̂)U†

µ(x)]�⌫ (x) (2.155)

� �µ⌫LF , (2.156)

where LF is the Wilson Lagrangian for fermion fields on the lattice.

• Gauge fixing and ghost terms, given as a BRS variation of

⌦̂µ⌫ =
1

2
@µBAµ@⌫S c̄(x) + @⌫BA⌫@µS c̄(x)� �µ⌫

X

�

ha
4
@�S@�BA�(x)c̄(x)

i
. (2.157)

In this theory, the renormalized lattice EMT mixes with 7 operators

T̂ (1)
µ⌫ =

⇥
 ̄�µD⌫ �D⌫ ̄�µ + (µ$ ⌫)

⇤
L
, (2.158)

T̂ (2)
µ⌫ = �µ⌫

�LF
�
L
, (2.159)

T̂ (3)
µ⌫ = �µ⌫ ̄ , (2.160)

T̂ (4)
µ⌫ = �µ⌫

�
 ̄�µDµ �Dµ ̄�µ

�
L
, (2.161)

T̂ (5)
µ⌫ =

0

@
X

⇢

Fµ⇢F⌫⇢ � �µ⌫
4

X

⇢�

F�⇢F�⇢

1

A

L

, (2.162)

T̂ (6)
µ⌫ = �µ⌫

0

@
X

⇢�

F�⇢F�⇢

1

A

L

, (2.163)

T̂ (7)
µ⌫ = �µ⌫

 
X

⇢

Fµ⇢Fµ⇢

!

L

, (2.164)

the subscript L meaning the proper discretization of the operator inside brackets. As in the previous
section, it is important to stress the presence of terms

T̂ (4)
µ⌫ = �µ⌫

�
 ̄�µDµ �Dµ ̄�µ

�
L
,

T̂ (7)
µ⌫ = �µ⌫

 
X

⇢

Fµ⇢Fµ⇢

!

L

,

that are manifestly SO(4) non-covariant in the continuum limit. The renormalized EMT has been
determined at 1-loop level for the QED case [20] and the QCD case [49, 50] imposing the translation
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WI for two-photon and two-fermion Green’s functions. As an example, here are reported the relevant
diagrams for the latter

hT̂µ⌫(0) (p) ̄(�p)iirr =

+

+ +

+ +

+

The gauge dependence of T̂µ⌫ and its renormalization constants has been studied in detail for
the QED case, with the possibility to extend the results to QCD. The outcome is that all the
dependence on the R⇠ parameter is confined on the 1/⇠ factor multiplying the gauge-fixing term

and in the renormalization constant coupled to T̂ (2)
µ⌫ . As in the scalar case, a consistency check

for the trace anomaly has been carried out. Moreover, the authors provided a method for a non
perturbative determination of the renormalization constants has been proposed. This will be the
subject of the next section.

2.7 Lattice non perturbative EMT

In principle, a strategy for a non perturbative determination of the lattice EMT can be devised
using the WI. Starting from the form of T̂µ⌫ described by (2.158), the renormalization constants

coupled to each T̂ (i)
µ⌫ could be determined using the TWI

h
X

µ

@µT̂µ⌫(0)⇤̂1(x1)...⇤̂n(xn)i = 0 xi 6= 0. (2.165)

Here, the ⇤̂i(xi) are gauge invariant, renormalized, composite operators. Since no gauge fixing is
required in non perturbative studies, the gauge fixing and ghost term will not contribute to the
above expectation values. For the same reason, the contribution from the operator T̂ (2)

µ⌫ vanishes,
since no dependence on a gauge fixing parameter ⇠ can be generated.
With this setup, the renormalization of the operator �̂x,⇢⇤̂j(xj) cannot be determined, since the
EMT and the probe do not coalesce on the same point. Hence, six renormalization constants have
to be determined.
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It should be noted that TWI for non coalescing operators provide the renormalized T̂µ⌫ up to
an overall multiplicative factor. The latter has to be determined using another renormalization
condition.
The numerical strategy can be described in few steps: starting from the renormalized lattice EMT

(T̂µ⌫)R =
7X

i 6=2

ZiT̂
(i)
µ⌫ , (2.166)

a first simplification is done fixing the renormalization of T̂ (1)
µ⌫ to 1

(T̂µ⌫)R = Z1

7X

i 6=2

Z̃iT̂
(i)
µ⌫ , (2.167)

Z̃1 = 1, (2.168)

Z̃3,4,5,6,7 = Z3,4,5,6,7/Z1. (2.169)

Then, the lattice TWI can be used to determine the five coe�cients Z̃3,4,5,6,7. One just needs a set
of five, gauge invariant probes such that the matrix

Aij = h
X

µ

@µT̂
(i)
µ⌫ (0)⇤̂

(j)(x)i, x 6= 0, i = {3, 4, 5, 6, 7} ; j = 1, ..., 5 (2.170)

is not degenerate. For the following set of probes

⇤̂(1) =  ̄(x) (x), (2.171)

⇤̂(2) =  ̄(x)�⌫ [U⌫(x) (x+ a⌫̂)� U †
⌫ (x) (x� a⌫̂)] (2.172)

+ [ ̄(x+ a⌫̂)U⌫(x)�  ̄(x� a⌫̂)U †
⌫ (x)]�⌫ (x), (2.173)

⇤̂(3) = g

"
X

�

 ̄(x)��T
aF a

⇢�(x) (x)

#

L

, (2.174)

⇤̂(4) =

 
X

⇢,⌫

F⌫⇢(x)F⌫⇢(x)

!

L

, (2.175)

⇤̂(5) =

 
X

⇢

F⌫⇢(x)F⌫⇢(x)

!

L

, (2.176)

it has been proved [20] that the matrix A has a non vanishing determinant, and thus allow to
determine Z̃3,4,5,6,7. The remaining renormalization Z1 can be determined equating the expectation
value of

H =

Z
d3xT00(~x, 0) (2.177)

on a state of known mass.
The strategy presented seems apparently a good one for determining the fully renormalized

EMT31. A set of field configurations can be numerically generated with a Monte Carlo algorithm,
and then expectation values defining the matrix A can be obtained averaging over these configu-
rations. However, it is at the numerical level that the strategy shows its drawbacks. Indeed, the
system defined by (2.170) can be solved only keeping the probe ⇤̂j and the operator T̂µ⌫ at physi-
cally separated points, otherwise contact terms arises. The matrix elements of A can be represented
by correlators depending on the distance x = |xT � x⇤|. The signal arising from these euclidean

31It should be stressed that the renormalization of the TWI requires also the Z

�

factor.

70



correlators decrease rapidly as the distance x increases. So there is a serious probability that the
signal-to-noise ratio could be not big enough to numerically solve (2.170).
What is needed is a strategy in which probe and the EMT could coalesce without generating di-
vergences. Clearly, composite operators built from elementary fields do not represent the right
candidate for devising such a strategy. In the next chapter, a powerful mathematical tool, called
gradient flow, will be introduced, with which well behaving probes can be created. The latter will
forbid the appearance of contact terms, even when they coalesce with the EMT, proving to be the
right candidates to numerically solve translation WI.
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Chapter 3

Energy momentum tensor and
Gradient flow

3.1 Introduction

The present and the following chapters represent the core of this work. In section (3.2), a detailed
description of the Gradient Flow (or Wilson Flow in lattice theory) is provided. The description
follows the lines of the paper written by Lüscher and Weisz [23], where dimensional regularization
has been adopted. Then, in section (3.3), the gradient flow is used to define a new strategy for
renormalizing the EMT. The strategy consists in probing WI for space-time symmetries using
operators evolved along the flow. As will become clear in the following, the main advantage of this
specific method is the total absence of contact terms.

3.2 Gradient flow in Yang Mills theory

The fundamental properties of the Gradient Flow are here explained. The attention is focused on
the perturbative study of correlation functions made with flowed fields, the meaning of this definition
to become clear later. The outcome of the perturbative analysis is that composite operators built
along the flow do not need to be renormalized.

3.2.1 Gradient Flow prescription

In this subsection, the gradient flow is presented as an evolution equation for gauge fields over a
new temporal extensions. The evolution can be graphically represented in terms of directed tree
diagrams.

The starting point is a generic SU(N) Yang Mills theory, with a gauge field Aµ(x) normalized
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so that its action takes the form 1

S = � 1

2g20

Z
dDxtr{Fµ⌫(x)Fµ⌫(x)}, (3.4)

Fµ⌫ = @µA⌫ � @⌫Aµ + [Aµ, A⌫ ]. (3.5)

The Gradient flow is then described by the following di↵erential equation [23]

@tBµ = D⌫G⌫µ, Bµ|t=0 = Aµ, (3.6)

Gµ⌫ = Fµ⌫ |A
µ

=B
µ

, D⌫ = @⌫ + [B⌫ , ...], (3.7)

where the fictitious parameter t will be referred to as the flow time. The form of the equation (3.6)
resembles that of the Langevin equation for gauge theories [53]

@tAµ = D⌫F⌫µ + ⌘µ(t, x), (3.8)

h⌘µ(t, x)i = 0, (3.9)

htr{⌘µ(t, x)⌘⌫(s, y)}i = 2�µ⌫�
D(x� y)�(t� s), (3.10)

In this case, correlation functions of the field Aµ can be averaged over the stochastic field ⌘⌫ and,
when t ! 1, they coincide with those of the Euclidean field theory described by the Yang Mills
action. This is the main result of the so-called stochastic quantization process. Equation (3.6)
di↵ers from the Langevin equation for two points

1. The stochastic term is absent.

2. The initial distribution of the gauge field is not ignored, as usually happens when (3.8) is
solved.

Nonetheless, perturbative properties, like the renormalization of the field Bµ can be studied follow-
ing the same approach applied to the case of the Langevin equation. The renormalization of the
latter has been thoroughly studied by Zinn-Justin and Zwanziger [54]. The first important result
coming from their analysis is that some technicalities can be avoided if a gauge damping term is

1In this formulation, the generators of the Lie algebra su(N) of SU(N) are identified with antihermitean, traceless
N ⇥N matrices. Their normalization is fixed by

tr{Ta

T

b} = � �

ab

2
, (3.1)

The algebra is closed under the following commutation relations

[Ta

, T

b] = f

abc

T

c

, (3.2)

and any element Y of su(N) is given by

Y = Y

a

T

a

. (3.3)
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added2.

@tBµ = D⌫G⌫µ + ↵0Dµ@⌫B⌫ , (3.14)

Bµ|t=0 = Aµ. (3.15)

This procedure does not a↵ect the evolution of gauge-invariant observables. Indeed, equation (3.14)
and (3.6) can be connected by a (time-dependent) gauge transformation

Bµ = ⇤(Bµ|↵=0)⇤
�1 + ⇤@µ⇤

�1, (3.16)

⇤̇(t, x) = �↵0@⌫B⌫⇤(t, x), ⇤|t=0 = 1. (3.17)

Any gauge-invariant observable, built with the field Bµ, does not change under (3.16), hence it does
not depend on ↵0. This means that the perturbative study of the flow equation can be done using
(3.14) without a↵ecting gauge-invariant correlation functions.

Flow equation: analytic solution

The solution of equation (3.14) is obtained separating the linear part in the gauge field from the
non-linear one.

Ḃµ = Lµ⌫B⌫ +Rµ, (3.18)

Lµ⌫ = ⇤�µ⌫ + (↵0 � 1)@⌫@⌫ , (3.19)

Rµ = 2[B⌫ , @⌫Bµ]� [B⌫ , @µB⌫ ] + (↵0 � 1)[Bµ, @⌫B⌫ ] + [B⌫ , [B⌫ , Bµ]]. (3.20)

The linear part of the flow equation can be solved using the following heat kernel3

Kt(z)µ⌫ =

Z

p
eipzK̃t(p) =

Z

p

eipz

p2

h
(�µ⌫p

2 � pµp⌫)e
�tp2

+ pµp⌫e
�↵0tp

2
i
. (3.22)

Taking into account the boundary condition in (3.14), the solution can be represented by the
following integral form

Bµ(t, x) =

Z
ddy


Kt(x� y)µ⌫A⌫(y) +

Z t

0
dsKt�s(x� y)µ⌫R⌫(s, y)

�
. (3.23)

It should be noted the retarded character of the above equation. The solution allows an expansion
in terms of the fundamental gauge field, obtained by recursively inserting the equation on the right

2Basically, the free gluon propagator, obtained from the solution of (3.8), takes the following form

�̃(k) =
⇥
(�

µ⌫

� k

µ

k

⌫

/k

2) + t(k
µ

k

⌫

)
⇤
/k

2
. (3.11)

The longitudinal part of �̃(k) is of order k

0 and gives a contribution that is not renormalizable by näıve power
counting. The term coupled to ↵0 in (3.14) is meant to suppress such longitudinal part. A similar problem arises
when the renormalizability of the Standard Model in unitary gauge is concerned [55]. In this case, the gauge
propagator

�̃(k) = (�
µ⌫

+ k

µ

k

⌫

/M

2)/(k2 +M

2). (3.12)

scales like M

�2 at high momenta and power counting cannot be used to study the divergence of diagrams. The
problem is solved using the R

⇠

gauge fixing

�̃(k) =
(�

µ⌫

� k

µ

k

⌫

/k

2)

k

2 +M

2
+

⇠k

µ

k

⌫

k

2(k2 + ⇠M

2)
(3.13)

3From now on Z

p

=

Z
d

d

p

(2⇡)d
(3.21)
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of itself. In momentum space, it becomes

B̃a
µ(t, p) = K̃t(p)µ⌫Ã

a
⌫(t, p)

+
3X

n=2

1

n!

Z t

0
dsK̃t�s(p)µ⌫

Z

q1

...

Z

q
n

(2⇡)d�d
 
p+

nX

i=1

qi

!

⇥X(n,0)(p, q1, ..., qn)
ab1...bn
⌫⌫1...⌫n

B̃b1
⌫1
(t,�q1)...B̃b

n

⌫
n

(t,�qn). (3.24)

Here, the flow-verticesX(2,0),X(3,0) can be worked out writingRµ in momentum space [23]: they are
totally symmetric only under the exchange of index-momentum combinations (q1, ⌫1, a1)...(qn, ⌫n, an),
(p, ⌫, a) excluded.

Flow equation: diagrammatic solution

The expansion of (3.24) at a given order in the fundamental gauge field can be obtained through
graphical methods. One just need to organize a small set of Feynman rules

• Flow line: this represents the heath kernel K̃t�s(p), that drives from a time s to a time t > s.

p

s, ⌫, bt, µ, a

= �ab✓(t� s)K̃t�s(p)µ⌫ (3.25)

The arrow points toward increasing flow time. It has to be noted the step function, introduced
in order to keep manifest the retarded nature flow propagator.

• One-point vertex: this graphical element represents the boundary field Aµ.

p
⇥

µ, a

= Ãa
µ(p) (3.26)

• Flow-vertices: these terms come from the non-linear contribution Rµ.

q1, ⌫1, b1

q2, ⌫2, b2

p, µ, a = X̃(2,0)(p, q1, q2)
ab1b2
µ⌫1⌫2

(3.27)

q1, ⌫1, b1

q2, ⌫2, b2

p, µ, a

q3, ⌫3, b3

= X̃(3,0)(p, q1, q2, q3)
ab1b2b3
µ⌫1⌫2⌫3

(3.28)

Each flow vertex is integrated with respect the flow time, from zero to infinity: the range of
integration is then bounded by the step functions in the flow propagator (3.25).
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At a given order n in the fundamental field, the general contribution to B̃a
µ(t, p) is given by the sum

of all diagrams with up to n one-point vertices

B̃a
µ(p) = ⇥

t, µ, a

+

⇥

⇥
t, µ, a

+

⇥

⇥

⇥
t, µ, a

+

⇥
⇥
⇥
⇥

t, µ, a

+ ... (3.29)

All the diagrams contributing are directed tree graphs with a single external line (denoted by the
little square at the end of such line). As can be seen from the example above, flow lines can start
at a one-point vertex, or a flow vertex, but can end only at another flow vertex (unless the line
considered is the external one). Each flow vertex has an outgoing line that brings the combination
(p, µ, a). The complete solution (3.24) can then be represented as a sum over an infinite set of
tree-diagrams.

3.2.2 Perturbation theory

Gauge fields satisfying the flow equation can be used to define a new type of correlation function.
The latter can be analytically studied when perturbation theory applies. In this subsection, a set
of diagrammatic rules will be given to make the perturbative analysis easy to perform.

A n-point correlation function of B fields can be evaluated using the expansion (3.29) and then
averaging over the fundamental gauge fields. However, it can also be obtained directly from a set
of Feynman rules defined in a (D + 1)�dimensional theory.

The flow equation is invariant under the following infinitesimal transformation

�Bµ(t, x) = Dµ!(t, x), (3.30)

!̇ = ↵0Dµ@µ!, (3.31)

!(t, x) 2 su(N). (3.32)

It has to be noted that the initial value of ! is not constrained, so it can generate the full gauge
group at t = 0 and extend the SU(N) gauge symmetry to the bulk theory (the theory at positive
flow time). To allow a perturbative expansion, a gauge fixing procedure has to be applied: this is
usually achieved through the Faddevv-Popov procedure [56], which results in adding a gauge fixing
and a ghost action.

Sgf = ��0
g20

Z
ddxtr{@⌫A⌫(x)@µAµ(x)}, (3.33)

Sgh = � 2

g20

Z
ddxtr{@⌫ c̄(x)Dµc(x)}. (3.34)

(3.35)

It should be clear that gauge-invariant correlation functions built with B fields are independent on
the gauge fixing parameter �0.
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(D + 1) dimensional Feynman rules

To derive a new set of diagrammatic rules, the flow-line diagrams that describe the B field need to be
combined with the Feynman rules of the underlying theory. This can be easily done by computing
the two-point function of flow-evolved fields. At leading order, this corresponds to contract two
terms like the first diagram on the r.h.s. of (3.29)

hB̃a
µ(t, p)B̃

b
⌫(s, q)i = (2⇡)d�d(p+ q)g20�

abD̃t+s(p)µ⌫ +O(g40), (3.36)

D̃t(p)µ⌫ =
1

(p2)2


(�µ⌫p

2 � pµp⌫)e
�tp2

+
pµp⌫
�0

e�↵0tp
2

�
(3.37)

*

p
⇥

t, µ, a

q

s, ⌫, b
⇥

+
=

p

s, ⌫, bt, µ, a

= �abg20D̃t+s(p)µ⌫ (3.38)

The nice property of this two-point function is that the same analytic expression for AA and AB
contractions can be obtained just turning o↵ the dependence on flow times in D̃t+s(p)µ⌫ . For this
reason, the same graphical symbol will be used to indicate the three di↵erent contractions. It should
be noted that contraction of one-point vertices always converts flow lines to gauge-field (wiggly)
lines. As an example, the contraction of the following diagram

*

p
⇥

t, µ, a

q

s, ⌫, b

⇥

⇥
+

=
p q

s, ⌫, bt, µ, a

(3.39)

transforms flow lines in gauge-field lines and couples them with elementary (t = 0) and flow
vertices. This should clarify enough how the flow line diagrams combine with the Feynman rules of
the underlying theory.

Then, one has to consider the flow time as an additional coordinate, and the (D+1) dimensional
space as a half-space with a D-dimensional boundary (only positive flow times are allowed). The
SU(N) gauge theory lies on the boundary, while the B fields, generated by the flow equation,
belong to the (D + 1)�dimensional bulk. The ordinary and flow vertices represents boundary and
bulk interaction terms, while the propagation in the (D+ 1) dimensions is described by (3.38) and
(3.25). The ghost propagator

hc̃a(p)˜̄cb(q)i = (2⇡)d�d(p+ q)g20D̃(p), (3.40)

ba
= �abg20D̃(p) = �abg20p

�2, (3.41)

propagates only on the boundary. The n-point correlation functions built with flowed fields are
then given by Feynman diagrams in (D + 1) dimensions. Some special features, however, need to
be pointed out.

1. Flow vertices have always one outward-directed flow line. This line corresponds to the first
momentum-index combination of the vertices X(2,0), X(3,0), as given by (3.27). The other
attached lines can be gauge-field lines or flow lines. Here is given the example of X(2,0)

p, µ, a
,
p, µ, a

,
p, µ, a

(3.42)
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2. Flow lines can only start at a flow vertex and are either external or end at another flow vertex.
The situation is di↵erent for gauge-field lines, which can start and end at both flow vertices
and ordinary vertices.

3. Ordinary vertices are clearly defined at zero flow time, while flow vertices are inserted at some
intermediate time, which is integrated up to infinity. The time dependence of propagators is
given by the flow times that label the end points.

4. Diagrams with closed flow line loops are set to zero. This happens because flow-line diagrams
are tree diagrams, and the contraction of n-point vertices never leads to new flow lines. This
point is crucial when the renormalization of the (D + 1)-dimensional theory is concerned.

(D + 1) dimensional field theory

The Feynman diagrams of the previous subsection can be considered as a set of graphic rules for
a local (D + 1)-dimensional field theory. To prove this, an action describing the evolution of the
B field has to be introduced. Moreover, this field has to be considered as an independent degree
of freedom (with exception of the boundary condition at zero flow time). All this can be achieved
introducing a Lagrange multiplier Lµ(t, x) = La

µ(t, x)T
a4. The total action is given by

Stot = S + Sgf + Sgh + Sfl, (3.43)

Sfl = �2
Z 1

0
dt

Z
ddxtr{Lµ(t, x)(Ḃµ �D⌫G⌫µ � ↵0Dµ@⌫B⌫)(t, x)}, (3.44)

and the path integral is given by

Z =

Z
D[A]D[B]D[L] exp (�Stot) . (3.45)

The integration over the field Lµ automatically impose the validity of the flow equation. It should be
noted that no particular boundary condition has been applied on the Lagrange multiplier. The next
step is to define which kind of propagators characterizes the theory. From the previous subsection,
it should be clear that contractions like AA, AB, BB are naturally included in the theory (3.43).
One has still to deal with LB and LA contractions. The former is evident from the form of the
flow action Sfl, while the latter arises from the boundary condition Bµ(0, x) = Aµ(x). Things can
be simplified rewriting the field Bµ as

Bµ(t, x) =

Z
ddyKt(x� y)µ⌫A⌫(y) + bµ(t, x), (3.46)

b(t, x)µ|t=0 = 0. (3.47)

If now one considers just the quadratic part of Sfl

Z 1

0
dt

Z
ddxtr{Lµ(@t�µ⌫ � Lµ⌫)B⌫}(t, x), (3.48)

it comes out that the Lagrange multiplier and the gauge field Aµ decouple, leaving only a constraint
for the field bµ(t, x). This result is important since leaves the form of the gauge field and ghost
propagators unchanged, and condense the information of LB contractions in the bL propagator.
The latter can be determined from the solution of

(@t�µ⌫ � Lµ⌫)H(t, x; s, y)⌫⇢ = �µ⇢�(t� s)�d(x� y), (3.49)

H(t, x; s, y)⌫⇢|t=0,s>0 = 0, (3.50)

4The component L

a

µ

(t, x) is purely imaginary.
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where

hbaµ(t, x)Lb
⌫(s, y)i|l.o. = �abH(t, x; s, y)⌫⇢. (3.51)

It is easy to show that

H(t, x; s, y)⌫⇢ = ✓(t� s)Kt�s(x� y)µ⌫ , (3.52)

which implies that the b field has to be delayed with respect the L field. The retarded Green function
above equals exactly the flow propagator (3.25), which now will be identified as a bL contraction.
As far the propagation in the (D + 1)-theory is concerned, the main results are

• On the boundary, only AA and c̄c propagators exist. The former can be regarded as BB
propagators at zero flow times

• In the bulk, only BB and BL propagators exists, the former represented by gauge-field lines,
the latter by directed flow lines.

What is missing now is the inclusion of flow vertices (3.42) inside the (D + 1)-dimensional theory.
These are generated by the non linear component of the flow equation and can be recast in the
interacting part of Sfl

Sfl,Int = 2

Z 1

0
dt

Z
ddxtr{Lµ(r, x)Rµ(t, x)}. (3.53)

Hence, all the vertices and propagators of the previous subsection have been recovered. Keeping
in mind the structure of Bµ (3.46), it is now possible to derive any correlation function using the
Feynman rules of the (D + 1)-dimensional theory.

A final remark has to be done about flow-lines and flow-line loops. The first thing to recall
is that flow-lines can start and end at flow vertices, but never are attached to boundary vertices.
Given the structure of (3.52), one identifies outward- and inward-directed external lines with B and
L external fields respectively. The same rule applies to closed flow lines. However, because of the
retarded nature of (3.52) and of the fact that no flow loops are generated in the tree expansion of
Bµ, diagrams with closed flow lines are totally absent. Two simple examples can be displayed

• Closed loop on single flow vertex.

(3.54)

This kind of diagrams vanishes because dimensional regularization sets the loop momentum
integral to zero5.

• Closed loops on multiple flow vertices

(3.55)

In this case, the diagram vanishes because of time integration. Indeed, the retarded nature of
the flow propagator forces the flow time at each vertex to be squeezed to a interval of measure
zero.

5If a lattice regulator is adopted, this result may not be guaranteed. However, it is always possible to include a
ghost field in the action that cancel these flow loops algebraically [57]
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3.2.3 1-loop non-renormalization

It is interesting to study the renormalization properties of the new bulk correlation functions. To
do so, a detailed analysis of their leading divergences has to be carried out.

A simple example of one-loop calculation has been done for BB propagator [23]: here, only the
divergent diagrams are presented, followed by their related ✏�1 singularities.

hBµ(t, x)B⌫(s, y)i = � +

+ + +

+ (3.56)

The first three diagram represent the one-loop contribution to the gauge AA vertex function. These
terms arise from the boundary theory. The fourth diagram is a contribution to the LA contraction,
which arises only at 1-loop order. The fifth and sixth diagrams are correction to the LB (note that
only flow vertices appear) while the seventh is the contribution to the LL vertex function. The
divergences arising from the boundary loops are already known from standard perturbation theory:
here is reported their contribution6

�(1)
AA(p)

ab
µ⌫(p)|pole = �ab(p2�µ⌫ � pµp⌫)

N

16⇡2✏

✓
13

6
� 1

2�0

◆
. (3.57)

Diagrams involving flow vertices are finite for d = 4 as long as the flow time is positive. The only
source of divergence can arise from the integration on t attached to flow vertices, where the flow
time goes from 0 up to an upper limit imposed by the external flow propagator. The divergent
part can be extracted taking the asymptotic series of the time integral at large loop momentum
and retaining the leading terms [23]. For the LA and LB contribution, the divergences are

�(1)
LA(t, p)

ab
µ⌫ |pole = g20�

ab�(t)�µ⌫
N

16⇡2✏

✓
3

4
+

3

4�0

◆
, (3.58)

�(1)
LB(t, sp)

ab
µ⌫ |pole = g20�

ab�(t)�(s)�µ⌫
N

16⇡2✏

✓
� 1

2�0

◆
. (3.59)

On the other hand, the last diagram does not produce divergences, implying that the LL vertex
function is finite for d = 4. It has to be noted that divergences are localized on the boundary of
the 5D theory, their localization being established by flow time delta functions .

6In this notation, �|
pole

represents the divergent part of the 1PI two-vertex function
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It is interesting to check whether or not the BB propagator actually renormalizes. To do this,
first bare parameters and fields need to be rewritten in terms of their renormalized counterparts

g20 = µ2✏g2RZ, (3.60)

�0 = �RZ
�1
3 , (3.61)

Aa
µ =

p
ZZ3(AR)

a
µ, (3.62)

ca = Z̃3

p
ZZ3(cR)

a
µ, (3.63)

c̄a =

r
Z

Z3
(c̄R)

a
µ, (3.64)

where Z,Z3 and Z̃3 are the renormalization constants of the coupling, the gauge field and the ghost
field in the standard representation of the Yang Mills action. Here, Aµ takes also a contribution
from Z due to the specific normalization chosen in this case. The asymmetric renormalization of
the fields c and c̄ has been chosen for reason that will become clear in the following. At leading
order, the renormalization constants one needs are

Z = 1� b0
✏
g2R +O(g4R), b0 =

N

16⇡2

11

3
, (3.65)

Z3 = 1 +
c0
✏
g2R +O(g4R), c0 =

N

16⇡2

✓
13

6
� 1

2�R

◆
, (3.66)

Then, the propagator has to be expressed in terms of its SO(4) invariant parts A and B

hB̃a
µ(t, p)B̃

b
⌫(s, q)i = (2⇡)d�d(p+ q)

�ab

(p2)2
{(�µ⌫p2 � pµp⌫)A(t, s, p2) + pµp⌫B(t, s, p2)} (3.67)

All the self-energy diagrams displayed in (3.56) contributes to A and B. Once bare couplings are
expressed in terms of the renormalized ones, these functions admit an expansion of the form

⇣ = µ2✏
1X

l=0

g2l+2
R ⇣, ⇣ = A or B (3.68)

At leading order, one has

A = g2R

✓
1� g2R

b0
✏

◆
e(t+s)p2

, (3.69)

B = g2R

✓
1 + g2R

c0 � b0
✏

◆
e↵0(t+s)p2

. (3.70)

On the other hand, contributions coming all the diagrams listed in (3.56) have to be included. The
boundary contribution is obtained sandwiching �AA|pole between two gauge propagators at time t
and s

g4RD̃
ac
t (p)µ⇢�AA(p)

cd
⇢�|poleD̃db

s (p)�,⌫ = g4R
c0
✏

�ab

(p2)2
(�µ⌫p

2 � pµp⌫)e
�(s+t)p2

(3.71)

A similar procedure can be done for �LA|pole, �LB |pole with few details to be specified:

1. Both vertex functions must be multiplied by the appropriate flow/gauge propagator and
integrated over the flow time. One integration is su�cient for �LA|pole, two for �LB |pole. The
role of the delta functions is then to locate the divergences on the boundary of the theory.

2. Diagrams with flow vertices brings two contributions, due to the di↵erence in the external
legs.
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Taking into account these simple details, one obtains

g2R

Z 1

0
d⌧H̃ac

t�⌧ (p)µ⇢

✓
�LA(p, ⌧)

cd
⇢�|pole +

Z 1

0
d��LA(p, ⌧,�)

cd
⇢�|pole

◆
D̃db

s (p)�,⌫ + (s$ t)

= g4R
(b0 � c0)

✏

�ab

(p2)2


(�µ⌫p

2 � pµp⌫)e
�(s+t)p2

+
1

�R
pµp⌫e

�↵0(s+t)p2

�
(3.72)

Adding (3.71) and (3.72) to the expansion (3.69) and (3.70) results in a cancellation of all divergences
at leading order in gR. This means that the fields Bµ and Lµ do not need to be renormalized. The
cancellation of divergences can be easily proved also for BL and BAR contractions. The case of
LAR and LL is even easier to prove: since there cannot be diagrams with only in-going and not
outgoing flow lines, LAR and LL contractions must be identically zero.

Since the field Bµ and Lµ do not renormalize, any kind of correlation function of the (D + 1)-
dimensional theory can be evaluated, its finiteness being guaranteed by the counterterms of the
boundary SU(N) gauge theory. The statement is strictly true only at one-loop in perturbation
theory. However it is possible to extend its validity to all orders in the gauge coupling

3.2.4 BRS symmetry

To prove the finiteness of flowed correlation functions, the BRS symmetry [58] has to be extended
from the boundary theory to the bulk one. The boundary theory

S + Sgf + Sgh (3.73)

as well as the integration measure of fields Aµ, c and c̄ can be proved to be invariant under the
following BRS variation (also called Slavnov transformation)

�Aµ = Dµc, (3.74)

�c = �c2, (3.75)

�c̄ = �0@µAµ. (3.76)

From this invariance, a set of WI arises, called Slavnov-Taylor identities. These identities can be
used to generate a certain number of constraints on the possible counterterms of the theory.
Studying the renormalization of the (D+1)-dimensional theory means to classify the counterterms
needed to make correlation functions finite at all order in perturbation theory. Extending the BRS
symmetry to the t > 0 bulk will make this work easier. Since the B fiels are non local in the
fundamental gauge degrees of freedom, it seems really di�cult to generalize, in a local way, the
BRS transformation at positive flow times. However, it has been shown [54] that this problem can
be overcome adding a new kind of ghost fields.

Ghost fields in the bulk

The additional ghost fields can be generated by the following term

Sdd̄ = �2
Z 1

0
dt

Z
ddxtr{d̄(t, x)(ḋ� ↵0Dµ@µd)(t, x)}, (3.77)

d|t=0 = c, (3.78)

where no boundary condition has been imposed on the d̄ field, which plays a role of a Lagrange
multiplier7. Two new propagators can be introduced,

7Note that the field d(t, x) satisfy the same di↵erential equation of the transformation !(t, x) that extends the
gauge symmetry to the bulk theory.
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• dd̄ propagator. This contraction is the analogue of the BL propagator, and its momentum
space representation is given by

hd̃a(t, p) ˜̄da(t, p)i = (2⇡)d�d(p+ q)�ab✓(t� s)K̃t�s(p) +O(g20), (3.79)

s, bt, a

= �ab✓(t� s)K̃t�s(p) = �ab✓(t� s)e�↵0(t�s)p2

(3.80)

• dc̄ propagator. This is a mixed contraction that reduces to the boundary ghost propagator at
t = 0.

hd̃a(t, p)˜̄ca(t, p)i = (2⇡)d�d(p+ q)�abD̃t(p) +O(g20), (3.81)

D̃t(p) =
1

p2
e�↵0tp

2

(3.82)

As for the gauge field, this mixed contraction is symbolically represented as a ghost propagator.
The arrow has to flow from the barred field to the unbarred one. No cd̄ contractions are allowed.
From the non linear component of (3.77) a flow vertex is generated

Sdd̄,Int = �
Z 1

0
dt

Z

p,q,r
(2⇡)d�d(p+ q)⇥X(1,1)(p, q, r)abcµ B̃a

µ(t,�p) ˜̄db(t,�q)d̃c(t,�r), (3.83)

where it can be easily shown that

X(1,1)(p, q, r)abcµ = ↵0f
abcrµ. (3.84)

It is possible to prove that closed dd̄ lines vanish as in the case of flow loops in the previous section.
Moreover, loops with mixed propagators cannot exist, since the propagation c  d̄ is not allowed.
Then the only possible loops are the usual ones of the theory at flow time zero.

BRS symmetry in the bulk

According to [54], a set of BRS transformations for the bulk theory can be represented by

�Bµ = Dµd, (3.85)

�Lµ = [Lµ, d], (3.86)

�d = �d2, (3.87)

�d̄ = DµLµ � {d, d̄}. (3.88)

The nice feature of equations (3.85) and (3.87) is that they reproduces the exact BRS variation for
boundary fields at t = 0. It is possible to show that the bulk action Sfli + Sdd̄ is invariant under
the above symmetry transformations 8. As a consequence, a set of Slavnov-Taylor identities can be

8An easy way to show this is by introducing the following fields

E

µ

(t, x) = Ḃ

µ

�D

⌫

G

⌫µ

� ↵0Dµ

@

⌫

B

⌫

, (3.89)

e(t, x) = ḋ� ↵0Dµ

@

µ

d, (3.90)

which obey the following BRS variations

�E

µ

= [E
µ

, d] +D

µ

e, (3.91)

�e = �{e, d}. (3.92)
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written down and used to impose constraints on the renormalization constants of the theory. One
of these identities will be really important in the following

�0hBa
µ(t, x)@⌫A

b
⌫(y)@⇢A

b
⇢(z)i = �h(Dµd)

a(t, x)c̄b(y)@⌫A
b
⌫(z)i, (3.93)

which involves three-point vertices and non-trivial cancellations among the various contributions.
The identity can be proved at tree level setting ↵0 = �0 = 1 9: the relevant diagrams for the l.h.s.
are

t, µ, p, a

q, b r, c

+

t, µ, p, a

q, b r, c

(3.94)

The first diagram is represented by the following formula10

g40

Z 1

0
d⌧✓(t� ⌧)K̃t�⌧ (p)µµ0X(2,0)(p, q, r)abcµ0⌫0⇢0D̃⌧ (q)⌫⌫0D̃⌧ (r)⇢⇢0(iq⌫)(ir⇢). (3.95)

With the above mentioned choice for the gauge fixing and gauge damping parameters, one has

K̃t(p) = e�tp2

, (3.96)

D̃t(p)µ⌫ =
�µ⌫
p2

e�tp2

, (3.97)

X(2,0)(p, q, r)abcµ⌫⇢ = ifabc{(r � q)µ�⌫⇢ + 2(q⇢�µ⌫ � r⌫�µ⇢)}. (3.98)

Plugging these expressions in (3.95) gives

g40
q⌫r⇢
q2r2

X(2,0)(p, q, r)abcµ⌫⇢

 
e�(q2+r2)t � e�p2t

q2 + r2 � p2

!
=

=
ig40f

abc

q2r2
1

2
(q � r)µ

⇣
e�(q2+r2)t � e�p2t

⌘

= � ig40f
abc

p2q2r2
Cµ,1, (3.99)

where

Cµ,1 =
1

2
(q � r)µp

2
⇣
e�(q2+r2)t � e�p2t

⌘
. (3.100)

The second diagram results in a similar structure, with a coe�cient

Cµ,2 =


1

2
(q � r)µp

2 +
1

2
(q2 � r2)pµ

�
e�p2t. (3.101)

9It should be stressed that any value of �0 and ↵0 satisfy (3.93). This is not surprising, since BRS symmetry is
intimately related with gauge invariance.

10A global (2⇡)d�d(p+ q + r) has been factored out

85



The r.h.s is characterized by three di↵erent diagrams

q, b r, c

t, µ, p, a
= � ig40f

abc

p2q2r2

⇣
�p2rµe�(q2+r2)t

⌘

| {z }
C

µ,3

(3.102)

(3.103)

+

t, µ, p, a

q, b r, c

= � ig40f
abc

p2q2r2


�p2

2
pµ
⇣
e�(q2+r2)t � e�p2t

⌘�

| {z }
C

µ,4

(3.104)

(3.105)

+

t, µ, p, a

q, b r, c

= � ig40f
abc

p2q2r2

h
�(qr + r2)pµe

�p2t
i

| {z }
C

µ,5

(3.106)

It is then easy to show that

Cµ,1 + Cµ,2 = Cµ,3 + Cµ,4 + Cµ,5 (3.107)

Finiteness of the renormalized perturbation expansion

To show that correlation functions of bulk fields are finite, it is necessary to reorganize the pertur-
bation expansion in terms of renormalized parameters and fields. The expansion is generated by
an action S0 +�S, organized in the following way

Stot = S + Sgf + Scc̄ + Sfl + Sdd̄, (3.108)

S0 = Stot|Z=Z3=Z̃3=1, (3.109)

�S = Stot � S0 +�Sbc. (3.110)

In this way, �S contains counterterms of the underlying SU(N) theory and an additional coun-
tertem

�Sbc = 2

Z
ddxtr{(

p
ZZ3 � 1)Lµ(0, x)(AR)µ(x) + (

p
ZZ3Z̃3 � 1)d̄(0, x)cR(x)} (3.111)

The boundary conditions for renormalized fields then become

Bµ|t=0 = (AR)µ, d|t=0 = cR. (3.112)

These conditions di↵er from those applied on boundary bare fields, since multiplicative factors are
missing. The role of �Sbc is to correct for this di↵erence.

The next step is to classify the possible, local counterterms, which can in principle belong to
both the boundary or the bulk. For the theory under study, bulk counterterms are excluded. The
statement is supported by the following arguments
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1. At large flow times, correlation functions containing bulk fields (Bµ, Lµ, d, d̄) are generated
only by Feynman diagrams containing only flow lines and flow vertices. These are directed
trees diagrams, or products of such trees. Each tree ends at one of the B or d field contained
in the correlation function, while the starting point will correspond to L and d̄ fields.

2. Directed tree diagrams do not generate loops, so the corresponding correlation functions are
not singular. Even if one ore more bulk fields coalesce on the same point, no divergence arises,
since no loops are generated.11

The above result implies that any divergent part of correlation functions, if existing, should be
matched by the insertion of a counterterm localized on the boundary. The boundary counterterms
of the underlying theory are already included, so contractions of AR, cR and c̄R fields are finite to
all orders. Divergences can arise only from diagrams with at least one flow vertex, attached to an
external flow line. As a consequence, the new counterterms should contain Lµ and d̄ fields. The
available operators should have mass dimension not larger than 4, and respect SO(4) symmetry, as
well as ghost number conservation.
This reduces the choice to countertems of the form12

2g2lR

Z
ddxtr{y1Lµ(0, x)(AR)µ(x) + y2d̄(0, x)cR(x)}, (3.113)

where the coe�cients y1 and y2 are singular in ✏13. It is now that the Slavnov-Taylor identity (3.93)
plays a key role. In terms renormalized quantities, the identity becomes

�hBa
µ(t, x)@⌫(AR)

b
⌫(y)@⇢(AR)

b
⇢(z)i = �h(Dµd)

a(t, x)(c̄R)
b(y)@⌫(AR)

b
⌫(z)i, (3.114)

where now the asymmetric renormalization of ghost fields find its motivation (all renormalization
factors drop out).
The equation above holds only if no divergence arises. All the fields appearing in the identity are
renormalized, and cannot receive further renormalizations.
If the correlation functions of the theory are singular at a given loop order l, then singularities
must be cancelled by a counterterm of the form (3.113). The contribution of the latter to the
identity (3.114) is obtained by inserting the corresponding two-point vertices into the tree diagrams
(3.2.4-3.2.4). The e↵ect of these insertions is to multiply the values of the diagrams by g2l and then
redefine the identity as

2y1Cµ,1 + y1Cµ,2 = (y1 + y2)(Cµ,3 + Cµ,4) + y2Cµ,5 (3.115)

Written in this form, the above equation is valid only if y1,2 = 0. This means that insertions of the
operator (3.113) are not compatible with the BRS identity (3.114). Since BRS symmetry has to
be preserved, the addition to the action of a counterterm of the form (3.113) has to be ruled out.
Hence, correlation functions appearing in (3.114) must therefore be finite at l-loop order: the same
statement holds for all the other (renormalized) correlation functions of the theory.
This su�ces to say that the (D+ 1)-dimensional theory generated by the flow does not need to be
renormalized.

3.2.5 Concluding remarks

The finiteness of correlation functions built along the flow can be proved using di↵erent types of
regulators. In particular, the same results hold when the theory is regularized with the lattice.

11This point will be crucial for the strategy adopted to renormalize the lattice EMT.
12It has to be kept in mind that [L

µ

] = [d̄] = 3
13In principle, also LB and d̄d terms could be included. However, these terms are not independent due to (3.112),

and their inclusion will end up simply in a redefinition of y1 and y2
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In this case, a possible choice for the flow evolution could be given by the gradient of the Wilson
action14

V̇t(x, µ) = �g20{@x,µSW (Vt)}Vt(x, µ), (3.116)

Vt(x, µ)|t=0 = U(x, µ), (3.117)

SW (U) =
1

g20

X

p

Re [tr{1� U(p)}] , (3.118)

Vt(x, µ) representing the flow of lattice gauge fields. The link di↵erential operator is given by the
Lie derivative

@ax,µf(U) =
d

ds
f(esXU)|s=0, X(y, ⌫) =

(
T a if (y, ⌫) = (x, µ)

0 otherwise

with its basis-independent form given by

@x,µf(U) = @ax,µf(U)T a. (3.119)

The above formulation is not unique. Every kind of lattice discretization whose continuum classical
limit reproduces the correct form of the gradient flow is a good candidate. Except for artefacts
proportional to a positive power of the lattice spacing, the correlation functions of bulk fields will
not depend on the discretization adopted. Even if the fundamental space-time symmetries are not
fulfilled, the remaining ones su�ce to exclude counterterms that are not present in the continuum
formulation. So, correlation functions of time-dependent fields do not need to be renormalized, and
their value in the continuum limit will be regulator-independent15. This is an important results,
since allows to exploit the properties of the gradient flow in lattice numerical studies.

Indeed, the gradient flow covers a wide spectrum of applications.

• It can be used to define a running coupling

g2WF / t2htr{Gµ⌫Gµ⌫}i, (3.120)

as shown in [21]. This Wilson Flow coupling has been employed for systematic scale-setting
studies in lattice simulations, using di↵erent types of boundary conditions [21, 27, 28, 29, 30].

• Reparametrizing the path integral in terms of evolved fields16

Z =

Z
D[V ]e�S̃(V ) (3.122)

improved the understanding of how topological sectors gets divided on the lattice as continuum
limit is approached [21].

• The asymptotic study of flowed quantities in the t ! 0 can be performed through a small
flow time expansion. In its general form, this expansion relates composite, flowed operator to
renormalized quantities

O(x, t)� hO(x, t)i =
nX

i=1

ci(t)(U)iR(x), (3.123)

14This is why the lattice version of the gradient flow is also called Wilson Flow

15There could be only finite renormalizations of couplings and gauge-fixing parameters.
16This is allowed since the transformation

U ! V = V

t

(3.121)

is a di↵eomorphism on the field space.
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the mapping provided by the small flow time coe�cients. The role of these coe�cients is to
encode the divergences that would a↵ect the insertion of the (bare) operator O(x, t) at t = 0.
Using the small flow time expansion, Suzuki et al. devised a strategy for perturbatively
compute the lattice renormalized EMT [31].

Finally, it should be mentioned that the finiteness of the Yang Mills gradient flow remains intact
when matter content is included at t = 0, provided that the bulk action is left unchanged. Things
do not work equally well when the flow evolution is extended to matter fields17

3.3 Ward Identities with Wilson Flow

3.3.1 Introduction

The previous section showed the remarkable properties of the gradient flow. It could be questioned
whether or not these properties could be useful to renormalize the lattice energy momentum tensor.
Intuitively, an answer can be given by reminding one of the key features of the bulk theory:

...flowed correlation functions do not generate divergences, even if one or more bulk
fields coalesce on the same point...

Recalling the general form of translation WI

h@µTµ⌫(x)Oa1(x1)...Oa
n

(xn)i = �
nX

j=1

hOa1(x1)...�x,⌫Oa
j

(xj)...Oa
n

(xn)i, (3.124)

it would be tempting to define a new set of identities

h@µTµ⌫(x)Oa1(x1, t)...Oa
n

(xn, t)i = �
nX

j=1

hOa1(x1, t)...�̃x,⌫Oa
j

(xj , t)...Oa
n

(xn, t)i, (3.125)

where composite operators have been substituted by their flowed versions. Here, the operator �̃x
j

,⌫

generates a local translation on fundamental fields and propagates it at positive flow time. The
first advantage of the above formulation is that each operator Oa

i

(xi, t) is finite, and can be safely
plugged inside correlation functions. The second advantage is that no contact terms arise when
x1 = x2 = ... = xn = x

h@µTµ⌫(x)Va1a2...an

(x, t)i = �h�̃x,⌫Va1a2...an

(x, t)i, (3.126)

the only divergences being here related to the bare EMT and the variation �̃x,⌫Va1a2...an

(x, t). If
the latter are replaced by their renormalized counterparts, then the following identity

h@µ(Tµ⌫)R(x)Va1a2...an

(x, t)i = �h(�̃x,⌫Va1a2...an

(x, t))Ri, (3.127)

will be finite. All these interesting features are consequences of the gradient flow smoothing prop-
erties. Numerically, equation (3.127) would represent the perfect candidate to measure the EMT
renormalization constants. In this case, correlation functions of objects coalescing on the boundary
(but not in the bulk) are involved. The smearing e↵ect at positive flow time prevents the rise of
divergences, while the coalescence on the boundary is supposed to maximize the signal coming from
numerical simulations.
A priori nothing would forbid to devise a set of WI like those in (3.127). For a candidate probe

17Indeed, it has been proved that a multiplicative renormalization [24] is needed for fermionic degrees of freedom.
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at positive flow time, the local translation in (3.127) should be localized at t = 0, and then prop-
agated through the bulk. Due to the gradient flow, the propagation will be non-local with respect
boundary fields.
This raises an issue that need to be properly addressed: the renormalization of the operator
�̃x,⌫Va1a2...an

(x, t).
The theory of renormalization is based on the possibility of adding local counterterms to make
correlation functions finite. However �̃x,⌫Va1a2...an

(x, t) depends on boundary fields in a non local
way. Hence, its renormalization could require the presence of non local boundary counterterms.
Loss of locality dramatically a↵ects the outcome of the renormalization program. The presence of
non local counterterms undermines the validity of the expansion

a
d

da
�(n)
R (p1, ..., pn;�R,mR, a) = O(a2(log a)k), (3.128)

for renormalized correlation functions. This in turn would also a↵ect the so-called Symanzik im-
provement program. As a consequence, numerical studies of renormalized quantities could not be
carried out. Needless to say that this would be a total disaster.
Being locality a fundamental property of renormalizable quantum theories, it shouldn’t be lost.

This problem has been addressed, and solved, by Del Debbio, Patella and Rago [34], for
the specific case of Yang Mills theory18. In their work, the authors proved that the operator
�̃x,⌫Va1a2...an

(x, t) renormalizes only multiplicatively, ruling out any kind of unwanted non-local
monster. In addition to that, they also shown how equation (3.127) can be derived from a general-
ized version of TWI, extended to the (D + 1)-dimensional theory.

In the following subsections, it will be explained in detail how these results have been obtained.

3.3.2 Translations: boundary theory

Before proceeding, it is better to recall some of the results shown at the beginning of (2.6.2). The
first is the gauge-covariant translation of gauge fields [52]

�↵Aµ(x) =

=

Z
ddy↵⇢(y)�y,⇢Aµ(x)

=

Z
ddy↵⇢(y)�

d(x� y)F⇢µ(x)

:= ↵⇢(x)F⇢µ(x), (3.129)

which allows to determine a gauge-invariant EMT in pure Yang-Mills theory 19

S = � 1

2g20

Z
ddxtrF�⌧F�⌧ , (3.130)

�↵S = �
Z

ddx↵⇢@µTµ⇢, (3.131)

Tµ⇢ = � 2

g20
tr

⇢
Fµ⌫F⇢⌫ � �µ⇢

4
F�⌫F�⌫

�
. (3.132)

For a uniform ↵, equation (3.129) reduces to a composition of a global translation and a field-
dependent gauge transformation

�↵Aµ(x) := ↵⇢@⇢Aµ �Dµ(↵⇢A⇢). (3.133)

18A similar strategy has been developed by Capponi, Del Debbio, Ehret, Pellegrini and Rago for the case of scalar
field theories (5).

19Here, the same notation of (3.2) will be adopted for the generators of the su(N) algebra.
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Then, for a gauge-invariant observable, the transformation (3.133) acts e↵ectively as a canonical
translation. The di↵eomorphism (3.129) can be generalized to the case of a generic probe P

�↵P =

Z
ddx↵⇢(x)�x,⇢P

:=

Z
ddx↵⇢(x)

�P

�Aa
µ(x)

F a
⇢µ(x), (3.134)

and a corresponding translation WI can be written as

h�x,⇢P i = �hP@µTµ⇢i. (3.135)

In the following subsections, it will be shown how these formulae can be adapted for probes evolved
with the gradient flow.

3.3.3 Translations: probes at positive flow time

The e↵ect of a local translation on a probe at positive flow time can be written in the following way

�x,⇢PT =

=

Z
ddy

�PT

�Bc
⌫(T, y)

�Bc
⌫(T, y)

�Aa
µ(x)

F a
⇢µ(x)

:=

Z
ddy

�PT

�Bc
⌫(T, y)

Jca
⌫µ(T, y; 0, x)F

a
⇢µ(x), (3.136)

where the simple chain rule has been applied. Jca
⌫µ(T, y; 0, x) is the Jacobian associated with the

map between field configurations at di↵erent flow times [59]

Jab
µ⌫(t, x; s, y) = ✓(t� s)

�Ba
µ(t, x)

�Bb
⌫(s, y)

, (3.137)

where only forward propagation has been considered. The Jacobian can be determined from the
following linearized equation

�Ḃµ(t, x) = [Gµ⇢, �B⇢] +D⇢D⇢�Bµ �D⇢Dµ�B⇢ + ↵0Dµ@⇢�B⇢ � ↵0[@⇢B⇢, �Bµ], (3.138)

which is obtained applying a field deformation to (3.6). A flow equation for the Jacobian is generated
by taking a functional derivative with respect B⌫(s, y)

@tJ
ab
µ⌫(t, x; s, y) = Dac(t, x)µ⇢J

bc
⇢⌫(t, x; s, y), (3.139)

D(t, x)µ⇢�B(t, x)⇢ := [Gµ⇢, �B⇢] +D⇢D⇢�Bµ �D⇢Dµ�B⇢ + ↵0Dµ@⇢�B⇢ � ↵0[@⇢B⇢, �Bµ].
(3.140)

Forward propagation is ensured by the following boundary conditions

Jab
µ⌫(t

+, x; t, y) = �ab�µ⌫�
d(x� y), (3.141)

Jab
µ⌫(t, x; s, y) = 0 t < s. (3.142)

It has to be noticed that (3.141) allows to recover the correct variation of a probe P at flow time
zero

lim
T!0+

�x,⇢PT =
�P

�Aa
µ(x)

F a
⇢µ(x). (3.143)

The solution of (3.139) is obtained with the same method adopted for the flow equation (3.6)
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• Detach linear and non-linear terms of the di↵erential operator D
Dµ⌫ := �µ⌫@⇢@⇢ + (↵0 � 1)@⌫@µ +Rµ⌫ . (3.144)

• Find the kernel for the linear component of D

Kt(x)µ⌫ =

Z

p

eipx

p2

h
(�µ⌫ � pµp⌫)e

�tp2

+ pµp⌫e
�↵0tp

2
i
. (3.145)

This is exactly the flow propagator (3.25).

• Recast the solution of the linearized flow equation into the following integral form

Jab
µ⌫(t, x; s, y) = �abKt�s(x� y)µ⌫ +

Z t

s
d⌧

Z
ddzKt�⌧ (x� z)µ�Rac(⌧, z)�⇢J

cb
⇢⌫(⌧, z; s, y).

(3.146)
The complete solution is obtained iterating the l.h.s on the r.h.s of the above identity, provided
R is written in terms of fields that satisfy the flow equation.

For ↵0 = 1, the leading term in the expansion (3.146) is given by

Jab
µ⌫(t, x; s, y) = �µ⌫�

ab✓(t� s)
e�

|x�y|2
4(t�s)

[4⇡(t� s)]d/2
+ ..., (3.147)

where the dots stand for O(g20) terms and contributions that decouple from gauge invariant ob-
servables. Combined with (3.147), equation (3.136) tells that local translations at t = 0 can be
smoothly propagated at t > 0, integrating boundary fields over a smearing radius of

p
8t.

The representation in terms of the Jacobian allows to precisely describe the renormalization prop-
erties of the operator �x,⇢PT . In the next subsection it will be shown how this happens.

3.3.4 Renormalization of �
x,⇢

P
T

In the (D + 1)-dimensional theory, the expectation value of a probe at positive flow time is given
by

hPT i = Z�1

Z
D[A]e�S

Z
D[B]D[L]PT e

�S
fl , (3.148)

the definition of S and Sfl being described by (3.4) and (3.44) respectively. It is interesting to study
how the expectation value PT changes under an infinitesimal transformation of the bulk fields

(B0)aµ(t, x) = Ba
µ(t, x) +

Z t

0
ds

Z
ddyJab

µ⌫(t, x; s, y)↵(s, y)X
b
⌫(s, y), (3.149)

where ↵ is a generic infinitesimal function that vanishes on the boundaries. The operator Xb
⌫(s, y)

and the gauge-invariant probe PT depend on B fields and their derivatives. Under the transforma-
tion (3.149) the path integral becomes

hPT i = Z�1

Z
D[A]e�S

Z
D[B0]D[L] det


�B0

�B

��1

(PT + �PT ) e
�S

fl

��S
fl (3.150)

The elements of the Jacobian matrix have the following form

�(B0)aµ(t, x)

�Bb
⇢(s, y)

= �ab�µ⇢�(t� s)�d(x� y)

+

Z t

0
d�

Z
ddz


�Jac

µ⌫(t, x;�, z)

�Bb
⇢(s, y)

↵(�, z)Xc
⌫(�, z)

+ Jac
µ⌫(t, x;�, y)↵(�, z)

�Xc
⌫(�, z)

�Bb
⇢(s, y)

�
.
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Figure 3.1: Action of the Jacobian J

ab

µ⌫

(t, x; 0, y). The e↵ect of a local translation at t = 0 is driven into

the bulk towards a probe positioned at (x, t). The propagation is obtained integrating boundary degrees of

freedom within a smearing radius r =
p
8t.

The determinant is then given by

det


�B0

�B

�
= 1

+

Z 1

0
dt

Z t

0
d�

Z
ddxddz


�Jac

µ⌫(t, x;�, z)

�Ba
µ(t, x)

↵(�, z)Xc
⌫(�, z)

+ Jac
µ⌫(t, x;�, y)↵(�, z)

�Xc
⌫(�, z)

�Ba
µ(t, x)

�
, (3.151)

where the relation det[I +M ] = 1 + tr{M} has been used. The term on the second line vanishes
since the Jacobian depends only on fields at flow times � < t.

�Jac
µ⌫(t, x;�, z)

�Ba
µ(t, x)

= 0. (3.152)

On the other hand, the variation on the third line results in

�Xc
⌫(�, z)

�Ba
µ(t, x)

:= �ac�µ⌫�
d(z � x)�(t� �)�(t, x), (3.153)
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because Xc
⌫(�, z) is a local function of bulk fields and their derivatives 20. Plugging this expression

in (3.151) gives

det


�B0

�B

�
= 1 + ✓(0)�d(0)

Z 1

0
dt

Z
ddx↵(t, x)�(t, x), (3.154)

which makes sense only in a regularized theory. To preserve translation invariance, dimensional
regularization is employed. With this kind of regularization, �d(0) = 0 and

det


�B0

�B

�
= 1, (3.155)

i.e. the Jacobian determinant is trivial. Expanding e��S
fl at leading order in �B allows to rewrite

(3.150) as

hPT i = hPT i+ h�PT i (3.156)

� Z�1

Z
D[A]e�S

Z
D[B]D[L]PT e

�S
fl

✓Z 1

0
dt

Z
ddxLa

µ(t, x)
h
�Ḃa

µ �Dab
µ⌫�B

b
⌫

i◆
. (3.157)

The identity simplifies once the time derivative of (3.149) is written down and the Jacobian equation
(3.139) is used

h�PT i = hPT �Si, (3.158)

�PT =

Z 1

t
ds

Z
ddz

�PT

�Ba
µ(s, y)

Jab(s, y; t, x)µ⌫X
b
⌫(t, x), (3.159)

�S = La
µ(t, x)X

a
⌫ (t, x), (3.160)

where the arbitrariness of the function ↵ has been exploited. Equations (3.158-3.159-3.160) can
be used to study the renormalization properties of �x,⇢PT . Indeed, the identity (3.158) holds for
any kind of field transformation described by Xa

⌫ (t, x). For an infinitesimal translation at zero flow
time, the identities above take the following form

h�x,⇢PT i = hPT T̃0⇢(x)i, (3.161)

�x,⇢PT =

Z
ddz

�PT

�Ba
µ(T, y)

Jab(T, y; 0, x)µ⌫F
b
⇢⌫(x), (3.162)

T̃0⇢(x) = �2tr{Lµ(0, x)F⇢µ(x)}. (3.163)

Equation (3.161) tells that the renormalization of �x,⇢ can be determined by analyzing the operator
T̃0⇢(x), a local operator built with Aµ and Lµ fields. Before proceeding, it is worth to stress few
points

• With some adjustment, the results above hold also when a lattice regulator is adopted. In
this case, a slight modification has to be applied to the following operator

[La
µX

a
µ](t, x) = lim

✏!0+
La
µ(t, x)X

a
µ(t� ✏, x), (3.164)

where the ✏ limit has to be taken after the cut-o↵ has been removed. The insertion of (3.164)
is generated by the field transformation

(B0)aµ(t, x) = Ba
µ(t, x) +

Z t�✏

0
d�

Z
ddzJab

µ⌫(t, x;�, z)↵(�, z)X
b
⌫(�, z). (3.165)

20Written in this form, �(t, x) is obtained taking partial derivatives with respect fields and their derivatives.
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This redefinition is motivated by the following argument: the variation

h
Z 1

t
ds

Z
ddz

�PT

�Ba
µ(s, y)

Jab(s, y; t, x)µ⌫X
b
⌫(t, x)i = hPTL

a
µ(t, x)X

a
⌫ (t, x)i (3.166)

vanishes if PT depends on B fields at flow times T < t. On the l.h.s. this is caused by the
Jacobian boundary conditions. On the r.h.s. this can be understood from the perturbative
analysis of the gradient flow (3.2). The B(t, x) L(s, y) propagation is allowed only if the B
field is at flow time t � s. If PT in (3.166) is defined at flow times smaller than t, flow lines
originates only from La

µ(t, x)X
a
µ(t, x) contractions. This generates closed flow-loops, which

vanish in dimensional regularization, but not in a lattice-regularized theory. This in turn
a↵ects the value of the determinant (3.151), since �d(0) is not zero at finite lattice spacing.
All these problems can be easily fixed if the operator (3.164) is employed.

• The transformation (3.162) can be generalized to the case of local translations applied on a
t > 0 hyperplane

�̄t,x,⇢PT =

Z
ddz

�PT

�Ba
µ(T, y)

Jab(T, y; t, x)µ⌫G
b
⇢⌫(t, x), t < T (3.167)

The above result will be important in the following, when a formulation of TWI at positive
flow time shall be devised.

A generic form for the observable PT could be given by

PT =
nY

i=1

�i(T, xi), (3.168)

where each �i(T, xi) represents a gauge-invariant, local observable of the B fields and their deriva-
tives. Equation (3.161) signals that the divergences of h�x,⇢PT i can arise from products of operators
of the (D + 1)-dimensional theory. It is already known that local operators of the bulk theory do
not require renormalization21. The only possible divergences are related to the operator T̃0⇢(x),
which is defined on the boundary. The latter has the following properties

• Its engineered dimension is 5.

• It is gauge invariant.

• It transforms as a four-vector under SO(4) rotations.

In principle, any operator with mass dimension  5 that shares the same properties could mix with
T̃0⇢(x). However, it is worth to make few remarks

• Since no LA contractions are admitted, insertions of T̃0⇢(x) with observables built from bound-
ary gauge fields vanishes. This means that T̃0⇢(x) does not mix with operators made with
boundary fields.

• A mix with the Lagrange multiplier could be considered, however T̃0⇢(x) itself is the only
operator with dimension not greater than 5 and the required symmetries.

From this analysis, it can be safely assessed that T̃0⇢(x) renormalizes only multiplicatively22. More-
over, no extra divergences are generated when x hits one of the xi’s, since T̃0⇢(x) and �i(T, xi) are

21Note that all the points x1, ..., xn

could also coincide and no divergences would be generated.
22It should be stressed that this result holds also when regulators that break translational invariance (like the

lattice) are employed.
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always at separate points in the (D+ 1)-dimensional theory. In terms of renormalized operators, a
possible translation WI can be written as

Z�hPT T̃0⇢(x)i = Z�h�x,⇢PT i = �hPT@µ(Tµ⇢)Ri. (3.169)

This is the main result of this chapter, and the core of this work. Equation (3.169) tells that a set
of TWI with probes at positive flow time can be built and adopted to renormalize the EMT.

In dimensional regularization, Poincaré invariance is preserved, and then Z� = 1 [46] and the
operator �x,⇢ does not renormalize at all. In this case, the bare EMT, with VEV subracted, is finite
and the identity (3.169) holds when the cut-o↵ is removed.

Things will be di↵erent when the lattice regulator is employed. In the following, it will be
shown how a numerical strategy based on (3.169) can be setup to renormalize the lattice EMT.

Before moving to lattice numerical studies, it is still interesting to see how equation (3.169) can
be actually derived from a generalized version of the TWI, where also translations along the flow
time direction are considered. This will be the subject of the next subsection.

3.3.5 Translation WI at positive flow time

The flow equations are invariant under global translations. This implies the equivalence between
the two following actions

• Evolve from the boundary theory and then translate the bulk fields at a given flow time t.

• Translate the boundary fields and then evolve them up to flow time t in the bulk.

This argument allows to define a family of transformations parametrized by the flow time

�̄t,↵P =

Z
ddx↵⇢(x)�̄t,x,⇢P =

Z
ddx↵⇢(x)

�P

�Ba
µ(t, x)

Ga
⇢µ(t, x), (3.170)

where the di↵erential operator �̄t,x,⇢, cfr. (3.167), depends locally on B fields that satisfy the flow
equation. In analogy to (3.161), it is possible to show that

h�̄t,x,⇢PT i = hPT T̃0⇢(t, x)i, (3.171)

the operator T̃0⇢(t, x) being computed at positive flow time. For uniform ↵⇢, the transformation
generated by (3.167) reduces to the composition of a canonical, infinitesimal translation of the B
field and a field-dependent gauge transformation. The action of the operator �̄t,x,⇢ assumes two
di↵erent forms

�̄t,x,⇢�(T, y) =
��(T, y)

�Ba
µ(T, x)

Ga
⇢µ(T, x) for T = t, (3.172)

�̄t,x,⇢�(T, y) =

Z
ddz

��(T, y)

�Ba
µ(T, z)

Jab(T, z; t, x)µ⌫G
b
⇢⌫(t, x) for T > t, (3.173)

These two equations clearly state that the operator �̄t,x,⇢ generates a local translation on hyperplanes
at fixed t > 0. A global version of the previous transformations is given by

Z

V
ddx�̄t,x,⇢�(T, y) = @⇢�(T, x) for T = t, (3.174)

Z

V
ddx�̄t,x,⇢�(T, y) = @⇢�(T, x) +O

✓
e�

r

2

4(T�t)

◆
for T > t, (3.175)

where the integration domain is a sphere V with radius r, centered in x. The result on the second
line will be proved at then end of the subsection.
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The interesting feature of the operator �̄t,↵ is that it only depends on bulk fields, and therefore
it does not require any renormalization. Associated with it, for each flow time t, there is a new EMT
and a corresponding bulk TWI can be formulated. Clearly, this new EMT will be non-local in the
fundamental gauge fields. Nevertheless, it can be written in terms of local operators exploiting the
space-time symmetries of the (D+1)-dimensional field theory. Following the example of subsection
(3.3.2), a gauge-covariant translation in the bulk theory can be described as

�↵BM (t, x) =

Z 1

0
ds

Z
ddy↵R(s, y)�s,y,RBM (t, x)

=

Z 1

0
ds

Z
ddy↵R(s, y)�(t� s)�d(x� y)GRM (t, x)

:= ↵R(t, x)GRM (t, x), , (3.176)

�↵Lµ(t, x) =

Z 1

0
ds

Z
ddy↵R(s, y)�s,y,RLµ(t, x)

=

Z 1

0
ds

Z
ddy↵R(s, y)�(t� s)�d(x� y)DRLµ(t, x)

:= ↵R(t, x)DRLµ(t, x), (3.177)

with ↵0(0, x) = 0 and R,M = 0, 1, ..., D,. The direction 0 identifies the flow time extension. For a
probe that does not depend on the Lagrange multiplier, the corresponding variation will be

�↵P =

Z 1

0
dt

Z
ddx↵R(t, x)�t,x,RP

:=

Z 1

0
dt

Z
ddx↵R(t, x)

�P

�Ba
M (t, x)

Ga
RM (t, x). (3.178)

From equations (3.176) and (3.177), the di↵erence between the operator �t,x,R and �̄t,x,⇢ should
appear quite clear. However, few comments could be necessary

• �̄t,x,⇢ acts on fields that already satisfy the flow equation. The fields are deformed at flow time
t, and the flow equation propagates the deformation at all other flow times. A peculiar example
is given by the case �x,⇢ = �̄0,x,⇢, where the deformation is carried out on the boundary theory,
and propagated to any positive flow time

• �t,x,R acts on the (D+1)-dimensional fields before the flow equation is imposed. It generates
local deformations in (D+1) dimensions that are not propagated in flow time. Starting from
a configuration that satisfies the flow equation, its deformation will not generally satisfy the
same equation. The variation of the equation is reabsorbed by the transformation of the
Lagrange multiplier (3.177)
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From the transformation induced by �t,x,R, an EMT at any positive flow time can be defined23

�↵Sfl =

Z 1

0
dt

Z
ddxT̃MR(t, x)@M↵R(t, x), (3.181)

T̃0R = �2tr{LµGRµ}, (3.182)

T̃⌫R = 2tr{LµD⌫GRµ}� 2tr{D⌫LµGRµ}� 2tr{DµLµG⌫R}+ 2�R0tr{L⌫DµGµ0}, (3.183)

up to terms proportional to the flow equation that vanish inside expectation values (see appendix
A). From the set of transformations (3.176) and (3.177), the following WI can be derived

h�t,x,⇢P i = �hP@M T̃MR(t, x)i. (3.184)

For a probe PT depending on B fields at flow time T > t, the l.h.s of the previous equation vanishes,
leaving the identity

hPT@tT̃0R(t, x)i = �hPT@µT̃µR(t, x)i. (3.185)

In the following, only the case R = ⇢ will be considered. It has to be noticed that both sides of
the equation are finite at positive flow time. Equation (3.185) leads to a set of WI for the family of
transformations identified by (3.173). To verify this statement, it is necessary to integrate (3.185)
with respect the flow time in an interval (0, t). The problem is that, at t = 0, an extra contribution
arises from the fact that boundary fields are transformed along with the bulk ones. Moreover
equation (3.185) is valid for bare fields at finite cut-o↵. As long as the flow time is non-zero, this
equations does not exhibit divergences in the ✏ ! 0 limit. Therefore, the cut-o↵ gets removed at
positive flow time, then equation (3.185) is integrated in an interval (t0, t)

hPT T̃0⇢(t, x)i = hPT T̃0⇢(t0, x)i � hPT@µ

Z t

t0

dsT̃µ⇢(s, x)i, (3.186)

and then the t0 ! 0+ limit is taken. The l.h.s. of the previous identity can be rewritten as

hPT T̃0⇢(t, x)i = h�̄t,x,⇢PT i, (3.187)

and can be used to take the the limit of the first term on the r.h.s.

lim
t0!0+

hPT T̃0⇢(t0, x)i = h�x,⇢PT i = �hPT@µTµ⇢(x)i. (3.188)

Collecting all the pieces together, a translation WI for the operator �̄t,x,⇢ can be written as

h�̄t,x,⇢PT i = �hPT@µT̄µ⇢(t, x)i, (3.189)

T̄µ⇢(x) = Tµ⇢(x) +

Z t

0
dsT̃µ⇢(s, x). (3.190)

This TWI can be reduced to equation (3.169) at t = 0 only if the integral appearing in (3.190) is
finite. Before setting t = 0, a classification of divergences arising from T̃µ⇢(s, x) when s! 0+ must
be done. This task can be accomplished counting the operators that could mix with T̃µ⇢(s, x). The
procedure can be simplified if the following arguments are taken into account

23The following flow action

S

fl

= �2

Z 1

0
dt

Z
d

d

xtr{L
µ

(t, x)[G0µ �D

⌫

G

⌫µ

](t, x)}, (3.179)

G0µ = Ḃ

µ

�D

µ

B0. (3.180)

has been used. This formulation automatically ensures invariance under local gauge transformations in (D + 1)
dimensions. The original action is recovered in the B0 = 0 gauge. As the measure in the path integral is invariant
under the change of variables that drives to the B0 = 0 gauge, the actions (3.44) and (3.179) describe the same
quantum theory.
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• Candidate operators must have mass dimension smaller than or equal than 6.

• Taking into account the SO(4) structure of T̃µ⇢(s, x), only operators with dimension 6 and 4
are allowed.

• Candidate operators must at least contain a Lagrange multiplier, whose dimension is 3.

Requiring gauge-invariance allows to rule out dimension 4 operators, stating that T̃µ⇢(s, x) has at
most a logarithmic divergence for s ! 0+. Since this singularity is integrable, the t ! 0+ limit in
(3.189) can be safely taken, finally giving

h�x,⇢PT i = �hPT@µTµ⇢(x)i. (3.191)

Which is exactly equation (3.169).

The last part of this subsection is devoted to prove equation (3.175). Starting again from
equation (3.185), one can integrate the mentioned identity in the interval (t, T ). This will result in
the following equation

hPT T̃0⇢(T, x)i = hPT T̃0⇢(t, x)i � hPT@µ

Z T

t
dsT̃µ⇢(s, x)i, (3.192)

which can be rewritten as

h�̄t,x,⇢PT i = h�̄T,x,⇢PT i+ hPT@µ

Z T

t
dsT̃µ⇢(s, x)i. (3.193)

The probe observable PT is then decomposed according to

PT = XT�(T, x), (3.194)

XT being a product of probes at flow time T but di↵erent space-time positions with respect x.
Equation (3.193) can be integrated on a space-time sphere V with radius r and centered in x

hXT

Z

V
ddy�̄t,y,⇢�(T, x)i = hXT@⇢�(T, x)i+ hXT�(T, x)

Z T

0
ds

Z

@V
dSµT̃µ⇢(s, x)i. (3.195)

The operator T̃µ⇢(s, x) contains only terms that are linear in the Lagrange multiplier Lµ. Since the
LB propagator is exponentially suppressed with the space-time separation, the contribution of the
last term on the r.h.s. is exponentially suppressed if all the fields are far enough from the boundary
of the sphere V . Denoting r̄ as the distance from @V of the closest operator, then

hXT

Z

V
ddy�̄t,y,⇢�(T, x)i = hXT@⇢�(T, x)i+O

✓
e�

r̄

2

4(T�t)

◆
. (3.196)

3.3.6 Dilatations

In this work, all the numerical e↵ort has been devoted to the renormalization of translation WI.
However, it is interesting to see how the previous method can be extended to the case of dilatations.
Also in this case, non local renormalization are ruled out, since the results of section (3.3.4) hold
for local dilatations applied to probes at positive flow time. Hence, a proper set of DWI with flowed
operators can be setup

hx⇢�x,⇢PT i = �hPT@µ(x⇢Tµ⇢(x))i+ hPTTµµ(x)i. (3.197)
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Similiarly to the case of translations, the above equation can be derived from a set of DWI of the
(D+1)-dimensional theory. To discuss the latters, the operator �̄t,x,⇢ need to be extended, in order
to include the flow-time direction

�̄t,x,RP :=
�P

�Ba
µ(t, x)

Ga
Rµ(t, x), (3.198)

where the following relation

h�̄t,x,RPT i = hPT T̃0R(t, x)i, (3.199)

can always be proved using the path integral formalism. A local dilatation in the bulk is represented
by

�↵Bµ(t, x) = ↵R(t, x)GRM (t, x), (3.200)

�↵Lµ(t, x) = ↵R(t, x)DRLµ(t, x), (3.201)

↵⇢(t, x) = x⇢�(t, x), (3.202)

↵0(t, x) = 2t�(t, x), (3.203)

and its global counterpart is obtained taking � uniform. It should be noticed how local dilatations
are simply a special case of local translations. For uniform �, the flow equation is invariant under
the set of transformations (3.200-3.201-3.202-3.203). The variation of the bulk action is given by

��Sfl = �
Z 1

0
dt

Z
ddx�(t, x)

h
@M (�RNxRT̃MN )� �MRT̃MR

i
, (3.204)

where the (D + 1)-dimensional euclidean metric

�MR =

0

BBBBB@

2
1
1
1
1

1

CCCCCA
, (3.205)

has been introduced. From equation (3.204), the corresponding dilatation WI can be derived

h�t,x,RPT i = �hPT

h
@M (�RNxRT̃MN )� �MRT̃MR

i
i, (3.206)

where the l.h.s vanishes if T > t, since probe and variation are not coalescing at the same point.
Since the r.h.s. of (3.206) is set equal to zero, the following relation is generated

hPT@t
h
2tT̃00 + x⇢T̃0⇢

i
i = hPT

h
2T̃00 + T̃��

i
i � hPT@µ

h
2tT̃µ0 + x⇢T̃µ⇢

i
i. (3.207)

As for the case of boundary DWI, the trace of the bulk EMT seems to violate dilatation invariance
in (D+1) dimensions. However, it can be easily shown that the generalized trace in (3.207) equals
a four-divergence h

2T̃00 + T̃��

i
(t, x) = @µT̃0µ(t, x), (3.208)

up to terms proportional to the flow equation that vanish inside correlation functions. Using the
relation (3.208), equation (3.207) becomes

hPT@t
h
2tT̃00 + x⇢T̃0⇢

i
i = �hPT@µ

h
2tT̃µ0 + x⇢T̃µ⇢ � T̃0µ

i
i. (3.209)
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Mimicking the procedure followed for the case of translations, the above equation is integrated in
the flow-time interval (0, t) with T > t

hPT

h
2tT̃00 + x⇢T̃0⇢

i
(t, x)i � lim

t0!0+
hPT

h
2t0T̃00 + x⇢T̃0⇢

i
(t0, x)i =

= �hPT@µ

Z t

0
ds
h
2sT̃µ0 + x⇢T̃µ⇢ � T̃0µ

i
(s, x)i. (3.210)

The first thing to notice is that
lim

t0!0+
hPT 2t0T̃00i = 0, (3.211)

as T̃00(t0, x) diverges at most logarithimcally. Using equation (3.199), the integrated DWI becomes

h⇥2t�̄t,x,0 + x⇢�̄t,x,⇢
⇤
PT i = �hPT@µD̄µ(t, x)i+ hPTTµµ(x)i, (3.212)

D̄µ(t, x) = x⇢Tµ⇢(x) +

Z t

0
dsD̃µ(s, x), (3.213)

D̃µ(s, x) =
⇣
2sT̃µ0 + x⇢T̃µ⇢ � T̃0µ

⌘
(s, x). (3.214)

The di↵erential operator 2t�̄t,x,0 + x⇢�̄t,x,⇢ generates dilatations on hyperplanes at fixed flow time
t. As before, power counting arguments show that the integral in D̄µ is finite, so the t! 0+ limit
can be safely carried out

hx⇢�x,⇢PT i = �hPT@µ(x⇢Tµ⇢(x))i+ hPTTµµ(x)i. (3.215)

Equation (3.215) defines dilatation WI probed by observables built along the flow. As usual, the
probes are observables that depend on the bulk field Bµ at flow time T . This is not the only possible
relation that can be extracted from (3.212). A di↵erent outcome is generated integrating (3.212)
over the space time and setting PT = �(T, x)

h
Z

ddy
⇥
2t�̄t,y,0 + y⇢�̄t,y,⇢

⇤
�(T, x)i = h�(T, x)

Z
ddyTµµ(y)i, (3.216)

which defines the e↵ect of a global dilatation on a probe �(T, x). If the probe is positioned at the
origin, then the following equation holds

h

2T

d

dT
+ d�

�
�(T, x)i = h�(T, x)

Z
ddyTµµ(y)i, (3.217)

where d� is the dimension of the operator �(T, x). Equation (3.217) is the operatorial form of the
Callan-Symanzik equation [4, 5], where 1/

p
8T is the energy scale and contact terms are absent.

This equation is extremely interesting. It allows to probe the trace of the EMT just by looking at the
evolution under gradient flow of observables. In Yang-Mills theory this result is really important,
because the trace of the EMT is the source of the quantum anomaly [18]. It should be stressed
that the strategy proposed above has been formulated for the specific case of pure gauge theories.
However, as it will be shown in chapter (5), a similar method can be developed for scalar field
theories.

3.3.7 Renormalized EMT from the gradient flow

As previously mentioned, the thesis focuses on the renormalization of the lattice EMT using the
translation WI. The numerical analysis has been completely based on the following equations

h�x,⇢PT i = �hPT@µTµ⇢(x)i, (3.218)

hXT

Z

V
ddy�̄t,y,⇢�(T, x)i = hXT@⇢�(T, x)i+O

✓
e�

r̄

2

4(T�t)

◆
, (3.219)
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to determine the EMT renormalization constants and the multiplicative factor Z�. In the previous
subsections, it has been shown that the identity

h�̂x,⇢P̂T i = �2htr{L̂µ(0, x)F̂⇢µ}P̂T i, (3.220)

holds at any lattice spacing (the “ ˆ ” symbol characterizes lattice operators). Here P̂T is a gauge-
invariant probe built with gauge fields Vµ(t, x) satisfying a discretized form of the gradient flow,
like (3.116). It has been proved that the operator tr{L̂µ(0, x)F̂⇢µ} renormalizes multiplicatively.
Then a renormalized operator can be introduced

(T̃0⇢)R = Z�L̂µ(0, x)F̂⇢µ (3.221)

such that the following limits are finite

lim
a!0
hPT (T̃0⇢)Ri = lim

a!0
Z�h�̂x,⇢P̂T i = h�x,⇢PT i. (3.222)

As the operator T̃0⇢ is RG invariant in the continuum, then the renormalization of the corresponding
discretized version is finite. This means that Z� depends on the lattice spacing only through the
bare coupling 24

Z� = 1 +O(g20) (3.223)

According to the analysis of section (2.5), the lattice-renormalized EMT is defined as

(T̂µ⌫)R =
nX

i=1

Zi

⇣
T̂ (i)
µ⌫ � hT̂ (i)

µ⌫ i
⌘
, (3.224)

the coe�cients Zi to be identified as the renormalization constants. In principle, a mixing with the
identity has to be consider (as in the equation above), however this term does not contribute to the
lattice TWI, its lattice derivative being zero. The lattice TWI is given by

h[@µ(T̂µ⌫)R +R⌫ ](x)P̂T i = �Z�h�̂x,⇢P̂T i, (3.225)

where the r.h.s. is already known to converge to the correct continuum limit. On the l.h.s., the
restoration of translation invariance is ensured by the following conditions:

• the limit
lim
a!0
h@µ(T̂µ⌫)RP̂T i = hPT@µTµ⇢i, (3.226)

is finite and regular at the space-time point x (as no contact terms are generated);

• the contribution of the operator R⌫(x) (which is finite), vanishes at any space-time point x

lim
a!0
hR⌫(x)P̂T i = 0 (3.227)

Putting all together, up to subleading corrections in the lattice spacing:

Z�h�̂x,⇢P̂T i = �hP̂T@µ(T̂µ⇢)R(x)i, (3.228)

Z�hX̂Ta
d
X

y

�̂y,⇢�̂(T, x)i = hX̂T@⇢�̂(T, x)i+O
⇣
e�

r̄

2

4T

⌘
. (3.229)

Equations (3.228-3.229) can be straightforwardly used to numerically determine the renormalization
constants Zi and Z� for any finite value of the lattice spacing.

24It should be mentioned that things will become even simpler when the scalar theory in 3 dimensions is considered.
In this case it shall be proven that Z

�

is exactly 1.
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Determination of Zi/Z�

Equation (3.228) can be employed to measure the ratios Zi/Z�. Using n di↵erent gauge-invariant
probes at positive flow time (n being the number of constants Zi) the following system

nX

↵=1

h�̂(�)(t, x)@µ(T̂
(↵)
µ⇢ )R(x)ik↵ = �h�̂x,⇢�̂(�)(t, x)i (3.230)

can be solved with respect k↵ = Z↵/Z�. Here local probes at positive flow time have been chosen

P̂t = �̂(t, x), (3.231)

and are positioned at the same space-time point as the lattice EMT. The smearing properties of the
flow prevent the emergence of contact terms and allow to enhance the signal since the correlators
in (3.230) involve operators coalescing on the boundary theory. A further improvement is obtained
using vector-like probes

P̂t = �̂⇢(t, x), (3.232)

and summing equation (3.230) over the all lattice directions25

nX

↵=1

X

⇢

h�̂(�)
⇢ (t, x)@µ(T̂

(↵)
µ⇢ )R(x)i

| {z }
M�↵(t,x)

k↵ = �
X

⇢

h�̂x,⇢�̂(�)
⇢ (t, x)i

| {z }
v�(t,x)

. (3.233)

The system defined by (3.233) has a non trivial solution if

1. The probes are chosen such that not all their variations v�(t, x) are zero.

2. The matrix M�↵(t, x) has rank n.

If these two conditions are satisfied, then, for each flow time t, a vector of renormalization constants
k↵,t can be defined. The di↵erence between solutions at di↵erent flow times will be explained in
detail in the following chapter.

Determination of Z�

Once the ratios k↵ = Z↵/Z� have been determined, the multiplicative factor Z� needs to be mea-
sured. The latter can be numerically evaluated using equation (3.229). There are several way this
identity can be used [34]. For the pure gauge case the following formulation has been adopted

Z�ha4
X

y02D

�̂y0,0�̂(t, L0/2� 1))iO�SF = h@0S�̂(t, L0/2� 1))iO�SF +O
⇣
e�

r̄

2

4t

⌘
. (3.234)

Here, the su�x O�SF defines open-Schrödinger functional boundary conditions [60] for the direc-
tion µ = 0. The global translation is applied along the time direction, integrating its local version
within the domain

D = {x 2 (L0/2� 1)� d  x0  (L0/2� 1) + d}. (3.235)

The distance r̄2 that controls the exponential suppression is just d  L0/2�1. If periodic boundary
conditions were applied on the time direction and the integration carried over the all time extension,
then the r.h.s. of (3.234) would have vanished. For the direction along which the translation is
applied, it is necessary to engineer boundary conditions such that no translational symmetry is
generated. The O � SF setup represents a possible choice.

25This prevents the terms in equation (3.233) to vanish in the continuum, as only scalar quantities produce non-zero
expectation values.
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Chapter 4

Yang-Mills theory in 4 dimensions

4.1 Introduction

This chapter deals with the determination of the lattice-renormalized EMT in Yang-Mills theory. A
brief introduction to the theory is given, followed by the description of the EMT in the continuum.
Then, the numerical setup is explained in detail. Results coming from simulations are reported and
discussed.

4.2 Yang-Mills theory in a nutshell

Yang-Mills theory is a gauge theory based on the SU(N) group, or, more generally, any compact,
semi-simple Lie group. Its fundamental degrees of freedom are represented by gauge fields Aµ(x).
The latter are defined as elements of the su(N) algebra and describe the dynamic of gauge bosons.
The classical action of the theory is defined as1

S = � 2

g20

Z
ddxtr{Fµ⌫Fµ⌫}, (4.1)

while the quantized theory is described by the following path integral

Z[J ] =

Z
D[A] exp

✓
�S � 2

g0

Z
ddxtr{JµAµ}

◆
, (4.2)

which can be used to compute gauge-invariant correlation functions of gauge fields. Once a gauge
fixing has been applied [56], the perturbative analysis of Yang-Mills theory can be carried out
re-scaling the gauge field

Aµ ! g0Aµ, (4.3)

and expanding the path integral (4.2) up to a given order in the bare coupling g0. The latter is the
only parameter that controls the theory. In the perturbative regime, Yang-Mills theory exhibits
a single RG fixed point, i.e. the Gaussian one. For the latter, the bare coupling g0 represents
a marginally relevant direction. At finite cut-o↵, the continuum limit of the theory is obtained
properly tuning g0 towards the Gaussian point while keeping physical quantities unchanged. The
lattice formulation of the theory, along with its perturbative and non perturbative studies, have
been thoroughly developed during the last four decades [11, 41, 42, 61] and will not be discussed
here .

1The same convention of section (3.2) has been adopted to define the generators of the su(N) algebra.
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4.2.1 Lattice and continuum EMT

The classical EMT in pure Yang-Mills theory is given by

Tµ⌫ = � 2

g20
tr

⇢
Fµ⌧F⌫⌧ � �µ⌫

4
F�⌧F�⌧

�
. (4.4)

It can be decomposed as
Tµ⌫ = T (2)

µ⌫ + T (0)
µ⌫ (4.5)

where the components

T (2)
µ⌫ = � 2

g20
tr {Fµ⌧F⌫⌧} Spin 2, (4.6)

T (0)
µ⌫ =

�µ⌫
2g20

tr {F�⌧F�⌧} Spin 0, (4.7)

(4.8)

transform according two di↵erent irreducible representations of the SO(4) group.
Using a regularization that preserves translational invariance, it can be proved [18] that the

renormalized EMT coincides with the bare one if the following definition

(Tµ⌫)R = Tµ⌫ � hTµ⌫i, (4.9)

is adopted. As already pointed out in chapter (3), the VEV does not contribute to the translation
WI. However, it has to be included when dilatation invariance is under study. When only translation
WI are concerned, Tµ⌫ does not renormalize at all, i.e. it is a RG-invariant quantity.

On the lattice, the operator mixing that defines the renormalized EMT can be read o↵ from
(2.158), excluding the matter content. The contributing operators are classified according to irre-
ducible representations of the hypercubic group2

• Singlet

T̂ (1)
µ⌫ =

�µ⌫
2g20

tr

8
<

:
X

⇢�

F̂�⇢F̂�⇢

9
=

; ' ↵

0

BB@

1
1
1
1

1

CCA , (4.10)

• Triplet

T̂ (3)
µ⌫ = � 2

g20
�µ⌫tr

8
<

:
X

⇢

F̂µ⇢F̂⌫⇢ � 1

4

X

⇢�

F̂�⇢F̂�⇢

9
=

; '

0

BB@

↵
�
�
�(↵+ � + �)

1

CCA (4.11)

• Sextet

T̂ (6)
µ⌫ = � 2

g20
(1� �µ⌫)tr

(
X

⇢

F̂µ⇢F̂⌫⇢

)
, '

0

BB@

0 ↵ � �
↵ 0 � ✏
� � 0 ⌘
� ✏ ⌘ 0

1

CCA (4.12)

The lattice-renormalized EMT can be written as

(Tµ⌫)R = Z1

h
T̂ (1)
µ⌫ � hT̂ (1)

µ⌫ i
i
+ Z3T̂

(3)
µ⌫ + Z6T̂

(6)
µ⌫ , (4.13)

2In order to avoid ambiguities, summations over repeated indices, if any, have been explicitly written.
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where the VEV of T̂ (1)
µ⌫ does not contribute to the translation WI.

In the continuum, the EMT is a RG-invariant quantity, provided its VEV has been properly sub-
tracted. As a consequence, the renormalization constants of the lattice EMT have to be finite and
can depend on the lattice spacing only through the bare coupling g0. At one loop in perturbation
theory, their expressions are [50]

Z1 =
�0
2
g20 , (4.14)

Z3 = 1 + 0.24068g20 , (4.15)

Z6 = 1� 0.03008g20 . (4.16)

�0 being the leading coe�cient of the � function. More generally, these constants allow an expansion
of the form

Z3,6 = 1 +
1X

j=1

(z3,6)jg
2j
0 , (4.17)

Z1 =
1X

j=1

(z1)jg
2j
0 , (4.18)

(4.19)

where the coe�cients (z1,3,6)j are numerical factors evaluated in perturbation theory. It should be

noticed that the contribution coming from T̂ (1)
µ⌫ is expected to vanish as a! 0, while those related

to T̂ (3,6)
µ⌫ mix together in order to reproduce the correct EMT in the continuum.

4.3 Numerical setup

The only, directly measurable quantities are the ratios Z1,3,6/Z� (which solve the translation WI
(3.233)) and the Z� factor (3.234). All the numerical e↵ort has been devoted to precisely measure
these quantities and determine Z1,3,6. The specific setup used for solving equations (3.233) and
(3.234) will be explained in detail. In subsection (4.3.3), a description of the numerical algorithms
used to generate gauge configurations, as well as evolve them along the flow, is provided. Afterwards,
the parameters used to simulate the theory will be displayed. Finally, the outcome of numerical
simulations is presented. A comparison with results obtained with other available methods is
discussed.

4.3.1 Lattice TWI

To determine the ratios Z1,3,6/Z�, at least three vector-like probes at positive flow time are necessary.
The simplest choice is represented by

�̂(↵)
µ (t, x) = @⌫S T̂

(↵)
µ⌫ |U(x)=V (t,x) ↵ = {1, 3, 6}. (4.20)

Then, the ratios can be determined as the solution of the following square system

3X

↵=1

X

⇢,µ

h�̂(�)
⇢ (t, x)@µ(T̂

(↵)
µ⇢ )R(x)i

| {z }
M�↵(t,x)

k↵ = �
X

⇢

h�̂x,⇢�̂(�)
⇢ (t, x)i

| {z }
v�(t,x)

. (4.21)
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The quality of the signal can be improved averaging (4.21) over the spatial directions

3X

↵=1

L�3
X

~x

X

⇢,µ

h�̂(�)
⇢ (t, ~x, x0)@µ(T̂

(↵)
µ⇢ )R(~x, x0)i

| {z }
M�↵(t,x0)

k↵ = �L�3
X

~x

X

⇢

h�̂~x,x0,⇢�̂
(�)
⇢ (t, ~x, x0)i

| {z }
v�(t,x0)

, (4.22)

however, no average can be taken along the 0 direction, since asymmetric boundary conditions have
been used. To reduce boundary e↵ects coming from x0 = {0, L0 � 1}, the operators above have
been positioned at x̄0 = L0/2� 1.
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Figure 4.1: Statistical estimates of terms appearing on the l.h.s. of (4.22). Measurements have been

taken for di↵erent lattices, the � parameter in the legend being defined as � = 6/g20 . The set of values

(L,�) defines a line of constant physics. Averages have been taken over Monte Carlo histories, using proper

methods in order to take into account the auto-correlation. Data have been displayed with respect the

smearing ratio c =
p
8t/L. It should be noticed how the e↵ects of the contact term at t = 0 are still quite

significant at small flow times.

The numerical strategy can be divided in few steps:

1. representative ensembles of gauge fields are generated employing a proper Monte Carlo algo-
rithm;

2. using a suitable integrator, each configuration is evolved along the flow for several (discrete)
values of the flow time3;

3. for every flow time, the operators appearing in (4.22) are computed using boundary and bulk
gauge fields;

3As it will be shown in the following, the length of the flow time window is crucial in order to reduce lattice
artefacts.
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4. the elements describing M�↵(t, x̄0) and v�(t, x̄0) are estimated averaging over their corre-
sponding Monte Carlo histories (figures 4.1-4.2).
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Figure 4.2: Statistical estimates of terms appearing on the r.h.s. of (4.22). Measurements have been

taken for di↵erent lattices, the � parameter in the legend being defined as � = 6/g20 . The set of values

(L,�) define a line of constant physics. Averages have been taken over Monte Carlo histories, using proper

methods in order to take into account the auto-correlation. Data have been displayed with respect the

smearing ratio c =
p
8t/L. It should be noticed how the e↵ects of the contact term at t = 0 are still quite

significant at small flow times.

For any value of the flow time t, (4.22) describes a (square) linear system with statistical noise, whose
solutions can be numerically estimated. The probes in (4.20) constitute a minimal set necessary
to solve the TWI. In this case, operators with the lowest possible mass dimension ([�⌫ ] = 5) have
been employed. This choice is motivated by the fact that numerical signal usually (but not always)
gets poorer as the dimension of the probe increases. This is more an empirical fact, not supported
by theoretical studies4. A priori, it is impossible to know which probes provide the best signal.
A possible solution to this problem could be using an arbitrary large basis of probes. One could
engineer n� 3 gauge-invariant operators, combine them to devise di↵erent types of square systems
and study their numerical outcome. With a proper selection procedure, one could extract the subset
of probes which provides the less noisy system, and use it to estimate the ratios Z1,3,6/Z� for all
the lattices simulated. With a large enough basis, it is more likely to find the right combination of
operators which can significantly improve the signal5.
However, preliminary studies showed that already the simplest strategy (3 probes, square system)
is computationally very expensive. Most of the computation time is spent in the evolution of

4A qualitative argument can be given using RG ideas. It is known that operators with mass dimension greater
than four are irrelevant to the Gaussian fixed point. As a consequence, they do not participate in the description of
UV physics. In the continuum, expectation values involving such operators will be then strongly suppressed.

5As it will be shown in chapter (5), this method works e↵ectively well for the scalar theory.
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configurations and of the Jacobian operator along the flow. The former are necessary for evaluating
probes at positive flow time, while the latter is used to compute the variation

�̂x,⇢�̂
(�)(t, y). (4.23)

A more quantitative idea of the costs can be gained looking at table (4.1).

L conf. generation (sec) flow evolution (sec) obs. computation (sec)

12 0.873 2.61⇥ 103 2.68⇥ 103

16 0.240 1.36⇥ 103 1.39⇥ 103

24 1.17 6.78⇥ 103 6.85⇥ 103

32 0.436 9.66⇥ 103 9.81⇥ 103

Table 4.1: Computation times for di↵erent set of lattices (first column). Second column shows the time

needed to generate a single configuration. Third column displays the total time required to evolve gauge

fields and Jacobian. Fourth column contains the times needed to compute elements that form equation

(4.22)-(4.26). Even if smaller, the L = 12 lattice cannot be parallelized as e↵ectively as the L = 16 case.

This explains why t12 > t16.

Here, the time needed to evolve fields and Jacobian over the entire flow-time window is definitely
quite large (a factor 103 bigger than the time spent to generate a configuration). Measurements
have been taken keeping the following ratio

c =

p
8t

L
, (4.24)

fixed for all the lattices, with

cmax = 0.3. (4.25)

As a consequence, the flow-time window gets wider with the number of lattice points. This has the
e↵ect of making measurements more and more expensive when continuum limit is approached.

Having considered these circumstances, a choice has been done to obtain enough precise results
in a reasonable amount of time, and the simplest possible strategy (3 probes, square system) has
been adopted.

4.3.2 Z
�

The multiplicative factor Z� has been measured using the identity (3.234)

Z�ha4
X

y02D

�̂y0,0�̂(t, L0/2� 1)iO�SF = h@0S�̂(t, L0/2� 1)iO�SF +O
⇣
e�

r̄

2

4t

⌘
, (4.26)

where the probe �̂(t, x0) is obtained as a spatial average of a local probe �̂(t, x). The integration
domain is defined as

D = {(L0/2� 1)� d  x0  (L0/2� 1) + d}. (4.27)

In principle, any gauge-invariant probe �̂(t, x0) could be employed. To have good enough estimates
of Z�, it is necessary to maximize the probe derivative along the direction µ = 0. The nature of the
boundary conditions plays a key role in singling out the right operator. When O � SF boundary
conditions are adopted, the best candidate probe is the (spatially averaged) Polyakov loop along
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spatial directions.

�̂(t, L0/2� 1) = W (t, L0/2� 1), (4.28)

W (t, L0/2� 1) = L�3
3X

j=1

Wj(t, L0/2� 1), (4.29)

Wi(t, L0/2� 1) = tr{
L

i

�1Y

x
i

=0

V (t, ~x, L0/2� 1)}, (4.30)

where periodic boundary conditions have been imposed for µ = 1, 2, 3.
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Figure 4.3: Spatial average of energy density at positive flow time. Data are displayed as functions of

the position along the µ = 0 direction, for di↵erent values of the smearing radius c =
p
8t/L.

This choice can be quantitatively motivated making comparisons with other candidate probes.
Figure (4.3) shows the estimates of the following quantity

E(t, x0) = L�3
X

~x

E(t, ~x, x0) = �2L�3
X

~x

htr{Ĝµ⌫Ĝµ⌫}(t, ~x, x0)i, (4.31)

which is the spatial average of the energy density at positive flow time. Data are plotted as functions
of x0, for di↵erent, fixed values of the flow time. Inside the interval [0, L0 � 1], the derivative of
E(t, x0) changes sign. This means that @0E(t, x0) vanishes at some point x⇤

0 2 [0, L0�1]. Moreover,
around x0 = L0/2 � 1, E(t, x0) (zoomed area) is varying really slowly (⇠ �11% from x0 = 4 to
x0 = 6, for c = 0.3). As a consequence, its derivative, measured at x0 = L0/2 � 1, is going to be
very small.
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Figure 4.4: Spatial average of the Polyakov line at positive flow time. Data are displayed as functions of

the position along the µ = 0 direction, for di↵erent values of the smearing radius c =
p
8t/L.

On the other hand, figure (4.4) displays the values of the (spatially-averaged) Polyakov lineW (t, x0).
The derivative of W (t, x0) is monotonic inside the interval [0, L0�1] and varies more rapidly around
x0 = L0/2 � 1 (⇠ 400% from x0 = 4 to x0 = 6, for c = 0.3). Using the data displayed above, the
symmetric derivatives of the two quantities at x0 = L0/2� 1 can be compared

c 0.0 0.1 0.2 0.3

@0SW (t, L0/2� 1) 0.0007(2) 0.0059(3) 0.0274(7) 0.0543(9)
@0SE(t, L0/2� 1) �0.021(5) �0.02702(41) �0.01459(15) �0.00873(8)

Table 4.2: Symmetric derivatives comparisons.

As it will be shown in the following, the renormalization coe�cients can be suitably extracted in a
flow-time region that runs from c = 0.2 to c = 0.3. Looking at the data in (4.2), it can be noticed
that the Polyakov line provides the larger derivative inside this interval.
Similar comparisons have been made with other gauge-invariant probes. The final outcome is that
W (t, x0) is the best candidate for the measurement of Z�. For the latter, equation (4.26) becomes

Z� =
h@0SW (t, L0/2� 1))iO�SF

haPL+

y0=L�
�̂y0,0W (t, L0/2� 1))iO�SF

+O
⇣
e�

d

2

4t

⌘
, (4.32)

where L± = L0/2� 1± d.
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The constant Z� can be measured for several values of the radius d. The latter has to be large
enough to suppress the exponential contribution in (4.32). As a consequence, small lattices (in
terms of number of points) cannot be adopted.

4.3.3 Simulation setup

Geometrical setup

The setup adopted for numerical simulations consisted of a hypercubic lattice with periodic bound-
ary conditions along the spatial directions and O � SF

F0k(x)|x0=0 = 0, (4.33)

Ak(x)|x0=L0 = 0 (4.34)

for the temporal extension. Simulations have been done using a modified version of openQCD,
which employs a hybrid Monte Carlo algorithm (HMC) [62] to generate gauge field configurations.
With respect its original version, the modified code includes routines for the computation of the
elements that compose equations (4.22) and (4.32).

Simulation parameters

Renormalization constants have to be measured along a renormalized trajectory (also called line of
constant physics). Such a line is characterized by a series of lattices coupled to a specific value of the
bare coupling. The latter, in the spirit of Wilsonian RG, has to be tuned in order to keep physical
quantities (like a hadron mass, or a length scale) fixed as the number of lattice points changes. Once
the tuning has been accomplished, the path towards the continuum limit is obtained moving from
the coarsest lattice to the finest one. This scale setting procedure is necessary whenever physical
quantities are measured and their continuum values extrapolated. In this case, a line of constant
physics has been provided by the following set

L 12 16 24 32

� 5.8506 6.0056 6.2670 6.4822

Table 4.3: Lattice setup.

which has been used by L. Giusti and M. Pepe to measure the renormalized EMT [38]. Using
shifted boundary conditions, the authors measured the renormalization constants in the infinite
volume limit, solving specific thermal WIs. For a set of renormalization constants measured in two
di↵erent volume schemes (finite vs. infinite) the following ratio

Zi,FLOW,L

Zi,SHIFTED
, i = {1, 3, 6}, (4.35)

admits an analytic expansion in powers of the lattice spacing6

Zi,FLOW,L

Zi,SHIFTED
= 1 +

1X

j=1

(ci)j
⇣ a
L

⌘2j
i = {1, 3, 6}, (4.36)

for small values of a. Equation (4.36) represents the perfect tool to check the consistency of the
method adopted in this work.

6The original Symanzik expansion contains also logarithms, which are here neglected.
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Before starting with the measurements, the HMC parameters had been properly tuned to
guarantee the best e�nciency on all the lattices of (4.3). The evolution along the flow has been
implemented using a 3rd order Runge-Kutta algorithm, following the formulation in [21]. The
integration step had to be adjusted to make systematic errors, due to discretization of flow time,
negligible.

Measurements

Numerical simulations have been carried out on a BlueGeneQ supercomputer using a large number
of replicas7 to increase the statistics. Consecutive measurements have been separated by several
Monte Carlo trajectories in order to reduce auto-correlation e↵ects.

L � Replicas M.D. steps Traj. per measure Z1,3,6/Z� Z�

12 5.8506 128 5 500 96000 29440

16 6.0056 16 5 500 52248 18488

24 6.2670 16 5 500 30088 9144

32 6.4822 8 5 700 25288 3384

Table 4.4: Simulation parameters. The first two columns denotes the number of lattice points and the

corresponding bare coupling �. The third column shows how many replicas have been employed for each

lattice, while the fourth contains the number of molecular dynamics steps used in the HMC algorithm.

Fifth column displays the number of configurations generated between two consecutive measurements. The

last two columns contain the number of total measurements for Z1,3,6/Z�

and Z

�

The asymmetry between measurements of Z1,3,6/Z� and Z� in (4.4) is motivated by the following
facts. The first is that Z� can be measured quite precisely with a smaller statistics than the one
required for Z1,3,6/Z�. The second is that the routine used to compute terms in (4.32) requires a lot
of computation time, and it should be deactivated as soon as Z� is measured with enough precision.
To optimize the simulations, it has been decided to disable the computation of the elements in (4.32)
as soon as the precision on Z� was about .5%8. On the other hand, evaluation of the observables
in (4.22) has been kept active to obtain more data for Z1,3,6/Z�.

Choice of the flow times

The width of the flow time window, as well as the number of flow times, has been determined after
few numerical investigations.

7With replica, a copy of the same type of run (same lattice, bare parameters and flow times) but di↵erent start
configuration is intended.

8For c =
p
8t/L = 0.2 on each lattice.
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Figure 4.5: Example of how the EMT renormalization constants behave with the flow time. In this case,

the ratio Z3/Z�

, measured on the finest lattice, has been considered.

At zero flow time, the TWI are a↵ected by a contact term arising from the coalescence of probe
and energy momentum tensor. At positive flow time, one would ideally distinguish three di↵erent
regions, as in figure (4.5). The first one is a small flow time window characterized by large lattice
artefacts (region A), representing the remnant of the divergence at t = 0: these artefacts are
supposed to vanish when continuum limit is approached. As the flow time increases, these e↵ects get
quite reduced and data start to vary slowly with t. Here the constants Z1,3,6/Z� are still measured
with good precision (region B): this is the second region of flow times, where the values of the
coe�cients Z1,3,6/Z� could be extracted. Finally, a big flow time window should follow (region C),
where the solution of the system would get more and more noisy due to signal depletion. The length
of the flow time window has to be enough to contain the first two kind of regions. The last region
should be discarded, since it is reached at the cost of large simulation times and poor statistical
signal. Moreover, the smearing radius c cannot be too large, otherwise boundary contributions at
x0 = {0, L0�1} will come into play. These terms generate O(a) scaling violations when continuum
limit is approached, and worsen the natural O(a2) convergence of gauge theories.
For the set of lattices in (4.3), the following window

c = {0.0, 0.02, 0.04, 0.06, 0.08, ..., 0.3}, c =

p
8t

L
(4.37)

represented the optimal flow-time interval for carrying out measurements in a reasonable amount
of time.
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4.4 Results

In this section all the numerical results will be presented and discussed. In section (4.4.5) the
constants Z1,3,6 will be compared with those measured by L.Giusti and M. Pepe [38].

4.4.1 Z1,3,6/Z�

In the following, the values of Z1,3,6/Z� are displayed as functions of the flow time, for the set of
lattices given in (4.3). For any fixed flow time, a set of renormalization constants is defined. The
latter describe a lattice-renormalized EMT such that

h@µS(T̂µ⌫)RP̂T i !
a!0
h@µT̂µ⌫PT i+O(a2), (4.38)

Z�h�̂x,⇢P̂T i !
a!0
h�x,⇢PT i+O(a2). (4.39)

Renormalization constants extracted at di↵erent flow times will generate di↵erent O(a2) corrections
in the above limits. A suitable set of constants should provide the smallest possible scaling violations
when continuum limit is approached. As explained in subsection (4.3.3), these optimal sets can be
determined exploring the flow time window in figures (4.8)-(4.6)-(4.7).

• The 0.0 < c < 0.2 region is characterized by large lattice artefacts, especially for L = {12, 16}.
These artefacts are a remnant of the t = 0 contact term. They can be identified as a2/t terms
and are supposed to vanish in the continuum. At fixed lattice spacing, the size of these e↵ects
can be qualitatively identified with the width of the peaks displayed in the plots. As expected,
these peaks shrink and move towards smaller flow times when continuum limit is approached.
At zero lattice spacing, they should reconstruct the t = 0 divergence.
In this region of flow times, the extraction of renormalization constants is not recommended,
the size of scaling violations to physical quantities being quite large (O(a4) or higher).

• For c � 0.2, contact term e↵ects are reduced (especially for L = {24, 32}) and only (a/L)2

artefacts would remain. Ideally, data should display a plateau, since the renormalization con-
stants do not depend on the flow time. Actually this does not happen, because remnants
of the t = 0 divergence are not totally suppressed. The latter can be totally removed only
flowing the probes at really large flow times. However, this comes at the price of longer simu-
lations and poorer signal. Moreover, for c > 0.26, the precision on some of the renormalization
constants is already quite poor. As a consequence, measurements at larger flow times would
require larger statistics, which are computationally expensive.

For these reasons, the 0.2  c  0.3 region seemed to be the most suitable interval for extracting
the renormalization constants.

Among the all measured quantities, Z3/Z� proves to be the most accurate one (figure (4.6)).
Data are precisely measured up to c  0.24, then precision drops down. For c � 0.12, ordered
sequences, from the coarsest lattice to the finest one, become quite clear (circled area in figure
(4.6)).
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Figure 4.6: Plot of Z3/Z�

as function of the ratio c =
p
8t/L.

For Z6/Z� (figure (4.7)), contact term e↵ects are still quite important (up to c  0.18 for
L = 32), and ordered sequences are manifest only for c � 0.2. As for Z3/Z�, numerical precision
worsens for c � 0.26. Moreover, the solution of translation WI here seems to become quite unstable.
This is a clear signal that a larger number of measurements is required.

Remnants of the contact term a↵ects Z1/Z� (figure (4.8)) up to c  0.14 (on the finest lattice).
Data show a continuum-like order already for c � 0.8. However, in the region of interest (c � 0.2),
this order gets lost due to signal depletion (zoomed area in figure (4.8)). The main problem is that
the ratio Z1/Z� is a quite small quantity9. A quantitative idea can be obtained using the one loop
expression of Z1 (4.14)

L � Z1

12 5.8506 0.037
16 6.0056 0.035
24 6.2670 0.032
32 6.4822 0.03

Table 4.5: Z1 at one-loop in perturbation theory.

for the set of lattices (4.3). From table (4.5), it can be inferred that Z1/Z� is a quantity of order
10�2 or smaller. This means that it can be precisely measured only with a really large statistics.

9In the continuum, Z1/Z
�

= 0.
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Figure 4.7: Plot of Z6/Z�
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Figure 4.8: Plot of Z1/Z�

as function of the ratio c =
p
8t/L. The zoomed area focuses on the flow time

window where lattice artefacts should be most reduced.
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4.4.2 Z
�

In this section, the measurement of the multiplicative factor Z� is discussed. An idea of how this
quantity has been extracted is provided by figure (4.9). Here, data have been plotted as functions
of the flow time for fixed values of the radius d, which defines the integration domain around a local
translation

Z� =
h@0SW (t, L0/2� 1))iO�SF

haPL+

y0=L�
�̂y0,0W (t, L0/2� 1))iO�SF

+O
⇣
e�

d

2

4t

⌘
, (4.40)

where L± = L0/2 � 1 ± d. As for the case of translation WI, the ratio above generates a contact
term at zero flow time. As the probe gets evolved, two di↵erent regions can be identified.

• For values of c smaller than 0.08, the signal is quite noisy10. The reason behind this behaviour
is that contact term e↵ects are still quite dominant, and large cancellations occur in the ratio
above. This causes loss of precision and huge statistical errors.

• When c � 0.08, numerical estimates become stable, and their precision grows as the flow time
increases. For any values of the radius d, measurements of Z� seem to be compatible up to
c  0.12. Then deviations appear. The latter are caused by the growth of the exponential
corrections

O
⇣
e�

d

2

4t

⌘
, (4.41)

with the flow time. These deviations gets suppressed as the integration radius d increases.
Indeed, for d = {(L0/2� 2), (L0/2� 1)}, these e↵ects are totally negligible, figure (4.10).
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Figure 4.9: Plot of Z

�

as function of the ratio c =
p
8t/L. Di↵erent data sets are characterized by

di↵erent radius d of integration.

10This behaviour has been observed also on the other lattices of (4.3).
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Figure 4.10: Zoom on the c � 0.12 region. Di↵erent data sets are characterized by di↵erent radius d of

integration. It should be noticed how deviations becomes negligible, within error bars, for d = {6, 7}

A similar behaviour has been observed also for the other lattices in (4.3). The only di↵erence among
them consists in the value of the flow time at which deviations appear. For finer lattices, usually
these e↵ects become evident at larger flow times11.

For any lattice spacing , the values of Z� have been extracted using data sets labelled by the
largest integration radius (4.6). This ensured numerical estimates to be quite safe from any spurious
exponential correction of the form (4.41).

L � dmax/a

12 5.8506 5
16 6.0056 7
24 6.2670 11
32 6.4822 15

Table 4.6: Maximum integration radius used for measuring Z

�

. The formula d

max

= L0/2� 1 has been

adopted. For finer lattices, only 7 radiuses have been used (L0/2�1, ..., L0/2�7) to make the computation

of terms in (4.32) less expensive.

Having fixed the radius d to its maximum value, each measurement at c > 0.18 is a good candidate
for estimating Z� (figure (4.11)). The outcomes of these measurements are all displayed in table
(4.7). The reference value for Z� has been extracted at c = 0.2 (circled area in figure (4.11)).
This particular value of the flow time seems to be a good compromise to obtain an enough precise

11
c = 0.20 for L = 24 and c = 0.26 for L = 32
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estimate without enhancing exponential corrections. The selected value can be used for the straight
evaluation of Z1,3,6, as it will be shown in the next subsection.
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Figure 4.11: Estimates of Z
�

in terms of the ratio c =
p
8t/L. For all the lattices in (4.3), the data set

labelled by d

max

has been selected.

Z
�

L c = 0.2 c = 0.22 c = 0.24 c = 0.26 c = 0.28 c = 0.3

12 2.1236(98) 2.1304(75) 2.1339(63) 2.1360(50) 2.1361(43) 2.1344(38)
16 1.9274(87) 1.9326(68) 1.9358(55) 1.9388(50) 1.9403(42) 1.9414(39)
24 1.7513(79) 1.7533(62) 1.7551(55) 1.7566(46) 1.7582(41) 1.7600(37)
32 1.6747(99) 1.6757(85) 1.6757(75) 1.6767(64) 1.6771(52) 1.6784(45)

Table 4.7: Values of Z
�

for 0.2  c  0.3, for all the lattices employed in the simulations. For each

lattice, the data set labelled by d

max

has been considered. The coloured column highlights the reference

values chosen for Z
�

.

4.4.3 Z1,3,6

In this subsection, numerical results for Z1,3,6 (figures (4.12)-(4.13)-(4.14)) are shown.
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Figure 4.12: Plot of Z1 as function of the ratio c =
p
8t/L. The zoomed area focuses on the flow time

window where lattice artefacts should be most reduced.
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Figure 4.13: Plot of Z3 as function of the ratio c =
p
8t/L.
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Figure 4.14: Plot of Z6 as function of the ratio c =
p
8t/L.

From the solution of the TWI, other two interesting quantities have been determined. These are
given by the following ratios

r1 =
Z1

Z6
, (4.42)

r3 =
Z3

Z6
, (4.43)

which are shown in figure (4.15) and (4.16).

In the region of interest (0.2  c  0.3), r1 shows a behaviour similar to that of Z1/Z� and Z1.
This is not so unexpected, since r1 is a small quantity of the same order of magnitude of Z1. As a
consequence, it can be precisely measured only if a large statistic is employed.

The situation is di↵erent for r3, which shows some interesting features.
For 0.2  c  0.3, the values of such ratio seem to be really close to one. The statement undoubtedly
holds for the finer lattices L = {24, 32} where the values of r3 are compatible with r3 = 1 within
the errors. For L = {12, 16}, deviations from r3 becomes larger, but this is not surprising, since for
these lattices the remnants of the t = 0 divergence are still quite strong. As before, coarse lattices
provides enough precise data in the entire range of flow times, while for the finer ones the precision
drops down for c � 0.2612. Data suggest that lattice artefacts a↵ecting r3 are highly reduced in
the region of interest (c � 0.2), especially on the finest lattices. This is a quite remarkable feature,
which plays a key role when comparisons with other available results are made.

12This is usually expected, since simulations on coarse lattices allow to obtain quite high statistics in a “small”
amount of computation time.
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Figure 4.15: Plot of Z1/Z6 as function of the ratio c =
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time window where lattice artefacts should be most reduced.
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Figure 4.16: Plot of Z3/Z6 as function of the ratio c =
p
8t/L.
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4.4.4 Z1,3,6: tree-level improvement

Along with the original data, a tree-level improvement has been applied. Removing terms that
come from the tree-level expansion of translation WI could reduce13 the lattice artefacts a↵ecting
the measurement of Z1,3,6. Hopefully, this procedure could extend the region in which Z1,3,6 are
extracted towards smaller flow times.
Tree-level contributions are removed in the following way:

• terms that enter in the definition of the tree-level translation WI are computed;

• having measured, and extracted Z�, the following (square) system is solved14

X

�=1,3,6

"
X

⇢�

hT̂ [�]
µ⇢ (x)@µs�̂

(↵)
⇢ (t, x)i

#
Z� � Z�

X

⇢

h�̂x,⇢�̂(↵)
⇢ (t, x)i =

=
X

�=3,6

"
X

⇢�

hT̂ [�]
µ⇢ (x)@µS�̂

(↵)
⇢ (t, x)itree

#
�
X

⇢

h�̂x,⇢�̂(↵)
⇢ (t, x)itree

with respect to Z1,3,6.

On the r.h.s. the sum is restricted only to two terms since

Z3,6 = 1, (4.44)

Z1 = 0, (4.45)

at tree-level. The e↵ectiveness of an improvement can be appreciated when the lattice spacing is
not too small. As a consequence, the method has been initially probed on the coarsest lattices
(L = {12, 16}). Numerical results are shown in figures (4.17)-(4.18)(4.19). Unfortunately, the e↵ect
of this procedure is only to modify the shape of data at very small flow times. Here, lattice artefacts
are quite huge and there is no interest in extracting the value of the constants.
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Figure 4.17: Tree-level improved Z1 for L = {12, 16}

13A proper improvement à la Symanzik would require the removal of tree-level contributions coming from boundary
and bulk action, as well as lattice EMT and translation WI.

14In order to lighten the formulas, average over spatial directions has not been written.
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Figure 4.18: Tree-level improved Z3 for L = {12, 16}
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Figure 4.19: Tree-level improved Z6 for L = {12, 16}

4.4.5 Comparisons

The quality, and the e↵ectiveness, of the strategy adopted has to be tested. Usually, a comparison
with other (possibly established) methods represents a good test. Meaningful comparisons can only
be done taking the continuum limit of some reference observable. The latter could be any kind of
dimensionless quantity that allows an analytic expansion in powers of the lattice spacing15. In this
case, the continuum limit of the following ratio

Ri,L =
Zi,FLOW,L

Zi,SHIFTED
, i = {3, 6} (4.46)

has been studied.

15A simple example could be a dimensionless combination of physical quantities related to the renormalized EMT.
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The numerator consists of the renormalization constants Z3,6 measured through the gradient
flow. The denominator describes the same quantities measured by L. Giusti and M.Pepe, using
shifted boundary conditions (SBC). The description of this specific setup will not be discussed
here16. The key point is that SBC allow to extract Z3,6 in the infinite volume limit, while the
Wilson Flow method (WF) is defined at finite volume. As a consequence, the ratio (4.46) can be
expanded in the following way

Ri,L =
Zi,FLOW,L

Zi,SHIFTED
= 1 +

1X

j=1

(ci)j
⇣ a
L

⌘2j
i = {3, 6}, (4.47)

as continuum limit is approached. A consistent match between the two methods is achieved if their
extrapolated ratios are compatible with

lim
a!0

Ri,L = 1, i = {3, 6}, (4.48)

within statistical errors. The extrapolations have been carried out using values of Z3,6 extracted
from the region 0.2  c  0.3. At fixed flow time, the ratios (4.46) have been fitted using the
following expansion

Ri,L =
Zi,FLOW,L

Zi,SHIFTED
= A+B

⇣ a
L

⌘2
, (4.49)

using two di↵erent sets of lattices

L = {12! 32}, L = {16! 32}, (4.50)

to obtain insights of the systematic errors. Examples of the fit (4.49) can be found in figures
(4.20)-(4.21)-(4.22) for R3,L and (4.24)-(4.25)-(4.26) for R6,L. Each plot displays

• values of the ratios (4.46) along with their statistical errors;

• fitting curves for the lattice intervals (4.50) and related reduced �2 ;

• values of continuum limit extrapolations (zoomed area).

Possible O(a) e↵ects coming from the x0 = {0, L0 � 1} boundaries have been investigated. In this
case, data have been fitted using the following expansion

Ri,L =
Zi,FLOW,L

Zi,SHIFTED
= A+B

⇣ a
L

⌘
+ C

⇣ a
L

⌘2
, (4.51)

for the largest interval in (4.50). The values of the fitting parameters B and C proved to be zero
within their statistical uncertainties. This result su�ces to confirm that the smearing radius c is
not large enough to make measurements sensitive to boundary e↵ects.

The fit procedure of R3,L seems to be the most reliable one. The reduced �2 is always smaller
than 1 and continuum extrapolations are compatible within error bars. The latter are precisely
determined for 0.2  c  0.24, then their precision worsen. This is caused by the increase of
statistical noise on Z3/Z� at large flow times (c � 0.26).
Continuum limit extrapolations are displayed in figure (4.23) as functions of the flow time. For
0.2  c  0.24 they deviate from

lim
a!0

R3,L = 1 (4.52)

by several (> 3) standard deviations. At larger flow times results seem to be more compatible with
their expected value, but this phenomenon is faked by the growth of statistical errors.

16The interested reader can find all the details in [37, 38].
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Figure 4.20: Z3WF

/Z3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.21: Z3WF

/Z3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.22: Z3WF

/Z3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.23: Continuum extrapolations of the ratio Z3WF

/Z3shifted as functions of the flow time.

R6,L does not yield enough reliable results as for the case of R3,L. It has been shown in section
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(4.4.1) how measurements of Z6/Z� were plagued by large lattice artefacts and significant noise.
This behaviour is reflected in the fitting procedure of R6,L, the latter being less reliable and stable.
The reduced �2 is always greater than 1 and grows as the flow time increases. Continuum limit
extrapolations are always compatible within few standard deviations (figure (4.27)).

Both R3,L and R6,L show a consistent mismatch between the values of Z3,6 measured through
the gradient flow and those measured using SBC. Quantitatively, the deviations of R3,6,L from the
expected continuum value can be read o↵ from table (4.8).

L = {12! 32}
c 1�R3,L �2

R,3 1�R6,L �2
R,6

0.2 0.188(17) 0.84 0.188(12) 6.86
0.22 0.181(18) 0.39 0.180(16) 1.50
0.24 0.185(20) 0.10 0.184(19) 2.58
0.26 0.203(34) 0.10 0.169(24) 5.85
0.28 0.2023(39) 0.51 0.153(33) 5.49
0.3 0.216(43) 0.52 0.153(48) 2.78

L = {16! 32}
0.2 0.165(23) 0.06 0.151(17) 2.85
0.22 0.161(24) 0.01 0.175(24) 2.94
0.24 0.177(34) 0.06 0.232(32) 1.56
0.26 0.226(64) 0.01 0.319(53) 2.86
0.28 0.167(11) 0.95 0.389(100) 4.11
0.3 0.230(97) 1.04 0.219(106) 5.38

Table 4.8: Deviation of the ratios R3,6,L from their expected, continuum value. The third and fifth

columns display the values of the reduced �

2.

It is important to understand what could be the cause of these deviations. Actually, two distinct
sources of errors can be singled out.

The first one could be attributed to lattice artefacts. The latter could be still quite large and
substantially a↵ect the outcome of the fit procedure. Should it be the case, then it could still be
possible to improve the numerical strategy using two, di↵erent (also combinable) methods.

1. Finer lattices could be added to the set (4.3), and make continuum extrapolations more
precise. This is the simplest type of improvement, however it comes at the price of longer
simulation times. Indeed, fine lattices contain lots of lattice points, and this has the e↵ect to
slow down both the update procedure as well as the flow time evolution. In section (4.4.1) it
has been shown how precision on fine lattices drops down as the flow time becomes large. On
these lattices, reliable estimates could be provided only with a large amount of computation
time. A priori, nothing forbids to follow this path. However, a numerically e↵ective strategy
should provide enough precise results in a reasonable amount of time. If this is not the case,
then the strategy is not e↵ective and should be abandoned.

2. A global tree-level improvement can be applied. This would mean removing (lattice) tree-level
contributions from boundary and bulk action, renormalized EMT and translation WI. This
strategy seems more feasible in terms of computation times. However, it does not always
guarantee the reduction of lattice artefacts17.

17Tree-level improvements are not e↵ective if lattice artefacts are sourced by one-(or higher)-loop contributions.
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Figure 4.24: Z6WF

/Z6shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.25: Z6WF

/Z6shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.26: Z6WF

/Z6shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.27: Continuum extrapolations of the ratio Z6WF

/Z6shifted as functions of the flow time.
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The other18, possible source of problems could be related to the determination of Z�. From
figures (4.23) and (4.27), it could be argued that the sets of constants Z3,6,WF and Z3,6,shifted di↵er
just for an overall constant factor

R3,L = 1.196(30), L = {12! 32}, (4.53)

= 1.188(69), L = {16! 32}, (4.54)

R6,L = 1.171(28), L = {12! 32}, (4.55)

= 1.246(66), L = {16! 32}, (4.56)

within statistical errors. To support this statement, the following ratio

r3,L =
r3,WF,L

r3,shifted
, (4.57)

has been studied using the same expansion as in equation (4.49). Fits for the ratio (4.57) are
displayed in figures (4.28)-(4.29)-(4.30). The reduced �2 is always greater than 1 and grows with the
flow times due to loss of numerical precision. It is interesting to study the continuum extrapolations
(figure (4.31)) for each flow time. For the largest interval in (4.50), their values are quite precisely
determined and seem to be compatible with r3,L = 1. In the worst case, they di↵er from the
expected value of just two standard deviations. The situation becomes worse when the study is
restricted to the interval (L = {16 ! 32}). At large flow times deviations are consistent as well
as the statistical error. This is clearly sourced by the loss of precision on Z6/Z�. Nonetheless, the
extrapolations are all compatible with one.

L = {12! 32}
c 1� r3,L �2

R,r3

0.20 0.007(11) 2.70
0.22 0.016(14) 1.92
0.24 0.025(17) 3.34
0.26 0.039(17) 4.03
0.28 0.028(28) 6.87
0.30 0.006(43) 6.49

L = {16! 32}
c 1� r3,L �2

R,r3

0.20 0.019(14) 3.03
0.22 0.003(22) 2.52
0.24 0.033(27) 0.79
0.26 0.048(40) 2.55
0.28 0.239(78) 1.45
0.30 0.154(101) 8.73

Table 4.9: Deviation of the ratio r3,L from the expected, continuum value. The third column displays

the values of the reduced �

2.

Data in tables (4.9) show that more precise estimates are necessary, especially for c � 0.26.
However, these results clearly signal that the di↵erence between Z3,6,WF and Z3,6,shifted could
be just an overall normalization. It has to be understood how such normalization is generated.
Clearly it can only be related to the determination of Z�. This does not necessary imply that the
method adopted in this work is wrong19. However, further theoretical, and numerical, studies will
be necessary to understand the validity and applicability of equation (4.32) to measure Z�

20.

18Actually, a third source of problems could simply be the lack of a reasonably large statistics, especially on finer
lattices. The statement is surely true for both ratios at large flow times. However, results for R3,L are quite precise
for c = 0.2, ...0.24 and show clear deviations from their expected continuum value.

19
Possible issues could be hidden in the way SBC are employed to measure the renormalized EMT.

20The problem seems to a↵ect only Yang-Mills theory. When the scalar case is considered (5), this issue disappears,
since Z

�

= 1 at finite lattice spacing.
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Figure 4.28: r3WF

/r3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

(a/L)
2

0.9

1.0

1.1

1.2

1.3

MC data
y=A+Bx,   χ 

R
=4.03765 

 L=12->32

y=A+Bx,   χ 
R
=2.55545 

 L=16->32

 r
WF

/r
shifted

Continuum limit, c=0.26 

0.95

1.00

1.05

Figure 4.29: r3WF

/r3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.30: r3WF

/r3shifted ratio at fixed flow time. Data are displayed as functions of the number of

lattice points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 4.31: Continuum extrapolations of the ratio r3WF

/r3shifted as functions of the flow time.
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Chapter 5

Scalar field theory in 3 dimensions

5.1 Introduction

In this chapter, the renormalization of the lattice EMT in scalar theory is discussed in detail. In
3 space-time dimensions, the theory exhibits two distinct RG fixed points, as it will be shown
in subsections (5.2.1)-(5.2.2). These two points lie on a critical surface, whose projection onto
the subspace of the relevant couplings is defined as the critical line (cfr. subsection (1.3.1)). In
subsection (5.2.3), the latter is precisely located through a numerical study of the phase diagram
of the theory. Then, a brief description of the renormalized EMT using continuum and lattice
regularization follows (section (5.3)). In section (5.4), a method to renormalize the scalar EMT
using probes at positive flow times is presented. The strategy follows the guide lines of chapter
(3), with some modification for what concerns the gradient flow formulation. Finally, the numerical
setup for measuring the renormalized EMT is described (5.5). The outcome of numerical simulations
is presented and discussed, along with some fundamental checks that probe the goodness of the
strategy adopted.

5.2 Scalar field theory

Scalar field theory has been already presented in chapter (1.2), for D = 4 space-time dimensions

S =

Z
d4x

✓
1

2
@⇢�@⇢�+

m2
0

2
�2 +

�0
4!
�4
◆
. (5.1)

In four dimensions, the only available fixed point is the Gaussian one, which is UV repulsive. As
a consequence, the theory does not have a continuum limit. A di↵erent scenario appears when the
number of dimensions is lowered from 4 to 3. In this case, two di↵erent RG fixed points appear.
The first is a UV fixed point (Gaussian) and define a proper continuum limit for the theory. The
second one is an IR fixed point (Wilson-Fisher) and determines the behaviour of the theory at large
distances. In the following sections, a brief description of these two points is presented, along with
the set of relevant couplings that characterize them.

5.2.1 Gaussian fixed point

The RG group flows for a Z2 invariant scalar theory have been determined in chapter (1.2). Using
the e↵ective potential approximation, the flows are described by the following di↵erential equation
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(crf. equation (1.55))

⇤
dg2n
d⇤

= (n(d� 2)� d)g2n � a⇤n(d�2) d2n

d�2n
log[⇤2 + V 00(�)]

�����
�=0

. (5.2)

For d = 3, the evolution of relevant and marginal couplings can be determined by the set of equations

⇤
dg2
d⇤

= �2g2 � ag4
1 + g2

, (5.3)

⇤
dg4
d⇤

= �g4 + 3ag24
(1 + g2)2

� ag6
1 + g2

, (5.4)

⇤
dg6
d⇤

= � 30ag34
(1 + g2)3

+
15ag4g6
(1 + g2)2

, (5.5)

where a = (2⇡)�2. Around the Gaussian point, the linearized RG flows take the following form

⇤
d�g2
d⇤

= �2�g2 � a�g4, (5.6)

⇤
d�g4
d⇤

= ��g4 � a�g6, (5.7)

⇤
d�g6
d⇤

= 0. (5.8)

where �g2n = (g2n�g⇤2n), g⇤2n = 0. The critical exponents at the Gaussian fixed point are determined
by the eigenvalues of the linearized evolution matrix

L = �
0

@
2 a 0
0 1 a
0 0 0

1

A . (5.9)

The set of eigenvectors

c1 = �g2 + a�g4 +
a2

2
�g6, (5.10)

c2 = �g4 + a�g6, (5.11)

c3 = �g6, (5.12)

satisfy the decoupled equations

⇤
dc1
d⇤

= �2, (5.13)

⇤
dc2
d⇤

= �1, (5.14)

⇤
dc3
d⇤

= 0. (5.15)

As expected from näıve dimensional analysis, g6 is a marginal direction when RG flows are linearized
around the Gaussian point. Hence, the behaviour of the sextic coupling is determined by higher
order terms in the Taylor expansion. Keeping the next-to-leading order contribution, the RG flow
of g6 becomes

⇤
dg6
d⇤

= +15a�g4�g6. (5.16)

If only theories with positive quartic coupling are considered, then the sextic coupling decreases
when the cut-o↵ a�1 is lowered; hence g6 is marginally irrelevant and will not be included in the
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Lagrangian. For what concerns the continuum limit of the theory, only the couplings g2 and g4 need
to be tuned. Around the Gaussian fixed point, the scalar theory can be described by the following
minimal action

S =

Z
d3x

✓
1

2
@⇢�@⇢�+

m2
0

2
�2 +

�0
4!
�4
◆
. (5.17)

This information is crucial since it provides the minimal set of parameters that are necessary to
run lattice simulations.

5.2.2 Wilson-Fisher fixed point

To determine other, non-trivial fixed points is usually a di�cult task. However, some insights can
be obtained if the RG flows are studied using the ✏ expansion method [9]. In this case, the number
of dimensions takes non-integer values, and is controlled by a small parameter ✏ = 4� d. Flows are
determined through a perturbative expansion in ✏, and the existence of, possibly new, fixed points
is investigated. Hopefully, what is established for small ✏ will be qualitatively true for physically
interesting cases (✏ = 1, 2...). Expanding the RG flows (1.55) in powers of the couplings and ✏ allows
to determine a new fixed point in the space of theories

g⇤2 = � ✏
6
+ ..., g⇤4 =

✏

3a
+ ..., g⇤2n>4 = ✏n + ... . (5.18)

which is called the Wilson-Fisher fixed point. The latter is physically acceptable only if ✏ > 0,
otherwise the couplings g⇤2n are all negative and the potential of the theory would not be bounded
from below, leading to instability. In the neighbourhood of the fixed point, the linearized RG flows
become

⇤
d�g2
d⇤

=
⇣ ✏
3
� 2
⌘
�g2 � b

⇣
1 +

✏

6

⌘
�g4, (5.19)

⇤
d�g4
d⇤

= ✏�g4, (5.20)

(5.21)

with

b =
1

(4⇡)2

h
1 +

✏

2
log(4⇡e��

E )
i
+O(✏2). (5.22)

Here, only the (g2, g4) subspace has been considered. In this case, the set of eigenvectors

c1 = �g2, (5.23)

c2 = �b(3 + ✏

2
)�g2 + 2(3 + ✏)�g4, (5.24)

(5.25)

satisfies the decoupled system of equations

⇤
dc1
d⇤

=
⇣
�2 + ✏

3

⌘
c1, (5.26)

⇤
dc2
d⇤

= ✏c2, (5.27)

(5.28)

Therefore, at this fixed point, only the mass coupling c1 is relevant. The RG flows in the (g2, g4)
subspace for small ✏ > 0 are sketched below:
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Figure 5.1: RG flows of the scalar field theory in d = 3 space-time dimensions.

Here, the Gaussian and Wilson-Fisher fixed points are shown. Since all the other couplings
are irrelevant for d = 3, only the flows in the (g2, g4) subspace are shown. As already mentioned
before, the critical surface intersects this subspace in the line that joins the two fixed points. Only
RG flows with a UV continuum limit have been displayed. It has to be stressed that the results
above hold in the regime of small ✏. However, the Wilson-Fisher point has been shown to exist also
for ✏ = 1. In the language of statistical physics, it is said to lie in the universality class of the Ising
Model. Having a good qualitative picture of the RG flows, it is possible to describe the di↵erent
continuum limits of the scalar field theory in 3 space-time dimensions. Continuum theories are just
parametrized by the mass and quartic couplings g2 and g4, while the irrelevant couplings g2n have
some specific value fixed by g2 and g4. Di↵erent continuum scenarios are available in figure (5.1):

• The g4 = 0 line is a free, massive theory;

• The red lines starting from the Wilson-Fisher fixed point are massive interacting theories that
become the Ising model conformal field theory in the UV;

• The subspace of the critical line emanating from the Gaussian point is a massless interacting
theory that interpolates between a free theory in the UV and the Ising model CFT in the IR;

• The two blue lines represent massive interacting field theories, which become asymptotically
free in the UV. Theories below the critical line develop a non vanishing VEV, causing the Z2

symmetry to be spontaneously broken (cfr. section (1.3.1)).

This work focused on the renormalization of the lattice EMT in the unbroken phase of the
theory, where no VEV is developed (RG flows above the critical line). To simulate the theory in
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the right thermodynamic phase, it has been necessary to first locate the position of the critical
line. The latter has been located with the help of numerical investigations to characterize the phase
diagram of the theory. In the following session, all the details regarding the numerical study and
the related outcomes will be explained.

5.2.3 Phase diagram

A non perturbative study of the phase diagram has been carried out performing Monte Carlo
simulations. The discretization of the theory has been already described in section (1.3) for 4
space-time dimensions and will not be repeated here for the d = 3 case. The scalar model has been
simulated using the algorithm described in [63], alternating local Metropolis updates and Swendsen
Wang cluster updates of the embedded Ising Model. The details of the implementation will be
presented in section (5.5). Here, all the attention is focused on the determination of the phase
diagram of the theory. The critical line has been localized studying the peaks of the following
susceptibility

� =

* 
X

x

�(x)

!2+
�
*�����
X

x

�(x)

�����

+2

, (5.29)

as functions of the parameters of the theory. Having fixed the quartic coupling �̂01, the position of
the peaks has been determined performing several simulations at di↵erent values of the bare mass
m̂0. Then, the data have been reweighted to further values of m̂0 using multi-histogram technique.
The reweighting procedure helped to improve the localization of the peaks.

L=10
L=8

Figure 5.2: Peaks of the susceptibility as functions of �̂0 and (negative) m̂2
0. Here, two di↵erent physical

volumes have been shown. Errors have not been displayed in order to make the picture clearer.

1Hatted parameters are properly rescaled with the cut-o↵ a

�1 in order to be kept dimensionless.
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Simulations have been carried out on di↵erent physical volumes. For each �̂0, a pseudo-critical
mass m̂c(L) has been defined as the coupling where the peak of the specific heat (5.29) is located
at fixed volume. The behaviour of m̂c(L) has been subjected to a finite size scaling analysis

m̂c(L) = m̂c(1) +m1L
� 1

⌫ + ..., (5.30)

where the dots denote sub-leading corrections to the scaling of m̂c(L). Here, the critical exponent
⌫ has been set to the following value

⌫ = 0.62893(39), (5.31)

found in [64]. Equation (5.30) has been adopted to estimate the value of m̂c(1). As an illustration
of the adopted method, a specific case (�̂0 = 150) will be discussed in detail. At fixed quartic
coupling, the specific heat (5.29) has been measured spanning large intervals of the bare mass
parameter m̂0 (figure (5.2)). Estimates of this quantity are displayed in picture (5.3)
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Figure 5.3: Susceptibility at �̂0 = 150. Here, two di↵erent volume sets (L = {8, 10}, L = {10, 20}) have
been considered.

To precisely determine the value of m̂0 that maximizes �, a multihistogram reweighting procedure
[65] has been applied. The latter has been implemented inside a narrow region around the peaks of
the specific heat (figure (5.4)). The maximum �max and its precise position have been determined
through a numerical maximization procedure. Their values are displayed in tables (5.2-5.1). The
quality of the results has been checked studying the scaling behaviour of �(L)max. At criticality,
the specific heat diverges with the physical volume according to the following scaling law

�max(L) = �1L
(2�⌘)(1 + �2L

�!), (5.32)

where the exponents

⌘ = 0.03627(10), ! = 0.832(6) (5.33)

have been taken from [66]. It should be noticed that also a sub-leading term has been included in
(5.32). To check the correct scaling of �max(L), the coe�cients �1,2 have been fitted keeping ⌘ and
! fixed, for all the values of �̂0. Example of such fit can be found in figure (5.5).
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Figure 5.4: Estimates of the specific heat coming from Monte Carlo simulations and reweighting procedure

at fixed volume. The reweighting has been applied considering a small interval of bare masses centred around

the hypothetical peaks.

ˆ�0 = 26.5
L m̂c(L) �max(L)

8 1.5944(1) 5.678(8)
10 1.5888(1) 8.501(10)
20 1.5812(1) 30.902(91)
28 1.5798(1) 58.612(252)

ˆ�0 = 75.5
L m̂c(L) �max(L)

8 2.4553(1) 4.715(9)
10 2.4510(1) 7.203(12)
20 2.4456(1) 27.502(123)
28 2.4444(1) 52.688(256)

ˆ�0 = 125

L m̂c(L) �max(L)

8 3.0060(2) 4.425(6)
10 3.0027(1) 6.805(13)
20 2.9975(1) 26.388(85)
28 2.9965(1) 50.845(231)

ˆ�0 = 200

L m̂c(L) �max(L)

8 3.6220(2) 4.201(8)
10 3.6189(2) 6.507(16)
20 3.6136(1) 25.517(84)
28 3.6126(1) 49.546(221)

ˆ�0 = 51

L m̂c(L) �max(L)

8 2.0926(2) 5.012(9)
10 2.0883(1) 7.629(13)
20 2.0819(1) 28.496(117)
28 2.0806(1) 54.351(263)

ˆ�0 = 100

L m̂c(L) �max(L)

8 2.7493(2) 4.524(9)
10 2.7460(1) 7.004(15)
20 2.7405(1) 26.787(107)
28 2.7394(1) 51.965(252)

ˆ�0 = 175

L m̂c(L) �max(L)

8 3.4358(2) 4.268(8)
10 3.4324(2) 6.602(13)
20 3.4274(1) 25.840(80)
28 3.4264(1) 49.753(213)

ˆ�0 = 225

L m̂c(L) �max(L)

8 3.7940(2) 4.155(7)
10 3.7912(1) 6.468(14)
20 3.7862(1) 25.507(74)
28 3.7849(1) 48.976(198)

Table 5.1: Estimates of �
max

(L) and m̂

c

(L) at fixed lambda.
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ˆ�0 = 0.5
L m̂c(L) �max(L)

10 0.2740(13) 32.760(661)
20 0.2578(4) 99.715(2054)
25 0.2551(2) 142.139(2460)
30 0.2533(2) 185.638(2241)

ˆ�0 = 2

L m̂c(L) �max(L)

10 0.5097(2) 18.414(57)
20 0.4941(1) 56.682(293)
25 0.4917(1) 81.291(500)
30 0.4908(1) 112.686(1132)

ˆ�0 = 4

L m̂c(L) �max(L)

10 0.6935(5) 14.085(134)
20 0.6818(1) 45.428(264)
25 0.6801(1) 66.505(279)
30 0.6793(1) 94.074(938)

ˆ�0 = 1

L m̂c(L) �max(L)

10 0.3736(5) 24.557(193)
20 0.3562(3) 71.763(937)
25 0.3542(2) 104.377(1012)
30 0.3529(1) 142.647(1796)

ˆ�0 = 3

L m̂c(L) �max(L)

10 0.6108(6) 15.535(160)
20 0.5969(1) 49.647(302)
25 0.5948(1) 72.965(381)
30 0.5938(1) 97.859(741)

ˆ�0 = 5

L m̂c(L) �max(L)

10 0.7672(4) 13.062(93)
20 0.7552(1) 42.698(220)
25 0.7537(1) 62.776(225)
30 0.7530(1) 88.048(609)

Table 5.2: Estimates of �
max

(L) and m̂

c

(L) at fixed lambda.
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Figure 5.5: Fit of �
max

(L) for �̂0 = 150. Monte Carlo data are displayed in black color.

For almost each �̂0, the fitting procedure proved to be of good quality (5.3), supporting the
idea that the values of �max(L) and m̂c(L) are well-measured quantity.
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�̂0 0.5 1.0 2.0 3.0 4.0 5.0 26.5 51.0

�2
R 2.523 0.456 1.757 4.890 2.631 1.680 1.491 0.140

�̂0 75.5 100.0 125.0 150.0 175.0 200.0 225.0

�2
R 0.848 1.890 1.149 1.881 0.835 0.371 2.355

Table 5.3: Reduced chi-square from the fit 5.32. Beside the �̂0 = 3. case, all the other fit procedures

seem to produce quite reliable results.

The peak position, m̂c(L), has been fitted using equation (5.30), keeping the value of the exponent
⌫ fixed at its central value. The critical bare mass has been determined fitting the infinite volume
extrapolation m̂c(1). An example of such fit can be found in figure (5.6). Almost the infinite
volume fits proved to be of quite good quality, and allowed to extract the value of m̂c(1) (tables
5.4-5.5-5.6). Each couple of values (�̂0, m̂c) has been employed to locate the critical line on the
plane of relevant couplings (figure (5.7)).
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Figure 5.6: Finite size scaling for the bare, critical mass m̂
c

(L). Monte Carlo data are displayed in black

color.

�̂0 0.5 1.0 2.0 3.0 4.0

m̂c(1) 0.24893(34) 0.34838(20) 0.48686(26) 0.59023(15) 0.67622(15)

�2
R 0.99 1.49 5.21 1.28 1.59

Table 5.4: Fitted values of m̂
c

(1) and corresponding reduced �

2.
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�̂0 5.0 26.5 51.0 75.5 100.0

m̂c(1) 0.75058(19) 1.57757(6) 2.07873(7) 2.44286(8) 2.73779(8)

�2
R 2.70 5.81 0.92 0.04 0.19

Table 5.5: Fitted values of m̂
c

(1) and corresponding reduced �

2.

�̂0 125.0 150.0 175.0 200.0 225.0

m̂c(1) 2.99496(7) 3.22124(7) 3.42490(8) 3.61110(8) 3.78346(9)

�2
R 0.06 0.28 0.41 0.25 7.23

Table 5.6: Fitted values of m̂
c

(1) and corresponding reduced �

2.
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Figure 5.7: Plot of the phase diagram determined through Monte Carlo simulations. The zoomed area

focuses on small values �̂0.

Having characterized the phase diagram, it is possible to define renormalized trajectories in the
correct thermodynamic phase of the theory.

5.2.4 Super-renormalizability

Before starting with the formulation of the lattice EMT, another fundamental property of the
perturbative theory has to be discussed: super-renormalizability. In 3 space-time dimensions, for a
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scalar theory with quartic interactions, the superficial degree of divergence of a diagram is given by

S = 3L� 2I, (5.34)

where L is the number of loops and I the number of internal lines. On the other hand, the number
of loops can be written as

L = I � V + 1, (5.35)

while the number of internal lines can be expressed as

I = 2V � E

2
, (5.36)

V and E being the number of vertices and external legs respectively. Combining these three
relations, it is possible to express the superficial degree of divergence just in terms of E and V only

S = 3� V � E

2
. (5.37)

The last equation shows that the theory is super-renormalizable and contains only two divergent
diagrams with two external legs and one and two vertices respectively, as shown in figure (5.38).

�(2)(p) =
p

+
p p

l

+
p

l + k + p

k

pl
(5.38)

The one-loop contribution has the following form

⇧̂(p2) = ��0
2

Z ⇡

a

�⇡

d3k

(2⇡)3
1

k̂2 +m2
0

(5.39)

= � �̂0
2

Z ⇡

a

�⇡

d3l

(2⇡)3
1

4
P3

µ=1 sin
2(lµ/2) + m̂2

0

= � �̂0
2
Z0

where the numerical value of the integral for m̂2
R = 0 has been denoted by Z0. It can be easily

evaluated numerically, yielding Z0 = 0.252731. At one loop, the renormalized mass is defined as

m2
R = m2

0 +
�R
2a

Z0, (5.40)

where mass dimensions have been restored. So, in three dimensions, at one loop, the mass has just
a linear additive divergence. Since the only divergent diagrams have two external legs, there is no
need of a counterterm for the quartic coupling �0. This means that

�0Z
2
� = �R (5.41)

up to possible finite renormalizations (here, Z� = 1 +O(�20) is the field renormalization constant).
This has important consequences when lattice simulations are set up. As already mentioned before,
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the theory has two relevant parameters at the Gaussian fixed point. Therefore, the theory is
specified fixing the value of two physical parameters, e.g. mR and �R. The continuum limit is then
approached when physical, dimensionful parameters are small in units of the UV cut-o↵

mR ⌧ a�1, �R ⌧ a�1, (5.42)

Since �0 can only undergo a finite multiplicative renormalization, the continuum limit can be
obtained taking the limit �̂0 ! 0, the physical value of �R setting the value of the lattice spacing.
To fix a specific theory, the bare mass needs to be tuned as �̂0 is varied, in order to keep constant
the following physical ratio

⇢ =
�R
mR

. (5.43)

5.3 EMT in scalar field theory

The renormalization of the EMT in scalar theories has been already discussed in sections (2.4)
and (2.6.1) for d = 4 space-time dimensions. Here, it will be discussed for the d = 3 case, using
two di↵erent types of regulators. The first one is dimensional regularizations, which is known to
preserve translational invariance. The second one is the lattice regularization that, as thoroughly
explained in section (2.5), explicitly violates invariance under translations.

5.3.1 Continuum formulation

In terms of renormalized parameters, the one-loop Lagrangian in 3 dimensions is

LR =
1

2
@µ�R@µ�R +

m2
R

2
�2R +

�R
4!
�4 � �m2

2
�2R, (5.44)

where the subscript R denotes renormalized quantities. At one-loop, the value of Z� and Z� is just
one. The mass counterterm �m2 is determined computing the propagator self-energy and imposing
the following renormalization conditions

⇧(p2)|p2=m2
R

= 0, (5.45)

d

dp2
⇧(p2)|p2=m2

R

= 0, (5.46)

from which it can be inferred that (D = 3� ✏)

�m2 =
�R
2

1

(4⇡)D/2

�
�
1� D

2

�

(m2
R)

1� D

/2

=
✏!0

��RmR

8⇡
. (5.47)

This is a specific feature of dimensional regularization: linear divergences are set automatically to
zero. For this reason, at one loop, the mass just acquires a finite, additive renormalization.

In terms of renormalized fields and parameters, the energy momentum tensor is described by
the following formula

Tµ⇢ = @µ�R@⇢�R � �µ⇢LR. (5.48)

As customary with composite operators, insertions of the above tensor inside renormalized correla-
tors could generate further divergences that need to be subtracted. At tree-level, insertions of Tµ⇢

in two and four-point correlation functions take the following form

h�̃(p1)T̃µ⇢(q)�̃(p2)i = �3(q + p1 + p2)

(p21 +m2
R)(p

2
2 +m2

R)

⇥�p1µp2⇢ � p1⇢p2µ � �µ⇢(�p1p2 +m2
R)
⇤
, (5.49)

h�̃(p1)�̃(p2)T̃µ⇢(q)�̃(p3)�̃(p4)i = ��R �3(q + p1 + p2 + p3 + p4)

(p21 +m2
R)(p

2
2 +m2

R)(p
2
3 +m2

R)(p
2
4 +m2

R)
, (5.50)
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From the above set of equations, the corresponding vertex functions are given by

�(2)
µ⇢ (q; p1, p2) =

⇥�p1µp2⇢ � p1⇢p2µ � �µ⇢(�p1p2 +m2
R)
⇤
, (5.51)

�(4)
µ⇢ (q; p1, p2, p3, p4) = ��R, (5.52)

where total momentum conservation is intended. For the theory under consideration, the divergent
diagrams, by power counting, are listed in figure (5.8)

Figure 5.8: Insertions of the EMT that result in divergences into 2- and 4-point functions. The full square

denotes the insertion of the EMT, while the bullet represents the interaction vertex proportional to �

R

.

The first two diagrams represent the contribution to the insertion in a two-point function at one loop. In

the first diagram only the terms in the EMT with two fields contribute, while in the second diagram the

terms in the EMT with four fields yield a non zero contribution. The third and fourth diagrams in the first

line yield the insertion of the EMT in a two-point function at two loops. Finally, the diagram in the second

line yields the contribution of the insertion of the EMT in a four-point function at one loop. In this case,

only the terms in the EMT that contain two powers of the field �

R

need to be considered.

The second diagram in figure (5.8) represents the contribution of the quartic interaction con-
tained in the EMT. It can be easily shown that such contribution is cancelled by the tree-level
insertion of the mass counterterm

�(2)
µ⇢ (q; p1, p2)�4 + �(2)

µ⇢ (q; p1, p2)�m2 =
��

R

4! �
4
R

+
�m

2

2 �

2
R

= 0. (5.53)

At one-loop, linear divergent contributions just come from the first diagram in figure (5.8): these
are generated from insertions of derivative terms of the EMT. The explicit expression of such term
is given by

@

2

= ��R
Z

l

lµ(l + k)⇢ � �
µ⇢

2 l(l + k)

(l2 +m2
R)[(l + k)2 +m2

R]

⇠ ��R
Z

l

lµl⇢ � �
µ⇢

2 l2

(l2 +m2
R)

2
+ convergent terms (5.54)

where only non vanishing terms have been retained on the last line. Clearly, the above divergence
is proportional to the operator �2. However, linear divergences disappear when dimensional regu-
larization is adopted. Hence, the EMT does not need to be renormalized at one loop level. As a
consequence, the renormalized EMT will be simply given by

(Tµ⇢)R = @µ�R@⇢�R � �µ⇢
✓
1

2
@��R@��R +

(m2
R � �m2)

2
�2R +

�R
4!
�4R

◆
. (5.55)
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At 2-loop level, only logarithmic divergences arise, which are also proportional to �2. Hence, the
renormalized EMT is obtained absorbing divergences into the coe�cient coupled to �2. Since the
theory is superrenormalizable, there are no other divergent insertions of the EMT. Therefore, only
a non trivial renormalization of the �2 operator is actually expected. Here, a remark needs to be
done. The above renormalized operator only satisfies translation WI in the ✏ ! 0 limit. However,
any kind of operator of the form

(⇥µ⇢)R = (Tµ⌫)R + ↵(@µ@⇢ � �µ⇢⇤)�2R, (5.56)

satisfies the same WI as well. Hence, a one parameter family of renormalized operators can be
determined. The value of ↵ can be fixed only by requiring (⇥µ⇢)R to satisfy dilatation WI as the
regulators is removed. In the classical theory, ↵ can be easily determined requiring ⇥µ⇢ to satisfy
the following identity

@µDµ = ⇥µµ, (5.57)

where Dµ is the dilatation current. With a simple calculation along the lines of (2.4), it can be
easily shown that ↵ = �1/8 (appendix (B)) yields the correctly improved EMT that fulfils (5.57).

5.3.2 Lattice formulation

When a lattice regulator is adopted, translational invariance is broken and its restoration is only
guaranteed in the continuum limit. In section (2.5), it has been explained how a properly renormal-
ized EMT can be formulated, in order to recover translational symmetry when the lattice spacing
goes to zero. Here, a one-loop perturbative calculation along the lines of (5.3.1) will be considered,
to determine the divergences that need to be subtracted. The näıvely discretized EMT is given by

Tµ⇢ = @µS�R@⇢S�R � �µ⇢
✓
1

2
@�S�R@�S�R +

m2
R � �m2

2
�2R +

�R
4!
�4R

◆
, (5.58)

where �m2 = �
R

2a Z0 is the mass additive renormalization. As for the case of dimensional regulariza-
tion, the only non trivial renormalization comes from the first diagram of figure (5.8). Here again,
divergences are generated only by derivative terms contained in the EMT

@

2

= ��R
Z ⇡

a

�⇡

a

d3l

(2⇡)3
l̄µ(l + k)⇢ � �

µ⇢

2 l̄(l + k)

(l̂2 +m2
R)[([l + k)2 +m2

R]
, (5.59)

where the lattice momentum functions

l̄µ =
1

a
sin lµa, l̄2 =

3X

µ=1

l̄2µ, (5.60)

l̂µ =
2

a
sin

lµa

2
, l̂2 =

3X

µ=1

l̂2µ, (5.61)

are generated by the use of symmetric and forward derivative respectively. The coe�cient coupled
to the linear divergence can be extracted once the integral is written in lattice units
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@

2

= ��R
a

Z ⇡

�⇡

d3z

(2⇡)3
z̄µ(z + ak)⇢ � �

µ⇢

2 z̄(z + ak)

(ẑ2 + am2
R)[(\z + ak)2 + am2

R]

⇠ ��R
a

Z ⇡

�⇡

d3z

(2⇡)3
z̄µz̄⇢ � �

µ⇢

2 z̄2

(ẑ2)2

=
�R
6a
�µ⇢

Z ⇡

�⇡

d3z

(2⇡)3
z̄2

(ẑ2)2

=
�R
6a
�µ⇢W0 (5.62)

(5.63)

where W0 = 0.0215161. On the firs line, a change of variables l = z/a has been done, while on
the second one the continuum limit of the integrand has been taken. This linear divergence can be
absorbed through a redefinition of the bare mass coupling

m2
0 ! �Z3 = m2

0 +
�R
6a

W0, (5.64)

where Z3 denotes the renormalization constant of the operator �2. The above relation allows to
evaluate the following dimensionless ratio

� Z3

m2
0

= 1 +
�
R

6a W0

m2
R � �

R

Z0
2a

=
a!0

1� W0

3Z0
⇠ 0.83, (5.65)

which can be used as a reference value when the renormalization constant Z3 is measured non
perturbatively. The lattice renormalized EMT is then defined as

Tµ⇢ = @µS�R@⇢S�R � �µ⇢
✓
1

2
@�S�R@�S�R +

m2
R + k � �m2

2
�2R +

�R
4!
�4R

◆
, (5.66)

where k = �
R

6a W0.

5.4 EMT from the gradient flow

In this section, the gradient flow for a scalar theory in 3 dimensions is proposed. Then, following
the guide lines of (3.2), it is used to formulate translation WI probed by observables built along the
flow. The latter will provide an e↵ective strategy to renormalize the lattice EMT of the theory.

5.4.1 Gradient flow for scalar field theory

In pure Yang-Mills, the form of the flow equation is strongly constrained by gauge symmetry. To
be more specific, the flow equation has to preserve gauge covariance. For the scalar theory under
study, only the Z2 symmetry has to be preserved. This clearly leaves a lot of freedom in the way
the gradient flow can be formulated. Surely, the easiest way to evolve scalar fields along the flow is
through a simple gaussian smearing

'̇(t, x) = ⇤'(t, x), '(t, x)|t=0 = �(x). (5.67)

In this case, the solution of the flow equation is given by

'(t, x) =

Z
ddxKt(x� y)�(y), (5.68)
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with the heat kernel defined as

Kt(x� y) =

Z

p
eip(x�y)e�p2t. (5.69)

This specific solution does not have a tree-like expansion as for the pure gauge case.
The renormalization properties of correlation functions built with flowed fields can be still studied
in terms of a (D + 1)-dimensional field theory defined by the following action

S = Sboundary + Sbulk, (5.70)

Sboundary =

Z
ddx


1

2
@µ�@µ�+

m2
0

2
�2 +

�0
4!
�4
�
, (5.71)

Sbulk =

Z 1

0
dt

Z
ddxL(t, x)(@t �⇤)'(t, x). (5.72)

Beside the boundary four-vertex and propagator, two new elements need to be added

• '' flow propagator

h'̃(t, p)'̃(s, q)i = (2⇡)d�d(p+ q)D̃(p)K̃t+s(p), (5.73)

• L' flow propagator

h'̃(t, p)L̃(s, q)i = (2⇡)d�d(p+ q)✓(t� s)K̃t�s(p), (5.74)

where K̃t(p) and D̃(p) represent the momentum-space heat kernel and boundary propagator respec-
tively. As for the case of pure gauge theory, an implicit coupling between the Lagrange multiplier
L and the boundary field � can be ruled out through the following decomposition

'(t, x) =

Z
ddyKt(x� y)'(y) + b(t, x). (5.75)

The first term in the equation above drops out from the bulk action, just leaving the b field,
which satisfies homogeneous boundary conditions. The latter is used to define the 'L contraction.
The Feynman rules for this theory are quite simple (figure (5.9)). It has to be noticed that no

'̃(t, p) '̃(s, q) D̃(p)K̃t+s(p)

'̃(t, p) L̃(s, q) ✓(t� s)K̃t�s(p)

��

Figure 5.9: Feynman rules in D+1 dimension with the gradient flow.

vertices connecting flow lines with boundary lines exist. This means that loops in diagrams involve
just boundary field contractions. Since no flow vertices are generated, flow-line loops cannot be
created. As for the case of gauge theory, no divergence can be created in the bulk even if the
fields coalesce on the same point at the boundary2. The only possible divergences come from the

2As an example, the renormalization properties of the following correlation function

h'(x, t)'(x, s)i =
Z

p

D̃(p)K̃
t+s

(p), (5.76)
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boundary. However, this divergences are generated only by loop contractions of boundary fields and
are absorbed when bare parameters are rewritten in terms of renormalized ones. As a consequence,
correlation functions of the (D + 1)-dimensional theory are UV finite by construction.

In this case, the simplest form of the flow equation has been used. It is interesting to verify the
UV finiteness of bulk correlation functions when a di↵erent flow action is employed. For example,
one could use the following form of gradient flow

˙'(t, x) = � �S

��

����
�='

,

S =

Z
ddx


1

2
@µ�@µ�+

m2
0

2
�2 +

�0
4!
�4
�
, (5.78)

(5.79)

which is obtained from the boundary ��4 action. As for Yang-Mills theory, the solution can be
defined in a closed form as

'(t, x) =

Z
ddy


Kt,m0(x� y)µ⌫�(y)� �0

3!

Z t

0
dsKt�s,m0(x� y)µ⌫'

3(s, y)

�
, (5.80)

Kt,m0(x) = e�m2
0tKt(x), (5.81)

and the existence of flow vertices is guaranteed by non linear contributions in the flow field. Again,
the renormalization of bulk correlation functions can be studied in terms of the following (D + 1)-
dimensional theory

S = S0 + Sbulk, (5.82)

S0 =

Z
ddx


1

2
@µ�@µ�+

m2
0

2
�2 +

�0
4!
�4
�
, (5.83)

Sbulk =

Z 1

0
dt

Z
ddxL(t, x)


@t �

✓
⇤�m2

0 �
�0
3!
'(t, x)2

◆�
'(t, x). (5.84)

If dimensional regularization is adopted, it can be shown that no flow-line loops exist. Nevertheless,
the existence of flow vertices allows to build loops containing boundary lines and at least one flow-
line. In analogy with the previous cases, one could study the renormalization properties of the
theory and check where divergences come from and how they can be removed. One would näıvely
expect divergences to arise at the boundary and, should this be the case, to be absorbed by boundary
counterterms. However, this is not the case. The flow described in (5.78) defines a flow vertex and
a flow propagator that contain couplings of the boundary theory. If the latter renormalize in a non
trivial way, then new bulk divergences appear. These cannot be absorbed by any counterterm at the
boundary. To renormalize the (D+1)-dimensional theory, one needs to add bulk counterterms that
properly cancel the new divergences. For the theory described by (5.82), this amounts to remove
the mass term from the bulk action3 . Then, further study is needed to detect divergences at zero
flow time. Two possible scenarios are available.

can be studied, using dimensional regularization. In this case, the whole renormalization process involves just a
boundary propagator D̃(p),

D̃(p)K̃
t+s

(p) =
e

�(t+s)p2

m

2
0 + p

2 �⇧(p2)
(5.77)

dressed with a Gaussian smearing function. It should be clear that, once the theory is written in terms of renormalized
quantities, the above correlation function is automatically UV finite.

3 In 4 space-time dimensions, also the cubic interaction must be removed. For this theory, another possible,
non-trivial, flow action has been recently proposed by Fujikawa [25].
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1. Divergences appear at zero flow time, but they cancel out once the boundary theory is ex-
pressed in terms of renormalized couplings. Moreover, no t = 0 counterterm containing the L
field is needed to renormalize expectation values. Then correlation functions built along the
flow are UV finite.

2. Boundary divergences disappear only if also specific counterterms with the Lagrange multiplier
are used. The latter has to be determined order by order in perturbation theory. In this case,
the good properties that usually characterize bulk correlation functions are totally spoiled.
This suggests to change the form of the gradient flow.

The above example tells that not all the flow actions are good candidates to define UV finite
bulk correlation functions. Even if the lack of symmetries enlarges the spectrum of possible actions,
then renormalizability conditions make it narrower. Surely, it would be interesting to study flows
that di↵er from the trivial Gaussian smearing. However, the gradient flow is just a tool, useful
when it shows finiteness properties that can be easily proved. For this reason, only the Gaussian
flow described by (5.67) has been considered.

5.4.2 EMT from the gradient flow

To formulate a set of WI like those derived in section (3.3), the e↵ect of a local translation on probes
at positive flow time has to be understood. For the scalar theory under study, a local infinitesimal
translation has the following form

�↵�(x) =

=

Z
ddy↵⇢(y)�y,⇢�(x)

=

Z
ddy↵⇢(y)�

d(x� y)@⇢�(x)

:= ↵⇢(x)@⇢�(x). (5.85)

To this transformation, the following EMT is related

Tµ⇢ = @µ�@⇢�� �µ⇢L. (5.86)

For a generic, Z2 invariant observable, the di↵eomorphism (5.85) becomes

�↵P =

Z
ddx↵⇢(x)�x,⇢P

:=

Z
ddx↵⇢(x)

�P

��(x)
@⇢�(x), (5.87)

and a corresponding translation WI can be written down as

h�x,⇢P i = �hP@µTµ⇢i. (5.88)

Translations: probes at positive flow time

On a probe at positive flow time, the action of (5.85) takes the following form

�x,⇢PT =

=

Z
ddy

�PT

�'(T, y)

�'(T, y)

��(x)
@⇢�(x)

:=

Z
ddy

�PT

�'(T, y)
J(T, y; 0, x)@⇢�(x). (5.89)
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As for the case of Yang-Mills theory, the e↵ect of a local translation is propagated from the boundary
to the bulk by the Jacobian matrix. The latter can be determined solving the following di↵erential
equation

@tJ(t, x; s, y) = ⇤J(t, x; s, u)

Jµ⌫(t
+, x; t, y) = �d(x� y),

Jµ⌫(t, x; s, y) = 0 t < s, (5.90)

which has been obtained linearizing (5.67). Here, boundary conditions ensure forward propagation
in flow time. The solution of (5.90) is easily computed

J(t, x; s, y) = ✓(t� s)

Z

p
eip(x�y)K̃t�s(p). (5.91)

The main di↵erence with the pure gauge case is that the Jacobian coincides exactly with the free
'L propagator. In momentum space, it decays exponentially like a Gaussian function

J(t, x; s, y) = ✓(t� s)
e�

|x�y|2
4(t�s)

[4⇡(t� s)]d/2
(5.92)

Combined with (5.92), equation (5.89) tells that local translations on the boundary can be smoothly
propagated at t > 0, integrating boundary fields over a smearing radius of

p
6t4.

Renormalization of �x,⇢PT

To devise translation WI for probes at positive flow time, the renormalization properties of �x,⇢PT

need to be determined. Following the same steps of subsection (3.3.4), it can be easily shown that

h�x,⇢PT i = hPT T̃0⇢i, (5.93)

where T̃0⇢ = L(0, x)@⇢�(x). Also for scalar theory, the renormalization of �x,⇢PT can be studied
analyzing a local operator, built with L and � fields. A generic form of the observable PT could be
given by

PT =
nY

i=1

�i(T, x), (5.94)

where each �i(T, xi) represents a Z2-invariant, local observable built with ' fields and their deriva-
tives. It is known that local operators of the bulk theory do not need to be renormalized. The only
possible divergences are hidden in the operator T̃0⇢. The latter has the following properties

• It has mass dimension 4.

• It is Z2 invariant.

Any operator with mass dimension  4 sharing the same properties could mix with T̃0⇢. The
absence of gauge symmetry allows several terms to be included

L@⇢�, �@⇢L, �2@⇢�, ... (5.95)

However, no flow vertex is generated by the solution of (5.67). Hence, no loops can be created when
T̃0⇢ is inserted inside correlation functions. As a consequence, no divergence is generated and the
operator T̃0⇢ does not renormalize at all. This result holds also when a lattice regulator is adopted,

4Here, the specific d = 3 case has been considered.
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since the discretized (D + 1)-dimensional theory preserves the same renormalization properties of
its continuum counterpart. In terms of renormalized operators, a possible translation WI can be
written as

h�x,⇢PT i = �hPT@µ(Tµ⇢)Ri. (5.96)

Also in this case, equation (5.96) can be derived from a generalized TWI for the (D+1)-dimensional
theory, as it will be shown in the next subsection.

Translation WI at positive flow time

The flow equation is invariant under global translations. Hence, the equivalence between the two
following actions holds

• Evolving from the boundary theory and then translate the bulk fields at a given flow time t.

• Translating the boundary fields and then evolve them up to flow time t in the bulk.

This argument allows to define a family of transformations parametrized by the flow time

�̄t,↵P =

Z
ddx↵⇢(x)�̄t,x,⇢P =

Z
ddx↵⇢(x)

�P

�'(t, x)
@⇢'(t, x), (5.97)

where the di↵erential operator �̄t,x,⇢ depends locally on ' fields that satisfy the flow equation.
Again, it is possible to show that

h�̄t,x,⇢PT i = hPT T̃0⇢(t, x)i, (5.98)

the operator T̃0⇢(t, x) being now computed at positive flow time. As for the pure gauge case, the
action of the operator �̄t,x,⇢ assumes two di↵erent forms

�̄t,x,⇢�(T, y) =
��(T, y)

�'(T, x)
@⇢'(T, x) for T = t, (5.99)

�̄t,x,⇢�(T, y) =

Z
ddz

��(T, y)

�'(T, z)
J(T, z; t, x)@⇢'(t, x) for T > t, (5.100)

Equations (5.100) show how the operator �̄t,x,⇢ generates a local translation on hyper-planes at
fixed t > 0. A global version of the previous transformations is given by

Z

V
ddx�̄t,x,⇢�(T, y) = @⇢�(T, x) for T = t, (5.101)

Z

V
ddx�̄t,x,⇢�(T, y) = @⇢�(T, x) +O

✓
e�

r

2

4(T�t)

◆
for T > t, (5.102)

where the integration domain is a sphere V with radius r, centred in x. The result on the second
line has been already proved in (3.3) for Yang-Mills theory, and it can be shown to hold also for
the scalar theory under study.

The operator �̄t,↵ depends only on bulk fields, and therefore it does not require any renormal-
ization. Associated with it, for each flow time t, there is a new EMT and a corresponding bulk
TWI can be formulated. Exploiting the space-time symmetries of the (D + 1)-dimensional theory,
the new EMT can be written in terms of local operators at positive flow time. First, one has to
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define local translations in (D + 1) dimensions

�↵'(t, x) =

Z 1

0
ds

Z
ddy↵R(s, y)�s,y,R'(t, x)

=

Z 1

0
ds

Z
ddy↵R(s, y)�(t� s)�d(x� y)@R'(t, x)

:= ↵R(t, x)@R'(t, x), , (5.103)

�↵L(t, x) =

Z 1

0
ds

Z
ddy↵R(s, y)�s,y,RL(t, x)

=

Z 1

0
ds

Z
ddy↵R(s, y)�(t� s)�d(x� y)@RL(t, x)

:= ↵R(t, x)@RL(t, x), (5.104)

with ↵0(0, x) = 0 and R,M = 0, 1, ..., D,. The direction 0 identifies the flow time extension. For a
probe that does not depend on the Lagrange multiplier, the corresponding variation will be

�↵P =

Z 1

0
dt

Z
ddx↵R(t, x)�t,x,RP

:=

Z 1

0
dt

Z
ddx↵R(t, x)

�P

�'(t, x)
@R'(t, x). (5.105)

The di↵erence between the operator �t,x,R and �̄t,x,⇢ has been precisely described in section (3.3)
and will not be repeated here again.

From the transformation induced by �t,x,R, an EMT at any positive flow time can be defined

�↵Sfl =

Z 1

0
dt

Z
ddxT̃MR(t, x)@M↵R(t, x), (5.106)

T̃0R = L@R', (5.107)

T̃⌫R = @⌫L@R'� L@⌫@R', (5.108)

From the set of transformations (5.103) and (5.104) the following WI can be derived

h�t,x,⇢P i = �hP@M T̃MR(t, x)i. (5.109)

For a probe PT depending on bulk fields at flow time T > t, the l.h.s of the previous equation
vanishes, leaving the identity

hPT@tT̃0R(t, x)i = �hPT@µT̃µR(t, x)i. (5.110)

Only the case R = ⇢ is considered here. It has to be noticed that both sides of the equation are
finite at positive flow time. Equation (5.110) leads to a set of WI for the family of transformations
(5.100). This can be verified integrating (5.110) with respect the flow time in an interval (0, t).
The problem is that at t = 0 an extra contribution arises from the fact that boundary fields are
transformed along with the bulk ones. Moreover equation (5.110) is valid for bare fields at finite
cut-o↵. As long as the flow time is non-zero, this equation does not exhibit divergences in the ✏! 0
limit. Therefore, the cut-o↵ gets removed at positive flow time, then equation (3.185) is integrated
in an interval (t0, t)

hPT T̃0⇢(t, x)i = hPT T̃0⇢(t0, x)i � hPT@µ

Z t

t0

dsT̃µ⇢(s, x)i, (5.111)

and then the t0 ! 0+ limit is taken. The l.h.s. of the above equation can be written as

hPT T̃0⇢(t, x)i = h�̄t,x,⇢PT i, (5.112)
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and is used to take the the limit of the first term on the r.h.s.

lim
t0!0+

hPT T̃0⇢(t0, x)i = h�x,⇢PT i = �hPT@µTµ⇢(x)i. (5.113)

Collecting all the pieces together, a translation WI for the operator �̄t,x,⇢ can be written as

h�̄t,x,⇢PT i = �hPT@µT̄µ⇢(t, x)i, (5.114)

T̄µ⇢(x) = Tµ⇢(x) +

Z t

0
dsT̃µ⇢(s, x). (5.115)

This TWI can be reduced to equation (5.96) at t = 0 only if the integral appearing in (3.190)
is finite. The finiteness of the integral is ensured by the fact that insertions of T̃µ⇢(s, x) cannot
produce loop at positive flow time since flow vertices do not exist. Hence, the t ! 0+ limit in
(5.114) can be safely taken, finally giving

h�x,⇢PT i = �hPT@µTµ⇢(x)i. (5.116)

As for the case of Yang-Mills theory, the renormalized EMT in scalar theory can be determined
using a numerical strategy based on (5.116).

In analogy with the case of translations, it can be easily proven that also dilatation WI for
flowed probes can be formulated. For the integrated trace of the EMT, they take the following form

h

2T

d

dT
+ d�

�
�(T, x)i = h�(T, x)

Z
ddyTµµ(y)i. (5.117)

The above result can be easily proved following the approach adopted in (3.3).

5.5 Numerical setup

Equation (5.116) can be used to devise translation WI probed by observables at positive flow time.
These identities can be used to non perturbatively determine a renormalized EMT on the lattice.
The latter has to be defined in terms of a proper operator mixing

(T̂µ⌫)R =
nX

i=1

Zi

h
T̂ (i)
µ⌫ � hT̂ (i)

µ⌫ i
i
. (5.118)

For a Z2-invariant scalar theory, the number of mixing operators could be considerably large

T̂µ⌫ = Z1@µ�@⌫�+ Z2�@µ@⌫�+ �µ⌫

 
Z3

X

⇢

@⇢�@⇢�+ Z4@µ�@µ�+ ...

!
, (5.119)

however, the perturbative analysis of subsection (5.3.2) shows that divergences can only be created
by terms proportional to �2. The latter is the only operator that renormalizes in a non trivial way.
This result is a consequence of superrenormalizability, and severely restricts the number of mixing
operators. To be more precise, only four operators need to be considered

(T̂µ⌫)R =
Z1

2
@µS�@⌫S�+ �µ⌫

 
Z2

2

X

⇢

@⇢S�@⇢S�+
Z3

2
�2 +

Z4

4!
�4
!
. (5.120)

To avoid O(a) scaling violations, the symmetric lattice derivative has been adopted in (5.120).
Unlike �2, the other three operators are supposed to not renormalize at all. This provides quite
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stringent constraints on the coe�cients Z1,2,4. More precisely, the following results

Z1 = 2, (5.121)

Z2 = �1, (5.122)

Z4

�0
= �1, (5.123)

are expected to hold within statistical errors. On the other hand, Z3 renormalizes non trivially.
Due to superrenormalizability, it is a↵ected by radiative corrections just up to O(�20). In subsection
(5.3.2), its value at one loop has been determined and can be qualitatively used as a reference value

Z3

m2
0

= �0.83 +O(�20), (5.124)

where O(�20) corrections are supposed to be small.

5.5.1 Lattice TWI

All the numerical e↵ort has been devoted to precisely measure the coe�cients Z1,2,3,4, using equation
(5.116). To obtain non vanishing expectation values, vector probes have been chosen and a sum
over all directions has been applied. To maximize the signal, probes and EMT have been positioned
at the same space-time point, and a volume average has been taken

4X

↵=1

L�3
X

~x

X

⇢,µ

h�̂(�)
⇢ (t, ~x)@µ(T̂

(↵)
µ⇢ )R(~x)i

| {z }
M�↵(t)

Z↵ = �L�3
X

~x

X

⇢

h�̂~x,⇢�̂(�)
⇢ (t, ~x)i

| {z }
v�(t)

, (5.125)

where �̂(�)
⇢ is a generic probe that transforms as a vector in the continuum limit. Unlike the pure

gauge case, no multiplicative Z� factor has to be measured. This allowed to apply periodic boundary
conditions to all the lattice extensions, and to take rigid volume averages. This point is crucial,
since averaging over the volume can considerably enhance the signal.

As for Yang-Mills theory, the numerical strategy can be divided in few steps:

1. representative ensembles of scalar fields are generated employing a proper Monte Carlo algo-
rithm;

2. using a suitable integrator, each configuration is evolved along the flow for several (discrete)
values of flow time;

3. for every flow time, the operators appearing in (5.125) are computed using boundary and bulk
scalar fields;

4. the elements describing M�↵(t) and v�(t) are estimated averaging over their corresponding
Monte Carlo histories (figure 5.10).
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Figure 5.10: Statistical estimates of terms appearing on the r.h.s. of (5.125). Measurements have been

taken for di↵erent lattices, for a given renormalized trajectory. The latter is defined by the values (L,�0,m0)

in the legend box. Averages have been taken over Monte Carlo histories, using proper methods in order

to take into account of the auto-correlation. Data have been displayed with respect the smearing ratio

c =
p
6t/L. The zoomed area focuses on a small interval of large flow times.

For any value of the flow time t, equation (5.125) describes a linear system with statistical
noise, whose solutions can be numerically estimated.
In Yang-Mills theory, a minimal set of three probes, with the smallest possible mass dimension,
has been chosen. Hence, the corresponding square system has been solved. This choice has been
motivated by high computational costs, and the necessity of producing results in a reasonable
amount of time. However, nothing guarantees this setup to be the optimal one for measuring the
renormalization constants.
Indeed, it is hard to know a priori which kind of probes provide a well conditioned system over
a wide range of flow times. To give a more quantitative idea, the condition number of M↵�(t) is
plotted in figure (5.11) as a function of the flow time, for di↵erent sets of probes. It is quite clear
that the condition number, as the quality of the solution, strongly depends on the flow time and the
chosen set of probes. This suggests that a di↵erent strategy should be adopted. A more e�cient
way to extract the renormalization constants might be to generate a large number of probes to
be combined in several di↵erent subsets of 4 operators: then an optimal setup can be determined
looking for the subset whose corresponding square system provides the best numerical signal5.

In principle, an infinite number of probes, sharing the right symmetry properties, could be
generated. This is clearly not feasible, and an upper bound on this number has to be produced. In
this case, only vector-like probes6 with mass dimension d�  d⇤ have been included, the value of

5Due to computational costs, it would be impossible to apply the same strategy in Yang-Mills theory. However, a
scalar theory in 3 dimensions is far more cheap to simulate and, due to the simple form of the flow equation (5.67),
it provides dramatically precise results within a reasonable amount of time.

6The probes must transform as four vectors in the continuum, such that their contribution to (5.125) does not
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d⇤ having been determined after few numerical studies.
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Figure 5.11: Condition number for �̂0 = 0.75, (m0)
2 = �(0.26)2 on a L = 24 lattice. Data have been

plotted as functions of the ratio c =
p
6t/L, using di↵erent sets of probes. Each set of probes defines a

specific square (4⇥ 4) system. The probe numbers correspond to the operators in table (5.7)

.

In table (5.7), probes up to mass dimension d⇤ = 5 are displayed.

Label Operator Mass dimension

1 (@µ')' 2
2 (@µ@⇢@⇢')' 3
3 (@⇢@⇢')(@µ') 3
4 (@µ@⇢')(@⇢') 3
5 (@µ')'3 4
6 (@µ@⇢@⇢')'3 5
7 (@⇢@⇢')(@µ')'2 5
8 (@µ@⇢')(@⇢')'2 5
9 (@⇢')(@⇢')(@µ')' 5

10 (@µ')'5 4
11 (@µ')'7 5

Table 5.7: Vectorial probes up to mass dimension 5.

Few numerical studies proved that the set (5.7) su�ces to provide quite precise numerical
results7. Probes have been automatically generated and included inside the simulation code, along

vanish when the lattice spacing goes to zero.
7Measurements with d

⇤
> 5 sets have been also carried out, without any substantial improvement from the d

⇤ = 5
case.
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with their variation
�x,⇢PT . (5.126)

In this way, linear systems have been easily tested using a large number of di↵erent PT s. This
testing procedure is crucial, since statistical errors on final results strongly depend on the set of
adopted operators. This should be clear from figure (5.11), where the condition number changes of
several orders by changing a single probe.
For each lattice of a given renormalized trajectory, a study of the best square system has been done.
The procedure can be described in few steps:

1. a set of 4 probes is selected, and the corresponding matrix M↵�(t) and variation vector v�(t)
are computed;

2. TWI are numerically solved for all the flow times. Estimates of renormalization constants
and condition number are produced;

3. the set of probes is changed and points (1-2) are repeated for all the possible 4 ⇥ 4 square
system that can be created.

The optimal set of 4 probes has been identified by looking for the square system with the smallest
condition number. Such optimal set is likely to change with the flow time and the lattice spacing.
However, renormalization constants, and corresponding lattice artefacts, are determined properly
only if the same set of probes is adopted for all the lattices of a given renormalized trajectory.
Hence a selection criterion need to be adopted.
In this case, the optimal set has been determined looking for square systems with the smallest
condition number on the finest lattice, for large flow times. It is indeed known that the signal is
supposed to worsen as the flow time increases. Choosing a set of probes providing the best signal
at large flow times should ensure to have good numerical estimates in the flow time region where
renormalization constants are extracted (cfr. subsection (5.5.4)).

5.5.2 Simulation setup

Simulation algorithm

Numerical simulations have been carried out using a cubic lattice with periodic boundary condi-
tions along all directions. As mentioned in section (5.2.3), the algorithm adopted alternates local
Metropolis updates with global Swendsen-Wang updates of the embedded Ising model. The latter
is introduced defining a set of discrete variables sx, representing the sign of the fundamental fields

�x = |�x|sx. (5.127)

In terms of these variables, the scalar action takes the following form

S(s, |�|) =
X

x

(
dX

µ=1

(|�x| |�x+µ| sxsx+µ) +
d+ m̂2

0

2
�2 +

�̂0
4!
�4
)
. (5.128)

with d = 3 for the theory under study. At fixed magnitude | �x |, the action defines an embedded
Ising model where the coupling between nearest neighbours �x,x+µ is given by

�x,x+µ = |�x| |�x+µ| . (5.129)

The embedded Ising model can be updated using the Swendsen-Wang cluster algorithm where the
probability to create a bond is

Px,x+µ = 1� e��
x,x+µ

(1+s
x

s
x+µ

) = 1� e�(|�
x

||�
x+µ

|+�
x

�
x+µ

). (5.130)
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After the bond are created, the clusters are identified and flipped with 50% probability. Metropolis
updates have been alternated with cluster updates with a ratio in the range 2 � 20. The latter
has been tuned depending on how close to the phase transition simulations were carried out. This
algorithm is particularly e↵ective in reducing the dynamical critical exponent near the phase tran-
sition (the authors of [63] found z ⇠ 0.29). Indeed, in this work, negligible auto-correlations have
been found for every set of simulations. The Wilson flow defined in (5.67) can be integrated exactly
using equation (5.68). However this is not e�cient since the last equation is very expensive to
evaluate. In place of the exact solution, a numerical integration routine based on the fourth order
Runge-Kutta method has been implemented. The systematic error due to this approximation is
very small, orders of magnitude smaller than the statistical errors.

5.5.3 Simulation parameters

As described in section (5.2.4), the theory is controlled by two relevant couplings, and can be
determined by specifying the value of two physical parameters, e.g. mR and �R. The continuum
limit is approached when physical dimensionful parameters are small with respect the UV cut-o↵.
Since the quartic coupling just undergoes a finite multiplicative renormalization, the bare value �0
can be used to set the scale of the theory. For the same reason, the dimensionless ratio

⇢ =
�0
mR

(5.131)

is a RG-invariant quantity and can be used to label renormalized trajectories in the plane of relevant
couplings (�0,m0). The renormalized mass is defined via the renormalization condition specified in
(5.3.1) and can be computed non-perturbatively using the following equation

(amR)
2 =

(ap)2h|�̃(p)|2i
h|�̃(0)|2i � h|�̃(p)|2i , (5.132)

where p = ( 2⇡a , 0, 0) is the smallest non-zero momentum and �̃ is the Fourier transform of the
fundamental fields variables

�̃(p) =
X

x

eipx�(x). (5.133)

Renormalized trajectories have been determined in the following way. The lattice spacing is changed
with �̂0 = �0a while the physical volume of the system V = (L)3 is kept constant. At the same time,
the value of the bare mass m̂0 is adjusted in order to keep ⇢ constant along the whole trajectory.
In this strategy, statistical errors are generated only from the determination of the renormalized
mass mR, which can be computed with high precision8. Three renormalized trajectories have been
determined, corresponding to ⇢ = 1.5, 5, 10 (5.8). For each trajectory, the physical volume has been
kept large enough, in order to avoid finite size e↵ects.

8In this work, the relative error on m

R

has been found always smaller than 0.5%.
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Figure 5.12: Renormalized trajectories for di↵erent values of the parameter ⇢ along with the critical line.

Here, dashed lines are used only to guide the eye.

⇢ = 1.5
L �̂0 m̂2

0

16 0.3317 0.011449
24 0.225 -0.004489
32 0.16875 -0.0081
40 0.13500 -0.008464
48 0.11250 -0.0081

⇢ = 5

L �̂0 m̂2
0

16 1.1250 -0.078288
18 1.0000 -0.076176
24 0.7500 -0.0676
32 0.5625 -0.0549902
40 0.4500 -0.0464402
48 0.3750 -0.04

⇢ = 10

L �̂0 m̂2
0

8 4.5 -0.255025
10 3.6 -0.251703
12 3.0 -0.2364
16 2.25 -0.2025
24 1.5 -0.1521
32 1.125 -0.120843

Table 5.8: Renormalized trajectories

5.5.4 Measurements

Simulations have been carried out for all the trajectories in (5.8)9, using computing facilities of
Plymouth and Edimburgh university. For each lattice, the observables entering in (5.125) have
been measured using a blocking procedure10 to reduce the e↵ects of autocorrelation. Measurements

9Finest lattices L = {40, 48} have not been included for ⇢ = 1.5 and ⇢ = 5. Notwithstanding the computing
cheapness of scalar theories, these lattices required too long times to get measurements quite rapidly, and have been
discarded.

10Depending on the lattice, each measure has been obtained averaging over a block of 100 ⇠ 1000 measures
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have been taken over a wide range of flow times, using several replicas11.

⇢ = 1.5
L Replicas Meas. per replica Block

16 160 25000 250
24 800 25000 1000
32 800 5000 1000

⇢ = 5

L Replicas Meas. per replica Block

16 100 10000 100
18 800 5000 1000
24 160 25000 250
32 800 5000 1000

⇢ = 10

L Replicas Meas. per replica Block

8 50 80000 80
10 400 10000 2000
12 800 25000 250
16 50 80000 80
24 200 20000 200
32 800 5000 100

Table 5.9: Summary of the statistic produced. Given a fixed value of ⇢, the first column denotes the

corresponding set of lattices. Second column shows the number of replicas produced for a given lattice.

The total number of measurements per replica is displayed inside the third column, while the average block

is specified by data in fourth column. For each replica, the number of e↵ective measurements is obtained

taking the ratio between third and fourth column.

Choice of the flow times

Numerical studies in Yang-Mills theory allowed to get an insight about the width of the flow time
window.

11With replica, a copy of the same type of run (same lattice, bare parameters and flow times) but di↵erent start
configuration is intended.
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Figure 5.13: Example of how the EMT renormalization constants behave with the flow time. In this

case, the constant Z1, measured on one of the lattices of the ⇢ = 5 trajectory, has been considered. It

should be noticed that data can be precisely measured over the entire range of flow times.

As already explained in (4.3.3), TWI are a↵ected by a contact term at zero flow time, the latter
being caused by the coalescence of probe and energy momentum tensor. At positive flow time,
three di↵erent regions can be distinguished. The first one is a small flow time window characterized
by large a2/t artefacts, representing the remnant of the divergence at t = 0: these artefacts are
supposed to vanish when continuum limit is approached. As the flow time increases, these e↵ects
get quite reduced and only (a/L)2 artefacts are supposed to remain. Data start to vary slowly
with t, and the constants Z1,2,3,4 are still measured with good precision: this is the second region
of flow times, where the values of the coe�cients Z1,2,3,4 could be extracted. Finally, a big flow
time window should follow, where the solution of the system would get more and more noisy due
to signal depletion. The flow time window has to be large enough to contain the first two kind of
regions. The last region should be discarded, since it is reached at the cost of large simulation times
and poor statistical signal. For the set of lattices in (5.8), the following window

c = {0.0, 0.07, 0.10, 0.14, 0.17, 0.21, 0.24, 0.28, 0.31, 0.35, (5.134)

0.38, 0.42, 0.45, 0.49, 0.52, 0.55, 0.59, 0.62, 0.66, 0.69}, (5.135)

c =

p
6t

L
(5.136)

represented the optimal flow-time interval for carrying out measurements in a reasonable amount
of time. Here, a di↵erence with the pure gauge case should be highlighted. Scalar theories are
cheap to simulate, and allow to consider quite large flow time windows, definitely larger than the
case of Yang-Mills theory. This becomes quite clear looking at figure (5.13). Here, data have been
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measured with high precision over the entire flow time window, which proved to be more than two
times larger than the one used in pure gauge.

5.6 Results

In this section, numerical results are reported. The renormalization constants Z1,2,3,4 have been
measured for all the trajectories described in (5.8). Then, their continuum limit has been checked
using the following constraints

Z1 = 2, (5.137)

Z2 = �1, (5.138)

Z3

|m2
0|

= +0.83 +O(�20), (5.139)

Z4

�0
= �1, (5.140)

As an example, the ⇢ = 10 trajectory will be discussed in here in detail. Results coming from the
analysis of all the trajectories will be then resumed in appendix (C).

5.6.1 Z1,2,3,4

The renormalization constants have been measured using the method described in (5.5.1). For the
⇢ = 10 trajectory, the optimal probe set has been determined using the L = 32 lattice (the finest
one), looking for the system with smallest condition number at large flow times. The following
probes12

�̂(6)
µ (t, x) =

X

⇢

(@µS@⇢S@⇢S'(t, x))'
3(t, x), (5.141)

�̂(7)
µ (t, x) =

X

⇢

(@⇢S@⇢S'(t, x))(@µS')'
2(t, x), (5.142)

�̂(8)
µ (t, x) =

X

⇢

(@µS@⇢S'(t, x))(@⇢S')'
2(t, x), (5.143)

�̂(9)
µ (t, x) =

X

⇢

(@⇢S'(t, x))(@⇢S'(t, x))(@µS'(t, x))'(t, x), (5.144)

turned to be the right candidates to perform an optimized numerical analysis along the whole
renormalized trajectory. Renormalization constants have been measured for all the lattices and
are here displayed (figures (5.14-5.15-5.16-5.17)). A quite large time interval (c = 0.2 ! 0.7) has
been considered, to show the behaviour of the constants in an interesting region of flow times,
disregarding the values of c < 0.2.

12Symmetric lattice derivative has been employed, in order to avoid O(a) scaling violations.
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Figure 5.14: Plot of Z1 as function of the ratio c =
p
6t/L. The zoomed area focuses on the flow time

window where lattice artefacts should be most reduced.

Among the all constants, Z1 proved to be the most precise quantity. It has been well measured
over the entire range of flow times, even at small ones (figure (5.14)). Estimates are quite precise,
and their precision remains good as the flow time increases (1% for the finest lattice at the largest
flow time). This suggests that no signal depletion is a↵ecting this constant, as opposed to what
happens in pure Yang-Mills. For c � 0.38 contact terms mildly a↵ect the measurements, especially
on coarse lattices. Over the entire range of flow times data display clear continuum limit sequences,
from the coarsest lattice to the finest one.

Precise measurements have been obtained also for Z2 (figure (5.15)), even if cut-o↵ e↵ects
seem to a↵ect this quantity more consistently. The shape of the data signals that a2/t e↵ects
are quite strong, especially on coarse lattices (L = {8, 10, 12}). Measurements on finer lattices
(L = {16, 24, 32}) are less a↵ected by these artefacts. However, they clearly show significant
deviations from the expected continuum value, especially for L = {16, 24}. This could be caused
by consistent (a/L)2 e↵ects.

Figures (5.16) and (5.17) show the two dimensionless ratios

r3 =
Z3

|m2
0|
, r4 =

Z4

�0
, (5.145)

whose expected continuum values are given by (5.139) and (5.140). They have been determined
with less precision than Z1,2

13. However, they proved to be less a↵ected by a2/t artefacts, especially
for c � 0.42. For large flow times (c � 0.52) data show overlap within few standard deviations.
This could be caused by small cut-o↵ e↵ects or lack of precision at large flow times. Fit procedures
to extract the continuum values of r3,4 supported the latter hypothesis.

13For both ratios, relative precision drops from 3.5% on the coarsest lattice to 26% on the finest one. In this case,
the largest flow time has been considered.
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Figure 5.15: Plot of Z2 as function of the ratio c =
p
6t/L.
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Figure 5.17: Plot of Z4/�0 as function of the ratio c =
p
6t/L. The zoomed area focuses on the flow time

window where lattice artefacts should be most reduced.

Previous plots show that a set of renormalization constants can be consistently extracted for
c � 0.38. To each flow time corresponds a specific set of constants, which defines a renormalized
lattice EMT such that

h@µS(T̂µ⌫)RP̂T i !
a!0
h@µTµ⌫PT i+O(a2), (5.146)

The e↵ectiveness of the method has been tested fitting the continuum values of Z1,2, Z3/|m2
0| and

Z4/�0 for the entire c � 0.38 interval. In this case, two types of polynomial fit have been considered

ri = A+B
⇣ a
L

⌘2
+ C

⇣ a
L

⌘4
i = {1, 2, 3, 4}, , (5.147)

ri = A+B
⇣ a
L

⌘2
i = {1, 2, 3, 4}, . (5.148)

Where r1,2 = Z1,2, and r3,4 are just given by (5.139) and (5.140). The fits (5.147)-(5.148) have
been applied to the entire set of lattices, in order to determine the size of leading O((a/L)2) and
higher order O((a/L)4) scaling violations to continuum quantities.
As an example, fits of r1,2,3,4 at c = 0.45 are shown below (figures (5.18-5.19-5.20-5.21)).
For each renormalization constant, only fit procedures with reasonable reduced �2 and fit parameters
have been considered.
When coarse lattices are included (L = {8, 10}), Z1 (figure (5.18)) is well described by the expansion
(5.147). The reduced �2 varies slowly when the coarsest lattice is discarded, proving the stability
of the fit. When smaller lattice subsets are considered, only equation (5.148) provides quite reliable
results.
As can be seen from figure (5.18), all continuum limit extrapolations are compatible within few
sigmas. Their deviations provide an insight of the systematic introduced by the expansions (5.147-
5.148).
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Figure 5.18: Z1 at fixed flow time. Data have been displayed as functions of the number of lattice points.

The zoomed area focuses on the a = 0 extrapolations.

Things are di↵erent for Z2 (figure (5.19)). For this specific value of the flow time, a quadratic
fit in (a/L)2 makes sense only if the coarsest lattice L = 8 is considered. For other lattice subsets,
this kind of expansion produced fit parameters B and C that were always compatible with zero
within errors.
In this case, only linear fits of the form (5.148) provided a reasonable result14. This behaviour could
be already hinted from figure (5.15), where, beside L = 8, all the data are almost overlapping at
c = 0.45. As the flow time increases, this behaviour is expected to change, as can be seen from
figure (5.15). For large enough flow times, the linear approximation is quite likely to fail, and the
expansion (5.147) will have to be adopted.

Finally, fits for Z3/|m̂2
0| and Z4/�̂0 can be observed in figures (5.20)-(5.21).

For all the lattices of the ⇢ = 10 trajectory, the expansion (5.147) proved to be not good for
describing the dependence of these ratios on the lattice spacing. Indeed, both slope and curvature
coe�cients result zero within error bars. This is surely caused both by data overlap in the interesting
flow time region (cfr. figures (5.16)-(5.17)) as well as not so small errors on fine lattices.
In this case, a linear expansion in (a/L)2 is preferred to study how r3,4 approach the continuum
limit.
Even if the intercept A can be estimated with good precision, the slope coe�cient is not determined
quite precisely. Indeed, figures (5.20)-(5.21) suggest that data could be fitted almost with a constant
relation. Again, this is probably caused by data overlap and lack of enough numerical precision
on fine lattices. To obtain a better knowledge of O(a2) e↵ects in the scaling region, the error bars
would need to be reduced, especially on fine lattices15.

14It should be said that on fine lattices (16 ! 32) a fit to a constant would be more appropriate (the slope B is
zero within the errors. This is sourced by lack of precision on fine lattices).

15At flow times smaller than c = 0.45, non zero values of the slope can still be estimated when the full set of
lattices is considered for the fit procedure. Things gets worse when smaller lattice subsets are adopted.
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Figure 5.19: Z2 at fixed flow time. Data have been displayed as functions of the number of lattice points.

The zoomed area focuses on the a = 0 extrapolations.
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0| at fixed flow time. Data have been displayed as functions of the number of lattice

points. The zoomed area focuses on the a = 0 extrapolations.
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Figure 5.21: Z4/�0 at fixed flow time. Data have been displayed as functions of the number of lattice

points. The zoomed area focuses on the a = 0 extrapolations.

Continuum limit extrapolations of Z1,2, Z3/|m̂2
0| and Z4/�̂0 are reported in figures (5.22-5.23-

5.24-5.25). Each plot shows the estimates of continuum values as functions of the flow time, for
di↵erent types of fitting procedure. Only fits with a reasonable �2 have been considered.

Continuum extrapolations of Z1 coming from di↵erent fits are all compatible within few stan-
dard deviations (figure (5.22)). More important, they are compatible with the constraint (5.137).
The quadratic fit (5.147) applied to the largest lattice set (L = 8 ! 32) proved to be e↵ective for
almost the entire range of flow times. The statement holds also for the linear fit procedure applied
to the smallest lattice set (L = 16 ! 32). Small deviations from the expected result appear when
a linear fit is applied to the (L = 12 ! 32) subset. Deviations enlarges when coarser lattices are
included (L = 10! 32). However, also the corresponding �2 grows (�2 � 2,�2 � 3) signalling that
the quality of the fit is worsening.

A less nice behaviour is obtained for Z2 (figure (5.22)). At large flow times, some of the
extrapolations deviate from the expected continuum value of at least two standard deviation. This
could be caused by still large cut-o↵ e↵ects, as could be also argued looking at figure (5.15). As
mentioned before, quadratic fits become important when the flow time increases. At small flow
times, data are quite overlapped, and linear fits on fine lattice sets becomes less reliable, as it has
already been explained for Z3/|m̂2

0| and Z4/�̂0.

Continuum estimates of Z3/|m̂2
0| and Z4/�̂0 are displayed in figures (5.24-5.25). Both quantities

can be estimated with linear fits. At small time, the latter proved to be more e↵ective, especially
including coarse lattices. At large flow times, linear fits become less reliable, due to data overlap.
Probably, more statistics is needed to reduce the error bars. All results coming from di↵erent fits
are all compatible with their expected continuum value.
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Figure 5.22: Continuum extrapolations of Z1 as functions of the flow time.
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Figure 5.23: Continuum extrapolations of Z2 as functions of the flow time.
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Figure 5.24: Continuum extrapolations of Z3/|m2
0| as functions of the flow time.
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Figure 5.25: Continuum extrapolations of Z4/�0 as functions of the flow time.
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Chapter 6

Conclusions

In this work, a new method to numerically determine the lattice renormalized energy-momentum
tensor has been tested. The method is based on probing translation and dilatation WI with oper-
ators built with the gradient flow. The natural UV finiteness of these operators allow the new WI
to be free from any kind of contact term. The absence of the latter makes this set of identities a
potentially good candidate to renormalize the EMT in non perturbative numerical studies1. The
method has been initially devised only for pure gauge theories [34], while in this work it has been
extended to the specific case of a ��4 theory in 3 dimensions2.

The EMT is a fundamental quantity for di↵erent aspects of particle physics. It is the genera-
tor of Poincaré, dilatation and conformal transformations. It thus carries information concerning
physical quantities associated with those spacetime symmetries. When finite temperature studies
are concerned, expectation values of the EMT provide direct access to thermodynamic quantities,
like energy, pressure and entropy density. These quantities are necessary to determine the equation
of state of hot, dense systems, like the quark-gluon plasma (QGP). This specific state of matter
describes the early stages of the universe and is currently under the lens of perturbative and non
perturbative studies3. Also in this case, the EMT momentum tensor has a key role in providing
useful informations; indeed, two-point correlators of this operator yield quantitative estimates of
the sheer viscosity, a transport coe�cient used to characterize the fluid dynamics of the QGP.

In the last four decades, several attempts have been made to extend the knowledge of funda-
mental particles and their interactions beyond the current Standard Model (SM). Many di↵erent
beyond Standard Model (BSM) theories have been proposed, whose low energy limit could be recast
into the actual SM. Some of these BSM formulations include a new, strongly interacting sector that
calls for an IR fixed point inside its phase diagram [67]. To precisely locate such fixed point, non
perturbative studies are needed. Hence, the lattice formulation is necessary to characterize these
type of BSM theories. In the last years, the location of the IR fixed point has been investigated
using two di↵erent numerical approaches, based on measuring the running coupling or the spectrum
of the theory.
Knowledge of the fully non perturbative EMT provides a third alternative method. The trace of
the EMT is the order parameter of dilatation and conformal symmetry. Hence, it can be used to
investigate the restoration of these symmetries, to which a fixed point of the RG should correspond.
Thus, there are enough motivations to compute the EMT with the lattice regularization, a most
well established, non perturbative formulation of quantum field theory.

1Actually, this new type of identities allow to renormalize the original translation and dilatation WI of the theory.
2In collaboration with L. Del Debbio, S. Ehret, R. Pellegrini and Antonio Rago.
3The QGP can be actually reproduced in heavy ion collision experiments.
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In this work, the renormalized EMT has been determined within two di↵erent theoretical
frameworks: a SU(3) Yang-Mills theory and a scalar ��4 theory in 3 dimensions.

In pure Yang Mills theory, the renormalized EMT is characterized by a mixing of three opera-
tors4. To each operator corresponds a (finite) renormalization constant that needs to be determined.
Moreover, a multiplicative factor Z�, coupled to the operator that generates näıvely discretized
translations, has to be fixed. All these quantities have been numerically determined using WI
probed by observables built along the flow. In this case, the method provides reasonably precise
results only at the price of large computation times, especially when fine lattices are considered.
To avoid a2/t artefacts, probes should be flowed at quite large flow times. However, at these times,
the signal worsen and a larger statistics is needed to compensate for signal depletion. Long compu-
tation times are caused by the evolution of gauge fields along the flow, and can be reduced only by
accessing to more powerful computing facilities5. This technical issue could seriously compromise
the application of the method to more realistic theories, like those including fermionic matter.6

Numerical results have been compared with the renormalization constants measured using shifted
boundary conditions. In this case, a discrepancy between the two methods has been detected. To
better understand the source of such discrepancy, further theoretical, and numerical, studies are
needed.

A di↵erent outcome is obtained when the scalar theory in 3 dimensions is considered. In this
case, the renormalized EMT is characterized by four di↵erent renormalization constants, and no
multiplicative Z� factor has to be determined. The only non trivial renormalization is encoded in
the constant coupled to the �2 operator. This result is sourced by the superrenormalizability of the
theory, and provides quite stringent constraints to be used for testing the method. Scalar theories
are really cheap to simulate, and allow to accumulate considerably large statistics in small amounts
of time. This feature allowed to measure the renormalization constants with good numerical pre-
cision. Their values at finite lattice spacing have been determined for three di↵erent renormalized
trajectories. For each trajectory, continuum extrapolations have been checked with perturbative
results, supporting the correctness of the method.
The scalar theory is physically less interesting than Yang-Mills theory. However, it proves to be a
good model for precisely checking the validity of the adopted method. Moreover, it gives room for
other interesting applications.

The first one is directly related to the investigation of BSM theories. In 3 dimensions, the scalar
theory exhibits an IR fixed point, called Wilson Fisher fixed point. The latter could be located
through a numerical strategy based on the renormalized EMT. Being computationally cheap, the
scalar theory provides a unique framework in which this new method can be thoroughly studied.
From this first application, useful informations about finite size e↵ects and signal-to-noise ratio
could be extracted and used when physically interesting theory are concerned.

Another interesting application comes from the study of the early Universe, the period usually
associated with inflation, using holographic models. Within the holographic framework, the early
Universe is described by a three dimensional QFT. Conventional inflation is included in this frame-
work as s strongly coupled quantum field theory. Hence, a lattice formulation of such theory could
provide quantitative knowledge about the inflation period. In its simplest, not-fully realistic form,
the inflation is represented by a scalar ��4 theory. In this case, knowledge of the renormalized
EMT provides access to physical quantities (power spectrum) that could be directly compared with
experimental results.

4This is true whenever the VEV of the operator is subtracted.
5Or faster algorithms for evolving the gauge fields.
6Among the all physically interesting theories, pure Yang Mills is supposed to be the cheapest one to simulate.
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Appendix A

Bulk EMT

The following flow equation

Sfl = �2
Z 1

0
dt

Z
ddxtr{Lµ(G0µ �D⌫G⌫µ)}, (A.1)

G0µ = Ḃµ �DµB0, (A.2)

is invariant under local gauge transformations in (D + 1) dimensions. Under the local variations

�↵BM = ↵RGRM , (A.3)

�↵Lµ = ↵DRLµ, (A.4)

the action changes according to

�Sfl = �2
Z 1

0
dt

Z
ddxtr{↵RDRLµ(G0µ �D⌫G⌫µ) + Lµ[�↵(G0µ)� �↵(D⌫G⌫µ)]}. (A.5)

The first term in equation (A.5) can be written as

tr{↵RDRLµ(G0µ �D⌫G⌫µ)} = tr{� @R↵RLµ(G0µ �D⌫G⌫µ)

� ↵RLµ@R(G0µ �D⌫G⌫µ)

� ↵R[Lµ, BR](G0µ �D⌫G⌫µ)}, (A.6)

up to a total derivative that does not contribute to the integral in �Sfl. Then, the following identity
can be used

tr{[A,B]C} = tr{A[B,C]}, (A.7)

to rewrite equation (A.6) as

tr{↵RDRLµ(G0µ �D⌫G⌫µ)} = tr{� @R↵RLµ(G0µ �D⌫G⌫µ)

� ↵RLµDR(G0µ �D⌫G⌫µ)}. (A.8)

The first line in (A.8) does not contribute inside correlation functions, because the integration over
the Lagrange multiplier imposes the flow equation. As a consequence, it is legitimate to write

tr{↵RDRLµ(G0µ �D⌫G⌫µ)} = tr{�↵RLµDR(G0µ �D⌫G⌫µ)}. (A.9)

The variations of the second term in (A.5) are
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• �↵(G0µ)

�↵(G0µ) = D0�↵Bµ �Dµ�↵B0

= ↵̇RGRµ � @µ↵RGR0 + ↵R(D0GRµ +DµG0R)

= ↵̇RGRµ � @µ↵RGR0 + ↵RDRG0µ, (A.10)

where the Bianchi Identity

DRGMN +DMGNR +DNGRM = 0 (A.11)

has been used.

• �↵(D⌫G⌫µ)

�↵(D⌫G⌫µ) = D⌫�↵G⌫µ + ↵R[GR⌫ , G⌫µ], (A.12)

where

�↵G⌫µ = D⌫�↵Bµ �Dµ�↵B⌫

= @⌫↵RGRµ � @µ↵RGR⌫ + ↵R(D⌫GRµ +DµG⌫R)

= @⌫↵RGRµ � @µ↵RGR⌫ + ↵RDRG⌫µ. (A.13)

Using this result, and the following identity

(DNDR �DRDN )GNM = [GNR, GNM ], (A.14)

it can be shown that

�↵(D⌫G⌫µ) = @⌫@⌫↵RGRµ � @⌫@µ↵RGR⌫

+ @⌫↵R(DRG⌫µ +D⌫GRµ)� @µ↵RD⌫GR⌫

+DRD⌫G⌫µ, (A.15)

and

tr{Lµ[�↵(G0µ)� �↵(D⌫G⌫µ)]} = tr{Lµ[� @⌫@⌫↵RGRµ + @⌫@µ↵RGR⌫

� @⌫↵R(DRG⌫µ +D⌫GRµ) + @µ↵RD⌫GR⌫

+ ↵̇RGRµ � @µ↵RGR0 + ↵RDR(G0µ �D⌫G⌫µ)]}.
(A.16)

The last term on the last line cancels exactly equation (A.9).

Collecting all the pieces together, the variation of the flow action takes the following form

�Sfl = �2
Z 1

0
dt

Z
ddxtr{Lµ[� @⌫@⌫↵RGRµ + @⌫@µ↵RGR⌫

� @⌫↵R(DRG⌫µ +D⌫GRµ)

+ @µ↵R(D⌫GR⌫ �GR0)

+ ↵̇RGRµ]}. (A.17)

The third line can still be manipulated imposing the flow equation

@µ↵RLµ(D⌫GR⌫ �GR0) = @µ↵0LµD⌫G0⌫ � @µ↵�Lµ(D⌫G⌫� �G0�)

= �@µ↵R�R0LµD⌫G⌫0, (A.18)

(A.19)
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giving the variation of the action as

�Sfl = �2
Z 1

0
dt

Z
ddxtr{Lµ[↵̇RGRµ � @µ↵R�R0D⌫G⌫0

� @⌫@⌫↵RGRµ + @⌫@µ↵RGR⌫

� @⌫↵R (DRG⌫µ +D⌫GRµ)| {z }
2D

⌫

G
Rµ

�D
µ

G
R⌫

]}. (A.20)

Using integration by parts and the formula (A.7) one finds

� 2

Z 1

0
dt

Z
ddxtr{Lµ[�@⌫@⌫↵RGRµ + @⌫@µ↵RGR⌫ � @⌫↵R(2D⌫GRµ �DµGR⌫)]} =

= �2
Z 1

0
dt

Z
ddx@µ↵Rtr{�L⌫DµGR⌫ +DµL⌫GR⌫ +D⌫L⌫GRµ}, (A.21)

and finally1

�Sfl = �2
Z 1

0
dt

Z
ddx[↵̇Rtr{LµGRµ}

+ @µ↵Rtr{�L⌫DµGR⌫ +DµL⌫GR⌫ +D⌫L⌫GRµ � �R0D⌫G⌫0}]

=

Z 1

0
dt

Z
ddxT̃MR@M↵R (A.22)

The components of the bulk EMT are then given by

T̃0R = �2tr{LµGRµ}, (A.23)

T̃µR = 2tr{L⌫DµGR⌫}� 2tr{DµL⌫GR⌫}� 2tr{D⌫L⌫GµR}+ 2�R0tr{LµD⌫G⌫0}. (A.24)

1A ⌫ $ µ redefinition is necessary for some of the terms.
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Appendix B

Improved scalar EMT in 3
dimensions

In their work, Coleman et al. [17] shows that the scalar field theory is dilatation invariant if the
following condition is satisfied

�DL+ d'
@L
@'

'+ (1 + d')⇧µ@µ' = 0, (B.1)

where L is the classical Lagrangian density, ⇧µ = @L
@(@

µ

') and d' = [']. Usually, a massless action
of the form

S =

Z
dDx


1

2
@µ'@µ'+

g

↵
'

2D
D�2

�
, (B.2)

satisfies the condition (B.1): the corresponding dilatation current is given by

Dµ = x⇢T
µ⇢ + V µ, (B.3)

where V µ = d'⇧µ' is the so called field virial: the conservation law of the current is

@µD
µ = Tµ

µ + @µV
µ. (B.4)

As already explained in (2.4), if V µ = @↵�↵µ, an improved EMT can be built to relate conservation
of dilatation current to the cancellation to the trace of such EMT

⇥µ⌫ = Tµ⌫ +
1

2
@�@⇢X�⇢µ⌫ , (B.5)

where

X�⇢µ⌫ = ��⇢�
+
µ⌫ � ��µ�+

⌫⇢ � ��⌫�+
µ⇢ + �µ⌫�

+
�⇢ �

1

3
��⇢�µ⌫�

+
↵↵ +

1

3
��µ�⌫⇢�

+
↵↵, (B.6)

and

�±
µ⌫ =

1

2
(�µ⌫ ± �⌫µ). (B.7)

In this case, the field virial has the following form

V µ = d'@
µ'' = @↵

✓
d'
2
�µ↵'

2

◆
, (B.8)

which means that it is possible to build the following improved tensor ⇥µ⌫

⇥µ⌫ = Tµ⌫ +
d'
2

✓
1� D

6

◆⇥
�µ⌫@

2 � @µ@⌫
⇤
'2. (B.9)
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However, this kind of improvement works only for D = 3 and D = 4; indeed, taking equation (B.5)
and plugging it inside eq (B.4), one obtains

@µV
µ = ⇥µ

µ +
d'
2


1�

✓
1� D

6

◆
(D � 1)

�
@2', (B.10)

that is 
1�

✓
1� D

6

◆
(D � 1)

�
= 0! D = {3, 4}. (B.11)

Only two solutions are admitted for D: to each of these solutions corresponds a specific improved
EMT

Tµ⇢(x) = @µ'@⇢'� �µ⇢L� 1

6
[@µ@⇢ � �µ⇢⇤]'2 , D = 4, (B.12)

Tµ⇢(x) = @µ'@⇢'� �µ⇢L� 1

8
[@µ@⇢ � �µ⇢⇤]'2 , D = 3 (B.13)

184



Appendix C

Numerical results for ��4 theory

C.0.1 Results: ⇢ = 10

Z1

A+Bx : 8� > 32

c A B �

2
R

0.38 1.9028(27) 80.3(3) 153.51

0.42 1.9187(31) 65.4(3) 78.39

0.45 1.9298(36) 54.8(3) 40.99

0.49 1.9378(40) 47.2(4) 21.21

0.52 1.9419(47) 41.9(4) 13.10

0.55 1.9453(54) 38.0(5) 8.12

0.59 1.9476(55) 35.0(5) 5.17

0.62 1.9485(58) 32.7(5) 3.71

0.66 1.9502(60) 30.7(6) 2.71

0.69 1.9500(69) 29.3(6) 2.08

A+Bx+ Cx

2 : 8� > 32

c A B C �

2
R

0.38 2.0012(55) 51.2(13) 1547(64) 1.82

0.42 2.0013(53) 41.5(14) 1261(72) 1.79

0.45 1.9981(74) 35.8(17) 991(84) 1.35

0.49 1.9958(73) 31.6(17) 804(84) 1.08

0.52 1.9923(81) 28.7(18) 677(92) 1.02

0.55 1.9892(98) 26.7(21) 569(104) 1.23

0.59 1.9839(109) 25.6(23) 478(111) 1.28

0.62 1.9816(105) 24.3(22) 418(110) 1.47

0.66 1.9765(114) 24.1(26) 334(134) 1.53

0.69 1.9717(131) 24.2(28) 245(133) 1.59

A+Bx : 10� > 32

c A B �

2
R

0.38 1.9607(38) 70.0(5) 17.16

0.42 1.9667(46) 57.0(6) 9.01

0.45 1.9706(44) 47.9(6) 5.74

0.49 1.9719(57) 41.7(7) 3.86

0.52 1.9705(65) 37.4(8) 3.57

0.55 1.9690(73) 34.2(9) 3.37

0.59 1.9667(77) 32.0(10) 2.88

0.62 1.9636(85) 30.4(11) 2.78

0.66 1.9615(93) 29.0(12) 2.54

0.69 1.9594(106) 28.1(13) 2.29

A+Bx+ Cx

2 : 10� > 32

c A B C �

2
R

0.38 1.9979(68) 52.9(25) 1402(202) 2.50

0.42 1.9963(88) 44.0(33) 1058(261) 2.47

0.45 1.9979(92) 36.1(31) 955(236) 2.00

0.49 1.9952(109) 31.5(38) 818(295) 1.60

0.52 1.9989(99) 25.4(38) 958(310) 1.22

0.55 2.0002(117) 21.7(42) 992(331) 1.11

0.59 1.9977(149) 19.4(56) 992(439) 0.84

0.62 1.9961(134) 17.2(46) 1033(362) 0.73

0.66 2.0003(160) 13.9(54) 1176(406) 0.62

0.69 1.9967(199) 13.7(63) 1096(462) 0.59
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A+Bx : 12� > 32

c A B �

2
R

0.38 1.9783(46) 65.2(9) 4.96

0.42 1.9824(55) 53.0(10) 2.43

0.45 1.9852(60) 44.2(11) 1.46

0.49 1.9853(75) 38.3(14) 0.85

0.52 1.9868(83) 33.6(15) 0.54

0.55 1.9858(102) 30.2(17) 0.40

0.59 1.9863(101) 27.6(18) 0.22

0.62 1.9845(112) 25.7(19) 0.13

0.66 1.9855(129) 23.8(21) 0.10

0.69 1.9840(128) 22.8(22) 0.07

A+Bx+ Cx

2 : 12� > 32

c A B C �

2
R

0.38 1.9995(89) 51.9(52) 1532(594) 5.08

0.42 1.9904(100) 48.4(54) 490(607) 4.17

0.45 1.9877(119) 42.9(65) 139(733) 2.86

0.49 1.9819(139) 40.8(76) -304(858) 1.70

0.52 1.9861(143) 34.0(77) -51(857) 1.06

0.55 1.9806(183) 34.0(101) -434(1143) 0.63

0.59 1.9751(211) 33.8(112) -667(1234) 0.36

0.62 1.9787(231) 29.8(122) -455(1346) 0.14

0.66 1.9795(217) 27.2(120) -365(1347) 0.09

0.69 1.9768(256) 26.8(155) -429(1772) 0.02

A+Bx : 16� > 32

c A B �

2
R

0.38 1.9879(73) 61.2(23) 6.32

0.42 1.9870(75) 51.1(24) 4.52

0.45 1.9858(91) 44.1(30) 2.91

0.49 1.9830(112) 39.2(34) 1.58

0.52 1.9843(127) 34.6(40) 0.98

0.55 1.9825(131) 31.7(41) 0.56

0.59 1.9818(140) 29.4(48) 0.27

0.62 1.9796(156) 27.9(51) 0.11

0.66 1.9779(175) 26.8(56) 0.07

0.69 1.9782(207) 25.2(67) 0.01

Z2

A+Bx : 8� > 32

c A B �

2
R

0.38 -1.0201(21) 0.3(2) 16.25

0.42 -1.0230(22) 5.4(2) 16.12

0.45 -1.0233(27) 9.7(2) 15.09

0.49 -1.0240(31) 13.5(3) 14.86

0.52 -1.0245(34) 17.0(3) 14.28

0.55 -1.0242(42) 20.3(4) 14.34

0.59 -1.0259(54) 23.5(5) 14.57

0.62 -1.0267(55) 26.3(5) 14.62

0.66 -1.0304(57) 29.1(5) 14.60

0.69 -1.0339(59) 31.6(5) 14.91

A+Bx+ Cx

2 : 8� > 32

c A B C �

2
R

0.38 -0.9956(38) -6.3(9) 339(43) 1.19

0.42 -0.9924(41) -2.4(9) 394(48) 1.14

0.45 -0.9901(50) 1.1(12) 434(58) 1.26

0.49 -0.9843(58) 3.5(14) 501(69) 1.53

0.52 -0.9773(74) 5.3(17) 582(81) 2.10

0.55 -0.9720(72) 7.3(16) 645(80) 2.71

0.59 -0.9675(103) 9.0(22) 718(105) 2.83

0.62 -0.9600(118) 9.8(25) 817(115) 3.17

0.66 -0.9584(104) 11.4(25) 876(125) 3.41

0.69 -0.9541(133) 11.9(30) 980(149) 3.37
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A+Bx : 10� > 32

c A B �

2
R

0.38 -1.0050(34) -2.1(4) 2.58

0.42 -1.0047(33) 2.5(4) 1.94

0.45 -1.0028(42) 6.4(5) 1.39

0.49 -0.9995(50) 9.8(6) 1.17

0.52 -0.9960(56) 12.8(7) 1.05

0.55 -0.9925(59) 15.4(7) 1.20

0.59 -0.9868(73) 17.6(9) 1.24

0.62 -0.9834(88) 19.8(11) 1.30

0.66 -0.9814(94) 22.0(11) 1.51

0.69 -0.9779(91) 23.5(11) 1.48

A+Bx+ Cx

2 : 10� > 32

c A B C �

2
R

0.38 -0.9963(52) -5.9(19) 297(146) 1.75

0.42 -0.9961(64) -0.8(23) 261(179) 1.50

0.45 -0.9954(74) 3.5(26) 231(197) 1.34

0.49 -0.9925(97) 7.2(33) 193(245) 1.37

0.52 -0.9911(106) 11.0(35) 123(262) 1.48

0.55 -0.9902(130) 14.9(43) 36(318) 1.80

0.59 -0.9856(127) 17.1(42) 48(320) 1.87

0.62 -0.9824(161) 19.9(53) -21(398) 1.96

0.66 -0.9869(169) 24.1(54) -160(409) 2.24

0.69 -0.9845(182) 25.9(62) -173(466) 2.18

A+Bx : 12� > 32

c A B �

2
R

0.38 -1.0007(37) -3.2(7) 1.86

0.42 -1.0014(42) 1.7(8) 1.93

0.45 -0.9988(57) 5.6(10) 1.77

0.49 -0.9971(61) 9.2(10) 1.68

0.52 -0.9965(74) 12.9(13) 1.55

0.55 -0.9941(83) 16.0(14) 1.66

0.59 -0.9897(95) 18.3(18) 1.68

0.62 -0.9892(104) 21.0(20) 1.65

0.66 -0.9886(104) 23.6(18) 1.89

0.69 -0.9850(133) 25.0(23) 1.84

A+Bx+ Cx

2 : 12� > 32

c A B C �

2
R

0.38 -0.9955(79) -6.2(46) 331(519) 3.50

0.42 -0.9917(93) -3.5(49) 566(548) 2.66

0.45 -0.9850(115) -3.0(61) 968(669) 1.60

0.49 -0.9790(133) -1.4(68) 1204(732) 0.75

0.52 -0.9734(184) 0.2(90) 1380(952) 0.32

0.55 -0.9642(186) -1.2(93) 1879(983) 0.11

0.59 -0.9602(172) 0.1(96) 2048(1080) 0.04

0.62 -0.9492(248) -1.1(127) 2403(1374) 0.09

0.66 -0.9461(300) -1.1(149) 2720(1578) 0.02

0.69 -0.9420(281) -1.3(150) 2967(1661) 0.06

A+Bx : 16� > 32

c A B �

2
R

0.38 -0.9980(60) -4.2(19) 3.20

0.42 -0.9940(78) -0.9(25) 2.18

0.45 -0.9897(94) 2.2(27) 1.12

0.49 -0.9846(113) 4.6(33) 0.44

0.52 -0.9797(117) 6.9(36) 0.13

0.55 -0.9748(130) 8.7(40) 0.03

0.59 -0.9689(155) 10.3(46) 0.02

0.62 -0.9657(172) 12.3(56) 0.08

0.66 -0.9593(191) 12.7(58) 0.15

0.69 -0.9564(222) 13.8(65) 0.22
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Z3/|m0|2

A+Bx : 8� > 32

c A B �

2
R

0.38 0.7873(263) 26.6(27) 1.07

0.42 0.8101(382) 18.0(37) 0.94

0.45 0.8407(441) 12.0(43) 0.80

0.49 0.8794(480) 7.9(46) 0.63

0.52 0.9091(507) 6.0(47) 0.56

0.55 0.9322(591) 5.4(54) 0.50

0.59 0.9520(770) 5.9(64) 0.46

0.62 0.9632(756) 8.1(69) 0.48

0.66 1.0030(897) 7.2(84) 0.41

0.69 1.0025(1008) 9.5(97) 0.39

A+Bx+ Cx

2 : 8� > 32

c A B C �

2
R

0.38 0.7748(435) 30.6(102) -231(545) 1.37

0.42 0.7708(603) 30.2(143) -671(743) 0.96

0.45 0.7764(760) 30.7(190) -990(991) 0.60

0.49 0.8034(788) 28.5(180) -1060(926) 0.32

0.52 0.8075(932) 33.5(221) -1414(1165) 0.20

0.55 0.8056(1100) 39.1(270) -1687(1393) 0.18

0.59 0.8373(1278) 40.0(299) -1818(1519) 0.16

0.62 0.8460(1481) 41.9(354) -1854(1795) 0.21

0.66 0.8626(1504) 43.3(362) -1823(1918) 0.22

0.69 0.8527(1531) 48.3(328) -2003(1656) 0.28

A+Bx : 10� > 32

c A B �

2
R

0.38 0.7686(348) 29.4(44) 1.29

0.42 0.7886(450) 22.8(59) 0.90

0.45 0.7934(609) 20.5(78) 0.57

0.49 0.8208(569) 17.7(75) 0.31

0.52 0.8434(711) 16.4(87) 0.26

0.55 0.8690(818) 15.7(109) 0.28

0.59 0.8831(990) 18.2(129) 0.28

0.62 0.9067(924) 16.9(127) 0.37

0.66 0.9407(1169) 17.2(150) 0.36

0.69 0.9663(1129) 16.2(152) 0.40

A+Bx+ Cx

2 : 10� > 32

c A B C �

2
R

0.38 0.7974(625) 16.8(226) 1008(1810) 1.76

0.42 0.8025(776) 16.8(297) 462(2354) 1.33

0.45 0.8065(927) 18.9(363) -54(2990) 0.84

0.49 0.7915(1149) 28.0(427) -787(3368) 0.44

0.52 0.8031(1455) 35.3(518) -1601(4005) 0.30

0.55 0.7844(1508) 48.8(536) -2553(4181) 0.22

0.59 0.7901(1694) 60.4(612) -3521(4795) 0.17

0.62 0.7408(1741) 84.9(599) -5446(4758) 0.18

0.66 0.7964(1873) 71.5(666) -4151(5276) 0.18

0.69 0.7430(2206) 103.6(827) -6843(6550) 0.13

A+Bx : 12� > 32

c A B �

2
R

0.38 0.7945(484) 21.9(89) 1.30

0.42 0.8128(481) 16.6(87) 1.13

0.45 0.8103(657) 16.7(126) 0.80

0.49 0.8329(744) 15.3(138) 0.47

0.52 0.8213(908) 20.7(175) 0.36

0.55 0.8443(1015) 22.2(189) 0.28

0.59 0.8367(1114) 30.5(210) 0.19

0.62 0.8306(1346) 36.3(241) 0.13

0.66 0.8719(1436) 33.7(271) 0.15

0.69 0.8550(1684) 41.9(298) 0.10

A+Bx+ Cx

2 : 12� > 32

c A B C �

2
R

0.38 0.6923(768) 89.4(414) -7764(4704) 0.55

0.42 0.6759(970) 96.6(495) -8906(5328) 0.58

0.45 0.7335(1459) 68.5(732) -5938(7898) 0.65

0.49 0.7365(1609) 71.1(821) -6124(8970) 0.46

0.52 0.7666(1588) 56.5(892) -3948(10176) 0.43

0.55 0.7841(2081) 56.7(1124) -3715(12337) 0.42

0.59 0.8205(2534) 38.8(1266) -1123(13908) 0.35

0.62 0.8214(2713) 48.9(1406) -1707(15515) 0.26

0.66 0.8407(2905) 50.3(1529) -1724(17315) 0.27

0.69 0.8461(3076) 47.4(1603) -577(17465) 0.20
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A+Bx : 16� > 32

c A B �

2
R

0.38 0.7386(675) 46.7(221) 0.83

0.42 0.7280(724) 48.4(236) 0.83

0.45 0.7531(1067) 41.5(304) 0.76

0.49 0.7629(1287) 38.4(363) 0.56

0.52 0.7564(1540) 45.0(466) 0.46

0.55 0.8003(1534) 35.9(458) 0.46

0.59 0.8187(1829) 32.4(551) 0.39

0.62 0.8139(2214) 43.4(666) 0.27

0.66 0.8736(2500) 32.8(817) 0.29

0.69 0.8222(2396) 51.0(748) 0.20

Z4/�0

A+Bx : 8� > 32

c A B �

2
R

0.38 -1.0479(194) -12.3(18) 1.85

0.42 -1.0660(238) -8.2(22) 1.63

0.45 -1.0844(295) -5.3(28) 1.30

0.49 -1.0936(388) -4.0(34) 1.01

0.52 -1.1196(474) -2.1(40) 0.84

0.55 -1.1465(474) -0.7(40) 0.72

0.59 -1.1609(558) 0.0(45) 0.63

0.62 -1.1930(600) 1.6(48) 0.61

0.66 -1.2151(641) 2.0(56) 0.53

0.69 -1.2254(654) 2.4(60) 0.50

A+Bx+ Cx

2 : 8� > 32

c A B C �

2
R

0.38 -0.9883(384) -27.9(85) 805(442) 1.32

0.42 -0.9842(430) -29.2(92) 1042(450) 0.97

0.45 -0.9957(664) -28.7(145) 1181(710) 0.62

0.49 -0.9960(715) -30.6(158) 1368(774) 0.33

0.52 -1.0042(796) -32.0(183) 1490(911) 0.24

0.55 -1.0161(908) -32.5(204) 1573(1010) 0.21

0.59 -1.0340(961) -33.4(227) 1670(1157) 0.20

0.62 -1.0814(1184) -25.8(256) 1374(1239) 0.27

0.66 -1.0575(1359) -35.6(296) 1818(1449) 0.25

0.69 -1.0539(1607) -37.1(331) 1853(1575) 0.30

A+Bx : 10� > 32

c A B �

2
R

0.38 -1.0097(318) -18.2(40) 1.24

0.42 -1.0093(372) -16.9(49) 0.96

0.45 -1.0233(463) -14.6(59) 0.65

0.49 -1.0412(540) -12.7(71) 0.40

0.52 -1.0663(557) -10.8(67) 0.36

0.55 -1.0718(702) -12.2(90) 0.37

0.59 -1.0965(773) -10.0(97) 0.36

0.62 -1.1146(871) -9.6(113) 0.43

0.66 -1.1500(944) -7.7(113) 0.42

0.69 -1.1598(1122) -7.8(144) 0.46

A+Bx+ Cx

2 : 10� > 32

c A B C �

2
R

0.38 -1.0145(480) -15.8(160) -193(1278) 1.88

0.42 -0.9929(683) -23.1(236) 479(1781) 1.41

0.45 -0.9957(817) -25.0(281) 775(2149) 0.91

0.49 -0.9997(985) -26.9(331) 1018(2471) 0.50

0.52 -1.0080(1269) -34.9(423) 1890(3182) 0.37

0.55 -0.9729(1305) -46.3(449) 2588(3432) 0.31

0.59 -1.0058(1430) -48.3(514) 3051(3962) 0.19

0.62 -0.9723(1682) -65.7(540) 4432(4049) 0.17

0.66 -0.9779(2016) -69.8(653) 4747(4800) 0.17

0.69 -0.9785(1837) -71.9(610) 4787(4617) 0.14
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A+Bx : 12� > 32

c A B �

2
R

0.38 -1.0238(417) -14.6(73) 1.75

0.42 -1.0150(444) -15.2(82) 1.41

0.45 -1.0281(604) -14.3(105) 0.96

0.49 -1.0372(725) -15.1(127) 0.60

0.52 -1.0402(716) -16.5(138) 0.45

0.55 -1.0312(1099) -21.7(196) 0.34

0.59 -1.0483(1179) -21.4(219) 0.23

0.62 -1.0511(1049) -24.8(176) 0.17

0.66 -1.0525(1208) -28.3(207) 0.17

0.69 -1.0266(1583) -34.0(268) 0.15

A+Bx+ Cx

2 : 12� > 32

c A B C �

2
R

0.38 -0.9150(685) -80.7(375) 7359(4228) 0.74

0.42 -0.8840(1015) -92.9(548) 8615(6091) 0.75

0.45 -0.8921(1177) -89.1(606) 8109(6602) 0.71

0.49 -0.9365(1300) -67.6(656) 5812(7241) 0.55

0.52 -0.9555(1740) -60.8(901) 4749(9813) 0.46

0.55 -0.9513(1877) -69.0(1021) 5437(11476) 0.47

0.59 -1.0099(2176) -41.9(1070) 2182(11447) 0.39

0.62 -0.9888(2682) -66.7(1307) 4740(13833) 0.36

0.66 -0.9920(2587) -70.5(1276) 5288(13917) 0.38

0.69 -0.9869(2998) -72.9(1449) 4936(15434) 0.24

A+Bx : 16� > 32

c A B �

2
R

0.38 -0.9549(618) -41.9(205) 1.11

0.42 -0.9588(784) -39.3(248) 1.02

0.45 -0.9469(977) -43.7(270) 0.91

0.49 -0.9798(1031) -35.4(317) 0.67

0.52 -0.9751(1292) -40.5(376) 0.56

0.55 -1.0107(1565) -31.2(459) 0.54

0.59 -0.9992(1655) -39.4(504) 0.43

0.62 -1.0612(1649) -20.7(501) 0.36

0.66 -1.0094(2011) -44.5(605) 0.34

0.69 -1.0203(2461) -44.2(739) 0.25

C.0.2 Results: ⇢ = 5

Z1

A+Bx : 16� > 32

c A B �

2
R

0.38 2.0068(61) 54.5(20) 1.89

0.42 2.0088(65) 43.1(21) 1.77

0.45 2.0081(78) 35.5(25) 1.52

0.49 2.0062(88) 30.2(28) 1.20

0.52 2.0044(100) 26.2(33) 1.00

0.55 1.9996(104) 24.4(34) 0.85

0.59 2.0008(118) 21.5(37) 0.72

0.62 2.0003(137) 19.2(42) 0.66

0.66 1.9984(135) 18.3(43) 0.60

0.69 1.9977(152) 17.0(49) 0.55

A+Bx+ Cx

2 : 16� > 32

c A B C �

2
R

0.38 1.9779(160) 80.5(131) -4895(2365) 0.02

0.42 1.9733(202) 74.5(172) -5823(3143) 0.07

0.45 1.9728(210) 66.3(176) -5740(3292) 0.11

0.49 1.9725(229) 60.2(197) -5699(3686) 0.22

0.52 1.9677(298) 58.4(244) -5972(4463) 0.35

0.55 1.9608(323) 60.0(267) -6749(4931) 0.41

0.59 1.9666(372) 51.6(296) -5570(5379) 0.47

0.62 1.9627(492) 52.1(403) -6068(7251) 0.48

0.66 1.9688(422) 44.6(340) -4889(6179) 0.54

0.69 1.9669(568) 44.9(466) -5176(8504) 0.57
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A+Bx : 18� > 32

c A B �

2
R

0.38 2.0000(76) 58.6(31) 0.87

0.42 1.9980(99) 48.6(40) 0.40

0.45 1.9969(111) 41.3(46) 0.21

0.49 1.9939(112) 36.3(47) 0.07

0.52 1.9913(136) 32.9(54) 0.01

0.55 1.9898(133) 29.9(57) 0.01

0.59 1.9894(161) 27.4(65) 0.04

0.62 1.9884(191) 25.2(78) 0.13

0.66 1.9823(235) 26.4(95) 0.13

0.69 1.9861(223) 24.0(98) 0.16

Z2

A+Bx : 16� > 32

c A B �

2
R

0.38 -1.0157(50) 0.5(16) 2.21

0.42 -1.0180(58) 6.0(18) 2.00

0.45 -1.0185(65) 10.4(20) 1.63

0.49 -1.0177(78) 14.2(24) 1.23

0.52 -1.0151(87) 16.8(29) 1.00

0.55 -1.0185(105) 21.2(33) 0.91

0.59 -1.0144(128) 22.6(41) 0.92

0.62 -1.0138(124) 25.2(39) 0.82

0.66 -1.0119(140) 26.3(44) 0.80

0.69 -1.0161(146) 29.2(47) 0.64

A+Bx+ Cx

2 : 16� > 32

c A B C �

2
R

0.38 -0.9954(130) -18.6(105) 3652(1918) 0.09

0.42 -0.9895(155) -19.4(126) 4744(2308) 0.14

0.45 -0.9859(173) -18.5(136) 5449(2486) 0.14

0.49 -0.9867(226) -13.0(192) 5095(3553) 0.11

0.52 -0.9841(253) -11.2(216) 5282(4132) 0.10

0.55 -0.9737(315) -16.2(258) 6793(4754) 0.06

0.59 -0.9668(318) -19.1(269) 7776(5013) 0.06

0.62 -0.9618(442) -21.3(359) 8780(6582) 0.09

0.66 -0.9663(436) -15.4(348) 7913(6313) 0.04

0.69 -0.9603(535) -19.1(443) 9052(8136) 0.02

A+Bx : 18� > 32

c A B �

2
R

0.38 -1.0102(54) -2.8(22) 0.51

0.42 -1.0093(77) 1.4(32) 0.29

0.45 -1.0088(78) 5.5(33) 0.23

0.49 -1.0075(94) 9.1(37) 0.12

0.52 -1.0050(100) 11.6(41) 0.10

0.55 -1.0034(154) 14.2(61) 0.13

0.59 -1.0015(155) 16.2(60) 0.12

0.62 -0.9990(181) 18.0(72) 0.24

0.66 -1.0008(234) 20.0(90) 0.17

0.69 -1.0009(214) 21.8(89) 0.17
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Z3/|m0|2

A+Bx : 16� > 32

c A B �

2
R

0.38 0.6576(901) 36.3(313) 1.80

0.42 0.6139(1050) 46.2(354) 1.46

0.45 0.5654(1457) 63.7(515) 1.26

0.49 0.5291(1556) 79.7(581) 0.96

0.52 0.4871(2004) 103.1(703) 0.76

0.55 0.4919(2111) 106.1(766) 0.64

0.59 0.5330(2284) 102.7(798) 0.48

0.62 0.5164(3017) 121.1(1038) 0.38

0.66 0.5100(2771) 132.4(1002) 0.32

0.69 0.4375(3265) 160.9(1108) 0.31

A+Bx+ Cx

2 : 16� > 32

c A B C �

2
R

0.38 1.0132(2401) -304.8(1901) 67630(35062) 0.68

0.42 1.0613(2665) -383.8(2293) 85904(44424) 0.13

0.45 1.0942(3827) -422.1(3321) 94561(63499) 0.04

0.49 1.0736(4049) -430.1(3523) 98404(68368) 0.09

0.52 1.1110(6180) -462.8(5185) 108458(98729) 0.19

0.55 1.1861(6704) -516.6(5838) 118601(111345) 0.25

0.59 1.1095(8214) -445.5(7100) 111383(134804) 0.34

0.62 1.0580(8899) -362.9(7838) 91866(147559) 0.31

0.66 1.0049(8917) -312.5(7668) 85061(146867) 0.31

0.69 0.9052(10656) -222.3(9562) 68733(185154) 0.34

A+Bx : 18� > 32

c A B �

2
R

0.38 0.7313(1107) -3.2(469) 2.37

0.42 0.7049(1173) -6.3(473) 1.11

0.45 0.6869(1511) -11.0(659) 0.64

0.49 0.6829(1754) -4.9(733) 0.24

0.52 0.7162(2476) -19.9(1134) 0.06

0.55 0.7638(2977) -30.9(1306) 0.05

0.59 0.6390(3305) 35.7(1406) 0.05

0.62 0.7004(3683) 18.0(1612) 0.02

0.66 0.6653(4231) 41.6(1828) 0.06

0.69 0.7235(4749) 26.8(2149) 0.07
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Z4/�0

A+Bx : 16� > 32

c A B �

2
R

0.38 -0.8870(598) -41.7(192) 1.67

0.42 -0.8453(861) -51.0(270) 1.29

0.45 -0.8085(847) -64.6(284) 1.05

0.49 -0.8181(1140) -64.9(390) 0.81

0.52 -0.7756(1469) -83.2(479) 0.59

0.55 -0.7767(1691) -92.5(551) 0.52

0.59 -0.7756(1680) -92.3(578) 0.39

0.62 -0.7776(2054) -101.2(658) 0.30

0.66 -0.7797(2232) -107.5(719) 0.26

0.69 -0.7880(2806) -109.3(918) 0.23

A+Bx+ Cx

2 : 16� > 32

c A B C �

2
R

0.38 -1.1501(1983) 199.0(1717) -45938(33066) 1.09

0.42 -1.1668(2337) 236.3(1980) -55601(37484) 0.27

0.45 -1.1790(2610) 266.4(2188) -63190(41231) 0.05

0.49 -1.1768(3484) 281.4(3044) -68678(57874) 0.03

0.52 -1.2316(4365) 320.9(3692) -76599(69124) 0.08

0.55 -1.1934(4876) 291.1(4126) -72494(77195) 0.14

0.59 -1.1481(5038) 237.8(4385) -63033(83545) 0.17

0.62 -1.1426(5164) 205.8(4427) -55074(84515) 0.26

0.66 -1.1471(6543) 224.2(5506) -62839(102644) 0.27

0.69 -1.0535(7305) 128.7(6241) -44541(117145) 0.26

A+Bx : 18� > 32

c A B �

2
R

0.38 -0.9414(934) -14.5(395) 2.52

0.42 -0.9174(1081) -11.6(437) 1.29

0.45 -0.8647(1188) -33.0(505) 0.73

0.49 -0.9041(1421) -18.4(609) 0.28

0.52 -0.9202(1843) -12.9(774) 0.08

0.55 -0.8857(2318) -26.2(953) 0.03

0.59 -0.9446(2490) -12.9(1058) 0.01

0.62 -0.8983(2435) -37.3(1063) 0.03

0.66 -0.9084(2836) -41.6(1270) 0.05

0.69 -0.8834(3687) -49.1(1539) 0.08
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C.0.3 Results: ⇢ = 1.5

Z1

A+Bx : 16� > 32

c A B �

2
R

0.38 2.0085(73) 55.6(22) 0.47

0.42 2.0118(94) 44.5(31) 0.26

0.45 2.0140(106) 36.5(31) 0.13

0.49 2.0200(106) 29.3(32) 0.05

0.52 2.0191(140) 25.5(40) 0.04

0.55 2.0221(143) 21.9(43) 0.02

0.59 2.0239(175) 18.7(51) 0.05

0.62 2.0227(204) 17.7(58) 0.04

0.66 2.0212(208) 16.5(64) 0.07

0.69 2.0230(203) 14.4(60) 0.04

Z2

A+Bx : 16� > 32

c A B �

2
R

0.38 -1.0111(60) -1.8(17) 0.77

0.42 -1.0120(73) 2.5(20) 0.75

0.45 -1.0144(90) 6.6(27) 0.72

0.49 -1.0148(97) 9.9(29) 0.64

0.52 -1.0161(132) 12.7(38) 0.87

0.55 -1.0154(145) 15.1(43) 0.79

0.59 -1.0124(164) 16.1(47) 0.79

0.62 -1.0140(159) 18.2(47) 0.89

0.66 -1.0151(199) 20.5(59) 0.81

0.69 -1.0106(265) 20.2(74) 0.80

Z3/|m0|2

A+Bx : 16� > 32

c A B �

2
R

0.38 1.1464(7292) -495.3(2167) 3.32

0.42 1.0970(8506) -492.6(2385) 3.98

0.45 0.3874(12223) -324.2(3687) 4.33

0.49 0.4162(15682) -337.7(4629) 3.83

0.52 -0.3203(15380) -124.1(4552) 3.67

0.55 -0.7292(19374) 49.3(5505) 2.82

0.59 -1.7061(23725) 341.1(7032) 2.24

0.62 -2.1576(24020) 499.0(7064) 1.82

0.66 -2.8956(28018) 726.0(8286) 1.36

0.69 -2.8520(24640) 783.3(7300) 1.09
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Z4/�0

A+Bx : 16� > 32

c A B �

2
R

0.38 -0.7884(2530) -96.4(741) 3.43

0.42 -0.6784(2761) -119.8(840) 3.43

0.45 -0.5415(3570) -163.0(1086) 3.22

0.49 -0.4309(4458) -188.8(1327) 2.61

0.52 -0.1779(3912) -272.2(1203) 2.14

0.55 0.0552(5495) -331.5(1693) 1.42

0.59 0.3009(6061) -420.6(1815) 0.99

0.62 0.3389(6228) -442.9(2033) 0.62

0.66 0.6339(8993) -546.0(2678) 0.43

0.69 0.6070(9498) -540.4(2648) 0.24
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[23] Martin Lüscher and Peter Weisz. Perturbative analysis of the gradient flow in non-abelian
gauge theories. Journal of High Energy Physics, 2011(2):1–23, 2011.
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