PEARL

01 University of Plymouth Research Outputs

University of Plymouth Research Outputs

2017-04-01

The price of attack: Rethinking damage costs in animal contests

Lane, SM

http://hdl.handle.net/10026.1/8565

10.1016/j.anbehav.2017.01.015 Animal Behaviour Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1 THE PRICE OF ATTACK: RETHINKING DAMAGE COSTS IN ANIMAL CONTESTS

2

3 Sarah M. Lane* & Mark Briffa

4 Marine biology and ecology research centre, Plymouth University, Drake Circus, Plymouth,

5 UK, PL4 8AA

- 6 *Correspondence: Sarah M. Lane, Davy 620, Marine biology and ecology research centre,
- 7 Plymouth University, Drake Circus, Plymouth, UK, PL4 8AA
- 8 E-mail: <u>sarah.lane@plymouth.ac.uk</u>; Contact phone number: 01752 584618

9

10	Theoretical models of injurious animal contests, such as the cumulative assessment model
11	(CAM) predict that an individual's decision to give up and retreat from a fight is
12	determined by reaching a maximum cost threshold (C_{max}). Under this model, an individual
13	gives up when the accumulated costs of persisting exceed this threshold. CAM predicts
14	that the velocity with which C_{\max} is reached depends on both the energetic (physiological)
15	costs of remaining in the fight and the damage costs of injuries received. Here we propose
16	that damage costs are not only accumulated by receiving injuries, but in some cases also
17	by inflicting injury (attacking). We argue that these self-inflicted damage costs need to be
18	incorporated into theoretical frameworks in order to fully understand what drives an
19	individual to make the decision to give up and call for further research into this area.

20

Keywords: animal contests; cumulative assessment model; damage costs; injurious contests;
 self-inflicted damage

24 Before the introduction of gloves around 1897, there were no recorded deaths in professional boxing. This is because a human hand will break on impact with a human skull 25 long before the skull does. Thanks to boxing gloves, "boxer's fracture" (the breakage of the 26 metacarpal bones on impact with an immovable object) is now restricted to emergency 27 28 department waiting rooms after brawls in bars, whilst 3 to 4 professional fights end in a death every year in the USA alone and 15% of professional fighters suffer permanent brain 29 injury during their career (Ryan, 1987; 1991). Gloves have thus enabled boxers to inflict 30 injury whilst avoiding the self-inflicted injuries that would otherwise accrue from punching 31 32 an opponent.

In many models of animal contest theory, the costs of entering and persevering in a 33 34 fight are split into two separate components: - energetic costs (E) which push an individual towards fatigue (such as the use of energy reserves, oxygen consumption or the build-up of 35 metabolic waste products) and damage costs (D), the physical injuries received by an 36 37 individual as a result of its opponent's agonistic behaviour. Damage costs accumulated 38 during fights in both human and animal contests are generally thought of in terms of the recipient of agonistic behaviour (e.g. the boxer receiving the blow to the head). Theoretical 39 40 models of animal contests which account for damage received in injurious fights, in particular the cumulative assessment model (CAM), assume that individual contestants 41 possess a maximum cost threshold (C_{max}), which once reached triggers the individual to give 42 up and withdraw from the contest. CAM predicts that the time taken for an individual to 43 reach C_{max} will be negatively correlated with both the energetic costs of remaining in the 44 fight (E) and the amount of damage caused to the focal individual by its opponent (D) 45

46 (Payne, 1998). The higher the accumulated costs, the sooner C_{max} will be reached and the
47 sooner the loser will retreat.

$$C \ accumulated = E + D \tag{1}$$

49 Giving up is triggered when: -

50

65

48

$$C \ accumulated > C_{max} \tag{2}$$

51 CAM assumes that an individual's contest decisions are based upon self-assessment but 52 recognises that the actions of the opponent (i.e. attacks) can impact the speed at which an 53 individual reaches C_{max}. However, while the CAM includes the energetic costs of performing 54 agonistic behaviour, it does not take into account the potential self-inflicted damage costs 55 of carrying out agonistic behaviour. In fact to date, to our knowledge, self-inflicted damage 56 has not been considered as a cost of fighting in animal contest literature.

57 The CAM assumes that injuries inflicted are costly only to the recipient and not the attacker, but as we have already seen from our boxing example, such assumptions do not 58 necessarily hold true. Thus in situations where agonistic behaviour damages the actor as 59 60 well as the recipient, damage costs will accrue not only through the agonistic actions of 61 one's opponent but also through one's own agonistic actions, which we refer to as selfinflicted damage (D_{SI}). Thus the total costs accrued are the sum of energy expended, 62 damage inflicted by the opponent and damage that is self-inflicted through the focal 63 individual's own agonistic behaviour. 64

$$C accumulated = E + D + D_{SI}$$
(3)

A range of properties of D_{SI} will determine its average contribution to C accumulated. 66 Essentially, self-inflicted damage will reduce the differential of damage costs between the 67 recipients and inflictors of injurious agonistic behaviour, compared with a scenario where 68 69 self-inflicted damage is absent. Under the predictions of the CAM, Payne (1998) argues that 70 unlike energetic costs damage costs come from an external source and are thus out of the 71 recipient's control, but in cases with self-inflicted damage, a significant proportion of the 72 total damage costs are under the control of the recipient. Specifically, the attacker has the 73 potential to control the amount of D_{SI} experienced by adjusting the rate and power of attack. In species that do not exhibit variation in the power exerted in attacks, only the rate of 74 75 attack will be important in determining D_{SI}, for example in the beadlet sea anemone Actinia equina, the number of attacks is functionally correlated with the amount of D_{SI} experienced 76 77 by the attacker. In other species, such as musk ox (Ovibos moschatus) the power of attack is 78 more important in determining victory and has a much greater effect than attack rate on 79 the severity of D_{SI} (Wilkinson & Shank, 1976). Furthermore, in their 1981 paper, Parker and 80 Rubenstein assume energetic costs to be equally incurred by both opponents but damage 81 costs to be sustained only by the loser/recipient, but again when self-inflicted damage is a feature of injurious fighting, this latter assumption would not hold. Rather, in injurious fights 82 damage costs may be incurred by both winners and losers, even in examples where it is only 83 84 winners that perform the injurious behaviours.

85

86 EVIDENCE OF SELF-INFLICTED DAMAGE VIA ATTACKS IN NONHUMAN ANIMALS

Evidence of self-inflicted damage in attackers is limited, likely in part due to the simple fact
that until now damage costs have only been explicitly considered for the recipients of

attacks. However, the evidence that does exist illustrates that self-inflicted damage varies 89 along three different axes; likelihood, severity and reversibility (table 1). While it is 90 important to remember that not all fights escalate into injurious attacks, being settled using 91 92 non-injurious displays or trials of strength, here we define likelihood as the probability that D_{SI} will occur if an injurious attack is used. At one extreme, self-inflicted damage during an 93 attack is unavoidable, as it is functionally linked to the use of weapons. In other cases, and 94 95 perhaps more generally, D_{sl} during an attack is a risk but not a certainty. Severity is the loss 96 of fitness resulting from (a) loss of function due to D_{SI} from the time of attack until healing is complete and (b) costs allocated to the healing process. Reversibility (arguably a component 97 98 of severity) is the potential/capacity for the self-inflicted injury to heal - i.e. completely, incompletely or not at all – over the lifetime of the recipient. The severity and reversibility of 99 100 the damage again vary depending upon the species and/or context, the most extreme 101 examples resulting in (naturally irreversible) death. All three axes of self-inflicted damage 102 will impact an individual's decision to give up within the timescale of a fight. Note that 103 severity and reversibility should also pertain to damage inflicted by the opponent, although 104 these features are rarely assessed in empirical studies (a notable exception is the system 105 developed by Murray, 1987 for scoring injury severity in fig wasp contests). In contrast, the 106 likelihood of damage if an injurious tactic is used is a specific feature of D_{SI.}

107 In this section we will review examples of self-inflicted damage to attackers available 108 in the current literature and discuss these examples in terms of the three axes outlined 109 above.

110

111 Self-inflicted damage in dyadic contests

112 Thus far the most well-described and extreme example of self-inflicted damage to attackers is found in contests between beadlet sea anemones Actinia equina. A. equina are among the 113 114 simplest animals to engage in contests. They lack a centralised nervous system but possess 115 weapons in the form of specialised stinging tentacles called acrorhagi which contain high concentrations of stinging nematocytes and are used solely for fighting other anemones 116 117 (Williams, 1978; Brace, Pavey, & Quickie, 1979; Bigger, 1982). During contests, anemones 118 scrape inflated acrorhagi along their opponent's body column. Pieces of the attacker's 119 nematocyte-filled acrorhagial ectoderm (known as "peels") stick to the recipient of the 120 attack causing localised necroses (Nüchter, Benoit, Engel, Ozbek, & Holstein, 2006; Bartosz, 121 Finkelshtein, Przygodzki, Bsor, Nesher, Sher, & Zlotkin, 2008) whilst the attacking anemone is left with holes in its acrorhagi (figure 1). The greater the number of peels landed, the 122 123 more damage done to the recipient and the greater chance of winning for the attacker 124 (Rudin & Briffa, 2011). However in A. equina, individuals are unable to damage their 125 opponents without also damaging themselves, and an increase in peels means an increase 126 in damage to the attacker by necessity. Furthermore, while healing appears to be relatively 127 rapid (< 7 days – SML personal observation) the accumulated costs of damage are unlikely 128 to be immaterial, especially in fights in which both individuals receive and inflict attacks. Thus in *A. equina* the velocity at which C_{max} is reached will be reliant upon the energetic 129 130 costs of remaining in the contest, the number of peels received *and* the number of peels 131 inflicted. The relative costs of receiving and inflicting peels may of course not be identical, in which case the two kinds of damage costs may make different contributions to C_{max}. For 132 133 instance, the physical damage caused by receiving and inflicting peels presumably leaves individuals at greater risk of infection from pathogens until healing is complete (although 134 135 interestingly, the mucus produced by *A. equina* has recently been shown to have

antibacterial properties, potentially staving off infection, Stabili, Schirosi, Parisi, Piraino, &
Cammarata,2015). Inflicting peels brings about an additional cost by damaging acrorhagi,
and thus rendering weapons unavailable for future contests until fully healed.

139 Less extreme (in terms of likelihood, severity and reversibility) examples of self-140 inflicted damage during contests have been noted in beetles, elk and deer. The physiological 141 cost of antler production in cervids is known to be extremely high (e.g. causing seasonal 142 osteoporosis Banks, Epling, Kainer, & Davis, 1968) in contrast to the relative inexpense of 143 beetle horns (McCullough & Emlen, 2013; McCullough & Tobalske, 2013), but both weapons 144 run the risk of breakage during a contest (Figure 1). Rhinoceros beetles in particular possess 145 a vast array of exaggerated horn structures for use in fighting. While self-inflicted damage to 146 the attacker is not certain in these species, a recent study of the Asian rhinoceros beetle 147 *Trypoxylus dichotomus* has shown that it is still a significant risk (with ~21% of males within 148 a population showing some level of horn damage) and that furthermore, the likelihood of 149 horn breakage increases with horn size (McCullough, 2014). In fallow deer, major antler 150 damage (e.g. damage to the antler palm and/or beam) is associated with the agonistic 151 behaviour of the individual, specifically pushing and jump clashes, suggesting that this 152 damage may be the result of both the focal individual's behaviour and that of its opponent (D. Jennings, personal communication, 3 November 2016). Similarly in tule elk Cervus 153 elaphus nannodes, antler breakage is seen in more than 80% of rutting males (Johnson, 154 155 Bleich, Krausman, & Koprowski, 2007). Bulls and bucks moult and regrow their antlers every season, meaning that any damage received will be repaired before the next rutting season 156 157 and antler damage in elk has been shown to have little impact on the fighting success of 158 individuals within a season (Johnson et al., 2007). Rhinoceros beetles on the other hand are

159 unable to repair horns once they are broken (i.e. the damage is irreversible), rendering males unable to secure access to females and thus eliminating any possible future mating 160 161 success. Thus, the costs arising from the three axes of probability, severity and reversibility 162 of self-inflicted damage will vary across species. Nevertheless, it seems probable that this form of damage is important in many cases where weapons are used. A final potential 163 example of D_{SI} in animal contests has been observed in bethylid parasitoid wasps. In a small 164 165 percentage of contests, losers release a volatile chemical before fleeing rapidly, leaving the 166 winner exposed to this chemical in the confined contest arena (Goubault, Batchelor, Linforth, Taylor, & Hardy, 2006; Goubault et al., 2008). The chemical is only ever released by 167 168 the loser and is known to be insecticidal to some organisms. It is thought to act as a rearguard weapon, enabling the retreat of the loser while damaging the winner. However, 169 170 the question remains as to why losers only emit this chemical infrequently. One possibility is 171 that it is costly to produce, but another is that this chemical weapon is injurious both to the 172 winner and to the loser who emits it, an explanation that could also account for the loser's swift exit (I. C. W. Hardy, personal communication, 5 January 2017). 173

174

175 Self-inflicted damage during colony defence: social insects

With such a paucity of information on the damage to attackers during animal contests we
now turn to an especially striking example of self-destructive attacks, suicidal colony
defence in social insects. While it must be remembered that these examples do not strictly
adhere to the rules of dyadic contests (although see Batchelor & Briffa, 2010; 2011 and
Batchelor, Santini, & Briffa, 2012), no discussion of self-inflicted damage would be complete
without mentioning this most extreme phenomenon. Social insects demonstrate an

182 incredible variety of suicidal defences ranging from biting, to stinging, to autothysis (suicide via internal rupturing/explosion). For example on coming into contact with intruders within 183 184 the colony (and in some examples outside of the colony), resident workers of the stingless 185 bee Trigona hyalinata approach the intruder, bite them and do not disengage, resulting in the death of the attacker (Shackleton, Toufailia, Balfour, Nascimento, Alves & 186 Ratnieks, 2015). Similarly carpenter ant Camponotus (Colobopsis) cylindricus and gall-187 188 forming aphid Quadrartus yoshinomiyai workers secrete an adhesive corrosive substance, 189 sticking to intruders and once again choosing death over detachment (Davidson, Lessard, Bernau, & Cook, 2007; Davidson, Kamariah, & Billen, 2011; Shorter & Rueppell, 2015). The 190 191 difference between inter-colony aggression in social insects and dyadic encounters in other animals, of course, is that the costs accrue to colonies rather than individuals. Nevertheless, 192 it seems clear that groups of fighting animals can suffer self-inflicted damage analogous to 193 194 that experienced by fighting individuals.

195

196 EVIDENCE OF SELF-INFLICTED DAMAGE VIA ATTACKS IN HUMANS

197 Self-inflicted damage to attackers in human contests is seen in a variety of contexts. Perhaps 198 the most obvious source of D_{SI} comes from fighting sports. As discussed earlier, brain 199 injuries and deaths would not be components of boxing were it not for the introduction of 200 gloves (Ryan, 1987; 1991). The public desire for less bloody fights and more dramatic knockouts drove the eradication of bare-knuckle fighting and with it "boxer's fracture", 201 202 instead leading to a much more lethal sport. In fact, the use of protective gear has increased 203 injury prevalence in many sports due to the phenomena of 'risk homeostasis', in which the 204 presence of protective gear promotes a decreased perception of risk, causing individuals to

205 take more risks and behave more aggressively, thus ironically resulting in higher levels of injury than in the absence of protective gear (Wilde, 1988). For instance, a research 206 207 programme set up to investigate how the implementation of helmetless-tackle training 208 could help decrease the occurrence of head impacts in American football (an individual 209 college football player can experience 1000 head impacts in a single season, Crisco et al., 210 2010) found that within one season of helmetless training, the number of head impacts 211 decreased by 28% compared with that of a helmeted control group (Swartz et al., 2015). 212 Further examples of attackers sustaining injuries in professional sports have been seen in 213 judo, where throwing your opponent is a major means of attack. A paper reporting the 214 effects of various fight-sustained injuries on future contest performance identified attempting a throw as one of the most common situations in which strain injuries occurred 215 216 (Green, Petrou, Forgarty-Hover, & Rolf, 2007).

217 Self-inflicted damage to human attackers is not just limited to sport, examples can 218 be found in the tactics and weapons used during interstate wars and violent crime. The use 219 of chemical weapons in warfare comes with a whole host of risks to the soldiers given the 220 responsibility of deploying them. Data in such a sensitive area is hard to come by, but 221 medical records from World War I indicate that the first use of chlorine gas by German soldiers resulted in a large number of cases of permanent pulmonary damage alongside a 222 death rate of ~5% in their own men. At the time, soldiers were simply given damp cloths to 223 224 cover their faces and the risk of chlorine exposure depended entirely upon which way the 225 wind was blowing (Hurst, 1917; Szincz, 2005). Furthermore, some methods of attack are 226 self-sacrificial by nature, such as the kamikaze attacks implemented by the Japanese military 227 in World War II and more recently the suicide bombings carried out globally by terrorists.

Finally, evidence from forensic analyses have shown that (accidental) self-wounding is
commonplace in assailants during stabbing attacks, so much so that the type of wounds
found on the assailant can be linked back to the murder weapon (Varnon, Courtney, & Ekis,
1995) and help secure a conviction.

232

233 IMPLICATIONS FOR ANIMAL CONTEST THEORY AND ANALYSIS

234 To date, neither theoretical nor empirical studies have considered self-inflicted damage, yet 235 the existence of D_{SI} has many implications for animal contest theory and the way we interpret and analyse contest dynamics, specifically what determines which individual gives 236 237 up and when. Under the CAM, an individual can nudge its opponent closer towards its giving 238 up threshold (C_{max}) by inflicting attacks. But when inflicting damage is associated with D_{SI}, by 239 attacking its opponent, an individual also nudges itself closer to its own C_{max}. Thus, the differential between damage inflicted on an opponent and D_{SI} is critical in determining 240 241 which individual withdraws first from an injurious fight. The ratio between the amount of 242 damage inflicted and D_{sl} (hereafter D: D_{sl}) will have implications for contest duration both 243 within and between species. Within species, some individuals may be able to inflict damage while minimising the amount of D_{SI} they experience. For others, the margin between what 244 they inflict and self-inflict will be lower, meaning that they can only inflict a limited amount 245 246 of damage on their opponent before hurting themselves. Variation in D:D_{SI} may be brought about by simple variation in morphology, specifically weaponry, making some individuals 247 more susceptible to D_{SI} than others. For instance Asian rhinoceros beetles with larger horns 248 are able to inflict more damage than their smaller counterparts, but due to mechanical 249 250 limits on horn size, larger horns are more likely to snap in the process (McCullough, 2014).

251 Thus, although individuals with larger horns may be able to elicit more damage in a single 252 attack, individuals with smaller horns are able to inflict damage for longer before damaging themselves. Furthermore, some individuals may be able to inflict more damage without 253 hurting themselves not due to morphological differences, but rather differences in skill, 254 255 being better able to land an attack without injuring themselves. Skilful individuals may also 256 be better able to successfully land a single blow, securing a victory without having to strike 257 repeatedly, a skill which would be of particular importance in situations where D_{SI} increases 258 with attack rate. Individuals who possess a high D:D_{SI} ratio (e.g. 6:1) will be able to inflict a 259 greater amount of damage to their opponent before reaching their maximum cost threshold 260 (C_{max}) and thus be more likely to win contests in which victory relies upon attack rate and/or 261 power.

262 The D:D_{sl} differential will likely vary across as well as within species. In species in which the risk of D_{SI} is very low, the ability to damage an opponent may be very important in 263 comparison to species in which the risk of D_{SI} is high. Of course, the rate at which C_{max} is 264 265 reached will still be dependent upon damage costs inflicted on individuals by their opponent 266 and thus the D:D_{sl} ratio of an individual's opponent will also affect the velocity with which 267 C_{max} is reached and therefore who gives up first. In species with a low risk of D_{SI} (and in contests between opponents with disparate D:D_{SI} ratios), contest duration will be negatively 268 correlated with winner RHP (resource holding potential). The higher winner RHP, the more 269 270 injuries the winner will be able to inflict on its opponent before reaching its own C_{max} and 271 the quicker its opponent will be to retreat (leading to problems distinguishing between 272 mutual and self-assessment as discussed by Briffa & Elwood, 2009; see also Palaoro and 273 Briffa 2016 for a consideration of how the allometric growth of weapons and defences may

complicate our ability to distinguish between mutual- and self-assessment). But if damage inflicted and D_{SI} are very closely linked, then damage inflicted in a fight may become less relevant for fight outcome and the link between absolute RHP and contest duration less clear. Furthermore in species in which the risk of D_{SI} is high, contests may be over faster than in species with a lower D_{SI} risk, especially in contests with mutual attacks, in which the costs of self-inflicted damage are combined with the costs of receiving damage, pushing individuals faster towards their C_{max} .

281 To this day, many empirical studies of contest behaviour base their questions and predictions on the classic Hawk-Dove model of John Maynard Smith and Geoff Parker (1976). 282 This model assumes that the evolution and prevalence of restraint (non-injurious fighting) is 283 due to negative frequency dependent selection acting on fighting strategies and the cost of 284 285 injurious fighting (C) usually far outweighing the value of the contested resource. Under the Hawk-Dove model, the only cost of fighting is that of receiving injuries from the actions of 286 an opponent, but what happens when we factor in the additional cost of inflicting injuries? 287 288 Perhaps the most obvious consequence of incorporating D_{SI} into the Hawk-Dove model is 289 that it increases C, making the evolution of injurious fighting even less likely. However, the 290 extent to which D_{SI} contributes to C will depend on the damage to D_{SI} ratio. When damage and D_{SI} are very closely linked (e.g. 1:1), the cost of self-inflicted damage will (at some 291 threshold ratio) outweigh the benefits of damaging an opponent, such that inflicting 292 293 damage is no longer worthwhile and injurious fighting becomes rare (i.e. in species in which 294 D_{SI} is functionally linked to weapon use). When $D:D_{SI}$ is high on the other hand, the cost of 295 self-inflicted damage will be lower than the benefit gained from damaging an opponent, and 296 injurious fighting may spread. Furthermore, under the Hawk-Dove model, the benefit of

using a non-injurious display (dove) or fighting injuriously (hawk) is frequency-dependent,
that is the best strategy depends on what an individual's opponent chooses to do. This
stems from the fact that under the Hawk-Dove model, C results only from the opponent's
actions. However, if significant D_{SI} is present then C is no longer the result of the opponent's
actions but of the individual's own actions as well and as such D_{SI} may have significant
implications for the frequency-dependent predictions of the Hawk-Dove model.

303

304 Future research

305 Here we have discussed how self-inflicted damage is possible during contests that involve 306 injurious fighting. Indeed, although understudied, self-injurious fighting occurs in examples 307 from diverse animal taxa and may therefore represent a general constraint under which 308 aggressive behaviour evolves. The true implications of D_{SI} can only be uncovered with focussed theoretical and empirical research. Theoretical studies modelling the evolution of 309 310 fighting with the inclusion of D_{SI} will be necessary to shed light on just how D_{SI} may impact 311 the evolution of non-injurious displays versus injurious fighting. Theoretical models could 312 also be used to understand what determines the D:D_{s1} threshold at which inflicting damage on an opponent is no longer worthwhile, e.g. the value the competitors place on the 313 contested resource. Furthermore, while it is clear that damage and D_{sl} both come at a cost, 314 315 how these costs compare remains unclear. For instance, is it more costly for a beetle to snap its horn or to be pierced by its opponent's horn? Is it more costly for an anemone to tear off 316 317 pieces of its own acrorhagi or to be stung? Examining these costs empirically may help to resolve why injurious fighting persists in species in which D_{SI} is a common or even obligatory 318 319 consequence of inflicting an attack (e.g. A. equina). Furthermore unravelling the costs of

damage and D_{SI} may be a relatively straightforward feat. For example, the damage state of 320 321 individuals could be experimentally manipulated (e.g. cutting off sections of a beetle's horns) prior to staged agonistic encounters or observations of other behaviours that influence 322 323 access to resources (in fact similar studies have previously been carried out to investigate the effect of leg autotomy on spider contest success, Johnson & Jakob, 1999; Taylor & 324 Jackson, 2003). Indeed, the effects of damaged weapons could also be investigated with 325 326 respect to longer-term life-history allocation. An alternative approach would be to simply 327 allow individuals to fight and on identifying the attacker and recipient (or an individual 328 classed as both in a fight involving mutual attacks), taking performance measures or fitness 329 correlates from each individual. How the rate and power of attack affect these costs also 330 warrants investigation and could again be manipulated. Finally, a further area of interest would be to investigate if and how individuals cope with experiencing D_{SI}. When their 331 332 weapons are out of action, do individuals switch tactics within a fight or sit out the fight 333 entirely? For example, when the impact of shell rapping was experimentally dampened in 334 the hermit crab Pagurus bernhardus, individuals increased their use of an alternate agonistic 335 behaviour, rocking, to improve their chances of evicting their opponent (Edmonds & Briffa, 2016). Perhaps more skilful individuals are better able cope with D_{SI} as well as being better 336 able to prevent it? 337

Overall the message of our paper is simple; damage costs during animal contests can result not just from the agonistic action of one's opponent but also as a result of one's own agonistic action. Just how this self-inflicted damage affects contest dynamics and the evolution of fighting warrants the advent of new research in the field of animal contests.

343 **References**

344	Banks, W. J., Epling, G. P., Kainer, R. A., & Davis, R. W. (1968) Antler growth and
345	osteoporosis I. Morphological and morphometric changes in the costal compacta during the
346	antler growth cycle. The Anatomical Record, 162, 387-397. (doi: 10.1002/ar.1091620401)
347	
348	Bartosz , G., Finkelshtein, A., Przygodzki, T., Bsor, T., Nesher, N., Sher, D., & Zlotkin, E. (2008)
349	A pharmalogical solution for a conspecific conflict: ROS-mediated territorial aggression in
350	sea anemones. <i>Toxicon, 51</i> , 1038-1050. (doi: 10.1016/j.toxicon.2008.01.017)
351	
352	Batchelor, T. P. & Briffa, M. (2010) Influences on resource-holding potential during
353	dangerous group contests between wood ants. Animal Behaviour, 80, 443-449. (doi:
354	10.1016/j.anbehav.2010.05.030)
355	
356	Batchelor, T. P. & Briffa, M. (2011) Fight tactics in wood ants: individuals in smaller groups
357	fight harder but die faster. Proceedings of the Royal Society B: Biological Sciences, 278,
358	3243-3250. (doi:10.1098/rspb.2011.0062)
359	
360	Batchelor, T. P., Santini, G., & Briffa M. (2012) Size distribution and battles in wood ants:
361	group resource-holding potential is the sum of the individual parts. Animal Behaviour, 83,

362 111-117. (doi: 10.1016/j.anbehav.2011.10.014)

- Bigger, C. H. (1980) Interspecific and intraspecific acrorhagial aggressive behaviour among 364 365 sea anemones: A recognition of self and not-self. Biological Bulletin, 159, 117-134. 366 Bigger, C. H. (1982) The cellular basis of the aggressive acrorhagial response in of sea 367 368 anemones. Journal of Morphology, 173, 259-278. (doi: 10.1002/jmor.1051730303) 369 370 Bonnin, J. P. (1964) Recherches sur la 'réaction d'agression', et sur la fonctionnement des 371 acrorhages d'Actinia equina L. Bulletin Biologique de la France et de la Belgique, 98, 225-250. 372 373 Brace, R. C., Pavey, J., & Quickie, D. L. J. (1979) Intraspecific aggression in the colour morphs 374 of the anemone Actinia equina: the 'convention' governing dominance ranking. Animal Behaviour, 27, 553-561. (doi: 10.1016/0003-3472(79)90190-8) 375 376 Briffa, M. & Elwood, R. W. (2009) Difficulties remain in distinguishing between mutual and 377 self-assessment in animal contests. Animal Behaviour, 77, 759-762. (doi: 378 379 10.1016/j.anbehav.2008.11.010) 380 Clutton-Brock, T. H. (1982) The functions of antlers. *Behaviour, 79*, 108-124. (doi: 381
- 382 10.1163/156853982X00201)

384	Crisco, J. J., Fiore, R., Beckwith, J. G., Chu, J. J., Gunnar Brolinson, P., Duma, S., McAllister, T.
385	W., Duhaime, A-C., & Greenwood, R. M. (2010) Frequency and location of head impact
386	exposures in individual collegiate football players. Journal of Athletic Training, 45(6), 549-
387	559.
388	
389	Davidson D.W., Kamariah A.S., & Billen J. (2011) Histology of structures used in territorial
390	combat by Borneo's 'exploding ants'. Acta Zoologica – Stockholm, 93, 487-491. (doi:
391	10.1111/j.1463-6395.2011.00523.x)
392	
393	Davidson D.W., Lessard J.P., Bernau C.R., & Cook S.C. (2007) The tropical ant mosaic in a
394	primary Bornean rain forest. <i>Biotropica, 39,</i> 468-475 (doi: 10.1111/j.1744-
395	7429.2007.00304.x)
396	
397	Edmonds, E. & Briffa, M. (2016) Weak rappers rock more: hermit crabs assess their own
398	agonistic behaviour. Biology Letters, 12: 20150884. (doi: 10.1098/rsbl.2015.0884)
399	
400	Goubault, M., Batchelor, T. P., Linforth, R. S. T., Taylor, A. J., & Hardy, I. C. W. (2006) Volatile
401	emission by contest losers revealed by real-time chemical analysis. Proceedings of the Royal
402	Society B, 273, 2853-2859. (doi: 10.1098/rspb.2006.3655)

404	Goubault, M., Batchelor, T. P., Romani, R., Linforth, R. S. T., Fritzsche, M., Francke, W., &
405	Hardy, I. C. W. (2008) Volatile chemical release by bethylid wasps: identity, phylogeny,
406	anatomy and behaviour. Biological Journal of the Linnean Society, 94, 837-852.
407	
408	Green, C. M., Petrou, M. J., Fogarty-Hover, M. L. S., & Rolf, C. G. (2007) Injuries among
409	judokas during competition. Scandinavian Journal of Medicine and Science in Sports, 17, 20-
410	210. (doi: 10.1111/j.1600-0838.2006.00552.x)
411	
412	Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., Onate, J.
413	A., & Kelly, J. P. (2003) Cumulative effects associated with recurrent concussion in collegiate
414	football players. <i>JAMA, 290,</i> 2549-2555.
415	
416	Guskiewicz, K. M., Marhsall, S. M., Bailes, J., McCrea, M., Cantu, R. C., Randolph, C., & Jordan,
417	B. D. (2005) Association between recurrent concussion and late-llife cognitive impairment in
418	retired professional football players. Neurosurgery, 57 (4), 719-726.
419	
420	Hurst, A. (1917) Gas-poisoning. In <i>Medical diseases of the war</i> , 308-317. London, UK:
421	Edward Arnold.
422	

423	Johnson, H. E., Bleicl	n, V. C., Krausman	, P. R., & Kop	orowski, J. L. (20	007) Effects of antler
-----	------------------------	--------------------	----------------	--------------------	------------------------

424 breakage on mating behaviour in male tule elk (*Cervus elaphus nannodes*). European Journal

425 *of Wildlife Research, 53,* 9-15. (doi: 10.1007/s10344-006-0060-4)

426

- 427 Johnson, S. A., & Jakob, E. M. (1999) Leg autotomy in a spider has minimal costs in
- 428 competitive ability and development. *Animal Behaviour, 57*, 957-965.

429

- 430 McCullough, E. L. (2014) Mechanical limits to maximum weapon size in a giant rhinoceros
- 431 beetle. *Proceeding of the Royal Society B: Biological Sciences, 281*: 20140696. (doi:
- 432 10.1098/rspb.2014.0696)

433

- 434 McCullough, E. L. & Emlen, D. J. (2013) Evaluating the costs of a sexually selected weapon:
- 435 big horns at a small price. *Animal Behaviour, 86*, 977-985. (doi:
- 436 10.1016/j.anbehav.2013.08.017)

437

- 438 McCullough, E. L. & Tobalske, B. W. (2013) Elaborate horns in a giant rhinoceros beetle incur
- 439 negligible aerodynamic costs. Proceddings of the Royal Society B: Biological Sciences, 280,
- 440 20130197. (doi: 10.1098/rspb.2013.0197)

442	Murray, M. G. (1987) The closed environment of the fig receptacle and its influence on male
443	conflicts in the Old World fig wasp, Philotrypesis pilosa. Animal Behaviour, 38, 186-193.
444	
445	Nüchter, T., Benoit, M., Engel, U., Ozbek, S., & Holstein, W. (2006) Nanosecond-sclae
446	kinetics of nematocyst discharge. Current Biology, 16, R316-R318. (doi:
447	10.1016/j.cub.2006.03.089)
448	
449	Palaoro, A.V. & Briffa, M. (2016) Weaponry and defenses in fighting animals: how allometry
450	can alter predictions from contest theory. Behavioural Ecology.
451	
452	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of
452 453	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i> , 221-240.
452 453 454	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i> , 221-240.
452 453 454 455	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i> , 221-240. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004) Deadly strike mechanism of a mantis
452 453 454 455 456	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i> , 221-240. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004) Deadly strike mechanism of a mantis shrimp. <i>Nature, 428</i> , 819-820. (doi:10.1038/428819a)
452 453 454 455 456 457	 Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i>, 221-240. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004) Deadly strike mechanism of a mantis shrimp. <i>Nature, 428</i>, 819-820. (doi:10.1038/428819a)
452 453 454 455 456 457 458	Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i> , 221-240. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004) Deadly strike mechanism of a mantis shrimp. <i>Nature, 428</i> , 819-820. (doi:10.1038/428819a) Payne, R. J. H. (1998) Gradually escalating fights and displays: the cumulative assessment
452 453 454 455 456 457 458 459	 Parker, G. A. & Rubenstein, D. I. (1981) Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. <i>Animal Behaviour, 29</i>, 221-240. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004) Deadly strike mechanism of a mantis shrimp. <i>Nature, 428</i>, 819-820. (doi:10.1038/428819a) Payne, R. J. H. (1998) Gradually escalating fights and displays: the cumulative assessment model. <i>Animal Behaviour, 56</i>, 651-662. (doi:10.1006/anbe.1998.0835)

461	Rudin, F. S. & Briffa, M. (2011) The logical polyp assessments and decisions during contests
462	in the beadlet sea anemone Actinia equina. Behavioural Ecology, 22, 1278-1285. (doi:
463	10.1093/beheco/arr125)

465 Ryan, A. J. (1987) Intracranial injuries resulting from boxing: A review (1918-1985). *Clinics in*466 *Sports Medicine, 6*, 31-40.

467

- 468 Ryan, A. J. (1991) Protecting the sportsman's brain (concussion in sport). Annual guest
- lecture 1990, London Sports Medicine Institute. *British Journal of Sports Medicine*, 25, 81-86.

470

- 471 Shackleton, K., Al Toufailia, H., Balfour, N. J., Nascimento, F. S., Alves, D. A., & Ratnieks, F. L.
- 472 W. (2015) Appetite for self-destruction: suicidal biting as a nest defence strategy in a
- 473 Trigona stingless bees. Behavioural Ecology and Sociobiology, 69, 273-281. (doi:
- 474 10.1007/s00265-014-1840-6)

475

- 476 Shorter, J. R. & Rueppell, O. (2015) A review on self-destructive defense behaviours in social
- 477 insects. Insectes Sociaux, 59, 1-10. (doi: 10.1007/s00040-011-0210-x)

- 479 Šobotník, J., Bourguignon, T., Hanus, R., Demianová, Z., Pytelková, J., Mareš, M., Foltynová,
- 480 P., Preisler, J., Cvačka, Krasulová, J., & Roisin, Y. (2012) Explosive backpacks in old termite

481 workers. *Science*, 337, 436. (doi: 10.1126/science.1219129)

482

- 483 Stabili, L., Schirosi, R., Parisi, M. G., Piraino, S., & Cammarata, M. (2015) The mucus of
- 484 Actinia equina (Anthozoa, Cnidaria): An unexplored resource for potential applicative

485 purposes. Marine Drugs, 13, 5276-5296. (doi: 10.3390/md13085276)

486

487 Swartz, E. E., Broglio, S. P., Cook, S. B., Cantu, R. C., Ferrara, M. S., Guskiewicz, K. M., &

488 Myers, J. L. (2015) Early results of a helmetless-tackling intervention to decrease head

impacts in football players. *Journal of Athletic Training*. 50(12), 1219-1222.

490

491 Szinicz, L. (2005) History of chemical and biological weapons. *Toxicology*, *214*, 167-181. (doi:
492 10.1016/j.tox.2005.06.011)

493

Taylor, P. W., & Jackson, R. R. (2003) Interacting effects of size and prior injury in jumping
spider conflicts. *Animal Behaviour, 65*, 787-794. (doi: 10.1006/anbe.2003.2104)

497	Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M., & Shibao, H. (2007) Altruistic
498	defenders in a Japanese gall-forming aphid, Quadrartus yoshinomiyai (Homoptera:
499	Aphididae: Hormaphidinae). Sociobiology, 50, 711-724.
500	
501	Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M., & Shibao, H. (2010) Altruistic colony
502	defence by menopausal female insects. Current Biology, 20, 1182-1186.
503	
504	Varnon, J., Courtney, M., & Ekis, T. R. (1995) Self-wounding of assailants during stabbing and
505	cutting attacks. SWAFS Journal, 17(1), 19.
506	
507	Wilde, G. J. S. (1998) Risk homeostasis theory: an overview. Injury Prevention, 4, 89-91.
508	
509	Wilkinson, P. F. & Shank, C. C. (1976) Rutting-fight mortality among musk oxen on Banks
510	Island, Northwest Territories, Canada. Animal Behaviour, 24, 756-758. (doi: 10.1016/S0003-
511	3472(76)80004-8)
512	
513	Williams, R. B., LeMagnen, J., & MacLeod, P. (1978) Some recent observations on the
514	acrorhagi of sea anemones. Journal of the Marine Biological Association of the United
515	Kingdom, 58, 787-788.
516	

517			
518			
519			
520			
521			
522			
523			
524			
525			

Table 1 Examples of self-inflicted damage via attacks in human and non-human animals

Group	Species	Context	Weapon(s)	Self-inflicted damage via attack	Likelihood	Severity	Reversibility	Source
Anthozoa	Beadlet sea anemone Actinia equina	Dyadic contests	Specialised stinging tentacles (acrorhagi)	Loss of acrorhagial ectoderm	Certain	Low to high	~7 days	Bonnin, 1964; Bigger, 1980
Crustacea	Peacock mantis shrimp Odontodactylus scyllarus	Predation	Dactyl club	Pitting and damage of dactyl heel over time	Certain (over multiple fights)	Mild	Replaced every few months	Patek et al., 2004
Insecta	Asian rhinocerus beetle <i>Trypoxylus</i> dichotomus	Dyadic contests	Long, forked head horn	Horn breakage	Increases with horn size	Low to high	Irreversible	McCullough, 2014
	Termite Neocapritermes taracua	Colony defence	"Explosive backpacks" (autothysis)	Death via autothysis	Certain	Very high	Irreversible	Šobotník et al., 2012
	Stingless bees Trigona hyalinata	Nest defence	Biting	Death (individuals stick to intruder)	High to certain	Very high	Irreversible	Shackleton et al. 2015
	Carpenter Ant Camponotus (Colobopsis) cylindricus	Colony defence and dyadic contests	Biting, secretion of adhesive corrosive substance	Death (individuals stick to intruder)	Certain	Very High	Irreversible	Davidson et al. 2007; 2011
	Gall-forming aphid Quadrartus yoshinomiyai	Colony defence	Secretion of adhesive waxy substance	Death (individuals stick to intruder)	Certain	Very High	Irreversible	Uematsu et al., 2007; 2010
Mammalia	Cervids (general)	Rutting (dyadic contests)	Antlers	Antler breakage	<25% males	Low to high	Seasonal	Clutton-Brock, 1982
	Tule Elk Cervus elaphus nannodes	Rutting (dyadic contests)	Antlers	Antler breakage	>80% males	Low to high	Seasonal	Johnson et al., 2007
	Humans Homo sapiens sapiens	Boxing	Hands (punching)	"boxer's fracture" - breakage of metacarpal bones from impact with skull	Certain	High	6-8 weeks	Ryan, 1987; 1991

	American football	Head	Concussion, brain and spinal trauma, cognitive impairment depending on severity and recurrence	Highly likely (~1000 head impacts per season)	Mid to high	Dependent on severity	Guskiewicz et al., 2003; 2005; Swartz et al., 2015
	Judo	Upper body (throwing)	Sprain / fracture depending on severity	Likely (~13.5%)	Low to high	~ 25 days	Green et al., 2007
	War (WWI)	Chlorine gas (first use by German soldiers)	Respiratory irritation to pulmonary edema	Highly likely	Very high	~5% death rate	Hurst, 1917; Szinicz, 2005
	Stabbing attacks	Knife	Lacerations and stab wounds	Highly likely	Low to high	Dependent on severity	Varnon et al., 1995
527					_		
528							
529							
530							
531							
532							
533							
534							

Figure 1 Examples of damage to attacker and receiver (a) A beadlet sea anemone Actinia *equina* exhibits holes in its acrorhagi as a result of inflicting an attack on (b) Acrorhagial
peels can be seen on the body column of the recipient of attack (Anemone pictures: Sarah
M. Lane) (c) A male Asian rhinoceros beetle *Trypoxylus dichotomus* with a broken head horn
resulting from a fight with another male. (d) A male with punctured elytra, caused by the
sharp tines seen on the thoracic horn (Beetle pictures: Erin L. McCullough).