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Abstract 

The gravity transform algorithm is used to study the dependencies in firing of multi-dimensional spike trains. 

The pros and cons of this algorithm are discussed and the necessity for improved representation of output 

data is demonstrated. Parallel coordinates are introduced to visualise the results of the gravity transform 

and principal component analysis is used to reduce the quantity of data represented whilst minimising loss of 

information. 

1 Introduction 

Solution of many problems in the field of 

Neuroscience is associated with the theoretical 

comprehension of a large body of experimental data. 

More specifically, investigation of information 

processing in the nervous system is associated with 

the analysis of vast quantities of simultaneously 

recorded multi-dimensional spike train data. Much 

of this analysis is based on the principle of 

synchronisation of neural activity (Borisyuk and 

Borisyuk (1997); Fries et al. (2001)).  

The experimental evidence that is currently available 

requires further, in-depth analysis in order to extract 

inherent information. Analysis of multi-dimensional 

spike trains using traditional tools such as cross-

correlograms is increasingly complex due to the vast 

number of pairs involved. Hence, new methods of 

analysing this data are required. Among other 

methods, the ‘Gravity Transform’ algorithm, 

developed by Gerstein and Aertsen (1985); Gerstein 

et al. (1985), has a lot of potential.  

In this paper, an implementation of the original 

Gravity Transform algorithm is presented alongside 

simulation results. Three trials, based on different 

neuronal assemblies, are presented. This includes a 

trial where n is large, relative to previously 

published results for the method. Subsequently, 

conclusions are drawn regarding the advantages and 

disadvantages of the method.  

As the size of n increased in these trials, the output 

of data became increasingly complex. In addition to 

traditional representations of gravity transform data, 

Parallel Coordinates, were also used to support 

interpretation of the data. These are an innovative 

means of representing n-dimensional data sets. 

In addition to investigating new methods of 

visualising these large quantities of data, reduction 

of data sets was also investigated. Thus, this paper 

presents the results of using Principal Component 

Analysis (PCA) to create more manageable data sets 

whilst maintaining the most significant 

characteristics of the data. An additional two trials,  

based on different neuronal assemblies, are 

discussed to highlight the effectiveness  of using 

PCA. In these trials, PCA is used to reduce data sets, 

created by the gravity transform, which are 

subsequently plotted and analysed. 

2 The Gravity Transform 

The gravity transform is a method of analysis of 

spike train dependencies and synchronisation based 

on the principle of gravitational interaction of 

particles. Each neuron is represented by a “virtual 

particle; the movement of those particles is 

described in n-dimensional space, where n is the 

number of spike trains under investigation. All 

particles start equidistant. 

The gravitational force resulting from the charge of 

a particle is calculated on the basis of the spike train 

of its corresponding neuron. Each spike contributes 

into the charge and this contribution decays 

exponentially over time. If two or more neurons 

spike coincidently, their corresponding particles will 

exert an attractive force that causes the particles to 

move closer together. 

Let us suppose that several neurons have an above 

average synchrony. Over time this would result in a 

strong attractive force between their corresponding 

particles. In turn, this would cause the particles to 

aggregate into specific patterns in n-dimensional 

space. Gerstein specifies that over time all particles 

will eventually aggregate together into a single 

cluster due to these attractive forces. Since 

significant synchrony can indicate synaptic 

coupling, (Baker and Gerstein, 2000), the 

aggregation of the particles can show the assemblies 

representing the neuronal interactions. In fact, the 

aggregation reflects neuronal activity. 

Note that all spike trains used for experimentation 

were generated using an enhanced Integrate and Fire 

generator defined by Borisyuk and Borisyuk (1997).  



 

2.1 Description of the Gravity 
Transform Algorithm 

Let us consider n simultaneously recorded spike 

trains with epoch [0,T].  Suppose that the ith spike 

train is represented by spikes at times T1,T2,…,Tk. 

The ‘charge’ of the ith particle corresponding to the 

spike train is described by the following procedure.  

Each spike contributes a quantity of charge a, 

which decays exponentially over time with constant 

τ. Thus the charge on particle i at time t depends on 

the sum of all preceding spikes and is given by  
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stored values.  The dynamics of interactive particles 

in n-dimensional space is governed by the 

equations: 
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) is the position of particle i 

at time t; k=1,2,…,n; i=1,2,…,n; Rij(t) is the 

Euclidean distance between particles i and j; a, b 

and τ  are constants.  All particles in the system are 

initialised at time t = 0 to be equidistance: 

)1(.0)0(100)0( otherwisexandmiifx m

i

m

i ===

Integration within this implementation of the 

algorithm is achieved by an adaptive step-size 

Runga-Kutta 4th order algorithm (Press et al., 

1992).  The use of this ODE solver permits the 

algorithm to progress through the integration with 

an optimal time step whilst maintaining a low 

cumulative error compared to an algorithm using a 

fixed time step. 

2.2 Distance Graphs 

In the original implementation of the gravity 

transform method, output is represented by a 

‘distance graph’. This graph depicts the Euclidean 

distance between each pair of particles in the system 

over time.   

Using the neuron circuit shown in Figure 2.1, 

depicting three groups of excitatory neurons and a 

solitary neuron, spike train data was generated. This 

trial lasted 5s and neurons had a firing rate of 

approximately 0.2670 spike/s. A raster plot of a 

portion of this data is shown in Figure 2.2. 
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Figure 2.1  Specification of the connections between the 

10 neurons used as input to the spike train generator. 

Figure 2.2  A raster plot depicting a portion of the 10 

spike trains generated for the neuron assembly shown in 

Figure 2.1. 
 

The cross-correlograms of four neuron pairs are 

shown in Figure 2.3.  
 

Figure 2.3 This figure depicts cross-correlograms of 

(a) neurons 1 & 2, (b) neurons 2 & 3, (c) neurons 1 & 3, 

and (d) neurons 1 & 4. 
 

The correlation of synchronous activity within the 

first group is shown in Figure 2.3(a)–(c), which 

clearly shows pair-wise interdependencies (the high 

peak on each graph depicts synchronous firing). 

Additionally, the cross-correlogram (different scale) 

for neurons 1 and 4 is shown in Figure 2.3(d). This 

shows that no dependency exists between these 

neurons. 

The same data was input to the gravity transform 

and the distance graph shown in Figure 2.4 resulted. 

This graph has been annotated, using set theory 

notation, in order to identify individual distance pair 

plots. Let dij represent the Euclidean distance 

between the particles i and j. 

Figure 2.4 Distance graph of the results of the gravity 

transform where a=0.3, τ=0.4 and b=1. 
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At time t three distinct groups are apparent. The top 

group represents the distances between neurons 1 to 

9 and neuron 10. The lower, and middle, groups 

represent all intra-group, and inter-group, distances 

respectively. Note that overlapping occurs.  

The final intra-group distances, s1={d12, d13, d23}, 

s2={d45, d46, d56} and s3={d78, d79, d89} show the three 

groups of neurons aggregating. The final inter-group 

distances, s4={dij: i=1,...,3, j=4,...,6}, s5={dij: i=1,...,3, 

j=7,...,9} and s6={dij: i=4,...,6, j=7,...,9}, show the 

distances between the three aggregating groups. The 

final distances between neurons 1 to 9 and neuron 

10, s7={dij: i=10, j=1,...,9}, show that the solitary 

neuron has no tendency to group with any of the 

other neurons. 

This interpretation of a distance graph highlights the 

usefulness of the technique in identifying groups of 

neurons within assemblies. However, it should be 

noted that it is generally difficult to produce a 

distance graph of similar quality to the one shown in 

Figure 2.4. The quality of the distance graph is 

highly influenced by the number of neurons in the 

assembly and the choice of parameter values: (i) the 

increment of charge per spike, a, (ii) the charge 

decay rate, τ, (iii) the overall aggregation of the 

system, b. For Figure 2.4, a=0.3, τ=0.4 and b=1. 

The gravity transform is sensitive to the 

“appropriate” specification of the constants that 

represent the decay, increment and aggregation. 

Inappropriate choice of these values may result in all 

particles becoming relatively coincidental within n-

dimensional space, before any useful information 

about neuronal groups is discovered. Alternatively, 

it could result in the particles aggregating at such a 

low rate that they appear unrelated. Hence, it is 

sometimes necessary for the investigator to ‘fine-

tune’ the specification of these constants in order to 

gain useful distance graphs. 

To demonstrate this problem, first of all, consider 

the neuron assembly in Figure 2.5.  
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Figure 2.5   Specification of the connections between the 

10 neurons used as input to the spike train generator. 

 

Figure 2.6    Distance graphs of the results of the gravity 

transform where n=10, a=0.5, τ=0.5, b=5(left) and 

b=0.1(right). Note the differing scales. 

This assembly was used to produce spike train data 

for a trial lasting 20s. This data set was input to the 

gravity transform with parameters a=0.5, τ=0.5 and 

b=5. The resultant distance graph is shown on the 

left in Figure 2.6 where s1={dij:  i=1,...,10, j=2,...,10, 

i<j}.  

Note that it is not possible to distinguish the two 

groups in the assembly, even though the scale is 

relatively small . 

Using the same input data set, the gravity transform 

was executed with another set of parameters: a=0.5, 

τ=0.5 and b=0.1. The resultant distance graph is 

shown on the right in Figure 2.6 where s2={dij: 

i=6,...,10, j=7,...,10, i<j}, s3={dij: i=1,...,5, j=6,...,10, 

i<j} and s4={dij: i=1,...,5, j=2,...,5, i<j}. From this 

graph, the structure of the assembly can be derived. 

Hence, the groups of neurons 1 to 5 and 6 to 10 are 

notable as is the separation between the groups. 

Limited simulation results have shown that 

appropriate ranges for the parameter values are 

0.1<a<0.5; 0.3<τ<0.5 and 0.1<b< 2. A method of 

automatic specification of these parameters, based 

on the distribution of inter spike intervals, is under 

investigation.  

2.3 Increasing the number of particles 

In the relevant publications, the maximum number 

of particles used within the gravity transform is 

relatively small, n ≤ 10. This section reports on trials 

using the gravity transform based on relatively large 

values of n. In these trials, where n is relatively 

large, the use of distance graphs to display the 

output proved to be less useful, due to the vast 

number of individual pair plots that exist.  

Consider an assembly of 50 neurons. The connected 

portion of this assembly, involving 20 neurons, is 

shown in Figure 2.7. The remaining 30 neurons of 

this assembly are not shown as they are 

unconnected. 
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Figure 2.7  Specification of the circuit used by the 20 

connected neurons. The remaining 30 neurons are not 

shown as they are unconnected. The complete assembly 

was used as input to the spike train generator. 

This assembly was used to produce spike train data 

for a trial lasting 20s. This data was input to the 

gravity transform, with a=0.4,  τ=0.3 and b=1.  

The resultant distance graph is shown is Figure 2.8 

where s1={dij: i=11,...,20, j=12,…,20, i<j}, s2={dij: 

i=1, j=2,…,10} and s3={dij: i=2,...,10, j=3,…,10, 

i<j}. The different clusters are notable, however, 

detail is obscured by the quantity of data displayed.  

Figure 2.8  Distance graph of the results of the gravity 

transform where n=50, a=0.4, τ=0.3 and b=1. 
 

Since, this problem increases with the size of n, the 

interpretation and analysis of the large quantities of 

output from the gravity transform requires more 

sophisticated methods of representation. In the 

remainder of this paper, two solutions to the problem 

of representing this data are proposed: (a) Utilisation 

of parallel coordinates to visualise the information, 

and; (b) Reduction of the quantity of data 

dimensions displayed whilst minimising loss of 

information. 

3 Data Presentation 

With the use of large numbers of particles, the 

gravity transform results in vast multi-dimensional 

data sets which represent the position of each 

particle in every dimension at every time point. The 

visual representation of the result should accurately 

convey the position of the particles particularly their 

direction. This poses a significant analysis problem 

which may be handled by introducing an alternative 

method of data representation. 

The use of parallel coordinates, originally pioneered 

in the 1980's, is a technique used to represent diverse 

sets of multi-dimensional data. In 1990, Inselberg 

and Dimsdale (1990) and Wegman (1990) renewed 

the use of parallel coordinates for the analysis of 

large quantities of multi-dimensional data and 

introduced new representation features that led to a 

significant increase in their use. 

Inselberg's representation of parallel coordinates 

denotes data points as vertical axis coordinate values 

distributed along a horizontal axis. In this scheme, a 

specific point in n-dimensional Euclidean space is 

represented by n vertical axes values distributed 

along the horizontal axis. For example, suppose we 

have the points a and b in 3-dimensional (p,q,r) 

space: a(2,0,0) and b(1,2,2). Figure 3.1 depicts these 

as parallel coordinates using three vertical axes p, q 

and r. 
 

Figure 3.1  Illustration of a 3-dimensional parallel 

coordinate plot. Representation of points a(2,00) and 

b(1,2,2), using parallel coordinates. 

Parallel coordinates can be used to identify 

correlations between variables and to convey 

aggregation information. In this paper we, propose 

the idea of using parallel coordinates as a simple 

means of representing n-dimensional coordinates in 

a 2-dimensional plane. This would represent a 

snapshot of the gravity transform. It is proposed that 

these coordinates are animated over time to 

represent the changing position of particle within the 

gravitational system. 

3.1 Parallel Coordinates: Example One 

The assembly of 10 neurons, depicted in Figure 2.5, 

is used to generate spike train data for 20s. This data 

is input to the gravity transform and its output is 

visualised using parallel coordinates. In total there 

are 20000 intervals (time step=1ms). Hence, the 

animation is made up of 20000 snapshots. 

Additionally, since n=10, each snapshot of the 

parallel coordinates depicts the position of all 10 

particles in 10-dimensional space. The legend for all 

this data is shown in Figure 3.2 and Figure 3.3 

depicts snapshot 2000 of the animation 

 

Figure 3.2  Legend of the animated parallel coordinates. 
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Figure 3.3 Representation of particle positions using 

parallel coordinates. Snapshot 2000 showing all 10 

parallel coordinates in all 10 dimensions. 

Recall that all particles in the system are initialised 

at time t = 0 to be equidistance (1). 

Hence, the initial range of each vertical axis will be 

from 0 to 100. In Figure 3.3 some change, from this 

initial position, is noted in the plot. However, change 

is more obvious in snapshot 6000, shown in Figure 

3.4, where a separation of the data in two groups is 

noted. 

 

Figure 3.4 Snapshot 6000 showing all 10 parallel 

coordinates in all 10 dimensions. 

Note that snapshot 10000 of this animation, given in 

Figure 3.5, shows two very distinct groups. Closer 

examination reveals that all five particles, in the first 

group, are at the same position denoted in the 

diagram by the overlap of their parallel coordinates. 

All particles from the second group are also 

coincident at a different location to the first group. 

 

Figure 3.5  Snapshot 10000 showing all 10 parallel 

coordinates in all 10 dimensions. 

Figures 3.3 to 3.5 reveal more information than the 

distance graph shown on the left in Figure 2.6 even 

though they were generated from the same data set. 

Thus, parallel coordinates can be significantly less 

sensitive to change than distance graph displays. 

3.2 Parallel Coordinates: Example Two 

The use of distance graphs to view the output from 

the gravity transform is somewhat limited to smaller 

values of n. In this section, the data used to create 

the distance graph in Figure 2.8 is viewed using 

parallel coordinates. Recall that the assembly of 

connected neurons is given in Figure 2.7 and that 

n=50. The trial lasted 20s leading to 20000 

snapshots in the animation (time step=1ms). 

Note that due to the large number of particles a 

legend is in not included but grouping is described in 

detail. Additionally, due to the limitations of the 

equipment available for displaying output, only the 

most significant 29 axes of the overall 50 are 

captured in each snapshot. This is satisfactory to 

analyse this example as the major activity is 

confined within neurons 1 to 20. 

 

Figure 3.6 Snapshot 5000 of the animation showing all 50 

parallel coordinates in 29 dimensions. 

Figure 3.6 shows snapshot 5000 of the animation. 

Close inspection reveals that the group of particles 

denoted by the straight line along the bottom of the 

plot includes all the particles 11-20. Note that a 

zoom facility is used to isolate groups and identify 

these groups accurately. It is also possible to suggest 

that two more groups may exist in the top left of the 

plot. 

Figure 3.7, showing snapshot 7500, confirms the 

conjecture that two more groups exist. Closer 

inspection reveals that the upper group throughout 

this plot relates to particles 31 to 50. The lower 

group that zigzags at the left denotes particles 2 to 

10. This directly reflects the neuron assembly. Note 

that a zoom facility was used, to include/exclude 

particles in order to accurately identify the members 

of each group. 

 

Figure 3.7 Snapshot 7500 of the animation showing all 50 

parallel coordinates in 29 dimensions. 



 

3.3 Future use of Parallel Coordinates 

One of the most significant benefits of using parallel 

coordinates in comparison to distance graphs, is the 

fact that, evidence to date suggests, they are 

significantly less sensitive to the specification of 

aggregation, decay and increment parameters. 

Numerous trials were performed in which the data 

used to generate ‘poor’ distance graphs was 

represented in parallel coordinates. In general, this 

data was analysed successfully using parallel 

coordinates. 

One of the main disadvantages of parallel 

coordinates is the impact that standard display 

equipment limitations has on their use. This was 

demonstrated in §3.2, where the assembly of 50 

neurons, highlighted the fact that the maximum 

number of vertical axes, easily viewed in parallel 

coordinates, is approximately 30 (based on a 

standard monitor size). Future research will 

incorporate alternative projection facilities to 

overcome these limitations. 

Recently, within the domain of "Information 

Visualisation" much research has focused on the 

development of parallel coordinates in order to 

analyse even greater quantities of data. An example 

of this is the concept of hierarchical parallel 

coordinates (Fua et al., 1990). Future work will 

investigate using hierarchical parallel coordinates for 

representation of larger data sets. 

4 Dimension Reduction 

In addition, to alternative methods of data 

representation, it is also possible to reduce the 

quantity of data represented whilst maximising the 

amount of information portrayed. PCA is one 

method of achieving this type of reduction. 

PCA (Biswas et al., 1981; Gnanadesikan and Wilk, 

1969), is used to find the “best” subspace for the 

projection of multi-dimensional data. This method 

achieves a higher degree of representation accuracy 

by maintaining as much of the overall data structure 

as possible. The PCA method used in these trials 

was achieved by analysing the covariance matrix of 

a selected time slice of the output from the gravity 

transform. A co-variance matrix depicts the position 

of each particle in each dimension at a chosen time t. 

Note that t is chosen to be a point after which useful 

aggregation has occurred. The eigenvalues and 

eigenvectors are derived using Householder’s 

reduction and an Implicit QL algorithm, (Press et al., 

1992; StatLib). Subsequently, the same eigenvectors 

are used to project each time slice of the output from 

the gravity transform. 

4.1 PCA Example One 

Using the assembly of 15 neurons given in Figure 

4.1, spike train data was generated. This trial lasted 

20s and neurons had a firing rate of approximately 

0.3231 spike/s. 
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Figure 4.1  Specification of the connections between the 

15 neurons used as input to the spike train generator. 

Figure 4.2 shows this data using a standard raster 

plot representation. 

Figure 4.2  A raster plot depicting a portion of the 15 

spike trains generated for the neuron assembly shown in 

Figure 4.1. 

Subsequently, the data was input to the gravity 

transform where a=0.1,  τ=0.2 and b=0.1. The 

resultant distance graph is shown Figure 4.3 where 

s1={dij: i=1,...,10, j=2,...,10, i<j}, s2={dij: i=1,...,10, 

j=11,...,15} and s3 = {dij: i=11,...,15, j=12,...,15,  

i<j}. 

Figure 4.3  Distance graph of the results of the gravity 

transform where n=15, a=0.1, τ=0.2 and b=0.1. 

The data set output from the gravity transform, 

shown in Figure 4.3 as a distance graph, was 

reduced to two dimensions using PCA. The output 

of this method is displayed in Figure 4.4.  

Figure 4.4   This plot depicts the trajectories of all 15 

particles over time, after the output of the gravity 

transform was reduced from 15 dimensions to 2 

dimensions using PCA. 

Note that the trajectory of each particle is 

represented as a number of discrete points in space 
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over time. In this representation, neurons 1 to 5 and 

neurons 6 to 10 can be seen as two distinct groups. 

In addition, note that neurons 11 to 15 are beginning 

to form a third group. Recall that only two of the 

original 15 projected dimensions are portrayed. 

4.2 PCA Example Two 

In Figure 4.5, an assembly of 20 neurons is shown. 

This assembly was used to generate spike train data 

for a trial lasting 20s where neurons had a firing rate 

of approximately 0.0438 spike/s. 
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Figure 4.5  Specification of the connections between the 

20 neurons used as input to the spike train generator. 

Figure 4.6 shows the data set generated using a 

raster plot. 

 

Figure 4.6  A raster plot depicting a portion of the 20 

spike trains generated for the neuron assembly shown in 

Figure 4.5. 

This data set was subsequently used as input to the 

gravity transform with a=0.5, τ=0.7and b=1. The 

distance graph shown in Figure 4.7 was produced. 

Note that s1={dij: i=6,...,9, j=7,...,9, i<j}, s2={dij: i=1, 

j=2,...,5} and s3={dij: i=1, j=10,...,13}.  
 

Figure 4.7  Distance graph of the results of the gravity 

transform where n=20, a=0.5, τ=0.7 and b=1. 

In Figure 4.7, neurons 6 to 9 (s1) are easily identified 

whilst neurons 1 to 5 (s2) and 10 to 14 (s3) are 

masked by the other distances pairs plots. 

The data set output from the gravity transform, 

shown as a distance graph in Figure 4.7, was 

reduced to 2 dimensions using PCA. The output of 

this method is displayed in Figure 4.8. 

Figure 4.8  This plot depicts the trajectories of all 20 

particles over time, after the output of the gravity 

transform was reduced from 20 dimensions to 2 

dimensions using PCA. 
 

The distance pairs relating to the solitary neurons 

cluster at the centre of the display, indicating that 

they have no tendency to cluster with other neurons. 

A zoom of this cluster is shown in Figure 4.9. 

Figure 4.8 also shows another group, neurons 6 to 9 

clearly distinct from the rest. However, it is difficult 

to draw any further conclusions from this plot. Note 

that the arrows indicate the general direction of the 

trajectory. 

Figure 4.9  This plot depicts the trajectories of particles 

2-5 and 11-20, after the output of the gravity transform 

was reduced from 30 dimensions to 2 dimensions using 

PCA. 

4.3 Limitations of PCA  

As demonstrated, dimension reduction can be used 

to convey the majority of the information contained 

in the original n-dimensional data set. Moreover, it 

can result in an improved representation of the data. 

However, a balance needs to be maintained between 

dimension reduction and loss of information. A 

comparison of Figure 4.7 and 4.8 highlights the loss 

of information that can result from dimension 

reduction. Note that the use of a non-linear reduction 

may ease this problem (Sammon (1969)). 

In addition to the reduction of dimensions, 

investigating innovative methods of representing 

large quantities of data, such as parallel coordinates, 

can alleviate the problem of representing vast data 

sets. 
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5 Conclusions 

This paper reports on the use of visualisation in the 

analysis of synchronous activity in multi-

dimensional spike train data derived from the gravity 

transform algorithm. On the basis of our simulations 

we derived approximate values for the algorithm 

parameters: aggregation, charge and delay. 

Numerous trials were run using relatively large 

numbers of spike trains. These were successful 

whilst highlighting the limitations of using distance 

graphs to output the data.  

Parallel coordinates and animation techniques were 

used to support the analysis of these vast data sets. 

In addition to these innovative methods of display, 

concentration of the data can also alleviate the 

problem of representing vast data sets. 

PCA was used to reduce the quantity of data whilst 

maximising the quality of the data retained. This 

method is very useful in creating manageable data 

sets, yet limited due to display. Hence, future work 

will incorporate the use of parallel coordinates for 

the display of PCA output data in addition to output 

directly from the gravity transform. 

In conclusion, no single method will overcome the 

problems of analysing synchronous activity in multi-

dimensional data sets. However, the combination of 

many diverse methods from domains such as 

mathematics and statistics, information visualisation 

and graphics will provide a very practical platform 

on which to analyse this quantity of data. 
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