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ABSTRACT 

FPSO (Floating Production Storage and Off-loading) vessels used for offshore oil and gas 

production are operated in deep water, often at locations which experience severe wave loading. 

This paper reports on laboratory experiments on a series of simplified FPSO-shaped bodies, with 

the aim of understanding more about the wave-structure interaction, particularly the generation of 

scattered waves. These tests were carried out in the Ocean Basin at Plymouth University’s COAST 

Laboratory where the effects on the wave-structure interaction of model length, wave steepness and 

incident wave direction were investigated. All three models had semi-circular ends, separated by a 

box section for the 2 longer models. Input waves were based on focused wave groups generated 

using NewWave with an underlying JONSWAP spectrum. A general phase-based harmonic 

separation method was applied to separate the linear and higher-harmonic wave components of the 

free-surface elevation surrounding the bodies, and of relevance to the assessment of wave loads. 

Close to the bow of the model, the highest amplitude scattered waves are observed with the most 

compact model, and the third- and fourth-harmonics are significantly larger than the equivalent 

incident bound harmonic components. At the locations close to the stern, the linear harmonic is 

found to increase as the model length is decreased, although the nonlinear harmonics are similar for 

all three tested lengths, and the second- and third-harmonics are strongest with the medium length 

model. The nonlinear scattered waves increase with increasing wave steepness and a second pulse is 

evident in the higher-order scattered wave fields. As the incident wave angle between the waves and 

the long axis of the vessel is increased from 0 (head-on) to 20 degrees, the third- and fourth-

harmonic scattered waves reduce on the upstream side. These third- and fourth-harmonic diffracted 

waves should be considered in assessing wave run-up for offshore structure design, and may be 

relevant to the excitation of ringing-type structural responses in fixed and taut moored structures. 

Keywords: physical model, nonlinear, diffraction, FPSO, ringing 

1 Introduction 

Wave-induced load components at integer harmonics of the dominant linear input wave frequency 

can excite high frequency resonant responses for floating offshore structures (e.g. floating offshore 
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wind turbine, floating wave energy converter, floating production storage and off-loading vessels - 

FPSOs and floating platforms more generally) and also for bottom-fixed offshore structures (e.g. 

gravity-based structures - GBS). There may be a nonlinear transfer of energy to a higher-harmonic 

response of the structure owing to nonlinear wave-wave interaction effects and nonlinear wave-

structure interaction effects. Therefore, waves with the incident spectral energy at peak frequency 

(fp) can in principle excite structural responses at multiples of the linear peak frequency (2fp, 3fp, 4fp 

...). These higher-harmonic frequencies are known to cause highly intense nonlinear structural 

behaviours called springing (at double frequency) and ringing (at triple), which were first observed 

in a model test of the Hutton platform which was operated in the UK North Sea from 1984-2001 

(Mercier, 1982). The second-order excitation at the double frequency dominates for springing, 

while the higher-order (3
rd

 and 4
th

 order) frequencies trigger the ringing of gravity-based platforms 

and tension leg platforms, which is a transient elastic response (Faltinsen, 1995 & 2014). Shao and 

Faltinsen (2014) used a new potential flow method (the harmonic polynomial cell method) to 

simulate the linear and higher-order harmonic force amplitudes and phases on a surface-piercing 

vertical cylinder standing on the sea floor in regular waves. Their results showed good agreement 

with the higher-harmonic experimental results by Huseby and Grue (2000). Bachynski and Moan 

(2014) simulated wave-structure interaction of different tension leg platform used to support wind 

turbines and their simulation results showed that the large extreme forces were caused by ringing 

loads, which also increased short-term fatigue damage in the tendons and tower.  

Floating Production Storage and Off-loading (FPSO) vessels are important and commonly used as 

parts of offshore oil and gas production systems. In recent decades, oil and gas resources are being 

developed in increasingly deep water and it is necessary to understand wave-FPSO interactions in 

such water conditions, and physical model testing remains important. The interaction of waves with 

an FPSO-type body has been the subject of previous investigations, for example the wave scattering 

(Zang et al., 2006; Siddorn, 2012) and the response of an FPSO vessel in long- and short-crested 

seas (HR Wallingford Ltd, 2002). Zang et al. (2006) examined the effects of second order wave 

diffraction around the bow of a simplified FPSO. Their study found at locations upstream of the 

bow there is a second order bound harmonic of the incoming wave, then later radiated free waves 

well-separated from the incoming wave group, but no significant third-order harmonic components 

were observed. A significant second-order diffracted wave field was found in the fully nonlinear 

simulations of Siddorn (2012) based on a boundary element potential flow method with quadratic 

elements, but again no evidence of the third-harmonic contributions at the bow or upstream. 

However, there was evidence of third-order diffraction off out to the sides and diagonally 

downstream of the stern of the FPSO. 

Fitzgerald et al. (2014) studied higher harmonic diffracted wave fields around a surface-piercing 

column due to a focused wave group using NewWave theory (Tromans et al., 1991). They 

simulated wave-structure interaction of a focused wave group (with kA = 0.1, where k is the 

wavenumber corresponding to the spectral peak energy period, and A is the total amplitude of the 

linear harmonic) and a 0.25 m diameter cylinder, using a fully nonlinear higher-order BEM 

potential flow model. Their simulation showed the second and third harmonics of the total and 

scattered wave fields at locations upstream and downstream of model. Their general phase-based 

harmonic separation method (Fitzgerald et al., 2014) will be applied to decompose the local wave 

field in this paper. 
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Experiments were carried out using three FPSO models of different lengths; with waves of various 

steepness and with incident waves approaching from three different angles. The scattered wave field 

around the fixed models is investigated in detail by applying the phase-based harmonic separation 

method to separate the harmonic components of the scattered wave. The linear, second, third and 

fourth harmonics of the evolution of the local wave field and the scattered wave amplitudes are 

presented and discussed. 

2 Methodology 

2.1 Experiment 

The experimental work was carried out in the Ocean Basin at Plymouth University’s COAST Lab. 

The ocean basin is 35 m long by 15.5 m wide and has a movable floor that allows operation at 

different water depths. A water depth of 2.93 m was used for this experiment. The FPSO models 

were made of aluminium and were fabricated at ~1:100 scale from a rectangular box with a half 

circular cylinder at the bow and stern for the longer models (Model 2 and 3) and purely a cylinder 

for Model 1. The tested models all had the same height and width of 0.3 m, and lengths of 0.3 m, 

0.6 m and 1.2 m (Figure 1). The draft was 0.15 m for all of the models. The models were rigidly 

fixed to the gantry, which spans the width of the Ocean Basin. 

The input waves were focused wave groups generated using the NewWave methodology (Tromans 

et al., 1991) with an underlying JONSWAP spectrum ( = 3.3), focusing at the bow of the models. 

Hence, the input wave group is a representation of the average shape of the largest (linear) waves in 

a random sea-state with a JONSWAP spectrum. A set of non-breaking wave conditions, which 

correspond to the 100-year extreme significant wave height at the Cleeton platform in the Southern 

North Sea (Williams, 2008), were employed in these experiments by scaling (1:100). The peak 

wave periods were chosen according to the guidance of the offshore technology report for UK water 

(Offshore Technology Report, 2001) to have a variety of wave steepness for investigation. The local 

wave steepness varied from 0.13 to 0.21, and the incident wave angle was from 0° to 20° where 0° 

corresponds to a head sea. The ratio of wavelength (corresponding to Tp) over body size varies 

between ~2.3 (longest model) and ~10 (cylinder). Test parameters are given in Table 1. Wave run-

up on the models and the local wave field around the models were measured by 24 resistance wave 

gauges (Figure 2) with a sampling frequency of 128 Hz. 

 

Figure 1. The tested models in the Ocean Basin. 

 

Table 1. The tested wave conditions. 

Parameters Values 

 

Model 1 

 

Model 2 

 

Model 3 
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Amplitude, A (m) 

Peak period, Tp (s) 

Peak energy frequency, fp (Hz) 

High frequency cut-off (Hz) 

Wave steepness, kA (-) 

Wave direction, α () 

Water depth, d (m) 

Relative depth, kd (-) 

0.069 - 0.094 

1.330 - 1.440 

0.694 - 0.750 

2 

0.13 - 0.21 

0 - 20 

2.93 

5.68 - 6.63 

 
Figure 2. Layout of wave gauges around the tested models. 

2.2 Phase-based harmonic separation method 

The higher-harmonic components of the free-surface elevation could have been separated using the 

phase-inversion methodology first presented by Baldock et al. (1996). For applications see Hunt et 

al. (2003), Borthwick et al. (2006), Zang et al. (2006), Siddorn (2012), Fitzgerald et al. (2014) and 

Hann et al. (2014). The odd and even harmonic components can be extracted from the time histories 

of kinematic or dynamic quantities i.e. the free-surface elevation or wave force in the focus wave 

group interactions, in which two incident wave groups have identical wave component amplitudes 

and frequencies but inverted phase i.e. phase of 0° (crest-focused wave) and 180° (trough-focused 

wave). Then the individual harmonics e.g. linear and third-order, or second- and fourth-order can be 

separated from each other by frequency filtering. 

In this paper, the extended phase-based harmonic separation method (Fitzgerald et al., 2014) is 

applied to extract the linear and higher-order harmonic components of the free-surface elevation by 

applying simple linear combinations of the relevant time histories. This method requires the data 

from four incident focused wave groups that are each exactly 90° out of phase. There is then 

minimal post-processing applied to extract the linear, second-, third- and fourth-harmonics. 

An incident wave group that has amplitude A and relative phase  can be expressed as the classic 

Stokes perturbation expansion (Fenton, 1985), as follows 

(𝐴, 𝜃) = 𝐵11𝐴 cos 𝜃 + 𝐴2(𝐵20 + 𝐵22 cos 2𝜃)  

+𝐴3(𝐵31 cos 𝜃 + 𝐵33 cos 3𝜃) + 𝐴4(𝐵40 + 𝐵42 cos 2𝜃 + 𝐵44 cos 4𝜃) + 𝑂(𝐴5)  (1) 

where Bij are the coefficients in Fourier series for (A,); i is the amplitude content order; and j is 

the frequency content order. Equation (1) can be rewritten in a more compact form as: 

(𝐴, 𝜃) = 
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+ (
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) + (
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R
15

0

150

3
0

0

10

680

150

WG7

WG8
Note: units in millimetre

150

150

W
a

v
e

 p
a

d
d

le
s

WG4

13886

4
5
°

WG24

WG10

450

4
5

0

1200

3
0

0

150

150

WG11

WG22

R
15

0

WG16

2
5

9
,8

1
15

0

Incoming Wave

R
15

0

900

300

10



Page 5 of 24 

where, ij are the j
th

-order harmonic components, ij = A
i 
Bij cos(j). If i and j are identical, then ij 

are the j
th

-order harmonic sum, e.g. the first-order sum 11. On the other hand, if i and j are 

different, then ij are the j
th

-order harmonic difference, e.g. the term 31 is at the first-harmonic in 

frequency but 3
rd

 order (cubic) in input wave amplitude. Henceforth, we refer to the subscript i as 

the (amplitude) order and j as the harmonic. 

By considering four focused wave groups generated from the same wave amplitude components but 

with the phase of each Fourier component shifted 0°, 90°, 180° and 270° it is possible to obtain the 

four time histories of free-surface elevation 0
, 90

, 180
 and 270

 respectively. The linear 

combinations of these time histories and the Hilbert transforms of the 90° and 270° free-surface 

elevation time histories are applied to extract the linear and the first three superharmonics (2
nd

, 3
rd

 

and 4
th

 order); these are important for springing and ringing and are presented in Equations (3) - (6). 

A more detailed explanation of the separation method can be found in Fitzgerald et al. (2014). 

(0 + 𝐻(90) − 180 − 𝐻(270))/4 = 
11

+ 
31

    (3) 

(0 − 90 + 180 − 270)/4 = 
22

+ 
42

     (4) 

(0 − 𝐻(90) − 180 + 𝐻(270))/4 = 
33

     (5) 

(0 + 90 + 180 + 270)/4 = 
20

+ 
40

+ 
44

    (6) 

where H is the harmonic conjugate of the signal. We note that due to the relatively weak 

nonlinearity of the difference components compared with the sum components, for example 31 

compared with 11, the difference components are likely to be negligible. The only exception to this 

is the 0
th

-order component 20 which represents the long wave set-down and can be cleanly 

separated using digital frequency filtering from components obtained in Equation (6). This long 

wave set-down also contains a 4
th

-order amplitude contribution 40 but in this application this 

additional contribution is small compared to the 2
nd

 order term. 

Figure 3 shows the time histories of the free-surface elevation 0
, 90

, 180
 and 270

 at the focus 

location (wave gauge WG11). The vertical axis is the dimensionless free-surface elevation (/A), 

where  is the free-surface elevation and A is the linear amplitude at the focus location and time. 

The horizontal axis is the time scale with the focus time at t = 0 s. The focused wave groups shown 

in Figure 3 have a spectral peak energy period Tp = 1.44 s and total linear amplitude A of 0.069 m, 

the wave steepness is then kA = 0.13, where k is the wavenumber corresponding to Tp. 

Applying the linear combinations presented in Equation (3) - (6) for 0
, 90

, 180
 and 270

 in Figure 

3, the linear and the next three higher harmonic components have been obtained and presented in 

terms of their normalised amplitude spectra (Figure 4) and their separated time histories (Figure 5). 

It should be noted that we refer to plots such as Figure 4 as amplitude spectra, more precisely such 

plots show the modulus of the amplitude of each Fourier component as a function of frequency. 

Minimal post-processing (Fourier bandpassing) has been applied to remove the leakage of the linear 

component in the higher harmonics. The higher-order sum frequency components (22+42, 33, 

44) are derived from the experiments by applying the fast Fourier transform (FFT) to the measured 

data, removing the zero-frequency and linear frequency range of the amplitude spectrum, leaving 

the higher-order sum frequency ranges individually, and then performing an inverse FFT. 

Consequently, the linear and higher-order sum harmonic components are very well separated using 

the extended phase-based harmonic separation method with a minimal post-processing. There was a 
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double frequency error wave train off the wave paddles since only linear wave theory was used to 

create the waves. This can be seen at around t = +13 s for the second harmonic presented in Figure 

5b. 

 
Figure 3. Wave profiles at the focus location (without model, kA = 0.13). 

 
Figure 4. Amplitude spectra of the separated components at the focus location (without model, kA = 0.13). Note the 

different vertical scales. 

 
Figure 5. Time histories of the separated components at the focus location (without model, kA = 0.13). Note the 

different vertical scales. 

2.3 Scattered wave field 

The scattered or diffracted wave field can be simply extracted as the difference between the 

undisturbed incident wave and the measured wave in the presence of the model as follows 


𝑖𝑗

𝑑𝑖𝑓
= 

𝑖𝑗
𝑀𝑜𝑑𝑒𝑙 − 

𝑖𝑗
 ,        (7) 

where ij
dif 

is the (i,j)
th

 component of the scattered/diffracted wave, ij
Model

 is the equivalent 

component with the model present, and ij is the undisturbed incident wave component measured at 

the same gauge location in the absence of the model. 
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2.4 Uncertainty and repeatability 

Resistance wave gauges were used in the experiments. When the gauge operates, the resistance of 

the water between a pair of parallel rods/wires is measured and this is proportional to the immersion 

depth. The gauges were calibrated at the beginning of each test day and/or before the tests with each 

model in place. The linearity of the gauge measurement is very close to 1 over the entire range of 

surface elevation measured in the experiments. Repeatability of the unprocessed time history of 

measured water elevation at the presented locations is very high and is repeatable within the 

thickness of a line. 

In the experiments, the focus location was predefined at the bow stagnation point. With each focus 

wave group, the input focus distance for the (linear) wave paddle was optimised to ensure that the 

waves focus at the predefined location without the FPSO model in place. The focus location was 

determined to be the point at which the troughs either side of the central crest are symmetric, i.e. of 

equal depth. WG11 was used to measure water elevation at the focus location. The input focus 

distances of the wave groups with kA = 0.13, 0.18 and 0.21 were 13.56 m, 13.25 m and 15.365 m, 

respectively. From the measured signals at WG11, the focused time tf of each wave group was 

determined and then the time shift tf estimated. Each wave group has it group velocity cg (a half of 

the phase velocity cp), therefore the shift of the focus point is calculated by Xf = cg * tf. 

Consequently, the shift of the focus point is about 0.1 m between the wave groups with kA = 0.13 

and 0.18 or about 2.5 m between the wave groups with kA = 0.18 and 0.21. 

It should be noted that unless very steep near breaking waves are generated, the movement of the 

focus position and changes in wave structure are group properties - relative phase of the 

components is important but not absolute phase. Hence, the crest-trough phase combination will 

still work, and of course it would become immediately clear from the analysis if it was to 

breakdown - with large leakage of even harmonics into the odd harmonics. Although the harmonic 

extraction process is sensitive to the accuracy of the time alignment of the four phase combinations, 

the results presented here are very clearly separated between the different harmonics and there is no 

significant leakage between harmonics. 

3 Results 

3.1 Effect of model length on wave scattering 

 
Figure 6. Location of WG4, 8, 10 & 22 for models 1, 2 & 3. 

Wave gauges were positioned close to the tested models (see Figure 1) in order to examine how the 

model length affects the scattered wave field. Two locations were investigated, close to the bow 

(WG10) and at a fixed distance from the stern of the three models (WG4 for Model 1, WG8 for 

Model 2 and WG22 for Model 3), as shown in Figure 6, with exact gauge locations given in Figure 

2. Results are presented for the steepest wave (kA = 0.21). 

WG10

WG4 WG22WG8
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3.1.1 Near the bow 

By applying the phase-based harmonic separation method introduced in Section  2.2, the linear and 

the higher harmonic components of the free-surface elevation (22+42, 33, 44) can be obtained at 

the bow of the models (for WG10 just upstream of the front stagnation point on the bow). The 

amplitude spectra that correspond to the time history of the separated components are shown in 

Figure 7. Comparing these spectra for the tests with and without the models in place indicates the 

considerable enhancement of the spectra due to the interaction of the incident waves with the 

models. This is evident in the importance of the second, third and fourth harmonics. In addition, it is 

found that the enhancement of the amplitude spectrum of the higher harmonics (22+42, 33, 44), 

due to wave interaction with Model 1 (the cylinder), are strongest in comparison with the 

interactions observed with Models 2 and 3. The amplitude spectra of the linear and higher 

harmonics caused by the presence of Models 2 and 3 are approximately the same, except the second 

harmonic (22), which is greater for Model 3 than for Model 2. 

 
Figure 7. Amplitude spectra of the separated components near the bow of the models for kA = 0.21 (WG10). Note the 

different vertical scales. 

The corresponding time histories of the separated harmonic components are derived by performing 

an inverse FFT of the corresponding filtered amplitude spectrum. These are presented in Figure 8 

for the waves with and without the models in place. Significant enhancement of the free-surface 

elevation of the linear and higher harmonics due to wave scattering from the models can be clearly 

seen. The local free-surface elevation of the linear component has a lower crest and higher trough, 

in the presence of Model 1, than with Models 2 and 3 in place (Figure 8a). In contrast, the local 

free-surface elevations of the second, third and fourth harmonics have the highest crest and lowest 

trough with Model 1 and these are approximately the same with Models 2 and 3 (Figure 8b, c, d). 

For the second harmonic, the incident bound and scattered wave fields are roughly comparable 

(Figure 8b). However, the third and fourth harmonics indicate that the scattered wave field is 

significantly larger than the incident bound wave component (Figure 8c, d). 
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Figure 8. Time histories of the separated components near the bow of the models for kA = 0.21 (WG10). Note the 

different vertical scales. 

 

Data on the scattered wave only are obtained by subtraction of the time histories with and without 

the models in place (Equation (7)); these are shown in Figure 9. As previously seen in Figure 8, the 

scattered waves of the second, third and fourth harmonics are strongest with Model 1 in place 

(Figure 9b, c, d). The third harmonic scattered wave is reduced as the model length is increased. It 

can be observed in Figure 9c & d that there is a second pulse in the third and fourth harmonics of 

the scattered wave fields, arriving about 1.5 s later than the first pulse. This may induce a second 

load cycle for the structure. It should be noted that this is entirely separated from the double 

frequency error wave off the paddles which arrived at the model at around t = +13 s in the time 

histories of the second harmonic components (Figure 5b), and will then diffract in a predominately 

linear manner. 
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Figure 9. Time histories of the scattered waves near the bow of the models for kA = 0.21 (WG10). Note the different 

vertical scales. 

3.1.2 Near the stern 

Wave scattering at the stern of three models is investigated using wave gauges WG4, WG8 and 

WG22 shown in Figure 6, all of which have the same relative distance from the stern of Models 1, 2 

and 3 respectively. The linear and higher-harmonic sum frequency harmonic components are 

separated by applying the phase-based method as before, and are presented in Figure 10 for the tests 

with and without models. The amplitude spectra of the linear harmonics with models in place are 

smaller than those without models (Figure 10a), but the amplitude spectra of the higher harmonics 

increase with models in place (Figure 10b, c, d). Furthermore, it is shown that the amplitude 

spectrum of the linear component decreases slightly as model length increases (Figure 10a). The 

amplitude spectra of the second- and third-harmonic sum frequency terms are highest in the 

presence of Model 2, while they are approximately the same with Models 1 and 3 (Figure 10b, c). 

For the fourth-harmonic sum frequency, the amplitude spectra are quite similar in magnitude but 

rather wiggly for all three models (Figure 10d). The harmonic extraction process is sensitive to the 

accuracy of the time alignment of the four phase combinations, but the results presented here are 

very clearly separated between the different harmonics and we cannot see any significant leakage 

between harmonics. 
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Figure 10. Amplitude spectra of the separated components near the stern for kA = 0.21. Note the different vertical 

scales. 

The time histories of the separated harmonics from the corresponding filtered amplitude spectra are 

shown in Figure 11. Data are also shown for the test without the models in place for comparison. 

The linear components are slightly smaller with the models in place (Figure 11a, e, i). The 

difference in the free surface elevation with and without the models in place is much more 

significant for the second-, third- and fourth-order sum frequency terms (Figure 11b-d, f-h, j-l). A 

second wave group due to diffraction from the model is observed in the second-, third- and fourth-

harmonic sum frequency terms, and this appears to come later than the first pulse by about 3 s for 

the second harmonic (Figure 11b, f, j) and about 1.5 s for the third and fourth harmonics (Figure 

11c, g, k & Figure 11d, h, l). The second wave packet is significantly lower in amplitude than the 

first group for the second harmonic (Figure 11b, f, j), while the second pulse is slightly higher than 

the first pulse for the third-order sum frequency component (Figure 11c, g, k). At the fourth-

harmonic sum frequency, the first and second pulses are approximately the same amplitude, and it 

seems there is a third pulse in the free-surface elevation at about t = 5.5 s (Figure 11d, h, l). The 

second and third wave packets are clearly separated from and arrive much earlier than the double 

frequency error wave trains off the wave paddles which arrived at the model position at t = +13 s 

(Figure 5b). 

The time histories of the linear and higher harmonic scattered waves near the stern of the models 

presented in Figure 12 indicate the effect of wave-structure interaction on the linear component is 

quite weak (Figure 12a, e, i), but this effect is relatively much stronger for the higher harmonic 

components (Figure 12b-d, f-h, j-l). The free-surface elevations of second and fourth harmonic 

scattered waves are reduced as the model length increases (Figure 12b, f, j for the second harmonic 

& Figure 12d, h, l for the fourth harmonic). For the third harmonic component, the free-surface 

elevation of the scattered wave is strongest with Model 2 and it is nearly the same with Model 1 and 

3 (Figure 12c, g, k). 

One may speculate that this is an interference effect with substantial nonlinear scattering off the 

bow first and later off the stern. Both scattered components reach the downstream offset wave 

gauges but with different time delays for the different length models, so with different degrees of 

overlap in time.  
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Figure 11. Time histories of the separated components near the stern of the models for kA = 0.21. Note the different vertical scales. 

 

 
Figure 12. Time histories of the scattered waves near the stern of the models for kA = 0.21. Note the different vertical scales.
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3.2 Effect of wave steepness on wave scattering 

The input wave groups used in these experiments are defined assuming linear paddle transfer 

functions and then linear propagation and frequency dispersion on finite depth. For finite amplitude 

waves, cubic wave-wave interactions can occur which lead to changes in both the amplitude and 

phase of the waves away from linear predictions. This type of modulational instability was first 

observed by Benjamin and Feir (1967) for regular waves, see the review by Yuen and Lake (1980). 

For wave groups these effects are cumulative, increasing at increasing distance from the wave 

maker (see, for example, Baldock et al., 1996; Ning et al., 2009; and Adcock and Taylor, 2009 & 

2016). Since we want to change of the amplitude of the incident packet to explore the amplitude 

ordering of the various scattered wave harmonics, it is important to establish whether nonlinear 

evolution is significantly changing the structure of the incident wave group when it interacts with 

the models. 

 
Figure 13. Location of WG7, 10 & 22 w.r.t Model 3. 

The effect of wave steepness on the scattering is reported for Model 3, shown in Figure 13, with the 

focused wave groups of two different steepnesses and three gauge locations: near to the bow 

(WG10), to the side (WG7) and near to the stern (WG22). Results are presented for wave steepness 

kA = 0.13 and 0.18. 

Time histories of the linear harmonics of the tested focused wave groups with steepness kA = 0.13 

and 0.18, at the location near the bow of Model 3 (WG10) but with the model removed are 

presented in Figure 14. The solid line represents the scaled time history of the linear harmonic of 

the focused wave group with kA = 0.13 (by a scaling factor of 0.18/0.13 = 1.38), the dashed line for 

kA = 0.18 and the dotted line is the difference between the solid and dashed lines. It is shown that 

the solid and dashed lines are almost identical. Therefore, we see no evidence of significant 

cumulative evolution beyond linear as the wave propagates from the paddle to the position of the 

model. We can then treat the incident linear components as identical in shape, simply with an 

amplitude scaling. 

 

Figure 14. Comparison of the linear component of the tested wave groups (kA = 0.13 & 0.18). 

Applying the phase-based separation method presented in Section  2.2, the amplitude spectra of the 

linear and second, third and fourth harmonics of the separated components are examined.  Only the 

WG10

WG7

WG22
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more interesting higher harmonics are presented in this section to examine the effect of wave 

steepness on the wave-structure interaction, because the linear component simply scaled with wave 

steepness, except for a slight difference at the spectral tail high frequencies. Amplitude spectra of 

the second, third and fourth harmonics of the separated components are presented in Figure 15, 

Figure 16 and Figure 17 for the location near the bow (WG10), to the side (WG7) and near the stern 

(WG22) of Model 3, respectively. In general, as would be expected, the amplitude spectra of the 

higher harmonics are seen to increase as the wave steepness is increased from kA = 0.13 (solid line) 

to kA = 0.18 (dashed line). The amplitude spectrum of the second harmonic near the bow of the 

model is significantly higher than those at the side and near the stern (Figure 15a, Figure 16a & 

Figure 17a), and there is slight difference in the amplitude spectra of the third and fourth harmonic 

components at those locations (Figure 15b-c, Figure 16b-c & Figure 17b-c). The steepness of the 

wave appears to have its greatest effect on the third harmonics where some of the values nearly 

double near the stern (Figure 17b). 

 

Figure 15. Amplitude spectra of the separated components near the bow of Model 3 (WG10). Note the different vertical 

scales. 

 
Figure 16. Amplitude spectra of the separated components alongside Model 3 (WG7). Note the different vertical scales. 

 

 
Figure 17. Amplitude spectra of the separated components near the stern of Model 3 (WG22). Note the different vertical 

scales. 

The corresponding filtered time histories of the higher harmonics of the scattered wave fields at 

locations near the bow, to the side and near the stern of Model 3 are presented in Figure 18, Figure 

19 and Figure 20, respectively. At the bow there is considerable amplification of the second and 

fourth harmonics (Figure 18a, c). A significant effect of the wave steepness can also be found at the 

third harmonic of the scattered wave near the stern (Figure 20b) as might be expected from the 

amplitude spectrum. The fourth harmonic component near the bow is much higher than that to the 

side and near the stern of the model (Figure 18c, Figure 19c and Figure 20c). This is at least due to 
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WG10 being closer to the model so the radiated field has not decayed in amplitude significantly due 

to geometric spreading, whereas for the other gauge positions spreading is more important. 

 
Figure 18. Time histories of the scattered waves near the bow of Model 3 (WG10). Note the different vertical scales. 

 

 
Figure 19. Time histories of the scattered waves alongside Model 3 (WG7). Note the different vertical scales. 

 
Figure 20. Time histories of the scattered waves near the stern of Model 3 (WG22). Note the different vertical scales. 
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3.3 Effect of incident wave angle on wave scattering 

 
Figure 21. The tested incident wave angles with model 3. 

Different incident wave angles were tested to investigate the effect of wave direction on scattering. 

Tests were conducted with incident wave directions of 0°, 10° and 20° (Figure 21) with a wave 

steepness kA = 0.17. In this case, only the crest focused wave group (0
) and the trough focused 

wave group (180
) were tested. Therefore, the odd and even harmonics were separated using the 

simple phase-inversion separation method which has been presented in previous studies (Baldock et 

al., 1996; Zang et al., 2006; Fitzgerald et al., 2014). 

 (0 − 180)/2 = 
11

+ 
31

+ 
33

      (8) 

(0 + 180)/2 = 
20

+ 
40

+ 
22

+ 
42

+ 
44

    (9) 

The odd and even harmonics are separated using Equation (8) and (9), respectively. Frequency 

filtering is applied to extract the higher harmonic amplitude spectra from the odd and even 

harmonics, and then the free-surface elevations of those higher harmonic terms (22+42, 33, 44) 

are obtained using inverse FFT of the filtered amplitude spectra. 

Amplitude spectra of the linear and the higher harmonic components for the location near the bow 

(WG10) and to the side (WG7) of Model 3, due to different incident wave angles, are presented in 

Figure 22 and Figure 23, respectively. It can be seen that the amplitude spectra of the harmonic 

components increase as the incident wave angle increases from 0° to 20°, but are most energetic at 

the incident angle of 10°, except for the third harmonic to the side where the amplitude spectrum 

decreases with increasing the wave angle (Figure 23c). 

It is striking that the amplitude spectra are generally of comparable shape for the linear and second 

harmonics, as the approaching direction is altered. In contrast, the shape of the fourth harmonic 

spectrum changes somewhat and the third harmonic spectrum changes significantly, suggesting that 

third harmonic is in some sense ‘different’. 

The time histories of the scattered wave corresponding to the amplitude spectra near the bow and to 

the side are presented in Figure 24 and Figure 25. The linear, third and fourth harmonics are 

reduced with increasing angle of incidence for both locations (Figure 24a, c, d and Figure 25a, c, d). 

On the contrary, the second harmonic is greatest for the 10° wave (Figure 24b and Figure 25b). The 

third and fourth harmonics at the location near the bow (Figure 24c, d) are significantly larger than 

those to the side of the model (Figure 25c, d). 

WG10

WG7

0
10°

20°
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Figure 22. Amplitude spectra of the separated components near the bow of Model 3 for kA = 0.17 (WG10). Note the 

different vertical scales. 

 

 
Figure 23. Amplitude spectra of the separated components alongside of Model 3 for kA = 0.17 (WG7). Note the 

different vertical scales. 

 

 
Figure 24. Time histories of the scattered waves near the bow of Model 3 for kA = 0.17 (WG10). Note the different 

vertical scales. 

 



Page 18 of 24 

 
Figure 25. Time histories of the scattered waves alongside of Model 3 for kA = 0.17 (WG7). Note the different vertical 

scales. 

4 Discussion of the results 

This experimental work has shown that there are the second, third and fourth harmonic scattered 

waves upstream of the bow, out to the side and downstream of all three tested models. These 

findings are consistent with Fitzgerald et al. (2014) where their analysis of a 0.25 m diameter 

cylinder interacting with a focused wave group with kA = 0.1 gives results with strong similarities 

to Model 1 (Figures 8, 9, 11 and 12). However, their analysis of the cylinder simulations did not 

stress the structure of the fourth harmonic components, due to concerns about grid resolution. 

Similar second harmonic scattered waves were also found on the upstream side of a FPSO model, 

which is similar to Model 3 in this paper, by Zang et al. (2006) and Siddorn (2012), but their work 

did not identify significant third and fourth harmonic scattered waves on the upstream side 

comparable to our experimental observations for Model 3 (Figure 8, 9 and 18). Siddorn (2012) 

simulated wave-structure interaction of the FPSO model presented by Zang et al. (2006) and found 

a third harmonic scattered wave to the side and downstream of the FPSO model comparable to 

those reported here (Figure 11, 12, 19 and 20). In the present study, a second wave packet in the 

second, third and fourth harmonics has been found at almost all the observed locations surrounding 

the models. These second pulses are entirely separate from and occur much earlier than the error 

wave train off the wave paddles. So these second pulses are excited by the main incident group, and 

they may induce a second load cycle on the structure. 

The linear, second, third and fourth harmonic scattered waves near the bow of models in our 

experiment increased their maximum amplitudes by 21%, 13%, 4% and 3% of the undisturbed 

incident linear amplitude, respectively (Figure 9). These components are much larger at locations 

closer to the bow of the model i.e. at WG16 located at 0.01 m from the bow (see Figure 2). At this 

location, effectively the front stagnation point, the linear, second, third and fourth harmonic 

scattered wave amplitudes increase up to 33%, 27%, 8% and 4% of the incident linear wave, 

respectively (Figure 26). Zang et al. (2006) found that near the bow the linear and second order 

diffraction increased by 45% and 30% the undisturbed incident crest elevation and these are quite 
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similar to our findings here. The linear and higher harmonic scattered wave amplitudes near the 

stern of the models are comparable with those near the bow, except for the linear components at the 

stern (WG24 in Figure 2) of Model 1 and 2. These increase by up to 120% and 90% the undisturbed 

incident linear wave amplitude (Figure 27) and it is clearly seen that the model length significantly 

affects the linear diffraction term at the stern (the shorter the model length the higher the linear 

diffraction). The fourth harmonic scattered wave amplitude can be seen to be as much as 8% of the 

undisturbed incident linear component if the two phase separation method is applied (Figure 24). 

Evidence of the second scattered wave packets is also found for the third and fourth harmonics at 

the bow, from t = +1 s to +4 s (Figure 26c, d), and at the stern, from t = +2.5 s to +5.5 s (Figure 27c, 

d), of the models. It would be expected that the higher harmonic wave field saturates when the input 

wave amplitude is sufficiently large (Grue, 1992), but these present tests are likely to be well short 

of this stage when the whole idea of a Stokes-type expansion breaks down. 

 

Figure 26. Time histories of the scattered waves at the bow of the models for kA = 0.21 (WG16). Note the different 

vertical scales. 

 



Page 20 of 24 

 

Figure 27. Time histories of the scattered waves at the stern of the models for kA = 0.21 (WG24). Note the different 

vertical scales. 

The interaction of the incoming wave group with the bow of each of the models results in a second 

difference frequency component (20). This is a long bound wave and significantly contributes to 

the local free surface elevation at the bow (up to about 10% of the undisturbed linear harmonic 

amplitude), see Figure 28, 29 and 30. It is interesting to see that there is a considerable set-up of the 

water surface at the bow (focal location) with each of the models in place, and this should be 

contrasted with the smaller set-down at the focal location without the models (Figure 28). This 

behaviour of the second difference component with and without models is similar to the results 

presented in Zang et al. (2006) where they showed the excellent agreement between the 

experiments and second-order diffraction calculations. Figure 28 also shows that the local second 

difference component set-up is unaffected by the model lengths. Indeed, with three different lengths 

of the models (Models 1, 2 and 3), the second difference components are almost identical at the 

bow. In contrast, the second difference component is dependent on the wave steepness and wave 

direction, scaling simply as the square of the wave group linear amplitude (again consistent with 

2nd order diffraction) as shown in Figure 29. Furthermore, it is unchanged with wave direction 

from head-on  = 0° to an approach angle of 10°, but reduced at least at the gauge position for a 

wave approach angle of  = 20° off head-on, as shown in Figure 30. 

 

Figure 28. Time histories of the second difference component (20) at the bow of the models (WG16) for kA = 0.21. 
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Figure 29. Time histories of the second difference component (20) at the bow of Model 3 (WG16) for kA = 0.13 & 

0.18. 

 

Figure 30. Time histories of the second difference component (20) at the bow of Model 3 (WG16) for kA = 0.17 and  

= 0°, 10° & 20°. 

In practical applications, the third- and fourth-order frequency components obtained from the model 

test should be taken into account to assess wave loading for offshore structure design and the 

assessment of load components that might produce ringing-type structural responses in fixed and 

taut moored structures, and numerical modelling should be carefully designed to make sure these 

effects can be captured. Some traditional numerical modelling approaches are based on linear 

theory and cannot predict these strongly nonlinear effects (Det Norske Veritas, 2010) and so high 

order or fully nonlinear approaches should be taken. The effects on crest elevation, which is 

contributed from the linear, superharmonics (up to fourth-order) and the second difference 

component (20), should also be considered for design of the air gap and position of accommodation 

in offshore structures. 

5 Conclusions 

Experiments have been performed to examine wave-structure interactions for simplified FPSO 

geometries. These explore the effects of model length, wave steepness and the incident wave angle 

on the structure of the total local wave field and also the scattered wave components. An existing 

general phase-based harmonic separation method has been successfully applied to extract the linear 

and higher harmonic wave components of the free-surface elevation around the models. The key 

findings of this study are as follows. 

 At locations having the same relative distance to the bow of the models, the highest 

amplitude scattered waves are obtained with the shortest model (the cylinder). In each case, 

the second harmonic scattered wave field is comparable in magnitude to the component in 

undisturbed incident wave, whereas the third- and fourth harmonics are significantly larger 

than the equivalent incident bound components. 

 At locations having the same relative distance to the stern, the linear harmonic increases as 

model length decreases but the nonlinear harmonics are similar for all three models and 

slightly smaller for the longest model at the second harmonic component. 

 As the incident wave steepness increased, the non-linear scattered wave increases and a 

second pulse is evident in the higher harmonics of the scattered wave fields (at second-, 

third- and fourth-order). 
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 It is found that the second harmonic scattered wave is greatest near the bow for the incident 

wave angle of 10 and the third and fourth harmonic scattered waves reduce as the incident 

wave angle increases from 0 to 20. The incident wave angle affects the maximum crest 

height and wave loading and therefore it should be considered in design. 

 The second order difference long-wave component is a robust feature of our experiments. 

This interaction produces a substantial and relatively long-lasting set-up at the bow for all 

three models. All other higher frequency components ride on the local hill, so the 

implications of this behaviour for green water on deck are clear. 

 In a generic sense, we observe that the third harmonic of the scattered wave field shows the 

most complex structure in time, and also in the spectrum. This is consistent with the 

discussion of the extra complexity of the third harmonic force component in time on a single 

cylinder given by Fitzgerald et al. (2014). 

 We hope that these experimental results will prove to be of use to modellers of wave-

structure interactions for FPSO-type floating bodies; the data will be archived online as 

required by the Engineering and Physical Science Research Council (EPSRC) and is 

available by contacting the authors at the University of Plymouth. 

 Although these results are for contributions to the surface elevation around the models, the 

third- and fourth-order wave components contribution to global force and to local pressures 

on the body surface should also be considered for assessing wave loading and structural 

responses in offshore structure design, which may include ringing-type response effects for 

some structures. 

 Higher order components i.e. the third and four harmonics are significant (up to 8% of 

overall crest height) so a design method that includes these effects should be applied. This 

could be achieved using a fully nonlinear numerical method (CFD) solving the Navier-

Stokes equations, high-order BEM or FEM schemes for fully nonlinear potential flow, and 

of course more physical experiments. 

 The contributions of the third- and fourth-harmonics and the second difference term to the 

surface elevation need to be taken into account in design of the air gap and the level of 

accommodation for offshore structures. 
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