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Chapter 10. North Atlantic Rhodolith Beds 

 

Jazmin J. Hernandez-Kantun, Jason M. Hall-Spencer, Jacques Grall, 

Walter Adey, Fabio Rindi, Christine A. Maggs, Ignacio Bárbara and 

Viviana Peña. 

 

Abstract  

Beds of coralline algal sediment form ecologically and economically 

important habitats in the North Atlantic. These habitats can occur 

from the intertidal down to 60 m depth, and they are locally abun-

dant in several countries. Fourteen species of coralline algae form 

rhodoliths or maerl in this region; Lithothamnion corallioides, L. 

glaciale, L. tophiforme and Phymatolithon calcareum are the most 

widely recorded. The structure and biodiversity of these habitats is 

destroyed by dredging and can be degraded by towed demersal fish-

ing gear and by mussel and salmon farming. Legislation has been 
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passed in the Eropean Union (EU) to protect P. calcareum and L. 

corallioides which should be extended to include the other maerl 

species from the region. Outside the EU there is a lack of baseline 

information concerning the importance of these habitats: a fuller un-

derstanding of their role may lead to protection in Scandinavia, Ice-

land and the Atlantic coasts of Canada and the United States. The 

design of such protected areas would need to consider the ongoing 

effects of invasive species, ocean warming and acidification.  
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11.1. Introduction 

Aggregations of living unattached corallines, previously often 

referred to as nodules, were given the name rhodoliths by Bosselini 

& Ginsberg (1971). Adey & MacIntyre (1973) provided an early dis-

cussion of their genesis and distribution. Such aggregations have 

long been known as maerl in the North East Atlantic, a Breton term 

for unattached thalli that lack a shell or pebble core (Irvine & Cham-

berlain 1994). Here, we provide an overview of rhodolith/maerl oc-

currence in the colder waters of the North Atlantic and summarize 

the distribution, species composition, biodiversity and ecological im-

portance of these habitats. We include the eastern coasts of Canada 

and the United States north of Cape Hatteras plus Greenland, Ice-

land, Europe  and Macaronesia (Azores, Madeira and Canary Is-

lands). . 
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11.2. Distribution and species composition  

Unattached coralline algal beds occur on open coasts, in tide-

swept channels and in sheltered areas with weak currents, from the 

intertidal to 60 m depth with the deepest records found in Svalbard 

and Macaronesia (Cabioch 1974, Alfonso-Carrillo & Gil-Rodríguez 

1982, Hall-Spencer et al. 2010, Teichert et al. 2012). These habitats  

are particularly abundant in Scotland, Ireland and Brittany (De 

Grave et al. 2000, Hall-Spencer et al. 2010) and in Newfoundland 

and Labrador (Adey & MacIntyre 1973). The more northern beds 

are less well known but existing literature indicates that these habi-

tats may be important and extensive at high latitudes (Foslie 1895, 

Adey 1968, Sneli 1968, Gunnarsson 1977, Freiwald 1995, Teichert 

et al. 2012).  

Many species of crustose coralline algae can continue to sur-

vive unattached in appropriate environmental conditions. However, 

fewer species commonly form rhodoliths or maerl. For example, 

Lithothamnion lemoineae forms thick crusts in the North Atlantic 

subarctic that can become detached but rarely survive as rhodoliths. 
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In contrast, Clathromorphum compactum occasionally forms rhodo-

lith beds in the Subarctic coating pebbles in narrow island passages 

with strong currents.  

The North Atlantic harbours fourteen rhodolith/maerl-forming 

species of coralline algae (Table 11.1; Pardo et al., submitted). The 

four most widely recorded species are Lithothamnion corallioides, 

L. glaciale, L. tophiforme and Phymatolithon calcareum (Fig. 11.1). 

These four species have been exhaustively researched in the North 

Atlantic to find reliable identification features; Adey & McKibbin 

(1970), Irvine & Chamberlain (1994), Adey et al. (2005) and 

Teicher et al. (2012). In the northwestern Atlantic, Lithothamnion 

glaciale and Lithothamnion tophiforme occupy different, overlap-

ping ecological niches. L. glaciale is particularly widespread, rang-

ing from the intertidal pools to moderately deep water and from 

highly exposed to protected shorelines in Subarctic and Boreal Re-

gions (Adey 1966). In contrast, L. tophiforme is more abundant in 

Arctic and deeper (25-39 m) waters (Adey et al. 2005). On the Lab-

rador Coast, the two species typically occur together at 20-25 m. 

Leptophytum foecundum, in its rhodolith state, is colder Subarctic to 
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Arctic in distribution and occurs primarily in shell and pebble beds 

in strong current zones. The cores of this species are usually pebbles 

or dead mollusc shell. 

Currently, efforts are being made to understand the diversity 

of rhodolith-forming corallines in the North Atlantic area using mo-

lecular techniques (Peña et al. 2014). This approach has led to the 

recent description of Mesophyllum sphaericum which forms maerl in 

the NE Atlantic (Peña et al. 2011). The use of DNA sequences from 

type material  will continue to improve the taxonomy of this group 

(Peña et al. 2014). Species of North Atlantic  Lithophyllum  will re-

quire considerable taxonomic work as there appear to be cryptic spe-

cies, problems with the features used to separate species and the 

widespread use of incorrect names (Irvine & Chamberlain 1994).In 

the north Atlantic Lithophyllum rarely contribute to maerl beds but 

at a few sites, such as Mannin Bay and Kingstown Bay (Ireland) and 

the Bay of Brest (France), species traditionally called L. dentatum 

and L. fasciculatum can be abundant (Cabioch 1968, Hall-Spencer et 

al. 2010). 
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The colder parts of the North Atlantic Ocean comprise four 

biogeographic regions: Arctic; Subarctic; Boreal (Celtic) and Lusita-

nean (Adey & Steneck, 2001, Adey & Hayek 2011). The Subarctic 

Region transitions with the Boreal Region primarily in southern Ice-

land, the Norwegian Coast and to a lesser extent in northwestern 

Scotland. The North Atlantic Subarctic Region (NW Atlantic, S. 

Greenland and Spitzbergen and northern Iceland) as a Pleistocene, 

glacially-restricted outlier of the North Pacific Subarctic is relatively 

depauperate in seaweeds (Adey et al. 2008, Maggs et al. 2008), 

while the overlapping Boreal and Lusitanian Regions are relatively 

rich in seaweed species. Likewise, the number of species of coralline 

algae forming beds of rhodolith or maerl is higher in European 

coastal Boreal/Lusitanean regions than the Subarctic Coasts. Further 

studies to uncover any hidden species diversity are needed to fully 

clarify these relationships and to understand evolutionary patterns  

(Aguirre et al. 2000).  

 

11.3. Biodiversity and ecology 
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Unattached coralline algae produce banks of carbonate rich 

sediments that trap suspended particulates and infaunal faeces to 

build complex habitats that can be 1000s of years old (Grall & Hall-

Spencer, 2003). They can also provide sediments for current 

transport to adjacent marine habitats (Farrow et al. 1978, Bosence 

1979, 1980) and to coasts where carbonate sand dunes are important 

habitats for terrestrial organisms (Birkett et al. 1998a). 

Rhodoliths and maerl are formed by coralline algae with rela-

tively slow growth rates and a perennial life strategy; some thalli can 

live >100 years (Bosence 1983, Potin et al. 1990, Foster 2001, Blake 

& Maggs 2003, Bosence & Wilson 2003, Frantz et al. 2005). Many 

rhodoliths begin as crusts growing on rock; they break free from the 

substratum due to invertebrate boring and/or wave action and biotur-

bation, and continue growing unattached on surrounding or deeper 

sedimentary bottoms (Adey & MacIntyre 1973, Adey & Hayek 

2011). Thallus fragmentation is the major mechanism of propagation 

of rhodolith beds (Bosence 1976, Johansen 1981). Coralline algae 

can accumulate in large beds with a three-dimensional matrix that 

provides a wide range of ecological niches (Bosence 1983, Birkett et 
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al. 1998a, Hall-Spencer 1998, Barberá et al. 2004, Grall et al. 2006, 

Hinojosa-Arango et al. 2009).  

These habitats have considerable ecological significance due 

to the high diversity of associated organisms (Fig. 11.2). There have 

been numerous studies of the associated flora and fauna of NE At-

lantic beds ( Cabioch, 1969, Keegan 1974, Bosence 1979, 1980, 

Maggs 1983a,b, Hall-Spencer 1998, BIOMAERL Team 1999, Hall-

Spencer & Atkinson 1999, Barbéra et al. (2004), Kamenos et al. 

2004a,b,c, Hinojosa-Arango et al. 2009, Peña & Bárbara 2008a,b, 

2010a,b, 2013, Peña 2010, Teichert et al. 2012, Scottish MPA Pro-

ject 2013). In contrast, the number of studies available for the north-

western Atlantic is more limited: two studies in Canada include in-

vestigations on fish of rhodolith beds by Kulka et al. (2004) and the 

epi- and in-fauna by Gagnon et al. (2012). 

A review of the associated flora of NE Atlantic rhodolith beds 

(Peña et al. submitted) reported a total of 349 algal species, which is 

around 30% of the total seaweed diversity in this region. The most 

diverse beds (150-257 seaweed species) occur in the temperate re-

gions with 25-42% of the total seaweed diversity recorded in the 
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area. The flora of northern rhodolith beds (Iceland, Scandinavia) is 

less diverse but has not been studied in detail. The associated flora 

increases the heterogeneity and complexity of the habitat due to the 

presence of a wide range of algal morphologies, ranging from endo-

lithic and crustose forms to large kelp. The associated flora of tem-

perate NE Atlantic rhodolith beds is seasonal with a peak of diver-

sity in the spring-summer period (Cabioch 1969, Maggs 1983a, 

Bárbara et al. 2004, Grall et al. 2006, Peña & Bárbara 2010a). Spe-

cies with heteromorphic life-histories and crustose sporophyte 

phases are particularly abundant (Maggs & Guiry 1989, Peña & Bá-

rbara 2010b). The presence of some algal species is largely confined 

to rhodolith beds, such as the Rhodophyta Gelidiella calcicola, Cru-

oria cruoriaeformis, Gelidium maggsiae and Halymenia latifolia 

and the Chlorophyta Cladophora rhodolithicola (Cabioch 1969, 

Maggs 1983, Maggs & Guiry 1987, 1989, Rico & Guiry 1997, Bá-

rbara et al. 2004, Grall et al. 2006, Leliaert et al. 2009, Peña & Bá-

rbara 2010a,b, 2013).  

The BIOMAERL project revealed 556 animal taxa associated with 

NE Atlantic maerl beds: 10 Porifera, 35 Cnidaria, 174 Annelida, 137 
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Crustacea, 138 Mollusca, 26 Echinodermata, 22 Bryozoa, 11 Ascidi-

acea, and 32 Pisces taxa (Barberá et al. 2004). A ten year survey of 

nine maerl beds in Brittany lists 1,204 fauna species, including 295 

Annelida, 290 Arthropoda, 207 Mollusca, 35 Echinodermata, and 

377 species of other phyla (Grall unpublished). 

The three-dimensional matrix of coralline algal sediments en-

hances their biodiversity (Bosence 1979); this is evident when their 

diversity is compared with surrounding habitats; kelp forests harbour 

around 10% fewer species of the NE Atlantic flora, seagrasses host 

around 5% fewer species, and muddy and sand banks harbour 30 to 

50% fewer species than adjacent maerl beds (Whelan & Cullinane 

1985, Shultze et al. 1990, Davison & Hughes 1998, Birkett et al. 

1998b, Grall 2002, Otero-Schmitt & Pérez-Cirera 2002, Johnson et 

al. 2005). Maerl beds also provide brood strock areas for commer-

cially important bivalves, such as scallops, as well as nursery areas 

for juvenile fish such as cod (Hall-Spencer et al. 2003, Kamenos & 

Moore 2004, Kamenos et al. 2004a,b,c). In the northwestern Atlan-

tic, rhodolith beds of Lithothamnion typically support abundant scal-

lops, (Aequipecten irradians) which are commercially harvested. 
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11.4. Conservation status 

In the North Atlantic, coralline algal sediments are dredged for 

use as a fertilizer on acidic soils, as a food additive for animals and 

humans, in water treatment filters and in cosmetics (Blunden et al. 

1981, De Grave & Whitaker 1999, Foster 2001, Grall & Hall-Spen-

cer 2003,Emerton & Choi 2008).  This dredging of biodiverse 

nursery grounds is widely considered to be environmentally unsus-

tainable (Barberá et al. 2003) and has ceased in the United Kingdom. 

Although not as devastating as dredging, European maerl beds 

have also been impacted by aquaculture (Hall-Spencer et al. 2006, 

Hall-Spencer & Bamber 2007, Peña & Bárbara 2008a, Peña 2010), 

changes in current patterns associated with construction (Birkett et 

al. 1998a, Grall & Hall-Spencer 2003), dredge fisheries (Hall-Spen-

cer 1998, Hall-Spencer & Moore 2000, Hall-Spencer et al. 2003, 

Hauton et al. 2003, Kamenos et al. 2003), as well as increased sedi-

mentation and eutrophication (Hily et al. 1992, Grall & Glemarec 

1997).  There is also a growing realisation that these habitats may be 

especially vulnerable to ocean acidification since the high Mg-cal-

cite skeletons of coralline algae dissolve easily as CO2 levels 
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rise(Nelson 2009, Büdenbender et al. 2011, Porzio et al. 2011, Díaz-

Pulido et al. 2012, Noisette et al. 2013, see Chapter XX by Martin & 

Hall-Spencer). 

Indirect effects to NE Atlantic maerl  beds arise due to the 

spread of invasive species such as the gastropod Crepidula fornicata  

the Rhodophyta Antithamnionella spirographidis, A. ternifolia, Bon-

nemaisonia hamifera, Dasya sessilis, Grateloupia turuturu, Heter-

osiphonia japonica and Neosiphonia harveyi, the Heterokontophyta 

Colpomenia peregrina, Sargassum muticum and Undaria pinnati-

fida, and the Chlorophyta Codium fragile (Grall & Hall-Spencer 

2003, Pena et al. submitted).. Only though monitoring will we be 

able to detect ecological changes to these habitats (BIOMAERL 

Team 1999, Birkett et al. 1998a). 

Research efforts have been made to understand the effects of 

physical factors on rhodolith-forming species in the North Atlantic, 

including the effect of temperature (Adey & McKibbin 1970, Blake 

& Maggs 2003, Wilson et al. 2004, Kamenos et al. 2008, Kamenos 

2010, Kamenos & Law 2010); the influence of light (Adey 1970, 

Adey & McKibbin 1970, Adey & Macintyre 1973, Wilson et al. 
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2004, Rix et al. 2012, Teichert et al 2013); the biological response of 

organic matter/burial (Wilson et al. 2004, Blake et al. 2007, Rix et 

al. 2012); the response of heavy metal contamination (Wilson et al. 

2004) and the influence of ocean acidification (Hall-Spencer et al. 

2006, Büdenbender et al. 2011, Burdett et al. 2012, Ragazzola et al. 

2013, Noisette et al. 2013).  

Many of these studies confirmed the negative effect of ocean 

acidification, rise of temperature and burial on the physiology of 

rhodolith-forming species, suggesting that a combination of physical 

stressors can affect coralline species and the flora and fauna assem-

blages associated with them. Also, the negative effects on the rhodo-

lith bed structure and disturbance and loss of diversity of the associ-

ated flora and fauna has been documented, mostly due to 

anthropogenic activities such as bivalve fishing and aquaculture 

(BIOMAERL Team 1999, Bárbera et al. 2003, Hall-Spencer et al. 

2003, 2006, Hall-Spencer & Bamber 2007, Peña & Bárbara 2008a, 

Peña 2010). Apart from the decrease in the cover and thickness of 

the living maerl layer, a decrease in maerl size was observed in Gali-

cian beds impacted by mussel aquaculture (Peña 2010). 
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The EU Habitats Directive (92/43/EEC) includes maerl and 

lists Lithothamnion corallioides and Phymatolithon calcareum for 

protection. Maerl beds are also included in the list of threatened hab-

itats within the NE Atlantic due to multiple threats from anthropo-

genic activities, high sensitivity and low recovery capacity (OSPAR 

2006). 

 Many areas of maerl are now included within areas that are 

listed as protected areas; in NW Spain for example 28% of known  

maerl beds are located within protected areas with another 19 unpro-

tected maerl  beds proposed for future conservation actions (Peña & 

Bárbara 2006, 2009). 

There are still information gaps concerning the biological and 

ecological characteristics of maerl assemblages in Europe. Infor-

mation on reproduction, size, distribution and diversity of coralline 

algae forming maerl beds is necessary to improve management of 

these habitats(OSPAR 2006). Barberá et al. (2004) suggested that 

maerl beds should be recognized as a specific habitat in the EU Hab-

itats Directive and that the full range of maerl-forming species 

should be listed for conservation purposes otherwise the rarest types 
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of maerl bed may not be given the high conservation status they re-

quire. 

The development of newer methodologies for the characteriza-

tion of maerl beds was also recommended by the Census of Marine 

Life project Natural Geography In Shore Areas (NaGISA, 

www.coml.org). A standardized methodology is required to monitor 

maerl beds in space and time for features such as reproductive effort, 

kind of reproduction, size, distribution, and diversity of coralline al-

gae forming the habitat (Steller et al. 2007). Examination of these 

features can help to assess patterns typical of ¨pristine” vs “im-

pacted” maerl beds in time (past vs present) and space (different 

beds located at distance of km, tens of km or hundreds of km) and 

can be used to evaluate the health of the habitats.  

 

11.5 Conclusion 

The four coralline algal species that most commonly grow un-

attached in the North Atlantic have been studied intensively in Eu-

rope but detailed information on the status and ecology of these hab-

itats is lacking from the USA, Canada, Greenland and Iceland. There 
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is a lack of long-term monitoring of these wonderful habitats 

throughouth the North Atlantic which is a priority for management 

of these productive coastal systems. The activities that are most 

damaging for these habitats are now well known; the next steps are 

to raise awareness, enforce conservation legisloation and promote 

sensible stewardship of  these highly diverse habitats. 

 

Acknowledgements  

JHK acknowledges support from CONACyt-Mexico, SEP-Mexico, 

Smithsonian Institution-USA and National University of Ireland, 

Galway. Studies on the Iberian Peninsula were supported by the re-

search projects CGL2006-03576/BOS (Ministerio de Educacion y 

Ciencia and FEDER) and PGIDIT03PXIB10301PR (Xunta de Gali-

cia). VP acknowledges support by Xunta de Galicia (Plan Galego de 

Investigación, Innovación e Crecemento, Plan I2C, 2011-2015).  

JHS acknowledges support from the EU ’Mediterranean Sea Acidifi-

cation under a changing climate’ project (MedSeA; grant agreement 

265103). 

 



19 

References 

Adey WH (1966) Distribution of saxicolous crustose corallines in 

the northwestern North Atlantic. J Phycol 2:49-54 

Adey WH (1968) The distribution of crustose Corallines on the Ice-

landic coast. Science in Iceland 1:16-25 

Adey WH (1970) The effects of light and temperature on growth 

rates in boreal-subarctic crustose corallines. J Phycol 6:269-

276 

Adey WH (1971) The sublittoral distribution of crustose corallines 

on the Norwegian coast. Sarsia 46:41-58 

Adey WH, Adey PJ (1973) Studies of the biosystematics and ecol-

ogy of the epilithic crustose Corallinaceae of the British 

Isles. Brit Phycol J 8:343-407 

Adey WH, Chamberlain YM, Irvine LM (2005) An SEM-based 

analysis of the morphology, anatomy and reproduction of 

Lithothamnion tophiforme (Esper) Unger (Corallinales, 

Rhodophyta), with a comparative study of associated North 

Atlantic Arctic/Subarctic Melobesioideae. J Phycol 41:1010-

1024 



20  

Adey WH, Hayek L-AC (2011) Elucidating Marine Biogeography 

with Macrophytes: Quantitative Analysis of the North Atlan-

tic Supports the Thermogeographic Model and Demonstrates 

a Distinct Subarctic Region in the Northwestern Atlantic. 

Northeastern Naturalist 18: monograph 8: 1-128 

Adey WH, Lindstorm SC, Hommersand MH, Muller KM (2008) 

The biogeographic origin of arctic endemic seaweeds: a ther-

mogeographic view. J Phycol 44:1384-1394. 

Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-eval-

uation in the geological sciences. Geo Soc Am Bull 84:883-

904 

Adey WH, McKibbin DL (1970) Studies on the maërl species 

Phymatolithon calcareum (Pallas) nov. comb. and 

Lithothamnium corallioides Crouan in the Ria de Vigo. Bot 

Mar 13:100-06  

Adey WH, Steneck, RS (2001). Thermogeography over time creates 

biogeographic regions: a temperature/space/time-integrated 

model and an abundance-weighted test for benthic marine al-

gae. Journal of Phycology 37:677-698. 



21 

Aguirre J, Riding R, Braga JC, (2000). Diversity of coralline red al-

gae: origination and extinction patterns from the Early Creta-

ceous to the Pleistocene. Paleobiology 26:651-667 

Alfonso-Carrillo J, Gil-Rodríguez MC (1982) Sobre la presencia de 

un fondo de "Maerl" en las Islas Canarias. Collectanea Bota-

nica 13:703-708 

Athanasiadis A (1996) Taxonomisk litteratur och biogeografi av 

Skandinaviska rödalger och brunalger. Göteborg: Algologia. 

Bárbara I, Cremades J, Veiga AJ (2004) Floristic study of a maërl 

and gravel subtidal bed in the Ría de Arousa (Galicia, Spain). 

Bot Complutensis 28:27-37 

Barberá C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall‐ Spen-

cer JM, De La Huz Ch, Lanfranco E, Lastra M, Moore PG, 

Mora J, Pita ME, Ramos‐ Esplá AA, Rizzo R, Sánchez‐

Mata A, Seva A, Schembri PJ, Valle C (2004) Conservation 

and management of northeast Atlantic and Mediterranean 

maerl beds. Aquat Conserv 13:S65-S76 

BIOMAERL Team (1999) Final Report, BIOMAERL project (Coor-

dinator: Moore PG, University Marine Biological Station 

Millport, Scotland), EC Contract No. MAS3-CT95-0020, 1: 



22  

1–541, 2: 542-973 pp. + Appendix. 

Birkett DA, Maggs CA, Dring MJ (1998a) Maerl (Volume V). An 

overview of dynamics and sensitivity characteristics for con-

servation management of marine SACs. Acottish Association 

for Marine Science. (UK Marine SACs Project).  

Birkett DA, Maggs CA, Dring MJ, Boaden PJS (1998b) Infralittoral 

reef biotopes with kelp species. An overview of dynamic and 

sensitivity characteristics for conservation management of 

marine SACs. Scott. Assoc. Mar. Sci (UK Marine SACs Pro-

ject). 

Blake C, Maggs CA (2003) Comparative growth rates and internal 

banding periodicity of maerl species (Corallinales, Rhodo-

phyta) from northern Europe. Phycologia 42:606-612 

Blake C, Maggs CA, Reimer P (2007) Use of radiocarbon dating to 

interpret past enviroments of maerl beds. Cienc Mar 33:385-

397 

Blunden G, Farnham WF, Jephson N, Barwell CJ, Fenn RH, Plun-

kett BA (1981) The composition of maërl beds of economic 

interest in northern Brittany, Cornwall and Ireland. In: 



23 

Levring T (ed) Proceedings 10th International Seaweed Sym-

posium. De Gruyter, Berlin 

Bosselini A, Ginsberg RN (1971) Form and intertidal structure of re-

cent algal nodules (rhodolites) from Bermuda. J Geol 

79:669-682 

Bosence DWJ (1976) Ecological studies on two unattached coralline 

algae from western Ireland. Palaeontology 19:365-395  

Bosence DWJ (1979) Live and dead faunas from coralline algal 

gravels, Co.Galway. Palaentology 22:449-78 

Bosence DWJ (1980) Sedimentary facies, production rates and fa-

cies models for recent coralline algal gravels, Co. Galway, 

Ireland. Geol J 15:91-111 

Bosence DWJ (1983) Descriptions and classification of rhodoliths 

(rhodoids, rhodolites). In: Peryt TM (ed) Coated Grains. 

Springer-Verlag, Berlin  

Bosence DWJ, Wilson J (2003) Maerl growth, carbonate production 

rates and accumulation rates in the northeast Atlantic. Aquat 

Conserv 13:S21-S31  



24  

Büdenbender J, Riebesell U, Form A (2011) Calcification of the Ar-

tic coralline red algae Lithothamnion glaciale in response to 

elevated CO2. Mar Ecol Prog Ser 441:79-87 

Burdett H, Aloisio E, Calosi P, Findlay HS, Widdicombe S, Hatton 

AD, Kamenos NA (2012) The effect of chronic and acute 

low pH on the intracellular DMSP production and epithelial 

cell morphology of red coralline algae. Mar Biol Res 8:756-

763 

Cabioch J (1968) Quelques particularités anatomiques du Lithophyl-

lum fasciculatum (Lamarck) Foslie. Bulletin de la Société 

botanique de France 115:173-186 

Cabioch J (1969) Les fonds de maërl de la Baie de Morlaix et leur 

peupplement vegetal. Cah Biol Mar 10:139-61  

Cabioch J (1974) Un fond de maerl de l’Archipel de Madère et son 

peuplement végétal. Bulletin de la Société Phycologique de 

la France 19:74-82 

Davison DM, Hughes DJ (1998) Zostera Biotopes (volume I). An 

overview of dynamics and sensitivity characteristics for con-

servation management of marine SACs. Scottish Association 

for Marine Science (UK Marine SACs Project) 



25 

De Grave S, Fazakerley H, Kelly L, Guiry MD, Ryan M, Walshe J 

(2000) A study of selected maërl beds in Irish waters and 

their potential for sustainable extraction. Marine Resource 

Series (Ireland) 10:1-44 

De Grave S, Whitaker A (1999) A census of maërl beds in Irish wa-

ters. Aquat Conserv 9:303-11. 

Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg 

O (2012) Interactions between ocean acidification and warm-

ing on the mortality and dissolution of coralline algae. J Phy-

col 48:32-39 

Emerton V, Choi E (ed) (2008) Essential guide to food additives. 

Leatherhead Food International Ltd, UK 

Farrow GE, Cucci M, Scoffin TP (1978) Calcareous sediments on 

the nearshore continental shelf of western Scotland. P Roy 

Soc Edinb B 76:55-76 

Foslie M (1895) The Norwegian forms of Lithothamnion. Kongelige 

Norske Videnskabers Selskabs Skrifter 1894:29-208 

Foslie M (1899) Some new or critical lithothamnia. Det Kongelige 

Norske Videnskabers Selskabs Skrifter 1898:1-19 



26  

Foslie M (1905) Remarks on northern lithothamnia. Det Kongelige 

Norske Videnskabers Selskabs Skrifter 1905:1-138 

Foster MS (2001) Rhodoliths: between rocks and soft places. J 

Phycol 37:659-667 

Frantz BR, Foster MS, Riosmena-Rodriguez R (2005) 

Clathromorphum nereostratum (Corallinales, Rhodophyta): 

The oldest alga? J Phycol 41:770-773 

Freiwald A (1995) Sedimentological and biological aspects in the 

formation of branched rhodoliths in northern Norway. Bei-

träge zur Paläontologie Österreichs 20:7-19 

Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith 

morphology and biogenic potential of newly discovered 

rhodolith beds in Newfoundland and Labrador (Canada). Bot 

Mar 55:85-99 

Grall J, Glemarec M (1997) Biodiversité des fonds de maerl en Bre-

tagne: Approche fonctionelle et impacts anthropiques. Vie et 

Milieu 47:339-49 

Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation 

in Brittany. Aquat Conserv 13:S55-S64 



27 

Grall J, Le Loch F, Guyonnet B, Riera P (2006) Community struc-

ture and food web based on stable isotopes (δ15N and δ13C) 

analysis of a North Eastern Atlantic maerl bed. J Exp Mar 

Biol Ecol 338:1-15 

Gunnarsson K (1977) Borugar a koralsetlogum i Amarfirdi, 

Hafransoknir 10:3-10  

Hall-Spencer JM (1998) Conservation issues relating to maerl beds 

as habitats for molluscs. J Conchol Special Publication 

2:271-85 

Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Crusta-

cea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J Mar 

Biol Ass UK 79:871-880 

Hall-Spencer JM, Bamber R (2007) Effects of salmon farming on 

benthic Crustacea. Cienc Mar 33:353-366 

Hall-Spencer JM, Grall J, Moore PG, Atkinson RJA (2003) Bivalve 

fishing and maerl-bed conservation in France and the UK –

retrospect and prospect. Aquat Conserv 13:S33-S41 

Hall-Spencer JM, Kelly J, Maggs CA (2010) Background Document 

for maerl beds. OSPAR commission  



28  

Hall-Spencer JM, Moore PG (2000) Scallop dredging has profound, 

long-term impacts on maerl habitats. ICES J Mar Sci 

57:1407-1415 

Hall-Spencer JM, White N, Gillespie G, Gillham K, Foggo A (2006) 

Impact of fish farms on maerl beds in strongly tidal areas. 

Mar Ecol Prog Ser 326:1-9 

Hauton C, Hall-Spencer JM, Moore PG (2003) An experimental 

study of the ecological impacts of hydraulic bivalve dredging 

on maerl. ICES J Mar Sci 60:381-392 

Hily C, Potin P, Floch JY (1992) Structure of subtidal algal assem-

blages on soft-bottom sediments: fauna/flora interactions and 

role of disturbances in the Bay of Brest, France. Mar Ecol 

Prog Ser 85:115-30 

Hinojosa-Arango G, Maggs C, Johnson M (2009) Like a rolling 

stone: the mobility of maërl (Corallinaceae) and the neutral-

ity of the associated assemblages. Ecology 90:517-28 

Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles. 

Volume 1 Rhodophyta Part 2B Corallinales, Hildenbran-

diales. HMSO, London 



29 

Johansen, H.W. (1981) Coralline Algae, A First Synthesis. CRC pu-

blishing USA, Florida 

Johnson MP, Edwards M, Bunker F, Maggs C (2005) Algal epi-

phytes of Zostera marina: Variation in assemblage structure 

from individual leaves to regional scale. Aquat Bot 82:12-26 

Kamenos NA (2010) North Atlantic summers have warmed more 

than winters since 1353, and the response of marine zoo-

plankton. Proc Natl Acad Sci USA 107:22442-22447  

Kamenos NA, Cusack M, Moore PG (2008) Coralline algae are 

global palaeothermometers with bi-weekly resolution. Geo-

chim Cosmochim ac 72:771-779 

Kamenos NA, Law A (2010) Temperature controls on coralline al-

gal skeletal growth. J Phycol 46:331-335 

Kamenos NA, Moore PG (2004) Maerl grounds provide both refuge 

and high growth potential for juvenile queen scallops 

(Aequipecten opercularis L). J Exp Mar Biol Ecol 313:241-

254 

Kamenos NA, Moore PG, Hall-Spencer JM (2003) Substratum het-

erogeneity of dredged vs un-dredged maerl grounds. J Mar 

Biol Ass UK 83:411-413 



30  

Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Small-scale dis-

tribution of juvenile dadoids in shallow inshore waters; what 

role does maerl play? ICES J Mar Sci 61:422-429 

Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Nursery-area 

function of maërl grounds for juvenile queen scallops 

Aequipecten opercularis and other invertebrates. Mar Ecol 

Prog Ser 274:183-9 

Kamenos NA, Moore PG, Hall-Spencer JM (2004c) Attachment of 

the juvenile queen scallop (Aequipecten opercularis (L) to 

maerl in mesocosm conditions; juvenile hábitat selection. J 

Exp Mar Biol Ecol 306:139-155 

Keegan BF (1974) The macrofauna of maërl substrates on the West 

Coast of Ireland. Cah Biol Mar 15:513-30 

Kulka DW, Simpson MR, Hooper RG (2004) Changes in distribu-

tion and habitat associations of Wolffish (Anarhichidae) in 

the Grand Banks and Labrador Shelf. Research document for 

the Canadian Science Advisory Secretariat.  



31 

Leliaert F, Boedeker C, Peña V, Bunker F, Verbruggen H, De 

Clerck O (2009) Cladophora rhodolithicola sp. nov. (Clad-

ophorales, Chlorophyta), a diminutive species from European 

maerl beds. Eur J Phycol 44:155-169  

Lemoine M (1910) Repartition et mode de vie du maërl (Lithotham-

nium calcareum) aux environs de Concarneau (Finis-

tere). Annals de L'institut Oceanographique, Monaco 1(3):1-

28 

Maggs CA (1983a) Seasonal study of seaweed communities on sub-

tidal maerl (unattached coralline algae) in Galway Bay, Ire-

land. Progress in Underwater Science 9:27-40. 

Maggs CA (1983b) A phenological study of the epiflora of two 

maerl beds in Galway Bay. Unpublished Ph.D. thesis, Gal-

way: University College, Galway, Ireland 

Maggs CA, Castilho R, Foltz D, Henzler C, Taimour J, Kelly J, Ol-

sen J, Perez KE, Stam W, Vainola R, Viard F, Wares J 

(2008) Evaluating signatures of glacial refugia for North At-

lantic benthic marine taxa. Ecology 89:S108-S122 



32  

Maggs CA, Guiry MD (1988 '1987') Gelidiella calcicola sp. nov. 

(Rhodophyta) from the British Isles and northern France. Brit 

Phycol J XX:417-434 

Maggs CA, Guiry MD (1989) A re-evaluation of the crustose red al-

gal genus Cruoria and the family Cruoriaceae. Brit Phycol J 

24:253-269 

Martin S, Clavier J, Guarini J-M, Chauvaud L, Hily C, Grall J, 

Thouzeau G, Jean F, Richard J (2005) Comparison of Zos-

tera marina and maerl community metabolism. Aquat Bot 

83:161-174 

Mendoza ML, Cabioch J (1998) Étude comparée de la reproduction 

de Phymatolithon calcareum (Pallas) Adey & McKibbin 

et Lithothamnion corallioides (P. & H. Crouan) P. & H. 

Crouan (Corallinales, Rhodophyta), et reconsidérations sur la 

définition des genres. Canadian J Bot 76:1433-1445 

Nelson WA (2009) Calcified macroalgae, critical to coastal ecosys-

tems and vulnerable to change: a review. Mar Freshwater 

Res 60:787-801  



33 

Noisette F, Duong G, Six C, Davoult D, Martin S (2013) Effects of 

elevated p CO2 on the metabolism of a temperate rhodolith 

Lithothamnion corallioides grown under different tempera-

tures. J Phycol 49:746-757 

OSPAR (2006) Case reports for the initial list of threatened species 

and/or declining species and habitats in the OSPAR region. 

OSPAR Commission 

Otero-Schmitt, J. & Pérez-Cirera, J.L. 2002. Infralittoral benthic bio-

cenoses from northern Ría de Muros, Atlantic coast of north-

west Spain. Botanica Marina 45:93-122 

Pardo, C., López, L., Peña, V., Hernández-Kantún, J.J., Le Gall, L., 

Bárbara, I. & Barreiro, L.. A multilocus species delimitation re-

veals a striking number of maërl species in the OSPAR region. 

Molecular Ecology Resources. Submitted. 

 

Peña V. (2010) Estudio ficológico de los fondos de maerl y cascajo 

en el noroeste de la Península Ibérica. Tesis Doctoral, Uni-

versidade da Coruña. 

Peña V, Adey WH, Riosmena-Rodriguez R, Yung M-Y, Choi H-G, 

Afonso-Carrillo J, Bárbara I (2011) Mesophyllum 

sphaericum sp. nov. (Corallinales, Rhodophyta): a new maërl 



34  

-forming species from the northeast Atlantic. J Phycol 

47:911-27 

Peña V, Bárbara I (2006) Los fondos marinos de maërl del Parque 

Nacional de las Islas Atlánticas (Galicia, España): distribu-

ción, abundancia y flora asociada. NACC Nova Acta Cient 

Compostel Biol 15:7-25 

Peña V, Bárbara I (2008a) Maërl community in the north-western 

Iberian peninsula: a review of floristic studies and long-term 

changes. Aquat Conserv 18:339-366 

Peña V, Bárbara I (2008b) Biological importance of an Atlantic Eu-

ropean maerl bed off Benencia Island (northwest Iberian 

Peninsula). Bot Mar 51:493-505 

Peña V, Bárbara I (2009) Distribution of the Galician maerl beds 

and their shape classes (Atlantic Iberian Peninsula); proposal 

of areas in future conservation actions. Cah Biol Mar 50:353-

368  

Peña V, Bárbara I (2010a) Seasonal patterns in the maërl community 

of shallow European Atlantic beds and their use as a baseline 

for monitoring studies. Eur J Phycol 45:327-43 



35 

Peña V, Bárbara I (2010b) New records of crustose seaweeds associ-

ated with subtidal maë rl beds and gravel bottoms in Galicia 

(NW Spain). Bot Mar 53:41-61 

Peña V, Bárbara I (2013) Non-coralline crustose algae associated 

with maerl beds in Portugal: a re-appraisal of their diversity 

in the Atlantic Iberian beds. Bot Mar In press. 

Peña V, Bárbara I, Berecibar E, Santos R (2009) Present distribution 

of maërl beds in the Atlantic Iberian Peninsula. Museologia 

scientifica e Naturalistica, volumen speciale 6th Regional 

Symposium of the International Fossil Algae Association: 

46. 

Peña V, Hernandez-Kantun JJ, Grall J, Pardo C, Lopez L, Barbara I, 

Le Gall L, Barreiro R (2014) Detection of gametophytes in 

the maerl-forming species Phymatolithon calcareum 

(Melobesioideae, Corallinales) assessed by DNA barcoding. 

Cryptogamie algol. In Press.  

Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidi-

fication on macroalgal communities. J Exp Mar Biol Ecol 

400:278–287 



36  

Potin P, Floch JY, Augris J, Cabioch J (1990) Annual growth rate of 

calcareous red alga Lithothamnion corallioides (Corallinales, 

Rhodophyta) in the Bay of Brest, France. Hydrobiologia 

204/205:263-267 

Ragazzola F, Foster LC, Form AU, Buscher J, Hansteen TH, Fietzke 

J (2013) Phenotypic plasticity of coralline algae in a High 

CO2 world. Ecol Evol 3:3436-3446 

Rico JM, Guiry MD (1997) Life history and reproduction of Gelid-

ium maggsiae sp. nov. (Rhodophyta, Gelidiales) from Ire-

land. Eur J Phycol 32:267-277 

Rix LN, Burdett HL, Kamenos NA (2012) Irradiance-mediated di-

methylsulphoniopropionate (DMSP) responses of coralline 

red algae. Est Coast Shelf Sci 96:268-72 

Rosas-Alquicira EF, Riosmena-Rodriguez R, Cuto RP, Neto AI 

(2009) New additions to the Azorean algal flora, with eco-

logical observations on rhodolith formations. Cah Biol Mar 

50:1-9 

Sauriau PG, Curti C, Jourde J, Aubert F, Cajeri P, Lavesque N, Du-

bois S, Lepareur F, Gouesbier C, Sauriau F, Sauriau M, Latry 



37 

L, Leguay D, Robert S, Pineau P, Geairon P (2012) Le maerl 

algues corallinacees marines dans les Pertuis Charentais. 

Annls Acad L Rochelle 10:281-300 

Scottish MPA Project (2013) Assessment against the MPA Selection 

Guidelines. Loch Sween possible nature conservation MPA. 

http://www.snh.gov.uk/ 

Shultze K, Janke K, Krüb A, Weidemann W (1990) The macrofauna 

and macroflora associated with Laminaria digitata and L. hy-

perborea at the island of Helgoland (German Bight, North 

Sea). Helgoländer Meeresun 44:39-51 

Sneli, JA. (1968) The Lithothamnion community in Nord-Möre, 

Norway with notes on the epifauna of Desmarestia viridis 

(Müller). Sarsia 31:69-74.  

Steller DL, Riosmena-Rodriguez R, Foster MS (2007) Sampling and 

monitoring rhodolith beds. In: Rigby R, Iken K, Shirayama Y 

(ed) Handbook for Sampling Coastal Seagrasses and 

Macroalgae Community Biodiversity. Kyoto University 

Press, Kyoto, Japan 

Strömfelt HFG (1886) Om algvegetationen vid Islands Kuster. pp. 1-

89. Göteborg: Akademisk Afhandling 

http://www.snh.gov.uk/


38  

Suneson S (1958) Lithothamnion calcareum vid svenska 

västkusten. Botaniska Notiser 111:197-199 

Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg 

D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A 

(2012) Rhodolith beds (Corallinales, Rhodophyta) and their 

physical and biological environment at 80°31′N in 

Nordkappbukta (Nordaustlandet, Svalbard Archipelago, 

Norway). Phycologia 51:371-90 

Teicherd S, Woelkerling W, Ruggeberg A, Wisshak M, Piepenburg 

D, Meyerhofer M, Form A, Freiwald A (2013) Artic rhodolith 

beds and their environmental controls (Spitsbergen, 

Norway). Facies DOI 10.1007/s10347-013-0372-2 

Whelan PM, Cullinane JP (1985) The algal flora of a subtidal Zos-

tera bed in Ventry Bay, southwest Ireland. Aquatic Botany 

23:41-51 

Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental 

tolerances of free-living coralline algae (maerl): implications 

for European marine conservation. Biol Cons 120:279-89 

 

 



39 

 

 

Figure legends  

Fig. 11.1. Distribution map and regions of interaction for unattached 

species of coralline algae in the North Atlantic. Eight species are 

represented; Lithothamnion glaciale and Phymatolithon calcareum 

are the most widespread. Interrupted lines indicate that the abun-

dance is lower than in other areas represented. Arrows indicate pos-

sible direction of distribution (information requires future verifica-

tion). 

Fig. 11.2. North Atlantic beds of maerl and rhodoliths. a) Mannin 

Bay, Ireland, pale pink Lithophyllum fasciculatum, vivid red/pink 

Phymatolithon calcareum. b) Iceland dredge sample, Lithothamnion 

glaciale. c) Galicia, Spain, Mesophyllum sphaericum. d) Dog Island, 

Northern Labrador, Canada, mix of L. glaciale and L. tophiforme.  

 

 



Table 11.1. Rhodolith/maerl-forming species of coralline algae in the Northern Atlantic. Information on classi-

fication, type locality and distribution are presented. Unverified records are not included (see Pardo et al. sub-

mitted).    

Order/Family/Species Type locality Distribution in the NE Atlantic 

Corallinales   

Corallinaceae   

Lithophylloideae   

Lithophyllum crouaniorum Foslie Berwick-upon Tweed, 

Northumberland, Eng-

land 

Azores (as L. crouanii)1 
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Lithophyllum dentatum (Kützing) 

Foslie  

Naples, Italy Ireland2 

Lithophyllum duckerae Woelker-

ling 

Sicily, Italy Cornwall, England2 

Lithophyllum fasciculatum (La-

marck) Foslie 

Unknown* Ireland2,3, France4  

Lithophyllum hibernicum Foslie  Ballynakill Harbour, 

Galway, Ireland 

Ireland2 

Mastophoroideae   



42  

Neogoniolithon brassica-florida 

(Harvey) Setchell & L.R. Ma-

son 

Algoa Bay, Cape 

Province, South Africa 

Azores1 

Spongites fruticulosa Kützing Mediterranean Sea Madeira5 

Hapalidiaceae   

Melobesioideae   

Leptophytum foecundum (Kjell-

man) Adey 

Kara Sea, Russia. Newfoundland and Labrador Canada (Adey 

pers. comm.)  

Lithothamnion corallioides 

(P.L.Crouan & H.M.Crouan) 

P.L.Crouan & H.M.Crouan 

Rade de Brest, Finis-

tère, France 

France2,5,6, Ireland2,7,8, England2, Spain9, Ma-

deira5, Canary Islands10  
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Lithothamnion glaciale Kjellman Spitzbergen, Svalbard, 

Norway. 

North Atlantic Arctic and Subarctic11,12,13,14, 

Svalvard15, Iceland16,17,18, Scandinavia19, 

Norway17,20, Britain2,21, Ireland2,21 

Lithothamnion tophiforme (Esper) 

Unger 

Julianehaab, Green-

land 

Canada11,12, Greenland12, Iceland17,18,22, Nor-

way12,17,20 

Phymatolithon calcareum (Pallas) 

Adey & McKibbin  

Falmouth, England Sweden23, Norway17, British Isles2, Ire-

land24,25,26, France27,28,29, Spain9,30, Azores4 

Phymatolithon purpureum 

(P.L.Crouan & H.M.Crouan) 

Woelkerling & L.M. Irvine 

Mingant, Brest, France Norway21, Britain and Ireland8 
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Mesophyllum sphaericum V. Peña, 

I. Bárbara, W.H. Adey, R. Rios-

mena-Rodriguez & H.G. Choi  

Benencia Island, Ria 

de Arousa, Galicia, 

Spain 

Spain31 
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