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Eco-efficiency of HYV rice cultivation after accounting for on-farm environmental 

damage as an undesirable output: An empirical analysis from Bangladesh 

Abstract 

This study computes the eco-efficiency of High Yielding Variety (HYV) rice production by 

including an on-farm environmental damage index (OFEDI) as an undesirable output using 

Data Envelopment Analysis (DEA) and then identifies its determinants by applying an interval 

regression procedure on a sample of 317 farmers from north-western Bangladesh. Results 

reveal that the mean level of the OFEDI-adjusted production efficiency, (i.e., eco-efficiency) 

is 89 percent, whereas ignoring OFEDI adjustment (i.e., with OFEDI=0) reduces the mean 

level of efficiency to 69 percent, implying that the production of undesirable output or on-

farm environmental damage induces an efficiency loss of 20 percent with significant 

differences across regions. The proportion of farmers’ income from HYV rice agriculture, 

land ownership, extension services and socio-environmental living standard are the 

significant determinants of improving eco-efficiency. Policy implications include investments 

in extension services and land reform measures to increase land ownership, which will 

synergistically improve eco-efficiency of HYV rice production in Bangladesh. 

Key Words: Eco-efficiency; Environmental damage; Undesirable output; HYV rice 

agriculture; Data Envelopment Analysis; Bangladesh. 
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Eco-efficiency of HYV rice cultivation after accounting for on-farm environmental 

damage as an undesirable output: An empirical analysis from Bangladesh 

1. Introduction 

Increasing the level of efficiency in agricultural production has been an important policy 

objective in most agrarian economies. Agricultural practices that aim to increase production 

efficiency are conditional upon limiting their adverse impacts on the farm environment. This 

situation arises because growth in agricultural productivity and its sustainability primarily 

depend on the quality and efficient management of the natural resource (capital). Korhonen 

and Luptacik (2004) indicated that the environmental impacts (undesirable output) are jointly 

produced with the desirable output of a production activity. As such, undesirable output 

should be incorporated into the economic analysis of the production performance of firms. In 

this respect for a natural resource-depleting production activity such as agriculture, it is 

important to evaluate an environmentally adjusted measure of production efficiency at the 

farm level, i.e., eco-efficiency of agricultural farms. 

Evaluating eco-efficiency in agriculture is challenging. The challenge lies in defining 

and formulating an indicator that can measure overall impact on farm environment (Binder 

and Feola, 2010), because an indicator should incorporate agricultural multi-functionality. 

While addressing agricultural multi-functionality, most studies have considered two aspects of 

agriculture in their evaluation process, i.e., farming practice-related indicators and/or farming 

system-related indicators (López‐Ridaura et al., 2005). Some studies have chosen agricultural 

emission-related environmental attributes only (Rigby et al., 2001). In addition to these, 

farmers’ environmental awareness/perception of agricultural pollution has also been indicated 

as an important socio-environmental aspect of agriculture in certain agro-ecological studies 

(Rahman, 2005). Zhen and Routray (2003) additionally emphasised analysing country-

specific agri-environmental aspects in addressing environmental sustainability and highlighted 

that developing countries would face greater challenges in this respect than those faced by 
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developed nations. In this connection, it is worth mentioning that, while evaluating eco-

efficiency incorporating farming system (or state)-related, farming practice-related and 

farmers’ perception-related environmental impacts in a composite mode would be useful. In 

previous studies, the inefficiency arising due to on-farm environmental impacts has rarely 

been segregated econometrically in farm-level efficiency analyses (Picazo-Tadeo et al., 2011; 

Berre et al., 2015) because of the challenge of incorporating all attributes into its 

measurement. 

Given this backdrop, the principal aim of this study is to evaluate on-farm eco-

efficiency, particularly HYV rice production. To this end, we first incorporate an on-farm 

environmental damage index (OFEDI) as an undesirable output alongside the desirable output 

to measurement production efficiency of a farm. We achieve these aims by first estimating 

production efficiency of the farms ignoring any environmental damage (i.e., assigning zero 

values to the OFEDI) and then re-estimate the model by adjusting with non-zero OFEDI 

values for the same set of farms. Theoretically, the first model is a conventional production 

efficiency model because the OFEDI is assumed to hold zero values which need to be 

adjusted to obtain the measure of eco-efficiency. Technically, the eco-efficiency estimate 

explains true production efficiency of a given farm when all of the farm’s undesirable outputs 

are minimised, and the gap between the OFEDI-adjusted production efficiency (eco-

efficiency) and the production efficiency with OFEDI=0 evaluates the environmental impact-

induced loss of production efficiency for a given farm. The main contribution of our study to 

the existing agro-ecological and/or productivity and efficiency literatures is that we have 

applied a comprehensive measure to evaluate on-farm environmental impacts caused by a 

given agricultural operation (i.e., HYV rice production) by using a set of 17 indicators 

selected and constructed from three main domains of impacts, i.e., means-based impacts, 

effect-based impacts and perception-based impacts (see Sections 2 and 3.1 for details on the 

critique of existing approaches and the construction of our measure, respectively). 
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The remainder of the paper is organised as follows. Section 2 provides a 

comprehensive review of the range of eco-efficiency concepts and measures. Section 3 

presents the methodology, analytical framework and the data. Section 4 presents the results. 

Section 5 provides conclusions and draws policy implications. 

2. Eco-efficiency: A brief review of concept and measures  

A variety of criteria have been used to explain the concept of eco-efficiency once it was 

recognised as a useful operational tool for sustainability analysis (Fritsch, 1995). Operational 

research on environmental management suggests a number of alternative terminologies for 

defining the environmental impact indicators to evaluate eco-efficiency. Most of these studies 

on environmental efficiency have defined and formulated environmental impact indicators as 

a denominator of measuring eco-efficiency. In agro-ecological studies on environmental 

efficiency, the notion of eco-efficiency is frequently explained in terms of agricultural aspects. 

In this context, the eco-efficiency denominator is usually denoted as the ‘undesirable output’ 

(Seiford and Zhu, 2002; Amirteimoori, et al., 2006). Picazo-Tadeo et al. (2011) analysed 

farming practice-related impacts to define the undesirable output variable and incorporated it 

into their proposed model of environmental efficiency. Graham (2009) considered effect-

based (or farming state-related) environmental impacts to evaluate the eco-efficiency of 

chemical fertiliser application on ground and surface water. Many studies have assessed on-

farm soil nutrient balance as an indicator of environmental damage in defining undesirable 

output factor in environmental efficiency models (e.g., Hoang and Alauddin, 2012). Most of 

these studies formulated the undesirable output component by using data from secondary 

sources. Pollution data of on-farm environmental attributes are often unavailable in secondary 

sources and entail greater difficulties in analysing the extent of environmental damage. In this 

respect, primary data on farm-level environmental impacts are more useful in addressing 

agriculture-environment issues, particularly for agriculture-based developing countries. 

Therefore, environmental impact indicator accounting essentially requires reconciling relevant 
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dimensions and aspects of a given production process within the context of a given country. 

Specifically, an eco-efficiency measure that incorporates important aspects of on-farm 

environmental damage in terms of an index could be effectively used as an operational tool to 

address agricultural sustainability. 

3. Methodology and data 

3.1 On-farm environmental damage index (OFEDI): The undesirable output 

This study measures the extent of farm-level environmental damage by aggregating several 

indicative environmental impact variables (Girardin et al. 1999; Bockstaller and Girardin, 

2003) to construct an on-farm environmental damage index (OFEDI). The proposed index 

incorporates three separate types of indicative variable groups: (a) production practice-related 

(means-based), (b) system (or state)-related (effect-based), and (c) farmers’ perception-related 

(perception-based) environmental impacts. A statistical additive aggregation method was 

utilised to compile and add these various indicators to produce a composite index as follows 

(Sabiha et al., 2016):  

)1(                                                                                           
1 1 1

∑ ∑ ∑
= = =
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pemi PEMOFEDI  

OFEDIi = On-farm environmental damage index of the ith farmer/farm 

Mm = Means-based indicators  

Ee = Effect-based indicators  

Pp = Perception-based indicators  

This study selected indicators that are frequently exerted by HYV rice farming on the 

environment and are widely recognised in agro-ecological studies (Alauddin and Hossain, 

2001; Rahman, 2005). A list of means-based and effect-based environmental impacts is 

prepared using previous literature on Bangladesh rice agriculture and environmental impacts. 

To select perception-based impacts, several (nine) focus group discussions (FGD) (with the 

HYV rice farmers) were conducted prior to the field survey. We then finalised perception-
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based impacts by selecting those that are mostly experienced/faced by HYV rice farmers 

while cultivating HYV rice during the previous crop year. Table 1 presents the details of the 

measurement methods and formulas used to construct these indicators. First, all raw data were 

scaled to a normalised score ranging from 0 to 1 by using an optimal range scoring function 

(Rahmanipour et al., 2014). Scores close to 1 imply a stronger environmental impact of a 

given variable. The OFEDI is then formulated by using these normalised values in Equation 

(1) for each production unit (i.e., HYV rice farms). Thus, the constructed OFEDI is defined as 

the index of undesirable output produced by HYV rice farms which is then subsequently 

added as a variable to compute eco-efficiency. A high OFEDI implies a high level of 

environmental damage. For more details on the construction procedure, see Sabiha et al. 

(2016).  

We illustrate our approach empirically by utilising a survey data of 317 HYV rice 

farmers of northern Bangladesh because, over the past few decades, the environment and 

natural resources of Bangladesh have been affected in part by agricultural pollution caused by 

the widespread use of HYV seeds in cereals, i.e., rice, wheat, and maize (Alauddin and 

Hossain, 2001). Farm-level studies have also demonstrated that Bangladesh is experiencing a 

decline in the production efficiency of rice over time (Salim and Hossain, 2006; Alam et al., 

2011) and decreasing returns to scale (Rahman, 2011), which could be explained by the extent 

of agricultural pollution and environmental factors. In addition, farmers have shown 

awareness of environmental impacts such as soil and water problems due to cultivating HYV 

rice in Bangladesh (Rahman, 2005). This provides an opportunity to measure the extent of the 

environmental impacts generated at the farm level that could explain the observation of a low 

and/or declining level of technical efficiency in HYV rice cultivation.  

We hypothesise that, in any region or in any farm, if one or several environmental 

impacts are absent, the associated indicators will hold a normalised score of 0. Other impacts 

might hold non-zero values of the normalised scores for these specific regions or farms. We 
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have taken the cumulative form of the normalised scores of these impacts. We did not weight 

individual environmental impacts because we assumed that all these impacts are equally 

important. The farmers during the FGD sessions also assigned high importance of these 

impacts. 

Table 1.On-farm environmental damage index (OFEDI): Variable description 

Indicative variables Method Formula 

Means-based impacts (MBI): 

Crop concentration Index 

(CCI) 

Herfindahl index of crop 

concentration 
∑ ≤≤= 10,

2
HIHI jα ; αj = area share 

occupied by the jth crop in A. A value 

of 0 denotes perfect diversification, 

and a value of 1 denotes perfect 

concentration. 

Soil Stress Factor (SSF) Optimal range scoring 

function: MBF 
1.0)

236

2
(9.0)( +

−

−
=

x
xf  

Hypothetical threshold range 2-36. 

(see Appendix i) 

Nitrogen Risk Factor 

(NRF) 

Applied Dose 

(NA)/Recommended Dose 

(NR). Optimal range scoring 

function: MBF if NA>NR 

1.0)
01.10.2

01.1
(9.0)( +

−

−
=

x
xf   

Hypothetical threshold range is 1.01-

2.0 

Effect-based impacts (EBI): 

Soil pH (SpH), Surface 

Water pH (SWpH), 

Ground Water pH 

(GWpH) 

Optimal range scoring 

function:  

LBF if pH<7 

)
0.49.6

0.4
(9.01)(

−

−
−=

x
xf   

Scientific threshold range is 4.0-6.9, if 

pH<7 

MBF if pH>7 
1.0)

05.75.8

05.7
(9.0)( +

−

−
=

x
xf   

Scientific threshold range is 7.05-8.5, 

if pH>7 

Soil Salinity (SSL) Optimal range scoring 

function: MBF  
1.0)

2.00.2

2.0
(9.0)( +

−

−
=

x
xf   

Scientific threshold range is 0.2-2.0 

ds/m 

Soil Compaction (SCM) Optimal range scoring 

function 

MBF 

 

1.0)
100500

100
(9.0)( +

−

−
=

x
xf   

scientific threshold range is 100-500 

psi 

Perception-based impacts (PBI): 

Soil Fertility Problem 

(SFP); Soil Water Holding 

Capacity Problem (SWH); 

Water Logging (WLG); 

Water Depletion (WDP); 

Soil Erosion (SER); Pest 

Attack Problem (PAP); 

Five-point Likert scale using agree – disagree approach. 

Likert scale scoring for perception based indicators 

 Disagree Agree 

Impact 

Interpretation 

None Very 

low 

Low Medium High Very 

high 
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Crop Diseases Problem 

(CDP); Health Impact 

(HI); Reduction in Fish 

Catch (RFC). 
 

Impact 

Weights 

(Indicator 

values) 

0 0.2 0.4 0.6 0.8 1.0 

Note: MBF means ‘more is bad for the environment function’; LBF means ‘less is bad for the 

environment function’; x is the indicator’s actual value; f(x) is the indicator’s derived impact 

score, where for every indicator score the value range is 1)(1.0 ≤≤ xf . 

 

3.2 Incorporating undesirable output into the eco-efficiency model 

Eco-efficiency, which entails the idea of producing maximum outputs using minimum inputs 

while reducing on-farm environmental impacts, could provide important information for 

decision making vis-à-vis improving environmental performance. Many researchers have 

recommended the use of data envelopment analysis (DEA) to measure the eco-efficiency of a 

given production activity (e.g., agriculture) (Poit-Lepetit et al., 1997; Hoang and Alauddin, 

2012). DEA not only allows for the measurement of environmental efficiency but also 

examines the nature and causes of environmental inefficiencies (i.e., bad environmental 

performance) (Tyteca, 1996). Korhonen and Luptacik (2004) noted that DEA provides in-

depth insight into the causes of eco-inefficiencies when a pollutant is included as an 

undesirable output in an analysis. Cooper et al. (2011) identified that DEA could successfully 

reduce errors in efficient frontier estimation. Therefore, estimating eco-efficiency by applying 

DEA can effectively summarise different environmental impacts and allow decision-making 

units to arrive at an environmentally sustainable production decision, as performed in this 

study. Generally, three categories of factors, i.e., desirable outputs, undesirable outputs (i.e., 

environmental impacts) and inputs, are considered when formulating a DEA model intended 

to evaluate environmental performance (Cherchyey et al., 2013).  

This study therefore proposes an efficiency model that assumes that there are I 

homogeneous farms (i.e., HYV rice farms) consuming J inputs for producing outputs R (i.e., 

HYV rice grown in three seasons: Aus (pre-monsoon), Aman (monsoon), and Boro (dry 

winter). The outputs corresponding to indices {1…Z} are desirable (good) outputs, and the 
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outputs corresponding to indices {Z+1, Z+2,…R} are undesirable (bad) outputs, i.e., MBI, 

EBI and PBI (Table 1). These undesirable output indices correspond to the OFEDI when 

aggregated cumulatively using Equation 1. The proposed efficiency model (Equation 2) 

represents all outputs as a positive weighted sum and uses negative weights for undesirable 

outputs. The model assumes that the ith  farm produces g
riy  units of desirable output (i.e., the 

HYV rice) and b
siy  units of undesirable output (i.e., the OFEDI) by using jix  units of jth  

input. First, we estimate the ECE Model without adjusting the undesirable output as expressed 

by Equation 2 (i.e., assuming OFEDI = 0 values for all farms). It is worth mentioning that 

assuming OFEDI = 0 does not mean HYV rice cultivation is releasing zero (no) 

environmental impact, rather it means the model is not adjusting any environmental impacts. 

Theoretically this efficiency score can be considered conventional production efficiency 

(denoted as ECED0). We then run a separate DEA that measures eco-efficiency (ECED+), by 

assigning non-zero values of the OFEDI (the index of undesirable outputs) to the same ECE 

Model (Charnes et al., 1994; Korhonen and Luptacik, 2004). Other outputs (rice) and inputs 

are of the same type and number as before. Thus, we consider equal numbers and the same 

types of inputs and outputs for both versions of the ECE. Therefore, solving Equation 2 twice 

in this manner would result in a pair of efficient frontiers that measure ECED0 and ECED+ 

scores. Because ECED0 can be considered as the conventional production efficiency (without 

adjusting environmental damage) and ECED+ eco-efficiency (with adjusting for environmental 

damage), the loss of production efficiency due to agricultural pollution can be explained by 

analysing the gap between these two efficiency frontiers (ECED0 as the lower bound and 

ECED+ as the upper bound). Seiford and Zhu (2002) also explained that when an undesirable 

output is incorporated into the eco-efficiency model, the efficiency level will be higher than 

the efficiency measure that does not incorporate any undesirable output (e.g., environmental 

impact), as also noted in other studies (e.g., Korhonen and Luptacik, 2004). Korhonen and 
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Luptacik, (2004) showed that technical efficiency scores are lower than eco-efficiency scores 

(in some cases, the scores could be equal, where technical efficiency is ‘1’). Because 

theoretically we are minimising the undesirable output or adjusting environmental impact, the 

efficiency level should be higher than that which minimises zero (no) amount of undesirable 

output. The use of an undesirable output as an index to measure eco-efficiency is reported in a 

number of DEA studies (e.g., Amirteimoori, et al., 2006; Picazo-Tadeo, et al., 2011; Hoang 

and Alauddin, 2012). The model we adapted in our study was explained by Korhonen and 

Luptacik, (2004). Equation 2 is essentially a standard input-oriented DEA, provided that the 

undesirable outputs behave like inputs such that the HYV rice farms simultaneously reduce 

inputs and undesirable outputs to increase eco-efficiency (ECE) (Seiford and Zhu, 2002; 

Amirteimoori et al., 2006). In this study, an input-oriented constant return to scale (CRS) 

multi-stage DEA was applied to run the ECED0 and ECED+ versions of the basic ECE model 

using DEAP 2.1 software.  
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3.3  Determinants of eco-efficiency: An application of interval regression model  

An interval regression model is used when the interval within which each observation of the 

outcome variable falls is known although the exact value of the observation remains unknown 

(Manski and Tamer, 2002). This study used the interval regression model to identify the 
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determinants of the expected level of eco-efficiency because (i) there are two sets of observed 

efficiencies for a given HYV rice farm: (a) the ECED0 at which the undesirable output 

component holds zero value 0by , which is to be subtracted or adjusted from the desirable one 

and defines the lower bound of the expected eco-efficiency, and (b) the ECED+ at which the 

undesirable output component holds some positive value +by , which is to be subtracted or 

adjusted from the desirable one and defines the upper bound of the expected eco-efficiency; 

and (ii) this study uses DEA, a relative performance measurement approach that analyses best 

practice frontiers and hence measures relative efficiencies instead of the actual efficiency. 

Therefore, it is hypothesised that the expected value of eco-efficiency for a given HYV rice 

farm would lie within these threshold efficiency values derived from ECED0 as a lower bound 

and ECED+ as an upper bound.  

Among the latent variable interval regression models, this study employed the 

following linear model as applied by Stewart (1983):  

)3(                                                                                                                           *

iii Xy εβ +=  

where only the interval threshold (i.e., ECED0 and ECED+) containing the dependent variable 

*
iy  (expected eco-efficiency) is observed, iX  denotes a vector of explanatory variables and 

iε  are independently and identically distributed random disturbances. If all possible 

realisations of y  are partitioned into J different intervals, then we observe that jyi =  if  

)4(                                                                                                                         *

1 jij AyA ≤≤−  

where 1−jA  and jA  are the lower (ECED0) and upper (ECED+) thresholds, respectively, for the 

ith farm. Eight explanatory variables were selected to explain the expected eco-efficiency of a 

given HYV rice farm: farmers’ education, age, access to extension services, HYV rice 

cultivation experience, land ownership, share of income from HYV rice agriculture in total 
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income, number of earning members, and socio-environmental living standard. This choice of 

variables is justified as follows.  

Farmers’ education, age, access to extension services and cultivation experience are 

hypothesised to be directly related to improving the expected eco-efficiency and productivity 

of rice cultivation (Rahman and Salim, 2013). The land ownership status and agricultural 

income share of the HYV rice farmers are considered two important factors that could help 

achieve the expected level of eco-efficiency (Alam et al., 2011). The share of earning 

members in the family as a proxy for subsistence pressure could also be used to explain the 

expected eco-efficiency because increasing the proportion of earning member would 

potentially reduce the subsistence pressure, which in turn would positively influences eco-

efficiency. As an indicator of environmental consciousness, farmers living standard is 

emphasised in this study, wherein the indicator is analysed in terms of the household pollution 

index (Estoque and Murayama, 2014). Farmers, who use environmentally friendly energy 

sources for household use, properly dispose of household waste and use a healthy sanitation 

system and sources of pure water for drinking are assumed to be conscious of environmental 

pollution. Such socio-environmental living standards (see Appendix ii for construction 

details) would not only reflect farmers’ environmental consciousness but also help realise the 

expected level of eco-efficiency in farm production.  

3.4 Study area and the data 

Primary data on the production and environmental impacts of HYV rice agriculture were 

collected by conducting a survey in three north-western regions of Bangladesh, i.e., Rajshahi, 

Pabna and Natore regions, which are generally suitable for HYV rice cultivation. Climate 

conditions and physiographic characteristics are similar among these regions. These regions 

belong to physiographic unit 8, i.e., the Ganges River Floodplain, which is identified as 

suitable for crops and has no major cultivation difficulties (Alauddin and Hossain, 2001). The 

agro-ecological zones (AEZs) that belong to these regions comprise land levels that are 
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mostly suitable for irrigation-fed HYV crops (e.g., rice and wheat). Most parts of these 

regions have neutral to slightly reactive soil properties and silty clay loams, which are 

favourable to rice cultivation. HYV rice is cultivated as one of the major grains in these 

regions. This variety of rice cultivation has also been following increasing trends as one of the  

popular rice varieties in these regions over the past five crop years (Bangladesh Bureau of 

Statistics: BBS 2009-13, Annual Reports on Estimates of Bangladesh Rice Crop).  

           Three unions from each of these regions were randomly chosen to select farm 

households. The list of registered rice farm households was collected from the respective 

Union Agriculture Extension Offices (UAEOs). Next, a random sampling procedure was used 

to select 317 HYV farm households for the survey. The sample size was calculated following 

the method reported by Bartlett et al. (2001). The survey was conducted to investigate the 

extent of environmental impacts of HYV rice cultivation for the crop year October 2012 to 

September 2013. The first author organised and conducted the survey with graduate students 

of Rajshahi University using face-to-face interviews. The survey was conducted from October 

2013 to December 2013.  

 

 

 

 

 

 

 

 

 

 

Figure 1 Map of survey areas 

 

  

Study regions 
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Figure 1 Map of the survey areas. 

4. Results 

4.1 Summary statistics of the variables 

Table 2 describes the data on production factors used for modelling ECED0 and ECED+ 

and the summary statistics of the farmers’ socio-economic and socio-environmental attributes. 

Table 3 presents the environmental impact values, which are the normalised scores of the raw 

values collected during the survey. On average, farms of the Rajshahi region produce HYV 

rice output valued at BDT1 137292 per hectare of land, whereas the OFEDI (the undesirable 

output) is computed to be 6.83. By comparison, farms of the Pabna region produce the lowest 

OFEDI of 6.53 and realise the highest level of output value (Table 2). The highest OFEDI 

occurs in Natore (6.99). Soil erosion, crop disease and the associated health impacts, reduction 

of fish catch and intensive monoculture practices (expressed by the crop concentration index) 

are some of the major environmental impacts and therefore increase the undesirable output of 

this region (Table 3). In Rajshahi, the reduction in the water holding capacity of the soil was 

ranked as the top impact, followed by crop concentration index, crop disease and pest attack 

problems. Along with a high crop concentration index, Pabna farms generated a greater 

amount of health impacts (HIs) from farm chemicals and experienced difficulties in managing 

the soil compaction problem (SCM), which affected the OFEDI of this region.  

 

Table 2. Mean values of inputs, outputs, determinant variables 

 

Name and description Rajshahi Pabna Natore 

AGE [Age (years)] 47.46 52.65 46.24 

EDU [Education: schooling years] 6.52 7.08 7.86 

EARN [Proportion of earners in the family] 0.68 0.71 0.67 

AGIN [Agriculture-income share: income from HYV rice 

agriculture/total income from other agriculture and off farm per 

month] 

0.67 0.71 0.53 

EXP [HYV rice cultivation experience years] 14.3 15.3 14.9 

EXTN [Extension service taken in last crop year (1 if yes; 0 

otherwise)] 

0.11 0.30 0.192 

                                                           

1
 BDT is the currency of Bangladesh. USD 1 equivalent to 78.25 BDT (on 27th January 2016)  
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LNDW [Share of self-owned land: self-owned/total land holdings] 0.90 0.99 0.79 

SELI [Socio-Environmental Living Index] 0.74 0.79 0.71 

Desirable output value [BDT per hectare] 137292 149556 145293 

Chemical fertiliser [Kg per hectare] 583 447 548 

Pesticide [Kg per hectare] 11 9 14 

Irrigation cost [BDT per hectare] 13951 11257 15694 

Seed cost [BDT per hectare]  15445 3774 4151 

Tilling cost [BDT per hectare] 6059 4123 6187 

Labour cost [BDT per hectare] 40467 35814 47116 

Land rental value [BDT per hectare] 43353 75259 37612 

OFEDI [Undesirable output] 6.83 6.53 6.99 
Source: Field survey, 2013 

 

4.2 Eco-efficiency results 

Table 4 presents the ECED0 and ECED+ scores for HYV rice farms across the study regions. 

The overall mean ECED0 of HYV rice farms is 69 percent, which implies that 31 percent 

inefficiency in HYV rice production still remains. These results are similar to those reported 

in other studies on Bangladesh HYV rice agriculture (e.g., Rahman, 2011; Salim and Hossain, 

2006). Rahman (2011) noted that the mean level of technical efficiency of self-selected 

modern rice farmers is 82 percent, whereas Salim and Hossain (2006) observed a value of 64 

percent. Both studies noted a substantial scope for improving technical efficiency with the 

reallocation of available resources and existing technologies. The present study successfully 

addresses that scope of improvement by measuring the environmentally adjusted productive 

efficiency (or eco-efficiency). The results show that the overall mean ECED+ score is 89 

percent, which implies that an average improvement of 20 percent in production efficiencies 

could be realised by minimising on-farm environmental damage (or undesirable output) 

caused by HYV rice cultivation, which is substantial. Because Bangladesh is a resource-

constrained developing country, improving the production efficiency of HYV rice agriculture 

by an average of 20 percent by reducing on-farm environmental damage could exert a 

substantial impact on the farming communities of the country. Nevertheless, the HYV rice 

agriculture in Bangladesh is considerably eco-inefficient because 11 percent of inefficiency 

still exists even after minimising farm-level environmental impacts or reducing undesirable 
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outputs. Picazo-Tadeo et al. (2011) also noted that eco-efficiency is closely related to 

technical efficiency in production and that the farmers are quite eco-inefficient with respect to 

certain environmental pressures created by farming activities. Table 4 clearly shows that in 

regions where the on-farm environmental impact is lower, the desirable output is higher and 

environmental damage-induced loss of production efficiency of the farm is lower. For 

instance, on average, farms of the Pabna region realised smaller losses of production 

efficiency (12 percent, where the OFEDI is 6.53) than those of the Rajshahi (22 percent, 

where the OFEDI is 6.83) and Natore (25 percent, where the OFEDI is 6.99) regions. This 

discrepancy might be due to the fact that farmers of the Pabna region applied farm chemicals 

to a lower extent and extracted smaller amounts of irrigation water and other inputs of 

production than farmers of the Rajshai and Natore regions (Table 2). These results imply that 

an increased level of eco-efficiency that minimises on-farm environmental impacts would 

help enhance rice production (Picazo-Tadeo et al., 2011). Significant variations in losses of 

on-farm production efficiency across regions due to the production of undesirable outputs are 

also indicated by ANOVA statistics (Table 4). Differences in using intensive agricultural 

technologies among farms and topographical features might cause such variations in 

production inefficiency. 

 

Table 3. Ranks of mean environmental impact indicator scores by study regions a 
 

Impact Variables Rajshahi Pabna Natore All region 

CCI (crop concentration index) 0.80 (2) 0.90 (1) 0.69 (5) 0.80 (1) 

CDP (crop diseases problem) 0.80 (3) 0.69 (5) 0.77 (3) 0.76 (2) 

RFC (fish catch reduction problem) 0.75 (5) 0.70 (4) 0.73 (4) 0.72 (3) 

SCM (soil compaction) 0.67 (6) 0.72 (3) 0.58 (6) 0.66 (4) 

SER (soil erosion) 0.15 (14) 0.67 (6) 0.90 (1) 0.56 (5) 

HI (health impact) 0.19 (13) 0.73 (2) 0.80 (2) 0.56 (6) 

PAP (pest attack problem) 0.75 (4) 0.39 (7) 0.42 (7) 0.53 (7) 

SWH (soil water holding capacity problem) 0.84 (1) 0.19 (12) 0.09 (17) 0.39 (8) 

SFP (soil fertility problem) 0.49 (7) 0.34 (9) 0.29 (9) 0.38 (9) 

SSL (soil salinity) 0.20 (11) 0.36 (8) 0.35 (8) 0.30 (10) 

SWpH (surface water pH) 0.24 (10) 0.22 (11) 0.26 (12) 0.24 (11) 
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GWpH (ground water pH) 0.20 (12) 0.27 (10) 0.26 (13) 0.24 (12) 

SSF (soil stress factor) 0.25 (9) 0.17 (13) 0.28 (11) 0.23 (13) 

NRF (nitrogen risk factor) 0.31 (8) 0.08 (17) 0.23 (14) 0.21 (14) 

WLG (water logging problem) 0.10 (17) 0.10 (15) 0.29 (10) 0.16 (15) 

WDP (water depletion) 0.14 (15) 0.12 (14) 0.21 (15) 0.15 (16) 

SpH (soil pH) 0.13 (16) 0.09 (16) 0.17 (16) 0.14 (17) 
a Rank orders are presented in the parenthesis. 

Note: Mean values close to ‘1’ imply highest impact (environmental problem).  

Source: Field survey, 2013 

 

 

Table 4. Eco-efficiency scores 

 

 Rajshahi Pabna Natore All region 

ECED0 ECED+ ECED0 ECED+ ECED0 ECED+ ECED0 ECED+ 
Mean  0.66 0.88 0.81 0.93 0.61 0.86 0.69 0.89 

Std. Dev 0.20 0.11 0.11 0.06 0.18 0.12 0.18 0.11 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Min 0.05 0.59 0.56 0.796 0.16 0.55 0.05 0.55 

Loss in productive 

efficiency (mean 

ECED+- mean ECED0) 

      0.22  

 

       0.12 

 

        0.25 

 

    0.20 

 

Number of Farms 113 101 103 317 

Efficiency range Percentage of the sample farms 

0-0.30 6.19 0 0 0 0.97 0 2.52 0 

0.31-0.50 23.89 0 0 0 28.15 0 17.03 0 

0.51-0.70 35.39 8.85 19.80 0 40.77 13.59 32.17 7.57 

0.71-0.90 28.32 45.13 57.42 41.58 20.38 43.69 35.01 43.53 

0.91-1.00 7.96 46.02 22.77 58.42 9.70 42.72 13.24 48.89 

Region-wise ANOVA of environmental impact-induced loss in productive efficiency 

Source of variation SS df MS F P-value Critical value of F 

Between groups 1.15 2 0.57 
22.72 0.000 3.024 

Within groups 7.94 314 0.03 
   

Total 9.08 316     

Source: Authors’ calculation 

 

 

4.3 Determinants of expected eco-efficiency 

Table 5 presents the parameter estimates of the interval regression model used to identify the 

determinants of expected level of eco-efficiency for HYV rice farms in Bangladesh. Results 

of the LR test confirm that the explanatory variables, as a group, contribute significantly 
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towards explaining the variation in expected eco-efficiency. Results revealed that extension 

services and land ownership are the most significant determinants, similar to the finding of 

Picazo-Tadeo et al. (2011) that receiving agricultural extension services improves eco-

efficiency. Berre et al. (2015) noted that land ownership appeared to be positively related to 

eco-efficiency. Alam et al. (2011) also noted that owner operators are more technically 

efficient than tenants. Farmers who cultivate on owned land and access extension services 

frequently are more likely to follow environmentally friendly land management practices and 

exert substantial control over generating adverse environmental impacts. The proportion of 

farmers’ income from HYV rice agriculture is significantly positively related to the expected 

level of eco-efficiency which confirms lack of income share from HYV rice agriculture 

restricts the scope to increase expected eco-efficiency.  

In exploring determinants of farm-level eco-efficiency, Picazo-Tadeo et al. (2011) 

noted that conventional socio-economic variables can barely explain variations in eco-

efficiency. The present study also found that some of the most commonly used socio-

economic determinants, e.g., farmers’ education, age and experience, showed the desired 

positive sign but were statistically insignificant. Picazo-Tadeo et al. (2011) noted farmers’ 

education level as a significant determinant of improving eco-efficiency in farming. Education 

helps farmers improve their environmental awareness (Rahman, 2005) and makes them 

conscious of using environment-depleting inputs. Following Estoque and Murayama (2014), 

we found that farmers’ socio-environmental living index was one of the important 

determining factors. Estoque and Murayama (2014) suggested that social-ecological status can 

be used as an important factor in determining natural resource management and 

environmental performance. The farmers’ socio-environmental index (SELI) was found to be 

statistically significant and positively related to the expected eco-efficiency, implying that 

environmentally conscious farmers, who live a better, environmentally friendly life style and 

release less household pollution, would improve their eco-efficiency in farming.  
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Table 5. Determinants of the expected eco-efficiency in Bangladesh HYV rice 

farms 

 

 Dependent variable 1 ECED0 

Dependent variable 2 ECED+ 

Explanatory variables Coefficients Std. Err. Prob. values 
Constant 0.5344*** 0.741 0.000 

AGE 0.00064 0.006 0.313 

EDU 0.00918 0.001 0.606 

EARN 0.01847 0.057 0.784 

AGIN 0.07063*** 0.024 0.004 

EXP 0.05887 0.036 0.110 

LNDW 0.03467** 0.188 0.065 

EXTN 0.05651*** 0.014 0.000 

SELI 0.11123** 0.057 0.054 

Log-likelihood - 360.86   

LR chi2(8df)  40.28***  0.000 

Number of observations: 317 (Uncensored observations: 23; Interval observations: 294) 

Source: Authors’ calculation 

 

5. Conclusions and policy implications 

The principal aim of this study was to measure the eco-efficiency of HYV rice agriculture to 

evaluate the prospect of agricultural sustainability based on a survey of 317 HYV rice farmers 

from three regions of north-western Bangladesh. To this end, an on-farm environmental 

damage index (OFEDI) was computed by incorporating three groups of environmental 

indicators (i.e., farming practice-related, farming system-related and farmer’s perception-

related indicators), which were then added as an undesirable output in conventional 

production efficiency modelling. Therefore, the environmentally adjusted production 

efficiency (or eco-efficiency, ECED+) was evaluated for the set of surveyed farm units, 

whereas conventional production efficiency scores were computed without adjusting for 

environmental damage (i.e., by assigning zero values for OFEDI variable, ECED0). Results 

revealed that, given the available resources and existing technology, 20 percent of the 

production efficiency of HYV rice farming is lost by generating on-farm environmental 

damage or producing undesirable outputs. In addition, the environmental impact-induced loss 

of production efficiency was found to be higher in regions where environmental damage is 

higher, which is consistent with the assertion of Poit-Lepetit et al. (1997), who noted that in 
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the presence of an external impact (e.g., environmental damage) generated by the use of a 

particular production technology, technical efficiency could decrease persistently and initiate 

further means of increasing external impacts.  

Results further revealed that improvements in the expected level of eco-efficiency, i.e., 

minimising on-farm environmental damage, are significantly related to farmers’ socio-

economic and socio-environmental attributes. These attributes include access to extension 

services, ownership of agricultural land, income share from HYV rice agriculture and socio-

environmental living standard. 

The main policy implication that can be drawn from this study is that there is a 

substantial scope for increasing production efficiency in HYV rice farming by minimising on-

farm environmental damage or the production of undesirable outputs. These goals can be 

achieved by making investments in improving farmers’ socio-environmental living standard, 

extension services and land reform measures aimed at improving land ownership among 

farmers, thereby encouraging farmers to remain in agribusiness, which would increase 

incomes from agricultural sources and synergistically improve the expected level of eco-

efficiency. 

The approach used in this study can also be replicated, with minor adjustments, for 

evaluating other agricultural activities. The OFEDI used in this study to measure eco-

efficiency represents a comprehensive method for incorporating a wide range of dimensions 

into a single index that provides an indication of potential threats in realising agriculture 

sustainability. The estimated eco-efficiency scores could be considered the most cost-effective 

measures for minimising the on-farm environmental impacts of HYV rice agriculture in 

Bangladesh. Moreover, comparative analyses of the eco-efficiency scores (i.e., ECED0 and 

ECED+) would assist agro-ecological researchers and policy makers to adopt policies by 

providing them information for targeting factors that contribute directly to efficiency 
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improvements while promoting the goal of achieving environmental sustainability in 

agriculture.  

This study considers only on-farm environmental impacts and farm-level productivity 

of HYV rice agriculture, hence scopes remain for future research dealing with off-farm 

environmental impacts of high yielding variety crop agriculture, such as impact on beneficiary 

pest, extinction of bird species around the farm area/region etc.   
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Appendix 

i) The raw data value of the SSF is calculated as follows: 

r
t

tiSSF ×∑
=

= ]
3

1
[  

where, t=Weighted value of the tilling machine; [t=Bullock (value 1); Power tiller (value 2); 

Tractor (value 3).] and r=Number of tilling for land preparation; [r=2……6]. Therefore, the 

theoretical maximum value of the soil stress factor due to tilling practice is 36 [sum of all 

weights (1+2+3=6) multiplied by the highest number of tilling found in the survey (i.e., 6)], 

whereas the minimum value of SSF is 2 [minimum weight for tilling method used (i.e., 1) 

multiplied by the minimum number of tilling observed in the survey (i.e., 2)]. 

ii) Socio-Environmental Living Index (SELI): 

SELI is computed by the weighted sum of farmers’ socio-environmental living attributes 

expressed below in Table A1. SELI values close to 1 imply that farmers have better 

environmentally friendly living standards, whereas values close to 0 indicate otherwise. 

Table A1 Environmentally friendly activity weights (Ew) 

 

Attributes (r) (1)least (2)good (3)better (4)best 

1. House 

Category 

Clay  Straw  Half-concrete  Full-concrete  

2. Sanitation Open place  Temporary 

Latrine  

Sanitary Latrine 

(without water 

seal)  

Sanitary Latrine 

(with water seal) 

3. Access to 

Health 

Facility 

Village Doctor Health Centre Clinic Hospital 

4. Drinking 

Water Source 

Pond/River Well Supply Deep Tube well 

5. Household 

Energy 

Source 

Timber/Straw/Cow 

dung/Dried 

leafs/Kerosene 

Electricity Bio-gas/Natural 

gas 

Solar power 

6. Waste 

Disposal 

No Specific place 

to dispose 

Burnt Buried Specific place/ 

Waste Bin 
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∑
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=
r

rEwiSELI  

 


