Temporal fluctuations in seawater pCO_2 may be as important as mean differences when determining physiological sensitivity in natural systems

Daniel P. Small1*, Marco Milazzo2, Camilla Bertolini3, Helen Graham4,5, Chris Hauton6, Jason M. Hall-Spencer7, and Samuel P. S. Rastrick6,8

1Biology Department, St Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, NS, Canada B2G 2W5
2Department of Earth and Marine Science, Università degli studi di Palermo, CoNISMa, Via Archirafi 20, I-90123 Palermo, Italy
3School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK
4School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
5Unilever Environment, Postboks 7810, 5020 Bergen, Norway
6Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3QE, UK
7Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
8Institute of Marine Research, PO Box 1870 Nordness, 5870 Bergen, Norway

*Corresponding author: e-mail: dsmall@stfx.ca

Received 13 June 2015; revised 9 November 2015; accepted 10 November 2015; advance access publication 8 December 2015.

Most studies assessing the impacts of ocean acidification (OA) on benthic marine invertebrates have used stable mean pH/pCO_2 levels to highlight variation in the physiological sensitivities in a range of taxa. However, many marine environments experience natural fluctuations in carbonate chemistry, and to date little attempt has been made to understand the effect of naturally fluctuating seawater pCO_2 (pCO_2sw) on the physiological capacity of organisms to maintain acid–base homeostasis. Here, for the first time, we exposed two species of sea urchin with different acid–base tolerances, Paracentrotus lividus and Arbacia lixula, to naturally fluctuating pCO_2sw conditions at shallow water CO2 seep systems (Vulcano, Italy) and assessed their acid–base responses. Both sea urchin species experienced fluctuations in extracellular coelomic fluid pH, pCO_2, and $[HCO_3^-]$ in line with fluctuations in pCO_2sw. The less tolerant species, P. lividus, had the greatest capacity for $[HCO_3^-]$ buffering in response to acute pCO_2sw fluctuations, but it also experienced greater extracellular hypercapnia and acidification and was thus unable to fully compensate for acid–base disturbances. Conversely, the more tolerant A. lixula relied on non-bicarbonate protein buffering and greater respiratory control. In the light of these findings, we discuss the possible energetic consequences of increased reliance on bicarbonate buffering activity in P. lividus compared with A. lixula and how these differing physiological responses to acute fluctuations in pCO_2sw may be as important as chronic responses to mean changes in pCO_2sw when considering how CO2 emissions will affect survival and success of marine organisms within naturally assembled systems.

Keywords: acid–base balance, natural variability, ocean acidification, sea urchin, volcanic vents.
Natural variability in pCO2 and acid–base balance

Introduction
Most studies investigating the effects of elevated pCO2 associated with ocean acidification (OA) on marine invertebrates have focused on stable mean differences in seawater pCO2 (pCO2sw). Such studies have indicated a range of variability in tolerances to elevated pCO2 between species and phyla (e.g. Harvey et al., 2013; Kroeker et al., 2013), which drive shifts in species distributions along natural pCO2sw gradients (e.g. Calosi et al., 2013a, b). To understand species responses to elevated pCO2, we need to know how organisms tolerate natural variations in carbonate conditions (Hofmann et al., 2011). While large areas of Open Ocean vary little in seawater pCO2 and pH, wide fluctuations occur in coastal marine habitats (e.g. Price et al., 2012; Reum et al., 2014). Upwelling systems, such as the eastern Pacific, have relatively high pCO2 levels and aragonite under-saturation (Manzello, 2010; Harris et al., 2013). Although nearshore carbonate chemistry has wide seasonal (Hauri et al., 2012; Harris et al., 2013) and daily fluctuations (Hofmann et al., 2011), the underlying trend is for increasing CO2 enrichment and aragonite under-saturation due mainly to burning fossil fuels (IPCC, 2013). In some instances, coastal systems, such as those in fjords and estuaries, can exceed mean atmospheric CO2 due to high respiration rates in organic-rich conditions (Borges and Abril, 2011; Reum et al., 2014). In addition to carbon flux from coastal respiration, photosynthesis and calcification can also drive short-term fluctuations in pCO2, pCO2sw, pH, and total alkalinity (e.g. Truchot and Duhamel-Jouve, 1980; Mucci et al., 2011). As our understanding of nearshore carbonate chemistry increases, we must take this into account when selecting the appropriate pCO2 levels in OA experiments (Andersson and Mackenzie, 2012; McElhaney and Busch, 2013; Reum et al., 2014).

Understanding how organisms cope with their current environment can provide valuable insights into how species will respond to future OA. Specifically, the fluctuations in pCO2 experienced by coastal species in many habitats are far greater in magnitude than the predicted long-term increase in mean CO2 due to OA (Hofmann et al., 2010; Joint et al., 2011). Gaining a better understanding of the effect of fluctuating carbonate chemistry on marine organisms may provide basic insights into variations in OA tolerance found in physiological observations (Dupont and Portner, 2013).

The ability to maintain extracellular homeostasis is important in determining tolerance to elevated pCO2sw (Whiteley, 2011). Most organisms are able to regulate their extracellular pH through acid–base buffering mechanisms, but this can be energetically costly (Portner et al., 2004). Differences in extracellular pH regulatory capabilities and the ability to regulate metabolic rates between species indicate that certain taxa, e.g. teleost fish, brachyuran crustaceans, and cephalopod molluscs, will be more tolerant of elevated pCO2 than others, including bivalve molluscs and echinoderms (Melzner et al., 2009). Interspecies variability of acid–base regulation capabilities in closely related and/or co-habiting species may underpin comparative sensitivities to OA (e.g. Pane and Barry, 2007; Bressan et al., 2014), which are important if we are to predict community and ecosystem responses to OA. It has been recognized that species living in distinctly different pCO2 environments have differences in acid–base regulatory capabilities, for example, shallow water species are more able to compensate for acid–base disturbances than deep-water species (Pane and Barry, 2007). While such studies demonstrate variations in acid–base regulatory capabilities within phyla, they do not reveal the community or ecosystem effects of differing species sensitivities. It is these differences in sensitivities to elevated pCO2 which drive decreases in species richness and increased dominance of tolerant species at naturally acidified vent sites (Kroeker et al., 2011).

Understanding how closely related species living in the same habitat deal with natural pCO2 conditions would form a basis to our understanding of how communities will be affected by future climate change. Differences in physiological regulatory capabilities have been suggested to drive differences in distribution patterns between closely related species across natural gradients in pCO2sw, such as those found at volcanic CO2 vent sites (e.g. Suttle et al., 2012; Calosi et al., 2013a, b). However, to date, all such studies on comparative growth and physiology have focused on chronic mean differences in pCO2sw (e.g. Suttle et al., 2012; Calosi et al., 2013a, b), despite pCO2sw at vent sites exhibiting considerable variation within the space of hours to days (Boatta et al., 2013). To date, we have little understanding of how short-term natural fluctuations in pCO2sw affect animal acid–base regulation and so distribution at vent sites. An example of this can be seen in the distributions of the sea urchin species used in the present study, Arbacia lixula and Paracentrotus lividus, at the CO2 vent sites off Isola Vulcano (Sicily, Italy). Despite a greater capacity for bicarbonate buffering in response to stable elevated pCO2sw, P. lividus decreases in population density at higher pCO2sw closer to the vent sites compared with A. lixula (Calosi et al., 2013a). This indicates that the ability to buffer stable increases in mean pCO2sw, via increased [HCO3−] is not the primary physiological response driving distribution at the vent sites. The present study investigates the hypothesis that for species such as P. lividus, an increase in acute natural fluctuations in pCO2sw may pose as great or a greater challenge to maintaining acid–base regulation as chronic mean elevations in pCO2sw due to the constant need to up- or down-regulate possibly costly bicarbonate buffering responses. Changes in the distribution of related species across present natural pCO2sw gradients at volcanic seep sites, or, in response to future climate change may have as much to do with physiological responses to increased acute fluctuations in pCO2sw as with chronic mean elevations in pCO2sw.

To test this hypothesis, P. lividus and A. lixula collected from control areas were exposed to acute natural fluctuations in pCO2sw generated by the volcanic CO2 vent. The coelomic fluid acid–base balance (pHco2, pCO2co2, and [HCO3−]co2) of P. lividus and A. lixula was measured every 6 h over the course of 4 d (90 h, total of 16 time points) in an attempt to understand the effect of fluctuating pCO2sw conditions on the distribution of A. lixula compared with P. lividus. Individual responses in acid–base parameters to changes in pCO2sw were determined along with differences in bicarbonate and non-bicarbonate buffering capacity between the two species. Bicarbonate and non-bicarbonate buffering capacity were determined by davenport models where bicarbonate buffering is indicated by increases in [HCO3−]above the non-bicarbonate buffer line (NBL) and changes in non-bicarbonate buffering are indicated by changes in the slope of the NBL. Changes in non-bicarbonate buffering were also linked to changes coelomic fluid protein concentration.

Material and methods
Animal collection
On 18 May 2013, A. lixula and P. lividus (n = 18 per species) were collected from a 2–3 m depth in Ponente Bay, Vulcano well away from the effects of seabed CO2 vents (coordinates = 38° 25.185’N, 14° 57.074’E). Sea urchins were immediately transported in fully
Table 1. Seawater chemistry throughout the exposure period, measured in the experimental tanks at each time point (means ± s.e.).

<table>
<thead>
<tr>
<th>Seawater parameter</th>
<th>Control treatment</th>
<th>Fluctuating treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (NBS)</td>
<td>8.04 ± 0.01*</td>
<td>7.72 ± 0.07*</td>
</tr>
<tr>
<td>pH max</td>
<td>8.12</td>
<td>8.04</td>
</tr>
<tr>
<td>pH min</td>
<td>7.95</td>
<td>7.14</td>
</tr>
<tr>
<td>Aν (mEq kg⁻¹)</td>
<td>2.53 ± 0.01</td>
<td>2.54 ± 0.01</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>19.6 ± 0.2</td>
<td>19.5 ± 0.2</td>
</tr>
<tr>
<td>Salinity</td>
<td>38.2 ± 0.1</td>
<td>38.2 ± 0.1</td>
</tr>
<tr>
<td>pCO₂ (μatm)</td>
<td>608.8 ± 19.1*</td>
<td>1742.3 ± 352.7*</td>
</tr>
<tr>
<td>pCO₂ max</td>
<td>779.3</td>
<td>5497.4</td>
</tr>
<tr>
<td>pCO₂ min</td>
<td>492.5</td>
<td>599</td>
</tr>
<tr>
<td>Ω_CaCO₃</td>
<td>3.97 ± 0.09*</td>
<td>2.34 ± 0.28*</td>
</tr>
<tr>
<td>Ω_ionic</td>
<td>2.59 ± 0.06*</td>
<td>1.52 ± 0.18*</td>
</tr>
<tr>
<td>HCO₃⁻ (μmol kg⁻¹)</td>
<td>2102 ± 9*</td>
<td>2295 ± 28*</td>
</tr>
<tr>
<td>CO₂⁻ (μmol kg⁻¹)</td>
<td>170.1 ± 4.1*</td>
<td>100.2 ± 12.0*</td>
</tr>
</tbody>
</table>

*Significant differences between treatments (p < 0.05).

Aerated aquaria (vol. = 15 l) to a volcanic CO₂ vent gradient in Levante Bay, Vulcano (coordinates = 38°25.189' N, 14°57.711'E). The volume of each sea urchin was calculated by water displacement. Individuals were then blotted dry with a paper towel and wet body mass determined using a high-precision balance (SI-603, Denver Instrument, Bohemia, NY, USA). Individuals were then sealed in mesh containers (vol. = 1 l, mesh diameter = 1 cm, see Calosi et al., 2013a) and placed into large aerated holding tanks (vol. = 60 l) containing control seawater collected from a control site in Levante Bay (salinity: 38°, temperature: 19°C, coordinates = 38°25.215’N, 14°57.797’E, Table 1) for a recovery period of 6 h.

Experimental exposure

To investigate the effect of natural variations in pCO₂ on sea urchin coelomic fluid acid–base balance, individuals were randomly assigned to one of two treatments; a stable control pCO₂, and naturally fluctuating pCO₂ (n = 9 individuals per species per treatment). Exposure to naturally fluctuating pCO₂ was achieved by pumping seawater into a holding tank from Levante Bay (coordinates = 38°25.176’N, 14°57.695’E) using a submersible water pump (ESP400DW, Aden Services, Lillé, France, max flow = 7500 l h⁻¹). The release of CO₂ from the vent site generated a natural pH and pCO₂ gradient (Hall-Spencer et al., 2008; Johnson et al., 2012; Boatta et al., 2013; Milazzo et al., 2014). The site from which fluctuating pCO₂ was obtained was ca. 300 m from the main gas vents away from the influence of H₂S and heavy metals (Boatta et al., 2013; Vizzini et al., 2013). Exposure to stable pCO₂ was achieved by pumping water directly from a site 390 m from the main CO₂ vent (Boatta et al., 2013). Sea urchins were exposed to either fluctuating pCO₂, or stable pCO₂, for 90 h. Measurements of pH, temperature, and salinity in the tanks were taken at each experimental time point with a hand-held multiparameter instrument (Professional Plus YSI, YSI Inc., Yellow Springs, OH, USA). Water samples for total alkalinity (Aν) were collected daily from inflowing water from each site during the experiment. One-hundred-millilitre water sample was passed through 0.2 μm pore size filters, poisoned with 0.05 ml of 50% HgCl₂ to avoid biological alteration, and then stored in the dark at 4°C. Three replicate subsamples were analysed at 25°C using a titration system. The pH was measured at 0.02 ml increments of 0.1 N HCl. Total alkalinity was calculated from the Gran function applied to pH variations from 4.2 to 3.0, as mEq kg⁻¹ from the slope of the curve HCl volume vs. pH. Total alkalinity measurements were corrected using standards provided by A.G. Dickson (batch 99 and 102). Parameters of the carbonate system (pCO₂, CO₃⁻, HCO₃⁻) and saturation state of calcite and aragonite were calculated from pH, Aν, temperature and salinity using the free-access CO₂SYS (Lewis and Wallace, 1998) with constants provided by Mehrbach et al. (1973) refitted by Dickson and Millero (1987). Exposure to stable CO₂ was achieved when the pH value stopped decreasing (circa 15 min). At equilibration pH, the remaining coelomic fluid (vol. = 70 μl) was rapidly (within 5 s) injected into a 0.5 ml micro-centrifuge tube (TUL-649-010L, Fisher Scientific, Loughborough, UK) and placed on a micro pH probe (Micro-Inlab pH combination electrode, Metter Toledo, Leicester, UK) connected to a pH meter (Seven Easy pH meter, Metter Toledo) forming a gas-tight seal between the air and sample (after, Rastrick et al., 2014).

An additional 150 μl of coelomic fluid was extracted from nine freshly collected reference individuals from the collection site of A. lixula and P. lividus, and immediately frozen for later determination of coelomic fluid protein concentration ([protein]_NBL), NBL, and the first apparent dissociation constants of carbonic acid (pK1) in urchin coelomic fluid. NBL were determined after Rastrick et al. (2014), modified from Spicer et al. (1988). Briefly, the 100 μl coelomic fluid sample from each reference individual was injected into a glass diffusion chamber and equilibrated to 0.1, 1.0, and 2.5% CO₂ (mixed with O₂-balanced N₂) in turn, using gas supplied by a gas mixing pump (Woesthoff pump, Wösthoff GmbH, Bochum, Germany). The sample was constantly measured for pH using a micro pH electrode connected to a pH meter. Samples were agitated with a magnetic stirrer and considered equilibrated when the pH value stopped decreasing (circa 15 min). At equilibration pH, the pH value was recorded and TCO₂ measured in a subsample (vol. = 30 μl) using a TCO₂ analyser. This was repeated for each pCO₂ level. NBLs were constructed using the Henderson–Haselbalch equation in the following forms:

\[
p_{CO₂} = \frac{TCO₂}{α(10^{pH−pK₁} + 1)},
\]

\[
[HCO₃⁻] = 10^{pH−pK₂} apCO₂,
\]

where α is the CO₂ solubility coefficient in seawater at 20°C (0.3293 mmol l⁻¹ kPa⁻¹; Spicer et al., 1988; after Harvey, 1955) and pK₂ calculated as 6.03 for P. lividus and 5.91 for A. lixula at 20°C using Equation (3):

\[
pK₂ = pH\left(\frac{Log_{10}(TCO₂−αpCO₂)}{αpCO₂}\right),
\]

Determination of coelomic fluid acid–base balance

The acid–base balance of sea urchin coelomic fluid was determined following the methods in Calosi et al. (2013a). Briefly, coelomic fluid (vol. = 100 μl) was extracted anaerobically from each individual using a gas-tight syringe (Gas-tight 1710 100 μl syringe with an RN 22S gauge needle, Hamilton Co., Bonaduz, Switzerland) inserted 1 cm into the coelomic cavity via the peristomial membrane at 6 h intervals for 90 h (4 d, 16 time points). Total bound and dissolved CO₂ (TCO₂) was analysed instantly in a subsample of coelomic fluid (vol. = 30 μl) using a TCO₂ analyser (956D TCO₂ Analyser, Corning Diagnostics, Cambridge, MA, USA). For determination of coelomic fluid pH, the remaining coelomic fluid (vol. = 70 μl) was rapidly (within 5 s) injected into a 0.5 ml micro-centrifuge tube (TUL-649-010L, Fisher Scientific, Loughborough, UK) and placed on a micro pH probe (Micro-Inlab pH combination electrode, Metter Toledo, Leicester, UK) connected to a pH meter (Seven Easy pH meter, Metter Toledo) forming a gas-tight seal between the air and sample (after, Rastrick et al., 2014).

An additional 150 μl of coelomic fluid was extracted from nine freshly collected reference individuals from the collection site of A. lixula and P. lividus, and immediately frozen for later determination of coelomic fluid protein concentration ([protein]_NBL), NBL, and the first apparent dissociation constants of carbonic acid (pK₁) in urchin coelomic fluid. NBL were determined after Rastrick et al. (2014), modified from Spicer et al. (1988). Briefly, the 100 μl coelomic fluid sample from each reference individual was injected into a glass diffusion chamber and equilibrated to 0.1, 1.0, and 2.5% CO₂ (mixed with O₂-balanced N₂) in turn, using gas supplied by a gas mixing pump (Wösthoff pump, Wösthoff GmbH, Bochum, Germany). The sample was constantly measured for pH using a micro pH electrode connected to a pH meter. Samples were agitated with a magnetic stirrer and considered equilibrated when the pH value stopped decreasing (circa 15 min). At equilibration pH, the pH value was recorded and TCO₂ measured in a subsample (vol. = 30 μl) using a TCO₂ analyser. This was repeated for each pCO₂ level. NBLs were constructed using the Henderson–Haselbalch equation in the following forms:

\[
p_{CO₂} = \frac{TCO₂}{α(10^{pH−pK₁} + 1)},
\]

\[
[HCO₃⁻] = 10^{pH−pK₂} apCO₂,
\]

where α is the CO₂ solubility coefficient in seawater at 20°C (0.3293 mmol l⁻¹ kPa⁻¹; Spicer et al., 1988; after Harvey, 1955) and pK₂ calculated as 6.03 for P. lividus and 5.91 for A. lixula at 20°C using Equation (3):

\[
pK₂ = pH\left(\frac{Log_{10}(TCO₂−αpCO₂)}{αpCO₂}\right),
\]
[HCO$_3^-$], and pCO$_2$, in experimental individuals were calculated from pH$_e$ and TCO$_2$, determined above using Equations (4) and (5), respectively (Truchot, 1976);

$$pCO_2 = \frac{TCO_2}{\alpha(10^{pH_e-kW_1} + 1)}, \quad (4)$$

$$HCO_3^- = TCO_2 - \alpha pCO_2. \quad (5)$$

Determination of coelomic fluid protein concentration

[Protein] concentration was determined by the Bradford coomassie blue assay; 10 μl of each coelomic fluid sample was diluted in to 90 μl of H$_2$O, 5 μl of each diluted sample was plated in to a 96 micro well plate with 250 μl of Coomassie reagent (23200, Thermo Scientific, Pierce Biotechnology, Rockford, IL, USA). After 10 min, the absorbance was read at 595 nm (iMark Microplate Absorbance Reader, Bio-Rad Laboratories, Hercules, CA, USA) and compared with albumin protein standards at nine concentrations from 0 to 2000 μg ml$^{-1}$ (23209, Thermo Scientific) treated in the same way.

Statistical analysis

The pH$_e$, pCO$_2$, [HCO$_3^-$], and [protein]$_e$ of field collected control A. lixula and P. lividus were compared using a one-way ANOVA. To test if the possible relationship between pCO$_2$, pH$_e$ or [HCO$_3^-$]$_e$ (dependant factors) and pCO$_2$sw (covariate) varied between site (control and fluctuating) and species (fixed factors), a repeated measures, nested GLMM (with individual urchin as a random factor) was performed, which considers the fact that the individuals sampled at the two sites are not true replicates (e.g. Collard et al., 2016). To understand the species-specific differences in response to fluctuating pCO$_2$sw, linear regressions were also performed for each acid–base parameter vs. pCO$_2$sw on each individual. The slope of the individual regressions (b) was obtained, and the average for each species was calculated. The average B for changes in P. lividus pH$_e$, pCO$_2$, and [HCO$_3^-$], with pCO$_2$sw was compared against that of A. lixula using a Student’s t-test to determine any significant differences in coelomic fluid acid–base response with variations in pCO$_2$sw. The standard deviation of pH$_e$, pCO$_2$, and [HCO$_3^-$]$_e$ for each individual were also compared using a Student’s t-test to determine differences in acid–base variation between A. lixula and P. lividus. All statistical procedures were performed using SPSS software (V18, SPSS, Chicago, IL, USA); all values are presented as means ± standard error.

Results

Urchin coelomic fluid acid–base parameters before exposure

The acid–base balance of coelomic fluid from field collected (pH = 8.05) A. lixula was significantly different from that of P. lividus (Table 2). In summary, pH$_e$ and [HCO$_3^-$]$_e$ were significantly lower in A. lixula than P. lividus ($F_{min,11} = 101.692, p < 0.001$), while there was no significant difference in pCO$_2$sw ($F_{1, 12} = 0.628, p > 0.05$). The [protein]$_e$ of A lixula was almost threefold higher than in P. lividus ($F_{1,12} = 10.272, p < 0.01$), and the calculated NBL for A. lixula ($y = -1.504 x + 12.606, R^2 = 0.8254$) was significantly lower than that of P. lividus ($y = -0.493 x + 7.6358, R^2 = 0.7299, t_{10} = 8.925, p < 0.001$).

The effect of fluctuating pCO$_2$sw on urchin coelomic fluid acid–base balance

There was a significant three-way interaction between site, species, and pCO$_2$sw on pCO$_2$ ($F_{39,41} = 5.587, p < 0.05$). The relationship between pCO$_2$sw and pH$_e$ in P. lividus was significantly different between the fluctuating and the control treatments ($F_{157,9.1} = 7.650, p < 0.01, Figure 1$). In contrast, A. lixula showed no significant difference between the two treatments ($F_{137,9.1} = 0.333, p = 0.565, Figure 1$).

There was also a significant three-way interaction between site, species, and pCO$_2$sw on pH$_e$ ($F_{46,6.1} = 10.633, p < 0.01, Figure 1$). The relationship between pCO$_2$sw and pH$_e$ in P. lividus was significantly different between the fluctuating and the control treatments ($F_{110,0.1} = 10.581, p < 0.01, Figure 1$), while A. lixula again showed no significant difference between the two treatments ($F_{110,0.1} = 0.106, p = 0.745, Figure 1$).

The relationship between pCO$_2$sw and [HCO$_3^-$]$_e$ also demonstrated a significant three-way interaction between site, species, and pCO$_2$sw ($F_{56,8.1} = 61.378, p < 0.001, Figure 1$). However, the relationship between pCO$_2$sw and [HCO$_3^-$]$_e$ is different between the fluctuating and the control treatments in both P. lividus ($F_{110,0.1} = 8.905, p < 0.01, Figure 1$) and A. lixula ($F_{137,9.1} = 7.719, p < 0.01, Figure 1$). This is because both species show some significant increase in [HCO$_3^-$]$_e$ as seawater pCO$_2$ increases; however, this response was significantly greater in P. lividus compared with A. lixula (where a bicarbonate response was extremely limited) when exposed to natural fluctuations in pCO$_2$sw ($F_{44,8.1} = 475.914, p < 0.001, Figure 1$).

While fluctuating pCO$_2$sw had a significant effect on the coelomic acid–base status of both species, the effect was greater on P. lividus than A. lixula, as demonstrated by comparing the average slopes of the regressions (B value) performed on the pH$_e$, pCO$_2$, and [HCO$_3^-$] of all individuals against pCO$_2$sw (Table 3). The pH$_e$ of both A. lixula and P. lividus showed a negative relationship with pCO$_2$sw; however, the average B for the regression of pH$_e$ against pCO$_2$sw of P. lividus, $−0.091 ± 0.006 \text{ unit-pH}_e \text{ unit-pCO}_2sw^{−1}$, was significantly greater than that of A. lixula, $−0.055 ± 0.005 \text{ unit-pH}_e \text{ unit-pCO}_2sw^{−1}$ ($t_{14} = 4.645, p < 0.001, Figure 2$). This indicates that individual decreases in pH$_e$ in response to fluctuations in pCO$_2$sw were greater (i.e. steeper response gradient) in P. lividus than in A. lixula. The pCO$_2$, and [HCO$_3^-$] of both P. lividus and A. lixula had a positive relationship against pCO$_2$sw. The average B for pCO$_2$, against pCO$_2$sw of P. lividus, $0.174 ± 0.017 \text{ unit-pCO}_2^{−1}$ was significantly higher than that of A. lixula, $0.102 ± 0.014 \text{ unit-pCO}_2^{−1}$ ($t_{16} = −3.193, p = 0.006$), as was the average B for [HCO$_3^-$] against pCO$_2$sw of P. lividus ($0.368 ± 0.042 \text{ mmol} \text{l}^{−1} \text{ unit-pCO}_2^{−1}$, $A. lixula = −0.065 ± 0.025 \text{ mmol} \text{l}^{−1} \text{ unit-pCO}_2^{−1}$, $t_{16} = −6.203, p < 0.001$). This indicates that individual increases in both pCO$_2$, and [HCO$_3^-$] in response to increases in pCO$_2$sw were

<table>
<thead>
<tr>
<th>Table 2. Acid–base balance of control field collected A. lixula and P. lividus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. lixula</td>
</tr>
<tr>
<td>pH$_e$</td>
</tr>
<tr>
<td>pCO$_2$ (kPa)</td>
</tr>
<tr>
<td>[HCO$_3^-$]$_e$ (mmol l$^{−1}$)</td>
</tr>
<tr>
<td>Protein (μg ml$^{−1}$)</td>
</tr>
<tr>
<td>pH$_c$</td>
</tr>
</tbody>
</table>

Data are means ± s.e.

*Significant differences between species ($p < 0.05$).
greater in *P. lividus* than *A. lixula* (Figure 2). Finally, when exposed to fluctuating *pCO₂*sw, the standard deviation of [HCO₃⁻] in individual *P. lividus* was significantly higher than that in *A. lividus* (*t* = 7.377, *p* < 0.001).

No mortality was observed throughout the experimental period nor were there issues with urchin viability or infection encountered due to the repeated sampling of coelomic fluid (see Calosi et al., 2013a); there was also no significant progressive acidosis throughout the experimental period showing that repeated sampling had no effect on acid–base balance.

Discussion

The present study demonstrates that naturally fluctuating *pCO₂*sw produced different magnitudes of bicarbonate acid–base responses in two species of sea urchin. The acid–base response of *P. lividus* in relation to fluctuating *pCO₂*sw was greater than that of *A. lixula* because *P. lividus* relies on limited bicarbonate buffering capabilities for acid–base regulation, whereas *A. lixula* relied on non-bicarbonate buffering capacity. The distributions of closely related species at CO₂ vents are driven by differences in acid–base regulatory capabilities (Calosi et al., 2013a). However, despite variations...
in carbonate chemistry being demonstrated in various ecosystems (Hofmann et al., 2011) including volcanic vent sites (Boatta et al., 2013), most studies pertaining to the comparative physiological responses between species to elevated CO$_2$ and in naturally acidified environments have focused on stable mean differences in CO$_2$ (sw) conditions (e.g. Suggett et al., 2012; Calosi et al., 2013a, b). Understanding how species respond to natural CO$_2$ (sw) conditions will help explain some of the variation in physiological responses and may provide better predictions on how species will respond to future change (e.g. Kroeker et al., 2011).

Echinoderm coelomic fluid acid–base parameters often conform according to the surrounding seawater (Farmanfarmaian, 1966; Miles et al., 2007) and they have minimal acid–base regulatory capacity when exposed to elevated CO$_2$ (Spicer et al., 1988; Miles et al., 2007; Appelhans et al., 2012; Calosi et al., 2013a). Despite the apparent poor acid–base and ion-regulatory mechanisms, when exposed to elevated CO$_2$, some species of sea urchins have been shown to exhibit bicarbonate buffering to maintain acid–base homeostasis in response to stable elevated CO$_2$ in laboratory (Miles et al., 2007) and field conditions (Calosi et al., 2013a). In the present study, there was no significant effect of stable CO$_2$ (sw) on the coelomic fluid acid–base balance of either P. lividus or A. lixula during control incubations.

The differences in acid–base responses to fluctuating CO$_2$ (sw) between the two species in the present study can be related to the differing mechanisms of acid–base regulation employed. *Paracentrotus lividus* relied on uncompensated bicarbonate acid–base buffering as while they exhibited a significant relationship between [HCO$_3^-$] with CO$_2$ (sw), there were also significant fluctuations in pH$_e$ and CO$_2$ (sw). In contrast to *P. Lividus*, *A. lixula* exhibited comparatively lower fluctuations in [HCO$_3^-$], and experienced no significant fluctuations in CO$_2$ (sw) or pH$_e$ in relation to fluctuating CO$_2$ (sw). The bicarbonate buffering capacity of *A. lixula* was to the extent of being almost non-existent. The acid–base response of *A. lixula* to decreasing CO$_2$ (sw) closely follows the non-bicarbonate buffering line (Figure 3) and therefore is due to non-bicarbonate buffering rather than HCO$_3^-$ regulation. This mechanism in *A. lixula* therefore appears to result in greater pH$_e$ stability under fluctuating CO$_2$ (sw) conditions. The acid–base responses observed in the present study make an interesting comparison with those of stable mean elevations in CO$_2$ (sw) in the same species. When exposed to chronic exposure to high CO$_2$ (sw), *A. lixula* also demonstrated a lower bicarbonate response than *P. lividus*; however, in both species, acid–base disturbances are fully compensated (Calosi et al., 2013a). Conversely, the lack of full pH$_e$ compensation by *P. lividus* in the present study indicates that this species is unable to respond efficiently to short-term fluctuations in CO$_2$ (sw). It is therefore apparent that under fluctuating CO$_2$ (sw) conditions, the ability of *P. lividus* to compensate pH$_e$ breaks down, while the non-bicarbonate buffering capacity of *A. lixula* allows the maintenance of pH$_e$ homeostasis. The maintenance of pH$_e$ homeostasis in *A. lixula*

Table 3. Acid–base balance of *A. lixula* and *P. lividus* throughout the experimental period.

<table>
<thead>
<tr>
<th>Species</th>
<th>Control pH</th>
<th>Fluctuating PH</th>
<th>Control CO$_2$ (kPa)</th>
<th>Fluctuating CO$_2$ (kPa)</th>
<th>Control [HCO$_3^-$] (mmol l$^{-1}$)</th>
<th>Fluctuating [HCO$_3^-$] (mmol l$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. lixula</td>
<td>pH</td>
<td>Control</td>
<td>Fluctuating</td>
<td>Control</td>
<td>Fluctuating</td>
<td>Control</td>
</tr>
<tr>
<td>P. lividus</td>
<td>pH</td>
<td>Control</td>
<td>Fluctuating</td>
<td>Control</td>
<td>Fluctuating</td>
<td>Control</td>
</tr>
</tbody>
</table>

Data are presented as means ± s.e., along with the minimum and maximum values observed.

*Significant effect of seawater CO$_2$ on acid–base parameters (p < 0.05).
may also, in part, be alleviated by comparatively low routine pH levels in this species. Throughout control incubations and in field collected individuals from the control site, A. lixula consistently had a lower pHsw (7.31 ± 0.03) than P. lividus (7.73 ± 0.03) with no difference in pCO2sw. Comparatively low pHsw under natural and control conditions have been reported previously for A. lixula (Calosi et al., 2013a) and have been reported in other marine organisms (e.g. Gutowska et al., 2010; Donohue et al., 2012). Although the reasons for this, and possible physiological implications, are outside the scope of the present study, what is important is the ability of A. lixula to maintain pH homeostasis and avoid acidosis of the coelomic compartment (i.e. a decrease in pHsw away from its routine value) in response to fluctuations in than pCO2sw, with almost no change in [HCO3−].

This greater capacity for non-bicarbonate buffering in A. lixula is reflected by the steeper NBL of A. lixula compared with P. lividus, and the acid–base responses in A. lixula being closely clustered around the NBL compared with the high variation in bicarbonate response show by P. lividus (Figure 3). Paracentrotus lividus has a significantly lower [protein], than that of A. lixula, which while low compared with other species of marine invertebrates, is representative of the low protein concentrations seen in sea urchins (e.g. Spicer et al., 1988; Miles et al., 2007). Comparative differences in [protein] between sea urchin species may be the main reason for differences in acid–base regulatory capacity, with species exhibiting higher [protein], having greater capacity for pH regulation (Spicer et al., 1988), as demonstrated in the present study.

Differences in [HCO3−], response to fluctuating conditions may be related to routine rates of activity and metabolism, as seen in crustaceans where species with routinely higher rates of activity and metabolism have higher non-bicarbonate buffering capacities due to higher levels of extracellular protein (haemocyanin; Watt et al., 1999; Whiteley, 2011). Whether the same conditions apply to echinoderms is currently unknown, but if true, may explain differences in pCO2 sensitivity between the two species. The energetic consequences of relying on bicarbonate buffering in P. lividus may be greater than that of non-bicarbonate buffering in A. lixula. For example, Na+/K+ -ATPase is one of a number of transport mechanisms utilized in invertebrate acid–base regulation (Reiphschläger and Pörtner, 1996), the activity of which is energetically expensive accounting for up to 40% of the total energy demand in the sea urchin Strongylocentrotus purpuratus (Leong and Manahan, 1997).

While there are differences between acid–base regulatory mechanisms in the two species of urchins in the present study, it must also be noted that differences in energy acquisition and utilization between the two species under elevated pCO2 may also be an important aspect of determining species distributions (Binyon, 1972; Stickle and Diehl, 1987) including across natural CO2 gradients. Arbacia lixula is regarded as omnivorous, while P. lividus is an herbivorous grazer (Agnetta et al., 2013) indicating higher protein acquisition in A. lixula compared with P. lividus. Non-bicarbonate buffering capacity, while perhaps initially expensive, may in the long term be less energetically expensive than constant HCO3− regulation. Therefore, species such as A. lixula, which demonstrate a higher capacity of non-bicarbonate buffering and therefore a reduced reliance on HCO3− regulation, may be more tolerant to not only chronic stable high pCO2sw conditions but also acute fluctuations in pCO2sw associated with natural coastal systems. This may be important in determining the resilience of a species as the ability to mobilize HCO3− in an attempt to compensate pHsw in response to OA may have energetic consequences that in the long term give an advantage to species that favour non-bicarbonate protein buffering and so exhibited smaller and presumed less costly fluctuations in acid–base statues. Given the ability of P. lividus to compensate stable increases in pCO2sw (Calosi et al., 2013a), it would be expected to maintain population density closer to the vent sites. However, this present study shows that it may be the inability of P. lividus to compensate for short-term fluctuations in pCO2sw that ultimately controls its distribution at the vents. Importantly, the present study shows that natural acute fluctuations in pCO2sw associated with natural coastal systems and predicted to increases in the future are just as important in modulating this response as a chronic overall increase in pCO2sw associated with OA.

In conclusion, this study shows that the differential sensitivity of closely related species to future climate change (i.e. the “winners” and “losers”) may have as much to do with physiological compensatory responses to natural acute fluctuations in pCO2sw as with chronic changes in mean pCO2sw. Furthermore, many coastal marine habitats experience periodic and acute fluctuations in seawater carbonate chemistry, the level of variation within which is

Figure 3. Davenport diagrams representing coelomic fluid acid–base balance of (a) P. lividus and (b) A. lixula. Each point represents mean ± s.e. of each species at each time point. Solid line indicates non-bicarbonate buffering line. Squares indicate stable control pH conditions; triangles indicate fluctuating pCO2sw conditions.
predicted to increase. Understanding species physiological responses to variations in pCO$_2$ in these habitats is essential in understanding the species and community responses to OA as closely related species, such as _P. lividus_ and _A. izula_, have trophic and ecological interactions which are important in characterizing the ecology of the systems in which they reside (Bulleri _et al._, 1999; Privitera _et al._, 2008).

Acknowledgements

Original concept and data collection by DPS, HG, and CB led by SPSR. First drafts of the paper and data analysis by DPS supported by SPSR. Repeated-measures nested GLMM was performed by SPSR. All authors contributed to the final draft of the paper. This work was funded by UK Ocean Acidification research programme (funded by NERC, Defra, and DECC; grant no. NE/H02543X/1) Added Value Award, awarded to SPSR supported by CH, MM, and JMH-S. The authors also thank Professor Stephen Widdicombe and Fred Staff at Plymouth Marine Laboratories for the use of equipment.

References

Handling editor: C. Brock Woodson