Authors draft of:
http://dx.doi.org/10.1093/bja/aew330

Title:
Time to move the goalposts? Do we need new targets for developing intravenous anaesthetics?

Short running title:
New targets for developing intravenous anaesthetics

Author:
J Robert Sneyd
Plymouth University Peninsula Schools of Medicine and Dentistry,
The John Bull Building, Research Way, Plymouth Science Park, Plymouth PL6 8BU, UK
robert.sneyd@pms.ac.uk (07870) 271531
PA: Deb Fox 01752 437401 deborah.fox@plymouth.ac.uk
Summary (abstract):
the submitted manuscript is proposed as an editorial for which no summary is required

Keywords:
Anesthetics, Intravenous
propofol
remifentanil
etomidate
ketamine

Trial registration: not applicable
Ethical approval: not applicable

Declaration of interests:
Prof Sneyd acts as a consultant to the following:
Maruishi pharmaceutical company, Japan;
The Medicines Company, USA
Altus, Canada

Funding: this editorial was written without funding

Contribution: RS conceived, planned and wrote the editorial

Acknowledgement: none
Time to move the goalposts? Do we need new targets for developing intravenous anaesthetics?

Widespread use of intravenous hypnotics for induction of anaesthesia dates from 1934 when thiopentone was introduced. Since then a handful of agents have come and gone with only propofol and ketamine enjoying common use in addition to some residual administrations of thiopentone and etomidate.

During the 30 years since propofol was introduced in 1986, number of candidate hypnotics and propofol reformulations have been evaluated but none have yet achieved commercial success or significant clinical impact. During this period developmental objectives built on the shortfalls of thiopentone listed by Dundee\(^1\) in 1961 with additional ambitions arising from the known limitations of propofol and increasing interest in maintenance of anaesthesia by infusion. Table 1.

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
 & \\
\hline
\end{tabular}
\caption{Table 1 near here}
\end{table}

In addition, swift esterase hydrolysis allows the use of remifentanil to provide intense opioid effect with rapid offset thereby sharply decreasing the amount of maintenance hypnotic required. Similar thinking has proposed the use of the benzodiazepine remimazolam for maintenance of general anaesthesia.\(^2\)

“Problems” with propofol - are they really an issue?

Although frequently cited, the well-known limitations of propofol appear to be manageable and have not materially impacted its use. Pain on injection may be reduced or abolished by addition of Lidocaine or changing the lipid used in the emulsion. Accumulation of lipids seems only to be an issue during prolonged administration in comprised patients and possibly in children. Sepsis precipitated by
bacterial contamination is diminished by addition of an antiseptic (EDTA or sodium metabisulphite) and should never happen if a flawless aseptic technique is used. Haemodynamic depression is attenuated by slow administration, careful adjustment of dose and co-administration of fluid. Finally, respiratory depression is generally easily managed by a competent anaesthetist and the suppression by propofol of laryngeal reflexes is a positive advantage facilitating laryngeal mask airway insertion.

Who needs thiopentone anyhow?

The use of thiopentone has been in decline following association with judicial execution and subsequent restriction of supply within the USA plus the withdrawal of a major manufacturer. Contemporary anaesthetic use of thiopentone is limited to induction of general anaesthesia for Caesarean section, a small number of patients for whom propofol is considered contraindicated (typically after some kind of allergic reaction) or occasional use to attempt neuro protection. Even the limited use of thiopentone on the labour ward may cease because anaesthetists are increasingly unfamiliar with the drug and sceptical about the limited literature supporting its superiority to propofol for obstetric indications.³ Allergy to propofol is controversial and certainly infrequent. Finally, supply issues are exacerbated by limited commercial interest in a drug that hardly anybody uses.

Does anybody need etomidate?

Since its association with adrenocortical depression the use of etomidate has declined sharply. Residual use, notably in the United States is based around rapid onset, short duration of action and minimum haemodynamic and respiratory disturbance. Its continued popularity with some anaesthetists and notably non-anaesthetist emergency physicians and intensivists is defended by assertions that
single doses do not impact morbidity/mortality although this remains controversial. Novel etomidate derivatives have dealt with the adrenocortical depression issue through structural changes to form a pyrrole analogue, carboetomidate with diminished binding to 11beta-hydroxylase or to a rapidly hydrolysed ester, cyclopropyl-methoxycarbonyl metomidate, ABP-700 which is currently under evaluation in man.\(^5\)

Is intravenous anaesthesia worth the trouble?

The popularity of total intravenous anaesthesia, TIVA with propofol reflects the appreciation by patients and their anaesthetists of swift emergence from anaesthesia followed by rapid clearheaded recovery with minimal post-operative nausea and vomiting, PONV. Target Controlled Infusion, TCI facilitates TIVA by simplifying drug administration. However, swift clearheaded recovery can easily be achieved with sevoflurane or desflurane and multi-drug anti-emetic prophylaxis greatly reduces PONV after inhaled anaesthesia. Perhaps the favourable recovery profile of propofol can be achieved by other means?

The versatility and safety of propofol in the hands of anaesthetists plus a questioning approach to its alleged problems has acted as a brake on otherwise attractive novel approaches to intravenous anaesthesia. PF016 (a propofol derivative free from pain on injection),\(^6\) (reference) and alfaxalone (superior haemodynamic stability to propofol)\(^7\) have failed to attract sustained commercial interest, presumably because their advantages appear insufficient to justify the cost of development.
Currently only remimazolam2 and ABP-7008 remain in clinical development with both programs focused initially on endoscopy where an agent with superior cardiorespiratory stability and ease of administration might permit sedation by an operator-sedationist or at least a non-physician sedation provider. In each case the business case focuses on avoiding the need for an expensive anaesthetist thereby generating cost savings that in turn justify a more expensive hypnotic.

\textit{Use of anaesthetic drugs for non-anaesthetist sedation}

Multiple non-anaesthetist clinicians give elective or emergency sedation to patients. Sensibly they mostly restrict themselves to midazolam plus fentanyl.9 Nevertheless, such sedation providers often yearn for the more profound effects of anaesthetic hypnotics whilst understandably remaining cautious about cardiorespiratory depression. Although the safety of non-physician use of propofol has been demonstrated in carefully constrained circumstances (ASA physical status 1-2 patients, well-trained nurse sedationists)10 wider deployment is considered problematic.11 The semi-autonomous Sedasys sedation system has been withdrawn after sustained opposition by the American Society of Anesthesiologists.12 Development of compounds to address this clinical opportunity remains a commercial interest although establishing the necessary trials may be problematic without the support of anaesthetists.

If current considerations have failed to motivate sustained commercial development against conventional criteria we should consider alternative opportunities for innovation.

\textit{Neurotoxicity}
Both intravenous and inhaled anaesthetics are unquestionably neurotoxic in at least some animal models. Whether these effects are relevant to human use remains controversial with selected retrospective studies suggesting harm whilst the only prospective investigation has to date shown no harm at two year follow-up to neonates randomised to loco-regional or general anaesthesia for hernia repair. Only time and further research will clarify whether paediatric neurotoxic effects exist in man and if so by what mechanisms it is caused. Such insights would profoundly influence drug development with immediate parent and professional pressure to focus on compounds not so implicated.

Neuro protection

Although thiopentone, propofol and etomidate have all been used in attempts to achieve neuro protection during periods of impaired cerebral perfusion, the evidence base to support such practice is sketchy. In contrast, the noble gases xenon and argon are profoundly neuroprotective in vitro and in some animal models leading to experimental clinical deployment of xenon after neonatal asphyxia, during cardiac surgery and after cardiac arrest. The requirement for complex equipment and the procurement cost of xenon may limit widespread use. However, if proven effective then additional basic science to explore in detail the molecular basis of such efficacy could offer new targets for drug development, hopefully to produce small molecules suitable for intravenous administration.

Cognitive impairment

The combination of general anaesthesia and surgery undoubtedly precipitates post-operative cognitive impairment, POCD in a minority of patients especially the elderly. Whilst POCD is generally considered reversible there are also suggestions
that a subset of patients, perhaps with a predisposition, may be tipped into Alzheimer’s disease by administration of general anaesthesia. The epidemiology and mechanisms of these changes are under intense investigation. Insights into their mechanisms may suggest new targets for hypnotic development strategies for using existing drugs to cause least harm.

Anaesthetics and cancer

Preclinical data and retrospective studies in man suggest that choice of anaesthetic technique may influence the progression of cancer and subsequent mortality. Recently a substantial retrospective review of cancer surgery patients suggested long-term differences in mortality with a substantial effect size with an association between intravenous anaesthesia and decreased mortality. Multiple drug effects and mechanisms have been postulated including promotion of angiogenesis by morphine, beneficial effects of bupivacaine and propofol and harmful effects of inhalational agents. As these effects (if reproducible) and their mechanisms are clarified there will emerge opportunities for changes in anaesthetic practice and possibly new drugs designed to interact favourably with the immune system and other factors influencing outcome after cancer surgery. Pending further evidence a recent consensus statement recommends no changes in anaesthetic techniques.

Intravenous anaesthesia and the difficult airway

Induction of general anaesthesia patients with difficult airway’s risks lapse into the can’t-intubate-can’t-ventilate scenario and awake intubation may therefore be preferred. Combination of the short-acting opioid, remifentanil, a rapid onset neuromuscular blocker, rocuronium immediately reversible with sugammadex, and a rapid-onset, rapid-offset ultra short acting intravenous hypnotic might permit careful
exploration of intubation under general anaesthesia with the option of a swift bale-
out.24 Novel ultra-short acting intravenous agents may offer swift recovery of
consciousness to mirror the reversal of neuromuscular block in such situations. If
respiratory drive can be maintained then progressive induction with an IV agent
might be an alternative to inhalation induction for patients with airway compromise.

\textit{Intravenous hypnotics with novel properties}

The recent suggestion that a short-acting ketamine derivative may have analgesic
properties outlasting its hypnotic effects,25 the use of ketamine in the treatment of
depression26 and the recent demonstration of a specific and separate mechanism for
this27 suggest further scope for targeting and refinement of drug effects through
better understanding of receptor and cellular mechanisms and innovative synthetic
chemistry.

\textit{Widening the hunt}

Advances in pertinent basic science including novel selective photo-affinity ligands28
today permit the identification of the protein targets of anaesthetic effects and
subsequently the detailed characterisation of the sites at which individual drug
actions are affected. Deconstruction at a molecular level of individual anaesthetic
drug effects will offer new opportunities and may merit commercial investment with
goes more ambitious than simply being a little bit better than propofol.

Anaesthetists can and should demand novel intravenous anaesthetics with unique
characteristics tailored to clinical need. For a profit-motivated pharmaceutical
industry to deliver these at prices affordable in resource limited health systems
requires wider thinking than the boundaries defined by Dundee 55 years ago.
REFERENCES

1 Barron DW, Dundee JW. The recently introduced rapidlyacting barbiturates; a review and critical appraisal in relation to thiopentone. Br J Anaesth 1961; 33: 81-91
3 Lucas DN, Yentis SM. Unsettled weather and the end for thiopental? Obstetric general anaesthesia after the NAP5 and MBRRACE-UK reports. Anaesthesia 2015; 70: 375-9

12 Singh PM, Borle A, Goudra BG. Use of computer-assisted drug therapy outside the operating room. *Curr Opin Anaesthesiol* 2016; 29: 506-11

22 Byrne K, Levins KJ, Buggy DJ. Can anesthetic-analgesic technique during primary
23 Buggy DJ, Borgeat A, Cata J, et al. Consensus statement from the BJA Workshop on
24 Sorensen MK, Bretlau C, Gatke MR, Sorensen AM, Rasmussen LS. Rapid sequence
induction and intubation with rocuronium-sugammadex compared with succinylcholine: a
intravenous ketamine for treatment-resistant depression. Biol Psychiatry 2010; 67: 139-45
actions of ketamine metabolites. Nature 2016; 533: 481-6
28 Woll KA, Dailey WP, Brannigan G, Eckenhoff RG. Shedding Light on Anesthetic
<table>
<thead>
<tr>
<th>Issue</th>
<th>strategy</th>
<th>exemplar development candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid onset</td>
<td>Lipid solubility,</td>
<td>ADB-700</td>
</tr>
<tr>
<td>Rapid offset</td>
<td>Rapid distribution and metabolism, ester compounds</td>
<td>AZD3043</td>
</tr>
<tr>
<td>Haemodynamic stability</td>
<td>Steroid derivatives, etomidate derivatives, increased opioid effect</td>
<td>ORG21465, eltanolone, remimazolam, remifentanil, alfaxalone</td>
</tr>
<tr>
<td>Retention of respiratory drive</td>
<td>Improve on propofol</td>
<td>ADB-700, remimazolam, alfaxalone</td>
</tr>
<tr>
<td>Pain on injection, issues with drug delivery vehicle</td>
<td>Water solubility, reduce free propofol concentration</td>
<td>ORG 21465, ORG25435</td>
</tr>
<tr>
<td>Accumulation of lipid vehicle</td>
<td>Non-lipid propofol formulations, water soluble agents</td>
<td>Various</td>
</tr>
</tbody>
</table>

Table 1. Recent drivers of intravenous hypnotic development.